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ABSTRACT OF THE THESIS

Face Identification and Clustering

by Atul Dhingra

Thesis Director: Dr. Vishal Patel, Dr. Ahmed Elgammal

In this thesis, we study two problems based on clustering algorithms. In the first

problem, we study the role of visual attributes using an agglomerative clustering algo-

rithm to whittle down the search area where the number of classes is high to improve the

performance of clustering. We observe that as we add more attributes, the clustering

performance increases overall. In the second problem, we study the role of clustering

in aggregating templates in a 1:N open set protocol using multi-shot video as a probe.

We observe that by increasing the number of clusters, the performance increases with

respect to the baseline and reaches a peak, after which increasing the number of clusters

causes the performance to degrade. Experiments are conducted using recently intro-

duced unconstrained IARPA Janus IJB-A, CS2, and CS3 face recognition datasets.
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Chapter 1

Face Recognition

1.1 Introduction

Face recognition has been actively studied over the past few decades which has led

to satisfactory performances in recognition rates in controlled scenarios. But, in an

unconstrained environment, face recognition is still a hard problem. A number of

datasets have been thus developed to study face recognition in these scenarios that

include LFW [9], PubFig[2] and IJBA[12]. The intuitive pipeline[1] is shown in figure 1.1

for face recognition, that includes face detection and tracking, face alignment, feature

extraction and matching, described in sections below.

Figure 1.1: Face Recognition Pipeline

1.1.1 Acquisition

There are a few challenges that hinder the progress of face recognition in an uncon-

strained environment, which include challenges such as pose, illumination, and expres-

sion (PIE). Some of the other notable challenges include aging, cosmetics and reso-

lution of the image. A lot of datasets have been developed that provide challenging
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media(images, videos, templates) so that algorithms can be developed to deal with

these issues. Yale and YaleB[27] was introduced in 1997 that highlighted the challenges

in illumination conditions, AR dataset[28] in 1998 highlighted occlusion apart from dif-

ferent emotions, and illuminations. Some of the more notable datasets in recent past

are LFW[9] and PubFig[2] that contain huge amounts of images and deal with the

face representation in the wild. One of the most challenging datasets as of now is the

recently introduced unconstrained IARPA Janus IJB-A, CS2 and CS3 face recognition

datasets[12].

1.1.2 Normalization and Alignment

Some of the pose and illumination artifacts are removed by normalization. There has

been a lot of work that deals with this task. Depending on the applications, the issue

of normalization can either be handled during the acquisition phase, where during the

collection of the database, the acquisition parameters, such as capture device, ambient

light are fixed. But, in the case where we want to develop algorithms invariant to these

artifacts in unconstrained settings, learning from data in such preferential environment

is averse to learning in the real-world settings. In such a case, post-processing of the

collected data is done.

Illumination Normalization

We can handle illumination normalization during the acquisition phase, by making

sure that the illumination remains the same throughout. As some of the datasets are

collected in the real world settings, the natural illumination affects the final dataset. In

such a case active devices such as thermal infra-red images, near infra-red images etc.

can be used that provides its own light source to illuminate the object.

In case this is not possible, such as images in the wild, normalization is done during

post-processing to generate illumination invariant features. This can be done by using

methods such as linear subspace, illumination cone, generalized photometric stereo,

photometric normalization, reflectance model [3] etc. Some of the most studied models

include, Self Quotient Images [17],Logarithmic Total Variation [18], Gradient Faces[19],
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Robust Albedo Estimation[20].

Pose Normalization

The images captured during the data acquisition phase can be constrained such that the

pose of the captured images are consistent. But, is not the best solution, as even a slight

error in capturing would result in a completely different image vector. Therefore, in such

a case pose normalization is done during post-processing. The approach, in this case,

is to find landmarks in the image that would remain consistent throughout, no matter

how much shifted the image is. Some of these landmarks include the eyes, the nose,

and the lips. Once these landmarks are detected, the image can be normalized based

on these set of points. One such method that takes into account such an approach is

called Geometric warping[35] where in-place pose normalization can be achieved. But,

this approach cannot help in the case where there is an out-of plane rotation, for a

case more robust methods are required. This follows from the fact that in an out-of

plane rotation, pitch, roll, and yaw all have to be normalized. Some of the more used

methods studied are, Incremental face alignment[23], Deep Face Alignment[21],Face

Frontalization[22].

1.1.3 Features/Recognition

Features are distinct and unique properties of an entity, that can be used to distinguish

it from others. These features are important as they form the framework for recognition

of these entities. In a face recognition system, facial features could include, the shape

of a person’s face, eye color, the distance between eyes, etc. These features could either

be hand-crafted, or they could be learned features.

Hand-Crafted features

Hand-crafted features as the name suggests is created manually by observing uniqueness

in some aspect of the object. At the lowest levels, edges, lines, and corners form features,

in a complex object, such as a face, a combination of these low-level features by hand

is known as hand-crafted features. There are a few hand-crafted features that have
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been used extensively, such as SIFT[32], HOG[33], LBP[34], etc. In such a framework,

a classifier is trained using the hand-crafted features.The classification/recognition can

be done using SVM[36] , SRC[37] and Subspace methods such as PCA[38], LDA [39]

etc.

Learned Features

Instead of coding the features by hand, features can also be learned from the data. This

ensures an optimal representation given the data. At the end, a simple classifier can be

used for classification. There are a few methods that are used in such a scenario, which

include Dictionary Learning, Neural Networks etc.

1.2 Protocols

Recognition is a term with wide scope when it comes to Face biometrics, as it encom-

passes a lot of authentication protocols, there are a few widely used authentication

types that have been described below.

1.2.1 Identification

In an identification problem, the question asked is, whether a given person exists in

our system or not. The output from such a system is either Identified or Not-identified

depending on whether that person exists in the given database.

1.2.2 Verification

In a verification protocol, given an instance of a user, we check if it matches the sample

of the same user in our system. The output in such a scenario is a similarity score

which defines how closely the new sample matches to the one already in the system

1.2.3 Search

In a search scenario, given a query image, we need to find all the instances of that

person in the database. The output, in this case, top-k hits of the subject
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1.3 Metrics

1.3.1 Error Statistics

A few of the more commonly used error statistics are False Match(Type I Error), False

Non-Match (Type II Error), True-positive Identification Rate(TPIR), False-positive

Identification-error Rate (FPIR).

True-positive Identification Rate(TPIR) The True-positive Identification Rate

(TPIR) is the proportion of identifications by enrolled subjects in which the subjects

correct class is returned. [24]

False-positive Identification-error Rate (FPIR) The False-positive Identification-

error Rate (FPIR) is the proportion of identifications by users not present in the system,

which is returned. FPIR cannot be computed in closed-set identification, as all users

are enrolled in the system [24]

1.3.2 Decisions

1.3.3 Metric curves

There are a few metric curves that are used to plot the decisions, that include Reciever

Operating Characteristics(ROC), Detection Error Tradeoff(DET), Cumulative Match

Curve(CMC).

CMC A CMC curve plots the Probability of identification versus the Rank as

shown in figure 1.2

1.3.4 Result interpretation

The result interpretation depends on the type of face recognition application. Some of

the more used interpretations include Accuracy, Precision and Recall and F-Measure.
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Figure 1.2: CMC Curve[1]

F-measure The F-measure is given in equation 1.1 where P is Precision and R is

Recall

Fβ =
(β2 + 1)P.R

β2P +R
(1.1)

The F-1 measure is widely used where β = 1, such that F-1 measure is the harmonic

mean between precision and recall. The value of F-measure, therefore, is always between

0 and 1, and the higher the value, better is the performance of the recognition algorithm.

Precision and Recall Precision is defined as the ratio of True positives(TP) to

the sum of True positives and False Negatives(FN) as shown in figure 1.3

Precision =
TP

TP + FP
(1.2)

Recall is similarly defined as the ratio of true positives over the sum of true positives

and false positives(FP) as in figure 1.2

Recall =
TP

TP + FN
(1.3)
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Chapter 2

Face Clustering

2.1 Introduction

Clustering is an unsupervised classification of patterns such as data items, feature

vectors, or observations. In such a setting, given unlabelled data points, we have to

group them based on a metric(`2,`p, Mahalanobis etc.). Clustering is a difficult problem,

as we need to know a priori about the number of clusters or the stopping criterion.

Clustering has a lot of applications such as exploration, segmentation in cases where

the prior information about the data is not available. The pipeline[5] for clustering is

given in figure 2.1

Figure 2.1: Pipeline for Clustering

A good representation the given data points/patterns is achieved by feature extrac-

tion. Once these features are computed, the clusters are merged/divided based on the

inter-pattern similarity and the type of clustering. This process goes on until a stopping

criterion such as a distance threshold or max number of clusters is met.
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2.2 Clustering Techniques

2.2.1 Hierarchical

Hierarchical clustering seeks to build a hierarchy of clusters such that it yields a den-

drogram that represents the nested grouping of patterns and similarity levels[5]. These

fall into two categories, agglomerative clustering, and divisive clustering.

Agglomerative

This is a bottom-up approach where each observation starts as an independent cluster,

and pairs of clusters are merged based on the hierarchy and a stopping criterion. The

merging of the clusters is based on certain linkage criterion, such as Single Link where

the minimum distance between the points is used to merge the cluster. In the case

of complete-link clustering, the clusters are merged based on the maximum distance

between the data points of the two clusters. There are other order statistics that are

used such as mean, centroid, group average, etc. to perform these linkages as well.

Divisive

In a divisive clustering framework, a top-down approach is followed such that all the

data points start out in a single cluster, and they are split into different clusters moving

down the hierarchy.

2.2.2 Partitional

In the case where construction of dendrograms is computationally inefficient/impossible,

partitional methods are employed where a single partition of the data is obtained in-

stead of a structure. The issue with using partitional clustering techniques is the fact

that we need to know a priori the number of clusters/ partitions we need to perform.

Partitional clustering is produced by optimizing a criterion function defined either lo-

cally or globally[5]. Some of the most common criterion used are squared error method

as represented in equation 2.1 [5], where X is the patterns set of the clustering L, which
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contains K clusters, such that x
(j)
i is the ith pattern belonging to the jth cluster and cj

is the centroid of the jth cluster

e2(X,L) =
K∑
j=1

nj∑
i=1

||x(j)i − cj ||
2 (2.1)

A widely used method that uses squared error criterion is the k-means algorithm,

where k points are randomly picked as the centroid and the cluster’s center are recom-

puted until convergence by assigning each point to the cluster with the closest centroid.

2.3 Evaluation

The ultimate aim for clustering algorithm is to attain high intra-cluster similarity and

low inter-cluster similarity. There are few evaluation metrics that are widely used to

access the quality of the clustering. Some of these are Purity, Precision, and Recall,

F-measure and compactness[29]. In our work, we use pair-wise precision and recall as

defined in [6]

Pairwise Precision is the same class fraction of pairs of data points within a cluster

over the total number of same cluster pairs within the dataset. [6].

Pairwise Recall is the fraction of within class pairs of data points, that are placed in

the same cluster, over the total number of same-class pairs in different clusters. [6].

2.4 Recent Works and Motivation

In the problem of clustering faces, given unlabelled face images, we need to divide them

into clusters, using a good feature space representation and a distance metric as shown

in figure 2.2[6].

There has been a lot of work in the area of face clustering that tries to improve the

clustering accuracy. Zhu et al.[7] came up with Rank-Order Distance that is robust to

both noise and outliers and can handle non-uniform cluster distribution like varying

densities, shapes, and sizes of clusters. It calculates the dissimilarity between two faces

based on their neighbouring information using `1 distance motivated by the fact that

the same person shares top neighbours. The sub-clusters formed due to variation in
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Figure 2.2: Pipeline for Face Clustering [6]

pose illumination and expression, are subsequently merged agglomeratively using rank-

order distance using a certain threshold or cluster level rank order distance to avoid

the problem of too many high-precision, tight sub-clusters in the case of just using

rank-order distance.

Otto et al[6] used the same idea as Zhu et al. [7] on a larger scale, and therefore

modified the algorithm to work on a large data setting. The effective and efficient Rank-

order clustering algorithm used k-d tree algorithms to compute a small list of nearest

neighbour, as the input size of data in order of millions, generating all the neighbours,

as in the case of Zhu et al. [7] would be computationally hard. It used a single linkage

agglomerative clustering algorithm based on a threshold to further compute the clusters

and uses a pairwise F-measure to report the results on LFW dataset[9].

Zhu et al[8] came up with an algorithm to iteratively merge high precision clusters based

on heterogeneous context information such as common-scene, people co-occurrence,

human attributes and clothing information, such that the resulting clusters also have

high recall.

Clustering is hard as the performance decreases as the number of classes increases as

it is evident in figure 2.3. Therefore our work is motivated by this challenge to whittle

down the search domain in clustering using visual attributes to improve the clustering

accuracy.
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Figure 2.3: F-measure plot as the number of classes increases

2.5 Experiment

In our work, media averaging is done on CNN features that are computed from the

IJBA CS2[12] samples in order to obtain templates. As the CS2[12] follows a template to

template matching protocols, we perform clustering on these media averaged templates.

Media averaging is shown in figure 2.4, where the video frames with the same media

ID are averaged, and the resultant is then averaged with the images that belong to the

same template ID.

Figure 2.4: Media Average template [12]

Once these templates are obtained, we use agglomerative clustering as defined in

section 2.2.1 where each template starts out as a different cluster are merged based

on the stopping criterion of max number of clusters, as we have prior information of

classes from the dataset. We use the average linkage with the cosine metric for merging

these clusters based on the inter-pattern similarity. The templates are further divided
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into disjoint sets based on ground truth attributes from CS2 [12]. The template is

divided into a Male subset, a female subset. The male subset is further divided into

two different disjoint subsets based on the skin color attribute.The accuracy of the

algorithm is reported based on pairwise F-1 score described in section 2.3

2.6 Results

The algorithm is evaluated on IJBA CS2 dataset [12] that contains 500 subjects with

5,397 images and 2,042 videos split into 20,412 frames. The IJBA CS2 evaluation

protocol consists of 10 random splits that contain 167 gallery templates and 1763 probe

templates. The algorithm is evaluated on these 10 splits on JC’s[25] and Swami’s[26]

deep features. The evaluated results on Swami’s [26] features are shown in table 2.1

and figure 2.6. The evaluated results on JC’s[25] features are shown in table 2.2 and

figure 2.6

Split Base Male Female M+Skin 1 M+Skin 3

1 0.7281 0.7349 0.7542 0.7417 0.82

2 0.7134 0.6756 0.8364 0.7384 0.7728

3 0.6817 0.7025 0.7001 0.74 0.7336

4 0.7349 0.7309 0.7676 0.7633 0.7683

5 0.6066 0.6133 0.6418 0.6517 0.648

6 0.6756 0.6729 0.7577 0.7213 0.7524

7 0.7309 0.7651 0.7294 0.7513 0.816

8 0.6561 0.6875 0.616 0.7648 0.8001

9 0.6531 0.6845 0.7939 0.7391 0.7095

10 0.6645 0.6907 0.6875 0.7296 0.7504

Average 0.68449 0.69579 0.72846 0.73412 0.75711

Table 2.1: Evaluation of algorithm on Swami Features[26]

2.7 Conclusion

We observe in table 2.1 and table 2.2 that as we use more attributes, the clustering result

improves. We can, therefore, assert that by using visual attributes we are narrowing

down the search domain of the algorithm to boost the performance of clustering.
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Figure 2.5: F-1 score of the experiment using Swami[26] features

Split Base Male Female M+Skin 1 M+Skin 3

1 0.6847 0.6854 0.7591 0.6807 0.7424

2 0.682 0.6512 0.753 0.6334 0.728

3 0.6356 0.6675 0.6673 0.7044 0.6997

4 0.6716 0.6597 0.7197 0.7111 0.7325

5 0.5658 0.5706 0.6036 0.5999 0.6083

6 0.6633 0.6385 0.7586 0.651 0.738

7 0.6832 0.6931 0.6844 0.7266 0.8204

8 0.6534 0.706 0.5862 0.7242 0.7833

9 0.6157 0.6563 0.6405 0.7109 0.6677

10 0.6663 0.6783 0.6712 0.7133 0.7694

Average 0.65216 0.66066 0.68436 0.68555 0.72897

Table 2.2: Evaluation of algorithm on JC Features[25]

Figure 2.6: F-1 score of the experiment using JC[25] features
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Chapter 3

Video Based face tracking and Identification

3.1 Introduction

In this work, we focus on a face identification task where the target is a multi-shot video

and is annotated only once in one of the frames, and we need to search the annotated

subject in a given gallery of images. The advantage over image to image retrieval in

this case is that with a probe video, we have a lot more information and exemplars of

the subject of interest and we can leverage this information to come up with a more

robust representation that is invariant to the PIE challenges in face recognition.

Traditionally, for a video to image retrieval task, the probe video is single shot where

frame by frame bounding box of the subject of interest is provided as in the case of

Youtube Faces [30]. For our work, we study an open set 1:N protocol using full motion

video as probe where the probe video is multi-shot. In this setting, the subject of interest

is annotated only for one of the frames, and the subject may or may not reappear in

the subsequent shots. Therefore, matching a subject of interest from multi-shot video

to gallery is a difficult task as we cannot use the traditional methods of a frame by

frame bounding box tracking for the target face, because tracking algorithms are prone

to drifting.

A baseline approach to this problem is just to use the initial representation of the user

annotated face of the subject to search for the subject in the gallery. But, the initial

representation may not always be full frontal and devoid of any pose, illumination and

expression variations. Hence, finding the subsequent appearance of the subject in the

video is required to come up with a very robust representation of the subject. This is

relatively easy in a single-shot video, where the entire video is a single shot, and there is

no break in continuity. This can be achieved by making use of the temporal information
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and tracking the subject throughout in the video. But, in the case of multi-shot video,

this task is relatively hard in a multi-shot video.

3.2 Motivation and Recent Works

The problem of face recognition as described in section 1.2, can be looked at in the terms

of face verification and face identification. In face verification protocol one-to-one sim-

ilarity is computed between the probe and the reference image. In face identification,

on the other hand, one-to-many similarity between the probe and gallery is computed.

With LFW[9] the face there were attempts to solve the face identification in the case

where the dataset was unconstrained. Even so, there was a near-frontal selection bias

while constructing the LFW[10], hence the results are not representative of the set

containing large in-the-wild pose variation. Also, because recent studies, [11] suggest

the algorithmic performance of Face recognition algorithms is sub-par to humans, per-

formance on unconstrained datasets with extreme pose, illumination, and expression

are still lagging. One such challenging dataset is IJBA[12] that provides protocols

for template-based verification and identification. The dataset consists of images and

videos of subjects that are manually annotated and the performance evaluation is over

a template, such that set of all media is combined into a single representation. Gener-

ating a robust representation in the form of a template is of utmost importance due to

the large variation in pose, illumination, and expression. In our work, we improve an

existing algorithm by template aggregation using clustering.

There has been some work on templates and multi-shot video to gallery retrieval

that has motivated our work in this direction. N. Crosswhite et al. [10] presented

template adaptation, a type of transfer learning that works on the IJBA dataset [12] on

one-to-many face identification protocol using CNN features, and a template specific

one-vs-rest linear SVM. In their work, they learned a transfer learning mapping such

that the source domain is the CNN features learned, and the target domain is the

template of new subjects. This work uses encoding from the penultimate layer of VGG-

Face[13] using an anisotropically scaled face crop of 224x223x3, followed by learning
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an L2-regularized L2-loss primal SVM with class weighted hinge loss objective[10] as

expressed in equation 3.1.

minw
1

2
wTw + Cp

Np∑
i=1

max[0, 1− yiwTxi]2 + Cn

Nn∑
j=1

max[0, 1− yjwTxj ]2 (3.1)

such that Cp is the regularization constant for Np positive observations obtained via

average media encodings in the template, and Cn for negative observation obtained via

large external negative features.

Ching Hui et al. [14] combine the work of Template Adaptation [10] and context-assisted

clustering [8] to propose a Target Face Association(TFA) technique [14] that retrieves

a set of representative face images from multi-shot video that is likely to have the same

identity as the target face which is then used as a robust representation based on which

the subject is looked up in a gallery of images. An OTS tracking technique[15] is used

to track the target face. These images are treated as the initial positive training set(Sp).

The faces are pre-associated [14] by selecting highest Intersection over Union(IOU)[16]

of face detection bounding box with the with tracking bounding boxes for the first

k-frames. Ching Hui et al. learns a target specific linear SVM iteratively from pre-

associated face images(positive samples) from the target video and negative samples(Sn)

obtained from the cannot-link constraint[8]. In the cases where the target video cannot

establish cannot-link constraints, due non-existence, an external dataset (Sb) is prepared

for negative instances of the SVM. Their work uses two different models, wherein model

one, the linear SVM is solved using the max-margin framework, where the training data

is the union of all the three sets, i.e {(xi, yi)|i ∈ (Sp ∪ Sn ∪ Sb)} are used for training.

In model 2, the set Sb is used only when there are no within-video negative instances.

The robust face representation[14] is given in equation 3.2 ,

xfa =
1

|A|
∑
i∈A

xi (3.2)

3.3 Method

Once the TFA [14] algorithm outputs the positive samples from the SVM, it simply

averages these features as shown in equation 3.2 to obtain the robust representation.
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In our work, however (TFA-C), we leverage a clustering algorithm to aggregate the fea-

tures at the end of TFA. We use an Approximate Nearest Neighbour k-means++ using

VLFeat library [31] algorithm such that the k data points that are picked greedily are

maximally different. It is optimized using Approximate Nearest Neighbour algorithm

that uses a randomized k-d tree. The max number of comparisons is limited to 100

and the number of trees is limited to 2 to trade off between speed and accuracy. The

clustering is done by varying the number of clusters between 1 and 20. In the case

where the number of samples is less than the number of clusters, the maximum cluster

value is clipped to the maximum number of samples.

3.4 Results

JANUS CS3 is an extended version of IJBA dataset [12] that contains 11,876 images

and 7245 video clips of 1870 subjects. CS3 provides 11 different protocols, that include

Identification, Verification and clustering tasks. In our work, we focus on Protocol 6,

i.e CS3 1:N Multi Open Set (Video). In Protocol 6 there are 7195 probe templates,

where each template is evaluated with respect to two disjoint galleries. There are 940

and 930 templates in Gallery 1 and Gallery 2, respectively. In this case given a video

and the annotation of the subject of interest in the first frame, we need to search for a

mated template in the gallery for a given probe template. As protocol 6 is an open-set

identification problem, there exist some probe templates for which there are no mated

templates in the gallery. Therefore, the ranking accuracy is evaluated only for those

probe templates that have a mated template in the gallery, demonstrating the closed-

set search. For these 20 clusters, the Rank-1, Rank-5, Rank-10, Rank-25, TPIR results

are plotted for both JC[25] and Swami[26] features. These results are shown in figure

3.1 to figure 3.6

On an average k=7 clusters work best in respect to Rank-k accuracy and TPIR

rate. The computed results for k=7 for JC[25] are given in table 3.1 and the output on

Swami’s[26] features are given in table 3.2. As Ching Hui et al.[14] report their results

on the average of these two features, we also report the average output in table 3.3.
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Figure 3.1: Rank-1 CMC Plot

Figure 3.2: Rank-5 CMC Plot

As we can clearly see, the results for TFA-C in table 3.3 is better than the original

TFA algorithm in table 3.4 we can state that TFA-C performs better than TFA[14]

3.5 Conclusion

We observe that as the number of clusters(k) are increased for the template aggregation,

the identification rate increases to a point and deprecates after that. Based on the

averages, we observe cluster numbers, k=7 works the best for identification rate in

closed set search as shown by the CMC Rank curves and also in the open set search as

shown by the CMC TPIR curves. We conclude that our method TFA-C outperforms

the existing TFA algorithm by a significant margin.
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Figure 3.3: Rank-10 CMC Plot

Figure 3.4: Rank-25 CMC Plot
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Figure 3.5: Rank-50 CMC Plot

Figure 3.6: CMC plot of TPIR at FPIR=0.1

Figure 3.7: CMC plot TPIR at FPIR=0.01

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50
TPIR at

FPIR=0.1
TPIR at

FPIR=0.01

Gallery 1 0.68452 0.7913 0.83165 0.87339 0.90226 0.59757 0.45878

Gallery 2 0.70122 0.81287 0.84348 0.88209 0.90678 0.61496 0.47583

Average 0.72383 0.82991 0.85983 0.89843 0.9193 0.64765 0.50678

Table 3.1: Evaluation of TFA-C using JC features[25] on k=7 clusters
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Rank-1 Rank-5 Rank-10 Rank-25 Rank-50
TPIR at

FPIR=0.1
TPIR at

FPIR=0.01

Gallery 1 0.55 0.66782 0.71644 0.77338 0.81806 0.46157 0.32963

Gallery 2 0.57662 0.68472 0.7338 0.79097 0.83449 0.46968 0.29097

Average 0.59861 0.70856 0.75926 0.81042 0.84815 0.49606 0.34861

Table 3.2: Evaluation of TFA-C using Swami features[26] on k=7 clusters

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50
TPIR at

FPIR=0.1
TPIR at

FPIR=0.01

Gallery 1 0.61726 0.72956 0.77404 0.82339 0.86016 0.52957 0.39421

Gallery 2 0.63892 0.7488 0.78864 0.83653 0.87064 0.54232 0.3834

Average 0.66122 0.76924 0.80954 0.85443 0.88373 0.57186 0.4277

Table 3.3: Evaluation of TFA-C using average both features on k=7 clusters

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50
TPIR at
FPIR=0.1

TPIR at
FPIR=0.01

Gallery 1 0.6689 0.7875 0.8264 0.8803 0.913 0.5701 0.3892

Gallery 2 0.5514 0.6803 0.7315 0.7926 0.8394 0.4245 0.2931

Average 0.6101 0.7339 0.779 0.8365 0.8762 0.4973 0.3411

Table 3.4: TFA[14] results on average of both features on k=7 clusters
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Chapter 4

Appendix

Photo-Sketch

Facial sketches are an essential part of forensics in law enforcement, particularly in

those cases where the only evidence is in the form of eye-witness testimony. Facial

sketches are of two types, Forensic Sketches that are drawn by forensic artists, and

Composite Sketches that are created using computer software [4]. Once the sketches

are drawn from either of these methods, it allows the law enforcement to apprehend

the person of interest based on it. Several works have tried to automate this process

by automatically matching[4] the sketches to the criminal database. Figure 4.1 shows

composite and forensic sketches corresponding to the mugshot images as developed by

Klum et al.[4]. They also show that the matching accuracy of composite sketches is

higher than that of the forensic sketches. As evident from the figure 4.1, composite

sketches are more close to the mugshot images in the domain, and hence they have a

better matching accuracy.

Figure 4.1: Forensic and Composite sketched corresponding to mugshot images [4]

Motivated by the fact, that at the end the ultimate aim of sketches is matching, we

wanted to develop automatic sketches in the mugshot domain. For our work, we used

the PubFig dataset to develop single average template faces for the attributes using
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one attribute and two attributes as shown in figure 4.2 and figure 4.3

Figure 4.2: Average faces using one attribute

Figure 4.3: Average faces using two attributes

As evident from figure 4.2 and figure 4.3 the average template suffer high illumina-

tion artifacts and there is a bias across not only the subjects but across the attributes.

So a trade-off needs to met so that the dataset is balanced not only in the subjects but

also, attributes. Due to the lack of such a curated dataset and the ill-posed problem,

we will like to work further on this problem by either developing a dataset in the future,

or utilizing a dataset if any is created that balances classes across not only subjects,

but attributes as well.
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