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ABSTRACT OF THE DISSERTATION

Cominuscule flag varieties and their quantum K-theory:

Some results

by Sjuvon Chung

Dissertation Director: Anders S. Buch

This thesis investigates the ring structure of the torus-equivariant quantum K-theory

ring QKT (X) for a cominuscule flag variety X. As a main result, we present an identity

that relates the product of opposite Schubert classes in QKT (X) to the minimal degree

of a rational curve joining the corresponding Schubert varieties. Using this we infer

further properties of the ring QKT (X), one of which is that the Schubert structure

constants always sum to one.

We also introduce a formula for the product of Schubert classes in QKT (Pn). As a

corollary we establish Griffeth-Ram positivity of the Schubert structure constants for

QKT (Pn). After a closer analysis, we conclude that the rings QKT (Pn) are isomorphic

for all n.
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Introduction

Classically, Schubert calculus addresses the enumerative geometry of points, lines,

planes, etc. of complex projective space Pn. This amounts to the intersection theory of

Schubert varieties in the Grassmannians X = Gr(k, n+ 1). The classical theory culmi-

nates in the well-known Littlewood-Richardson rule for the cohomology rings H∗(X,Z)

and their Schubert classes.

Today Schubert calculus explores richer, more general cohomology theories of spaces

which themselves generalise the Grassmannians X: the complex flag varieties. Two

such cohomology theories are quantum K-theory and torus-equivariant quantum K-

theory. Introduced in the early 2000’s by A. Givental [16] and developed by Y.-P. Lee

[21], (equivariant) quantum K-theory may be understood as a K-theoretic analogue of

(equivariant) quantum cohomology.

For a flag variety X, a focal point of its quantum K-theory are the K-theoretic

Gromov-Witten invariants of its Schubert varieties. These invariants are integers that

encode the geometry of curves in X, specifically the arithmetic genus of families of

rational curves in X that meet Schubert varieties Xu, Xv, Xw in general position.

Equivariant quantum K-theory enriches this theory by having these numerical invari-

ants take values in Γ = Z[t±1
1 , . . . , t±1

n ], the representation ring of a torus T = (C∗)n,

so as to convey the natural action of T on X. We shall focus on the equivariant theory.

Equivariant quantum K-theory assembles these invariants into the structure con-

stants of a ring. Denote this ring by QKT (X). Given Schubert varieties Xu, Xv con-

tained in X, let [OXu] and [OXv ] denote their corresponding classes in QKT (X). Then

the product in QKT (X) of these Schubert classes is expressed as follows:

[OXu] ? [OXv ] =
∑
w,d

Nw,d
u,v q

d[OXw ].

Though they are not Gromov-Witten invariants themselves, each Schubert structure
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constant Nw,d
u,v ∈ Γ is a polynomial in K-theoretic Gromov-Witten invariants involving

Xu, Xv, Xw. The formal parameter q records the degrees d ∈ H2(X,Z) of the rational

curves described by the invariants. Thus the quantum product [OXu] ? [OXv ] may be

understood as a generating series in q for the K-theoretic Gromov-Witten invariants of

Xu and Xv. It is a goal in Schubert calculus to determine explicit formulas for these

products.

These Schubert structure constants Nw,d
u,v are difficult to compute; there is in fact

an active area of research devoted to computing them [5], [6]. However in joint work

with A. S. Buch, the following relation is established when X is cominuscule (a small

family of flag varieties that includes the classical Grassmannians):

Theorem A. For fixed u, v we have
∑
w,d

Nw,d
u,v = 1 in Γ.

In other words, substituting 1 for q and the Schubert classes [OXw ] in [OXu] ?

[OXv ] curiously yields the relation of Theorem A. These substitutions can in fact be

described by the (non-quantum) equivariant K-theory of X. Indeed, let KT (X) be

the Grothendieck ring of T -equivariant coherent sheaves on X, and let KT (pt) denote

the equivariant Grothendieck ring of a point, which may be identified KT (pt) ' Γ.

Then the Euler characteristic map χ : KT (X) → Γ, ie. pushforward to a point, is

characterised by χ
(
[OXw ]) = 1 on Schubert classes. Now QKT (X) contains KT (X) as

a subgroup; moreover there is an intermediate subring QKpoly
T (X),

QKT (X) ⊃
subring

QKpoly
T (X) ⊃ KT (X),

to which χ naturally extends: χ̃ : QKpoly
T (X) → Γ. This extension χ̃ satisfies the

desired property χ̃
(
[OXw ]

)
= χ̃(q) = 1. With this, Theorem A becomes equivalent to

Theorem B. The extension χ̃ : QKpoly
T (X)→ Γ is a ring homomorphism.

There is also an extension of χ : KT (X) → Γ to the entire equivariant quantum

K-theory ring QKT (X); this extension however takes values in ΓJqK. Denote this χ :

QKT (X)→ ΓJqK as well. Theorems A and B then follow from:
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Theorem C. For opposite Schubert varieties Xu, Xv in X, we have in QKT (X)

χ
(
[OXu] ? [OXv ]

)
= qdist(Xu,Xv)

where dist(Xu, X
v) is the minimal degree of a rational curve that meets Xu and Xv.

Recent work of Buch-Chaput-Mihalcea-Perrin [6] establishes a Chevalley formula for

cominuscule QKT (X). This is a formula for multiplication in QKT (X) by a Schubert

divisor class. Together with the Chevalley formula of Buch-Chaput-Mihalcea-Perrin,

the aforementioned theorems help to determine a formula for the multiplication in

QKT (X) when X is projective space Pn:

Theorem D. Let the Schubert varieties Xp of Pn be indexed by their codimension

0 ≤ p ≤ n. In QKT (Pn), set [OXn+1] = q. Then for all 1 ≤ p ≤ r ≤ n we have the

recursive formula

[OXp] ? [OXr ] = (−1)p
( tr+1

t1
− 1
)
· · ·
( tr+1

tp
− 1
)
[OXr ]

+

p∑
i=1

(−1)p+i
tr+1

ti

( tr+1

ti+1
− 1
)
· · ·
( tr+1

tp
− 1
)
[OXi−1] ? [OXr+1].

The ring Γ = Z[t±1
1 , . . . , t±1

n+1] can be identified with the representation ring of

T = (C∗)n+1, the maximal torus of G = GLn+1(C). Under this identification, the

monomial ti+1

ti
corresponds to e−αi , the character of the negative simple root −αi of

G. Theorem D illustrates that the Schubert structure constants N s,d
p,r of QKT (Pn) are

expressible as polynomials in e−αi − 1. It can be used further to prove the following

positivity result:

Theorem E. For 1 ≤ p, r, s ≤ n and d ≥ 0, set e = p + r + s + d(n + 1). Then

the scaled Schubert structure constant (−1)eN s,d
p,r ∈ Γ of QKT (Pn) is a polynomial with

nonnegative integer coefficients in the classes e−αi − 1.

This property is the QKT -analogue of the positivity conjectures of Griffeth-Ram [19]

for the equivariant K-theory KT (X) of a flag variety X, proven by Anderson-Griffeth-

Miller [1]. Their quantum analogues are conjectured to hold for all flag varieties X, yet

remain open.

Theorem D can also be used to establish the following:
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Theorem F. There exists an isomorphism of Γ-algebras QKpoly
T (Pn)→ QKpoly

T (Pn+1).

Theorem F is reminiscent of a similar result for the quantum cohomology ring

QH∗(Pn) of Pn. In this setting there is an isomorphism of rings QH∗(Pn) → Z[h]

where Z[h] is the polynomial ring in the single generator h; thus the rings QH∗(Pn)

are isomorphic for all n. In fact, this type of result has been known for both the quan-

tum cohomology QH∗(Pn) and quantum K-theory QK(Pn) of projective space; it has

hitherto been unknown for their equivariant versions.

The goal of this thesis is to prove Theorems A, B, C, D, E, F. It is organised into

three parts: Chapter 2 presents the joint work with Buch in proving Theorems A, B, C;

Chapter 3 concerns the equivariant quantum K-theory of projective space Pn and the

demonstrations of Theorems D, E, F. Background information and notation are given

in Chapter 1.
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Chapter 1

Preliminaries

1.1 Flag varieties in general

Let X = G/P be a flag variety defined by a connected, semisimple complex algebraic

group G and a parabolic subgroup P . Fix subgroups T ⊂ B ⊂ P ⊂ G with T a maximal

torus and B a Borel subgroup. Denote by Bop the opposite Borel corresponding to B,

the Borel subgroup of G characterised by B ∩Bop = T .

Let W = NG(T )/T be the Weyl group of G, and let R = R+∪R− denote the roots,

positive and negative. Let ∆ denote the simple roots of G. For α ∈ ∆ the simple

reflections sα ∈ W generate W . As such every w ∈ W can be written as a product of

simple reflections: w = sα1 · · · sαk ; the length `(w) is the minimal number of terms in

such a factorization of w.

The parabolic subgroup P corresponds to a subset ∆P of ∆. If P is maximal

parabolic, then ∆P comprises all but one simple root, say, α; in this case we denote the

maximal P by Pα. In any case P has its own Weyl group WP which may be identified

with NP (T )/T or equivalently as the subgroup of W generated by the simple reflections

sβ ∈W , for β ∈ ∆P .

The torus T and the Borel subgroups B and Bop act on X by left translations,

and these actions bear fundamental consequences on the geometry of X. The torus

T has finitely-many fixed points in X—i.e., finitely many points wP ∈ X such that

T.wP = wP ; these points correspond bijectively to the cosets of W/WP . Each coset

has a unique representative of minimal length; let WP denote the set of these minimal

length representatives.

Under the Borel actions, the orbit-closures of these T -fixed points give rise to the
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Schubert varieties of X:1

Xw := B.wP , the B-stable Schubert variety defined by w ∈W ,

Xw := Bop.wP , the Bop-stable Schubert variety defined by w ∈W .

Although they are defined for each element of the Weyl group W , Schubert varieties

Xw and Xw depend only on the coset of w in W/WP . In fact if w ∈ WP , then

dimXw = `(w) and codim(Xw, X) = `(w). This is one reason why we shall henceforth

index Schubert varieties by elements of WP .

Richardson varieties are the intersections of opposite Schubert varieties Xu ∩ Xv,

provided the intersection is nonempty. Because X is itself a B- and Bop-stable Schubert

variety, all Schubert varieties are Richardson, but the converse is generally not true. As

the intersection of T -stable varieties, Richardson varieties are closed under the action

of T . They are irreducible [12], [25] with dimXu ∩Xv = `(u)− `(v), where u, v ∈WP .

The following additional properties of Richardson varieties will be crucial to our work:

Theorem 1.1 ([23], [24], [2]). Richardson varieties are Cohen-Macaulay, normal and

rational with rational singularities.2

1.2 Cominuscule flag varieties

Let θ ∈ R+ be the highest (long) root of G. Express θ in terms of the simple roots:

θ =
∑

β∈∆ nββ where the coefficients nβ are nonnegative integers.

Definition 1.2. A simple root α ∈ ∆ is cominuscule if nα = 1. A flag variety

X = G/P is cominuscule if P = Pα is a maximal parabolic whose corresponding

simple root α is cominuscule.

1The Schubert varieties Xw and Xw are also known as ordinary and opposite Schubert varieties
respectively, referring to the type of Borel subgroup that defines them. One word of caution: pairs of
Schubert varieties Xu and Xv are also referred to as opposite Schubert varieties. It should be clear
from context what is meant when we use the term “opposite” Schubert varieties.

2A variety Y has rational singularities if there exists a resolution of singularities π : Ỹ → Y such
that π∗OỸ = OY and Riπ∗OỸ = 0 for i > 0. It is a fact that if Y has rational singularities, then all of

its resolutions π′ : Ỹ ′ → Y satisfy this cohomological-triviality.
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The cominuscule flag varieties comprise the following spaces: Grassmannians Gr(k, n)

of type A, Lagrangian Grassmannians LG(n, 2n), maximal orthogonal Grassmannians

OG(n, 2n), quadric hypersurfaces of Pn and the two exceptional spaces known as the

Cayley plane and Freudenthal variety. See Table 1.1 below. Of these, the cominuscule

spaces of type A are perhaps the easiest to describe:

Example 1.3 (Grassmannians of type A). Let G = SLn(C), the group of complex

n × n matrices of determinant 1. Then T is the collection of diagonal matrices in

SLn(C), B the upper triangular matrices and Bop the lower triangular matrices. The

torus T naturally embeds into (C∗)n, but its rank is one smaller: T ' (C∗)n−1. The

corresponding root system is type An−1.

For each 1 ≤ i ≤ n let εi : (C∗)n → C∗ be projection onto the ith component, and

consider their restrictions to T ⊂ (C∗)n. Then the simple roots of G are αi = εi
εi+1

(or

αi = εi − εi+1 when written additively) for 1 ≤ i ≤ n− 1. The highest root is precisely

θ = α1 + · · ·+ αn−1 when written additively. Thus every simple root is cominuscule in

type A.

The normaliser NG(T ) is the collection of monomial matrices in SLn(C). Conse-

quently the Weyl group W is isomorphic to the permutation group Sn. The simple

reflection sαi is the permutation that transposes i and i + 1. If Pαk is a maximal

parabolic, then WPαk
is the subgroup of Sn generated by all transpositions (i, i+ 1) for

i 6= k; it can be identified with Sk × Sn−k. The collection WP of minimal length coset

representatives of W/WPαk
then comprises all permutations w ∈ Sn satisfying

w(1) < w(2) < · · · < w(k) and w(k + 1) < · · · < w(n).

As observed earlier, all of the flag varieties X = G/Pα given by maximal parabolics

Pα are cominuscule. If α = αk, then Pαk = BWPαk
B is the stabiliser of a k-dimensional

subspace of Cn under the natural action of G on Cn—specifically the subspace spanned

by the first k standard basis vectors of Cn. Therefore X is Gr(k, n) the Grassmannian

of k-planes in Cn. In particular X is Pn−1 or its dual projective space (P∗)n−1 when

k = 1 or n− 1.
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Table 1.1: Dynkin diagrams with cominuscule roots filled-in

Type Dynkin diagram Flag varieties

An (n ≥ 1) Gr(k, n+ 1)

Bn (n ≥ 2) Odd quadric hypersurfaces

Cn (n ≥ 3) LG(n, 2n)

Dn (n ≥ 4) Even quadric hypersurfaces, OG(n, 2n)

E6 Cayley plane E6/P6

E7 Freudenthal variety E7/P7

We close this section with some remarks on the singular homology of a general flag

variety X = G/P . Each Schubert variety Xw ⊂ X defines a Borel-Moore homology

class [Xw] ∈ H∗(X,Z) in singular homology; these Schubert classes in turn form an

additive basis:

H∗(X,Z) =
⊕
w∈WP

Z[Xw].

In particular the (complex) one-dimensional Schubert classes generate H2(X,Z). Since

these Schubert curves Xsβ correspond to the simple roots β ∈ ∆r∆P , we can identify

H2(X,Z) '
⊕

β∈∆r∆P

Z[Xsβ ].

Note that when Pα is maximal parabolic, H2(X,Z) ' Z[Xsα] ' Z.

Elements of H2(X,Z) are called (curve) degrees; a degree d in H2(X,Z) is effec-

tive if, when d is expressed d =
∑
nβ[Xsβ ], each of the coefficients nβ is nonnegative.

1.3 Equivariant K-theory

In this section we present a brief account of equivariantK-theory for a smooth projective

complex variety X. For a detailed account, we refer the reader to the textbook of

Chriss-Ginzburg [9] and the references therein.
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Let KT (X) be the Grothendieck group of T -equivariant algebraic vector bundles E

on X. The tensor product of vector bundles makes KT (X) a commutative, associative

ring with 1, the multiplicative identity 1 given by the class of the trivial line bundle.

There is also KT (X), the Grothendieck group of T -equivariant coherent sheaves

F on X. Connecting these two Grothendieck groups is a natural inclusion of groups

KT (X)→ KT (X) defined by [E] 7→ [E ], where E is the sheaf of sections of the vector

bundle E → X. In general this map is not an isomorphism, but it is when X is smooth.

In this case there is an inverse map KT (X)→ KT (X) defined by [F ] 7→
∑

i(−1)i[Ei],

where

0 → En → En−1 → · · · → E1 → E0 → F → 0

is a resolution of the coherent sheaf F , with Ei a locally free sheaf corresponding to

the vector bundle Ei. The smoothness of X guarantees, for each coherent sheaf F , the

existence of such a (finite) locally free resolution. With this isomorphism we identify

the groups KT (X) and KT (X); since the former is also a ring, KT (X) is a ring as well,

with the ring structure inherited from KT (X) under the identification.

Let f : X → Y be a T -equivariant morphism of smooth projective T -varieties

over C. The pullback of equivariant vector bundles extends to a ring homomorphism

f∗ : KT (Y )→ KT (X). Thus KT (X) is a KT (Y )-algebra. As an immediate consequence

we have that KT (X) is always a KT (pt)-algebra, where pt = Spec C. Indeed this follows

from the fact that X comes equipped with a canonical structure morphism X → pt,

pulling back over which yields the ring homomorphism KT (pt)→ KT (X).

Since X and Y are projective over C, the morphism f is proper. Thus equivariant

coherent sheaves F on X can be pushed forward to equivariant coherent sheaves f∗F

on Y ; the derived pushforwards Rif∗F are also coherent and T -equivariant on Y . All

of this comes together to produce the pushforward map f∗ : KT (X)→ KT (Y ) defined

by

[F ] 7→
∑
i≥0

(−1)i[Rif∗F ].

These operations are functorial as well: given morphisms X
f→ Y

g→ Z, we have

(gf)∗ = f∗g∗ and (gf)∗ = g∗f∗. The projection formula also holds: given a proper
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T -equivariant morphism f : X → Y and classes [F ] ∈ KT (Y ), [G] ∈ KT (X), we

have f∗
(
f∗[F ] · [G]

)
= [F ] · f∗[G]. In particular this means f∗ is a KT (Y )-module

homomorphism.

Example 1.4. Let X = pt. Then a T -equivariant vector bundle on X is precisely a

finite-dimensional C-linear representation of T . Thus KT (pt) is the representation ring

of T .

Notation. Γ := KT (pt).

Fix an identification of T with (C∗)n. By the semisimplicity of T , the irreducible

representations of T form a Z-basis of Γ; since T is abelian, these are precisely the

one-dimensional representations of T . These representations in turn can be identified

with characters α : T → C∗, i.e., the one-dimensional T -representation Cα defined by

t · z = α(t)z for t ∈ T and z ∈ C. Thus as an abelian group we have

Γ =
⊕

characters α

Zeα.

On the other hand the characters of T form a lattice themselves, with a basis

consisting of the projection maps εi : T → C∗ defined by (a1, . . . , an) 7→ ai. Thus as

a ring, Γ is the Laurent polynomial ring Z[e±ε1 , . . . , e±εn]. We shall simply identify Γ

with Z[t±1
1 , . . . , t±1

n ] by ti ↔ eεi .3

Example 1.5. Let X = G/P be a flag variety, and consider its opposite Schubert

varieties Xw, w ∈ WP . Since we have a closed immersion i : Xw ↪→ X, the structure

sheaf OXw pushes forward to a (T -equivariant) coherent sheaf on X, and the higher

direct images Rpi∗OXw vanish. Thus pushing forward along this inclusion produces

the opposite Schubert class [OXw ] ∈ KT (X). These opposite Schubert classes [OXw ]

collectively form a basis for KT (X) over Γ.

The same can be said about the ordinary Schubert classes [OXw ] ∈ KT (X), w ∈WP .

We shall make use of both bases in the sequel.

3In other words Γ is the group ring of the character lattice X(T ) of T . Thus each character
α : T → C∗ is formally an element of Γ; we follow standard convention and denote by eα the element
in Γ corresponding to α. This exponential notation has the benefit of distinguishing the additive group
structure of Γ—a purely formal operation—from the ring structure of Γ, which is inherited from the
group structure of X(T ).
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Notation. For w ∈WP , denote [Ow] := [OXw ] and [Ow] := [OXw ] in KT (X).

Example 1.6. Because the opposite Schubert classes form a Γ-basis for KT (X), for

each u, v ∈WP there exist unique Kw
u,v ∈ Γ such that

[Ou] · [Ov] =
∑
w

Kw
u,v[O

w].

These coefficients Kw
u,v are the (opposite) Schubert structure constants of KT (X). They

satisfy the following “positivity” property, as conjectured by Griffeth-Ram [19] and

proven by Anderson-Griffeth-Miller [1]:

(−1)`(w)−`(u)−`(v)Kw
u,v ∈ Z≥0[e

−αi − 1]αi∈∆.

In others words, positivity asserts that the Schubert structure constants Kw
u,v are, up to

a predictable sign, polynomials in e−αi − 1 with nonnegative integer coefficients, where

the −αi are the negatives of simple roots.

Example 1.7. When X = Gr(k, n) the Schubert structure constants Kw
u,v can be

computed combinatorially by using the genomic tableaux and genomic jeu de taquin of

Pechenik-Yong [22].

Definition 1.8. The sheaf Euler characteristic χ of X is the map χ : KT (X)→ Γ

defined by pushforward along the structure morphism X → pt. On generators [F ] ∈

KT (X) it is defined by

[F ] 7→
∑
i

(−1)i[H i(X,F )],

where H i(X,F ) is the ith cohomology group of F (which is a T -module). It is Γ-linear

by the projection formula.

For an irreducible projective variety X, recall that X is unirational if there exists

a dominant rational map Pk 99K X from some projective space Pk. Also recall that

X is rationally connected if any two general points x, y ∈ X are connected by an

irreducible rational curve.4 Rational varieties are unirational, and projective unirational

varieties are in turn rationally connected.

4This means that there exists a nonempty open subset U of X such that for all distinct points x, y
of U , both x and y lie in the image of a morphism P1 → X.
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Proposition 1.9. Let X be a smooth, projective T -variety. If X is unirational, then

χ
(
[OX ]

)
= 1 in Γ.

Proof. For such a variety X, all of the higher cohomology groups H i(X,OX) vanish. (In

fact this holds more generally for rationally connected X—see [10, Cor. 4.18] for a proof

involving Hodge theory.) Thus χ
(
[OX ]

)
equals [H0(X,OX)], which, as an element of

Γ, is formally a Laurent polynomial in characters of T . To identify this polynomial, we

must identify the action of T on H0(X,OX).

The zeroth cohomology group H0(X,OX) coincides with the global sections of the

structure sheaf Γ(X,OX). Because X is irreducible (by smoothness) and projective, we

have Γ(X,OX) = C—i.e., the global regular functions on X are all constant. Conse-

quently the T -action on Γ(X,OX) is trivial. Thus as an element of Γ, [H0(X,OX)] is

the class of the trivial character of T , i.e., χ
(
[OX ]

)
= 1. �

Proposition 1.9 extends to unirational varieties that are singular, provided the sin-

gularities are well-behaved (e.g., rational singularities). For this to hold equivariantly, a

singular T -variety must admit a T -equivariant resolution of singularities (defined below

in the proof of Corollary 1.10). This is always the case over C—see [27]. For a singular

Schubert variety, its corresponding Bott-Samelson resolution is T -equivariant [11], [3].

Corollary 1.10. Let X be a smooth, projective T -variety. Let Y be a closed, T -stable

subvariety of X. If Y is unirational with rational singularities, then χ
(
[OY ]

)
= 1.

Proof. Let π : Ỹ → Y be a T -equivariant resolution of singularities, meaning Ỹ is a

smooth, projective T -variety and π proper, birational and T -equivariant. As unira-

tionality is preserved under such π, we have Ỹ is unirational. Because Y has rational

singularities, [OY ] = π∗[OỸ ] in KT (X); what’s more, by functoriality of pushforwards,

χ
(
[OY ]

)
= χ

(
π∗[OỸ ]

)
= χ

Ỹ

(
[O

Ỹ
]
)
,

where χ
Ỹ

: KT (Ỹ ) → Γ is the sheaf Euler characteristic on Ỹ . Thus the corollary

reduces to the computation of χ
Ỹ

(
[O

Ỹ
]
)

for smooth, projective, unirational Ỹ . This is

the previous Proposition 1.9. �
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Example 1.11. Because Schubert varieties are rational with rational singularities

(Theorem 1.1), Corollary 1.10 says that χ
(
[Ow]

)
= χ

(
[Ow]

)
= 1 for all w ∈ WP .

Thus the sheaf Euler characteristic on X can be characterised as the Γ-linear map that

evaluates all Schubert classes at 1. More generally χ
(
[OXu∩Xv ]

)
= 1 whenever Xu∩Xv

is nonempty because Richardson varieties are also rational with rational singularities.

It is a standard result that [Ou] · [Ov] = [OXu∩Xv ] in KT (X).5 Therefore by the

previous remarks we have

χ
(
[Ou] · [Ov]

)
=


1 if Xu ∩Xv is nonempty,

0 otherwise.

This example shows two things: 1) For X 6= pt, the sheaf Euler characteristic

χ : KT (X) → Γ is never a ring homomorphism; 2) As both types of Schubert classes

[Ow] and [Ow] form a Γ-basis for KT (X), the sheaf Euler characteristic defines a non-

degenerate pairing on KT (X):

KT (X)×KT (X) → Γ

(
[F ], [F ′]

)
7→ χ

(
[F ] · [F ′]

)
.

Notation. For an opposite Schubert class [Ow], denote by [Ow]∨ its dual under this

pairing, i.e., the unique element [Ow]∨ ∈ KT (X) satisfying χ
(
[Ow] · [Ou]∨

)
= δwu.

Similarly denote by [Ow]∨ the dual of [Ow].

1.4 Equivariant quantum K-theory

Here we sketch a construction of the (small) torus-equivariant quantum K-theory ring

QKT (X) by using moduli spaces of stable maps into X. Our focus will be on QKT (X)

for cominuscule X, although everything we describe in this section holds more generally

for all complex flag varieties. We refer the reader to the work of Lee [21] for a thorough

5Indeed, let X be a smooth, projective T -variety, and let Y , Z be closed, irreducible, T -stable
subvarieties. Suppose Y and Z are Cohen-Macaulay. If codim(Y ∩Z,X) = codim(Y,X)+codim(Z,X),
then Y ∩ Z is Cohen-Macaulay, and [OY ] · [OZ ] = [OY ∩Z ] in KT (X). This can be proved using a local
computation of regular sequences and their Koszul resolutions. One may also appeal to the results of
S. J. Sierra [26] for more sophisticated techniques.
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account of quantum K-theory, and to the notes of Fulton-Pandharipande [14] for details

on moduli of stable maps into X.

Let X = G/Pα be a cominuscule flag variety. Recall that for such an X, the

second homology group H2(X,Z) can be identified with Z by means of the identification

H2(X,Z) ' Z[Xsα]. Given an effective degree d ∈ H2(X,Z) and an integer N ≥ 0,

let M0,N (X, d) denote the (Kontsevich) moduli space of N -pointed, genus-0, degree-d

stable maps into X. The elements of M0,N (X, d) are isomorphism classes of tuples

(f, C, p1, . . . , pN ) such that:

(1) C is a union of finitely many P1’s with at worst nodal singularities;

(2) The p1, . . . , pN are nonsingular points in C called marked points;

(3) The morphism f : C → X satisfies f∗[C] = d in H2(X,Z);

(4) The morphism f is “stable”: a component of C maps to a single point in X only

if this component has at least three special points, i.e., nodes or marked points.

Note that the image of a stable map is a rational curve in X, possibly reducible.

For 1 ≤ i ≤ N , denote by evi : M0,N (X, d) → X the ith evaluation map, which is

defined by evi(f, C, p1, . . . , pN ) = f(pi). We record the following facts aboutM0,N (X, d)

and its evaluation maps for cominuscule X:

Theorem 1.12 ([14], [20]). The Kontsevich space M0,N (X, d) is an irreducible, pro-

jective, normal, rational variety over C. It has dimension dim(X) +

∫
d
c1(TX) +N − 3

where c1(TX) is the first Chern class of the tangent bundle TX of X.6 The evaluation

maps evi : M0,N (X, d)→ X are flat and proper.

The T -action of X naturally extends to an action on M0,N (X, d): the torus T acts on

a stable map by acting on its image in X. The evaluation maps evi are then compatible

with this action. Therefore we have KT

(
M0,N (X, d)

)
, the T -equivariant K-theory of

coherent sheaves on M0,N (X, d).7

6The integral
∫
d
c1(TX) means the degree of the zero-cycle obtained from the pairing d · c1(TX) :=

d[Xsα ] · c1(TX) in H∗(X,Z).

7Because M0,N (X, d) is not smooth, KT

(
M0,N (X, d)

)
can not be identified with KT

(
M0,N (X, d)

)
.

This will not present any problems for us.
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Definition 1.13. Let σ1, . . . , σN ∈ KT (X). Their (N-point, degree-d)K-theoretic

Gromov-Witten invariant is the Laurent polynomial Id(σ1, . . . , σN ) ∈ Γ defined by

Id(σ1, . . . , σN ) = χM0,N (X,d)

(
ev∗1 σ1 · · · ev∗N σN

)
,

where χM0,N (X,d) : M0,N (X, d)→ Γ is the Euler characteristic map on M0,N (X, d).8

Of particular interest to us are the Id
(
[Ou], [Ov], [Ow]∨

)
∈ Γ, the three-point K-

theoretic Gromov-Witten invariants of [Ou], [Ov], [Ow]∨ ∈ KT (X) of various degrees

d. Because the evaluation maps evi are flat, the pullbacks of Schubert classes ev∗i [O
w]

coincide with the KT -classes of the closed subvarieties ev−1
i (Xw) in M0,N (X, d). Thus

the invariants Id
(
[Ou], [Ov], [Ow]∨

)
capture information about the families of rational

curves meeting Schubert varieties Xu, Xv (and Xw).

We may now describe the construction of the (small) torus-equivariant quantum

K-theory ring QKT (X). Let ΓJqK denote the ring of formal power series over Γ in the

single parameter q. Then QKT (X) is an algebra over ΓJqK whose underlying abelian

group is defined to be KT (X)⊗Γ ΓJqK. Consequently, QKT (X) is free as a ΓJqK-module

with the opposite Schubert classes [Ow] forming a basis, where w ∈ WP ; the ordinary

Schubert classes [Ow] also form a basis.

The ring structure ? of QKT (X) is not induced by the tensor product of KT (X) and

ΓJqK. Instead, it is the ΓJqK-bilinear extension of the following operation on opposite

Schubert classes:

[Ou] ? [Ov] :=
∑

w∈WP

d≥0

Nw,d
u,v q

d[Ow].

For each u, v, w ∈ WP and d ∈ H2(X,Z), the structure constant Nw,d
u,v is the follow-

ing recursively defined element of Γ involving three-point and two-point K-theoretic

Gromov-Witten invariants:

Nw,d
u,v = Id

(
[Ou], [Ov], [Ow]∨

)
−

∑
r∈WP

0<e≤d

N r,d−e
u,v Ie

(
[Or], [Ow]∨

)
.

8Even though KT

(
M0,N (X, d)

)
can not be identified with KT

(
M0,N (X, d)

)
, the pullbacks ev∗i σ

still exist: since X is smooth, we identify σ ∈ KT (X) with vector bundles on X; these vector bundles
pull back to vector bundles on M0,N (X, d), which in turn define classes in KT

(
M0,N (X, d)

)
.



16

Thus we obtain the ring structure of QKT (X).

If equivariant quantum K-theory were exactly like, say, the quantum cohomology

QH∗(X) ofX, then theK-theoretic Gromov-Witten invariant Id
(
[Ou], [Ov], [Ow]∨

)
itself

would be the structure constant Nw,d
u,v . This however is not the case: for d 6= 0, we gener-

ally have Nw,d
u,v 6= Id

(
[Ou], [Ov], [Ow]∨

)
. The additional term

∑
r,eN

r,d−e
u,v Ie

(
[Or], [Ow]∨

)
arises in the structure constant Nw,d

u,v as a type of correction term. It ensures the

following result:

Theorem 1.14 ([16]). The quantum product ? of QKT (X) is associative.

Thus QKT (X) is a commutative, associative ΓJqK-algebra with 1, free as a module

over ΓJqK.

Example 1.15. In the special case of d = 0, the structure constant Nw,0
u,v of [Ou] ?

[Ov] equals I0

(
[Ou], [Ov], [Ow]∨

)
by definition. This in turn is the Schubert structure

constant Kw
u,v of [Ou] · [Ov] in KT (X). (See Example 1.6 for the notation.)

To see this, recall the definition of I0

(
[Ou], [Ov], [Ow]∨

)
as χM0,3(X,0)

(
ev∗1[O

u] ·

ev∗2[O
v] · ev∗3[O

w]∨
)
. Since a degree-zero stable map into X must be constant, we

have M0,3(X, 0) = M0,3 × X, where M0,3 is the Deligne-Mumford space of stable ra-

tional curves with three marked points. Since M0,3 = pt, we have M0,3(X, 0) = X,

and each evaluation map evi is the identity map on X. Thus I0

(
[Ou], [Ov], [Ow]∨

)
=

χX
(
[Ou] · [Ov] · [Ow]∨

)
. By definition of χ and [Ow]∨, this is precisely Kw

u,v.

Example 1.15 shows that QKT (X) is a formal deformation ring of KT (X). That is,

QKT (X) is a ring with a grading such that KT (X) is contained in the zeroth-degree

component; furthermore, for σ, τ ∈ KT (X), the degree-zero term of σ ? τ in QKT (X)

is precisely the product σ · τ in KT (X).

Even though theK-theoretic Gromov-Witten invariants Id
(
[Ou], [Ov], [Ow]∨

)
are not

the structure constants Nw,d
u,v of QKT (X), it is still worthwhile to retain the following

pairing on QKT (X): for σ, τ ∈ KT (X) define

σ � τ =
∑

w∈WP

d≥0

Id(σ, τ, [O
w]∨)[Ow]

and extend ΓJqK-bilinearly to the rest of QKT (X).
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Chapter 2

Sums of Schubert structure constants

The motivation for this chapter’s work is the following observation: consider QKT (X)

for X, say, a Grassmannian of type A. Then for all Schubert classes [Ou], [Ov] ∈

QKT (X), if [Ou] ? [Ov] =
∑

w,dN
w,d
u,v qd[Ow], then

∑
w,dN

w,d
u,v = 1 in Γ.

For example when X = Gr(2, 4), where the Schubert varieties may be parametrised

by Young diagrams of the 2× 2 rectangle, and Γ = Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ],

[O ] ? [O ] =

(
1− t4

t1
− t4
t3

+
t24
t1t3

)
[O ] +

(
t4
t3
− t24
t1t3

)
[O ]

+ q

(
t4
t1
− t24
t1t3

)
[O∅] + q

t24
t1t3

[O ]

and
(
1− t4

t1
− t4

t3
+

t24
t1t3

)
+
(
t4
t3
− t24

t1t3

)
+
(
t4
t1
− t24

t1t3

)
+

t24
t1t3

= 1.

This phenomenon translates to a statement about the sheaf Euler characteristic

χ : KT (X) → Γ. We prove this statement for cominuscule flag varieties: X = G/P

where P = Pα is a maximal parabolic corresponding to a cominuscule root α.

The proof in the cominuscule case follows from a characterisation of the ring struc-

ture of QKT (X), due to Buch-Chaput-Mihalcea-Perrin [6]. This characterisation, in

turn, rests on a ‘quantum equals classical’ result proved by the same authors [5]. For

cominuscule X, this ‘quantum equal classical’ result relates the K-theoretic Gromov-

Witten invariants Id
(
[Ou], [O

v], [Ow]∨
)

of opposite Schubert varieties Xu, X
v to the K-

theory of their (generalised) curve neighborhoods. Introduced by Fulton-Woodward [15]

and studied extensively by Buch-Chaput-Mihalcea-Perrin [4], [5] and Buch-Mihalcea [8],

these curve neighborhoods have proven to be extremely valuable in understanding the

quantum theory of flag varieties.
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2.1 Curve neighborhoods

Let X = G/Pα be a cominuscule flag variety, and let Y be a Schubert variety of X,

ordinary or opposite. Given an effective degree d ∈ H2(X,Z), the degree-d curve

neighborhood of Y is defined to be the union of all degree-d (reducible) rational

curves in X that meet Y . We denote this curve neighborhood by Γd(Y ). Alternatively

Γd(Y ) can be defined using moduli of stable maps: Γd(Y ) = ev2(ev−1
1 (Y )) where evi :

M0,2(X, d) → X are the evaluation maps. Thus Γd(Y ) is the image of the one-point

Gromov-Witten variety ev−1
1 (Y ): the locus of genus-0, degree-d stable maps into X

whose first marked point maps into Y .

Example 2.1. Any two points of Pn are connected by a P1, ie. a degree d = 1 curve;

thus for all Schubert varieties Y , the line neighborhood Γ1(Y ) is precisely all of Pn. In

fact we have in general that Γd(Y ) ⊂ Γd+1(Y ). Thus Γd(Y ) = Pn for all d > 0.

Recall that B is the Borel subgroup of X, and Bop the opposite Borel. If Y is

B-stable, then so is Γd(Y ): for if C is any degree-d rational curve passing through Y ,

then so is b.C—for b ∈ B—as each b.C passes through b.Y = Y . The same argument

holds for Bop-stable Y . Remarkably, the following is also true:

Theorem 2.2 ([4]). Let Y be a Schubert variety of X, ordinary or opposite. Then

Γd(Y ) is rationally connected. In particular it is irreducible.

Proof. The map ev1 : M0,2(X, d) → X is a locally trivial fibration [4, Prop. 2.3]; to-

gether with the rationality of M0,2(X, d) (Theorem 1.12) this can be used to deduce that

the fibers of ev1 are unirational. But since M0,2(X, d) is also projective, unirationality

and projectiveness imply that the fibers of ev1 are rationally connected.

Now consider the restriction ev1 : ev−1
1 (Y ) → Y . This restriction is still a locally

trivial fibration, which means ev−1
1 (Y ) is birational to Y × ev−1

1 (y), where ev−1
1 (y) is

the fiber of some general point y ∈ Y . This product Y ×ev−1
1 (y) is rationally connected

since each factor Y and ev−1
1 (y) is. Thus ev−1

1 (Y ) is also rationally connected, hence

Γd(Y ) = ev2(ev−1
1 (Y )) as well. As rationally connected varieties are irreducible, the

result follows. �
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Corollary 2.3. Γd(Y ) is a B-stable (or Bop-stable) Schubert variety whenever Y is.

Proof. Every closed, irreducible, B-stable (or Bop-stable) subvariety of X is a Schubert

variety. �

In view of these results, it is natural to try to identify the Schubert variety Γd(Y )

in terms of WP , the set of minimal length coset representatives of W/WP . For all

w ∈WP and for all effective d ∈ H2(X,Z), define w(d), w(−d) ∈WP by

Xw(d) = Γd(Xw),

Xw(−d) = Γd(X
w).

Both w(d), w(−d) can be identified using a Hecke product on W/WP ; recent work has

shed light on the combinatorics of this Hecke product apropos this geometry of X [8].

Curve neighborhoods pertain to a single Schubert variety, but the notion extends

to any number of varieties. Our interest is particularly in pairs of opposite Schubert

varieties:

Definition 2.4. Given an effective d ∈ H2(X,Z) and opposite Schubert varieties Xu,

Xv, let Γd(Xu, X
v) be the union of all degree-d (reducible) rational curves in X meeting

both Xu and Xv.

Like Γd(Y ), this Γd(Xu, X
v) is a projected Gromov-Witten variety [5] as it

is the image of a Gromov-Witten variety: Γd(Xu, X
v) = ev3

(
ev−1

1 (Xu) ∩ ev−1
2 (Xv)

)
where evi : M0,3(X, d)→ X are the evaluation maps.

Notation. For future use let GWd(Xu, X
v) denote ev−1

1 (Xu) ∩ ev−1
2 (Xv). It is the

subvariety of M0,3(X, d) consisting of all genus-0, degree-d stable maps whose first two

marked points map into Xu and Xv respectively.

The curve neighborhoods Γd(Xw), Γd(X
w) are Schubert varieties, so how are pro-

jected Gromov-Witten varieties Γd(Xu, X
v) related to, say, Richardson varieties? A

natural candidate to consider is Γd(Xu) ∩ Γd(X
v), which is Richardson by Corollary

2.3, provided the intersection is nonempty. Certainly Γd(Xu, X
v) ⊂ Γd(Xu) ∩ Γd(X

v);

the converse however need not be true even in simple cases:
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Example 2.5. In X = P3, let Xu = P1 be the B-stable Schubert curve, and Xv the

Bop-fixed point. Then Γ1(Xu) ∩ Γ1(Xv) = P3 by Example 2.1; on the other hand

Γ1(Xu, X
v) is isomorphic to P2, specifically P(e1, e2, e4) where (e1, e2, e4) is the vector

space spanned by the first, second and fourth standard basis vectors of C4. Thus

Γ1(Xu, X
v) ( Γ1(Xu) ∩ Γ1(Xv).

Even though Γd(Xu, X
v) is not necessarily equal to Γd(Xu) ∩ Γd(X

v), there is still

a possibility that Γd(Xu, X
v) be Richardson, or close to it. The following result of

Buch-Chaput-Mihalcea-Perrin addresses this:

Theorem 2.6 ([5]). For a cominuscule flag variety X, the projected Gromov-Witten

varieties Γd(Xu, X
v) are images of Richardson varieties under morphisms G/P ′ → X

from larger flag varieties G/P ′. Consequently any nonempty Γd(Xu, X
v) inherits prop-

erties of Richardson varieties: in particular Cohen-Macaulay with rational singularities.

2.2 Quantum equals classical

The projected Gromov-Witten varieties Γd(Xu, X
v) also inherit properties from the

Gromov-Witten varieties GWd(Xu, X
v) that define them. For example GWd(Xu, X

v)

is either empty or unirational [26], which means Γd(Xu, X
v) is too. More is true:

Theorem 2.7 ([5]). When X is cominuscule, the restricted map ev3 : GWd(Xu, X
v)→

Γd(Xu, X
v) is cohomologically trivial: (ev3)∗OGWd(Xu,Xv) = OΓd(Xu,Xv), and for i > 0,

Ri(ev3)∗OGWd(Xu,Xv) = 0.

This last fact yields the main theorem of this section:

Theorem 2.8 (Quantum equals classical, [5]). The following holds in KT (X):

[OΓd(Xu,Xv)] =
∑

w∈WP

Id
(
[Ou], [O

v], [Ow]∨
)
[Ow],

where Id
(
[Ou], [O

v], [Ow]∨
)
∈ Γ is the K-theoretic Gromov-Witten invariant of [Ou],

[Ov], [Ow]∨.

Proof. Because ev3 : GWd(Xu, X
v)→ Γd(Xu, X

v) is cohomologically trivial,

(ev3)∗[OGWd(Xu,Xv)] = [OΓd(Xu,Xv)]
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in KT (X). If we express (ev3)∗[OGWd(Xu,Xv)] =
∑

w∈WP aw[Ow] in terms of the oppo-

site Schubert basis, where aw ∈ Γ, then we must show that aw = Id
(
[Ou], [O

v], [Ow]∨
)

for all w ∈WP .

On the other hand if [Ow]∨ is the element dual to [Ow] under χ = χX , we then have

aw = χ
(
(ev3)∗[OGWd(Xu,Xv)] · [Ow]∨

)
.

Also, by Sierra’s Kleiman-Bertini theorem [26],

[OGWd(Xu,Xv)] = ev∗1[Ou] · ev∗2[O
v]

in KT

(
M0,3(X, d)

)
. Together with the projection formula,

aw = χ
(

(ev3)∗[OGWd(Xu,Xv)] · [Ow]∨
)

= χ(ev3)∗

(
[OGWd(Xu,Xv)] · ev∗3[O

w]∨
)

= χ(ev3)∗
(

ev∗1[Ou] · ev∗2[O
v] · ev∗3[O

w]∨
)

= χM0,3(X,d)

(
ev∗1[Ou] · ev∗2[O

v] · ev∗3[O
w]∨
)
,

which by definition equals Id
(
[Ou], [O

v], [Ow]∨
)
. �

Corollary 2.9. For opposite Schubert classes [Ou], [O
v] ∈ KT (X), we have in QKT (X)

[Ou]� [Ov] =
∑
d

qd[OΓd(Xu,Xv)].

Proof. This is simply an application of Theorem 2.8 to the definition [Ou] � [Ov] =∑
w,d Id

(
[Ou], [O

v], [Ow]∨
)
qd[Ow]. �

Lastly let ψ : QKT (X) → QKT (X) be the ΓJqK-linear endomorphism defined on

the Schubert basis by [Ow] 7→ [Ow(−1)]. In other words ψ is the endomorphism that

sends an opposite Schubert class [Ow] to the class of its line neighborhood [Ow(−1)]. (It

may be defined more succinctly as ψ = (ev2)∗(ev1)∗ where again evi : M0,2(X, 1)→ X

are the evaluation maps.) Together with ψ, the ideas of this section culminate in

Buch-Chaput-Mihalcea-Perrin’s alternate characterisation of the quantum product ?

for cominuscule QKT (X):
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Theorem 2.10 ([6]). Let X be cominuscule. For all classes σ, τ ∈ KT (X), we have

σ ? τ = (1− qψ)(σ � τ)

in QKT (X).

2.3 Euler characteristics of cominuscule quantum K-theory

As H2(X,Z) ' Z[Xsα] ' Z for cominuscule X = G/Pα, the following is well-defined:

Definition 2.11. The distance between opposite Schubert varieties Xu, Xv ⊂ X is

the smallest effective degree d ∈ H2(X,Z) of a rational curve in X meeting both Xu and

Xv. (Here we identify H2(X,Z) with Z[Xsα].) Denote this distance by dist(Xu, X
v).

This degree dist(Xu, X
v) may be understood in other ways: it is the smallest degree

d for which Γd(Xu, X
v) is nonempty; it is also the smallest degree d for which the

quantum parameter qd appears in [Ou] ? [Ov] in QKT (X). Perhaps the earliest it has

appeared in the literature is in work of Fulton-Woodward [15], in which they identify

the smallest degree of q appearing in products of Schubert classes in QH∗(X), the

quantum cohomology of the Grassmannian X of type A.

Example 2.12. For cominuscule X, if Xu ∩ Xv is nonempty, then dist(Xu, X
v) = 0

because a point is none other than a degree-0 curve.

Example 2.13. Let X = Pn. Since pairs of points in Pn are connected by a degree-one

P1, we have

dist(Xu, X
v) =


0 if Xu ∩Xv is nonempty

1 otherwise.

Recall from Definition 1.8 the sheaf Euler characteristic χ : KT (X)→ Γ. Then χ is

a map of Γ-modules (but rarely a map of Γ-algebras). It naturally lifts to a ‘quantum-

valued’ sheaf Euler characteristic QKT (X)→ ΓJqK by extending ΓJqK-linearly:

QKT (X) = KT (X)⊗Γ ΓJqK χ⊗1−→ ΓJqK.

We abuse notation and call this extension χ as well.
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As it turns out, χ detects the distance between opposite Schubert varieties Xu and

Xv:

Theorem 2.14. Let Xu, Xv be opposite Schubert varieties in X. Then in QKT (X),

χ
(
[Ou] ? [Ov]

)
= qdist(Xu,Xv).

Proof. By Theorem 2.10 and Corollary 2.9,

[Ou] ? [Ov] = (1− qψ)
(
[Ou]� [Ov]

)
= (1− qψ)

∑
d≥0

qd[OΓd(Xu,Xv)].

Thus χ
(
[Ou] ? [Ov]

)
= χ(1 − qψ)

∑
d≥0 q

d[OΓd(Xu,Xv)]. By Corollary 1.10, the Euler

characteristic χ evaluates Schubert classes at 1, and by definition ψ maps Schubert

classes to Schubert classes. Since the Schubert classes form a basis, the composition

property χψ = χ holds, whence

χ(1− qψ)
∑
d≥0

qd[OΓd(Xu,Xv)] = (χ− qχψ)
∑
d≥0

qd[OΓd(Xu,Xv)]

=
∑
d≥0

qdχ
(
[OΓd(Xu,Xv)]

)
−
∑
d≥0

qd+1χ
(
[OΓd(Xu,Xv)]

)
= qdist(Xu,Xv)χ

(
[OΓdist(Xu,Xv)(Xu,X

v)]
)
.

Since Γdist(Xu,Xv)(Xu, X
v) is unirational and χ

(
[OY ]

)
= 1 for Y unirational with ratio-

nal singularities, we have χ
(
[Ou] ? [Ov]

)
= qdist(Xu,Xv). �

Example 2.15. Theorem 2.14 puts into larger context the following fact about Richard-

son varieties in KT (X):

χ
(
[Ou] · [Ov]

)
=


1 if Xu ∩Xv nonempty, i.e., dist(Xu, X

v) = 0,

0 if Xu ∩Xv empty, i.e., dist(Xu, X
v) > 0.

As we have seen earlier in Chapter 1, equivariant K-theory understands χ
(
[Ou] · [Ov]

)
to be 1 or 0 depending on whether Xu ∩Xv is empty. Theorem 2.14 instead casts this

into a larger enumero-geometric framework involving curve distances. This example

further illustrates the degree-zero nature of the classical theory in quantum K-theory.
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Theorem 2.14 has immediate consequences on the Schubert structure constants of

QKT (X). To discuss these consider

QKpoly
T (X) := KT (X)⊗Γ Γ[q],

where Γ[q] is the polynomial ring in the parameter q. Then QKpoly
T (X) is free as Γ[q]-

module with basis of opposite Schubert classes [Ow]; the ordinary Schubert classes [Ow]

form another basis.

Theorem 2.16 ([4]). QKpoly
T (X) is a subring of QKT (X).

In other words the Schubert structure constants Nw,d
u,v vanish for sufficiently large d.

Consider now the following schema of maps.

QKT (X) ΓJqK

QKpoly
T (X) Γ[q]

KT (X) Γ

χ

⊂ ⊂

χ

⊂ ⊂

Thus the induced map χ : QKpoly
T (X) → Γ[q] may be viewed either as an extension of

χ : KT (X)→ Γ or as a restriction of χ : QKT (X)→ ΓJqK to QKpoly
T (X).

In either case, because QKpoly
T (X) consists of polynomials in q, there is also the map

χ̃ : QKpoly
T (X)→ Γ defined by the composition

QKpoly
T (X) = KT (X)⊗Γ Γ[q]

χ−→ Γ[q]
q 7→ 1−→ Γ.

Then χ̃ : QKpoly
T (X)→ Γ is a map of Γ[q]-modules, provided q acts on Γ as the identity.

It is yet another lift of χ : KT (X)→ Γ, one with an unexpected algebraic property:

Theorem 2.17. The map χ̃ : QKpoly
T (X)→ Γ such that χ̃

(
[Ow]

)
= χ̃(q) = 1 is a ring

homomorphism.

Proof. As χ̃ is Γ-linear by definition, we need only verify that χ̃ is multiplicative on all

of QKpoly
T (X). For this it suffices to show that χ̃ is multiplicative on products of the
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form [Ou] ? [Ov], as each type of Schubert class [Ow] and [Ow] forms a Γ[q]-basis for

QKpoly
T (X). But by Theorem 2.14,

χ̃
(
[Ou] ? [Ov]

)
= χ̃

(
qdist(Xu,Xv)

)
= 1

= 1 · 1

= χ̃
(
[Ou]

)
· χ̃
(
[Ov]

)
. �

Corollary 2.18. Let u, v ∈ WP . For [Ou], [Ov] ∈ QKT (X), let Nw,d
u,v be the elements

of Γ such that

[Ou] ? [Ov] =
∑
w,d

Nw,d
u,v q

d[Ow]

in QKT (X). Then
∑

w,dN
w,d
u,v = 1.

Proof. Because QKpoly
T (X) is a subring of QKT (X) with the same structure constants,

we may prove the claim for QKpoly
T (X) instead. Since χ̃ : QKpoly

T (X) → Γ is a Γ-

linear ring homomorphism, we have 1 = χ̃
(
[Ou]

)
· χ̃
(
[Ov]

)
equals χ̃

(
[Ou] ? [Ov]

)
=∑

w,dN
w,d
u,v . �
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Chapter 3

A formula for quantum K-theory of projective space

In this final chapter, we prove a recursive formula for the products [Ou] ? [Ov] in

QKT (Pn). With this formula we establish Griffeth-Ram positivity of the structure

constants Nw,d
u,v of QKT (Pn). This was originally conjectured by Griffeth-Ram [19] for

the equivariant K-theory ring KT (G/B) of a complete flag variety G/B; their conjec-

ture was eventually proven by Anderson-Griffeth-Miller [1] for KT (G/P ) for all flag

varieties G/P . A similar positivity property is expected to hold for QKT (G/P ), but

this conjecture currently remains open in general.

We also establish an isomorphism between the equivariant quantum K-theory rings

of Pn and Pn+1. This may be understood as the equivariant K-theoretic analogue of

the fact that, for any projective space Pn, the quantum cohomology ring QH∗(Pn) is

isomorphic to the polynomial ring Z[h].

Our work builds on the Chevalley formula of Buch-Chaput-Mihalcea-Perrin. Their

Chevalley formula describes products [Osα] ? [Ov] involving the (opposite) Schubert

divisor class [Osα]. In the notation of Section 3.1, the Chevalley formula states:

Chevalley formula ([6]). For 1 ≤ r ≤ n we have in QKT (Pn)

Õ1 ? Õr =


( tr+1

t1
− 1
)
Õr +

tr+1

t1
Õr+1 if r < n;

( tn+1

t1
− 1
)
Õn + (−1)n+1q

tn+1

t1
if r = n.

3.1 The recursive formula for QKT (Pn)

It will be convenient to identify Pn as a quotient of G = GLn+1(C) instead of SLn+1(C).

We still have the torus T as the set of diagonal matrices in G, but now T ' (C∗)n+1.

The Borel subgroups B and Bop remain the upper and lower triangular matrices. The
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(n + 1)-many characters εi : T → C defined by (a1, . . . , an+1) 7→ ai generate the

character lattice of T ; when written additively the simple roots are αi = εi − εi+1 for

1 ≤ i ≤ n. With this we have Pn = G/Pα1 .

The opposite Schubert varieties Xp are the Bop-stable linear subspaces of Pn. In

terms of homogeneous coordinates [x1 : · · · : xn+1] they can be identified as Xp =

Z(x1, . . . , xp), the zero locus of the first p-homogeneous coordinates. Thus the Xp can

be indexed by their codimension p in Pn, where 0 ≤ p ≤ n. Then QKT (Pn) has a

ΓJqK-basis of opposite Schubert classes [Op] where Γ = Z[e±ε1 , . . . , e±εn+1].1

Notation. Identify Γ
∼−→ Z[t±1

1 , . . . , t±1
n+1] by eεi 7→ ti. In this notation, the negative

simple root e−αi corresponds to ti+1

ti
.

For reasons that shall become apparent soon, it will be convenient to introduce the

following “alternating” Schubert classes:

Notation. For each 0 ≤ p ≤ n, let Õp := (−1)p[Op] in QKT (Pn).2 These alternating

Schubert classes Õp form a ΓJqK-basis for QKT (Pn) since the Schubert classes [Op]

already form a basis.

Let Õn+1 := (−1)n+1q in QKT (Pn) as well. We shall sometimes denote this by q̃.

We emphasise that no Schubert variety Xn+1 actually exists in Pn that corresponds to

this class Õn+1; we nevertheless make the convention in QKT (Pn) because algebraically,

the quantum parameter q functions as though it were this missing Schubert class Õn+1,

at least according to the Chevalley formula. Indeed, with this convention the Chevalley

formula succinctly becomes

Õ1 ? Õr =
( tr+1

t1
− 1
)
Õr +

tr+1

t1
Õr+1

for 1 ≤ r ≤ n.

We now arrive at the main theorem of this chapter:

1Recall from Example 1.4 that Γ is the group ring of the character lattice of T . The characters
α : T → C∗ are formally elements of Γ, which we denote in exponential notation by eα.

2Note Õ0 = [O0] = [OX0 ] = 1 in QKT (Pn) since the opposite Schubert variety X0 is precisely Pn.
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Theorem 3.1 (Recursive formula). Let 1 ≤ p ≤ n. Then for all p ≤ r ≤ n, we have

in QKT (Pn)

Õp ? Õr =
( tr+1

t1
− 1
)
· · ·
( tr+1

tp
− 1
)
Õr

+

p∑
i=1

tr+1

ti

( tr+1

ti+1
− 1
)
· · ·
( tr+1

tp
− 1
)
Õi−1 ? Õr+1.

Observe that when p = 1, this recursive formula reduces to the Chevalley formula

of Buch-Chaput-Mihalcea-Perrin. Also note that Theorem 3.1 provides a recursive

formula for [Op]?[Or]. Moreover, if we write [Op]?[Or] =
∑

s,dN
s,d
p,r qd[Ow] and Õp?Õr =∑

s,d Ñ
s,d
p,r q̃d Õs, then the structure constants are related by Ñ s,d

p,r = (−1)eN s,d
p,r where

e = p+ r + s+ d(n+ 1).

We prove Theorem 3.1 in Section 3.6 below. We shall present consequences of the

theorem first.

3.2 First consequences of the formula

We begin by addressing Griffeth-Ram positivity of the structure constants N s,d
p,r relative

to the Schubert classes [Op]. Let Γ+ denote Z≥0[
t2
t1
−1, . . . , tn+1

tn
−1], the set of elements

in Γ that are polynomials in the classes ti+1

ti
− 1 with nonnegative integer coefficients.

This set Γ+ is closed under addition and multiplication. In particular a + b 6= 0 and

ab 6= 0 whenever a and b are nonzero elements of Γ+.

Lemma 3.2. For 1 ≤ p < r ≤ n, we have the identity in Γ

tr+1

tp
− 1 =

r−p∑
i=1

si

( tp+1

tp
− 1, . . . ,

tr+1

tr
− 1
)
,

where si
( tp+1

tp
− 1, . . . , tr+1

tr
− 1
)

is the ith elementary symmetric polynomial in
tp+1

tp
− 1,

. . . , tr+1

tr
− 1. Consequently, for p ≤ r, the polynomials of the form tr+1

tp
− 1 and tr+1

tp

are elements of Γ+.

Proof. The identity follows from induction on r − p. �
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Theorem 3.3 (Griffeth-Ram positivity for QKT (Pn)). For 1 ≤ p, r, s ≤ n and d ≥ 0,

let e = p+ r+ s+ d(n+ 1). Then the scaled Schubert structure constant (−1)eN s,d
p,r ∈ Γ

of QKT (Pn) is an element of Γ+.

Proof. By the remark following Theorem 3.1, we have Ñ s,d
p,r = (−1)eN s,d

p,r where the

Ñ s,d
p,r are the structure constants relative to the alternating classes Õp. By Theorem 3.1

and induction, each of the Ñ s,d
p,r are polynomials in

tj+1

ti
and

tj+1

ti
− 1 with nonnegative

integer coefficients. The result now follows from Lemma 3.2. �

Let KT (Pn) be the torus-equivariant K-theory ring of Pn. Since QKT (Pn) is a

formal deformation of KT (Pn),3 Theorem 3.1 immediately restricts to a formula for

KT (Pn). The only modification needed is to change our convention Õn+1 = (−1)n+1q

in QKT (Pn) to Õn+1 := 0 in KT (X):

Theorem 3.4. In KT (Pn), for all 1 ≤ p ≤ r ≤ n,

Õp · Õr =
( tr+1

t1
− 1
)
· · ·
( tr+1

tp
− 1
)
Õr

+

p∑
i=1

tr+1

ti

( tr+1

ti+1
− 1
)
· · ·
( tr+1

tp
− 1
)
Õi−1 · Õr+1.

Proof. On the one hand, the degree-zero piece of Õp ? Õr is precisely Õp · Õr. On the

other hand, by Theorem 3.1, the degree-zero piece of Õp ? Õr is that of each term

Õi−1 ? Õr+1, which is the corresponding KT -theoretic product Õi−1 · Õr+1. �

In [18], Graham-Kumar establish a formula for the Schubert structure constants of

KT (Pn). If we write Õp · Õr =
∑

s K̃
s
p,rÕ

s for the structure constants relative to the

alternating Schubert classes Õs, then their formula [18, Thm. 6.14] states

K̃s
p,r =

t1 · · · ts
t1 · · · tpt1 · · · tr

[∏p
i=1(1− yti)

∏r
i=1(1− yti)∏s+1

i=1 (1− yti)

]
p+r−s

.

Here, the formula should be computed in the formal power series ring ΓJyK where y

is a formal parameter; then [ ]p+r−s denotes the coefficient of yp+r−s in the resultant

3See Example 1.15 and the remarks that follow it.
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expression. With this formula, Graham-Kumar develop a recurrence relation [18, Thm.

6.14] among the structure constants K̃s
p,r. Theorem 3.4 recovers this relation.

Returning to QKT (Pn), our next result concerns the vanishing of the structure

constants Ñ s,d
p,r :

Proposition 3.5. Let p, r be such that 1 ≤ p ≤ r ≤ n. Set Õp ? Õr =
∑

s,d Ñ
s,d
p,r q̃d Õs.

(1) If p + r ≤ n, then the structure constant Ñ s,d
p,r is nonzero precisely when d = 0

with r ≤ s ≤ r + p.

(2) If p+r > n, then the structure constant Ñ s,d
p,r is nonzero precisely when d = 0 with

r ≤ s ≤ n, and when d = 1 with 0 ≤ s ≤ k− 1 where k is such that p+ r = n+ k.

Consequently, Õp ? Õr = Õp · Õr if and only if p + r ≤ n; equivalently, quantum

terms appear in Õp ? Õr if and only if p+ r > n.

Proposition 3.5 can also be phrased as follows: the smallest Γ-submodule of QKT (Pn)

containing Õp ? Õr is either the Γ-module generated by Õr, Õr+1, . . . , Õr+p when

p + r ≤ n, or the Γ-module spanned by Õr, Õr+1, . . . , Õn, q̃, q̃ Õ1, . . . , q̃ Õk−1 when

p+ r = n+ k.

Proof of Proposition 3.5. To prove Case (1), we induct on p. Suppose p + r ≤ n. If

p = 1, then 1 ≤ r ≤ n − 1, and the result can be verified by directly inspecting each

Õ1 ? Õr with the Chevalley formula.

For general p, Theorem 3.1 states that Õp ? Õr is a Γ-linear combination of Õr and

Õi−1 ? Õr+1 for 1 ≤ i ≤ p. Thus, with the exception of Ñ r,0
p,r , the structure constants

Ñ s,d
p,r are determined by the structure constants Ñ s,d

i−1,r+1 of the Õi−1 ? Õr+1. Since each

(i−1)+(r+1) ≤ p+r ≤ n and i−1 < p, the result follows from induction on p. (Note,

Griffeth-Ram positivity is tacitly used here to guarantee that cancellation among the

Ñ s,d
i−1,r+1 does not occur. Thus Ñ s,d

p,r is nonzero for d = 0 with r ≤ s ≤ r+p as claimed.)

Case (2) can be proved in a similar manner, as Õp ? Õr is still a Γ-linear combination

of Õr and Õi−1 ? Õr+1 for 1 ≤ i ≤ p. The only difference is that there will be two cases

to consider here: when (i− 1) + (r+ 1) ≤ n, and when (i− 1) + (r+ 1) > n. Induction

will apply to the latter situation, whereas Case (1) above will apply to the former. �
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3.3 A closer look at QKpoly
T (Pn)

Proposition 3.5 allows us to take a closer look at the ring structure of QKT (Pn). Al-

though the results of this section hold over QKT (Pn), it is more natural to work in the

subring QKpoly
T (Pn). Recall that QKpoly

T (Pn) is the Γ[q]-subalgebra of QKT (Pn) whose

underlying additive group is KT (Pn) ⊗Γ Γ[q]; in other words, it is the subring of ele-

ments that are polynomials in q (hence also in q̃). As the alternating Schubert classes

Õp and their products Õp ? Õr all lie in QKpoly
T (Pn), it follows that Theorem 3.1 and all

of the previous section’s results hold for QKpoly
T (Pn).

The set
{
q̃dÕp

}
of monomials with d ≥ 0 and 0 ≤ p ≤ n form a basis for QKpoly

T (Pn)

over Γ. Moreover this basis is totally ordered under lexicographic ordering; denote this

ordering by �. Then relative to this ordering, Proposition 3.5 states that each product

Õp ? Õr is a nonzero Γ-combination of monomials q̃dÕs satisfying Õr � q̃dÕs � Õr+p

when p + r ≤ n, or Õr � q̃dÕs � q̃Õk−1 when p + r = n + k for some positive k.

Thus, each product Õp ? Õr has a well-defined leading monomial Õr+p or q̃Õk−1 with a

corresponding leading coefficient Ñ r+p,0
p,r or Ñk−1,1

p,r .

Definition 3.6. For each monomial q̃dÕp in QKpoly
T (Pn), with d ≥ 0 and 0 ≤ p ≤ n,

define its degree to be the integer deg
(
q̃dÕp

)
= d(n + 1) + p. In particular deg(q̃) =

n+ 1. In general, for any element f ∈ QKpoly
T (Pn), define its degree to be the degree

of its leading monomial.

Clearly q̃dÕp � q̃eÕr implies deg(q̃dÕp) ≤ deg(q̃eÕr); the converse is also true. In

particular we have q̃dÕp = q̃eÕr if and only if deg(q̃dÕp) = deg(q̃eÕr). We omit the

elementary proof, but record this as a proposition as it will be fundamental to our

analysis of QKpoly
T (Pn):

Proposition 3.7. For monomials q̃dÕp and q̃eÕr in QKpoly
T (Pn), we have q̃dÕp � q̃eÕr

if and only if deg(q̃dÕp) ≤ deg(q̃eÕr).

Proposition 3.8. In QKpoly
T (Pn), we have deg(Õp ? Õr) = p+ r. Thus for any product

Õp1 ? · · · ? Õpm, we have deg(Õp1 ? · · · ? Õpm) = p1 + · · ·+ pm.

Proof. This follows immediately from Proposition 3.5. �
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Proposition 3.9. The leading coefficient of Õp ? Õr is a unit in Γ. Consequently, the

leading coefficient of Õp1 ? · · · ? Õpm is always a unit in Γ.

Proof. When p = 1, we have Õ1 ? Õr =
( tr+1

t1
− 1

)
Õr + tr+1

t1
Õr+1, and the leading

coefficient tr+1

t1
is a unit. For general p, the leading coefficient of Õp ? Õr is the leading

coefficient of tr+1

tp
Õp−1 ? Õr+1 by Theorem 3.1 and Proposition 3.5. Thus the result

follows from induction. �

Let Z≥0 denote the set of nonnegative integers with the usual linear ordering ≤.

Proposition 3.10. The assignment
{
q̃dÕp

}
→ Z≥0 defined by q̃dÕp 7→ deg q̃dÕp is a

bijection of totally ordered sets.

Proof. By Proposition 3.7, the assignment q̃dÕp 7→ deg q̃dÕp preserves orders, hence is

injective. Now deg
(
q̃dÕp

)
= d(n+1)+p by Proposition 3.8, where d ≥ 0 and 0 ≤ p ≤ n.

Thus surjectivity follows from the fact that every integer is uniquely expressible as a

quotient of n+ 1 with remainder. �

Corollary 3.11. The collection of elements
(
Õn
)?d

? Õp forms a basis for QKpoly
T (Pn)

over Γ, where d ≥ 0 and 0 ≤ p ≤ n− 1.

Proof. The idea is straightforward: show that the
(
Õn
)?d

? Õp form a “triangular” basis

for QKpoly
T (Pn) over Γ. (The standard monomials q̃dÕp form a “diagonal” basis.)

The product
(
Õn
)?d

? Õp is a Γ-linear combination of monomials q̃eÕs satisfying

q̃eÕs � q̃mÕ` where q̃mÕ` is the leading monomial of
(
Õn
)?d

? Õp. By Proposition 3.8,

we have the equalities deg q̃mÕ` = deg
(
Õn
)?d

? Õp = dn + p, and this degree uniquely

determines the leading monomial q̃mÕ` (Proposition 3.7 again). Since every nonnegative

integer can be uniquely expressed as dn + p for some d ≥ 0 and 0 ≤ p ≤ n − 1, we

can conclude from Proposition 3.10 that the
(
Õn
)?d

? Õp correspond bijectively to the

standard q̃mÕ` by way of their leading monomials. Thus the
(
Õn
)?d

? Õp are linearly

independent over Γ.

To show that they span QKpoly
T (Pn), we must check that the leading coefficient of

each
(
Õn
)?d

? Õp is a unit in Γ. This follows from Proposition 3.9. �



33

3.4 Final consequence: An isomorphism theorem

The results of the previous section bring us closer to presenting the final major con-

sequence of Theorem 3.1. This final result relates the equivariant quantum K-theory

rings of Pn and Pn+1. To state this precisely, we establish some notation for Pn+1.

All of the previous notation for Pn and its torus T hold analogously for Pn+1 with

the obvious adjustments. For instance, let T ′ denote the torus acting on Pn+1; it

may be identified with (C∗)n+2 in which case its representation ring Γ′ = KT ′(pt) is

isomorphic to Z[t±1
1 , . . . , t±1

n+2] under eεi 7→ ti. The opposite Schubert varieties Xp

are again indexed by their codimension in Pn+1, with one Schubert variety for each

0 ≤ p ≤ n+ 1. (Note the additional Schubert variety Xn+1 here.)

If QKT ′(Pn+1) denotes the T ′-equivariant quantum K-theory ring of Pn+1, then

we have the alternating Schubert classes Õp := (−1)p[Op] as before, where 0 ≤ p ≤

n+ 1. However we denote the quantum parameter in QKT ′(Pn+1) by Q to distinguish

it from the quantum parameter q of QKT (Pn). With this, we can again make the

convention Õn+2 := (−1)n+2Q as the imaginary “(n+ 2)nd-alternating Schubert class”

of QKT ′(Pn+1); we shall also denote it by Q̃.

There is a natural inclusion of rings Γ → Γ′ defined by ti 7→ ti for 1 ≤ i ≤ n + 1.

We use this to endow QKT (Pn) with the structure of Γ′JqK-algebra:

Notation. Set QKT ′(Pn) := QKT (Pn) ⊗ΓJqK Γ′JqK. We refer to this as the quantum

K-theory ring of Pn, equivariant over T ′. The ring structure is induced by the tensor

product. Thus QKT ′(Pn) is a Γ′JqK-algebra, free on the alternating classes Õp as a

module over Γ′JqK.

We similarly denote QKpoly
T ′ (Pn) := QKpoly

T (Pn) ⊗Γ[q] Γ′[q]. Then QKpoly
T ′ (Pn) is a

subring of QKT ′(Pn). (See Theorem 2.16.)

Consider the rings QKpoly
T ′ (Pn) and QKpoly

T ′ (Pn+1). As a Γ′-module, QKpoly
T ′ (Pn) has a

basis given by the monomials q̃dÕp, where d ≥ 0 and 0 ≤ p ≤ n; similarly QKpoly
T ′ (Pn+1)

has a Γ′-basis given by the monomials Q̃dÕp for d ≥ 0 and 0 ≤ p ≤ n+ 1.

Theorem 3.12. Let ϕ : QKpoly
T ′ (Pn) → QKpoly

T ′ (Pn+1) be the Γ′-linear map defined by

q̃dÕp 7→ (Õn+1)?d ? Õp. Then ϕ is an isomorphism of Γ′-algebras.
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Analogous versions of Theorem 3.12 already exist for quantum cohomology QH∗(Pn)

and quantum K-theory QK(Pn); it has not been known whether they hold for their

equivariant versions, until now.

Theorem 3.12 is not stated for the full rings QKT ′(Pn) and QKT ′(Pn+1) for patho-

logical reasons: for example 1 + q̃ + q̃2 + · · · is an element of QKT ′(Pn) whose image

under ϕ would be undefined. One way to circumvent these issues may be to work with

Γ̂′ instead, where Γ̂′ is the completion of the ring Γ′. We shall not pursue this here.

Proof of Theorem 3.12. We must verify that ϕ is multiplicative and bijective. For the

first task, it suffices to show that ϕ is multiplicative on products of basis elements

q̃dÕp ? q̃eÕr; in fact, since q̃ acts freely on QKpoly
T ′ (Pn), we need only verify this for the

products Õp ? Õr. But this follows immediately from the recursive formula of Theorem

3.1, and from our convention that Õn+1 := q̃ in QKpoly
T ′ (Pn).

To show that ϕ is an isomorphism, we show that ϕ maps a basis for QKpoly
T ′ (Pn)

bijectively onto a basis for QKpoly
T ′ (Pn+1). Indeed, ϕ sends the basis element q̃dÕp

to the element
(
Õn+1

)?d
? Õp. By applying Corollary 3.11 to these

(
Õn+1

)?d
? Õp in

QKpoly
T ′ (Pn+1), we obtain the desired result. �

3.5 Preliminaries to the proof of the recursive formula

Recall that the Schubert variety X1 equals Z(x1), the zero set of x1 where [x1 : . . . :

xn+1] are homogeneous coordinates of Pn. It is a smooth effective Cartier divisor of Pn

with ideal sheaf J . This sheaf J is isomorphic to OPn(−1) as a coherent sheaf on Pn.

Since X1 is T -stable, its structure sheaf OX1 is canonically a T -equivariant sheaf.

The sheaves J and OPn(−1) also have T -equivariant structure, but they are not the

same even though they are isomorphic as coherent sheaves. The sheaf OPn(−1) obtains

its T -equivariant structure from the tautological line bundle U on Pn: U is a sub-

bundle of the trivial bundle Pn × Cn+1, and the natural action of T on Pn × Cn+1

restricts to an action on U . Thus OPn(−1) obtains its T -equivariant structure as the

sheaf of sections of the T -equivariant line bundle U → Pn.

The T -equivariant structure of J is built on this. Given the character −ε1 : T → C∗
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and its corresponding one-dimensional T -representation C−ε1 ,4 let E−ε1 denote the T -

equivariant line bundle Pn × C−ε1 ; this is the trivial line bundle equipped with the

non-trivial T -action of −ε1 on its fibers. If we also denote its corresponding invertible

sheaf by E−ε1 , then we have J = E−ε1 ⊗ OPn(−1) as T -equivariant sheaves. This can

be checked by comparing the T -action locally on J and OPn(−1).

Thus we obtain the following short exact sequence of T -equivariant sheaves:

0 → E−ε1 ⊗ OPn(−1) → OPn → OX1 → 0.

Therefore in KT (Pn) we have

1 = [E−ε1 ⊗ OPn(−1)] + [O1] = e−ε1[OPn(−1)] + [O1] =
1

t1
[OPn(−1)] + [O1].

Thus [J ] = 1
t1

[OPn(−1)] and [O1] = 1− [J ], which means Õ1 = [J ]− 1.

Notation. J := [J ] in KT (Pn). In other words, we shall abuse notation and let J

denote both the ideal sheaf on Pn and its class in KT (Pn).

Though it is presented as a formula for Õ1, the Chevalley formula for QKT (Pn) can

just as well be cast as a formula for multiplication by J :

Proposition 3.13. For 1 ≤ p ≤ n we have in QKT (Pn)

J ? Õp =
tp+1

t1

(
Õp + Õp+1

)
.

Consequently Õp =
(
t1
tp
J − 1

)
? Õp−1. (Recall the convention that Õn+1 := (−1)n+1q.)

Because coefficients of the form tr+1

ti

( tr+1

ti+1
− 1
)
· · ·
( tr+1

tp
− 1
)

frequently appear in

Theorem 3.1, we introduce the following:

Notation. Let 1 ≤ p ≤ r ≤ n. For 1 ≤ i ≤ p define T(i,p) =
( tr+1

ti
−1
)
· · ·
( tr+1

tp
−1
)

and

T(p+1,p) = 1. Note T(p,p) =
( tr+1

tp
− 1
)
. Technically we should write T(i,p,r+1) to indicate

the dependence on r; however we omit it from the notation as we shall only be working

with a fixed r in the sequel.

4See Example 1.4 for the notation.
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In this condensed notation, the recursive formula 3.1 becomes

Õp ? Õr = T(1,p)Õ
r +

p∑
i=1

tr+1

ti
T(i+1,p)Õ

i−1 ? Õr+1.

For convenience we record two properties T(i,p) which follow immediately from the

definitions:

Lemma 3.14. For 1 ≤ i ≤ p,

(a) T(i,p) =
( tr+1

ti
− 1
)
T(i+1,p)

(b) T(i,p) = T(i,p−1)

( tr+1

tp
− 1
)
.

3.6 The proof of the recursive formula

Proof of Theorem 3.1. We must show that for all 1 ≤ p ≤ r ≤ n, we have

Õp ? Õr = T(1,p)Õ
r +

p∑
i=1

tr+1

ti
T(i+1,p)Õ

i−1 ? Õr+1

in QKT (Pn). We do this by induction on p.

When p = 1, the recursive formula reduces to the Chevalley formula of Buch-

Chaput-Mihalcea-Perrin, so there is nothing to prove. For general p, we have by Propo-

sition 3.13 and induction,

Õp ? Õr =
( t1
tp
J − 1

)
? Õp−1 ? Õr

= T(1,p−1)

( t1
tp
J − 1

)
? Õr

+

p−1∑
i=1

tr+1

ti
T(i+1,p−1)

( t1
tp
J − 1

)
? Õi−1 ? Õr+1

= T(1,p−1)

(( tr+1

tp
− 1
)
Õr +

tr+1

tp
Õr+1

)

+

p−1∑
i=1

T(i+1,p−1)

(( tr+1

tp
− tr+1

ti

)
Õi−1 ? Õr+1 +

tr+1

tp
Õi ? Õr+1

)
. (∗)

The proof now becomes a matter of simplifying the expression. We shall show that the

coefficient of each Õi−1 ? Õr+1 in (∗) agrees with the recursive formula:
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· When i = 1, we have the term Õ0 ? Õr+1 = Õr+1. Its total coefficient in (∗) is

tr+1

tp
T(1,p−1) +

( tr+1

tp
− tr+1

t1

)
T(2,p−1).

By Lemma 3.14, this simplifies to tr+1

t1
T (2, p) which is precisely the coefficient of

Õr+1 in the recursive formula.

· For all other 2 ≤ i ≤ p−1, the coefficient of Õi−1?Õr+1 in (∗) simplifies as follows:

tr+1

tp
T(i,p−1) +

( tr+1

tp
− tr+1

ti

)
T(i+1,p−1)

Lemma 3.14(a)
=

tr+1

tp

( tr+1

ti
− 1
)
T(i+1,p−1) +

( tr+1

tp
− tr+1

ti

)
T(i+1,p−1)

=
tr+1

ti

( tr+1

tp
− 1
)
T(i+1,p−1)

Lemma 3.14(b)
=

tr+1

ti
T(i+1,p),

which is the coefficient of Õi−1 ? Õr+1 in the recursive formula.

· Finally when i = p − 1, the shift in the indices in (∗) yields the extra term

tr+1

tp
Õp−1 ? Õr+1. This is precisely the i = p term of the recursive formula. �
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