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ABSTRACT OF THE DISSERTATION

Uniformity of cube lines and related problems

By Michael Donders

Dissertation Director: József Beck

We define a cube line to be a geodesic traveling over the surface of the cube; that is—we take

a straight line traveling on one of the faces of a cube, and when it hits an edge it continues on

to the next face so that if the two faces were unfolded to be coplanar, the two line segments

on either face would connect to form a straight line. The principal question we look to answer

is: does this cube line uniformly distribute over the surface of the cube. Here, we define

uniformly distributed as, for any Jordan measurable test set, the proportion of the cube line

which lies in the test set approaches the relative size of the test set as the length of the cube

line approaches infinity. This problem was derived as an extension to the classical problems of

uniform distribution of a torus line over a unit square and uniform distribution of billiard paths

over a unit square. The arguments in this problem, however, are quite different from these

previous problems, and take ideas from many fields, including erogidc theory, number theory,

geometry and combinatorics.
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CHAPTER 1

INTRODUCTION

We study a typical geodesic on the surface of a cube; it is a curve which consists of straight

line segments on each of the six faces of the cube, such that when switching from one face

of the cube to another, the two line segments on either side of the edge shared between two

neighboring faces meet at that edge and do so in a basically collinear fashion. This is to say, if

the two neighboring faces were to be made coplanar by rotation about that shared edge, the two

line segments on either face would form a single line segment. We call this geodesic a “cube

surface line”, or simply a “cube line”. See Figure 1.1 for an example of an initial segment of a

cube line.

Figure 1.1: Initial segment of a cube line traveling around a cube.

Much work has been done on the properties of a straight torus line on the two-dimensional

unit torus [0,1)2, see Figure 1.2; and the cube being a three dimensional structure comprised

of six squares, it is natural to see the cube line as an analog to a torus line in a square. The

uniformity of a torus line on a square is well understood, thanks principally to a breakthrough

result by H. Weyl in 1916, where in his famous paper he characterized the Weyl Criterion, a
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Figure 1.2: A torus line on the unit square. When the line hits the top edge, it translates down

to the bottom edge, and when it hits the right edge it translates across to the left edge.

general criterion that implies equidistribution, or uniform distribution, which, when applied to

the problem of torus lines on a square, implies that all straight torus lines with irrational slope

are uniformly distributed over a square [20]. To be more precise, the result states that for any

polygonal test set Ω in the unit square torus [0,1)2, and any torus line with irrational slope α

and arbitrary starting location, the proportion of the line in the test set is equal to the area of the

test set (area refers to the two-dimensional Lebesgue measure). Constant speed parametrization

of the line by the function f (t) allows us to formally state this as,

lim
T→∞

1

T

∫ T

0
fΩ(t)dt = |Ω|,

where,

fΩ(t) =





1 f (t) ∈ Ω

0 f (t) /∈ Ω

.

The Weyl Criterion proves this equidistribution claim, as well as the generalized claim for

arbitrary dimensions; and, moreover, beyond this qualitative result of equidistribution, has a

quantitative result as well, providing bound speed of convergence to equidistribution, i.e. upper

bounds are given to corresponding error terms. In spite of the large amount of work on the

uniformity of a torus line in a square and billiard paths in a square, the similar problem of a

straight line on the surface of a cube has remained stubbornly open for the last 100 years.

In this paper, we prove a series of results which yield increasingly powerful results about

the cube line similar to those of the torus line on the square provided by Weyl. We prove: there

exists a cube line which is dense on the surface of the cube; there exists a cube line which is

uniformly distributed on the surface of the cube; all cube lines are dense over the surface of the
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Figure 1.3: A billiard path the unit square. When the path hits an edge, it reflects off of it with

the angle of reflection equal to the angle of incidence

cube; all cube lines which have irrational slopes are uniformly distributed on cube symmetric

sets (to be defined later) on the surface of the cube; all cube lines that have irrational slopes and

bounded continued fraction digits are uniformly distributed; all cube lines that have irrational

slopes are uniformly distributed—the central result of the paper; and finally several generaliza-

tions of the result. Additionally, in Chapters 5 and 6 we include a look at some quantitative

results for a specific class of cube lines. The quantitative results are particularly interesting be-

cause the application of ergodicity via Birkhoff’s ergodic theorem gives only “soft” qualitative

results. Our work uses different ideas from a large variety of topics, lying at the cross-roads of

uniform distribution, geometry, number theory and combinatorics.

Our main results are: Theorems 1-2 (see page 12), Theorems 3 (see page 38), Theorems 4

(see page 46), Theorems 5 (see page 70), Theorems 6 (see page 70), Theorems 7-8 (see page

84), Theorems 10 (see page 118), Theorems 11 (see page 120), Theorems 12 (see page 121).

The proofs of Theorems 1-2 and Theorems 5-6 in particular are very lengthy and involved.

We briefly review some known results about billiard paths on the unit square, a well studied

and understood problem thanks principally to results by Weyl, König and A. Szücs [20][14].

These results serves as both the foundation of the motivation of this paper, and will also be a

useful theorem used throughout.

The concept of a 2-dimensional “billiard path” more precisely describes a point-mass

(which represents a tiny billiard ball) moving freely along in a straight line inside the unit square

with unit speed until it hits one of the edges of the square. This collision with the boundary
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is elastic, meaning it follows the laws of reflection—angle of incidence equals angle of reflec-

tion. After the reflection, the point-billiard continues on in a straight line with its new velocity,

maintaining its constant speed from before, until it hits another boundary, and then this process

repeats, see Figure 1.3. (We consider these billiards in ideal circumstances and ignore all types

of dampening, e.g. friction, air resistance.) The initial conditions of the billiard, the starting

location s and the initial direction θ , uniquely determine an infinite piecewise linear billiard

path x(t) in the unit square. The law of reflection implies that there are at most four possible

directions the billiard can travel in—the initial direction is preserved modulo π/2 during any

reflection. Because of the unit speed of the movement, t represents both time and arc-length.

Formally, a billiard path within a unit square [0,1]2 has the form

x(t) = (x1(t),x2(t)),0 < t < ∞ with x j(t) = 2||(s j + tβ j)/2||, j = 1,2,

where e = (β1,β2) is a unit vector, and ||y|| denotes the distance of a real number y from the

nearest integer. In this form, s = (s1,s2) is the starting point and e is the initial direction. Thus

θ = arctan
β1

β2
is the initial angle.

An alternative more symmetric way to represent this is to replace [0,1]2 with [−1
2
, 1

2
]2. In

this case we have

x(t) = (x1(t),x2(t)),0 < t < ∞ with x j(t) =< s j + tβ j >, j = 1,2,

where

< y >= ||y|| if y ≥ 0, and −||− y|| if y < 0.

We next examine the geometric trick of unfolding a billiard path inside the unit square into

a straight line on the entire plane. The idea is simple: when the billiard line hits an edge, rather

than reflecting the line, we reflect the square itself along the respective edge. This procedure

results in a given billiard path being unfolded into a straight line in the plane, see Figure 1.4.

Two straight lines in the plane correspond to the same billiard path if and only if they

differ by a translation through an integral vector where both coordinates are even, i.e. where

the vector is from the double square lattice {2Z}2. In this way we can reduce the problem of
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Figure 1.4: Unfolding the unit square onto the unit grid turns the billiard path into a straight

line.
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S

=⇒
S1 S2

S3 S4

Figure 1.5: The grid is equivalent to every 2×2 interval, which means the billiard path on the

unit square is equivalent to a torus line on a 2×2-square, with each test set in the unit square

reflected into four congruent test sets on the 2×2-square.

distribution of a billiard path in the unit square to the distribution of the corresponding torus

line in the 2×2 square.

The problem of uniformity of a billiard path in the unit square with respect to a given test

set S is equivalent to the uniformity of the torus line in a 2× 2 square with respect to four set

tests, S1,S2,S3,S4, which are copies of the test set S reflected along each of the edges, or rather

across each of the integer lines of the 2× 2 square, see Figure 1.5. The 2× 2 square is then

shrunk (scaled linearly) into the unit square [0,1)2.

In the general case, the test set is upgraded to a function f (x,y) ∈ L([0,1)2), which is a

continuous or periodic real-valued Lebesgue integrable function with period 1 in both variables.

In our case, f is the 0− 1 valued characteristic function of the union S1 ∪ S2 ∪ S3 ∪ S4, of the

four shrunk and reflected copies of the test subset S.

To generalize to higher dimensions, note that a billiard path in the unit cube [0,1]d , d ≥ 3,

can be defined similarly. We can unfold the line into a straight line in the d-dimensional plane

by reflecting the cube across the d − 1-dimensional edge rather than reflecting the line itself.

Again, in this way we can equate uniformity in a test set S of the d-dimensional unit billiard

path to uniformity of the torus line in the d-dimensional 2 x 2 x . . . x 2 hypercube, where each

of the 2d copies of the unit cube contains a reflected copy of the test set S.

As far as we know, the first appearance of the geometric trick of unfolding is in a paper

of D. König and A. Szücs from 1913 [14], and became widely known after Hardy and Wright

included it in their well-known book on number theory [10]. The continuous generalization of
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the classical equidistribution theorem (Kronecker-Weyl) implies an elegant property of the torus

line in the unit square: if the slope of the initial direction is rational, then the path is periodic,

but if the initial slope is irrational, then the torus line is dense (Kronecker’s Theorem), and, what

is more, for irrational slope the torus line is also uniformly distributed over the unit square [20].

Precisely, this means that for any axis-parallel rectangular test set S = [a,b]× [c,d]⊂ [0,1]2,

lim
T→∞

1

T
measure{t ∈ [0,T ] : x(t) ∈ S}= area(S) = (b−a)(d − c),

where we have x(t), 0 < t < ∞ denoting the torus line in the unit square,

parametrized by its arc-length (=time), t. This upgrade of Kronecker’s Theorem to include

uniformity, due to H. Weyl, represents the classical definition of uniform distribution, is called

Weyl type uniformity (introduced in Weyl’s classical paper in 1916)[20].

König and Szücs used the trick of unfolding, combined with the Kronecker-Weyl theorem,

to prove the following analogous property for the billiard path in the unit square: if the initial

direction of the path is rational, then the path is periodic, but if the initial slope is irrational, then

the torus line is uniformly distributed (and thus also dense) in the unit square. This completes

the 2-dimensional case and this argument generalizes to work in every dimension d ≥ 3.

One particular reason this problems has remained unsolved is, despite its similarities to

the torus line and billiard paths there is one large difference: the difference between removable

singularities and proper singularities. Consider a torus line on a square which hits a vertex of

the square. By applying a small translation to the torus line in either direction, we can elimi-

nate this issue, resulting in a uniquely defined extension of the line. In this sense the vertex is

a ‘removable singularity’, only potentially causing ambiguity if the line actually hits the singu-

larity, but importantly still allowing translation across the singularity to be continuous (using

any reasonable metric to compare distance between torus lines, such as maximum distance or

average distance).

In contrast we observe the case of a cube line hitting a vertex of the cube. If we try to alle-

viate the issue in a similar manner, we find that when applying a small translation we are faced

with ambiguity in how to do so. A small translation up and a small translation down will result
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Figure 1.6: Each corner of the cube represents a singularity. Here we can see how two cube lines

which are initially very close translations of each other but are split by a singularity become

drastically different.

in vastly different lines, see Figure 1.6. We can in fact see that translation across a vertex of a

cube is not a continuous mapping (again using any reasonable metric on the distance between

two cube lines, again such as maximum distance or average distance). In this sense the vertices

of a cube are ‘proper singularities’, in that they are not only issues when the line actually hits

the singularity, but also anytime a line is translated across a singularity.

The underlying reason for this difference between the square and the surface of the cube is

that the plane can be tiled with the square but not with the surface of the cube. We can see this

further in the case of a line on the surface of a regular tetrahedron. An unfolded tetrahedron is

an equilateral triangle, which can tile the plane, and therefore the vertices of the tetrahedron are

‘removable singularities’, in that translation over these singularities is again a continuous map-

ping. Because this technique of unfolding is available, the problem of a geodesic on the surface

of the tetrahedron has been solved by Beck [2], which also includes several generalizations of

the problem.

Moreover, how close the cube line is to a vertex is an equivalent question to how close a

multiple of its slope (plus a possible fixed constant) is to an integer. The fact that irrational

rotations mod 1 (with a fixed added constant) are uniformly distributed over [0,1) indicates that

all cube lines with irrational slope will get arbitrarily close to a vertex of the cube, and thus

any translation of the cube line will yield a non-continuous result which is exceptionally hard

to track. This is the essential issue which makes this a challenging problem, as being unable to

translate makes knowing where the cube line is at any given time extremely difficult.



9

Again comparing the two cases, supposing we have a cube line parametrized by L(t), and

a line on a square torus parametrized by Λ(t), both with the same unit speed and same irra-

tional slope α . If Λ(0) = 0×β ∈ {0}× [0,1), then we know that Λ(t) = (t mod 1)× (B+αn

mod 1), giving us the exact location of the line at any point. However, if L(0) = γ ∈ [0,1) along

some edge [0,1) of the cube, we cannot say exactly where L(t) is. We can generally say where

it will be on a face—it will be at (t mod 1)× (B+αn mod 1), but we know neither which

face it is on, nor what the orientation of the face is. At best we can say it is one of 48 points

which together form a cube symmetric set—that is, the set of possible locations of the geodesic

is invariant under action by the symmetric group of the cube. We will discuss cube symmetric

sets further in Chapter 8.

We note that in 1984 E. Gutkin [8] announced a positive solution to the problem of a

geodesic on a cube, but, unfortunately, the key step in his paper remains unproved: its proof

was not published ever since (email communication by W. Veech; we will return to Gutkin’s

paper later—see the end of Chapter 10 and the end of Chapter 11). Now 33 years later it is

time to clarify this situation, especially since Gutkin unfortunately died in 2013, Veech died in

2016, and Gutkin’s paper has been quoted in several survey papers as an important work which

gives the “complete solution of the almost integrable case.” As far as we know, our paper is the

first complete proof of the uniformity of cube lines (as well as the first with quantitaive results,

and generalizations far beyond the cube–see Chapters 5, 6 and 11).

We begin with a formal statement of the cube line, and the notation used in this paper.

In the usual way, we refer to the six faces of the unit cube [0,1]3 by calling the face with

x = 1 the front face (or just front), x = 0 the back face, z = 1 the top face, z = 0 the bottom face,

y = 1 the right face, and finally y = 0 the left face.

Assume that the starting point, s, for a geodesic, L, is L(0) = s = (1,s2,s3), 0 < s2,s3 < 1,

and the initial direction of the geodesic is described by the unit vector v = (v1,v2). Note that

an initial point and direction uniquely parametrize all geodesics on the cube surface. For ease

of reference, we refer to the ‘slope’ of L as β = v2/v1, such that (1,β ) is parallel to v, or by
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angle θ , such that tan(θ) = 1/β . The parametrization of L, for small t, looks as follows:

L(t) = (1,s2 + v1t,s3 + v2t) (1.1)

and this holds so long as 0 < s2 + v1t,s3 + v2t < 1.

By symmetry we may assume that v1 > 0 and v2 > 0, thus we first hit an edge at

min{(1− s2)/v1,(1− s3)/v2}, hitting the top edge and moving to the top face in the case of

the minimum being t = (1− s2)/v1, and hitting the right edge and moving to the right face in

the case of t = (1− s3)/v2 being the minimum. This motion of the cube generates an infinite

“quasi-random alternating” sequence of the six faces. As said before, this sequence is very

difficult to track, resulting in it being very difficult to find which face the cube line is on at any

given point (and thus the location of the cube line on the cube) without brute force checking of

the exact location of the cube line by looking at every face the cube line enters, and which face

it enters next, one-by-one. This issue is discussed further in Chapter 3.

In general, we assume the geodesic is parametrized with unit constant speed (starting from

s), and thus the parameter t represents both time and distance, with L(t) denoting the location

of the geodesic at time t.

To see how the parametrization looks after the geodesic moves from one face to another,

assume (1− s3)/v2 > (1− s2)/v1. Then the geodesic will move from the front face to the right

face. Thus on the next face, y = 1. We note that the z value does not actually change, and

remains z = (1− s2)/v1; finally the x value starts at x = 1 and decreases at a rate of v3. We get

the formula

x = 1− v1

(
t − 1− s2

v1

)
= 1− v1t +1− s2 =−(s2 + v1t),

which holds until the geodesic hits its next edge at z = 1 or x = 0. We see that there are always

three different types of coordinates: a constant coordinate, a v1-variable coordinate and a v2-

variable coordinate, based upon what the coefficient of t is in each coordinate. The cube line

hits an edge when one of the variable coordinates equals 0 or 1, where the coordinate swaps its

variable coefficient with the constant coordinate. In the above example, on the front face with

direction (v1,v2), x was the constant coordinate, y the v1 coordinate and z the v2. Upon y = 1, y

and x swapped so on the right face y was the constant coordinate and x was the v1 coordinate.
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While it becomes very difficult to track this parametrization due to the quasi-random alter-

nation of faces generated by L(t) discussed above we note that there exists a limited number

of directions in which the line can be traveling on each face. On, say, the front face, the di-

rectional vector will always be one of the following four alternatives: vector v = (v1,v2), the

perpendicular vector v⊥ = (v2,−v1), and their negatives −v = (−v1,−v2), −v⊥ = (−v2,v1).

These four vectors represent four half-lines, and only two different line-directions, ±v and the

perpendicular ±v⊥. Of course this symmetrically holds for the other faces as well.

For a given vector v, this defines the (±v,±v⊥)-geodesic flow, or simply the

v−flow, on the surface of the cube.

We quickly mention two negligible cases we will ignore. Firstly, when α is rational, it

becomes very clear that the cube line is simply periodic, and thus neither dense nor uniformly

distributed. This follows directly from the fact that the rotation r+αn mod 1 is periodic for

rational α . In this case the possible locations where the geodesic can hit the edges is finite,

and there are a limited number of directions with which it can hit each point, so the geodesic

must be periodic as well (due to the Markov-like property of the line at these locations, which

follows from a point and a direction uniquely defining a cube line). As there are only countably

many rational slopes, this however represents a negligible set.

The second case we disregard is when the cube line L(t) hits a vertex of the cube at some

point t > 0; as discussed previously, this results in a proper singularity that cannot be uniquely

resolved. This will occur when (s2,s3) and (v1,v2) are rationally dependent. We call such cases

pathological and, for any fixed irrational slop, the set of starting locations which are rationally

dependent is again a countable set, and thus is again negligible. We will, however, allow the

initial point of a cube line to be a vertex, since as long as the initial direction and which face it is

initially traveling on is well defined, there is no ambiguity. Moreover, since irrational rotations

(i.e. rotations of an irrational number on the unit interval [0,1)) beginning at an integer can

never hit an integer again, this implies any cube line with irrational slope beginning at a vertex

will indeed never hit another vertex.

We end the chapter with the formal statement of the theorem we look to prove for Weyl

type uniformity of the cube line, as well as an analogous result we will also prove regarding

Birkhoff type uniformity.
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Theorem 1 (Weyl Type Uniformity Result). If α = v2/v1 is irrational, for almost every starting

point L(0), the relative time the geodesic L(t) spends in a given Jordan measurable test set as

0 ≤ t ≤ N, N → ∞ tends to the limit density in case of uniform distribution on the cube surface,

i.e. it tends to the relative area of the test set.

Theorem 2 (Birkhoff Type Uniformity Result). If α = v2/v1 is irrational, for almost every

starting point L(0), the relative time the geodesic L(t) spends in a given Lebesgue measurable

test set as 0 ≤ t ≤ N, N → ∞ tends to the limit density in case of uniform distribution on the

cube surface, i.e. it tends to the relative 2-dimensional Lebesgue measure of the test set.

The slight difference between these theorems being Theorem 1 is restricted to Jordan mea-

surable test sets; in contrast, Theorem 2 allows for Lebesgue measurable test sets. Moreover,

both theorems are limited to almost every starting point. It is clear that for a given starting point,

there are some Lebesgue measurable test sets for which relative time the geodesic spends in it

does not tend to the measure of the set. For example if we take the set of the surface of cube

minus the cube line: the line itself has 2-dimensional Lebesgue measure zero so this test set

would have full Lebesgue measure (six), but the geodesic would also, by construction, spend

zero time within the test set. Note though that Theorem 2 says that for any given Lebesgue

measurable test set, for all but a measure zero set of starting locations of the geodesic, the time

it spends in the test set will asymptotically be equal to the relative measure of the test set. In

the example test set above, for a given slope the test set would fail for one particular geodesic

(based on initial point), but the set of starting points for which a geodesic of that slope would

fail on is measure zero.

We therefore have that Theorem 2 must allow this measure zero exception. This measure

zero set of exceptions for any given test set includes both pathological starting locations, as

well as other potentially problematic starting locations, as in the given example. In Theorem 1,

on the other hand, it is not immediately clear that this requirement is necessary, as the example

above is not Jordan measurable. In fact in general, uniformity in the Weyl sense would include

all points. While Theorem 1 does include the measure zero set exception, as we will see in The-

orem 9, this can indeed be strengthened to include all non-pathological starting points, which
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still must be held as an exception because of their undefined nature.

For some far-reaching generalizations of Theorems 1-2, see Chapter 11.
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CHAPTER 2

DISCRETIZATION

One useful tool we will use is taking this problem of looking at a continuous geodesic over the

2-dimensional cube surface and translating it to the discrete problem of looking at where the

geodesic hits on the 1-dimensional set of edges of the cube. For a geodesic with initial angle θ ,

we can assume by symmetry that 0< θ < π/2. There are two ways the geodesic can hit an edge

of the cube: with angle θ , or with angle θ⊥ = θ +π/2 (angle here refers to the angle between

the line segment and the edge). If the crossing has angle θ we call it a θ -edge crossings, and if

it has angle θ⊥ we call it a θ⊥-edge crossings, see Figure 2.1. These two crossings correspond

to the two potential line pairs of slope vectors ±v and ±v⊥.

We further note that for each edge, there are two ways to cross the edge at a given angle. For

example, on the edge shared by the front and right faces, a geodesic can cross at angle θ from

the front face to the right face, or it can cross at angle θ from the right face to the front face.

This corresponds to the two possible directional vectors v and −v. We call a pair ~E = (E ,v)

of an edge and a slope a directed θ edge , or directed θ⊥ edge, depending on the angle and

direction of the slope. This gives us 24 total directed θ edges, two for each edge of the cube.

Similarly there are 24 total directed θ⊥ edges as well. Lastly, we sometimes wish to talk about

all crossings on an edge in a particular direction regardless of the angle. In this case we will

refer to a ~E as simply a directed edge, meaning we are looking at all θ - and θ⊥-edge crossings

that occur on the given edge in one particular direction.

We will initially look at only the θ -edge crossings and ignore the θ⊥-edge crossings, though

we will get symmetrical results for θ⊥-edge crossings. One fact we can note about θ -edge
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θ

θ⊥

Figure 2.1: There are two ways the cube line can cross an edge of cube: with angle θ , or with

angle θ⊥.

crossings is that, if there is a θ -edge crossing from face A to face B, then the next θ -edge

crossing will be from some face C (possibly, but not necessarily, the same face as B) into the

face opposite of A. For example, suppose there is a θ -edge crossing going from the bottom face

into the front face. We know that the next time the geodesic hits an edge at an angle θ will be

when it hits one of the top edges to go into the top face, though we do not know from which

face that transition occurs.

Another way of looking at the differences between θ -edge crossings and θ⊥-edge crossings

is, for a geodesic with starting location s = (1,s2,s3), and initial direction (v1,v2) (again with

0 < θ = arctan(v2/v1)< π/2), a θ -edge crossing occurs at L(t) whenever s3+v2t = 0 mod 1,

while θ⊥-edge crossings occur whenever s2 + v1t = 0 mod 1. To see this, it is clear that an

edge crossing occurs if and only if s2 + v1t = 0 mod 1 or s3 + v2t = 0 mod 1. If s3 + v2t = 0

mod 1, then the angle between the edge and the line is arctan(v2/v1) = θ , while if s2 + v1t = 0

mod 1, then the angle between the edge and the line is arctan(v1/v2) = θ⊥.

From this perspective we can show the above claim that a θ -edge crossing from face A

to face B will next go into the face opposite A. Suppose by symmetry a θ -edge crossing

goes from the bottom face to the front face. This must occur when s3 + v2t = 0. As seen in

the parametrization in 1.1, at an edge-crossing the constant coordinate swaps with the variable

coordinate. This means we start with z = 0 being the constant (i.e. the bottom face), which then

swaps with the v2 coordinate x, which follows since the θ -edge crossings occur at s3 + v2t = 0

on the edge between the bottom and front faces. Thus z becomes the v2 coordinate and x

becomes the constant coordinate. Therefore the next time s3 + v2t = 0 mod 1 will be when

s3 + v2t = 1 = z; thus the next θ -edge crossing will occur on the constant edge z = 1, i.e. the
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top edge which is opposite of the bottom edge.

By only looking at the θ -edge crossings , we can track the movement of the geodesic

starting at a θ -edge crossing by unfolding the faces the geodesic can travel on before it hits

the next θ -edge crossing into a cycle. If, again for example, there is a θ -edge crossing from

the bottom face to the front face, we know the next θ -edge crossing will go into the top face.

Thus between the two θ -edge crossings the cube line travels through the front, right, back and

left faces. These together form a what we call a cycle, a 4×1 loop with the θ -edge crossings

occurring where the line hits on the bottom and top of this loop. The top and bottom of this

cycle are comprised each of four directed θ edges . Labeling each directed θ edge as the half

open interval [0,1) in the obvious way, it becomes clear that if one θ -edge crossing occurs at

β ∈ [0,1) in some directed θ edge, the next θ -edge crossing occurs at β +1/α mod 1 in some

other directed θ edge. From this we can see that by looking only at where on each directed

θ edge each θ -edge crossing occurs, we get the sequence (β + nα mod 1), where β is some

constant depending on the initial point of the cube line. We will see this technique of unfolding

a cycle of four faces more in Chapter 3.

This sequence of θ -edge crossings represents an arithmetic progression in t such that the

time gap between each of the progressions is

1

sin(θ)
=
√

1+α2.

We wish to reduce the problem of proving that the cube line is uniformly distributed over

the surface of the cube to the discrete problem of proving that the sequence of θ -edge crossings

is uniformly distributed over the edges of the cube (or more specifically, the directed θ edges

of the cube).

Assume a particle moves with constant speed on a geodesic and enters face F of the cube

through edge E at angle θ . By symmetry, we can for simplicity assume that E and geodesic

are such that the line is crossing from the bottom face into the front face, F, and the angle θ

satisfies π/4 < θ < π/2. The positive orientation of F induces a direction onto the edge E ,

giving us directed θ edge ~E , and the segment of geodesic on F gives a directed line segment.
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We identify the directed θ edge ~E with the unit interval [0,1] in the standard way, using the

orientation of the directed edge to determine which end is 0, and do similarly for all 24 other

directed θ edges .

We now suppose there was a θ -edge crossing at any given point on this interval ~E [0,1] and

see where the next θ -edge crossing would be. A (theoretical) θ -edge crossing that occurred at

the left endpoint, 0, of the interval of ~E would next hit α = 1/ tan(θ) mod 1 on the unit interval

corresponding to the directed θ edge on which the next θ -edge crossing lies; call this directed

θ edge ~E1. As we assumed π/4 < θ < π/2 we can see that 0 < α = 1/ tan(θ) < 1, and thus

this will simply hit the point α on the edge directly above E in the process of going from the

front face to the top face. Similarly, a (again theoretical) θ -edge crossing occurring at the right

endpoint, 1, of the interval, would next hit the point 1−α on the unit interval corresponding to

to directed θ edge on which the next θ -edge crossing lines; call this directed θ edge ~E2, which

as 0 < α < 1 will be the directed θ edge from the right face to the top face. Note the directed

θ edge of the next θ -edge crossing for the left and right endpoint, ~E1 and ~E2, will be different

but adjacent, sharing a single point. We can note that the point 1−α on ~E would next hit the

right endpoint of ~E1, and also hits the left endpoint of ~E2 (i.e. the shared point of these edges).

Other than this one shared point, we can see that this process induces a linear mapping on ~E ,

mapping (0,1−α) in ~E to (α,1) in ~E1, and mapping (1−α,1) in ~E to (0,α). This mapping

is essentially an α-shift, x → x+α( mod 1), see Figure 2.2. Formally

~E (0,1−α)→ ~E1(α,1), ~E (1−α,1)→ ~E2(0,α). (2.1)

We extend this mapping to all 24 directed θ edges , resulting in a piecewise unit linear

mapping from the set of directed θ edges to itself, comprised of 24 disjointed α-shifts. We

glue the unit intervals of the 24 directed θ edges together in the obvious way to form the

interval [0,24); applying an arbitrary ordering to them and having,

~E = ~E0 = [0,1), ~E1 = [1,2), ~E2 = [2,3), ~E3 = [3,4), . . . , ~Ei = [i, i+1), . . . , (2.2)

for integer 0 ≤ i < 24. Thus the 24 directed θ edges together form the interval [0,24) and the

mapping above, with the slight alteration into half-open intervals, defines an interval exchange
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1−α
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0

1−α

0 α

1

Figure 2.2: The mapping T , which takes one θ -edge crossing to the next can be decomposed

into piecewise-linear measure-preserving shifts. The sub-interval (0,1−α) on an edge gets

translated to (α,1), and (1−α,1) gets translated to (0,α). This specific example assumes

α < 1, but similar logic follows for all values of α .

transformation

T : [0,24)→ [0,24). (2.3)

More precisely, T translates a half open interval of the form [r − 1,r −α), for r an integer,

1 ≤ r ≤ 24, to some other half-open interval of the form [r′−1+α,r′), r′ again an integer with

1 ≤ r′ ≤ 24, and translates half-open intervals of the form [r−α,r) to half-open intervals of

the form [r′′− 1,r′′− 1+α), once again with r′′ an integer, 1 ≤ r′′ ≤ 24. The mapping T has

discontinuous jumps at the points x, where the fractional part of x, {x}= 1−α or, {x}= 0. We

call these jumps the singular points of T . We emphasize the crucial fact that T is a Lebesgue

measure preserving transformation.

The key characteristic of the transformation T is the slope of the geodesic which induces

the irrational shift, 0 < α < 1, so we denote the shift T = Tα . Note this shift can similarly be

done on any irrational slope, not only 0 < α < 1, which was just a result of our simplifying

assumption that, using symmetry, we can use take π/4 < θ < π/2. Notably, a transformation

can similarly be constructed on the θ⊥-edge crossings of the geodesic; we denote this transfor-

mation T̃ = T̃−1/α .

We now claim we can reduce the problem of proving Weyl Type Uniformity on the surface
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of the cube (i.e. Theorem 1) to proving the transformation T (or equally T̃ ) is ergodic.

Lemma 1. For a cube line with slope α , if the transformation Tα is ergodic over the interval

[0,24), then the cube line is uniformly distributed in the Weyl sense (see Theorem 1).

As we already know that T is measure preserving, T being ergodic implies that for any point

x ∈ [0,24), the sequence of images of the point (T n(x))∞
n=0 is uniformly distributed (formal

proof of this standard result is given at the end of Chapter 4). Or, for any starting point x ∈

[0,24), and any interval I ⊆ [0,24),

lim
N→∞

|{T n(x) : 0 ≤ n ≤ N}∩ I|
n

→ |I|
24

.

Consider as a test set a tilted rectangle A on a face F of the cube such that, for ~E a directed

θ edge on the face F, the rectangle A has two parallel sides with angle θ to ~E , and two parallel

sides with angle θ to one of the directed θ edges of F perpendicular to ~E (i.e. angle θ +π/2

to ~E ). See Figure 2.3.

A straightforward geometric consideration shows that the amount of relative time the cube

line spends in the test set A from directed θ edge ~E is equal to the relative time the sequence

x,T x,T 2x,T 3x, . . . spends in a sub-interval I′ of ~E ⊆ [0,24), the length of which will be equal

to the length of A (note here from its construction as a tilted rectangle, the width of A does not

matter as width will scale equally with both relative time the geodesic is in it and size of A ).

As this sequence is uniformly distributed, and thus relative to the size of the sub-interval I′, this

implies the relative time the geodesic is in A from ~E is equal to the relative size of A . As all

Jordan measurable sets can be constructed through these tilted rectangles, this generalizes to

all Jordan measurable test sets.

There are a few caveats worth mentioning here: first, Birkhoff’s theorem is about a single

(but arbitrarily complicated Lebesgue measurable) test set, while Weyl’s uniformity is about all

simple sets. But every interval can be approximated by rational intervals, of which there are

only countably many, so applying Birkhoff’s ergodic theorem for T with rational intervals, the

union of the measure zero sets with exceptions (i.e. bad starting locations) is still a zero set.

Thus Birkhoff’s theorem still implies Weyl uniformity. See end of Chapter 3 for more detail on

the resolution to this caveat.
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S

Figure 2.3: Uniform distribution of edge crossings on the directed edges implies uniform dis-

tribution of the cube line over tilted rectangles on the surface of the cube. As all polygonal test

sets can be well approximated by these tilted rectangles, this also implies uniform distribution

over all test sets on the surface of the cube.

Secondly, it should be noted that T being uniformly distributed actually implies a slightly

stronger result than the cube line being uniformly distributed. The above argument only looks

at one way in which the geodesic enters the test set A , from ~E . But there are other ways the

geodesic can enter A as well, for example, from the directed θ edge opposite ~E on face F

pointed in the other direction. What this lemma implies is that for any test set, the relative time

the geodesic spends in the test set from each directed θ edge is proportional to the size of the

interval on the edge which leads to A . Summing these contributions over all edges implies

Weyl uniformity over the cube surface, but the original statement is a slightly stronger result as

the inverse implication does not immediately follow.

We prove a similar lemma for Birkhoff uniformity (Theorem 2).

Lemma 2. For a cube line with slope α , if the transformation Tα is ergodic over the interval

[0,24), then the cube line is uniformly distributed in the Birkhoff sense (see Theorem 2).

To prove Birkhoff type uniformity, it suffices to show that the geodesic flow, for a given ir-

rational slope α over the entire surface of the cube is ergodic—that is, showing that any subset

S∗ of the surface of the cube which is invariant under the geodesic flow must have full measure

or measure zero.

For a given irrational slope α , suppose the geodesic flow is not ergodic. Then there exist a

set S∗ which is invariant under the geodesic flow with 0 < λ 2(S∗) < 6, where λ 2 refers to the

2-dimensional Lebesgue measure.

Let S ⊂ S∗ be the set of directed θ -edge crossings restricted to the flow in the invariant set
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S∗. It is easy to see S is measurable and has non-trivial measure—that is, 0 < λ (S)< 24 where

λ is the 1-dimensional Lebesgue measure, as a consequence of S∗ having non-trivial measure;

if S has measure zero, then S∗ must have measure zero, and similarly if Sc, the complement of

S, has measure zero, then (S∗)c will have measure zero as well. But by the construction of S, S

must be invariant under T , and thus neither S nor Sc has measure zero. This shows that T being

ergodic sufficiently implies geodesic flow over the surface of the cube is also ergodic, and thus

Birkhoff uniformly distributed.
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CHAPTER 3

META-LINES

In this chapter we introduce an interesting relationship between two cube lines, and introduce a

“special” cube line A(t) with starting point a vertex of the cube and initial slope α =−2+
√

5

(why this cube line in particular is special will be explained later).

We first formally define a cycle of the cube, as briefly mentioned in Chapter 2, to be any

four faces of the cube which form a loop, with an orientation but no specific starting point. For

example, front-right-back-left faces form a cycle, and would be the same cycle as right-back-

left-front, but a different cycle from front-left-back-right. As an example, Figure 1.1 in Chapter

1 shows a cube line traveling through the front-top-back-bottom cycle from the left end of the

cycle to the right end. We note the cube contains 6 unique cycles. If we think of the cube line as

traveling on these cycles, then they are interesting because we can define the θ -edge crossings

of a cube line to be precisely when the cube line leaves one cycle and enters a new cycle. We

also note that at any given point, the cube line is traveling through two cycles. For example if

the cube line is on the front face, moving in the positive y and z directions (to the upper right),

then it is in both the front-right-back-left cycle, and the front-top-back-bottom cycle. These

two cycles are distinctly different, though, distinguished by the angle at which the cube line

entered the cycle: in one it enters at angle θ , and the other at angle θ⊥. We will assume the

cycle the cube line is traveling in is the one entered at angle θ .

The four faces of a cycle of the cube together act as a 1× 4 torus with respect to the cube

line, as mentioned in Chapter 1. For example, if L(t) hits a θ -edge crossing on the directed

edge going from the bottom face to the front face, before it hits its next θ -edge crossing it will
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Figure 3.1: The segment of a cube line traveling along a single cycle can be thought of as a line

traveling on a 4x1 torus.

Figure 3.2: Tracking the relationship between the original line and its meta-line can be done by

observing their behavior on the 4x1 torus cycles.

travel through the front, right, back and left faces, until it hits any edge leading into the top

face, which will be the next θ -edge crossing. These four faces together make a cycle where, if

the line hits the right end of the cycle, it acts like a torus line and goes back to the same point

on the left edge. This interpretation of the cycles of the cube makes it very easy to see where

consecutive θ -edge crossings will be, see Figure 3.1.

We define a new concept we call a meta-line for a particular set of cube lines: cube lines

whose initial point L(0) = V is a vertex, and whose initial angle α is either greater than 4 (in

absolute value) or less than 1/4 (in absolute value). Suppose a cube line L(t) with slope α

satisfies these conditions. We define the meta-line of L as follows: if |α| > 4 (by symmetry

assume α > 4), we assume that L(0) = V is the bottom left corner of the front face and the

initial direction of L(t) is in the upper-right direction (this can also be assumed by symmetry).

We define the meta-line of L to be the cube line L∗(t) with slope α∗ ≡ α modulo 4, and initial

point L∗(0) =V ∗ =V (meta-line definition when |α|< 1/4 will follow shortly). The key thing

to note about this meta-line is that

L


n

√

1+

(
1

α

)2


= L+


n

√

1+

(
1

α∗

)2


 for all n ∈ N; (3.1)
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Figure 3.3: A cube line traveling on a cube and its meta-line. A cycle of the cube line corre-

sponds to a single face crossing of the meta-line.

that is, L∗ hits all of the θ -edge crossings of L. This can be shown inductively, noting that

L(0) = L∗(0) trivially: between the points L(n/α) and L((n+1)/α) for each n ∈ N, consider-

ing the cycle the line travels on being a 1× 4 torus, it is clear that L and L∗ will hit the same

location at their next θ -edge crossing since a 1×4 torus will ignore a difference modulo 4, see

Figure 3.2. The idea behind this definition of a meta-line is to remove extra loops through the

cycles, while maintaining the same θ -edge crossings of the cube line.

Alternatively, if |α| < 1/4, again we assume α > 0 and assume that L(0) = V is on the

bottom left vertex of the front face. We define the meta-line of L to be L+(t), the cube line with

slope

α+ =
1

1
α modulo 4

,

and initial point L+(0) =V+ =V . This is essentially the definition of the meta-line for |α|> 4

if we were to rotate and mirror the cube so that L goes from a line with |α| > 4 to one with

|α|< 1/4. From this interpretation we can see that

L
(

n
√

1+α2
)
= L+

(
n
√

1+(α+)2

)
for all n ∈ N. (3.2)

This can again be seen when looking at the cycles the line travels over as a 4×1 or 1×4 torus,

and we see again this definition of a meta-line is removing a cycle from this torus, thus leaving

us with the same θ -edge crossings.

See Figures 3.3 and 3.4 for examples of deriving meta-lines from cube lines. Some

notes on meta-lines: firstly, as the meta-line of L(t) will hit all the θ -edge crossings of L(t), it

follows from the results in Chapter 2 that the meta-line of L(t) is uniformly distributed if θ -edge
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Figure 3.4: The initial segment of a cube line with initial slope |α|< 1/4 and its meta-line.

crossings of L(t) are uniformly distributed, and L(t) is uniformly distributed if the angled edge

crossings of its meta-line are uniformly distributed (note they are no longer θ -edge crossings

as the angle of the meta-line is different from that of the original).

Secondly, they are called meta-lines because they tell us where the line will be “faster” than

the line will itself. For example, if α > 4, as in 3.1, we know

L

(
n
√

1+
(

1
α

)2
)

and L∗
(

n
√

1+
(

1
α∗
)2
)

will be in the same spot. But |α| > 4 and α∗ ≡ α

mod 4 implies that n
√

1+
(

1
α

)2
> n
√

1+
(

1
α∗
)2

. Thus the length of L will be much larger than

the length of L∗, despite the fact that they will be in the same spot. Another way to look at

this is to say a cube line crossing through an entire cycle of four faces any number of times

is equivalent to its meta-line crossing just a single face (i.e. eliminating extra loops through a

cycle). A similar comparison of 3.2 shows the same thing: the original lines and the meta-line

will be in the same spot while the meta-line will be much shorter than the original. Again, we

see that the comparison is–an entire cycle in the original line is reduced to a single face crossing

in the meta-line.

Thus, if we want to find what points a cube line will hit, it is quicker to look at its meta-line

(if applicable). But further, in some cases once we take the meta-line, we can indeed take the

meta-line again (e.g. an irrational number slightly more than 4), which would still maintain the

θ -edge crossings of the original line, and in fact tell us where they are even quicker. Each time

we iterate this process the new meta-line provides information even more quickly in comparison

to the original line. This motivates us to look for a line where we can repeatedly and indefinitely

find its meta-line.

It would be helpful to find a line on which the meta-line process is recursive. First we can
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ask: is there any line which is its own meta-line? The answer to this is clearly no, as, if α > 4,

then α mod 4 cannot also be greater than 4, with similar logic following for α < 1/4. The

next question to ask is: is there a line which is the meta-line of its meta-line? To this question

we find the answer is actually, yes.

Let L(t) be a cube line with starting point L(0) = V being on the front face in the bottom-

left corner, and L have irrational slope α with |α|> 4. We want to know if there is a value for

α such that L = L∗+. As the slope of L is α , the slope of L∗ will be α mod 4. Then the slope

of L∗+ will be

1
1

α mod 4
mod 4

.

Setting this equal to the slope of L we get,

α =
1

1
α mod 4

mod 4
.

There are in fact many solutions to this, found by taking α mod 4 = α −4k1, and similarly,

1
α−4k1

mod 4 = 1
α−4k1

−4k2, for k1,k2 ∈ Z/{0}. Then we get

α =
1

1
α−4k1

−4k2

⇒ 1

α
=

1

α −4k1

−4k2.

Solving for α yields

α =
2k1k2 −

√
4k2

1k2
2 + k1k2

k2

. (3.3)

This represents a family of solutions that will work; each values k1 and k2 correspond to how

many loops through a cycle are removed by the meta-line process. Moreover, this family is the

solution which are the meta-lines of their meta-lines, but longer recurrence chains are possible,

too, e.g. L = L∗+∗+, viz. any line which is its own fourth meta-line (in fact any even length

chain is possible). The proceeding arguments about meta-lines work for any geodesic in this

family of solutions, but for ease of notation we chose a single solution to work with, using

k1 = k2 =−1 in 3.3, giving us

α =
√

5−2. (3.4)
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Let A = A(t) be the particular cube line with slope α and initial point a (fixed) vertex V .

From the definition in 3.2, its meta-line is a cube line with the same starting point and slope

β = 2+
√

5; call this cube line B = B(t). Note that β ≡ α modulo 4 and β = 1/α . We now

have two lines, A and B, where B is the meta-line of A, and A is the meta-line of B. For the rest

of the paper, cube lines A = A(t) and B = B(t) will refer to these specific cube lines. (As an

aside, for clarity all figures in this paper are drawn with the cube lines having slope α or β ).

Assume that θ is the angle for cube line A, then φ = θ⊥ is the angle for cube line B, as

β = 1/α . We see from the definition of meta-lines that the θ -edge crossings of A are the φ -

edge crossings of B, and similarly the θ⊥-edge crossings of A are the φ⊥ edge crossings of B.

We only get both of these facts because A and B are meta-lines of each other, as the meta-line

process takes edge crossings at angles that are close to an integer multiple of π (i.e. those

that would loop around a cycle before hitting another crossing, or high slopes relative to the

cycles), and turns them into edge crossings at angles near π/2 (so they do not loop through a

cycle before hitting another edge crossing, i.e. low slopes). Thus the meta-line process acts on

the high slope θ⊥ angles of A and turns them into low slope φ angles of B, and similarly takes

high slope φ⊥ angles of B and turns them in to low slope θ angles of A.

We now ask what one line tells us about the other. As mentioned above, crossing a face in

a meta-line is the equivalent of crossing an entire cycle, possibly multiple times, in the orig-

inal line. Since for these two lines, crossing a cycle involves crossing 4 or 5 faces (because

4 < β = 2+
√

5 < 5), this means that crossing a cycle in the meta-line is the equivalent of

crossing 4 or 5 cycles in the original line. Moreover, we can track what face crossing in the

meta-line corresponds to which cycle in the original line, and extrapolating from that, we can

determine which cycle in the meta-line will correspond to which sequence of cycles in the orig-

inal line.

For example, A crosses the front face from a θ -edge crossing on the left edge to a θ -edge

crossing on the right edge. Then B must have φ -edge crossings at both these points as well. To

get from the left edge to the right edge of the front face at angle φ , the line B must go through

the cycle front-top-back-bottom. We note that we know it is this cycle, and not front-bottom-

back-top, as, given the slope of A, the point it hits on the right edge must be −
√

5− 2 above

the point on the left edge. As we know B must hit the exact same point on the right edge, it



28

must travel in the upwards direction to arrive 2+
√

5 mod 4, equivalent to
√

5− 2 above of

where it started. If it went in the downwards direction it would arrive −(
√

5−2) mod 4 above

(i.e. below), which is not equivalent to −2+
√

5, and would thus hit the wrong spot. Using

this we can equate each face crossing in the meta-line with a specific cycle in the original line.

Extrapolating this as sequence, we can furthermore equate each cycle in the meta-line with a

sequence of 4 or 5 cycles in the original line.

It now becomes useful to number the cycles of the cube.

1: front-top-back-bottom

2: front-bottom-back-top

3: front-left-back-right

4: front-right-back-left

5: left-top-right-bottom

6: right-top-left-bottom

(3.5)

Since each cycle contains a combination of specific ways in which a line crosses a face,

we can note which cycle in the meta-line will equate to which cycles in the original.

Meta-line cycle Original line cycles

1: 4-5-3-6-

2: 3-5-4-6-

3: 1-5-2-6-

4: 1-6-2-5-

5: 1-4-2-3-

6: 1-3-2-4-

(3.6)

If we were to list out all the cycles of A, it would be a combination of the sequences above,
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and each cycle would represent a sequence above in B, each cycle of which would represent a

sequence in A, and so on. The first thing to note about this list is, for each cycle, appearing in

the meta-line corresponds to every other cycle besides itself and its opposite appearing in the

original line, (opposite here means cycle of the same faces in the opposite direction, i.e. the

pairs 1 and 2; 3 and 4; 5 and 6). Additionally, no cycle is ever followed by itself or its opposite

cycle. This means if A, for example, has a 1 cycle, then the next cycle will be either a 3, 4, 5

or 6 cycle. This tells us that B will have at least the cycles 4, 5, 3, 6 with a possible repeat,

represented by the 1, and then will have the cycles 1 and 2, from whichever cycle is next, as

3, 4, 5 and 6 all represent a sequence with a 1 and a 2. This shows us that B, and similarly A,

eventually contains all the cycles. Each cycle hits 4 edges in a particular direction, and thus

has 4 directed θ edges. Therefore, as the line will hit each of the 6 cycles, it will hit all of the

2×6 = 24 directed θ edges. (This result, while seeming to be fairly obvious, becomes surpris-

ingly important. See Chapter 11 for more details.) We also note that as no cycle is followed by

itself or its opposite, there are 6×4 = 24 possible transitions between cycles; these transitions

are each of the 24 θ⊥-edge crossings.

The listing above has one major hindrance in it: it lists the order of cycles that will occur,

but not necessarily at the correct starting location. That is, a 1 meta-line cycle can lead to a 4-5-

3-6 sequence of cycles, or a 5-3-6-4 sequence of cycles. Moreover, as each cycle represents 4

or 5 cycles, depending on where the cycle starts, so it could be 4-5-3-6-4, or 5-3-6-4-5 as well,

though note the order will always be maintained, indicating if there are 5 cycles, it begins and

ends with the same cycle. We note that a 1 meta-line cycle can actually represent any of eight

different sequences of cycles.

The resolution to this obstacle is the above idea that each cycle transition is a specific θ⊥-

directed edge. That is, for example, if a line goes from cycle 1 to cycle 6, it must do so on

the right edge of the front face (going in the upper right direction). Similarly, for all 24 of the

possible transitions there is exactly one edge direction on which the transition is possible. That

means that if the meta-line has a 1 cycle followed by a 6 cycle, we know the 1 cycle ends by

crossing the front face, and the 6 cycle begins by crossing the right face, see Figure 3.5. Thus,

the sequence of cycles that in the original line, which were indicated by this 1 in the meta-line,

must end with cycle the indicated by the meta-line crossing the front face into right face, which
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Figure 3.5: Here we have the ending of a 1 cycle (front-top-back-bottom cycle) as it transitions

to a new cycle. As we can see which cycle follows is uniquely determined by which edge the 1

cycle ends on.

is the 4 cycle. Similarly, the 6 cycle must begin starting from the right face, and so the sequence

of cycles represented by this 6 must begin with the cycle which is represented by the meta-line

crossing the right face towards the top face, which is the 1 cycle. Extrapolating this for all

possible transitions leads to the chart found in Figure 3.6.

From this it is possible to construct what the lines will look like by providing the sequence

of cycles traveled through. We provide an example with B.

We can tell from observation that the line B begins with a 1 cycle, and then then a 6 cycle,

and that the line A begins with a 4 cycle. From this information we can construct as much of

the line as we need using the charts above. B starts off with the cycle sequence

B = 16 . . .

We know 1 represents 4536, and the sequence must begin with a 4, and 6 represents 1324.

A 1-6 transition represents a 4-1 transition, so the first set of cycles must end in a 4, which
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Meta-line transition Original line transition

1-3 6-1

1-4 5-1

1-5 3-1

1-6 4-1

3-1 5-3

3-2 6-3

3-5 2-3

3-6 1-3

5-1 4-5

5-2 3-5

5-3 1-5

5-4 2-5

Meta-line transition Original line transition

2-3 5-2

2-4 6-2

2-5 4-2

2-6 3-2

4-1 6-4

4-2 5-4

4-5 1-4

4-6 2-4

6-1 3-6

6-2 4-6

6-3 2-6

6-4 1-6

Figure 3.6: Table of which meta-line transition corresponds to which original line transition.

moreover tells use it will be a set of 5 cycles (as it begins and ends with the same cycle), and

the second set of cycles must begin with a 1. Thus we know the beginning of A will be

A = 453641324 . . . (3.7)

We can repeat this process on A to learn more about B: 4 represents 1625, and must start with

1, while 5 represents 1423, and a 4-5 transition represents a 1-4 transition. We add on that 3

represents 1526 and a 5-3 transition represents a 1-5 transition. Continuing this we get,

B = 16251423152613241625164536152635462516 . . . (3.8)

This process can go on ad infinitum, growing by a factor of 2+
√

5 with each step.

What is so interesting about this sequence is that it allows us to actually know what directed

edge the line is on at any given time, as each transition in the sequence corresponds to a specific

directed edge. As discussed in Chapter 1, much of the difficulty of the problem of the cube line

is in not knowing which edge it is on at any given time due to the quasi-random nature of the

irrational slopes and non-translatable singular points. With this, however, we can know exactly

which directed edge the cube line is on at the θ -edge crossing at A
(

n
√

1+β 2
)

, based on the

transition of the sequence of cycles for line B, calculable in O(log(n)) time, as this sequence

grows exponentially.
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Moreover, we can relate this sequence to the well known Beatty sequence. The Beatty se-

quence was first described by S. Beatty in 1926 [1], and denotes the sequence of floor functions

of multiples of an irrational number.

Formally, for an irrational number r, the Beatty sequence (Br(n))∞
n=0 is defined as

Br(n) = ⌊rn⌋.

We can see with this process: it grows at a factor of β = 2+
√

5 transitions per iteration so, if

the nth iteration has In transitions, the number of transitions in the n+1th iteration is

In+1 = Bα(In)+1,

with the +1 because it is actually the ceiling function in this case, not the floor as in the classic

Beatty sequence.

We further note that the meta-line transitions come in series of length 3. That is, if B has a

transition of 1-6, this implies a transition of 4-1 on A, which in turn implies 6-4 transition on

B, which then implies a 1-6 transition on A. Repeating this process again tells us that in three

more transfers, we will have a 1−6 on B again. Now we can ask the question: if the first 1-6 is

the first transition of the sequence, as it is for B above, when will this 1-6 six implications later

occur? It will be the last transition in the sequence after iterating six times, so it will occur at

Bα(Bα(Bα(Bα(Bα(Bα(1)+1)+1)+1)+1)+1)+1.

Unfortunately, little is known about the sequence of six recursive iterations of the Beatty se-

quence. That said, it does give, in some way, a solid reference for determining the locations of

this quasi-random sequence. Defining

B
(i+1)
α (0) = (Bα(B

(i)
α (0))+1, B

(0)
α (0) = 1, (3.9)

then we have that all the terms

B
(6i)
α (0) = 1−6 transitions ∀i ∈ N,
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which in turn implies A(β ∗B
(6i)
α (0)) is on the edge direction from the front face to the right

face, ∀i ∈ N.

This gives a general result about an infinite sequence of instances of the cube line hitting

a particular edge. Thus we have a simple (albeit poor) quantitative result about the cube line

A. This technique is further elaborated upon in Chapters 5 and 6, resulting in more substantial

quantitative results.

Finally, as a relation to what is known about the Beatty sequence, since we know all tran-

sitions will be implied by recursively looking at different portions of earlier iterations of the

sequence similar to 3.9, this suggests there might be some extension to Rayleigh’s theorem

acting here. Note Rayleigh’s theorem [19] states that for each irrational number r, the number

s = r/(r−1) is such that Br(n) and Bs(n) partition the natural numbers. Similarly, in our case,

the different recursions of Beatty’s sequence should partition the complete sequence of cycles.
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CHAPTER 4

EXISTENCE OF DENSE AND

UNIFORMLY DISTRIBUTED CUBE

LINES

In this chapter we prove that there exists a cube line, which is dense on the cube, and then

further is uniformly distributed on the cube, by showing that the cube lines A and B described

in Chapter 3 satisfy these requirements. (Recall A is the cube line with initial point a vertex

V and initial slope
√

5− 2, and B is the cube line with the same initial point and initial slope

√
5+2.) We begin with density.

We first note that, by the arguments in Chapter 2, density of the line on the cube is equivalent

to density of the θ -edge crossings of the cube. In fact, the argument for reducing the problem

of density on the faces to density of θ -edge crossings on the edges is even simpler than the

previous arguments reducing uniformity. It can be seen clearly by noting that for each point on

the cube, a, and a given line L(t) with angle θ , there is a point on an edge, b, that leads to a

with slope θ . If a line hits points arbitrarily close to b, then it will similarly hit arbitrarily close

to a. Thus it is enough to show that T = Tα is dense over the set of edges, [0,24).

This process can be simplified a step further to say that it is enough to show density in a

single directed θ edge. This follows from the logic above if we assume that for any point a on

the cube, a line going from a in the reverse direction will eventually hit all edges of the cube
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(in finitely bounded time). Where it hit on the edge will be used as our b point and the logic

above follows. As mentioned in Chapter 3, lines A and B do indeed hit all directed edges, and

in fact, as we will see later, all cube lines with irrational slopes will hit all directed edges (see

Lemma 16 and Lemma 18).

We begin by looking at the line A and considering where on each directed θ edge each

θ -edge crossing occurs. Let ai = A
(

i
√

1+α2
)
∈ [0,1) be the location where the nth θ -edge

crossing occurs. If one θ -edge crossing occurs at ai ∈ [0,1) on a directed edge, then the next

will occur at ai +1/β = a0 +α modulo 1, on some other directed edge, and thus the sequence

of points on the directed edges where the θ -edge crossings occur is the irrational rotation,

a0 +nα mod 1 n ∈ N.

As mentioned in Chapter 1, the properties of the irrational rotation are well understood,

namely that it is dense and uniformly distributed. Thus the sequence of locations of θ -edge

crossings with their directed θ edges, (an)
∞
n=0, is a dense, uniformly distributed set on the half

open interval [0,1), because irrational rotations are dense and uniformly distributed. Therefore,

we can think of the set of θ -edge crossings as taking this dense set (derived from the sequence)

of the half open interval [0,1), and partitioning its elements among the 24 directed θ edges by

putting each θ -edge crossing in the partition piece of whatever directed edge it occurs in.

From here we show a general lemma about dense subsets of intervals.

Lemma 3. Let I be a real interval and D a dense set in I. For any finite partition Γ of D, there

is a non-empty open sub-interval U ⊆ I and element γ ∈ Γ such that γ is dense in U.

Proof by induction on n = |Γ|, the number of partition pieces in the partition Γ. The base

case of n = 1 is trivial as γ ∈ Γ = D is dense in I ⊆ I. Let Γ = {γ1, . . . ,γn}. Suppose γn is not

dense in I. Then by definition there is a non-empty open interval I0 ∈ I such that γn ∩ I0 = ∅.

Therefore D∩ I0 has been partitioned into n−1 elements by Γ∩ I0. Applying the inductive hy-

pothesis implies there is some open interval in I0, and thus in I, for which the condition holds.

Applying this lemma to the set of θ -edge crossing locations within their directed edges,
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U

U

U1

Figure 4.1: Using the initial dense set U , we can extrapolate the existence of a larger dense set

U1. Note we only take the portion of the new set entirely contained in one edge (opting for the

larger selection).

which are dense in the interval [0,1), partitioned by which directed θ edge they occur in, we

get that there is some non-empty open interval (r1,r2)⊂ [0,1) such that one piece of the parti-

tion is dense on (r1,r2). This means there exists some sub-interval of some directed θ edge in

which the θ -edge crossings are dense.

Let U be an open interval on a directed edge ~E for which the points

{
A
(

n
√

1+α2
)}∞

n=0

are dense; we refer to the set of θ -edge crossings in U as U0. Since A and B hit the edges at the

same points, B will also hit all points in U , and thus the dense set U0 is also in B, where they

are φ -edge crossings (again, φ is the angle of B). The idea of the following procedure to use

the fact that this set is dense to show that a slightly bigger interval in which A is dense, which

in turn will show a slight bigger interval, and so on, until we show that an entire directed edge

must have a dense set in A.

Consider a point x0 ∈U0, a θ -edge crossing of A, and let (vn)
∞
n=0 be the in order sequence

θ⊥-edge crossings of A. Then ∃i ∈N such that x0 occurs between vi and vi+1, that is, A(t1) = vi,

A(t2) = x0 and A(t3) = vi+1, with t1 < t2 < t3, and we select the point vi+1, that is, we take the

θ⊥-edge crossing which occurs most immediately after x0. We call vi+1 the image of x0. We

do this for all x ∈U0, and call the set of image θ⊥-edge crossings U1.

We claim U1 is dense in an interval. Consider the cycle between vi and vi+1. Note that this
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U1 U1

U2

Figure 4.2: Iterating this process with the new set U1 yields increasingly large dense sets, until

eventually we have a dense set which contains an entire directed edge.

cycle must be the same cycle for all x ∈U0, as all the points in U0 are θ -edge crossings on the

same directed edge. For simplicity, assume the cycle is the 4 cycle (the front-right-back-left

cycle) and U is on the edge between the front and right faces. Then the θ⊥-edge crossing vi

is the wherever the line hits on the top edge of one of the faces, immediately after hitting x0.

It is quite clear from looking at the cycle as a 1 by 4 torus that this mapping from x0 to vi+1 is

a continuous, linear mapping, and will in fact be the same linear mapping for all points in U0.

The continuous mapping of a dense set on an interval will be a dense set on an interval, thus U1

will be dense on an interval. Note U1 might be split over more than one directed edge. In this

case, we take the largest interval on any one edge and call it U1, see Figure 4.1.

We next look at the size of U1 (size here refers to interval length). Take two points of

U , x1 and x2 ∈ U ⊂ [0,1) (denoted by their location on the directed θ edge ), and suppose

|x1 − x2| = ε > 0. We label their images y1 and y2 respectively (denoting the image by their

location in the directed edge containing U1). Then we have, noting −2+
√

5 = 1

2+
√

5
is the

slope of A,

y1 mod 1 = (1− x1)(2+
√

5), y2 mod 1 = (1− x2)(2+
√

5).
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Without loss of generality, we can assume x2 = x1 + ε , so we have

y2 mod 1 = (1− x1 − ε)(2+
√

5)

y2 mod 1 = y1 mod 1 − ε(2+
√

5)

Assuming x1 and x2 ∈U0 are close enough together, their images will be on the same directed

edge and thus we can drop the modulo 1 on both of them. This gives us,

y2 − y1 = (2+
√

5)ε.

Thus, for two points in U , their images in U1 are 2+
√

5 times further apart. Thus we now

have a much larger dense set, U1. If U1 contains an entire edge, we have an density in an en-

tire directed edge, and thus we are done. If U1 does not contain an entire edge, then we have

|U1|= (2+
√

5)|U | (again, here |.| refers to interval length), noting that not containing an entire

edge prevents any overlapping in the linear map that defines U1. It is possible U1 spans more

than 1 edge, so we pick the largest part entirely on one edge, which we know is at least of size

2|U | (this follows from the fact that U1 does not contain a whole edge, and thus the interval it

is dense in must be contained in at most two directed edges).

We can now repeat this process, using B. As U1 is θ⊥-edge crossings in A, it is φ edge

crossings in B. As θ = φ⊥, doing this process again will give us a set of image θ -edge cross-

ings, U2, that either contains a full edge, or a dense set on an edge of size at least 4|U |, see

Figure 4.2. We continue this process, alternating between finding θ⊥-edge crossings from θ -

edge crossings, and φ -edge crossings from φ⊥-edge crossings. Repeating this process at most

log2
2
|U | times yields a set of images which must contain a complete edge. This is a set which is

dense on an entire edge-direction, thus proving the following theorem.

Theorem 3. Let A and B be two cube lines such that A is the meta-line of B and B is the meta-

line of A (see 3.1 for explicit formula). Then both A and B are dense on the cube.

We next aim to prove that the cube lines A and B, and all those described in 3.1, are uni-

formly distributed. For simplicity we work on line A.
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We begin by constructing a slightly different transformation than that of Tα described in

Chapter 2. Consider the set of half open unit intervals [0,1) representing each of the directed θ

edges and each of the directed θ⊥ edges, and let Ω = [0,48) be the interval of them glued to-

gether in the obvious way (see 2.2). We chose to represent this as Ω=E×M, where E = [0,1)24

represents the directed θ edges of A, and M = [0,1)24 represents the directed θ⊥ edges for the

line A.

We also define the mapping Ψ : Ω → [0,1) in the obvious way, taking each half open inter-

val [r,r+1)∈Ω, for integers 0≤ r < 48, shrinking it linearly by a factor of 48, and then placing

them in sequence on the unit interval. Formally we can define the function Ψ as follows: let

Ω = {[0,1)i : 0 ≤ i < 48} be set of edges with some arbitrary sequencing. Then we define Ψ

by

Ψ : {[0,1)i : 0 ≤ i < 48}→ [0,1)

Ψ(xi) =
i

48
+ xi, ∀xi ∈ [0,1)i, ∀0 ≤ i < 48. (4.1)

Next we define two mappings on this space, Ω. First, we define a mapping on the half-

space, E; let the mapping τ = τA : E → E be defined as follows: for any x ∈ E, assume a

geodesic A with angle θ is at the point x traveling in the direction of the directed θ edge that x

is located on, and let τx be the next point in E which the line hits. We note that by construc-

tion, τA = Tα , where Tα is our standard mapping as defined in Chapter 2. Thus, by the results in

Chapter 2, if the orbit of a point under function τ is uniformly distributed over the space E, then

the line A will be uniformly distributed on the edge directions of the cube, and thus uniformly

distributed on the cube.

We next define a second mapping G = GA : Ω → Ω. For any x ∈ E, we again assume a

geodesic A with angle θ is at the point x traveling in the direction of the directed θ edge thaat

x is located on, and define Gx to be the next point in M which the line hits—that is, the next

θ⊥-edge crossing the geodesic A would hit. For x ∈ M however, we make use of the fact that

the directed θ⊥ edges of a line A are the directed φ⊥ edges of its meta-line, B. (Again, recall

θ⊥ = φ ). So for x ∈ M we instead assume a geodesic B with angle φ , is at the point x traveling

in the direction of the directed φ⊥ edge of B that x is located on, and define Gx to be the next
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point in E which the line hits. That is, we send each φ -edge crossing to its next φ⊥-edge cross-

ing. Note the definition of G is essentially the same as the back and forth process used early in

the chapter to Theorem 3, see Figures 4.1 and 4.2.

The basic idea of our proof is to show that the transformation G is ergodic

(though it is not measure preserving), then prove that this fact implies τ is ergodic (which is

measure preserving), and finally that τ is ergodic proves that τ is uniformly distributed for al-

most every starting location.

We remind the reader that a transformation G is called ergodic if the only sets which it

holds constant are have either empty measure or full measure. That is G is ergodic if, for any

set A satisfying GA = A, either A has measure zero or Ac, the compliment of A, has measure

zero. Note this definition is independent of whether G is measure preserving or not.

Lemma 4. The mapping G is ergodic over Ω (with respect to the 1-dimensional

Lebesgue measure).

Using results by published by K. Wilkinson [21] in 1975, for a transformation T which is a

piecewise linear function from [0,1) to itself, we can use the following conditions to imply the

function is ergodic:

Let

bi > 0, ∑
i∈I

bi = 1

a0 = 0, ai+1 = ai +bi

T x = ci(x−ai)+di,

if c = infi∈I ci > 1 and for each i ∈ I, cibi +di ≤ 1, with di > 0, then T is ergodic.

We claim that h = Ψ◦G◦Ψ−1 satisfies these conditions. First we show that G is piecewise

linear and thus h can be written as above. Let Y = (a,b) ⊆ [0,1) be an open set in one of the

directed edges of Ω. If Y ⊂ E then GY is the set θ⊥-edge crossings which are next hit by a

line of angle θ starting from the points in Y . Without loss of generality suppose Y ⊂ E is on



41

the directed θ edge going from the left face to the front face. Again this can be achieved by

rotating or mirroring the cube if needed. If we look at this edge as a whole, we note that the

interval

[1−α,1) maps linearly to the front top edge. This can be seen clearly by looking at the front-

right-back-left cycle as a 1 by 4 torus line. Similarly the interval

[1− 2α,1−α) will map linearly to the right top edge, [1− 3α,1− 2α) to the back top edge,

[1−4α,3α) to the left top, and finally [0,1−4α) will map linearly to

[1−α(1− 4α),1) (note these are not measure preserving linear mappings). Thus we can see

that the interval M will embed into these 5 linear maps and be a piecewise linear map with

at most 4 points of discontinuity, 1−α, 1− 2α, 1− 3α, and 1− 4α . Generalizing this same

argument to all directed θ edges and directed θ⊥ edges we see that G is piecewise linear. As Ψ

is also a piecewise linear mapping, mapping each edge linearly to an interval [n/48,(n+1)/48)

for some 0 ≤ n < 48, this implies h is also a piecewise linear map and can thus be written as

above.

We next note that each portion of the edge is linearly mapped to an interval that is 1/α = β

times larger. Thus we note that all the linear coefficients ci = β for all i, as it is clear conjugation

by Ψ will not affect the linear scaling.

Lastly we need to show cibi +di ≤ 1. But as

ai+1 −ai = bi

and

T x = ci(x−ai)+d + i

for x ∈ [ai,ai+1), this is simply saying that all linear pieces have their images fitting inside the

entire space, i.e. the function has been taken modulo 1. It is clear that all linear pieces of G fit

within the entire space, and conjugation by Ψ ensures that the function is equivalent modulo 1.

Thus h satisfies all of the above conditions and thus h is ergodic.

To complete the lemma we must finally confirm that h being ergodic implies G is ergodic.

But we note that Ψ is a piecewise linear bijection. Suppose Y ⊂ Ω such that GY = Y . Then

h(Ψ(Y )) = Ψ(Y ). Thus µ(Ψ(Y )) = 0 or 1. As Ψ is a piecewise linear bijection with a linear
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factor of 1/48, this implies µ(Y ) = 0 or 48, thus µ(Y ) = µ(∅) or µ(Y ) = µ(Ω), thus G is

ergodic over Ω.

Lemma 5. The mapping τ is ergodic over E (with respect to the 1-dimensional

Lebesgue measure).

This lemma is a result of the above note: a line A hits a θ -edge crossing at a point x, if and

only if its meta-line hits a φ -edge crossing at the same point x.

Let F ⊂ E be such that τF = F . Let F ⊂ Ω be the smallest subset of Ω such that F ⊂ F

and GF = F (note we know this minimum exists as it is equal to the intersection of all such

subsets, and the fact F = Ω satisfies shows the intersection is non-empty). As G is ergodic

this implies µ(F ) = 0 or µ(F ) = µ(Ω) = 48. If µ(F ) = 0 this implies µ(F) = 0 and we are

done. If µ(F ) = µ(S) = 48, this implies that µ(F ∩E) = 24.

As F is the smallest of the sets contain F which are their own image, we have that

F =
∞⋃

n=0

GnF. (4.2)

Thus for all y ∈ F ∩E, y = Gnx for some n ∈ N and some x ∈ F . As x ∈ E, x is a θ -edge

crossing hit by a line A with angle θ starting at x, and also a φ -edge crossing of its meta-line

B with angle φ starting at x ∈ E. It then hits a point in M at Gx ∈ M, a θ⊥-edge crossing of

A but also a φ⊥-edge crossing of B. Then it follows, G2(x) ∈ E is some φ -edge crossing of B,

and is therefore also a θ -edge crossing of A. This logic follows until we get to y = Gnx ∈ E

must be some θ -edge crossing of A. But the set of all θ -edge crossings of the line A is the set

{τnx : n ∈ N}. As the set F is its own image, this implies

∞⋃

n=0

τnF ⊆ F ⇒ τnx ∈ F ⇒ y ∈ F.

Thus we have

F ∩E ⊆ F ⇒ µ(F)≥ µ(F ∩E)

⇒ µ(F)≥ 24 ⇒ µ(F) = 24 = µ(E).
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Therefore, if τF = F , then µ(F) = 0 or µ(F) = µ(E), and thus τ is ergodic over E, proving

the lemma.

The final step is to show that τ being ergodic over E implies that for almost every x ∈ E,

{τn(x)}∞
n=0 is uniformly distributed over E.

This is a direct result from Birkhoff’s ergodic theorem [3].

We give a brief review of Birkhoff’s Theorem for measure preserving flows[3]: Let

(χ,A ,µ) be a probability space; and Tt : X → X , t ∈R be an invertible measurable flow, mean-

ing a measure-preserving group action Ts+t = TtTs; and let f ∈ L1(χ,A ,µ) be an integrable test

function. Then we have

lim
N→∞

1

N

∫ N

0
f (Ttx)dt = lim

N→∞

1

N

∫ N

0
f (T−tx)dt = f̄ (x) (4.3)

for almost every x ∈ χ , with respect to measure µ , and:

1. f̄ (Ttx) = f̄ (x) almost everywhere—that is, the limit function f̄ is {Tt}-invariant;

2. the flow is called ergodic if every {Tt}-invariant measurable set A ∈ A with Tt(A) = A

almost everywhere has the property µ(A) = 0 or µ(A) = 1;

3. if the flow (Tt) is ergodic then every (Tt)-invariant function is constant, and the right-hand

side of 4.3 simplifies to the integral

∫

χ
f (x)dµ(x).

A well known example of an ergodic flow is the irrational torus line flow,

Tt : x → x+ tv modulo 1,

where v = (v1,v2) is fixed with an irrational slope v1/v2, and x runs over the

2-dimensional torus [0,1)2.
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As τ is a measure preserving mapping, 4.3 implies the orbit of almost any point x un-

der it is equidistributed. A proof of this standard result is as follows.

Birkhoff’s ergodic theorem tells that if τ is an ergodic transformation in E, then for any

measurable function f , for almost every x ∈ E

lim
n→∞

1

n

n

∑
j=0

f ◦ τ j(x) =
∫

E
f dm.

Let Q1 be the set of rational numbers in the interval [0,1). Let E be the set defined as

E= {(x,y;z) : x,y ∈Q1,x < y,z ∈ N,0 ≤ z < 24}.

This set represents all open intervals with rational endpoints in E, with the z representing which

directed edge it is located on. We note that this is countable so we let (γi)
∞
i=0 be some enumer-

ation of the set E. We then define fγi to be the indicator function for the interval represented by

γi.

For each fγi , we know that

lim
n→∞

1

n

n

∑
j=0

fγi ◦ τ j(x) =
∫

E
fγidm

holds for almost every x. Call the set it does not hold for Pγi . Note µ(Pγi) = 0 for all γi, and as

there are a countable number of γi, this implies,

µ

(
∞⋃

i=0

Pγi

)
≤

∞

∑
i=0

µ
(
Pγi

)
=

∞

∑
i=0

0 = 0.

Thus for almost every x ∈ E, the orbit of τ is uniformly distributed for every interval with

rational endpoints. Let x be any point not in
⋃∞

i=0 Pγi . Let (a,b) be any interval on a directed

θ edge of E. For any ε > 0, there exists rational numbers a+ε , b−ε , a−ε , and b+ε in the interval

[0,1), such that,

0 ≤ a+ε −a ≤ ε,

0 ≤ b−b−ε ≤ ε,
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0 ≤ a−a−ε ≤ ε,

0 ≤ b+ε −b ≤ ε.

That is, a+ε and b+ε are slightly greater than a and b, respectively, and a−ε and b−ε are slightly

less than a and b, respectively.

Further, letting fI be the indicator function for any interval I, we know that

liminf
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)≥ liminf
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x)

= lim
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x) =
∫

E
f(a+ε ,b−ε )dm = b−ε −a+ε ≥ b−a−2ε

and

limsup
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)≤ limsup
n→∞

1

n

n

∑
j=0

f(a−ε ,b+ε ) ◦ τ j(x)

= lim
n→∞

1

n

n

∑
j=0

f(a−ε ,b+ε ) ◦ τ j(x) =
∫

E
f(a−ε ,b+ε )dm = b−ε −a+ε ≤ b−a+2ε .

Putting these together we have that

b−a−2ε ≤ liminf
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x)≤

≤ limsup
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)≤ b−a+2ε.

Thus, as ε can be made to be arbitrarily small, taking the limit as ε goes to 0 we get

lim
ε→0

b−a−2ε ≤ lim
ε→0

liminf
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x)

≤ lim
ε→0

limsup
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)≤ lim
ε→0

b−a+2ε

⇒ b−a ≤ liminf
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x)≤ limsup
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)≤ b−a

⇒ b−a = liminf
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x) = limsup
n→∞

1

n

n

∑
j=0

f(a,b) ◦ τ j(x)
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⇒ lim
n→∞

1

n

n

∑
j=0

f(a+ε ,b−ε ) ◦ τ j(x) = b−a.

Thus proving that the orbit of x under τ is uniformly distributed over E, and thus, for almost

every x ∈ E, the orbit under τ is uniformly distributed over E. Therefore, using Lemma 1 and

Lemma 2 we have proved the following theorem about the existence of a uniformly distributed

cube line on the surface of a cube.

Theorem 4. Let A be any cube line with slope given by 3.3.

1. For almost every starting point a0, A is uniformly distributed over the surface of the cube

in the Weyl sense (see Theorem 1).

2. For almost every starting point a0, A is uniformly distributed over the surface of the cube

in the Birkhoff sense (see Theorem 2).
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CHAPTER 5

QUANTITATIVE RESULTS:

COMBINATORIAL UNIFORMITY

The proofs of Theorems 1, 2, 4,9-12 are all based on the same two-step approach: (1) show that

the corresponding measure-preserving transformation is ergodic, (2) use Birkhoff’s well known

ergodic theorem. The main detriment to using Birkhoff’s ergodic theorem is that it provides no

insight to any quantitative results with regard to uniform convergence—that is, it tells us noth-

ing about the rate at which uniform convergence occurs, just that it does indeed occur as the

limit goes to infinity. Previous work on uniformity of torus lines on a square and billiard paths

on a square proved uniform distribution using Weyl’s criterion, which has several quantitative

versions (e.g. the Erdős-Turán-Koksma inequality [5]); Birkhoff’s ergodic theorem, however,

has no such quantitative version. Thus to find any quantitative results about uniformity we must

look elsewhere. In this chapter we formulate some quantitative results for the geodesic in the

special case of cube lines A and B, as describe in the previous chapters.

We first look at uniformity in a slightly different way; we label the 6 faces of the cubes with

numbers 1,2,3,4,5,6, and write down the sequence of faces visited by a particle moving on cube

line L(t) t → ∞: we call this the “face-crossing” sequence. This infinite sequence will be ape-

riodic (assuming irrational slope) and will exhibit “pseudo-random” behavior. In comparison

to textbook “randomness”, there is a clear difference between the face-crossing sequence and

true randomness in their local aspects. For example, a fair die with the numbers 1 through 6
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being rolled to generate an infinite sequence will have long runs (say) . . . 1111111111 . . . , but

the face-crossing sequence will never even have a run of length two, i.e. every face-crossing is

followed by a face-crossing of a different face.

Despite this dissimilarity in the local aspects, the global aspects of the two sequences are

much more similar. The law of large numbers implies that in a typical random die sequence,

every integer k, 1 ≤ k ≤ 6 has the same asymptotic density 1/6, and our results from Theorem

4 imply the same is true for the face-crossing sequence. We denote this property by saying

the face-crossing sequence exhibits combinatorial uniformity. The same holds for the “edge-

crossing” sequences, and “directed edge-crossing” sequence, with the straight forward change

that the asymptotic density is 1/12 and 1/24, respectively.

One important quantitative global parameter is the size of the maximum fluctuation around

the mean value. It is well know that in a typical random die sequence the maximum fluctuation

exhibited is roughly square-root sized—in fact, for a random die sequence the typical fluctua-

tion and maximum fluctuation turn out to be nearly the same [11]. This leads us to ask a similar

question regarding the face-crossing sequence: what is the size of the maximum fluctuation of

the face-crossing sequence?

We start by looking at some previously known results of a simpler analogous question:

What is the size of the analog maximum fluctuation in the square billiard orbit? As the square

billiard orbit has only one face, the analogous question is rather about edge-crossing. To be

precise, we consider two parallel edges, say the top and bottom edges, of the square. Consider

N consecutive horizontal edge-crosses of the square billiard orbit (that is, whenever the billiard

orbit “bounces” off the top or bottom edge). Let Top(N) and Bottom(N) denote the number of

crosses of the top and bottom edges respectively. We know trivially that

Top(N) =
1

2
N +o(N) and Bottom(N) =

1

2
N +o(N).

But what can we say about the asymptotic behavior of the difference,

|Top(N)−Bottom(N)|,
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as N → ∞? According to the classic works of Hardy, Littlewood, Ostrowski, König and Szücs,

the answer depends on the continued fraction digits of the slope [9][17][14]. The continued

fraction representation is completely characterized for a single class of irrational numbers—

namely the quadratic irrationals are exactly those with periodic continued fractions. It turns

out that for every quadratic slope the maximum fluctuation of |Top(N)− Bottom(N)| is in

the range of logN. Logarithmic fluctuation is much smaller than the square root fluctuation

found in the random die sequence. Moreover the typical fluctuation of |Top(N)−Bottom(N)|

is in the range of
√

logN, much smaller than the maximum fluctuation, again demonstrating

a sizable difference between the edge-crossing sequence’s fluctuations and that of the random

die sequence.

Returning to our question of the face-crossing sequence, we can see there is no immediately

clear answer to maximum fluctuation size: is it still negligible logarithmic like the parallel edge-

crossing sequence of the square billiard orbit, or roughly N1/2 like the random die sequence,

or roughly Nc, 0 ≤ c ≤ 1, c 6= 1/2? Our goal is to answer this quantitative question regarding

combinatorial uniformity for some particular cube lines.

First we show that the quantitative aspects of combinatorial uniformity for cube line A, i.e.

cube line starting at a vertex with slope 5−
√

2, depends (quite surprisingly) on the second

largest eigenvalue of the corresponding “transition matrix”. Then we show how quantitative

combinatorial uniformity of A implies quantitative measure-theoretic uniformity of the cube

lines of the same slope and arbitrary starting point.

We return to the process of identifying the sequence of cycles of A (and B) in Chapter 3.

Let us jump into the middle of obtaining 3.8 from 3.7. Consider the concrete consecutive triple

641 in the middle of A = 453(641)324 . . . . Again applying 3.6 and Figure 3.6, we know 6-4

⇒ 1-6 and 4 −→ 1− 6− 2− 5, and thus the cycle corresponding to 4 must begin with 5, so

it is either 6251 or 62516. Since 4-1 ⇒ 6-4 and 4 −→ 4− 5− 3− 6, the cycle corresponding

to 4 has to be 62516, and the cycle corresponding to 1 must begin with 4, so it is either 4536

or 45364. Therefore, simply knowing the partial information A = . . .641 . . . anywhere in the

middle of A, we can guarantee the corresponding part B = . . .625164526 . . . in the middle of

B. We say that

516,164,645,452,526
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are the new consecutive triples generated (in B) by the triple 641 in the middle (of A).

To be clear as to why 625 and 251 are missing from this list of triples despite being in the

sequence 625164526; the triples 625 and 251 are not new—they were already generated by the

triple 364, the left neighbor of the triple 641 in

A = 45[3(64]1)324 . . . . Indeed we can find the list of triples generated by 364 using the same

method as above. We have 3-6 ⇒ 1-3 and 6 −→ 1−3−2−4, so we know that the cycle which

corresponds to 6 must begin with 3, and is thus either 3241 or 32413. As again 6-4 ⇒ 1-6 and

4 −→ 1−6−2−5, the cycle corresponding to 6 has to be 3241, and the cycle corresponding to

4 must begin with 6, so it is either 6251 or 62516. Thus the partial information A = . . .364 . . .

somewhere in the middle of A guarantees the corresponding part B = . . .32416251 . . . in the

middle of B. The new triples generated by 364 are

416,162,625,251.

So, 641 generates 5 new triples, and 341 generates 4 new triples.

We can extend this method to all possible (legitimate) consecutive triples, which results in

an explicit k×k “transition matrix” (similar to that of Markov chains), where k is the number of

(legitimate) consecutive triples. If we specify the beginnings: say, A = 452 . . . and B = 162 . . . ,

then the rest of the consecutive triples are all in the middle, and the transition matrix applies.

The powers of the explicit transition matrix gives an explicit formula for the number of

consecutive triples (of cycles) in terms of the eigenvalues. For example, after n iterations, the

number of consecutive triples of cycles 641 (or 364, or any other consecutive triple) is ex-

pressed in terms of the nth powers of the eigenvalues. From these explicit formulas it is easy

to get a similar explicit formula for the number of crossings of a given edge, or the number of

visits of a given face of the cube.

The largest eigenvalue of the k×k transition matrix is expected to be 2+
√

5, so the critical

new information is the size of the second largest eigenvalue. From here we have 3 possibilities:

(1) the second largest eigenvalue happens to be
√

2+
√

5, which would imply square-root fluc-

tuation (as in the random die sequence) and thus exhibit “randomness”; (2) the second largest

eigenvalue is not
√

2+
√

5, and it has absolute value greater than one, which would mean
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a new kind of “non-random chaos”; (3) the second largest eigenvalue has absolute value not

greater than 1, which means the exponent term would be negligible as N → ∞, and thus imply

negligible fluctuation as in the case of the square billiard orbit. We will show that the second

largest eigenvalue is greater than
√

2+
√

5, implying case (2).

The primary challenge with showing this is that the transition matrix of consecutive triples

is quite large, and thus quite difficult to compute the eigenvalues for. Counting the number of

legitimate consecutive triples, there are 6 possibilities for the first cycle, which can end on one

of 4 edges resulting in 4 possibilities for the second cycle, which given the edge it began on has

only 2 possibilities for which end edge it can end on, resulting in 2 possibilities for the third

cycle, or k = 48 cycles total.

Due to these large number of triples, we introduce a variable like xn(641) and xn(364).

Given the cycle these triples generate, we can then write out the system of simultaneous recur-

rences in the following manner:

xn+1(641) = xn(516)+ xn(164)+ xn(645)+ xn(452)+ xn(526)

and

xn+1(364) = xn(416)+ xn(162)+ xn(625)+ xn(251).

This still leaves us with a very unwieldy 48× 48 matrix to find the eigenvalues of. We can

however simplify this process substantially by reducing the number of variables via symmetry.

We make the following reduction: We identify points of the cube according to the 3 mirror-

symmetries of the cube: reflection in the xy-plane, reflection in the xz-plane and reflection in

the yz-plane, assuming the cube is centered on the origin. Doing this we lose some information,

but not much. It means we are actually studying measure-theoretic uniformity relative to a class

of partially symmetric test sets. For example, taking a small set test set near a vertex and on a

single face of the cube, the 3 mirror symmetries generate altogether 23 = 8 congruent copies of

S (4 copies on the original face, and 4 copies on the opposite face). The union of these 8 sets is

a partially symmetric test set the we call 3-mirror-symmetric.

The identification of the opposite faces reduces the number of faces to 3, and makes it

impossible to distinguish left and right, top and bottom, and front and back. Thus we can
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identify cycles which are the reverse of each other, i.e. 1=2, 3=4, and 5=6. Simplifying the

notation we “divide” by 2, i →⌈i/2⌉ , 1 ≤ i ≤ 6, leaving us with 3 reduced cycles denoted 1, 2,

and 3. This reduces 3.6 in the following way:

1 −→ 2−3−2−3

2 −→ 1−3−1−3

3 −→ 1−2−1−2.

Similarly Figure 3.6 is reduced as follows:

1−2 ⇒ 3−1; 1−3 ⇒ 2−1

2−1 ⇒ 3−2; 2−3 ⇒ 1−2

3−1 ⇒ 2−3; 3−2 ⇒ 1−3.

Using the initial segments A = 2 . . . and B = 12 . . . , and repeating the arguments above with

the given reductions, we have

A = 232321212 . . . ,

which implies

B = 13131232131312121313132323131323231313 . . .

Thus again by the same logic, simply knowing the partial information A = . . .321 . . . anywhere

in the middle of A guarantees the corresponding sequence

B = . . .313132323 . . . in the middle of B, so we say that

313,132,323,232,323

are the new reduced consecutive triples generated (in B) by the triple 321 in the middle (of A).
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Similarly, the new triples generated by 232 in the middle are

213,131,313,131.

So, 321 generates 5 new triples with repetition, and 232 generates 4 new triples, again with

repetition. These define the following recurrences

xn+1(321) = xn(313)+ xn(132)+ xn(323)+ xn(232)+ xn(323) =

= xn(313)+ xn(132)+2xn(323)+ xn(232) (5.1)

and

xn+1(232) = xn(213)+ xn(131)+ xn(313)+ xn(131) =

= xn(213)+2xn(131)+ xn(313). (5.2)

With this reduction, we have reduced the number of triples to 3 ·2 ·2 = 12, and the eigenvalues

of a 12× 12 matrix can be solved without much technical difficulty. So all we need is to find

10 more equations like 5.1 and 5.2, which we can determine through brute force examination.

Repeating the process above for all new triples gives the following equations (equations 5.1
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and 5.2 repeated for clarity):

xn+1(121) = xn(132)+ xn(232)+2xn(323)

xn+1(123) = xn(131)+ xn(312)+ xn(212)+2xn(121)

xn+1(131) = xn(123)+ xn(323)+2xn(232)

xn+1(132) = xn(121)+ xn(213)+ xn(313)+2xn(131)

xn+1(212) = xn(231)+2xn(313)+ xn(131)

xn+1(213) = xn(232)+ xn(321)+2xn(212)+ xn(121)

xn+1(231) = 2xn(232)+ xn(323)+ xn(212)+ xn(123)

xn+1(232) = xn(213)+2xn(131)+ xn(313)

xn+1(312) = xn(131)+2xn(313)+ xn(231)+2xn(323)

xn+1(313) = xn(321)+2xn(212)+ xn(121)

xn+1(321) = xn(313)+ xn(132)+2xn(323)+ xn(232)

xn+1(323) = xn(312)+2xn(121)+ xn(212)

(5.3)

To simplify the notation in 5.3, we replace the triples in lexicographic order

(i.e. 121,123, . . . ,323) with the corresponding positive integers 1,2, . . . ,12 in increasing order,
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thus yielding:

xn+1(1) = xn(4)+ xn(8)+2xn(12)

xn+1(2) = 2xn(1)+ xn(4)+ xn(5)+ xn(9)

xn+1(3) = xn(2)+2xn(8)+ xn(12)

xn+1(4) = xn(1)+2xn(3)+ xn(6)+ xn(10)

xn+1(5) = xn(3)+ xn(7)+2xn(10)

xn+1(6) = xn(1)+2xn(5)+ xn(8)+ xn(11)

xn+1(7) = xn(2)+ xn(5)+2xn(8)+ xn(12)

xn+1(8) = 2xn(3)+ xn(6)+ xn(10)

xn+1(9) = xn(3)+ xn(7)+2xn(10)+2xn(12)

xn+1(10) = xn(1)+2xn(5)+ xn(11)

xn+1(11) = xn(5)+ xn(8)+ xn(10)+2xn(12)

xn+1(12) = 2xn(1)+ xn(5)+ xn(9).

(5.4)

We next rewrite 5.4 in matrix form:

M =




0 0 0 1 0 0 0 1 0 0 0 2

2 0 1 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 2 0 0 0 1

1 0 2 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 2 0 0

1 0 0 0 2 0 0 1 0 0 1 0

0 1 0 0 1 0 0 2 0 0 0 1

0 0 2 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 2 0 1

1 0 0 0 2 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 1 0 2

2 0 0 0 1 0 0 0 1 0 0 0




. (5.5)
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Then 5.4 is equivalent to xn+1 = Mxn where x j = (x j(1),x j(2), . . . ,x j(12)) is a column vector.

Using any program to calculate the eigenvalues (e.g. Mathematica, Maple, online calculators)

it is easy to determine the eigenvalues of matrix M. The results of doing so are as follows (in

order of descending absolute value): λ1 = 2+
√

5 (as we expected), λ2 = λ3 = −(1+
√

2),

λ4 = λ5 = λ6 = 1, λ7 = λ8 = λ9 =−1, λ10 = λ11 =
√

2−1, λ12 =−(
√

5−2). Therefore, the

coordinates of

xn = Mxn−1 = Mnx0

have the generic form

c1λ n
1 + c2(−1)n|λ2|n + c3n(−1)n|λ2|n+

+c4 +nc5 +n2c6 + c7(−1)n + c8n(−1)n + c9n2(−1)n + c10λ n
10 + c11nλ n

10 + c12λ n
12. (5.6)

This follows from the Jordan normal form of matrices and how the powers of Jordan normal

forms look. In 5.6, the first line represents the dominating part, as the base of the exponentials

have absolute value greater than 1, and the second line represents the negligible part, as the

base of the exponents have absolute value less than or equal to 1.

As

|λ2|= 1+
√

2 >
√

λ1 =

√
2+

√
5, (5.7)

this implies that the fluctuations of size

c2(−1)n|λ2|n + c3n(−1)n|λ2|n

around the main term c1λ n
1 , which are substantially larger than square root size fluctuations. If

we denote the main term X , then the fluctuations have the order

Xc0 with c0 =
log(1+

√
2)

log(2+
√

5)
. (5.8)

There is one improvement to 5.8 that we need that keeps it from being a complete result.

The alternating process of generating cycle sequences back and forth between A and B gener-

ates sequences of length 2,9,38, . . . and so on, increasing roughly by a factor of 2+
√

5 each
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time. This means that 5.8 holds for cycle sequences of these lengths, but this will only be an

exponentially sparse set of numbers. To prove good quantitative results about combinatorial

uniformity of face-crossing we need information about every integer length N, not just expo-

nentially sparse “special length numbers”. (Note that because 5.8 says maximum fluctuation

size at these special length numbers has exponent greater than
√

2+
√

5, the overall maximum

must as well, and thus our conclusion of this being a new type of pseudo-random chaos still

holds.)

Additionally, another improvement to our quantitative results it to look beyond “combina-

torial uniformity”. This notion of “face-crossing sequence” is a bit contrived, and dissimilar

from our other results in that it does not refer to 2-dimensional Lebesgue uniformity on the sur-

face of the cube—that is, uniformity for a given test set on the surface of the cube. These two

seemingly unrelated improvements actually have similar resolutions, essentially decomposing

line lengths into relatively few “special length numbers”. In the next chapter we strengthen the

result in 5.8 by resolving these two improvements.
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CHAPTER 6

QUANTITATIVE RESULTS: EDGE

LENGTH UNIFORMITY

We look now at the continued fraction expansion of

α =
√

5−2 =
1

4+ 1

4+ 1
4+...

.

It is quite simple, and so we can easily find the explicit form of the convergents pi/qi of α . We

have that

p1

q1

=
1

4
,

p2

q2

=
4

17
,

p3

q3

=
17

72
,

and in general we get the linear recurrence relation pi+2 = 4pi+1+ pi. The corresponding char-

acteristic polynomial is x2 −4x−1 = 0 with roots x1 = 2+
√

5 = 1/α and x2 = 2−
√

5 =−α .

Using these two roots, and the initial condition p1 = 1, p2 = 4, we get the explicit formula

qi−1 = pi =
1

2
√

5

(
(2+

√
5)i − (2−

√
5)i
)
=

1

2
√

5

(
α−1 − (−α)i

)
, i ≥ 2. (6.1)

Further evaluating 6.1 yields

qiα − pi =
1

2
√

5

(
(α)−i−1 − (−α)i+1

)
α − 1

2
√

5

(
α−1 − (−α)i

)
,=
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=
1

2
√

5

(
(−α)i − (−α)i+2

)
=

1+α2

2
√

5
(−α)i = (−1)iα i+1, i ≥ 1. (6.2)

The key to proving the two upgrades mentioned at the end of Chapter 5 is a decomposi-

tion into logarithmically few “special numbers”, where these special numbers are the irrational

powers α2 j−1, j ≥ 1. These numbers come from the lengths of the sequences of cycles gen-

erated for A and B as in 3.7 and 3.8, while taking the second power because the sequence in

6.2 alternates. This creates what is basically an analog of the decimal expansion of the real

numbers between 0 and 1, in that every real number 0 < y < 1 can be written as

y = b1(
√

5−2)+b2(
√

5−2)3 +b3(
√

5−2)5 +b4(
√

5−2)7 + . . . , (6.3)

where b1 ∈ {0,1,2,3,4}, bi ∈ {0,1,2, . . . ,16}, i ≥ 2 (here the 16 comes from the fact that

16 < (
√

5−2)2 < 17).

We next consider A(t), 0 < t < T ∗
k , where T ∗

k are special numbers, which we will call a

special length initial segment. We know that a special length sequence T ∗
k is exponentially

sparse: it grows basically like (2+
√

5)2k. Consider an arbitrary but fixed triple of consecutive

cycles, say, 162. Then A(t), 0 < t < T ∗
k generates

c(162)T ∗
k +O((T ∗

k )
γ0) (6.4)

copies of the given triple 162, where c(162) is a constant dependent only on the specific triple

162. In general, we get equations similar to 10.4 for all consecutive triples, with the natural

change that the constant term c(.) depends only on the given triple. Here we have that γ0 is in

the interval

1/2 < c0 ≤ γ0 < 1, (6.5)

where c0 is as defined in 5.8, and γ0 is an absolute constant that depends only the second largest

eigenvalue of the transition matrix given in 5.5.

The simplest special length sequence is

T ∗
k = qk

√
1+α2, k ≥ 1, (6.6)
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and the corresponding cycle-counting sequence is pk (where once again pi/qi are the conver-

gents of α). The initial segment A(t), 0 < t ≤ T ∗
k = qk

√
1+α2 has several θ -edge crossings;

consider the crossing closest to a vertex. We know this will occur when a multiple of α is very

close to a whole number, which due to the nature of convergents will occur at the endpoint

A
(

qk

√
1+α2

)
with distance ||qkα||= αk+1, where ||.|| denotes the distance of a real number

to the nearest integer. Consider the point (0,αk+1) on the boundary of the unit square [0,1]2,

and start a half-line from this point going down and right with slope α relative to the vertical.

This line intersects the low horizontal edge of the unit square at the point (αk2 ,0). Note that

this point would be a θ -edge crossing of B, as it is the meta-line of A, which in turn tells us that

α||qkα||= αk+2 = ||qk+1α||. (6.7)

We see that qk+1

√
1+α2 is the next element in the special length sequence that

started with T ∗
j , 1 ≤ j ≤ k. Note that the sequence q j, j ≥ 1 of convergence denominators of

α represents the local minima of the best rational approximations of α—that is, it satisfies

min
1≤m≤q j+1

||mα||= ||q jα||. (6.8)

We consider a directed edge, ~E , of the cube, and recall that the cube line A(t) will hit

~E with α , θ -edge crossings, and with slope 1/α , θ⊥-edge crossings. Indeed we recall from

Chapter 3 that the crossings with slope α of A(t) will be the crossings with slope 1/α of B(t),

and similarly the crossings with slope α of B(t) are the 1/α crossings of A(t). We will use the

special length sequence in 6.6 to make this more explicit in the form of a lemma. We first note

however that every integer n ≤ 1 can be written as

n =
r

∑
i=0

biqi with br ∈ {1,2,3,4}, bi ∈ {0,1,2,3,4}, 0 ≤ i < r, (6.9)

which can be made to be unique by imposing the restriction

b j = 4 only if b j−1 = 0, j ≤ r. (6.10)
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The restriction in 6.10 follows from the recurrence formula q j+1 = 4q j + q j−1. Together 6.9

and 6.10 form a complete and unique characterization of the positive integers ≥ 1, which we

will call the α-representation of n.

Lemma 6. Let n ≥ 1 be an integer, and consider its α-representation

n =
r

∑
i=0

biqi with br ∈ {1,2,3,4}, bi ∈ {0,1,2,3,4}, 0 ≤ i < r.

Let

N(n) =
r

∑
i=0

biqi+1 with br ∈ {1,2,3,4}, bi ∈ {0,1,2,3,4}, 0 ≤ i < r,

i.e. N(n) is obtained by replacing the qi in the α-representation of n with qi+1 for every 0 ≤

i < r, which is essentially a multiplication by 1/α . The edge crossings with slope α in A(t),

0 < t <
√

1+α2N(n) are the edge crossings with slope 1/α of B(t), 0 < t <
√

1+α2n; and

similarly the edge crossings with slope α in B(t), 0 < t <
√

1+α2N(n) are the edge crossings

with slope 1/α of A(t), 0 < t <
√

1+α2n.

See Chapter 3 for justification.

The following lemma is about the number of times A(t) crosses ~E with slope α and with

slope 1/α .

Lemma 7. Let ~E be any of the 24 directed edges of the cube. Then A(t), 0 < t < T has

T

24
√

1+α2
+O(T γ0 logT ) (6.11)

~E crossings with slope 1/α , and has

α
T

24
√

1+α2
+O(T γ0 logT ) (6.12)

~E crossings with slope α .

Proof. It suffices to prove Lemma 7 for the sub-sequences T =
√

1+α2n, where n ≥ 1 is

an integer. Consider the α-representation of n as described in 6.9. We prove this lemma by
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induction on the “digit-sum”

D(n) =
r

∑
i=0

bi. (6.13)

If D(n) = 1, then br = 1, and bi = 0 for all 0 ≤ i < r, and Lemma 7 follows from 6.4. Indeed we

use the fact that each cycle transition on a cube-line happens on a specific directed edge (see

Figure 3.6). It then follows from 6.4 and our “soft” qualitative uniformity of A in Theorem 4

that A(t), 0 < t < T ∗
k has

T ∗
k

24
√

1+α2
+Error1 (6.14)

~E crossings with slope 1/α , and has

α
T ∗

k

24
√

1+α2
+Error2 (6.15)

~E crossings with slope α , where

|Error1| ≤C1(T
∗

k )
γ0 and |Error2| ≤C1(T

∗
k )

γ0 . (6.16)

Theorem 4 explains why there must be the same factor of 24 in the denominator of both main

terms, regardless of which directed edge ~E is chosen (here the factor of 24 comes from the total

number of directed edges).

If D(n) > 1 then consider the initial segment A(t), 0 < t < T ∗
k =

√
1+α2qr of A(t), 0 <

t < T . The previous argument proves that this initial segment has crossings of slope α and 1/α

as described in 6.14-10.15.

Moreover, as in 6.7, the cross-point nearest to a vertex, say, V of the cube occurs at

A
(

qk

√
1+α2

)
with distance ||qkα|| = αk+1. Vertex V is the corner of 3 faces of the cube.

There is one face F where during T ∗
k < t < T ∗

k +1 spends, by far, the longest amount of time,

say during T ∗
k + ε < t < T ∗

k + 1. Let A′(t) denote the cube line with initial slope α which

starts at the vertex V , i.e. A′(0) = V . Then the two cube lines A′(t), 0 < t < 1 and A(t)

T ∗
k + ε < t < T ∗

k +1 are very close parallel line segments on face F . It follows from the local

minimum property 6.8 that A′(t), 0 < t < T −T ∗
k and A(t) T ∗

k < t < T will remain very close

parallel orbits, crossing exactly the same edges and the same faces (6.8 tells us no integers will

lie between the lines, and thus they will not be separated by any singularities).
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Our induction hypothesis tells us that A′(t), 0 < t < T −T ∗
k has

T ′

24
√

1+α2
+Error3

~E crossings with slope 1/α , and has

α
T ′

24
√

1+α2
+Error4

~E crossings with slope α , where

|Error3| ≤
(

br −1+
r−1

∑
i=0

bi

)
C1(T

′)γ0 and |Error2| ≤
(

br −1+
r−1

∑
i=0

bi

)
C1(T

′)γ0 .

Therefore A(t) T ∗
k < t < T will have exactly the same number of crossings, i.e. it will have

T ′

24
√

1+α2
+Error3 (6.17)

~E crossings with slope 1/α , and will have

α
T ′

24
√

1+α2
+Error4 (6.18)

~E crossings with slope α , where T ′ = T −T ∗
k and

|Error3| ≤
(

br −1+
r−1

∑
i=0

bi

)
C1(T

′)γ0 and |Error2| ≤
(

br −1+
r−1

∑
i=0

bi

)
C1(T

′)γ0 . (6.19)

Combining 6.14-6.19 we get that A(t) 0 < t < T ∗
k +T ′ has

T ∗
k +T ′

24
√

1+α2
+Error5 (6.20)

~E crossings with slope 1/α , and has

α
T ∗

k +T ′

24
√

1+α2
+Error6 (6.21)
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~E crossings with slope α , where

|Error5| ≤ |Error1|+ |Error3| ≤ D(n)C1(T )
γ0

|Error6| ≤ |Error2|+ |Error4| ≤ D(n)C2(T )
γ0 . (6.22)

This completes the proof of Lemma 7.

We next include the following lemma, which is a simple corollary to Lemma 7 and allows

us to apply the results to cube lines that do not start at a vertex.

Lemma 8. Let ~E be any of the 24 directed edges of the cube. Let Lα(t), 0 < t < T be an

arbitrary cube line segment of slope α =
√

5−2. (Here Lα(0) is not necessarily a vertex, but

as always we assume Lα(t), 0 < t < T does not hit a vertex.) Then Lα(t), 0 < t < T has

T

24
√

1+α2
+O(T γ0 logT )

~E crossings with slope 1/α , and has

α
T

24
√

1+α2
+O(T γ0 logT )

~E crossings with slope α .

The justification of this lemma follows the same argument as the inductive step in the proof

of Lemma 7. We simply take the edge crossing of Lα(t) which has minimal distance to a vertex,

say, V of the cube. We then consider the cube line A′(t) with slope α and initial point A′(0) =V

which runs parallel to Lα(t) (in the forward direction). Applying Lemma 7 to A′(t), and using

the same argument as in the proof of Lemma 7, this implies the result also holds for Lα(t).

Doing this for both directions, i.e. considering the cube line A′′(t) with slope −α and initial

point A′′(0)=V which runs parallel to Lα(t) in the negative direction, completes the proof.

For each directed edge ~E we use the usual induced parametrization ~E = ~E [0,1]. Con-

sider an arbitrary edge-crossing of A(t), 0 < t < T on ~E with slope α . Now move backwards
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from this point along the flow with slope 1/α . We eventually cross an edge perpendicular to ~E ,

call it ~E1. This crossing has slope 1/α and is on ~E1[1−α,1]. We continue moving backwards

along the flow with slope 1/α to get to an edge ~E2 which is parallel to ~E1, and again we have an

edge crossing this time on ~E2[1−2α,1−α]. We continue this process, next getting a crossing

on ~E3[1−3α,1−2α], and so on. This yields the general form

1

α
-slope ~Ek+1[{1− (k+1)α},{1− kα}]-crossing (6.23)

for some directed edge ~Ek+1, where as usual {.} represents the fractional part of a real number.

Note the caveat that for some integer values of k, {1− (k+ 1)α} > {1− kα}, in which case

their order in 6.23 is reversed.

We let 0 ≤ k ≤ T , and claim that A(t), 0 < t < T has

T

24
√

1+α2
+O(T γ0 logT )

1

α
-slope ~Ek+1[{1− (k+1)α},{1− kα}]-crossings (6.24)

for any directed edge ~E , noting that [{1− (k+1)α},{1−kα}] has length α . To prove 6.24 we

simply first apply Lemma 7 to the long segment

A(t), 0 < t < T + k
√

1+α2, then we apply Lemma 8 to the shorter sub-segment Lα(t) =

A(t +T ), 0 < t < T + k
√

1+α2, and then finally take the difference of the two.

For notational convenience we merge together the cases of possible intervals in 6.23 to a

single notation. We write

I1,k = [{1− (k+1)α},{1− kα}] if {1− (k+1)α}< {1− kα} and

I1,k = [{1− kα},{1− (k+1)α}] if {1− (k+1)α}> {1− kα}. (6.25)

We note that I1,k is a sub-interval of the one-dimensional unit torus [0,1) of length α . The

intervals I1,k 0 ≤ k ≤ T are “dense” in the unit torus [0,1) in the sense that every sub-interval

J ⊂ [0,1) of the unit torus with length 10/T contains two points P1,P2 with the property that P1
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is an endpoint of an interval I1,k1
, 0 ≤ k1 ≤ T such that I1,k1

goes from P1 to its other endpoint

in positive orientation on the unit torus, and P2 similarly is an endpoint of an interval I1,k2
,

0 ≤ k2 ≤ T such that I1,k2
goes from P2 to its other endpoint, only this time in the negative

orientation on the unit torus. We call this property quantitative density.

Applying 6.2 we get

∣∣∣∣iα − ip j

q j

∣∣∣∣=
iα j+1

q j
< α j+1 <

1

2q j
for all 0 ≤ i < q j, (6.26)

with the last part following from 6.1. As q j and p j are relatively prime, 6.26 implies that for

every interval Ur—defined as

Ur =

[
r− (1/2)

q j
,
r+(1/2)

q j

]
, 1 ≤ r ≤ q j −1

and

Uq j =

[
0,

1/2

q j

]
∪
[

q j − (1/2)

q j
,1

]
,

—contains exactly one element of the set {{iα} : 0 ≤ i < q j} of fractional parts. Finally we

note

q j < T ≤ q j+1 with q j ≥ T/5.

This proves the quantitative density of the intervals I1,k 0 ≤ k ≤ T .

Now we use Lemma 6; it follows from this that the A(t), 0 < t < T ,

~E I1,k-crossings with slope 1/α are the B(t),0 < t < T/α , ~E I1,k-crossings with slope α . We

consider an arbitrary ~E I1,k-crossing of B(t),0 < t < T/α and repeat the process as in 6.23, and

travel backwards along the 1/α −B−flow until we cross a perpendicular edge, say, ~E1. This

gives us a ~E I2,k −B-crossing with slope 1/α , where I2,k is defined as

I1,k = [v1,v2], I2,k = [β1,β2],

β1 = 1−αv2, β2 = 1−αv1. (6.27)
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It then follows from 6.24 that, for every integer 0 ≤ k ≤ T , B(t),0 < t < T1 = T/α has

α
T

24
√

1+α2
+O(T γ0 logT ) =

= α2 T

24
√

1+α2
+O((αT1)

γ0 logT1) (6.28)

~E I2,k-B-crossings with slope 1/α for any directed edge ~E . Note that I2,k has length α2.

We note that the set of intervals ~E I2,k, 0 ≤ k ≤ T are quantitatively dense in the sub-interval

[1−α,1) of the unit torus; that is, every sub-interval J ⊂ [1−α,1) of the unit torus with length

10α/T = 10/T1 contains two points P1,P2 with the property that P1 is an endpoint of an interval

I2,k1
, 0 ≤ k1 ≤ T such that I2,k1

goes from P1 to its other endpoint in positive orientation on the

unit torus, and P2 is an endpoint of an interval I2,k2
, 0 ≤ k2 ≤ T such that I2,k2

goes from P2 to

its other endpoint in the negative orientation on the unit torus.

This quantitative density can be extended to the entire unit torus [0,1) by 4 extra rotations of

size α . We can continue the process used to obtain 6.27 in the same way we did with 6.23, that

is, continuing to travel backwards along the 1/α-B-flow to get more edge crossings of slope

1/α . By the same logic as above, the set of intervals generated from repeating the process above

on the nextfour edge crossings will be quantitatively dense on [1−2α,1−α], [1−3α,1−2α],

[1− 4α,1− 3α], [1− 5α,1− 4α]. As 5 > 4α , the set of all these sub-intervals I2i,k for all 5

rotations is quantitatively dense over the unit torus [0,1) (here the i in I2i,k denotes the different

rotations, i = 0,1,2,3,4).

We refer to the sub-intervals I1,k, 0 ≤ k ≤ T as special sub-intervals of type (1;T ), and

refer to the sub-intervals I2i,k, 0 ≤ k ≤ T, i = 0,1,2,3,4 as special sub-intervals of type (2;T1)

with T1 = T/α .

We continue to repeat this process, converting the edge crossings with slope 1/α of B(t)

into edge crossings with slope α of A(t), which are then used to generate edge crossings with

slope 1/α of A(t), which are converted back to edge crossings with slope α of B(t), and so on,

repeating the process above to generate a complete set of special sub-intervals of type (n;Tn−1)

for all positive integers n ≥ 1.

Consider the cube line segment A(t), 0 < t < N; let U ⊂ [0,1) be an arbitrary sub-interval
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with U = [u1,u2],0 < u1 < u2 < 1. If, say, |U | = u2 − u1 ≥ α , then we chose a special sub-

interval of type (1;N), I1 = [x1,y1] that contains u1. By our quantitative density property, we

can assume |u1 − x1| ≤ 10/N. If, say, |u2 − y1| ≥ α then we chose a special sub-interval of

type (1;N), I1 = [x2,y2] that contains y1. By our quantitative density property, we can assume

|y2 − x2| ≤ 10/N. Now suppose that, say, α3 ≤ u2 − y2 < α; we then chose a special sub-

interval of type (3;N), I3 = [x3,y3] that contains y2. By our quantitative density property, we

can assume |x3 − y2| ≤ 10/N. If, say, |u2 − y3| ≥ α3, then we chose a special sub-interval of

type (3;N), I4 = [x4,y4] that contains y3. By our quantitative density property, we can assume

|x4 − y3| ≤ 10/N, and so on.

This example demonstrates an economic covering of the given interval U with “few” special

sub-intervals of odd types (1;N),(3;N), . . . (we use only odd types due to the alternations

between A(t) and B(t)). This is basically an analog of the decomposition in 6.3. We call it

“economic” because, thanks to the quantitative density property, this covering has very small

overlaps. We stop at type (2ℓ+1;N), where ℓ is the smallest integer such that

α2ℓ+1N < Nγ0 , (6.29)

which implies that ℓ = O(logN). We can cover the last bit of U which is still uncovered (the

part near u2) in a trivial way with a couple of special sub-intervals of type (2ℓ+ 1;N) (these

last intervals will be small enough and few enough that their overlapping is negligible). Thus

we have a complete cover I1 ∪ I2 ∪ I3 ∪ . . . of U with very small overlappings; U is almost

partitioned by O(logN) special sub-intervals. For these special sub-intervals we can apply our

6.24 type results, and adding them up we get that A(t), 0 < t < N has at most

(

∑
i≥1

|Ii|
)

N

24
√

1+α2
+

(
∞

∑
i=0

α2iγ0

)
O(Nγ0 logN) =

(

∑
i≥1

|Ii|
)

N

24
√

1+α2
+O(Nγ0 logN) (6.30)

~EU-A-crossings of slope 1/α for any directed edge ~E .

As there are O(logN) overlappings, each of which has size at most 10/N, plus the last step
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which represents an extra contribution of O(N−1+γ0)(see 6.29), we can bound the total overlap

to obtain

∑
i≥1

|Ii| ≤ |U |+O(logN/N)+O(N−1+γ0). (6.31)

Combining 6.30 with the bound given by 6.31 we get that there are at most

|U | N

24
√

1+α2
+O(Nγ0 logN) (6.32)

~EU-A-crossings of slope 1/α in A(t), 0 < t < N for any sub-interval U of any directed edge

~E .

This represents an outside approximation—that is, the special sub-intervals

overlap each other and cover (with excess) U . We can repeat a similar argument for an inside

approximation, by finding disjoint special sub-intervals which are contained within U , and

which remaining part of U that is not covered can be bound as very small given the quantitative

density of the special sub-intervals, just as the overlappings were in 6.31. Repeating the above

argument (with the straightforward modifications) yields an analog of 6.32—there are at least

|U | N

24
√

1+α2
+O(Nγ0 logN) (6.33)

~EU-A-crossings of slope 1/α in A(t), 0 < t < N for any sub-interval U of any directed edge

~E . By combining the two bounds in 6.32 and 6.33 we obtain the following lemma.

Lemma 9. Let ~E be any of the 24 directed edges of the cube, and let 0 < y < 1 be any real

number. Then A(t), 0 < t < T has

yT

24
√

1+α2
+O(T γ0 logT )

~E [0,y]-crossings of slope 1/α , and

αyT

24
√

1+α2
+O(T γ0 logT )

~E [0,y]-crossings of slope α .

We strengthen Lemma 9 in the same way we strengthened Lemma 7 to get
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Lemma 8.

Theorem 5. Let ~E be any of the 24 directed edges of the cube. Let Lα(t), 0 < t < T be an

arbitrary cube line segment of slope α =
√

5− 2. (Lα(0) is not necessarily a vertex, but as

always we assume Lα(t), 0 < t < T does not hit a vertex.) Then Lα(t), 0 < t < T has

yT

24
√

1+α2
+O(T γ0 logT )

~E [0,y]-crossings of slope 1/α , and

αyT

24
√

1+α2
+O(T γ0 logT )

~E [0,y]-crossings of slope α . In both cases the constant O(.) is effectively computable.

Proof. The proof to this theorem is a direct parallel to the proof of Lemma 8. We take the

edge crossing of A(t), 0 < t < T which has minimal distance to a vertex V of the cube, and

construct two cube lines, A′(t) and A′′(t) which have initial point V = A′(0) = A′′(0), and run

parallel to A(t) in the forwards and backwards directions. As Lemma 9 applies to A′(t) and

A′′(t), and there are no singularities between A(t) and either A′(t) or A′′(t) on 0 < t < T , this

implies Lemma 9 applies to A(t) as well.

Thus we have a quantitative result bounding the fluctuations of the edge crossings. The

final part of this chapter uses this bound on the fluctuations of the edge crossings to formulate

a quantitative bound on the measure-theoretic uniformity.

Theorem 6. Let Lα(t), 0 < t < T be an arbitrary cube line segment of slope α =
√

5−2. Let

S be an arbitrary convex set on any face of the unit cube [0,1]3. Then

∣∣∣∣
1

T
meas{t ∈ [0,T ] : Lα(t) ∈ S}− area(S)

6

∣∣∣∣= O(T γ0−1 logT ).

Here meas stands for the one-dimensional Lebesgue measure, and the implicit constant in O(.)

is effectively computable.
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Figure 6.1: We decompose all convex test set into two types of distict convex sets: convex sets

that lie within W and convex sets that lie outside of W .

Let S be a convex set on the front face of the unit cube [0,1]3. Consider a tilted sub-

square on the front face of the cube (x = 1), defined as follows. Let the four corners of

the front face be denoted P1 = (1,0,0), P2 = (1,0,1), P3 = (1,1,0), P4 = (1,1,1), and let

Q1 = (1,1,α), Q2 = (1,1−α,1), Q3 = (1,0,1−α), Q4 = (1,α,0) be four points on the

boundary of the front face. Then the line segments P1Q1,P2Q2,

P3Q3,P4Q4 divide the front face into four triangles, four trapezoids, and one tilted square, see

Figure 6. We let W denote this tilted square. We consider two cases.

Case 1: S ⊆W

Let Q = (1,y,0) be a point on the bottom edge of the front face with α < y < 1. Consider

the line with slope 1/α coming from Q; it can be parametrized by (1,y− zα,z), 0 ≤ z ≤ 1. Let

ℓ(S;y) denote the length of the interval in which this line intersects the convex set S.

Defining this as a function

f (y)− ℓ(S;y), α ≤ y ≤ 1,

f (y) is clearly continuous, and moreover as S is convex, f (y) obeys the following “increasing-

decreasing” property—there exists α ≤ y(1) ≤ y(2) ≤ y(3) ≤ 1 such that: f (y) = 0 for 0 ≤ y ≤

y(1), f (y) is increasing for y(1) ≤ y ≤ y(2), f (y) is decreasing for y(2) ≤ y ≤ y(3), and f (y) = 0

again for y(3) ≤ y ≤ 1.
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Let Q∗ = (1,y∗,0) be a point on the bottom edge of the front face with an edge crossing of

Lα(t), 0 < t < T , with a slope of 1/α directed towards the right edge of the front face. Let

Y ∗(bottom;T ) denote the set of all such y∗ as defined by Q∗—that is, all the points along the

bottom edge which Lα(t) hits (in this particular direction and slope).

Let g(y), 0 ≤ y ≤ 1 denote the length of the vertical component of the f (y),

g(y) = (1+α2)−1/2 f (y), 0 ≤ y ≤ 1. (6.34)

Then we have
∫ 1

0
g(u)du = area(S). (6.35)

From here we look to apply Koksma’s Lemma, a well known tool in uniform distribution (proof

first published by Kuipers [13][15]).

Lemma 10 (Koksma’s Lemma). Let X = {x1,x2, . . . ,xn} be an arbitrary n-element

point set in the unit interval [0,1), and let g be a function with total variation V (g) on the unit

interval. Then ∣∣∣∣∣
n

∑
i=1

g(xi)−n
∫ 1

0
g(u)du

∣∣∣∣∣≤ Discr(X )V (g),

where Discr(X ) denotes the discrepancy of set X ⊂ [0,1) defined as

Discr(X ) = max
0≤z≤1

∣∣∣∣∣∑xi≤z

1−nz

∣∣∣∣∣ .

Then we can let V (g) denote the total variation of g (given by 6.34) on the unit interval. We

clearly have

V (g) = (1+α2)−1/2V ( f )≤ 2. (6.36)

Applying Lemma 10 with

X = X1 = Y ∗(bottom;T ). (6.37)

Theorem 5 tell us that

Discr(X1) = O(T γ0 logT ). (6.38)
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Then combining Lemma 10 with 6.36-6.38, we have

∣∣∣∣∣ ∑
xi∈X1

g(xi)−|Xi|
∫ 1

0
g(u)du

∣∣∣∣∣≤ Discr(X1)V (g) = O(T γ0 logT ). (6.39)

Using 6.6 and 6.36 with 6.39 we get

∣∣∣∣∣ ∑
xi∈X1

g(xi)−
(

T

24
√

1+α2
+O(T γ0 logT )

)
area(S)

∣∣∣∣∣= O(T γ0 logT ). (6.40)

This then implies

∣∣∣∣∣ ∑
xi∈X1

g(xi)−
T

24
√

1+α2
area(S)

∣∣∣∣∣= O(T γ0 logT ). (6.41)

Here, 6.41 is about the contribution of the bottom edge of the front face. Next we replace the

bottom edge with the other 3 edges to get

X2 = Y ∗(right;T ), X3 = Y ∗(top;T ), X4 = Y ∗(left;T ). (6.42)

Summing the analogs of 6.41 for each term in 6.42 we get

∣∣∣∣∣
4

∑
j=1

∑
xi∈X j

g(xi)−4
T

24
√

1+α2
area(S)

∣∣∣∣∣≤

≤
4

∑
j=1

∣∣∣∣∣ ∑
xi∈X j

g(xi)−4
T

24
√

1+α2
area(S)

∣∣∣∣∣= O(T γ0 logT ). (6.43)

Note that

meas{0 ≤ t ≤ T : Lα(t) ∈ S}=
(

4

∑
j=1

∑
xi∈X j

f (xi)

)
+O(1) =

=
√

1+α2

(
4

∑
j=1

∑
xi∈X j

g(xi)

)
+O(1). (6.44)

Finally combining 6.43 and 6.44 yields

∣∣∣∣meas{0 ≤ t ≤ T : Lα(t) ∈ S}− T area(S)

6

∣∣∣∣= O(T γ0 logT ), (6.45)
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which completes the proof of Case 1.

Case 2: S is a subset of the front face such that S∩W =∅.

In Case 1 it was enough to take care of the contributions of the edge crossings with slope

1/α . To prove the analog for 6.45 for Case 2, we simply need to make the straightforward

modification to include the contributions from edge crossings with slope α as well. As all con-

vex test sets S can be decomposed into test sets which satisfy either Case 1 or Case 2, together

6.45 and its analog for Case 2 prove Theorem 6.
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CHAPTER 7

GENERAL CUBE LINE DENSITY

From here on we no longer look at cube lines with any specific slope and look to prove uniform

distribution for general cube lines. In this chapter we prove any cube line with an irrational

slope will be dense over the cube. The argument used here is an adaptation of the argument by

Katok and Zemlyakov [12].

Let L(t) = Lθ (t), t > 0 be an infinite geodesic cube line with initial angle θ such that L

has an irrational slope. We prove L(t) is dense by contradiction. If L(t) is not dense, then the

closure of the infinite trajectory,

L̄ = Closure{L(t) : t > o}

is not the whole surface of the cube. There we can take a point P0 ∈ ∂ L̄ on the boundary of

L̄—that is, a point such that every open neighborhood (with respect to the cube surface) of P0

intersects both L̄ and the complement of L̄.

We will show that there is an open neighborhood of P0 which is contained within L̄, thus

contradicting the fact that every open neighborhood about P0 intersects the complement of

L̄. The closure L̄ is a closed set which is invariant under the geodesic flow of initial angle

θ . Consider the geodesic, ℓ, which starts at the point P0. Since the slope of the cube line is

irrational, there is at most one singular point along this line, thus the geodesic must be infinite

in one of the two directions; without loss of generality, assume it is infinite in the forward

direction. Let I be an interval perpendicular to ℓ such that P0 is the left endpoint of I, i.e.
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I = [P0,R]. We will show that there is a sub-interval I∗ = [P0,Q] ⊂ I such that I∗ ⊂ L̄. By

symmetry we can then do the same thing to the other side of P0, which would yield an open

neighborhood about P0.

We claim that

ℓ hits I again. (7.1)

To prove 7.1, we first note that there is a sub-interval I0 = [P0,R0] ⊂ I, such that no point in I0

hits a singular point unless it has returned to hit a point in I first. This is because the cube only

has 8 vertices, and these half-lines from these singularities first intersect I in at most 8×4 = 32

points. Thus if I0 is short enough it will not contain any of these (at most) 32 points. We assume

that |I0|< 1
2
|I| (where |.| denotes interval length).

Now flow the interval I0 forward with initial angle θ , and we apply Poincare’s recur-

rence theorem (proof first published by Caratheodory [18][4]), which works for any measure-

preserving flow. This tells us that the flow of interval I0 must return and overlap I0. We can

further consider the space of the surface of the cube as 48 faces, each one a surface of the cube

with a particular orientation, or trajectory on the cube. This is still a measure-preserving flow

and thus ensures that the interval I0 must return and overlap I0 when it is going in the same

trajectory as ℓ. Note in doing so we also must redefine I0 so that no point hits a singular point

unless it has first returned to hit a point in I with the same trajectory as ℓ.

Since I0 ⊂ I, it follows that I0 must return to I; consider the first time I0 returns to I. It

follows from the definition of I0 that this flow must be a parallel distance-preserving flow. If ℓ,

starting from P0, returns to I, then 7.1 is proved. Otherwise it follows that the other endpoint of

I0, R0 returns to I at a point R′
0 ∈ I. We distinguish two cases.

Case 1: R′
0 is closer to endpoint P0 than to R0.

Since the trajectory starting at R0 hits on one side of P0 (the side within I), and the trajec-

tory ℓ starting at P0 hits outside of I (which therefore is on the other side of P0), there must be

a point R1 ∈ I0 such that the trajectory starting at R1 hits P0. Now we consider the sub-interval

I1 = [P0,R1] ⊂ I0, and repeat the previous argument for I1. The geodesic flow from I1 must

return to I1, and thus to I, and we know the first time this happens will be when R1 hits P0.
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However Poincare’s recurrence theorem says there will be not just one overlap but infinitely

many, and since up to the first overlap none of I1 hit I \ I0, it follows that up to the second hit

the flow will still be a parallel distance-preserving flow. If trajectory ℓ starting at P0 returns to I

on the second overlap, we are done; otherwise the trajectory starting at R1 hits I on the second

overlap. But since the trajectory from R1 hit P0 on the first overlap, this implies ℓ hits I, proving

7.1 in Case 1.

Case 2: R′
0 is closer to endpoint R.

In this case we replace I with its one-third counterpart I1/3 = [P0,R3]⊂ I where |I1/3|= 1
3
|I|.

Again there is a sub-interval I
(0)
1/3

= [P0,R4] ⊂ I1/3 such that no point of I
(0)
1/3

hits a singularity

without having first hit a point in I1/3 with the same trajectory as ℓ (we again need only avoid a

finite number of points, as above). Again we add the condition |I(0)
1/3

| < 1
2
|I1/3|, with |.| denot-

ing length. The flow of I
(0)
1/3

, until it returns to I1/3, is a parallel distance-preserving flow. If ℓ

starting from P0 hits I1/3 we are done. Otherwise the other endpoint R4 returns to I1/3 at a point

R′
4. We again have two cases. If R′

4 is closer to endpoint P0 of I1/3, we are done by repeating

the proof of 7.1 in Case 1 as above.

If R′
4 is closer to endpoint R3, then since |I(0)

1/3
|< 1

2
|I1/3|, P0 must be outside I1/3 to the right

of R3. But where P0 hits is 1
3
|I| right of R′

4, which is in I1/3, and thus at most 1
3
|I| right of P0.

Thus where P0 hits is between 1
3
|I| and 2

3
|I| right of P0, and is thus in I, proving 7.1.

This completes the proof of 7.1: ℓ hits I again at some point P1 6= P0.

If [P0,P1] ∈ L̄ then we get our contradiction and we are done. Suppose it is not true. Then

there is some point P2 ∈ [P0,P1] with P2 /∈ L̄. Since L̄ is closed there exists a largest open in-

terval J ⊂ [P0,P1] containing P2 which is also disjoint from L̄. Let P3 be an endpoint of J, then

P3 ∈ L̄. As the slope of the cube line is irrational, there is a direction in which we get an infinite

geodesic ℓ′ starting at P3. From here we repeat the argument above for 7.1, simply replacing

(ℓ, I) with (ℓ′,J). Thus ℓ′ will hit J again, but this is a contradiction since L̄ is flow-invariant

with J and L̄ disjoint.

We note that the density proof extends to a much larger set of geodesics, far beyond those

for which we can prove uniformity. For example, this density argument works on a rectangular
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prism with a square base and height an irrational multiple of the base side length.
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CHAPTER 8

CUBE SYMMETRIC UNIFORM

DISTRIBUTION

In this chapter we will look at uniformity over general cube lines, but with respect to a particu-

lar class of test sets, cube symmetric sets, which will be described to follow.

We look at some appropriate projections of a cube line, L(t) with starting location L(0) =

s = (1,s1,s2) on the front face and initial direction given by unit vector (v1,v2), as t runs in

the interval 0 ≤ t < ∞, t → ∞. We begin by examining the projection of L(t) on to the y-axis.

For small t > 0, its location is given by s1 + tv1, representing a motion with constant speed

v1. After L(t) hits an edge, however, we have several different cases. By symmetry we can as-

sume that v1,v2 > 0, thus L(t) will first hit either the top or right edge, leaving us with two cases.

Case 1: L(t) goes from the front face to the right face.

The switch to the right face happens along the y-axis, i.e. when s2 + tv1 = 1, or when

t = (1−s2)/v1. For t > (1−s2)/v1, with t− 1−s2

v1
small, then we consider the projection of L(t)

on the x-axis. It will move backwards along the unit interval [0,1] starting from 1 (as x = 1 is

the front face) with the same constant speed v1 for the duration that L(t) is on the right face.

Case 2: L(t) goes from the front face to the top face.
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In this case the projection of L(t) moves forward with the same constant speed v1 as before,

and the point where the equality s2 + tv1 occurs has several possibilities: it can occur on (1)

the top face, (2) the back face, (3) the bottom face or (4) the front face. We consider what

happens for each of these cases as the cube line travels along the next face—that is, again,

t > (1− s2)/v1, with t − 1−s2

v1
small, and consider the projection:

1. on the z-axis: The top face being z = 1, leaving the top face moves backwards along the

unit interval [0,1] starting from 1 with the same constant speed v1 for at least the duration

that L(t) stays on the right face.

2. on the x-axis: The back face being x = 0, leaving the back face moves forwards along the

unit interval [0,1] starting from 0 with the same constant speed v1 for at least the duration

that L(t) stays on the right face.

3. on the z-axis: The bottom face being z = 0, leaving the top face moves forwards along

the unit interval [0,1] starting from 0 with the same constant speed v1 for at least the

duration that L(t) stays on the right face.

4. on the x-axis: The top face being x = 1, leaving the top face moves backwards along the

unit interval [0,1] starting from 1 with the same constant speed v1 for at least the duration

that L(t) stays on the right face.

In order to simultaneously work with these projections onto different axes, and in different

directions, going forward and backwards on the unit interval 0 ≤ x ≤ 1 starting, respectively, at

0 or 1, we unify these cases by working on a “generic” unit interval [0,1], where a billiard point

on the interval represents the projection of the line onto whichever axis the line is traveling with

a speed of v1, and use the identity x = 1−x. This identity leads to both backwards and forwards

motion in the unit interval represented by first a backwards, and then a forwards motion of a

point billiard in the half-interval [0,1/2]. Thus we have a billiard point moving at constant

speed v1 on the interval [0,1/2], which bounces back at the endpoints 0 and 1/2.

We next study the motion of L(t) from a different viewpoint. We begin by looking at the

projection of L(t) on the z-axis at the start on the front face. When t > 0 is small, the projection



81

is s3 + tv2, representing a motion with constant speed v2. Once L(t) leaves the front face, we

again have two cases. In the first case, the line L(t) leaves the front face and goes to the top

face. In this case the transition occurs at s3 + tv2 = 1, or t = (1− s3)/v2, and so we change our

projection onto the x-axis. The front being x = 1, for t > (1− s3)/v2 with t− (1− s3)/v2 small,

our projection moves backwards along the [0,1] interval starting at 1, with constant speed v2.

In the second case, when L(t) goes from the front face to the right face, we again have four

possibilities for where s3 + tv2 = 1 can occur. Repeating the argument above, we can again

combine all the cases into a single unified case where we work with another “generic” interval

0 ≤ x ≤ 1, where a billiard point on the interval represents the projection of the line onto

whichever axis the line is traveling with a speed of v2, and again having the identity x = 1−x to

unify the backwards and forwards movements into a single movement on the half-unit interval

[0,1/2]. Thus, again, we have a billiard point moving at constant speed, v2, on the interval

[0,1/2], which bounces back at the endpoints 0 and 1/2.

Combining these two different one-dimensional views of the motion L(t) of a particle on a

geodesic of the cube surface, we obtain a single 2-dimensional representation of L(t) defining

by the mapping:

Φ : L(t)→ constant speed point billiards motion on a square table.

As both 1-dimensional movements are on the half-unit interval [0,1/2], the two dimensional

movement is on the square table [0,1/2]2. Due to the identity x = 1− x, the starting point of

the billiard on this square table is:

(min{s2,1− s2},min{s3,1− s3}),

and the initial velocity will be on of the four vectors (±v1,±v2)—all of which have constant

unit speed.

By using a simple scaling argument to turn working with our [0,1/2]2 square into working

with the unit square [0,1]2 instead, we have reduced this problem to the familiar problem of

billiard paths on the unit square discussed in Chapter 1, see Figure 1.3.
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As Φ is a billiard movement with constant speed over a square table, the previously men-

tioned König-Szücs-Kronecker-Weyl theorem implies that if the slope of the movement, v1/v2,

is rational it will be periodic, and if it is irrational it will be uniformly distributed over the

square, [0,1/2]2.

What does this result over the square [0,1/2]2 tell us about the behavior of the geodesic

over the surface of the cube? The primary issue is that the unifying process that allows us to

project onto a single half-unit interval in a uniform way also resulted in the loss of information

about where the geodesic is at any given time. Namely, we lost whether the projection onto

[0,1/2] is the projection onto the x, y, or z-axis, as well as the direction of the movement on the

axis—whether it goes forward from 0 to 1, or backwards from 1 to 0. Despite this, we actually

have maintained some information, and by reversing these unifying steps we can, for subsets of

the square billiard table, S ⊂ [0,1/2]2, determine precisely which subset of the cube’s surface

maps to the set S.

Let ε > 0 be arbitrarily small, but fixed, and consider the following two squares in the

billiard table [0,1/2]2:

S = [a− ε,a+ ε]× [b− ε,b+ ε] and S∗ = [b− ε,b+ ε]× [a− ε,a+ ε], ε ≤ a,b ≤ 1

2
− ε.

Consider Φ−1(S∪ S∗); we claim that if S and S∗ are not too close to each other–precisely that

|a−b| ≥ ε–then Φ−1(S∪S∗) consists of 6 ·8 = 48 disjoint congruent copies of the square S on

the surface of the unit cube.

Taking for example the front face of the cube, and examining what subsets of the front face

Φ would map to (S∪S∗), we see that-

front face∩Φ−1(S∪S∗) =

= {(1,y,z) : a− ε ≤ y ≤ a+ ε,b− ε ≤ z ≤ b+ ε}∪

∪{(1,y,z) : 1−a− ε ≤ y ≤ 1−a+ ε,b− ε ≤ z ≤ b+ ε}∪

∪{(1,y,z) : a− ε ≤ y ≤ a+ ε ,1−b− ε ≤ z ≤ 1−b+ ε}∪
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∪{(1,y,z) : 1−a− ε ≤ y ≤ 1−a+ ε,1−b− ε ≤ z ≤ 1−b+ ε}∪

∪{(1,y,z) : b− ε ≤ y ≤ b+ ε,a− ε ≤ z ≤ a+ ε}∪

∪{(1,y,z) : 1−b− ε ≤ y ≤ 1−b+ ε,a− ε ≤ z ≤ a+ ε}∪

∪{(1,y,z) : b− ε ≤ y ≤ b+ ε,1−a− ε ≤ z ≤ 1−a+ ε}∪

∪{(1,y,z) : 1−b− ε ≤ y ≤ 1−b+ ε,1−a− ε ≤ z ≤ 1−a+ ε}. (8.1)

This corresponds to the projection onto [a− ε,a+ ε] and onto [b− ε,b+ ε] from either the y−

or the z-axis, and from either end of the axis, i.e. both from [a− ε,a+ ε] and from [1− a−

ε,1− a+ ε]. There are 8 copies of S in 8.1, and the analogous versions of 8.1 for the other 5

faces of the cube comprise the other 40 copies.

We see from the above that Φ(S∪ S∗) is comprised of 48 disjoint congruent copies of the

square S on the surface of the unit cube, and, on the other hand, it is a well known fact that

the symmetry group of the cube has 48 elements (24 rotational elements isomorphic to the 4!

permutations of 4 different symbols, and their reflections). This is not a coincidence: the 48

copies of the square S arise from applying each of the 48 elements of the symmetry group to a

single copy,

{(1,y,z) : a− ε ≤ y ≤ a+ ε,b− ε ≤ z ≤ b+ ε}

of S on the front face (or equivalently of any other copy of S). This means we may refer to the

set Φ−1(S∪ S∗) as an elementary cube-symmetric set—that is, Φ−1(S∪ S∗) is invariant under

any element of the isometry group of the cube. By using elementary cube-symmetric sets with

arbitrarily small ε , we can well approximate every Jordan measurable cube-symmetric set by

a finite union of elementary cube-symmetric sets. (We recall Jordan measurable sets are sets

whose characteristic function is Riemann integrable, or, equivalently, those whose boundary

has Lebesgue measure zero.)

If the slope of the geodesic, v1/v2, is irrational, then the billiard path on the square table

[0,1/2]2 is uniformly distributed. This means that the relative time the billiard spends in the
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test set S∪S∗ for 0 ≤ t ≤ N, tends to (given that [0,1/2]2 has area 1/4),

area(S∪S∗)
1/4

=
2 ·2ε ·2ε

1/4
= 32ε2,

as the length N of the time/arc-length interval tends to infinity. Using the inverse mapping Φ−1,

it follows that the relative time the geodesic L(t) spends in the symmetric test set Φ−1(S∪S∗)

as 0 ≤ t ≤ N tends to the same value of 32ε2 as N → ∞, which is the exact limit density of the

uniform distribution on the cube,

area(Φ−1(S∪S∗))
6

=
48 ·4ε2

6
= 32ε2,

or in other words, is the relative area of the cube symmetric test set to the cube surface.

As we can approximate every Jordan measurable cube-symmetric set by a finite union of

elementary cube-symmetric sets, we get the following result.

Theorem 7 (Weyl Type Uniformity Result). If v2/v1 is irrational, for every

non-pathological starting point L(0), the relative time the geodesic L(t) spends in a given cube-

symmetric Jordan measurable test set as 0 ≤ t ≤ N, N → ∞ tends to the limit density in the case

of uniform distribution on the cube surface, i.e., tends to the relative area of the test set.

A simple example of a cube-symmetric set for which this theorem applies is the

r-neighborhoods of the centers of the six faces of the cube. For 0 ≤ r ≤ 1/2, consider the set

comprised of the union of the six circular discs of radius r centered at each of the center points

of the six faces of the cube.

Another example is the r-neighborhood of the edges of the cube. Again, for 0 ≤ r ≤ 1/2,

then the set comprised of all points that are within r distance of any edge of the cube is a cube-

symmetric set.

There are, of course, infinitely many examples, again comprising all sets which are invariant

under all elements of the isometry group of the cube.

We note that Theorem 7 applies the Kronecker-Weyl theorem [20], and yields a Weyl type

uniformity result, meaning it applies to Jordan measurable functions. Alternatively to this
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we can combine the mapping Φ and the unfolding technique of König-Szücs with Birkhoff’s

ergodic theorem to get a Birkhoff type uniformity result, i.e. one which applies to Lebesgue

measurable sets.

Applying Birkhoff’s ergodic theorem (see 4.3) to the unfolded torus line of the Φ mapping

we get the result.

Theorem 8 (Birkhoff Type Uniformity Result). If v2/v1 is irrational, for almost every starting

point L(0), the relative time the geodesic L(t) spends in a given cube-symmetric Lebesgue

measurable test set as 0 ≤ t ≤ N, N → ∞ tends to the limit density in the case of uniform

distribution on the cube surface, i.e., tends to the relative 2-dimensional Lebesgue measure of

the test set.

We present an alternative way to see the results in Theorem 7 and Theorem 8 without using

projections to achieve the mapping Φ. Let L(t) be a cube line with initial direction (v1,v2), and

by symmetry assume v1,v2 > 0, and L(0) = (1,s2,s3) is on the front face. We take the front

face of the cube and generate 48 copies of it, corresponding to each of the 48 elements in the

isometry group of the cube. When the cube line leaves the front face, it enters another face of

the cube, but by applying one of the cube isometries, we can treat the cube line entering the

new face as though it were entering the front face. We do this in the following way:

1. If the cube line is entering a new face because s2 + v1t = 0 modulo 1, then apply the

isometry that would make the cube line enter the front face from the left edge, with

direction (v1,v2).

2. If the cube line is entering a new face because s3 + v2t = 0 modulo 1, then apply the

isometry that would make the cube line enter the front face from the bottom edge, with

direction (v1,v2).

(8.2)

Note also that each isometry selected is unique. Rather than treating the cube line as though it

re-enters the same face, we treat it as entering one of the 48 copies of the front face, whichever
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corresponds the isometry applied to the cube as described in 8.2.

We repeat the above process whenever the cube line enters a new face; we select the isom-

etry that (when applied to the original orientation of the cube) would follow the procedure in

8.2. In doing this we can see that the union of the lines drawn on each of the 48 copies of the

front face together form a torus line on the unit square, [0,1]2, with starting point (s2,s3), and

direction (v1,v2). Or rather, another way to look at this is that lines drawn on the 48 copies

of the front face partition a torus line on the unit square. Moreover, it is clear that any set on

this square [0,1]2 corresponds to a cube-symmetric set on the surface of the cube [0,1]3, as the

square [0,1]2 was formed by taking a single face, and unioning it with copies of itself under all

isometries of the cube.

From here the results follow as before, using either the Kronecker-Weyl theorem or the

König-Szücs theorem on any test set for the torus line on the square [0,1]2, we get Weyl and

Birkhoff type uniformity, respectively, and using the fact that each set of the square [0,1]2 cor-

responds to a cube-symmetric set of the surface of the unit cube [0,1]3, we get the results of

Theorem 7 and Theorem 8, respectively.
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CHAPTER 9

GENERAL CUBE LINE UNIFORM

DISTRIBUTION

To expand our results regarding cube-symmetric sets to results on all test sets, we use the

discretization technique described in Chapter 2. Let L(t) be a given cube line with irrational

slope α , and let T = Tα be the flow on interval of edge directions S = [0,24) induced by this

cube line, as described in Chapter 2. Our goal is to show that if there exists a subset S∗ ⊂ S such

that 0 < µ(S∗) < 24 and S∗ is invariant under T , then we have a contradiction. That is to say,

our goal is to show T must be ergodic, which would imply Weyl and Birkhoff type uniform

distribution of the cube line on the cube’s surface, as implied by Theorem 1 and Theorem 2

respectively.

We first recall a well known fact about continued fractions: the convergents pk/qk of the

irrational shift α represent a particularly good rational approximation of α , which is to say,

∣∣∣∣α − pk

qk

∣∣∣∣≈
1

qkqk+1

.

More precisely, we have the bounds

1

qk(qk+1 +qk)
≤
∣∣∣∣α − pk

qk

∣∣∣∣≤
1

qkqk+1

. (9.1)



88

The power of the transformation T are very closely related to the terms in the sequence of the

α rotation, mα modulo 1 for integers m, and by 9.1 we get the approximation

∣∣∣∣mα − mpk

qk

∣∣∣∣≤
m

qkqk+1

≤ ε

qk
as long as 1 ≤ m ≤ εqk+1, (9.2)

where ε > 0 is arbitrarily small but fixed.

The approximation in equation 9.2 motivates our decomposition of our interval of edge di-

rections S = [0,24) into many very short sub-intervals of length 1/qk (where we will eventually

take the limit as k →∞ at the end of the proof). We introduce to this an unconventional, but very

convenient terminology; for any integer r ≥ 1, we call an interval of the form [b/r,(b+1)/r),

for some integer b, an r-interval, called this because it has length 1/r.

Consider the decomposition of S = [0,24) into 24qk different qk-intervals, where qk, as

above, is a denominator of a convergent of α . From the above equations, 9.1 and 9.2, it follows

that, except for a 0(ε) error of terms, T n will map a qk-interval of this decomposition to another

qk interval of this decomposition, assuming 1 ≤ n ≤ min{εqk+1,qk}. Note the implicit constant

in the O(.) term is absolute.

To break down this claim, let us look at an example of a qk-interval. Let I = [b/qk,(b+

1)/qk) be a qk interval and, for simplicity assume 0 ≤ b ≤ qk—that is, the interval I is in [0,1).

Consider the sequence of images of I under different powers of T , T I,T 2I,T 3I, . . . . From the

formulation of T , the image T I will be an interval of length qk, unless an endpoint of T I is very

close to singular point of T , i.e. where T jumps between piecewise linear sections. This can

occur in one of two ways, so we can formally write this scenario as (using {.} to represent the

fractional part): {
b

qk
+α

}
= 1−α + very small positive (9.3)

or {
b+1

qk
+α

}
= very small positive. (9.4)

In these cases, T I is split into two intervals, and 9.1 tells us is that one of these intervals will be

much shorter than the other (as the distance to the jump can be no more than the distance from

α to pk/qk, and pk/qk is, relatively, a very good approximation for α). We call the much the
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shorter part the negligible part and the longer part the dominant sub-interval. Intuitively, what

we will do is discard the negligible part as, just as the name implies, negligible, and only use

the dominating sub-interval. We will refer to the occurrence of 9.3 or 9.4 as a truncation.

Iterating this process through the powers of T , we see that if a truncation occurs at T mI,

m ≥ 1, then we have analogous conditions for 9.3 and 9.4 as follows:

{
b

qk
+mα

}
= 1−α + very small positive (9.5)

or {
b+1

qk
+mα

}
= very small positive. (9.6)

Similarly to above, when the truncation occurs, 9.2 tells us that once again one part will be

much shorter than the other part; we will have a negligible part and a dominating sub-interval.

More specifically, 9.2 implies that we can bound the size of the negligible as

≤ ε

qk
assuming that m ≤ εqk+1. (9.7)

If n ≤ min{εqk+1,qk}, then the sequence T I,T 2I, . . . ,T nI can have at most 2 truncations,

and thus have at most 2 negligible parts removed. Thus there is a loss of at most a 2ε-part. Thus

it follows that T n will “almost” map the qk-interval I, and similarly all qk-intervals, to another

1/qk sized interval (“almost” here meaning with an relative error term of O(ε)). Finally, we

note that as all 24qk qk-intervals are almost mapped to a 1/qk sized interval of [0,24), each

must in fact be “almost” mapped to another qk-interval, again with the same O(ε) error term.

The next step is to apply Lebesgue’s density theorem [16]. Let δ > 0 be arbitrarily small

but fixed, with relation to ε specified later. Lebesgue’s density theorem tells us that there exists

a finite threshold value k0 = k0(S∗;δ ) so that, for every k ≥ k0, the overwhelming majority of

qk intervals I in [0,24) have the property that the S-density qk ·meas(I ∩S) is either greater

than 1− δ , or less than δ . We call the violator qk-intervals δ -violators. Precisely, Lebesgue’s

density theorem says the total number of δ -violator qk intervals is less than 24qkδ .

Let 0 < η < 1 be another “small parameter” which we will specify later. A special case of
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the δ -violators is when they are η-violators, that is, for a δ -violator qk-interval, I,

η ≤ qk ·meas(I ∪S)≤ 1−η .

Assume an η-violator exists, and let I∗ be one such η-violator qk-interval—that is, it has S

density,

η ≤ qk ·meas(I∗∪S)≤ 1−η .

The general idea of what we will do next is show that there are a limited number of η-

violators, and if an interval is an η-violator, then the interval it “almost” maps to must also be

an η-violator. This will imply that that a path starting on an η-violator must hit these limited

number of qk-intervals many times. Hitting few qk-intervals many times is a very unnatural path

for the cube line, and as we will show is, in fact, impossible. This will provide a contradiction

that will allow us to rule out the existence of η-violators.

The more precise argument is as follows:

We recall that for n ≤ min{εqk+1,qk}, T nI∗ is a well approximated by another qk-interval,

say I∗∗n (with an error term of O(ε)). Then we have that

δ ≤ η −O(ε)≤ qk ·meas(I∗∗n ∪S)≤ 1−η +O(ε)≤ 1−δ ,

so long as η is sufficiently large with respect to ε (larger than a large absolute constant multi-

ple), and δ > 0 is sufficiently small.

It thus follows from the bound on the number of δ -violators that the total number of differ-

ent qk-intervals I∗∗n , 1 ≤ n ≤ min{εqk+1,qk} is less than 2 ·24qkδ .

For a value x ∈ I∗, we label x good if

|{1 ≤ n ≤ min{εqk+1,qk} : T nx ∈ I∗∗n }| ≥ 1

2
min{εqk+1,qk}.

Otherwise, we label x as bad.

Lemma 11. At least half of x ∈ I∗ are good.
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To prove Lemma 11, we use a standard “double counting average argument” as follows.

Since I∗∗n is an O(ε)-approximation of TnI∗ for each 1 ≤ n ≤ min{εqk+1,qk}, we have

qk ·meas(x ∈ I∗ : T nx /∈ I∗∗n ) = O(ε),

and so we have, for some absolute constant C,

C · ε ≥ qk

∫

x∈I∗

1

min{εqk+1,qk}
|{1 ≤ n ≤ min{εqk+1,qk} : T nx /∈ I∗∗}| ≥

≥ qk

∫

x∈I∗ is bad

1

min{εqk+1,qk}
|{1 ≤ n ≤ min{εqk+1,qk} : T nx /∈ I∗∗}| ≥

≥ qk

∫

x∈I∗ is bad

1

2
,

which moving the constants over yields,

meas(x ∈ I∗ is bad)≤ 2C · ε
qk

.

As C is an absolute constant, by making ε sufficiently small, we get

meas(x ∈ I∗ is bad)≤ 1

qk
,

completing the proof of the lemma.

Since, for a given angle θ , the set of pathological geodesics is countable, Lemma 11 implies

we can find a good x0 ∈ I∗ such that T nx0, n ≥ 0 is on a non-pathological geodesic. As x0 is

good there are at least

1

2
min{εqk+1,qk}

n’s in 1 ≤ n ≤ min{εqk+1,qk} such that T nx0 ∈ I∗∗n . On the other hand we have bounded the

number of different qk-intervals which can be I∗∗n ,

1 ≤ n ≤ min{εqk+1,qk}, to be less than 2 ·24qkδ . It thus follows from the pigeonhole principle
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that T nx0 must visit some qk-interval at least

min{εqk+1,qk}/2

48qkδ
(9.8)

times as n runs through 1 ≤ n ≤ min{εqk+1,qk}.

As ε has been fixed, we can make δ arbitrarily small. This, in turn, implies that T nx0

visits some particular qk-interval far too many times. We next show that such a frequent visit

is impossible. As previously shown in Chapter 8, for a cube-symmetric test set, the geodesic

is uniform. This was done by reducing the case of the cube-symmetric test set to the problem

of billiards on a square, which was further reduced to a torus line in a square. Uniformity of

a torus line in a square is equivalent to uniformity of the irrational shift sequence, nα , n ≥ 1

modulo 1 for α irrational. To show that such frequent visits are impossible we look at the

following lemma regarding the irrational shift sequence and compare it to the statement in 9.8.

Note that this lemma retains the definitions of qk and α used throughout this chapter (i.e. qk is

the denominator of a convergent of α).

Lemma 12. Let I be an interval modulo 1 length 1/qk. The finite sequence nα , 1 ≤ n ≤ N

modulo 1 enters I at most

3

(
N

qk
+1

)

times.

If N < qk the statement of Lemma 12 is trivial, so assume N ≥ qk. Then we have N/qk ≥ 1,

and we recall that ∣∣∣∣nα − npk

qk

∣∣∣∣≈
n

qkqk+1

,

which implies the set

{nα modulo 1, 1 ≤ n ≤ N}

is well approximated by the multiset consisting of the equidistant set

{0,1/qk,2/qk,3/qk, . . . ,(qk −1)/qk}

with multiplicity either ⌊N/qk⌋ or ⌈N/qk⌉ (or simply N/qk when N/qk is an integer). As the
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interval I was of length 1/qk, it can contain at most 2 rational numbers with the same denom-

inator qk and different integer numerators. As the multiplicity of each element in the above

multiset is less than (N/qk)+1, this completes the proof.

To apply Lemma 12 to 9.8, we let N = min{εqk+1,qk} and have ε > 0 be fixed. We then

look at the cube symmetric version of our interval from 9.8 (i.e. the interval itself and all the

rotations of it through the 24 symmetries that can be carried out in 3-space) and apply Lemma

12 to the torus line equivalent of this symmetric test set. We need an extra factor of 24 as the

symmetric case includes 24 copies of the interval, but since δ > 0 can still be set arbitrarily

small this extra constant factor is not an issue, and thus Lemma 12 contradicts the existence of

the test set described in 9.8.

We have thus shown that η-violator qk-intervals cannot exist if k is sufficiently large. This

is summarized in the following lemma.

Lemma 13. Let η > 0 be arbitrarily small but fixed. Then there exists a threshold k0 = k(S;η)

such that for k > k0(S;η) every qk-interval I in [0,24) has the property that its S-density qk ·

meas(I ∩S) is either > 1−η , or < η .

For the rest of this chapter we make an assumption of α , that the set of the continued

fraction digits ak ≥ 1 of α is bounded (digit ak is also referred to as the kth partial quotient of

α). Formally, this means

sup
k≥1

qk+1

qk
= A < ∞ where α =

1

a1 +
1

a2+
1

a3+...

. (9.9)

Combining the recurrence formula qk+1 = akqk + qk−1 with the bound in 9.9, we get the rela-

tionship

sup
k≥1

qk+1

qk
≤ A+1. (9.10)

We next need the following corollary of Lemma 13.
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Lemma 14. Let α be an irrational number with the properties described in 9.9, let

0 < η ≤ 1

2(A+2)
,

let l > k > k0(S;η) (see Lemma 13), let I be a qk-interval in [0,24) with S-density > 1−η , let

J be a ql-interval with S-density < η with J ⊂ I. Then J is in the 2η/qk-neighborhood of one

of the endpoints of I.

We prove Lemma 14 by contradiction; the basic idea of the proof is the bound on the

continued fraction digits in 9.9 bounds the relative sizes of qi-intervals and qi+1-intervals, so

given one qi-interval and one qi+1-interval intersect, with one having S-density < η and the

other S-density > 1−η , the intersection must be very small relative to the size of both intervals,

and hence be near the edge of the intervals.

More precisely, suppose (I;J) is a violator pair, and further assume ql-interval J has the

minimum property that, for a fixed qk-interval I, parameter l is as small as possible. Let J∗ be

a ql−1-interval such that |J∗∩ J| ≥ |J|/2. Then we have

meas(J∗∩S)≤ meas(J∩S)+meas((J∗ \ J)∩S)≤ η |J|+ |J∗ \ J| ≤

≤ η |J|+ |J∗|− 1

2
|J|= η

ql
+

1

ql−1

− 1

2

1

ql
≤ 1−η

ql−1

,
(9.11)

as by the bound in 9.10

η ≤ 1

2(A+2)
≤ 1/2

ql
ql−1

+1
.

Combining 9.11 and Lemma 13 we know the S-density of J∗ is less than η . The minimum

property of l implies J∗ cannot be a subset of I, as then l − 1 would be a valid parameter, and

thus J∗ must contain one of the endpoints of I.

On the other hand we also have

(1−η)|I|< meas(I ∩S) = meas(J∗∩ I ∩S)+meas((I \ J∗)∩ I ∩S)≤

≤ meas(J∗∩S)+ |I \ J∗|< η |J∗|+ |I|− |I ∩ J∗|,

which implies that |I ∩ J∗| < η |I|. When we combine this with the facts that: J ⊂ I, that J
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intersects J∗, and that an endpoint of I is contained in J∗; they together imply that J must be

contained within the 2η/qk neighborhood of one of the endpoints, completing the proof of

Lemma 14.

For a given qk-interval I ⊂ [0,24), we define I⋄ to be the middle (1−4η)-part sub-interval

of I. That is, I⋄ is the sub-interval of I obtained by removing the interval of length 2η/qk from

each end of I.

We next have a quick lemma regarding these middle (1−4η)-part sub-intervals which is a

corollary to the previous two.

Lemma 15. Assume α is an irrational number with the properties described in 9.9, and let

0 < η ≤ 1

2(A+2)
.

1. Let k > k0(S;η) (see Lemma 13), and let I be a qk-interval in [0,24) with S-density

> 1−η . Then S contains the middle (1−4η)-part sub-interval I⋄ of I, except for a set

of measure zero.

2. Similarly, let I be a qk-interval with S-density < η and k > k0(S;η). Then S is disjoint

from the middle (1−4η)-part interval I⋄ of I, except for a set of measure zero.

Combining Lemma 13 and Lemma 14 with l → ∞ (i.e. using Lebesgue’s density

theorem[16]), we get that the S-density of the middle (1−4η)-part sub-interval I⋄ is arbitrarily

close to 1 in the case of Lemma 15.1, and arbitrarily close to 0 in Lemma 15.2. Lemma 15

follows immediately from this.

We note that the possible measure zero exception sets in Lemma 15.1 and

Lemma 15.2 are irrelevant for our purposes; Theorem 1 and Theorem 2 both allow measure

zero set exceptions, so for ease of notation we will assume I∗ ⊂ S, and I⋄∩S =∅.

Now we define the two consecutive qk-intervals

I1 =

[
b

qk
,
b+1

qk

)
and I2 =

[
b+1

qk
,
b2

qk

)
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in [0,24), chosen such that both have S-density > 1−η . If 9.5 holds and k > k0(S;η) (see

Lemma 13), then by Lemma 15 S contains both middle (1−4η)-part

sub-intervals, I⋄1 and I⋄2 , for these two sets. We define I∗ to be the longest sub-interval of S that

contains I⋄1 , and similarly define I∗2 to be the longest sub-interval of S which contains I⋄2 . Lastly,

define Right1 to be the right endpoint sub-interval of I∗1 , and Le f t2 to be the left endpoint of the

sub-interval I∗2 .

Suppose

Right1 < Le f t2. (9.12)

We show that 9.12 is impossible if we choose η to be sufficiently small in relation to A (to be

specified later, see 9.23).

The gap Le f t2−Right1 is between two consecutive reciprocals of convergent denominators,

1

ql−1

> Le f t2 −Right1 ≥
1

ql
(9.13)

Right1 must be contained in some ql-interval J1 such that J1 has S-density < η , since Right1 is

the right endpoint of I∗1 . As I∗1 is contained in S, this implies that |I∗1 ∩ J1|< η |J1|.

By a similar argument, since Le f t2 is the left endpoint of I∗2 , it must be contained in some

ql-interval J(2), which has S-density < η . Again, as S contains I∗2 , we have that |I∗2 ∩ J(2)| <

η |J(2)|.

It may be that J1 = J(2), or they may be different. If they are different, then there is a chain

of consecutive ql-intervals J1,J2, . . . ,Jm = J(2). Moreover, 9.10 and 9.13 imply that m ≤ A+1.

This implies that

∣∣∣∣(Le f t2 −Right1)−
m

ql

∣∣∣∣<
2η

ql
with some integer 1 ≤ m ≤ A+1. (9.14)

By repeating the argument above with l +1 rather than l, we get an analogous result to 9.14:

∣∣∣∣(Le f t2 −Right1)−
M

ql+1

∣∣∣∣<
2η

ql+1

with some integer 1 ≤ M ≤ (A+1)2. (9.15)
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By combining 9.14 and 9.15 into a single equation we get

∣∣∣∣
m

ql
− M

ql+1

∣∣∣∣<
2η

ql
+

2η

ql+1

with some integers 1 ≤ m ≤ A+1,M ≤ (A+1)2. (9.16)

Multiplying 9.16 through by ql+1/m yields

∣∣∣∣
ql+1

ql
− M

m

∣∣∣∣<
4ηql+1

qlm
< 4η(A+1) with some integers 1 ≤ m ≤ A+1,M ≤ (A+1)2. (9.17)

Note, however, that

ql+1

ql
=

alql +ql−1

ql
= al +

1

ql/ql−1

= al +
1
1

al−1+
1

al−2+...

.

This means that ql+1/ql has bounded continued fraction digits, al−1,al−2, . . . ,

namely they are all less than A (we note that al , the integer part of ql+1/ql , is also bounded

by A, but is irrelevant). This brings us to a concept from Diophantine approximations which,

vaguely summarized, says that if a real number (whether rational or irrational) has “small” con-

tinued fraction digits, then it cannot be well approximated by a small fraction unless it itself is

a small fraction; in this case, ql+1/ql is being well approximated by the small fraction M/m.

This concept motivates our next step which is to examine a classical result in number theory.

Diophantine Approximation Fact: If a real number x is approximated by a rational number

M/m such that: ∣∣∣∣x−
M

m

∣∣∣∣<
1

2m2
,

then M/m is a convergent of x. Moreover, there is a convergent Pi/Ai of x such

that Qi ≤ m < Qi+1, and M/m = Pi/Qi.

By applying 9.17 with x = ql+1/ql , we see that

∣∣∣∣
ql+1

ql
− M

m

∣∣∣∣=
∣∣∣∣x−

M

m

∣∣∣∣<
1

2m2
, (9.18)
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if given that we also have

4η(A+1)≤ 1

2(A+1)2
≤ 1

2m2
. (9.19)

However, 9.19 can easily be guaranteed by setting

η ≤ 1

8(A+1)3
(9.20)

Combining the Diophantine Approximation Face with 9.18 implies that M/m is a conver-

gent Pi/Qi of x such that Qi ≤ m ≤ A+1. This allows us to rewrite 9.17 as

∣∣∣∣x−
Pi

Qi

∣∣∣∣< 4η(A+1) with some 1 ≤ Qi ≤ A+1. (9.21)

On the other hand, 9.1 (which holds for both rational and irrational numbers) implies that

1

Qi(Qi+1 +Qi)
≤
∣∣∣∣x =

Pi

Qi

∣∣∣∣ . (9.22)

Applying our bounds Qi ≤ A+ 1 and Qi+1 ≤ (A+ 1)2 to the left hand side of 9.22, and then

combining it with 9.21 yields the inequality

1

(A+1)2(A+2)
≤ 4η(A+1),

which yields a contradiction for sufficiently small η , namely letting

η ≤ 1

4(A+1)3(A+2)
. (9.23)

We also note that this selection of η will also satisfy the required bound in 9.20. This contra-

dicts 9.9, and thus tells us that

Le f t2 ≤ Right1. (9.24)

A symmetric argument proves the analogous result if I1 and I2 both have S-density < η .

We next check the case where I1 and I2 are consecutive qk-intervals in [0,24)—that is,

I1 =

[
b

qk
,
b+1

qk

)
and I2 =

[
b+1

qk
,
b+2

qk

)
,
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Such that I1 has S-density > 1−η and I2 has S-density < η . If 9.5 holds and

k > k0(S;η) (see Lemma 13), then by Lemma 15 S contains the middle (1− 4η)-part sub-

interval I⋄1 , and Sc, the complement of S, contains the middle (1− 4η)-part sub-interval I⋄2 .

Defining I∗1 as before, the longest sub-interval of S which contains I⋄1 , and defining I∗2 to be

the longest sub-interval of Sc which contains I⋄2 , let R1 denote the right endpoint of I∗1 and L2

denote the left endpoint of I∗2 .

From this we can repeat the argument from 9.12-9.23 to these definitions (bearing in mind

that as T is measure preserving, S being invariant under T implies Sc is invariant under T as

well, and thus we can apply all the same arguments to it), and again we obtain that R1 < L2 is

false, but as I∗1 and I∗2 must clearly be disjoint we get that

the right endpoint of I∗1 coincides with the left endpoint of T ∗
2 . (9.25)

We of course get analogous results in the symmetric case that I1 has S-density < η and I2 has

S-density > 1−η .

Combining the results of 9.24 and 9.25 we see that there can be no gaps between the sub-

intervals fully contained in S and the sub-intervals fully contained in Sc found in each middle

(1− 4η)-part sub-intervals of the qk-intervals. This tells us that any invariant set S must have

a very simple structure: it must be the finite union of sub-intervals. But this is impossible. If it

were possible, the non-singular interval endpoints must be transformed to each other by T = Tα .

But T is essentially an irrational (that has been partitioned onto the different directed edges),

and so the iterated T -images of an endpoint modulo 1 must be the infinite set x,x+α,x+α2, . . .

modulo 1, but this contradicts the fact that S is comprised of a finite union of intervals.

More formally, assume S is the union of W < ∞ disjoint intervals, so there are a total of 2W

interval endpoints. Let x ∈ [0,24) be an interval endpoint such that {x} 6= {−mα}, m ≥ 0 an

integer. Consider the sequence

{x},{x+α},{x+α},{x+3α}, . . . ,{x+2Wα}. (9.26)

As 1−α,0,1 are not elements in the sequence 9.26, and the sequence is finite, there is a “buffer

zone”, i.e., there is some value ζ , 0< ζ <min{α,1−α} such that the intervals [0,ζ ], [1−ζ ,1],
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and [1−α − ζ ,1−α + ζ ] are disjoint from the sequence 9.26. We select a value ζ so that it

satisfies these conditions, and so that ζ is smaller than the length of any of the W intervals in S,

and smaller than the length of any of the (at most W + 1) intervals that form Sc. Consider the

interval I(x;ζ ) = [x−ζ ,x+ζ ], the interval of radius ζ about the point x. As I(x;ζ ) has radius

ζ , we first know that none of the singular points 1−α,0,1 are in I(x;ζ ), and similarly are not

in any of the images of I(x;ζ ), T jI(x;ζ ), 1 ≤ j ≤ 2W .

Secondly, as x is an endpoint of an interval in S, on one side of x will be an interval in S, and

the other side an interval in Sc. As I(x;ζ ) extends on both sides of x with a radius smaller than

any interval in S or Sc, this implies that half of I(x;ζ ) will be in S and the other half will be in Sc.

We denote this property by referring to I(x;ζ ) as a half-and-half interval. We further see that

by the selection of ζ > 0 being sufficiently small, all images of I(x;ζ ), T jI(x;ζ ), 1 ≤ j ≤ 2W ,

will also be half-and-half intervals. Thus the center points of T jI(x;ζ ), ≤ j ≤ 2W must all be

endpoints of intervals comprising S. But they also have fractional part {x+ jα}, as described

in 9.26, which must all be different since α is irrational. This implies all 2w+1 center points

(and thus interval endpoints) are unique, but this contradicts the fact that there are only 2W

endpoints.

Next we handle the cases where x ∈ [0,24) is an interval endpoint such that {x}= {−mα}

for some integer m ≥ 2. Then we can use the exact same argument as above by working with

the inverse transformation T−1, i.e. by using T− jI(x;ζ ), 0 ≤ j ≤ 2W .

Thus we have that the only places that can be an endpoint of an interval in the decomposition

S are points x ∈ [0,24) where {x}= 0 or {x}= {α}= 1−α , i.e. every endpoint in the interval

decomposition is a singular point. Since S is nontrivial, there is an integer r, 1 ≤ r ≤ 24 such

that we have either

(r−1,r−α)⊂ S and (r−α,r)∩S =∅, (9.27)

or

(r−1,r−α)∩S =∅ and (r−α,r)⊂ S. (9.28)

Suppose that:

0 < α < 1/2 and 9.27 holds. (9.29)
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Suppose, without loss of generality, that (r− 1,r) represents the right edge of the front face,

with the direction of the cube line traveling from the right face to the front face. Denote this

directed edge E = E(0,1). As 0 < α < 1/2, we know that T = Tα will map E(0,1−α) to

the directed edge going from the front face to the right face; denote this edge E ′ = E ′(0,1).

More precisely, E(0,1−α) will be mapped to E ′(α,1). As E(0,1−α) is in S (assumed by

9.29), E ′(α,1) is in S as well. Moreover, as 0 ≤ α ≤ 1/2, we know that E ′(α,1) intersects both

E ′(0,1−α) and E ′(1−α,1). As endpoints can only occur at singular points, this implies that

the entire directed edge of E ′ is in S. Repeating this argument (it can now be repeated on both

E ′(0,1−α) and E ′(1−α,1)), we quickly see that under condition 9.29

S must contain all 24 directed edges of the cube, (9.30)

which is impossible, given we assume S is non-trivial.

The underlying reason this works, that is, the reason the argument above

spreads to all edges of the cubes, is the connectivity of a graph associated with the interval

exchange transformation T = Tα : [0,24)→ [0,24). We define a directed graph ~G = Ḡcube(α)

such that the vertices of ~G are the 24 directed edges of the unit cube, and, for two vertices E,E ′

in the vertex set of ~G, (E,E ′) is an edge of ~G iff there exists x ∈ E such that T x ∈ E ′—that is,

T maps part of E to E ′. We note because of the structure of T , each vertex of ~G has in degree

2 and out degree 2.

Ignoring the directions of the edges in ~G, we get a 4-regular (undirected) graph G =

Gcube(α). We refer to ~G as the directed cube-surface-reachability graph, and refer to the undi-

rected version, G, as the cube-surface-reachability graph.

We prove the following lemma to show that all 24 directed edges are reachable.

Lemma 16. If α is irrational, then the cube-surface-reachability graph G is connected.

As G is a relatively small concrete graph with 24 vertices and 48 edges, it can easily be

verified with brute force checking.

We note also a “clever” proof of Lemma 16 will be proved later (see Lemma 18).

We apply Lemma 16 as follows: under the conditions in 9.29 we have that E(0,1−α) ∈ S,
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and Lemma 16 implies

~ε(0,1−α)⊂ S

is true for every directed edge~ε in the cube. By applied Lemma 16 one more time, we can

upgrade this to

~ε⊂ S

for every directed edge~ε in the cube, which yields 9.30.

We next verify the alternative choices to the assumptions made in 9.29 as symmetric cases.

If 1/2 < α < 1 and 9.27 holds, then the argument above holds perfectly, and yields an

identical result to 9.30–S must contain all directed edges.

If 0 < α < 1/2 and 9.28 holds, then the argument above holds for Sc, the complement of S.

It shows Sc must contain all directed edges of the cube, and thus S is still trivial.

Finally, if 1/2 < α < 1 and 9.28 holds, the same argument as the previous case holds with

Sc, and we get that again Sc must contain all directed edges, and thus S is trivial.

Since in all four cases we have obtained the contradiction that S is trivial, this shows that

there are no subsets of S ⊂ [0,24), with 0 < meas(S) < 24, which are invariant under T = Tα ,

for all irrational numbers α with bounded continued fraction digits.

We note this result alone is very interesting, as it includes many explicit famous numbers,

namely the whole class of quadratic irrationals, including
√

2 and the previously mentioned

−2+
√

5.

We next look at the other case, the set of irrationals α with unbounded continued fraction

digits. The principal idea is the same, however: apply Lebesgue’s density theorem[16], and

extend it by utilizing “substantially overlapping intervals”.
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CHAPTER 10

UNIFORM DISTRIBUTION:

UNBOUNDED DIGITS

Suppose α is an irrational number with unbounded continued fraction digits. Then there is a

set of positive integers K such that

lim
k→∞ with k∈K

qk+1

qk
= ∞. (10.1)

If qk+1/qk is large, then 9.1 is an extremely good approximation of α . Because of this, the

argument for α with unbounded continued fraction digits is in fact quite a bit simpler than the

argument for α with bounded digits.

We find it convenient here to rewrite the non-trivial, invariant under T = Tα , set S as follows.

First we define a function,

F = Fs : [0,1)→{0,1}24,

which we think of as a mapping from the 1-dimensional unit torus line [0,1), to the set of 0−1

sequences of length 24, and essentially turn F into an indicator function for S on each of the

24 directed edges. We define F(x) by the following criteria; for integer r, 1 ≤ r ≤ 24, the rth

coordinate of F(x) equals 1 if and only if r−1+ x ∈ S.

We next use the tnterval exchange transformation T = Tα to define a second function

P(x) = Pα(X) : [0,1)→ S24,
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where S24 is the group of permutations with 24 elements. We define P(x) so that: if r and s are

two integers, 1 ≤ r < s ≤ 24, and T (r− 1+ x) ∈ [s− 1,s), then the permutation P(x) sends r

to s. That is, P(x) is a permutation of the directed edges defined by, for a point x on a directed

edge, whichever directed edge T sends x to. We note that P(x) has only two possible values for

a given value α , as it is constant on [0,1−α) and on [1−α,1). We note importantly that S

being invariant under T implies that F satisfies the equation

F(x+α) = P(x)F(x) for every real x. (10.2)

From this it is clear that the set S ⊂ [0,24) is trivial if and only if the function FS is constant

almost everywhere on [0,1) with value {0}24 or {1}24.

As previously, we begin by considering the partition with denominator qk, or more pre-

cisely, consider the equidistant partition

{0,1/qk,2/qk,3/qk, . . . ,(qk −1)/qk} (10.3)

of the unit torus [0,1). However, motivated by the α-shift and its two special intervals [0,1−α),

[1−α,1) with endpoints 0,1−α,1, we additionally examine another partition of the unit torus

[0,1) as well. Let Pk(α) denote the partition of the unit torus line [0,1), interpreted as a

circle, with division points {−ℓα}, 0 ≤ ℓ ≤ qk, where k ∈ K, and once again {.} represents

the fractional part of a real number. We note that the values ℓ = 0,1 in {−ℓα} represent the

endpoints of the special intervals [0,1−α), [1−α,1).

For a fixed ε > 0, if k ∈ K is sufficiently large, then qk+1/qk is very large, and so the ratio

of the gaps of the partition Pk(α) will lie between 1− ε and 1+ ε , as (vaguely speaking)

the number of partition points of Pk(α) increases it (being an irrational shift) will resemble a

uniform distribution over [0,1). More formally, the following corollary of 9.1

∣∣∣∣ℓα − ℓpk

qk

∣∣∣∣≤
ℓ

qkqk+1

<
1

qk+1

as long as 1 ≤ ℓ < qk,
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combined with 10.1, implies that the gaps of partition Pk(α) have lengths in the range

(1− ε)
1

qk
<

1

qk
− 1

qk+1

≤ length of a gap ≤ 1

qk
+

1

qk+1

≤ (1+ ε)
1

qk
.

Moreover, this means that, under the conditions in 10.1, the partition Pk(α) becomes nearly

identical to the partition in 10.3, with a relative error term of arbitrarily small ε > 0.

We note here that in the case of bounded continued fraction digits, we had to work with

the partition in 10.3, because the similarities between it and Pk(α) depend entire on condition

10.1—that is, that the continued fraction digits are unbounded. In this chapter however we can

use the more convenient Pk(α). One technical advantage of working with Pk(α) is that an α

(modulo 1) shift can be expressed on it without the need of any error term at all.

Let I(ℓ;2) denote the union of the two consecutive intervals (again interpreting the torus

line [0,1) as a circle) that share the endpoint {−ℓα}, 0 ≤ ℓ < qk. This definition makes the

overlap between two neighboring intervals I(ℓ;2) quite substantial—in fact, the overlapping

portion will be nearly half the size of each interval (more precisely, the ratio between the size

of the overlapping portion and the interval itself is at least 1−ε
2

). This makes our method of

extending Lebesgue’s density theorem by using overlapping intervals quite simple here.

We define the following terms:

P(1) = (x), P(2) = P(x+α)P(x), P(3) = P(x+2α)P(x+α)P(x),

and in general, for r ≥ 3, we define

P(r)(x) = P(x+(r−1)α)P(r−1)(x).

Notice that Pℓ−1)(x) is constant on I(ℓ;2) for 2 ≤ ℓ < qk, because the only places P(x)

changes is at 0,1−α , and 1, which are found at ℓ= 0,1.

From 10.2, we have that

F(x+(ℓ−1)α) = P(ℓ−1)(x)F(x) for every real x. (10.4)
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Note the translated copy I(ℓ;2)+ (ℓ−1)α (modulo 1) of I(ℓ;2) is almost exactly the same as

I(1;2)—or more precisely, it is an approximation with an error term of order ε . For k ∈ K

sufficiently large, by Lebesgue’s density theorem [16] there exists ℓ0 in 1 ≤ ℓ0 < qk such that

F(x) is almost constant in the interval I(ℓ0;2)—or more precisely, that F(x) is constant on a

subset of I(ℓ0;2) with measure ≥ (1− ε)|I(ℓ0;2)|.

Moreover, combining 10.4 with the fact that F(x) is almost constant in the interval I(ℓ0;2)

implies that F(x) is almost constant in the interval I(1;2)—or more precisely, that F(x) is

constant on a subset of I(ℓ0;2) with measure

≥ (1− ε)2|I(ℓ0;2)|.

We next use 10.4 “backwards”, by denoting P(r)∗(x) to be the inverse permutation of P(r)(x).

Then, by 10.4, we get

P(ℓ−1)∗(x)F(x+(ℓ−1)α) = F(x) for every real x. (10.5)

Using 10.5 we can translate this result to a general interval I(ℓ;2), 2 ≤ ℓ < qk, and obtain that

F(x) must be almost constant on each of them—or more precisely, F(x) is constant on a subset

of I(ℓ;2), 2 ≤ ℓ < qk with measure > (1−ε)3|I(ℓ;2). Since we know this for ℓ= 1 as well, we

now know F(x) is almost constant on all intervals I(ℓ;2), 1 ≤< qk.

We now make use of the fact that the intervals I(ℓ;2) are comprised of consecutive intervals

of Pk(α). Thus we can take the qk different intervals I(ℓ;2) and line them up in such a way

that between any two of them there is substantial overlapping (nearly 1/2 the interval), and

together they will form a chain that covers the entire unit interval starting at 0 and ending at 1.

As each interval I(ℓ;2) is constant on (1− ε)3 portion of the interval, and it overlaps with its

neighbors for nearly 1/2 (−ε/2) its length, F(x) must be almost constant with the same value

on each interval and its on neighbors. As the intervals in the chain form the entire unit interval

[0,1), F(x) must be constant with the same value for every interval. Thus F(x) is constant on a

subset of size (1− ε)3.

Taking ε → 0, we conclude that F(x) = FS(x) must be constant on [0,1) almost everywhere.

Constant in this case means almost every value of x has the some 0−1 sequence. This means

the directed edges which have a 0 value in their coordinate of that sequence are almost never
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visited, while the directed edges which have a 1 value in their coordinate are visited almost

everywhere. But by Lemma 16, if one edge is visited almost everywhere, they all must be.

Thus the constant value must be either {0}24 or {1}24. This contradicts the assumption that S is

non-trivial, and thus a non-trivial invariant under set T cannot exist. We have therefore proved

the following lemma.

Lemma 17. Consider the interval exchange transformation T = Tα : [0,24)→ [0,24) defined

in 2.3. If α is irrational then T is ergodic.

By Lemma 1 and Lemma 2, Lemma 17 completes the proof of Theorem 1 and Theorem

2.

Lemma 17 represent the central technical part of Theorem 1 and Theorem 2. It is also

somewhat similar to the crucial missing part in Gutkin’s paper [8] (in the special case of cube

surface), what he refers to as “an unpublished result of W. Veech” (see page 581 in [8]). As we

mentioned at the beginning of Chapter 1, the proof of this crucial part in [8] remains unpub-

lished since (email communication by W. Veech, Summer of 2016).

Unique ergodicity. We conclude this chapter with an upgrading of Theorem 1: we replace

the “almost every starting point” exception to the Theorem with “every non-pathological start-

ing point”, just like we had in Lemma 1. It is based off the fact that the dynamical system

([0,24),Tα) is uniquely ergodic. The concept of uniquely ergodic dynamical systems (Y,T )

(where Y is compact and T : Y →Y ) was introduced by Furstenberg in 1972. Note here that we

interpret [0,24) as a circle (or rather the union of 24 separate circles), and thus it is compact.

We cannot directly apply Furstenberg’s general theorems to this problem, but instead we adapt

his proof arguments. (See Sections 3.2 and 3.3 in his book [6]).

Let α be an irrational real number and let λ (.) denote the one-dimensional

Lebesgue measure.

Step 1: The only Tα -invariant Borel probability measure of the dynamical system ([0,24),Tα)
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is λ (.)/24 (where of course Tα = Tα(cube)).

This uniqueness property of a dynamical system is what Furstenberg refers to as uniquely

ergodic. To prove Step 1, i.e. to prove ([0,24),Tα) is uniquely ergodic, we rewrite ([0,24),Tα)

as a skew product. Let Rα : x → x+α (modulo 1) denote the irrational rotation by α over the

unit torus x ∈ [0,1). For an integer n ≥ 2, let [n] = {1,2,3, . . . ,n} denote the set containing the

first n natural numbers (we will use it with n = 24 for our purposes). We then define the skew

product ([0,1)× [24],Tα) as

Tα(y,m) = (Rαy,Pα(y)m), m ∈ [24], (10.6)

where Pα(x) is defined as in 10.2. We recall that Pα(x) is defined by the interval exchange

transformation Tα , and in particular is such that Pα(x) is constant on the two special intervals

[0,1−α) and [1−α,1).

To prove Step 1, we will show that ([0,1),Rα) is uniquely ergodic. Assume the contrary;

that is, there exists a Borel measure ν(.), defined on the Borel sets of [0,1), which is Rα -

invariant and ν 6= λ . Since Borel sets are generated by intervals, this implies there is an interval

I0 ⊂ [0,1) such that ν(I0) 6= λ (I0) = length(I0).

We can assume even that ν is Rα -ergodic. Indeed, the space of Borel probability measure

on the compact set unit torus [0,1) (again, taken as a circle so it is compact) is itself compact.

(As we will later use the compactness of the space of measure several times, we note here that

it is true for any underlying compact set; the standard proof is based upon the Riesz Represen-

tation Theorem.) If T : [0,1)→ [0,1) is Borel measurable then the subset of T -invariant Borel

probability measures on [0,1) is closed. Thus it is compact, and clearly is convex, and so the

Krein-Milman theorem implies that it is spanned by extremal points [6]. The extremal points

are exactly the T -ergodic measures, and we will select ν to be such an extremal point with

T = Rα .

Birkhoff’s ergodic theorem tells us that, for almost every (with respect to ν) y ∈ [0,1)

lim
k→∞

1

K ∑
1≤k≤K:

y+kα∈I0 (mod 1)

1 = ν(I0). (10.7)
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However, the classical result of uniform distribution tells us that

lim
k→∞

1

K ∑
1≤k≤K:

y+kα∈I0 (mod 1)

1 = length(I0) (10.8)

for every y ∈ [0,1) and every irrational number α . Since I0 was selected such that ν(I0) 6=

length(I0), 10.8 contradicts 10.7, and thus our assumption that such a measure ν exists is false.

Therefore ([0,1),Rα) is uniquely ergodic. (For alternative proof that ([0,1),Rα) is uniquely

ergodic, see Theorem 3.12 in Furstenberg [6].)

We are now ready to prove Step 1, which is equivalent to the statement that the skew product

([0,1)× [24],Tα) (as defined in 10.6) is uniquely ergodic (noting that the σ -algebra is always

Borel sets). Again we assume the contrary, that this is a Borel measure ν(.) (defined on the

Borel sets of [0,1)× [24]) which is Tα -invariant and ν 6= λ ×µ24, where the second term in the

product measure, µ24, is the normalized counting measure, i.e. µ24 =
1

24
cardinality.

It follows that there must be a continuous function f0 on X = [0,1)× [24] such that

∫

X
f0 dν 6=

∫

X
f0 dλ ×µ24. (10.9)

By repeating the argument above and again applying the Krein-Milman theorem, we can

again assume the ν is Tα -ergodic.

As (X ,λ24,Tα) with X = [0,1)× [24] is ergodic (see Lemma 17), Birkhoff’s ergodic the-

orem tells us that for every continuous function f on X , and almost every (with respect to λ )

y ∈ [0,1)

lim
k→∞

1

K

K−1

∑
k=1

f (T k
α z) =

∫

X
dλ ×µ24 (10.10)

holds for every z of the form z = (y,m), m ∈ [24].

Repeating the same argument as previously with measure ν instead of λ24,

Birkhoff’s ergodic theorem gives us the analogous result, for almost every (with respect to ν)

x ∈ X

lim
k→∞

1

K

K−1

∑
k=1

f (T k
α x) =

∫

X
dν (10.11)
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holds for every continuous function f on X . By combining 10.10 and 10.11, and using a

function f satisfying the condition in 10.9, we obtain that the set of x ∈ X satisfying 10.11 is

contained in a product set A1 × [n] such that A1 ⊂ [0,1), with λ (A1) = 0. Let ν1(.) denote the

projection of ν(.) onto [0,1) (in the obvious way, i.e. ν1(B) = ν(B× [24]) for every Borel set

B ⊂ [0,1)). Since ν1 is Rα -invariant and ([0,1),Rα) is uniquely ergodic, as proved above, we

conclude that ν1 = λ . But this is impossible as λ (A1) = 0 6= 1 = ν1(A1). This is a contradiction

and thus again our assumption of the existence of such a measure ν is false. This proves Step

1.

We define the following notation: we say that x ∈ [0,1) is a α-legitimate point if x 6=

{−hα}, h ≥ 0 integer, i.e., if T k
α x is well defined for every integer k ≥ 0.

Step 2: For every continuous function f on X = [0,1)× [24]

1

K

K−1

∑
k=0

f (T k
α z)→

∫

X
f dλ ×µ24 as K → ∞ (10.12)

uniformly for all z = (x,m) where m ∈ [24] and x ∈ [0,1) is α-legitimate.

We prove Step 2 by contradiction. If the uniform convergence in 10.12 fails, then there

exists some continuous function f0 and an ε > 0 such that for each N there exists n > N and

exists a zn(xn, j) with j = j(n) ∈ [24] and an α-legitimate xn ∈ [0,1) such that

∣∣∣∣∣
1

K

K−1

∑
k=0

f0(T
k

α z)−
∫

X
f0 dλ ×µ24

∣∣∣∣∣≥ ε. (10.13)

We define the normalized “counting measure” (as a probability measure)

νn =
1

n

n−1

∑
i=0

δ (T i
αzn), (10.14)

where for every Borel set B ⊂ X , δ (y)(B) = 1 or 0 accordingly as y ∈ B or y 6= B, respectively.

By using 10.14 we can rewrite the equation in 10.13 in the form

∣∣∣∣
∫

X
f0 dνn− ∈X f0 dλ ×µ24

∣∣∣∣≥ ε. (10.15)
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Again we use the crucial fact that the set of Borel probabilities on the compact set X is itself too

compact, and thus there is some convergent sub-sequence νni of measures, which converges to

a Borel probability measure ν on X . More precisely, νni → ν as i → ∞. It follows from 10.14

that ν is Tα -invariant. Since ([0,1)× [24],Tα) is uniquely ergodic (as shown in Step 1), we can

conclude that ν = λ ×µ24. But νni → λ ×µ24 contradicts 10.15. This contradiction proves our

assumption false and thus proves Step 2. Therefore we get the following upgrade of Theorem

1:

Theorem 9 (upgrade to Theorem 1). For every irrational slope, geodesic L(t),

0 ≤ t < ∞, t → ∞, with the given slope is uniformly distributed on the cube surface in the usual

Weyl sense (see Lemma 1) for every non-pathological starting point L(0).
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CHAPTER 11

GENERALIZATIONS

We explore three generalizations of the results in Theorem 1, 2, and 9: (1) geodesic flow on the

platonic solids beyond the cube, (2) billiards path in polyominoes, and (3) geodesic flow on the

surfaces of solid polyominoes.

Intuitively, polyominoes are “finite connected square lattice regions” in the

plane. More precisely, polyominoes are shapes constructed by connecting a finite number of

unit sized squares, which we will refer to as (component) unit squares, each joined together

with at least one other square. Polyominoes may have holes in them, but they must be XY -

connected. By XY -connected, we mean “square connected”: or, given any two unit squares in

the polyomino, a particle starting in one square could travel to the second square by repeatedly

moving to adjacent unit squares which share an edge. We note all steps in this process must be

travel through an edge shared by two unit squares, meaning traveling horizontally (parallel to

the X-axis) or vertically (parallel to the Y -axis), but never diagonally.

The concept of a solid polyomino is a straightforward 3-dimensional generalization of the

2-dimensional polyomino described above. Intuitively, solid polyominoes are “finite connected

3-dimensional cube lattice regions”. More precisely, a solid polyomino is made by connecting

a finite number of unit cubes, which we will similarly refer to as (component) unit cubes, each

joined together with at least one other cube along a square face. The surface of a solid poly-

omino need not be connected, in the case of a “hollow solid”; for example a solid polyomino

which is located between two closed surfaces, one contained within the other. They must, how-

ever, be XY Z-connected. Being XY Z-connected means, given any two unit cubes in the solid
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polyomino, a particle starting in one of the cubes can travel to the second cube by repeatedly

moving to adjacent unit cubes which share a face. We note all steps in this process must travel

through a face shared by two unit cubes, meaning traveling parallel to the X-axis, parallel to

the Y -axis, or parallel to the Z-axis, but never diagonally,

The concept of polyomino (and solid polyomino) became well accepted after the publica-

tion of the book of Solomon W. Golomb with the same title [7].

We carry out the detailed discussion of these three generalizations in reverse order.

1. Geodesic flow on the surfaces of solid polyominoes. Let U be a solid polyomino, and

∂U be its boundary surface. The boundary ∂U must be closed and orientable, but it is not

necessarily connected. Let ∆ ⊆ ∂U be a connected component of ∂U. We refer to ∆ as a “Lego

surface”. Then ∆ is a finite union of unit squares satisfying the following properties: (1) each

pair of (component) unit squares is either disjoint or their intersection is a common vertex or

a common edge, (2) for any two different (component) unit squares, U ,U ′ this is a finite se-

quence of component unit squares U1,U2, . . . ,Un such that Ui and Ui+1 share a common edge,

for 0 ≤ i ≤ n, and U0 = U , Un+1 = U ′, (3) ∆ is a closed surface: i.e. exactly two unit squares

share a common edge, and finally, (4) ∆ is orientable: it is possible to orient the boundaries of

the component unit squares such that when two unit squares meet, the orientations along the

shared edge run in opposite directions.

Let E be an edge of a component unit square of the Lego surface ∆. We basically repeat

the definitions/arguments made in Chapter 2 to reformulate the problem of a geodesic on ∆ to

a discrete problem. Consider a geodesic on the surface ∆ that starts from edge E with angle

0 < θ < π/2, such that the slope tanθ is irrational. By symmetry given from rotating the solid

polyomino U through 3-space we may also assume the π/4 < θ < π/2, implying tanθ > 1.

The geodesic returns/crosses the same edge E infinitely often with angles θ or θ +π/2. We

chose to just focus on the θ -crossings.

Just like in Chapter 2, directed θ edge means the following: assume a particle is moving

with constant speed on a geodesic which enters a component unit square U of ∆ by crossing

edge E , and let E be the bottom edge of the square U . The positive (counter-clockwise) orien-

tation of U induces an orientation ~E of the edge E , and the local part of the geodesic entering
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U is a directed line segment. This directed line segment and directed edge ~E with its induced

orientation, determine an angle, which we require to be θ (enforced through orientation of ~E ).

To give this a quantitative description, it is convenient to assume that, without loss of gener-

ality, E is the bottom edge of the unit square U . We then identify the edge E with unit interval

[0,1) by using an orientation ~E of E . The directed θ edge geodesic flow on Lego surface ∆

moves the left endpoint of ~E (i.e. 0) to α = 1/ tanθ (0 < α < 1) on the corresponding directed

edge above E in the unit square U , and similarly moves 1−α on ~E to 1 on the edge above

it, and moves 1 on ~E to α on the neighboring directed edge in the neighboring component unit

square. More precisely, the open interval (0,1−α) in ~E is mapped to the open interval (α,1)

on the directed edge ~E ′ above ~E , and (1−α,1) in ~E is mapped to the (0,α) part on the directed

edge ~E ′′ neighboring ~E ’. This essentially is an α-shift x → x+α (modulo 1), or formally,

~E (0,1−α)→ ~E ′(α,1) and ~E (1−α,1)→ ~E ′′(0,α), (11.1)

noting that 11.1 is a perfect analog of 2.1. Exactly the same way as we extended 2.1 over all

24 directed edges of the unit cube surface, we can extend 11.1 over all directed edges of Lego

surface ∆ (of course each edge is taken with both possible orientations).

Let N be the total number of edges E of the component unit squares on the Lego surface ∆

(note that although every edge E is contained in two squares, here we only count it with mul-

tiplicity only one). As every edge has two orientations, Lego surface ∆ will have 2N directed

edges.

Again mirroring Chapter 2, where we glued the 24 directed edges of the cube together to

form the interval [0,24), here we glue the 2N directed edges of ∆ together to form the in-

terval [0,2N). Then applying 11.1 to every directed edge (switching to half open intervals)

induces an interval exchange transformation T = T (∆). T translates a half open interval of the

form [r− 1,r−α), for r an integer, 1 ≤ r ≤ 24, to some other half-open interval of the form

[r′−1+α,r′), for r′ an integer with 1 ≤ r′ ≤ 24, and translates half-open intervals of the form

[r−α,r) to half-open intervals of the form [r′′−1,r′′−1+α), once again with r′′ an integer,

1 ≤ r′′ ≤ 24. The mapping T has discontinuous jumps at the points x, where the fractional part

of x, {x} = 1−α or, {x} = 0. We again call these jumps the singular points of T . And again
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we note the fact that T is a Lebesgue measure preserving transformation.

The key characteristic of the transformation T is the slope of the geodesic inducing the

irrational shift, 0 < α < 1, so we denote the shift T = T (∆) = Tα(∆). Again we note this shift

can similarly be done on any irrational slope, not just 0 < α < 1, which was just a result of

our simplifying assumption that using symmetry we can use take π/4 < θ < π/2. Notably,

a transformation can similarly be constructed on the θ⊥-edge crossings of the geodesic; we

denote this transformation T̃ = T̃−1/α .

Again the main difficulty is to prove the analog of Lemma 17: Tα(∆) (and similarly

T̃−1/α(∆)) are ergodic if α is an irrational real number. Repeating the proof of Lemma 7 with

the trivial change that [0,24) is replaced by [0,2N), we can easily prove ergodicity, with the ex-

ception of one caveat: Lemma 16. While the connectivity of a concrete relatively small graph

of 24 vertices and 48 edges can be proves by brute force checking, the analogous statement

for an entire class of Lego surfaces requires checking connectivity of infinitely many graphs,

which certainly cannot be done by brute force. So, we introduce a generalization of Lemma 16

and a “clever” proof of it (which will include an explicit proof of Lemma 16 as well).

As the directed cube-surface-reachability graph Gcube(α) was defined by the transforma-

tion Tα(cube) via rule 2.1, we analogously define for every Lego surface ∆ its directed ∆-

reachability graph Ḡ∆(α) by the transformation Tα(∆) via rule 11.1, and then again by ignoring

orientation on this directed graph we obtain the

∆-reachability graph G∆(α). We prove the following generalization of Lemma 16:

Lemma 18. If α is irrational, then for every Lego surface ∆ the ∆-reachability graph G∆(α)

is connected.

As usual let 0 < α < 1. Lego surface ∆ must contain a vertex which is a corner (vertex

of degree 3) of the underlying solid polyomino U (i.e. ∆ ⊆ ∂U). We will label the 8 vertices

and the three squares that form the corner. Label the corners A,B, . . . ,H, with F being the cor-

ner itself, and the three squares S1 = ABFE, S2 = BCGF , and S3 = EFGH; see Figure 11.1.

For notational convenience, when referring to edges, we assume the order of the vertices is

the direction induced on the edge (i.e. edge AB and edge BA are the same edge with opposite

orientations).
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Figure 11.1: The direction of the line leaving AB induces a direction on the edges of the square

EFGH.
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Figure 11.2: Following the direction of the line allows us to extend the induced directions from

one square to an adjacent one, in both the forwards and backwards directions.

Suppose a geodesic is coming from edge AB and is moving towards the corner point F .

Then from this orientation AB, by applying 11.1, it is connected to two orientations of the cor-

ner, the shared edge between S1 and S2, EF , and the shared edge between S2 and S3, FG, (i.e.

the directed edge above it and the directed edge neighboring that one), see Figure 11.2. By

repeated application of the rule in 11.1 (and as necessary applying it in reverse), we can see

that the orientation AB is connected to an orientation of each of the other eight edges within the

three squares that form this corner: using EF as a base as we did with AB we get HG and GC;

using FG as a base we get BC by using 11.1 and EH by using 4.1 in reverse. Finally, using

reverse 11.1 with GC as a base gives both FB and EA. See Figure 11.3.

Moreover, using this rule, for any component square U in ∆ that borders S3, we see there

is an orientation for each edge of U which is connected to the directed edges induced by the

orientations above. In fact, the orientations above will extend in a repeating pattern; parallel

edges will be oriented the same way, see Figure 11.4.

Since starting from S3 and moving to a neighbor in each step we can reach every component

unit square in ∆, we have that at least one orientation of every edge in ∆ is connected to the
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Figure 11.3: This in turn induces a direction on all edges of the cube.

. . .S3

Figure 11.4: In the case of general polyominoes, this can be extended to long chains of adjacent

squares.

original directed edge AB. This tells us that if the ∆-reachability graph G∆(α) is disconnected,

it must have exactly two components (say) Comp1 and Comp2 which form an “exact split”,

that is, one orientation of each edge is in Comp1, and the other orientation of each edge is in

Comp2. We will next show that such an “exact split” is impossible.

We assume that AB ∈ Comp1. Then Comp1 consists of exactly the directed edges reach-

able from AB (the ones described above), Then the opposite orientation of each directed edge in

Comp1 is in Comp2 (e.g. BA ∈Comp2). But as above, this means that {BF,AE,HE} ⊂Comp2.

However using BF as a base, 11.1 gives us EH ∈Comp2. But EH ∈Comp1 as above, so this

implies Comp1 =Comp3. Thus we conclude that the “exact split” was impossible, so the entire

graph G∆(α) must be connected for 0 < α < 1.

New Square S3

Figure 11.5: The method of inducing directions on edges can be generalized for the case of

|α|< 1 by including an extra square and “pulling back” the shift of induced directions.
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We finally note that while we did the proof above for 0 < α < 1, it works equally well for

all values of α , by working a square over from where we want, we can see that proof is equiv-

alent for α modulo 1, see Figure 11.5. Moreover, by redefining our directed edges to be the

θ⊥ directed edges, we can enforce 0 < α < 1, and connectivity of the directed θ edges follows

clearly from the connectivity of the directed θ⊥ edges. This completes the proof of Lemma

18.

We further note that this provides a proper proof of Lemma 16, as a cube is a solid poly-

omino with one component.

Repeating the proof of Lemma 17 with replacing 24 with 2N, replacing Lemma 16 with

Lemma 18, and repeating the arguments of “upgrading by unique ergodicity” as in Theorem 9,

we obtain a generalization of Theorem 1, 2 and 9.

Theorem 10. (i) Let ∆ be an arbitrary Lego surface. For every irrational slope, geodesic

L(t), 0 ≤ t < ∞, t → ∞ of given slope is uniformly distributed on closed surface ∆ in the

usual Weyl sense for every non-pathological starting point L(0).

(ii) Also, geodesic L(t), 0 ≤ t < ∞, t → ∞ is uniformly distributed on a closed surface ∆ in

the Birkhoff sense for almost every starting point L(0).

Remark. We emphasize the fact that in the proof we only used the following properties of

Lego surface ∆: (1) it is orientable, (2) it is closed, and (3) it consists of unit square components

that are “square connected”.

2. Billiard path in polyominoes. The following argument works for any polyomino, but

for simplicity we consider a concrete polyomino: let L be the L-shaped polyomino with three

component squares, see Figure 11.6. We previously discussed how the geometric trick of un-

folding reduces any piecewise linear billiard path in a unit square into a torus line on a 2 ×

2 square (see Chapter 1). Using the same ideas, we will show that any billiard path on the

L-shaped table L can be reduced to a geodesic on an orientable closed flat surface L(2), where

L(2) is the closed surface obtained by taking 2 × 2 = 4 rotated copies of versions of L and



119

Figure 11.6: A billiard path on an L-shaped polyomino. Just like billiard paths in the unit

square, when the path hits an edge it reflects with angle of reflection equal to angle of incidence.

Figure 11.7: Just like the unit square, billiard paths on the L-shaped polyomino can be unfolded

though reflection and is equivalent to a torus line on the reflected figure.

gluing them together in a particular way, see Figure 11.7.

Let Lk, k = 0,1,2,3 be these four copies of L, each rotated by an angle of kπ/2 respec-

tively. We glue the Lk together along the long edges and obtain a 12-gon polyomino consisting

of 12 component unit squares. We then make a pairwise identification of the boundary edges

of the 12-gon, such that each edge is paired to the one perpendicularly across from it (that is,

if you drew a line perpendicular to a boundary edge, the two boundary edges it intersects are

paired). This induces an orientable closed flat surface L(2).

A straightforward geometric consideration shows that unfolding a piecewise linear billiard

path on L is equivalent to a geodesic on the orientable closed flat surface L(2). We note that L(2)
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consists of unit square components which are “square-connected”. Thus, the three conditions

mentioned in the Remark following Theorem 10 are satisfied, and we can repeat the arguments

used in Theorem 10.

The argument in this case is actually a bit simpler than in Theorem 10, as we do not need

to consider both orientations of each edge; rather it is sufficient to just have the synchronized

orientation for vertical edges and the synchronized orientation for horizontal edges (edges here

including all edges, not just boundary edges). This means that the underlying interval in the

analog of Lemma 17 will be [0,24) rather than [0,48), and we do not need any analog of Lemma

18, as connectivity will follow directly from the square connectivity of the polyominoes. Thus

we obtain the following analog of Theorem 10.

Theorem 11. (i) Let L be the L-shaped polyomino with three component unit

squares. For every irrational slope, billiard path x(t), 0 ≤ t < ∞, t → ∞ of given initial

slope is uniformly distributed in L in the usual Weyl sense for every non-pathological

starting point x(0).

(ii) Also, billiard path x(t), 0 ≤ t < ∞, t → ∞ is uniformly distributed in L in the Birkhoff

sense for almost every starting point x(0).

We again note that Theorem 11 can be extended to any polyomino using the same argument.

3. Geodesic flow on the platonic solids beyond the cube. The case of the tetrahedron is

quite simple, because the flat surface of a regular tetrahedron tiles the plane. Using this fact,

analogs of Theorem 1, 2, and 9 were already proved in Beck [2]. Beck [2] in fact settled the

more general case of equifacial tetrahedrons where the four faces are any arbitrary congruent

acute triangles.

The regular octahedron and icosahedron both have regular triangle faces. Consider two

faces that share an edge. We rotate through the edge to make the triangles coplanar, and form a

60-120 degree rhombus, see Figure 11.8. The only substantive alteration to the arguments for

Theorem 1, 2, and 9, is altering the way in which the interval exchange function T is defined
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60◦

Figure 11.8: By unfolding pairs of equilateral triangle sides, the octahedron and icosahedron

can be interpreted as having 60-120 rhomboidal sides. The argument for lines on the cube

follows for these shapes with rhombus sides, assuming that the slope is 60-degree-irrational.

(see 2.1), now being on a rhombus instead of a square. Treating the faces as rhombuses, how-

ever, well defines the interval exchange from one face to another.

We need a couple other small alterations to the proof. For one, the surface-reachability

graph in Lemma 16 needs to be altered, but we are again left with a concrete, relatively small

graph that can be proved by brute force checking.

Second, “irrational slope” must be changed to “60-degree-irrational slope”,

which is defined as the following. Consider a regular triangle lattice L on the plane. We say a

straight line has “60-degree-rational slope” if there is a parallel line to it which contains at least

two lattice points of L ; otherwise we say the slope is “60-degree-irrational”.

With these particulars resolved, the argument for Lemma 17 follows exactly for these cases

as well and we get the following theorem.

Theorem 12. (i) For every 60-degree-irrational slope, geodesic L(t), 0 ≤ t < ∞, t → ∞ of

given slope is uniformly distributed on both the (regular) octahedron and icosahedron

surfaces in the usual Weyl sense for every non-pathological starting point L(0).

(ii) Also, geodesic L(t), 0 ≤ t∞, t → ∞ is uniformly distributed on both the (regular) octa-

hedron and icosahedron surfaces in the Birkhoff sense for almost every starting point

L(0).
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CHAPTER 12

OPEN QUESTIONS

Many open questions regarding cube lines still remain. Firstly, quantitative results for cube

lines with arbitrary irrational slope remains open, as our quantitative results only work for

a select set of “special” slopes. Moreover, even these partial results for “special” slopes do

not extend to geodesics over more general figures, such as the 2× 1× 1 rectangular prism.

Additionally, as mentioned in Chapter 11, our results for cube lines can be extended to the

octahedron and icosahedron (and the case of the tetrahedron being previously solved), but the

case of a geodesic on the final platonic solid, the dodecahedron, remains open.
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