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ABSTRACT OF THE DISSERTATION

Property Testing, PCPs and CSPs

by Amey Bhangale

Dissertation Director: Swastik Kopparty

Many optimization problems can be modeled as constraint satisfaction problems

(CSPs). Hence understanding the complexity of solving or approximating CSPs is a

fundamental problem in computer science. The famous PCP (probabilistically checkable

proof) Theorem states that certain CSPs are hard to approximate within a constant

factor. In the language of proof verification, the theorem implies that a proof of a

mathematical statement can be written in a specific format such that it allows an

sublinear time verification of the proof. Thus, property testing procedures are central

to PCPs, and in fact the proof of the PCP theorem involves many interesting property

testing algorithms.

Some of the highlights of this dissertation include the following results:

1. Low degree testing is one of the important components in the proof of the PCP

theorem and Dictatorship testing is central in proving hardness of approximation

results. This thesis presents a Cube vs Cube low degree test which has significantly

better parameters than the previously known tests. We also improve on the

soundness of k-bit dictatorship test with perfect completeness.

2. In the area of inapproximability, this thesis offers a complete characterization

of approximating the covering number of a CSP, assuming a covering variant of

ii



Unique Games Conjecture. We also prove tight inapproximability results for

Bi-Covering problem.

3. This thesis studies CSPs from a multi-objective point of view. We give almost

optimal approximation algorithms for multi-objective Max-CSP (simultaneous

CSPs), and also prove inapproximability results.
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Chapter 1

Introduction

The theory of NP-completeness deals with solving a problem exactly in the worst

case. Many optimization problems are NP-hard which means these problems can be

solved efficiently unless P = NP. In order to get around this barrier, one can hope that

the instances we actually need to solve in practice are not the worst case instances or

one can hope to design a sub-optimal algorithm. The later means even if we cannot

find the exact solution efficiently, we can hope to find an approximate solution effi-

ciently. In this dissertation, we are interested in designing approximation algorithms

as well as understanding the limitations of such approximation algorithms. It turns

out that different optimization problems behave differently with respect to admitting

approximation algorithms.

For a maximization problem, a c approximation algorithm has a guarantee that for

every instance I the algorithm guarantees to find a solution of cost at least 1/c times

the optimal value. Some problems admit PTAS which means that there is an efficient

(1 + ε)-approximation algorithm for every ε > 0 where as for other problems we only

know approximation algorithm for some constant c > 1. In the extreme case, there

are problems where the approximation guarantee degrades with the size of an instance.

Given such erratic behavior of a wide class of optimization problems, it is natural to

study this behavior from a systematic theory point of view.

In order to prove inapproximability of certain optimization problem P, one way is to

reduce a canonical NP-complete problem like SAT to a gap version of the maximization

problem. A (c, s)- gap version of the problem P is a promise problem where the task is to

distinguish between the cases when OPT (I) ≥ c vs OPT (I) ≤ s, where c ≥ s. Suppose
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there is a reduction form SAT to (c, s) gap version of problem P then this implies that

P is hard to approximate within a factor of c/s unless SAT can be efficiently solvable.

1.1 Constraint Satisfaction Problems

Constraint satisfaction Problems (CSP) are the most basic class of problems in NP. It

consists of a set of variables X = {x1, x2, . . . , xn} taking values from some domain Σ

and a set of constraints C = {C1, C2, . . . , Cm} on the set of variables. The constraints

Ci’s are typically local in the sense that it only involves small set of variables, mostly

constant independent of n. The task is to decide if there exists an assignment f : X → Σ

which satisfies all the constraints from C. Max-CSP is an optimization variant of CSP

where one wants to find an assignment f which satisfies as many constraint as possible.

We give a couple of examples of CSP which we study.

• Max-3-Sat: In Max-3-Sat the constraints are of the type li ∨ lj ∨ lk where

li, lj , lk are the literals.

• Max-CUT: Given an undirected graph G(V,E) find a partition (U,U) of V such

that it maximizes the fraction of edges with one endpoint in U and the other in U .

Although modeled as a graph optimization problem, it is easy to see Max-CUT

falls inside a class of Max-CSP where the constraints are of the type xi ⊕ xj .

The theory of approximation algorithms for constraint satisfaction problems is a very

central and well developed part of modern theoretical computer science. Its study has

involved fundamental theorems, ideas, and problems such as the PCP theorem, linear

and semidefinite programming, randomized rounding, the Unique Games Conjecture,

and deep connections between them [AS98, ALM+98, GW95, Kho02a, Rag08, RS09].

We study CSPs from multi-objective point of view which is a significant part of this

dissertation.
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1.2 Probabilistically Checkable Proofs

The NP-completeness theory of [Coo71, Lev73, Kar72] gives a way of reducing a generic

language L in NP to 3-Sat with two guarantees: If the given instance x is in the

language then the reduced 3-Sat instance φx is satisfiable and if it is not in the language

then φx is not satisfiable. Thus, if P 6= NP, there is no efficient algorithm to decide

if a given 3-Sat instance is satisfiable or not. This is useful since we now know one

natural problem which is hard to solve exactly and can be used to show hardness of

other optimization problems.

Although, this helps in settling the complexity of exactly solving certain optimiza-

tion problems, it turns out that in order to get a better inapproximability result we

need a robust characterization of the class NP which is provided by Probabilistically

Checkable Proofs [AS98, ALM+98]. Using the PCP Theorem, the above reduction can

be made stronger in the following sense: when x ∈ L then φx is satisfiable whereas if

x /∈ L then no assignment satisfies more than 1 − ε fraction of the clauses in φx for

some ε > 0. This immediately rules out a PTAS for Max-3-Sat.

The modern study of inapproximability soon followed after the discovery of the PCP

theorem. In fact, Fiege et al. [FGL+96] showed that a robust characterization of NP

can be used to show inapproximability of Independent Set problem before the PCP

theorem was proved. After the PCP Theorem was proved, many inapproximability

results were proved for different optimization problems.

One of the important component in proving the PCP theorem is so called Low

Degree Test. This dissertation offers a cube vs cube low degree test with arguably

much simpler proof than the known proofs of low degree tests.

1.2.1 Label Cover

One of the important developments in proving the inapproximability results is formulat-

ing a problem called Label Cover, also known as 2-Prover-1-Round Game, and the use of

Long code test as a gadget in the reduction. An instance G = (U, V,E, [L], [R], {πe}e∈E)

of the Label-Cover constraint satisfaction problem consists of a bi-regular bipartite
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graph (U, V,E), two sets of alphabets [L] and [R] and a projection map πe : [R]→ [L]

for every edge e ∈ E. Given a labeling ` : U → [L], ` : V → [R], an edge e = (u, v) is

said to be satisfied by ` if πe(`(v)) = `(u).

The PCP Theorem is equivalent to the following inapproximability of Label-Cover.

Theorem 1.2.1. There exists a constant c < 1 such that given an instance of Label-

Cover, it is NP-hard to distinguish between two cases

• There exists an assignment satisfying all the edges.

• No assignment satisfies more than c fraction of constraints.

We can think of a Label-Cover instance G = (U, V,E, L,R, {πe}e∈E) as a 2-

Prover-1-Round Game where prover 1 assigns labels from [L] to U and prover 2 assigns

labels from [R] to V . The verifier picks an edge e(u, v) ∈ E uniformly at random and

asks prover 1 a label for vertex u and prover 2 a label for vertex v. The verifier accepts

if the labels returned by the two provers satisfy the constraint on e. The strategies of

two provers corresponds to the labelings `1 : U → [L], `2 : V → [R]. The value of the

game is the maximum over all the provers strategies the probability that the verifier

accepts. It is easy to see that if G is δ satisfiable then the value of the game is at least

δ and vice versa. Thus, these two views are equivalent.

As a consequence of the PCP Theorem, one can characterize the class NP in the

language of proof checking. Recall that NP is a class of languages for which if a given

input is in the language then there is a short proof such that given the proof it can be

verified in polynomial time. Apriori, the verifier might need to read the entire proof to

make its decision. The proof checking veiwpoint of the PCP Theorem states that there

is a way of writing a short proof such that it can be verified by looking at only constant

number of bits with an expense that the verifier makes an error with tiny probability.

This way of interpreting the PCP Theorem has proven many applications.

1.2.2 Parallel Repetition Theorem

It turns out that approximating the value of a Label-Cover instance is much more

harder than implied by the PCP theorem. This follows from the Parallel Repetition
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theorem. Consider any 2-Prover 1-Round game. Suppose we repeat the game sequen-

tially k times and let the provers win if they win every single round. It is easy to

see that if there exists a strategy for the original game that makes verifier accept with

probability 1 then the prover can make the verifier accept with probability 1 in the

repeated game. What happens to the value of the repeated game if the value of original

game is 1 − δ. In this case also it is trivial to see the the value of repeated game is

(1− δ)k: this follows because each round was independent of the previous rounds and

the probability od winning a single round is at most (1 − δ). But the final repeated

game is no longer a one-round game and because of the connection between the PCP

Theorem and 2-Prover 1-Round game this sequentially repeated game is not useful.

How can we make the game one-round? This is where parallel repetition comes

into picture. Suppose instead of asking questions sequentially, the verifier samples k

questions from the original game and asks the two provers to reply to the k questions

simultaneously. By doing this we are preserving the one-round nature of the game. In

this case also, it is easy to see that if the value of original game is 1 then the value of

parallel repeated game is also 1. It was not clear how fast the value of repeated game

decays if the value of original game is less than 1. This is because the provers can cor-

related there strategies based on the sequence of k questions the receive. This question

was answered by Raz [Raz98] and showed that the value does go down exponentially.

This along with the PCP Theorem gives an improved hardness of approximating the

value of label cover i.e for every constant ε > 0, even if there exists an assignment which

satisfies all the edges, it is NP-hard to find an assignment which satisfies more than ε

fraction of the edges.

Theorem 1.2.2 (PCP Theorem + Raz’s Parallel Repetition Theorem). For every ε > 0

there exists R,L ∈ N+ such that given an instance G = (U, V,E, [L], [R], {πe}e∈E) of

Label-Cover, it is NP-hard to distinguish between two cases

• There exists an assignment satisfying all the edges.

• No assignment satisfies more than ε fraction of constraints.
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Another way of stating this theorem is (1, ε)-gap version of Label-Cover is NP-

hard for every ε > 0.

1.2.3 Long Code Test

This inapproximability of Label-Cover is starting point of many inapproximability

results that followed. Suppose one wants to reduce the (1, ε)-gap version of Label-

Cover to a gap version of some maximization problem. The reduction involves replac-

ing each vertex u ∈ U (v ∈ V ) of the Label-Cover instance by a boolean hypercube

of dimension L (R) . The labels to the vertices of the Label-Cover instance is iden-

tified by the dimension of the boolean hypercube. Then one can encode a label of a

vertex by defining a boolean function on the hypercube associated with the vertex. A

very wasteful way of encoding a label is by defining a function fu : {0, 1}L → {0, 1} as

fu(x1, x2, . . . , xL) = xi where i corresponds to the label of vertex u. Such an encoding

is called a Long Code encoding and the class of such functions are called dictator func-

tions. The reduction then involves using the vertices of boolean hypercubes as variables

to the maximization (or minimization) problem.

If such a reduction to work, one needs a testing procedure to check if the encoded

function is a dictator function or far from a dictator function. More specifically, if there

is a testing procedure that accepts any dictator function with probability at least c and

accepts any function far from a dictator function with probability at most s, then such

procedures can be used to show the hardness of (c, s) gap version of the problem. Of

course, the testing procedure and the number of queries decide the target hard problem.

Dictatorship tests/long-code tests were introduced into hardness of approximation by

the work of Bellare,Goldreich, and Sudan [BGS98].

H̊astad in his influential work started the use of Fourier Analysis in analyzing such

reductions starting from Label-Cover. In [H̊as01], H̊astad settled the the inapprox-

imability of many constraint satisfaction problems. More specifically, he showed that

approximating Max-3-Sat better than a trivial 7/8 approximation is NP-hard even

if the instance is satisfiable. Note that getting 7/8 approximation for Max-3-Sat is

trivial because if one picks a random assignment, then the probability that a given
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clause is satisfied is exactly 7/8. Thus, in expectation a random assignment satisfies

7/8 fraction of clauses. He also showed optimal inapproximability of many other CSPs

including Max-3-Lin.

1.3 Unique Games Conjecture

As discussed above, the inapproximability of Label-Cover is used to prove many

inapproximability results. Although, there was a lot of success in proving hardness

results, the complexity of approximating many NP-hard problems remained elusive.

For many optimization problems, including Vertex Cover, Max-CUT etc. there was a

large gap between the known approximation algorithms and inapproximability results.

Khot’s insight [Kho02a] was to modify the type of constraints in the Label-Cover

problem. The (1, ε)-gap version of Label-Cover implied by the PCP Theorem and

Parallel Repetition Theorem has “many-to-one” constraints associated with every edge.

This many-to-one requirement of the constraints created a problem in reducing the

Label-Cover to a target problem where the constraints are between pair of variables

as in the case of Max-CUT, Vertex Cover etc. as well as for other optimization

problems. Khot realized that if one makes the constraints of Label-Cover one-to-one

by still preserving the gap then this is useful in proving many inapproximability results

which were not known otherwise. Label-Cover instance with one-to-one constraints

is called Unique Game because of the nature of the constraints - for any edge (u, v)

of a label for vertex u is fixed then there is a unique label for v which satisfies the

constraint. This one-to-one constraint has a drawback in the if the Unique-Games

instance is satisfiable then there is a simple polynomial time algorithm which can find

the satisfying assignment. Thus, one cannot expect a hardness of (1, ε)-gap of Unique-

Games for any ε ∈ [0, 1]. Nevertheless, it is not clear how to find an optimal assignment

if the instance is almost satisfiable. Khot conjectured that (1 − ε, ε)-gap problem of

Unique-Games is NP-hard.

Conjecture 1.3.1 ([Kho02a]). (Unique Games Conjecture) For every ε > 0 there
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exists L ∈ N+ such that given an instance G = (U, V,E, [L], [L], {πe}e∈E) of Unique-

Games, it is NP-hard to distinguish between two cases

• There exists an assignment satisfying at least (1− ε) fraction of the constraints.

• No assignment satisfies more than ε fraction of the constraints.

In this dissertation, we explored implications of Unique Games Conjecture or

certain variant of it to give tight results for covering CSPs, Bi-covering and Max-Bi-

Clique. These are explained in Section 1.4.

1.4 Brief Summary of Results

In this section, we present the brief summer of contribution of this dissertation. It is

mainly divided into three parts : PCPs, CSPs and Property testing.

Part I : PCPs

Parallel repetition theorem: The parallel repetition theorem was first proven by

Raz [Raz98]. Many simpler proofs of the theorem came later. Moshkovitz gave a

much simpler proof of the parallel repetition theorem restricted to certain instances

which is enough for its application to hardness of approximation. Moshkovitz showed

that the theorem follows quite easily if the original instance satisfies certain property,

called fortification. Building upon the work of Moshkovitz [Mos14], we give a very

simple combinatorial proof of the parallel repetition theorem in [BSVV15]. With my

co-authors in [BSVV15], we gave a construction of how to convert any instance into

fortified one which is much easier to analyze. We crucially use the expansion of a graph

to argue about the required fortification guarantee.

Bi-covering: Given an undirected connected graph G(V,E) Bi-covering is a problem

of finding to sets A,B ⊆ V such that A ∪ B = V and there are no edges between

A \ B and B \ A. The objective is to minimize max{|A|, |B|}. This problem has a

trivial 2-approximation as A = B = V is always a feasible solution. In [BGH+16], we

show that assuming the UGC where the constraint graph has some mild expansion,
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2-approximation is the best possible in polynomial time. An important implication

of this hardness result is that this implies inapproximability of a well-know problem

called Max-Bi-Clique which is problem of finding largest k × k Bi-Clique in an n × n

bipartite graph. The above hardness result implies that it is NP-hard to approximate

Max-Bi-Clique within nδ for some δ > 0 under the same assumption.

Part II : CSPs

Simultaneous CSPs: Multiobjective optimization is an area of optimizing over more

than one objective function where all the objective functions share the same solution

space. It has been used in many areas including engineering, data mining, machine

learning etc. We initiated a study of the most fundamental multi-objective optimization

where each objective function is a certain Max-CSP instance. More formally, we study

the following problem : Given k instances of Max-CSP over variables x1, x2, . . . , xn,

find an assignment x which maximizes mini∈k val(i,x) where val(i,x) is the fraction

of the satisfied constraints in the ith instance.

In a joint work with Kopparty and Sachdeva [BKS15], we explored this class of mul-

tiobjective optimization, which we call simultaneous CSPs. We gave a constant factor

approximation algorithm for every CSP as long as the number of instances is bounded.

We also show that if the number of instances is more than poly(log n) then assuming

ETH there is no constant factor approximation to simultaneous CSPs. In a follow-up

work with Khot, Kopparty, Sachdeva and Thiruvenkatachari [BKK+16], we improve

the approximation ratio of simultaneous Max-CUT problem from 1/2 to very close to

αGW - an optimal approximation ratio for Max-CUT problem assuming the Unique

Games Conjecture. This improved algorithm uses Sum-of-Squares hierarchies, a

systematic way of tightening semi-definite program relaxation by adding a sequence of

inequalities.

Covering CSPs: The covering number of an instance of a CSP is the minimum num-

ber of assignments needed such that for every constraint there is at least one assignment

in the collection which satisfies the constraint. This problem is closely related to the



10

chormatic number of hypergraph. In [BHV15], we study the computational complexity

of approximating the covering number. It was first studied by Dinur and Kol [DK13]

where they showed that assuming a covering variant of the Unique Games Conjec-

ture (UGC), for a small class of predicates, it is NP-hard to approximate the covering

number within any constant. We completely settled the computational complexity of

approximating the covering number of a given predicate. More specifically, we gave

a simple and complete characterization of when the covering number is hard to ap-

proximate within any large constant under the same assumption. We also give partial

characterization based on P 6= NP for a class of predicates by proving an invariance

principle tailored to our setting.

Part III : Property Testing

Low degree Test: One of the main components in proving the PCP theorem is so

called low degree test - checking if a given function f : Fm
q → Fq is a low degree

function or far from it. To reduce the number of queries, a tester can have access to

more information, for instance, the tester can request supposedly restriction of f to any

line/plane in Fm
q .

Towards getting a better PCPs in terms of the number of bits accessed vs the

success guarantee, one needs a low degree test such that even if the test accepts with

tiny probability, the function must be close to a low degree function. To this end, Arora-

Sudan[AS98] analysed line-vs-line test which queries the lines table at two intersecting

line, selected u.a.r. and checks the consistency at the intersection point. The analysis of

line-vs-line test is much more algebraic and involved. Instead of analyzing line-vs-line

test, Raz-Safra[RS96] gave an analogous plane-vs-plane test and gave a combinatorial

proof of the low degree test. Although Raz-Safra proof is simpler, they need to do

induction on the dimension of the ambient space and and hence the argument gets

slightly involved. In my work with Dinur and Livni [BDL17], we gave an analysis

of cube-vs-cube test which not only simplifies the overall analysis but also improves

the soundness parameter compared to all the previously known low degree tests. More

specifically, we show that if the cube-vs-cube test accepts with probability ε = Ω(d4/
√
q)
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then the function f must be Ω(ε)-close to a degree d function.

Dictatorship Test: A Boolean function f : {0, 1}n → {0, 1} is called a dictator if

it depends on exactly one variable. Given a Boolean function, dictatorship test is a

randomized test which queries a function at a few locations and based on it decides

weather a function is a dictator or far from it. Suppose we want the test to have perfect

completeness meaning that the test should never make an error if a given function is

a dictator. Furthermore, we restrict the tester to query only k locations. What can

we say about the success guarantee if f is far from dictator. Since dictatorship test is

prevalent in proving inapproximability results based on Label Cover hardness or Unique

Games Conjecture, the central question is - if a given function is far from any dictator,

how small we can make the error probability of the tester under these restrictions.

In a joint work with Khot and Thiruvenkatachari [BKT16], we improve the previ-

ously known bound. We give a randomized test which queries f at k locations and has

following two guarantees: If f is a dictator then the tester accepts with probability 1. If

f is ε-far from dictator (for appropriate notion of farness) then the tester accepts with

probability at most 2k+1
2k

+ O(ε). The previous work required the queried bits to sat-

isfy pairwise independence condition and hence couldn’t reach to 2k+1
2k

soundness. We

design a test which lacks pairwise independence condition but still proves the required

soundness guarantee.

1.5 Organization

We start with some preliminaries in Chapter 2. The first three chapters present results

about inapproximability and Parallel Repetition theorem. We describe the result on

Covering CSPs in Chapter 3. In Chapter 4, we prove the parallel repetition theorem for

certain class of games. This is followed by Chapter 5 proving inapproximability of Bi-

Covering. The next two chapters are related to Property Testing. In Chapter 6, we

prove Cube vs Cube Low degree test which then followed by Chapter 7 about improved

dictatorship test. Finally, the last couple of chapters study simultaneous CSPs. In

Chapter 8, we present a constant factor approximation algorithm for all simultaneous
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CPSs. In Chapter 9, we give an improved approximation algorithm for simultaneous

Max-CUT.
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Chapter 2

Preliminaries

In this chapter, we describe some preliminaries.

2.1 Analysis of Boolean Functions

For a function f : {0, 1}n → R, the Fourier decomposition of f is given by

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x),

where χα(x) := (−1)
∑n
i=1 αi·xi and f̂(α) := Ex∈{0,1}n f(x)χα(x). We will use α, also

to denote the subset of [n] for which it is the characteristic vector. Let ‖f‖2 :=

Ex∈{0,1}n [f(x)2]1/2 and ‖f‖∞ := maxx∈{0,1}n |f(x)| .

The Efron-Stein decomposition is a generalization of the Fourier decomposition to

product distributions of arbitrary probability spaces.

Definition 2.1.1. Let (Ω, µ) be a probability space and (Ωn, µ⊗n) be the corresponding

product space. For a function f : Ωn → R, the Efron-Stein decomposition of f with

respect to the product space is given by

f(x1, · · · , xn) =
∑
β⊆[n]

fβ(x),

where fβ depends only on xi for i ∈ β and for all β′ 6⊇ β, a ∈ Ωβ′, Ex∈µ⊗n
[
fβ(x) | xβ′ = a

]
=

0.

Claim 2.1.2 (Parseval’s Theorem). For any f : {0, 1}n → R,

〈f, f〉 = E
x∈{0,1}n

[f(x)] =
∑
α⊆[n]

f̂(α)2,

In particular, if f takes values in {−1, 1} then
∑

α⊆[n] f̂(α)2 = 1.
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We define the influence of ith variable as follows:

Definition 2.1.3. For i ∈ [n], the influence of the ith coordinate on f is defined as

follows.

Infi[f ] := E
x1,··· ,xi−1,xi+1,··· ,xn

Varxi [f(x1, · · · , xn)] =
∑
β:i∈β

‖fβ‖22.

For an integer d, the degree d influence is defined as

Inf≤di [f ] :=
∑

β:i∈β,|β|≤d

‖fβ‖22.

When f is a function from Boolean hypercube to reals, then under the uniform distri-

bution, the ith influence is equal to
∑

α:i∈α f̂(α)2.

It is easy to see that for Boolean functions, the sum of all the degree d influences is

at most d. We prove this fact.

Claim 2.1.4. For all f : {0, 1}n → {0, 1},
∑

i Inf≤di [f ] ≤ d.

Proof.

∑
i

Inf≤di [f ] =
∑
i

∑
α⊆[n],|α|≤d,i∈α

f̂(α)2

=
∑

α⊆[n],|α|≤d

|α|f̂(α)2

≤ d
∑

α⊆[n],|α|≤d

f̂(α)2 ≤ d,

where the last inequality uses Parseval’s Identity and the fact that 〈f, f〉 ≤ 1.

A dictator is a function which depends on one variable. Thus, the degree 1 influence

of any dictator function is 1 for some i ∈ [n]. We call a function far from any dictator

if for every i ∈ [n], the degree d influence is very small for some small d. This motivates

the following definition.

Definition 2.1.5 ((d, τ)-quasirandom function). A multilinear function f : Rn → R is

said to be (d, τ)-quasirandom if for every i ∈ [n] it holds that

∑
i∈α⊆[n],|α|≤d

f̂(α)2 ≤ τ
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We recall the Bonami-Beckner operator on Boolean functions.

Definition 2.1.6. For γ ∈ [0, 1], the Bonami-Beckner operator T1−γ is a linear operator

mapping functions f : {0, 1}n → R to functions T1−γf : {0, 1}n → R as T1−γf(x) =

Ey[f(y)] where y is sampled by setting yi = xi with probability 1 − γ and yi to be

uniformly random bit with probability γ for each i ∈ [n] independently. Let us denote

the distribution of y given x as N1−γ(x).

We have the following relation between the Fourier decomposition of T1−γf and f .

Fact 2.1.7. T1−γf =
∑

α⊆[n](1− γ)|α|f̂(α)χα.

Proof. For α ⊆ [n],

T̂1−γf(α) = E
x

[T1−γf(x)χα(x)]

= E
x

[
E

y∼N1−γ(x)
[f(y)]χα(x)

]

= E
x,

y∼N1−γ(x)

∑
β⊆[n]

f̂(β)χβ(y)χα(x)


=
∑
β⊆[n]

f̂(β) E
x,

y∼N1−γ(x)

[χβ(y)χα(x)]

Now, we use the fact that the marginals on each of xi and yi is uniform in {0, 1}. This,

if α 6= β the expectation is zero. Therefore,

T̂1−γf(α) = f̂(α) E
x,

y∼N1−γ(x)

[χα(x+ y)]

= (1− γ)|α| · f̂(α),

where the last equality follows from the fact that xi+ yi = 0 with probability 1−γ and

is uniform with probability γ.

2.2 Correlated Spaces

We need a few definitions and lemmas related to correlated spaces defined by Mos-

sel [Mos10]. Let Ω1×Ω2 be two correlated spaces and µ denotes the joint distribution.
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Let µ1 and µ2 denote the marginal of µ on space Ω1 and Ω2 respectively. The correlated

space ρ(Ω1 × Ω2;µ) can be represented as a bipartite graph on (Ω1,Ω2) where x ∈ Ω1

is connected to y ∈ Ω2 iff µ(x, y) > 0. We say that the correlated spaces is connected

if this underlying graph is connected.

Definition 2.2.1. Let (Ω1×Ω2, µ) be a finite correlated space, the correlation between

Ω1 and Ω2 with respect to µ us defined as

ρ(Ω1,Ω2;µ) := max
f :Ω1→R,E[f ]=0,E[f2]≤1
g:Ω2→R,E[g]=0,E[g2]≤1

E
(x,y)∼µ

[|f(x)g(y)|].

The following result (from [Mos10]) provides a way to upper bound correlation of a

correlated spaces.

Lemma 2.2.2. Let (Ω1 × Ω2, µ) be a finite correlated space such that the probability

of the smallest atom in Ω1 × Ω2 is at least α > 0 and the correlated space is connected

then

ρ(Ω1,Ω2;µ) ≤ 1− α2/2

Definition 2.2.3 (Markov Operator). Let (Ω1×Ω2, µ) be a finite correlated space, the

Markov operator, associated with this space, denoted by U , maps a function g : Ω2 → R

to functions Ug : Ω1 → R by the following map:

(Ug)(x) := E
(X,Y )∼µ

[g(Y ) | X = x].

The following results (from [Mos10]) provide a way to upper bound correlation of a

correlated spaces.

Lemma 2.2.4 ([Mos10, Lemma 2.8]). Let (Ω1×Ω2, µ) be a finite correlated space. Let

g : Ω2 → R be such that E(x,y)∼µ[g(y)] = 0 and E(x,y)∼µ[g(y)2] ≤ 1. Then, among

all functions f : Ω1 → R that satisfy E(x,y)∼µ[f(x)2] ≤ 1, the maximum value of

|E[f(x)g(y)]| is given as:

|E[f(x)g(y)]| =
√

E
(x,y)∼µ

[(Ug(x))2].

Proposition 2.2.5 ([Mos10, Proposition 2.11]). Let (
∏n
i=1 Ω

(1)
i ×

∏n
i=1 Ω

(2)
i ,
∏n
i=1 µi)

be a product correlated spaces. Let g :
∏n
i=1 Ω

(2)
i → R be a function and U be the Markov
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operator mapping functions form space
∏n
i=1 Ω

(2)
i to the functions on space

∏n
i=1 Ω

(1)
i .

If g =
∑

S⊆[n] gS and Ug =
∑

S⊆[n](Ug)S be the Efron-Stein decomposition of g and Ug

respectively then,

(Ug)S = U(gS)

i.e. the Efron-Stein decomposition commutes with Markov operators.

Proposition 2.2.6 ([Mos10, Proposition 2.12]). Assume the setting of Proposition 2.2.5

and furthermore assume that ρ(Ω
(1)
i ,Ω

(2)
i ;µi) ≤ ρ for all i ∈ [n], then for all g it holds

that

‖U(gS)‖2 ≤ ρ|S|‖gS‖2.

2.3 Hypercontractivity

Definition 2.3.1. A random variable r is said to be (p, q, η)-hypercontractive if it sat-

isfies

‖a+ ηr‖q ≤ ‖a+ r‖p

for all a ∈ R.

We note down the hypercontractive parameters for Rademacher random variable

(uniform over ±1) and standard gaussian random variable.

Theorem 2.3.2 ([Wol07][Ole03]). Let X denote either a uniformly random ±1 bit, a

standard one-dimensional Gaussian. Then X is
(

2, q, 1√
q−1

)
-hypercontractive.

The following proposition says that the higher norm of a low degree function w.r.t

hypercontractive sequence of ensembles is bounded above by its second norm.

Proposition 2.3.3 ([MOO05]). Let x be a (2, q, η)-hypercontractive sequence of en-

sembles and Q be a multilinear polynomial of degree d. Then

‖Q(x)‖q ≤ η−d‖Q(x)‖2
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2.4 Invariance Principle

Let (Ωk, µ) be a probability space. Let S = {x ∈ Ωk | µ(x) > 0}. We say that S ⊆ Ωk

is connected if for every x, y ∈ S, there is a sequence of strings starting with x and

ending with y such that every element in the sequence is in S and every two adjacent

elements differ in exactly one coordinate.

Theorem 2.4.1 ([Mos10, Proposition 6.4]). Let (Ωk, µ) be a probability space such that

the support of the distribution supp(µ) ⊆ Ωk is connected and the minimum probability

of every atom in supp(µ) is at least α for some α ∈ (0, 1
2 ]. Then there exists continuous

functions Γ : (0, 1) → (0, 1) and Γ : (0, 1) → (0, 1) such that the following holds: For

every ε > 0, there exists τ > 0 and an integer d such that if a function f : ΩL → [0, 1]

satisfies

∀i ∈ [n], Inf≤di (f) ≤ τ

then

Γ

(
E
µ

[f ]

)
− ε ≤ E

(x1,...,xk)∼µ

 k∏
j=1

f(xj)

 ≤ Γ

(
E
µ

[f ]

)
+ ε.

There exists an absolute constant C such that one can take τ = εC
log(1/α) log(1/ε)

εα2 and

d = log(1/τ) log(1/α).

The following invariance principle for correlated spaces is an adaptation of similar

invariance principles (c.f., [Wen13, Theorem 3.12],[GL15, Lemma A.1]) to our setting.

Theorem 2.4.2 (Invariance Principle for correlated spaces). Let (Ωk
1 × Ωk

2, µ) be a

correlated probability space such that the marginal of µ on any pair of coordinates one

each from Ω1 and Ω2 is a product distribution. Let µ1, µ2 be the marginals of µ on Ωk
1

and Ωk
2 respectively. Let X,Y be two random k × L dimensional matrices chosen as

follows: independently for every i ∈ [L], the pair of columns (xi, yi) ∈ Ωk
1×Ωk

2 is chosen

from µ. Let xi, yi denote the ith rows of X and Y respectively. If F : ΩL
1 → [−1,+1]

and G : ΩL
2 → [−1,+1] are functions such that

τ :=

√∑
i∈[L]

Infi[F ] · Infi[G] and Γ := max


√∑
i∈[L]

Infi[F ],

√∑
i∈[L]

Infi[G]

 ,
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then∣∣∣∣∣∣ E
(X,Y )∈µ⊗L

∏
i∈[k]

F (xi)G(yi)

− E
X∈µ⊗L1

∏
i∈[k]

F (xi)

 E
Y ∈µ⊗L2

∏
i∈[k]

G(yi)

∣∣∣∣∣∣ ≤ 2O(k)Γτ.

(2.4.1)

Proof. We will prove the theorem by using the hybrid argument. For i ∈ [L + 1], let

X(i), Y (i) be distributed according to (µ1⊗µ2)⊗i⊗µ⊗L−i. Thus, (X(0), Y (0)) = (X,Y ) is

distributed according to µ⊗L while (X(L), Y (L)) is distributed according to (µ1⊗µ2)⊗L.

For i ∈ [L], define

erri :=

∣∣∣∣∣∣ E
X(i),Y (i)

 k∏
j=1

F (x
(i)
j )G(y

(i)
j )

− E
X(i+1),Y (i+1)

 k∏
j=1

F (x
(i+1)
j )G(y

(i+1)
j )

∣∣∣∣∣∣ . (2.4.2)

The left hand side of Equation (2.4.1) is upper bounded by
∑

i∈[L] erri. Now for a

fixed i, we will bound erri. We use the Efron-Stein decomposition of F,G to split them

into two parts: the part which depends on the ith input and the part independent of

the ith input.

F = F0 + F1 where F0 :=
∑
α:i/∈α

Fα and F1 :=
∑
α:i∈α

Fα.

G = G0 +G1 where G0 :=
∑
β:i/∈β

Gβ and G1 :=
∑
β:i∈β

Gβ.

Note that Infi[F ] = ‖F1‖22 and Infi[G] = ‖G1‖22. Furthermore, the functions F0 and F1

are bounded since F0(x) = Ex′ [F (x
′
)|x′[L]\i = x[L]\i] ∈ [−1,+1] and F1(x) = F (x) −

F0(x) ∈ [−2,+2]. For a ∈ {0, 1}k, let Fa(X) :=
∏k
j=1 Faj (xj). Similarly G0, G1 are

bounded and Ga defined analogously. Substituting these definitions in Equation (2.4.2)

and expanding the products gives

erri =

∣∣∣∣∣∣
∑

a,b∈{0,1}k

(
E

X(i),Y (i)

[
Fa(X

(i))Gb(Y
(i))
]
− E
X(i+1),Y (i+1)

[
Fa(X

(i+1))Gb(Y
(i+1))

])∣∣∣∣∣∣ .
Since both the distributions are identical on (Ωk

1)⊗L and (Ωk
2)⊗L, all terms with a = 0̄

or b = 0̄ are zero. Because µ is uniform on any pair of coordinates on each from the

Ω1 and Ω2 sides, terms with |a| = |b| = 1 also evaluates to zero. Now consider the
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remaining terms with |a|, |b| ≥ 1, |a|+ |b| > 2. Consider one such term where a1, a2 = 1

and b1 = 1. In this case, by Cauchy-Schwarz inequality we have that∣∣∣∣∣ E
X(i−1),Y (i−1)

[
Fa(X

(i−1))Gb(Y
(i−1))

]∣∣∣∣∣ ≤√EF1(x1)2G1(y1)2 · ‖F1‖2 ·

∥∥∥∥∥∥
∏
j>2

Faj

∥∥∥∥∥∥
∞

·

∥∥∥∥∥∥
∏
j>1

Gbj

∥∥∥∥∥∥
∞

.

From the facts that the marginal of µ to any pair of coordinates one each from Ω1

and Ω2 sides are uniform, Infi[F ] = ‖F1‖22 and |F0(x)|, |F1(x)|, |G0(x)|, |G1(x)| are all

bounded by 2, the right side of above becomes

√
EF1(x1)2

√
EG1(y1)2 · ‖F1‖2 ·

∥∥∥∥∥∥
∏
j>2

Faj

∥∥∥∥∥∥
∞

·

∥∥∥∥∥∥
∏
j>1

Gbj

∥∥∥∥∥∥
∞

≤
√

Infi[F ]2Infi[G] · 22k.

All the other terms corresponding to other (a, b) which are at most 22k in number, are

bounded analogously. Hence,

∑
i∈[L]

erri ≤ 24k
∑
i∈[L]

(√
Infi[F ]2Infi[G] +

√
Infi[F ]Infi[G]2

)
= 24k

∑
i∈[L]

√
Infi[F ]Infi[G]

(√
Infi[F ] +

√
Infi[G]

)
.

By applying the Cauchy-Schwarz inequality, followed by a triangle inequality, we obtain

∑
i∈[L]

erri ≤ 24k
√∑
i∈[L]

Infi[F ]Infi[G]

√∑
i∈[L]

Infi[F ] +

√∑
i∈[L]

Infi[G]

 .

Thus, proved.

Let Fq be any finite field.

Definition 2.4.3 (Symmetric Markov Operator). Symmetric Markov operator on Fq

can be thought of as a random walk on an undirected graph with the vertex set Fq. It

can be represented as a q× q matrix T where (i, j) th entry is the probability of moving

to vertex j from i.

Definition 2.4.4. For a symmetric Markov operator T , let 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λq−1

be the eigenvalues of T in a non-increasing order. The spectral radius of T , denoted by

r(T ), is defined as:

r(T ) = max{|λ1|, |λq−1|}
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For a Markov operator T the condition r(T ) < 1 is equivalent to saying that the

induced regular graph (self-loop allowed) on Fq is non-bipartite and connected.

For T as above, we also define a Markov operator T⊗n on [q]n in a natural way i.e

applying a Markov operator T⊗n to x ∈ [q]n is same as applying the Markov operator

T on each xi independently. Note that if T is symmetric then T⊗n is also symmetric

and r(T⊗n) = r(T ).

We will need the following Gaussian stability measure in our analysis:

Definition 2.4.5. Let φ : R → [0, 1] be the cumulative distribution function of the

standard Gaussian random variable. For a parameter ρ, µ, ν ∈ [0, 1], we define the

following two quantities:

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≥ φ−1(1− ν)]

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≤ φ−1(ν)]

where X and Y are two standard Gaussian variables with covariance ρ.

We are now ready to state the invariance principle from [DMR09] that we need for

our reduction in Chapter 7

Theorem 2.4.6 ([DMR09]). Let T be a symmetric Markov operator on Fq such that

ρ = r(T ) < 1. Then for any τ > 0 there exists δ > 0 and k ∈ N such that if

f, g : Fnq → [0, 1] are two functions satisfying

min(Inf≤ki (f), Inf≤ki (g)) ≤ δ

for all i ∈ [n], then it holds that

〈f, T⊗ng〉 ≥ Γρ(µ, ν)− τ

where µ = E[f ], ν = E[g].
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2.5 Expanders & Extractors

Definition 2.5.1 (Expanders). For a symmetric, stochastic matrix M , define

λ(M)
def
= max

v⊥1

‖Mv‖
‖v‖

A D-regular graph H = (X,E) is a graph H is a λ-expander, if λ(H) ≤ λ, where H is

the normalized adjacency matrix of the graph H.

For a symmetric bipartite graph G = ((X,X), E), we say G is a bipartite λ-expander

if λ(H) ≤ λ where H is the normalized biadjacency matrix of G.

Henceforth, when we refer to a bipartite graph as being a λ-expander, we implicitly

mean a bipartite λ-expander.

Any expander H = (X,EH) can be transformed to a natural bipartite expander H ′

on X ×X, by including the edge (x, x′) and (x′, x) to H ′ for every (x, x′) ∈ EH . We

shall abuse notation and call this graph H ′ = ((X,X), EH) although each edge in H

occurs “twice” in H ′.

Lemma 2.5.2 (Explicit expanders [BL06]). For every D > 0, there exists a fully

explicit family of graphs {Gi}, such that Gi is D-regular and λ(Gi) ≤ D−1/2(logD)3/2.

Definition 2.5.3 (Extractors). A bipartite graph H = ((X,Y ), E) is an (δ, ε)-extractor

if for every subset S ⊆ X such that |S| ≥ δ|X|, if π is the induced probability distribution

on Y by taking a random element of S and a random neighbour, then

|π − u|1 ≤ ε.

Lemma 2.5.4 (Explicit Extractors [RVW00]). There exists explicit (δ, ε)-extractors

G = (X,Y,E) such that |X| = O(|Y |/δ) and each vertex of X has degree D =

O(exp(poly(log log(1/δ))) · (1/ε2)).
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Chapter 3

Covering CSP

3.1 Introduction

One of the central (yet unresolved) questions in inapproximability is the problem of

coloring a (hyper)graph with as few colors as possible. A (hyper)graph G = (V,E) is

said to be k-colorable if there exists a coloring c : V → [k] := {0, 1, 2, . . . , k − 1} of the

vertices such that no (hyper)edge of G is monochromatic. The chromatic number of a

(hyper)graph, denoted by χ(G), is the smallest k such that G is k-colorable. It is known

that computing χ(G) to within a multiplicative factor of n1−ε on an n-sized graph G

for every ε ∈ (0, 1) is NP-hard. However, the complexity of the following problem is

not yet completely understood: given a constant-colorable (hyper)graph, what is the

minimum number of colors required to color the vertices of the graph efficiently such

that every edge is non-monochromatic? The current best approximation algorithms

for this problem require at least nΩ(1) colors while the hardness results are far from

proving optimality of these approximation algorithms (see § 3.1.3 for a discussion on

recent work in this area).

The notion of covering complexity was introduced by Guruswami, H̊astad and Su-

dan [GHS02] and more formally by Dinur and Kol [DK13] to obtain a better under-

standing of the complexity of this problem. Let P be a predicate and Φ an instance

of a constraint satisfaction problem (CSP) over n variables, where each constraint in

Φ is a constraint of type P over the n variables and their negations. We will refer to

such CSPs as P -CSPs. The covering number of Φ, denoted by ν(Φ), is the smallest

number of assignments to the variables such that each constraint of Φ is satisfied by at

least one of the assignments, in which case we say that the set of assignments covers

the instance Φ. If c assignments cover the instance Φ, we say that Φ is c-coverable or
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equivalently that the set of assignments form a c-covering for Φ. The covering number

is a generalization of the notion of chromatic number (to be more precise, the loga-

rithm of the the chromatic number) to all predicates in the following sense. Suppose

P is the not-all-equal predicate NAE and the instance Φ has no negations in any of

its constraints, then the covering number ν(Φ) is exactly dlogχ(GΦ)e where GΦ is the

underlying constraint graph of the instance Φ.

Cover-P refers to the problem of finding the covering number of a given P -CSP

instance. Finding the exact covering number for most interesting predicates P is NP-

hard. We therefore study the problem of approximating the covering number. In

particular, we would like to study the complexity of the following problem, denoted

by Covering-P -CSP (c, s), for some 1 ≤ c < s ∈ N: “given a c-coverable P -CSP

instance Φ, find an s-covering for Φ”. Similar problems have been studied for the Max-

CSP setting: “for 0 < s < c ≤ 1, “given a c-satisfiable P -CSP instance Φ, find an

s-satisfying assignment for Φ”. Max-CSPs and Cover-CSPs, as observed by Dinur and

Kol [DK13], are very different problems. For instance, if P is an odd predicate, i.e, if for

every assignment x, either x or its negation x+ 1 satisfies P , then any P -CSP instance

Φ has a trivial two covering, any assignment and its negation. Thus, 3-LIN and 3-CNF1,

being odd predicates, are easy to cover though they are hard predicates in the Max-CSP

setting. The main result of Dinur and Kol is that the 4-LIN predicate, in contrast to

the above, is hard to cover: for every constant t ≥ 2, Covering-4-LIN-CSP (2, t) is

NP-hard. In fact, their arguments show that Covering-4-LIN-CSP (2,Ω(log log log n))

is quasi-NP-hard.

Having observed that odd predicate based CSPs are easy to cover, Dinur and Kol

proceeded to ask the question “are all non-odd-predicate CSPs hard to cover?”. In a

partial answer to this question, they showed that assuming a covering variant of the

unique games conjecture Covering-UGC(c), if a predicate P is not odd and there is

a balanced pairwise independent distribution on its support, then for all constants k,

Covering-P -CSP (2c, k) is NP-hard (here, c is a fixed constant that depends on the

13-LIN : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-LIN(x1, x2, x3) := x1 ⊕ x2 ⊕ x3

while 3-CNF : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-CNF(x1, x2, x3) := x1 ∨ x2 ∨ x3
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covering variant of the unique games conjecture Covering-UGC(c)). See § 3.2 for the

exact definition of the covering variant of the unique games conjecture.

3.1.1 Results

Our first result states that assuming the same covering variant of unique games conjec-

ture

Covering-UGC(c) of Dinur and Kol [DK13], one can in fact show the covering hard-

ness of all non-odd predicates P over any constant-sized alphabet [q]. The notion of

odd predicate can be extended to any alphabet in the following natural way: a pred-

icate P ⊆ [q]k is odd if for all assignments x ∈ [q]k, there exists a ∈ [q] such that the

assignment x+ a satisfies P .

Theorem 3.1.1 (Covering hardness of non-odd predicates). Assuming Covering-

UGC(c), for any constant-sized alphabet [q], any constant k ∈ N and any non-odd

predicate P ⊆ [q]k, for all constants t ∈ N, the Covering-P -CSP (2cq, t) problem is

NP-hard.

Since odd predicates P ⊆ [q]k are trivially coverable with q assignments, the above

theorem, gives a full characterization of hard-to-cover predicates over any constant sized

alphabet (modulo the covering variant of the unique games conjecture): a predicate is

hard to cover iff it is not odd.

We then ask if we can prove similar covering hardness results under more standard

complexity assumptions (such as NP6=P or the exponential-time hypothesis (ETH)).

Though we are not able to prove that every non-odd predicate is hard under these

assumptions, we give sufficient conditions on the predicate P for the corresponding

approximate covering problem to be quasi-NP-hard. Recall that 2k-LIN ⊆ {0, 1}2k is

the predicate corresponding to the set of odd parity strings in {0, 1}2k.

Theorem 3.1.2 (NP-hardness of Covering). Let k ≥ 2. Let P ⊆ 2k-LIN be any 2k-bit

predicate such there exists distributions P0,P1 supported on {0, 1}k with the following

properties:

1. the marginals of P0 and P1 on all k coordinates is uniform,
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2. every a ∈ supp(P0) has even parity and every b ∈ supp(P1) has odd parity and

furthermore, both a · b, b · a ∈ P .

Then, unless NP ⊆ DTIME(2poly logn), for all ε ∈ (0, 1/2], Covering-P -CSP (2,

Ω(log logn)) is not solvable in polynomial time.

Furthermore, the YES and NO instances of Covering-P -CSP (2,Ω(log log n)) sat-

isfy the following properties.

• YES Case : There are 2 assignments such that each of them covers 1− ε fraction

of the constraints and they together cover the instance.

• NO Case : Even the 2k-LIN-CSP instance with the same constraint graph as the

given instance is not Ω(log log n)-coverable.

The furthermore clause in the soundness guarantee is in fact a strengthening for the

following reason: if two predicates P,Q satisfy P ⊆ Q and Φ is a c-coverable P -CSP

instance, then the Q-CSP instance ΦP→Q obtained by taking the constraint graph of

Φ and replacing each P constraint with the weaker Q constraint, is also c-coverable.

The following is a simple corollary of the above theorem.

Corollary 3.1.3. Let k ≥ 2 be even, x, y ∈ {0, 1}k be distinct strings having even and

odd parity respectively and x, y denote the complements of x and y respectively. For

any predicate P satisfying

2k-LIN ⊇ P ⊇ {x · y, x · y, x · y, x · y, y · x, y · x, y · x, y · x},

unless NP ⊆ DTIME(2poly logn), the problem Covering-P -CSP (2,Ω(log log n)) is

not solvable in polynomial time.

This corollary implies the covering hardness of 4-LIN predicate proved by Dinur and

Kol [DK13] by setting x := 00 and y := 01. With respect to the covering hardness

of 4-LIN, we note that we can considerably simplify the proof of Dinur and Kol and in

fact obtain a even stronger soundness guarantee (see Theorem below). The stronger

soundness guarantee in the theorem below states that there are no large (≥ 1/poly log n
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fractional sized) independent sets in the constraint graph and hence, even the 4-NAE-

CSP instance2 with the same constraint graph as the given instance is not coverable

using Ω(log log n) assignments. Both the Dinur-Kol result and the above corollary only

guarantee (in the soundness case) that the 4-LIN-CSP instance is not coverable.

Theorem 3.1.4 (Hardness of Covering 4-LIN). Assuming that NP 6⊆ DTIME(2poly logn),

for all ε ∈ (0, 1), there does not exist a polynomial time algorithm that can distinguish

between 4-LIN-CSP instances of the following two types:

• YES Case : There are 2 assignments such that each of them covers 1− ε fraction

of the constraints, and they together cover the entire instance.

• NO Case : The largest independent set in the constraint graph of the instance is

of fractional size at most 1/poly log n.

3.1.2 Techniques

As one would expect, our proofs are very much inspired from the corresponding proofs

in Dinur and Kol [DK13]. One of the main complications in the proof of Dinur and

Kol [DK13] (as also in the earlier work of Guruswami, H̊astad and Sudan [GHS02])

was the one of handling several assignments simultaneously while proving the sound-

ness analysis. For this purpose, both these works considered the rejection probability

that all the assignments violated the constraint. This resulted in a very tedious ex-

pression for the rejection probability, which made the rest of the proof fairly involved.

Khot [Kho02b] observed that this can be considerably simplified if one instead proved a

stronger soundness guarantee that the largest independent set in the constraint graph

is small (this might not always be doable, but in the cases when it is, it simplifies the

analysis). We list below the further improvements in the proof that yield our Theo-

rems 3.1.1, 3.1.2 and 3.1.4.

Covering hardness of 4-LIN (Theorem 3.1.4): The simplified proof of the

covering hardness of 4-LIN follows directly from the above observation of using an

2The k-NAE predicate over k bits is given by k-NAE = {0, 1}k \ {0, 1}.



28

independent set analysis instead of working with several assignments. In fact, this

alternate proof eliminates the need for using results about correlated spaces [Mos10],

which was crucial in the Dinur-Kol setting. We further note that the quantitative

improvement in the covering hardness (Ω(log log n) over Ω(log log log n)) comes from

using a Label-Cover instance with a better smoothness property (see Theorem 3.2.5).

Covering UG-hardness for non-odd predicates (Theorem 3.1.1): Having

observed that it suffices to prove an independent set analysis, we observed that only very

mild conditions on the predicate are required to prove covering hardness. In particular,

while Dinur and Kol used the Austrin-Mossel test [AM09] which required pairwise

independence, we are able to import the long-code test of Bansal and Khot [BK10]

which requires only 1-wise independence. We remark that the Bansal-Khot Test was

designed for a specific predicate (hardness of finding independent sets in almost k-partite

k-uniform hypergraphs) and had imperfect completeness. Our improvement comes from

observing that their test requires only 1-wise independence and furthermore that their

completeness condition, though imperfect, can be adapted to give a 2-cover composed of

2 nearly satisfying assignments. This enlarges the class of non-odd predicates for which

one can prove covering hardness (see Theorem 3.3.1). We then perform a sequence of

reductions from this class of CSP instances to CSP instances over all non-odd predicates

to obtain the final result. Interestingly, one of the open problems mentioned in the

work of Dinur and Kol [DK13] was to devise “direct” reductions between covering

problems. The reductions we employ, strictly speaking, are not “direct” reductions

between covering problems, since they rely on a stronger soundness guarantee for the

source instance (namely, large covering number even for the NAE instance on the same

constraint graph), which we are able to prove in Theorem 3.3.1.

Quasi-NP-hardness result (Theorem 3.1.2): In this setting, we unfortunately

are not able to use the simplification arising from using the independent set analysis

and have to deal with the issue of several assignments. One of the steps in the 4-LIN

proof of Dinur and Kol (as in several others results in this area) involves showing
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that a expression of the form E(X,Y ) [F (X)F (Y )] is not too negative where (X,Y )

is not necessarily a product distribution but the marginals on the X and Y parts are

identical. Observe that if (X,Y ) was a product distribution, then the above expressions

reduces to (EX [F (X)])2, a positive quantity. Thus, the steps in the proof involve

constructing a tailor-made distribution (X,Y ) such that the error in going from the

correlated probability space (X,Y ) to the product distribution (X ⊗ Y ) is not too

much. More precisely, the quantity∣∣∣∣∣ E
(X,Y )

[F (X)F (Y )]−E
X

[F (X)] E
Y

[F (Y )]

∣∣∣∣∣ ,
is small. Dinur and Kol used a distribution tailor-made for the 4-LIN predicate and used

an invariance principle for correlated spaces to bound the error while transforming it

to a product distribution. Our improvement comes from observing that one could use

an alternate invariance principle (see Theorem 2.4.2) that works with milder restric-

tions and hence works for a wider class of predicates. This invariance principle for

correlated spaces (Theorem 2.4.2) is an adaptation of invariance principles proved by

Wenner [Wen13] and Guruswami and Lee [GL15] in similar contexts. The rest of the

proof is similar to the 4-LIN covering hardness proof of Dinur and Kol.

3.1.3 Recent work on approximate coloring

We remark that recently, with the discovery of the short code [BGH+12], there has

been a sequence of works [DG13, GHH+14, KS14, Var14] which have considerably

improved the status of the approximate coloring question, stated in the beginning of

the introduction. In particular, we know that it is quasi-NP-hard to color a 2-colorable

8-uniform hypergraph with 2(logn)c colors for some constant c ∈ (0, 1). Stated in terms

of covering number, this result states that it is quasi-NP-hard to cover a 1-coverable

8-NAE-CSP instance with (log n)c assignments. It is to be noted that these results

pertain to the covering complexity of specific predicates (such as NAE) whereas our

results are concerned with classifying which predicates are hard to cover. It would

be interesting if Theorem 3.1.2 and Theorem 3.1.4 can be improved to obtain similar

hardness results (i.e., poly log n as opposed to poly log log n). The main bottleneck here
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seems to be reducing the uniformity parameter (namely, from 8).

Organization

The rest of the chapter is organized as follows. We start with some preliminaries of

Label-Cover, covering CSPs and Fourier analysis in § 3.2. Theorems 3.1.1, 3.1.2 and

3.1.4 are proved in Sections 3.3, 3.4 and 3.5 respectively.

3.2 Preliminaries

3.2.1 Fourier Analysis

We will be dealing with functions of the form f : {0, 1}dL → R for d ∈ N and d-to-1

functions π : [dL] → [L]. We will also think of such functions as f :
∏
i∈L Ωi → R

where Ωi = {0, 1}d consists of the d coordinates j such that π(j) = i. An Efron-Stein

decomposition of f :
∏
i∈L Ωi → R over the uniform distribution over {0, 1}dL, can be

obtained from the Fourier decomposition as

fβ(x) =
∑

α⊆[dL]:π(α)=β

f̂(α)χα. (3.2.1)

3.2.2 Covering CSPs

We will denote the set {0, 1, · · · q − 1} by [q]. For a ∈ [q], ā ∈ [q]k is the element with a

in all the k coordinates (where k and q will be implicit from the context).

Definition 3.2.1 (P -CSP). For a predicate P ⊆ [q]k, an instance of P -CSP is given by

a (hyper)graph G = (V,E), referred to as the constraint graph, and a literals function

L : E → [q]k, where V is a set of variables and E ⊆ V k is a set of constraints.

An assignment f : V → [q] is said to cover a constraint e = (v1, · · · , vk) ∈ E, if

(f(v1), · · · , f(vk)) + L(e) ∈ P , where addition is coordinate-wise modulo q. A set of

assignments F = {f1, · · · , fc} is said to cover (G,L), if for every e ∈ E, there is some

fi ∈ F that covers e and F is said to be a c-covering for G. G is said to be c-coverable

if there is a c-covering for G. If L is not specified then it is the constant function which

maps E to 0̄.
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Definition 3.2.2 (Covering-P -CSP (c, s)). For P ⊆ [q]k and c, s ∈ N, the Covering-

P -CSP (c, s) problem is, given a c-coverable instance (G = (V,E), L) of P -CSP, find

an s-covering.

Definition 3.2.3 (Odd). A predicate P ⊆ [q]k is odd if ∀x ∈ [q]k,∃a ∈ [q], x+ ā ∈ P ,

where addition is coordinate-wise modulo q.

For odd predicates the covering problem is trivially solvable, since any CSP instance

on such a predicate is q-coverable by the q translates of any assignment, i.e., {x + ā |

a ∈ [q]} is a q-covering for any assignment x ∈ [q]k.

3.2.3 Label Cover

Definition 3.2.4 (Label-Cover). An instance G = (U, V,E, L,R, {πe}e∈E) of the

Label-Cover constraint satisfaction problem consists of a bi-regular bipartite graph

(U, V,E), two sets of alphabets L and R and a projection map πe : R → L for every

edge e ∈ E. Given a labeling ` : U → L, ` : V → R, an edge e = (u, v) is said to be

satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of

the edges. G is said to be c-coverable if there exist c labelings such that for every vertex

u ∈ U , one of the labelings satisfies all the edges incident on u.

An instance of Unique-Games is a label cover instance where L = R and the

constraints π are permutations.

The hardness of Label-Cover stated below follows from the PCP Theorem [AS98,

ALM+98], Raz’s Parallel Repetition Theorem [Raz98] and a structural property proved

by H̊astad [H̊as01, Lemma 6.9].

Theorem 3.2.5 (Hardness of Label-Cover). For every r ∈ N, there is a deter-

ministic nO(r)-time reduction from a 3-SAT instance of size n to an instance G =

(U, V,E, [L], [R], {πe}e∈E) of Label-Cover with the following properties:

1. |U |, |V | ≤ nO(r); L,R ≤ 2O(r); G is bi-regular with degrees bounded by 2O(r).
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2. There exists a constant c0 ∈ (0, 1/3) such that for any v ∈ V and α ⊆ [R], for a

random neighbor u,

E
u

[
|πuv(α)|−1

]
≤ |α|−2c0 .

This implies that

∀v, α, Pru [|πuv(α)| < |α|c0 ] ≤ 1

|α|c0
.

3. There is a constant d0 ∈ (0, 1) such that,

• YES Case : If the 3-SAT instance is satisfiable, then G is 1-coverable.

• NO Case : If the 3-SAT instance is unsatisfiable, then G is at most 2−d0r-

satisfiable.

Our characterization of hardness of covering CSPs is based on the following conjec-

ture due to Dinur and Kol [DK13].

Conjecture 3.2.6 (Covering-UGC(c)). There exists c ∈ N such that for every suffi-

ciently small δ > 0 there exists L ∈ N such that the following holds. Given a an instance

G = (U, V,E, [L], [L], {πe}e∈E) of Unique-Games it is NP-hard to distinguish between

the following two cases:

• YES case: There exist c assignments such that for every vertex u ∈ U , at least

one of the assignments satisfies all the edges touching u.

• NO case: Every assignment satisfies at most δ fraction of the edge constraints.

3.3 UG Hardness of Covering

In this section, we prove the following theorem, which in turn implies Theorem 3.1.1

(see below for proof).

Theorem 3.3.1. Let [q] be any constant sized alphabet and k ≥ 2. Recall that NAE :=

[q]k \ {b̄ | b ∈ [q]}. Let P ⊆ [q]k be a predicate such that there exists a ∈ NAE and

NAE ⊃ P ⊇ {a + b̄ | b ∈ [q]}. Assuming Covering-UGC(c), for every sufficiently

small constant δ > 0 it is NP-hard to distinguish between P -CSP instances G = (V, E)

of the following two cases:
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• YES Case : G is 2c-coverable.

• NO Case : G does not have an independent set of fractional size δ.

Proof of Theorem 3.1.1. Let Q be an arbitrary non odd predicate, i.e, Q ⊆ [q]k \{h+ b̄ |

b ∈ [q]} for some h ∈ [q]k. Consider the predicate Q′ ⊆ [q]k defined as Q′ := Q − h.

Observe that Q′ ⊆ NAE. Given any Q′-CSP instance Φ with literals function L(e) = 0,

consider the Q-CSP instance ΦQ′→Q with literals function M given by M(e) := h,∀e.

It has the same constraint graph as Φ. Clearly, Φ is c-coverable iff ΦQ′→Q is c-coverable.

Thus, it suffices to prove the result for any predicate Q′ ⊆ NAE with literals function

L(e) = 03. We will consider two cases, both of which will follow from Theorem 3.3.1.

Suppose the predicate Q′ satisfies Q′ ⊇ {a + b̄ | b ∈ [q]} for some a ∈ [q]k. Then

this predicate Q′ satisfies the hypothesis of Theorem 3.3.1 and the theorem follows if

we show that the soundness guarantee of Theorem 3.3.1 implies that in Theorem 3.1.1.

Any instance in the NO case of Theorem 3.3.1, is not t := logq(1/δ)-coverable even

on the NAE-CSP instance with the same constraint graph. This is because any t-

covering for the NAE-CSP instance gives a coloring of the constraint graph using qt

colors, by choosing the color of every variable to be a string of length t and having the

corresponding assignments in each position in [t]. Hence the Q′-CSP instance is also

not t-coverable.

Suppose Q′ 6⊇ {a + b̄ | b ∈ [q]} for all a ∈ [q]k. Then consider the predicate

P = {a + b̄ | a ∈ Q′, b ∈ [q]} ⊆ NAE. Notice that P satisfies the conditions of

Theorem 3.3.1 and if the P -CSP instance is t-coverable then the Q′-CSP instance is

qt-coverable. Hence an YES instance of Theorem 3.3.1 maps to a 2cq-coverable Q-CSP

instance and NO instance maps to an instance with covering number at least logq(1/δ).

3This observation [DK13] that the cover-Q problem for any non-odd predicate Q is equivalent to
the cover-Q′ problem where Q′ ⊆ NAE shows the centrality of the NAE predicate in understanding the
covering complexity of any non-odd predicate.
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We now prove Theorem 3.3.1 by giving a reduction from an instanceG = (U, V,E, [L], [L],

{πe}e∈E) of Unique-Games as in Definition 3.2.4, to an instance G = (V, E) of a P -

CSP for any predicate P that satisfies the conditions mentioned. As stated in the

introduction, we adapt the long-code test of Bansal and Khot [BK10] for proving the

hardness of finding independent sets in almost k-partite k-uniform hypergraphs to our

setting. The set of variables V is V × [q]2L. Any assignment to V is given by a set

of functions fv : [q]2L → [q], for each v ∈ V . The set of constraints E is given by the

following test which checks whether fv’s are long codes of a good labeling to V . There

is a constraint corresponding to all the variables that are queried together by the test.

Long Code Test T1

1. Choose u ∈ U uniformly and k neighbors w1, . . . , wk ∈ V of u uniformly and

independently at random.

2. Choose a random matrix X of dimension k × 2L as follows. Let Xi denote the

ith column of X. Independently for each i ∈ [L], choose (Xi, Xi+L) uniformly at

random from the set

S :=
{

(y, y′) ∈ [q]k × [q]k | y ∈ {a+ b̄ | b ∈ [q]} ∨ y′ ∈ {a+ b̄ | b ∈ [q]}
}
. (3.3.1)

3. Let x1, · · · , xk be the rows of matrix X. Accept iff

(fw1(x1 ◦ πuw1), fw2(x2 ◦ πuw2), · · · , fwk(xk ◦ πuwk)) ∈ P,

where x ◦ π is the string defined as (x ◦ π)(i) := xπ(i) for i ∈ [L] and (x ◦ π)(i) :=

xπ(i−L)+L otherwise.

Lemma 3.3.2 (Completeness). If the Unique-Games instance G is c-coverable then

the P -CSP instance G is 2c-coverable.

Proof. Let `1, . . . , `c : U∪V → [L] be a c-covering for G as described in Definition 3.2.4.

We will show that the 2c assignments given by f iv(x) := x`i(v), g
i
v(x) := x`i(v)+L, i =

1, . . . , c form a 2c-covering of G. Consider any u ∈ U and let `i be the labeling that

covers all the edges incident on u. For any (u,wj)j∈{1,··· ,k} ∈ E and X chosen by the



35

long code test T1, the vector (f iw1
(x1◦πuw1), · · · , f iwk(xk◦πuwk)) gives the `i(u)th column

of X. Similarly the above expression corresponding to gi gives the (`i(u)+L)th column

of the matrix X. Since, for all i ∈ [L], either ith column or (i + L)th column of

X contains element from {a + b̄ | b ∈ [q]} ⊆ P , either (f iw1
(x1 ◦ πuw1), · · · , f iwk(xk ◦

πuwk)) ∈ P or (giw1
(x1 ◦πuw1), · · · , giwk(xk ◦πuwk)) ∈ P . Hence the set of 2c assignments

{f iv, giv}i∈{1,··· ,c} covers all constraints in G.

To prove soundness, we show that the set S, as defined in Equation (3.3.1), is

connected, so that Theorem 2.4.1 is applicable. For this, we view S ⊆ [q]k × [q]k

as a subset of ([q]2)k as follows: the element (y, y′) ∈ S is mapped to the element

((y1, y
′
1), · · · , (yk, y′k)) ∈ ([q]2)k.

Claim 3.3.3. Let Ω = [q]2. The set S ⊂ Ωk is connected.

Proof. Consider any x := (x1, x2), y := (y1, y2) ∈ S ⊂ [q]k × [q]k. Suppose both

x1, y1 ∈ {a+ b̄ | b ∈ [q]}, then it is easy to come up with a sequence of strings belonging

to S, starting with x and ending with y such that consecutive strings differ in at most

1 coordinate,. Now suppose x1, y2 ∈ {a+ b̄ | b ∈ [q]}. First we come up with a sequence

from x to z := (z1, z2) such that z1 := x1 and z2 = y2, and then another sequence for

z to y.

Lemma 3.3.4 (Soundness). For every constant δ > 0, there exists a constant s such

that, if G is at most s-satisfiable then G does not have an independent set of size δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph. For

every variable v ∈ V , let fv : [q]2L → {0, 1} be the indicator function of the independent

set restricted to the vertices that correspond to v. For a vertex u ∈ U , let N(u) ⊆ V

be the set of neighbors of u and define fu(x) := Ew∈N(u)[fw(x ◦ πuw)]. Since I is an

independent set, we have

0 = E
u,wi,...,wk

E
X∼T1

[
k∏
i=1

fwi(xi ◦ πuwi)

]
= E

u
E

X∼T1

[
k∏
i=1

fu(xi)

]
. (3.3.2)

Since the bipartite graph (U, V,E) is left regular and |I| ≥ δ|V |, we have Eu,x[fu(x)] ≥ δ.

By an averaging argument, for at least δ
2 fraction of the vertices u ∈ U , Ex[fu(x)] ≥ δ

2 .
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Call a vertex u ∈ U good if it satisfies this property. A string x ∈ [q]2L can be thought

as an element from ([q]2)L by grouping the pair of coordinates xi, xi+L. Let x ∈ ([q]2)L

denotes this grouping of x, i.e., jth coordinate of x is (xj , xj+L) ∈ [q]2. With this

grouping, the function fu can be viewed as fu : ([q]2)L → {0, 1}. From Equation

(3.3.2), we have that for any u ∈ U ,

E
X∼T1

[
k∏
i=1

fu(xi)

]
= 0.

By Claim 3.3.3, for all j ∈ [L] the tuple ((x1)j , . . . , (xk)j) (corresponding to columns

(Xj ,Xj+L) of X) is sampled from a distribution whose support is a connected set.

Hence for a good vertex u ∈ U , we can apply Theorem 2.4.1 with ε = Γ(δ/2)/2 to get

that there exists j ∈ [L], d ∈ N, τ > 0 such that Inf≤dj (fu) > τ . We will use this fact

to give a randomized labeling for G. Labels for vertices w ∈ V, u ∈ U will be chosen

uniformly and independently from the sets

Lab(w) :=
{
i ∈ [L] | Inf≤di (fw) ≥ τ

2

}
, Lab(u) :=

{
i ∈ [L] | Inf≤di (fu) ≥ τ

}
.

By the above argument (using Theorem 2.4.1), we have that for a good vertex u,

Lab(u) 6= ∅. Furthermore, since the sum of degree d influences is at most d, the above

sets have size at most 2d/τ . Now, for any j ∈ Lab(u), we have

τ < Inf≤dj [fu] =
∑

S:j∈S,|S|≤d

‖fu,S‖2 =
∑

S:j∈S,|S|≤d

∥∥∥∥∥ E
w∈N(u)

[
fw,π−1

uw(S)

]∥∥∥∥∥
2

(By Definition.)

≤
∑

S:j∈S,|S|≤d
E

w∈N(u)

∥∥∥fw,π−1
uw(S)

∥∥∥2
= E

w∈N(u)
Inf≤d

π−1
uw(j)

[fw]. (By Convexity of square.)

Hence, by another averaging argument, there exists at least τ
2 fraction of neighbors w

of u such that Inf≤d
π−1
uw(j)

(fw) ≥ τ
2 and hence π−1

uw(j) ∈ Lab(w). Therefore, for a good

vertex u ∈ U , at least τ
2
τ
2d fraction of edges incident on u are satisfied in expectation.

Also, at least δ
2 fraction of vertices in U are good, it follows that the expected fraction

of edges that are satisfied by this random labeling is at least δ
2
τ
2
τ
2d . Choosing s < δ

2
τ
2
τ
2d

completes the proof.
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3.4 NP-Hardness of Covering

In this section, we prove Theorem 3.1.2. We give a reduction from an instance of

a Label-Cover, G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 3.2.4, to a P -CSP

instance G = (V, E) for any predicate P that satisfies the conditions mentioned in

Theorem 3.1.2. The reduction and proof is similar to that of Dinur and Kol [DK13].

The main difference is that they used a test and invariance principle very specific to the

4-LIN predicate, while we show that a similar analysis can be performed under milder

conditions on the test distribution.

We assume that R = dL and ∀i ∈ [L], e ∈ E, |π−1
e (i)| = d. This is done just for

simplifying the notation and the proof does not depend upon it. The set of variables V

is V ×{0, 1}2R. Any assignment to V is given by a set of functions fv : {0, 1}2R → {0, 1},

for each v ∈ V . The set of constraints E is given by the following test which checks

whether fv’s are long codes of a good labeling to V .

Long Code Test T2

1. Choose u ∈ U uniformly and v, w ∈ V neighbors of u uniformly and independently

at random. For i ∈ [L], let Buv(i) := π−1
uv (i), B′uv(i) := R + π−1

uv (i) and similarly

for w.

2. Choose matrices X,Y of dimension k× 2dL as follows. For S ⊆ [2dL], we denote

by X|S the submatrix of X restricted to the columns S. Independently for each

i ∈ [L], choose c1 ∈ {0, 1} uniformly and

(a) if c1 = 0, choose
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
from P⊗2d

0 ⊗ P⊗2d
1 ,

(b) if c1 = 1, choose
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
from P⊗2d

1 ⊗ P⊗2d
0 .

3. Perturb X,Y as follows. Independently for each i ∈ [L], choose c2 ∈ {∗, 0, 1} as

follows: Pr[c2 = ∗] = 1 − 2ε, and Pr[c2 = 1] = Pr[c2 = 0] = ε. Perturb the ith

matrix block
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
as follows:

(a) if c2 = ∗, leave the matrix block
(
X|Buv(i)∪B′uv(i), Y |Buw(i)∪B′uw(i)

)
unper-

turbed,
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(b) if c2 = 0, choose
(
X|B′uv(i), Y |B′uw(i)

)
uniformly from {0, 1}k×d × {0, 1}k×d,

(c) if c2 = 1, choose
(
X|Buv(i), Y |Buw(i)

)
uniformly from {0, 1}k×d × {0, 1}k×d.

4. Let x1, · · · , xk and y1, · · · , yk be the rows of the matrices X and Y respectively.

Accept if

(fv(x1), · · · , fv(xk), fw(y1), · · · , fw(yk)) ∈ P.

Lemma 3.4.1 (Completeness). If G is an YES instance of Label-Cover, then there

exists f, g such that each of them covers 1− ε fraction of E and they together cover all

of E.

Proof. Let ` : U ∪ V → [L] ∪ [R] be a labeling to G that satisfies all the constraints.

Consider the assignments fv(x) := x`(v) and gv(x) := xR+`(v) for each v ∈ V . First

consider the assignment f . For any (u, v), (u,w) ∈ E and x1, · · · , xk, y1, · · · , yk chosen

by the long code test T2, (fv(x1), · · · , fv(xk)), (fw(y1), · · · , fw(yk)) gives the `(v)th and

`(w)th column of the matrices X and Y respectively. Since πuv(`(v)) = πuw(`(w)),

they are jointly distributed either according to P0 ⊗ P1 or P1 ⊗ P0 after Step 2. The

probability that these rows are perturbed in Step 3c is at most ε. Hence with probability

1− ε over the test distribution, f is accepted. A similar argument shows that the test

accepts g with probability 1 − ε. Note that in Step 3, the columns given by f, g, are

never re-sampled uniformly together. Hence they together cover G.

Now we will show that if G is a NO instance of Label-Cover then no t assignments

can cover the 2k-LIN-CSP with constraint hypergraph G. For the rest of the analysis,

we will use +1,−1 instead of the symbols 0, 1. Suppose for contradiction, there exist

t assignments f1, · · · , ft : {±1}2R → {±1} that form a t-cover to G. The probability

that all the t assignments are rejected in Step 4 is

E
u,v,w

E
T2

 t∏
i=1

1

2

 k∏
j=1

fi,v(xj)fi,w(yj) + 1

 =
1

2t
+

1

2t

∑
∅⊂S⊆{1,··· ,t}

E
u,v,w

E
T2

 k∏
j=1

fS,v(xj)fS,w(yj)

 .
(3.4.1)

where fS,v(x) :=
∏
i∈S fi,v(x). Since the t assignments form a t-cover, the LHS in

Equation (3.4.1) is 0 and hence, there exists an S 6= ∅ such that

E
u,v,w

E
T2

 k∏
j=1

fS,v(xj)fS,w(yj)

 ≤ −1/(2t − 1). (3.4.2)
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Lemma 3.4.3 shows that this is not possible if t is not too large, thus proving that there

does not a exist t-cover.

We will need the following technical claim. We denote the k×2d dimensional matrix

X|B(i)∪B′(i) (X|Buv(i)∪B′uv(i)) by Xi and Y |B(i)∪B′(i) (Y |Buv(i)∪B′uv(i)) by Y i (ignoring the

subscript of B and B′ as the distribution is the same for every edge (u, v)). Also by

Xi
j , we mean the jth row of the matrix Xi and Y i

−k is the first k − 1 rows of Y i. The

spaces of the random variables Xi, Xi
j , Y

i
−k will be denoted by X i,X ij ,Y i−k.

Claim 3.4.2. For each i ∈ [L],

ρ
(
X i × Y i−k,Y ik; T i2

)
≤
√

1− ε.

Proof. Recall the random variable c2 ∈ {∗, 0, 1} defined in Step 3 of test T2 . Let g

and f be the functions that satisfies E[g] = E[f ] = 0 and E[g2],E[f2] ≤ 1 such that

ρ
(
X i × Y i−k,Y ik; T i2

)
= E[|fg|]. Define the Markov Operator

Ug(Xi, Y i
−k) = E

(X̃,Ỹ )∼T i2
[g(Ỹk) | (X̃, Ỹ−k) = (Xi, Y i

−k)].

By Lemma 2.2.4, we have

ρ
(
X i × Y i−k,Y ik; T i2

)2 ≤ E
T i2

[Ug(Xi, Y i
−k)

2]

= (1− 2ε) E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = ∗] + ε E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 0]+

ε E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 1]

≤ (1− 2ε) + ε E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 0] + ε E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 1],

where the last inequality uses the fact that ET i2
[Ug(Xi, Y i

−k)
2 | c2 = ∗] = E[g2] which

is at most 1. Consider the case when c2 = 0. By definition, we have

E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 0] = E(
Xi,
Y i−k

)
∼T i2

(
E

(X̃,Ỹ )∼T i2
[g(Ỹk) | (X̃, Ỹ−k) = (Xi, Y i

−k) ∧ c2 = 0]

)2

.

Under the conditioning, for any fixed value of Xi, Y i
−k, the value of Ỹk|B′(i) is a uniformly

random string whereas Ỹk|B(i) is a fixed string (since the parity of all columns in B(i)
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is 1). Let U be the uniform distribution on {−1,+1}d and P(Xi, Y i
−k) ∈ {+1,−1}d

denotes the column wise parities of
[
Xi|B(i)

Y i−k|B(i)

]
.

E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 0] = E
Xi,Y i−k∼T

i
2

(
E

(X̃,Ỹ )∼T i2

[
g(Ỹk) | (X̃,Ỹ−k)=(Xi,Y i−k)∧

c2=0

])2

= E
Xi,Y i−k∼T

i
2 ,

z=P(Xi,Y i−k)

(
E
r∼U

[g(−z, r)]
)2

= E
z∼U

(
E
r∼U

[g(z, r)]

)2

(Since marginal on z is uniform)

= E
z∼U

 E
r∈U

∑
α⊆B(i)∪B′(i)

ĝ(α)χα(z, r)

2

= E
z∼U

 ∑
α⊆B(i)∪B′(i)

ĝ(α) E
r∈U

[χα(z, r)]

2

= E
z∼U

 ∑
α⊆B(i)

ĝ(α)χα(z)

2

=
∑

α⊆B(i)

ĝ(α)2.

Similarly we have,

E
T i2

[Ug(Xi, Y i
−k)

2 | c2 = 1] =
∑

α⊆B′(i)

ĝ(α)2.

Now we can bound the correlation as follows:

ρ
(
X i × Y i−k,Y ik; T i2

)2 ≤(1− 2ε) + ε
∑

α⊆B(i)

ĝ(α)2 + ε
∑

α⊆B′(i)

ĝ(α)2

≤(1− 2ε) + ε
∑

α⊆B(i)∪B′(i)

ĝ(α)2 (Using ĝ(φ) = E[g] = 0)

≤(1− ε). (Using E[g2] ≤ 1 and Parseval’s Identity)

Lemma 3.4.3 (Soundness). Let c0 ∈ (0, 1) be the constant from Theorem 3.2.5 and

S ⊆ {1, · · · , t}, |S| > 0. If G is at most s-satisfiable then

E
u,v,w

E
X,Y ∈T2

[
k∏
i=1

fS,v(xi)fS,w(yi)

]
≥ −O(ksc0/8)− 2O(k) s

(1−3c0)/8

ε3/2c0
.
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Proof. Notice that for a fixed u, the distribution of X and Y have identical marginals.

Hence the value of the above expectation, if calculated according to a distribution

which is the direct product of the marginals, is positive. We will first show that the

expectation can change by at most O(ksc0/8) in moving to an attenuated version of the

functions (see Claim 3.4.4). Then we will show that the error incurred by changing the

distribution to the product distribution of the marginals has absolute value at most

2O(k) s(1−3c0)/8

ε3/2c0
(see Claim 3.4.6). This is done by showing that there is a labeling to G

that satisfies an s fraction of the constraints if the error is more than 2O(k) s(1−3c0)/8

ε3/2c0
.

For the rest of the analysis, we write fv and fw instead of fS,v and fS,w respectively.

Let fv =
∑

α⊆[2R] f̂v(α)χα be the Fourier decomposition of the function and for γ ∈

(0, 1), let T1−γfv :=
∑

α⊆[2R](1 − γ)|α|f̂v(α)χα. The following claim is similar to a

lemma of Dinur and Kol [DK13, Lemma 4.11]. The only difference in the proof is that,

we use the smoothness from Property 2 of Theorem 3.2.5 (which was shown by H̊astad

[H̊as01, Lemma 6.9]).

Claim 3.4.4. Let γ := s(c0+1)/4ε1/c0 where c0 is the constant from Theorem 3.2.5.∣∣∣∣∣ E
u,v,w

E
T2

[
k∏
i=1

fv(xi)fw(yi)

]
− E
u,v,w

E
T2

[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)

]∣∣∣∣∣ ≤ O(ksc0/8).

Proof. We will add the T1−γ operator to one function at a time and upper bound the

absolute value of the error incurred each time by O(sc0/8). The total error is at most 2k

times the error in adding T1−γ to one function. Hence, it suffices to prove the following∣∣∣∣∣ E
u,v,w

E
T2

[
k∏
i=1

fv(xi)fw(yi)

]
− E
u,v,w

E
T2

[(
k−1∏
i=1

fv(xi)fw(yi)

)
fv(xk)T1−γfw(yk)

]∣∣∣∣∣ ≤ O(sc0/8).

(3.4.3)

Recall that X,Y denote the matrices chosen by test T2. Let Y−k be the matrix obtained

from Y by removing the kth row and Fu,v,w(X,Y−k) :=
(∏k−1

i=1 fv(xi)fw(yi)
)
fv(xk).

Then, (3.4.3) can be rewritten as∣∣∣∣ E
u,v,w

E
T2

[Fu,v,w(X,Y−k) (I − T1−γ) fw(yk)]

∣∣∣∣ ≤ O(sc0/8). (3.4.4)

Let U be the operator that maps functions on the variable yk, to one on the variables

(X,Y−k) defined by

(Uf)(X,Y−k) := E
yk|X,Y−k

f(yk).
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Let Gu,v,w(X,Y−k) := (U(I − T1−γ)fw) (X,Y−k). Note that Ey∈{0,1}2R Gu,v,w(y) = 0.

For the rest of the analysis, fix u, v, w chosen by the test. We will omit the subscript

u, v, w from now on for notational convenience. The domain of G can be thought

of as ({0, 1}2k−1)2dL and the test distribution on any row is independent across the

blocks {Buv(i) ∪ B′uv(i)}i∈[L]. We now think of G as having domain
∏
i∈[L] Ωi where

Ωi = ({0, 1}2k−1)2d corresponds to the set of rows in Buv(i)∪B′uv(i). Let the following

be the Efron-Stein decomposition of G with respect to T2,

G(X,Y−k) =
∑
α⊆[L]

Gα(X,Y−k).

The following technical claim follows from a result similar to [DK13, Lemma 4.7] and

then using [Mos10, Proposition 2.12].

Claim 3.4.5. For α ⊆ [L]

‖Gα‖2 ≤ (1− ε)|α|
∑

β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)2 (3.4.5)

where π̃uw(β) := {i ∈ [L] : ∃j ∈ [R], (j ∈ β ∨ j +R ∈ β) ∧ πuv(j) = i}.

Proof. Proposition 2.2.5 shows that the Markov operator U commutes with taking the

Efron-Stein decomposition. Hence, Gα := (U((I − T1−γ)fw))α = U((I − T1−γ)(fw)α),

where (fw)α is the Efron-Stein decomposition of fw w.r.t the marginal distribution of

T2 on
∏L
i=1 Y ik which is a uniform distribution. Therefore, (fw)α =

∑
β⊆[2R],
π̃uw(β)=α

f̂w(β)χβ.

Using Proposition 2.2.6 and Claim 3.4.2, we have

‖Gα‖22 = ‖U((I − T1−γ)(fw)α)‖22 ≤ (
√

1− ε)2|α|‖(I − T1−γ)(fw)α‖22

= (1− ε)|α|
∑

β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)2,

where the norms are with respect to the marginals of T2 in the corresponding spaces.
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Substituting the Efron-Stein decomposition of G,F into the LHS of (3.4.4) gives∣∣∣∣ E
u,v,w

E
T2

[Fu,v,w(X,Y−k) (I − T1−γ) fw(yk)]

∣∣∣∣ =

∣∣∣∣ E
u,v,w

E
T2
F (X,Y−k)G(X,Y−k)

∣∣∣∣
(By orthonormality of

Efron-Stein decomposition) =

∣∣∣∣∣∣ E
u,v,w

∑
α⊆[L]

E
T2
Fα(X,Y−k)Gα(X,Y−k)

∣∣∣∣∣∣
(By Cauchy-Schwarz inequality) ≤ E

u,v,w

√∑
α⊆[L]

‖Fα‖2 ·
√∑
α⊆[L]

‖Gα‖2

(Using
∑
α⊆[L]

‖Fα‖2 = ‖F‖22 = 1) ≤ E
u,v,w

√∑
α⊆[L]

‖Gα‖2.

Using concavity of square root and substituting for ‖Gα‖2 from Equation (3.4.5), we

get that the above is upper bounded by√√√√√
∑
α⊆[L]

∑
β⊆[2R]:
π̃uw(β)=α

E
u,v,w

(1− ε)|α|
(

1− (1− γ)2|β|
)
f̂w(β)2︸ ︷︷ ︸

=:Termu,w(α,β)

.

We will now break the above summation into three different parts and bound each

part separately.

Θ0 := E
u,w

∑
α,β:|α|≥ 1

εsc0/4

Termu,w(α, β), Θ1 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|≤ 2

s1/4ε1/c0

Termu,w(α, β),

Θ2 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|> 2

s1/4ε1/c0

Termu,w(α, β).

Upper bounding Θ0: When |α| > 1
εsc0/4

, (1 − ε)|α| < sc0/4. Also since fw is

{+1,−1} valued, sum of squares of Fourier coefficient is 1. Hence |Θ0| < sc0/4.

Upper bounding Θ1: When |β| ≤ 2
s1/4ε1/c0

,

1− (1− γ)2|β| ≤ 1−
(

1− 4

s1/4ε1/c0
γ

)
=

4

s1/4ε1/c0
γ = 4sc0/4.

Again since the sum of squares of Fourier coefficients is 1, |Θ1| ≤ 4sc0/4.
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Upper bounding Θ2: From Property 2 of Theorem 3.2.5, we have that for any

v ∈ V and β with |β| > 2
s1/4ε1/c0

, the probability that |π̃uv(β)| < 1/εsc0/4, for a random

neighbor u, is at most εsc0/4. Hence |Θ2| ≤ sc0/4.

Fix u, v, w chosen by the test. Recall that we thought of fv as having domain∏
i∈[L] Ωi where Ωi = {0, 1}2d corresponds to the set of coordinates in Buv(i) ∪B′uv(i).

Since the grouping of coordinates depends on u, we define Inf
u
i [fv] := Infi[fv] where

i ∈ [L] for explicitness. From Equation (3.2.1),

Inf
u
i [fv] =

∑
α⊆[2dL]:i∈π̃uv(α)

f̂v(α)2,

where π̃uv(α) := {i ∈ [L] : ∃j ∈ [R], (j ∈ α ∨ j +R ∈ α) ∧ πuv(j) = i}.

Claim 3.4.6. Let τu,v,w :=
∑

i∈[L] Inf
u
i [T1−γfv] · Inf

u
i [T1−γfw].

E
u,v,w

∣∣∣∣∣ET2
[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)

]
− E
T2

[
k∏
i=1

T1−γfv(xi)

]
E
T2

[
k∏
i=1

T1−γfw(yi)

]∣∣∣∣∣
≤ 2O(k)

√
Eu,v,w τu,v,w

γ
.

Proof. It is easy to check that
∑

i∈[L] Inf
u
i [T1−γfv] ≤ 1/γ (c.f., [Wen13, Lemma 1.13]).

For any u, v, w, since the test distribution satisfies the conditions of Theorem 2.4.2, we

get∣∣∣∣∣ET2
[
k∏
i=1

T1−γfv(xi)T1−γfw(yi)

]
− E
T2

[
k∏
i=1

T1−γfv(xi)

]
E
T2

[
k∏
i=1

T1−γfw(yi)

]∣∣∣∣∣ ≤ 2O(k)

√
τu,v,w
γ

.

The claim follows by taking expectation over u, v, w and using the concavity of square

root.

From Claim 3.4.6 and Claim 3.4.4 and using the fact the the marginals of the

test distribution T2 on (x1, . . . , xk) is the same as marginals on (y1, . . . , yk), for γ :=

s(c0+1)/4ε1/c0 , we get

E
u,v,w

E
X,Y ∈T2

[
k∏
i=1

fv(xi)fw(yi)

]
≥ −O(ksc0/8)−2O(k)

√
Eu,v,w τu,v,w

γ
+E
u

(
E
v

E
T2

[
k∏
i=1

T1−γfv(xi)

])2

.

(3.4.6)
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If τu,v,w in expectation is large, there is a standard way of decoding the assignments

to a labeling to the label cover instance, as shown in Claim 3.4.7.

Claim 3.4.7. If G is an at most s-satisfiable instance of Label-Cover then

E
u,v,w

τu,v,w ≤
s

γ2
.

Proof. Note that
∑

α⊆[2R](1−γ)|α|f̂v(α)2 ≤ 1. We will give a randomized labeling to the

Label-Cover instance. For each v ∈ V , choose a random α ⊆ [2R] with probability

(1 − γ)|α|f̂v(α)2 and assign a uniformly random label j in α to v; if the label j ≥ R,

change the label to j −R and with the remaining probability assign an arbitrary label.

For u ∈ U , choose a random neighbor w ∈ V and a random β ⊆ [2R] with probability

(1− γ)|β|f̂w(β)2, choose a random label ` in β and assign the label π̃uw(`) to u. With

the remaining probability, assign an arbitrary label. The fraction of edges satisfied by

this labeling is at least

E
u,v,w

∑
i∈[L]

∑
(α,β):i∈π̃uv(α),i∈π̃uw(β)

(1− γ)|α|+|β|

|α| · |β|
f̂v(α)2f̂w(β)2.

Using the fact that 1/r ≥ γ(1− γ)r for every r > 0 and γ ∈ [0, 1], we lower bound 1
|α|

and 1
|β| by γ(1− γ)|α| and γ(1− γ)|β| respectively. The above is then lower bounded by

γ2
E

u,v,w

∑
i∈[L]

 ∑
α:i∈π̃uv(α)

(1− γ)2|α|f̂v(α)2

 ∑
β:i∈π̃uw(β)

(1− γ)2|β|f̂w(β)2

 = γ2
E

u,v,w
τu,v,w.

Since G is at most s-satisfiable, the labeling can satisfy at most s fraction of constraints

and the above equation is upper bounded by s.

Lemma 3.4.3 follows from the above claim and Equation 3.4.6.

Proof of Theorem 3.1.2. Using Theorem 3.2.5, the size of the CSP instance G produced

by the reduction is N = nr22O(r)
and the parameter s ≤ 2−d0r . Setting r = Θ(log log n),

gives that N = 2poly(logn) for a constant k. Lemma 3.4.3 and Equation 3.4.2 imply

that

O(ksc0/8) + 2O(k) s
(1−3c0)/8

ε3/2c0
≥ 1

2t − 1
.

Since k is a constant, this gives that t = Ω(log log n).
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3.5 Improvement to covering hardness of 4-LIN

In this section, we prove Theorem 3.1.4. We give a reduction from an instance of

Label-Cover, G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 3.2.4, to a 4-LIN-CSP

instance G = (V, E). The set of variables V is V × {0, 1}2R. Any assignment to V is

given by a set of functions fv : {0, 1}2R → {0, 1}, for each v ∈ V . The set of constraints

E is given by the following test which checks whether fv’s are long codes of a good

labeling to V .

Long Code Test T3

1. Choose u ∈ U uniformly and neighbors v, w ∈ V of u uniformly and independently

at random.

2. Choose x, x′, z, z′ uniformly and independently from {0, 1}2R and y from {0, 1}2L.

Choose (η, η′) ∈ {0, 1}2L × {0, 1}2L as follows: Independently for each i ∈ [L],

(ηi, ηL+i, η
′
i, η
′
L+i) is set to

(a) (0, 0, 0, 0) with probability 1− 2ε,

(b) (1, 0, 1, 0) with probability ε and

(c) (0, 1, 0, 1) with probability ε.

3. For y ∈ {0, 1}2L, let y◦πuv ∈ {0, 1}2R be the string such that (y◦πuv)i := yπuv(i) for

i ∈ [R] and (y ◦ πuv)i := yπuv(i−R)+L otherwise. Given η ∈ {0, 1}2L, z ∈ {0, 1}2R,

the string η ◦ πuv · z ∈ {0, 1}2R is obtained by taking coordinate-wise product of

η ◦ πuv and z. Accept iff

fv(x)+fv(x+y◦πuv+η◦πuv·z)+fw(x′)+fw(x′+y◦πuw+η′◦πuw·z′+1) = 1 (mod 2).

(3.5.1)

(Here by addition of strings, we mean the coordinate-wise sum modulo 2.)

Lemma 3.5.1 (Completeness). If G is an YES instance of Label-Cover, then there

exists f, g such that each of them covers 1− ε fraction of E and they together cover all

of E.
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Proof. Let ` : U ∪ V → [L] ∪ [R] be a labeling to G that satisfies all the constraints.

Consider the assignments given by fv(x) := x`(v) and gv(x) := xR+`(v) for each v ∈ V .

On input fv, for any pair of edges (u, v), (u,w) ∈ E, and x, x′, z, z′, η, η′, y chosen by

the long code test T3, the LHS in (3.5.1) evaluates to

x`(v)+x`(v)+y`(u)+η`(u)z`(v)+x
′
`(w)+x

′
`(w)+y`(u)+η

′
`(u)z

′
`(w)+1 = η`(u)z`(v)+η

′
`(u)z

′
`(w)+1.

Similarly for gv, the expression evaluates to ηL+`(u)zR+`(v) + η′L+`(u)z
′
R+`(w) + 1. Since

(ηi, η
′
i) = (0, 0) with probability 1 − ε, each of f, g covers 1 − ε fraction of E . Also for

i ∈ [L] whenever (ηi, η
′
i) = (1, 1), (ηL+i, η

′
L+i) = (0, 0) and vice versa. So one of the two

evaluations above is 1 (mod 2). Hence the pair of assignment f, g cover E .

Lemma 3.5.2 (Soundness). Let c0 be the constant from Theorem 3.2.5. If G is at most

s-satisfiable with s < δ10/c0+5

4 , then any independent set in G has fractional size at most

δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph

G. For every variable v ∈ V , let fv : {0, 1}2R → {0, 1} be the indicator function

of the independent set restricted to the vertices that correspond to v. Since I is an

independent set, we have

E
u,v,w

E
x,x′,
z,z′,
η,η′,y

[
fv(x)fv(x+ y ◦ πuv + η ◦ πuv · z)fw(x′)fw(x′ + y ◦ πuw + η′ ◦ πuw · z′ + 1)

]
= 0.

(3.5.2)

For α ⊆ [2R], let π⊕uv(α) ⊆ [2L] be the set containing elements i ∈ [2L] such that if

i < L there are an odd number of j ∈ [R] ∩ α with πuv(j) = i and if i ≥ L there are

an odd number of j ∈ ([2R] \ [R]) ∩ α with πuv(j − R) = i− L . It is easy to see that

χα(y ◦ πuw) = χπ⊕uv(α)(y). Expanding fv in the Fourier basis and taking expectation

over x, x′ and y, we get that

E
u,v,w

∑
α,β⊆[2R]:π⊕uv(α)=π⊕uw(β)

f̂v(α)2f̂w(β)2(−1)|β| E
z,z′,η,η′

[
χα(η ◦ πuv · z)χβ(η′ ◦ πuw · z′)

]
= 0.

(3.5.3)
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Now the expectation over z, z′ simplifies as

E
u,v,w

∑
α,β⊆[2R]:π⊕uv(α)=π⊕uw(β)

f̂v(α)2f̂w(β)2(−1)|β| Pr
η,η′

[α · (η ◦ πuv) = β · (η′ ◦ πuw) = 0̄]︸ ︷︷ ︸
=:Termu,v,w(α,β)

= 0,

(3.5.4)

where we think of α, β as the characteristic vectors in {0, 1}2R of the corresponding

sets. We will now break up the above summation into different parts and bound each

part separately. For a projection π : [R] → [L], define π̃(α) := {i ∈ [L] : ∃j ∈ [R], (j ∈

α ∨ j +R ∈ α) ∧ (π(j) = i)}. We need the following definitions.

Θ0 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)=∅

Termu,v,w(α, β),

Θ1 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅,
max{|α|,|β|}≤2/δ5/c0

Termu,v,w(α, β),

Θ2 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅,
max{|π̃uv(α)|,|π̃uw(β)|}≥1/δ5

Termu,v,w(α, β),

Θ3 := E
u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β)6=∅,
max{|α|,|β|}>2/δ5/c0 ,

max{|π̃uv(α)|,|π̃uw(β)|}<1/δ5

Termu,v,w(α, β).

Lower bounding Θ0: If π⊕uw(β) = ∅, then |β| is even. Hence, all the terms in Θ0

are positive and

Θ0 ≥ E
u,v,w

Termu,v,w(0, 0) = E
u

(
E
v
f̂v(0)2

)2

≥
(

E
u,v
f̂v(0)

)4

= δ4.

Upper bounding Θ1: Consider the following strategy for labeling vertices u ∈ U

and v ∈ V . For u ∈ U , pick a random neighbor v, choose α with probability f̂v(α)2

and set its label to a random element in π̃uv(α). For w ∈ V , choose β with probability

f̂w(β)2 and set its label to a random element of β. If the label j ≥ R, change the label

to j − R. The probability that a random edge (u,w) of the label cover is satisfied by
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this labeling is

E
u,v,w

∑
α,β:

π̃uv(α)∩π̃uw(β)6=∅

f̂v(α)2f̂w(β)2 1

|π̃uv(α)| · |β|
≥ E

u,v,w

∑
α,β:

π⊕uv(α)=π⊕uw(β) 6=∅
max{|α|,|β|}≤2/δ5/c0

f̂v(α)2f̂w(β)2 δ
10/c0

4

≥ |Θ1| ·
δ10/c0

4
.

Since the instance is at most s-satisfiable, the above is upper bounded by s. Choosing

s < δ10/c0+5

4 , will imply |Θ1| ≤ δ5.

Upper bounding Θ2: Suppose |π̃uv(α)| ≥ 1/δ5, then note that

Pr
η,η′

[α · (η ◦πuv) = β · (η′ ◦πuw) = 0] ≤ Pr
η

[α · (η ◦πuv) = 0] ≤ (1− ε)|π̃uv(α)| ≤ (1− ε)1/δ5
.

Since the sum of squares of Fourier coefficients of f is less than 1 and ε is a constant,

we get that |Θ2| ≤ 1/2Ω(1/δ5) < O(δ5).

Upper bounding Θ3: From the third property of Theorem 3.2.5, we have that

for any v ∈ V and α ⊆ [2R] with |α| > 2/δ5/c0 , the probability that |π̃uv(α)| < 1/δ5,

for a random neighbor u of v, is at most δ5. Hence |Θ3| ≤ δ5.

On substituting the above bounds in Equation (3.5.4), we get that δ4−O(δ5) ≤ 0

which gives a contradiction for small enough δ. Hence there is no independent set in G

of size δ.

Proof of Theorem 3.1.4. From Theorem 3.2.5, the size of the CSP instance G pro-

duced by the reduction is N = nr22O(r)
and the parameter s ≤ 2−d0r. Setting r =

Θ(log log n), gives that N = 2poly(logn) and the size of the largest independent set

δ = 1/poly(log n) = 1/poly(logN).
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Chapter 4

Parallel Repetition

4.1 Introduction

4.1.1 Label-cover and general two-prover games

A label cover instance is specified by a bipartite graph G = ((X,Y ), E), a pair of

alphabets ΣX and ΣY and a set of constraints ψe : ΣX → ΣY on each edge e ∈ E. The

goal is to label the vertices of X and Y using labels from ΣX and ΣY so as to satisfy

as many constraints are possible.

This problem is often viewed as a two-prover game. The verifier picks an edge (x, y)

at random and sends x to the first prover and y to the second prover. They are to

return a label of the vertex that they received, and the verifier accepts if the labels they

returned are consistent with the constraint ψ(x,y). The value of this game G, denoted by

val(G), is given by the acceptance probability of the verifier maximized over all possible

strategies of the provers. These are also called projection games as the constraints are

functions from ΣX to ΣY . They are called general games if the constraint on each edge

is an arbitrary relation ψ(x,y) ⊆ ΣX × ΣY .

These two notions are equivalent in the sense that val(G) is exactly equal to the

maximum fraction of constraints that can be satisfied by any labelling.

This problem is central to the PCP Theorem [AS98, ALM+98] and almost all inap-

proximability results that stem from it. The (Strong) PCP Theorem can be rephrased

as stating that for every ε > 0, it is NP-hard to distinguish whether a given label cover

instance has val(G) = 1 or val(G) < ε. An important step is a way to transform in-

stances with val(G) < 1− ε to instances G′ with val(G′) < ε. This is usually achieved
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via the Parallel Repetition Theorem.

4.1.2 Parallel Repetition

The k-fold repetition of a game G, denoted by Gk, is the following natural definition

— the verifier picks k edges (x1, y1), · · · , (xk, yk) from E uniformly and independently,

sends (x1, . . . , xk) and (y1, . . . , yk) to the provers respectively, and accepts if the labels

returned by them are consistent on each of the k edges.

If val(G) = 1 to start with then val(Gk) still remains 1. How does val(Gk) decay

with k if val(G) < 1? Turns out even this simple operation of repeating a game

in parallel has a counter-intuitive effect on the value of the game. It is easy to see

that val(Gk) ≥ val(G)k as provers can use a same strategy as in G to answer each

query (xi, yi). The first surprise is val(Gk) is not val(G)k, but sometimes can be much

larger than val(G)k. Fortnow [For89] presented a game G for which val(G2) > val(G)2,

Feige [Fei91] improved this by giving an example of game G with val(G) < 1 but

val(G2) = val(G). Indeed, there are known examples [Raz11] of projection games where

val(G) = (1− ε) but val(Gk) ≥
(

1− ε
√
k
)

for a large range of k.

The first non trivial upper bound on val(Gk) was proven by Verbitsky [Ver96] who

showed that if val(G) < 1 then the value val(Gk) must go to zero as k goes to infin-

ity. It is indeed true that val(Gk) decays exponentially with k (if val(G) < 1). This

breakthrough was first proved by Raz [Raz98], and has subsequently seen various simpli-

fications and improvements in parameters [Hol09, Rao11, DS14a, BG14]. The following

statements are due to Holenstein [Hol09], Dinur and Steurer [DS14a] respectively.

Theorem 4.1.1 (Parallel repetition theorem for general games). Suppose G is a pro-

jection game such that val(G) ≤ 1− ε and let |ΣX | |ΣY | ≤ s. Then, for any k ≥ 0,

val(Gk) ≤
(
1− ε3/2

)Ω(k/ log s)
.

Theorem 4.1.2 (Parallel repetition theorem for projection games). Suppose G is a

projection game such that val(G) ≤ ρ. Then, for any k ≥ 0,

val(Gk) ≤
(

2
√
ρ

1 + ρ

)k/2
.
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Although a lot of these results are substantial simplifications of earlier proofs, they

continue to be involved and delicate. Arguably, one might still hesitate to call them

elementary proofs.

Recently, Moshkovitz [Mos14] came up with an ingenious method to prove a parallel

repetition theorem for certain projection games by slightly modifying the underlying

game via a process that she called fortification. The method of fortification suggested in

[Mos14] was a rather mild change to the underlying game and proving parallel repetition

for such fortified projection games was sufficient for most applications. The advantage

of fortification was that parallel repetition theorem for fortified games had a simple,

elementary and elegant proof as seen in [Mos14].

4.1.3 Fortified games

Fortified games will be described more formally in Section 4.2, but we give a very rough

overview here. Moshkovitz showed that there is an easy way to bound the value of re-

peated game if we knew that the game was robust on large rectangles. We shall first

need the notion of symmetrized projection games.

Symmetrized Projection games. Given a projection game G on ((X,Y ), E),

the symmetrized game Gsym is a game on the (multi)graph ((X,X), E′) such that,

there is an edge (x, x′) ∈ E′, for every y ∈ Y with (x, y), (x′, y) ∈ E, with the constraint

π(x,y)(σx) = π(x′,y)(σx′).

For projection games, it would be more convenient to work with the above sym-

metrized version for reasons that shall be explained shortly. It is not hard to see that

val(G) and val(Gsym) are within a quadratic factor of each other. Thus for projection

games, we shall work with the game Gsym instead of the original game G.

Definition 4.1.3 ((δ, ε)-robust games). Let G be a two-prover game on ((X,X), E).

For any pair of sets S, T ⊆ X, let GS×T be the game where the verifier chooses his
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random query (x, x′) ∈ E conditioned on the event that x ∈ S and x′ ∈ T .

G is said to be (δ, ε)-robust if for every S, T ⊆ X with |S|, |T | ≥ δ|X|, we have that

val(GS×T ) ≤ val(G) + ε.

Theorem 4.1.4 (Parallel repetition for robust projection games [Mos14]). Let G be a

projection game on a bi-regular bipartite graph ((X,Y ), E) with alphabets ΣX and ΣY .

For any positive integer k, if ε1, ε2, δ > 0 are parameters such that 2δ|ΣY |k−1 ≤ ε1 and

Gsym is (δ, ε2)-robust, then1

val(Gksym) ≤ (val(Gsym) + ε2)k + kε1.

Not all projection games are robust on large rectangles, but Moshkovitz suggested

a neat way of slightly modifying a projection game and making it robust. This process

was called fortification.

On a high level, for any two-prover game, the verifier chooses to verify a constraint

corresponding to an edge (x, y) but is instead going to sample several other dummy

vertices and give the provers two sets of D vertices {x1, . . . , xD} and {y1, . . . , yD} such

that x = xi and y = yj for some i and j. The provers are expected to return labels of

all D vertices sent to them but the verifier checks consistency on just the edge (x, y).

This is very similar to the “confuse/match” perspective of Feige and Kilian [FK94].

To derandomize this construction, Moshkovitz [Mos14] uses a pseudo-random bi-

partite graph where given a vertex w, the provers are expected to return labels of

all its neighbours (Definition 4.2.1). The most natural candidate of such a pseudo-

random graph is an (δ, ε)-extractor, as we really want to ensure that conditioned on

“large enough events” S and T , the underlying distribution on the constraints does

not change much. This makes a lot of intuitive sense, since on choosing a random

element of S and then a random neighbour, the extractor property guarantee that the

induced distribution on vertices in X is ε-close to uniform. Thus, it is natural to expect

that conditioning on the events S and T should not change the underlying distribu-

tion on the constraints by more than O(ε). This was the rough argument in [Mos14],

1The following is the corrected statement from [Mos15].
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which unfortunately turns out to be false. We elaborate on this in Section 4.4.1 and

Section 4.6.

A recent updated version [Mos15] of [Mos14] provides an different argument for

the fortification lemma using a stronger extractor. We discuss this at the end of Sec-

tion 4.1.4.

4.1.4 Results

We present a fix to the approach of [Mos14], by describing a way to transform any given

game instance G into a robust instance G∗ with the same value following the framework

of [Mos14] but using a different graph for concatenation, and a different analysis.

We first describe a concrete counter-example to the original argument of [Mos14]

in Section 4.4.1, that shows concatenating (Definition 4.2.1) with an arbitrary (δ, ε)-

extractor is insufficient. In fact, as we show in Section 4.7, concatenating (Defini-

tion 4.2.1) with any left-regular graph with left-degree by o(1/εδ) fails to make arbi-

trary instances (δ, ε)-robust. We instead use bipartite graphs called fortifiers, defined

below.

Definition 4.1.5 (Fortifiers). A bipartite graph H = ((W,X), EH) is an (δ, ε1, ε2)-

fortifier if for any set S ⊆ W such that |S| ≥ δ|W |, if π is the probability distribution

on X induced by picking a uniformly random element w from S, and a uniformly

random neighbor x of w, then

|π − u|1 ≤ ε1 and ‖π − u‖2 ≤ ε2

|X|
.

Notice that a fortifier is an extractor, with the additional condition that the `2-

distance of π from the uniform distribution is small. This is what enables us to show

that concatenation (Definition 4.2.1) with a fortifier produces a robust instance.

Theorem 4.1.6 (Fortifiers imply robustness). Suppose G is a two-prover projection

game on a bi-regular graph ((X,Y ), E). Then, for any ε, δ > 0, if H = ((W,X), EH)

is a (δ, ε, ε)-fortifier, then the symmetrized concatenated game G∗ = (H ◦ G)sym is

(δ,O(ε))-robust.
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In particular, bipartite spectral expanders are good fortifiers, as Lemma 4.2.5 shows.

This gives us our main result which follows from Lemma 4.2.5 and Theorem 4.1.6:

Corollary 4.1.7. Let G be a two-prover projection game on a bi-regular graph ((X,Y ), E).

For any ε, δ > 0, if H = ((X,X), EH) is a symmetric bipartite graph that is a λ-

expander (Definition 2.5.1) with λ < ε
√
δ then the symmetrized concatenated game

G∗ = (H ◦G)sym is (δ, 4ε)-robust.

As one would expect, the condition on the fortifier can be relaxed if the underlying

graph of Gsym is a spectral-expander. We prove the following theorem. Theorem 4.1.6

follows from this theorem by setting λ0 = 1.

Theorem 4.1.8. Let G be a two-prover projection game on bi-regular graph ((X,Y ), E)

where Gsym is a λ0-expander. Then for any ε, δ > 0, if H = ((W,X), EH) is a

(δ, ε, (ε/λ0))-fortifier, then the symmetrized concatenated game G∗ = (H ◦ G)sym is

(δ,O(ε))-robust.

One could ask if the definition of a fortifier is too strong, or if a weaker object would

suffice. We argue in Section 4.4 that if we proceed through concatenation, fortifiers are

indeed necessary to make a game robust.

Bipartite Ramanujan graphs of degree Θ(1/ε2δ) have λ < ε
√
δ and are therefore

good fortifiers. In Section 4.7, we show that this is almost optimal by proving a lower

bound of Ω(1/εδ) on the left-degree of any graph that can achieve (δ, ε)-robustness.

This shows that our construction of using expanders to achieve robustness is almost

optimal, in terms of the degree of the fortifier graph. Note that the degree of the forti-

fier is important as the alphabet size of the concatenated game is the alphabet size of

the original game raised to the degree. There are known explicit constructions of bi-

regular (δ, ε)-extractors with left-degree poly(1/ε)poly log(1/δ). But the lower bound

in Section 4.4 shows that (δ, ε)-extractors are not fortifiers if δ � ε, which is usually

the relevant setting (see Theorem 4.1.4).

Independently, the author of [Mos14] came up with a different argument to obtain

robustness of projection games by using a (δ, εδ)-extractor. This is described in an
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updated version [Mos15] present on the author’s homepage.

It is also seen from Theorem 4.1.8 that bi-regular (δ, εδ)-extractors are indeed

(δ, ε, ε)-fortifiers as well. Using an expander instead is arguably simpler, and is almost

optimal.

Remark 4.1.9. Although this fix provides a proof of a Parallel Repetition Theorem for

projection games following the framework of [Mos14], the degree of the fortifier is too

large to get the required PCP for proving optimal hardness of the Set-Cover problem

that Dinur and Steurer [DS14a] obtained. See [Mos15] for a discussion on this.

Remark about parallel repetition for general games

A fairly straightforward generalization Theorem 4.1.4 to robust general games on bi-

regular graphs is the following.

Claim 4.1.10. Let G be a general two-prover game on a bi-regular graph ((X,Y ), E)

with alphabets ΣX and ΣY . For any positive integer k, if ε, δ > 0 are parameters such

that 2δ|ΣX × ΣY |k−1 ≤ ε and G is (δ, ε)-robust, then

val(Gk) ≤ (val(G) + ε)k + kε.

One could attempt a fortifying any game by using a fortifier on both sides. But

the issue with this procedure is that it makes |ΣX | = exp(1/δ) and in such scenar-

ios δ|ΣX | � 1 making it infeasible to ensure 2δ|ΣX × ΣY |k−1 ≤ ε. Hence, though

Lemma 4.1.10 may be useful in cases where we know that the game G is robust via

other means, the technique of fortification via concatenation increases the alphabet size

too much for Lemma 4.1.10 to be applicable.

For the case of projection games, this is not an issue as Theorem 4.1.4 only requires

2δ|ΣY |k−1 < ε and concatenating Gsym by a fortifier only increases |ΣX | and keeps

ΣY unchanged. Thus, one can indeed choose ε and δ small enough to give a parallel

repetition theorem for a robust version of an arbitrary projection game.
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4.2 Preliminaries

Notation

• For any vector a, let |a|1 :=
∑

i |ai|, and ‖a‖ :=
√∑

i a
2
i be the `1 and `2-norms

respectively.

• We shall use uS to refer to the uniform distribution on a set S. Normally, the set

S would be clear from context and in such case we shall drop the subscript S.

• For any vector a, we shall use a‖ to refer to the component along the direction of

u, and a⊥ to refer to the component orthogonal to u.

• We shall assume that the underlying graph for the games is bi-regular.

We define the concatenation operation of a two-prover games with a bipartite graph

that was alluded to in Section 4.1.3.

Definition 4.2.1 (Concatenation). Given bipartite graphs G = ((X,Y ), E), H = ((W,X), EH)

where H is regular with left degree D, the concatenated graph H ◦ G = ((W,Y ), E′)

is a multigraph such that there is an edge (w, y) ∈ E′, for every pair of edges (w, x) ∈

EH , (x, y) ∈ E.

Given a two-prover projection game on a graph G = ((X,Y ), E) with a set of con-

straints ψ, a pair of alphabets ΣX and ΣY , a bipartite graph H = ((W,X), EH) with left

degree D, the concatenated game is a game on the multigraph H ◦G = ((W,Y ), E′) with

ΣW = ΣD
X . For any edge (w, y) ∈ E′ which corresponds to the pair (w, x) ∈ E, (x, y) ∈

EH , the constraint π(w,y)(a) := πx,y(ax), where a ∈ ΣD
X and ax is the alphabet at the

coordinate corresponding to x (assuming some fixed ordering of vertices in X). The

distribution over the edges in the multigraph H ◦G is uniform.

Remark 4.2.2. The concatenated game H ◦G is also a projection game. We shall be

working with the symmetrized version G∗ = (H ◦G)sym of this game.

Lemma 4.2.3 (Concatenation preserves value). [Mos14] Given any two-prover game

on G, and a biregular bipartite graph H:

val(H ◦G) = val(G).
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Expanders, extractors and fortifiers

Recall the definition of expanders and extractors from Chapter 2. Our earlier definition

of a fortifier (Definition 4.1.5) has properties of both an expander and an extractor.

Indeed, we can build fortifiers by just taking a product an expander and an extractor.

Lemma 4.2.4. Let H1 = ((V,W ), E1) is a bi-regular (δ, ε)-extractor, and let H2 =

(W,E2) is a regular λ-expander. Denote H ′2 to be the bipartite graph ((W,W ), E2).

Then the concatenated graph H1 ◦H ′2 is an (δ, ε, λ2ε/δ)-fortifier.

Proof. Let H2 be the normalized adjacency matrix of graph H2. Let πS denotes the

probability distribution on W obtained by picking an element of S ⊆ V uniformly and

then choosing a random neighbour in H1. Thus, H2πS is the probability distribution

on W induced by the uniform distribution on S and a random neighbour in H1 ◦H ′2.

We want to show for all S such that |S| ≥ δ|V |,

|H2πS − u|1 ≤ ε and ‖H2πS − u‖2 ≤ λ2ε/δ

|X|
.

The first inequality is obtained as |H2πS − u|1 = |H2(πS − u)|1 ≤ |πS − u|1 ≤ ε, where

we use the fact that |H2v|1 ≤ |v|1 for any v and any normalized adjacency matrix, and

|πS − u|1 ≤ ε follows form the extractor property of H1.

As for the second inequality, observe that

‖πS − u‖2 ≤ max
w∈W

(πS(w)) · |πS − u|1 ≤ ε · max
w∈W

(πS(w)).

For a bi-regular extractor2 H1 of left-degree D, the degree of any w ∈W is (|V | ·D/|W |)

and the number of edges out of S is least δ|V | · D. Hence, maxw πS(w) ≤ 1/(δ|W |),

which is achieved if all neighbours of w are in S. Therefore,

‖πS − u‖2 ≤ (ε/δ)

|W |

⇒ ‖H2(πS − u)‖2 ≤ λ2 |W |
|X|
‖πS − u‖2 ≤ |W |

|X|
· λ

2 · (ε/δ)
|W |

=
λ2 · (ε/δ)
|X|

.

2The bound on the right-degree guaranteed by bi-regularity is crucial for this claim. Without this,
extractors are not sufficient for fortification (Section 4.4.1).
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In particular, any bi-regular (δ, ε)-extractor is a (δ, ε, ε/δ)-fortifier. Hence, if the

underlying graph G of the two-prover game is a
√
δ-expander, then Theorem 4.1.8

states that merely using an (δ, ε)-extractor as suggested in [Mos14] would be sufficient

to make it (δ,O(ε))-robust.

Also, since any graph is trivially a 1-expander, a bi-regular (δ, εδ)-extractor is also

an (δ, ε, ε)-fortifier. The following lemma also shows that expanders are also fortifiers

with reasonable parameters as well.

Lemma 4.2.5. Let H = (X,EH) be any λ-expander. Then, for every δ > 0, the

bipartite graph H ′ = ((X,X), EH) is also a (δ,
√
λ2/δ, λ2/δ)-fortifier. In particular, if

λ ≤ ε
√
δ, then H ′ is an (δ, ε, ε)-fortifier.

Proof. Let H be the normalized adjacency matrix of H. Let S ⊆ W such that |S| ≥

δ|W |. We have,

‖u⊥S ‖2 ≤
1

δ|W |
.

Hence, by the expansion property of H,

‖HuS − u‖2 := ‖Hu⊥S ‖2 ≤ λ2 · |W |
|X|
· ‖u⊥S ‖2 ≤

λ2/δ

|X|
.

|HuS − u|1 ≤
√
λ2/δ follows from above and Cauchy-Schwarz inequality.

Although Lemma 4.2.5 shows that expanders are also fortifiers for reasonable pa-

rameters, the construction in Lemma 4.2.4 is more useful when the underlying graph for

the two-prover game is already a good expander. For example, if the underlying graph

G was a δ-expander, then Theorem 4.1.8 suggests that we only require a (δ, ε, ε/δ)-

fortifier. Lemma 4.2.4 implies that an (δ, ε)-extractor is already a (δ, ε, ε/δ)-fortifier

and hence is sufficient to make the game robust. The main advantage of this is the

degree of δ-expanders must be Ω(1/δ2) whereas we have explicit (δ, ε)-extractors of

degree (1/ε2) exp(poly log log(1/δ)) which has a much better dependence in δ. This

dependence on δ is crucial for certain applications.
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4.3 Sub-games on large rectangles

Consider a projection game on graph G = ((X,Y ), E) which is biregular with degree

d. For a biregular bipartite graph H = ((W,X), EH) with degree dH , consider the

symmertized concatenated game G∗ = (H ◦G)sym = ((W,W ), E′). Let S, T ⊆ W and

µS (or µT ) denote the induced distributions on X obtained by picking a uniformly

random element of S (or T ) and taking a uniformly random neighbour in H. In the

next claim, we give an expression for the distribution of verifier checking the underlying

constraint on (x, x′) in the subgame (G∗)S×T .

Claim 4.3.1. For any x, x′ ∈ X such that there are edges (x, y), (x′, y) ∈ E,

πx,x′ =
µS(x)µT (x′)∑

(x,x′)∈Gsym

µS(x)µT (x′)
. (4.3.1)

Proof. Let dS,x, dT,x′ denote the degree of x to S and x′ to T respectively in H. Let

NH(x) denote the neighbor set of a vertex x in H. Then,

µS(x) =
dS,x∑
z∈X dS,z

.

The probability πx,x′ of the verifier in (G∗)S×T checking a constraint corresponding

to a constraint (x, x′) in Gsym, is proportional to the number of edges (w,w′) in the

graph G∗ such that w ∈ S ∩NH(x), and w′ ∈ T ∩NH(x′). Since every such edge in G∗

was equally likely, we have:

πx,x′ =
dS,x · dT,x′∑

(x,x′)∈Gsym
dS,xdT,x′

=
µS(x)µT (x′)∑

(x,x′)∈Gsym

µS(x)µT (x′)
.

One way to show that the concatenated game G∗ is (δ,O(ε))-robust would be to

show that the above distribution πx,x′ is O(ε)-close to uniform whenever |S|, |T | have

density at least δ because then the distribution on constraints that the verifier is going

to check in G∗S×T is O(ε) close to the distribution on constraints in G. Hence, up to

additive factor of O(ε) the quantity val(G∗S×T ) is same as val(G). The main question

here what properties should H satisfy so that the above distribution is close to uniform?
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4.4 Fortifiers are necessary

To prove that fortifiers are necessary, we shall restrict ourselves to games on graphs

G = ((X,X), E). We show that if a bipartite graph H = ((W,X), EH), makes a game

on a particular graph G, (δ,O(ε))-robust, then H is a good fortifier.

As mentioned earlier, if the graph G had some expansion properties, then the re-

quirements on the graph H to concatenate with can be relaxed. Thus, naturally, the

worst case graph G is one that expands the least — a matching.

Lemma 4.4.1 (Fortifiers are necessary). Let ε, δ > 0 be small constants. Let H =

((W,X), EH) be a bi-regular graph, and let G = ((X,X), E) be a matching. Suppose that

for every subset S, T ⊆ W with |S|, |T | ≥ δ|W |, the distribution (defined in Equation

(4.3.1)) induced by the sub game on S × T of G∗ := (H ◦ G)sym on the edges of G is

ε-close to uniform. Then, for every S ⊆W with |S| ≥ δ|W |,

|µS − u|1 = ε, (4.4.1)

‖µS − u‖2 =
O(ε)

|X|
. (4.4.2)

Proof. It is clear that (4.4.1) is necessary as the distribution on constraints in the

sub-game G∗S×W (as defined in (4.3.1)) is essentially µS (as µT in this case is uniform).

As for (4.4.2), let us assume that

‖µS − u‖2 =
c

|X|
.

Taking T = S, we obtain that the distribution (defined in Equation (4.3.1)) induced by

the game G∗S×S on the edges of G is given by

πx,x =
µS(x)2∑
x µS(x)2

=

(
|X|

1 + c

)
· µS(x)2,
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where the last equality used the fact that ‖µS‖2 =
∥∥µ⊥S ∥∥2

+ ‖u‖2.

∑
x∈X

∣∣∣∣( |X|c+ 1

)
· µS(x)2 − 1

|X|

∣∣∣∣ =

(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x)2 − c+ 1

|X|2

∣∣∣∣
=

(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1

|X|

∣∣∣∣ · (µS(x) +

√
c+ 1

|X|

)

≥
(

1√
1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1

|X|

∣∣∣∣
≥

(
1√

1 + c

)
·

((√
1 + c − 1

)
−
∑
x∈X

∣∣∣∣µS(x) − 1

|X|

∣∣∣∣
)

≥
(

1√
1 + c

)
·
((√

1 + c − 1
)
− ε

)
.

Thus, if the distribution on constraints is ε-close to uniform, then the above lower

bound forces c = O(ε).

4.4.1 General (non-regular) extractors are insufficient

Suppose H = ((W,X), EH) is an arbitrary (δ,O(ε))-extractor and G∗ is the sym-

metrized concatenated game. Consider a possible scenario where there is a subset

S ⊆W with |S| ≥ δ|W | such that µS is of the form

µS =

(
ε,

1− ε
|X| − 1

, . . . ,
1− ε
|X| − 1

)
.

Notice that this is a legitimate distribution that may be obtained from a large subset S

as |µS − u|1 is easily seen to be at most 2ε. However, if G = ((X,X), E) was d-regular

with d = o(|X|), then using (4.3.1), the probability mass on the edge (1, 1) on the

sub-game over S × S is

π1,1 =

 ε2

ε2 +O
(
εd
|X|

)
 ≈ 1.

In other words, if such a distribution µS can be induced by the extractor, then the

provers can achieve value close to 1 in the game G∗S×S by just labelling the edge (1, 1)

correctly. Thus, G∗ is not even (δ, 0.9)-robust.

In Section 4.6 we show that we can adversarially construct a (δ,O(ε))-extractor,

although non-regular, that induces such a skew distribution. In Section 4.7 we also

show that left-regular graphs of left-degree o(1/δε) are not fortifiers.
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4.5 Robustness from fortifiers

In this section, we show that concatenating a symmetrized two-prover game by forti-

fier(s) yields a robust game as claimed by Theorem 4.1.8.

Lemma 4.5.1 (Distributions from large rectangles are close to uniform). Let G =

((X,X), E) be a graph of a symmetrized two-prover game such that |X| = n. Let µS

and µT be two probability distributions such that∣∣∣µ⊥S ∣∣∣
1
≤ ε1 and

∣∣∣µ⊥T ∣∣∣
1
≤ ε1, (4.5.1)∥∥∥µ⊥S ∥∥∥2

≤
(ε2

n

)
and

∥∥∥µ⊥T ∥∥∥2
≤
(ε2

n

)
. (4.5.2)

If the bipartite graph G is a λ0-expander then the distribution on edges (x, y) of G given

by (4.3.1) is (2ε1 + ε2
1 + 2λ0 · ε2)-close to uniform.

As described in Section 4.3, if H is a (δ, ε1, ε2)-fortifier, then for any set S and T

of density at least δ, the distribution on the constraints of G∗S×T is given by (4.3.1).

Applying the above lemma for the graph of the symmetrized game yields that the value

of the game on any large rectangle can change only by the above bound on the sta-

tistical distance. By setting the parameters, Theorem 4.1.8 follows immediately from

Lemma 4.5.1. Further, Theorem 4.1.7 also follows from Lemma 4.5.1 and Lemma 4.2.5

as any graph is trivially a 1-expander.

The rest of this section would be devoted to the proof of Lemma 4.5.1. For conve-

nience, we let d be the left-degree (and hence also, right-degree) of the biparite graph

G. We shall prove Lemma 4.5.1 by proving the following two claims.

Claim 4.5.2.

∑
(x,y)∈G

∣∣∣∣∣∣∣
µS(x)µT (y)∑

(x,y)∈G
µS(x)µT (y)

− µS(x)µT (y)

d/n

∣∣∣∣∣∣∣ ≤ λ0 · ε2

Claim 4.5.3.

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)

d/n
− 1

n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0 · ε2
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Clearly, Lemma 4.5.1 follows from Claim 4.5.2 and Claim 4.5.3.

Proof of Claim 4.5.2. Let G also denote the normalized biadjacency matrix of G. Ob-

serve that
∑

(x,y)∈G µS(x)µT (y) = d·〈GµS , µT 〉. If we resolve µS and µT in the direction

of the uniform distribution and the orthogonal component, we have

〈GµS , µT 〉 = 〈u,u〉 +
〈
Gµ⊥S , µ

⊥
T

〉
=

1

n
+
〈
Gµ⊥S , µ

⊥
T

〉
⇒

∣∣∣∣〈GµS , µT 〉 − 1

n

∣∣∣∣ ≤ λ0 ·
∥∥∥µ⊥S ∥∥∥ · ∥∥∥µ⊥T ∥∥∥

≤
(
λ0 · ε2

n

)
. (using (4.5.2))

Therefore,

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)

d 〈GµS , µT 〉
− µS(x)µT (y)

d/n

∣∣∣∣ ≤ ∑
(x,y)∈G

(
µS(x)µT (y)

d 〈GµS , µT 〉

)
|1 − 〈GµS , µT 〉|

≤ λ0 · ε2.

Proof of Claim 4.5.3.

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)

d/n
− 1

n · d

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1

n2

∣∣∣∣ .
Since µS(x) = 1

n + µ⊥S (x) and µT (y) = 1
n + µ⊥T (y),

(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1

n2

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µ⊥S (x)

n
+
µ⊥T (y)

n
+ µ⊥S (x)µ⊥T (y)

∣∣∣∣
(Using triangle inequality) ≤ 1

d

∑
(x,y)∈G

∣∣∣µ⊥S (x)
∣∣∣+

1

d

∑
(x,y)∈G

∣∣∣µ⊥T (y)
∣∣∣

+
(n
d

) ∑
(x,y)∈G

∣∣∣µ⊥S (x)µ⊥T (y)
∣∣∣

=
∣∣∣µ⊥S ∣∣∣

1
+
∣∣∣µ⊥T ∣∣∣

1
+
(n
d

) ∑
(x,y)∈G

∣∣∣µ⊥S (x)µ⊥T (y)
∣∣∣ ,

where the last equality uses the fact that G is a bi-regular graph. Define fS(x) ≡ |µ⊥S (x)|

is a vector with the entrywise absolute values of µ⊥S , and similarly fT . Then, the RHS
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above equation reduces to∣∣∣µ⊥S ∣∣∣
1

+
∣∣∣µ⊥T ∣∣∣

1
+
(n
d

) ∑
(x,y)∈G

∣∣∣µ⊥S (x)µ⊥T (y)
∣∣∣ =

∣∣∣µ⊥S ∣∣∣
1

+
∣∣∣µ⊥T ∣∣∣

1

+
(n
d

)
·
∑

(x,y)∈G

fS(x)fT (y)

=
∣∣∣µ⊥S ∣∣∣

1
+
∣∣∣µ⊥T ∣∣∣

1
+ n 〈GfS , fT 〉

(Using (4.5.1)) ≤ 2ε1 + n · 〈GfS , fT 〉 . (4.5.3)

A simple bound for n · 〈GfS , fT 〉 would n
∥∥Gµ⊥S ∥∥∥∥µ⊥T ∥∥ by Cauchy-Schwarz inequality.

We can use the expansion of G again to estimate this better. Consider the decomposi-

tion fS = α1 · u + f⊥S and fT = α2 · u + f⊥T . It follows that α1 = |fS |1 and α2 = |fT |1,

and hence α1, α2 ≤ ε1 by (4.5.1). Hence,

n · 〈GfS , fT 〉 = α1 · α2 + n ·
〈
Gf⊥S , f

⊥
T

〉
≤ ε2

1 + n
∥∥∥Gf⊥S ∥∥∥∥∥∥f⊥T ∥∥∥

≤ ε2
1 + n · λ0 ·

∥∥∥µ⊥S ∥∥∥ · ∥∥∥µ⊥T ∥∥∥
(Using (4.5.2)) ≤ ε2

1 + λ0ε2.

Combining this with (4.5.3), we get∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)

d/n
− 1

n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0ε2.
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4.6 An explicit extractor that does not provide robustness

Let H = ((W,X), EH) be any (δ, ε)-extractor. Let us assume that the extractor is left-

regular with left-degree D, and let m = |W | and n = |X|. For any x ∈ X and S ⊆ W ,
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let dS(x) denote the degree of x in S. Let us fix one S ⊂W such that |S| = δ|W |.

We will transform the graph H so that the distribution induced by the set S looks

like the counter-example described in Section 4.4.1 in the following two steps by altering

the edges in the subgraph S ×X:

1. First change the degree into X from S to be exactly uniform.

2. Next further change the degrees into X from S to be like the counterexample

Both these operations can be achieved in a monotone fashion: for every x ∈ X, the

neighborhood of every vertex is either a superset, or a subset of its neighborhood before

each operation.

We will show that moving the edges this way does not perturb the indegree distribu-

tion from other large sets by too much, and the resulting graph is a (δ,O(ε)) extractor

as long as the number of edges we relocate is at most O(εδ ·mD). This process will

preserve the left-regularity of H but would not preserve bi-regularity.

First let us move edges (monotonically) from S into X create the uniform dis-

tribution on X. When doing this, the degree of each vertex changes by ∆S(x) :=

|dS(x)− δmD
n |, where dS(x) was the old degree. From the extractor property, we know

that: ∑
x∈X

∆S(x) =
∑
x∈X

(δmD)

∣∣∣∣ dS(x)∑
dS(x)

−
(

1

n

)∣∣∣∣ ≤ εδ ·mD. (4.6.1)

Every vertex x ∈ X now has degree dSavg. Fix some vertex x1 ∈ X, and relocate

from every other x 6= x1 any set of ε · dSavg edges to be incident on x1. Thus, if d′S(x)

refers to the new degrees, we have d′S(x1) is (1 + εn)dSavg where as d′S(x) is (1− ε)dSavg

for every other x 6= x1.

The further change in degrees incurred on any x ∈ X is ∆′S(x) :=
∣∣d′S(x)− δmD

n

∣∣.
Since we this process only relocates O(ε · dSavg|X|) edges, we have

∑
x∈X

∆′S(x) =
∑
x∈X

∣∣d′S(x)− dSavg

∣∣ ≤ O(n · ε · dSavg) = O(εδ ·mD). (4.6.2)
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Thus, the neighbourhood of any vertex x has changed additively by at most ∆S(x)+

∆′S(x). Therefore, for any subset T ⊆W of size at least δ|W |,

∑
x∈X

∣∣d′T (x)− dTavg

∣∣ ≤ ∑
x∈X

∣∣dT (x)− dTavg

∣∣ +
∑
x∈X

∣∣d′T (x)− dT (x)
∣∣

≤ ε|T |D +
∑
x∈X

(
∆S(x) + ∆′S(x)

)
≤ ε|T |D + O(εδ ·mD) (using (4.6.1) and (4.6.2))

≤ O(ε · |T |D).

Thus, the new graph after relocating edges is still an (δ,O(ε))-extractor. This extractor,

induces a distribution similar to the one described in Section 4.4.1 and hence cannot

provide robustness.

4.7 Lower bounds on degree of fortifiers

In this section, we will show that an attempt to make a game (δ, ε)-robust by concate-

nating any left-regular graph with left degree D fails if D ≤ o(1/εδ).

Lemma 4.7.1. Let H = ((W,X), EH) be a left-regular bipartite graph with left-degree

D = 1/(c · εδ) for some c > 0, and small enough constants ε, δ. Then, there exists a

subset S ⊆ W with |S| ≥ δ|W | such that if p was the distribution on X induced by the

uniform distribution on S then

‖p− u‖2 ≥ Ω(cε)

|X|
.

Proof. Let davg = |W |D/|X|. Note that at most |X|/2 vertices x satisfy deg(x) ≥ 2davg.

Further, if there is a set S of |X|/4 vertices x that deg(x) < (0.5)davg, then if p is the

distribution on X induced by the uniform distribution on W , then |p−u|1 > 1/4 which

implies that ‖p− u‖22 ≥
1

4|X| by Cauchy-Schwarz.

Otherwise, there exists X ′ ⊂ X such that |X ′| = c εδ2|X| and for each x ∈ X ′

we have (0.5)davg < deg(x) < 2davg. Consider the set S0 of all neighbours of X ′. If

D < 1/(cεδ), we have |S0| ≤ 2c δ2ε · |W |D = 2δ|W | which is a very small fraction of

|W | when δ is small enough. Consider an arbitrary set S1 ⊆ W such that |S1| = δm,
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with S1 ∩ S0 = ∅. Let S2 = S0 ∪ S1. Let π1, π2 be the probability distribution on X

induced by S1, S2 respectively. Note that |S2| ≤ 3δ|W |.

For every x ∈ X ′, we know that π1(x) = 0 and π2(x) = Ω
(

1
δ|X|

)
. Therefore,

‖π1 − π2‖2 ≥ Ω

(
cδ2ε|X|
δ2|X|2

)
=

Ω(cε)

|X|
.

Since ‖π1 − π2‖ ≤ ‖π1 − u‖ + ‖π2 − u‖, we have that one of the sets S1 or S2 shows

the validity of the lemma

We thus immediately infer the following:

Corollary 4.7.2. For all small enough δ, ε > 0, no left-regular graph H = ((W,X), EH)

with left-degree D = o(1/εδ) is an (δ, ∗, ε)-fortifier.

Note that any (δ, ε, ε)-fortifier is in particular an (δ, ε)-extractor, and hence we also

have that D = Ω((1/ε2) log(1/δ)) [RT00]. We also point out that the construction of

Lemma 4.2.5 has left-degree D = Õ(1/ε2δ). The above essentially shows this construc-

tion is almost optimal.
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Chapter 5

Inapproximability of Bi-Covering

5.1 Introduction

In this chapter, we study the Bi-Covering problem - Given a graph G(V,E), find two

(not necessarily disjoint) sets A,B ⊆ V such that A∪B = V and that every edge e ∈ E

belongs to either the graph induced by A or to the graph induced by B. The goal is to

minimize max{|A|, |B|}.

The problem we study is closely related to the problem of Channel Allocation which

was studied in [GKSW06]. The Channel Allocation Problem can be described as follows:

there is a universe of topics, a fixed number of channels and a set of requests where

each request is a subset of topics. The task is to send a subset of topics through each

channel such that each request is satisfied by set of topics from one of the channel

i.e. for every request there must exists at least one channel such that the set of topics

present in that channel is a superset of the set of topics from the request. Of course,

one can achieve this task trivially by sending all topics through one channel. But, the

optimization version of Channel Allocation Problem asks for a way to satisfy all the

request by minimizing the maximum number of topics sent through a channel.

Any connected undirected graph G(V,E) on n vertices and m edges along with an

integer k can be viewed as a special case of channel allocation problem - The set of

topics is a set of n vertices, each edge represents a request, where the requested set of

topics corresponding to an edge is a pair of its endpoints and the number of channels

is k. If we fix the number of channels to k = 2 then the optimization problem exactly

corresponds to the Bi-Covering problem. Specifically, the optimization problem asks

for two subsets A and B of V minimizing max{|A|, |B|} such that A∪B = V and every

edge is totally contained in a graph induced by either A or B.
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5.2 Results

Getting 2 approximation for Bi-Covering problem is trivial (by setting A = B = V).

We show that Bi-Covering problem is hard to approximate within any factor strictly

less than 2 assuming a strong Unique Games Conjecture (UGC) similar to the one in

[BK09] (see Conjecture 5.3.3).

Theorem 5.2.1. Let ε > 0 be any small constant. Assuming a strong Unique Games

Conjecture (Conjecture 5.3.3), given a graph G(V,E), it is NP-hard to distinguish be-

tween following two cases:

1. G has Bi-Covering of size at most (1/2 + ε)|V |.

2. Any Bi-Covering of G has size at least (1− ε)|V |.

In particular, it is NP-hard (assuming strong UGC) to approximate Bi-Covering

within a factor 2− ε for every ε > 0.

Given this structural hardness result, we get a 3
2 − ε hardness of Bi-Covering

restricted to bipartite graphs by transforming a hard instance from Theorem 5.2.1 into

a bipartite graph in a natural way (getting a 3
2 -approximation is easy - given a bipartite

graph on X and Y with |X| ≥ |Y |, one can take arbitrary partition X into two equal

sized parts X1 and X2 and set the Bi-Covering to be X1 ∪ Y and X2 ∪ Y ).

Theorem 5.2.2. Assuming the strong Unique Games Conjecture, for every ε > 0,

Bi-Covering is NP-hard to approximate within a factor 3
2 −ε for bi-partite graphs.

Our Theorem 5.2.1 implies hardness result for the following well known problem:

Max-Bi-Clique problem is as follows:

Input: A bipartite graph G(X,Y,E) with |X| = |Y | = n.

Output: Find largest k such that there exists two subsets A ⊆ X,B ⊆ Y of size k

and the graph induced on (A,B) is a complete bipartite graph.

Inapproximability of Max-Bi-Clique problem has been studied extensively [AFWZ95,

BS02, Fei02, Kho06]. Feige[Fei02] showed that using an assumption of average case
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hardness of 3SAT instance, Max-Bi-Clique cannot be approximated within any con-

stant factor in polynomial time (and hence within nδ for some δ > 0 using known

amplification technique [AFWZ95, BS02]). Feige-Kogan [FK04] showed that assuming

SAT /∈ DTIME(2n
3/4+ε

) there is no 2(logn)δ approximation for Max-Bi-Clique. They

also showed that it is NP-hard to approximate Max-Bi-Clique within any constant

factor assuming Max−Clique (finding a maximum sized clique in a graph) does not

have a n/2c
√

logn-approximation. Khot [Kho06] later proved a similar inapproximabil-

ity result but assuming NP * ∩ε>0 BPTIME(2n
ε
) using a quasi-random PCP. It is an

important open problem to extend similar hardness results based on weaker complexity

assumptions [AMS11]. In particular, it is still not known if UGC implies a constant

factor hardness for Max-Bi-Clique. A straightforward corollary from Theorem 5.2.1

(see 5.5) implies that we get similar hardness results for Max-Bi-Clique based on

Conjecture 5.3.3.

Corollary 5.2.3. Assuming strong Unique Games Conjecture, it is NP-hard to approx-

imate Max-Bi-Clique within any constant factor.

As mentioned above, the hardness factor can be boosted to nδ for some δ > 0 using

known techniques. (such as described in [AFWZ95, BS02])

UGC and strong UGC:

Unique games conjecture so far helped in understanding the tight inapproximability

factors of many problems including, but not limited to, Vertex Cover [KR08], optimal

algorithm for every Max-CSP[Rag08], Ordering CSPs[GHM+11], characterizing strong

approximation resistance of CSPs[KTW14] etc. The inherent difficulty in showing hard-

ness results assuming Unique Games Conjecture for the problems that we study

is that we need some kind of expansion property on the unique games instance which

it lacks. It is shown that Unique Games are easy when the constraint graph is an

expander[AKK+08]. In general, in [ABS10] it is shown that Unique Games are easy

when a normalized adjacency matrix of a constraint graph has very few eigenvalues

close to 1. So the natural direction is to modify the unique games instance to get some
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expansion property but weak enough so that it is not tractable by the techniques of

[AKK+08], [ABS10]. A similar Strong Unique Games Conjecture, which has a

weak expansion property, has been used earlier in [BK09] and [Sve10] to show inapprox-

imability results for minimizing weighted completion time on a single machine with

precedence constraints and minimizing makespan in precedence constrained scheduling

on identical machines respectively. Our result adds another interesting implication of

Unique Games Conjecture with weak expansion property, namely inapproximabil-

ity of Max-Bi-Clique and Bi-Covering. We hope that our results will help motivate

study of Strong Unique Games Conjecture and ultimately answering the question

about its equivalence to the Unique Games Conjecture.

5.3 Preliminaries

Let q be any prime for convenience. We are interested in space of functions from Fnq

to R. Define inner product on this space as 〈f, g〉 = 1
qn
∑

x∈Fnq f(x)g(x). Let ωq be the

qth root of unity. For a vector α ∈ Fnq , we will denote αi the ith coordinate of vector α.

The Fourier decomposition of a function f : Fnq → R is given as

f(x) =
∑
α∈Fnq

f̂(α)χα(x)

where χα(x) := ω
〈α,x〉
q and a Fourier coefficient f̂(α) := 〈f, χα〉.

Our hardness result is based on a variant of Unique Games conjecture. First, we

define what the Unique game is:

Definition 5.3.1 (Unique-Games). An instance G = (U, V,E, [L], {πe}e∈E) of the

Unique-Games constraint satisfaction problem consists of a bi-regular bipartite graph

(U, V,E), a set of alphabets [L] and a permutation map πe : [L] → [L] for every edge

e ∈ E. Given a labeling ` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by `

if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction

of the edges.
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The following is a conjecture by Khot [Kho02a] which has been used to prove many

tight inapproximability results.

Conjecture 5.3.2 (Unique Games Conjecture[Kho02a]). For every sufficiently

small δ > 0 there exists L ∈ N such that the following holds. Given a an instance

G = (U, V,E, [L], {πe}e∈E) of Unique-Games it is NP-hard to distinguish between

the following two cases:

• YES case: There exist an assignment that satisfies at least (1− δ) fraction of the

edges.

• NO case: Every assignment satisfies at most δ fraction of the edge constraints.

Our hardness results are based on the following stronger conjecture which is similar

to the one in Bansal-Khot [BK09]. We refer readers to [BK09] for more discussion on

comparison between these two conjectures.

Conjecture 5.3.3 (Strong Unique Games Conjecture). For every sufficiently

small δ, γ, η > 0 there exists L ∈ N such that the following holds: Given an instance

G = (U, V,E, [L], {πe}e∈E) of Unique-Games which is bi-regular, it is NP-hard to

distinguish between the following two cases:

• YES case: There exist sets V ′ ⊆ V such that |V ′| ≥ (1−η)|V | and an assignment

that satisfies all edges connected to V ′.

• NO case: Every assignment satisfies at most γ fraction of the edge constraints.

Moreover, the instance satisfies the following expansion property. For every set

S ⊆ V , |S| = δ|V |, we have |Γ(S)| ≥ (1 − δ)|U |, where Γ(S) := {u ∈ U | ∃v ∈

Ss.t.(u, v) ∈ E}.

Remark 5.3.4. We would like to point out that the above conjecture differs from the

one in [BK09] in the completeness case. In [BK09], the Yes instance has a guarantee

that there exists sets V ′ ⊆ V,U ′ ⊆ U with |V ′| ≥ (1− η)|V |, |U ′| ≥ (1− η)|U | such that

all edges between V ′ and U ′ are satisfied.
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The Bi-Covering problem is:

Input: A graph G(V,E)

Output: Two subsets A,B ⊆ V such that A ∪ B = V and every edge (u, v) ∈ E

either {u, v} ⊆ A or {u, v} ⊆ B. Minimize max{|A|, |B|}.

The optimal value of a Bi-Covering on instance G(V,E) is always at least |V |/2

and hence getting a 2-approximation for this problem is trivial by setting A = V and

B = ∅. In order to beat 2-approximation, one should be able to solve the following

weaker problem.

Problem

For small enough ε > 0, given an undirected graph G(V,E), distinguish between the

following two cases:

1. There exists two disjoint sets A,B ⊆ V , |A|, |B| ≥ (1/2 − ε)|V | such that there

are no edges between A and B.

2. There exists no two disjoint sets A,B ⊆ V |A|, |B| ≥ ε|V | such that there are no

edges between A and B.

In this section, we show that it is UG-Hard to distinguish between (1) and (2) for

any constant ε > 0 proving Theorem 5.2.1.

5.4 Dictatorship Test

In order to prove the (2 − ε) hardness, we first start with a dictatorship test that we

will use as a gadget in the actual reduction.

We design a dictatorship test for the problem Bi-Covering. We are interested in

functions f : Fnq → R. f is called a dictator if it is of the form f(x1, x2, . . . , xn) = xi

for some i ∈ [n].
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Figure 5.1: Dictatorship Gadget

Dictatorship gadget:

For convenience, we will let q > 2 be any prime number for the description of the

dictatorship gadget. Let G(Fq, E) be a 3-regular graph on Fq (where we identify the

elements of Fq by {0, 1, . . . . , q − 1}) with self loops as shown in Figure 5.1:

It is constructed as follows : Take a cycle on 0, 1, 2, . . . , q− 1, 0, then add a self loop

to every vertex except to the vertex 0. Remove the edge (bq/2c, bq/2c + 1), add an

edge (0, bq/2c). Finally, to make it 3-regular, add a self loop to the vertex bq/2c + 1.

This completes the description of graph G. Since the graph G is connected and non-

bipartite, the symmetric Markov operator T defined by the random walk in G has

r(T ) < 1. One crucial thing about G is that it has two large disjoint subsets of vertices,

namely {1, 2, . . . , bq/2c} and {bq/2c+1.bq/2c+2, . . . , q−1}, with no edges in between.

Consider the vertex set V = FRq for some constant R. We will construct a graph

H on V as follows : (x, y) ∈ (FRq )2 forms an edge in H iff they satisfy the following

condition:

∀i ∈ [R], (xi, yi) ∈ E ,
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x is adjacent to y iff T⊗R(x↔ y) 6= 0.

Completeness:

Let f : FRq → R be any dictator, say ith dictator i.e. f(x) = xi. By letting set A to be

f−1(0)∪f−1(1)∪ . . .∪f−1(bq/2c) and set B to be f−1(0)∪f−1(bq/2c+1)∪f−1(bq/2c+

2)∪ . . .∪ f−1(q− 1), it can be seen easily that there is no edge between sets A \B and

B \A. More precisely,

A \B = {x ∈ FRq | xi ∈ {1, 2, . . . , bq/2c}

B \A = {y ∈ FRq | yi ∈ {bq/2c+ 1, bq/2c+ 2, . . . , q − 1}}

By the property of Markov operator T⊗R, (x, y) are not adjacent if (xi, yi) /∈ E for some

i ∈ [R]. Hence, there are no edges between A \ B and B \ A. Thus, the optimal value

is at most

1

|V |
·max{|A|, |B|} =

1

2
+

1

2q
.

Soundness:

Let A,B ⊆ V such that A ∪ B = V and f, g : FRq → {0, 1} be the indicator functions

of sets A \ B and B \ A respectively. Suppose |A \ B| = ε|V | and |B \ A| = ε|V | for

some ε > 0 and that there are no edges in between A \B and B \A. We will show that

in this case, f and g must have a common influential co-ordinate. Since, there are no

edges between these sets, we have

E
x∼FRq ,

y∼T⊗R(x)

[f(x)g(y)] = 〈f, T⊗Rg〉 = 0

For the application of Invariance principle, Theorem 2.4.6, in our case we have

E[f ] = E[g] = ε > 0 and ρ = r(T ) < 1. Thus, for small enough τ := τ(ρ, ε) > 0,

Γρ(ε, ε)− τ > 0.
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We can now apply Theorem 2.4.6 to conclude that there exists i ∈ [R] and k ∈ N

independent of R such that

min(Inf≤ki (f), Inf≤ki (g)) ≥ δ,

for some δ(τ) > 0. Hence, unless f and g have a common influential co-ordinate,

1
|V | ·max{|A|, |B|} ≥ 1− ε. Thus, the optimum value is at least 1− ε

5.5 (2− ε)- inapproximability

The above dictatorship test for large enough q can be composed with the Unique Games

instance having some stronger guarantee (Conjecture 5.3.3) in a straightforward way

that gives (2− ε) hardness for every constant ε > 0 assuming UGC. Details as follows:

Let G = (U, V,E, [L], {πe}e∈E) be the given instance of Unique-Games with pa-

rameters δ < ε
4 , γ, η > 0 from Conjecture 5.3.3 . We replace each vertex v ∈ V by

a block of qL vertices, namely by a hypercube [q]L. We will denote this block by [v].

As defined in the dictatorship test, let G be the graph on Fq and T be the induced

symmetric Markov operator. For every pair of edges e1(u, v1) and e2(u, v2) in G, we

will add the following edges between [v1] and [v2] : Let π1 and π2 be the permutation

constraint associated with e1 and e2 respectively. x ∈ [v1] and y ∈ [v2] are connected

by an edge iff T⊗L((x◦π−1
1 )↔ (y ◦π−1

2 )) 6= 0 (where (x◦π−1)i = xπ−1(i) for all i ∈ [L])

i.e. for every i ∈ [L], xπ−1
1 (i) and yπ−1

2 (i) are connected by an edge in graph G. This

completes the description of a graph. Let’s denote this graph by H.

Lemma 5.5.1 (Completeness). If there exists an assignment to vertices in G that

satisfies all edges connected to (1 − η) fraction of vertices in V then H has a Bi-

Covering of size at most (1− η)(1/2 + 1/2q) + η.

Proof. Fix a labeling ` such that for at least (1 − η) fraction of vertices in V in G, all

edges attached to them are satisfied. Suppose X be the set of remaining η fraction of
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vertices of V in G. For every vertex v ∈ V , consider the following two partitions of [v]:

Av = {x ∈ [q]L : x`(v) ∈ {1, . . . , bq/2c}}

Bv = {x ∈ [q]L : x`(v) ∈ {bq/2c}+ 1, bq/2c}+ 2, . . . , q}}

Cv = {x ∈ [q]L : x`(v) = 0}

Let A = ∪v∈V (Av ∪ Cv) ∪z∈X [z] and B = ∪v∈V (Bv ∪ Cv) ∪z∈X [z]. The claim is

that this is the required edge separating sets. To see this, consider any vertex pair

(a, b) such that a ∈ A \ B and b ∈ B \ A. We need to show that (a, b) must not be

adjacent in H. Suppose a ∈ [v1] and b ∈ [v2]. If v1 and v2 don’t have a common

neighbor then clearly, there is no edge between a and b. Suppose they have a common

neighbor u and let e1 = (u, v1) and e2 = (u, v2) be the edges and π1 and π2 be the

associated permutation constraints. Since X ⊆ A ∩ B, v1, v2 /∈ X. Hence ` satisfies

all constraints associated with v1 and v2. In particular, π1(`(v1)) = π2(`(v2)) =: j for

some j ∈ [L]. Since a ∈ Av1 , we have aπ−1
1 (j) = a`(v1) ∈ {1, . . . , bq/2c}}. Similarly,

bπ−1
2 (j) ∈ {bq/2c} + 1, bq/2c} + 2, . . . , q}. By the construction of edges in H, a and b

are not adjacent.

For any v, |Av ∪ Cv| = |Bv ∪ Cv| = (1
2 + 1

2q )qL. Thus,

|A| = |B| ≤
(
η + (1− η)

(
1

2
+

1

2q

))
|V |qL

Lemma 5.5.2 (Soundness). For every constant ε > 0, there exists a constant γ such

that, if G is at most γ-satisfiable then H has Bi-Covering of size at least 1− ε.

Proof. Suppose for contradiction, there exists an Bi-Covering of size at most (1− ε).

This means there exists two disjoint sets X,Y of size at least ε fraction of vertices in

H such that there are no edges in between X and Y . Let X∗ be the set of vertices in

v ∈ V such that [v]∩X ≥ ε
2 |[v]|. Similarly, Y ∗ be the set of vertices in v ∈ V such that

[v] ∩ Y ≥ ε
2 |[v]|. By simple averaging argument, |X∗| ≥ ε

2 |V | and |Y ∗| ≥ ε
2 |V |.

Lemma 5.5.3. The total fraction of edges connected to X∗ whose other end point is

in Γ(X∗) ∩ Γ(Y ∗) is at least 1
2 .
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Proof. Let G has left-degree d1 and right-degree d2. We have d1 = d2|V |
|U | . Suppose the

claim is not true, then at least 1
2 fraction of edges have there endpoint in U \Γ(Y ∗). As,

|U \ Γ(Y ∗)| ≤ δ|U |, the average degree of a vertex in U \ Γ(Y ∗) is at least (1/2)d2|X∗|
δ|U | ≥

(d2/2)·(ε/2)|V |
δ|U | which is greater than d1 as ε > 4δ.

For v ∈ X∗∪Y ∗, let fv : [q]L → {0, 1} be the indicator function of a set [v]∩(X∪Y ).

Define the following label set for v ∈ X∗ ∪ Y ∗ for some τ ′ > 0 and k ∈ N:

F(v) := {i ∈ [L] | Inf≤ki (fv) ≥ τ ′}

We have |F(v)| ≤ τ ′

k as
∑

i Inf≤ki (fv) ≤ k.

Lemma 5.5.4. There exists a constant τ ′ := τ ′(q, ε) and k := k(q, ε) such that for

every u ∈ U and edges e1(u, v), e2(u,w) such that v ∈ X∗ and w ∈ Y ∗, we have

πe1(F(v)) ∩ πe2(F(w)) 6= ∅

Proof. As there are no edges between X and Y , we have

E
(x◦π−1

e1
)∼FLq ,

(y◦π−1
e2

)∼T⊗L(x◦π−1
e1

)

[fv(x ◦ π−1
e1 )fw(y ◦ π−1

e2 )] = 0

By the soundness analysis of the dictatorship test, it follows that there exists i ∈ [L]

such that

min(Inf≤k
π−1
e1

(i)
(fv), Inf≤k

π−1
e2

(i)
(fw)) ≥ τ ′,

for some τ ′, k as a function of q and ε. Thus, i ∈ πe1(F(v)) and i ∈ πe2(F(w)).

Labeling:

Fix τ ′ and k from Lemma 5.5.4. We now define a labeling ` to vertices in X∗ ⊆ V

and in Γ(X∗) ∩ Γ(Y ∗) ⊆ U as follows: For a vertex v ∈ X∗ set `(v) to be an uniformly

random label from F(v). For u ∈ Γ(X∗) ∩ Γ(Y ∗), select an arbitrary neighbor w of u

in Y ∗ and set `(u) to be an uniformly random label from the set π(u,w)(F(w)) of size at

most k
τ ′ . Fix an edge (u, v) such that u ∈ Γ(X∗)∩Γ(Y ∗) and v ∈ X∗. By Lemma 5.5.4,
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for any w ∈ Y ∗ since π(u,w)(F(w)) ∩ π(u,v)(F(v)) 6= ∅, The probability that the edge

is satisfied by the randomized labeling is at least
(
τ ′

k

)2
. Thus in expectation, at least(

τ ′

k

)2
fraction of edges between X∗ and Γ(X∗)∩Γ(Y ∗) are satisfied. By Lemma 5.5.3,

at least 1
2 fraction of edges connected to X∗ are in between X∗ and Γ(X∗) ∩ Γ(Y ∗).

Finally using bi-regularity, this labeling satisfies at least 1
2
ε
2

(
τ ′

k

)2
fraction of edges in

G. Setting γ < 1
2
ε
2

(
τ ′

k

)2
completes the proof.

Proof of Theorem 5.2.1:

The proof follows from Lemma 5.5.1, Lemma 5.5.2 and Conjecture 5.3.3.

Proof of Theorem 5.2.2:

Given an input as a bipartite graph, there is a trivial 3/2 approximation for Bi-

Covering - Take set A to be the union of a smaller part and half of the larger bi

partition and B to be union of smaller part and remaining half of the larger part. It is

easy to see these two sets A and B satisfy the property of being a Bi-Covering. As

max{|A|, |B|} ≤ 3
4 |V |, this is a 3

2 approximation as OPT is at least |V |2 .

The 3
2 + ε inapproximability follows easily from the above (2− ε) inapproximability

for the general case. The reduction is as follows: Let G(V,E) be the given instance of

a Bi-Covering. Construct a natural bipartite graph G′ between V × V where (i, j)

forms an edge if (i, j) ∈ E (or (j, i) ∈ E). Fix a small enough constant ε > 0. It is

easy to see that if G has a solution of fractional size 1/2 + ε then so does G′. Next,

if there are sets A′ and B′ where 1
2|V | max{|A′|, |B′|} ≤ 3

4 − ε which satisfy the Bi-

Covering property, we have 1
2|V | |A

′ \ B′| = 1
2|V |(2|V | − |B

′|) ≥ 1 − (3
4 − ε) = 1

4 + ε

and similarly 1
2|V | |B

′ \ A′| ≥ 1
4 + ε. Note that A′ \ B′ and B′ \ A′ are two disjoint sets

whose size of union is at least (1 + 2ε)|V |. Thus, we can find two sets, say X ′ and Y ′ (

namely X ′ is intersection of A′ \ B′ with left part of the bipartite graph and Y ′ is the

intersection of B′ \ A′ with right part) of size at least ε|V | each, where X ′ is from left

side and Y ′ is from right side with no edges in between. We now think of X ′ and Y ′

as a subset of V . Let Z = X ′ ∩ Y ′. Partition Z into Z1 and Z2 of equal sizes. Take

X = Z1 ∪ (X ′ \ Y ′) and Y = Z2 ∪ (Y ′ \ X ′). It is now easy to verify that there are
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no edges in between X and Y in G and 1
|V | min{|X|, |Y |} ≥ ε

2 . Hence, if we can find

a solution of fractional cost 3
4 − ε in G′ in polynomial time then we can also find a

solution of fractional cost 1 − ε
2 in G in polynomial time and this gives a polynomial

time algorithm with approximation factor 2 − ε
2 for small enough constant ε > 0. As

Bi-Covering is UG hard to approximate within (2− ε) for all ε > 0 for general graph,

this gives a 3
2 + ε hardness for Bi-Covering in bipartite graph.

Proof of Corollary 5.2.3:

We prove it by giving reduction from Bi-Covering. Let G(V,E) be the given instance

of Bi-Covering. Construct a bipartite graph H between V × V where (i, j) forms an

edge if (i, j) /∈ E. Fix a small enough constant ε > 0. In one direction, if G has a

Bi-Covering of fractional size at most (1/2 + ε) then H ′ contains a (1/2 − ε)|V | ×

(1/2 − ε)|V | bipartite clique. In other direction, if H ′ has a bipartite clique of size

2ε|V | × 2ε|V | then let X ′ and Y ′ be the subset of vertices from left and right side of

bipartite clique. As before, let Z = X ′ ∩ Y ′ and Z1 and Z2 be the partition of Z of

equal size. Let X = (X ′ \Y ′)∪Z1 and Y = (Y ′ \X ′)∪Z2. It follows that |X|, |Y | is at

least ε|V | and are disjoint viewed as a subset of V . Also, there are no edges between X

and Y . Therefore, V \X and V \Y each of size at most (1−ε)|V | gives a Bi-Covering

of G. Thus, Theorem 5.2.1 implies that it is hard to distinguish between Bi−Clique

of size (1/2− ε)|V | and ε|V | which completes the proof of corollary.
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Chapter 6

Low Degree Test

6.1 Introduction

In this chapter, we present cube vs cube low degree test. Low degree tests are local tests

for the property of being a low degree function. These were the first property testing

results that were discovered, and are an important component in PCP constructions.

Such tests were studied in the 1990’s and their ballpark soundness behavior was more or

less understood. In this work we revisit these tests and give a new and arguably simpler

analysis for the cube vs. cube low degree test. Our proof method allows us to get a

soundness guarantee that is much closer to the conjectured optimal value. Discovering

the precise point in which soundness starts to hold is an intriguing open question that

captures an interesting aspect of local-testing in the small soundness regime.

Let us begin with a short introduction to low degree tests. A low degree test can

be described as a game between a prover and a verifier, in which the prover wants to

convince the verifier that a function f : Fm → F is a low degree polynomial. The most

straightforward way for the prover to specify f would be to give its value on each point

x ∈ Fm. However, in this way, to check that f has degree at most d the verifier would

have to read f on at least d+ 2 points. If we want a verifier that makes fewer queries

while keeping the error small, it is useful to move to a more redundant representation of

f . For example, the verifier can ask the prover to specify for every cube (affine subspace

of dimension 3) C ⊂ Fm, a function fC : C → F that is defined on the cube and is

obtained by restricting f to that cube. This is called a “cubes-table”, and similarly

one can consider a lines table (with an entry for every line), or a planes table (with an

entry for each plane).

Thus, in the cubes representation of a low degree function f : Fm → F, we have
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a table entry T (C) for every cube C and the value of that entry is supposed to be

T (C) = f |C . A general cubes table is a table T (·) indexed by all possible cubes and

the C-th entry is a low degree function on the cube C. Each T (C) is viewed as a local

function. Indeed the number of bits needed to specify T (C) is only O(d3 log |F|) which

is much smaller than
(
m+d
d

)
log |F| - the number of bits needed to represent a general

degree d function f on Fm.

The prover may cheat, as provers do, by giving a cubes table whose entries cannot be

“glued together” into any one global low degree function. This is where the agreement

test comes in. The verifier can check the table by reading two entries corresponding to

two cubes that have a non-trivial intersection, and checking that the function T (C1)

and the function T (C2) agree on points in the intersection of C1 ∩ C2.

Test 1 Cube vs. Cube agreement test.

1. Select a point x ∈ Fm.

2. Pick affine cubes C1, C2 randomly conditioned on C1, C2 3 x.

3. Read T (C1), T (C2) from the table and accept iff T (C1)(x) = T (C2)(x).

Let αCxC(T ) be the agreement of the table T , i.e. the probability of acceptance of the

test.

The test is local in that it accesses only two cubes. Different tests may differ in

the distribution underlying the agreement test (for example, Raz and Safra look at two

planes that intersect in a line, which clearly is a different distribution from choosing

two planes that intersect in a point), but they all check agreement on the intersection,

so we generally refer to all of these as agreement tests.

The interesting point, as proven by both Raz and Safra in [RS97], and by Arora

and Sudan in [AS97], is that such tests have small soundness error. For example, the

plane vs. plane theorem of Raz Safra is as follows,

Theorem 6.1.1 (Raz-Safra [RS97]). There is some δ > 0 such that for every d and

prime power q and every m ≥ 3 the following holds. Let F be a finite field |F| = q,

and let T (·) be a planes table, assigning to each plane P ⊂ Fm a bivariate degree d
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polynomial T (P ) : P → F. Let αP`P(T ) be as defined in Test 2.

For every ε ≥ (md/q)δ, if αP`P (T ) ≥ ε then there is a degree d function g : Fm → F

such that T (P ) = g|P on an Ω(ε) fraction of the planes.

Test 2 The Raz-Safra Plane vs. Plane agreement test.

1. Select an affine line ` ⊂ Fm.

2. Choose affine planes P1, P2 randomly conditioned on P1, P2 ⊃ `.

3. Read T (P1), T (P2) from the table and accept iff T (P1)(x) = T (P2)(x) for all x ∈ `.

Let αP`P(T ) be the agreement of the table T , i.e. the probability of acceptance of the

test.

A similar theorem was proven by Arora and Sudan for T a lines table and for a

natural test that checks if two intersecting lines agree on the point of intersection.

These results are called low degree tests although it makes sense to think of them as

theorems relating local agreement to global agreement. We refer to them as low degree

agreement test theorems.

Towards the soundness threshold.

The most important aspect of the low degree agreement theorems of [RS97, AS97] is

the fact that they have small soundness. Small soundness means that a cheating prover

won’t be able to fool the verifier into accepting with even a tiny ε > 0 probability,

unless the table has some non-trivial agreement with a global low degree function.

Small soundness of low degree tests was used inside PCP constructions for getting

PCPs with the smallest known soundness error. The fact that soundness holds for all

values of ε ≥ (d/q)δ was sufficient for the PCP constructions of [RS97, AS97]. It is

likely that finding the minimal threshold beyond which soundness is guaranteed to hold

will be important for determining the best possible PCP gaps.

Regardless of the PCP application, this encoding of a function f by its restrictions

to cubes (or to planes) is quite natural, and is a rare example of a property that has

such strong testability. The low degree agreement test theorems guarantee that even the
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passing of the test with tiny ε probability has non-trivial structural consequences. Per-

haps the best known comparable scenario is that of the long code, defined in [BGS98],

that has similar properties, and for which an extensive line of work has been able to

determine the precise threshold of soundness. Another setting with a similarly strong

soundness is related to the inverse theorems for the Gowers uniformity norms. In that

setting the function is given as a points-table, and the Gowers norm measures success

in a low degree test, so it is not altogether dissimilar from the situation here.

To summarize, one of our goals is to pinpoint the absolute minimal soundness value

for which a theorem as above holds. Can this threshold be, as it is in the aforementioned

cases, as small as the value of a random assignment? In other words, could it be true

that for every table whose agreement parameter is an additive ε > 0 above the value

that we expect from a random table, already some structure exists?

The best known value for δ for the plane vs. plane test is due to Moshkovitz

and Raz who proved in [MR08] that the plane vs. plane test has soundness for all

ε ≥ poly(d)/q1/8. But what is the correct exponent of q ?

We make progress on this question not for the plane vs. plane test but rather for

the cube vs. cube test. For our test, since the intersection consists of one point, the

soundness can not go below 1/q because the agreement of every table, even a random

one, is always at least 1/q.

Our main theorem is,

Theorem 6.1.2. There exist constants β1, β2 > 0 such that for every d, large enough

prime power q and every m ≥ 3 the following holds:

Let F be a finite field, |F| = q. Let T be a cubes table, assigning to each cube

C ⊂ Fm a degree d polynomial T (C) : C → F. Let αCxC(T ) be as defined in Test 1. If

αCxC(T ) ≥ ε for ε ≥ β1d
4/q1/2, then there is a degree d function g : Fm → F such that

T (C) = g|C on an β2ε fraction of the cubes.

The improvement over previous theorems is that the dependence on q is 1/q1/2

compared to 1/q1/8. It is an intriguing question whether the dependence on q can be

made inversely linear, i.e. 1/q.
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Remark 6.1.3. We don’t know the precise dependence of ε on the degree d. In this

work we made no attempt to optimize this dependence. We would like to point out that

our proof can be modified to change the dependence from d4 to d3. See Remark 6.3.14

for more details.

Simplified analysis.

While the line vs. line test considered by Arora and Sudan [AS97] is the most natural

to come up with, it is rather difficult to analyze. In contrast, one of the captivating

aspects of the Raz-Safra proof is that it is combinatorial, and the low degree aspect of

the table plays a role only in that it guarantees distance between distinct polynomials

on a line. Our analysis continues this combinatorial approach, and further simplifies it.

Unlike the Raz-Safra proof, we do not need to use induction on the dimension of the

ambient space m but rather recover the global structure from T “in one shot”. We rely

on ideas from direct product testing, [DG08, IKW12, DS14b], and on some spectral

properties of incidence graphs such as the cube-point graph.

Proof Outline.

Given a table T , whose agreement is some small ε, the proof must somehow come up

with the global low degree function g : Fm → F and then argue that on many of the

cubes indeed T (C) = g|C . Naively, we might try to define g at each point x according

to the most common value among all cubes containing x. This is a viable approach

when the agreement is close to 1, as is done, e.g. in the linearity testing theorem of

[BLR90]. However, when the agreement is a small ε > 0, this will simply not work as

we can see by considering the table half of whose entries are T (C) ≡ 0 and the other

half T (C) ≡ 1. The agreement of this table is an impressive αCxC(T ) = 1/2, and yet

the suggested definition of g according to majority will yield a random function that

might be quite far from any low degree function.

We get around this problem by taking a conditional majority. For every point

x ∈ Fm and value σ ∈ F we consider only cubes containing x for which T (C)(x) = σ.

These cubes already agree with each other on x and are thus likely to agree on any
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other point of their intersection. Since the cubes containing x cover every y ∈ Fm, we

can define a function fx,σ : Fm → F on the entire space Fm by taking the most popular

value among these cubes (i.e. the set of cubes whose value on x is σ). We choose a best

σ for each x and are left with a global function fx for each x.

The proof proceeds in three steps.

• Local structure: We show that this conditional majority definition is good, ob-

taining for each x and σ a function fx : Fm → F that is “local” in that it comes

from the cubes containing a point x. This is done in Section 6.3.1.

• Global Structure: We then show that there are many pairs x, y for which fx ≈ fy

thus finding a global g that agrees with many of the cubes. This is done in

Section 6.3.2.

• Low Degree: Finally, we show that g is very close to a true low degree function.

This is done by reduction to the Rubinfeld-Sudan low degree test [RS96] that

works in the high-soundness regime. This is done in Section 6.3.3.

Agreement tests: low degree tests and direct product tests.

The proof outline above resembles works on direct product testing, and this is no

coincidence. The low degree testing setting can be generalized to a more abstract

“agreement testing” in which a function f : X → Σ is represented not as a truth

table but as a collection of restrictions (f |S)S∈S where S = {S ⊂ X} is a collection

of subsets of X. A natural agreement test can be defined and studied. This type of

question was first suggested in work of Goldreich and Safra [GS97] in an attempt to

separate the algebraic aspect of the low degree test from the combinatorial. There has

been a follow-up line of work on this, [DR06, DG08, IKW12, DS14b], focusing especially

on the case where X is a finite set, X = [n], and S is the collection of all k-element

subsets of X.

In the work here we bring some of the ideas from that line of work, most notably

from [IKW12], back to the low degree testing question. The fact that our table entries
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have low degree gives us extra power which makes our proof simpler than that in the

abstract setting, yielding a particularly direct proof of a low degree agreement test.

Our proof makes an explicit use of the expansion properties of the relevant incidence

graphs (cube vs. line, cube vs. point etc.). This allows us to prove that for every table

T , different tests have similar agreement.

Lemma 6.1.4. Let T be a planes table, and let αPxP(T ) be the success probability of a

test with two planes that intersects on a point. Let αP`P(T ) be the success probability

of Test 2, then

αPxP(T )

(
1− d

q

)
≤ αP`P(T ) ≤ αPxP(T ) +

1

q
(1 + o(1)).

In fact, we proved a more general equivalence between tests, the general statement

appears on Section 6.4.

6.2 Preliminaries and Notations

6.2.1 Notations

All the graphs we discuss throughout the chapter are bipartite bi-regular graphs. Given

such graph G, whose sides are A,B we denote by 1 the all one vector, its size will be

implied by the context. For a subset of vertices A′ ⊂ A, we denote by 1A′ the indicator

vector for A′. For a vertex a ∈ A, we denote by N(a) ⊆ B the neighbors of a in G.

We use normalized inner product, such that for x, y ∈ Rn, 〈x, y〉 = 1
n

∑
i xiyi, which

means that 〈1,1〉 = 1. The norm is defined by ‖x‖ =
√
〈x, x〉.

We use the notation x ∼ S to denote x being sampled uniformly at random (u.a.r)

from the set S, in case this set S equals the entire space, we omit this symbol and simply

write Pra or Ea to describe choosing a uniform vertex a ∈ A. We use the notation I(E)

to denote the indicator random variable of the event E.

For two vectors u, v, we use the notation u
γ
≈ v if u and v are equal on at least 1− γ

of the coordinates.

Fix a vector space Fm. An affine space of S dimension k is defined by k+ 1 vectors
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x0, x1, . . . , xk such that x1, . . . , xk are linearly independent,

S = x0 + span(x1, . . . , xk) = {x0 + t1x1 + . . . tkxk | t1, . . . , tk ∈ F.}

A line is a 1-dimensional affine space, a plane is a 2-dimensional affine space, and a

cube is a 3-dimensional affine space. We will denote the set of all lines and cubes by L

and C be respectively. For a point x ∈ Fm let

Lx = {` ∈ L | ` 3 x} Cx = {C ∈ C | C 3 x}.

Similarly for a line ` ∈ L let C` be the set of all cubes that contains `.

6.2.2 Spectral Expansion Properties

In this section, we prove two properties of bi-regular bipartite graphs with good spectral

parameters. In an expander, the following is well known: if we sample a random neigh-

bor of a small, but not too small, set of vertices, we get a nearly uniform distribution

over the entire set of vertices. For our purposes, we will require something more. We

need to consider not only the distribution over the vertices, but also the distribution

over the edges. This is done in two lemmas below.

Definition 6.2.1. Let G = (A∪B,E) be a bi-regular bipartite graph, and let M ∈ RA×B

be the adjacency matrix normalized such that ‖M1‖ = 1, denote by λ(G) the value

λ(G) = max
v⊥1

{
‖Mv‖
‖v‖

}
.

This is really the second largest singular value of M , with a different normalization

(such that the maximal singular value equals 1).

Definition 6.2.2. Let G = (A ∪ B,E) be a bi-regular bipartite graph and let B′ ⊆ B

be a subset of vertices. Define the following two distributions Di : A × B ∪ ⊥ → [0, 1]

for i = 1, 2.

• D1 : Pick b ∈ B′ u.a.r. then pick a ∈ N(b) u.a.r.

• D2 : Pick a ∈ A u.a.r. If B′ ∩ N(a) = ∅, return ⊥. Else, pick b ∈ N(a) ∩ B′

u.a.r.
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Clearly if B′ = B then D1 = D2. Moreover, if G is sufficiently expanding, then even

for smaller B′ ( B, the distributions are similar. Indeed, for any event defined on the

edges, i.e. a subset E′ ⊂ E, the following lemma shows that the probability of E′ is

roughly the same under the two distributions.

Lemma 6.2.3. Let D1, D2 as defined in Definition 6.2.2. Let G = (A ∪ B,E) be a

bi-regular bipartite graph, then for every subset B′ ⊂ B of measure µ > 0 and every

E′ ⊂ E ∣∣∣∣ Pr
(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ ≤ λ(G)

√
µ
.

Where it is understood that if D2 output ⊥, we treat it as if (a, b) 6∈ E′.

We now state a similar lemma, for sampling two adjacent edges instead of a single

edge. We will need the graph to satisfy one more requirement.

Definition 6.2.4. Let G = (A ∪ B,E) be a bi-regular bipartite graph, such that every

two distinct b1, b2 ∈ B have exactly the same number of common neighbors (i.e for all

distinct b1, b2 ∈ B, |N(b1) ∩ N(b2)| is the same), and this number is non-zero. Let

B′ ⊆ B be a subset of vertices, we define the following distributions Di : (A×B×B)∪

⊥ → [0, 1], for i = 3, 4.

• D3 : Pick b1, b2 ∈ B′ u.a.r. then pick a ∈ N(b1) ∩N(b2) u.a.r.

• D4 : Pick a ∈ A u.a.r. If B′ ∩N(a) = ∅, return ⊥. Else, pick b1, b2 ∈ N(a) ∩B′

u.a.r.

Lemma 6.2.5. Let D3, D4 be as defined in Definition 6.2.4. Let G = (A ∪ B,E) be

a bi-regular bipartite graph, such that every two distinct b1, b2 ∈ B have exactly the

same number of common neighbors (i.e for all distinct b1, b2 ∈ B, |N(b1)∩N(b2)| is the

same), and this number is non-zero. Then for every subset B′ ⊂ B of measure µ > 0

and every E′ ⊂ E∣∣∣∣ Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣ ≤ 2λ(G)

µ
+

1

µ2dA
+

1

µ2 |B|
,

where dA is the degree on A side, and it is understood that if D4 output ⊥, we treat it

as if (a, b) 6∈ E′.

The proofs of these two lemmas appear in Section 6.6.
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6.2.3 Inclusion Graphs and Their Spectral Gap

We record here the expansion of several bi-partite inclusion graphs that will be relevant

for our analysis. We prove the claims about these spectral gaps in Section 6.5. Unless

otherwise stated, G(A,B) denotes a bipartite inclusion graph between A and B where

a ∈ A is connected to b ∈ B if a ⊆ b. The relation of containment will be clear from

the sets A and B.

For example, the in the graph G1(L\Lx, Cx), the left side vertices A are all the lines

that do not contain x ∈ Fm, and the right side vertices are all the cubes that contain

x. There is an edge between a line ` and a cube C if ` ⊂ C.

Recall Definition 6.2.1 of λ(G) for a bipartite graph G.

Lemma 6.2.6. We have for every m ≥ 6,

(1) For G1(L \ Lx, Cx) , λ(G1) ≈ 1√
q .

(2) For G2(Lx, Cx)) , λ(G2) ≈ 1
q .

(3) For G3(Fm \ `, C`) , λ(G3) ≈ 1√
q .

(4) For G4(Fm, C) , λ(G4) ≈ 1
q3/2 .

(5) For G5(Fm \ {x}, Cx) , λ(G5) ≈ 1
q .

And for every m ≥ 3

(6) For G6(Fm,L), λ(G6) ≈ 1√
q .

where ≈ denotes equality up to a multiplicative factor of 1 ± o(1), and o(1) denotes a

function that approaches zero as q →∞.

In general one can see that λ ≈ 1√
qp where p is the number of degrees of freedom

left after choosing a left hand vertex. We prove this lemma in Section 6.5.

6.3 Proof of the Main Theorem

In this section we prove Theorem 6.1.2 in three steps - local structure, global structure

and finally proving the agreement with a low degree polynomial. These parts are proved
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in the subsequent subsections.

Let T be a degree d cubes table, i.e. for every C ∈ C, T (C) : C → F is a degree d

polynomial. Further assume that αCxC(T ) ≥ ε, where ε = Ω(d4/
√
q).

6.3.1 Local Structure

In this section we show that for many points x ∈ Fm, there exists a function fx : Fm → F

for which fx|C
2γ
≈ T (C) for a good fraction of the cubes containing x, for γ = Ω(1/d3).

Recall that
2γ
≈ means that the two functions agree on 1 − 2γ fraction of the points in

their domain.

For each x ∈ Fm and σ ∈ F, we define

Cx,σ = {C ∈ Cx|T (C)(x) = σ}.

Following [IKW12] we have the following important definition,

Definition 6.3.1 (Excellent pair). (x, σ) is ( ε2 , γ)-excellent if:

1. PrC∈Cx [C ∈ Cx,σ] ≥ ε
2 .

2. Let C1, `, C2 be chosen by the following probability distribution, C1 ∈ Cx,σ u.a.r,

` ⊂ C1 a random line that contains x and C2 ∈ Cx,σ ∩ C` (a random cube in Cx,σ

that contains `).

Pr
C1,`,C2

[T (C1)|` 6= T (C2)|`] ≤ γ.

A point x ∈ Fm is ( ε2 , γ)-excellent, if exists σ ∈ F such that (x, σ) is ( ε2 , γ)-excellent.

Note that in the definition of excellent, the marginal distribution of both C1, C2 is

uniform in Cx,σ.

In the sequel, we fix γ = Ω(1/d3) and say that a point is excellent if it is ( ε2 , γ)-

excellent. We now state the main lemma in this section.

Lemma 6.3.2 (Local Structure). For γ = Ω( 1
d3 ), let T be a cubes table that passes

Test 1 with probability larger than ε = Ω( d
4
√
q ), then at least ε

3 of the points x ∈ Fm are

excellent, and for each excellent x there exist a function fx : Fm → F such that

Pr
C∼Cx

[T (C)
2γ
≈ fx|C ] ≥ ε

4
.
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We will consider the distribution D on (x, `, C1, C2) obtained by choosing x uni-

formly, choosing ` ∈ Lx uniformly, and then choosing C1, C2 ∈ C` uniformly.

This distribution induces a distribution (x, T (C1)(x)) on pairs of point x and value

σ ∈ F.

Claim 6.3.3. For every γ = Ω( 1
d3 ),

Pr
(x,σ)

[(x, σ) is ( ε2 , γ) - excellent] ≥ ε

3
.

Proof. We consider (x, `, C1, C2) chosen according to D, and we note that the marginal

distribution over all elements is uniform. We also write σ = T (C1)(x). We define the

following events on (x, `, C1, C2):

1. E : “` is confusing for x”: T (C1)(x) = T (C2)(x), T (C1)|` 6= T (C2)|`.

2. H : “x,C1 is heavy”: PrC∼Cx [T (C)(x) = T (C1)(x)] ≥ ε
2

Since T (C1)|`, T (C2)|` are two degree d polynomials, and x is a random point in `,

Pr
(x,`,C1,C2)

[E] ≤ d

q
.

Using the fact that αCxC(T ) ≥ ε, and averaging, we get

Pr
(x,`,C1,C2)

[H] ≥ ε

2
. (6.3.1)

Instead of picking C1 as a uniform cube containing x, we can choose it by the

following process, pick σ proportional to its weight in Cx, then pick C1 ∼ Cx,σ. This

process describes the same distribution.

Note that after deciding x, σ, the event H is already determined, so (6.3.1) becomes

Prx,σ[H] ≥ ε/2. Also, notice that conditioned on x, σ, the distribution D is choosing C1

uniformly from Cx,σ and then ` ⊂ C1 a random line containing x and then C2 a random

cube containing ` (and we do not require that T (C2)(x) = σ). The event H is already

fixed by x, σ, but the event E will occur only if C2 ∈ Cx,σ and also T (C1)|` 6= T (C2)|`.

We want to bound the probability of x, σ such that H = 1, but EC1,`,C2 [E|x, σ] ≤

γ · ε2 . We know that

E
x,σ

[Pr[H ∧ E | x, σ]] = Pr[H ∧ E] ≤ Pr[E] ≤ d

q
.
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Therefore, by averaging, the probability over x, σ that we have Pr[H ∧ E|x, σ] > εγ/2

is at most d/q
εγ/2 . So for at least ε/2− d/q

εγ/2 ≥ ε/3 of the pairs x, σ, we have that both H

occurs, and that EC1,`,C2 [E|x, σ] ≤ εγ/2.

We end by showing that such x, σ are excellent. The first requirement follows by

the fact that H occurs, for the second we need to show that for C1 ∈ Cx,σ, a uniform

` ∈ C1 and a uniform C2 ∈ Cx,σ ∩ C` the probability of T (C1)|` 6= T (C2)|` is lower than

γ.

We notice that after fixing (x, σ), the distribution D chooses C1 ∈ Cx,σ, a uniform

` ∈ C1, but then a uniform C2 ∈ C`.

The event E can be written as E = E1 ∧ E2 where E1 is the event “T (C1)(x) =

T (C2)(x)” and E2 is the event “T (C1)|` 6= T (C2)|`”. In this notation

E
C1,`,C2

[E|x, σ] = E
C1,`,C2

[E1 ∧ E2|x, σ]

= E
C1,`,C2

[E1|x, σ] E
C1,`,C2

[E2|E1, x, σ]

≥ε
2
· E
C1,`,C2

[E2|E1, x, σ]. (since H occurs)

We notice that if E1 occurs, then C2 ∈ Cx,σ, therefore

E
C1,`,C2

[T (C1)|` 6= T (C2)|`|C2 ∈ Cx,σ, x, σ] ≤ 2

ε
· E
C1,`,C2

[E|x, σ] ≤ 2

ε

ε

2
γ ≤ γ,

which means that (x, σ) is ( ε2 , γ) - excellent.

For each (x, σ) we define fx,σ by plurality over all cubes C ∈ Cx,σ.

Definition 6.3.4. For a pair (x, σ) define a function fx,σ : Fm → F as follows:

fx,σ(y) = argmax
C∼Cy∩Cx,σ

{T (C)(y)} .

If Cy ∩ Cx,σ = ∅, define fx,σ(y) arbitrarily.

Claim 6.3.5. For an ( ε2 , γ) excellent pair (x, σ),

Pr
C∼Cx,σ ,y∼C

[fx,σ(y) = T (C)(y)] ≥ 1− γ.
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Proof. Fix an ( ε2 , γ) excellent pair (x, σ), and denote f = fx,σ. If we pick a uniform

C1 ∈ Cx,σ, then y ∈ C1 such that y 6= x, and a uniform C2 ∈ Cx,σ ∩ Cy, then

Pr
C1,y,C2

[T (C1)(y) 6= T (C2)(y)] ≤ Pr
C1,y,C2

[T (C1)|`(x,y) 6= T (C2)|`(x,y)] ≤ γ,

since (x, σ) is ( ε2 , γ) excellent.

For each y, denote γy = PrC1,C2∼Cx,σ∩Cy [T (C1)(y) 6= T (C2)(y)]. From the above we

get that Ey[γy] ≤ γ, where y is distributed according to it’s weight in Cx,σ. For each y,

1− γy =
∑
θ∈F

Pr
C∼Cx,σ∩Cy

[T (C)(y) = θ]2

≤ Pr
C∼Cx,σ∩Cy

[T (C)(y) = f(y)]
∑
θ∈F

Pr
C∼Cx,σ∩Cy

[T (C)(y) = θ]

(f(y) is the most frequent value)

≤ Pr
C∼Cx,σ∩Cy

[T (C)(y) = f(y)].

Since it is true for each y, it is also true when taking expectation over y, for any

distribution:

Pr
C∼Cx,σ ,y∼C

[f(y) = T (C)(y)] = E
y

[
E

C∼Cx,σ∩Cy
[I(T (C)(y) = f(y))]

]
≥ E

y
[1− γy] ≥ 1− γ.

In expectation, each y is chosen with probability proportional to it’s weight in Cx,σ, as

before.

Proof of Lemma 6.3.2:

From Claim 6.3.3 we know that the probability of (x, σ) to be ( ε2 , γ)-excellent is at least

ε
3 . Since x is chosen uniformly, it means that for at least ε

3 of the inputs x ∈ Fm there

exists some σ ∈ F such that (x, σ) is excellent. If there is more than one such σ choose

one arbitrarily.

Fixing an excellent x, let σ be the value such that (x, σ) is excellent. For this σ,

PrC∈Cx [C ∈ Cx,σ] ≥ ε
2 . From Claim 6.3.5, PrC∼Cx,σ ,y∼C [fx,σ(y) = T (C)(y)] ≥ 1− γ. By

averaging, at least half of the cubes C ∈ Cx,σ satisfy Pry∼C [fx,σ(y) = T (C)(y)] ≥ 1−2γ.

For all these cubes T (C)
2γ
≈ fx,σ, and they are at least ε

4 fraction of the cubes in Cx.
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6.3.2 Global Structure

In this section, we prove the following lemma:

Lemma 6.3.6 (Global Structure). Let T be a cubes table that passes Test 1 with prob-

ability at least ε = Ω( d
4
√
q ), then for every γ = Ω( 1

d3 ), there exists an ( ε2 , γ)-excellent x

such that f = fx : Fm → F satisfies

Pr
C

[T (C)
32γ
≈ f|C ] ≥ ε

16
.

Let X? ⊆ Fm the set of ( ε2 , γ) excellent points.

The main idea in the proof of the global structure, is showing that there exist many

pairs of excellent points x, y ∈ X?, such that for many cubes C, the T (C) is similar

both to fx and to fy (Claim 6.3.8). If this is the case, then the functions fx, fy must

be very similar (Claim 6.3.9). Finally, the lemma is proven by averaging and finding a

single x such that fx agrees simultaneously with many of the fy’s and their supporting

cubes.

Definition 6.3.7 (Supporting cubes). For any excellent x ∈ X?, we denote by Fx the

set of cubes “supporting” fx,

Fx =

{
C ∈ Cx

∣∣∣∣T (C)
2γ
≈ fx|C

}
.

Claim 6.3.8. Let D be the following process: choose x, y ∈ X? independently and

uniformly at random, let C be a random cube containing both x and y. Then

Pr
x,y,C∼D

[C ∈ Fx ∩ Fy] ≥
ε2

26
.

Proof. Since each x ∈ X? is excellent, we know from the local structure lemma,

Lemma 6.3.2, that PrC∼Cx [C ∈ Fx] ≥ ε
4 . This is of course also true when taking a

uniform x ∈ X?, thus, Prx∼X?,C∼Cx [C ∈ Fx] ≥ ε
4 .

From Lemma 6.2.6(4) , the inclusion graph G = G(Fm, C) has λ(G) = λ ≤ (1 +

o(1)) 1
q3/2 . Denote the measure of X? by µ, from Lemma 6.3.2, µ ≥ ε

3 . Hence, by the

application of Lemma 6.2.3 on the graph G with A = C, B = Fm and B′ = X?, we get∣∣∣∣ Pr
x∼X?,C∼Cx

[C ∈ Fx]− Pr
C∼C,x∼C∩X?

[C ∈ Fx]

∣∣∣∣ ≤ λ
√
µ
≤ 2λ√

ε
. (6.3.2)
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For each C ∈ C, let pC = Prx∼C∩X? [C ∈ Fx], this measures for every cube C

how many points x ∈ C are such that fx|C
2γ
≈ T (C). In this notation, (6.3.2) implies

EC [pC ] ≥ ε
4−

2λ√
ε
≥ ε

5 . We can use this to bound the probability of the event C ∈ Fx∩Fy

by first choosing C, then two independent points in C ∩X?,

Pr
C∼C

x,y∼C∩X?

[C ∈ Fx ∩ Fy] = E
C

[p2
C ] ≥

(
E
C

[pC ]

)2

≥ ε2

25
.

We observe that this distribution is very similar to the required distribution D.

The only difference is that here we first pick C ∈ C and then two excellent points

in C, whereas in D we first pick two points in X? and then a common neighbor C.

The graph G satisfies that every two distinct points x, y ∈ Fm have exactly the same

number of common neighbors. Therefore, we can use Lemma 6.2.5 on the graph G with

A = C, B = Fm and B′ = X? to get∣∣∣∣∣∣ Pr
C∼C

x,y∼C∩X?

[C ∈ Fx ∩ Fy]− Pr
x,y,C∼D

[C ∈ Fx ∩ Fy]

∣∣∣∣∣∣ ≤ 2λ

µ
+

1

µ2dA
+

1

µ2 |B|
≤ 6λ

ε
+

9

qmε2
+

9

q3ε2
.

Recall that λ ≤ (1 + o(1)) 1
q3/2 and since ε = Ω( d

4
√
q ), we conclude that Prx,y,C∼D[C ∈

Fx ∩ Fy] ≥ ε2

25 −
6λ
ε −

9
qmε2

− 9
q3ε2
≥ ε2

26 .

Claim 6.3.9. Let x 6= y ∈ X?, and let ` be the line containing x and y, if PrC∼C` [C ∈

Fx ∩ Fy] ≥ ε2

100 then fx
5γ
≈ fy.

Proof. Consider the graph G = G(Fm \ `, C`). This is a bi-regular bipartite graph, and

by Lemma 6.2.6(3) it has λ = λ(G) ≤ (1 + o(1)) 1√
q . Let F = Fx ∩ Fy. By assumption,

F has measure at least ε2

100 inside C`.

We denote by E′ ⊂ E the edges of G that indicate agreement with both fx and fy,

E′ = {(z, C) | T (C)(z) = fx(z) = fy(z)}.

Every cube C ∈ F has 1−2γ of the points z ∈ C satisfying T (C)(z) = fx(z) and 1−2γ of

the points satisfying T (C)(z) = fy(z). By a union bound we get PrC∈F,z∈N(C)[(z, C) ∈

E′] ≥ 1− 4γ. By Lemma 6.2.3 on G when A = Fm \ `, B = C`, B′ = F ,∣∣∣∣ Pr
C∼F,z∼N(C)

[(z, C) ∈ E′]− Pr
z,C∼N(z)∩F

[(z, C) ∈ E′]
∣∣∣∣ ≤ 20λ

ε
,
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which means that Prz∼Fm,C∼N(z)∩F [(z, C) ∈ E′] ≥ 1 − 4γ − 20λ
ε ≥ 1 − 5γ. By the

definition of E′, for each point z ∈ Fm that has an adjacent edge in E′, fx(z) = fy(z).

This means that

Pr
z

[fx(z) = fy(z)] ≥ Pr
z

[∃C s.t. (z, C) ∈ E′] ≥ Pr
z,C∼N(z)∩F

[(z, C) ∈ E′] ≥ 1− 5γ.

The above claim showed that if two functions have a large set of cubes on which they

almost agree then these functions are similar. In order to prove the global structure,

we also need to show that in this case, most of C ∈ Fy will also be close to fx.

Claim 6.3.10. Let x, y ∈ X? such that fx
5γ
≈ fy, then

Pr
C∼Fy

[T (C)
32γ
≈ fx|C ] ≥ 1

2
.

Note that the function fx may not be a low degree polynomial, so T (C)
32γ
≈ fx|C

doesn’t imply equality.

Proof. Let G = G(Fm \ {y}, Cy), by Claim 6.2.6(5) it has λ = λ(G) ≈ 1
q . First, we

denote by E′y the following set of edges,

E′y = {(z, C) | T (C)(z) = fy(z)}.

For each C ∈ Fy, we know that Prz∈N(C)[(z, C) ∈ E′y] ≥ 1− 2γ. From Lemma 6.2.3 on

G when A = Fm \ y,B = Cy, B′ = Fy, we know that∣∣∣∣ Pr
C∼Fy ,z∼N(C)

[(z, C) ∈ E′y]− Pr
z,C∈N(z)∩Fy

[(z, C) ∈ E′y]
∣∣∣∣ ≤ 4λ

ε
,

since the measure of Fy is at least ε
4 . This implies that Prz,C∈N(z)∩Fy [(z, C) ∈ E′y] ≥

1− 3γ.

We define a second set of edges, E′x to be the same only for fx,

E′x = {(z, C) | T (C)(z) = fx(z)}.
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We notice that if z is a point such that fx(z) = fy(z), then (z, C) ∈ E′y ⇒ (z, C) ∈ E′x.

Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′x] ≥Pr
z

[fx(z) = fy(z)] · Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y | fx(z) = fy(z)]

≥(1− 5γ) · Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y | fx(z) = fy(z)]

(since fx
5γ
≈ fy)

≥(1− 5γ) ·
(

Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y]− 5γ

)
≥1− 15γ.

Therefore, we can use Lemma 6.2.3 again on the same graph G and set Fy, now with

the edge set E′x, to conclude that

Pr
C∼Fy ,z∼N(C)

[(z, C) ∈ E′x] ≥ Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′x]− 4λ

ε
≥ 1− 16γ,

By averaging, at least half of C ∈ Fy satisfies T (C)
32γ
≈ fx|C .

We are now ready to prove the global structure.

Proof of Lemma 6.3.6:

Let T be the cubes table that passes Test 1 with probability at least ε = Ω( d
4
√
q ). From

the local structure, Lemma 6.3.2, we know that there exists a set X? of excellent points,

such that each x ∈ X? has a function fx, and |Fx| ≥ ε
4 |Cx|.

From Claim 6.3.8, we know that Prx,y,C∼D[C ∈ Fx ∩Fy] ≥ ε2

26 , when x, y are chosen

uniformly from X? and C is a common neighbor. Therefore, there must be x ∈ X?

such that Pry∼X?,C∼N(x)∩N(y)[C ∈ Fx ∩ Fy] ≥ ε2

26 .

Fix such x ∈ X?, and let X ′ be the set of y ∈ X? such that |Fx ∩ Fy| ≥ ε2

100 |C`|. By

averaging, |X ′| ≥ ε2

100 |X
?| ≥ ε3

400 |F|
m.

By Claim 6.3.9, for all y ∈ X ′, fy
5γ
≈ fx. For each y ∈ X ′, let

F ′y = {C ∈ Fy | T (C)
32γ
≈ fx|C}.

At this point we have a large collection of y’s and for each one a large collection of

cubes F ′y such that all of these support the same function fx. It is immediate that fx is
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supported by some poly(ε) fraction of all of the cubes. Since we are aiming for a better

quantitative bound of Ω(ε) fraction of C, we will rely on the expansion once more.

In order to finish the proof, we need to show that
∣∣∪y∈X′F ′y∣∣ ≥ ε

16 |C|.

Let G = G(Fm, C), by Lemma 6.2.6(4) λ(G) ≤ q−
3
2 . We use X ′ as the set of vertices,

and define

E′ = {(y, C) | T (C)
32γ
≈ fx|C}.

By Lemma 6.2.3 on G with A = C, B = Fm, B′ = X ′,∣∣∣∣ Pr
y∼X′,C∼N(y)

[(y, C) ∈ E′]− Pr
C∼C,y∼N(C)∩X′

[(y, C) ∈ E′]
∣∣∣∣ ≤ 20λ√

ε3
≤ 20q−

3
2

q−
3
4

≤ 20q−
3
4 ≤ ε

16
,

where we used the fact that ε ≥ 1√
q .

Claim 6.3.10 lets us bound the first term on the left, since for each y ∈ X ′,

PrC∼N(y)[C ∈ F ′y] ≥ 1
2 PrC∼N(y)[C ∈ Fy] ≥ ε

8 . Thus,

Pr
C∼C,y∼N(C)∩X′

[(y, C) ∈ E′] ≥ ε

8
− ε

16
=

ε

16
.

We notice that a cube with even a single adjacent edge in E′ satisfies T (C)
32γ
≈ fx|C , so

we are done.

6.3.3 Low Degree

The last step is to prove that the global function discovered in the previous section can

be modified to make it a low degree function, while still maintaining large support for

it among the cubes.

Theorem 6.3.11 (Theorem 6.1.2 restated). For every d and large enough prime power

q and every m ≥ 3 the following holds. Let T be a cubes table that passes Test 1 with

probability at least ε = Ω( d
4
√
q ), then there exist a degree d polynomial g : Fm → F such

that T (C) = g|C on an Ω(ε) fraction of the cubes.

From Lemma 6.3.6, we get a function f such that Ω(ε) of the cubes have T (C) ≈ f|C .

In this section, we will show that this function f is close to a degree d polynomial g.

Afterwards, we also need to show that Ω(ε) of the cubes satisfies T (C) = g|C
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To show the first part, we will use a robust characterization of low degree polyno-

mials given by Rubinfeld and Sudan.

Theorem 6.3.12 ([RS96, Theorem 4.1]). Let f : Fm → F be a function, and let

Ny,h = {y + i(h− y) | i ∈ {0, . . . , d+ 1}}, if f satisfies

Pr
y,h∈Fm

[∃deg d polynomial p s.t. p|Ny,h
= f|Ny,h

] ≥ 1− δ,

for δ ≤ 1
2(d+2)2 , then there exists a degree d polynomial g such that f

2δ
≈ g.

For completeness, we present proof of the above theorem in Section 6.7.

Claim 6.3.13. Fix any γ ≤ 1
100(d+2)3 , let f : Fm → F and x ∈ Fm such that

Pr
C∈Cx

[T (C)
32γ
≈ f|C ] ≥ ε

4
,

then exists a degree d polynomial g such that f
84dγ
≈ g.

Proof. Denote by F ⊆ Cx the following set

F = {C ∈ Cx | T (C)
32γ
≈ f|C}.

Our first goal is to show that for nearly all lines, f agrees with a low degree function

on almost all of the points of the line.

Fix C ∈ F , if we pick a uniform ` ⊂ C we expect that T (C)`
O(γ)
≈ f|` . Using

the spectral properties we show that almost all lines satisfy this property. Let GC =

G(A ∪ B,E) be the following bipartite inclusion graph where A is all the points in C,

and B is all the affine lines in C. Let A′ ⊂ A be A′ = {y ∈ A | T (C)(y) 6= f(y)},

and B′ ⊂ B be B′ = {` ∈ B | |N(`) ∩A′| ≥ 40γ |N(`)|}. From Lemma 6.2.6(6) with

m = 3 (we apply the lemma where ”Fm” is the cube C), λC = λ(GC) ≤ 2√
q . We apply

Lemma 6.2.3 on GC and the set B′, where the set of edges is all the edges adjacent to

A′: ∣∣∣∣ Pr
y∈A,`∈N(y)∩B′

[y ∈ A′]− Pr
`∈B′,y∈N(`)

[y ∈ A′]
∣∣∣∣ ≤ λC√

|B′|
|B|

.

We notice that Pry∈A[y ∈ A′] ≤ 32γ. By the definition of B′, Pr`∈B′,y∈N(`)[y ∈ A′] ≥

40γ. Therefore |B′| ≤
(
λC
8γ

)2
|B| < γ |B|.
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We have shown that for every cube C ∈ F , almost all lines in it satisfy T (C)`
40γ
≈ f|` .

Now we need to show that the set F is large enough to cover (1−O(γ)) of all the lines

in L. The inclusion graph G = G(L \ Lx, Cx) has λ = λ(G) ≤ 1√
q , by Lemma 6.2.6(1).

We denote by E′ the set of edges (`, C) such that T (C)|`
40γ
≈ f|` . As we’ve seen above,

for every C ∈ F , Pr`∈N(C)[(`, C) ∈ E′] ≥ 1− γ.

By Lemma 6.2.3 on G, with A = L \ Lx, B = Cx, B′ = F ,∣∣∣∣ Pr
`,C∼N(`)∩F

[(`, C) ∈ E′]− Pr
C∼F,`∼C

[(`, C) ∈ E′]
∣∣∣∣ ≤ λ√

ε
≤ γ,

which means that

Pr
`

[∃C s.t. (`, C) ∈ E′] ≥ Pr
`,C∼N(`)∩F

[(`, C) ∈ E′] ≥ 1− 2γ.

This means that for 1−2γ of the lines in L, f agrees with a degree d function on 1−40γ

fraction of the points of each line.

We are very close to being able to apply the low degree test of Rubinfeld and

Sudan [RS96], that works in the high soundness regime. For this, we need to move to

neighborhoods. For y, h ∈ Fm, we define the neighborhood of y, h,

Ny,h = {y + i(h− y) | 0 ≤ i ≤ d+ 1}.

Notice that Ny,h ⊂ `(y, h). We show that on almost all of the neighborhoods Ny,h, the

function f|Ny,h
equals a degree d polynomial, by showing that for almost all Ny,h, there

exists some cube C such that f|Ny,h
= T (C)|Ny,h

(T (C) is a degree d polynomial).

Picking a random neighborhood Ny,h is equivalent to picking a random line ` ∈ L

and then uniform y, h ∈ `. We have already showed that almost all lines ` ∈ L, there

exists a cube C such that T (C)`
Ω(γ)
≈ f|` .
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Now we can bound the same probability over neighborhoods

Pr
y,h∼Fm

[∃C s.t. f(Ny,h) = T (C)(Ny,h)]

≥Pr
`

[∃C s.t. (`, C) ∈ E′] · Pr
`,y,h∼`

[f(Ny,h) = T (C)(Ny,h) | ∃C s.t. (`, C) ∈ E′]

≥(1− 2γ) Pr
`,y,h∼`

[f(Ny,h) = T (C)(Ny,h) | ∃C s.t. (`, C) ∈ E′]

≥(1− 2γ)(1− (d+ 2) · 40γ), (6.3.3)

≥1− 42dγ,

where (6.3.3) is due to union bound on the neighborhoods inside `. Therefore, the

function f equals a degree d polynomial on (1 − 42dγ) of the neighborhoods. Since

γ ≤ 100(d + 2)−3, by Theorem 6.3.12, we get that there exists a degree d polynomial

g, such that f
84dγ
≈ g.

Proof of Theorem 6.3.11:

Fix the cubes table T , and let f : Fm → F be the function promised from Lemma 6.3.6.

This function satisfies the conditions of Claim 6.3.13, so there exists a degree d poly-

nomial g such that f
84dγ
≈ g.

Since g is a degree d polynomial, for every cube C either T (C) = g|C , or else they

are very different. Let G be the inclusion graph G = G(Fm, C), and let

F = {C ∈ C | T (C)
32γ
≈ f|C}

From Lemma 6.3.6, the measure of F is at least ε
16 , let A′ be the set of points on

which f 6= g. By Lemma 6.2.6(4), λ(G) ≤ q−
3
2 . We use Lemma 6.2.3 on G with

A = Fm, B = C, B′ = F ,∣∣∣∣ Pr
C∈F,y∈N(C)

[y ∈ A′]− Pr
y,C∈N(y)∩F

[y ∈ A′]
∣∣∣∣ ≤ q−

3
2

ε
≤ γ

We know that Pry,C∈N(y)∩F [y ∈ A′] ≤ Pry[y ∈ A′] ≤ 84dγ, which implies that

PrC∈F,y∈N(C)[y ∈ A′] ≤ 85dγ.

By averaging, for at least half of the cubes C ∈ F , Pry∈C [y ∈ A′] ≤ 200dγ ≤ 1
2 .

For all these cubes T (C) = g|C , because Pry∈C [T (C)(y) = g(y)] ≥ Pry∈C [T (C)(y) =
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f(y), y /∈ A′] ≥ 1− 32γ − 1
2 > d/q, and since g|C , T (C) are both degree d polynomials,

they must be equal.

Remark 6.3.14. Instead of Theorem 6.3.12, we can use another similar characteri-

zation from [RS96], where the neighborhood is defined as Ny,h = {y + i(h − y) | i ∈

{0, . . . , 10d}}. The advantage of using this new neighborhood is that we can conclude

f
(1+o(1))δ
≈ g as long as δ = O(1/d). This will help in reducing the exponent of d by 1 in

our main theorem. We chose to use Theorem 6.3.12 for a self contained proof.

6.4 Comparing between different tests and their agreement parameter

There are many variants for the low degree test, in this section we look into equivalences

between similar low degree agreement tests. We first prove the equivalence in a more

general setting and as a corollary we get some interesting results.

Throughout this section, we will work over Fm where F is a field of size q and let

s ≤ m/2 be fixed. Also, let T denotes a table which maps every s dimensional affine

subspace in Fm to a degree d polynomial. Let As denote the set of all s dimensional

affine subspaces in Fm. For r < s and for R ∈ Ar let AsR ⊆ As denote all subspaces in

As which contain a particular subspace R,

AsR = {S ⊂ Fm | dim(S) = s,R ⊆ S} .

For parameters s > k ≥ r consider the following test:

Test 3 Subspace agreement test : αsks(r)

1. Select K ∈ Ak u.a.r.

2. Pick S1, S2 ∈ AsK u.a.r.

3. Pick a r dimensional subspace R ⊆ K u.a.r.

4. Accept iff T (S1)|R = T (S2)|R.

Let αsks(r)(T ) be the agreement of the table T = (fS)S∈As , i.e. the probability of

acceptance of the test.
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When r = k we simply denote the agreement as αsks(T ). With these notations, the

success probability of Test 1 is denoted by α3,0,3(T ), and of Test 2 by α2,1,2(T ).

In this section, we prove the following main lemma.

Lemma 6.4.1. Let 0 ≤ r < k < s ≤ m
2 , we have

αsrs(T )

(
1−

(
d

q

)r+1
)
≤ αsks(T ) ≤ αsrs(T ) + (1 + o(1))q−(s−2k+r+1),

From Lemma 6.4.1, we can deduce the following corollary,

Corollary 6.4.2. Let αC`C(T ) = α3,1,3(T ) be the success probability of Test 3 with

s = 3, k = r = 1, i.e checking consistency of two cubes that intersect on a line. Then

for every cubes table T ,

αCxC(T )

(
1− d

q

)
≤ αC`C(T ) ≤ αCxC(T ) +

1

q2
(1 + o(1)).

The corollary implies that Theorem 6.1.2 holds if we modify the test as selecting

two cubes u.a.r from a pair of cubes intersecting in a line and checking consistency on

the whole line.

Using Lemma 6.4.1, we can also compare the Raz-Safra Plane vs. Plane agreement

tests where planes intersect at a point and on a line. Recall that αP`P(T ) is the

acceptance probability of Test 2. Invoking Lemma 6.4.1 with s = 2, k = 1 and r = 0,

we get the following corollary.

Corollary 6.4.3 (Lemma 6.1.4 restated). Let T be a planes table, and let αPxP(T ) be

the success probability of Test 3 with s = 2, k = r = 0, i.e two planes that intersects

on a point. Let αP`P(T ) be the success probability of Test 2 from the introduction (two

planes that intersects on a line), then

αPxP(T )

(
1− d

q

)
≤ αP`P(T ) ≤ αPxP(T ) +

1

q
(1 + o(1)).

6.4.1 Proof of Lemma 6.4.1

We prove a few claims that together with the observation αsks(r)(T ) ≥ αsks(T ), prove

the lemma.
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The following claim shows that two distinct low degree polynomials agree on a

random subspace of fixed dimension with very small probability.

Claim 6.4.4. Let P1, P2 : Ft → F be two distinct degree d polynomials. For r ≤ t

Pr
R∈Ar

[
(P1)|R ≡ (P2)|R

]
≤
(
d

q

)r+1

.

Proof. Consider the following way of choosing an r dimensional affine subspace from

Ar uniformly at random: Pick x0, x1, x2, . . . , xr from Ftq independently and u.a.r. Then

pick a r dimensional affine subspace R containing {x0 +span(x1, x2, . . . , xr)} u.a.r (R is

determined by x0, x1, x2, . . . , xr, unless dim span(x1, x2, . . . , xr) < r). It is easy to see

that R is distributed uniformly in Ar. Now, P1 and P2 agreeing on the whole subspace

R implies that they agree on the points {x0, x0 + x1, x0 + x2, . . . , x0 + xr} as all these

points are contained in R. Therefore,

Pr
R∈Ar

[(P1)|R ≡ (P2)|R] ≤ Pr
x0,x1,...,xr∼Ft

[P1(x0) = P2(x0) ∧ri=1 P1(x0 + xi) = P2(x0 + xi)]

=

(
Pr
x∈Ftq

[P1(x) = P2(x)]

)r+1

≤
(
d

q

)r+1

,

where the last inequality is because two different degree d polynomial agree on at most

d
q fraction of the points (Schwartz-Zippel lemma).

Claim 6.4.5. Let Mm×n be the adjacency matrix of a bi regular bipartite graph G, and

let f be a n-dimensional {0, 1} vector such that E[f ] = µ. Then

〈Mf,Mf〉 ≤ µ2 + λ(G)2µ.

Proof. Let 1 be the unit vector. We write f as f = f1 + f⊥1 where f1 is in the direction

of 1, the singular vector with the maximal singular value, and f⊥1 is its orthogonal

component. We note that f1 = µ1, and hence 〈f1, f1〉 = µ2. Also,

µ = 〈f, f〉 = 〈f1 + f⊥1 , f1 + f⊥1 〉 = 〈f1, f1〉+ 〈f⊥1 , f⊥1 〉 ≥ 〈f⊥1 , f⊥1 〉.
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Using this we can bound:

〈Mf,Mf〉 =〈Mf1 +Mf⊥1 ,Mf1 +Mf⊥1 )〉

=〈f1, f1〉+ 〈Mf⊥1 ,Mf⊥1 〉

≤µ2 + λ(G)2〈f⊥1 , f⊥1 〉

≤µ2 + λ(G)2µ.

Claim 6.4.6. αsks(r)(T ) ≥ αsrs(T ).

Proof. We start by fixing R ∈ Ar, σ ∈ Fqr . For each k dimensional subspace K ∈ AkR,

denote by pK the following probability pK = PrS∼AsK [T (S)|R ≡ σ]. In this notation

Pr
K∼AkR

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R ≡ σ] = E
K

[p2
K ]

≥
(

E
K

[pK ]

)2

= Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R ≡ σ].

(6.4.1)

Now, we average over R, σ to get αsrs(T ) and αsks(r)(T ):

αsrs(T ) = Pr
R∼Ar

S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R]

= E
R∼Ar

 ∑
σ∈Fqr

Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R ≡ σ]

 . (6.4.2)

Picking a uniform R ∈ Ar then K ∈ AkR is the same as picking K ∈ Ak and then a

random r dimensional subspace R in K, so by definition

αsks(r)(T ) = Pr
R∼Ar,K∼AkR
S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R]

= E
R∼Ar

 ∑
σ∈Fqr

Pr
K∼AkR

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R ≡ σ]

 . (6.4.3)

Using (6.4.1), (6.4.2) and (6.4.3), we get αsks(r)(T ) ≥ αsrs(T ).

Claim 6.4.7. αsks(T ) ≥ αsks(r)(T )

(
1−

(
d
q

)r+1
)

.
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Proof. By the definition of the agreement,

αsks(T ) = 1− E
K∼Ak

[
Pr

S1,S2∼AsK
[T (S1)|K 6= T (S2)|K ]

]
,

and

αsks(r)(T ) = 1− E
K∼Ak

 Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R]

 ,
where we use R ∼ K to denote a random r dimensional subspace in K. For every

subspace K ∈ Ak, R ⊆ K is uniform and is independent of S1, S2.

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R] = Pr
R∼K,

S1,S2∼AsK

[T (S1)|K 6= T (S2)|K , T (S1)|R 6= T (S2)|R]

= Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ]·

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R | T (S1)|K 6= T (S2)|K ]

≥ Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ] ·

(
1−

(
d

q

)r+1
)
.

The lower bound on the probability in the last inequality is as follows: the event

T (S1)|K 6= T (S2)|K implies that the degree d polynomials corresponding to T (S1)|K and

T (S2)|K are distinct. Thus, using Claim 6.4.4 PrR∼K [T (S1)|R ≡ T (S2)|R] ≤ (d/q)r+1.

Therefore, for a k dimensional subspace K ∈ Ak,

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R] ≥ Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ]

(
1−

(
d

q

)r+1
)
.

Finally, taking the expectation of the inequality over K finishes the proof.

We first state a lemma about an expansion of the kind of inclusion graphs which we

will be dealing with in analyzing the Test 3, the proof of which appears in Section 6.5.

Lemma 6.4.8. Let r ≤ k < s ≤ m
2 be integers, and let G be the inclusion graph

G = G(AkR,AsR) for a r dimensional subspace R, where R 6= ∅. Then,

λ(G)2 ≤ (1 + o(1)) · q−(s−2k+r+1).

Claim 6.4.9. αsks(r)(T ) ≤ αsrs(r)(T ) + λ(G)2 where G is the inclusion graph G =

G(AkR,AsR) for an r dimensional subspace R.
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Proof. Fix an r dimensional affine subspace R ∈ Ar. We prove the following inequality:

Pr
K∼AkR,

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R] ≤ Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] + λ(G)2, (6.4.4)

Note that this implies the claim if we take expectation over R ∈ Ar. Towards proving

(6.4.4), for each value σ ∈ Fqk , denote by Aσ ⊆ AsR the following set

Aσ = {S ∈ AsR | T (S)|R ≡ σ},

and µσ = |Aσ |
|AsR|

. Let fσ be the indicator function for Aσ, for S ∈ Aσ, fσ(S) = 1. By

definition

Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] =
∑
σ

µ2
σ. (6.4.5)

Let G = G(AkR,AsR) be the inclusion graph, and denote by M ∈ R|AkR|×|AsR| the

normalized adjacency matrix, such that each entry is either 0 or 1
deg(K) where K ∈ AkR.

For each k dimensional subspace K ∈ AkR, the value (Mfσ)K is the fraction of K’s

neighbors in Aσ, (Mfσ)K = PrS∼AsK [S ∈ Aσ]. Therefore, the inner product gives us

the expected value:

〈Mfσ,Mfσ〉 = E
K∈AkR

[
E

S∈AsK
[S ∈ Aσ]2

]
= E

K∈AkR

[
E

S1,S2∈AsK
[S1, S2 ∈ Aσ]

]
.

Therefore

Pr
K∼AkR,

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R] =
∑
σ

〈Mfσ,Mfσ〉

≤
∑
σ

µ2
σ + λ(G)2µσ (using Claim 6.4.5)

= Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] + λ(G)2. (from (6.4.5) )

which proves (6.4.4).

Claim 6.4.9 together with Lemma 6.4.8 gives us αsks(T ) ≤ αsrs(T )+(1+o(1))q−2(s−2k+r+1).

Claim 6.4.6 and Claim 6.4.7 prove the other inequality, αsrs(T )

(
1−

(
d
q

)r+1
)
≤ αsks(T ).
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6.5 Spectral properties of Certain Inclusion Graphs

Let Gs,k be the intersection graph where the vertex set is all linear subspaces of di-

mension s in Fmq and U ∼ U ′ iff dim(U ∩ U ′) = k. We will use the Ts,k to denote the

Markov operator associated with a random walk on this graph. We will need following

fact about eigenvalues of Tk,k−1.

Definition 6.5.1. k-th q-ary Gaussian binomial coefficient

[
m

k

]
q

is given by

[
m

k

]
q

:=

k−1∏
i=0

qm − qi

qk − qi
.

As q is fixed throughout the article, we will omit the subscript from now on.

Fact 6.5.2. ( [BCN89, Theorem 9.3.3]) Suppose 1 ≤ k ≤ m
2 ,

1. The number of k dimensional linear subspaces in Fmq is exactly
[
m
k

]
.

2. The degree of Gk,k−1 is q
[
k
1

][
m−k

1

]
.

3. The eigen values of Tk,k−1 are

λj(Tk,k−1) =
qj+1

[
k−j

1

][
m−k−j

1

]
−
[
j
1

]
q
[
k
1

][
m−k

1

] ,

with multiplicities
[
m
j

]
−
[
m
j−1

]
for j = 0, 1, . . . , k. Asymptotically, λj(Tk,k−1) =

Θ(q−j).

Claim 6.5.3. For any 1 ≤ k ≤ m
2 and , we have

∣∣λ1(Tk,k−2)− λ1(Tk,k−1)2
∣∣ = (1 +

o(1)) 1
qk
.

Proof. Consider a two-step random walk on the graph Gk,k−1. We will show that with

very high probability, a two-step random walk on Gk,k−1 corresponds to a single step

random walk on Gk,k−2. Let U1, U2, U3 be the vertices from a two-step random walk on

Gk,k−1. Note that conditioned on the event dim(U1 ∩ U3) = k − 2, the distribution of

(U1, U3) is exactly same as a single step random walk on Gk,k−2. We will upper bound

the probability of the event dim(U1 ∩ U3) 6= k − 2.

Let w1 = U1∩U2 and w2 = U2∩U3, we can describe the distribution of the two-step

random walk as follows:
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1. Choose a uniform k dimensional subspace U2.

2. Choose two random k − 1 dimensional subspaces, w1, w2 ⊂ U2.

3. Choose a point x1 ∈ Fm \ U2, and set U1 = span(w1, x1).

4. Choose a point x2 ∈ Fm \ U2, and set U3 = span(w2, x2).

By definition, U2 has
[
k
k−1

]
subspaces of size k − 1, therefore Prw1,w2 [w1 = w2] = 1

[ k
k−1]

.

In order to satisfy dim(U1 ∩ U3) 6= k − 2 given that w1 6= w2, the point x2 should

be in U1. There are qk − qk−1 points in U1 \ U2, and therefore this probability equals

|U1\U2|
|Fm\U2| = qk−qk−1

qm−qk .

Pr[dim(U1 ∩ U3) 6= k − 2] = Pr[w1 = w2] + Pr[dim(U1 ∩ U3) 6= k − 2 ∧ w1 6= w2]

=
1[
k
k−1

] +

(
1− 1[

k
k−1

])Pr[dim(U1 ∩ U3) 6= k − 2 | w1 6= w2]

=
1[
k
k−1

] +

(
1− 1[

k
k−1

]) · qk − qk−1

qm − qk
=: β.

Thus, we have

T 2
k,k−1 = βN + (1− β)Tk,k−2,

where N is a Markov operator corresponding to the two-step random walk on Gk,k−1,

conditioning on dim(U1 ∩ U3) 6= k − 2. The claim follows as β = (1 + o(1))1/qk.

Following fact follows from the definition of λ(G).

Fact 6.5.4. For a bi-regular bipartite graph G(A,B), if T is a Markov operator asso-

ciated with a random walk of length two starting from A (or B) then λ(G)2 = λ(T ).

We now prove Lemma 6.2.6.

Lemma 6.5.5 (Restatement of Lemma 6.2.6). We have for every m ≥ 6,

1. For G1(L \ Lx, Cx) , λ(G1) ≈ 1√
q .

2. For G2(Lx, Cx)) , λ(G2) ≈ 1
q .

3. For G3(Fm \ `, C`) , λ(G3) ≈ 1√
q .
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4. For G4(Fm, C) , λ(G4) ≈ 1
q3/2 .

5. For G5(Fm \ {x}, Cx) , λ(G5) ≈ 1
q .

And for every m ≥ 3

6. For G6(Fm,L), λ(G6) ≈ 1√
q .

where ≈ denotes equality up to a multiplicative factor of 1± o(1).

Proof. Suppose T is an n × n Markov operator which is a convex combination of a

bunch of other Markov operators: T =
∑k

i=1 αiTi where αi ≥ 0 and
∑k

i=1 αi = 1, and

that both T and Ti’s are regular. As the row sum of each Markov operator is 1, the

largest eigenvalue is 1, since both T and Ti’s are regular, the eigenvector of the largest

eigenvalue is the all 1 vector. The second largest eigenvalue of T can be upper bounded

by

λ(T ) := max
v∈Rn,‖v‖=1,

v⊥1

‖Tv‖

= max
v∈Rn,‖v‖=1,

v⊥1

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

αiTi

∣∣∣∣∣
∣∣∣∣∣

≤
k∑
i=1

max
v∈Rn,‖v‖=1,

v⊥1

‖αiTi‖ =

k∑
i=1

αiλ(Ti).

In proving the lemma, we repeatedly use the above simple fact to upper bound the

eigenvalue.

1. Without loss of generality, we can assume x = 0. Let dL and dR denote the

left and right degree of G1 respectively. Fix a line `, dL is the number of cubes

containing ` and not passing through 0. Every point x /∈ span(`,0) defines a

cube C = span(x,0, `). Thus, the number of linear cubes containing ` equals

dL = qm−q2

q3−q2 , where the denominator is the overcounting factor, the number of

points that give the same cube.

Fix a linear cube C. The right degree is the number of lines in C not passing

through the origin which is
(q

3

2 )
(q2)
− q3−1

q−1 , where the first term counts all possible lines
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in C (each two different points define a line, we divide by the double counting)

and the second term counts all the lines in C that pass through the origin.

Let T1 be the Markov operator associated with a two-step random walk in G1

starting from Cx. Using Fact 6.5.4, in order to bound λ(G1) it is enough to bound

the second largest eigenvalue of T1. Since G1 is bi-regular, the first eigenvector of

T1 is the all ones vector. For every cube C, the number of two-step walks starting

from C is dL · dR.

If dim{C1 ∩ C2} = 1, then the two cubes intersection is only on a line. Since

both cubes are linear, it means that this line goes through the origin, therefore it

doesn’t correspond to a vertex on the left side, and there is no walk C1 → `→ C2,

so (T1)C1,C2 = 0. Of course, the same holds if dim{C1 ∩ C2} = 0.

If dim{C1 ∩ C2} = 2, there there is a plane going through the origin in both

C1, C2. The number of walks C1 → ` → C2 equals the number of lines in this

plane that don’t contain the origin, 0. Each pair of distinct points on the plane

correspond to a line, and we divide by the double counting. Therefore the number

of lines in a plane equals
(q

2

2 )
(q2)

. We subtract from it the number of lines in a plane

that contains 0, resulting in
(q

2

2 )
(q2)
− q2−1

q−1 =: β.

If C1 = C2, then exists a path C1 → `→ C2 for every line ` adjacent to C1, and

there are dR such lines.

Since T1 is a Markov operator, we need to normalize the number of paths between

C1, C2 by dividing in the total number of outgoing paths from C1, which equals

dR · dL. Therefore,

(T1)Ci,Cj =



dR
dR·dL , if Ci = Cj

β
dR·dL , if dim{C1 ∩ C2} = 2

0, otherwise

(6.5.1)

Thus, we can write T1 as:

T1 =
1

dL
I +

β

dRdL
·G3,2 =

1

dL
I +

βd′

dRdL
· T3,2,
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where d′ is the degree of a vertex in G3,2. One can verify that T1 is indeed a

convex combination of two Markov operators I and T3,2. Since G3,2 is a regular

graph, the second eigenvector of T3,2 is also orthogonal to 1. Hence,

λ(G1)2 = λ(T1) = max
v∈R|Cx|,v⊥1
‖v‖=1

‖T1v‖ = max
v∈R|Cx|,v⊥1
‖v‖=1

∥∥∥∥( 1

dL
I +

βd′

dRdL
· T3,2

)
v

∥∥∥∥
=

1

dL
+

βd′

dRdL
· λ1(T3,2). (6.5.2)

We now just need to plug in the values of β, d′ and λ1(T3,2). Using Fact 6.5.2,

λ1(T3,2) is given by the following expression,

λ1(T3,2) =
q2
[
2
1

][
m−4

1

]
−
[
1
1

]
q
[
2
1

][
m−3

1

] = (1 + o(1))
1

q
.

As we have seen before, dR =
(q

3

2 )
(q2)
− q3−1

q−1 = (1 + o(1))q4, dL = qm−q2

q3−q2 = (1 +

o(1))qm−3 and β =
(q

2

2 )
(q2)
− q2−1

q−1 = (1+o(1))q2. From Fact 6.5.2, d′ = (1+o(1))qm−1.

Thus,

1

dL
= (1 + o(1))

1

qm−3
,

βd′

dRdL
λ1(T3,2) = (1 + o(1))

1

q

Plugging these values in (6.5.2) gives λ(G1) = (1 + o(1)) 1√
q as required.

2. This bound is implied from a more general Lemma 6.4.8 we prove below with

s = 3, k = 1 and r = 0.

3. In this case, it will be easier to bound the eigenvalue of the Markov operator

associated with a random walk of length two starting from Fm \ `. Let T3 be

the Markov operator. Now, the path of length two starting from x looks like

x→ C → y. Thus, the cube C contains all points from the affine plane spanned

by x and `. Let p(x, `) be the affine plane spanned by x and `. We have Pr[y ∈

p(x, `)] = q2−q
q3−q ≈

1
q . If y /∈ p(x, `) then the distribution of y is uniform in

Fm \ p(x, `). Thus, we have

T3 = (1− o(1))

(
1− 1

q

)
J + (1 + o(1))

1

q
N ,

where J is a Markov operator associated with a complete graph on Fm\`, with self

loops and N is an appropriate Markov operator. Thus, we have bound λ(T3) =

(1 + o(1))1
q . Since λ(G3)2 = λ(T3), the bound follows.
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4. Proof of this is along the same lines as (3). The Markov operator here (starting

a walk from the left side) can be written as

T4 = (1± o(1))
1

q3
I +

(
(1± o(1))(1− 1

q3
)

)
J,

where I is an identity matrix. Thus λ(T4) = (1± o(1)) 1
q3 = λ(G4)2.

5. The proof of this item is also similar to (3), we look on the path of length 2 starting

from the left side, i.e y → C → z, and let T5 be the Markov operator. Let `(x, y)

be the line spanned by x, y (where x is the fixed point, G5(Fm \ {x}, Cx)), then

Pr[z ∈ `(x, y)] = |`(x,y)\{x}|
|C\{x}| = q−1

q3−1
≈ 1

q2 , let N be the appropriate Markov

operator of the event that x, y, z are colinear, then

T5 = (1− o(1))

(
1− 1

q2

)
J + (1 + o(1))

1

q2
N .

Here J is the Markov operator of the complete graph on Fm\{x}. Thus λ(G5)2 ≈
1
q2 .

6. Consider a two-step random walk in G6, x→ `→ y. If we sample a random line

through x then conditioned on y 6= x, y is uniformly distributed in Fm. Thus, we

can write the Markov operator T associated with this process as:

T =
1

q
I +

(
1− 1

q

)
T ′,

where T ′ is a Markov operator associated with a random walk on a complete graph

on A, without self loops and I is an identity matrix. As T ′ = 1
|A|−1J −

1
|A|−1I,

λ(T ′) = 1
q3−1

. Thus,
∣∣∣λ(T )− 1

q

∣∣∣ ≤ 1
q3−1

. The claim follows as λ(G6)2 = λ(T ).

Next, we prove Lemma 6.4.8. Recall that As denotes set of all s dimensional affine

subspaces in Fm. Also, for r < s and for R ∈ Ar, AsR ⊆ As denotes all those subspaces

in As which contains a particular subspace R.

Lemma 6.5.6 (Restatement of Lemma 6.4.8). Let r ≤ k < s ≤ m
2 be integers, and

let G be the inclusion graph G = G(AkR,AsR) for an r dimensional subspace R, where

R 6= ∅. Then,

λ(G)2 ≤ (1 + o(1)) · q−(s−2k+r+1).
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Proof. Fix an r dimensional subspace R ⊆ Fm, R 6= ∅ and recall that

AkR = {K ⊂ Fm|dim(K) = k,R ⊂ K} .

Let G = G(AkR,AsR) be the biregular bipartite inclusion graph and let dk (resp. ds)

denote the degree of vertex in AkR (resp. AsR).

For every n, t, j ∈ N, let h(n, t, j) be the number of t dimensional subspaces in Fn

that contain a specific dimention j subspace,

h(n, t, j) =
(qn − qj) · · · (qn − qt−1)

(qt − qj) · · · (qt − qt−1)
≈ q(n−t)(t−j), (6.5.3)

where ≈ denotes equality up to a multiplicative factor (1 ± o(1)), as before. For any

fixed j dimensional subspace X, the numerator equals the number of t − j linearly

independent points y1, y2, . . . , yt−j in Fn such that dim(span(X, y1, y2, . . . , yt−j)) = t,

whereas for every t dimensional subspace Z, the denominator equals the double counting

of Z, i.e the number of t − j linearly independent points y1, y2, . . . , yt−j such that

span(X, y1, y2, . . . , yt−j) = Z. We can now bound the number of vertices and the left

and right degree in G.∣∣AkR∣∣ = h(m, k, r), |AsR| = h(m, s, r),

dk = h(m, s, k), ds = h(s, k, r).

Let T be the two-step Markov operator on the bipartite graph G, starting from AkR,

we want to calculate the entries of T . Let K1,K2 ∈ AkR, by definition (T )K1,K2 is the

probability that a two-step random walk will end at K2, conditioned on it starting from

K1.

Let r′ = dim(K1 ∩K2) ≥ r, in this notation dim(K1 ∪K2) = 2k − r′. Any 2 step

random walk from K1 to K2 looks like K1 → S′ → K2 where S′ is an s dimentional

subspace containing both K1 and K2. The number of such S′ is exactly h(m, s, 2k−r′).

Thus, (T )K1,K2 equals

(T )K1,K2 = Pr[R.W ends at K2| R.W starts at K1]

=
h(m, s, 2k − r′)

dk · ds
=

h(m, s, 2k − r′)
h(m, s, k) · h(s, k, r)

. (6.5.4)
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This probability is the same for every K1,K2 ∈ AkR such that dim(K1 ∩K2) = r′, so

we can denote this value by pr′ = (T )K1,K2 . Notice that pr′ ≥ pr for every r′ ≥ r.

Let Gr′ be the graph with vertex set AkR, where K1,K2 are connected by an edge

if dim(K1 ∩K2) = r′. We also denote the 0/1 adjacency matrix of graph Gr′ by Gr′ .

With these notations, the 2 step Markov operator T equals

T =

k∑
r′=r

pr′Gr′ .

Notice that this is not a convex combination,
∑

r′ pr′ 6= 1, but rather pr′ are the entries

of T , and Gr′ are 0/1 matrices.

Let J be the all 1 matrix, we know that J =
∑k

r′=rGr′ . The first matrix in the sum

Gr is the only non sparse matrix, since for every subspace K1 ∈ Akr , almost all other

subspaces intersects with K1 only in R. Therefore we can write Gr = J −
∑k

r′=r+1Gr′ ,

and get

T = prJ +
k∑

r′=r+1

(pr′ − pr)Gr′ .

Since T is a Markov operator of a regular graph, the all 1 vector is the vector with

the maximal eigenvalue, which equals 1. Since Gr′ are also regular graphs, 1 is the

vector with the maximal eigenvalue, which equals deg(Gr′), which is the number of

K ′ ∈ AkR such that dim(K ∩K ′) = r′ (as the adjacency matrices are not normalized).

deg(Gr′) =h(k, r′, r) · (qm − qk) · · · (qm − q2k−r′−1)

(qk − qr′) · · · (qk − qk−1)

≈q(k−r′)(r′−r) · q(m−k)(k−r′) = q(k−r′)(m−k+r′−r)

For every K ∈ AkR, the factor h(k, r′, r) is the number of r′ dimensional subspace in

K that contain R, the second factor is the number of k dimensional subspaces that

intersect with K only in a specific r′ dimensional subspace.

Let v be the normalized eigenvector of the second eigenvalue of T , this means that

v ⊥ 1 and ‖v‖ = 1. Since J is the all 1 matrix, Jv = 0. We also know that for every
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r′ > r, ‖Gr′v‖ ≤ deg(Gr′), as it is true for every vector v.

‖Tv‖ =

∥∥∥∥∥
k∑

r′=r+1

(pr′ − pr)Gr′v

∥∥∥∥∥
≤

k∑
r′=r+1

(pr′ − pr) ‖Gr′v‖ (triangle inequality)

≤
k∑

r′=r+1

pr′ deg (Gr′)

For every r′, by using the expression for pr′ from (6.5.4) and bounds on h from (6.5.3)

we get that

pr′ deg (Gr′) ≈ pr′q(k−r′)(m−s+r′−r) ≈ q−(r′−r)(s−2k+r′).

Since r′ > r, (r′ − r)(s− 2k + r′) is minimized when r′ = r + 1 and hence

λ(T ) = ‖Tv‖ ≤ (1 + o(1))
k∑

r′=r+1

1

qs−2k+r′
≤ (1 + o(1)) · 1

qs−2k+r+1
.

The lemma statement now follows from the Fact 6.5.4.

6.6 Spectral Expansion Properties Proofs

Lemma 6.6.1 (Restatement of Lemma 6.2.3). Let D1, D2 as defined in Definition 6.2.2.

Let G = (A ∪ B,E) be a bi-regular bipartite graph, then for every subset B′ ⊂ B of

measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr
(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ ≤ λ(G)

√
µ
.

Where is D2 returned ⊥, we treat is as it is not in E′.

Proof. In the proof we represent both probabilities as an inner product, and then use

λ(G) to bound the difference. Let M ∈ RA×B the adjacency matrix of the graph G,

normalized such that M1 = 1 (where the first 1 is of dimension |B| and the second of

dimension |A|). We define the matrix M ′ representing the subset of edges E′, M ′a,b =

Ma,b · (1E′)a,b.
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Starting with the probability of (a, b) ∼ D1, the vector M ′1B′ satisfies that for every

a ∈ A, (M ′1B′)a = Prb∈N(a)[(a, b) ∈ E′, b ∈ B′].

〈1,M ′1B′〉 = E
a∼A

[
Eb∼N(a)[I((a, b) ∈ E′, b ∈ B′)]

]
= Pr
a∼A,b∼N(a)

[(a, b) ∈ E′, b ∈ B′] (using bi-regularity of G)

= Pr
b∼B,a∼N(b)

[(a, b) ∈ E′, b ∈ B′]

= Pr
b∼B

[b ∈ B′] · Pr
b∼B,a∼N(b)

[(a, b) ∈ E′ | b ∈ B′]

=µ · Pr
(a,b)∼D1

[(a, b) ∈ E′].

We now want to represent the second probability as an inner product. We define the

vector P ∈ [0, 1]A as follows, for each a ∈ A:

1. If N(a) ∩B′ = ∅, then Pa = 0.

2. Else, Pa = Prb∈N(a)[(a, b) ∈ E′ | b ∈ B′].

In this notation Pr(a,b)∼D2
[(a, b) ∈ E′] = 〈1, P 〉.

We now want to find a connection between the inner products. If Pa 6= 0, then it

defined as the conditional probability, and

Pr
b∼N(a)

[b ∈ B′, (a, b) ∈ E′] = Pr
b∼N(a)

[b ∈ B′] Pr
b∼N(a)

[(a, b) ∈ E′ | b ∈ B′] = Pr
b∼N(a)

[b ∈ B′]Pa.

If Pa = 0 then also Prb∼N(a)[b ∈ B′, (a, b) ∈ E′] = 0, and the above equality still holds.

We notice that (M ′1B′)a = Prb∈N(a)[(a, b) ∈ E′, b ∈ B′] and (M1B′)a = Prb∈N(a)[b ∈

B′], which means that for every a ∈ A, (M ′1B′)a = (M1B′)aPa and

〈M1B′ , P 〉 = 〈1,M ′1B′〉.
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Therefore we can express the difference between the two probabilities as∣∣∣∣ Pr
(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ =

∣∣∣∣ 1µ〈1,M ′1B′〉 − 〈1, P 〉
∣∣∣∣ (6.6.1)

=

∣∣∣∣ 1µ〈M1B′ , P 〉 − 〈1, P 〉
∣∣∣∣

=
1

µ
|〈M1B′ − µ1, P 〉|

≤ 1

µ
‖M1B′ − µ1‖ ‖P‖

(By Cauchy Swartz)

Since P is a vector in [0, 1] and the inner product we use is expectation, ‖P‖ ≤ 1. In

order to finish the proof we need to bound the size of the vector

M1B′ − µ1 = M1B′ − µM1 = M(1B′ − µ1).

We notice that 1B′ is a {0, 1} vector of measure µ, so 〈1B′ ,1〉 = 〈1B′ ,1B′〉 = µ, and

(1B′ − µ1) ⊥ 1B. By the definition of λ(G), this means that

‖M(1B′ − µ1)‖ ≤ λ(G) ‖1B′ − µ1‖ ≤ λ√µ.

We substitute the norm of the vector in equation (6.6.1) and we are done.

Lemma 6.6.2 (Restatement of Lemma 6.2.5). Let D3, D4 as defined in Definition 6.2.4.

Let G = (A∪B,E) be a bi-regular bipartite graph, such that every two distinct b1, b2 ∈ B

have exactly the same number of common neighbors (i.e for all distinct b1, b2 ∈ B,

|N(b1) ∩ N(b2)| is the same), and this number is non-zero. Then for every subset

B′ ⊂ B of measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣ ≤ 2λ(G)

µ
+

1

µ2dA
+

1

µ2 |B|

Where is D4 returned ⊥, we treat is as it is not in E′ and dA is the degree on A side.

Proof. This proof is similar in spirit to the proof of Lemma 6.2.3, with more complica-

tion since the event contains two edges instead of a single one.

Let M ∈ RA×B the adjacency matrix of the graph G, normalized such that M1 = 1.

We denote by M ′ the matrix that represents the edges in E′, i.e for each a ∈ A, b ∈ B,

M ′a,b = Ma,b · (1E′)a,b.
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Starting from D3, we first write the conditional probability

Pr
b1,b2

a∼N(b1)∩N(b2)

[b1, b2 ∈ B′, (a, b1), (a, b2) ∈ E′]

= Pr
b1,b2

[b1, b2 ∈ B′] Pr
a,b1,b2∼D3

[(a, b1), (a, b2) ∈ E′] (6.6.2)

= µ2 Pr
a,b1,b2∼D3

[(a, b1), (a, b2) ∈ E′].

We want to express the left side as an inner product, we notice that for each a ∈ A:

(M ′1B′)a = E
b∼N(a)

[I(b ∈ B′, (a, b) ∈ E′)].

Therefore the inner product satisfies

〈M ′1B′ ,M ′1B′〉 = E
a∼A

[
E

b1,b2∼N(a)
[I(b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′)]

]
(6.6.3)

= Pr
a∼A,b1,b2∼N(a)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′]

Since each two b1, b2 ∈ B has the same number of neighbors,

Pr
a∼A

b1 6=b2∼N(a)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′] = Pr
b1 6=b2∼B

a∼N(b1)∩N(b2)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′].

We want to switch the expression in (6.6.3) by the one is (6.6.2), we know that they are

equal when b1 6= b2. But the probability of b1 = b2 is different between the two cases,

it is 1
dA

if we pick neighbors of a and 1
|B| if we pick two random vertices in B. If we

add the probability of b1 = b2 as an error, we get that∣∣∣∣µ2 Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− 〈M ′1B′ ,M ′1B′〉
∣∣∣∣ ≤ 1

dA
+

1

|B|
(6.6.4)

Now we want to express the probability of a, b1, b2 ∼ D4 as an inner product. In

order to do that, we define the vector P , for every a ∈ A

1. If N(a) ∩B′ = ∅, then Pa = 0.

2. Else, Pa = Prb1,b2∼N(a)[(a, b1)(a, b2) ∈ E′ | b1, b2 ∈ B′].

The vector P is defined such that

Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′] = E
a

[Pa] = 〈1, P 〉.
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We want to find a connection between this expression and the expression represent-

ing the probability Pra,b1,b2∼D3 [(a, b1)(a, b2) ∈ E′].

We use (6.6.4) and the triangle inequality to bound the difference between the two

target probabilities∣∣∣∣ Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣

≤
∣∣∣∣ 1

µ2
〈M ′1B′ ,M ′1B′〉 − 〈1, P 〉

∣∣∣∣+
1

µ2dA
+

1

µ2 |B|
(6.6.5)

We now need to bound the expression in (6.6.5), in order to do that, we will first

show that

〈M ′1B′ ,M ′1B′〉 = Pr
a∼A,b1,b2∼N(a)

[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = E
a

[Pa(M1B′)
2
a].

(6.6.6)

We notice that for a such that Pa > 0, it equals the conditional probability and

Pr
b1,b2∼N(a)

[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = Pr
b1,b2∼N(a)

[b1, b2 ∈ B′]Pa.

If a is such that Pa = 0, then Prb1,b2∼N(a)[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = 0 and the

above equality still holds. We further notice that

(M1B′)a = E
b∼N(a)

[I(b ∈ B′)].

If we substitute Prb1,b2∼N(a)[b1, b2 ∈ B′] in (M1B′)
2
a, we get (6.6.6).

In order to finish the proof, we upper bound∣∣∣∣ 1

µ2
〈M ′1B′ ,M ′1B′〉 − 〈1, P 〉

∣∣∣∣ =

∣∣∣∣Ea
[

1

µ2
Pa(M1B′)

2
a − Pa

]∣∣∣∣ =
1

µ2

∣∣∣∣Ea [Pa((M1B′)
2
a − µ2)]

∣∣∣∣ .
We now upper bound the expectation as follows,

E
a

[Pa((M1B′)
2
a − µ2)] = E

a
[Pa((M1B′)a − µ)((M1B′)a + µ)]

≤max
a
{|Pa|}E

a
[|((M1B′)a − µ)((M1B′)a + µ)|]

≤‖M1B′ − µ1‖ ‖M1B′ + µ1‖ (6.6.7)

≤λ√µ
√

4µ, (6.6.8)
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where (6.6.7) is due to Cauchy-Schwarz inequality and using |Pa| ≤ 1. In (6.6.8), we

bound

‖M1B′ − µ1‖ like in the previous proof,

‖M1B′ − µ1‖ = ‖M1B′ − µM1‖ = ‖M(1B′ − µ1)‖ ≤ λ ‖1B′‖ ≤ λ
√
µ.

Finally, we bound ‖M1B′ + µ1‖:

‖M1B′ + µ1‖2 =〈M1B′ + µ1,M1B′ + µ1〉

=〈M1B′ ,M1B′〉+ 2〈M1B′ , µ1〉+ 〈µ1, µ1〉

≤ ‖1B′‖2 + 2µ+ µ2 ‖1‖2

≤µ+ 2µ+ µ2 ≤ 4µ.

6.7 Rubinfeld-Sudan Characterization

In this section, we present a proof of Theorem 6.3.12. The proof uses the following fact

from [vdWANB49]:

Fact 6.7.1. Let f : Fm → F be a function, and let Ny,h = {y + ih | i ∈ {0, . . . , d+ 1}}.

f is degree d iff it satisfies the following identity for all y and h:

d+1∑
i=0

αif(y + ih) = 0,

where αi =
(
d+1
i

)
(−1)i+1.

Throughout this section we let αi =
(
d+1
i

)
(−1)i+1 as in the above fact.

Theorem 6.7.2 (Restatement of Theorem 6.3.12). Let f : Fm → F be a function, and

let Ny,h = {y + ih | i ∈ {0, . . . , d+ 1}}, if f satisfies

Pr
y,h∈Fm

[∃deg d polynomial p s.t. p|Ny,h
= f|Ny,h

] ≥ 1− δ, (6.7.1)

for δ ≤ 1
2(d+2)2 , then there exists a degree d polynomial g such that f

2δ
≈ g.
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Proof. Define a function g : Fm → F to be g(y) = majh∈Fm{
∑d+1

i=1 αif(y+ ih)} breaking

the ties arbitrarily. Next we argue that g is very close to f and g itself is a degree d

function.

To see that g is (1 − 2δ) close to f , consider the set of all y for which Prh[f(y) =∑d+1
i=1 αif(y + ih)] > 1/2. For all these y, f(y) = g(y) as g was the majority vote. It

is easy to see that fraction of y for which the probability is at most 1/2 is at most 2δ

as otherwise it will contradict the hypothesis (6.7.1). The rest of the proof will be

proving the following two claims.

Claim 6.7.3. For all y ∈ Fm, Prh[g(y) =
∑d+1

i=1 αif(y + ih)] ≥ 1− 2(d+ 1)δ.

Claim 6.7.4. For all y and h in Fm, we have
∑d+1

i=0 αig(y + ih) = 0.

Claim 6.7.4 and Fact 6.7.1 imply that g is in fact a degree d function and hence the

theorem follows. We now proceed with proving these two claims.

Proof of Claim 6.7.3: We will show that for all y ∈ Fm,

Pr
h1,h2

d+1∑
i=1

αif(y + ih1) =
d+1∑
j=1

αjf(y + jh2)

 ≥ 1− 2(d+ 1)δ. (6.7.2)

Note that this is enough to prove the claim. To see this, let pa = Prh[
∑d+1

i=1 αif(y+ih) =

a] for a ∈ F. Then (6.7.2) becomes
∑

a∈F p
2
a ≥ 1−2(d+1)δ. Since g(y) was the majority

vote, we have Prh[g(y) =
∑d+1

i=1 αif(y + ih)] = maxa∈F pa ≥
∑

a∈F p
2
a ≥ 1− 2(d+ 1)δ.

To prove (6.7.2), consider the following (d+ 2)× (d+ 2) matrix Z with (i, j)th entry

Zi,j = αiαjf(y + ih1 + jh2), for i, j ∈ {0, . . . , d+ 1}.

Z =



f(y) . . . α0αjf(y + jh2) . . .

...
. . .

...
. . .

αiα0f(y + ih1) . . . αiαjf(y + ih1 + jh2) . . .

...
. . .

...
. . .


If h1 ∈ Fm u.a.r then for any i ∈ {1, 2, . . . , d + 1}, ih1 is distributed uniformly in Fm.

Same is true for h2 and jh2. Consider the following events:

• For every i ∈ {1, 2, . . . , d + 1}, Ri be the event that the sum of the i’th row is

zero, i.e
∑d+1

j=0 Zi,j = 0.
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• For every j ∈ {1, 2, . . . , d + 1}, Cj be the event that sum of the j’th column is

zero, i.e
∑d+1

i=0 Zi,j = 0.

Note that Ri, Cj are not defined for the first row and column (i = 0 and j = 0). Using

the hypothesis (6.7.1) of the theorem and Fact 6.7.1, we have

Pr
h1,h2

[Ri] ≥ 1− δ, ∀i ∈ {1, 2, . . . , d+ 1}

Pr
h1,h2

[Cj ] ≥ 1− δ, ∀j ∈ {1, 2, . . . , d+ 1}

The event in (6.7.2) is same as
∑d+1

i=1 Zi,0 =
∑d+1

j=1 Z0,j (note that the sums don’t

include the first element, Z0,0). If all the above events Ri, Cj happen then
∑d+1

i=1 Zi,0 =∑d+1
j=1 Z0,j = −

∑d+1
i,j=1 Zi,j . By using union bound we get Pr[∧d+1

i=1 Ri ∧
d+1
j=1 Cj ] ≥ 1 −

2(d+ 1)δ which implies (6.7.2).

Proof of Claim 6.7.4: In this case, consider the following (d+ 2)× (d+ 2) matrix

Y whose (i, j)th entry is Yi,j = αiαjf(y + ih + j(h1 + ih2)) except when j = 0. When

j = 0, Yi,0 = αiα0g(y + ih).

Y =



α0α0g(y) . . . α0αjf(y + jh1) . . .

...
. . .

...
. . .

αiα0g(y + ih) . . . αiαjf(y + ih+ j(h1 + ih2)) . . .

...
. . .

...
. . .


Define the following set of events:

• For i ∈ {0, 1, . . . , d+ 1}, Ri be the event that the sum of all elements from row i

is zero, i.e
∑d+1

i=0 Yi,j = 0.

• For j ∈ {0, 1, . . . , d+1}, Cj be the event that the sum of all elements from column

j is zero, i.e
∑d+1

j=0 Yi,j = 0.

Let h1, h2 are independent and distributed u.a.r in Fm. As the event C0 is independent

of h1 and h2, in order to prove the claim it is enough to show that Prh1,h2 [C0] > 0.

For each row i ∈ {0, 1, 2, . . . , d + 1} we apply Claim 6.7.3 with y′ = y + ih and

h′ = h1 + ih2, and get Prh1,h2 [¬Ri] ≤ 2(d + 1)δ (note that α0 = −1). If h1, h2 are

independent and distributed u.a.r in Fm then so are (y+ jh1) and (h+ h2). Therefore,
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using the hypothesis (6.7.1) of the theorem and Fact 6.7.1, we have for all columns

except j = 0, Prh1,h2 [¬Cj ] ≤ δ. Using union bound, we get

Pr
h1,h2

[
d+1
∧
i=0

Ri
d+1
∧
j=1

Cj

]
≥ 1− 2(d+ 1)(d+ 2)δ + (d+ 1)δ > 0.

The claim now follows using the observation that the event C0 is implied by the event

∧d+1
i=0 Ri ∧

d+1
j=1 Cj . To see this, the event ∧d+1

i=0 Ri implies that the sum of all entries in

Y is zero whereas ∧d+1
j=1 Cj implies that the sum of all elements from the submatrix

(Yi,j)
d+1
j=1 is zero. Hence, if both these events happen then the sum of all elements from

column 0 must be zero.
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Chapter 7

k-bit Dictatorship Test

7.1 Introduction

In this chapter, we study k query dictatorship test with perfect completeness. Boolean

functions are the most basic objects in the field of theoretical computer science. Study-

ing different properties of Boolean functions has found applications in many areas in-

cluding hardness of approximation, communication complexity, circuit complexity etc.

In this chapter, we are interested in studying Boolean functions from a property testing

point of view.

In property testing, one has given access to a function f : {0, 1}n → {0, 1} and the

task is to decide if a given function has a particular property or whether it is far from

it. One natural notion of farness is what fraction of f ’s output we need to change so

that the modified function has the required property. A verifier can have an access to

random bits. This task of property testing seems trivial if we do not have restrictions

on how many queries one can make and also on the computation. One of the main

questions in this area is can we still decide if f is very far from having the property by

looking at a very few locations with high probability.

There are few different parameters which are of interests while designing such tests

including the amount of randomness, the number of locations queried, the amount

of computation the verifier is allowed to do etc. The test can either be adaptive or

non-adaptive. In an adaptive test, the verifier is allowed to query a function at a few

locations and based on the answers that it gets, the verifier can decide the next locations

to query whereas a non-adaptive verifier queries the function in one shot and once the

answers are received makes a decision whether the function has the given property.

In terms of how good the prediction is we want the test to satisfy the following two
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properties:

• Completeness: If a given function has the property then the test should accept

with high probability

• Soundness: If the function is far from the property then the test should accept

with very tiny probability.

A test is said to have perfect completeness if in the completeness case the test always

accepts. A test with imperfect completeness (or almost perfect completeness) accepts

a dictator function with probability arbitrarily close to 1. Let us define the soundness

parameter of the test as how small we can make the acceptance probability in the

soundness case.

A function is called a dictator if it depends on exactly one variable i.e f(x1, x2, . . . , xn) =

xi for some i ∈ [n]. In this work, we are interested in a non-adaptive test with per-

fect completeness which decides whether a given function is a dictator or far from it.

This was first studied in [BGS98, PRS02] under the name of Dictatorship test and

Long Code test. Apart from a natural property, dictatorship test has been used exten-

sively in the construction of probabilistically checkable proofs (PCPs) and hardness of

approximation.

An instance of a Label Cover is a bipartite graph G((A,B), E) where each edge

e ∈ E is labeled by a projection constraint πe : [L] → [R]. The goal is to assign

labels from [L] and [R] to vertices in A and B respectivels so that the number of edge

constraints satisfied is maximized. Let GapLC(1, ε) is a promise gap problem where

the task is to distinguish between the case when all the edges can be satisfied and at

most ε fraction of edges are satisfied by any assignment. As a consequence of the PCP

Theorem [ALM+98, AS98] and the Parallel Repetition Theorem[Raz98], GapLC(1, ε) is

NP-hard for any constant ε > 0. In [H̊as01], H̊astad used various dictatorship tests

along with the hardness of Label Cover to prove optimal inapproximability results for

many constraint satisfaction problems. Since then dictatorship test has been central in

proving hardness of approximation.
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A dictatorship test with k queries and P as an accepting predicate is usually use-

ful in showing hardness of approximating Max-P problem. Although this is true for

many CSPs, there is no black-box reduction from such dictatorship test to getting in-

approximability result. One of the main obstacles in converting dictatorship test to

NP-hardness result is that the constraints in Label Cover are d-to-1 where the the

parameter d depends on ε in GapLC(1, ε). To remedy this, Khot in [Kho02a] conjec-

tured that a Label Cover where the constraints are 1-to-1, called Unique Games, is also

hard to approximate within any constant. More specifically, Khot conjectured that

GapUG(1 − ε, ε), an analogous promise problem for Unique Games, is NP-hard for any

constant ε > 0. One of the significance of this conjecture is that many dictatorship tests

can be composed easily with GapUG(1− ε, ε) to get inapproximability results. However,

since the Unique Games problem lacks perfect completeness it cannot be used to show

hardness of approximating satisfying instances.

From the PCP point of view, in order to get k-bit PCP with perfect completeness,

the first step is to analyze k-query dictatorship test with perfect completeness. For

its application to construction PCPs there are two important things we need to study

about the dictatorship test. First one is how to compose the dictatorship test with

the known PCPs and second is how sound we can make the dictatorship test. In this

work, we make a progress in understanding the answer to the later question. To make

a remark on the first question, there is a dictatorship test with perfect completeness

and soundness 2Õ(k1/3)

2k
and also a way to compose it with GapLC(1, ε) to get a k-bit

PCP with perfect completeness and the same soundness that of the dictatorship test.

This was done in [Hua13] and is currently the best know k-bit non-adaptive PCP with

perfect completeness.

Distance from a dictator function:

There are multiple notion of closeness to a dictator function. One natural definition is

the minimum fraction of values we need to change such that the function becomes a

dictator. There are other relaxed notions such as how close the function is to juntas -

functions that depend on constantly many variables. Since our main motivation is the
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use of dictatorship test in the construction of PCP, we can work with even more relaxed

notion which we describe next: For a Boolean function f : {0, 1}n → {0, 1} an influence

of ith variable is the probability that for a random input x ∈ {0, 1}n flipping the ith

coordinate flips the value of the function. Note that a dictator function has a variable

whose influence is 1. The influence of ith variable can be expressed in terms of the

fourier coefficients of f as infi[f ] =
∑

S⊆[n]|i∈S f̂(S)2. Using this, a degree d influence

of f is inf≤di [f ] =
∑

S⊆[n]|i∈S,|S|≤d f̂(S)2. We say that f is far from any dictator if for a

constant d all its degree d influences are upper bounded by some small constant.

In this chapter, we investigate the trade-off between the number of queries and the

soundness parameter of a dictatorship test with perfect completeness w.r.t to the above

defined distance to a dictator function. A random function is far from any dictator but

still it passes any (non-trivial) k-query test with probability at least 1/2k. Thus, we

cannot expect the test to have soundness parameter less than 1/2k. The main theorem

in this chapter is to show there exists a dictatorship test with perfect completeness and

soundness at most 2k+1
2k

.

Theorem 7.1.1. Given a Boolean function f : {0, 1}n → {0, 1}, for every k of the form

2m − 1 for any m > 2, there is a k query dictatorship test with perfect completeness

and soundness 2k+1
2k

.

Our theorem improves a result of Tamaki-Yoshida[TY15] which had a soundness of

2k+3
2k

.

Remark 7.1.2. Tamaki-Yoshida [TY15] studied a k functions test where if a given set

of k functions are all the same dictator then the test accepts with probability 1. They use

low degree cross influence (Definition 2.4 in [TY15]) as a criteria to decide closeness

to a dictator function. Our whole analysis also goes through under the same setting as

that of [TY15], but we stick to single function version for a cleaner presentation.
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7.1.1 Previous Work

The notion of Dictatorship Test was introduced by Bellare et al. [BGS98] in the context

of Probabilistically Checkable Proofs and also studied by Parnas et al. [PRS02]. As our

focus is on non-adpative test, for an adaptive k-bit dictatorship test, we refer interested

readers to [ST09, HW03, HK05, EH08]. Throughout this section, we use k to denote

the number of queries and ε > 0 an arbitrary small constant.

Getting the soundness parameter for a specific values of k had been studied ear-

lier. For instance, for k = 3 H̊astad [H̊as01] gave a 3-bit PCP with completeness 1− ε

and soundness 1/2 + ε. It was earlier shown by Zwick [Zwi97] that any 3-bit dicta-

tor test with perfect completeness must have soundness at at least 5/8. For a 3-bit

dictatorship test with perfect completeness, Khot-Saket [KS06] acheived a soundness

parameter 20/27 and they were also able to compose their test with Label Cover to-

wards getting 3-bit PCP with similar completeness and soundness parameters. The

dictatorship test of Khot-Saket [KS06] was later improved by O’Donnell-Wu [OW09a]

to the optimal value of 5/8. The dictatorship test of O’Donnell-Wu [OW09a] was used

in O’Donnell-Wu [OW09b] to get a conditional (based on Khot’s d-to-1 conjecture) 3-bit

PCP with perfect completeness and soundness 5/8 which was later made unconditional

by H̊astad [H̊as14].

For a general k, Samorodensky-Trevisan [ST00] constructed a k-bit PCP with im-

perfect completeness and soundness 22
√
k/2k. This was improved later by Engebretsen

and Holmerin [EH08] to 2
√

2k/2k and by H̊astad-Khot [HK05] to 24
√
k/2k with perfect

completeness. To break the 2O(
√
k)/2k Samorodensky-Trevisan [ST09] introduced the

relaxed notion of soundness (based on the low degree influences) and gave a dictator-

ship test (called Hypergraph dictatorship test) with almost perfect completeness and

soundness 2k/2k for every k and also (k + 1)/2k for infinitely many k. They combined

this test with Khot’s Unique Games Conjecture [Kho02a] to get a conditional k-bit

PCP with similar completeness and soundness guarantees. This result was improved

by Austrin-Mossel [AM09] and they achieved k + o(k)/2k soundness.

For any k-bit CSP for which there is an instance with an integrality gap of c/s for
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a certain SDP, using a result of Raghavendra [Rag08] one can get a dictatorship test

with completeness c − ε and soundness s + ε. Getting the explicit values of c and s

for a given value of k is not clear from this result and also it cannot be used to get

a dictatorship test with perfect completeness. Similarly, using the characterization of

strong approximation restance of Khot et. al [KTW14] one can get a dictatorship test

but it also lacks peferct completeness. Recently, Chan [Cha13] significantly improved

the parameters for a k-bit PCP which achieves soundness 2k/2k albeit losing perfect

completeness. Later Huang [Hua13] gave a k-bit PCP with perfect completeness and

soundness 2Õ(k1/3)/2k.

As noted earlier, the previously best known result for a k-bit dictatorship test with

perfect completeness is by Tamaki-Yoshida [TY15]. They gave a test with soundness

2k+3
2k

for infinitely many k.

7.2 Proof Overview

Let f : {−1,+1}n → {−1,+1} be a given balanced Boolean function 1. Any non-

adaptive k-query dictatorship test queries the function f at k locations and receives k

bits which are the function output on these queries inputs. The verifier then applies

some predicate, let’s call it P : {0, 1}k → {0, 1}, to the received bits and based on

the outcome decides whether the function is a dictator or far from it. Since we are

interested in a test with perfect completeness this puts some restriction on the set of

k queried locations. If we denote x1,x2, . . . ,xk as the set of queried locations then the

ith bit from (x1,x2, . . . ,xk) should satisfy the predicate P. This is because, the test

should always accept no matter which dictator f is.

Let µ denotes a distribution on P−1(1). One natural way to sample (x1,x2, . . . ,xk)

such that the test has a perfect completeness guarantee is for each coordinate i ∈ [n]

independently sample (x1,x2, . . . ,xk)i from distribution µ. This is what we do in our

dictatorship test for a specific distribution µ supported on P−1(1). It is now easy to

see that the test accepts with probability 1 of f is an ith dictator for any i ∈ [n].

1Here we switch from 0/1 to +1/− 1 for convenience. With this notation switch, balanced function
means E[f(x)] = 0
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Analyzing the soundness of a test is the main technical task. First note that the

soundness parameter of the test depends on P−1(1) as it can be easily verified that if

f is a random function, which is far from any dictator function, then the test accepts

with probability at least |P
−1(1)|
2k

. Thus, for a better soundness guarantee we want P

to have as small support as possible. The acceptance probability of the test is given by

the following expression:

Pr[Test accepts f ] = E[P(f(x1), f(x2), · · · , f(xk))]

=
|P−1(1)|

2k
+ E

 ∑
S⊆[k],S 6=∅

P̂(S)
∏
i∈S

f(xi)


Thus, in order to show that the test accepts with probability at most |P

−1(1)|
2k

+ ε it is

enough to show that all the expectations ES := |E[
∏
i∈S f(xi)]| are small if f is far

from any dictator function. Recall that at this point, we can have any predicate P on

k bits which the verifier uses. As we will see later, for the soundness analysis we need

the predicate P to satisfy certain properties.

For the rest of the section, assume that the given function f is such that the low

degree influence of every variable i ∈ [n] is very small constant τ . If f is a constant

degree function (independent of n) then the usual analysis goes by invoking invariance

principle to claim that the quantity ES does not change by much if we replace the

distribution µ to a distribution ξ over Gaussian random variable with the same first

and second moments. An advantage of moving to a Gaussian distribution is that if µ

was a uniform and pairwise independent distribution then so is ξ and using the fact

that a pairwise independence implies a total independence in the Gaussian setting, we

have ES ≈ |
∏
i∈S E[f(gi)]|. Since we assumed that f was a balanced function we have

E[f(gi)]| = 0 and hence we can say that the quantity ES is very small.

There are two main things we need to take care in the above argument. 1) We

assumed that f is a low degree function and in general it may not be true. 2) The

argument crucially needed µ to satisfy pairwise independence condition and hence it

puts some restriction on the size of P−1(1) (Ideally, we would like |P−1(1)| to be as

small as possible for a better soundness guarantee). We take care of (1), as in the
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previous works [TY15, OW09a, AM09] etc., by requiring the distribution µ to have

correlation bounded away from 1. This can be achieved by making sure the support of

µ is connected - for every coordinate i ∈ [k] there exists a, b ∈ P−1(1) which differ at the

ith location. For such distribution, we can add independent noise to each co-ordinate

without changing the quantity ES by much. Adding independent noise has the effect

that it damps the higher order fourier coefficients of f and the function behaves as a

low degree function. We can now apply invariance principle to claim that ES ≈ 0. This

was the approach in [TY15] and they could find a distribution µ whose support size is

2k + 3 which is connected and pairwise independent.

In order to get an improvement in the soundness guarantee, our main technical

contribution is that we can still get the overall soundness analysis to go through even

if µ does not support pairwise independence condition. To this end, we start with

a distribution µ whose support size is 2k + 1 and has the property that it is almost

pairwise independent. Since we lack pairwise independence, it introduces few obstacles

in the above mentioned analysis. First, the amount of noise we can add to each co-

ordinate has some limitations. Second, because of the limited amount of independent

noise, we can no longer say that the function f behaves as a low degree function after

adding the noise. With the limited amount of noise, we can say that f behaves as a

low degree function as long as it does not have a large fourier mass in some interval

i.e the fourier mass corresponding to f̂(T )2 such that |T | ∈ (s, S) for some constant

sized interval (s, S) independent of n. We handle this obstacle by designing a family

of distributions µ1, µ2, . . . , µr for large enough r such that the intervals that we cannot

handle for different µi’s are disjoint. Also, each µi has the same support and is almost

pairwise independent. We then let our final test distribution as first selecting i ∈ [r]

u.a.r and then doing the test with the corresponding distribution µi. Since the total

fourier mass of a −1/+ 1 function is bounded by 1 and f was fixed before running the

test it is very unlikely that f has a large fourier mass in the interval corresponding to

the selected distribution µi. Hence, we can conclude that for this overall distribution,

f behaves as a low degree function. We note that this approach of using family of

distributions was used in [H̊as14] to construct a 3-bit PCP with perfect completeness.
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There it was used in the composition step.

To finish the soundness analysis, let f̃ be the low degree part of f . The argument in

the previous paragraph concludes that ES ≈ |E[
∏
i∈S f̃(xi)]|. As in the previous work,

we can now apply invariance principle to claim that ES ≈ |E[
∏
i∈S f̃(gi)]| where the

ith coordinate (g1,g2, . . . ,gk)i is distributed according to ξ which is almost pairwise

independent. We can no longer bring the expectation inside as our distribution lacks

independence. To our rescue, we have that the degree of f̃ is bounded by some constant

independent of n. We then prove that low degree functions are robust w.r.t slight pertur-

bation in the inputs on average. This lets us conclude E[
∏
i∈S f̃(gi)] ≈ E[

∏
i∈S f̃(hi)]

where (h1,h2, . . . ,hk)i is pairwise independent. We now use the property of inde-

pendence of Gaussian distribution and bring the expectation inside to conclude that

ES ≈ |E[
∏
i∈S f̃(hi)]| = |

∏
i∈S E[f̃(hi)]| = 0.

7.3 Invariance Principle

Let µ be any distribution on {−1,+1}k. Consider the following distribution on x1,x2, . . . ,xk ∈

{−1,+1}n such that independently for each i ∈ [n], ((x1)i, (x2)i, . . . , (xk)i) is sampled

from µ. We will denote this distribution as µ⊗n. We are interested in evaluation of a

multilinear polynomial f : Rn → R on (x1,x2, . . . ,xk) sampled as above.

Invariance principle shows the closeness between two different distributions w.r.t some

quantity of interest. We are now ready to state the version of the invariance principle

from [Mos10] that we need.

Theorem 7.3.1 ([Mos10]). For any α > 0, ε > 0, k ∈ N+ there are d, τ > 0 such that

the following holds: Let µ be the distribution on {+1,−1}k satisfying

1. Ex∼µ[xi] = 0 for every i ∈ [k]

2. µ(x) ≥ α for every x ∈ {−1,+1}k such that µ(x) 6= 0

Let ν be a distribution on standard jointly distributed Gaussian variables with the same

covariance matrix as distribution µ. Then, for every set of k (d, τ)-quasirandom mul-

tilinear polynomials fi : Rn → R, and suppose Var[f>di ] ≤ (1 − γ)2d for 0 < γ < 1 it
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holds that ∣∣∣∣∣ E
(x1,x2,...,xk)∼µ⊗n

[
k∏
i=1

fi(xi)

]
− E

(g1,g2,...,gk)∼ν⊗n

[
k∏
i=1

fi(gi)

]∣∣∣∣∣ ≤ ε
(Note: one can take d = log(1/τ)

log(1/α) and τ such that ε = τΩ(γ/ log(1/α)), where Ω(.) hides

constant depending only on k.)

7.4 Query efficient Dictatorship Test

We are now ready to describe our dictatorship test. The test queries a function at k

locations and based on the k bits received decides if the function is a dictator or far

from it. The check on the received k bits is based on a predicate with few accepting

inputs which we describe next.

7.4.1 The Predicate

Let k = 2m − 1 for some m > 2. Let the coordinates of the predicate is indexed by

elements of Fm2 \ 0 =: {w1, w2, . . . , w2m−1}. The Hadamard predicate Hk has following

satisfying assignments:

Hk = {x ∈ {0, 1}k|∃a ∈ Fm2 \ 0 s.t ∀i ∈ [k], xi = a · wi}

We will identify the set of satisfying assignments in Hk with the variables h1, h2, . . . , hk.

Our final predicate Pk is the above predicate along with few more satisfying assign-

ments. More precisely, we add all the assignments which are at a hamming distance at

most 1 from 0k i.e. Pk = Hk ∪ki=1 ei ∪ 0k.
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7.4.2 The Distribution Dk,ε

For 0 < ε ≤ 1
k2 , consider the following distribution Dk,ε on the set of satisfying assign-

ments of Pk where α := (k − 1)ε.

Probabilities Assignments

Dk,ε ←
{
x1 x2 · · · · · · xk

1

1− α

(
1

k + 1
− α

)
←
{

0 0 · · · · · · 0

1

1− α

(
1

k + 1
− ε
)
←



h1

h2

...

hk

ε

1− α
←



1 0 · · · · · · 0

0 1 · · · · · · 0

...

0 0 · · · · · · 1,

where each hi gets a probability mass 1
1−α( 1

k+1 − ε) and each ei gets weight ε
1−α .

The reasoning behind choosing this distribution is as follows: An uniform distribution

on Hk ∪ 0k has a property that it is uniform on every single co-ordinate and also

pairwise independent. These two properties are very useful proving the soundness

guarantee. One more property which we require is that the distribution has to be

connected. In order to achieve this, we add k extra assignment {e1, e2, . . . , ek} and

force the distribution to be supported on all Hk ∪ki=1 ei ∪ 0k. Even though by adding

extra assignments, we loose the pairwise independent property we make sure that the

final distribution is almost pairwise independent.

We now list down the properties of this distribution which we will use in analyzing

the dictatorship test.

Observation 7.4.1. The distribution Dk,ε above has the following properties:

1. Dk,ε is supported on Pk.
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2. Marginal on every single coordinate is uniform.

3. For i 6= j, covariance of two variables xi, xj sampled form above distribution is:

Cov[xi, xj ] = − ε
2(1−α) .

4. If we view Dk,ε as a joint distribution on space
∏k
i=1X (i) where each X (i) = {0, 1},

then for all i ∈ [k], ρ
(
X (i),

∏
j∈[k]\{i}X (j);Dk,ε

)
≤ 1− ε2

2(1−α)2 .

Proof. We prove each of the observations about the distribution. The first property is

straight-forward. To prove (2), we compute E[xi] as follows.

E[xi] = (k + 1) · 1

1− α

(
1

k + 1
− ε
)
· 1

2
+

ε

1− α

=
1− ε(k + 1) + 2ε

2(1− α)

=
1

2

Consider the quantity E
Dk,ε

[xixj ]. If x is sampled from 0’s or ei’s, the value is 0.

Moreover, we know that if it is sampled uniformly from Hk ∪ 0k, it is 1/4 because of

pairwise independence and the above fact. Therefore, we can write

E
Dk,ε

[xixj ] = (k + 1)
1

1− α

(
1

k + 1
− ε
)

1

4

We know that E
Dk,ε

[xi] = E
Dk,ε

[xj ] = 1/2. Therefore,

Cov[xi, xj ] = E
Dk,ε

[xixj ]− E
Dk,ε

[xi] E
Dk,ε

[xj ]

=
1

4(1− α)
− ε(k + 1)

4(1− α)
− 1

4

=
−ε

2(1− α)

To prove the last item, we first show that the bi-partite graphG
(
X (i),

∏
j∈[k]\{i}X (j), E

)
where (a, b) ∈ X (i) ×

∏
j∈[k]\{i}X (j) is an edge iff Pr(a, b) > 0, is connected. To see

that the graph is connected, note that for both 0 and 1 on the left hand side, 0k−1 is a

neighbor on the right hand side as the distribution’s support includes ei for all i, and

0k. From the distribution, we see that the smallest atom is at least ε
1−α , since ε ≤ 1/k2.

We now use Lemma 2.2.2 to get the required result.
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Test Tk,δ

1. Sample x1,x2, · · · ,xk ∈ {−1,+1}n as follows:

(a) For each i ∈ [n], independently sample ((x1)i, (x2)i, · · · , (xk)i) according

to the distribution Dk,δ.

2. Check if (f(x1), f(x2), · · · , f(xk)) ∈ Pk.

Test T ′k,ε

1. Set r =
(
k
err

)2
2. Select j from {1, 2, . . . , r} uniformly at random.

3. Set δ = εj

4. Run test Tk,δ.

7.4.3 Dictatorship Test

We will switch the notations from {0, 1} to {+1,−1} where we identify +1 as 0 and

−1 as 1. Let f : {−1,+1}n → {−1,+1} be a given boolean function. We also assume

that f is folded i.e. for every x ∈ {−1,+1}n, f(x) = −f(−x). We think of Pk as a

function Pk : {−1,+1}k → {0, 1} such that Pk(z) = 1 iff z ∈ Pk. Consider the following

dictatorship test:

The final test distribution is basically the above test where the parameter δ is chosen

from an appropriate distribution. For a given 1
k2 ≥ ε > 0, let err = ε/5

2k
and define the

following quantities : ε0 = ε and for j ≥ 0, εj+1 = err · 2
−
(

k10

err3εj

)k
.

We would like to make a remark that this particular setting of εj+1 is not very

important. For our analysis, we need a sequence of εj ’s such that each subsequent εj

is sufficiently small compared to εj−1.
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7.5 Analysis of the Dictatorship Test

Notation:

We can view f : {−1,+1}n → {−1,+1} as a function over n-fold product set X1 ×

X2 × · · · × Xn where each Xi = {−1,+1}{i}. In the test distribution Tk,δ, we can think

of xi sampled from the product distribution on X (i)
1 × X (i)

2 × · · · × X (i)
n . With these

notations in hand, the overall distribution on (x1,x2, · · · ,xk), from the test Tk,δ, is a

n-fold product distribution from the space

n∏
j=1

(
k∏
i=1

X (i)
j

)
.

where we think of
∏k
i=1X

(i)
j as correlated space. We define the parameters for the sake

of notational convenience:

1. βj :=
εj

1−(k−1)εj
be the minimum probability of an atom in the distribution Dk,εj .

2. sj+1 := log( k
err )

1
ε2j

and Sj = sj+1 for 0 ≤ j ≤ r.

3. αj := (k − 1)εj for j ∈ [r],

7.5.1 Completeness

Completeness is trivial, if f is say ith dictator then the test will be checking the following

condition

((x1)i, (x2)i, · · · , (xk)i) ∈ Pk

Using Observation 7.4.1(1), the distribution is supported on only strings in Pk. There-

fore, the test accepts with probability 1.

7.5.2 Soundness

Lemma 7.5.1. For every 1
k2 ≥ ε > 0 there exists 0 < τ < 1, d ∈ N+ such that

the following holds: Suppose f is such that for all i ∈ [n], inf≤di (f) ≤ τ , then the

test T ′k,ε accepts with probability at most 2k+1
2k

+ ε. (Note: One can take τ such that

τΩk(err/10sr log(1/βr)) ≤ err and d = log(1/τ)
log(1/βr)

.)
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Proof. The acceptance probability of the test is given by the following expression:

Pr[Test accepts f ] = E
T ′k,ε

[Pk(f(x1), f(x2), · · · , f(xk))]

After expanding Pk in terms of its Fourier expansion, we get

Pr[Test accepts f ] =
2k + 1

2k
+ E
T ′k,ε

 ∑
S⊆[k],S 6=∅

P̂k(S)
∏
i∈S

f(xi)


=

2k + 1

2k
+

∑
S⊆[k],S 6=∅

P̂k(S) E
T ′k,ε

[∏
i∈S

f(xi)

]

≤ 2k + 1

2k
+

∑
S⊆[k],S 6=∅

∣∣∣∣∣ E
T ′k,ε

[∏
i∈S

f(xi)

]∣∣∣∣∣ (|P̂k(S)| ≤ 1)

=
2k + 1

2k
+

∑
S⊆[k],|S|≥2

∣∣∣∣∣ E
T ′k,ε

[∏
i∈S

f(xi)

]∣∣∣∣∣ .
In the last equality, we used the fact that each xi is distributed uniformly in {−1,+1}n

and hence when S = {i}, E[f(xi)] = f̂(∅) = 0. Thus, to prove the lemma it is enough

to show that for all S ⊆ [k] such that |S| ≥ 2, E
[∏

i∈S f(xi)
]
≤ ε

2k
. This follows from

Lemma 7.5.2.

Lemma 7.5.2. For any S ⊆ [k] such that |S| ≥ 2,

∣∣∣∣∣∣ E
j∈[r]

 E
D⊗nk,εj

[∏
i∈S

f(xi)

]∣∣∣∣∣∣ ≤ ε

2k

The proof of this follows from the following Lemmas 7.5.3 , 7.5.4, 7.5.5.

Lemma 7.5.3. For any j ∈ [r] and for any S ⊆ [k], |S| ≥ 2 such that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

− E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

∣∣∣∣∣∣ ≤ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2.

where γj = err
ksj

and dj,i is a sequence given by dj,1 =
2k2·sj
err log

(
k
err

)
and dj,i = (dj,1)i

for 1 < i ≤ t.

Lemma 7.5.4. Let j ∈ [r] and νj be a distribution on jointly distributed standard

Gaussian variables with same covariance matrix as that of Dk,εj . Then for any S ⊆ [k],

|S| ≥ 2 such that S = {`1, `2, . . . , `t},
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∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

− E
(g1,g2,...,gk)∼ν⊗nj

∏
`i∈S

(T1−γjf)≤dj,i(gi)

∣∣∣∣∣∣ ≤ err2

where dj,i from Lemma 7.5.3 and err2 = τΩk(γj/ log(1/βj)) (Note: Ω(.) hides a constant

depending on k).

Lemma 7.5.5. Let k ≥ 2 and S ⊆ [k] such that |S| ≥ 2 and let f : Rn → R be a

multilinear polynomial of degree D ≥ 1 such that ‖f‖2 ≤ 1. If G be a joint distribution

on k standard gaussian random variable with a covariance matrix (1 + δ)I− δJ and H

be a distribution on k independent standard gaussian then it holds that∣∣∣∣∣ E
G⊗n

[∏
i∈S

f(gi)

]
− E
H⊗n

[∏
i∈S

f(hi)

]∣∣∣∣∣ ≤ δ · (2k)2kD

Proofs of Lemma 7.5.3 , 7.5.4, 7.5.5 appear in Section 7.5.3. We now prove

Lemma 7.5.2 using the above three claims.

Proof of Lemma 7.5.2: Let S = {`1, `2, . . . , `t}. We are interested in getting an

upper bound for the following expectation:∣∣∣∣∣∣ E
j∈[r]

 E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣ ≤ E
j∈[r]

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣
 .

Let us look at the inner expectation first. Let γj = err
ksj

and the sequence dj,i be from

Lemma 7.5.3. We can upper bound the inner expectation as follows:

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

∣∣∣∣∣∣+ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2

(by Lemma 7.5.3)

(by Lemma 7.5.4) ≤

∣∣∣∣∣∣ E
(g1,g2,...,gk)∼ν⊗nj

∏
`i∈S

(T1−γjf)≤dj,i(gi)

∣∣∣∣∣∣+ err2 + 2 · err+

k

√ ∑
sj≤|T |≤Sj

f̂(T )2, (7.5.1)

where err2 = τΩk(γj/ log(1/βj)) and νj has the same covariance matrix as Dk,εj . If we

let δj =
2εj

1−αj then using Observation 7.4.1(3), the covariance matrix is precisely (1 +



143

δj)I − δjJ (note that we switched from 0/1 to −1/ + 1 which changes the covaraince

by a factor of 4). Each of the functions (T1−γjf)≤dj,i has `2 norm upper bounded by 1

and degree at most dj,t. We can now apply Lemma 7.5.5 to conclude that∣∣∣∣∣∣ E
(g1,g2,...,gk)∼ν⊗nj

∏
`i∈S

(T1−γjf)≤dj,i(gi)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ E
(h1,h2,...,hk)

∏
`i∈S

(T1−γjf)≤dj,i(hi)

∣∣∣∣∣∣+
δj · (2k)2kdj,t , (7.5.2)

where hi’s are independent and each hi is distributed according to N (0, 1)n. Thus,

E
(h1,h2,...,hk)

∏
`i∈S

(T1−γjf)≤dj,i(hi)

 =
∏
`i∈S

E
hi

[
(T1−γjf)≤dj,i(hi)

]
=
(

̂(T1−γjf)≤dj,i(∅)
)t

= (f̂(∅))t = 0, (7.5.3)

where we used the fact that f is a folded function in the last step. Combining (7.5.1),

(7.5.2) and (7.5.3), we get∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣ ≤
(
δj · (2k)2kdj,t

)
+
(
τΩk(γj/ log(1/βj))

)
+ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2

(7.5.4)

We now upper bound the first term. For this, we use a very generous upper bounds

dj,1 ≤ k5

err3
1

ε2j−1
and δj ≤ 4εj .

δj · (2k)2kdj,t ≤
(

4εj · (2k)2dj,kk
)

≤ εj · 2

(
k10

err3εj−1

)k

≤ err.

(
using εj = err · 2

−
(

k10

err3εj−1

)k)
The second term in (7.5.4) can also be upper bounded by err by choosing small enough

τ .

max
j
{
(
τΩk(γj/ log(1/βj))

)
} ≤

(
τΩk(γr/ log(1/βr))

)
≤ err.

Finally, taking the outer expectation of (7.5.4), we get

E
j∈[r]

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣
 ≤ 4 · err + k E

j∈r

√ ∑
sj≤|T |≤Sj

f̂(T )2

 .
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Using Cauchy-Schwartz inequality,

E
j∈[r]

√ ∑
sj<|T |<Sj

f̂(T )2

 ≤
√√√√√ E

j∈[r]

 ∑
sj<|T |<Sj

f̂(T )2

 ≤ 1√
r
,

where the last inequality uses the fact that the intervals (sj , Sj) are disjoint for j ∈ [r]

and ‖f‖22 =
∑

T f̂(T )2 ≤ 1. The final bound we get is∣∣∣∣∣∣ E
j∈[r]

 E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣ ≤ E
j∈[r]

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

∣∣∣∣∣∣
 ≤ 4 · err +

k√
r
≤ 5.err ≤ ε

2k
,

as required.

7.5.3 Proofs of Lemma 7.5.3 , 7.5.4 & 7.5.5

In this section, we provide proofs of three crucial lemmas which we used in proving the

soundness analysis of our dictatorship test.

7.5.4 Moving to a low degree function

The following lemma, at a very high level, says that if change f to its low degree noisy

version then the loss we incur in the expected quantity is small.

Lemma 7.5.6 (Restatement of Lemma 7.5.3). For any j ∈ [r] and for any S ⊆ [k],

|S| ≥ 2 such that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

− E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

∣∣∣∣∣∣ ≤ 2 · err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2.

where γj = err
ksj

and dj,i is a sequence given by dj,1 =
2k2·sj
err log

(
k
err

)
and dj,i = (dj,1)i

for 1 < i ≤ t.

Proof. The proof is presented in two parts. We first prove an upper bound on

Γ1 :=

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

f(x`i)

− E
D⊗nk,εj

∏
`i∈S

(T1−γjf)(x`i)

∣∣∣∣∣∣ ≤ err + k

√ ∑
sj≤|T |≤Sj

f̂(T )2

(7.5.5)
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and then an upper bound on

Γ2 :=

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

(T1−γjf)(x`i)

− E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

∣∣∣∣∣∣ ≤ err. (7.5.6)

Note that both these upper bounds are enough to prove the lemma.

Upper Bounding Γ1: The following analysis is very similar to the one in [TY15], we

reproduce it here for the sake of completeness. The first upper bound is obtained by

getting the upper bound for the following, for every a ∈ [t].

Γ1,a :=

∣∣∣∣∣∣ E
D⊗nk,εj

∏
i≥a

f(x`i)
∏
i<a

(T1−γjf)(x`i)

− E
D⊗nk,εj

∏
i>a

f(x`i)
∏
i≤a

(T1−γjf)(x`i)

∣∣∣∣∣∣
(7.5.7)

Note that by triangle inequality, Γ1 ≤
∑

a∈[t] Γ1,a.

(7.5.7) =

∣∣∣∣∣∣ E
D⊗nk,εj

[(
f(x`a)− T1−γjf(x`a)

)∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
D⊗nk,εj

[(
id− T1−γj

)
f(x`a)

∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
D⊗nk,εj

[
U
(
(id− T1−γj

)
f)(x{`i:i∈[t]\{a}})

∏
i>a

f(x`i)
∏
i<a

(T1−γjf)(x`i)

]∣∣∣∣∣∣ (7.5.8)

where U is the Markov operator for the correlated probability space which maps func-

tions from the space X (`a) to the space
∏
i∈[t]\{a}X (`i). We can look at the above expres-

sion as a product of two functions, F =
∏
i>a f

∏
i<a(T1−γjf) and G = U(id−T1−γj )f).

From Observation 7.4.1( 4), the correlation between spaces
(
X (`a),

∏
i∈[t]\{a}X (`i)

)
is

upper bounded by 1−
(

εj
1−αj

)2
≤ 1− ε2

j =: ρj . Taking the Efron-Stein decomposition

with respect to the product distribution, we have the following because of orthogonality

of the Efron-Stein decomposition,

(7.5.8) =

∣∣∣∣∣∣ E
D⊗nk,εj

[G× F ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
T⊆[n]

E
D⊗nk,εj

[GT × FT ]

∣∣∣∣∣∣
(by Cauchy-Schwartz) ≤

√∑
T⊆[n]

‖FT ‖22
√∑
T⊆[n]

‖GT ‖22 (7.5.9)
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where the norms are with respect to D⊗nk,εj ’s marginal distribution on the product dis-

tribution
∏
i∈[t]\{a}X (`i). By orthogonality, the quantity

√∑
T⊆[n] ‖FT ‖22 is just ‖F‖2.

As F is product of function whose range is [−1,+1], rane of F is also [−1,+1] and

hence ‖F‖2 is at most 1. Therefore,

(7.5.9) ≤
√∑
T⊆[n]

‖GT ‖22 (7.5.10)

We have GT = (UG′)T , where G′ = (id − T1−γj )f . In G′T , the Efron-Stein de-

composition is with respect to the marginal distribution of D⊗nk,εj on X (`a), which

is just uniform (by Observation 7.4.1(2)). Using Proposition 2.2.5, we have GT =

UG′T = U(id− T1−γj )fT . Substituting in (7.5.10), we get

(7.5.10) =

√∑
T⊆[n]

‖U(if − T1−γj )fT )‖22 (7.5.11)

We also have that the correlation is upper bounded by ρj . We can therefore apply

Proposition 2.2.6, and conclude that for each T ⊆ [n],

‖U(id− T1−γj )fT ‖2 ≤ ρ
|T |
j ‖(id− T1−γj )fT ‖2

where the norm on the right is with respect to the uniform distribution. Observe that

‖(id− T1−γj )fT ‖22 = (1− (1− γj)|T |)2f̂(T )2

Substituting back into (7.5.11), we get

(7.5.11) ≤
√√√√∑

T⊆[n]

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2︸ ︷︷ ︸

Term(εj ,γj ,T )

(7.5.12)

We will now break the above summation into three different parts and bound each part

separately.

Θ1 :=
∑
T⊆[n],
|T |≤sj

Term(εj , γj , T ) Θ2 :=
∑
T⊆[n],

sj<|T |<Sj

Term(εj , γj , T )

Θ3 :=
∑
T⊆[n],
|T |≥Sj

Term(εj , γj , T )
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• Upper bounding Θ1:

Θ1 =
∑
T⊆[n],
|T |≤sj

Term(εj , γj , T ) =
∑
T⊆[n],
|T |≤sj

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2

≤
∑
T⊆[n],
|T |≤sj

(1− (1− γj)|T |)2f̂(T )2.

For every |T | ≤ sj we have 1− (1− γj)|T | ≤ err1/k. Thus,

Θ1 ≤
(err1

k

)2 ∑
T⊆[n],
|T |≤sj

f̂(T )2.

• Upper bounding Θ3:

Θ3 =
∑
T⊆[n],
|T |≥Sj

Term(εj , γj , T ) =
∑
T⊆[n],
|T |≥Sj

ρ
2|T |
j (1− (1− γj)|T |)2f̂(T )2 ≤

∑
T⊆[n],
|T |≥Sj

ρ
2|T |
j f̂(T )2.

For every |T | ≥ Sj we have ρ
|T |
j ≤ (1− ε2

j )
|T | ≤ err1/k. Thus,

Θ3 ≤
(err1

k

)2 ∑
T⊆[n],
|T |≥Sj

f̂(T )2.

Substituting these upper bounds in (7.5.12),

Γ1,a ≤
√√√√√(err1

k

)2 ∑
T⊆[n],

|T |≤sjor|T |≥Sj

f̂(T )2 +
∑
T⊆[n],

sj<|T |<Sj

f̂(T )2

≤

√√√√(err1

k

)2
+

∑
sj<|T |<Sj

f̂(T )2 (since
∑

T f̂(T )2 ≤ 1)

≤ err1

k
+

√ ∑
sj<|T |<Sj

f̂(T )2. (using concavity)

The required upper bound on Γ1 follows by using Γ1 ≤
∑

a∈[t] Γ1,a and the above bound.

Upper Bounding Γ2: We will now show an upper bound on Γ2. The approach is

similar to the previous case, we upper bound the following quantity for every a ∈ [t]

Γ2,a :=

∣∣∣∣∣∣∣
ED⊗n

k,εj

[∏
i≥a(T1−γjf)(x`i)

∏
i<a(T1−γjf

≤dj,i)(x`i)
]
−

ED⊗n
k,εj

[∏
i>a(T1−γjf)(x`i)

∏
i≤a(T1−γjf

≤dj,i)(x`i)
]

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣ E
D⊗nk,εj

[(
T1−γjf(x`a)− T1−γjf

≤dj,a(x`a)
)∏
i>a

T1−γjf(x`i)
∏
i<a

(T1−γjf
≤dj,i)(x`i)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
D⊗nk,εj

[(
T1−γjf

>dj,a(x`a)
)∏
i>a

T1−γjf(x`i)
∏
i<a

(T1−γjf
≤dj,i)(x`i)

]∣∣∣∣∣∣ (7.5.13)

By using Holder’s inequality we can upper bound (7.5.13) as:

(7.5.13) ≤ ‖T1−γjf
>dj,a‖2

∏
i>a

‖T1−γjf‖2(t−1)

∏
i<a

‖T1−γjf
≤dj,i‖2(t−1), (7.5.14)

where each norm is w.r.t the uniform distribution as marginal of each x`i is uniform in

{+1,−1}n. Now, ‖T1−γjf‖2(t−1) ≤ 1 as the range if T1−γjf is in [−1,+1]. To upper

bound ‖T1−γjf
≤dj,i‖2(t−1), we use Proposition 2.3.3 and using the fact that {−1,+1}

uniform random variable is (2, q, 1/
√
q − 1) hypercontractive (Theorem 2.3.2) to get

‖T1−γjf
≤dj,i‖2(t−1) ≤ (2t− 3)dj,i‖T1−γjf

≤dj,i‖2 ≤ (2t)dj,i .

Plugging this in (7.5.14), we get

(7.5.14) ≤ ‖T1−γjf
>dj,a‖2

∏
i<a

(2t)dj,i ≤ (1− γj)dj,a ·
∏
i<a

(2t)dj,i

≤ e−γjdj,a · (2k)k·dj,a−1

≤ e−
err
ksj
·dj,a · (2k)k·dj,a−1 (7.5.15)

Now,

dj,1 · dj,a−1 = dj,a

2k2 · sj
err

log

(
k

err

)
· dj,a−1 = dj,a

k2 · sj
err

log

(
k

err

)
+
k2 · sj

err
log

(
k

err

)
· dj,a−1 ≤ dj,a

k · sj
err

log

(
k

err

)
+
k2 · sj

err
· log(2k) · dj,a−1 ≤ dj,a

k · sj
err
·
(

log

(
k

err

)
+ k · dj,a−1 log(2k)

)
= dj,a

k · sj
err
· log

(
k

err
(2k)k·dj,a−1

)
= dj,a
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This implies

log

(
k

err
(2k)k·dj,a−1

)
=

err

ksj
· dj,a

⇒ k

err
(2k)k·dj,a−1 = e

err
ksj
·dj,a

⇒ e
− err
ksj
·dj,a · (2k)k·dj,a−1 =

err

k
.

Thus from (7.5.15), we have Γ2,a ≤ err
k . To conclude the proof, by triangle inequality

we have Γ2 ≤
∑

a∈[t] Γ2,a ≤ err.

7.5.5 Moving to the Gaussian setting

We are now in the setting of low degree polynomials because of Lemma 7.5.3. The

following lemma let us switch from our test distribution to a Gaussian distribution

with the same first two moments.

Lemma 7.5.7 (Restatement of Lemma 7.5.4). Let j ∈ [r] and νj be a distribution on

jointly distributed standard Gaussian variables with same covariance matrix as that of

Dk,εj . Then for any S ⊆ [k], |S| ≥ 2 such that S = {`1, `2, . . . , `t},

∣∣∣∣∣∣ E
D⊗nk,εj

∏
`i∈S

(T1−γjf)≤dj,i(x`i)

− E
(g1,g2,...,gk)∼ν⊗nj

∏
`i∈S

(T1−γjf)≤dj,i(gi)

∣∣∣∣∣∣ ≤ err2

where dj,i from Lemma 7.5.3 and err2 = τΩk(γj/ log(1/βj)) (Note: Ω(.) hides a constant

depending on k).

Proof. Using the definition of (d, τ)-quasirandom function and Fact 2.1.7, if f is (d, τ)-

quasirandom then so is T1−γf for any 0 ≤ γ ≤ 1. Also, T1−γf satisfies

Var[T1−γf
>d] =

∑
T⊆[n]
|T |>d

(1− γ)2|T |f̂(T )2 ≤ (1− γ)2d ·
∑
T⊆[n]
|T |>d

f̂(T )2 ≤ (1− γ)2d.

The lemma follows from a direct application of Theorem 7.3.1.
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7.5.6 Making Gaussian variables independent

Our final lemma allows us to make the Gaussian variables independent. Here we cru-

cially need the property that the polynomials we are dealing with are low degree poly-

nomials. Before proving Lemma 7.5.5, we need the following lemma which says that

low degree functions are robust to small perturbations in the input on average.

Lemma 7.5.8. Let f : Rn → R be a multilinear polynomial of degree d such that

‖f‖2 ≤ 1 suppose x, z ∼ N (0, 1)n be n-dimensional standard gaussian vectors such that

E[xizi] ≥ 1− δ for all i ∈ [n]. Then

E[(f(x)− f(z))2] ≤ 2δd.

Proof. For T ⊆ [n], we have

E[χT (x)χT (z)] =
∏
i∈T

E[xizi] ≥
∏
i∈T

(1− δ) ≥ (1− δ)|T |

We now bound the following expression,

E[(f(x)− f(z))2] = E[f(x)2 + f(z)2 − 2f(x)z(x)]

=
∑

T⊆[n],|T |≤d

f̂(T )2(2− 2 E[χT (x)χT (z)])

≤ 2 ·
∑

T⊆[n],|T |≤d

f̂(T )2(1− (1− δ)|T |)

≤ 2 ·
∑

T⊆[n],|T |≤d

f̂(T )2δ|T |

≤ 2δd ·
∑

T⊆[n],|T |≤d

f̂(T )2 ≤ 2δd,

where the last inequality uses ‖f‖2 ≤ 1.

We are now ready to prove Lemma 7.5.5.

Lemma 7.5.9 (Restatement of Lemma 7.5.5). Let k ≥ 2 and 2 ≤ t ≤ k and let

f : Rn → R be a multilinear polynomial of degree D ≥ 1 such that ‖f‖2 ≤ 1. If G

be a joint distribution on k standard gaussian random variable with covariance matrix

(1 + δ)I− δJ and H be a distribution on k independent standard gaussian then it holds



151

that ∣∣∣∣∣∣ E
G⊗n

∏
i∈[t]

f(gi)

− E
H⊗n

∏
i∈[t]

f(hi)

∣∣∣∣∣∣ ≤ δ · (2k)2Dk.

Proof. Let Σ = (1+ δ)I− δJ be the covariance matrix. Let M = (1− δ′)((1+β)I−βJ)

be a matrix such that M2 = Σ. There are multiple M which satisfy M2 = Σ. We

chose the M stated above to make the analysis simpler. From the way we chose M

and using the condition M2 = Σ, it is easy to observe that β and δ′ should satisfy the

following two conditions:

1− δ′ = 1√
1 + (k − 1)β2

and
(k − 2)β2 − 2β

1 + (k − 1)β2
= −δ.

Since H is a distribution of k independent standard gaussians, we can generate a sample

x ∼ G by sampling y ∼ H and setting x = My. In what follows, we stick to the following

notation: (h1,h2, . . . ,hk) ∼ H⊗n and (g1,g2, . . . ,gk)j = M(h1,h2, . . . ,hk)j for each

j ∈ [n].

Because of the way we chose to generate g′is, we have for all i ∈ [k] and j ∈ [n],

E[(gi)j(hi)j ] = 1− δ′ ≥ 1−kβ2. To get an upper bound on β, notice that β is a root of

the quadratic equation (k+δk−δ−2)β2−2β+δ = 0. Let k′ = (k+δk−δ−2), if β1, β2

are the roots of the equation then they satisfy: k′β1 + k′β2 = 2 and (k′β1)(k′β2) = δk′

and β1, β2 > 0. Thus, we have min{k′β1, k
′β2} ≤ δk′ and hence, we can take β such

that β ≤ δ.

We wish to upper bound the following expression:

Γ :=

∣∣∣∣∣∣ E
H⊗n

∏
i∈[t]

f(gi)−
∏
i∈[t]

f(hi)

∣∣∣∣∣∣ .
Define the following quantity

Γi :=

∣∣∣∣∣∣ E
H⊗n

i−1∏
j=1

f(hj)
t∏
j=i

f(gj)−
i∏

j=1

f(hj)

t∏
j=i+1

f(gj)

∣∣∣∣∣∣ .
By triangle inequality, we have Γ ≤

∑
i∈[t] Γi. We now proceed with upper bounding

Γi for a given i ∈ [t].
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Γi =

∣∣∣∣∣∣ E
H⊗n

i−1∏
j=1

f(hj)

t∏
j=i

f(gj)−
i∏

j=1

f(hj)

t∏
j=i+1

f(gj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
H⊗n

(f(gi)− f(hi)) ·
i−1∏
j=1

f(hj)
t∏

j=i+1

f(gj)

∣∣∣∣∣∣
≤
√

E
H⊗n

[(f(gi)− f(hi))2] ·
i−1∏
j=1

E
H⊗n

[f(hj)
2(t−1)]

1
2(t−1)

t∏
j=i+1

E
H⊗n

[f(gj)
2(t−1)]

1
2(t−1) ,

where the last step uses Holder’s Inequality. Now, the marginal distribution on each hj

and gj is identical which is N (0, 1)n, we have

Γi ≤
√

E
H⊗n

[(f(gi)− f(hi))2] ·
i−1∏
j=1

‖f‖2(t−1)

t∏
j=i+1

‖f‖2(t−1)

≤
√

E
H⊗n

[(f(gi)− f(hi))2] · (‖f‖2(t−1))
t−1

Since a standard one dimensional Gaussian is (2, q, 1/
√
q − 1)-hypercontractive (The-

orem 2.3.2), from Proposition 2.3.3 , ‖f‖2(t−1) ≤ (
√

2t− 3)D‖f‖2 ≤ (
√

2t− 3)D <

(2t)D/2. Thus,

Γi ≤ (2t)D(t−1)/2 ·
√

E
H⊗n

[(f(gi)− f(hi))2]

Now, each gi,hi are such that such that E[(gi)j · (hi)j ] = 1 − δ′ ≥ 1 − kδ2 for every

j ∈ [n]. We can apply Lemma 7.5.8 to get EH⊗n [(f(gi)− f(hi))
2] ≤ 2kδ2D. Hence, we

can safely upper bound Γi as

Γi ≤ (2t)D(t−1)/2 · 2kδD.

Therefore, Γ ≤
∑

i Γi ≤ t · (2t)D(t−1)/2 · 2kδD which is at most 2k2δD · (2k)Dk/2 ≤

δ · (2k)2Dk as required.
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Chapter 8

Simultaneous Optimization

8.1 Introduction

In this chapter, we initiate the study of simultaneous approximation algorithms for con-

straint satisfaction problems. A typical such problem is the simultaneous Max-CUT

problem: Given a collection of k graphs Gi = (V,Ei) on the same vertex set V , the

problem is to find a single cut (i.e., a partition of V ) so that in every Gi, a large fraction

of the edges go across the cut.

More generally, let q be a constant positive integer, and let F be a set of bounded-

arity predicates on [q]-valued variables. Let V be a set of n [q]-valued variables. An F-

CSP is a weighted collectionW of constraints on V , where each constraint is an applica-

tion of a predicate from F to some variables from V . For an assignment f : V → [q] and

a F-CSP instanceW, we let val(f,W) denote the total weight of the constraints fromW

satisfied by f . The Max-F-CSP problem is to find f which maximizes val(f,W). If F is

the set of all predicates on [q] of arity w, then Max-F-CSP is also called Max-w-CSPq.

We now describe the setting for the problem we consider: k-fold simultaneous Max-

F-CSP. LetW1, . . . ,Wk be F-CSPs on V , each with total weight 1. Our high level goal

is to find an assignment f : V → [q] for which val(f,W`) is large for all ` ∈ [k].

These problems fall naturally into the domain of multi-objective optimization: there

is a common search space, and multiple objective functions on that space. Since even

optimizing one of these objective functions could be NP-hard, it is natural to resort

to approximation algorithms. Below, we formulate some of the approximation criteria

that we will consider, in decreasing order of difficulty:

1. Pareto approximation: Suppose (c1, . . . , ck) ∈ [0, 1]k is such that there is an



154

assignment f∗ with val(f∗,W`) ≥ c` for each ` ∈ [k].

An α-Pareto approximation algorithm in this context is an algorithm, which when

given (c1, . . . , ck) as input, finds an assignment f such that val(f,W`) ≥ α · c`, for

each ` ∈ [k].

2. Minimum approximation: This is basically the Pareto approximation problem

when c1 = c2 = . . . = ck. Define Opt to be the maximum, over all assignments

f∗, of min`∈[k] val(f∗,W`).

An α-minimum approximation algorithm in this context is an algorithm which

finds an assignment f such that min`∈[k] val(f,W`) ≥ α ·Opt.

3. Detecting Positivity: This is a very special case of the above, where the goal is

simply to determine whether there is an assignment f which makes val(f,W`) > 0

for all ` ∈ [k].

At the surface, this problem appears to be a significant weakening of the the

simultaneous approximation goal.

When k = 1, minimum approximation and Pareto approximation correspond to the

classical Max-CSP approximation problems (which have received much attention).

Our focus in this chapter is on general k. As we will see in the discussions below, the

nature of the problem changes quite a bit for k > 1. In particular, direct applications of

classical techniques like random assignments and convex programming relaxations fail

to give even a constant factor approximation.

The theory of exact multiobjective optimization has been very well studied, (see

eg. [PY00, Dia11] and the references therein). For several optimization problems such

as shortest paths, minimum spanning trees, matchings, etc, there are polynomial time

algorithms that solve the multiobjective versions exactly. For Max-SAT, simultaneous

approximation was studied by Glaßer et al. [GRW11].

We have two main motivations for studying simultaneous approximations for CSPs.

Most importantly, these are very natural algorithmic questions, and capture naturally
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arising constraints in a way which more näıve formulations (such as taking linear com-

binations of the given CSPs) cannot. Secondly, the study of simultaneous approxima-

tion algorithms for CSPs sheds new light on various aspects of standard approxima-

tion algorithms for CSPs. For example, our algorithms are able to favorably exploit

some features of the trivial random-assignment-based 1/2-approximation algorithm for

Max-CUT, that are absent in the more sophisticated SDP-based 0.878-approximation

algorithm of Goemans-Williamson [GW95].

8.1.1 Observations about simultaneous approximation

We now discuss why a direct application of the classical CSP algorithms fails in this

setting, and limitations on the approximation ratios that can be achieved.

We begin with a trivial remark. Finding an α-minimum (or Pareto) approximation

to the k-fold Max-F-CSP is at least as hard as finding an α-approximation the

classical Max-F-CSP problem (i.e., k = 1). Thus the known limits on polynomial-

time approximability extend naturally to our setting.

Max-1-SAT. The simplest simultaneous CSP is Max-1-SAT. The problem of getting a

1-Pareto or 1-minimum approximation to k-fold simultaneous Max-1-SAT is essentially

the NP-hard SUBSET-SUM problem. There is a simple 2poly(k/ε) ·poly(n)-time (1−ε)-

Pareto approximation algorithm based on dynamic programming.

It is easy to see that detecting positivity of a k-fold simultaneous Max-1-SAT is

exactly the same problem as detecting satisfiability of a SAT formula with k clauses

(a problem studied in the fixed parameter tractability community. Thus, this problem

can be solved in time 2O(k) · poly(n) (see [Mar13]), and under the Exponential Time

Hypothesis, one does not expect a polynomial time algorithm when k = ω(log n).

Random Assignments. Let us consider algorithms based on random assignments.

A typical example is Max-CUT. A uniformly random cut in a weighted graph graph

cuts 1/2 the total weight in expectation. This gives a 1/2-approximation to the classical

Max-CUT problem.

If the cut value is concentrated around 1/2, with high probability, we would obtain
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a cut that’s simultaneously good for all instances. For an unweighted graph1 G with

ω(1) edges, a simple variance calculation shows that a uniformly random cut in the

graph cuts a
(

1
2 − o(1)

)
fraction of the edges with high probability. Thus by a union

bound, for k = O(1) simultaneous unweighted instances G1, . . . , Gk of Max-CUT, a

uniformly random cut gives a
(

1
2 − o(1)

)
-minimum (and Pareto) approximation with

high probability. However, for weighted graphs, the concentration no longer holds, and

the algorithm fails to give any constant factor approximation.

For general CSPs, even for unweighted instances, the total weight satisfied by a

random assignment does not necessarily concentrate. In particular, there is no “trivial”

random-assignment-based constant factor approximation algorithm for simultaneous

general CSPs.

SDP Algorithms. How do algorithms based on semi-definite programming (SDP)

generalize to the simultaneous setting?

For the usual Max-CUT problem (k = 1), the celebrated Goemans-Williamson

SDP algorithm [GW95] gives a 0.878-approximation. The SDP relaxation generalizes

naturally to to the simultaneous setting; it allows us to find a vector solution which is

a simultaneously good cut for G1, . . . , Gk. Perhaps we apply hyperplane rounding to

the SDP solution to obtain a simultaneously good cut for all Gi? We know that each

Gi gets a good cut in expectation, but we need each Gi to get a good cut with high

probability to guarantee a simultaneously good cut.

However, there are cases where the hyperplane rounding fails completely. For

weighted instances, the SDP does not have any constant integrality gap. For unweighted

instances, for every fixed k, we find an instance of k-fold simultaneous Max-CUT (with

arbitrarily many vertices and edges) where the SDP relaxation has value 1 − Ω
(

1
k2

)
,

while the optimal simultaneous cut has value only 1/2. Furthermore, applying the

hyperplane rounding algorithm to this vector solution gives (with probability 1) a si-

multaneous cut value of 0. These integrality gaps are described in Section 8.8.

1We use the term “unweighted” to refer to instances where all the constraints have the same weight.
When we talk about simultaneous approximation for unweighted instancesW1, . . . ,Wk of MAX-F-CSP,
we mean that in each instanceWi, all constraints with nonzero weight have the equal weights (but that
equal weight can be different for different i).
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Thus the natural extension of SDP based techniques for simultaneous approximation

fail quite spectacularly. A-priori, this failure is quite surprising, since SDPs (and LPs)

generalize to the multiobjective setting seamlessly.

Matching Random Assignments? Given the ease and simplicity of algorithms based

on random assignments for k = 1, giving algorithms in the simultaneous setting that

match their approximation guarantees is a natural benchmark. Perhaps it is always

possible to do as well in the simultaneous setting as a random assignment for one

instance?

Somewhat surprisingly, this is incorrect. For simultaneous Max-Ew-SAT (CNF-

SAT where every clause has exactly w distinct literals), a simple reduction from Max-

E3-SAT (with k = 1) shows that it is NP-hard to give a (7/8 + ε)-minimum approxi-

mation for k-fold simultaneous Max-Ew-SAT for large enough constants k.

Proposition 8.1.1. For all integers w ≥ 4 and ε > 0, given k ≥ 2w−3 instances of

Max-Ew-SAT that are simultaneously satisfiable, it is NP-hard to find a (7/8 + ε)-

minimum (or Pareto) approximation.

On the other hand, a random assignment to a single Max-Ew-SAT instance satisfies

a 1− 2−w fraction of constraints in expectation.

This shows that simultaneous CSPs can have worse approximation factors than that

expected from a random assignment. In particular, it shows that simultaneous CSPs

can have worse approximation factors than their classical (k = 1) counterparts.

8.1.2 Results

Our results address the approximability of k-fold simultaneous Max-F-CSP for large

k. Our main algorithmic result shows that for every F , and k not too large, k-fold

simultaneous Max-F-CSP has a constant factor Pareto approximation algorithm.

Theorem 8.1.2. Let q, w be constants. Then for every ε > 0, there is a 2O(k4/ε2 log(k/ε)) ·

poly(n)-time
(

1
qw−1 − ε

)
-Pareto approximation algorithm for k-fold simultaneous

Max-w-CSPq.
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The dependence on k implies that the algorithm runs in polynomial time up to

k = Õ((log n)1/4) simultaneous instances 2. The proof of the above Theorem appears in

Section 8.4, and involves a number of ideas. In order to make the ideas clearer, we first

describe the main ideas for approximating simultaneous Max-2-AND (which easily

implies the q = w = 2 special case of the above theorem); this appears in Section 8.3.

For particular CSPs, our methods allow us to do significantly better, as demon-

strated by our following result for Max-w-SAT.

Theorem 8.1.3. Let w be a constant. For every ε > 0, there is a 2O(k3/ε2 log(k/ε)) ·

poly(n)-time (3/4− ε)-Pareto approximation algorithm for k-fold Max-w-SAT.

Given a single Max-Ew-SAT instance, a random assignment satisfies a 1−2−w frac-

tion of the constraints in expectation. The approximation ratio achieved by the above

theorem seems unimpressive in comparison (even though it is for general Max-w-SAT).

However, Proposition 8.1.1 demonstrates it is NP-hard to do much better.

Remarks

1. As demonstrated by Proposition 8.1.1, it is sometimes impossible to match the

approximation ratio achieved by a random assignment for k = 1. By compari-

son, the approximation ratio given by Theorem 8.1.2 is slightly better than that

achieved by a random assignment (1/qw). This is comparable to the best possible

approximation ratio for k = 1, which is w/qw−1 up to constants [MM12, Cha13].

Our methods also prove that picking the best assignment out of 2O(k4/ε2 log(k/ε))

independent and uniformly random assignments achieves a (1/qw − ε)-Pareto ap-

proximation with high probability.

2. Our method is quite general. For any CSP with a convex relaxation and an asso-

ciated rounding algorithm that assigns each variable independently from a distri-

bution with certain smoothness properties (see Section 8.3.2), it can be combined

with our techniques to achieve essentially the same approximation ratio for k

simultaneous instances.

2The Õ(·) hides poly(log logn) factors.
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3. We reiterate that Pareto approximation algorithms achieve a multiplicative ap-

proximation for each instance. One could also consider the problem of achieving

simultaneous approximations with an α-multiplicative and ε-additive error. This

problem can be solved by a significantly simpler algorithm and analysis (but note

that this variation does not even imply an algorithm for detecting positivity).

8.1.3 Complementary results

Refined hardness results

As we saw earlier, assuming ETH, there is no algorithm for even detecting positivity

of k-fold simultaneous Max-1-SAT for k = ω(log n). There are trivial examples of

CSPs for which detecting positivity (and in fact 1-Pareto approximation) can be solved

efficiently: eg. simultaneous CSPs based on monotone predicates (where no negations

of variables are allowed) are maximally satisfied by the all-1s assignment. Here we prove

that for any “nontrivial” collection of Boolean predicates F , assuming ETH, there is no

polynomial time algorithm for detecting positivity for k-fold simultaneous Max-F-CSP

instances for k = ω(log n). In particular, it is hard to obtain any poly-time constant

factor approximation for k = ω(log n). This implies a complete dichotomy theorem for

constant factor approximations of k-fold simultaneous Boolean CSPs.

A predicate P : {0, 1}w → {True,False} is said to be 0-valid/1-valid if the all-0-

assignment/all-1-assignment satisfies P . We call a collection F of predicates 0-valid/1-

valid if all predicates in F are 0-valid/1-valid. Clearly, if F is 0-valid or 1-valid, the

simultaneous Max-F-CSP instances can be solved exactly (by considering the all-

0-assignment/all-1-assignment). Our next theorem shows that detecting positivity of

ω(log n)-fold simultaneous Max-F-CSP , for all other F , is hard.

Theorem 8.1.4. Assume the Exponential Time Hypothesis [IP01, IPZ01]. Let F be a

fixed finite set of Boolean predicates. If F is not 0-valid or 1-valid, then for k = ω(log n),

detecting positivity of k-fold simultaneous Max-F-CSP on n variables requires time

super-polynomial in n.

Crucially, this hardness result holds even if we require that every predicate in an
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instance has all its inputs being distinct variables.

Our proof uses techniques underlying the dichotomy theorems of Schaefer [Sch78]

for exact CSPs, and of Khanna et al. [KSTW01] for Max-CSPs (although our easiness

criterion is different from the easiness criteria in both these papers).

Simultaneous approximations via SDPs

It is a tantalizing possibility that one could use SDPs to improve the LP-based approx-

imation algorithms that we develop. Especially for constant k, it is not unreasonable

to expect that one could obtain a constant factor Pareto or minimum approximation,

for k-fold simultaneous CSPs, better than what can be achieved by linear programming

methods.

In this direction, we show how to use simultaneous SDP relaxations to obtain a poly-

nomial time (1/2+Ω(1/k2))-minimum approximation for k-fold simultaneous Max-CUT

on unweighted graphs.

Theorem 8.1.5. For large enough n, there is an algorithm that, given k-fold simul-

taneous unweighted Max-CUT instances on n vertices, runs in time 222O(k)

· poly(n),

and computes a
(

1
2 + Ω

(
1
k2

))
-minimum approximation.

Remark 8.1.6. We improve the above result in Chapter 9, where we achieve close to

0.878 approximation for simultaneous Max-CUT

8.1.4 Our techniques

For the initial part of this discussion, we focus on the q = w = 2 case, and only achieve

a 1/4− ε Pareto approximation.

Preliminary Observations

First let us analyze the behavior of the uniformly random assignment algorithm. It is

easy to compute, for each instance ` ∈ [k], the expected weight of satisfied constraints

in instance `, which will be at least 1
4 of the total weight all constraints in instance

`. If we knew for some reason that in each instance the weight of satisfied constraints
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was concentrated around this expected value with high probability, then we could take

a union bound over all the instances and conclude that a random assignment satisfies

many constraints in each instance with high probability. It turns out that for any

instance where the desired concentration does not occur, there is some variable in that

instance which has high degree (i.e., the weight of all constraints involving that variable

is a constant fraction of the total weight of all constraints). Knowing that there is such

a high degree variable seems very useful for our goal of finding a good assignment,

since we can potentially influence the satisfaction of the instance quite a bit by just by

changing this one variable.

This motivates a high-level plan: either proceed by using the absence of influential

variables to argue that a random assignment will succeed, or proceed by trying to set

the influential variables.

An attempt

The above high-level plan motivates the following high-level algorithm. First we identify

a set S ⊆ V of “influential” variables. This set of influential variables should be of small

(O(log n)) size, so that we can try out all assignments to these variables. Next, we take

a random assignment to the remaining variables, g : V \ S → {0, 1}. Finally, for each

possible assignment h : S → {0, 1}, we consider the assignment h ∪ g : V → {0, 1}

as a candidate solution for our simultaneous CSP. We output the assignment, if any,

that has val(h ∪ g,W`) ≥ α · c` for each ` ∈ [k]. This concludes the description of the

high-level algorithm.

For the analysis, we would start with the ideal assignment f∗ : V → {0, 1} achieving

val(f∗,W`) ≥ c` for each ` ∈ [k]. Consider the step of the algorithm where h is taken

to equal h∗
def
= f∗|S . We would like to say that for each ` ∈ [k] we have:

val(h∗ ∪ g,W`) ≥ (
1

4
− ε) · val(f∗,W`),

with high probability, when g : V \ S → {0, 1} is chosen uniformly at random. (We

could then conclude the analysis by a union bound.)

A simple calculation shows that E[val(h∗∪g,W`)] ≥ 1
4 ·val(f∗,W`), so each instance
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is well satisfied in expectation. Our hope is thus that val(h∗ ∪ g,W`) is concentrated

around its mean with high probability.

There are two basic issues with this approach3:

1. The first issue is how to define the set S of influential variables. For some special

CSPs (such as Max-CUT and Max-SAT), there is a natural choice which works

(to choose a set of variables with high degree, which is automatically small). But

for general CSPs, it could be the case that variables with exponentially small

degree are important contributors to the ideal assignment f∗.

2. Even if one chooses the set S of influential variables appropriately, the analysis

cannot hope to argue that val(h∗ ∪ g,W`) concentrates around its expectation

with high probability. Indeed, it can be the case that for a random assignment g,

val(h∗ ∪ g,W`) is not concentrated at all.

A working algorithm:

Our actual algorithm and analysis solve these problems by proceeding in a slightly

different way. The first key idea is to find the set of influential variables by iteratively

including variables into this set, and simultaneously assigning these variables. This

leads to a tree-like evolution of the set of influential variables. The second key idea

is in the analysis: instead of arguing about the performance of the algorithm when

considering the partial assignment h∗ = f∗|S , we will perform a delicate perturbation

of h∗ to obtain an h′ : S → {0, 1}, and show that val(h′ ∪ g,W`) is as large as desired.

Intuitively, this perturbation only slightly worsens the satisfied weight of h∗, while

reducing the reliance of the good assignment f∗ on any specialized properties of f∗|S .

To implement this, the algorithm will maintain a tree of possible evolutions of a set

S ⊆ V and a partial assignment ρ : S → {0, 1}. In addition, every variable x ∈ S will

be labelled by an instance ` ∈ [k]. The first stage of the algorithm will grow this tree in

3 These problems do not arise if we only aim for the weaker “additive-multiplicative” Pareto ap-
proximation guarantee (where one allows for both some additive loss and multiplicative loss in the
approximation), and in fact the above mentioned high-level plan does work. The pure multiplicative
approximation guarantee seems to be significantly more delicate.
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several steps. In the beginning, at the root of the tree, we have S = ∅. At every stage,

we will either terminate that branch of the tree, or else increase the size of the set S

by 1 (or 2), and consider all 2 (or 4) extensions of ρ to the newly grown S.

To grow the tree, the algorithm considers a random assignment g : V \ S → {0, 1},

and computes, for each instance i ∈ [k], the expected satisfied weight Eg[val(ρ∪ g,W`)]

and the variance of the satisfied weight Varg[val(ρ ∪ g,W`)]. We can thus classify

instances as concentrated or non-concentrated. If more than t variables in S are labelled

by instance ` (where t = Ok,ε(1) is some parameter to be chosen), we call instance `

saturated. If every unsaturated instance is concentrated, then we are done with this S

and ρ, and this branch of the tree gets terminated.

Otherwise, we know that there some unsaturated instance ` which is not concen-

trated. We know that this instance ` must have some variable x ∈ V \ S which has

high active degree (this is the degree after taking into account the partial assignment

ρ). The algorithm now takes two cases:

• Case 1: If this high-active-degree variable x is involved in a high-weight con-

straint on {x, y} for some y ∈ V \S, then we include both x, y into the set S, and

consider all 4 possible extensions of ρ to this new S. x, y are both labelled with

instance `.

• Case 2: Otherwise, every constraint involving x is low-weight (and in particular

there must be many of them), and in this case we include x into the set S, and

consider both possible extensions of ρ to this new S. x is labelled with instance

`.

This concludes the first stage of the algorithm, which created a tree whose leaves contain

various (S, ρ) pairs.

For the second stage of the algorithm we visit each leaf (S, ρ). We choose a uniformly

random g : V \ S → {0, 1}, and consider for every h : S → {0, 1}, the assignment

h ∪ g : V → {0, 1}. Note that we go over all assignments to the set S, independent of

the partial assignment to S associated with the leaf.
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The analysis:

At the end of the evolution, at every leaf of the tree every instance is either highly-

concentrated or saturated. If instance ` is highly-concentrated, we will have the prop-

erty that the random assignment to V \S has the right approximation factor for instance

`. If the instance ` is saturated, then we know that there are many variables in S la-

belled by instance `; and at the time these variables were brought into S, they had high

active degree.

The main part of the analysis is then a delicate perturbation procedure, which starts

with the partial assignment h∗
def
= f∗|S , and perturbs it to some h′ : S → {0, 1} with

a certain robustness property. Specifically, it ensures that for every saturated instance

` ∈ [k]. we have val(h′∪ g,W`) is at least as large as the total weight in instance ` of all

constraints not wholly contained within S. At the same time, the perturbation ensures

that for unsaturated instances ` ∈ [k], val(h′∪g,W`) is almost as large as val(h∗∪g,W`).

This yields the desired Pareto approximation. The perturbation procedure modifies the

assignment h∗ at a few carefully chosen variables (at most two variables per saturated

instance). After picking the variables for an instance, if the variables were brought

into S by Case 1, we can satisfy the heavy constraint involving them. Otherwise, we

use a Lipschitz concentration bound to argue that a large fraction of the constraints

involving the variable and V \ S can be satisfied; this is the second place where we use

the randomness in the choice of g.

As we mentioned earlier, this perturbation is necessary! It is not true the assignment

h∗ ∪ g will give a good Pareto approximation with good probability 4.

Improved approximation, and generalization:

To get the claimed (1
2 − ε)-Pareto approximation for the q = w = 2 case, we replace

the uniformly random choice of g : V \ S → {0, 1} by a suitable LP relaxation +

randomized rounding strategy. Concretely, at every leaf (S, ρ), we do the following.

First we write an LP relaxation of the residual MAX-2-CSP problem. Then, using a

4See Section 8.8.2 for an example
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rounding algorithm of Trevisan (which has some desirable smoothness properties), we

choose g : V \ S → {0, 1} by independently rounding each variable. Finally, for all

h : S → {0, 1}, we consider the assignment h ∪ g. The analysis is nearly identical (but

crucially uses the smoothness of the rounding), and the improved approximation comes

from the improved approximation factor of the classical LP relaxation for MAX-2-CSP.

The generalization of this algorithm to general q, w is technical but straightforward.

One notable change is that instead of taking 2 cases each time we grow the tree, we end

up taking w cases. In case j, we have a set of j variables such that the total weight of

constraints involving all the j variables is large, however for every remaining variable

z, the weight of contraints involving all the j variables together with z is small. The

analysis of the perturbation is similar.

The algorithm for Max-w-SAT uses the fact that the LP rounding gives a 3/4 ap-

proximation for Max-w-SAT. Moreover, since a Max-w-SAT constraint can be satis-

fied by perturbing any one variable, the algorithm does not require a tree of evolutions.

It only maintains a set of “influential” variables, and hence, is simpler.

8.1.5 Related Work

The theory of exact multiobjective optimization has been very well studied, (see eg. [PY00,

Dia11] and the references therein).

The only directly comparable work for simultaneous approximation algorithms for

CSPs we are aware of is the work of Glaßer et al. [GRW11] 5. They give a 1/2-Pareto

approximation for Max-SAT with a running time of nO(k2). For bounded width clauses,

our algorithm does better in both approximation guarantee and running time.

For Max-CUT, there are a few results of a similar flavor. For two graphs, the

results of Angel et al. [ABG06] imply a 0.439-Pareto approximation algorithm (though

their actual results are incomparable to ours). Bollobás and Scott [BS04] asked what

is the largest simultaneous cut in two unweighted graphs with m edges each. Kuhn

and Osthus [KO07], using the second moment method, proved that for k simultaneous

5They also give Pareto approximation results for simultaneous TSP (also see references therein).
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unweighted instances, there is a simultaneous cut that cuts at leastm/2−O(
√
km) edges

in each instance, and give a deterministic algorithm to find it (this leads to a (1
2−o(1))-

Pareto approximation for unweighted instances with sufficiently many edges). Our main

theorem implies the same Pareto approximation factor for simultaneous Max-CUT on

general weighted instances, while for k-fold simultaneous Max-CUT on unweighted

instances, our Theorem 8.1.5 gives a
(

1
2 + Ω( 1

k2 )
)
-minimum approximation algorithm.

8.1.6 Organization of this Chapter

We first present the notation required for our algorithms in Section 8.2. We then

describe our Pareto approximation algorithm for Max-2-AND (which is equivalent

to Max-2-CSP2), and its generalization to Max-w-CSPq in Sections 8.3 and 8.4 re-

spectively. We then present our improved Pareto approximation for Max-w-SAT in

Section 8.5.

We present the additional results in the remaining sections - The dichotomy theorem

for the hardness of arbitrary CSPs is presented in Section 8.6, followed by our improved

minimum approximation algorithm for unweighted Max-CUT in Section 8.7, and the

SDP integrality gaps in Section 8.8.

8.1.7 Related Work

The theory of exact multiobjective optimization has been very well studied, (see eg. [PY00,

Dia11] and the references therein).

The only directly comparable work for simultaneous approximation algorithms for

CSPs we are aware of is the work of Glaßer et al. [GRW11]. 6 They give a 1/2-Pareto

approximation for Max-SAT with a running time of nO(k2). For bounded width clauses,

our algorithm does better in both approximation guarantee and running time.

For Max-CUT, there are a few results of a similar flavor. For two graphs, the

results of Angel et al. [ABG06] imply a 0.439-Pareto approximation algorithm (though

their actual results are incomparable to ours). Bollobás and Scott [BS04] asked what is

6They also give Pareto approximation results for simultaneous TSP (also see references therein).
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the largest simultaneous cut in two unweighted graphs with m edges each. Kuhn and

Osthus [KO07], using the second moment method, proved that for k simultaneous un-

weighted instances, there is a simultaneous cut that cuts at least m/2−O(
√
km) edges

in each instance, and give a deterministic algorithm to find it (this leads to a (1
2−o(1))-

Pareto approximation for unweighted instances with sufficiently many edges). Our main

theorem implies the same Pareto approximation factor for simultaneous Max-CUT on

general weighted instances, while for k-fold simultaneous Max-CUT on unweighted

instances, our Theorem 8.1.5 gives a
(

1
2 + Ω( 1

k2 )
)
-minimum approximation algorithm.

8.2 Notation for the Main Algorithms

We now define some common notation that will be required for the following sections

on algorithms for Max-2-AND and and for general MAX-F-CSP. For the latter, will

stop referring to the set of predicates F , and simply present an algorithm for the

problem Max-w-CSPq: this is the MAX-F-CSP problem, where F equals the set of

all predicates on w variables from the domain [q]. For Max-2-AND, the alphabet q

and arity w are both 2.

Let V be a set of n variables. Each variable will take values from the domain [q]. Let

C denote a set of constraints of interest on V (for example, for studying Max-2-AND,

C would be the set of AND constraints on pairs of literals of variables coming from V ).

We use the notation v ∈ C to denote that the v is one of the variables that the constraint

C depends on. Analogously, we denote T ⊆ C if C depends on all the variables in T. A

weighted MAXCSP instance on V is given by a weight functionW : C → R+, where for

C ∈ C, W(C) is the weight of the constraint C. We will assume that
∑

C∈CW(C) = 1.

A partial assignment ρ is a pair (Sρ, hρ), where Sρ ⊆ V and hρ : Sρ → [q]. (We

also call a function h : S → [q], a partial assignment, when S is understood from the

context). We say a contraint C ∈ C is active given ρ if C depends on some variable

in V \ Sρ, and there exists full assignments g0, g1 : V → [q] with gi|Sρ = hρ, such

that C evaluates to False under the assignment g0 and C evaluates to True under
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the assignment g1. (colloquially: C’s value is not fixed by ρ). We denote by Active(ρ)

the set of constraints from C which are active given ρ. For a partial assignment ρ and

C ∈ C\Active(ρ), let C(ρ) = 1 if C’s value is fixed to True by ρ, and let C(ρ) = 0 if C’s

value is fixed to False by ρ. For disjoint subsets S1, S2 ⊆ V and partial assignments

f1 : S1 → [q] and f2 : S2 → [q], let f = f1 ∪ f2 denote the assignment f : S1 ∪ S2 → [q]

with f(x) = f1(x) if x ∈ S1, and f(x) = f2(x) if x ∈ S2. Abusing notation, for a

partial assignment ρ and an assignment g : V \ Sρ? → [q], we often write ρ ∪ g instead

of hρ ∪ g. For two constraints C1, C2 ∈ C, we say C1 ∼ρ C2 if they share a variable that

is contained in V \ Sρ.

Define the active degree given ρ of a variable v ∈ V \ Sρ by:

activedegreeρ(v,W)
def
=

∑
C∈Active(ρ),C3v

W(C).

For a subset T ⊆ V \ Sρ of variables, define its active degree given ρ by:

activedegreeρ(T,W)
def
=

∑
C∈Active(ρ),C⊇T

W(C).

Define the active degree of the whole instance W given ρ:

activedegreeρ(W)
def
=

∑
v∈V \Sρ

activedegreeρ(v,W).

For a partial assignment ρ, we define its value on an instance W by:

val(ρ,W)
def
=

∑
C∈C\Active(ρ)

W(C)C(ρ).

Thus, for a total assignment f : V → [q] extending ρ, we have the equality:

val(f,W)− val(ρ,W) =
∑

C∈Active(ρ)

W(C)C(f).

8.3 Simultaneous Max-2-AND

In this section, we give our approximation algorithm for simultaneous Max-2-AND.

Via a simple reduction given Section 8.4.1, this implies the q = w = 2 case of our main

theorem, Theorem 8.1.2.
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8.3.1 Random Assignments

We begin by giving a sufficient condition for the value of a Max-2-AND to be highly

concentrated under independent random assignments to the variables.

Let ρ be a partial assignment. Let p : V \ Sρ → [0, 1] be such that p(v) ∈ [1
4 ,

3
4 ] for

each v ∈ V \ Sρ. Let g : V \ Sρ → [q] be a random assignment obtained by sampling

g(v) for each v independently with E[g(v)] = p(v). Define the random variable

Y
def
= val(ρ ∪ g,W)− val(ρ,W) =

∑
C∈Active(ρ)

W(C)C(g).

The random variable Y measures the contribution of active constraints to val(ρ∪g,W).

Note that the two quantities E[Y ] and Var[Y ] can be computed efficiently given p. We

denote these by TrueMeanρ(p,W) and TrueVarρ(p,W). The following lemma proves that

either Y is concentrated, or there exists an active variable that contributes a significant

fraction of the total active-degree of the instance.

Lemma 8.3.1. Let p, Y be as above.

1. If TrueVarρ(p,W) < δ0ε
2
0 · TrueMeanρ(p,W)2 then Pr[Y < (1− ε0) E[Y ]] < δ0.

2. If TrueVarρ(p,W) ≥ δ0ε
2
0 · TrueMeanρ(p,W)2, then there exists v ∈ V \ Sρ such

that

activedegreeρ(v,W) ≥ ε2
0δ0

64
· activedegreeρ(W).

The above lemma is a special case of Lemma 8.4.2 which is proved in Section 8.4.2,

and hence we skip the proof. The first part is then a simple application of the Chebyshev

inequality. For the second part, we use the assumption that TrueVar is large, to deduce

that there exists a constraint C such that the total weight of constraints that share a

variable from V \ S with C, i.e.,
∑

C2∼SCW(C2), is large. It then follows that at least

one variable v ∈ C must have large activedegree given S.

8.3.2 LP Relaxations

Let (c`)`∈[k] be the given target values for the Pareto approximation problem. Given

a partial assignment ρ, we can write the feasibility linear program for simultaneous
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Max-2-AND as shown in Fig. 8.1, 8.2. In this LP, for a constraint C, C+ (C−)

denotes set of variables that appears as a positive (negative) literal in C.

For ~t, ~z satisfying linear constraints MAX2AND-LP1(ρ), let smooth(~t) denote the

map p : V \ Sρ → [0, 1] with p(v) = 1
4 + tv

2 . Note that p(v) ∈ [1/4, 3/4] for all v.

Given ~t, ~z satisfying MAX2AND-LP1, the rounding algorithm from [Tre98] samples

each variable v independently with probabily smooth(~t)(v). Note that this rounding

algorithm is smooth in the sense that each variable is sampled independently with a

probability that is bounded away from 0 and 1. This will be crucial for our algorithm.

The following theorem from [Tre98] proves that this rounding algorithm finds a good

integral assignment.

Lemma 8.3.2 ([Tre98]). Let ρ be a partial assignment.

1. Relaxation: For every g0 : V \Sρ → {0, 1}, there exist ~t, ~z satisfying MAX2AND-LP1(ρ)

such that for every Max-2-AND instance W:

∑
C∈C
W(C)zC = val(g0 ∪ ρ,W).

2. Rounding:Suppose ~t, ~z satisfy MAX2AND-LP1(ρ). Then for every Max-2-AND

instance W:

val(ρ,W) + TrueMeanρ(smooth(~t),W) ≥ 1

2
·
∑
C∈C
W(C)zC .

Proof. We begin with the first part. For v ∈ Sρ, define tv = ρ(v).. For v ∈ V \Sρ, define

tv = g0(v). For C ∈ C, define zC = 1 if C(g0∪ρ) = 1, and define zC = 0 otherwise. It is

easy to see that these ~t, ~z satisfies MAX2AND-LP1(ρ), and that for every instance W:

∑
C∈C
W(C)zC = val(g0 ∪ ρ,W ).

Now we consider the second part. Let W be any instance of Max-2-AND. Let

p = smooth(~t). Let g : V \ Sρ → {0, 1} be sampled as follows: independently for each



171

v ∈ V \ Sρ, g(v) is sampled from {0, 1} such that E[g(v)] = p(v). We have:

val(ρ,W) + TrueMeanρ(smooth(~t),W) =
∑

C∈C\Active(ρ)

W(C)C(ρ)+

E

 ∑
C∈Active(ρ)

W(C)C(ρ ∪ g)

 . (8.3.1)

We will now understand the two terms of the right hand side.

For C ∈ C \ Active(ρ), it is easy to verify that if zC > 0, we must have C(ρ) = 1.

Thus: ∑
C∈C\Active(ρ)

W(C)C(ρ) ≥
∑

C∈C\Active(ρ)

W(C)zC .

To understand the second term, we have the following claim.

Claim 8.3.3. For C ∈ Active(ρ), E[C(ρ ∪ g)] ≥ 1
2 · zC .

Proof. Suppose there are exactly h variables in C which are not in Sρ. We have h ≤ 2.

E[C(ρ ∪ g)] = Pr[C is satisfied by ρ ∪ g]

=

 ∏
v∈C+,v∈V \Sρ

1

4
+
tv
2

 ·
 ∏
v∈C−,v∈V \Sρ

1

4
+

1− tv
2


≥
(

1

4
+
zC
2

)h
≥
(

1

4
+
zC
2

)2

≥ zC
2
.

This claim implies that:

E

 ∑
C∈Active(ρ)

W(C)C(ρ ∪ g)

 ≥ 1

2

∑
C∈C
W(C)zC .

Substituting back into Equation (8.3.1), we get the Lemma.

8.3.3 The Algorithm

We now give our Pareto approximation algorithm for Max-2-AND in Fig. 8.3.
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zC ≤ tv ∀C ∈ C, v ∈ C+

zC ≤ 1− tv ∀C ∈ C, v ∈ C−

1 ≥ tv ≥ 0 ∀v ∈ V \ Sρ

tv = hρ(v) ∀v ∈ Sρ

Figure 8.1: Linear inequalities MAX2AND-LP1(ρ)

∑
C∈CW`(C) · zC ≥ c` ∀` ∈ [k]

~t, ~z satisfy MAX2AND-LP1(ρ).

Figure 8.2: Linear inequalities MAX2AND-LP2(ρ)



173

Input: k instances of Max-2-AND W1, . . . ,Wk on the variable set V, ε > 0 and

target objective values c1, . . . , ck.

Output: An assignment to V

Parameters: δ0 = 1
10(k+1) , ε0 = ε, γ =

ε20δ0
16 , t =

⌈
20k2

γ log k
γ

⌉
1. Initialize tree T to be an empty quaternary tree (i.e., just 1 root node). Nodes

of the tree will be indexed by strings in ({0, 1}2)∗.

2. With each node ν of the tree, we associate:

(a) A partial assignment ρν .

(b) A special pair of variables T 1
ν , T 2

ν ∈ V \ Sρν .

(c) A special instance Iν ∈ [k].

(d) A collection of integers countν,1, . . . , countν,k.

(e) A trit representing whether the node ν is living, dead, or exhausted.

3. Initialize the root node ν0 to (1) ρν0 ← (∅, ∅), (2) ∀` ∈ [k], countν0,` ← 0, (3)

living.

4. While there is a living leaf ν of T, do the following:

(a) Check the feasibility of linear inequalities MAX2AND-LP2(ρν).

i. If there is a feasible solution ~t, ~z, then define pν : V \ Sρν → [0, 1] as

pν = smooth(~t).

ii. If not, then declare ν to be dead and return to Step 4.

(b) For each ` ∈ [k], compute TrueVarρν (pν ,W`) and TrueMeanρν (pν ,W`).

(c) If TrueVarρν (pν ,W`) ≥ δ0ε
2
0 ·TrueMeanρν (pν ,W`)

2, then set flag` ← True,

else set flag` ← False.
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. (d) Choose the smallest ` ∈ [k], such that count` < t AND flag` = True (if

any):

i. Find x ∈ V \ Sρν that maximizes activedegreeρν (x,W`). Note that it

will satisfy activedegreeρν (x,W`) ≥ γ · activedegreeρν (W`).

ii. Among all the active constraints C ∈ C such that x ∈ C and C∩Sρν =

∅, find the one that maximizes W`(C). Call this constraint C?. Let

y be the other variable contained in C? (if there is no other variable,

set y = x).

Set T 1
ν ← x and T 2

ν ← y. Set Iν ← `.

iii. Create four children of ν, with labels νb1b2 for each b1, b2 ∈ {0, 1} and

set

• ρνb1b2 ← (Sρν ∪ {T 1
ν , T 2

ν }, hb1b2), where hb1b2 extends hρν by

hb1b2(T 1
ν ) = b1 and hb1b2(T 2

ν ) = b2.

• ∀`′ ∈ [k] with `′ 6= `, set countνb1b2,`′ ← countν,`′ . Set

countνb1b2,` ← countν,` + 1.

• Set νb1b2 to be living.

(e) If no such ` exists, declare ν to be exhausted.

5. Now every leaf of T is either exhausted or dead. For each exhausted leaf ν of

T :

(a) Let gν : V \ Sρν → {0, 1} be a random assignment where, for each v ∈

V \Sρν , gν(v) is sampled independently with E[gν(v)] = pν(v). Note that

E[gν(v)] ∈ [1
4 ,

3
4 ].

(b) For every assignment h : Sρν → {0, 1}, compute outh,gν ←

min`∈[k]
val(h∪gν ,W`)

c`
. If c` = 0 for some ` ∈ [k], we interpret val(h∪gν ,Wl)

c`
as

+∞.

6. Output the largest outh,gν seen, and the assignment h ∪ gν that produced it.

Figure 8.3: Algorithm Sim-Max2AND for approximating weighted simultaneous

Max-2-AND
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8.3.4 Analysis

Notice that the depth of the tree T is at most kt, and that for every ν, we have that

|Sρν | ≤ 2kt. This implies that the running time is at most 2O(kt) · poly(n).

Let f? : V → {0, 1} be an assignment such that val(f?,W`) ≥ c` for each ` ∈ [k].

Let ν? be the the unique leaf of the tree T for which ρν? is consistent with f?. (This ν?

can be found as follows: start with ν equal to the root. Set ν to equal the unique child

of ν for which ρν is consistent with f?, and repeat until ν becomes a leaf. This leaf is

ν?). Observe that since f? is an assignment such that val(f?,W`) ≥ c` for every ` ∈ [k],

by picking g0 = f?|V \S? in part 1 of Lemma 8.3.2, we know that MAX2AND-LP2(ρ?) is

feasible, and hence ν? must be an exhausted leaf (and not dead).

Define ρ? = ρν? , S
? = Sρ? , h

? = hρ? , and p? = pν? . At the completion of Step 4,

if ` ∈ [k] satisfies countν?,` = t, we call instance ` a high variance instance. Otherwise

we call instance ` a low variance instance.

Low Variance Instances.

First we show that for the leaf ν∗ in Step 5, combining the partial assignment h? with

a random assignment gν? in step 5(b) is good for any low variance instances with high

probability.

Lemma 8.3.4. Let ` ∈ [k] be any low variance instance. For the leaf node ν?, let

gν? be the random assignment sampled in Step 5.(a). of Sim-Max2AND. Then with

probability at least 1− δ0, the assignment f = h? ∪ gν? satisfies:

Pr
gν?

[val(f,W`) ≥ (1/2− ε/2) · c`] ≥ 1− δ0.

Proof. For every low variance instance `, we have that TrueVarρν? (p?,W`) < δ0ε
2
0 ·

TrueMeanρν? (p?,W`)
2. Define Y

def
= val(ρ?∪ gν? ,W`)− val(ρ?,W`). By Lemma 8.3.1, we
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have Pr[Y < (1− ε0) E[Y ]] < δ0. Thus, with probability at least 1− δ0, we have,

val(f,W`) ≥ val(ρ?,W`) + (1− ε0) E[Y ]

= val(ρ?,W`) + (1− ε0) · TrueMeanρ?(smooth(~t),W`)

= (1− ε0) ·
(
val(ρ?,W`) + TrueMeanρ?(smooth(~t),W`)

)
≥ 1

2
· (1− ε0) ·

∑
C∈C
W`(C) · zC ≥

1

2
· (1− ε0) · c` ≥

(
1

2
− ε

2

)
· c`,

where we have used the second part of Lemma 8.3.2.

Next, we will consider a small perturbation of h? which will ensure that the algorithm

performs well on high variance instances too. We will ensure that this perturbation does

not affect the success on the low variance instances.

High Variance Instances.

Fix a high variance instance `. Let ν be an ancestor of ν? with Iν = `. Define:

activedegreeν
def
= activedegreeρν (T 1

ν ,W`).

Let Cν be the set of all constraints C containing T 1
ν which are active given ρν . We call

a constraint C in Cν a backward constraint if C only involves variables from Sρν ∪{T 1
ν }.

Otherwise we call C in Cν a forward constraint. Let Cbackwardν and Cforwardν denote the

sets of these constraints. Finally, we denote Coutν the set of binary constraints on T 1
ν

and a variable from V \ S?.

Define backward degree and forward degree as follows:

backwardν
def
=

∑
C∈Cbackwardν

W`(C),

forwardν
def
=

∑
C∈Cforwardν

W`(C).

Note that:

activedegreeν = backwardν + forwardν .

Now we consider variable T 2
ν . Let heaviestν be the totalW` weight of all the constraints

containing both T 1
ν and T 2

ν . Based on all this, we classify ν into one of three categories:
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1. If backwardν ≥ 1
2 · activedegreeν , then we call ν a typeA node.

2. Otherwise, if heaviestν ≥ 1
100tk · activedegreeν , then we call ν a typeB node. In

this case we have some W` constraint C containing T 1
ν and T 2

ν with W`(C) ≥
1

1600tk · activedegreeν .

3. Otherwise, we call ν a typeC node. In this case, for every v ∈ V \ Sρν , the

total weight of the constraints involving v and T 1
ν , i.e., activedegreeρν (T 1

ν ∪v,W`)

is bounded by 1
100tk · activedegreeν . In particular, every constraint C ∈ Cforwardν

must have W`(C) < 1
100tk · activedegreeν . Since |S?| ≤ 2tk, the total weight of

constraints containing T 1
ν and some variable in S? \ Sρν is at most |S? \ Sρν | ·

1
100tk · activedegreeν which is at most 2

100 · activedegreeν . Hence we have:

∑
C∈Coutν

W`(C) = forwardν −
{

total weight of constraints containing
T 1
ν and some variable in S? \ Sρν

}
≥
(

1

2
− 2

100

)
activedegreeν >

1

4
· activedegreeν .

For nodes ν which are typeC, the variable T 1
ν has a large fraction of its active degree

coming from constraints between T 1
ν and V \ S?.

For a partial assignment g : V \ S? → {0, 1}, we say that g is Cgood for ν if

there exists a setting of variable T 1
ν that satisfies at least 1

64 · activedegreeν weight

amongst constraints containing variable T 1
ν and some other variable in V \ S?. The

next lemma shows that for every typeC node ν, with high probability, the random

assignment gν? : V \ S? → {0, 1} is Cgood for ν.

Lemma 8.3.5. Consider a typeC node ν. Suppose g : V \ S? → {0, 1} is a partial

assignment obtained by independently sampling g(v) with E[g(v)] ∈ [1/4, 3/4] for each

v ∈ V \ S?. Then:

Pr
g

[g is Cgood for ν] ≥ 1− 2 · e−tk/100.

Proof. Let ` = Iν .

For each constraint C ∈ Coutν and each g : {0, 1}V \S? → {0, 1}, define Z
(1)
C (g), Z

(0)
C (g) ∈

{0, 1} as follows. Z
(1)
C (g) equals 1 iff C is satisfied by extending the assignment g with
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T 1
ν ← 1. Similarly, Z

(0)
C (g) equals 1 iff C is satisfied by extending the assignment g with

T 1
ν ← 0.

For b = 0, 1, we define score(b) : {0, 1}V \S? → R as follows:

score(b)(g)
def
=

∑
C∈Coutν

W`(C) · Z(b)
C (g).

In words, score(b)(g) is the total weight of constraints between T 1
ν and V \ S∗ satisfied

by setting T 1
ν to b and setting V \ S∗ according to g.

Note that since g(v) is sampled independently for v ∈ V \S? with E[g(v)] ∈ [1/4, 3/4],

we have Eg[Z
(1)
C (g) + Z

(0)
C (g)] ≥ 1

4 . Thus:

E
g

[score(1)(g) + score(0)(g)] =
∑
C∈Coutν

W`(C) E[Z
(1)
C (g)] +

∑
C∈Coutν

W`(C) E[Z
(0)
C (g)]

≥ 1

4

∑
C∈Coutν

W`(C).

So one of E[score(1)(g)] and E[score(0)(g)] is at least 1
8

∑
C∈Coutν

W`(C) ≥ 1
32activedegreeν .

Suppose it is E[score(1)(g)] (the other case is identical). We are going to use McDi-

armid’s inequality to show the concentration of score(1)(g) around its mean.7

Since ν is typeC, we know that for every vertex v ∈ V \ S?, changing g on just

v can change the value of score(1)(g) by at most cv
def
= activedegreeρν (T 1

ν ∪ v,W`) ≤

7In this case we could have simply used a Hoeffding-like inequality, but later when we handle larger-
width constraints we will truly use the added generality of McDiarmid’s inequality.
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1
100tk · activedegreeν . Thus by McDiarmid’s inequality (Lemma 8.8.5),

Pr
g

[g is not Cgood for ν] ≤ Pr
g

[
score(1)(g) <

1

64
· activedegreeν

]
≤ Pr

g

[
|score(1)(g)−E

g
[score(1)(g)]| > 1

64
· activedegreeν

]
≤ 2 · exp

(
−2 · activedegree2

ν

(64)2
∑

v∈V \S? c
2
v

)

≤ 2 · exp

(
−2 · activedegree2

ν

(64)2 · (maxv cv) ·
∑

v∈V \S? cv

)

≤ 2 · exp

(
−2 · activedegree2

ν

(64)2 · (maxv cv) · activedegreeν

)
≤ 2 · exp

(
−2 · activedegreeν

(64)2 · (activedegreeν100tk )

)

≤ 2 · exp

(
−200tk

(64)2

)
≤ 2 · exp

(
−tk
100

)
.

For a high variance instance `, let ν`1, . . . , ν
`
t be the sequence of t nodes with Iν = `

which lie on the path from the root to ν?. Set finalwt` = activedegreeρ?(W`) (in words:

this is the active degree left over in instance ` after the restriction ρ?).

Lemma 8.3.6. For every high variance instance ` ∈ [k] and for each i ≤ [t/2],

activedegreeν`i
≥ γ · (1− γ)−t/2 · finalwt` ≥ 1600tk · finalwt`.

Proof. Fix a high variance instance ` ∈ [k]. Note that bi = activedegreeρ
ν`
i

(W`) de-

creases as i increases. The main observation is that

1. bi+1 ≤ (1− γ) · bi.

2. activedegreeν`i
≥ γbi.

Thus for all ν`i with i ∈ {1, . . . , t/2}, we have activedegreeν`i
≥ γ · (1 − γ)−t/2 · finalwt`

and also the choice of parameters implies for those ν`i activedegreeν`i
is at least 1600tk ·

finalwt`.
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Putting Everything Together.

We now show that when ν is taken to equal ν? in Step 5, then with high probability

over the choice of g in Step 5(a) there is a setting of h in Step 5(b) such that ∀` ∈

[k], val(h ∪ gν? ,W`) ≥ (1
2 − ε) · c`.

Theorem 8.3.7. Suppose the algorithm Sim-Max2AND is given as inputs ε > 0, k

simultaneous weighted Max-2-AND instances W1, . . . ,Wk on n variables, and target

objective value c1, . . . , ck with the guarantee that there exists an assignment f? such that

for each ` ∈ [k], we have val(f?,W`) ≥ c`. Then, the algorithm runs in 2O(k4/ε2 log(k/ε)) ·

poly(n) time, and with probability at least 0.9, outputs an assignment f such that for

each ` ∈ [k], we have, val(f,W`) ≥
(

1
2 − ε

)
· c`.

Proof. Consider the case when ν is taken to equal ν? in Step 5. By Lemma 8.3.4, with

probability at least 1 − kδ0 over the choice random choices of gν? , we have that for

every low variance instance ` ∈ [k], val(h? ∪ gν? ,W`) ≥ (1
2 −

ε
2) · c`. By Lemma 8.3.5

and a union bound, with probability at least 1− t
2 ·k ·2e

−tk/100 ≥ 1− δ0 over the choice

of gν? , for every high variance instance ` and for every typeC node ν`i , i ∈ [t/2], we

have that gν? is Cgood for ν`i . Thus with probability at least 1− (k + 1)δ0, both these

events occur. Henceforth we assume that both these events occur in Step 5(a) of the

algorithm.

Our next goal is to show that there exists a partial assignment h : S? → {0, 1} such

that:

1. For every instance ` ∈ [k], val(h ∪ gν? ,W`) ≥
(
1− ε

2

)
· val(h? ∪ gν? ,W`).

2. Moreover, for every high variance instance ` ∈ [k], val(h ∪ gν? ,W`) ≥
(
1− ε

2

)
·

finalwt`.

Before giving a proof of the existence of such an h, we show that this completes the

proof of the theorem. We claim that when the partial assignment h guaranteed above is

considered in the Step 5(b) in the algorithm, we obtain an assignment with the required

approximation guarantees.
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For every low variance instance ` ∈ [k], since we started with val(h?∪gν? ,W`) ≥ (1
2−

ε
2)·c`, property 1 above implies that every low variance instance val(h∪gν?) ≥ (1

2−ε)·c`.

For every high variance instance ` ∈ [k], since h? = f?|S ,

val(h? ∪ gν? ,W`) ≥ val(f?,W`)− activedegreeρ?(W`) ≥ c` − finalwt`.

Combining this with properties 1 and 2 above, we get,

val(h ∪ gν? ,W`) ≥ (1− ε/2) ·max{c` − finalwt`, finalwt`} ≥ 1/2 · (1− ε/2) · c`.

Thus, for all instances ` ∈ [k], we get val(h ∪ gν?) ≥ (1/2− ε) · c`.

Now, it remains to show the existence of such an h by giving a procedure for con-

structing h by perturbing h? (Note that this procedure is only part of the analysis).

For nodes ν, ν ′ in the tree, let us write ν ≺ ν ′ if ν is an ancestor of ν ′, and we also say

that ν ′ is “deeper” than ν.

Constructing h.

1. Initialize H ⊆ [k] to be the set of high variance instances.

2. Let N0 = {ν`i | ` ∈ H, i ∈ [t/2]}. Note that N is a chain in the tree (since all the

elements of N are ancestors of ν?). Since every ν ∈ N is an ancestor of ν?, we

have hρν = h?|Sρν .

3. Initialize D = ∅, N = N0, h = h?.

4. During the procedure, we will be changing the assignment h, and removing ele-

ments from N . We will always maintain the following two invariants:

• |N | > t
4 .

• For every ν ∈ N , h|Sρν = h?|Sρν .

5. While |D| 6= |H| do:

(a) Let

B =

v ∈ V | ∃` ∈ [k] with
∑

C∈C,C3v
W`(C) · C(h ∪ gν?) ≥

ε

4k
val(h ∪ gν? ,W`)

 .
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Note that |B| ≤ 8k2

ε < t
8 .

(b) Let ν ∈ N be the deepest element of N for which: {T 1
ν , T 2

ν } ∩B = ∅.

Such a ν exists because:

• |N | > t
4 > |B|, and

• there are at most |B| nodes ν for which {T 1
ν , T 2

ν }∩B 6= ∅ (since {T 1
ν , T 2

ν }

are all disjoint for distinct ν).

(c) Let ` ∈ H, i ∈ [t/2] be such that ν = ν`i . Let x = T 1
ν and y = T 2

ν . Let

ρ = ρν . We will now see a way of modifying the values of h(x) and h(y)

to guarantee that val(h ∪ gν? ,W`) ≥ finalwt`. The procedure depends on

whether ν is typeA, typeB, or typeC.

i. If ν is typeA, then we know that backwardν ≥ 1
2 · activedegreeν ≥ 2 ·

finalwt`.

The second invariant tells us that ρ = h?|Sρ = h|Sρ . Thus we have:

backwardν =
∑

C∈Cbackwardν

W`(C)

=
∑

C⊆Sρ∪{x},C3x,C∈Active(ρ)

W`(C)

=
∑

C⊆Sρ∪{x},C3x,C∈Active(h|Sρ )

W`(C).

This implies that we can choose a setting of h(x) ∈ {0, 1} such that the

total sum of weights of those constraints containing x which are satisfied

by h is: ∑
C⊆Sρ∪{x},C3x,C∈Active(h|Sρ )

W`(C)C(h) ≥ 1

2

∑
C⊆Sρ∪{x},C3x,C∈Active(h|Sρ )

W`(C)

=
1

2
· backwardν

≥ 1

4
· activedegreeν

≥ finalwt`, (by Lemma 8.3.6)

where the 1
2 in the first inequality is because the variable can appear as

a positive literal or a negative literal in those backward constraints. In

particular, after making this change, we have val(h∪gν? ,W`) ≥ finalwt`.
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ii. If ν is typeB, then we know that some constraint C containing x and

y has W`(C) ≥ 1
1600tk · activedegreeν ≥ finalwt`. Thus we may choose

settings for h(x), h(y) ∈ {0, 1} such that C(h) = 1. Thus, after making

this assignment to h(x) and h(y), we have val(h ∪ g,W`) ≥ finalwt`.

iii. If ν is typeC, since gν? is Cgood for ν, we can choose a setting of h(x)

so that the total weight of satisfied constraints in W` between x and

V \S? is at least 1
64 · activedegreeν ≥ finalwt`. After this change, we have

val(h ∪ gν? ,W`) ≥ finalwt`.

In all the above 3 cases, we only changed the value of h at the variables

x, y. Since {x, y} ∩ B = ∅, we have that for every j ∈ [k], the new value

val(h ∪ gν? ,Wj) is at least
(
1− ε

2k

)
times the old value val(h ∪ gν? ,Wj).

(d) Set D = D ∪ {`}.

(e) Set N = {ν`i | ` ∈ H \D, i ≤ [t/2], ν`i ≺ ν}.

Observe that |N | decreases in size by at most t
2 + |B|. Thus, if D 6= H, we

have

|N | ≥ |N0| − |D| ·
t

2
− |D||B|

= |H| · t
2
− |D| · t

2
− |D||B|

≥ t

2
− k|B| > t

4

Also observe that we only changed the values of h at the variables T 1
ν and

T 2
ν . Thus for all ν ′ � ν, we still have the property that h|Sρν′ = h?|Sρν′ .

For each high variance instance ` ∈ [k], in the iteration where ` gets added to the

set D, the procedure ensures that at the end of the iteration val(h∪gν? ,W`) ≥ finalwt`.

Moreover, at each step we reduced the value of each val(h ∪ gν? ,W`) by at most ε
2k

fraction of its previous value. Thus, at the end of the procedure, for every ` ∈ [k], the

value has decreased at most by a multiplicative factor of
(
1− ε

2k

)k ≥ (1− ε
2

)
. Thus,

for every ` ∈ [k], we get val(h∪gν? ,W`) ≥
(
1− ε

2

)
· val(h?∪gν? ,W`), and for every high

variance instance ` ∈ [k], we have val(h ∪ gν? ,W`) ≥
(
1− ε

2

)
· finalwt`. This proves the

two properties of h that we set out to prove.
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Running time : Running time of the algorithm is 2O(kt) · poly(n) which is

2O(k4/ε2 log(k/ε2)) · poly(n).

8.4 Simultaneous Max-w-CSPq

In this section, we give our simultaneous approximation algorithm for Max-w-CSPq,

and thus prove Theorem 8.1.2.

8.4.1 Reduction to Simple Constraints

For the problem Max-w-CSPq, C is the set of all possible q-ary constraints on V with

arity at most w, i.e., each constraint is of the form Cf : [q]T → {0, 1} depending only

on the values of variables in an ordered tuple T ⊆ V with |T | ≤ w. As a first step

(mainly to simplify notation), we give a simple approximation preserving reduction

which replaces C with a smaller set of constraints. We will then present our main

algorithm

Define a w-term to be a contraint C on exactly w variables which has exactly 1

satisfying assignment in [q]w, e.g. (x1 = 1)∧ (x2 = 7)∧ . . .∧ (xw = q− 3). An instance

of the Max-w-ConjSATq problem is one where the set of constraints C is the set of

all w-terms. We now use the following lemma from [Tre98] that allows us to reduce a

Max-w-CSPq instance to a Max-w-ConjSATq instance.

Lemma 8.4.1 ([Tre98]). Given an instance W1 of Max-w-CSPq, we can find a in-

stance W2 of Max-w-Conj-Satq on the same set of variables, and a constant β > 0

such that for every assignment f , val(f,W2) = β · val(f,W1).

Proof. Given an instanceW1 of Max-w-CSPq, consider a constraint C ∈ C with weight

W1(C). We can assume without loss of generality that the arity of C is exactly w, and

it depends on variables x1, . . . , xw. For each assignment in [q]k that satisfies C, we

create a w-Conj-Satq clause that is satisfied only for that assignment, and give it

weight W1(C). e.g. If C was satisfied by x1 = . . . = xw = 2, we create the clause

(x1 = 2)∧ . . .∧ (xw = 2) with weight W1(C). It is easy to see that for every assignment

to x1, . . . , xn, the weight of constraints satisfied in the new instance is the same as the
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weight of the constraints satisfied in the Max-w-Conj-Satq instance created. Define β

to be the sum of weights of all the constraints in the new instance, thenW2 is obtained

by multiplying the weight of all the constraints in the new instance by 1/β (to make

sure they sum up to 1).

Note that the scaling factor β in the lemma above is immaterial since we will give

an algorithm with Pareto approximation guarantee.

We say (v, i) ∈ C if v ∈ C and v = i is in the satisfying assignment of Cf . By abuse

of notation, we say for a set of variables T, T ⊆ C if for all v ∈ T, there exists i ∈ [q],

such that (v, i) ∈ C.

8.4.2 Random Assignments

In this section, we state and prove a lemma that gives a sufficient condition for the

value of a Max-w-ConjSATq to be highly concentrated under independent random

assignments to the variables. Let Dist(q) denote the set of all probability distributions

on the set [q]. For a distribution p ∈ Dist(q) and i ∈ q, we use pi to denote the probability

i in the distribution p. Let ρ be a partial assignment. Let p : V \ Sρ → Dist(q) be

such that p(v)i ≥ 1
qw for all v ∈ V \ Sρ and all i ∈ [q]. Let g : V \ Sρ → [q] be a

random assignment obtained by sampling g(v) for each v independently according to

the distribution p(v).

Define the random variable

Y
def
= val(ρ ∪ g,W)− val(ρ,W) =

∑
C∈Active(ρ)

W(C)C(ρ ∪ g).

The random variable Y measures the contribution of active constraints to val(ρ∪g,W).

Note that the two quantities E[Y ] and Var[Y ] can be computed efficiently given p.

We denote these by TrueMeanρ(p,W) and TrueVarρ(p,W). The following lemma is a

generalization of Lemma 8.3.1.

Lemma 8.4.2. Let p, g, Y be as above.

1. If TrueVarρ(p,W) < δ0ε
2
0 · TrueMeanρ(p,W)2 then Pr[Y < (1− ε0) E[Y ]] < δ0.
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2. If TrueVarρ(p,W) ≥ δ0ε
2
0 · TrueMeanρ(p,W)2, then there exists v ∈ V \ Sρ such

that

activedegreeρ(v,W) ≥ ε2
0δ0

w2(qw)w
· activedegreeρ(W).

Proof. Item 1 of the lemma follows immediately from Chebyshev’s inequality. We now

prove Item 2. First note that for every active constraint C given ρ, E[C(ρ∪ g)] ≥ 1
(qw)w

(this follows from our hypothesis that p(v)i ≥ 1
qw for each v ∈ V \ Sρ and each i ∈ [q]).

We first bound TrueMeanρ(p,W) and TrueVarρ(p,W) in terms of the weights of

active constraints:

TrueMeanρ(p,W) = E[Y ] = E

 ∑
C∈Active(ρ)

W(C) · C(ρ ∪ g)


=

∑
C∈Active(ρ)

W(C) ·E[C(ρ ∪ g)] ≥
∑

C∈Active(ρ)

W(C) · 1

(qw)w

=
1

(qw)w

∑
C∈Active(ρ)

W(C)

TrueVarρ(p,W) = Var[Y ] = Var

 ∑
C∈Active(ρ)

W(C) · C(ρ ∪ g)


=

∑
C1,C2∈Active(ρ)

W(C1)W(C2) ·

 E[C1(ρ ∪ g)C2(ρ ∪ g)]

−E[C1(ρ ∪ g)] E[C2(ρ ∪ g)]


≤

∑
C1∼ρC2

W(C1)W(C2) ·E[C1(ρ ∪ g)]

=
∑

C1∈Active(ρ)

W(C1) E[C1(ρ ∪ g)] ·
∑

C2∼ρC1

W(C2)

≤
∑

C1∈Active(ρ)

W(C1) E[C1(ρ ∪ g)] · max
C∈Active(ρ)

∑
C2∼ρC

W(C2)

= TrueMeanρ(p,W) · max
C∈Active(ρ)

∑
C2∼ρC

W(C2).

Hence, if the condition in case 2 is true then it follows that,

max
C∈Active(ρ)

∑
C2∼ρC

W(C2) ≥ TrueVarρ(p,W)

TrueMeanρ(p,W)
≥ δ0ε

2
0

(qw)w
·

∑
C∈Active(ρ)

W(C).
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We now relate these quantities to active degrees.

activedegreeρ(W) =
∑

v∈V \Sρ

activedegreeρ(v,W) =
∑

v∈V \Sρ

∑
C∈Active(ρ),C3v

W`(C)

=
∑

C∈Active(ρ)

∑
v∈C,v∈V \Sρ

W`(C) ≤
∑

C∈Active(ρ)

w · W`(C)

= w
∑

C∈Active(ρ)

W`(C)

This means that there is an active constraint C, such that

∑
C2∼ρC

W(C2) ≥ δ0ε
2
0

(qw)w
· 1

w
activedegreeρ(W)

Since C is an active constraint and |C∩V \Sρ| ≤ w, there is some variable v ∈ C∩V \Sρ,

such that

activedegreeρ(v,W) =
∑

C2∈Active(ρ), C23v

W(C2) ≥ 1

w

∑
C2∼ρC

W(C2)

≥ ε2
0δ0

w2(qw)w
· activedegreeρ(W).

as required.

8.4.3 LP Relaxations

Our algorithm will use the Linear Programming relaxation for Max-w-ConjSATq

from the work of Trevisan [Tre98] (actually, a simple generalization to q-ary alpha-

bets). The first LP, ConjSAT-LP1(ρ), described in Fig. 8.4, describes the set of all

feasible solutions for the relaxation, consistent with the partial assignment ρ. Given a

set of target values (c`)`∈[k], the second LP, ConjSAT-LP2(ρ) describes the set of feasible

solutions to ConjSAT-LP1(ρ) that achieve the required objective values.

For ~t, ~z satisfying linear constraints ConjSAT-LP1(ρ), let smooth(~t) denote the map

p : V \Sρ → Dist(q) with p(v)i = w−1
qw +

tv,i
w . The following theorem from [Tre98] provides

an algorithm to round this feasible solution to obtain a good integral assignment.

Lemma 8.4.3. Let ρ be a partial assignment.
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1. Relaxation: For every g0 : V \Sρ → [q], there exist ~t, ~z satisfying ConjSAT-LP1(ρ)

such that for every Max-w-ConjSATq instance W:

∑
C∈C
W(C)zC = val(g0 ∪ ρ,W ).

2. Rounding: Suppose ~t, ~z satisfy ConjSAT-LP1(ρ). Then for every Max-w-ConjSATq

instance W:

val(ρ,W) + TrueMeanρ(smooth(~t),W) ≥ 1

qw−1
·
∑
C∈C

zCW(C).

Proof. We begin with the first part. For v ∈ Sρ, i ∈ [q], define tv,i = 1 if ρ(v) = i,

and define tv,i = 0 otherwise. For v ∈ V \ Sρ, i ∈ [q], define tv,i = 1 if g0(v) = i, and

define tv,i = 0 otherwise. For C ∈ C, define zC = 1 if C(g0 ∪ ρ) = 1, and define zC = 0

otherwise. It is easy to see that these ~t, ~z satisfies ConjSAT-LP1(ρ), and that for every

instance W: ∑
C∈C
W(C)zC = val(g0 ∪ ρ,W ).

Now we consider the second part. Let W be any instance of Max-w-ConjSATq.

Let p = smooth(t). Let g : V \ Sρ → [q] be sampled as follows: independently for each

v ∈ V \ Sρ, g(v) is sampled from the distribution p(v). We need to show that:

∑
C 6∈Active(ρ)

W(C)C(ρ) + E

 ∑
C∈Active(ρ)

W(C)C(ρ ∪ g)

 ≥ 1

qw−1
·
∑
C∈C

zCW(C).

It is easy to check that for C 6∈ Active(ρ), zC > 0 only if C(ρ) = 1, and thus∑
C 6∈Active(ρ)C(ρ)W(C) ≥

∑
C 6∈Active(ρ) zCW(C). For C ∈ Active(ρ), we have the fol-

lowing claim:

Claim 8.4.4. For C ∈ Active(ρ), E[C(ρ ∪ g)] ≥ zC
qw−1 .

Proof. Suppose there are exactly h variables in C which are not in Sρ. Let these

variables be (vi)
h
i=1. Let (vi, ai)

h
i=1 be the assignment to these variables that makes C



189

satisfied.

E[C(ρ ∪ g)] = Pr[C is satisfied by ρ ∪ g] ≥
h∏
i=1

(
w − 1

qw
+
tvi,ai
w

)

≥
h∏
i=1

(
w − 1

qw
+
zC
w

)
=

(
w − 1

qw
+
zC
w

)h
=

(
w − 1

qw
+
zC
w

)w
≥ zC
qw−1

Here the last inequality follows form the observation that the minimum of the function(
w−1
qw

+ z
w

)w
z as z varies in [0, 1], is attained at z = 1/q.

zC ≤ tv,i ∀C ∈ C,∀(v, i) ∈ C

1 ≥ tv,i ≥ 0 ∀v ∈ V \ Sρ, i ∈ [q]∑q
i=1 tv,i = 1 ∀v ∈ V

tv,i = 1 ∀v ∈ Sρ and i ∈ [q],

such that hρ(v) = i

Figure 8.4: Linear inequalities ConjSAT-LP1(ρ)

∑
C∈CW`(C) · zC ≥ c` ∀` ∈ [k]

~t, ~z satisfy ConjSAT-LP1(ρ).

Figure 8.5: Linear inequalities ConjSAT-LP2(ρ)

This completes the proof of the Lemma.
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8.4.4 The Algorithm

We now give our Pareto approximation algorithm for Max-w-CSPq in Fig. 8.7 (which

uses the procedure from Fig. 8.6).

Input: A tree node ν and an instance W`.

Output: A tuple of variables of size at most w.

1. Let v1 ∈ V \ Sρν be a variable which maximizes the value of

activedegreeρν (v1,W`). Set D ← {v1}.

2. While |D| ≤ w, do the following

(a) If there is a variable v in V \ Sρν such that

activedegreeρν (D ∪ v,W`) ≥
activedegreeρν (D,W`)

(4qwtk)w
,

set D ← D ∪ v.

(b) Otherwise, go to Step 3.

3. Return D as a tuple (in arbitrary order, with v1 as the first element).

Figure 8.6: TupleSelection for Max-w-ConjSATq
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Input: k instances of Max-w-ConjSATq W1, . . . ,Wk on the variable set V, ε > 0

and and target objective values c1, . . . , ck.

Output: An assignment to V

Parameters: δ0 = 1
10(k+1) , ε0 = ε, γ =

ε20δ0
w2(qw)w

, t =
⌈

20w2k2

γ · log
(

10k
γ

)⌉
1. Initialize tree T to be an empty qw-ary tree (i.e., just 1 root node and each

node has at most qw children).

2. We will associate with each node ν of the tree:

(a) A partial assignment ρν .

(b) A special set of variables Tν ⊆ V \ Sρν .

(c) A special instance Iν ∈ [k].

(d) A collection of integers countν,1, . . . , countν,k.

(e) A trit representing whether the node ν is living, exhausted or dead.

3. Initialize the root node ν0 to (1) ρν0 = (∅, ∅), (2) have all countν0,` = 0, (3)

living.

4. While there is a living leaf ν of T, do the following:

(a) Check if the LP ConjSAT-LP2(ρν) has a feasible solution.

i. If ~t, ~z is a feasible solution, then define pν : V \ Sρν → Dist(q) by

p = smooth(~t).

ii. If not, then declare ν to be dead and return to Step 4.

(b) For each ` ∈ [k], compute TrueVarρν (p,W`),TrueMeanρν (p,W`).

(c) If TrueVarρν (p,W`) ≥ δ0ε
2
0TrueMeanρν (p,W`)

2, then set flag` = True,

else set flag` = False.
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. (d) Choose the smallest ` ∈ [k], such that count` < t AND flag` = True (if

any):

i. Set Tν ← TupleSelection(ν,W`). Set Iν = `.

ii. Create qw
′

children of ν, with labels νb for each b ∈ [q]w
′

and define

− ρνb = (Sρν ∪ Tν , hb), where hb extends hρν by hb(T iν ) = b(i).

− For each `′ ∈ [k] with `′ 6= `, initialize countνb,`′ = countν,`′ .

Initialize countνb,` = countν,` + 1.

− Set νb to be living.

(e) If no such ` exists, declare ν to be exhausted.

5. Now every leaf of T is either exhausted or dead. For each exhausted leaf ν of

T :

(a) Sample gν : V \ Sρν → [q] by independently sampling gν(v) from the

distribution pν(v).

(b) For every assignment h : Sρν → [q], compute outh,gν ←

min`∈[k]
val(h∪gν ,W`)

c`
. If c` = 0 for some ` ∈ [k], we interpret val(h∪gν ,Wl)

c`
as

+∞.

6. Output the largest outh,gν seen, and the assignment h ∪ gν that produced it.

Figure 8.7: Algorithm Sim-MaxConjSAT for approximating weighted simultaneous

Max-w-ConjSATq
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8.4.5 Analysis

Notice that the depth of the tree T is at most kt, and that for every ν, we have that

|Sρν | ≤ wkt. This implies that the running time is at most qO(wkt) · poly(n).

Let f? : V → [q] be an assignment such that val(f?,W`) ≥ c` for each ` ∈ [k]. Let

ν? be the the unique leaf of the tree T for which ρν? is consistent with f?. (This ν?

can be found as follows: start with ν equal to the root. Set ν to equal the unique child

of ν for which ρν is consistent with f?, and repeat until ν becomes a leaf. This leaf is

ν?). Observe that since f? is an assignment such that val(f?,W`) ≥ c` for every ` ∈ [k],

by picking g0 = f?|V \S? in part 1 of Lemma 8.4.3, we know that ConjSAT-LP2(ρ?) is

feasible, and hence ν? must be an exhausted leaf (and not dead).

Define ρ? = ρν? , S
? = Sρ? , h

? = hρ? and p? = pν?

At the completion of Step 4, if ` ∈ [k] satisfies countν?,` = t, we call instance ` a

high variance instance. Otherwise we call instance ` a low variance instance.

Low Variance Instances.

First we show that for the leaf ν∗ in Step 8.5, combining the partial assignment h? with

a random assignment gν? in Step 0a is good for any low variance instances with high

probability.

Lemma 8.4.5. Let ` ∈ [k] be any low variance instance. For the leaf node ν?, let

gν? be the random assignment sampled in Step 0a of Sim-MaxConjSAT. Then with

probability at least 1− δ0, the assignment f = h? ∪ gν? satisfies:

Pr
gν?

[val(f,W`) ≥ (1/qw−1 − ε/2) · c`] ≥ 1− δ0.

Proof. For every low variance instance `, we have that TrueVarρν? (p?,W`) < δ0ε
2
0 ·

TrueMeanρν? (p?,W`)
2. Define Y

def
= val(ρ?∪ gν? ,W`)− val(ρ?,W`). By Lemma 8.4.2, we
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have Pr[Y < (1− ε0) E[Y ]] < δ0. Thus, with probability at least 1− δ0, we have,

val(f,W`) ≥ val(ρ?,W`) + (1− ε0) E[Y ]

= val(ρ?,W`) + (1− ε0) · TrueMeanρν? (smooth(~t),W`)

= (1− ε0) ·
(
val(ρ?,W`) + TrueMeanρν? (smooth(~t),W`)

)
≥ 1

qw−1
· (1− ε0) ·

∑
C∈C
W`(C) · zC ≥

1

qw−1
· (1− ε0) · c` ≥

(
1

qw−1
− ε

2

)
· c`,

where we have used the second part of Lemma 8.4.3.

Next, we will consider a small perturbation of h? which will ensure that the algorithm

performs well on high variance instances too. We will ensure that this perturbation does

not affect the success on the low variance instances.

High Variance Instances.

Fix a high variance instance `. Let ν be an ancestor of ν? with Iν = `. Let T 1
ν denote

the first element of the tuple Tν . Define:

activedegreeν
def
= activedegreeρν (T 1

ν ,W`).

activedegreeTν
def
= activedegreeρν (Tν ,W`).

Observation 8.4.1. For any node ν, in the tree,

activedegreeTν ≥
activedegreeν

(4qwtk)w·(|Tν |−1)
.

Proof. For ν such that |Tν | = 1, we have, by definition, activedegreeTν = activedegreeν

and the inequality follows. The lower bound is obvious from the Tuple Selection

procedure if |Tν | > 1.

Let Cν be the set of all constraints C containing all variables in Tν which are active

given ρν .

We call a constraint C in Cν a backward constraint if C only involves variables from

Sρν ∪ Tν . Otherwise we call C in Cν a forward constraint. Let Cbackwardν and Cforwardν
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denote the sets of these constraints. Finally, let Coutν denote the set of all constraints

from Cν that involve at least one variable from V \ S? and none from S? \ Sρν .

Define backward degree and forward degree as follows:

backwardν
def
=

∑
C∈Cbackwardν

W`(C),

forwardν
def
=

∑
C∈Cforwardν

W`(C).

Note that:

activedegreeTν = backwardν + forwardν .

Based on the above definitions, we classify ν into one of three categories:

1. If backwardν ≥ 1
2 · activedegreeTν , then we call ν typeAB.

2. Otherwise, we call ν typeC.

We have the following lemma about typeC nodes.

Lemma 8.4.6. For every typeC node ν, we have

1. For every v ∈ V \ (Sρν ∪ Tν), activedegreeρν (Tν ∪ {v},W`) ≤
activedegreeTν

(4qwtk)w
.

2.
∑

C∈Coutν
W`(C) ≥ 1

4 · activedegreeTν .

Proof. If ν is a typeC node, we must have that for every v ∈ V \ (Sρν ∪ Tν),

activedegreeρν (Tν ∪ {v},W`) <
activedegreeTν

(4qwtk)w
.

This follows from the description of the TupleSelection procedure, and the observa-

tion that activedegreeν(T,W`) = 0 for any T ⊂ V with |T | > w.

In particular, since |S?| ≤ wtk, the total weight of constraints containing Tν and

some variable in S? \ (Sρν ∪ Tν) is at most∑
v∈S?\(Sρν∪Tν)

activedegreeρν (Tν ∪ {v},W`) ≤
∑

v∈S?\(Sρν∪Tν)

activedegreeTν
(4qwtk)w

≤ |S? \ (Sρν ∪ Tν)| ·
activedegreeTν

(4qwtk)w

≤ wtk ·
activedegreeTν

(4qwtk)w
≤ 1

4
· activedegreeTν .
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Thus, we get,

∑
C∈Coutν

W`(C) = forwardν −
{

total weight of constraints containing
Tν and some variable in S? \ (Sρν ∪ Tν)

}
≥ 1

2
· activedegreeTν −

1

4
· activedegreeTν =

1

4
· activedegreeTν .

This completes the proof of second statement.

For a partial assignment g : V \S? → [q], we say that g is Cgood for ν if there exists

a setting of variables in Tν that satisfies at least 1
8·(qw)w · activedegreeTν weight amongst

constraints in Coutν .

The next lemma allows us to prove that that for every node ν of typeC, with high

probability, the random assignment gν? : V \ S? → [q], is Cgood for ν.

Lemma 8.4.7. Let ν be typeC. Suppose g : V \ S? → [q] is a random assignment

obtained by independently sampling g(v) for each v ∈ V \ S? from a distribution such

that distribution Pr[g(v) = i] ≥ 1
qw for each i ∈ [q]. Then:

Pr
g

[g is Cgood for ν] ≥ 1− 2 · e−tk/8qw.

Proof. Let ` = Iν .

Consider a constraint C ∈ Coutν . For partial assignments b : Tν → [q] and g : V \ S? →

[q], define C(ρν ∪ b ∪ g) ∈ {0, 1} to be 1 iff C is satisfied by ρν ∪ b ∪ g. Since C only

contains variables from Sρν ∪ Tν ∪ (V \ S?), we have that C(ρν ∪ b ∪ g) is well defined.

Define scoreb : [q]V \S
? → R by

scoreb(g) =
∑
C∈Coutν

W`(C) · C(ρν ∪ b ∪ g).

In words, score(b)(g) is the total weight of constraints in Coutν satisfied by setting Sρν

according to ρν , setting Tν to b, and setting V \ S∗ according to g.

Note that for all C ∈ Coutν , Eg[
∑

b:Tν→[q]C(ρν∪b∪g)] ≥ 1

(qw)w−|Tν |
. This follows since

C is an active constraint given ρν , and involves all variables from Tν ; hence there exists

an assignment b to Tν and an assignment for at most w− |Tν | variables from constraint

C in V \ S? such that C is satisfied. Since, g is a smooth distribution, this particular
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assignment to w− |Tν | in V \ S? is sampled with probability at least 1

(qw)w−|Tν |
. Hence,

for this particular choice of b, C is satisfied with probability at least 1

(qw)w−|Tν |
. Thus:

∑
b:Tν→[q]

E
g

[
scoreb(g)

]
=

∑
b:Tν→[q]

E
g

 ∑
C∈Coutν

W`(C) · C(ρν ∪ b ∪ g)


=
∑
C∈Coutν

W`(C) ·E
g

 ∑
b:Tν→[q]

C(ρν ∪ b ∪ g)


≥ 1

(qw)w−|Tν |

∑
C∈Coutν

W`(C).

Thus there exists b : Tν → [q] such that

E
g

[scoreb(g)] ≥ 1

q|Tν |
· 1

(qw)w−|Tν |

∑
C∈Coutν

W`(C) ≥ 1

4
· 1

(qw)w
· activedegreeTν ,

where the last inequality follows by Lemma 8.4.6.

Fix this particular b for which the above inequality holds. We are going to use

McDiarmid’s inequality to show the concentration of scoreb(g) around its mean. Since

ν is typeC, from Lemma 8.4.6, we know that for every vertex v ∈ V \S?, changing g on

just v can change the value of scoreb(g) by at most cv
def
= activedegreeρν (Tν ∪{v},W`) ≤

activedegreeTν
(4qwtk)w

. Thus by McDiarmid’s inequality (Lemma 8.8.5),

Pr
g

[g is not Cgood for ν] ≤ Pr
g

[
scoreb(g) <

1

8 · (qw)w
· activedegreeTν

]
≤ Pr

g

[
|scoreb(g)−E

g
[scoreb(g)]| > 1

8 · (qw)w
· activedegreeTν

]
≤ 2 · exp

(
−2 · activedegree2

Tν
64(qw)2w ·

∑
v∈V \S? c

2
v

)
.

≤ 2 · exp

(
−2 · activedegree2

Tν
64(qw)2w · (maxv cv) ·

∑
v∈V \S? cv

)

≤ 2 · exp

(
−2 · activedegree2

Tν
64(qw)2w · (maxv cv) · activedegreeTν

)

≤ 2 · exp

(
−2 · activedegreeTν

64(qw)2w · (maxv cv)

)

≤ 2 · exp

 −2 · activedegreeTν

64(qw)2w · (activedegreeTν
(4qwtk)w

)


= 2 · exp

(
−2 · (4qwtk)w

64 · (qw)2w

)
≤ 2 · exp

(
−tk
8qw

)
.
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For a high variance instance `, let ν`1, . . . , ν
`
t be the t nodes with Iν = ` which lie on

the path from the root to ν?, numbered in order of their appearance on the path from

the root to ν?. Set finalwt` = activedegreeρ?(W`). This is the active degree left over in

instance ` after the restriction ρ?.

Lemma 8.4.8. For every high variance instance ` ∈ [k] and for each i ≤ [t/2],

activedegreeν`i
≥ γ · (1− γ)−t/2 · finalwt` ≥ 100 · (qw)w · (4qwtk)w

2 · finalwt`.

We skip the proof of this lemma. The first inequality is identical to the second part

of Lemma 8.5.6, and the second inequality follows from the choice of t.

Putting Everything Together.

We now show that when ν is taken to equal ν? in Step 8.5, then with high probabil-

ity over the choice of gν? in Step 5(a) there is a setting of h in Step 5(b) such that

min`∈[k] val(h ∪ gν? ,W`) ≥ ( 1
qw−1 − ε) · c`.

Theorem 8.4.9. Suppose the algorithm Sim-MaxConjSAT is given as inputs ε > 0,

k simultaneous weighted Max-w-ConjSATq instances W1, . . . ,Wk on n variables,

and target objective value c1, . . . , ck with the guarantee that there exists an assignment

f? such that for each ` ∈ [k], we have val(f?,W`) ≥ c`. Then, the algorithm runs in

2O(k4/ε2 log(k/ε)) · poly(n) time, and with probability at least 0.9, outputs an assignment f

such that for each ` ∈ [k], we have, val(f,W`) ≥
(

1
qw−1 − ε

)
· c`.

Proof. Consider the case when ν is taken to equal ν? in Step 8.5. By Lemma 8.4.5,

with probability at least 1− kδ0 over the random choices of gν? , we have that for every

low variance instance ` ∈ [k], val(h? ∪ gν? ,W`) ≥ ( 1
qw−1 − ε

2) · c`. By Lemma 8.4.7 and

a union bound, with probability at least 1 − t
2 · k · 2e

−tk/8qw ≥ 1 − δ0 over the choice

of gν? , for every high variance instance ` and for every typeC node ν`i , i ∈ [t/2], we

have that gν? is Cgood for ν`i . Thus with probability at least 1− (k + 1)δ0, both these

events occur. Henceforth we assume that both these events occur in Step 5(a) of the

algorithm.
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Our next goal is to show that there exists a partial assignment h : S? → [q] such

that

1. For every instance ` ∈ [k], val(h ∪ gν? ,W`) ≥ (1− ε/2) · val(h? ∪ gν? ,W`)

2. For every high variance instance ` ∈ [k], val(h ∪ gν? ,W`) ≥ (1− ε/2) · 10 · finalwt`.

Before giving a proof of the existence of such an h, we show that this completes the

proof of the theorem. We claim that when the partial assignment h guaranteed above is

considered in the Step 5(b) in the algorithm, we obtain an assignment with the required

approximation guarantees.

For every low variance instance ` ∈ [k], since we started with val(h? ∪ gν? ,W`) ≥

( 1
qw−1 − ε

2) · c`, property 1 above implies that every low variance instance val(h∪ gν?) ≥

( 1
qw−1 − ε) · c`. For every high variance instance ` ∈ [k], since h? = f?|S ,

val(h? ∪ gν? ,W`) ≥ val(f?,W`)− activedegreeρ?(W`) ≥ c` − finalwt`.

Combining this with properties 1 and 2 above, we get,

val(h ∪ gν? ,W`) ≥
(

1− ε

2

)
·max{c` − finalwt`, 10 · finalwt`} ≥

10

11

(
1− ε

2

)
· c`.

Thus, for all instances ` ∈ [k], we get val(h ∪ gν? ,W`) ≥
(

1
qw−1 − ε

2

)
· c`.

Now, it remains to show the existence of such an h by giving a procedure for con-

structing h by perturbing h? (Note that this procedure is only part of the analysis).

For nodes ν, ν ′ in the tree, let us write ν ≺ ν ′ if ν is an ancestor of ν ′, and we also say

that ν ′ is “deeper” than ν.

Constructing h.

1. Initialize H ⊆ [k] to be the set of high variance instances.

2. Let N0 = {ν`i | ` ∈ H, i ∈ [t/2]}. Note that N is a chain in the tree (since all the

elements of N are ancestors of ν?). Since every ν ∈ N is an ancestor of ν?, we

have hρν = h?|Sρν .
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3. Initialize D = ∅, N = N0, h = h?.

4. During the procedure, we will be changing the assignment h, and removing ele-

ments from N . We will always maintain the following two invariants:

• |N | > t
4 .

• For every ν ∈ N , h|Sρν = h?|Sρν .

5. While |D| 6= |H| do:

(a) Let

B =

v ∈ V | ∃` ∈ [k] with
∑

C∈C,C3v
W`(C) · C(h ∪ gν?) ≥

ε

2wk
val(h ∪ gν? ,W`)

 .

Note that |B| ≤ 2w2k2

ε < t
4 .

(b) Let ν ∈ N be the deepest element of N for which: Tν ∩B = ∅.

Such a ν exists because:

• |N | > t
4 > |B|, and

• there are at most |B| nodes ν for which Tν ∩ B 6= ∅ (since Tν are all

disjoint for distinct ν).

(c) Let ` ∈ H and i ∈ [t/2] be such that ν = ν`i . Let ρ = ρν . We will now modify

the assignment h for variables in Tν to guarantee that val(h ∪ gν? ,W`) ≥

10 · finalwt`. The procedure depends on whether ν is typeAB or typeC.

i. If ν is typeAB, then we know that backwardν ≥ 1
2 · activedegreeTν .

The second invariant tells us that ρ = h?|Sρ = h|Sρ . Thus we have:

backwardν =
∑

C∈Cbackwardν

W`(C)

=
∑

C⊆Sρ∪Tν ,C⊇Tν ,C∈Active(ρ)

W`(C)

=
∑

C⊆Sρ∪Tν ,C⊇Tν ,C∈Active(h|Sρ )

W`(C).
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This implies that we can modify the assignment h on the variables Tν

such that after the modification, the weights of satisfied backward con-

straints is:

∑
C⊆Sρ∪Tν ,C⊇Tν ,
C∈Active(h|Sρ )

W`(C)C(h) ≥ 1

qw

∑
C⊆Sρ∪Tν ,C⊇Tν ,
C∈Active(h|Sρ )

W`(C)

=
1

qw
· backwardν

≥ 1

2qw
· activedegreeTν

≥ 10 · finalwt`.

where the 1
qw factor in the first inequality appears because there could

be as many as qw possible assignments to variables in Tν , and the last

inequality holds because of Observation 8.4.1 and Lemma 8.4.8. In par-

ticular, after making this change, we have val(h∪gν? ,W`) ≥ 10 ·finalwt`.

ii. If ν is typeC, then we know that g is Cgood for ν. Thus, by the definition

of Cgood, we can choose a setting of Tν so that at least a total of 1
8·(qw)w ·

activedegreeTν ≥ 10·finalwt`W`-weight constraints between Tν and V \S?

is satisfied. After this change, we have val(h ∪ gν? ,W`) ≥ 10 · finalwt`.

In both the above cases, we only changed the value of h at the variables Tν .

Since Tν∩B = ∅, we have that for every j ∈ [k], the new value val(h∪gν? ,Wj)

is at least
(
1− ε

2k

)
times the old value val(h ∪ gν? ,Wj).

(d) Set D = D ∪ {`}.

(e) Set N = {ν`i | ` ∈ H \D, i ≤ [t/2], ν`i ≺ ν}.

Observe that |N | decreases in size by at most t
2 + |B|. Thus, if D 6= H, we

have

|N | ≥ |N0| − |D| ·
t

2
− |D||B|

= |H| · t
2
− |D| · t

2
− |D||B|

≥ t

2
− k|B| > t

4
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Also observe that we only changed the values of h at the variables Tν . Thus

for all ν ′ � ν (i.e ν ′ ∈ N), we still have the property that h|Sρν′ = h?|Sρν′ .

For each high variance instance ` ∈ [k], in the iteration where ` gets added to the set

D, the procedure ensures that at the end of the iteration val(h∪gν? ,W`) ≥ 10 ·finalwt`.

Moreover, at each step we reduced the value of each val(h ∪ gν? ,W`) by at most ε
2k

fraction of its previous value. Thus, at the end of the procedure, for every ` ∈ [k], the

value has decreased at most by a multiplicative factor of
(
1− ε

2k

)k ≥ (1− ε
2

)
. Thus,

for every ` ∈ [k], we get val(h∪gν? ,W`) ≥
(
1− ε

2

)
· val(h?∪gν? ,W`), and for every high

variance instance ` ∈ [k], we have val(h ∪ gν? ,W`) ≥
(
1− ε

2

)
· 10 · finalwt`. This proves

the two properties of h that we set out to prove.

Running time : Running time of the algorithm is 2O(kt) · poly(n) which is

2O(k4/ε2 log(k/ε2)) · poly(n).

8.5 Simultaneous Max-w-SAT

In this section, we give our algorithm for simultaneous Max-w-SAT. The algorithm

follows the basic paradigm from Max-2-AND and Max-CSP, but does not require

a tree of evolutions (only a set of influential variables), and uses an LP to boost the

Pareto approximation factor to
(

3
4 − ε

)
.

8.5.1 Preliminaries

Let V be a set of n Boolean variables. Define C to be the set of all possible w-SAT

constraints on the n variable set V . A Max-w-SAT instance is then described by a

weight function W : C → R≥0 (here W(C) denotes the weight of the constraint C). We

will assume that
∑

C∈CW(C) = 1.

We say v ∈ C if the variable v appears in the constraint C. For a constraint C, let

C+ (resp. C−) denote the set of variables v ∈ V that appear unnegated (resp. negated)

in the constraint C.

Let f : V → {0, 1} be an assignment. For a constraint C ∈ C, define C(f) to be

1 if the constraint C is satisfied by the assignment f , and define C(f) = 0 otherwise.
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Then, we have the following expression for val(f,W):

val(f,W)
def
=
∑
C∈C
W(C) · C(f).

Active Constraints.

Our algorithm will maintain a small set S ⊆ V of variables, for which we will try all

assignments by brute-force, and then use a randomized rounding procedure for a linear

program to obtain an assignment for V \S. We now introduce some notation for dealing

with this.

Let S ⊆ V . We say a constraint C ∈ C is active given S if at least one of the

variables of C is in V \ S. We denote by Active(S) the set of constraints from C which

are active given S. For two constraints C1, C2 ∈ C, we say C1 ∼S C2 if they share a

variable that is contained in V \ S. Note that if C1 ∼S C2, then C1, C2 are both in

Active(S). For two partial assignments f1 : S → {0, 1} and f2 : V \ S → {0, 1}, let

f = f1 ∪ f2 is an assignment f : V → {0, 1} such that f(x) = f1(x) if x ∈ S otherwise

f(x) = f2(x).

Define the active degree of a variable v ∈ V \ S given S by:

activedegreeS(v,W)
def
=

∑
C∈Active(S),C3v

W(C).

We then define the active degree of the whole instance W given S:

activedegreeS(W)
def
=

∑
v∈V \S

activedegreeS(v,W).

For a partial assignment h : S → {0, 1}, we define

val(h,W)
def
=

∑
C∈C

C/∈Active(S)

W(C) · C(h).

Thus, for an assignment g : V \ S → {0, 1}, to the remaining set of variables, we have

the equality:

val(h ∪ g,W)− val(h,W) =
∑

C∈Active(S)

W(C) · C(h ∪ g).
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LP Rounding.

Let h : S → {0, 1} be a partial assignment. We will use the Linear Program MAXwSAT-LP1(h)

to complete the assignment to V \S. For Max-2-SAT, Goemans and Williamson [GW93]

showed, via a rounding procedure, that this LP can be used to give a 3/4 approxima-

tion. However, as in Max-2-AND, we will be using the rounding procedure due to

Trevisan [Tre98] that also gives a 3/4 approximation for Max-w-SAT, because of its

smoothness properties.

Let ~t, ~z be a feasible solution to the LP MAXwSAT-LP1(h). Let smooth(~t) denote

the map p : V \ S → [0, 1] given by: p(v) = 1
4 + tv

2 . Note that p(v) ∈ [1/4, 3/4] for all v.

Theorem 8.5.1. Let h : S → {0, 1} be a partial assignment.

1. For every g0 : V \ S → {0, 1}, there exist ~t, ~z satisfying MAXwSAT-LP1(h) such

that for every Max-w-SAT instance W:

∑
C∈C
W(C)zC = val(g0 ∪ h,W).

2. Suppose ~t, ~z satisfy MAXwSAT-LP1(h). Let p = smooth(~t). Then for every

Max-w-SAT instance W:

E
g

[val(h ∪ g,W)] ≥ 3

4
·
∑
C∈C
W(C)zC ,

where g : V \ S → {0, 1} is such that each g(v) is sampled independently with

E[g(v)] = p(v).

Proof. The first part is identical to the first part of Lemma 8.3.2. For the second part.

Let W be any instance of Max-w-SAT. Let g : V \ S → {0, 1} be sampled as follows:

independently for each v ∈ V \S, g(v) is sampled from {0, 1} such that E[g(v)] = p(v).

We need to show that

E
g

[val(h ∪ g,W)] =
∑

C∈C\Active(S)

W(C)C(h) + E

 ∑
C∈Active(S)

W(C)C(ρ ∪ g)


≥ 3

4
·

∑
C∈C\Active(S)

W(C)zC +
3

4
·

∑
C∈Active(S)

W(C)zC
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For C ∈ C \ Active(S), it is easy to verify that if zC > 0, we must have C(h) = 1. For

C ∈ Active(S) the following claim gives us the required inequality:

Claim 8.5.2. For C ∈ Active(S), E[C(h ∪ g)] ≥ 3
4 · zC .

Proof. The claim is true if C is satisfied by h. Consider a clause C which contains l

active variables but not satisfied by partial assignment h. Under the smooth rounding,

we have

E[C(h ∪ g)] = Pr[C is satisfied by h ∪ g]

= 1−

 ∏
v∈C+,v∈V \S

3

4
− tv

2

 ·
 ∏
v∈C−,v∈V \S

3

4
− 1− tv

2


≥ 1−

(
3

4
−
∑

v∈C+,v∈V \S tv +
∑

v∈C−,v∈V \S(1− tv)
2l

)l

≥ 1−
(

3

4
− zC

2l

)l
≥ 3

4
· zC ,

where first inequality follows from AM-GM inequality. For any integer l ≥ 1, the

last inequality follows by noting that for a function f(x) = 1 −
(

3
4 −

x
2l

)l − 3
4 · x,

f(0) ≥ 0, f(1) ≥ 0 along with the fact the the function has no local minima in (0, 1).

8.5.2 Random Assignments

We now give a sufficient condition for the value of a Max-w-SAT instance to be highly

concentrated under a sufficiently smooth independent random assignment to the vari-

ables of V \S (This smooth distribution will come from the rounding algorithm for the

LP). When the condition does not hold, we will get a variable of high active degree.

Let S ⊆ V , and let h : S → {0, 1} be an arbitrary partial assignment to S. Let

p : V \ S → [0, 1] be such that p(v) ∈ [1/4, 3/4] for each v ∈ V \ S. Consider the random

assignment g : V \ S → {0, 1}, where for each v ∈ V \ S, g(v) ∈ {0, 1} is sampled

independently with E[g(v)] = p(v). Define the random variable

Y
def
= val(h ∪ g,W)− val(h,W) =

∑
C∈Active(S)

W(C) · C(h ∪ g).
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The random variable Y measures the contribution of active constraints to the instance

W.

We now define two quantities depending only on S (and importantly, not on h),

which will be useful in controlling the expectation and variance of Y . The first quantity

is an upper bound on Var[Y ]:

Uvar
def
=

∑
C1∼SC2

W(C1)W(C2).

The second quantity is a lower bound on E[Y ]:

Lmean
def
=

1

4
·

∑
C∈Active(S)

W(C).

Lemma 8.5.3. Let S ⊆ V be a subset of variables and h : S → {0, 1} be an arbitrary

partial assignment to S. Let p, Y,Uvar, Lmean be as above.

1. If Uvar ≤ δ0ε
2
0 · Lmean2, then Pr[Y < (1− ε0) E[Y ]] < δ0.

2. If Uvar ≥ δ0ε
2
0 · Lmean2, then there exists v ∈ V \ S such that

activedegreeS(v,W) ≥ 1

16w2
ε2

0δ0 · activedegreeS(W).

The crux of the proof is that independent of the assignment h : S → {0, 1}, E[Y ] ≥

Lmean and Var(Y ) ≤ Uvar (this crucially requires that the rounding is independent

and smooth, i.e., p(v) ∈ [1/4, 3/4] for all v; this is why we end up using Trevisan’s

rounding procedure in Theorem 8.5.1). The first part is then a simple application of

the Chebyshev inequality. For the second part, we use the assumption that Uvar is large,

to deduce that there exists a constraint C such that the total weight of constraints that

share a variable from V \ S with C, i.e.,
∑

C2∼SCW(C2), is large. It then follows that

at least one variable v ∈ C must have large activedegree given S.

Proof. We first prove that Var(Y ) ≤ Uvar. Recall that the indicator variable C(h ∪ g)

denotes whether a constraint C is satisfied by the assignment h ∪ g, and note that:

Y =
∑

C∈Active(S)

W(C) · C(h ∪ g).
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Thus, the variance of Y is given by

Var(Y ) =
∑

C1,C2∈Active(S)

W(C1)W(C2) · (E[C1(h ∪ g)C2(h ∪ g)]−E[C1(h ∪ g)] E[C2(h ∪ g)])

≤
∑

C1∼SC2

W(C1)W(C2) = Uvar,

where the inequality holds because E[C1(h∪g)C2(h∪g)]−E[C1(h∪g)] E[C2(h∪g)] ≤ 1

for all C1, C2, and E[C1(h∪g)C2(h∪g)]−E[C1(h∪g)] E[C2(h∪g)] = 0 unless C1 ∼S C2

because the rounding is performed independently for all the variables.

Moreover, since p(v) ∈ [1/4, 3/4] for all v, we get that E[C(h ∪ g)] ≥ 1/4 for all

C ∈ Active(S). Thus, we have E[Y ] ≥ Lmean. Given this, the first part of the lemma

easily follows from Chebyshev’s inequality:

Pr[Y < (1− ε0) E[Y ]] ≤ Var(Y )

ε2
0(E[Y ])2

≤ Uvar

ε2
0Lmean2 ≤ δ0.

For the second part of the lemma, we have:

δ0ε
2
0Lmean2 < Uvar =

∑
C1∼SC2

W(C1)W(C2)

≤
∑

C1∈Active(S)

W(C1)
∑

C2∼SC1

W(C2)

≤

 ∑
C1∈Active(S)

W(C1)

 · max
C∈Active(S)

∑
C2∼SC

W(C2)

= 4 · Lmean · max
C∈Active(S)

∑
C2∼SC

W(C2) .

Thus, there exists a constraint C ∈ Active(S) such that:∑
C2∼SC

W(C2) ≥ 1

4
· δ0ε

2
0 · Lmean ≥ 1

16w
δ0ε

2
0 · activedegreeS(W), (8.5.1)

where we used the fact that Lmean = 1
4 · (
∑

C∈Active(S)W(C)) ≥ 1
4w · activedegreeS(W),

since we are counting the weight of a constraint at most w times in the expression

activedegreeS(W). Finally, the LHS of equation (8.5.1) is at most∑
u∈C∩(V \S) activedegreeS(u,W). Thus, there is some u ∈ V \ S with:

activedegreeS(u,W) ≥ 1

16w2
δ0ε

2
0 · activedegreeS(W).
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8.5.3 Algorithm for Simultaneous Max-w-SAT

In Fig. 8.8, we give our algorithm for simultaneous Max-w-SAT. The input to the

algorithm consists of an integer k ≥ 1, ε > 0, and k instances of Max-w-SAT, specified

by weight functions W1, . . . ,Wk, and target objective values c1, . . . , c`.

8.5.4 Analysis of Algorithm Sim-MaxwSAT

It is easy to see that the algorithm always terminates in polynomial time. Part 2 of

Lemma 8.5.3 implies that that Step 3.(d)i always succeeds in finding a variable v. Next,

we note that Step 3. always terminates. Indeed, whenever we find an instance ` ∈ [k] in

Step 3.d such that count` < t and flag` = True, we increment count`. This can happen

only tk times before the condition count` < t fails for all ` ∈ [k]. Thus the loop must

terminate within tk iterations.

Let S? denote the final set S that we get at the end of Step 3. of Sim-MaxwSAT. To

analyze the approximation guarantee of the algorithm, we classify instances according

to how many vertices were brought into S? because of them.

Definition 8.5.4 (Low and high variance instances). At the completion of Step 3.d in

Algorithm Sim-MaxwSAT, if ` ∈ [k] satisfies count` = t, we call instance ` a high

variance instance. Otherwise we call instance ` a low variance instance.

At a high level, the analysis will go as follows: First we analyze what happens when

we give the optimal assignment to S? in Step 4. For low variance instances, the fraction

of the constraints staisfied by the LP rounding will concentrate around its expectation,

and will give the desired approximation. For every high variance instance, we will see

that many of its “heavy-weight” vertices were brought into S?, and we will use this to

argue that we can satisfy a large fraction of the constraints from these high variance

instances by suitably perturbing the optimal assignment to S? to these “heavy-weight”

vertices. It is crucial that this perturbation is carried out without significantly affecting

the value of the low variance instances.

Let f? : V → {0, 1} be an assignment such that val(f?,W`) ≥ c` for each `. Let

h? = f?|S? . Claim 1 from Theorem 8.5.1 implies that MAXwSAT-LP2(h?) has a feasible
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Input: k instances of Max-w-SAT W1, . . . ,Wk on the variable set V, target objec-

tive values c1, . . . , ck, and ε > 0.

Output: An assignment to V.

Parameters: δ0 = 1
10k , ε0 = ε

2 , γ =
ε20δ0
16w2 , t = 2k

γ · log
(

11
γ

)
.

1. Initialize S ← ∅.

2. For each instance ` ∈ [k], initialize count` ← 0 and flag` ← True.

3. Repeat the following until for every ` ∈ [k], either flag` = False or count` = t:

(a) For each ` ∈ [k], compute Uvar` =
∑

C1∼SC2
W`(C1)W`(C2).

(b) For each ` ∈ [k], compute Lmean` = 1
4

∑
C∈Active(S)W`(C).

(c) For each ` ∈ [k], if Uvar` ≥ δ0ε
2
0 · Lmean2

` , then set flag` = True, else set

flag` = False.

(d) Choose any ` ∈ [k], such that count` < t AND flag` = True (if any):

i. Find a variable v ∈ V such that activedegreeS(v,W`) ≥ γ ·

activedegreeS(W`).

ii. Set S ← S∪{v}. We say that v was brought into S because of instance

`.

iii. Set count` ← count` + 1.

4. For each partial assignment h0 : S → {0, 1}:

(a) If there is a feasible solution ~t, ~z to the LP in Fig. 8.10, set p = smooth(~t).

If not, return to Step 4. and proceed to the next h0.

(b) Define g : V \ S → {0, 1} by independently sampling g(v) ∈ {0, 1} with

E[g(v)] = p(v), for each v ∈ V \ S.

(c) For each h : S → {0, 1}, compute outh,g = min`∈[k]
val(h∪g,W`)

c`
. If c` = 0

for some ` ∈ [k], we interpret val(h∪g,W`)
c`

as +∞.

5. Output the largest outh,g seen, and the assignment h ∪ g.

Figure 8.8: Algorithm Sim-MaxwSAT for approximating weighted simultaneous

Max-w-SAT
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∑
v∈C+ tv +

∑
v∈C−(1− tv) ≥ zC ∀C ∈ C

1 ≥ zC ≥ 0 ∀C ∈ C

1 ≥ tv ≥ 0 ∀v ∈ V \ S

tv = h0(v) ∀v ∈ S

Figure 8.9: Linear program MAXwSAT-LP1(h0), for a given partial assignment h0 : S →

{0, 1}

∑
C∈CW`(C) · zC ≥ c` ∀` ∈ [k]

~t, ~z satisfy MAXwSAT-LP1(h0).

Figure 8.10: Linear program MAXwSAT-LP2(h0) for a given partial assignment h0 :

S → {0, 1}

solution. For low variance instances, by combining Theorem 8.5.1 and Lemma 8.5.3,

we show that val(h? ∪ g,W`) is at least (3/4− ε/2) · c` with high probability.

Lemma 8.5.5. Let ` ∈ [k] be any low variance instance. Let ~t, ~z be a feasible solution

to MAXwSAT-LP2(h?). Let p = smooth(~t). Let g : V \ S? → {0, 1} be such that each

g(v) is sampled independently with E[g(v)] = p(v). Then the assignment h?∪g satisfies:

Pr
g

[val(h? ∪ g,W`) ≥ (3/4− ε/2) · c`] ≥ 1− δ0.

Proof. Since ` is a low variance instance, flag` = False when the algorithm terminates.

Thus Uvar` < δ0ε
2
0 · Lmean2

` . Let g : V → {0, 1} be the random assignment picked in

Step 4.b. Define the random variable

Y`
def
= val(h? ∪ g,W`)− val(h?,W`).

By Lemma 8.5.3, we know that with probability at least 1 − δ0, we have Y` ≥
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(1− ε0) E[Y`]. Thus, with probability at least 1− δ0, we have,

val(h? ∪ g,W`) = val(h?,W`) + Y` ≥ val(h?,W`) + (1− ε0) E[Y`]

≥ (1− ε0) ·E[val(h?,W`) + Y`] = (1− ε0) ·E[val(h? ∪ g,W`)]

≥ 3/4 · (1− ε0) ·
∑
C∈C
W`(C)zC ≥ (3/4− ε/2) · c`,

where the last two inequalities follow from Claim 2 in Theorem 8.5.1 and the constraints

in MAXwSAT-LP2 respectively.

Now we analyze the high variance instances. We prove the following lemma that

proves that at the end of the algorithm, the activedegree of high variance instances

is small, and is dominated by the activedegree of any variable that was included in S

“early on”.

Lemma 8.5.6. For all high variance instances ` ∈ [k], we have

1. activedegreeS?(W`) ≤ w(1− γ)t.

2. For each of the first t/2 variables that were brought inside S? because of instance

`, the total weight of constraints incident on each of that variable and totally

contained inside S? is at least 10 · activedegreeS?(W`).

The crucial observation is that when a variable u is brought into S because of an

instance `, the activedegree of u is at least a γ fraction of the total activedegree of

instance `. Thus, the activedegree of instance ` goes down by a multiplicative factor of

(1− γ). This immediately implies the first part of the lemma. For the second part, we

use the fact that t is large, and hence the activedegree of early vertices must be much

larger than the final activedegree of instance `.

Proof. Consider any high variance instance ` ∈ [k]. Initially, when S = ∅, we have

activedegree∅(W`) ≤ w since the weight of every constraint is counted at most w times,

once for each of the 2 active variables of the constraint, and
∑

C∈CW`(C) = 1. For

every v, note that activedegreeS2
(v,W`) ≤ activedegreeS1

(v,W`) whenever S1 ⊆ S2.

Let u be one of the variables that ends up in S? because of instance `. Let Su denote

the set S ⊆ S? just before u was brought into S?. When u is added to Su, we know
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that activedegreeSu(u,W`) ≥ γ · activedegreeSu(W`). Hence, activedegreeSu∪{u}(W`) ≤

activedegreeSu(W`)− activedegreeSu(u,W`) ≤ (1− γ) · activedegreeSu(W`). Since t vari-

ables were brought into S? because of instance `, and initially activedegree∅(W`) ≤ w,

we get activedegreeS?(W`) ≤ w(1− γ)t.

Now, let u be one of the first t/2 variables that ends up in S? because of instance

`. Since at least t/2 variables are brought into S? because of instance `, after u, as

above, we get activedegreeS?(W`) ≤ (1 − γ)t/2 · activedegreeSu(W`). Combining with

activedegreeSu(u,W`) ≥ γ · activedegreeSu(W`), we get activedegreeSu(u,W`) ≥ γ(1 −

γ)−t/2activedegreeS?(W`), which is at least 11 · activedegreeS?(W`), by the choice of

parameters. Since any constraint incident on a vertex in V \ S? contributes its weight

to activedegreeS?(W`), the total weight of constraints incident on u and totally contained

inside S? is at least 10 · activedegreeS?(W`) as required.

We now describe a procedure Perturb (see Fig. 8.11) which takes h? : S? → {0, 1}

and g : V \ S? → {0, 1}, and produces a new h : S? → {0, 1} such that for all

(low variance as well as high variance) instances ` ∈ [k], val(h ∪ g,W`) is not much

smaller than val(h? ∪ g,W`), and furthermore, for all high variance instances ` ∈ [k],

val(h∪g,W`) is large. The procedure works by picking a special variable in S? for every

high variance instance and perturbing the assignment of h? to these special variables.

The crucial feature used in the perturbation procedure, which holds for Max-w-SAT

(but not for Max-2-AND), is that it is possible to satisfy a constraint by just changing

one of the variables it depends on. The partial assignment h is what we will be using

to argue that Step 4. of the algorithm produces a good Pareto approximation. More

formally, we have the following Lemma.

Lemma 8.5.7. For the assignment h obtained from Procedure Perturb (see Fig. 8.11),

for each ` ∈ [k], val(h ∪ g,W`) ≥ (1− ε/2) · val(h? ∪ g,W`). Furthermore, for each high

variance instance W`, val(h ∪ g,W`) ≥ 4 · activedegreeS?(W`).

Proof. Consider the special variable v` that we choose for high variance instance ` ∈ [k].

Since v` /∈ B, the constraints incident on v` only contribute at most a ε/2k fraction of

the objective value in each instance. Thus, changing the assignment v` can reduce the
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Input: h? : S? → {0, 1} and g : V \ S? → {0, 1}

Output: A perturbed assignment h : S? → {0, 1}.

1. Initialize h← h?.

2. For ` = 1, . . . , k, if instance ` is a high variance instance case (i.e., count` = t),

we pick a special variable v` ∈ S? associated to this instance as follows:

(a) Let B = {v ∈ V | ∃` ∈ [k] with
∑

C∈C,C3vW`(C) ·C(h ∪ g) ≥ ε
2k · val(h ∪

g,W`)}. Since the weight of each constraint is counted at most w times,

we know that |B| ≤ 2wk2

ε .

(b) Let U be the set consisting of the first t/2 variables brought into S?

because of instance `.

(c) Since t/2 > |B| + k, there exists some u ∈ U such that u 6∈ B ∪

{v1, . . . , v`−1}. We define v` to be u.

(d) By Lemma 8.5.6, the total W` weight of constraints that are incident on

v` and only containing variables from S? is at least 10·activedegreeS?(W`).

We update h by setting h(v`) to be that value from {0, 1} such that at

least half of the W` weight of these constraints is satisfied.

3. Return the assignment h.

Figure 8.11: Procedure Perturb for perturbing the optimal assignment
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value of any instance by at most a ε
2k fraction of their current objective value. Also, we

pick different special variables for each high variance instance. Hence, the total effect

of these perturbations on any instance is that it reduces the objective value (given

by h? ∪ g) by at most 1 − (1 − ε
2k )k ≤ ε

2 fraction. Hence for all instances ` ∈ [k],

val(h ∪ g,W`) ≥ (1− ε/2) · val(h? ∪ g,W`).

For a high variance instance ` ∈ [k], since v` ∈ U, the variable v` must be one of

the first t/2 variables brought into S? because of `. Hence, by Lemma 8.5.6 the total

weight of constraints that are incident on v` and entirely contained inside S? is at least

10 · activedegreeS?(W`). Hence, there is an assignment to v` that satisfies at least at

least half the weight of these Max-w-SAT constraints8 in `. At the end of the iteration,

when we pick an assignment to v`, we have val(h∪g,W`) ≥ 5 ·activedegreeS?(W`). Since

the later perturbations do not affect value of this instance by more than ε/2 fraction, we

get that for the final assignment h, val(h ∪ g,W`) ≥ (1− ε/2) · 5 · activedegreeS?(W`) ≥

4 · activedegreeS?(W`).

Given all this, we now show that with high probability the algorithm finds an

assignment that satisfies, for each ` ∈ [k], at least (3/4− ε) · c` weight from instance W`.

The following theorem immediately implies Theorem 8.1.3.

Theorem 8.5.8. Let w be a constant. Suppose we’re given ε ∈ (0, 2/5], k simultaneous

Max-w-SAT instances W1, . . . ,W` on n variables, and target objective value c1, . . . , ck

with the guarantee that there exists an assignment f? such that for each ` ∈ [k], we have

val(f?,W`) ≥ c`. Then, the algorithm Sim-MaxwSAT runs in time 2O(k3/ε2 log(k/ε2)) ·

poly(n), and with probability at least 0.9, outputs an assignment f such that for each

` ∈ [k], we have, val(f,W`) ≥ (3/4− ε) · c`.

Proof. Consider the iteration of Step 4. of the algorithm when h0 is taken to equal h?.

Then, by Part 1 of Theorem 8.5.1, the LP in Step 4.a will be feasible (this uses the fact

that val(f?,W`) ≥ c` for each `).

By Lemma 8.5.5 and a union bound, with probability at least 1 − kδ0 > 0.9, over

8This is not true if they are Max-2-AND constraints.
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the choice of g, we have that for every low variance instance ` ∈ [k], val(h? ∪ g,W`) ≥

(3/4− ε/2) · c`. Henceforth we assume that the assignment g sampled in Step 4.b of the

algorithm is such that this event occurs. Let h be the output of the procedure Perturb

given in Fig. 8.11 for the input h? and g. By Lemma 8.5.7, h satisfies

1. For every instance ` ∈ [k], val(h ∪ g,W`) ≥ (1− ε/2) · val(h? ∪ g,W`).

2. For every high variance instance ` ∈ [k], val(h ∪ g,W`) ≥ 4 · activedegreeS?(W`).

We now show that the desired Pareto approximation behavior is achieved when h is

considered as the partial assignment in Step 4.c of the algorithm. We analyze the

guarantee for low and high variance instances separately.

For any low variance instance ` ∈ [k], from property 1 above, we have val(h∪g,W`) ≥

(1− ε/2) · val(h? ∪ g,W`). Since we know that val(h? ∪ g,W`) ≥ (3/4− ε/2) · c`, we have

val(h ∪ g,W`) ≥ (3/4− ε) · c`.

For every high variance instance ` ∈ [k], since h? = f?|S? , for any g we must have,

val(h? ∪ g,W`) ≥ val(f?,W`)− activedegreeS?(W`) ≥ c` − activedegreeS?(W`).

Combining this with properties 1 and 2 above, we get,

val(h ∪ g,W`) ≥ (1− ε/2) ·max{c` − activedegreeS?(W`), 4 · activedegreeS?(W`)}

≥ (3/4− ε) · c`.

Thus, for all instances ` ∈ [k], we get val(h ∪ g) ≥ (3/4− ε) · c`. Since we are taking

the best assignment h ∪ g at the end of the algorithm Sim-MaxwSAT, the theorem

follows.

Running time : Running time of the algorithm is 2O(kt) · poly(n) which is

2O(k3/ε2 log(k/ε2)) · poly(n).

8.6 Hardness Results for Large k

In this section, we prove our hardness results for simultaneous CSPs. Recall the theorem

that we are trying to show.
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Theorem 8.6.1 (restated). Assume the Exponential Time Hypothesis. Let F be a fixed

finite set of Boolean predicates. If F is not 0-valid or 1-valid, then for k = ω(log n),

then detecting positivity of k-fold simultaneous MAX-F-CSPs on n variables requires

time superpolynomial in n.

The main notion that we will use for our hardness reductions is the notion of a

“simultaneous-implementation”.

Definition 8.6.2 (Simultaneous-Implementation). Let {x1, . . . , xw} be a collection of

variables (called primary variables). Let P : {0, 1}w → {True,False} be a predicate.

Let {y1, . . . , yt} be another collection of variables (called auxiliary variables).

Let C1, . . . , Ck be sets of constraints on {x1, . . . , xw, y1, . . . , yt}, where for each i ∈

[k], Ci consists of various applications of predicates to tuples of distinct variables from

{x1, . . . , xw, y1, . . . , yt}. We say that C1, . . . , Ck simultaneously-implements P if for

every assignment to x1, . . . , xw, we have,

• If P (x1, . . . , xw) = True, then there exists a setting of the variables y1, . . . , yt

such that each collection C1, . . . , Ck has at least one satisfied constraint.

• If P (x1, . . . , xw) = False, then for every setting of the variables y1, . . . , yt, at

least one of the collections C1, . . . , Ck has no satisfied constraints.

We say that a collection of predicates F simultaneously-implements P if there is a

simultaneous-implementation of P where for each collection Ci (i ∈ [k]), every constraint

in Ci is an application of some predicate from F .

The utility of simultaneous-implementation lies in the following lemma.

Lemma 8.6.3. Let P be a predicate. Suppose checking satisfiability of CSPs on n

variables with m constraints, where each constraint is an application of the predicate P ,

requires time T (n,m), with T (n,m) = ω(m+n). Suppose F simultaneously-implements

P . Then detecting positivity of O(m)-fold simultaneous MAX-F-CSP on O(m + n)

variables requires time Ω(T (n,m)).

Proof. Suppose we have a P -CSP instance Φ with m constraints on n variables. For

each of the constraints C ∈ Φ, we simultaneously-implement C using the original set of
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variables as primary variables, and new auxiliary variables for each constraint. Thus, for

every C ∈ Φ, we obtain k MAX-F-CSP instances CC1 , . . . , CCk , for some constant k. The

collection of instances {CCi }C∈Φ,i∈[k] constitute the O(m)-simultaneous MAX-F-CSP

instance on O(m+ n) variables.

If Φ is satisfiable, we know that there exists an assignment to the original variables

such that each C ∈ Φ is satisfied. Hence, by the simultaneously-implements property,

there exists as assignment to all the auxiliary variables such that each CCi has at least one

satisfied constraint. If Φ is unsatisfiable, for any assignment to the primary variables, at

least one constraint C must be unsatisfied. Hence, by the simultaneously-implements

property, for any assignment to the auxiliary variables, there is an i ∈ [k] such that

CCi has no satisfied constraints. Thus, our simultaneous MAX-F-CSP instance has a

non-zero objective value iff Φ is satisfiable. Since this reduction requires only O(m+n)

time, suppose we require T ′ time for detecting positivity of a O(m)-simultaneous MAX-

F-CSP instance on O(m+n) variables, we must have T ′+O(m+n) ≥ T (m,n), giving

T ′ = Ω(T (m,n)) since T (m,n) = ω(m+ n).

The simultaneous-implementations we construct will be based on a related notion

of implementation arising in approximation preserving reductions. We recall this defi-

nition below.

Definition 8.6.4 (Implementation). Let x1, . . . , xw be a collection of variables (called

primary variables). Let P : {0, 1}w → {True,False} be a predicate.

Let y1, . . . , yt be another collection of variables (called auxiliary variables). Let

C1, . . . , Cd be constraints on {x1, . . . , xw, y1, . . . , yt}, where for each i ∈ [d], the variables

feeding into Ci are all distinct.

We say that C1, . . . , Cd e-implements P if for every assignment to x1, . . . , xw we

have,

• If P (x1, . . . , xw) = True, then there exists a setting of the variables y1, . . . , yt

such that at least e of the constraints C1, . . . , Cd evaluate to True.

• If P (x1, . . . , xw) = False, then for every setting of the variables y1, . . . , yt, at

most e− 1 of the constraints C1, . . . , Cd evaluate to True.
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We say that a collection of predicates F implements P if there is some e and an

e-implementation of C where all the constraints C1, . . . , Cd come from F .

We will be using following predicates in our proofs.

• Id,Neg : These are the unary predicates defined as Id(x) = x and Neg(x) = x̄.

• NAE: w-ary NAE predicate on variables x1, . . . , xw is defined as NAE(x1, . . . , xw) =

False iff all the xi’s are equal.

• Equality : Equality is a binary predicate given as Equality(x, y) = True iff x equals

y.

We will use the following Lemmas from [KSTW01].

Lemma 8.6.5 ([KSTW01]). Let f be a predicate which is not 0-valid, and which is

closed under complementation. Then {f} implements XOR(x, y).

Lemma 8.6.6 ([KSTW01]). Let f be a predicate not closed under complementation,

and let g be a predicate that is not 0-valid. Then {f, g} implements Id, and {f, g}

implements Neg.

We will now prove lemmas that will capture the property of simultaneous imple-

mentation which will be used in proving Theorem 8.6.1.

Lemma 8.6.7. If {f} simultaneously-implements predicate XOR on two variables, then

{f} also simultaneously-implements the predicate NAE on three variables.

Proof. Consider an NAE constraint NAE(x, y, z). Let A1, . . . ,Ad be the simultaneous

implementation of constraint XOR(x, y), using predicate f and a set of auxiliary vari-

ables y1, . . . , yt for some t. Similarly, let B1, . . . ,Bd and C1, . . . , Cd be the simultaneous

implementation of constraint XOR(y, z) and XOR(x, z) respectively using f and on a

same set of auxiliary variables y1, . . . , yt, constructed by replacing the variables (x, y)

in {A1, . . . ,Ad} with (y, z) and (x, z) respectively. We construct sets of constraints

D1, . . . ,Dd as follows: for each i ∈ [d], Di consists of all constraints from Ai,Bi, and Ci.

We now show that {D1, . . . ,Dd} simultaneously-implement NAE(x, y, z).
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First, notice that NAE(x, y, z) is False iff all constraints XOR(x, y), XOR(y, z) and

XOR(x, z) are False. Consider the case when NAE(x, y, z) is False. Since we are using

same set of auxiliary variables and the implementation is symmetric, for every setting

of variables y1, . . . , yt, there exists a fixed i ∈ [d] such that each of Ai,Bi and Ci has no

satisfied constraints. And hence, instance Di has no satisfied constraints. If NAE(x, y, z)

is True then at least one of XOR(x, y), XOR(y, z) or XOR(x, z) must be True. Without

loss of generality, we assume that XOR(x, y) is True. Thus, there exists a setting of

variables y1, . . . , yt such that each of A1, . . . ,Ad, has at least one satisfied constraint,

and hence each of D1, . . . ,Dd too has at least one such constraint.

Lemma 8.6.8. Let f be a predicate not closed under complementation, not 0-valid and

not 1-valid. f can simultaneously-implement Equality.

Proof. Consider an equality constraint Equality(x, y), our aim is to simultaneously-

implement this constraint using predicate f.

Since f satisfies the properties of Lemma 8.6.6, we can implement Id(x) and Id(y)

using f. Let XT
1 , . . . , X

T
d1

be an e1-implementation of Id(x) using f and some set of aux-

iliary variables A1 for some e1 < d1. Similarly, let Y T
1 , . . . , Y

T
d1

be an e1-implementation

of Id(y) using f and a set of auxiliary variables A2.

We can also implement Neg(x) and Neg(y) using f. Let XF
1 , . . . , X

F
d2

be an e2-

implementation of Neg(x) using f and a set of auxiliary variables B1 for some e2 < d2.

Similarly, let Y F
1 , . . . , Y

F
d1

be an e2-implementation of Neg(y) using f and a set of

auxiliary variables B2.

We now describe the construction of the simultaneous-implementation. The im-

plementation uses all auxiliary variables in A1, A2, B1, and B2. Each instance in the

simultaneous-implementation is labeled by a tuple (M,N, a, b) where M ⊆ [d1] with

|M | = d1 − e1 + 1, N ⊆ [d2] with |N | = d2 − e2 + 1, and (a, b) ∈ {(T, F ), (F, T )}. An

instance corresponding to a tuple (M,N, a, b) has following set of constraints in f :

{Xa
m, Y

b
m|m ∈M,n ∈ N}

We will now prove the simultaneous-implementation property of the above created in-

stance. Consider the case when x = y = True (other case being similar). We know
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that in this case, there exists a setting of auxiliary variables A1 used in the implementa-

tion of Id(x) which satisfies at least e1 constraints out of XT
1 , . . . , X

T
d1
. Similarly, there

exists a setting of auxiliary variables A2 used in the implementation of Id(y) which

satisfies at least e1 constraints out of Y T
1 , . . . , Y

T
d1
. Fix this setting of auxiliary variables

in A1, A2, and any arbitrary setting for auxiliary variables in B1 and B2. Thus, the

instance labeled by tuple the (M,N, a, b) either contains d1 − e1 + 1 constraints from

XT
1 , . . . , X

T
d1

if a = T, or else, it contains d1 − e1 + 1 constraints from Y T
1 , . . . , Y

T
d1

.

In any case, the property of e1-implementation implies that at least one constraint is

satisfied for this instance.

Now we need to show that if x 6= y, then for any setting of auxiliary variables,

there exists an instance which has no satisfied constraints. Consider the case when

x = True and y = False (other case being similar). Consider any fixed assignment to

the auxiliary variables in A1, A2, B1, and B2. We know that for this fixed assignment to

the auxiliary variables inB1, there exists a subsetN ⊆ [d2] of size at least d2−e2+1, such

that all constraints in {XF
j |j ∈ N} are unsatisfied. Similarly, for this fixed assignment

to variables in A2, there exists a subset M ⊆ [d1] of size at least d1−e1 +1 such that all

constraints in {Y T
i |i ∈ M} are unsatisfied. Thus, the instance corresponding to tuple

(M,N,F, T ) has no satisfied constraints.

We now prove Theorem 8.6.1.

Proof. We take cases on whether F contains some f which is closed under complemen-

tation.

Case 1: Suppose there exists some f ∈ F which is closed under complementation.

In this case, it is enough to show that f simultaneously-implements XOR. To see this,

assume that we can simultaneously-implement XOR using f . Hence, by Lemma 8.6.7, we

can simultaneously-implement the predicate NAE on three variables using f . We start

with an NAE-3-SAT instance φ, on n variables with m constraints. For each constraint

C ∈ φ, we create a set of O(1) many instances which simultaneously-implement C.

The final simultaneous instance is the collection of all instances that we get with each

simultaneous-implementation of constraints in φ.
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In the completeness case, when φ is satisfiable, then by the property of simultaneous-

implementation, we have that there exists a setting of auxiliary variables, from each

implementation of NAE constraints, such that each instance has at least one constraint

satisfied. And hence, the value of the final simultaneous instance is non zero.

In the soundness case, for any assignment to the variables x1, . . . , xn there exists a

constraint (say C) which is not satisfied. Hence one of the instance from the simultane-

ous implementation of this constraint has value zero no matter how we set the auxiliary

variables. And hence, the whole simultaneous instance has value zero in this case.

To prove the theorem in this case, it remains to show that we can simultaneously-

implement XOR(x, y) using f. Since f is closed under complementation, we can e-

implement XOR using f (for some e) by Lemma 8.6.5. Let C1, . . . , Cd be the set of

f -constraints that we get from this e-implementation, e < d. The collection of in-

stances contains one instance for every subset J ⊆ [d] of size d − e + 1. The instance

labeled by J ⊆ [d] contains all constraints from the set {Cj |j ∈ J}. Hence, there(
d
e−1

)
instances in the collection. Note that we used the same set of auxiliary variables

in this simultaneous-implementation. We now show that this collection of instances

simultaneously-implements XOR(x, y). To see this, consider the case when XOR(x, y) is

True. Thus. there is an assignment to the auxiliary variables that satisfies at least e

constraints out of C1, . . . , Cd. Hence, for this particular assignment, the instance labeled

by J, where J ⊂ [d] is any subset of size d− e+ 1, has at least one satisfied constraint.

When XOR(x, y) is False, then for any assignment to the auxiliary variables, there is

some J ⊆ [d] of size d− e+ 1 such that no constraints in the set {Cj |j ∈ J} are satis-

fied. Hence, for this assignment, the instance labeled with J has no satisfied constraints.

This shows that f simultaneously-implements predicate XOR on two variables.

Combining the two arguments above, we get that {f} simultaneously-implements

3-NAE. Since 3-NAE has a linear time gadget reduction from 3-SAT [Sch78], and the

ETH implies that 3-SAT on s variables and O(s) clauses requires time 2Ω(s) [IP01,

IPZ01], we get that checking satisfiability of a 3-NAE instance with ω(log n) constraints

on ω(log n) variables requires time super-polynomial in n. Thus, using Lemma 8.6.3

implies that detecting positivity of an ω(log n)-simultaneous MAX-f -CSP requires time
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superpolynomial in n.

Case 2: Suppose that for all f ∈ F , f is not closed under complementation. Let f ∈ F

be any predicate of arity r. Since, f is not closed under complementation, there exist

α, β ∈ {0, 1}r that satisfy αi ⊕ βi = 1 for all i ∈ [r], and f(α) = 0, f(β) = 1. We can

reduce a 3-SAT instance with n variables and m = poly(n) clauses to m simultaneous

instances over n variables involving the predicate f. For every clause C of the form

x∨y∨z, we create an instance with 3 equal weight constraints {f(α⊕(x, . . . , x)), f(α⊕

(y, . . . , y)), f(α ⊕ (z, . . . , z))}, where ⊕ denotes bitwise-xor, or equivalently, we negate

the variable in the i-th position iff αi = 1.

It is straightforward to see that the original 3-SAT formula is satisfiable if and only if

there is an assignment to the variables that simultaneously satisfies a non zero fraction

of the constraints in each of the instances.

In the above reduction, we must be able to apply the predicate to several copies of

the same variable. In order to remove this restriction, we replace each instance with

a collection C of instances as follows: Consider an instance {f(α ⊕ (x, . . . , x)), f(α ⊕

(y, . . . , y)), f(α⊕(z, . . . , z))}.We add to our collection C, an instance {f(α⊕(a1, . . . , ar)), f(α⊕

(b1, . . . , br)), f(α ⊕ (c1, . . . , cr))}, where ai, bi and ci for all i ∈ [r], are the fresh set of

variables. Using Lemma 8.6.8, we can simultaneously-implement each constraint of the

form x = ai, y = bi and z = ci using f . We add all the instances obtained from

the simultaneous-implementations to the collection C. Notice that, we have replaced

each original instance with only O(1) many instances. Hence, we have O(m) many

instances in our final construction. Thus, as in the first case, assuming ETH we deduce

that detecting positivity of an ω(log n)-simultaneous MAX-f -CSP requires time super-

polynomial in n.

8.6.1 Hardness for Simultaneous Max-w-SAT

Proposition 8.6.9 (Proposition 8.1.1 restated). For all integers w ≥ 4 and ε > 0, given

k ≥ 2w−3 simultaneous instances of Max-Ew-SAT that are simultaneously satisfiable,

it is NP-hard to find a (7/8 + ε)-minimium approximation.
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Proof. We know that given a satisfiable Max-E3-SAT instance, it is NP-hard to find

an assignment that satisfies a (7/8 + ε) fraction of the constraints [H̊as01]. We reduce a

single Max-E3-SAT instance to the given problem as follows : Let Φ be an instance

of Max-E3-SAT with clauses {Ci}mi=1 on variable set {x1, . . . , xn}. Given w ≥ 4, let

{z1, . . . , zw−3} be a fresh set of variables. For every, a ∈ {0, 1}w−3, we construct a

Max-Ew-SAT instance with clauses {Ci ∨ ∨wj=1(zj ⊕ aj)}mi=1, where zj ⊕ 0 = zj and

zj ⊕ 1 = z̄j . It is straightforward to see that for any assignment, its value on Φ is

the same as the minimum of its value on the Max-Ew-SAT instances, immediately

implying the result.

8.7 Algorithm for Unweighted Max-CUT

For simultaneous unweighted Max-CUT instances, we can use the Goemans-Williamson

SDP to obtain a slightly better approximation. The algorithm, UnweightedMC, is

described in Fig. 8.12.

Let V be the set of vertices. Our input consists of an integer k ≥ 1, and k unweighted

instances of Max-CUT, specified by indicator functions W1, . . . ,Wk of edge set. Let

m` denotes the number of edges in graph ` ∈ [k]. We consider these graphs as weighted

graphs with all non-zero edge weights as 1
m`

so that the total weight of edges of in a

graph is 1. For a given subset S of vertices, we say an edge is active if at least one of

its endpoints is in V \ S.

8.7.1 Analysis of Sim-UnweightedMC

For analysing the algorithm Sim-UnweightedMC, we need the following lemma that is

proven by combining SDP rounding for 2-SAT from [CMM06] with a Markov argument.

A proof is included in Section 8.8 for completeness.

Lemma 8.7.1. For k simultaneous instances of any MAX-2-CSP such that there

exists an assignment which satisfies a 1− ε weight of the constraints in each of the in-

stances, there is an efficient algorithm that, for n large enough, given an optimal partial

assignment h to a subset of variables, returns a full assignment which is consistent with
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Input: k unweighted instances of Max-CUT W1, . . . ,Wk on the vertex set V .

Output: A cut of V.

1. Set ε
def
= 1

1600·c20k2 , t = 100k
ε2
, S = ∅, D = ∅ (c0 is the constant from Lemma 8.7.1).

2. If every graph has more than t edges, then go to Step 4..

3. Repeat until there is no ` ∈ [k] \ D such that the instance W` has less than

t3
|D|

active edges given S.

(a) Let ` ∈ [k] be an instance with the least number of edges active edges

given S.

(b) Add all the endpoints of the edge set of instance W` into set S.

(c) D ← D ∪ `

4. For each partial assignment h : S → {0, 1} (If S = ∅ then do the following

steps without considering partial assignment h)

(a) Run the SDP algorithm for instances in [k] given by Lemma 8.7.1 with

h as a partial assignment. Let h1 be the assignment returned by the

algorithm. (Note h1|S = h)

(b) Define g : V \ S → {0, 1} by independently sampling g(v) ∈ {0, 1} with

E[g(v)] = 1/2, for each v ∈ V \ S. In this case the cut is given by an

assignment h ∪ g.

(c) Let outh be the better of the two solutions (h1 and h ∪ g).

5. Output the largest outh seen.

Figure 8.12: Algorithm Sim-UnweightedMC for approximating unweighted simulta-

neous Max-CUT
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h and simultaneously satisfies at least 1− c0k
√
ε (for an absoute constant c0) fraction

of the constraints in each instance with probability 0.9.

Let S?, D? denote the set S and D that we get at the end of step 3 of the algorithm

Sim-UnweightedMC. Let f? : V → {0, 1} denote the optimal assignment and let

h? = f?|S?.

Theorem 8.7.2. For large enough n, given k simultaneous unweighted Max-CUT in-

stances on n vertices, the algorithm Sim-UnweightedMC returns computes a
(

1
2 + Ω

(
1
k2

))
-

minimum approximate solution with probability at least 0.9. The running time is 222O(k)

·

poly(n).

Proof. We will analyze the approximation guarantee of the algorithm when the optimal

partial assignment h? to the variables S? is picked for h in Step 4. of the algorithm.

Note that Step 4.a and 4.b maintain the assignment to the set S? given in Step 4.

Hence, for all instances ` ∈ D?, we essentially get the optimal cut value val(f?,W`).

We will analyze the effect of rounding done in Step 4.a and 4.b on instances in [k] \D?

for a partial assignment h? to S?. Since we are taking the best of the two roundings, it

is enough to show the claimed guarantee for at least one of these two steps.

Let Opt be the value of optimal solution for a given set of instances [k]. We consider

two cases depending on the value of this optimal solution.

1. Opt ≥ (1 − ε): In this case, we show that the cut returned in Step 4.a is good

with high probability.

Since the Opt is at least (1 − ε), and h? is an optimal partial assignment, we can

apply Lemma 8.7.1 such that with probability at least 0.9 we get a cut of value at least

(1 − 10c0k ·
√
ε) for all graphs ` ∈ [k] \ D?, for some constant c0. In this case, the

approximation guarantee is at least :

(1− 10c0k ·
√
ε) ≥ 3

4
.

2. Opt < (1− ε): In this case, we show that the cut returned in Step 4.b gives the

claimed approximation guarantee with high probability.
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Fix a graph ` ∈ [k] \D?, if any. Let m` be the number of edges in this graph. We

know that m` ≥ t3
|D?|

and also |S?| ≤ 4t3
|D?|−1

. Let Y` be a random variable defined as

Y`
def
= val(h? ∪ g,W`),

that specifies the fraction of total edges that are cut by assignment h? ∪ g where g is a

random partition g of a vertex set V \S?. The number of edges of graph ` that are not

active given S? is at most 1/2 · |S?|2. If |D?| = 0, we know that all the edges in graph `

are active. Otherwise, using the bounds on m` and |S?|, we get that at least a (1− 1/t)

fraction of the total edges are active given S?. This implies that for uniformly random

partition g,

E
g

[Y`] ≥
1

2

∑
C∈C

C∈Active(S?)

W`(C) ≥ 1/2(1− 1/t).

We now analyze the variance of a random variable Y` under uniformly random assign-

ment g : V \ S? → {0, 1}.

Varg[Y`] =
∑

C1,C2∈Active(S?)

W(C1)W(C2) ·

 E[C1(h? ∪ g)C2(h? ∪ g)]−

E[C1(h? ∪ g)] E[C2(h? ∪ g)]

 .

The term in the above summation is zero unless we have either C1 = C2 (in which case

we know E[C1(h?∪ g)C2(h?∪ g)]−E[C1(h?∪ g)] E[C2(h?∪ g)] = 1/4) or when the edges

C1 and C2 have a common endpoint in V \ S? and the other endpoint in S? (in this

case E[C1(h? ∪ g)C2(h? ∪ g)] − E[C1(h? ∪ g)] E[C2(h? ∪ g)] ≤ 1/4). For v ∈ V \ S?, let

κv be the set of edges whose one endpoint is v and other endpoint in S?. Thus,

Varg[Y`] ≤
1

4

∑
C∈Active(S?)

W(C)2 +
1

4

∑
v∈V \S?

∑
C1,C2∈κv

W(C1)W(C2)

=
1

4m`
+

1

4

1

m2
`

∑
v∈V \S?

|κv|2

≤ 1

4m`
+ max
v∈V \S?

|κv| ·
1

4

1

m2
`

∑
v∈V \S?

|κv|

≤ 1

4m`
+ |S?| · 1

4

1

m2
`

·m`

≤ 1

4m`
+

1

4

|S?|
m`
≤ 1

4t3
|D?| +

1

4

|S?|
t3
|D?| ≤

1

2t
.
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Hence, by Chebyshev’s Inequality, we have

Pr

[
Y` <

1

2
· (1− ε0 − 1/t)

]
≤ 4 Varg[Y`]

ε2
0

≤ 4 · 1/2t

ε2
0

≤ 2

ε2
0t
.

By a union bound, with probability at least 1 − 2k
ε20·t

, we get a simultaneous cut of

value at least 1
2 · (1 − ε0 − 1/t) for all ` ∈ [k] \ D?. If we take ε0 =

√
20k√
t

, then with

probability at least 0.9 we get a cut of value at least 1
2 · (1− ε0− 1/t) for all ` ∈ [k] \D?.

In this case, the approximation guarantee is at least

1
2 · (1− ε0 − 1/t)(

1− 1
(40c0k)2

) =

(
1

2
+ Ω

(
1

k2

))
.

8.8 SDP for Simultaneous Instances

In this section, we study Semidefinite Programming (SDP) relaxations for simultaneous

MAX-2-CSP instances.

8.8.1 Integrality gaps for Simultaneous Max-CUT SDP

In this section, we show the integrality gaps associated with the natural SDP of mini-

mum approximation problem for k-fold simultaneous Max-CUT.

Suppose we have k simultaneous Max-CUT instances on the set of vertices V =

{x1, . . . , xn}, specified by the associated weight functions W1, . . . ,Wk. As before, let C

denotes the set of all possible edges on V.We assume that for each ` ∈ [k],
∑

C∈CW`(C) =

1. Following Goemans and Williamson [GW95], the semi-definite programming relax-

ation for such an instance is described in Fig. 8.13. We now prove the following claims

about integrality gap for the above SDP.

Claim 8.8.1. For weighted instances, the SDP for minimum approximation of simul-

taneous Max-CUT does not have any constant integrality gap.

Proof. Consider 3 simultaneous instances such that all but a tiny fraction of the weight

of instance i is on edge i of a 3-cycle. Clearly, no cut can simultaneously cut all the three

edges in the three cycle, and hence the optimum is tiny. However, for the simultaneous
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maximize t

s.t.
∑
C∈C

C=(xi,xj)

1

2
· W`(C) · (1− 〈vi, vj〉) ≥ t ∀` ∈ [k]

‖vi‖2 = 1 for i = 1, . . . , n

Figure 8.13: Semidefinite Program (SDP) for minimum approximation Simultaneous

Max-CUT

SDP, a vector solution that assigns to the three vertices of the cycle three vectors such

that 〈vi, vj〉 = −1/2 for i 6= j gives a constant objective value for all three instances.

Claim 8.8.2. For every fixed k, there exists k-instances of Max-CUT where the SDP

relaxation has value 1−Ω
(

1
k2

)
, while the maximum simultaneous cut has value only 1

2 .

Moreover, the random hyperplane rounding for a good vector solution for this instance,

returns a simultaneous cut of value 0.

Proof. Let k be odd. We define k graphs on kn vertices. Partition the vertex set

into S0, S1, ..., Sk−1, each of size n. Graph Gi has only edges (x, y) such that x ∈ Si

ans y ∈ S(i+1) mod k, each of weight 1/n2. The optimal cut must contain exactly half

the number of vertices from each partition, giving a simultaneous cut value of 1/2.

Whereas, the following SDP vectors achieve a simultaneous objective of
(
1−O( 1

k2 )
)

:

For all vertices in Si, we assign the vector
(
cos i

kπ, sin
i
kπ
)
. It is straightforward to see

that applying the hyperplane rounding algorithm to this vector solution gives (with

probability 1) a simultaneous cut value of 0.

8.8.2 SDP for Simultaneous Max-CSP

For Max-CSP, we will be interested in the regime where the optimum assignment

satisfies at least a (1− ε) fraction of the constraints in each of the instances.

Given a MAX-2-CSP instance, we use the standard reduction to transform it into a

MAX-2-SAT instance: We reduce each constraint of the 2-CSP instance with a set of
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at most 4 2-SAT constraints such that for any fixed assignment, the 2-CSP constraint

is satisfied iff all the 2-SAT constraints are satisfied, and if the 2-CSP constraint is not

satisfied, then at least one of the 2-SAT constraint is not satisfied. e.g. We replace

x1∧x2 with x1∨x2, x1∨x2, and x1∨x2. Similarly, we replace x1 6= x2 with x1∨x2 and

x1 ∨ x2. We distribute the weight of the 2-CSP constraint equally amongst the 2-SAT

constraints.

Given k simultaneous MAX-2-CSP instances, we apply the above reduction to each

of the instances to obtain k simultaneous Max-2-SAT instances. The above transfor-

mation guarantees the following:

• Completeness If there was an assignment of variables that simultaneously sat-

isfied all the constraints in each of the MAX-2-CSP instances, then the same

assignment satisfies all the constraints in each of the Max-2-SAT instances.

• Soundness If no assignment of variables simultaneously satisfied more than (1−ε)

weighted fraction of the constraints in each of the MAX-2-CSP instances, then no

assignment simultaneously satisfies more than (1 − ε/4) weighted fraction of the

constraints in each of the MAX-2-SAT instances.

From now on, we will assume that we have k simultaneous Max-2-SAT instances on

the set of variables {x1, . . . , xn}, specified by the associated weight functionsW1, . . . ,Wk.

As before C denotes the set of all possible 2-SAT constraints on V. We assume that for

each ` ∈ [k],
∑

C∈CW`(C) = 1. Following Charikar et al. [CMM06], the semi-definite

programming relaxation for such an instance is described in Fig. 8.14.

For convenience, we replace each negation xi with a new variable x−i, that is equal

to x1 by definition. For each variable xi ∈ V, the SDP relaxation will have a vector vi.

We define v−i = −vi. We will also have a unit vector v0 that is intended to represent

the value 1. For a subset S of variables and a partial assignment h : S → {0, 1}, we

write the following SDP for the simultaneous Max-2-SAT optimization problem:
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maximize t

s.t.
∑
C∈C

C=xi∨xj

W`(C) ·
(
‖v0‖2 −

1

4
〈vi − v0, vj − v0〉

)
≥ t ∀` ∈ [k]

〈vi − v0, vj − v0〉 ≥ 0 ∀ constraints xi ∨ xj

‖vi‖2 = 1 for i = −n, . . . , n

vi = −v−i for i = 1, . . . , n

vi = v0 ∀i ∈ S s.t. h(i) = 1

vj = −v0 ∀j ∈ S s.t. h(j) = 0

Figure 8.14: Semidefinite Program (SDP) with a partial assignment h : S → {0, 1} for

Simultaneous Max-2-SAT

We first observe that for an optimal partial assignment h, the optimum of the above

SDP is at least the optimum of the simultaneous maximization problem, by picking the

solution vi = v0 if xi = True, and vi = −v0 otherwise. For this vector solution, we

have 1/4 ·
(
‖v0‖2 − 〈vi − v0, vj − v0〉

)
= 1 if the constraint x1 ∨ x2 is satisfied by the

assignment, and 0 otherwise. Since
∑

C∈CW`(C) = 1 for all `, the optimum of the SDP

lies between 0 and 1.

Note that the rounding algorithm defined in [CMM06] does not depend on the

structure of the vectors in the SDP solution. Thus, the following theorem that was

proved without a partial assignment in [CMM06] also applies to above SDP.

Theorem 8.8.3. Given a single Max-2-SAT instance (k = 1), there is an efficient

randomized rounding algorithm such that, if the optimum of the above SDP is 1− ε, for

n large enough, it returns an assignment such that the weight of the constraints satisfied

is at least 1−O(
√
ε) in expectation.

Now, using Markov’s inequality, we can prove the following corollary.

Corollary 8.8.4. For k simultaneous instances of Max-2-SAT, there is an efficient

randomized rounding algorithm such that if the optimum of the above SDP is 1−ε, for n
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large enough, it returns an assignment that simultaneously satisfies at least 1−O(k
√
ε)

fraction of the constraints in each instance with probability 0.9.

Proof. We use the rounding algorithm given by Theorem 8.8.3 to round a solution to the

SDP for the k simultaneous instances that achieves an objective value of 1− ε. Observe

that this solution is also a solution for the SDP for each of the instances by itself

with the same objective value. Thus, by Theorem 8.8.3, for each of the instances, we

are guaranteed to find an assignment such that the weight of the constraints satisfied

is at least 1 − c0ε in expectation, for some constant c > 0. Since, for any instance,

the maximum weight an assignment can satisfy is at most 1, with probability at least

1−1/10·k for each instance, we get an assignment such that the weight of the constraints

satisfied is at least 1 − 10ck ·
√
ε. Thus, applying a union bound, with probability at

least 1− 1/10, we obtain an assignment such that the weight of the satisfied constraints

in all the k instances is at least 1− 10ck ·
√
ε.

Combining the above corollary with the reduction from any MAX-2-CSP to MAX-

2-SAT, and the completeness of the SDP, we get a proof of Lemma 8.7.1.

Concentration inequalities

Lemma 8.8.5 (McDiarmid’s Inequality). Let X1, X2, · · · , Xm be independent random

variables, with Xi taking values in a set Ai for each i. Let score :
∏
Ai → R be a

function which satisfies:

|score(x)− score(x′)| ≤ αi

whenever the vector x and x′ differ only in the i-th co-ordinate. Then for any t > 0

Pr[|score(X1, X2, · · · , Xm)−E[score(X1, X2, · · · , Xm)]| ≥ t] ≤ 2 exp

(
−2t2∑
i α

2
i

)

The need for perturbing Opt

We construct 2 simultaneous instances of Max-1-SAT. Suppose the algorithm will

picks at most r influential variables. Construct the two instances on r + 1 variables,

with the weights of the variables decreasing geometrically, say, with ratio 1/3. The
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first instance requires all of them to be True, where as the second instance requires

all of them to be False. Under a reasonable definition of “influential variables”, the

only variable left behind should the vertex with the least weight. We consider the

Pareto optimal solution that assigns True to all but the last variable. If we pick the

optimal assignment for the influential variables, and then randomly assign the rest of

the variables, with probability 1/2, we get zero on the second instance.
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Chapter 9

Simultaneous Max-Cut

9.1 Introduction

In this chapter, we give near-optimal approximation algorithms for the simultaneous

Max-CUT problem. Here we are given a collection of weighted graphs G1, G2, . . . , Gk

on the same vertex set V of size n. Our goal is to find a partition of the vertex set

V into two parts, such that in every graph, the total weight of edges going between

the two parts is large. The k = 1 case is the classical Max-CUT problem, and the

approximability of this problem has been extensively studied [FL92, GW95, H̊as01,

KKMO07, MOO05, OW08]. This chapter studies the approximability of this problem

for constant k.

We fix some convenient notation. Let the weighted graphs G1, . . . , Gk be given by

weight functions E1, . . . , Ek, which assign to each pair in
(
V
2

)
a weight in [0, 1]. We

assume that for each i ∈ [k], the total weight of all edges under Ei equals 1. Let

f : V → {0, 1} be a function, which we view as a partition of the vertex set. We define

val(f, Ei) to be the total weight (under Ei) of the edges cut by the partition f . Given

this setup, we can formally state the notions of approximation that we consider.

• α-minimum approximation: Let c be the maximum, over all partitions f∗ :

V → {0, 1}, of the quantity mini∈[k] val(f∗, Ei). The goal is to output an f : V →

{0, 1} such that mini∈[k] val(f∗, Ei) ≥ α · c.

• α-Pareto approximation: Let c1, c2, . . . , ck be given such that there exists

f∗ : V → {0, 1} with val(f∗, Ei) ≥ ci for each i ∈ [k]. The goal is to output an

f : V → {0, 1} such that val(f, Ei) ≥ α · ci for all i ∈ [k].

For k = 1, there is a celebrated polynomial time αGW = 0.8786 . . . factor (Pareto)
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approximation algorithm by Goemans and Williamson [GW95]. This approximation

is in both the minimum and Pareto senses. Furthermore, it is Unique-Games hard to

achieve a better approximation factor than this [KKMO07], and the entire polynomial

time “approximation curve” is also known.

For larger (but constant) k, far less is understood. Clearly, the hardness results from

the k = 1 case carry over, and thus it is Unique-Games hard to approximate this to a

factor better than αGW . [ABG06] gave a polynomial time 0.439-Pareto approximation

algorithm for this problem for the case k = 2. Subsequently, [BKS15] gave a polyno-

mial time (1/2 − ε)-Pareto approximation algorithm for this problem. For the case of

unweighted graphs1, [BKS15] showed that there is a polynomial time (1/2 + Ω(1/k2))-

minimum approximation algorithm. Furthermore, [BKS15] gave a matching integrality

gap of (1/2 + O(1/k2)) for a natural SDP relaxation of the minimum approximation

problem.

Our main result is a polynomial time 0.8782-factor Pareto approximation algorithm

for simultaneous Max-CUT for arbitrary constant k.

Main Theorem: For all constant k, there is a polynomial time algorithm which

computes a 0.8782-factor Pareto approximation (and hence min approximation) to the

simultaneous Max-CUT problem with k instances.

Remark 9.1.1. We assume that the edge weights are lower bounded by exp(−|V |c) for

some constant c > 0. We are interested in an algorithm which runs in time polyno-

mial in |V | and hence it is natural to assume the edge weights are lower bounded by

exp(−|V |c) as otherwise the bit complexity of the input will be super polynomial in |V |.

We give a brief overview of ideas involved in our algorithm next. The main ingre-

dients of the algorithm are: a sum-of-squares hierarchy SDP relaxation, a generaliza-

tion of the [RT12], [ABG12] approach to rounding such relaxations , and some ideas

from [BKS15].

1We call an instance of simultaneous Max-CUT unweighted if for any i, all the nonzero weight edges
under Ei have the same weight.
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9.2 Overview of the algorithm

We begin by considering the unweighted case; later we will discuss how to remove

this restriction. One crucial observation about the unweighted case is that if there

are enough number of edges in every graph, compared to k, then by second moment

argument there exists a cut which cuts a constant fraction of edges from each graph.

Thus, we can always assume that each target value is ci = Ωk(1), which is a constant

for a constant k.

There is a natural SDP relaxation for the simultaneous Max-CUT problem, gen-

eralizing the Goemans-Williamson SDP for the k = 1 case. If we solve this SDP and

round the resulting vector solution using the Goemans-Williamson hyperplane rounding

procedure, this gives us a distribution of partitions of the vertex set V , such that for

each i ∈ [k], the total weight of edges cut in instance i is at least αGW times the cor-

responding SDP cut value. However, unlike in the k = 1 case, this does not guarantee

the existence of a single partition of V which is achieves a large cut value for all the k

instances simultaneously! This distinction between distributions of solutions which are

good in expectation for each instance and single solutions that are simultaneously good

for all instances is the heart of the difficulty in designing simultaneous approximation

algorithms.

One of the basic ingredients underlying mathematical programming relaxation hi-

erarchies for combinatorial optimization problems is the idea of expanding the search

space, from the discrete space of pure assignments to the continuous space of distribu-

tions over assignments. For simultaneous approximation of Max-CUT beyond a factor

1/2, this idea alone is not enough. An example from [BKS15] shows that there are

cases of simultaneous Max-CUT on k-instances, for which there is a distribution of

partitions of V cutting (1− 1
k )-fraction of edges in expectation for each instance, but for

which any single partition of V , there is an instance i ∈ [k], such that at most 1/2 of

the edges in instance i are cut by the partition. This is where the sum-of-squares SDP

hierarchy comes in – even though it is also modeled on the idea of expanding the search

space to distributions of assignments – it allows us to condition on partial assignments
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and impose a constraint that the SDP cut value is large in expectation for each instance

and for every possible conditioning on a small number of variables. This is what allows

us to overcome the aforementioned obstacle.

Having formulated the SDP relaxation, we now discuss the rounding procedure.

The motivating observation is this: if the rounding procedure is such that for each

instance the expected cut value is large, and the cut value is concentrated around its

expectation with high probability, then by a union bound, the rounding procedure will

produce a cut that is simultaneously good for all instances. The rounding procedure we

will use will be closely related to the Goemans-Williamson rounding (but different – it

was found by computer search given various technical conditions required by the rest of

the algorithm). Our algorithm now tries to improve the concentration of the cut-value

produced by the rounding procedure, via a beautiful information-theoretic approach of

Raghavendra-Tan [RT12]. If the cut-value for a certain instance turns out to be not

concentrated under the rounding procedure, then it must be because of high correlation

between many pairs of edges of that instance (more precisely, correlation between the

events that the edge is cut). This in turn means that conditioning on the variables

in a random edge should significantly decrease the amount of entropy of the rounded

cut. Iterating this several times, and using the fact that the initial entropy is not

too large, we conclude that conditioning on a small number of variables leads to good

concentration for the rounding procedure. The key point is that the sum-of-squares

SDP relaxation we use gives us access to a vector solution for the conditioned SDP,

with the promise that the SDP cut-value (and hence the expected integral cut-value) is

still large. By the concentration property and a union bound, we get a simultaneously

good cut. This completes the description of the algorithm in the unweighted case.

To handle the general weighted case, we essentially need to overcome few technical

obstacles. Following [BKS15], we add a preprocessing and postprocessing phase. The

preprocessing phase identifies “wild” instances, i.e. those instances with an abnormally

large number of high (weighted-)degree vertices (which would increase the variance of

the cut value of that instance under random rounding). Then the SDP based algorithm

described above is run only on the “tame” instances.
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With conditioning on constantly many variables, arguably we can only manage to

bring the variance down to arbitrarily small constant. Hence, in order to use second

moment method to get concentration, we would need a good lower bound on the ex-

pected value of a cut given by our rounding procedure. If the graphs are weighted then

it is not necessarily true that the simultaneous cut value is large for all instances. One

important property of the tame instances we used is that they have a good simultaneous

Max-CUT value. We crucially use this property while formulating the SDP for tame

instances.

Finally in the postprocessing phase, we find suitable assignment to the high degree

vertices of the wild instances to ensure that those instance have a large cut value

(without spoiling the large cut value of the tame instances that the SDP guaranteed)

– this uses a new and much simpler perturbation argument compared to [BKS15].

This concludes the high-level description of the algorithm.

9.2.1 Note about the rounding procedure

We mentioned earlier that our SDP solution after conditioning on a small number

of variables is rounded by a rounding algorithm similar to the Goemans-Williamson

rounding algorithm, but is different. We expound upon these conditions here and

compare with the previous results that used similar rounding procedure.

The SDP solution induces a consistent local distribution on every set of variables

of size at most some constant r, and we define the sdp-bias of a variable as the bias

with respect to this local distribution. For a given rounding procedure, we define the

rounding-bias of a variable as the difference in the probability of the corresponding

vertex being assigned to each side of the cut. Note that in the original hyperplane

rounding of Goemans-Williamson, rounding-bias of each vertex is 0.

In the rounding procedure for the Max-Bisection from [RT12], the rounding-bias

induced by the rounding procedure is the same as the sdp-bias. Their algorithm gave

a 0.85 approximation for Max-Bisection, and using the same bias function for the

rounding in our case gives us a 0.85 approximation for simultaneous Max-CUT as well.

The approximation factor given by [RT12] was subsequently improved in [ABG12] to
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0.8776, where they used techniques to relax the restriction on the choice of the bias

function, but they were constrained by the nature of the Max-Bisection problem and

therefore had to ensure that the rounding-bias of all variables sum up to 0 to maintain

the balance of the cut. As we do not want equal sized partition of the vertex set, we

have more freedom in our rounding procedure with respect to rounding-bias; we only

have to ensure that when the bias of a variable is high, the side of the cut it falls on is

almost fixed. This helps us achieve an improved approximation factor of 0.8782. The

rounding function we come up with was arrived at by trial and error method with the

constraint that the rounding bias goes to ±1 as the sdp-bias goes to ±1.

The approximation ratio for our rounding procedure is proved by a computer assisted

prover, where the techniques are similar to the ones used in [Sjo09] and [ABG12].

9.2.2 Other related work

The simultaneous Max-CUT problem is a special case of the simultaneous approxi-

mation problem for general constraint satisfaction problems. This general problem was

studied in [BKS15], where it was shown that there is a polynomial time constant factor

Pareto approximation algorithm for every simultaneous CSP (with approximation fac-

tor independent of k). The algorithm there was based on understanding the structure

of CSP instances whose value is highly concentrated under a random assignment to the

variables, in addition to linear-programming. It was also observed that there are CSPs

for which the best polynomial time approximation factor for the simultaneous version

(with k > 1) is different from the best polynomial time approximation factor achievable

in the standard k = 1 case (assuming P 6= NP ). This makes the study of simultaneous

approximation factors very interesting.

The simultaneous MAXSAT problem was studied in [GRW11], where a 1/2-Pareto

approximation algorithm was given. For bounded width MAXSAT, the approximation

factor was improved to (3/4− ε) in [BKS15].
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9.3 Preliminaries

9.3.1 Simultaneous Max-CUT

Let V be a vertex set with |V | = n. We use the set [n] for the vertex set V for

convenience. We are given k graphs G1, . . . , Gk on the vertex set V . Let E` : [n]× [n]→

R≥0 denote the edge weights of graph G` where the edge weights are normalized such

that total weight of edges in each instance is 1. We’ll use E` to denote the edge set of

graph G` and also the distribution of the edges based on the weights. For each instance

`, we are given a target cut value c` that we would like to achieve.

Definition 9.3.1 (α-approximation of simultaneous Max-CUT). A partition (U,U)

of V is said to be an α-approximation if for each instance G`,

Cut`(U,U) ≥ α · c`

9.3.2 Information Theory

In this section, we define and state some facts about entropy and mutual information

between random variables.

Definition 9.3.2 (Entropy). Let X be a random variable taking values in [q] then,

entropy of X is defined as:

H(X) :=
∑
i∈[q]

Pr[X = i] log
1

Pr[X = i]

Definition 9.3.3 (Conditional Entropy). Let X, Y be jointly distributed random vari-

able taking values in [q] then, the conditional entropy of X conditioned on Y is defined

as:

H(X|Y ) = Ei∈[q]H(X|Y = i)

The following observations can be made about entropy of a collection of random

variables.

Entropy of a collection of random variables cannot exceed the sum of their entropies.

Fact 9.3.4. H(X1, X1, . . . , Xn) ≤
∑n

i=1H(Xi)
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Entropy never decreases on adding more random variables to the collection.

Fact 9.3.5. H(X1, X2|Y ) ≥ H(X1|Y )

Conditioning can only decrease the entropy.

Fact 9.3.6. H(X|Y )−H(X|Y, Z) ≥ 0

Definition 9.3.7 (Mutual Information). Let X, Y be jointly distributed random variable

taking values in [q] then, the mutual information between X and Y is defined as:

I(X;Y ) :=
∑
i,j∈[q]

Pr[X = i, Y = j] log
Pr[X = i, Y = j]

Pr[X = i] Pr[Y = j]

Theorem 9.3.8. (Data Processing Inequality) If X,Y,W,Z are random variables such

that X is fully-determined by W and Y is fully-determined by Z, then

I(X,Y ) ≤ I(W,Z)

9.4 Algorithm for simultaneous weighted Max-CUT

In this section, we give our approximation algorithm for simultaneous weighted Max-CUT

and the analysis.

9.4.1 Notation

We use the same notation as in [BKS15], which we reproduce here. Let E =
(
V
2

)
be the

set of all possible edges. Given an edge e and a vertex v, we say v ∈ e if v appears in

the edge e. For an edge e, let e1, e2 denote the endpoints of e (arbitrary order). Let

f : V → {0, 1} be an assignment. For an edge e ∈ E , define e(f) to be 1 if the edge

e is cut by the assignment f , and define e(f) = 0 otherwise. Note that an assignment

cuts an edge if it assigns different values to the end points. Then, we have the following

expression for the cut value of the assignment:

val(f, E)
def
=
∑
e∈E
E(e) · e(f).

A partial assignment h : S → {0, 1} is an assignment to S where S ⊆ V . We say

an edge is active with respect to S if at least one of the end vertices is not in S. We
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denote by Active(S) the set of all edges which are active with respect to S. For two

edges e, e′ ∈ E , we say e ∼S e′ if they share a vertex that is contained in V \ S. Note

that if e ∼S e′, then e, e′ are both in Active(S). Let actdistS(`) denotes the distribution

E` conditioned on an edge being active w.r.t S.

Define the active degree given S of a variable v ∈ V \ S for instance ` by:

activedegreeS(v, `)
def
=

∑
e∈Active(S),e3v

E`(e).

We then define the active degree of the whole instance ` given S:

activedegreeS(`)
def
=

∑
v∈V \S

activedegreeS(v, `).

Note that we count weight of an active edge in activedegreeS(`) at most twice. For a

partial assignment h : S → {0, 1}, we define

val(h, E`)
def
=

∑
e∈E

e/∈Active(S)

E`(e) · e(h)

which is the total weight of non-active edges cut by the partial assignment h. Thus,

for an assignment g : V \ S → {0, 1}, to the remaining set of variables, we have the

equality:

val(h ∪ g, E`)− val(h, E`) =
∑

e∈Active(S)

E`(e) · e(h ∪ g).

9.4.2 Algorithm

In Figure 9.1, we give the algorithm for Simultaneous Max-CUT. The input to the

algorithm consists of an integer k ≥ 1, ε ∈ (0, 2/5]), k instances of Max-CUT, specified

by weight functions E1, . . . , Ek, and k target objective values c1, . . . , ck.

9.4.3 Analysis of the Algorithm

The algorithm broadly proceeds in 3 sections, the pre-processing step, the SDP step

and the post processing step. The pre-processing step consists of identifying a small

subset S ⊆ V carefully. We then attempt all assignments to vertices in S by brute force

iteratively and use SDP with the partial assignment followed by a rounding to assign
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Input: k instances of Max-CUT, with weights defined by E1, . . . , Ek on the set of

variables V, target objective values c1, . . . , ck, and ε ∈ (0, 2/5].

Output: An assignment to V.

Parameters: δ0 = 1
10k , ε0 = ε

2 , γ =
ε20δ0
16 , t = 2k

γ · log
(

11
γ

)
, τ = ε.

Pre-processing:

1. Initialize S ← ∅.

2. For each instance ` ∈ [k], initialize count` ← 0 and flag` ← True.

3. Repeat the following until for every ` ∈ [k], either flag` = False or count` = t:

(a) For each ` ∈ [k], compute Uvar` =
∑

e∼Se′ E`(e)E`(e
′).

(b) For each ` ∈ [k] compute Lmean`
def
= τ

∑
e∈Active(S) E`(e).

(c) For each ` ∈ [k], if Uvar` ≥ δ0ε
2
0 · Lmean2

` , then set flag` = True, else set

flag` = False.

(d) Choose any ` ∈ [k], such that count` < t AND flag` = True (if any):

i. Find v ∈ V such that activedegreeS(v, `) ≥ γ · activedegreeS(`).

ii. Set S ← S∪{v}. We say that v was brought into S because of instance

`.

iii. Set count` ← count` + 1.

4. After exiting the loop, all instances for which flag` is set to False are labelled

“low-variance” instances and all instances for which count` = t are labelled

“high-variance” instances.
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Main algorithm:

5 For each possible partial fixing h : S → {0, 1} do the following

(a) Run the Lasserre version of SDP?(h) mentioned in Figure 9.2 on the low

variance instances. (Refer Section 9.4.3)

(b) Follow the procedure in Figure 9.4 to make the solution locally indepen-

dent. (Refer Section 9.4.3)

(c) Round the solution based on the rounding procedure described in Fig-

ure 9.5 to get a partial assignment g : V \S → {0, 1}. (Refer Section 9.4.3)

(d) For every assignment h′ : S → {0, 1}, compute min
`

val(h′∪g,E`)
c`

and return

the assignment h′ ∪ g that maximizes this. (Post-processing step)

Figure 9.1: Algorithm Alg-Sim-MaxCUT for approximating weighted simultaneous

Max-CUT
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vertices in V \ S. The post-processing step involves perturbing the assignments to the

vertices in S, the need for which is explained in detail in Section 9.4.3.

In what follows, we stick to the following notation. Let S? denote the final set S

that we get at the end of Step 3. of Alg-Sim-MaxCUT. Let f? : V → {0, 1} be the

assignment that achieves val(f?, E`) ≥ c` for all l ∈ [k] and h? be the restriction of f?

to the set S?.

Pre-processing: Low and High variance instances

Definition 9.4.1 (τ -smooth distribution). A distribution D on {0, 1} is called τ -smooth

if

Pr
x∼D

[x = 1] ≥ τ, Pr
x∼D

[x = 0] ≥ τ.

Let h : S → {0, 1} be an arbitrary partial assignment to the vertices in S. Let

g : V \ S → {0, 1} be the random assignment such that each of the marginals g(v) is

τ -smooth. For an instance `, define the random variable

Y`
def
= val(h ∪ g, E`)− val(h, E`) =

∑
e∈Active(S)

E`(e) · e(h ∪ g).

Y` measures the total active edge weight cut by the assignment in the instance `.

Consider the two quantities defined in Step 3. of the algorithm. They depend only

on S (and importantly, not on h), which will be useful in controlling the expectation

and variance of Y`. The first quantity is an upper bound on Var[Y`]:

Uvar`
def
=
∑
e∼Se′

E`(e)E`(e′)

The second quantity is a lower bound on E[Y`]:

Lmean`
def
= τ ·

∑
e∈Active(S)

E`(e)

Lemma 9.4.2. Let S ⊆ V be a subset of vertices and h : S → {0, 1} be an arbitrary

partial assignment to S. Let Y`,Uvar`, Lmean` be as above.

1. If Uvar` ≤ δ0ε
2
0 · Lmean2

` , then Pr[Y` < (1− ε0) E[Y`]] < δ0.
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2. If Uvar` ≥ δ0ε
2
0 · Lmean2

` , then there exists v ∈ V \ S such that

activedegreeS(v, `) ≥ 1

4
τ2ε2

0δ0 · activedegreeS(`).

We defer the formal proof to Section 9.5. The first part is a simple application of

the Chebyshev inequality. For the second part, we use the assumption that Uvar` is

large, to deduce that there exists an edge e such that the total weight of edges adjacent

to the vertex/vertices in e that belong to V \ S, i.e.,
∑

e2∼Se E(e2), is large. It then

follows that at least one variable v ∈ e must have large active degree given S.

The above lemma (Lemma 9.4.2) ensures that Step 3.(d)i in the algorithm always

succeeds in finding a variable v. Next, we note that Step 3. always terminates. Indeed,

whenever we find an instance ` ∈ [k] in Step 3.d such that count` < t and flag` = True,

we increment count`. This can happen only tk times before the condition count` < t

fails for all ` ∈ [k]. Thus the loop must terminate within tk iterations.

To analyze the approximation guarantee of the algorithm, we classify instances

according to how many vertices were brought into S? because of them.

Definition 9.4.3 (Low and high variance instances). At the completion of Step 3.d in

Algorithm Alg-Sim-MaxCUT, if ` ∈ [k] satisfies count` = t, we call instance ` a high

variance instance. Otherwise we call instance ` a low variance instance.

The next section describes the SDP? that we formulate and solve for just the low

variance instances. The claim that Step 0d of the algorithm shown in Figure 9.1 handles

the high variance instances is discussed and proved in Section 9.4.3.

Basic SDP formulation for simultaneous Max-CUT

We write the SDP? for simultaneous Max-CUT problem, after the partial fixing given

by pre-processing step, as in Figure 9.2. Let L denote the set of indices of the low

variance instances. We have vectors vT,α for all T and α where T is a subset of V of

size at most 2, and α is an assignment to the vertices in T .

If we consider the SDP? without the constraint (9.4.2), it is easy to see that this is

a relaxation. Given a partition (U, Ū) of V that achieves a simultaneous optimum, we
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∑
e={i,j}∈E`

E`(e)(‖v{(i,j),(0,1)}‖22 + ‖v{(i,j),(1,0)}‖22) ≥ (1− 3ε)c` ∀` ∈ [k],

(9.4.1)∑
e={i,j}∈Active(S?)

E`(e)(‖v{(i,j),(0,1)}‖22 + ‖v{(i,j),(1,0)}‖22) ≥ ε/3.activedegreeS?(`) ∀` ∈ L

(9.4.2)

〈v{i,0},v{i,1}〉 = 0 ∀i ∈ [n],

‖v{(i,j),(b1,b2)}‖2 = 〈v{i,b1},v{j,b2}〉 ∀i, j ∈ [n]

and b1, b2 ∈ {0, 1}

‖v{T,α}‖2 = 〈v{T,α},v∅〉 ∀T ⊂ V, |T | ≤ 2, α ∈ {0, 1}|T |

v{i,b} = v∅ ∀i ∈ S?, b = h(i)

Figure 9.2: SDP?(h : S? → {0, 1}) for simultaneous Max-CUT with partial fixing

can set vectors vT,α = v∅ if the pair (T, α) is consistent with 1U (i.e. 1U assigns α to

T ) and vT,α = 0 otherwise. v∅ can be viewed as a vector that denotes 1.

A part of our analysis require that for every low variance instance, the expected

weighted fraction of active edges that we cut is at least a constant fraction of its active

degree. An optimal SDP solution without constraint (9.4.2) may not guarantee this

condition (for the rounding procedure we choose). Hence, we force the SDP solution to

satisfy this property by adding constraint (9.4.2). We need to relax constraint (9.4.1)

to make sure that there is a solution that satisfies all the constraints.

We now prove that SDP?, in its present form, has feasible solutions.

Lemma 9.4.4. SDP?(h?) shown in Figure 9.2 has a feasible solution.

Proof. To show that SDP? has a feasible solution, it suffices to show that there exists

an integral solution that satisfies the constraints.
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Fix an optimal assignment f? : V → {0, 1} to the simultaneous instance. f? satisfies

∀` ∈ [k], val(f?, E`) ≥ c`. Consider the following random assignment: For all v ∈ V \S?

r(v) =


f?(v) with probability (1− ε)

f?(v) otherwise

and for v ∈ S?, set r(v) = f?(v). Now, for any ` ∈ L, let Y` denote the random variable

Y` =
∑

e∈Active(S?)

E`(e) · e(r)

We have E[e(r)] ≥ ε, hence E[Y`] ≥ ε/2 · activedegreeS?(`). Also,

E
r

[val(r, E`)] ≥
∑

e/∈Active(S?)

E`(e) ·E[e(r)] +
∑

e∈Active(S?),
e(f?)=1

E`(e) ·E[e(r)]

=
∑

e/∈Active(S?)

E`(e) · e(f?) +
∑

e∈Active(S?),
e(f?)=1

E`(e) · ((1− ε)2 + ε2)

≥ (1− 2ε)
∑

e:e(f?)=1

E`(e) = (1− 2ε)val(f?, E`) ≥ (1− 2ε)c`

Thus, we have,

1. E[Y`] ≥ ε/2 · activedegreeS?(`).

2. Er[val(r, E`)] ≥ (1− 2ε)c`

Recall that the SDP? involves only the low variance instances. Also, the assignment

r is ε-smooth on the set V \ S?. Therefore, we have concentration guarantees as given

by point 1 of Lemma 9.4.2.

Pr[Y` ≤ (1− ε0) E[Y`]] ≤ δ0

Pr[val(r, E`) ≤ (1− ε0) E[val(r, E`)]] ≤ δ0

Hence, with probability at least 1− 2δ0, we have Y` ≥ (1− ε/2) · ε/2 · activedegreeS?(`) ≥

ε/3 · activedegreeS?(`) and val(r, E`) ≥ (1− ε/2)(1− 2ε)c` ≥ (1− 3ε)c`.
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Now we do union bound over all low variance instances, we get with a probability

at least 1 − 2 · δ0 · k = 4/5, all the SDP constraints are satisfied by integral solution

r. Thus, there exists an integral solution which satisfies all SDP?(h?) constraints and

hence is feasible.

Lasserre Hierarchy SDP formulation

The rth level Lasserre SDP for the SDP in Figure 9.2 can be written as follows: The

SDP formulation has vectors v{T,α} for all T ⊆ V such that |T | ≤ r and α ∈ {0, 1}|T |.

In terms of local distribution, the SDP solution consists of consistent local distribution

on every set T of size at most r (denoted by µT ). The random variable corresponding

to set T is denoted by XT distributed over {0, 1}|T |. The vector solution and the

local distribution are related as follows: Suppose T and U are subsets of V such that

|T ∪U | ≤ r and the assignments α ∈ {0, 1}|T | and β ∈ {0, 1}|U | are consistent on T ∩U

then

〈vT,α,vU,β〉 = Pr
µT∪U

(XT = α,XU = β)

To ensure the consistency among local distributions, we have to add the con-

straints 9.4.5 and 9.4.6 to the SDP in Figure 9.3. Here if α ∈ {0, 1}|S| is an assignment

to the vertices in S, and if S′ ⊂ S, α|S′ ∈ {0, 1}|S
′| denotes the assignment α restricted

to the vertices in S′. Also, if α and β are assignments to sets S and T agreeing on

S ∩T , then we denote α ◦β an assignment to S ∪T . We also add the set of constraints

(Equation 9.4.7 in Figure 9.3) to capture the partial assignment h : S? → {0, 1} given

by pre-processing.

With these definitions and constraints, the objective is to ensure that for all ` ∈ [k],∑
e={i,j}∈E`

E`(e)
(
Pr
(
X{i,j} = (0, 1) ∨X{i,j} = (1, 0)

))
≥ (1− 3ε)c`

A simple way to capture this would be to write the objective of the SDP solution

similar to the basic SDP formulation, as follows.∑
e={i,j}∈E`

E`(e)
(
‖v{(i,j),(0,1)}‖22 + ‖v{(i,j),(1,0)}‖22

)
≥ (1− 3ε)c`
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∑
e={i,j}∈E`

( E`(e)(‖v{S∪{i,j},α◦(0,1)}‖22 ∀S ⊆ V, |S| ≤ r − 2, α ∈ {0, 1}|S|,

+‖v{S∪{i,j},α◦(1,0)}‖22) ) ∀` ∈ [k]

≥ (1− 3ε)c`‖v{S,α}‖2 (9.4.3)

∑
e={i,j}∈Active(S?)

( E`(e)(‖v{S∪{i,j},α◦(0,1)}‖22 ∀S ⊆ V, |S| ≤ r − 2, α ∈ {0, 1}|S|,

+‖v{S∪{i,j},α◦(1,0)}‖22) ) ∀` ∈ L

≥ ε/3.activedegreeS?(`) (9.4.4)

〈v{S,α},v{T,β}〉 = ‖v{S∪T,α◦β}‖22 ∀S, T ⊆ V, |S ∪ T | ≤ r,

α ∈ {0, 1}|S|, β ∈ {0, 1}|T |,

(9.4.5)

〈vS,α,vT,β〉 = 0 ∀S, T ⊆ V, |S ∪ T | ≤ r,

α ∈ {0, 1}|S|, β ∈ {0, 1}|T |,

s.t. α|S∩T 6= β|S∩T (9.4.6)

‖v{T,α}‖2 = 〈v{T,α},v∅〉 ∀T ⊆ V, |T | ≤ r, α ∈ {0, 1}|T |

〈v{S,α},v{i,b}〉 = 〈v{S,α},v∅〉 ∀S ⊆ V, |S| ≤ r − 1, α ∈ {0, 1}|S|

∀i ∈ S?, b = h(i) (9.4.7)

Figure 9.3: Lasserre version of SDP?(h : S? → {0, 1}) for simultaneous Max-CUT with

partial fixing

However, in order to make the solution locally independent, we will need to condition

based on the local distribution (Refer Section 9.4.3). Therefore, we need to re-write

the objective so that it is satisfied (w.r.t the conditioned local distribution) even after

conditioning on at most r variables, as shown in Equation 9.4.3 in the SDP formulation.
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Also, similar to the previous case, we need to ensure that the solution post-conditioning

still cuts at least a constant fraction of the active edges, which is ensured by adding

the set of constraints specified in Equation 9.4.4 in the SDP.

We observe that solving the SDP using ellipsoid method can result in a small additive

error, and if activedegreeS?(`) is small compared to this additive error, the error would

be significant. This will not cause any issues and we elaborate on this more. We can

solve the SDP using ellipsoid method with an error of ε in time polynomial in n and

log(1/ε). Therefore, we can take ε to be exp(−poly(n)) and still solve the SDP time

polynomial in n. We assumed that the edge weights are at least exp(−nc) for some

constant c > 0. Therefore, if the active degree is non-zero, it is at least exp(−nc). If we

take ε = exp(−nc′) for c′ >> c, we can solve the SDP in time polynomial in n and get

a vector solution which satisfies all the constraints upto additive error ε which is upto

multiplicative factor of (1 + o(1)). This will not have a major effect on our analysis

and hence we assume from here that the vector solution that we get satisfies the all the

constraints exactly.

Obtaining independent local solution

The notion of independent solution (which is formalized below in Definition 9.4.5) that

we need is different from [RT12]. Following procedure in Figure 9.4 is used to achieve

the kind of independence we need.

Definition 9.4.5. A Lasserre solution is δ-independent if it satisfies the following con-

dition.

∀` ∈ L, E
a,b∼actdistS? (`)

 ∑
i,j∈{1,2}

I(Xai ;Xbj )

 ≤ δ.
Lemma 9.4.6. For all δ > 0, there exists t ≤ 2k/δ, there exists e1, e2, . . . , et ∈ E such

that

∀` ∈ L, E
a,b∼actdistS? (`)

[I(Xa1 , Xa2 ;Xb1 , Xb2 |Xe11
, Xe12

, . . . , Xet1
, Xet2

)] ≤ δ (9.4.8)

Proof. Consider the following potential function,

φ =
∑
`∈L

E
a∈actdistS? (`)

H(Xa1 , Xa2).
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Input: r + 2 round Lasserre solution of a given simultaneous Max-CUT instance,

δ := 8·k3

r−2

Output: δ-independent 2-round Lasserre solution.

1. Sample `1, . . . , `r ∈ L each u.a.r. Sample edges ei ∈ actdistS?(`i) u.a.r. for all

i ∈ [r].

2. Do the following until the solution becomes δ-independent. Set t = 1.

• Sample (Xet1
, Xet2

) from the marginal distribution after previous t − 1

fixings.

• Condition the SDP solution on (Xet1
, Xet2

).

• t = t+ 1

Figure 9.4: Making locally independent solution

As entropy of a bit is at most 1, clearly φ ≤ 2k. We have the following identity for each

` ∈ L which follows from conditional entropy and linearity of expectation

E
a,b∈actdistS? (`)

[H(Xa1 , Xa2 |Xb1 , Xb2)] = E
a∈actdistS? (`)

[H(Xa1 , Xa2)]−

E
a,b∈actdistS? (`)

I(Xa1 , Xa2 ;Xb1 , Xb2).

This identity suggests that if for some ` ∈ L, Ea,b∈actdistS? (`) I(Xa1 , Xa2 ;Xb1 , Xb2) > δ

then there exists a conditioning which reduces the potential function by at least δ.

Thus, either the current conditioned solution satisfies (9.4.8) in which case we are done

or there exists an edge b such that if we condition the SDP solution based on the

value of its endpoints (b1, b2) according to the local distribution then the potential

function decreases by at least δ. So, if we fail to achieve (9.4.8) then φ decreases by

at least δ. As entropy is always non-negative and conditioning never increases entropy

(Fact 9.3.6), this process cannot go beyond 2k/δ conditioning. Thus, before at most
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2k/δ conditioning, we are guaranteed to achieve (9.4.8).

The following fact follows from the data processing inequality (Theorem 9.3.8)

Fact 9.4.7. If X1, X2, Y1 and Y2 are random variables then for i, j ∈ {1, 2}, we have

I(Xi;Yj) ≤ I(X1, X2;Y1, Y2)

The following corollary follows from Lemma 9.4.6 and Fact 9.4.7.

Corollary 9.4.8. For all δ > 0, there exists t ≤ 2k
δ , and edges e1, e2, . . . , et ∈ E,

∀` ∈ L, E
a,b∈actdistS? (`)

 ∑
i,j∈{1,2}

I(Xai ;Xbj |Xe11
, Xe12

, . . . , Xet−1
1
, Xet−1

2
)

 ≤ 4δ

Lemma 9.4.9. There exists a fixing of at most 2k
δ/4 variables such that the conditioned

solution is δ independent as well as satisfies all constraints from SDP?(h?).

Proof. δ independence follows from Corollary 9.4.8 and Fact 9.4.7. We now prove the

later part.

As the conditioning maintains the marginal distribution of variables and because of

the the Inequality (9.4.3) and (9.4.4), the constraints about the SDP cut value as well

as the fraction of active edges that are cut remain valid in the conditioned solution.

Hence, from Lemma 9.4.4 SDP?(h?) remains feasible.

Rounding Procedure

In this section, we describe the rounding procedure for variables in V \S?. The input

to this procedure is 2 round Lasserre solution which is δ-independent. We use a slight

variation of GW rounding procedure to round the SDP vector solution. In particular,

we want to maintain the bias of heavily biased random variable in our rounding proce-

dure.

SDP gives the vector solution vi,0,vi,1 for all i ∈ [n]. Let µi = E[Xi], the expectation

is according to the local distribution. Define vi = vi,1 − vi,0. These vi are the unit
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vectors (as ‖vi‖2 = ‖vi,1 − vi,0‖2 = ‖vi,1‖2 + ‖vi,0‖2 − 2〈vi0, vi1〉 = Pr[Xi = 0] +

Pr[Xi = 1] − 0 = 1). Let wi be component of vi orthogonal to v∅ (vi = µiv∅ + wi),

‖wi‖2 =
√

1− µ2
i . Let w̄i be the normalized unit vector of wi. The rounding procedure

is applied on vectors w̄i along with the “bias” of each variable 〈vi,v∅〉. The rounding

procedure is shown in Figure 9.5.

Input: δ-independent 2 round Lasserre solution, biases ui ∈ [−1,+1] and a function

fR : [−1, 1] → [−1, 1] which is bounded by above and below with some constant

degree polynomials

Output: A partition of V .

1. Pick a random Gaussian vector g orthogonal to v∅ with each co-ordinate dis-

tributed as N (0, 1).

2. For each i ∈ [n]

• Calculate ξi = 〈g,wi〉.

• Let ri ← fR(µi)

• Set yi = 1 if ξi ≤ Φ−1(ri/2 + 1/2), otherwise set yi = −1. (Here, Φ is the

Gaussian CDF)

Figure 9.5: Rounding procedure

Analysis of the rounding procedure

We use the notation poly(x) to denote a fixed constant degree polynomial in x such

that poly(x)→ 0 as x→ 0.

Note that if we simply use the rounding function fR(x) = x as used in [RT12] the

we get for each instance, in expectation the cut produced by the rounding procedure is

at least 0.85 times the SDP value (and hence eventually 0.85 approximation for simul-

taneous Max-CUT). Here, we leverage the fact that the constraints on what rounding
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functions are good for us are mild compared to [RT12] as explained in Section 9.2.1.

Lemma 9.4.10. For a fixed instance, in expectation, the rounding procedure described

in Figure 9.5 gives an approximation ratio 0.8782 for the following fR,

fR(x) = (0.79 + 0.1 · x2)x if |x| < 0.47

fR(x) = (0.815 + 0.185 · x6)x otherwise

Proof. The proof of this lemma is numerical. We arrive at a informal approximate

value for the bound using Matlab code (0.8782) and verify it using computer assisted

techniques. The program works in a recursive fashion, by continuously splitting the

cube into sub-cubes. In each sub-cube, the program checks if either across all points

in the region, the lower bound on α exceeds the approximation ratio we try to prove

or if the upper bound on α is lower than the approximation ration we try to prove. It

proceeds with further division into smaller sub-cubes until one of the above is satisfied.

If the latter is true at any point, the code returns a failure, and it returns a success if

the entire region can be proved to come under the former case. The prover was adapted

from [ABG12] and modified to suit our rounding procedure. For more details on the

workings of the prover, refer [ABG12].

Lemma 9.4.11 ([RT12]). Let vi and vj be the unit vectors, wi and wj be the compo-

nents of vi and vj that are orthogonal to v∅. Then |〈wi,wj〉| ≤ 2I(Xi;Xj).

Above lemma along with Lemma 9.4.9 implies that if we sample edge (i1, i2), (j1, j2) ∼

actdistS?(`) then we have on average,

|〈wi1 ,wj1〉|+ |〈wi1 ,wj2〉|+ |〈wi2 ,wj1〉|+ |〈wi2 ,wj2〉| ≤ δ

The rounding procedure is assigning values ±1 to variables yi where yi is the variable

for vertex i ∈ V and its value decides on which side of cut the vertex i is present in

the final solution. Thus yi is a random variable taking values in {+1,−1}. We now

wish to prove similar guarantee as the following lemma from [RT12], which relates the

mutual information between the pair of rounded variables with the inner product of

the corresponding vectors w.
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Lemma 9.4.12 ([RT12]). For fR such that fR(x) = x, if |〈wi,wj〉| ≤ δ then I(yi; yj) ≤

δ1/3.

In our case, we need that the mutual information between the events that a pair of

edges are cut is small on average. Thus, our notion of local independence will be useful

in proving this guarantee about mutual information.

Lemma 9.4.13. Fix fR to be the rounding function given by Lemma 9.4.10. For a

pair of edges (i1, i2) and (j1, j2), suppose the vectors w corresponding to their endpoints

satisfy the following condition,

|〈wi1 ,wj1〉|+ |〈wi1 ,wj2〉|+ |〈wi2 ,wj1〉|+ |〈wi2 ,wj2〉| ≤ δ

then I(yi1yi2 ; yj1yj2) ≤ poly(δ).

Proof. Since wi is a normalized vector of wi and ‖wi‖ =
√

1− µ2
i , we have

√
1− µ2

i1
·
√

1− µ2
j1
· |〈wi1 ,wj1〉|

+
√

1− µ2
i1
·
√

1− µ2
j2
· |〈wi1 ,wj2〉|

+
√

1− µ2
i2
·
√

1− µ2
j1
· |〈wi2 ,wj1〉|

+
√

1− µ2
i2
·
√

1− µ2
j2
· |〈wi2 ,wj2〉|


≤ δ (9.4.9)

Since the total sum is bounded and each quantity is non-negative, at least one of the

three quantities in each summand is at most δ1/3. We use two crucial properties of the

rounding procedure:

• For the heavily biased variable according to the local distribution, the rounding

procedure also keeps the rounded value heavily biased and

• If two vectors wi and wj are nearly orthogonal, the corresponding rounded values

yi and yj are nearly independent.

We need following claim which we prove in Section 9.5.

Claim 9.4.14. If all these quantities |〈wi1 ,wj1〉|, |〈wi1 ,wj2〉|, |〈wi2 ,wj1〉|, |〈wi2 ,wj2〉|

are upper bounded by δ1/3, then we can upper bound I(yi1 , yi2); (yj1 , yj2)) ≤ poly(δ)
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We now formally prove the upper bound on I(yi1yi2 ; yj1yj2) by case analysis. We

use the following upper bound which follows from data processing inequality.

I(yi1yi2 ; yj1yj2) ≤ I(yi1 , yi2); (yj1 , yj2))

We now bound the right hand side based on following case analysis.

• Case 1: If all these quantities |〈wi1 ,wj1〉|, |〈wi1 ,wj2〉|, |〈wi2 ,wj1〉|, |〈wi2 ,wj2〉| are

upper bounded by δ1/3 then using Claim 9.4.14, we can upper bound

I(yi1 , yi2); (yj1 , yj2)) ≤ poly(δ).

• Case 2: Consider the case when both the endpoints of an edge (w.l.o.g. of (i1, i2))

have large bias i.e.
√

1− µ2
i1
≤ δ1/3,

√
1− µ2

i2
≤ δ1/3. It implies,

min(|1− µi1 |, |1 + µi1 |) ≤ δ2/3, min(|1− µi2 |, |1 + µi2 |) ≤ δ2/3.

Assume both µi1 , µi2 > 0 (there cases can be handled in a similar way). Then we

have, 1−µi1 ≤ δ2/3 and 1−µi2 ≤ δ2/3. Since the rounding procedure maintains the

bias of a variable for a heavily biased variables, up to some constant polynomial

factor, we have,

I(yi1 , yi2); (yj1 , yj2)) ≤ H(yi1 , yi2) ≤ H(yi1) +H(yi2)

= O(−(1− poly(µi1)) log(1− poly(µi1)))+

O(−(1− poly(µi2)) log(1− poly(µi2)))

≤ poly(δ).

• Case 3: Consider the case when exactly two non-endpoints of an edge (w.l.o.g. of

(i1, ji)) have large bias. This implies that 〈wi2 ,wj2〉 ≤ δ1/3. Using the analysis

of the previous case we have H(yi1), H(yj1) ≤ poly(δ). Mutual information can
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be bounded as follows:

I((yi1 , yi2); (yj1 , yj2)) ≤ H((yi1 , yi2))−H((yi1 , yi2)|(yj1 , yj2))

≤ H(yi1) +H(yi2)−H(yi2 |(yj1 , yj2))

= H(yi1) + I((yj1 , yj2); yi2) (9.4.10)

= poly(δ) + I((yj1 , yj2); yi2) (9.4.11)

Now,

I((yj1 , yj2), yi2) = H((yj1 , yj2))−H((yj1 , yj2)|yi2)

≤ H(yj1) +H(yj2)−H(yj2 |yi2)

= H(yj1) + I(yj2 ; yi2) = poly(δ) + I(yj2 ; yi2)

Therefore, we have

I(yi1yi2 ; yj1yj2) ≤ poly(δ) + I(yj2 ; yi2)

From Claim 9.4.14, I(yj2 ; yi2) is bounded above by poly(δ) as 〈wi2 ,wj2〉 ≤ δ1/3

• Case 4: Consider the only remaining case in which exactly one variable, say Xi1 ,

has a large bias i.e.
√

1− µ2
i1
≤ δ1/3. From (9.4.9), it implies that pairwise inner

products of wi2 ,wj1 and wj2 are at most δ1/3. Hence by Claim 9.4.14, we have

I(yi2 ; (yj1 , yj2)) ≤ poly(δ). As before from (9.4.10),

I(yi1 , yi2); (yj1 , yj2)) ≤ H(yi1) + I((yj1 , yj2); yi2) ≤ poly(δ)

We can now upper bound the variance of a cut produced by the randomized rounding

in graph ` ∈ L. Define Y` to be a random variable which is equal to the total weight of

active edges cut by the rounding procedure.

Y` =
∑

C∈Active(S?)

E`(C)e(g).

Lemma 9.4.15. Fix a rounding function fR given in Lemma 9.4.10 and let the SDP

solution is δ independent then

Var(Y`) ≤
poly(δ)

ε2 E[Y`]
2.
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Proof. Let α := 0.8782. Note that by Lemma 9.4.10, we have for an active edge e(i, j),

Pr[e(i, j) is cut ] ≥ α ·
1− 〈vi,vj〉

2
. (9.4.12)

We now lower bound the expected value of Y`.

E[Y`] =
∑

e∈Active(S?)

E`(e) · Pr[e(i, j) is cut ]

( from (9.4.12)) ≥ α
∑

e∈Active(S?)

E`(e) ·
1− 〈vi,vj〉

2

= α ·
∑

e∈Active(S?)

E`(e)(‖v{(i,j),(0,1)}‖22 + ‖v{(i,j),(1,0)}‖22)

( from (9.4.2)) ≥ α · ε/3 · activedegreeS?(`),

We can now bound the variance as follows:

Var(Y`) =
∑

i,j∼Active(S?)

E`(i)E`(j)[Cov(yi1yi2 , yj1yj2)]

≤
∑

i,j∼Active(S?)

E`(i)E`(j)[O(
√
I(yi1yi2 ; yj1yj2))]

(from Lemma 9.4.13) ≤
∑

i,j∼Active(S?)

E`(i)E`(j) · poly

|〈wi1 ,wj1〉| + |〈wi1 ,wj2〉|+

|〈wi2 ,wj1〉| + |〈wi2 ,wj2〉|


( from Lemma 9.4.11) ≤

∑
i,j∼Active(S?)

E`(i)E`(j)poly

 E
a∼{i1,i2},
b∼{j1,j2}

[I(Xa;Xb)]


≤ activedegreeS?(`)

2
E

i,j∼actdistS? (`)
poly E

a∼{i1,i2},
b∼{j1,j2}

[I(Xa;Xb)]

≤ activedegreeS?(`)
2poly

 E
(i1,i2),
(j1,j2)

∼actdistS? (`)

E
a∼{i1,i2},
b∼{j1,j2}

[I(Xa;Xb)]


≤ poly (δ) · activedegreeS?(`)

2

Thus, we have

Var(Y`) ≤
poly(δ)

ε2 E[Y`]
2.
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Corollary 9.4.16. If we set r := poly(k, 1/ε) then for every low variance instance

` ∈ [k],with probability at least 1− 1/10k we have val(h? ∪ g) ≥ (0.8782− 4ε)c`.

Proof. Choosing r a large constant, by Lemma 9.4.15 and application of Chebyshev’s

Inequality, we can deduce that with probability at least 1 − 1/10k, we have Y` ≥

(1− ε) E[Y`]. Thus, with probability at least 1− 1/10k, we have,

val(h? ∪ g, E`) = val(h?, E`) + Y` ≥ val(h?, E`) + (1− ε) E[Y`]

≥ (1− ε) ·E[val(h?, E`) + Y`] = (1− ε) ·E[val(h? ∪ g,W`)]

≥ (1− ε) · 0.8782 · (1− 3ε) · c` ≥ (0.8782− 4ε) · c`,

where we have used Lemma 9.4.10 for the lower bound E[val(h?∪g,W`)] ≥ 0.8782 · (1−

3ε)c`,

Post-Processing

Lemma 9.4.17. For all high variance instances ` ∈ [k], we have

1. activedegreeS?(`) ≤ 2(1− γ)t.

2. For each of the first t/2 variables that were brought inside S? because of instance

`, the total weight of constraints incident on each of that variable and totally

contained inside S? is at least 10 · activedegreeS?(`).

Proof. Consider any high variance instance ` ∈ [k]. Initially, when S = ∅, we have

activedegree∅(E`) ≤ 2 since the weight of every edge is counted at most twice, once for

each of the 2 active vertices of the edge, and
∑

e∈E E`(e) = 1. For every v, note that

activedegreeS2
(v, E`) ≤ activedegreeS1

(v, E`) whenever S1 ⊆ S2.

Let u be one of the vertices that ends up in S? because of instance `. Let Su

denote the set S ⊆ S? just before u was brought into S?. When u is added to Su, we

know that activedegreeSu(u, E`) ≥ γ · activedegreeSu(`). Hence, activedegreeSu∪{u}(`) ≤

activedegreeSu(`) − activedegreeSu(u, E`) ≤ (1 − γ) · activedegreeSu(`). Since t vertices

were brought into S? because of instance `, and initially activedegree∅(`) ≤ 2, we get

activedegreeS?(`) ≤ 2(1− γ)t.
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Now, let u be one of the first t/2 vertices that ends up in S? because of instance `.

Since at least t/2 vertices are brought into S? because of instance `, after u, as above, we

get activedegreeS?(`) ≤ (1−γ)t/2·activedegreeSu(`). Combining with activedegreeSu(u, E`) ≥

γ · activedegreeSu(`), we get activedegreeSu(u, E`) ≥ γ(1− γ)−t/2activedegreeS?(`), which

is at least 11 · activedegreeS?(`), by the choice of parameters. Since any edge incident

on a vertex in V \ S? contributes its weight to activedegreeS?(`), the total weight of

edges incident on u and totally contained inside S? is at least 10 · activedegreeS?(`) as

required.

We now describe a procedure Perturb (see Figure 9.6) which takes h? : S? → {0, 1}

and g : V \ S? → {0, 1}, and produces a new h : S? → {0, 1} such that for all (low

variance as well as high variance) instances ` ∈ [k], val(h ∪ g, E`) is not much smaller

than val(h?∪g, E`), and furthermore, for all high variance instances ` ∈ [k], val(h∪g, E`)

is large. The procedure works by picking a special vertex in S? for every high variance

instance and perturbing the assignment of h? to these special vertices. The partial

assignment h is what we will be using to argue that Step 0d of the algorithm produces

a good Pareto approximation. More formally, we have the following Lemma.

Lemma 9.4.18. For the assignment h obtained from Procedure Perturb (see Fig-

ure 9.6), for each ` ∈ [k], val(h ∪ g, E`) ≥ (1 − ε/2) · val(h? ∪ g, E`). Furthermore, for

each high variance instance E`, val(h ∪ g, E`) ≥ 4 · activedegreeS?(`).

Proof. Consider the special vertex v` that we choose for high variance instance ` ∈ [k].

Since v` /∈ B, the edges incident on v` only contribute at most a ε/2k fraction of the

objective value in each instance. Thus, changing the assignment v` can reduce the

value of any instance by at most a ε
2k fraction of their current objective value. Also, we

pick different special variables for each high variance instance. Hence, the total effect

of these perturbations on any instance is that it reduces the objective value (given

by h? ∪ g) by at most 1 − (1 − ε
2k )k ≤ ε

2 fraction. Hence for all instances ` ∈ [k],

val(h ∪ g, E`) ≥ (1− ε/2) · val(h? ∪ g, E`).

For a high variance instance ` ∈ [k], since v` ∈ U, the vertex v` must be one of

the first t/2 variables brought into S? because of `. Hence, by Lemma 9.4.17 the total
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Input: h? : S? → {0, 1} and g : V \ S? → {0, 1}

Output: A perturbed assignment h : S? → {0, 1}.

1. Initialize h← h?.

2. For ` = 1, . . . , k, if instance ` is a high variance instance case (i.e., count` = t),

we pick a special variable v` ∈ S? associated to this instance as follows:

(a) Let B = {v ∈ V | ∃` ∈ [k] with
∑

e∈E,e3v E`(e)·e(h∪g) ≥ ε
2k ·val(h∪g, E`)}.

Since the weight of each edge is counted at most twice, we know that

|B| ≤ 4k2

ε .

(b) Let U be the set consisting of the first t/2 vertices brought into S? because

of instance `.

(c) Since t/2 > |B| + k, there exists some u ∈ U such that u 6∈ B ∪

{v1, . . . , v`−1}. We define v` to be u.

(d) By Lemma 9.4.17, the total E` weight of edges that are incident on v`

and only containing vertices from S? is at least 10 · activedegreeS?(`). We

update h by setting h(v`) to be that value from {0, 1} such that at least

half of the E` weight of these edges is satisfied.

3. Return the assignment h.

Figure 9.6: Procedure Perturb for perturbing the optimal assignment
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weight of edges that are incident on v` and entirely contained inside S? is at least

10 · activedegreeS?(`). Hence, there is an assignment to v` that satisfies at least at least

half the weight of these Max-CUT constraints in `. At the end of the iteration when

we pick an assignment to v`, we have val(h ∪ g, E`) ≥ 5 · activedegreeS?(`). Since the

later perturbations do not affect value of this instance by more than ε/2 fraction, we

get that for the final assignment h, val(h ∪ g, E`) ≥ (1 − ε/2) · 5 · activedegreeS?(`) ≥

4 · activedegreeS?(`).

Theorem 9.4.19. Suppose we’re given ε ∈ (0, 2/5], k simultaneous Max-CUT in-

stances E1, . . . , Ek on n variables, and target objective value c1, . . . , ck with the guarantee

that there exists an assignment f? such that for each ` ∈ [k], we have val(f?, E`) ≥ c`.

Then, the algorithm Alg-Sim-MaxCUT runs in time exp(k3/ε2 log(k/ε2)) ·npoly(k), and

with probability at least 0.9, outputs an assignment f such that for each ` ∈ [k], we have,

val(f, E`) ≥ (0.8782− 5ε) · c`.

Proof. Let α := 0.8782. By Corollary 9.4.16 and a union bound, with probability at

least 0.9, over the choice of g, we have that for every low variance instance ` ∈ [k],

val(h? ∪ g, E`) ≥ (α − 4ε) · c`. Henceforth we assume that the assignment g sampled

in Step 0c of the algorithm is such that this event occurs. Let h be the output of the

procedure Perturb given in Figure 9.6 for the input h? and g. By Lemma 9.4.18, h

satisfies

1. For every instance ` ∈ [k], val(h ∪ g, E`) ≥ (1− ε/2) · val(h? ∪ g, E`).

2. For every high variance instance ` ∈ [k], val(h ∪ g, E`) ≥ 4 · activedegreeS?(`).

We now show that the desired Pareto approximation behavior is achieved when h is

considered as the partial assignment in Step 0d of the algorithm. We analyze the

guarantee for low and high variance instances separately.

For any low variance instance ` ∈ [k], from property 1 above, we have val(h∪g, E`) ≥

(1 − ε/2) · val(h? ∪ g, E`). Since we know that val(h? ∪ g, E`) ≥ (α − 4ε) · c`, we have

val(h ∪ g, E`) ≥ (α− 5ε) · c`.
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For every high variance instance ` ∈ [k], since h? = f?|S? , for any g we must have,

val(h? ∪ g, E`) ≥ val(f?, E`)− activedegreeS?(`) ≥ c` − activedegreeS?(`).

Combining this with properties 1 and 2 above, we get,

val(h ∪ g, E`) ≥ (1− ε/2) ·max{c` − activedegreeS?(`), 4 · activedegreeS?(`)}

≥ (α− ε) · c`.

Thus, for all instances ` ∈ [k], we get val(h ∪ g) ≥ (α− 5ε) · c`. Since we are taking

the best assignment h∪g at the end of the algorithm Alg-Sim-MaxCUT, the theorem

follows.

9.5 Deferred Proofs

9.5.1 Proof of Claim 9.4.14

We need following bounds on the gaussian random variables.

Claim 9.5.1. For all x > 0, Prg∼N (0,1)[|g| > x] ≤ e−x
2/2

Claim 9.5.2. For all 1 > x > 0, Prg∼N (0,1)[|g| < x] ≤ x

Random process P:

Let w1,w2,w3,w4 ∈ R4 be unit vectors and µ1, µ2, µ3, µ4 be any real numbers. Con-

sider the following random variables (y1, y2, y3, y4) where yi ∈ {−1,+1} which are

sampled as follows: Pick a random vector g := (g1, g2, g3, g4) ∈ R4 with each entry

distributed as N (0, 1). Set

yi = −1 if 〈g,wi〉 ≤ µi

= +1 otherwise

The following lemmas gives sufficient conditions when I(y1, y2; y3, y4) is small.
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Lemma 9.5.3. Suppose |〈wi,wj〉| ≤ δ for all i, j ∈ [4] and i 6= j, then for all b ∈

{−1,+1}4, we have∣∣∣∣∣∣Pr[(y1, y2, y3, y4) = b]−
∏

1≤i≤4

Pr[yi = bi]

∣∣∣∣∣∣ = O(δ
1/4),

where yi are sampled according to the random process P. In fact, joint distribution on

any subset of variables is close to its product distribution pointwise with an additive

error of at most O(δ1/4).

Proof. Assume that 0 < δ < 1/100 (Otherwise, the lemma is trivial). Let ei is a unit

vector with 1 in the ith coordinate. By rotational symmetry, we can assume that

〈wi, ei〉 ≥ 1 − 20δ for all i. We can write vector wi =
√

1− δiei +
√
δiηi where ηi is a

unit vector. The conditions on inner products therefore imply each δi < 40δ. We will

prove the lemma for b = (−1,−1,−1,−1) (all other cases are similar). We have,

Pr[yi = −1,∀i ∈ [4]] = Pr[∀i, 〈g,wi〉 ≤ µi]

= Pr[∀i,
√

1− δigi +
√
δi〈g, ηi〉 ≤ µi]

Let B be the following event,

B : There exists 1 ≤ i ≤ 4, such that |〈g, ηi〉| ≥ 1/δ1/4.

By union bound,

Pr[B] =
∑
i

Pr[|〈g, ηi〉| ≥ 1/δ1/4] ≤ 4 · Pr[|〈g, η1〉| ≥ 1/δ1/4] = 4 · Pr
g∼N (0,1)

[|g| ≥ 1/δ1/4] ≤ 4e
− 1

2
√
δ

Now,

Pr[yi = −1,∀1 ≤ i ∈ [4]] = Pr[B] · Pr[yi = −1, ∀i ∈ [4]|B] + Pr[B] · Pr[yi = −1, ∀i ∈ [4]|B]

≤ 4e
− 1

2
√
δ + Pr[yi = −1,∀i ∈ [4]|B], (9.5.1)

where last inequality uses Claim 9.5.1. We now estimate the probability conditioned
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on event B.

Pr[yi = −1, ∀i ∈ [4]|B] = Pr[∀i,
√

1− δigi +
√
δi〈g, ηi〉 ≤ µi|B]

≤ Pr[∀i,
√

1− δigi ≤ µi +
√
δi ·

1

δ1/4
]

(gi are independent) =
∏
i

Pr[
√

1− δigi ≤ µi +
√
δi ·

1

δ1/4
]

(δi ≤ 40δ) ≤
∏
i

Pr[
√

1− δigi ≤ µi +
√

40δ
1/4]

(δi ≤ 1/2) ≤
∏
i

Pr[gi ≤ (1 + δi)(µi +
√

40δ
1/4)]

(δi ≤ 1/2) ≤
∏
i

Pr[gi ≤ µi + δiµi + 3/2 ·
√

40δ
1/4)]

≤
∏
i

Pr[gi ≤ (µi + δiµi + 15δ
1/4)]

We now analyse the above probability in cases, and try to show the following.

Pr[gi ≤ µi + δiµi + 15δ
1/4)] ≤

∏
i

Pr[gi ≤ µi] +O(δ
1/4) (9.5.2)

Notice that ∏
i

Pr[gi ≤ µi + cδ
1/4] ≤

∏
i

Pr[gi ≤ µi] + Pr[|gi| ≤ cδ
1/4]

(Claim 9.5.2) ≤

 ∏
1≤i≤4

Pr[yi = bi] + cδ
1/4


≤
∏

1≤i≤4

Pr[yi = bi] +O(δ
1/4) (9.5.3)

• Case 1: µi < 0.

In this case, we can directly say the following.∏
i

Pr[gi ≤ µi + δiµi + 15δ
1/4)] ≤

∏
i

Pr[gi ≤ µi + 15δ
1/4]

• Case 2: µi ≤ 10
δ3/4

We can say the following because δi < 40δ.∏
i

Pr[gi ≤ µi + δiµi + 15δ
1/4] ≤

∏
i

Pr[gi ≤ µi +O(δ
1/4)]

• Case 3: µi >
10
δ3/4 In this case, since µi is large, we have the following from

Claim 9.5.1. ∏
i

Pr[gi ≤ µi] ≥ 1− o(δ1/4)
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∏
i

Pr[gi ≤ µi + δiµi + 15δ
1/4] ≤ 1 =

∏
i

Pr[gi ≤ µi] + o(δ
1/4)

Form (9.5.1), (9.5.2) and (9.5.3) we get

Pr[(y1, y2, y3, y4) = b]−
∏

1≤i≤4

Pr[yi = bi] ≤ O(δ
1/4)

The other direction can be shown in an analogous way.

We can now bound the Mutual information between (y1, y2) and (y3, y4) if the

vectors wi satisfy the condition from Lemma 9.5.3

Lemma 9.5.4. Suppose |〈wi,wj〉| ≤ δ for all i, j ∈ [4] and i 6= j, then I((y1, y2); (y3, y4)) ≤

poly(δ), where yi are sampled according to the random process P.

Proof. The lemma follows from Lemma 9.5.3 as the distribution is close to the product

distribution.

To formally prove the lemma, first we assume that each of the random variables

yi is not heavily biased i.e. Pr[yi = −1] ∈ [δ1/100, 1 − δ1/100]. Using the definition of

mutual information,

I((y1, y2); (y3, y4)) =
∑

b1,b2,b3,b4{−1+1}

Pr[y = b] · log
Pr[y = b]

Pr[(y1, y2) = (b1, b2)] · Pr[(y3, y4) = (b3, b4)]

(9.5.4)

Form Lemma 9.5.3, we have

Pr[(y1, y2) = (b1, b2)] ≥ Pr[y1 = b1] Pr[y2 = b2]−O(δ
1/4)

Pr[(y3, y4) = (b3, b4)] ≥ Pr[y3 = b3] Pr[y4 = b4]−O(δ
1/4)

Plugging any simplifying in ( 9.5.4), we get

I((y1, y2); (y3, y4)) ≤
∑

b1,b2,b3,b4{−1+1}

Pr[y = b] · log

∏
1≤i≤4 Pr[yi = bi] +O(δ1/4)∏
1≤i≤4 Pr[yi = bi]−O(δ1/4)

(9.5.5)
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As each variable is not heavily biased, we have
∏

1≤i≤4 Pr[yi = bi] ≥ δ1/25 and hence

the log in the above expression can be upper bounded by log δ1/25+O(δ
1/4)

δ1/25−O(δ1/4)
which is at

most log(1 +O(δ1/10)) ≤ O(δ1/10). Hence we have

I((y1, y2); (y3, y4)) ≤ O(δ1/10)

If a variable is heavily biased, suppose say y1 has large bias, then we can claim

I((y1, y2); (y3, y4)) ≤ poly(δ) + I(y2; (y3, y4)) using derivation similar to ( 9.4.11) and

then proceed by upper bounding I(y2; (y3, y4)) in a similar fashion as above.

Proof of Claim 9.4.14: The proof follows from Lemma 9.5.4 noting the fact that the

upper bound is independent of µi.

9.5.2 Proof of Lemma 9.4.2

Proof. Item 1 of the lemma follows from Chebyshev’s inequality. We now focus on the

proof of Item 2. We have

Uvar` ≥ δ0ε
2
0 · Lmean2

` ⇒
∑
e∼Se′

E`(e)E`(e′) ≥ δ0ε
2
0 · Lmean2

`

Let e0 be an edge in Active(S) that maximizes
∑

e∼Se0 E`(e). We can now upper bound

the expression on the left as follows

∑
e∼Se′

E`(e)E`(e′) ≤
∑
e∼Se0

E`(e) ·
∑

e∈Active(S)

E`(e)

Therefore, we have

∑
e∼Se0

E`(e) ·
∑

e∈Active(S)

E`(e) ≥ δ0ε
2
0 · Lmean2

` ≥ δ0ε
2
0 · τ2 ·

 ∑
e∈Active(S)

E`(e)

2

⇒
∑
e∼Se0

E`(e) ≥ δ0ε
2
0 · τ2 ·

∑
e∈Active(S)

E`(e)

Let v be the end vertex of e0 that has greater weight of active edges adjacent to it,

v ∈ V \ S. We can say the following

activedegreeS(v, `) ≥ 1

2
· δ0ε

2
0 · τ2 ·

∑
e∈Active(S)

E`(e)
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From the definition of activedegreeS(`), we can say the following

activedegreeS(`) ≤ 2 ·
∑

e∈Active(S)

E`(e)

as each edge could contribute at most twice to the sum, once for each end vertex. This

gives us the following required result.

activedegreeS(v, `) ≥ 1

4
· δ0ε

2
0 · τ2 · activedegreeS(`)
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