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Manish Parashar

The amount of data generated by applications and digital sources is rising to unprece-

dented scales. To keep pace, applications and workflows tasked with transforming the data

to insight are becoming increasingly dynamic and inherently data-driven. Furthermore,

the computational services, i.e., compute, data, and communication, required to run this

emerging class of applications are often just as dynamic and heterogeneous. As data sizes

continue to grow, one must find new ways of harnessing these services to meet the needs of

emerging data-driven workloads.

Building a computational environment capable of supporting these applications presents

many complex challenges. For example, there are requirements and dynamic behaviors set

forth by multiple components of the environment, i.e., users, service providers, applications,

and computational services. Accordingly, an environment must be capable of (1) providing

a way for these components to express their requirements at any time in the application

lifecycle and (2) reacting in real-time to changes set forth by any of these components

by adjusting the service composition. While cloud computing provides the flexibility and

diversity of services required by such an environment, determining which services to compose

to meet application needs and when to compose them is not supported by current service

models and infrastructure.
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To address these challenges, this dissertation presents a programming system to enable

the creation of a distributed Software-Defined Environment (dSDE); the resulting envi-

ronment can seamlessly and symbiotically combine compute, data sources, data storage,

and network resources. Specifically, this work makes the following contributions: (1) it

enables the on-demand aggregation of distributed services while facilitating the continuous

deployment of applications on top of them; (2) it provides programming abstractions that

allow users, resource providers, and applications to dynamically compose different services

based on constraints or requirements; (3) it introduces a runtime framework that can au-

tonomously adapt to changes from any of the components in the environment; and (4) it sets

forth a quantification model for application performance and expected quality of service of

the resulting distributed Software-Defined Environment, which allows users to reason about

trade-offs and requirements with respect to throughput, latency, cost, deadline, etc.

The applicability of this work to real-world scientific applications is validated through a

series of experiments where heterogeneous, geographically distributed services are composed

based on user, resource provider, and application specifications. The results establish the

potential impact of a system capable of real-time adaptability to changes in mixed resource

environments, including multiple clouds, grids, clusters, supercomputers, and traditional

data centers.
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Chapter 1

Introduction

Increasing computational capabilities coupled with an exponential growth of digital data

sources has given rise to a data deluge. Transforming this massive quantity of information

from data to insight requires innovations in the computational lifecycle. For example,

emerging applications must be able to glean insights from data that is varying in size,

distribution, and frequency; i.e., computation is inherently dynamic and driven by data

availability. Supporting these data-driven applications requires rethinking the way we store,

process, and analyze data as it is generated.

In this dissertation, we propose the creation of a novel and flexible computing ecosystem,

called a distributed Software-Defined Environment (dSDE), specifically designed to satisfy

the diverse requirements set forth by emerging data-driven applications, end-users, and

resource/service providers. The proposed ecosystem opportunistically combines pervasive

digital data sources with the distributed compute, storage, and communication services they

require over time. As a result, it is capable of automatically evolving over time in response

to dynamic application, data, or infrastructure behaviors. Further, the dSDE is exposed

programmatically to empower users, resource providers, and applications with control over

the ecosystem.

Thesis Statement: An ecosystem that combines distributed (1) compute, (2) storage,

(3) network, and (4) data sources in a flexible, autonomous, and programmable manner can

efficiently support emerging data-driven applications and workflows.

The remainder of this chapter motivates the need for a dSDE using scenarios from

diverse areas such as science and engineering, Internet of Things, and business. Next, we

describe the challenges that need to be addressed to realize a dSDE, followed by a summary

of our approach and results.
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1.1 Emerging Dynamic and Data-Driven Applications and Workflows

1.1.1 Computational and Data-Enabled Science and Engineering (CDS&E)

CDS&E application workflows integrate data sources (e.g., monitoring, observations, and

experiments) with computational tools (e.g., modeling, analytics, and visualization) to un-

derstand natural phenomena, manage complex processes, and accelerate scientific discovery.

To prepare for a smarter, more ‘connected’ world, scientists and engineers are challenging

the current methods of simulation by developing new classes of application workflows ca-

pable of dealing with real-time data transmissions from a variety of different sources across

the globe. Integrating real-time data can enable new opportunities from managing extreme

events to optimizing everyday processes and improving the quality of life. For example,

an instrumented oil field can (theoretically) achieve robust control and efficient manage-

ment of diverse subsurface and near subsurface geo-systems by completing the feedback

loop between measured data and a set of computational models, thereby providing effi-

cient, cost-effective, and environmentally safe production of oil reservoirs [123]. However,

to support emerging CDS&E applications and workflows, one must address the following

challenges:

1. Large scale and dynamic application behavior. Emerging CDS&E application

workflows typically require large capacity and often heterogeneous capabilities that

exceed what an average user can expect from a single computational center. Further-

more, these data-driven applications exhibit changing requirements at runtime (e.g.,

computational demand, data interest, and quality of service levels). Therefore, they

require adaptive approaches that can automatically adjust the underlying infrastruc-

ture. Finally, these applications require novel methods of combining distributed data

sources (e.g., data archives, instruments, experiments, and embedded sensors and ac-

tuators) with computational services (e.g., compute, network, storage), for example,

when moving data is no longer an option.

For instance, the Korean Superconducting Tokamak Advance Research (KSTAR) [98]

project can generate 3 TB of data during a 100-second experiment. In this multi-

location project, there are no local computational services to analyze the generated
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data. Moreover, it is critical to promptly analyze certain data (e.g., to detect the

creation of anomalies that could damage the experiment), whereas the bulk of data

needs to be transferred somewhere else for batch processing using complex models.

Therefore, it is essential to dynamically compose services close to the data source

to detect anomalies promptly, while coordinating remote services that can store and

analyze the bulk of the data to obtain scientific insights.

2. Resource management. The complexity and dynamic requirements of emerging

CDS&E application workflows, coupled with the abundance and wide variety of avail-

able services, makes it very challenging for users to control their execution environ-

ments. For example, it is difficult for scientists to programmatically express which

services are appropriate for a particular situation or to define the expected behavior

of the infrastructure in response to application behavior. Additionally, programmat-

ically exposing the underlying distributed infrastructure can enable new application

formulations – those that are primarily driven by the application runtime behavior.

For instance, molecular dynamics (MD) simulation is an essential part of drug discov-

ery that provides key insights into drug design. A dSDE that combines commodity

hardware from multiple sites can effectively support MD simulations (e.g., by acceler-

ating and modeling conformational movement in proteins that are pharmaceutically

relevant). Conversely, in the context of protein folding, a dSDE can be programmed

to dynamically kill replicas if the protein structures being generated do not progress

towards the known structure or show predicted secondary structure features, thus

ensuring that CPU cycles are not wasted. Similarly, replicas that show promising

results can be automatically moved to supercomputers and run at larger scale, which

can speed-up the application execution.

1.1.2 Internet of Things

Emerging next-generation computing paradigms, such as the Internet of Things (IoT), have

the potential to fundamentally transform our ability to model, manage, control, adapt, and

optimize virtually any sub-system of interest. Examples include the wide variety of sensor-

network–based applications, in which sensors interface with real-world artifacts and must
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respond to unpredictable physical phenomena. These applications will revolutionize the way

we interact with the world around us. For example, these applications can help the concept

of “smart” cities become a reality [168]. In such environments, network-connected pervasive

devices, ranging from sensors and actuators to special instruments and mobile terminals,

interact in different ways to connect the physical world to the virtual world and enable

information gathering, processing, and real-time monitoring of a variety of environment

variables. Similarly, these applications introduce their own set of challenges.

1. Unpredictable data patterns. The amount of data likely to be generated by sen-

sors and the processing requirements of such data cannot be determined in advance

as they usually depend on non-deterministic factors. A dSDE can support IoT ap-

plications by dynamically adapting the composition of services over the application

lifecycle. Moreover, since data generation and consumption patterns are becoming

decentralized, it will be increasingly challenging to support latency-sensitive analysis

and delivery of data using core-centric approaches. These applications will once again

require that we seamlessly and opportunistically combine digital data sources and

computational power. In this case, a dSDE can dynamically aggregate services at the

edge (e.g., cloudlets [139], micro data centers, gateways) that have limited capabili-

ties and dynamic availabilities, with services along the data path (e.g., SDNs), and

services at the core (e.g., data centers, public, or private clouds) in order to process

data in situ and in transit.

For example, this is relevant to the management of natural disasters, such as mon-

itoring and predicting wildfires [14]. In this case, large amounts of data need to be

analyzed at near real-time to predict how a fire would propagate. This data needs to

be retrieved from specific locations, and the sources can include field sensors, weather

forecasting, satellite images, and social media feeds from an actual evolving crisis.

Combining this data with a realistic simulation framework can provide decision sup-

port to manage the crisis [138]. However, this data must be analyzed close to the

source to obtain timely insights and direct first responders to critical areas. Hence,

being able to dynamically compose services (e.g., near these data sources) and auto-

matically (e.g., when an event is detected) is key.
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1.1.3 Business

Some enterprise applications are currently being deployed using hybrid infrastructure that

combines in-house data centers with public clouds to accommodate for cloud-bursting and

provide resilience. However, these solutions mostly rely on a single cloud provider which

can lead to “provider lock-in.” This prevents users from taking advantage of a competitive

pricing market and can limit application deployments in cases of cloud or zone outages 1,2,3.

Once again, enabling the deployment of applications on top of a dSDE that combines services

from multiple clouds and data centers can alleviate some of these problems. For example,

a dSDE can enable the dynamic selection of services from different providers at runtime

(e.g., when an outage is detected) based on various criteria (e.g., cost, performance, etc.),

all of which is executed automatically (i.e., without manual user intervention). Moreover,

the programmability of a dSDE can enable new scenarios, such as ensuring privacy (i.e., by

keeping private data in-house and other services outside) or allowing for in-situ data anal-

yses (i.e., by minimizing data transfers and keeping services near data sources). However,

supporting business applications in a hybrid/multi-cloud environment can be challenging

as well.

1. Workload scheduling and migration. Proper placement of service-oriented work-

loads in a distributed environment is required. For example, one must consider the

affinity for a cluster of related services (i.e., should a cluster that provides a single

service be placed close together or far apart?). A closely placed cluster provides bet-

ter performance, whereas a distributed cluster provides better resilience. Similarly,

automatic migration of data and services can be tricky, especially when considering

workloads with short life cycle (e.g., software container based workloads), which may

require fast placement.

1Microsoft Azure Service Outage in Europe and India https://blogs.msdn.microsoft.com/vsoservice/?p=12295

2Amazon S3 Service Outage in the US East Region https://aws.amazon.com/message/41926/

3Amazon AWS Service Event in the US East Region https://aws.amazon.com/message/67457/

https://blogs.msdn.microsoft.com/vsoservice/?p=12295
https://aws.amazon.com/message/41926/
https://aws.amazon.com/message/67457/
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1.2 Challenges in Achieving a Dynamic Computational Ecosystem

In the previous section, we demonstrated the diverse requirements of emerging data-driven

applications and highlighted the shortcomings of traditional infrastructure offerings in sup-

porting them. We then discussed how a dynamic and distributed software-defined com-

putational ecosystem, capable of combining data and compute power on-the-fly, could be

used to not only address these shortcomings but also to support novel execution modes

and accelerate the application time-to-discovery. In this section, we define the challenges

associated with implementing a real-world dSDE.

1. Service composition. While the service model (enabled by cloud computing [18])

provides the necessary scale and flexibility required to realize a dSDE, it is not clear

how or when to compose different services to meet (or anticipate) the needs of dynamic

data-driven applications and workflows.

2. Interoperability. The lack of interoperability among cloud providers as well as

among traditional data centers (i.e., different providers may use different interfaces

and protocols) makes the process of composing various services a challenging issue.

3. Real-time adaptation. Dynamic data-driven applications must also contend with

an equally dynamic infrastructure – not just in terms of elasticity but also due to the

temporal variability of services’ properties (e.g., dynamic pricing based on demand,

fluctuating performance due to utilization, or time-dependent service availability).

Therefore, a dSDE must adapt in real-time to changes in infrastructure or application

behaviors.

4. Satisfying constraints. A dSDE must also satisfy user and resource provider re-

quirements and objectives, which can change during the application runtime. Simi-

larly, a dSDE must react to changes in objectives or requirements. However, one must

also consider how often the ecosystem should adapt to meet these requirements. For

example, real-time adaptation might lead to instability (e.g., resulting in a volatile

system), whereas periodic adaptation might violate some of the defined requirements.
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5. Unified control. Providing a unified set of requirements for controlling a dSDE that

reflects interests of various actors in the system (i.e., users, applications, or resource

providers) is impractical. For example, users might want to manage a dSDE in terms

of cost (e.g., budget) or time (e.g., deadline), whereas resource providers might want

to govern it based on maximizing utilization. Additionally, applications might want

to control a dSDE in terms of types or sizes of the needed computational capacity.

These characteristics make provisioning the appropriate blend of services challenging and

requires rethinking how infrastructure is to be delivered to end-users. Current approaches

to managing dynamic applications and workflows often target one aspect of the complex

environment, namely either scheduling static applications while (1) optimizing user/resource

providers Quality of Service (QoS) objectives [167] or (2) deploying dynamic applications

by exploiting elasticity of cloud services [169]. However, these approaches do not account

for the dynamic behavior of the underlying services. Moreover, they inherently assume

that the other elements of the ecosystem are fixed. For example, programming a time-

sensitive application capable of reacting to dynamic events (e.g., feature tracking) is of

little consequence if the services that it is running on become unavailable or are not capable

of scaling up or out at that point in time. Therefore, an effective solution must account

for the requirements and dynamic behaviors of the individual elements of the system (i.e.,

users, service providers, applications workflows, and computational services), as well as their

impact on the overall environment (i.e., a solution that may benefit one may not necessarily

be the best option for the system as a whole).
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1.3 Distributed Software-Defined Environments

The goal of this work is to provide an approach to enable the autonomic composition and

continuous adaptation of traditional resources and cloud-based services to support emerging

dynamic and data-driven applications and workflows (see Figure 1.1). Our approach lever-

ages concepts from Software-Defined Environments (SDEs) [30, 99] and extends them to

enable the creation of a distributed Software-Defined Environment (dSDE). A dSDE creates

distributed programmable infrastructure that is agile, self-adaptive, and customizable. This

infrastructure is then exposed to users, resource providers, and applications using high-level

directives, which allows them to programmatically define the desired state of their execution

environments (i.e., which services can be part of said execution environment).

User/Resource Provider

Synthesize a space-time 
ecosystem

Exposed as a service to 
applications & workflows

Autonomic ManagementApplications & Workflows

Description and dependency
Workload behavior
QoS objectives (e.g., deadline, budget)

- varies at runtime -

Identify utility of composition
Ensure objectives are always met
Adapt & reconfigure services

- on the fly -

Define composition programmatically using 
rules and/or constraints

Availability
Application requirements (e.g., type of 
resources, memory,  I/O rate)
Cost
Location
Access policy

- varies at runtime -

Figure 1.1: An overview of the distributed Software-Defined Environment (dSDE).

1.3.1 Research Approach

This is achieved by the creation of three layers on top of distributed services: (1) a control

layer to manage the subset of services composing the execution environment at any moment

in an automated fashion; (2) an abstraction layer to programmatically specify criteria,

such as performance, capacity, and QoS, without detailed knowledge of the underlying

infrastructure; and (3) an orchestration layer that utilizes the information provided by the

abstraction layer to enact the necessary operational requests to drive the ecosystem towards

the desired state. The abstraction layer is exposed using two different declarative languages
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and Application Programming Interfaces (APIs): (1) a rule-engine–based approach that

allows fine-grained control over services and (2) a constraint-programming–based approach

that provides global control over services.

Once we have defined the desired state of the execution environment and the application

requirements, the system can allocate the workload using any state-of-the-art scheduling

techniques. We also rely on existing state-of-the-art autonomic mechanisms [112] to ensure

that the workload scheduling adapts to changes in the application behavior or deviations

from the execution plan. The result is a nimble and programmable environment that au-

tomatically evolves over the application lifecycle by dynamically adapting in near real-time

to changes in (1) infrastructure behavior, properties, or availabilities; (2) user, applica-

tion, or resource provider requirements regulating service usage; (3) application behavior

or workload; and (4) QoS optimization objectives imposed on the system.

1.3.2 Dissertation Focus

While finding an optimum solution to this problem is desirable, it can take a significant

amount of time. Hence, in the case of highly dynamic applications and services, it is

more relevant to find the fastest solution that still meets the required criteria, rather than

the optimal solution. Thus, the focus of this research is on the programmable control of

the state of the execution environment and the continuous orchestration/composition of

services according to dynamic properties and requirements. This approach goes beyond

static matchmaking [102] techniques (between users and resource providers) by enabling

dynamic directives, which are user– or application–driven and can be expressed as a function

of runtime variables (e.g., progress in the execution of an application). In the experimental

evaluation, we will show that the ability to react and adapt to changes in the underlying

infrastructure while the application is running can reduce monetary cost and/or the time-

to-solution for workloads. We use a representative bioinformatics scientific workflow as a

driving use case for our evaluation, but this work applies equally to other scenarios such as

the IoT scenario mentioned above. Finally, the implementation of the framework also uses

only infrastructure services. However, we will show that our approach also applies to other

services such as network or storage.
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1.3.3 Generalization

We also generalize our approach by modeling the application performance and the expected

QoS of a dSDE that includes data, compute, storage, and network services. This allows

users to reason about trade-offs and requirements with respect to throughput, cost, deadline,

etc. In particular, we quantify the expected Service-Level Agreement (SLA) of the entire

ecosystem based on the combined SLAs from different services. For example, the model can

estimate the minimum/maximum application throughput or calculate an estimate for the

budget or deadline to run a certain workflow given the current composition of services. The

model can also evaluate tradeoffs between different scheduling techniques to assist users

with scheduling decision. For instance, minimizing cost might reduce throughput, whereas

minimizing completion time might increase data transfers or increase cost. Finally, the

model can help identify bottlenecks in the current composition to assist users’ decision, e.g.,

help decide whether they need more services or network bandwidth to increase throughput.

1.4 Contributions

A dSDE can redefine how scientists and end-users leverage dynamic services to build data-

driven applications and workflows by allowing them to take advantage of the collective

capabilities of an aggregated set of distributed and heterogeneous services while tailoring

the execution based on the distinct properties and availabilities of these services. This

dissertation makes the following contributions:

1. An abstraction layer that enables the programmable and on-demand composition of

distributed computational services.

2. Rule-engine–based and constraint-programming–based declarative languages to allow

applications, users, and resource providers to express the desired state of the execution

environment programmatically.

3. A runtime framework that dynamically synthesizes services in response to rules, con-

straints, dynamic application behavior, and/or fluctuating state of services.

4. A general mathematical model that considers data, compute, and network to estimate
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the expected SLA for a dSDE, which can assist users with resource management

decisions.

5. An evaluation of tradeoffs between different scheduling techniques to provide guidance

on how and how much to change a dSDE to meet objectives.

1.5 Outline

The rest of the dissertation is organized as follows. Chapter 2 provides a brief background

on software-defined environments and the runtime framework that we used for implement-

ing the dSDE. Chapter 2 also provides a literature review of the related work. Chapter 3

presents the architecture and implementation of our programming system. Chapter 4 pro-

vides experimental and empirical evaluations of the resulting dSDE using representative sci-

entific workloads. Chapter 5 presents a generalized mathematical model for the distributed

software-defined environment. The dissertation concludes in Chapter 6 by outlining future

research.
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Chapter 2

Background and Related Work

2.1 Background

This dissertation utilizes concepts from software-defined environments and builds on top of

an autonomic framework named CometCloud. In this section, we present a brief background

on both topics. This chapter contains portions adapted from

2.1.1 Software-Defined Environments

A Software-Defined Environment (SDE) [30,66,99], also referred to as a Software-Defined

Infrastructure [83,101], aims to:

1. Expose compute, storage, and network resources of an underlying computing infras-

tructure in a uniform manner.

2. Dynamically assign workloads to resources based on application characteristics, best-

available resources, and service level agreements.

3. Continuously deliver dynamic optimization and reconfiguration to address workload

demands and infrastructure issues.

These requirements can be achieved by exposing the computing infrastructure program-

matically, which allows separation of the individual resource control mechanisms from the

overall orchestration of the environment. The resulting environment is fully customizable

and can automatically provision resources as it sees fit while adhering to high-level poli-

cies and QoS objectives; it also provides the software abstractions and tools to deploy

dynamic workloads on heterogeneous infrastructure within a single data center. As a re-

sult, software-defined environments can provide cost savings and better performance across

data centers [19], making them an attractive solution for enterprise IT [62].
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2.1.2 CometCloud

CometCloud [51, 93] is an autonomic framework for enabling real-world applications on

federated cyberinfrastructure. CometCloud is based on the Comet [100] decentralized co-

ordination substrate and supports highly heterogeneous and dynamic integration of public

and private data centers, clusters, supercomputers, grids, and clouds. The coordination

substrate is also used to support a decentralized and scalable task space that coordinates

the execution of tasks onto sets of dynamically provisioned workers on available resources

based on QoS objectives. CometCloud also provides fault-tolerant mechanisms to guar-

antee workflow completion despite resource or job failures. Conceptually, CometCloud is

composed of a programming model layer, an autonomic management layer, a service layer,

and an infrastructure layer. The architecture of CometCloud is presented in Figure 2.1.

Cloud HPC Grid HPC Grid Cloud Cloud 
Cloud Cloud Cluster 

Cluster Agent Cloud Agent Grid Agent 

CometCloud 

Objective 
Autonomic manager 
Workflow 
manager 

Autonomic 
scheduler 

Runtime 
estimator 

  Adaptivity 
   Manager 

Monitor 

Analysis 

Adaptation 

Application/ 
Infrastructure 
adaptivity 

Application 

Resource 
view 

Application 
data 

(a) Architecture of the CometCloud framework. (b) Layers of the CometCloud framework.

Figure 2.1: The architecture of the CometCloud framework and its layers. c©2011 Wiley,
c©2011 Hindawi Publishing Corporation (reprinted with permission) Kim et al. [92, 93].

• The Infrastructure Layer manages the dynamic federation of resources and provides

essential services for resource discovery and coordination. This layer uses the Chord

self-organizing overlay [142] to create a scalable content-based coordination space for

wide-area and the Squid information discovery method [140] to create a content-based

routing substrate. The routing substrate supports flexible content-based routing and

complex querying using partial keywords, wildcards, or ranges. It also guarantees that

all peer nodes with data elements that match a query/message will be located [91].
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• The Service Layer provides a range of services to support autonomics at the program-

ming and application level [125]. This layer supports a Linda-like [35] tuple space

coordination model and provides a virtual shared-space abstraction as well as asso-

ciative access primitives. This layer also supports dynamically constructed transient

spaces to allow applications to explicitly exploit context locality to improve system

performance. Finally, this layer provides asynchronous (publish/subscribe) messaging

and event services.

• The Autonomic Management Layer enables users and/or applications to define ob-

jectives and policies that drive resource provisioning and execution of application

workflows while satisfying user constraints (e.g., budget, deadline). The autonomic

mechanisms in place not only provision the right resources when needed but also

monitor the progress of the execution and adapt the execution to prevent violations

of established agreements.

• The Programming Layer provides the basic functionality for application development

and management. It supports the Bag of Tasks (BoT) workload model, i.e., Master-

Worker. In this model, masters generate tasks and workers consume them. Masters

and workers can communicate via the virtual shared space or use a direct connec-

tion (i.e., Peer-to-Peer). Scheduling and monitoring of tasks are supported by the

application framework. The Task Consistency Service handles lost/failed tasks [125].

2.1.2.1 Federation Management in CometCloud

A CometCloud federation is created dynamically and collaboratively; resources or sites can

join or leave at any point, identify themselves (using security mechanisms such as X.509

certificates, public/private key authentication), negotiate the federation terms, discover

available resources, and advertise their own resources and capabilities [51]. The general

overview of the CometCloud federation coordination model is presented in Figure 2.2.
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Figure 2.2: The architecture of the CometCloud federation coordination model. c©2015
IEEE (reprinted with permission) Diaz-Montes et al. [51]. Here, (M) denotes a master, (W)
is a secure worker, (IW) is an isolated worker, (P) is a proxy, and (R) is a request handler.
Arrows represent the deployment of a computational site, while lines show communication.

The Comet coordination space [100], CometSpace, is the key mechanism used to co-

ordinate different aspects of federation and application execution in CometCloud. The

CometSpace is a scalable, decentralized, and shared coordination space built on top of a

distributed hash table that all resources in the federation can access associatively. It pro-

vides a tuple-space–like abstraction for coordination and messaging, enabling coordination

in the federation model.

Specifically, the architecture includes two types of spaces (see Figure 2.2). First, the

Federation Management Space is responsible for creating the actual federation and handling

the orchestration of different resources; it does so by exchanging operational messages used

to discover resources, announce changes at a site, route users’ requests to appropriate sites

and initiate negotiations to create ad-hoc execution spaces [4]. The second type of space

is the Shared Execution Space. Multiple shared execution spaces are created on-demand

to satisfy the computational needs of applications. For example, spaces may be created

with the objective of (i) provisioning resources in a single resource site; (ii) bursting to

other resource sites, such as public clouds or external HPC systems; or (iii) creating private

sub-federations across several sites.
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The creation and control of each shared execution space are managed by a federation

agent (or agent for short). The agent also coordinates all resources that execute a particular

set of tasks on that site (see Figure 2.2). Agents can act as a master of the execution

or delegate this duty to a dedicated master (M), e.g., when more complex workflows are

executed [4]. Additionally, agents deploy workers to perform the execution of tasks. There

are two types of workers: Secure Workers (W) and Isolated Workers (IW). Secure Workers

are on a trusted network; they are considered to be a part of the shared execution space

and can pull tasks and share data accordingly. Isolated Workers, on the other hand, are

on a non-trusted network and cannot directly interact with the shared space. Instead,

isolated workers depend on a proxy (P) and a request handler (R) to obtain tasks from the

space [4]. The distinction between a Secure and Isolated Worker is important because it

allows the user to control data access permissions, thereby allowing optimization along the

data storage and locality paths. Moreover, this mechanism can be used to define security

policies and decide who can access which data.

2.1.2.2 Application Management in CometCloud

CometCloud can be used to manage the execution of a variety of applications, independent

of programming language. Integrating an application with the CometCloud framework re-

quires users to develop two simple components – a task generator and a worker. The task

generator defines the properties of all application tasks via a simple API. A set of tasks

comprises a single stage, while a set of stages comprises the application workflow. Using

the CometCloud task generator abstractions, users have the ability to define dynamic ap-

plications, where the tasks for each stage are created at runtime depending on previously

obtained results. Results of all stages are accessible through the API. This provides tremen-

dous flexibility as an application can evolve in different ways depending on the observed

data [112].
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On the other hand, the worker’s sole responsibility is to execute tasks, either directly

or through third-party software. For the latter, the resulting worker becomes a proxy that

acts as a wrapper for the target software. The third-party code and workers can be installed

directly on the resources (e.g., a local data center cluster), encapsulated using VMs (e.g.,

in the case of a cloud resource), or containerized using software container services such as

Docker. The diversity of options simplifies the migration from traditional environments to

the CometCloud federation [4]. The worker component and any other third-party code are

made available at each site of the federation and are exposed using a federation agent, as

defined above. Workers utilize a pull-based model to pull tasks from the execution space,

as opposed to a push-based model because it better supports heterogeneity in resources

and tasks. Using this model, the Master inserts tasks into the CometCloud space, and the

Workers pull the task by querying for specific task properties, such as keywords, wildcards,

or a combination of both.
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2.2 Related Work

The work in this dissertation incorporates concepts from several different areas of research,

namely resource management, workflow scheduling and execution, and performance and

QoS modeling in distributed environments. In this section, we aim to provide an overview

of the state-of-the-art research in these areas.

2.2.1 Resource Management in Distributed Environments

2.2.1.1 Federated Computing

Federated computing has been explored over the course of the past decade and has been

shown to be an effective model for harnessing the capabilities and capacities of geographically-

distributed resources to solve large-scale science and engineering problems [7, 11, 22, 41, 42,

53,65,68,122,131].

Volunteer Computing and Grid Computing. Two drastically different strategies for

federating resources have been proposed: volunteer computing, which harvests donated idle

cycles from numerous distributed workstations (e.g., BOINC [16], SETI@home [17]), and

HPC grid computing [64, 122], which offers a monolithic access to powerful HPC resources

shared by a virtual organization [114] (e.g., EGEE [97] or Open Science Grid [128]). How-

ever, both of these concepts have their limitations: volunteer computing is well suited for

processing lightweight independent tasks (e.g., HTC applications [105]) in an opportunistic

way, but fails when presented with traditional HPC computations. Grid computing, on the

other hand, was limited to static resource allocations, non-interactive workloads, and lacks

the flexibility of aggregating resources on demand (without complex reconfiguration).

Grid Federation. To increase the scale of grids, researchers looked into grid federation

that combines multiple grid systems or Virtual Organizations (VO) to enable e-Science and

e-Business. To enable this, researchers have addressed issues related to connecting multiple

grid systems [131]. Such connections could be based on economic incentives [49], peer-to-

peer agreements among meta-schedulers [29], WS-Agreements and reservation based co-

allocation [160], high level abstractions [86], or grid standards [57]. Other researchers have

also focused on scheduling across multiple grid systems once they are connected [42,56,111].
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Hybrid Federation and Cloud Bursting. One issue identified with HPC grids was

their perceived complexity and lack of flexibility, as they present users with a pre-defined

set of resources and do not allow federations to evolve in response to changing resources or

application needs. More recently, hybrid federation approaches have been explored as a way

of extending the cloud’s as-a-service model to grid federations. A typical hybrid approach

is based on extending local cluster/grid resources to cloud resources as needed [47,117,152],

i.e., cloud bursting. Federated hybrid grid and cloud environments have also been proposed

to create large-scale distributed infrastructure [28]. The goal of these techniques is to com-

plement existing grid infrastructures with cloud resources. M. Parashar et. al [119] proposed

different federation models for enabling scientific applications on hybrid infrastructure (e.g.,

HPC in the Cloud, HPC plus Cloud, and HPC as a Cloud).

Cloud Federation and Inter-Cloud. Further, to maximize the elasticity of the feder-

ation, researchers have considered a cloud-based approach named Inter-Cloud, which aims

at federating multiple cloud infrastructure [31, 33, 45, 61, 71, 73, 84, 85, 132, 165]. For exam-

ple, Kertesz et. al [87] aim to enhance the management of federated clouds by utilizing an

integrated service monitoring approach. D. Villegas et. al [154] propose federating cloud

infrastructures as a single integrated cloud environment using a layered service model. A.

Celesti et. al use a customized cloud manager component that is placed inside the cloud

architecture to provide a cross-federation model [36]. The reservoir model introduced by

Rochwerger et. al [133] aims to enable providers of cloud infrastructure to dynamically

partner with each other to create a seemingly infinite pool of IT resources while fully pre-

serving their individual autonomy. Petri et. al [126, 127] propose federation models based

on marketplace economics to incentivize collaboration.

Multi-Cloud and Cloud-of-Clouds. Inter-Clouds focus on finding ways for cloud

providers to interconnect and share their infrastructure, which requires coordination and

can lead to interoperability issues [74]. Alternatively, researchers looked into a Multi-Cloud

or a “Cloud-of-Clouds” approach [12,25,46,52,61,73,124], where clients distribute workloads

across multiple clouds. This approach avoids Inter-Cloud issues but requires clients to de-

velop extensions for different clouds. For instance, researchers introduced ExoGENI [21,40],

an extension of GENI [23], that provides orchestrated provisioning across sites.
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2.2.1.2 Resource Description and Matching

Multiple researchers have focused on allowing both users and resource providers to describe

resource requirements and match resources based on a given criteria [102,103,155]. However,

these approaches were focused on one-time placement between jobs and resources. More

recently, Kritikos et. al [95] proposed SRL, a scalability rule language for Multi-Cloud

Environments, however, their work is focused on modeling application patterns to specify

application behavior across multiple clouds.

2.2.1.3 Constraint Programming

In the context of constraint programming, many researchers have explored using CP for

resource allocation. The majority of this research [37, 38, 55, 75, 147, 148, 162], focuses on

finding optimum or near-optimal solutions to allocate resources while optimizing single/-

multiple objective functions (e.g., cost, deadline, data transfer). The limitation of these

approaches is scalability when increasing the number of constraints, objectives, or resources,

which increases the search space significantly [67].

2.2.2 Workflow Scheduling in Distributed Environments

Efficiently executing workflows on federated infrastructure remains an active research topic.

Workflow execution algorithms produce a mapping of tasks to resources on the cloud. This

mapping could be calculated a priori and remain static during the workflow execution [9,10,

24, 32, 34, 80, 81, 104, 150, 167, 169]. It could adapt dynamically at runtime to the changing

landscape of resources and tasks [27, 107, 108, 156]. Most research works define the opti-

mization criteria for this mapping as a subset of execution time [108,129,151,159,163,164],

cost [108,129,151,159,164], resource utilization [172] and makespan [151]. Some algorithms

also take scalability [163], scheduling success rate [151], and speed [172] into account. Oth-

ers consider communication time and deadline constraints [108, 129, 164] as critical factors

in scheduling. Fakhfakh et al. [59] and Bala et al. [20] provide detailed surveys of scheduling

algorithms in a cloud environment.

Cloud service providers have APIs that enable users to scale resources to meet workload

demands automatically. The effect of cloud’s dynamic elasticity on performance criteria such
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as data-transfer rates, make-span is complex to model for most workflows. This complexity

has piqued the interest of the community, resulting in numerous heuristics and approxi-

mations. Deelman et al. [48] demonstrate that different schedules of the same application

can lead to significantly different costs over the cloud. It establishes that right resource

allocation can substantially reduce the overall cost while maintaining performance. Mao et

al. [108] utilize auto scaling to dynamically adapt to cost-effective configurations to accom-

modate changing workload and resource problems while meeting deadlines. They abstract

a resource as a Virtual Machine (VM) and characterize each machine using size and cost

metrics. The optimization criteria comprise overall cost minimization and soft deadlines.

Yazir et al. [166] present an approach for dynamic and autonomous resource allocation han-

dling the constraints and limitations imposed by the resource allocation problem. Wang et

al. [159] use a predictive model to generate performance estimate for each task and dynam-

ically finds the best resource configuration. They utilize an iterative control process that

uses data mining to map cloud resources while meeting performance and cost constraints

continuously.

Varalakshmi et al. [151] perform clustering of sub-tasks and allocate formed clusters

to different resources using a heuristic while taking into account the QoS metrics (cost,

time and reliability). The approach utilizes resource indexing to find available resources.

de Assuncao et al. [47] investigate the performance and cost implication of extending lo-

cal infrastructure by elastically allocating additional resources from the cloud. Rahman

et al. [129] present an Adaptive Heuristic for a hybrid cloud environment that considers

workflow level optimization to minimize the cost of execution while meeting other QoS

metrics such as budget, deadline and data placement. Bossche et al. [149] formulate the

cloud outsourcing problem as a binary integer program and analyzes the cost of running a

deadline-constrained application in a hybrid cloud environment. Zhong et al. [172] present

an Improved Genetic Algorithm that maximizes resource utilization in the cloud by launch-

ing Virtual Machines (VMs) at cheaper sites. Wu et al. [163] approach the cloud-based

workflow scheduling problem in a bottom-up manner. They take a hierarchical scheduling

approach and find an optimal task to virtual machine mapping while maintaining the QoS

requirements. Wu et al. [164] propose a particle swarm optimization based approach that
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uses both data transfer and computation cost in consideration for scheduling workflows in

the cloud. Chang et al. [39] present a Multiple Criteria Decision Analysis approach and

formulate the task of finding the right type and size of resources required for computation

as a resource allocation problem with multiplicity. Oprescu et al. [116] present a dynamic

scheduler that allocates resources on multiple cloud providers with different cost models

while maintaining a user-defined budget constraint.

Finally, some research efforts focus on creating cost models to make sure that the work-

load is executed according to the defined QoS parameters [8,60,77,171]. Other approaches

emphasize resources utilization [26,109,118], although concerns about costs are still present.

A specific case for the latter is prioritizing the use of local resources and controlling which

tasks are outsourced to remote resources/services [125,149]. There are also research efforts

exploring autonomic computing approaches based on concepts of self-managing adaptive re-

source provisioning, such as Agile [115], PACMan [136], Tiramola [146], and Autoflex [113].

2.2.3 Performance and QoS Modeling in Distributed Environments

Early Research. Modeling and characterizing parallel computing performance in het-

erogeneous environments have been explored over the past two decades. Early research

[70, 137, 170] focused on defining a model for simple parallel applications and predicting

their performance on dedicated and non-dedicated heterogeneous networks of workstations

using metrics such as speedup, efficiency, scalability, timeliness, precision, and accuracy.

Web Service Modeling. With the emergence of web services [13], many researchers

aimed to model the QoS of such services [43,72,82,143]. The focus of this research was on

estimating latency (response time to queries) and throughput (transaction processing capac-

ity per time unit), under given application patterns and workload conditions. This research

also introduced other QoS parameters such as availability (of web services), accessibility (the

degree of which a web service can serve requests), cost, integrity (maintaining correctness),

overall performance, reliability (a function of availability and quality of service), verity (an

indicator of a service provider truthfulness or reputation), and security, which has led to

the introduction of web service level agreements (WSLA) [106]. Other researchers aimed to

model the performance of multi-component online services using application profiling [141].
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Grid Computing Modeling. At the same time, researchers tried to model QoS in grid

environments [94, 110, 145]. However, the majority of this work was focused on scheduling

workflows based on QoS requirements [10,32,80,104] or the monitoring, analysis, and man-

agement of QoS attributes [145]. Kim et al. [94] also introduced a single measure named

(FISC) that aims to quantify the collective value of multiple QoS metrics.

Cloud Computing Modeling. More recently, researchers aimed to model the QoS and

performance of applications in cloud computing environments. The majority of this work

focuses on estimating the performance of different classes of applications in virtualized

cloud environments [58, 76, 78, 79], providing CPU-based guarantees via resource-level QoS

metrics [69], or modeling the performance of cloud computing services [88–90].

Multi-Cloud Modeling. In the context of Multi-Clouds, where a workload is distributed

among independent clouds, Grozev and Buyya [74] modeled the performance of three-tier

applications, while taking into consideration the heterogeneity of underlying services.
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2.3 Summary

In this section, we detail how this dissertation extends the work described in Section 2.1

and position our work according to the landscape defined in Section 2.2.

2.3.1 Extension of Background Work

Software-Defined Environments. Similar to enterprise IT, SDEs can effectively sup-

port emerging data-driven applications and workflows by enabling a programmatic control

over resources and services and facilitating dynamic resource management. This disser-

tation extends the concept of Software-Defined Environments across distributed advanced

cyberinfrastructure to empower users with the ability of seamlessly composing services from

different providers and geographic locations as well as adapting to changes in near real-time.

CometCloud. This dissertation extends CometCloud by providing a programmable in-

terface for resource management (see Figure 2.3). This interface allows applications, users,

and resource providers to declaratively specify resource availability as well as policies and

constraints to regulate their use. These constraints collectively define the set of resources

that are federated at any time and can be used to deploy the application.

2.3.2 Position in Current Landscape

Resource Management in Distributed Environments. In the context of federated

computing, the approach presented in this dissertation leverages the elasticity and scale

provided by the Multi-Cloud approach and extends it by applying software-defined con-

cepts to enable a programmatically-defined dynamic and on-demand federation of clouds,

grids, and other infrastructure services. Additionally, our model aims to leverage a service

model, where computational resources are offered under specific SLAs. In this sense, we di-

verge from traditional federations that relied on administrative agreements to define how to

interconnect distributed resources. Further, the majority of Multi-Cloud approaches (e.g.,

GENI/ExoGENI [21,40], ORCA [40]) take a resource-provider–centric approach to resource

management, where resources from multiple providers are combined into slices. Once a slice

is ready, an application can be deployed on top of it.
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Figure 2.3: The extension of the CometCloud framework to provide a programmable inter-
face for resource management. c©2015 IEEE (reprinted with permission) Diaz-Montes et
al. [51]. The red boxes denote new components.

In our approach, we take a user/application-centric approach, where slices are pro-

grammatically created using high-level abstractions. Specifically, our approach provides

declarative abstractions that allow users to control the slice structure over time by enabling

complex constraints, such as use resource X for a maximum of Y core/hours when workflow

priority is low or use resource Z only if their price is below a given threshold. Finally, in

our approach, slices can adapt during application runtime to meet the dynamic behavior of

applications or accommodate for changes in the infrastructure state.

In the context of resource description and matching, current approaches focus on one-

time placement between jobs and resources, and therefore, do not consider the dynamic

nature of applications or infrastructure. Our approach supports dynamic and continuous

matching of resources to constraints in order to respond to changes in the infrastructure

or application requirements/objectives over the application lifecycle. Moreover, our ap-

proach allows users to define additional objectives (e.g., maximize data locality, minimize

cost), when selecting resources, which cannot be achieved using traditional matchmaking

approaches.
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Finally, in the context of constraint programming (CP), our approach does not use any

optimization techniques (objective functions), but rather uses CP as a declarative language

to describe the minimum requirements that resources must have to be part of the com-

position, i.e., the desired state of the system but not the actual allocation of resources.

In doing so, a CP solver can rapidly evaluate a large number of constraints, reducing the

search space very quickly and limiting the viable options for the resources to be selected by

the scheduler to those that satisfy constraints imposed by users, applications, and resource

providers. This allows the scheduler to speed up the process of selecting the proper re-

sources and allocating the workload using given QoS objectives. Additionally, our approach

may be used to generate a variety of ‘views’ of the same underlying federation for different

applications, users, or projects.

Workflow Scheduling in Distributed Environments. The focus of this work is not

on the optimum scheduling of workloads across clouds, but rather on the adaptability of

the solution to dynamic properties and availabilities of the underlying services. In that

sense, our approach is complementary to current state-of-the-art scheduling techniques as

it offers a way of dynamically creating subsets of resources that are then exposed to any of

the previously mentioned schedulers to allocate the application workload.

Performance and QoS Modeling in Distributed Environments. Early QoS mod-

els focused on distributed resources within a single location and did not consider network

performance, data size, or transfer rates, whereas our model considers them. Our work

utilizes some of the QoS metrics introduced in web service modeling but instead uses them

to represent resources and infrastructure services. Our work also extends grid computing

approaches by modeling the variability of infrastructure services over time, which was not

considered before. Moreover, current cloud-based modeling is focused on a single cloud en-

vironment or site whereas our work considers multiple geographically distributed sites. The

modeling research presented in a multi-cloud environment is the closest to our approach.

However, our work differs in that we model batch applications as opposed to internet appli-

cations. Finally, the focus of our work is on the expected QoS guarantees from a collection

of resources using traditional infrastructure (e.g., grids, supercomputers, clusters), multiple

cloud services, and emerging services (e.g., cloudlets, fog and edge clouds).
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Chapter 3

Distributed Software-Defined Environments

3.1 Introduction

In this chapter, we present our approach to providing a programmable and dynamic frame-

work that can support data-driven applications by extending software-defined environment

concepts to drive the process of dynamically composing infrastructure services from multiple

providers. The resulting distributed software-defined environment (dSDE) autonomously

evolves over the application life cycle while meeting objectives and constraints set by users,

applications, and/or resource providers. In Section 3.1.1, we first discuss the requirements

for a dSDE followed by a summary of our methodology in Section 3.1.2. We then present

the architecture and implementation of the three layers necessary to realize a dSDE in Sec-

tions 3.2-3.4. In Section 3.5, we then demonstrate how the three layers work together to

provide a dSDE using a rule-engine–based and a constraint-programming–based approaches.

Finally, we provide a summary of the chapter in Section 3.6.

3.1.1 Requirements

The goal of this work is to provide users, applications, and resource providers with the

ability to programmatically define the spatial and temporal structure of an environment of

geographically-distributed infrastructure services that will be used to execute their work-

loads. The idea is to enable a nimble software-defined, data-driven service composition

process that takes into consideration user needs, QoS objectives, application requirements,

resource availability and properties, and resource provider constraints to create a customized

environment that is best suited to the application at any given time. To achieve this goal,

we have identified a set of requirements that need to be satisfied, as follows.
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1. Support for dynamic composition & programmability: Existing federation

models, that select resources once and begin application execution, are infeasible for

dynamic application behaviors. Instead, a new federation model is required, i.e., one

that is capable of changing the composition of services at runtime without affecting

running applications. This implies that resources can join or leave the environment at

any time. Additionally, appropriate APIs are required to allow for the programmatic

control of different services in the environment.

2. Continuous discovery mechanisms: Emerging infrastructure services typically

offer a wide range of capabilities, capacities, and pricing models. Additionally, these

services tend to exhibit temporal variability (e.g., dynamic pricing based on demand,

fluctuating performance due to utilization, or time-dependent service availability).

As a result, effective discovery mechanisms are required to obtain current information

about the resources available for usage as well as their characteristics, pricing models,

utilization, etc.

3. Ability to define multiple requirements: In addition to exhibiting temporal

variability, service offerings are typically governed by external factors, such as regu-

lations, privacy concerns, budgets, etc. As a result, applications, users, and resource

providers must have a means of specifying their resource requirements and constraints

in a simple and flexible manner. The ability to specify multiple requirements allows

different actors to simultaneously interact with the system. For example, users may

specify requirements based on the type of resources, their costs, their location, the

QoS or security/privacy guarantees they can provide. Resource providers can also

specify how their resources should be used, for example, by specifying utilization or

power consumption thresholds. Unlike traditional grid federation approaches, these

requirements may change over the application lifecycle so a system must be capable

of taking new requirements as input at any time during workflow and/or application

execution.



30

4. Support for multiple views: The system must also support multiple and varied

“views” (compositions) over the same or overlapping set of resources while simulta-

neously supporting different users and applications. Each individual view may be

governed by its own set of requirements and can evolve independently.

5. Dynamic expression of application requirements & QoS: The requirements

and QoS objectives of applications influence all areas of the system. Specifically,

they drive resource provisioning, application mapping, scheduling, and execution. For

example, an application may require resources with specific capacities or performance,

or it may have QoS objectives such as maximizing throughput or minimizing data

transfer. Further, QoS objectives may vary during runtime (e.g., over different stages

of a workflow), thus the underlying system must be capable of maintaining specified

objectives even if there are external changes to the environment (e.g., a resource is

removed). As a result, the system must provide a way for applications to dynamically

and programmatically express these needs at or during runtime.

6. Autonomic Scheduling: The system must provide adaptive mechanisms that allow

for the autonomic provisioning of resources to adjust to changes in both the applica-

tion behavior and the underlying infrastructure that cannot be determined in advance.

For example, resources can be adjusted to accommodate a dynamic workload during

runtime (e.g., intermediate results may lead to extra workload being generated or

different types of analytics being used to process these results). Similarly, the system

must also adapt and continue the execution of the application in the case of unfore-

seen events in the underlying infrastructure (e.g., failures) or change in infrastructure

properties (e.g., cost, performance, availability, etc.).

3.1.2 Methodology

In order to support the aforementioned requirements, we enabled the programmatic control

and composition of distributed services by creating programmable abstractions on top of

distributed infrastructure. These abstractions include declarative mechanisms that allow

applications, users, and service providers to control resource behavior over the application
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lifecycle by defining high-level policies that translate into actionable events at runtime.

This approach goes beyond static matchmaking techniques, such as Condor HTC [105], by

enabling dynamic directives, which can be user- or application–driven and are expressed as

a function of runtime variables (e.g., progress in the execution of an application). Similarly,

we provide infrastructure-driven directives that are expressed as a function of runtime events

such as failures, performance degradation, or discovery of resources. This was achieved by

adhering to the following design steps.

1. We decoupled applications and workflows from the underlying resources by leverag-

ing software containers (e.g., Docker containers 1) to package applications with their

dependencies and facilitate their execution in heterogeneous environments.

2. We abstracted geographically-distributed sites, containing multiple services, in a mod-

ular and uniform fashion.

3. We provided control mechanisms that enable the automatic, continuous, and pro-

grammable composition/aggregation of a pool of distributed sites and services.

4. We created orchestration mechanisms, which utilize the control mechanisms, to dy-

namically manage the environment without interrupting ongoing execution of appli-

cations.

Following these steps, we created the conceptual architecture for our distributed software-

defined environment, as shown in Figure 3.1a. The architecture is composed of four layers:

a Programming Layer, an Orchestration Plane, a Control Plane, and a Federated Infras-

tructure Layer. A summary of the methodology is also shown in Figure 3.1b.

• The Programming Layer enables the programmatic expression of resource require-

ments, such as performance, capacity, and QoS, without detailed knowledge of the

underlying infrastructure. These requirements are then translated into actionable op-

erations at the lower layers to compose resources on-demand and dynamically adapt

1Docker Containers: https://www.docker.com

https://www.docker.com
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the environment over time. We developed two different approaches for the program-

ming layer: a rule-based engine and a constraint programming method. Both are

discussed in more details in Section 3.2.

• The Orchestration Plane utilizes a two-step approach, as follows: (1) first, resource

requirements are translated to a virtual slice – a set of available resources that evolves

over time based on changes in resource properties and availabilities or the requirements

regulating their usage; and (2) once the first step is complete, a slice is exposed to an

autonomic scheduler that provisions resources and maps application tasks based on

workload behavior and QoS objectives. The orchestration plane creates operational

control requests, which are sent to the control plane to drive the environment towards

the desired structure.

• The Control Plane enables the programmatic and on-demand allocation, control, and

aggregation of distributed heterogeneous resources and services in an automated fash-

ion. It supports the (1) addition/removal of sites or services and (2) monitoring the

status of the federated infrastructure (e.g., available sites, the number of available

resources, the number of resources running applications, etc.).

• The Federated Infrastructure Layer represents the federated infrastructure and services

(i.e., the resulting distributed software-defined environment) available to applications

at any time.

3.2 Resource Programming and Description Abstractions

In this section, we present the detailed architecture and implementation of the top layer of

our dSDE. In particular, we present two different approaches for resource programming and

description: a rule-engine–based approach and a constraint-programming–based approach.

The difference between these approaches can be summarized as follows.

(A) Rule Engine: This approach allows fine-grained control over individual resources or

sites by defining the availability of resources over time. The availability can be speci-

fied directly (e.g., Resource A is available from time t1 to time t2) or by defining rules
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Figure 3.1: An overview of the conceptual architecture and main components of a dSDE
and our methodology to achieve it.

that are evaluated at runtime (e.g., Resource A is available when its cost is below a

certain threshold or when the application reaches a certain stage).

(B) Constraint Programming (CP): This approach leverages a CP model and solver to

allow applications, users, and/or resource providers to define global constraints that

are applied to all available resources. For example, only use resources that have

a minimum performance of X. The use of global constraints allows simpler control

over resources and provides better techniques to resolve conflicts among competing

constraints.
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3.2.1 Rule-Engine–Based Abstractions

The rule-engine–based abstractions provide mechanisms for expressing the attributes of the

dSDE using rules that define resource availability over time. Specifically, the policy layer

combines a set of rules to define the overall spatial and temporal structure of the dSDE.

Each rule defines the availability of a single resource/site over time either directly (i.e., by

specifying the time the resource is available/unavailable) or indirectly (i.e., by specifying the

conditions that need to be true for the resource to be available). Instead of using a resource

specification language, the policy layer provides a separate set of Application Programming

Interfaces (APIs) for each actor (i.e., applications, users, and resource providers), thereby

allowing them to express resource policies in terms that are meaningful to them. In our

design, we enable these policies to be specified dynamically and programmatically at any

given time. This is achieved by using a RESTful [63] web service (see Figure 3.2), which

allows the definition of new rules for existing policies and the creation of new policies at

runtime (i.e., during the application execution).

Policy API

Policy RESTful Web Service

Application 
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User policies
Generic 
policies

API

Resource 
provider 
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li ti G
Resource 

i t
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Figure 3.2: An overview of the policy layer for the rule-engine–based resource programming
and description abstractions.

Table 3.1 shows some sample rules that we implemented as a function of time to enable

the dynamic composition of resources. They are categorized as follows:

• Generic Policies support the direct declaration of the structure and behavior of the

environment over time and can be used by all actors. For example, the web request

schedule resource date will notify the orchestration plane to schedule a resource to

be part of the dSDE during the time specified by the request.
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• User Policies allow users to define dynamic resource requirements and objectives in

a high-level and expressive manner. For example, user-provided policies can define a

desired action to take when a resource cost threshold is met or an application/workflow

reaches a specific point. For example, the web request schedule resource spot will

notify the orchestration plane to schedule a resource to be part of the dSDE as long

as the cost per hour for using that resource is less than a given threshold. These

policies may also define more general or non-actionable user-initiated requirements,

e.g., privacy-levels required for specific portions of sensitive data.

• Application Policies enable applications and workflows to provide requirements

to the system about the workload. For example, if a specific stage of a workflow

is computationally-intensive, the workflow may specify that a supercomputer should

be used for that stage. These requirements may also be dynamic; for example, if a

simulation spawns additional analysis tasks in response to a feature-tracking event, it

may indicate that these new tasks require graphics processing units (GPUs).

• Resource Provider Policies enable resource providers to enact policies for the

services and resources they govern. For example, a provider may control the utilization

and load-balance of their data center by specifying the rule: use a resource as long

as its utilization is below a certain threshold. As with the other policies, provider

policies may be enacted at any time during the course of workload execution.

Table 3.1: Sample rules for the rule-engine–based Policy Layer and their description. c©2017
SAGE Journals (reprinted with permission) AbdelBaky et al [2].

API Call Description

scheduleResourceDate date/time based rule
rescheduleResourceDate modify an existing date/time rule
scheduleResourcePeriod periodic rule (e.g. daily, Mondays, always)
rescheduleResourcePeriod adjust existing periodic rule
scheduleResourceSpot resource price based rule
rescheduleResourceSpot adjust current price threshold
cancelResourceSchedule cancel a rule for a certain resource
getSchedule return XML description of the current rules for all resources
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3.2.2 Constraint-Programming–Based Abstractions

3.2.2.1 Overview

In this section, we present a different approach for resource programming and description

that leverages constraint programming (CP). Constraint Programming [135] is an approach

for modeling the relations between variables in the form of constraints and identifying

feasible solutions out of a large set of candidate solutions based on these constraints. In our

approach, constraints model the relationships of resources to (1) resource properties and/or

(2) resource availabilities. The set of resources for which constraints can be defined is

limited to those that the user provides valid access credentials for. The candidate solutions

generated by the evaluation of these constraints are the subsets of resources that satisfy all

of the given constraints. Using this subset of resources, the system creates a customized

view (i.e., a virtual slice), which is exposed to the scheduler for use in task placement and

mapping.

Constraints may be set forth by users, applications, and/or resource providers at any

time before or during workload execution. Similarly, the initiator of a constraint may revoke

it during runtime, if it is no longer applicable or desired. In addition to the possibility of

varying constraints during workflow execution, resource properties, resource availabilities,

and/or application properties can all vary over time as well. Thus, the evaluation of con-

straints to form resource sets that satisfy all constraints is not a static process but rather

one that occurs continuously over the course of workflow execution. Consequently, the so-

lutions of the CP solver drive the service composition process, i.e., seamlessly adapting to

the joining and leaving of resources from the solution set. In contrast to the Rule Engine

approach, the CP approach can accommodate more complex policies with multiple con-

straints per resource. This is because the CP solver can create viable views despite conflicts

between competing or overlapping constraints.

We classify the dynamic inputs to the constraint programming solver to include:

1. Resource properties and availabilities (e.g., cost, utilization, or performance).

2. User constraints (e.g., security or maximum cost per resource).
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3. Resource provider constraints (e.g., maximum utilization or maximum power con-

sumption thresholds).

4. Application workflows constraints (e.g., resources types or minimum performance per

resource).

We chose CP as opposed to linear [161] or integer [173] programming (LP, IP) since

CP does not require an objective function and therefore can (1) obtain a solution relatively

quicker and (2) discover infeasible solutions faster. This enables our framework to respond

to changes more effectively and adapt the system accordingly. In addition to these three

approaches, optimizing resource selection can be based on multi-criteria algorithms [15,96,

130, 134], or using advanced reservation mechanisms [153]. However, it is not our goal to

find an optimum solution but rather a fast one. Hence, we do not use any CP optimization

techniques; instead, we use CP to filter out resources that do not satisfy boolean constraints.

Further, we chose CP because it provides a formal declarative language that can be used to

define the minimum requirements for resources to be included in the dSDE. Finally, similar

to the rule-engine–based approach, we enable constraints to be specified dynamically and

programmatically at any given time (i.e., new constraints can be specified during execution

and existing constraints can be modified/removed), which is achieved by using a RESTful

web service (see Figure 3.3).

Figure 3.3: An overview of the constraint-programming–based resource programming and
description abstractions.

3.2.2.2 Mathematical Model

In this section, we present the mathematical model that we define for our constraint pro-

gramming approach. In this model, we define a dSDE as a set of n sites {S1, S2..., Sn}. Each
site is a single physical location or region (e.g., datacenter or a zone within a cloud). We
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Table 3.2: Sample resource class properties in the constraint-programming–based mathe-
matical model. c©2017 SAGE Journals (reprinted with permission) AbdelBaky et al [2].

Property Description

Availability (av) Whether a resource class is operational

Capacity (cp) Number of instances (e.g. nodes, VMs) in a resource class

Allocation (al) Number of compute hours available for a shared resource class

Performance (pf) Average performance of an instance of a resource class

Utilization (u) Load of a resource class as a percentage of available capacity
(0-100%)

Cost (c) Price per hour for an instance of a resource class. We assume
the cost per instance includes both CPU and memory costs

Power (pw) Power consumption of a resource class

Overhead (o) Time required to allocate an instance of a resource class

Security (sc) Whether a resource class is secure or not

Always-on (ao) Whether a class is provisioned on demand or is always on

Battery level (bl) The battery charge for a mobile device or an IoT source

Data proximity (dp) Distance between a data source and a reference location

consider that any given site Si is composed of a set of mi resource classes, where a resource

class is defined as a set of resources within such site that share the same properties (e.g.,

Amazon m4.large instances, or a homogeneous cluster). Table 3.2 presents sample resource

class properties that we defined in our model. We introduce linear constraints in the form

of (ax ≤ b) and we define the decision variable xij that we use for our CP model as follows:

xij =


1 if ith site’s jth resource class

satisfies all constraints

0 otherwise

where i = {1, 2, . . . , n} and j = {1, 2, . . . ,mi}

In what follows, we illustrate how to define four different types of constraints in our

model. New constraints can be formulated similarly. Simple boolean constraints (e.g.,

a constraint that holds true if the property is true and false otherwise) can be modeled

directly. The availability defined in Table 3.2 is an example of such constraint and can be
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modeled as follows. Let avij represent the ith site’s jth resource class’s availability. avij = 1

if the resource class is available, otherwise avij = 0. Then,

xij ≤ avij ∀j ∀i

Other types of constraints require the use of minimum thresholds to be modeled as

booleans, and a resource is selected if its property is greater than this threshold. Capacity,

allocation, performance, and battery level are examples of this type of constraints, and

can be modeled as follows. Let cpij , alij , pfij , and blij represent the ith site’s jth resource

class’s capacity, allocation, performance, and battery level respectively. Let CP , AL, PF ,

and BL represent the requested minimum capacity, allocation, performance, battery level

thresholds to select this resource class. Then,

xij · CP ≤ cpij ∀j ∀i

xij ·AL ≤ alij ∀j ∀i

xij · PF ≤ pfij ∀j ∀i

xij ·BL ≤ blij ∀j ∀i

Similarly, we can use a maximum threshold to specify when a resource class is eligible,

i.e. a resource class is selected if its property is less than this threshold. Utilization, cost,

power, overhead, and data proximity are examples of this type of constraints, and can be

modeled as follows. Let uij , cij , pwij , oij , dpij represent the ith site’s jth resource class’s

utilization, cost, power, overhead, and data proximity respectively. Let U , C, PW , O, and

DP represent the requested maximum utilization, cost, power, overhead, data proximity
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thresholds to select this resource class. Then,

xij · uij ≤ U ∀j ∀i

xij · cij ≤ C ∀j ∀i

xij · pwij ≤ PW ∀j ∀i

xij · oij ≤ O ∀j ∀i

xij · dpij ≤ DP ∀j ∀i

Finally, we can use a request value to see if a resource class is eligible, i.e., a resource class

is selected if its property matches the requested value. Security and always-on constraints

are examples of this type of constraints and can be modeled as follows.

Let scij and aoij represent the ith site’s jth resource class’s security level and always-on

indicator respectively. scij = 1 if the resource class is secure, otherwise scij = 0. aoij = 1 if

the resource class is always-on, otherwise aoij = 0. Let SC and AO represent the requested

security level and the requested type of resource. Then,

xij ≤ (1− scij) · (1− SC) + (SC · scij) ∀j ∀i

xij ≤ (1− aoij) · (1−AO) + (AO · aoij) ∀j ∀i

Depending on the use case, any of these constraints can be added to or removed from the

model. Similarly, new constraints can be also formulated and added to the model. Together,

a collection of these constraints defines the overall CP model passed to the solver. Users can

define complex resource behavior by combining constraints to achieve the desired goal. For

example, a user can define the behavior: use all available resources as long as their utilization

is below 80%, their power consumption is below 60%, and their cost per hour is less than

$0.10 by combining the three constraints (utilization < 80, power < 60, cost < 0.10).

The constraints are passed to a CP solver, which returns a list of resource classes that

satisfy them. In general, any combination of resource classes that satisfy all constraints is

considered a valid solution, therefore, we need to add one final constraint to the CP model

to return only the solution that includes all resource classes that satisfy all constraints. This
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constraint can be expressed as:

maximize

n∑
i=1

mi∑
j=1

xij
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3.2.3 Abstractions Summary

In summary, the rule-engine–based approach allows users to have fine-grained control over

every resource by independently specifying its availability over time (either directly or indi-

rectly). However, this might become cumbersome for a large number of resources. On the

other hand, the constraint-programming–based approach allows applications, users, and re-

source providers to set global constraints that are imposed on all available resource classes,

making it easier to control a large number of resource classes. A hybrid approach leveraging

both the rule engine and constraint programming can be used to control a larger list of re-

source classes while providing fine grained control for certain resource classes (e.g., high-end

supercomputers). However, coordination between the rule engine and the CP solver must

be incorporated in order to avoid conflicts and race conditions among rules and constraints.

Moreover, in the rule-engine–based approach, defining multiple rules per resource re-

quires careful consideration of the entire policy to ensure avoiding conflicts among rules.

One way to mitigate this problem is to define rule priorities which ensure that rules with

higher priorities are enforced in a case of a conflict. In the constraint-programming–based

approach, conflict is resolved by eliminating resource classes that do not satisfy all con-

straints. This can lead to an empty set of resource classes, i.e. no resource classes satisfy

all imposed constraints on the system. Similarly, defining constraint priority can be used

to violate some constraints with lower priority when this problem arises.

Finally, one must also consider how often the dSDE should adapt to meet the require-

ments imposed on the system in both approaches; real-time adaptation might lead to in-

stability (e.g., resulting in a volatile system), whereas periodic adaptation might violate

some of the defined rules/constraints. For example, setting the cost threshold very close

to a fluctuating spot price point might lead to a resource being available/unavailable very

frequently. One solution to this problem can be achieved by defining soft/hard rules/con-

straints. Using this approach, soft rules/constraints can be temporarily violated in order

to keep the system stable (e.g., ignoring a certain percentage of price fluctuation around a

defined threshold), whereas the system must react immediately to hard rules/constraints

(e.g., exceeding a certain power threshold that can cause damage to the infrastructure).
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3.3 Orchestration Plane

In the previous section, we described the resource programming and description abstractions

that enable applications, users, and resource providers to describe their resource expecta-

tions in a systematic way. In this section, we present the orchestration plane, which is

responsible for (1) translating the requirements defined at the top layer to a set of available

resources that can be used at a given moment, (2) allocating resources and scheduling ap-

plication tasks based on available resources, current workload, and QoS objectives, and (3)

dynamically managing the dSDE without interrupting ongoing application execution.

This is achieved by using a two-step approach that separates (1) resource description

and filtering (i.e., evaluating which resources can be used at a given time) from (2) resource

selection and workload allocation. The first step utilizes a runtime framework that trans-

lates the requirements specified at the resource programming and description layer into a

customized view that we call a “virtual slice”, which contains a subset of services that fit

the specified base requirements. A virtual slice can evolve over time adapting to changes in

the service offering as well as changes in the user and application interests. In the second

step, we use autonomic scheduling and matchmaking techniques to allocate the workload

among the available services of the virtual slice to ensure that the QoS objectives of an

application are always met. If the structure of the virtual slice changes at any time or if

the workload or QoS objectives change, the process is reevaluated to adapt the workload

allocation and resource provisioning accordingly.

The overall process is depicted in Figure 3.4 and the steps are described in more details

below followed by the architecture and implementation of two runtime frameworks: a rule-

engine–based and a constraint-programming–based runtime framework.
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Figure 3.4: An overview of the service composition and workflow execution in a distributed
software-defined environment. First, we provide federation abstraction mechanisms that
enable the dynamic composition of distributed services. On top of this layer, we utilize a
two-step approach for orchestrating the federation. The output of Step 1 is a virtual slice –
a filtered set of resource classes that satisfies all rules/constraints, i.e., the current available
resource classes at each site. The output of Step 2 is a resource recipe, which contains the
exact type/number of resources to be provisioned based on the application workload and
QoS objectives. c©2017 SAGE Journals (reprinted with permission) AbdelBaky et al [2].

3.3.1 Two-step Approach

3.3.1.1 Environment Description and Resource Filtering

The first step uses the resource programming and description layer to allow applications,

users, and resource providers to define the desired state of the execution environment (i.e.,

what type of resources should be exposed to the scheduler). We begin by considering a global

list of resources that the user has access to. This list is generated by actively combining

information obtained by discovery mechanisms and users’ knowledge. The global list can

vary over time (e.g., due to the discovery of new resources or the removal of existing ones).
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Additionally, resource classes in the global list are characterized by their availability,

which can vary over time, and a set of properties (e.g., cost, utilization, or performance).

These properties can be static (e.g., the number of cores) or dynamic (e.g., dynamic pricing).

Using these properties and availabilities, we then utilize a rule-engine–based or a constraint-

programming–based runtime frameworks to identify a subset of resource classes and sites

that satisfy rules/constraints set forth by applications, users, and/or resource providers (e.g.,

minimum performance, only GPU resources, resources cheaper than $X), which creates a

transient customized view, i.e., a virtual slice (see Step 1 in Figure 3.4).

3.3.1.2 Resource Selection and Workload Allocation

In the second step, the virtual slice is exposed to an autonomic scheduler [92]. The sched-

uler evaluates the application workload (e.g., the number of tasks in a workflow stage)

and objectives (e.g., maintain data locality) to appropriately provision resources and map,

schedule, and execute the application workload according to its QoS requirements (see Step

2 in Figure 3.4). Contrary to the first step, the scheduler is workload-aware in that it selects

the most appropriate resources from the current slice that satisfies the given QoS objectives

for the application.

The autonomic scheduler can use any state of the art scheduling strategy to, for example,

exploit data locality, minimize data transfer, ensure an overall budget, etc. We integrate

the scheduler into our approach to ensure that, at all times, only resources that are part

of the current virtual slice can be allocated, and they are only allocated according to the

application QoS objectives. For example, resources that are deemed viable in step one are

not necessarily selected by the scheduler in step two, if using them would violate a QoS

objective. On the other hand, resources that are not selected in step one cannot be selected

by the scheduler in step two.

The scheduler then generates a list of resources to be provisioned. We call the subset

of resources identified in step two the resource recipe, where each recipe is composed of

different ingredients (i.e., the exact number and types of resources and services). The

recipe can change over time due to changes in step one (i.e., the virtual slice), or due to

changes in step two (i.e., the behavior or objectives of the application workload).
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The scheduler also generates the placement of the workload tasks to be deployed on

the provisioned resources, which can be achieved using a range of techniques, from simple

matchmaking [102] to advance autonomics [92]. Once the schedule is determined, we use the

underlying federation abstraction mechanisms, i.e., the control plane, to allocate resources

and deploy the workload on top of them.

Finally, we continuously monitor the state and availability of services, applications,

users, and resource providers rules/constraints, and the applications’ workload and objec-

tives, which allows us to react to changes in an online manner. The resource filtering phase

(Step 1) generates a new virtual slice whenever resources join or leave, resources charac-

teristics change, or if the rules/constraints governing resources change. As a result, the

workload allocation phase (Step 2) has to be reevaluated to ensure the application QoS is

not violated with the new changes in the available resources. Reevaluating the second step

can also help find better allocations by using newly discovered resources. Additionally, the

workload allocation (Step 2) is reevaluated if the application workload or QoS objectives

change. This leads to a new resource recipe and a new workload map and schedule. The

recipe and schedule are then communicated to the underlying framework, which adapts the

resources and the application execution accordingly.

3.3.1.3 Two-step Approach Summary

The above process leads to the creation of a living distributed software-defined environment

that changes and evolves in both time and space, constantly adapting to the dynamic state

of the available resources, and to the constraints, requirements, and objectives imposed on

the system. The framework automates the process in a way that is transparent to running

applications. Further, using this two-step approach, allows users and resource providers to

have better control over resources, define fine-grained requirements, and be able to easily

express resource behavior and availability over time. For example, different slices can be

created for different applications, projects, or users by controlling what the scheduler can

see. Each slice can independently evolve over time to respond to changes in the resource

properties or the requirements regulating their usage.
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3.3.2 Runtime Frameworks

3.3.2.1 Rule-Engine–Based Framework

The rule-engine–based runtime framework enables the management of the composition pro-

cess based on high-level policies. The framework is responsible for (i) translating high-level

policies at runtime into a set of resources (i.e., a virtual slice), (ii) ensuring the orchestration

of federated sites over time according to these policies, (iii) executing the application on

top of the resulting dSDE, and (iv) monitoring the environment over time and modifying

it as necessary based on existing or new policies.

In particular, we implemented a rule-based execution engine, which is depicted in Fig-

ure 3.5a. The execution engine provides the orchestration mechanisms needed to support a

dSDE that could dynamically evolve in terms of size and capabilities. The engine collects

all rules from the policy layer and translates any indirect rule into an availability over time

(e.g., by evaluating the rule condition during runtime). These rules are then used to cre-

ate a virtual slice that defines the available resource at any given time. The engine uses

this slices to create controls and operational requests that manage the dSDE and alters its

overall structure by adding, modifying, or shutting down resources/sites. These requests

are passed along to the underlying layers that know how to coordinate different types of

resources. The engine interacts with the policy layer to maintain an up-to-date list of rules.

The execution engine is composed of two main components, a listener, and a rule enactor.

Their behaviors are depicted using the flowchart in Figure 3.5b. The listener is a socket-

based server responsible for communicating with the policy web service. The rule enactor

is responsible for ensuring the execution of a rule for a single resource/site. An instance

of the enactor is started for every available resource/site in the policy list. Currently, the

execution engine is limited to a single rule per resource to avoid conflicts and race conditions

(e.g., if two rules contradict). When the listener receives a new request from the policy web

service, it starts a new instance of the enactor (using a unique resource id) if the resource

is not already running, or submits the new rule to the existing enactor responsible for the

given resource otherwise.
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The enactor translates a given rule using a rule dictionary and creates/manages/ter-

minates the CometCloud federation agent responsible for this resource accordingly. The

enactor controls the dSDE using the federation abstraction layer. The enactor remains in

a loop while monitoring the status of the corresponding agent until a new rule is submitted

or the rule is complete (e.g., available allocations on a given resource are exhausted).

Federation Execution Engine

Listener Rule Enactor
Current 
Policies

Rules
Dictionary

R

(a) The overall architecture of the federation execution engine.

(b) The flowchart operation of the federation execution engine.

Figure 3.5: The rule-engine–based runtime framework architecture and its operation
flowchart. c©2015 ACM (reprinted with permission) AbdelBaky et al [6].
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3.3.2.2 Constraint-Programming–Based Framework

The constraint-programming–based runtime framework operates similarly to the rule-engine–

based one. However, instead of a rule engine, the CP approach utilizes a constraint pro-

gramming solver, which is used to generate the virtual slice (see Figure 3.6). The solver

takes as input the global list of resources and the constraints regulating their usage. The

solver then generates a solution including all resource classes that satisfy all constraints (i.e.,

a virtual slice). The slice is used to create multiple instances of the enactor, where each

enactor is responsible for a resource class and creates/manages/terminates the CometCloud

federation agent accordingly.

Federation Execution Engine

Constraint 
Solver

Resource 
Enactor

Customized
View

Figure 3.6: The constraint-programming–based execution engine architecture.

3.4 Control Plane

In this section, we present the bottom layers to realize a dSDE. The goal of the control plane

is to expose distributed computational resources (e.g., clouds, grids, clusters, cloudlets)

as programmable infrastructure. The control plane consists of two layers: a federation

abstraction layer and a federated infrastructure layer. Their overall architecture is shown

in Figure 3.7 and explained in more details below.

3.4.1 Federated Infrastructure Layer

The federated infrastructure layer provides mechanisms for creating the federated infras-

tructure available to an application at any time and supports the application execution

using this infrastructure. This layer is responsible for federating infrastructure with dif-

ferent ownership, and finding an agreed interface and language in order to negotiate and

establish access and usage rights based on mutual contracts. The federated infrastructure

layer is built on top of the CometCloud framework and extends the CometCloud federation
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Figure 3.7: An overview of the control plane necessary for a dSDE, which utilizes the
CometCloud framework [51, 93]. The control plane consists of two layers: a federation
abstraction layer, and a federated infrastructure layer.

model, described in Section 2.1.2, to provide fine-grained control of the resources compos-

ing such federation by providing dynamic join/leave mechanisms for federated sites, fault

tolerance, and scale up/down/out mechanisms within the federation.

3.4.2 Federation Abstraction Layer

The goal of the federation abstraction layer is to provide uniform programmatic access to

the federation management. This layer supports the programmatic addition/removal of

sites and provides abstractions for monitoring the status of the federated infrastructure

(e.g., available sites, the number of available resources within a site, etc.). This layer

accepts operational control requests to interact with the federated infrastructure layer.

These requests are then translated into specific actions that are used by the federated

infrastructure layer to drive the dSDE towards the desired structure. In particular, we have

built a RESTful web service that exposes the necessary functionality to monitor and control

the dSDE. The resulting federation abstraction API supports a set of functions that are

listed in Table 3.3 and are categorized as follows:

• Resource description operations: These operations are used to compile a list of avail-

able resources and can be used for resource registration or discovery. For example, the
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web request register resource registers a resource using the provided parameters

and returns a unique resource id that can then be used for further operations.

• Status operations: These operations report the status of the dSDE (e.g., a list of

available sites, a list of running sites, the status of each federation agent, and the

status of applications that are in execution). These operations can be used to monitor

the structure of the dSDE as well as the usage level. For example, the web request

get reg res returns an XML description of all available resources (including active

and inactive sites).

• Application execution operations: These operations are used to deploy the necessary

entities that enable the execution of applications on top of the dSDE. This is achieved

by creating an execution space on different sites and interacting with a workflow

manager that monitors the execution of the end-to-end workflow. For example, the

web request start workflow manager starts a workflow manager on a given resource

(identified by a resource id). The manager can then receive subsequent requests

to execute different workflows on the current dSDE. Note that this assumes that

applications are already deployed in CometCloud and compiled for each site that

desires to support them (see Section 2.1.2.2).

• CometCloud federation agent operations: These operations support starting/stopping

a CometCloud agent at any given site. An agent is a federation entity that provides

access to specific resources and knows how to deal with the particularities of hetero-

geneous resources. For example, the web request start agent starts the CometCloud

agent on a given site (identified by a resource id). Agents join or leave the federa-

tion management space when requested, ensuring that their resources are accessible

to the federation only when specified. Additionally, we can pause and resume feder-

ation agents to temporally disable access to the resources they represent. This keeps

agents as part of the federation space but disables their ability to allocate resources to

external users and applications. This functionality can be useful to minimize joining

and leaving overheads of resources that have very dynamic availability.
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Table 3.3: The Federation Abstraction Layer APIs and their description. c©2017 SAGE
Journals (reprinted with permission) AbdelBaky et al [2].

API Call Description

registerResource add a new resource class to the global list of resources
updateResource update the information (properties or availabilities) for an

existing resource class
deregisterResource remove a resource class from the global list of resources
startAgent start the federation agent for a given resource class
terminateAgent terminate the federation agent for a given resource class
disableAgent disable a resource class but do not terminate the agent

(pause)
enableAgent enable a resource class that was disabled earlier (resume)
startWorkflowManager start the workflow manager on a given resource
terminateWorkflowManager terminate the workflow manager on a given resource
checkWorkflowManagerStatus check the status of the workflow manager
submitWorkflow run a new workflow
checkWorkflowStatus check the status of an existing workflow
cancelWorkflow terminate an existing workflow
startCometCloudSpace start the comet execution space on a given resource
getRunningResources get the current running resources
getFederatedResources get the current federated resources (includes paused re-

sources)
checkAgentStatus check if the federation agent is started or stopped on a given

resource class
checkAgentEnabled check if the federation agent is paused or resumed on a

given resource class
getAvailableResources return XML description of all registered resource classes

3.5 Realizing A Distributed Software-Defined Environment

In this section, we show how the three layers (i.e., resource programming and description

layer, orchestration plane, and control plane) work together to create a dSDE using both

the rule engine and constraint programming approaches.

3.5.1 Rule-Engine–Based dSDE

The overall architecture of the rule-engine–based approach and a flowchart diagram describ-

ing the overall operation of the rule-engine–based dSDE are shown in Figure 3.8. First, ap-

plications, users, or resource providers use the policy layer to submit a policy that contains

resource usage rules. These rules can be modified during application runtime. The policy

layer verifies these rules and notifies the execution engine. The execution engine evaluates

the rules during runtime and creates virtual slices accordingly. The execution engine then
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starts, stops, and monitors CometCloud federation agents according to the resources avail-

able in the virtual slice. The agents join/leave the federation management space, which is

exposed to the autonomic scheduler. The agents also create local execution spaces at their

sites that can be used to execute a workload. The user also submits the application or

workflow to be executed along with its QoS objectives to a workflow manager. The man-

ager communicates the current workload and QoS objective to the autonomic scheduler.

The scheduler generates the resource recipe and task placement. The scheduler notifies the

federation agents to allocate resources and workers according to the resource recipe. The

scheduler also provides the workflow manager with the task placement. The scheduler com-

municates with the application master to create tasks and insert them into the execution

space. Finally, the workers execute the tasks.
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c©2015 ACM (reprinted with permission) AbdelBaky et al [6].
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3.5.2 Constraint-Programming–Based dSDE

The overall system architecture of the constraint-programming–based approach is shown in

Figure 3.9. The main components are described below.
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Figure 3.9: The overall architecture of the constraint-programming–based dSDE. c©2017
IEEE (reprinted with permission) AbdelBaky et al [5]. The federation execution engine is
responsible for starting/stopping/pausing/resuming CometCloud federation agents based
on constraints. Each federation agent is responsible for a single resource class within a
single site. The Autonomic Scheduler is responsible for allocating resources within each
resource class.

• Resource and Constraint Description Layer: provides mechanisms for expressing the

attributes of the dSDE in terms of resource availabilities, properties, and constraints.

This layer is exposed using a RESTful web service and can be accessed programmati-

cally. Applications, users, and resource providers use this layer to add/update/remove

resource classes and/or constraints. Updates at this layer are propagated to the fed-

eration execution engine.
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• Federation Execution Engine: manages the composition process based on the prop-

erties, availabilities, and constraints specified at the description layer. It consists of

two main components, a CP solver, and a Resource Enactor. The solver generates a

virtual slice of resources that satisfies all constraints. We currently use a Python Con-

straint Solver 2. The solver runs whenever updates are submitted to the description

layer. The virtual slice is then passed on to the resource enactor and the autonomic

scheduler and they adapt the environment accordingly.

• Workflow Manager: receives information about application workflows including their

requirements, objectives, and other details such as the number of tasks per stage,

stage dependencies, etc. The workflow manager passes application stages that are

ready to execute along with their associated QoS objectives to the scheduler.

• Autonomic Scheduler: is responsible for deploying the current workload, encapsulated

inside containers, on a set of selected resources based on different optimization ob-

jectives. The scheduler receives the application information as well as the currently

available resources from the federation abstraction layer to create the resource recipe

and the workflow placement. The scheduler continuously monitors the execution of

the applications as well as the current virtual slice and adapt the dSDE as needed.

• Container Deployment Enactor (CDE) deploys containers directly on any allocated

resource or interacts with the local scheduler to submit container jobs. CDE is built

on top of CometCloud to support the deployment of Docker containers using the

native docker environment 3 or alternatively using Cloud Foundry 4, and can be easily

extended to support other container deployment schedulers such as Kubernetes 5. The

CDE can be used to deploy any container image in a public/private registry (as long

as the user has access to the registry). New workflows can be easily deployed without

any modification to our framework once they are ‘containerized’.

2Python Constraint Solver: https://labix.org/python-constraint

3Docker: https://www.docker.com

4Cloud Foundry: https://www.cloudfoundry.org

5Kubernetes: http://kubernetes.io

https://labix.org/python-constraint
https://www.docker.com
https://www.cloudfoundry.org
http://kubernetes.io


56

3.6 Summary

In this chapter, we presented an approach that enables the programmatic control of services

to realize a distributed software-defined environment. Our approach is based on an abstrac-

tion that enables dynamic composition of services driven by high-level rules or constraints.

Rules and constraints can be programmatically defined as a function of time or runtime

events. We compared the tradeoffs of both resource description approaches.

Our approach enables elastic and on-demand aggregation of distributed services and re-

sources from multiple providers (e.g., clouds, grids, data centers). First, we used a software-

defined programmable abstraction to allow applications, users, and resource providers to

programmatically express resource requirements, which are then translated into a cus-

tomized view of the federation, called a virtual slice. A virtual slice can evolve over time

adapting to changes in the service offering as well as changes in the user and application in-

terests. We presented two ways of implementing our software-defined approach, using a rule

engine and constraint programming, respectively. Finally, we used autonomic scheduling

and matchmaking techniques to allocate the workload among the available services of the

virtual slice to ensure that application QoS objectives are always met. If the composition of

the virtual slice changes or if the application workload or QoS objectives change, the process

is reevaluated to adapt the workload allocation and resource provisioning accordingly. As

a result, our approach creates a nimble and dynamically programmable environment that

evolves over time, adapting to changes in infrastructure state and application requirements.

Our prototype leverages Docker containers for encapsulating and deploying application

workflows across the dynamically federated infrastructure. We utilized Docker for our work

for multiple reasons. First, the agile nature of container workloads coupled with their

requirement for fast deployment and adaptation to changing environments makes them a

good candidate to test the usability and adaptability of our framework, which we will show

in Chapter 4. Furthermore, the use of containers adds another dimension of accessibility and

portability to our framework (i.e., the entire application environment is encapsulated inside

containers and run anywhere using our framework). Lastly, current solutions for deploying

Docker containers focus on single-site implementations, whereas our work enables Docker

users to dynamically run across multiple sites or clouds.
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Chapter 4

Evaluation of the Distributed Software-Defined Environment

4.1 Introduction

In this chapter, we present an empirical and experimental evaluation of the programming

system that enables our distributed Software-Defined Environment (dSDE). In particular,

we evaluated our approach using user-driven use case scenarios. The experimental eval-

uation used a scientific application workflow as a driving use case but this work applies

equally to other scenarios such as the IoT scenario described in Chapter 1. The evaluation

of the system also used only infrastructure resources and services, however, we will show in

Chapter 5 that our approach applies to other services such as network or storage. In the

remainder of this chapter, we first present the experimental evaluation of the rule-engine–

based approach using a user-driven use case scenario. Next, we present the empirical eval-

uation of the scalability and correctness of the constraint programming solver for resource

filtering. Finally, we present an extensive evaluation of the constraint-programming–based

dSDE using multiple experiments.

4.2 Experimental Evaluation of the Rule Engine Approach

In this section, we evaluated the rule-engine–based dSDE through a user-driven use case

scenario where users have fine-grained control over available resources. We first present the

scenario details and our evaluation goals, followed by the experimental setup, results, and

conclusion.
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4.2.1 Use Case Scenario

Consider a scientist who has access to several geographically distributed computational

resources – e.g., XSEDE [144] supercomputers or grid resources (with limited allocation

units), a local campus cluster, and public clouds. The scientist wants to combine these

resources to run a large scale application workflow. Further, they want to define how these

resources should be used to run their application.

For example, a scientist may prefer to use a certain type of resources over others (e.g.,

HPC versus clouds or “free” HPC systems versus the allocation-based ones); they may want

to reserve XSEDE resources for specific projects or restrict the maximum amount of grid

allocations that a single workflow can consume; or they may be only allowed to use certain

resources at certain times of the day. More complex requirements may involve allowing

the use of public clouds only if the local cluster becomes unavailable during the execution

of a workflow and the price per cloud instance is under a certain threshold – additionally,

this threshold should be easily adjusted/removed to meet a deadline. Finally, a scientist

may want to specify how to react to unexpected changes in the resource availability or

performance or they may want to only use resources within the US or Europe due to the

laws regulating data movement across borders. Therefore, by allowing users to define this

kind of rules in a formal and abstract manner, they can achieve unprecedented control

over the resources, which can improve the efficiency of resource use and maximize the

application’s outcome.

The rule-engine–based dSDE provides users with two different ways of specifying the

usage policy for a list of available resources. In the first method, the scientist can declare

a policy that specifies the exact composition of the dSDE over time, whereas in the second

method, they can define the desired behavior of the dSDE but not its exact composition.

The two examples below demonstrate the use of these two types of policies.

Suppose a scientist has access to the following resources:

1. Resource A (local cluster) - full access

2. Resource B (supercomputer) - 5000 allocation units

3. Resource C (public cloud) - pay per usage
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In the first scenario, the scientist defines the following policy:

• Run on Resource A always

• Run on Resource B daily from 9:00 AM to 5:00 PM

• Run on Resource C from January 8, 2015, 9:00 AM to January 10, 2015, 12:00 PM

Based on the described policy, the system will start resource A immediately and contin-

uously monitor its status until the policy is changed or the resource is removed from the list

of available resources. Further, the system will start resources B and C at their respective

start time, monitor their status, then stop them at their respective end time.

In the second scenario, the scientist defines the following policy:

• Run on Resource B using 2500 allocations

• Run on Resource C when the dynamic price per instance is less than $0.1 per hour

and not exceeding a budget of $50

In this case, the system will start resource B, monitor the number of allocations used,

and release it when the target allocation is met. For Resource C, the system will monitor

its dynamic price and keep it running as long as the dynamic price is below the specified

threshold and the total budget allocated is not yet exhausted.

Evaluation Goals. Using this scenario, we set up an experiment to evaluate the rule-

engine–based dSDE. The goal of this experiment was to show that the system can (1)

combine multiple geographically distributed resources and use them to execute an applica-

tion and (2) automatically adapt the composition of resources based on user-driven rules.

4.2.2 Experimental Setup

We executed a synthetic bag-of-tasks application on a dynamic federation of resources.

The QoS objective defined for this application was maximizing throughput, i.e., aggregat-

ing as much computational power as possible. Our environment was composed of four

geographically distributed sites. Table 4.1 describes the resources utilized as well as their
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computational characteristics. These are all the resources that the user had access to. How-

ever, the usage of some of these resources was limited by resource providers. As a result,

the user specified some rules using time-based generic policies as follows.

• Run on Future Systems always

• Run on Spring daily from 11:05 AM to 11:40 AM

• Run on Green from 02/28/2015 11:15 AM to 02/28/2015 11:30 AM

Table 4.1: Rule engine evaluation: resources available at each site and their characteristics.
c©2015 ACM (reprinted with permission) AbdelBaky et al [6].

Future Systems - OpenStack Cloud

Resource #Cores Memory Performance Max. VMs‡

VM Medium 2 4 GB 1.36 3
VM Small 1 2 GB 0.69 6

Spring - HPC Cluster

Resource† #Cores Memory Performance Max. Machine‡

Bare-metal 8 24 GB 1.42 16

Green - HPC Cluster

Resource† #Cores Memory Performance Max. Machine‡

Bare-metal 8 24 GB 0.42 16

Chameleon - OpenStack Cloud

Resource #Cores Memory Performance Max. VMs‡

VM Medium 2 4 GB 1 3
VM Small 1 2 GB 0.5 4

Note: ‡ – Maximum number of available VMs/bare-metal per type

In addition, ten minutes after the experiment started, the user added a new cloud

resource, which offered a dynamic pricing model similar to Amazon EC2 spot instance

model 1. In this experiment, we emulated this model on one of the cloud infrastructures

provided by the Chameleon Project 2. The varying price of the instances is shown in

Figure 4.1a. In our experiment, the user wanted to take advantage of the dynamic pricing

1Amazon EC2 Spot Price Model: http://aws.amazon.com/ec2/purchasing-options/spot-instances

2Chameleon Cloud: https://www.chameleoncloud.org

http://aws.amazon.com/ec2/purchasing-options/spot-instances
https://www.chameleoncloud.org
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model and established a policy that defined the maximum price they were willing to pay

for these instances. The rule was as follows.

• Run on Chameleon when the dynamic price is less than $0.1 per hour

4.2.3 Results

We started the experiment on 02/28/2015 at 11:00 AM, which is referred to as time 0 hence-

forth. Table 4.2 summarizes the different actions taken during the experiment. The first

action (at time 0) was deploying the appropriate services and creating the environment by

registering the resources and their rules, as the user defined. Next, the experiment is started

by launching the application and deciding which resources can be allocated to execute the

application. Once the experiment was running, the system periodically evaluated the rules,

creating a new virtual slice when modifications in the environment were needed and allo-

cating/deallocating resources to maximize the overall aggregated power. Figure 4.1b shows

how these events changed the composition of the environment over time according to the

specified rules.

Since the objective of the application was to maximize throughput, we can observe,

in Figure 4.1c, how the throughput varied adapting to the changes in the environment.

Specifically, Figure 4.1c shows the throughput per site in a stacked area chart. We can

observe how the throughput dramatically increased when the Spring cluster, with powerful

resources, joined the environment. Similarly, we see that the peak performance of the dSDE

occurs when all four sites were contributing resources. Following the dynamic pricing model

presented in Figure 4.1a and the price defined specified by the user, we can observe how

Chameleon resources joined the environment between time 25 and 35 of our experiment,

which was the time period where the instance price was below 0.1 dollars.
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(a) Emulated price of a spot instance over time
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(c) Throughput, measured as the number of tasks completed over time

Figure 4.1: Summary of experimental results for the rule-engine–based dSDE. c©2015 ACM
(reprinted with permission) AbdelBaky et al [6].
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Table 4.2: Rule engine evaluation: actions triggered by the rule engine that created the
environment and modified it over time to comply with established rules. c©2015 ACM
(reprinted with permission) AbdelBaky et al [6].

Time (Min) Event

00 Start services

(WFM, CS, Execution Engine)

Register and schedule future systems

Register and schedule spring

Register and schedule green

Start experiment

Future Systems starts

05 Spring starts

10 register and schedule Chameleon

15 Green starts

25 Chameleon starts

30 Green ends

35 Chameleon ends

40 Spring ends

50 Workflow complete

Future Systems ends

4.2.4 Conclusion

We evaluated the rule-engine–based dSDE framework using a user-centric use case and

demonstrated how our framework allows users to programmatically and dynamically adapt

the environment over time without interrupting application execution. Similarly, the frame-

work can be used by application workflows to allow them to negotiate their own resources,

or by resource providers to allow them to define the environment to meet different require-

ments. While we have used relatively simple rules in these experiments, they do serve as

a proof of concept to validate the essential mechanisms to enable our distributed software-

defined environment.
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4.3 Empirical Evaluation of the Constraint Programming Solver

4.3.1 Heuristic

To evaluate the performance of the CP-based approach, we developed a simple heuristic

for resource filtering. The heuristic approach calculates a single solution that includes all

viable resource classes. In contrast, the CP solver provides every possible combination.

The heuristic approach iterates over all resource classes in each site, and filters out resource

classes that do not satisfy all constraints. The algorithm for the heuristic approach is shown

below and uses the same notations defined in Section 3.2.2.2.

Algorithm 1 Algorithm for the Heuristic Approach. c©2017 IEEE (reprinted with permis-
sion) AbdelBaky et al [5].

1: for i = {1, 2, . . . , n} do
2: for j = {1, 2, . . . ,mi} do
3: xij = 0
4: if avij == 1 and CP ≤ cpij and AL ≤ alij and PF ≤ pfij and BL ≤ blij and uij ≤ U and

cij ≤ C and pwij ≤ PW and oij ≤ O and dpij ≤ DP and scij == SC and aoij == AO then
5: xij = 1
6: end if
7: end for
8: end for

4.3.2 Experimental Setup and Evaluation Criteria

In this experiment, we evaluate the performance and correctness of the CP resource filtering.

We compare it to heuristic, predefined, and random resource filtering. Predefined and

random filtering do not consider constraints when selecting resource classes. We used two

types of predefined filtering, predefined select half, which always returns the first half

of the global list, and predefined select all, which returns the full list. Random filtering

returns a random selection of resource classes from the list. We ran a simulation on a list

of resource classes with sizes varying from one to one million, using a normal distribution

of random properties and availabilities. We varied the number of imposed constraints as

follows: no constraints, five constraints, and ten constraints. We ran each of the solvers and

measured the performance and the correctness of the solution for each case. The simulations

ran on a machine with a 1.7 GHz Intel Core i5 CPU and 4 GB of memory. To evaluate

correctness, we use a utility function that calculates a correctness factor, which is defined

as the percentage of constraint violation (if any). The correctness factor is normalized
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over the total number of selected resource classes and the total number of constraints. We

assume that constraints and resource classes have equal weight. For example, if the input

to the utility function is five constraints and a correct solution includes 20 resource classes,

then each resource class satisfying one constraint counts for 1% of the overall correctness

factor. We have also developed a second utility function that calculates a missed resources

factor, which is defined as the percentage accounting for resources that should have been

selected (i.e., they satisfy all constraints) but was not selected. The missed resources factor

is normalized over the total number of selected resource classes.

4.3.3 Results

Performance. The results are plotted in Figure 4.2 and show strong linear scaling for

all four approaches when increasing the number of resources. As expected, increasing the

number of constraints increases the time-to-solution. The CP solver finds the solution for

up to 10,000 resource classes and 10 constraints in less than 1.5 seconds. Given that each

class is composed of one or more resources, this shows that the CP approach is suitable for

a very large number of resources. The CP approach takes more time because the CP solver

generates every possible combination of resource selection, and then returns the combination

with the most resources that satisfy all constraints. This requires creating a large search

space that can accommodate all combinations. The heuristic approach performs very close

to the predefined selection and better than the CP-based approach.

Correctness. The correctness and missed resources factors were evaluated for 1000 and

1,000,000 resource classes using five and ten constraints. The results are plotted in Fig-

ure 4.3. The figure shows that the selections generated by both the CP and heuristic

approaches always satisfy all constraints with a correctness factor of 100%. Additionally,

neither of them miss any resources with a missed resources factor of 0%. The random and

predefined selections have an average correctness factor of 78%; (i.e., on average the selec-

tions generated by these approaches violate 22% of the given constraints). Additionally,

the predefined (select first half) and the random selection have an average missed resources

factor of 50% (i.e., on average the selections generated by these approaches miss half of the

viable resources).
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Figure 4.2: Performance of the constraint-programming–based and heuristic-based resource
filtering approaches. Given a global list of resources; random filtering returns a random
selection of resource classes. Predefined filtering includes (predefined select half), which
always returns the first half of the list, and (predefined select all), which returns the full
list. c©2017 IEEE (reprinted with permission) AbdelBaky et al [5].
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Figure 4.3: Correctness and missed resources factors, showing the percentage of satisfied
constraints and the percentage of missed resources for each resource filtering approach.
c©2017 IEEE (reprinted with permission) AbdelBaky et al [5].

4.3.4 Conclusion

While the heuristic approach provides better performance, a key limitation of this approach

is that modeling constraints can be cumbersome when considering more complex scenarios.

Additionally, the heuristic approach cannot return different combinations of viable solu-

tions, which can be used to introduce different QoS points with different tradeoffs. A key

advantage of the CP approach is its ability to easily add or remove constraints without

modifying the rest of the framework. Finally, constraint programming provides a formal

language and syntax that can be used by users, applications, and/or resource providers



68

to easily express constraints and define the desired state of the execution environment. A

hybrid approach that mixes the heuristic and CP solvers can be used to provide simple

ways of specifying constraints, yet provide better performance at extreme large scales.

4.4 Experimental Evaluation of the Constraint Programming Approach

In this section, we evaluate the constraint-programming–based dSDE using a bioinformatics

workflow and a user-driven scenario where users have global control over available infrastruc-

ture services from multiple cloud providers. We first present the scenario details, evaluation

goals, and driving application, followed by the experimental setup, results, and conclusion.

4.4.1 Use Case Scenario and Evaluation Goals

Consider a scientist who has access to infrastructure services from multiple cloud providers.

The scientist wants to combine these services to run multiple dynamic workloads with vary-

ing constraints and QoS requirements. Given these services and workloads, oftentimes, the

scientist needs to decide how to distribute the available resources to maximize the outcome

across several projects. Using our dSDE this can be achieved by creating multiple virtual

slices of the same underlying resources, which are then exposed to different applications.

Further, our approach allows users to control each slice individually where each slice can

evolve separately depending on the workload behavior and imposed constraints.

Evaluation Goals. The goal of the following experiments is to show that our system can

(1) dynamically compose distributed services from multiple cloud providers, (2) automati-

cally adjust the composition in response to dynamic application workload, (3) automatically

adjust the composition due to changes in the infrastructure properties or the constraints

regulating their usage, and (4) create multiple views/compositions of the same underlying

services, which is then used to execute similar or independent workloads.

4.4.2 Driving Application

We containerized a synthesized workflow based on a histopathology image analysis ap-

plication and used it as a driver for our experiments. Specifically, the application is an
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automatic Gleason-grading workflow of prostate malignancy using pathology specimens of

prostate tissues, which provides critical guidance for prostate cancer diagnoses and further

treatment [157]. This workflow is composed of two stages: 1) region segmentation, which

extracts image patches from whole slide imaging (WSI) of the sample slides and locates

regions of interest (ROI); and 2) grade classification, which gives a Gleason grade for each

segmented ROI by a 3-level classifier. There is a barrier between the two stages (i.e., all

tasks in S1 must finish before S2 is executed). The characterization of this workflow showed

that each completed job from stage one generated six jobs for stage two. The execution

time of jobs within the first stage was between 10 and 250 seconds, and the execution time

for each job in stage two was between two and 100 seconds. Since the application was

containerized, every job was executed inside a container that is instantiated on demand.

4.4.3 Experimental Setup

We conducted our experiments in a distributed multi-cloud environment with resources from

five different cloud providers at seven independent sites: an OpenStack community cloud

from the Chameleon project 3, located at TACC in Texas; two different zones (us-west-2

and us-east-1 regions) from the public cloud provided by Amazon Web Services 4, located in

Oregon and N. Virginia respectively; two different zones (East US and West US) from the

public cloud provided by Microsoft Azure 5, located in Virginia and California respectively;

one zone (us-east1-b) from the public cloud provided by Google Cloud Platform 6 located

in S. Carolina; and one zone (us-south) from the public cloud provided by IBM Bluemix 7.

Additionally, we used a local cluster located at Rutgers University in New Jersey to host our

framework and web services. We ran Docker containers inside virtual machines using the

native Docker environment in all clouds except for IBM Bluemix. IBM Bluemix supports

deploying Docker containers directly on bare metal hardware. We also used separate virtual

machines to deploy CometCloud agents for a total of 15 instances. Detailed characteristics of

3Chameleon Cloud: https://www.chameleoncloud.org

4Amazon Elastic Compute Cloud: https://aws.amazon.com/ec2/

5Microsoft Azure: https://azure.microsoft.com/en-us/

6Google Compute Engine: https://cloud.google.com/compute/

7IBM Bluemix: https://console.ng.bluemix.net

https://www.chameleoncloud.org
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/
https://cloud.google.com/compute/
https://console.ng.bluemix.net
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the resources used at each site are presented in Table 4.3. The performance of the resources

is represented by the speedup and has been experimentally calculated as a function of the

performance of the Azure East instance using the UnixBench benchmark 8, which was used

to characterize the bioinformatics workflow. The cost ($) per hour for all cloud providers

is based on their real pricing models, except Chameleon which is estimated using AWS

pricing model. In our experiments, we scheduled the workload with a QoS objective of

maximizing throughput by allocating jobs to the resources with the minimum estimated

time of completion.

4.4.4 Results

4.4.4.1 Experiment 1: Single Slice - Varying Workload - Static Resources and

No Constraints

In the first experiment, named cancer dynamic run (CDR), the resource class availabilities,

properties, and constraints were fixed, whereas the application workload varied over time.

In particular, two cancer application workloads were executed back to back. The first

workload was submitted at time (t=0) and had two stages, Stage one (S1) had 10 jobs,

Stage two (S2) had 60 jobs. The second workload was submitted at (t=11) and had two

stages, Stage one (S1) had 100 jobs, and Stage two (S2) had 600 jobs.

Figure 4.4 shows the provisioned resources (left) and the job throughput (right) per

resource class over the course of the experiment. The graphs show the provisioned resources

successfully adapted to the workload by allocating and deallocating resources to meet the

demand. The graphs show all resources were deallocated after the completion of the first

workload (t=8) and did not start again until the submission of the second workload (t=11).

Since resource availability and constraints were fixed, this adaptability was achieved by only

reevaluating the workload allocation step (step two of our two-step approach) whenever

changes in the workload were detected. The specific blend of resources depended on the

scheduling policy used. In our case, we aimed at maximizing throughput and for that

reason, Chameleon site was preferred as it had the most powerful resources.

8UnixBenchmark: https://github.com/cloudharmony/unixbench

https://github.com/cloudharmony/unixbench
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Table 4.3: Constraint programming evaluation: resources available at each site.

(a) Experiment 1, 2, and 3

Site Name VM Type Cores Memory Max. UnixBench Speedup Cost($)�Overhead Conts.4

VMs‡ Score

AWS US East t2.micro 1 1 (GB) 10 1785.6 2.39 0.013 30 (secs) 1
t2.small 1 2 (GB) 10 1785.1 2.39 0.026 30 (secs) 1
t2.medium 2 4 (GB) 10 2499.9 3.35 0.052 30 (secs) 2
t2.large 2 8 (GB) 10 2588.2 3.47 0.104 30 (secs) 2

AWS US West t2.micro 1 1 (GB) 10 1881.1 2.52 0.013 30 (secs) 1
t2.small 1 2 (GB) 10 1736.9 2.33 0.026 30 (secs) 1
t2.medium 2 4 (GB) 10 2573.3 3.45 0.052 30 (secs) 2
t2.large 2 8 (GB) 10 2586 3.47 0.104 30 (secs) 2

Chameleon m1.small 1 2 (GB) 8 1856.7 2.49 0.026 15 (secs) 1
m1.medium 2 4 (GB) 6 2979 3.99 0.052 15 (secs) 2
m1.large 4 8 (GB) 4 4380.2 5.87 0.209 15 (secs) 4

Azure US East Standard-A1 1 1.75 (GB) 3 746.2 1.00 0.044 5 (secs) 1

Azure US West Standard-D1 1 3.5 (GB) 3 1271.4 1.70 0.077 5 (secs) 1

Google US East n1-standard-1 1 3.75 (GB) 3 1793.1 2.40 0.05 5 (secs) 1

IBM US South Bluemix N/A N/A 3∗ N/A N/A 0.028 45 (secs) 3∗

(b) Experiments 4 and 5

Site Name VM Type Cores Memory Max. UnixBench Speedup Cost($)�Overhead Conts.4

VMs‡ Score

AWS US East t2.micro 1 1 (GB) 10 1785.6 2.39 0.013 30 (secs) 1
t2.small 1 2 (GB) 10 1785.1 2.39 0.026 30 (secs) 1
t2.medium 2 4 (GB) 10 2499.9 3.35 0.052 30 (secs) 2
t2.large 2 8 (GB) 10 2588.2 3.47 0.104 30 (secs) 2

AWS US West t2.micro 1 1 (GB) 10 1881.1 2.52 0.013 30 (secs) 1
t2.small 1 2 (GB) 10 1736.9 2.33 0.026 30 (secs) 1
t2.medium 2 4 (GB) 10 2573.3 3.45 0.052 30 (secs) 2
t2.large 2 8 (GB) 10 2586 3.47 0.104 30 (secs) 2

Chameleon m1.small 1 2 (GB) 4 1856.7 2.49 0.026 15 (secs) 1
m1.medium 2 4 (GB) 4 2979 3.99 0.052 15 (secs) 2
m1.large 4 8 (GB) 4 4380.2 5.87 0.209 15 (secs) 4

Note: ‡ – Maximum number of available VMs per type.
� – Actual cost per hour except for Chameleon, which was based on Amazon pricing.

4 – Number of containers deployed per instance.
∗ Max number of containers for Bluemix.

4.4.4.2 Experiment 2: Single Slice - Varying Workload - Varying Resources

and Constraints

In this experiment, we used a large workload to force the scheduler to initially allocate all

available resources in the virtual slice. We ran two scenarios, a cancer base run (CBR)

scenario, where the virtual slice contained all resources from the global list and did not
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(b) CDR Throughput

Figure 4.4: Constraint programming evaluation: Experiment 1 – the provisioned resources
and throughput for the cancer dynamic run (CDR). Two workflows each composed of two
stages with varying workloads were executed in this experiment.

change during runtime. In the second scenario, named cancer constrained run (CCR), the

virtual slice changed as we added/removed resources, and adjusted resource class properties,

availabilities, and constraints during runtime. The workload for both scenarios was the same

and was composed of two stages, Stage one (S1) had 1000 jobs, Stage two (S2) had 6000

jobs. Figure 4.5 shows the changes imposed on the system in the constrained run. Every

time a change was submitted to the system, the first step of our two-step approach was

repeated and a new virtual slice was generated. Once the new slice was generated, the

second step of our approach reevaluated the newly available resources as well as the current

workload to create a new resource recipe and a workload placement. Figure 4.6 shows our

results.

In Figure 4.6 we can observe the provisioned resources for CBR (top left) and for CCR

(top right), which are separated by resource class, and the job throughput for CBR (bottom

left) and for CCR (bottom right), which are aggregated by provider zone, over the course of

the two scenarios. In these figures, the colored area represents allocated resources, dashed

area represents unavailable resources (e.g. due to some constraint or resource unavailability),

and empty area represents the available resources that were not allocated. Figure 4.6b

(CCR) shows that the provisioned resources in the constrained run successfully adapted to

all the changes imposed on the system. For example, IBM Bluemix joined the environment

(t=10) after it was added to the global list, AWS East Small left the environment (t=26)
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add#one#constraint#(speedup=2.4)
resource#allocated change#resource#availability#(google#off)
resource#available add#another#constraint#(cost=0.1)
resource#unavailable change#existing#constraint#(speedup=2.2)

change#resource#availability#(google#on)
workflow#starts change#resource#cost#(aws#east#large=0.09)

add#resource#(blue#mix) remove#one#constraint#(cost)
remove#resource#(aws#east#small) remove#all#constraints

IBM_Bluemix
Google

Azure_East
Azure_West

AWS_East_Micro
AWS_West_Small
AWS_East_Small
AWS_East_Large
AWS_West_Large
Chameleon_Large
Chameleon_Small
AWS_West_Micro

AWS_East_Medium
AWS_West_Medium
Chameleon_Medium

0 12 27 39 57 62 66 70 74 78 82 90 118

Figure 4.5: Constraint programming evaluation: Experiment 2 – constraints imposed on
the system. c©2017 IEEE (reprinted with permission) AbdelBaky et al [5].

after it was removed from the global list, Google was disabled (t=66) when it became

unavailable, then enabled (t=72) when it became available again, AWS East Large was

disabled when a cost constraint (cost = $0.1) was imposed on the system, and enabled

when its dynamic cost was changed (reduced to $0.09 from $0.104). Figures 4.6c and 4.6d

show the workload (job throughput) adapting to the available resources. The results show

all resources were deallocated after the completion of the first stage and did not start again

until the submission of the second stage (t=27 for CBR and t=38 for CCR). The gaps

in throughput in Figure 4.6d (between t=23-36, t=90-98 and t=105-115) are due to the

failure of some tasks which were reinserted and executed at the end of each stage. The

total workflow execution time in CBR was 111 minutes and in CCR was 118 minutes for

a total of 6% increase in duration. The total cost for CBR was $8.93 whereas the total

cost for CCR was $8.68 for a total of 3% decrease. As can be expected, CBR took less

time and more cost to execute since all of the resources were available to use. We limited

the scheduler in CBR to a one-time placement, where the schedule was generated once at
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(b) CCR Resources
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(c) CBR Throughput
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(d) CCR Throughput

Figure 4.6: Constraint programming evaluation: Experiment 2 – the provisioned resources
and job throughput for the cancer base run (CBR) and cancer constrained run (CCR).
The key in Figure 4.6a also applies to Figure 4.6b. The second Y-axis in both figures 4.6a
and 4.6b matches the key to facilitate finding resource classes in black and white print.
c©2017 IEEE (reprinted with permission) AbdelBaky et al [5].

the beginning of S1 and S2, whereas in CCR, the schedule was continuously reevaluated

whenever a change was detected. The long tail in the throughput in S2 in Figure 4.6c

was due to the load imbalance resulting from the one-time placement at the beginning of

S2. This imbalance was partially reduced in CCR due to the continuous reevaluation of

the schedule whenever a change was detected. In fact, the second stage took 84 minutes to

execute on CBR and only 80 minutes to execute on CCR. This 5% improvement was achieved

despite task failures and fewer resources in CCR. In summary, this experiment shows how

our framework was able to dynamically compose resources during runtime according to the

resource class properties, availabilities, and constraints. More importantly, it was able to
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adapt the workload placement according to the available resources in the virtual slice and

continue executing the application. Finally, the ability to react and adapt to changes in

the underlying infrastructure coupled with the continuous evaluation of the scheduling can

reduce cost and/or the time-to-solution.

4.4.4.3 Experiment 3: Multiple Slices - Different Workloads

In this experiment, we created two different virtual slices from the same underlying resources

that were used to run two independent workloads. Each slice was different and consequently,

the subset of resources that each workload was able to see was different. The first slice had

no constraints and therefore was able to use any of the resource classes in the global list.

The workload running on the first slice was composed of two stages, Stage one (S1) had 200

jobs, Stage two (S2) had 1200 jobs. The second slice had a constraint to only use resources

with a minimum speedup threshold of 2.2. The workload running on the second slice was

composed of two stages, Stage one (S1) had 50 jobs, Stage two (S2) had 300 jobs. The

results of this experiment are shown in Figure 4.7.

Figures 4.7a and 4.7b show the provisioned resources for virtual slices one and two,

respectively. The graphs show that different blend of resources was provisioned. For ex-

ample, the second virtual slice did not include any resource classes from Microsoft Azure

since their speedup was lower than the required threshold. On the other hand, Figures 4.7c

and 4.7d show the job throughput, which is aggregated by provider zone, over the course

of the experiment for virtual slice one and two, respectively. The graphs show the work-

load (job throughput) adapted to the available resources in both slices. This experiment

demonstrates that our framework can support multiple users or projects at the same time

(using different slices) and it can adapt to the workload of each slice independently.

4.4.4.4 Experiment 4: Single Slice - Same Workload - Static Resources and

No Constraints

In this experiment, there were no constraints or changes in the underlying infrastructure

properties or availabilities. We used a workload that consists of two stages, Stage one (S1)

had 250 jobs, Stage two (S2) had 1500 jobs. This experiment was executed as a base run
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(a) Virtual Slice 1 Resource Usage
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(b) Virtual Slice 2 Resource Usage
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(c) Virtual Slice 1 Throughput
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(d) Virtual Slice 2 Throughput

Figure 4.7: Constraint programming evaluation: Experiment 3 – The provisioned resources
and task throughput for each virtual slice. In this experiment, two independent workloads
each composed of two stages with varying workloads were executed on two slices created
from the same underlying set of resources. c©2017 IEEE (reprinted with permission) Ab-
delBaky et al [5].

for experiment 5. The user was able to execute their workload across all resources available

in the environment, see Table 4.3a. The results of this experiment are shown in Figure 4.8.

We can observe in Figure 4.8a how the system uses as many resources as are available

across all infrastructure, releasing them when they are not needed anymore. Similarly, in

Figure 4.8b we can observe the throughput of the experiment over time. As we can see

it follows the resource allocation shown in Figure 4.8a. The throughput is defined as the

number of completed tasks per minute.
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(b) Throughput

Figure 4.8: Constraint programming evaluation: Experiment 4 – The provisioned resources
and task throughput for experiment 4. In this experiment, a workload composed of two
stages was executed on a virtual slice without constraints, hence using all available resources
in the global list. c©2017 SAGE Journals (reprinted with permission) AbdelBaky et al [2].

4.4.4.5 Experiment 5: Multiple Slices - Same Workload - Varying Resources

and Constraints

In this experiment, we use the same workload as in Experiment 4, i.e., a workflow with

two stages, where Stage one (S1) had 250 jobs, Stage two (S2) had 1500 jobs. In this

case, we consider two users that are going to use the infrastructure at the same time to

execute their workflows. Each user defines a different set of constraints, which results in two

different virtual slices from the same pool of underlying resources. Each slice was subject

to different constraints and consequently, the resource available in each slice changed over

time (independent of one another). The constraints defined for each slice are presented

in Table 4.4. Additionally, during execution, resource availabilities and properties were

changed to show how the system adapts both slices according to these changes. The results

of this experiment are shown in Figure 4.9.

Figures 4.9a, and 4.9b show the provisioned resources for virtual slices one and two,

respectively. In these figures, the colored area represents allocated resources, dashed area

represents unavailable resources (e.g. due to some constraint or resource unavailability), and

empty area represents the available resources that were not allocated. The graphs show that
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Table 4.4: Constraint programming evaluation: Constraints for each slice in Experiment 5.
c©2017 SAGE Journals (reprinted with permission) AbdelBaky et al [2].

(a) Virtual Slice 1

Time (min) Constraints

0 Start experiment with constraint (speedup ≥ 2.4)
10 Add resource class (chameleon large)
30 Change resource availability (chameleon medium off)
40 Change existing constraint (speedup ≥ 2.5)
45 Change resource properties

(AWS west large:speedup=2.3, cost=0.09)
50 Change resource availability (chameleon medium on)

(b) Virtual Slice 2

Time (min) Constraints

0 Start experiment with constraint (cost ≤ 0.1)
10 Remove resource (AWS west small)
30 Change resource availability (chameleon medium off)
40 Add another constraint (utilization ≤ 70)
45 Change resource properties

(AWS west large:speedup=2.3, cost=0.09)
50 Change resource availability (chameleon medium on)
55 Remove one constraint (utilization)

different blends of resources were provisioned upon availability. For example, the first vir-

tual slice did not include any resource classes from AWS West small, AWS East small, or

AWS East micro since their performance was lower than the required threshold. The results

also show that around minute 30 of the experiment, Chameleon medium became unavail-

able, hence both slices were affected and the AS rescheduled their workloads to adapt to that

event. Similarly, around minute 45 of the experiment, the properties of AWS West large

changed (cost and speed up) and two things happened: a) as its performance went down,

it became a nonviable option for slice one and hence it was removed from slice one; and b)

as its cost went down, it became a viable option for slice two and thus it was added to slice

two at the same time. Finally, Chameleon medium instances joined back both slices when

it became available again around minute 50. Figures 4.9c and 4.9d show the aggregated

job throughput per site over the course of the experiment for virtual slices one and two,
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(a) Virtual Slice 1 Resource Usage
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(b) Virtual Slice 2 Resource Usage
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(c) Virtual Slice 1 Throughput
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(d) Virtual Slice 2 Throughput

Figure 4.9: Constraint programming evaluation: Experiment 5 – The provisioned resources
and task throughput for each virtual slice. In this experiment, two identical workloads each
composed of two stages were executed concurrently using two different views of the same
underlying set of resources using different constraints (virtual slices 1 and 2). c©2017 SAGE
Journals (reprinted with permission) AbdelBaky et al [2].

respectively. The graphs show the workload (job throughput) adapted to the available re-

sources in both slices. We can observe that due to the constraints and events that occurred

during this experiment, the overall workload execution time was between 58 and 65 minutes

versus the 52 minutes that took in the experiment presented in Experiment 4, where we did

not have any constraints or events. This experiment demonstrates that our framework can

create different slices from the same underlying resources and control them independently.
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4.5 Summary

In this chapter, we presented the evaluation of the distributed software-defined environment

framework, which leverages a Rule Engine or Constraint Programming (CP) for resource

programming and description, and implements a two-step approach to space-time infras-

tructure service composition. The framework provides near real-time adjustments to the

environment in response to changing stimuli (e.g., changes in resource properties or availabil-

ities, or the rules or constraints regulating their use). The resulting amorphous ecosystem

is transparently exposed as a service to running applications. The ability to react and

adapt to changes in the underlying infrastructure while the application is running can re-

duce cost and/or the time-to-solution for workloads. We evaluated the rule-engine–based

approach using a synthetic bag of task applications and showed how the framework was able

to combine resources from multiple distributed sites based on user-driven rules. We used

simulations to evaluate the performance and correctness of the CP-based resource filtering

approach and compared it to a simple heuristic algorithm. We also evaluated the constraint-

programming–based approach using a cancer informatics workflow simulating a Gleason-

grading system for prostate pathology image analysis, which was packaged inside Docker

containers. We demonstrated the operation of our framework using resources from five dif-

ferent cloud providers that are composed based on user and resource provider constraints.

Further, we showed how our framework allows users to programmatically and dynamically

define multiple virtual slices of the same underlying resources, and adapt each slice over

time without interrupting application execution. Our results show that the framework can

adjust the environment based on application behavior (experiments 1 and 4), adapt the ap-

plication based on the available resources (experiment 2), and support multiple, separately

evolving, slices over the same set of resources to support different users and applications

(experiments 3 and 5). The result is a fully customizable and synthesized environment that

can automatically provision resources as it sees fit.

Finally, we demonstrated how our dSDE framework can enable the deployment and

orchestration of containers across a heterogeneous and geographically distributed infras-

tructure. The agile nature of container workloads coupled with their requirement for fast

deployment and adaption to changing environments made them a good candidate to test
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the usability and adaptability of our framework. Utilizing Docker did not only demonstrate

the flexibility and adaptability characteristics of our federation model, but it also posed a

breakthrough 9 towards generalizing the use of Linux containers, and Docker in particular,

in multi-cloud environments.
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Chapter 5

General Model and Quality of Service Quantification

5.1 Introduction

In order to effectively support application deployment in a dSDE, we need models and tools

that can evaluate application performance and Quality of Service of different compositions

(from the same pool of distributed heterogeneous services). Previous work focused on

modeling embarrassingly parallel applications with no data dependencies or data movement

requirements on distributed heterogeneous resources [70, 94, 110, 137, 145, 170]. However,

since a dSDE exhibits variation in space and time and emerging workflows are becoming

more dynamic and data-driven, the existing models do not apply anymore.

The goal of this work is to generalize the approach presented in Chapter 3 to include

other services besides compute (e.g., data storage, network, etc.). Moreover, we aim to

quantify the QoS of a dSDE as well as evaluate the impact of alternative compositions on

the application performance. This work aims to answer questions such as:

1. What is the expected SLA of the entire ecosystem based on the combined SLAs of

different services. For example, what are the minimum/maximum overall expected

application throughput or what is the estimated budget or deadline to run a certain

workflow given the current composition of services

2. What are the tradeoffs between different scheduling objectives (e.g., min comple-

tion time, min cost, min data transfer). For example, minimizing cost might reduce

throughput whereas minimizing completion time might increase data transfers or in-

crease cost.

3. Can we identify bottlenecks in the current composition. For example, do we need

more resources or more network bandwidth to increase the application throughput.



83

4. What to expect from the system if a QoS objective changes. For example, if we reduce

the budget, how would system adapt and how would the application performance

change.

Generating these metrics and tradeoffs for different scheduling techniques can assist

users with decisions in selecting the right composition. In the remainder of this chapter, we

present a general model for applications, workflows, and distributed infrastructure services

that include compute, data sources, storage, and network. We also present a model that can

be used to evaluate a dSDE QoS and application workflow performance on top of it. Finally,

we conclude this chapter by evaluating the estimated application workflow throughput and

comparing it to the results from the experimental evaluation in Chapter 4.

5.2 General Model

5.2.1 Application Model

We model an application using a directed weighted graph (see Figure 5.1), where each

node represents a single task and the edges represent the data flow among tasks. The

flow implicitly specifies the order of execution of these tasks. A task ti represents the

smallest granularity of work for which a resource can be allocated. An application can

be represented using a set of n tasks {t1, t2, . . . , tn}. Furthermore, for each task ti, we

characterize it using a minimum execution time Texec(ti)min and a maximum execution

time Texec(ti)max. Additionally, we also characterize each task by an input data size Din(ti)

and an output data size Dout(ti), where i = {1, 2, . . . , n}. Finally, the graph contains o

edges {e1, e2, . . . , eo} where the weight of each edge ej represents a value that we define

as the data weight Dweight(ej); which is the size of the input/output data between two

connected tasks Din/out(ej) relative to the total sum of input/output data sizes.

Dweight(ej) =
Din/out(ej)∑o
l=1Din/out(el)

, j = {1, 2, . . . , o} (5.1)

where

o∑
j=1

Dweight(ej) = 1
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Figure 5.1: An example of a directed weighted graph that represents an application. Nodes
represent tasks and edges represent data flow. The weight of an edge represents the in-
put/output data weight.

5.2.2 Workflow Model

A workflow can be represented using a set of m stages {St1, St2 . . . , Stm}, where each

stage Stk is represented by a set of nk tasks {Stk(t1), Stk(t2) . . . , Stk(tnk
)} (see Figures 5.2

and 5.3). Similarly, a workflow task Stk(ti) is characterized by a minimum execution

time Texec(Stk(ti))min, a maximum execution time Texec(Stk(ti))max, an input data size

Din(Stk(ti)), and an output data size Dout(Stk(ti)), where k = {1, 2, . . . ,m} and i =

{1, 2, . . . , nk}. The data weight is the same as in equation (5.1)

5.2.3 Infrastructure Model

In our model, we extend the definition for a distributed software-defined environment from

Section 3.2.2.2 to include other services besides compute (see Figure 5.4). In particular, we

define a dSDE as a set of x sites {S1, S2, . . . , Sx}. Each site is defined as a collection of

services in a single physical location or region (e.g., data center, cloud provider, or a single

zone within a cloud). We consider that any given site Si is composed of a set of yi resource

classes, where a resource class is defined as the aggregation of resources within such site

that share the same properties (e.g., Amazon EC2 m4.large instances, or a homogeneous

cluster). Table 5.1 presents resource class properties that we defined in our model. For
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Figure 5.2: An example of an ensemble application workflow, which is represented as a
directed weighted graph.

simplicity, the performance of a resource class is represented by the speedup, which can

be experimentally calculated as a function of the performance of a reference resource class

using various methods from application profiling [54] to benchmarking [44]. Moreover, we

also assume that inter-site and intra-site data transfer rates and costs are the same for each

resource class. While this assumption is not accurate (i.e., intra-site rates and costs are

usually a lot higher than inter-site ones), the procedure for modeling both types of data

transfer rates and costs is the same, and thus was omitted for simplicity.
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Figure 5.3: Another example based on a bioinformatics workflow [157], where each task in
Stage 1 generates multiple tasks in Stage 2.
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Figure 5.4: An example of a distributed software-defined environment based on the Comet-
Cloud framework [2,5,51,92]. Each site contains a collection of resource classes, where each
class represents a set of resources (e.g., compute or storage) with the same properties. Each
resource class is controlled using an Agent (A). Lines represent network services.
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Table 5.1: Resource Class Properties for a generalized distributed Software-Defined Envi-
ronment.

(a) Compute resource properties

Property Description

Capacity (cp) Number of instances (e.g. nodes, VMs) in a resource class

Compute cost (cc) Price per unit time for an instance of a resource class. We
assume the cost per instance includes both CPU and mem-
ory

Allocation (al) Number of compute units consumed per unit time for a
shared resource class

Performance (pf) Average performance of an instance of a resource class

Overhead (o) Time required to allocate an instance of a resource class

Security (sc) Whether a resource class is secure or not

(b) Data storage properties

Property Description

Data capacity (dcp) Maximum capacity in unit data size (e.g., GB) for a data
storage resource class

Data cost (dc) Price per unit data size (e.g., GB) for storing data in a data
storage resource class

Security (dsc) Whether a data storage resource class is secure or not

(c) Network resource properties

Property Description

Network bandwidth
(np)

Maximum data link transfer capacity in unit data size (e.g.,
GB) per unit time (e.g., second) for a network resource class

(d) Common properties

Property Description

In-data transfer cost
(dic)

The cost of incoming data transfer for a resource class

Out-data transfer cost
(doc)

The cost of outgoing data transfer for a resource class

In-data transfer rate
(ditr)

The speed of incoming data transfer for a resource class

Out-data transfer rate
(dotr)

The speed of outgoing data transfer for a resource class
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5.3 QoS Quantification

5.3.1 QoS Metrics

In our model, we define two types of QoS metrics: (1) application and scheduling inde-

pendent metrics, which represent some qualities of the dSDE that do not depend on any

application characteristics or scheduling techniques and (2) application and scheduling de-

pendent metrics, which depend on the current dSDE composition (i.e., current available

services in a virtual slice), the application workflow characteristics and workloads, the QoS

objectives, and the scheduling techniques. Some of these metrics represent the expected

peak performance, i.e., the upper bound, while others represent the minimum expected

performance, i.e., the lower bound, of a given composition.

1. Availability: measures the degree to which a resource class is accessible and opera-

tional.

2. Security: measures whether a resource class is secure or not.

3. Reliability and failure rate: measure the ability of a resource class to keep operating

with a specified level of performance over time.

4. Total compute cost: measures the total cost of using all available compute services

per unit time.

5. Average compute cost per instance: measures the average cost per compute service

per unit time.

6. Total allocation: measures the allocation cost of using all available allocation-based

resources per unit time.

7. Average allocation per instance: measures the average allocation cost per allocation-

based resource per unit time.

8. Total performance: measures the speedup of using all available resources. The speedup

is calculated by running benchmarks on all available resources and using a single

resource class as a reference point.
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9. Average performance up per instance: measures the average speedup of a resource.

10. Workflow time-to-completion: measures the time to finish executing a workflow using

the current dSDE.

11. Total workflow cost: measures the total cost of executing a workflow using the current

dSDE.

12. Average workflow cost: measures the average cost per unit time for executing a work-

flow using the current dSDE.

13. Throughput: measures the average task throughput per unit time using the current

dSDE.

5.3.2 QoS Objectives

Finally, we define some QoS objectives that can be used to drive the application scheduling.

1. MinRunningTime: aims to maximize application throughput by allocating jobs to

resources with the minimum estimated time of completion.

2. MinCost: aims to minimize cost by allocating jobs to resources with the cheapest

cost.

3. BudgetConstraint: finds a solution that minimizes the total execution time (i.e., crit-

ical path) while keeping cost within a given budget.

4. DeadlineCost: aims to complete the application execution within a given deadline

while minimizing cost.

5. DeadlineLocalityAware: aims to complete the application execution within a given

deadline while minimizing data transfer.
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5.3.3 QoS Model

In this section, we utilize the application workflow model defined in Section 5.2.2, the

infrastructure model defined in Section 5.2.3, and the MinRunningT ime QoS scheduling

objective to model the previously defined metrics. Given a dSDE composition with x sites,

where each site Si contains yi resource classes and i = {1, 2, . . . , x}, we define the following

QoS model.

Availability (AV). The availability of a single resource class can be obtained from a

resource provider’s SLA or calculated as follows. Let avij represent the ith site’s jth resource

class’s availability.

avij =
runtime

runtime+downtime
, where i = {1, 2, . . . , x} and j = {1, 2, . . . , yi}

Given the individual availability of a resource class, the following metrics can be defined

for the dSDE.

The availability of at least one resource class is:

max{avij}, where i = {1, 2, . . . , x} and j = {1, 2, . . . , yi}

The probability that all resource classes in a dSDE are available is:

Πx
i=1Π

yi
j=1avij

The probability that none of the resource classes in a dSDE are available is:

Πx
i=1Π

yi
j=1(1− avij)

The availability of the dSDE (AV ) is:

AV = 1− (Πx
i=1Π

yi
j=1(1− avij)) (5.2)
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Security (SC). The security of a single resource class can be defined as follows. Let scij

represent the ith site’s jth resource class’s security level. scij = 1 if the resource class is

secure, otherwise scij = 0. Consequently, the overall security level of the dSDE (SC) can

be defined as follows.

SC =

∑x
i=1

∑yi
j=1 scij∑x

i=1 yi
(5.3)

Reliability (R) and Failure Rate (FR). Let rij and frij represent the ith site’s jth

resource class’s reliability and failure rate respectively.

rij =
number of executed tasks

number of assigned tasks

frij =
number of failed tasks

time period

Consequently, the overall dSDE reliability (R) and failure rate (FR) can be defined as

follows.

R =
total number of executed tasks

total number of assigned tasks
(5.4)

FR =

x∑
i=1

yi∑
j=1

frij (5.5)

Total Compute Cost (TCC). Let ccij and cpij represent the ith site’s jth resource class’s

compute cost per unit time and capacity respectively. Then, the total cost per unit time of

the dSDE (TCC) is:

TCC =

x∑
i=1

yi∑
j=1

(ccij .cpij) (5.6)

Average Compute Cost (ACC). The average compute cost per instance per unit time

(ACC) is:

ACC =

∑x
i=1

∑yi
j=1(ccij .cpij)∑x

i=1

∑yi
j=1 cpij

(5.7)
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Total Allocation (TA). Let alij represent the ith site’s jth resource class’s allocation cost

per unit time. Then, the total allocation per unit time of the dSDE (TA) is:

TA =

x∑
i=1

yi∑
j=1

(alij .cpij) (5.8)

Average Allocation (AA). The average allocation cost per instance per unit time (AA)

is:

AA =

∑x
i=1

∑yi
j=1(alij .cpij)∑x

i=1

∑yi
j=1 cpij

(5.9)

Total Performance (TPF). Let pfij represent the ith site’s jth resource class’s perfor-

mance. Then, the total performance of the dSDE (TPF ) is:

TPF =

x∑
i=1

yi∑
j=1

(pfij .cpij) (5.10)

Average Performance (APF). The average performance per instance (APF ) is:

APF =

∑x
i=1

∑yi
j=1(alij .pfij)∑x

i=1

∑yi
j=1 cpij

(5.11)

Workflow time-to-completion. Given the workflow model defined in Section 5.2.2,

the overall workflow time-to-completion (WFTTC) is equal to the sum of the time-to-

completion (STTC) of all stages.

WFTTC =

m∑
k=1

STTC(Stk) (5.12)

For each stage, the scheduler generates the resource recipe containing the exact num-

ber/types of services to be provisioned within each site and the task placement within each

resource class. The scheduler generates this information based on the current available

services (i.e., in the virtual slice), the workflow stage characteristics (e.g., number of tasks

and data sizes), and the QoS objective defined for that stage (e.g., MinRunningTime). Let

x and yi represent the total number of sites and the total number of resource classes within

each site Si respectively.
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Let cpij , ditrij , and dotrij represent the ith site’s jth resource class’s compute capacity

(e.g., number of instances), in-data transfer rate, and out-data transfer rate respectively.

Let nkij represent tasks in the kth stage mapped to ith site’s jth resource class. Then,

the total time of execution for each stage is bound by the maximum time-to-completion

(RCTTC) of the slowest resource class.

STTC(Stk) = max{RCTTCij}

where k = {1, 2, . . . ,m}, i = {1, 2, . . . , x}, and j = {1, 2, . . . , yi}

Further, to calculate the time-to-completion for each resource class (RCTTCij), we first

calculate the time-to-completion (TTTCij) for each task (Stk(tl)) in the ith site’s jth re-

source class, which includes the time to transfer data to/from each instance (TDin and TDout),

and the minimum or maximum computation time (TCmin or TCmax).

TDin(Stk(tl)) =
Din(Stk(tl))

ditrij

TDout(Stk(tl)) =
Dout(Stk(tl))

dotrij

TC(Stk(tl))min =
Texec(Stk(tl))min

pfij

TC(Stk(tl))max =
Texec(Stk(tl))max

pfij

TTTCij(Stk(tl))min = TDin(Stk(tl)) + TDout(Stk(tl)) + TC(Stk(tl))min

TTTCij(Stk(tl))max = TDin(Stk(tl)) + TDout(Stk(tl)) + TC(Stk(tl))max

where i = {1, 2, . . . , x}, j = {1, 2, . . . , yi}, k = {1, 2, . . . ,m}, and l = {1, 2, . . . , nkij}
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The time-to-completion for each resource class (RCTTCij) includes the overhead (o)

for allocating instances of that type and the minimum or maximum time-to-completion for

all tasks (TTTCij). Given that some tasks are executed in parallel (based on the capacity

of each resource class), then the upper and lower bounds for the overall time-to-completion

for each resource class (RCTTCij) can be calculated as follows.

Upper bound for RCTTCij = oij +
max{TTTCij(Stk(tl))max} ∗ nkij

cpij
(5.13)

Lower bound for RCTTCij = oij +
min{TTTCij(Stk(tl))min} ∗ nkij

cpij
(5.14)

where i = {1, 2, . . . , x}, j = {1, 2, . . . , yi}, k = {1, 2, . . . ,m}, and l = {1, 2, . . . , nkij}

Total workflow cost. The total workflow cost (TWFC) can be estimated using the

time-to-completion for each resource class (RCTTCij).

TFWC =

∑m
k=1

∑x
i=1

∑yi
j=1(RCTTCij ∗ cpij ∗ (ccij |alij))

unit time
+∑m

k=1

∑nkij

l=1 Din(Stk(tl))

dicij
+

∑m
k=1

∑nkij

l=1 Dout(Stk(tl))

docij
(5.15)

Average workflow cost. The average workflow cost (AWFC) can be calculated as

follows.

AFWC =
TWFC

unit time
(5.16)

Throughput. The workflow throughput per stage (WFTS) and the overall workflow

throughput (WFT ) can be calculated as follows.

WFTSk =
nk

STTC(Stk)
where nk is the number of tasks in stage k and k = {1, 2, . . . ,m}

(5.17)
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WFT =
n

WFTTC
where n is the total number of tasks in a workflow (5.18)

5.4 Evaluation and Summary

We evaluated the QoS model by calculating the minimum and maximum estimated through-

put using the defined model and compare the results to the actual throughput measured in

Section 4.4.4.5. The results are shown in Figure 5.5. The results show that experimental

throughput was within the bounds estimated by the QoS model.
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Figure 5.5: The evaluation of the QoS model. The red line shows the estimated minimum
throughput and the blue line shows the estimated maximum throughput using the defined
QoS model. The results are compared to the actual run from Experiment 5 in Section 4.4.4.5
shown in the black line.

In this chapter, we presented a generalized model for a distributed Software-Defined

Environment that includes other services such as storage or network. We also presented

a QoS quantification model for the dSDE, which can be used to estimate the application

performance at any given time based on available services. The model takes in consideration

the SLAs of individual services and uses it to estimate the overall SLA of the dSDE. Further,

this model can be used to calculate the tradeoffs between different scheduling techniques,
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which can generate different compositions from the underlying pool of services based on

multiple factors (e.g., current resource availabilities, application workload, QoS objectives,

etc.). The evaluation of these tradeoffs can then facilitate user’s decision when considering

application deployment.
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Chapter 6

Conclusion

6.1 Summary

Service-based access models can support emerging dynamic and data-driven applications

and workflows. However, this requires rethinking traditional federation models to support

dynamic (and opportunistic) service compositions, which can adapt to evolving application

needs and the state of the underlying infrastructure. In this dissertation, we presented

a programmable dynamic service composition approach that uses software-defined envi-

ronment concepts and implements a two-step approach to space-time service composition.

This approach takes into consideration the interface, access, and usage rights of different

resources, and provides an ad-hoc federation model. The resulting distributed software-

defined environment autonomously evolves in near real-time over the application lifecycle

in response to changing stimuli (e.g., changes in resource properties or availabilities, or the

rules/constraints regulating their use). The framework automates this process, which is

transparent to the applications running on the dSDE, i.e., without any loss of progress or

a need to restart the application.

Moreover, we presented and compared two different approaches for programming re-

sources and controlling the environment, one that is based on a rule engine and another

that leverages constraint programming. We compared the tradeoffs of both approaches

and showed how they can be used to create multiple views of heterogeneous and geograph-

ically distributed services. These views contain dynamically aggregated services, which

evolves based on user and resource provider specifications. We also presented the design

and implementation of the dSDE and demonstrated its operation using simulations and real

experiments running a representative scientific workflow across multiple distributed infras-

tructure. The workflow was encapsulated using Docker containers to facilitate deployment
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in a heterogeneous environment.

Our results show that the framework can adjust the composed services based on appli-

cation behavior and available resources. Further, the ability to react and adapt to changes

in the underlying infrastructure while the application is running can reduce cost and/or the

time-to-solution for workloads. Finally, we presented a general mathematical model that

includes additional services such as storage and network, which can be used to assist users’

decision. Using this model, we provided upper and lower bounds on the expected SLA and

QoS of the dSDE and the tradeoffs between different scheduling techniques.

6.2 Broader Impact

A distributed software-defined environment can efficiently serve the needs of dynamic and

data-driven applications ranging from large-scale science and engineering to pervasive com-

puting over distributed data sources. We foresee that a distributed software-defined environ-

ment can improve resource management and usage by simplifying how services (compute,

data, and networking) are federated and customized. For example, a dSDE can provide

the large scale required for emerging science and engineering applications [1, 7, 158]. It can

also support business applications and prevent vendor lock-in by allowing users to cloud

burst their applications while taking advantage of different services and price points from

multiple cloud providers [4]. A dSDE can also allow users to easily define the distribution

of different workloads across multiple resources or allow resource providers to easily control

what resources are available to users [2].

More importantly, this work enables the composition of distributed services based on

application runtime behavior [3, 5, 6, 50], for example, by composing different types of re-

sources based on different stages of a workflow or based on application results that cannot

be determined beforehand. Furthermore, this work can support emerging data-driven ap-

plications in CDS&E and IoT [51, 120] by allocating resources along the data path [121]

or enabling new scenarios such as (1) follow the sun: a time-based service composition –

where resources can be composed following the sun/time of day; (2) follow the user: a

location-based service composition – where resources can be dynamically provisioned to

remain within a certain proximity of a moving user (e.g., a mobile user); and (3) follow
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the data: a data-based service composition – where resources can be provisioned based on

proximity to data sources/sinks.

6.3 Future Work

Analogous to how clouds revolutionized the way we acquire and use IT resources, we en-

vision distributed software-defined environments as a game changer in the way federations

can be built, especially, if we combine it with other approaches such as software-defined net-

works to customize and optimize the communication channels. This is especially important

for upcoming infrastructure models where non-trivial computational power and ubiquitous

data require novel abstractions to enable complex trade-offs, including data movement,

performance, energy efficiency, and failures.

While this dissertation provides a framework for the dynamic and on-demand composi-

tion of services, more work is required to support emerging data-driven applications. For

example, one must find near-optimal solutions for composing services when the behaviors

of both the infrastructure and the workloads are highly volatile. In particular, can we dy-

namically adapt applications in cases where resources are limited? Can we anticipate the

application workload or the future state of the underlying ecosystem? Can we use this in-

formation to optimize different objectives (e.g., maintain data locality, real-time processing,

or minimize cost)? The research presented in this dissertation can be expanded in several

areas to answer these questions.

1. Programming Models. Existing programming models and systems for parallel and

distributed computing must be extended and redesigned to address the dynamic adap-

tation and uncertainty of the underlying infrastructure. This will allow information-

driven applications to detect and adapt to changes in both, the state of the execution

environment and the state and requirements of the application. Specifically, abstrac-

tions and mechanisms are required to enable the specification (often imprecise or

fuzzy) of components adaptations and interactions, and knowledge-driven dynamic

compositions, implementations, and deployments. As in any real ecosystem, behav-

iors and resource usage of all components have to be mutually balanced in order to
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obtain a stable and sustainable level of system operation.

2. Application-driven QoS and Malleability. We envision domain-driven platforms,

where scientists and end-users define their QoS requirements in terms of science or

domain-specific metrics. In particular, users can define different configurable param-

eters in their workflows and the expected results. For example, there may exist some

operations that have certain degrees of freedom in a workflow or they may potentially

use different methods with a similar outcome. In such cases, a user can define different

levels of accepted QoS for the solution, e.g., accuracy, error margins, etc., together

with other requirements such as budget or deadline. Consequently, we can enable an

organic platform that considers all the variables or “knobs” offered by the application

and troes to allocate the workload in the best possible way by initiating a bidirectional

negotiation between the workflow management framework and the underlying execu-

tion environment. In this way, not only the execution environment can adapt to meet

application needs, but applications can also adapt by modifying previously defined

“knobs” to facilitate finding a solution that is feasible given the currently available

services in the environment.

3. Machine-Learning–Based Optimization. We can use Machine Learning (ML)

techniques to predict the behaviors of applications and underlying services, which can

then be used to optimize the service composition and workload placement. In partic-

ular, we can model the applications’ behavior (e.g., workload size, data requirements,

data locations, data generation/access patterns) and the expected behavior of differ-

ent services (e.g., properties, availabilities, SLA guarantees). This can be achieved

by using historical information (e.g., resource metrics, application traces) to develop

statistical Machine Learning models. The ML–based predictions can then be used to

dynamically configure the computing fabric available to data-driven applications, for

example, by allocating more services, pre-fetching data, etc.
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