
c© 2017

Yu Du

ALL RIGHTS RESERVED

SELECTIVE LINEARIZATION FOR MULTI-BLOCK
CONVEX OPTIMIZATION

By

YU DU

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

written under the direction of

Andrzej Ruszczyński - Xiaodong Lin

and approved by

New Brunswick, New Jersey

May, 2017

ABSTRACT OF THE DISSERTATION

Selective Linearization for Multi-Block Convex Optimization

By YU DU

Dissertation Director:

Andrzej Ruszczyński - Xiaodong Lin

We consider the problem of minimizing a sum of several convex non-smooth functions. In

this thesis, we introduce a new algorithm called the selective linearization method, which

iteratively linearizes all but one of the functions and employs simple proximal steps. The

algorithm is a form of multiple operator splitting in which the order of processing partial

functions is not fixed, but rather determined in the course of calculations. It proposes

one of the first operator-splitting type methods which are globally convergent for an arbi-

trary number of operators without artificial duplication of variables. This algorithm is a

multi-block extension of the alternating linearization (ALIN) method for solving structured

non-smooth convex optimization problems.

Global convergence is proved and estimates of the convergence rate are derived. Specifi-

cally, under a strong convexity condition, the number of iterations needed to achieve solution

accuracy ε is of order O
(

ln(1/ε)/ε
)
. The convergence rate analysis technique invented by

us can also be used to derive the rate of convergence of the classical bundle method and

ALIN method, for which no convergence rate estimate has been available so far.

ii

We report results of extensive comparison experiments in structured regularization prob-

lems such as large-scale fused lasso regularization problems and overlapping group lasso

problems. The numerical results demonstrate the efficacy and accuracy of the method.

iii

Acknowledgments

I would like to show the deepest appreciation to Professor Andrzej Ruszczyński and Profes-

sor Xiaodong Lin, my advisors, for their constant dedication and encouragement in the past

seven years. I still remember cheerfully of my time as an student in their classes ever since

I was doing Master’s degree at Rutgers University, and that was exactly the moment when

this journey started. I am truly grateful to them introducing me to the fields of nonsmooth

optimization and statistical learning.

Professor Ruszczyński played the most fundamental role in my research and without his

patience and openness, this thesis would never have been possible. He gave me extraordinary

courage, and guided me to where I am today. He contributed his time, ideas and guided me

through the most difficult times in my research. He continuously encouraged me to pursue

creative ideas and always stood closely to offer help. He always made himself available

to me no matter how busy he was and provided insightful discussions about our research

and even shared with me many truths of the life. As my role model, he has taught me

invaluable lessons including passion and patience for innovation, commitment to excellence,

and skills for presenting ideas and writing reports/papers, which are not only helpful for

doing academic research but will also be valuable assets for my career success.

Professor Xiaodong Lin helped me come up with the thesis topic and gave me freedom

to pursue various projects, summer internships or personal affairs without objection. He

gave me the greatest support for completing my computing tasks and helped me with job

searching. I look forward to further collaboration with him in the future.

I also want to thank the members of my Ph.D. committee, Professor Jonathan Eck-

stein and Professor Darinka Dentcheva for their valuable advice and suggestions about my

research.

Additionally, I would like to express my gratitude and appreciation to Professor Endre

iv

Boros and Professor Adi Ben-Isral, Professor Kemal Gursoy and all the faculty members

of RUTCOR and some Professors from Business School, Mathematics Department, Statis-

tics Department and Computer Science Department for giving me abundant knowledge,

thoughtful guidance and considerate advice during my graduate studies. I want to show

my great dedication to the memory of Professor András Prékopa. Not only was he a true

scholar, but also our beloved mentor.

Dozens of people have helped and taught me immensely at Rutgers, I would like to

express my appreciation to them. My time at RUTCOR and later MSIS Department was

made enjoyable in large part due to many friends. I am grateful for time spent with Wang

Yao, Anh Ninh, Mohammad Ranjbar, Minh Pham, Gyorgy Matyasfalvi, Marta Cavaleiro,

Javier Rubio Herrero, Peter Mursic, Jingnan Fan, Jianing Yao, Kaicheng Wu, Jinwook Lee,

Joonhee Lee, Emre Yamangil, and Tsvetan Asamov. I will forever remember our times of

study and discussion.

I also thank my friends for providing support and friendship that I needed. I especially

thank Hanlong Fang, Sijian Tang, and Zhan Li from Math Department, Menglin Jiang,

Meng Li from Computer Science Department and Ting Yang, Yifan Zhang, and Yunqing

Hu from Statistics Department for being supportive throughout my time at Rutgers and

for discussing various interesting subjects that are related to our own research.

I also thank RUTCOR and MSIS staff Clare Smietana, Terry Hart, Lynn Agre, and

Arleen Verendia for their kind support. They have all been so friendly and personable,

making me feel like a family member of RUTCOR.

I would like to acknowledge the financial support that I received by the Excellence

Fellowship and Graduate Assistantship awards at Rutgers University, that made my Ph.D.

work.

Most of all, I would like to thank my family. My mother Linping Gao and father Zhong-

sheng Du raised me up with lots of love and hard work. I owe them more than words can

express. They provided greatest support for my study abroad. They sacrificed so much of

their life for me. They taught me the most important things in my life and has been an

outstanding inspiration to me. Without their motivation and strength I would have never

had the courage to overcome the adversities I have faced. They are the main reason for

v

many things I have done, to make them proud. There are no words to convey how much I

love them. My family have cherished with me every great moment, they are the most basic

sources of my energy.

Much appreciated!

Du, Yu

Edison, New Jersey

March, 2017

vi

Dedication

To my parents, for their constant support and unconditional love!

vii

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . vii

List of Tables . xi

List of Figures . xii

1. Introduction and Preliminaries . 1

1.1. Introduction . 1

1.1.1. Outline of the dissertation . 3

1.2. Motivating examples and problem formulation 4

1.2.1. Motivating examples of multi-block structured regularization problems 4

Compressed MRI . 5

Sparse and low rank matrix reconstruction 6

Fused lasso model in CGH analysis 7

Overlapping group lasso in text mining 8

1.2.2. Problem formulation for multi-block convex optimization 9

2. Review of Related Existing Methods . 11

2.1. Operator splitting methods . 11

2.2. Alternating linearization method . 13

2.3. Alternating direction method of multipliers and its multi-block extensions . 15

2.4. Other multi-block nonsmooth optimization methods 18

viii

3. The Convergence Rate of Bundle Methods 20

3.1. Introduction . 20

3.2. The Bundle Method . 21

3.2.1. The Version with Multiple Cuts . 21

3.2.2. The Version with Cut Aggregation 22

3.2.3. Convergence . 23

3.3. Auxiliary results . 24

3.4. Rate of Convergence . 28

4. Selective Linearization for Multi-Block Convex Optimization 35

4.1. Introduction . 35

4.2. The SLIN Method . 37

4.3. Global convergence . 39

4.4. Rate of Convergence . 46

5. Numerical Illustration . 54

5.1. Application to structured regularized regression problems 54

5.1.1. Fused lasso regularization problem 54

5.1.2. Overlapping group lasso problem . 56

5.2. Numerical Results . 58

5.2.1. Fused lasso experiments . 58

5.2.2. Overlapping group lasso experiments 61

Tree-structured overlapping groups 61

Fixed order overlapping groups . 62

Randomly overlapping groups . 64

6. Conclusion and Future Research Plan . 68

6.1. Conclusion . 68

6.2. Future research plan . 68

ix

References . 70

x

List of Tables

5.1. Main features comparison over relax: δ = 1.5; under relax: δ = 0.5 59

5.2. The effect of different values of β in the SLIN algorithm for the fused lasso

problem with m = 1000 and n = 300. 61

5.3. Comparison of SLIN and FISTA on tree-structured overlapping group lasso

problem. 62

5.4. Comparison SLIN and PDMM in solving the overlapping group lasso of ran-

domly generated groups. Determined cases with m = 1000 and n = 800. . . 67

5.5. Comparison SLIN and PDMM in solving the overlapping group lasso of ran-

domly generated groups. Underdetermined cases with m = 500 and n = 600 67

xi

List of Figures

1.1. The RNA Sequence [DHHH13] . 4

1.2. MRI sensing [ZGWY15] . 5

1.3. MRI [ZGWY15] . 5

1.4. The Netflix Problem [ZGWY15] . 7

1.5. Array CGH Data Analysis [TW07] . 8

1.6. Tree structured overlapping group lasso [JMOB11a] 9

1.7. Text mining: topic modeling [Kwa15] . 10

5.1. Comparison of SLIN and other algorithms on the fused lasso example when

m = 10000, n = 1000 . 60

5.2. Comparison of SLIN and other algorithms on the fused lasso example when

m = 3000, n = 4000 . 61

5.3. Running time of SLIN and other methods on the fused lasso problem as

sample size changes when n = 1000. 62

5.4. Running time of SLIN and other methods on the fused lasso example as

dimension changes when m = 3000. 63

5.5. Comparison of SLIN and other algorithms on the overlapping group lasso

problem when K = 100,m = 1000. 64

5.6. Running time of SLIN and other methods on the overlapping group lasso

problem as group number changes when m = 1000 65

5.7. Running time of SLIN and other methods on the overlapping group lasso

problem as sample size changes when K = 100 66

xii

1

Chapter 1

Introduction and Preliminaries

1.1 Introduction

The topic of this thesis is a large-scale optimization method for minimizing a sum of many

convex non-differentiable functions. In the big data era, we have seen extensive development

of the theory and methods for structured regularization, one of the most fundamental tech-

niques to address the ”big data” challenge. The basic problem is to minimize the following

objective function with two components (blocks):

F(x) = f1(x) + f2(x)

where f1(·) is the loss function and f2(·) is a penalty function that imposes structured

regularization to the model.

Many data mining and machine learning problems can be cast within this framework,

and many efficient methods can solve these problems including operator splitting methods

see [DR56, BC11, Com09, EB92, LM79], and their dual versions, known as Alternating

Direction Methods of Multipliers (ADMM) (see, [GM76, GM75, GT89]). The Alternating

Linearization method(ALIN) [KRR99] handles two-block convex problems by introducing

an additional improvement test to the operator splitting methods and it adapts some ideas of

bundle methods of nonsmooth optimization [HUL93, Kiw85, Rus06]. The recent application

of ALIN to structured regularization problems in [LPR14] is proved to be very successful,

with fast convergence, good accuracy, and scalability to very large dimensions. It may

be worth noticing that the recent application of the idea of alternating linearization by

[GMS13] removing the update test from the method of [KRR99], thus effectively reducing

it to an operator splitting method.

Most existing techniques for structured regularization are developed under the two-block

2

framework. It is shown that direct generalization of ADMM to three or more blocks may

fail to converge [CHYY14]. A known way is to introduce N copies x1 = x2 = · · · = xN of

x, and reduce the problem to the two-function case in the space RnN [CP11]:

min

N∑
i=1

fi(x
i) + I(x1, . . . , xN)

with I(·) denoting the indicator function of the subspace x1 = x2 = · · · = xN . Similar ideas

were used in stochastic programming, under the name of Progressive Hedging [RW91].

We extend the ALIN framework to optimization problems involving multiple compo-

nents. Namely, we aim to minimize

F(x) = f1(x) +
N∑
i=2

fi(x),

where the penalty function is a sum of multiple components. This type of generalization

has many practical applications, in introducing sparsity, block-sparsity, network structure,

dynamic structure, low-dimensional Fourier representation, etc. to the learning tasks.

We introduced a new algorithm called the Selective Linearization Method (SLIN). It

generates a sequence of points xk ∈ Rn with a monotonic sequence of corresponding function

values F(xk). At each iteration, it linearizes all but one of the component functions and

uses a proximal term penalizing the distance to the last iterate. The order of processing

the functions is not fixed; the method uses a precise criteria for selecting the function to be

treated exactly at the current step. It also employs special rules for updating the proximal

center. These two rules differ our approach from the simultaneously proposed incremental

proximal method of [Ber15], which applies to smooth functions only, and achieves linear

convergence rate in this case.

This thesis contains several original contributions to the theory and practice of large-

scale non-smooth optimization:

1. It proposes one of the first operator-splitting type methods SLIN which are globally

convergent for an arbitrary number of operators (subdifferentials of the said functions),

without artificial duplication of variables. This surprising result has been obtained

thanks to the idea of determining the order of splitting on-line, depending on the

3

values of the functions minimized, and accepting the result of the splitting step only

when it leads to the decrease of the overall objective.

2. It contains not only the proof of global convergence but also the proof of convergence

rate, which is a new contribution even in the case of two blocks. In fact, the technique

invented by us can be also used to derive the rate of convergence of the classical bundle

method, for which no rate estimate has been available so far.

3. The thesis provides extensive experimental results for very large problems, which

demonstrate the efficacy and accuracy of the method. We have done extensive com-

parison experiments in fused lasso regularization problems and overlapping group

lasso with tree structure, fixed order and random order cases. The experimental re-

sults show that the method proposed in this thesis is the best general-purpose method

for multi-block non-smooth optimization in practice.

1.1.1 Outline of the dissertation

The rest of this chapter will give an introduction on the problem of interest, problem for-

mulation and our contribution. Chapter 2 provides the literature review on several existing

operator splitting methods, especially ALIN method which lays the foundation to our work.

Chapter 3 introduces the idea of bundle method for versions with multiple cuts and with

cut aggregation. Rate of convergence is derived, which is our new contribution. Chapter

4 introduces the idea of selective linearization method for solving multi-block non-smooth

optimization problems. Global convergence is proved and estimates of the convergence

rate are derived. In Chapter 5, we illustrate SLIN’s operation on structured regularized

regression problems involving many blocks. Comprehensive experiments show that SLIN

is a highly efficient and reliable general-purpose method for multi-block optimization of

convex non-smooth functions. Conclusion and future research plans are finally discussed in

Chapter 6.

4

1.2 Motivating examples and problem formulation

1.2.1 Motivating examples of multi-block structured regularization problems

In many areas in data mining and machine learning, such as computer vision and compressed

sensing, bio-informatics and remote sensing, we encounter the big data challenge. The big

data concept can be understood in two ways. First, the data size is quite large. For example,

we may have millions of data records to process. The data can also come in a streaming

way, such as online YouTube videos. Second, the data can be of high dimension and the

sample size is much smaller than the dimension. For instance, in the RNA sequence Figure

1.1, the sample size is about 10, 000 times smaller than the dimension [DHHH13]. By using

classical regression models, such as the square loss function, it is not possible to estimate

the desired features with limited number of samples.

Figure 1.1: The RNA Sequence [DHHH13]

In recent years, we have seen extensive development for modeling the high dimensional

statistic problems by incorporating complex structured regularization penalties into the

model. The resulting optimization model (1.1) consists of a sum of convex loss functions fi,

which measures the goodness-of-fit of the data, and multiple convex regularization functions

5

(or penalties) hj .

min
x∈Rn

F (x) =

M∑
i=1

fi(x) +

N∑
j=1

hj(Bjx) (1.1)

This model is proven useful to solve these high dimensional statistical problems. From the

model, all the functions are convex but not necessarily smooth.

Compressed MRI

The first example of structured regularization problem is a medical compressed MR image

recovery problem, where we want to recover the true MR image from a noised scanning im-

age. Magnetic Resonance (MR) imaging has been widely used in medical diagnosis because

of its non-invasive manner and excellent depiction of soft tissue changes. Recent develop-

ments in compressed sensing theory show that it is possible to accurately reconstruct the

magnetic resonance images from for example only 20% sampling data and therefore signifi-

cantly reduce the scanning duration. This is due to the fact that in MRI the measurement

is very expensive with few sensors; the sensing process is very slow as well see Figure 1.2.

By quickly sampling 20% of the data and accurate reconstructing the image, we can save

lives of many people in emergency [ZGWY15].

Figure 1.2: MRI sensing [ZGWY15] Figure 1.3: MRI [ZGWY15]

For recovering and deblurring the magnetic resonance images, a model is suggested

to obtain a high quality restored image using total variation penalty and wavelet based

penalty. The objective function is a linear combination of three blocks: a loss function, a

total variation (TV) norm and L1 norm with wavelet transformation on the restored image

6

signal (1.2):

min
x∈Rn

1

2
||Rx− b||2 + α||x||TV + β||Φx||1. (1.2)

In the above formulation, R is a partial Fourier transform, Φ is the wavelet transform, b is

the vector of under-sampled Fourier measurements, α and β are two positive parameters.

The problem seeks to reconstruct the image signal x given the sampling measurement b

and the sampling matrix R. The TV norm has the effect of deblurring, which means

reducing significant differences between neighboring pixels. The L1 norm has the filtering

effect, extracting significant coefficients from the wavelet transformation. Combined with

the wavelet based penalty, the solution of the problem is not only a high quality restored

image but is also sparse in the wavelet domain. This model has been shown to be one

of the most powerful models for the compressed MR image recovery. However, with high

dimensional images, the formulation is very challenging. More importantly, the TV and L1

with wavelet norms are complex non-separable and non-smooth structured penalties, which

makes this problem difficult to solve.

Sparse and low rank matrix reconstruction

The second example is the Netflix problem in the area of recommendation systems. In

Netflix website, some users submit ratings on different movies based on the users’ prefer-

ences. But for each movie, there are only limited number of ratings. Some users only rate

a few movies based on their own preference. What we observe in the rating matrix is a

very sparse matrix with many missing values, as in Figure 1.4. Netflix company would like

to predict the remaining entries in order to make good recommendations to customers on

what to watch next.

The task is to complete this sparse matrix so that the Netflix will use completed matrix

to recommend new movies to existing users. In this case, we build up a model to solve this

matrix completion problem. The model is the following three block matrix regularization

problem (1.3).

min
S
||PΩ(S)− PΩ(A)||2F + γ||RS||1 + τ ||S||∗, (1.3)

where S is the reconstructed matrix, and A is observed matrix. PΩ(A) is the projection onto

7

Figure 1.4: The Netflix Problem [ZGWY15]

the observed entries such that missing values are set to zero. The first square loss term,

forces the difference of projection between the completed matrix and original observed

matrix not far away from each other. The second term is the L1 norm of the matrix S

times R. This R matrix has the property that it groups the users with similar types of

preferences together. For example, they may like the same type of movies or dislike the

same type of movies. The third term is the nuclear norm of the matrix S. We assume

that the ratings matrix is low-rank, since users’ preference can often be described by a

few factors, such as the movie genre and time of release, etc. In statistical learning, one

may apply the regularization penalty in the form of a nuclear norm promoting low-rank

solutions. Again L1-norm and nuclear norm are complex non-separable and non-smooth

structured matrix penalties, which makes this problem difficult to solve.

Fused lasso model in CGH analysis

The third example is the CGH data analysis in bio-informatics. In Figure 1.5, the horizontal

line represents the DNA sequence. Each grey point represents the CGH signal at one gene

location. The CGH signals are useful techniques to measure the differences between numbers

of gene copies for solid tumor cells and numbers of gene copies for normal cells. If CGH

signals are zero, it corresponds to the normal copy of gene cell. If the CGH signals are

nonzero, it is more likely to be an irregular gene copy of tumor cell.

8

Figure 1.5: Array CGH Data Analysis [TW07]

The problem is to denoise the CGH signals to a piecewise black line which has relatively

sparse areas with nonzero values. The resulting structured regularization model is the

following fused lasso model of [TW07] which deals with the CGH detection problem (1.4):

min
x∈Rn

1

2
||Ax− b||2 + λ1

p∑
j=1

||x||1 + λ2

p−1∑
j=1

||xj+1 − xj ||1 (1.4)

The first term is the square loss, making the estimated signals not far away from the

observed signals. The model is useful for determining which areas of the signal are likely to

be nonzero by adding the L1 sparsity norm (forcing most signals to be zeros). The fused

lasso shrinks the differences of the signals in consecutive locations to zero.

This problem involves a multi-block non-separable and non-smooth L1 and fused lasso

penalties in large scale, which makes it difficult to solve.

Overlapping group lasso in text mining

Another lasso-type example is the overlapping group lasso model, with a composite of

overlapping group lasso regularizers:

min
x∈Rn

1

2Kλ

∥∥b−Ax∥∥2

2
+

K∑
j=1

dj
∥∥xGj∥∥2

, (1.5)

where A ∈ Rm×n. This group lasso regularizer has been proven useful in high-dimensional

problems with the capability of selecting meaningful groups of features.

This model contains the first function as f(x) := 1
2Kλ ||b−Ax||

2
2 where parameter λ > 0

and the number of groups K are pre-specified parameters. The second part is a sum of

regularization terms, where each penalty function hj(x) = dj ||xGj ||2 and the weights dj > 0

are known parameters. Gj ⊆ {1, . . . , p} is the index set of a group of variables and xGj

denotes the subvector of x with coordinates in Gj .

9

The features in groups can overlap as needed. The groups can overlap in a tree structured

order. For example in Figure 1.6, one node corresponds to one group, one group can

be a subset of another group, or disjoint with the other groups. Since this overlapping

regularization term is not separable, this problem is still a multi-block convex optimization

problem.

Figure 1.6: Tree structured overlapping group lasso [JMOB11a]

Tree structured order overlapping group lasso is widely used in hierarchic dictionary

learning. It’s a powerful technique in uncovering the tree structured sparsity over the

features. Hierarchies selections, typically used in neural networks and deep learning ar-

chitectures [Ben09] have emerged as a natural structure in several applications in topic

modeling of text documents. Topic modeling is a method to discover abstract “topics” that

occur in a collection of documents. It is a frequently used text mining tool for the discovery

of hidden semantic structures in a text body. In Figure 1.7, a sentence always has a syntax

structure. Based on the the syntax structure, one could impose the overlapping group lasso

structure to the learning process. Consequently, we can identify the important topics from

a collection of words in the document.

1.2.2 Problem formulation for multi-block convex optimization

For these mentioned applications, we notice that their objective functions all share the same

form:

min
x∈Rn

f1(x) + f2(x) + . . .+ fN (x), (1.6)

10

Figure 1.7: Text mining: topic modeling [Kwa15]

where f1,f2,...,fN : Rn → R are convex but not necessarily smooth functions. This is the the

general problem formulation of our optimization problems. In this thesis, we introduce a

new algorithm called SLIN to solve this multi-block convex optimization. More importantly,

we obtain competitive convergence results. Specifically, we guarantee global convergence

and almost O(1/k) convergence rate with only 1 out of N functions being strongly convex,

where k is the iteration number.

11

Chapter 2

Review of Related Existing Methods

2.1 Operator splitting methods

Selective linearization algorithm comes from the idea of proximal point algorithm [Roc76]

and operator splitting methods for two-block convex programming half a century ago. Its

roots are primarily in functional analysis, engineering problems and mathematical physics.

As the rising attention of signal processing and machine learning, operator splitting methods

have many more applications.

Suppose that we are trying to solve the following problem:

min
x∈Rn

f(x) + h(x). (2.1)

The solution for this problem is x̂ such that:

0 ∈ ∂f(x̂) + ∂h(x̂).

We can consider two subdifferentials as two maximum monotone operator M1 and M2

such that:

0 ∈ (M1 +M2)(x̂) (2.2)

given the two monotone operators on the space Rn.

The operator splitting methods originated from Peaceman-Rachford method (2.3) [PR55]

and Douglas-Rachford method (2.4) [DR56]. [LM79] analyzed the methods for finding a

zero of the sum of two maximum monotone operator (2.2), and later developed and analyzed

by [EB92, Com09, BC11], among others.

xk+1 = (I + ρM2)−1(I − ρM1)(I + ρM1)−1(I − ρM2)xk. (2.3)

xk+1 = (I + ρM2)−1[(I + ρM1)−1(I − ρM2) + ρM2]xk. (2.4)

12

In formulas (2.3) and (2.4), xk is the generated sequence starting from any point x1 ∈ Rn.

I is an identity matrix. M1 and M2 are monotone operators. ρ is a positive number.

For solving (2.1), Peaceman-Rachford method works as follows [LM79].

Peaceman-Rachford

1: repeat
2: x̃h ← argmin{f̃(x) + h(x) + 1

2ρ ||x− x̂||
2}.

3: gh ← −gf − 1
ρ(x̃h − x̂)

4: x̂← x̃h
5: x̃f ← argmin{f(x) + h̃(x) + 1

2ρ ||x− x̂||
2}.

6: gf ← −gh − 1
ρ(x̃f − x̂)

7: x̂← x̃f
8: until (Stopping Test)

Peaceman-Rachford method involves proximal steps in step 2 and step 5 and updates

proximal center x̂ after every proximal step. However, it can not guarantee convergence for

general two maximum monotone operators.

According to [LM79], Douglas-Rachford splitting scheme works as follows.

Douglas-Rachford

1: repeat
2: x̃h ← argmin{f̃(x) + h(x) + 1

2ρ ||x− x̂||
2}.

3: gh ← −gf − 1
ρ(x̃h − x̂)

4: x̃f ← argmin{f(x) + h̃(x) + 1
2ρ ||x− x̂||

2}.
5: gf ← −gh − 1

ρ(x̃f − x̂)
6: x̂← x̃f
7: until (Stopping Test)

It involves proximal steps in step 2 and step 5 and only updates proximal center x̂ at

step 6. As the roles of f and h can be switched, the method in which updates are carried

always after step 3, but never after step 5 is also equivalent to a scaled DouglasRachford

method.

There are also versions of Douglas-Rachford splitting with under and over relaxation

parameter λ ∈ [0, 2].

13

Douglas-Rachford with relaxation

1: repeat
2: x̃h ← argmin{f̃(x) + h(x) + 1

2ρ ||x− x̂||
2}.

3: gh ← −gf − 1
ρ(x̃h − x̂)

4: x̃f ← argmin{f(x) + h̃(x) + 1
2ρ ||x− x̂||

2}.
5: gf ← −gh − 1

ρ(x̃f − x̂)
6: x̂← (1− λ)x̂+ λx̃f
7: until (Stopping Test)

The only difference is to incorporate relaxation parameter when updating the proximal

center. When λ ∈ [0, 1], it is under relaxation. When λ ∈ [1, 2], it is over relaxation. It can

guarantee global convergence for two block convex problems. In practice, Douglas-Rachford

splitting with under and over relaxation parameters can be better or worse than the regular

Douglas-Rachford splitting method.

Operator splitting methods are not monotonic with respect to the values of the objective

function. Their convergence is based on monotonicity with respect to the distance to the

optimal solution of the problem [LM79, EB92].

In chapter 5, we shall compare SLIN algorithm with Douglas–Rachford operator splitting

method of [LM79] carrying different relaxation parameters λ and proximal parameters ρ for

multi-block convex examples. However, there is no convergence result for multi-block non-

separable Douglas–Rachford operator splitting method.

2.2 Alternating linearization method

The Alternating Linearization Method (ALIN) [KRR99] introduced an improvement test

to the operator splitting methods, adapted some ideas of bundle methods of nonsmooth

optimization [HUL93, Kiw85]. The way of proving its global convergence, is due to [Rus86].

ALIN [LPR14] has been successfully applied to solve two-block structured regularization

problems.

However, the convergence rate has been an open question for many years due to the

difficulty of analyzing the improvement test. In this thesis, we managed to extend the ALIN

algorithm to multi-block SLIN algorithm and solved the open question of convergence rate

14

for both the bundle methods and the SLIN method.

Since SLIN algorithm is a multi block extension of ALIN algorithm which aims at solving

two block structure regularization problems, we present an overview of the ALIN algorithm

as follows for solving problem (2.1).

Algorithm Alternating Linearization (ALIN)

1: repeat
2: x̃h ← argmin{f̃(x) + h(x) + 1

2 ||x− x̂||
2
D}.

3: gh ← −gf −D(x̃h − x̂)
4: if (Update Test for x̃h) then x̂← x̃h end if
5: x̃f ← argmin{f(x) + h̃(x) + 1

2 ||x− x̂||
2
D}.

6: gf ← −gh −D(x̃f − x̂)
7: if (Update Test for x̃f) then x̂← x̃f end if
8: until (Stopping Test)

Instead of solving problem (2.1), the first step involves minimizing an approxima-

tion model of the original problem. It linearizes the component function f(x), keeps

h(x), and uses a proximal term penalizing for the distance to the last iterate. The norm

‖x‖D =
(
〈x,Dx〉

)1/2
with a positive definite matrix D, which leads to major computational

simplifications. From optimal condition of the above minimization problem, we obtain the

subgradient of the component function h(x). At the next iteration, it uses the subgradi-

ent information to get another approximation model of the original problem. It keeps the

function f(x) , linearizes the component function h(x), and adds a proximal term. The

algorithm uses a special update step to decide if it is good enough to switch the proximal

center. It continues the process until passing a stopping test to achieve an approximate

optimal solution.

ALIN algorithm has a special update rule, which guarantees the global convergence and

monotonically decreasing of the objective function values.

In [LPR14], ALIN is compared with algorithms including alternating direction method

of multipliers(ADMM). It shows that the convergence of ALIN is monotonic, and ALIN has

better computational time compared with ADMM, which does not have descent properties,

and whose tail convergence may be slow.

15

2.3 Alternating direction method of multipliers and its multi-block ex-

tensions

The dual versions of operator splitting methods are known as Alternating Direction Methods

of Multipliers (ADMM) for minimizing the sum of two convex functions ([GM76, GM75,

GT89]). It was first observed in [GM76] that the ADMM algorithm can be derived from an

application of the Douglas-Rachford algorithm to the dual of (2.1).

To introduce ADMM method, first we can rewrite (2.1), introducing an additional de-

cision variable vector y ∈ Rm as follows:

min
x∈Rn

f(x) + h(y)

s.t. x− y = 0.

(2.5)

In the two-block structured regularization problems when h(y) = g(Mx) with some fixed

matrix M , the convenient problem formulation is

min
x∈Rn

f(x) + h(y)

s.t. Mx− y = 0.

(2.6)

ADMM for solving (2.6) takes the following form, for some scalar parameter c > 0:

xk+1 ∈ argminx∈Rn{f(x) + g(yk) + 〈λk,Mx− yk〉+
c

2
||Mx− yk||2},

yk+1 ∈ argminy∈Rm{f(xk+1) + g(y) + 〈λk,Mxk+1 − y〉+
c

2
||Mxk+1 − y||2},

λk+1 = λk + c(Mxk+1 − yk+1).

ADMM has been shown to haveO(1
k) rate of convergence for two blocks convex problems,

where k stands for the number of iteration [HY15]. A recent tutorial paper [BPC+10] raised

interest in ADMM in the field of large scale distributed optimization. ADMM has been

extensively studied in recent years due to its ease of applicability and empirical performance

(see, e.g., [BPC+10, CP11], and the references therein). Sometimes, these methods are

called split Bregman methods (see, e.g., [GO09, YX11]).

More importantly, many people are interested in extending two block ADMM to multi-

block ADMM for solving multi-block convex optimization problems, which is the focus

here.

16

However, according to [CHYY14], the standard ADMM for N-block (N > 2) convex

optimization problems is not necessarily convergent. In response to this negative result,

[HL17] and [LMZ15], among others, imposed additional assumptions on the objective func-

tions in order to attain convergence for multi-block ADMM. For example, functions need to

be smooth, or at least N − 2 functions are strongly convex. Others added some restrictions

such as limiting the step size in updating the Lagrangian multiplier for the multi-block

ADMM method.

However, problem (1.6), the focus of the dissertation, has a simple multi-block structure

that enables the use of two-block ADMM with good convergence results. This is discussed

in [EY15] and [CP11] for a slightly more generalized version of problem (1.6) and here we

briefly review the technique in [EY15] to solve problem (1.6). By variable duplication, we

can re-formulate problem (1.6) into the following form:

min
x1,...,xN∈Rn

N∑
i=1

fi(xi)

s.t. x1 = xN ,

x2 = xN ,

. . . ,

xN−1 = xN .

(2.7)

The constraints in the reformulated problem (2.7) can be unified into a single constraint in

the equation form:
N∑
i=1

Aixi = b,

where each Ai ∈ R(N−1)n×n and b = 0 ∈ R(N−1)n. Each Ai can be viewed as a vertical

concatenation of N − 1 n-by-n matrices. And for i = 1, . . . , N − 1, all blocks of the n-by-n

matrices are zero matrices except the ith block being an n-by-n identity matrix. For AN ,

it consists of N − 1 n-by-n negative identity matrix. In [EY15], they add redundancy to

the above single-equality constraint by introducing an additional set of decision variables

17

z1, . . . , zN ∈ R(N−1)n such that:

Aixi = zi i = 1, . . . , N

N∑
i=1

zi = 0.

Then they construct the above formulation into a two-block pattern by concatenating the

x1, . . . , xN into a single x variable, and concatenating z1, . . . , zN into a single z variable, and

apply two-block ADMM directly. They show that both sub-problems for the x variable and

the z variable in two-block ADMM are decomposable and can be solved efficiently. The final

complete procedure of applying two-block ADMM to solve problem (2.7) is summarized as

follows [EY15]:

xk+1
i ∈ argminxi∈Rn{fi(xi) + 〈λk, Aixi − zki 〉+

c

2
||Aixi − zki ||2} i = 1, . . . , N

rk+1 =

(N∑
i=1

Aix
k
i

)
zk+1
i = Aix

k+1
i − (

1

p
)rk

λk+1 = λk − (
c

p
)rk+1.

In the above procedure, c and p are two positive parameters.

There are other extensions of ADMM method for solving multi-block convex optimiza-

tion problems. [CDZ15] introduced an augmented lagrangian method for distributed opti-

mization problems. Other methods of PDMM by [WBL14], sADMM or Jacobian ADMM by

[DLPY13] for multi-block convex optimization do not guarantee convergence, although they

appears to work well in many practical examples. In Chapter 5 of numerical illustration,

we will compare SLIN with those methods.

[CE16] introduced the new block-iterative operator splitting algorithms. [Eck17] intro-

duced an asynchronous algorithm resembling the multi-block ADMM for multi-block convex

optimization and parallel computing, which guarantees global convergence. The overall ap-

proaches were based on earlier work of projective splitting methods for sums of maximal

monotone operators in [ES09].

18

2.4 Other multi-block nonsmooth optimization methods

A different operator splitting method is the primal-dual splitting scheme for sums of com-

posite parallel-sum type operators [CP11]. Similar methods are [Vu13] and [Con13] with

established convergence results.

According to [Vu13], let Rn and Rm be finite-dimensional spaces. Let f ∈ Γ0(Rn) and

gi ∈ Γ0(Rm). Let m be a strictly positive integer, let (wi)1≤i≤m be real numbers in [0, 1]

such that
∑m

i=1wi = 1. For some vi ∈ [0,∞], suppose that Li : Rn → Rm is a nonzero

matrix.

Consider the primal problem:

min
x∈Rn

f(x) +
m∑
i=1

wigi(Lix). (2.8)

Many multi-block structured regularization problems can be cast into this framework.

The dual problem is

min
v1,...,vm∈Rm

f∗(−
m∑
i=1

wiL
T
i vi) +

m∑
i=1

g∗i (vi). (2.9)

Note that g∗i (·) = maxx{〈·, x〉 − g(x)} is the conjugate function.

The (xn)n∈N and (v1,n, ...vm,n)n∈N are sequences generated by the following routine.

It’s proved in [Vu13] that (xn) converges to the primal optimal solution x̂ and (v1,n, ...vm,n)

converges to the dual optimal solution (v̂1,n, ...v̂m,n).

Vu’s splitting

1: for n = 1, . . . , N
2: pn = proxτf (xn − τ(

∑m
i=1wiL

T
i vi,n))

3: yn = 2pn − xn
4: xn+1 = xn + λn(pn − xn)
5: for i = 1, ..,m
6: qi,n = proxσig∗i (vi,n + σi(Liyn))
7: vi,n+1 = vi,n + λn(qi,n − vi,n).
8: end for
9: end for

Note that

proxg∗(v) = arg min
u

[g∗(u) +
1

2
||u− v||2]. (2.10)

19

The minimization problem (2.10) can be manipulated as:

min
u

[g∗(u) +
1

2
||u− v||2]

= min
u
{max

x
{〈u, x〉 − g(x)}+

1

2
||u− v||2}

= max
x
{〈v − x, x〉 − g(x) +

1

2
||x||2}, (u = v − x)

= max
x
{〈v, x〉 − g(x)− 1

2
||x||2}

= min
x

[g(x) +
1

2
||x− v||2].

(2.11)

One can see that the minimizer to the problem (2.11) in the last equation is proxg(v),

which is similar to the proximal steps in ALIN method.

We shall compare Vu’s splitting method with other methods our numerical illustration

chapter in solving structured regularization problems.

20

Chapter 3

The Convergence Rate of Bundle Methods

We prove that the bundle method for nonsmooth optimization achieves solution accuracy

ε in at most O
(

ln(1/ε)/ε
)

iterations, if the function is strongly convex. The result is true

for the versions of the method with multiple cuts and with cut aggregation.

3.1 Introduction

The objective of this chapter is to provide a worst-case bound on the rate of convergence

of the bundle method for solving convex optimization problems of the following form:

min
x∈Rn

F (x), (3.1)

where F : Rn → R is a convex function. The only additional assumption about the function

needed to bound the rate is strong convexity of the function about the minimum point.

The bundle methods were developed in [Lem78, Mif82]. First rigorous convergence

analysis and versions with cut aggregation were provided in [Kiw83, Kiw85, Rus86]. For

a comprehensive treatment of bundle and trust region methods, see [BGLS03, HUL93].

Although the bundle method is a method of choice for nonsmooth optimization, no general

rate of convergence results are available. This is due to the complicated structure of the

method, in which successive iterations carry out different operations, depending on the

outcome of a sufficient descent test.

Some results on the rate of convergence are available for the related bundle level method

[LNN95], which achieves O(1/ε2) iteration complexity for general nonsmooth convex pro-

gramming problems. Similar results have been obtained for modified versions in [Kiw95]

and [Lan15].

Our contribution is to prove at most O
(

ln(1/ε)/ε
)

iteration complexity of the classical

21

bundle method, under the condition of strong convexity about the minimum point. This

is achieved by bounding the numbers of null steps between successive descent steps, and

integrating these bounds across the entire run of the method. The result holds true for two

versions of the method: with multiple cuts and with cut aggregation.

In section 3.2, we present both versions of the bundle method and recall its conver-

gence properties. Section 3.3 contains several auxiliary results. A worst-case bound on the

convergence rate of the method is derived in section 3.4.

We use 〈·, ·〉 and ‖ · ‖ to denote the usual scalar product and the Euclidean norm in a

finite dimensional space.

3.2 The Bundle Method

The bundle method is related to the fundamental idea of the proximal point method, which

uses the Moreau–Yosida regularization of F (·),

Fρ(y) = min
x

{
F (x) +

ρ

2

∥∥x− y∥∥2
}
, ρ > 0, (3.2)

to construct the proximal step for (3.1),

proxF (y) = arg min
x

{
F (x) +

ρ

2

∥∥x− y∥∥2
}
. (3.3)

The proximal point method carries out the iteration xk+1 = proxF (xk), k = 1, 2, . . . and is

known to converge to a minimum of F (·), if a minimum exists [Roc76].

The main idea of the bundle method is to replace problem (3.1) with a sequence of

approximate problems of the following form:

min
x
F̃ k(x) +

ρ

2

∥∥x− xk∥∥2
. (3.4)

Here k = 1, 2, . . . is the iteration number, xk is the current best approximation to the

solution, and F̃ k(·) is a piecewise linear convex lower approximation of the function F (·).

Two versions of the method differ in the way this approximation is constructed.

3.2.1 The Version with Multiple Cuts

In the version with multiple cuts, the approximations F̃ k(·) are constructed as follows:

F̃ k(x) = max
j∈Jk

{
F (zj) + 〈gj , x− zj〉

}
,

22

with some previously generated points zj and subgradients gj ∈ ∂F (zj), j ∈ Jk, where

Jk ⊆ {1, . . . , k}. The points zj are solutions of problems (3.4) at earlier iterations of the

method.

Thus, problem (3.4) differs from (3.2) by the fact that the function F (·) is replaced by

a cutting plane approximation. The other difference between the bundle method and the

proximal point method is that the solution zk+1 of problem (3.4) is subject to a sufficient

improvement test, which decides whether the next proximal center xk+1 should be set to

zk+1 or remain unchanged.

Bundle Method with Multiple Cuts

Step 0: Set k = 1, J1 = {1}, z1 = x1, and select g1 ∈ ∂F (z1). Choose parameter β ∈ (0, 1),

and a stopping precision ε > 0.

Step 1: Find the solution zk+1 of subproblem (3.4).

Step 2: If

F (xk)− F̃ k(zk+1) ≤ ε, (3.5)

then stop; otherwise, continue.

Step 3: If

F (zk+1) ≤ F (xk)− β
(
F (xk)− F̃ k(zk+1)

)
, (3.6)

then set xk+1 = zk+1 (descent step); otherwise set xk+1 = xk (null step).

Step 4: Select a set Jk+1 so that

Jk ∪ {k + 1} ⊇ Jk+1 ⊇ {k + 1} ∪
{
j ∈ Jk : F (zj) + 〈gj , zk+1 − zj〉 = F̃ k(zk+1)

}
.

Increase k by 1 and go to Step 1.

3.2.2 The Version with Cut Aggregation

In the version with cut aggregation, as described in [Kiw83] and [Rus06, sec. 7.4.4], the

approximations F̃ k(·) have only two pieces:

F̃ k(x) = max
{
F̄ k(x), F (zk) + 〈gk, x− zk〉

}
,

23

with the last generated point zk and the corresponding subgradient gk ∈ ∂F (zk). The

function F̄ k(x) is a convex combination of affine minorants F (zj)+ 〈gj , x−zj〉, constructed

at previously generated points zj with subgradients gj ∈ ∂F (zj), where 1 ≤ j < k. This

function is updated at each iteration, as specified in Step 4 of the algorithm below.

Bundle Method with Cut Aggregation

Step 0: Set k = 1, J1 = {1}, z1 = x1, and select g1 ∈ ∂F (z1). Choose parameter β ∈ (0, 1),

and a stopping precision ε > 0.

Step 1: Find the solution zk+1 of subproblem (3.4).

Step 2: If

F (xk)− F̃ k(zk+1) ≤ ε, (3.7)

then stop; otherwise, continue.

Step 3: If

F (zk+1) ≤ F (xk)− β
(
F (xk)− F̃ k(zk+1)

)
, (3.8)

then set xk+1 = zk+1 (descent step); otherwise set xk+1 = xk (null step).

Step 4: Define

F̄ k+1(x) = θkF̄
k(x) + (1− θk)

[
F (zk) + 〈gk, x− zk〉

]
, (3.9)

where θk ∈ [0, 1] is such that the gradient of F̄ k+1(·) is equal to the subgradient of F̃ k(·) at

zk+1 that satisfies the optimality conditions for problem (3.4). Increase k by 1 and go to

Step 1.

3.2.3 Convergence

Convergence of the bundle method (in both versions) for convex functions is well-known.

Theorem 3.2.1. Suppose ArgminF 6= ∅ and ε = 0. Then a point x∗ ∈ ArgminF exists,

such that:

lim
k→∞

xk = lim
k→∞

zk = x∗.

24

Proof. The proof of this result (in slightly different versions) can be found in numerous

references, such as [Kiw85, Thm. 4.9], [HUL93, Thm. XV.3.2.4], or [Rus06, Thm. 7.16].

3.3 Auxiliary results

In this section, we collect several auxiliary results on the properties of the bundle method

in the general case. They are either refined versions or direct quotations of results pre-

sented in [Rus06, sec. 7.4]. We consider both versions of the method in parallel, with the

corresponding versions of the functions F̃ k(·). All the results hold true for both versions,

because the analysis of the method with multiple cuts uses the version with cut aggregation

anyway; in the proofs we explain the minor differences between the methods.

We first prove that if a null step occurs at iteration k, then the optimal objective

function values of consecutive subproblems are increasing, and the gap is bounded below

by a quantity dependent on

vk = F (xk)− F̃ k(zk+1). (3.10)

We define the optimal objective function values of subproblem (3.4) at iteration k as:

ηk = F̃ k(zk+1) +
ρ

2

∥∥zk+1 − xk
∥∥2
. (3.11)

Note that xk+1 = xk at a null step.

Since the point zk+1 is the optimal solution of (3.4) at iteration k, the vector

sk+1 = −ρ
(
zk+1 − xk

)
. (3.12)

is the subgradient of F̃ k(·) at zk+1 that features in the optimality conditions. Consequently,

the point zk+1 is also the unique minimum of the problem

min
x

{
F̃ k(zk+1) + 〈sk+1, x− zk+1〉+

ρ

2

∥∥x− xk∥∥2
}
, (3.13)

and the values of (3.11) and (3.13) coincide. In the method with cut aggregation, by the

definition of θk in (3.9) and by (3.12), we have

F̄ k+1(x) = F̃ k(zk+1) + 〈sk+1, x− zk+1〉.

25

The addition of a new cut at zk+1 and possible deletion of inactive cuts (in the method

without cut aggregation), creates a function F̃ k+1(·), which satisfies the inequality

F̃ k+1(x) ≥ max
(
F̃ k(zk+1) + 〈sk+1, x− zk+1〉, F (zk+1) + 〈gk+1, x− zk+1〉

)
. (3.14)

In the method with cut aggregation, exact equality in (3.14) is true, but we use the inequality

“≥” in further considerations. Since the test for a descent step is not satisfied, we have

F̃ k+1(zk+1) = F (zk+1) > F̃ k(zk+1).

The solution zk+1 of problem (3.13) is unique, due to the strong convexity of the function

being minimized there. Therefore, the optimal value of (3.13) must increase after replacing

F̃ k(zk+1) + 〈sk+1, x− zk+1〉 with the right hand side of (3.14). The optimal value ηk+1 of

(3.4) at iteration k + 1 is at least as large, due to (3.14).

The key issue is to bound the actual increment from ηk to ηk+1 from below.

Lemma 3.3.1. If a null step is made at iteration k, then

ηk+1 ≥ ηk +
1− β

2
µ̄kvk, (3.15)

where

µ̄k = min

{
1,

(1− β)ρvk
‖sk+1 − gk+1‖2

}
. (3.16)

Proof. Using (3.14), we can bound the optimal value of the subproblem (3.4) at iteration

k + 1 as follows:

ηk+1 ≥ min
x

{
max

(
F̃ k(zk+1) + 〈sk+1, x− zk+1〉,

F (zk+1) + 〈gk+1, x− zk+1〉
)

+
ρ

2

∥∥x− xk∥∥2
}

≥ min
x

{
(1− µ)

(
F̃ k(zk+1) + 〈sk+1, x− zk+1〉

)
+ µ

(
F (zk+1) + 〈gk+1, x− zk+1〉

)
+
ρ

2

∥∥x− xk∥∥2
}
,

(3.17)

with any value of the parameter µ ∈ [0, 1]. Define

Q̂k(µ) = min
x

{
(1− µ)

(
F̃ k(zk+1) + 〈sk+1, x− zk+1〉

)
+ µ

(
F (zk+1) + 〈gk+1, x− zk+1〉

)
+
ρ

2

∥∥x− xk∥∥2
}
. (3.18)

26

Due to (3.13), Q̂k(0) = ηk. It follows from (3.17) that the difference between ηk+1 and ηk

can be bounded from below by the increase in the optimal value Q̂k(µ), when µ moves away

from zero. That is,

ηk+1 − ηk ≥ max
µ∈[0,1]

Q̂k(µ)− Q̂k(0).

By direct calculation and with a view to (3.12), the minimizer on the right hand side of

(3.18) is

x̂(µ) = zk+1 +
µ

ρ

(
sk+1 − gk+1

)
.

To obtain the derivative of Q̂k(·), we calculate the partial derivative of the right-hand side

of (3.18) with respect to µ and then substitute x = x̂(µ). We obtain

Q̂′k(µ) = F (zk+1)− F̃ k(zk+1) + 〈gk+1 − sk+1, x̂(µ)− zk+1〉

= F (zk+1)− F̃ k(zk+1)− µ

ρ

∥∥sk+1 − gk+1
∥∥2
.

Thus, for any value of µk ∈ [0, 1],

ηk+1 − ηk ≥ Q̂k(µk)− Q̂k(0) =

∫ µk

0
Q̂′k(µ) dµ

= µk

(
F (zk+1)− F̃ k(zk+1)− µk

2ρ

∥∥sk+1 − gk+1
∥∥2
)
.

Define

µk = min

{
1,
ρ
(
F (zk+1)− F̃ k(zk+1)

)
‖sk+1 − gk+1‖2

}
.

Clearly, µk ∈ [0, 1]. Substitution into the last displayed relation implies the inequality

ηk+1 − ηk ≥ µk
2

(
F (zk+1)− F̃ k(zk+1)

)
. (3.19)

If a null step occurs at iteration k, then the update step rule (3.8) is violated. Thus,

F (zk+1)− F̃ k(zk+1) > (1− β)vk. Using this in (3.19), we obtain

ηk+1 − ηk ≥ 1− β
2

µkvk.

Since µk ≥ µ̄k, the postulated bound (3.15) follows.

We recall a useful bound of the changes from ηk to ηk+1 at descent steps.

Lemma 3.3.2. If a descent step occurs at iteration k, then

ηk+1 − ηk ≥ −ρ
∥∥xk+1 − xk

∥∥2 ≥ 1

β

(
F (xk+1)− F (xk)

)
. (3.20)

27

Proof. See [Rus06, (7.68)-(7.69)].

The following lemma relates the values of the optimal value of (3.4), ηk, and the value

F̃ (zk+1) at the solution of (3.4).

Lemma 3.3.3. At every iteration we have the inequality:

F (xk)− ηk ≥ 1

2

[
F (xk)− F̃ k(zk+1)

]
.

Proof. Consider the function

Φ(τ) = (1− τ)F (xk) + τF̃ k(zk+1) +
ρ

2

∥∥(1− τ)xk + τzk+1 − xk
∥∥2
.

By construction, Φ(1) = ηk, and, due to the convexity of F̃ k(·),

Φ(τ) ≥ F̃ k
(
(1− τ)xk + τzk+1

)
+
ρ

2

∥∥(1− τ)xk + τzk+1 − xk
∥∥2
, τ ∈ [0, 1]. (3.21)

By the definition of zk+1, the right hand side of (3.21) is minimized at τ = 1. Therefore,

Φ′(1) ≤ 0. Differentiating, we obtain the inequality

−F (xk) + F̃ k(zk+1) + ρ
∥∥zk+1 − xk

∥∥2 ≤ 0.

This implies that

ηk = F̃ k(zk+1) +
ρ

2

∥∥zk+1 − xk
∥∥2 ≤ F̃ k(zk+1) +

1

2

[
F (xk)− F̃ k(zk+1)

]
=

1

2

[
F (xk) + F̃ k(zk+1)

]
.

This is equivalent to the postulated inequality.

Finally, we recall the following bound of the Moreau–Yosida regularization.

Lemma 3.3.4. For any point x ∈ Rn we have

Fρ(x) ≤ F (x)−
∥∥x− x∗∥∥2

ϕ

(
F (x)− F (x∗)∥∥x− x∗∥∥2

)
, (3.22)

where

ϕ(t) =

t2 if t ∈ [0, 1],

−1 + 2t if t ≥ 1.

Proof. See [Rus06, Lem. 7.12].

28

3.4 Rate of Convergence

Our objective in this section is to derive a worst-case bound on the rate of convergence of

the method. To this end, we assume that ε > 0 at Step 2 (inequality (3.5)) and we bound

the number of iterations needed to achieve this accuracy.

We make a key assumption about strong convexity of the function F (·).

Assumption 3.4.1. The function F (·) has a unique minimum point x∗ and a constant

α > 0 exists, such that

F (x)− F (x∗) ≥ α
∥∥x− x∗∥∥2

,

for all x ∈ Rn with F (x) ≤ F (x1).

We first show that stopping test of Step 2 guarantees the objective function accuracy of

order ε.

Lemma 3.4.1. Suppose Assumption 3.4.1 is satisfied. Then at every iteration k we have

F (xk)− F (x∗) ≤ F (xk)− ηk

min(α, 1)
. (3.23)

Proof. Since F̃ k(·) ≤ F (·), we have

Fρ(x
k) = min

x

{
F (x) +

ρ

2

∥∥x− xk∥∥2
}
≥ min

x

{
F̃ k(x) +

ρ

2

∥∥x− xk∥∥2
}

= ηk. (3.24)

Consider two cases.

Case 1: If F (xk)− F (x∗) ≤
∥∥xk − x∗∥∥2

, then (3.22) with x = xk yields

Fρ(x
k) ≤ F (xk)−

(
F (xk)− F (x∗)

)2∥∥xk − x∗∥∥2 .

Combining this inequality with (3.24), we conclude that(
F (xk)− F (x∗)

)2∥∥xk − x∗∥∥2 ≤ F (xk)− ηk.

Substitution of the denominator by the upper bound (F (xk)− F (x∗))/α implies (3.23).

Case 2: F (xk)− F (x∗) >
∥∥xk − x∗∥∥2

. Then (3.22) yields

Fρ(x
k) ≤ F (xk)− 2

(
F (xk)− F (x∗)

)
+
∥∥xk − x∗∥∥2

.

29

In view of (3.24), we obtain

2
(
F (xk)− F (x∗)

)
−
∥∥xk − x∗∥∥2 ≤ F (xk)− ηk,

which implies that F (xk)− F (x∗) ≤ F (xk)− ηk in this case.

Corollary 3.4.1. Suppose Assumption 3.4.1 is satisfied. If the stoping test (3.5) is satisfied

at iteration k, then

F (xk)− F (x∗) ≤ ε

min(α, 1)
. (3.25)

To bound the number of iterations of the method needed to achieve the prescribed

accuracy we consider two issues. First, we prove linear rate of convergence between descent

steps. Then, we bound the numbers of null steps between consecutive descent steps.

By employing the bound of Lemma 3.4.1, we can address the first issue.

Lemma 3.4.2. Suppose Assumption 3.4.1 is satisfied. Then at every descent step k we

have

F (zk+1)− F (x∗) ≤ (1− ᾱβ)
(
F (xk)− F (x∗)

)
, (3.26)

where ᾱ = min(α, 1).

Proof. It follows from the update rule (3.8) that

F (zk+1) ≤ (1− β)F (xk) + βF̃ k(zk+1).

Since F̃ k(zk+1) ≤ ηk, Lemma 3.4.1 yields

F (xk)− F (x∗) ≤ 1

ᾱ

(
F (xk)− F̃ k(zk+1)

)
.

Combining these inequalities and simplifying, we conclude that

F (zk+1) ≤ (1− β)F (xk) + β
(
ᾱF (x∗)− ᾱF (xk) + F (xk)

)
= F (xk)− ᾱβ

(
F (xk)− F (x∗)

)
.

Subtraction of F (x∗) from both sides yields the linear rate (3.26).

30

We now pass to the second issue of deriving an upper bound on the number of null steps

between two consecutive descent steps. To this end, we analyze the evolution of the gap

F (xk)− ηk.

It follows from [Rus06, (7.64)] that for all k

∥∥xk − x∗∥∥2 ≤
∥∥x1 − x∗

∥∥2
+

2(1− β)

βρ

[
F (x1)− F (x∗)

]
.

Thus, a uniform upper bound exists on the norm of the subgradients collected at points xk.

Therefore, a uniform upper bound exists on the distances ‖zk+1 − xk‖. Consequently, the

subgradients collected at the points zk+1 are uniformly bounded as well, and the bound

depends on the starting point only. Consequently, a constant M exists such that

∥∥sk+1 − gk+1
∥∥2 ≤ ρM

at all null steps. With no loss of generality, we assume that ε ≤M .

Lemma 3.4.3. If a null step occurs at iteration k, then

F (xk)− ηk+1 ≤ γ
(
F (xk)− ηk

)
, (3.27)

where

γ = 1− (1− β)2ε

2M
. (3.28)

Proof. By Lemma 3.3.1, we have

F (xk)− ηk+1 ≤ F (xk)− ηk − 1− β
2

µ̄kvk. (3.29)

On the other hand,

vk = F (xk)− F̃ k(zk+1) = F (xk)− ηk +
ρ

2

∥∥zk+1 − xk
∥∥2 ≥ F (xk)− ηk. (3.30)

Combining the last two inequalities, we conclude that

F (xk)− ηk+1 ≤ F (xk)− ηk − 1− β
2

µ̄k
(
F (xk)− ηk

)
=

(
1− 1− β

2
µ̄k

)(
F (xk)− ηk

)
.

(3.31)

31

Consider the definition (3.16) of µ̄k in Lemma 3.3.1. If µ̄k = 1, then (1 − 1−β
2 µ̄k) is no

greater than the bound (3.28), because ε ≤ M . Otherwise, µ̄k is given by the second case

in (3.16). Since the algorithm does not stop, we have vk > ε, and thus

µ̄k =
(1− β)ρvk
‖sk+1 − gk+1‖2

≥ (1− β)ε

M
.

Substitution to (3.31) yields (3.28).

Let x(`−1), x(`), x(`+1) be three consecutive proximal centers for ` ≥ 2 in the algorithm.

We want to bound the number of iterations made with proximal center x(`). To this end,

we bound two quantities: F (x(`))− ηk(`), where k(`) is the first step with proximal center

x(`), and F (x(`))− ηk′(`), where k′(`) is the last step with proximal center x(`).

In the following we discuss each issue separately.

Recall that according to the algorithm, x(`) is the optimal solution of the last subproblem

with proximal center x(`−1). Let ηk(`)−1 be the optimal objective value of the subproblem,

that is,

ηk(`)−1 = F̃ k(`)−1(x(`)) +
ρ

2

∥∥x(`) − x(`−1)
∥∥2
.

Lemma 3.4.4. If a descent step is made at iteration k(`)− 1, then

F (x(`))− ηk(`) ≤ 3

2β

(
F (x(`−1))− F (x(`))

)
. (3.32)

Proof. The left inequality in (3.20) yields

ηk(`) ≥ ηk(`)−1 − ρ
∥∥x(`) − x(`−1)

∥∥2
.

Since F (x(`)) ≤ F (x(`−1)), we obtain

F (x(`))− ηk(`) ≤ F (x(`−1))− ηk(`)−1 + ρ
∥∥x(`) − x(`−1)

∥∥2
.

As iteration k(`)− 1 is a descent step, the update rule (3.8) holds. Thus

F (x(`−1))− ηk(`)−1 =

[
F (x(`−1))− F̃ k(`)−1(x(`))

]
− ρ

2

∥∥x(`) − x(`−1)
∥∥2

≤ 1

β

(
F (x(`−1))− F (x(`))

)
− ρ

2

∥∥x(`) − x(`−1)
∥∥2
.

Combining the last two inequalities we obtain

F (x(`))− ηk(`) ≤ 1

β

(
F (x(`−1))− F (x(`))

)
+
ρ

2

∥∥x(`) − x(`−1)
∥∥2
.

32

The right inequality in (3.20) can be now used to substitute
∥∥x(`) − x(`−1)

∥∥2
on the right

hand side to obtain (3.32).

We can now integrate our results.

Applying Lemma 3.4.1, we obtain the following inequality at every null step with prox

center x(`):

F (x(`))− ηk ≥ ᾱ
(
F (x(`))− F (x∗)

)
≥ ᾱ

(
F (x(`))− F (x`+1)

)
. (3.33)

From Lemma 3.4.4 we know that for 2 ≤ ` < L, where L is the last proximal center, the

initial value of the left hand side (immediately after the previous descent step) is bounded

from above by the expression on the right hand side of (3.32). Lemma 3.4.3 established a

linear rate of decrease of the left hand side of (3.33). Therefore, the number n` of null steps

with proximal center x(`), if it is positive, satisfies the inequality:

3

2β

(
F (x(`−1))− F (x(`))

)
γn`−1 ≥ ᾱ

(
F (x(`))− F (x(`+1))

)
.

Consequently, for 2 ≤ ` < L we obtain the following upper bound on the number of null

steps:

n` ≤ 1 +
1

ln(γ)
ln

(
2βᾱ

3

F (x(`))− F (x(`+1))

F (x(`−1))− F (x(`))

)
. (3.34)

If the number n` of null steps is zero, inequality (3.26) yields

F (x(`))− F (x(`+1))

F (x(`−1))− F (x(`))
≤ F (x(`))− F (x∗)

F (x(`−1))− F (x∗)−
(
F (x(`))− F (x∗)

) ≤ 1
1

1−ᾱβ − 1
.

Elementary calculations then prove that both logarithms on the right hand side of (3.34)

are negative, and thus inequality (3.34) is satisfied in this case as well.

Suppose there are L proximal centers appearing throughout the algorithm: x(1), x(2),

. . . , x(L). They divide the progress of the algorithm into L series of null steps. For the first

series, similar to the analysis above, we use (3.33) and Lemma 3.4.3 to obtain the bound

n1 ≤ 1 +
1

ln(γ)
ln

(
ᾱ
F (x(1))− F (x(2))

F (x(1))− η1

)
.

For the last series, we use Lemma 3.3.3 to derive the inequality F (x(`))− ηk ≥ ε/2, which

must hold at every iteration at which the stopping test is not satisfied. We use it instead

33

of (3.33) in our analysis, and we obtain

nL ≤ 1 +
1

ln(γ)
ln

(
β

3

ε

F (x(L−1))− F (x(L))

)
.

We aggregate the total number of null steps for different proximal centers and we obtain

the following bound:

L∑
`=1

n` ≤
1

ln(γ)

[
ln(ᾱ) + (L− 2) ln

(
2βᾱ

3

)
+ ln

(
β

3

)
+ ln

(
ε

F (x1)− η1

)]
+ L. (3.35)

Let us recall the definition of γ in (3.28), and denote

C =
(1− β)2

2M
,

so that γ = 1 − εC. Since ln(1 − εC) < −εC, we derive the following inequality for the

number of null steps:

L∑
`=1

n` ≤
1

−εC

[
ln(ᾱ) + (L− 2) ln

(
2βᾱ

3

)
+ ln

(
β

3

)
+ ln

(
ε

F (x1)− η1

)]
+ L. (3.36)

Let us now derive an upper bound on the number L of proximal points. By virtue of (3.5)

and (3.8), descent steps are made only if

F (xk)− F (x∗) ≥ βε;

otherwise, the method must stop. To explain it more specifically, if F (xk) − F (x∗) ≤ βε,

then F (xk) − F (zk+1) ≤ βε. If a descent step is made, F (zk+1) ≤ F (xk) − βvk. Then

βvk ≤ βε, vk ≤ ε. Thus we cannot make a descent step because the algorithm has already

stopped, which contradicts our assumption. It follows from Lemma 3.4.2, that

(1− ᾱβ)L−1
(
F (x1)− F (x∗)

)
≥ βε.

Therefore,

L ≤ 1 +
ln(βε)− ln

(
F (x1)− F (x∗)

)
ln(1− ᾱβ)

. (3.37)

As a result, we have the final bound for the total number of descent and null steps:

L− 1 +

L∑
`=1

n`

≤ 1

εC

[
ln
(
F (x1)−F (x∗)(1−ᾱβ)

βε

)
ln(1− ᾱβ)

ln

(
2βᾱ

3

)
+ ln(

1

ᾱ
) + ln

(
3

β

)

ln

(
F (x1)− η1

ε

)]
+ 2

ln(βε)− ln
(
F (x1)− F (x∗)

)
ln(1− ᾱβ)

+ 1.

(3.38)

34

Therefore in order to achieve precision ε, the number of steps needed is of order

L+

L∑
`=1

n` ∼ O

(
1

ε
ln

(
1

ε

))
.

This is almost equivalent to saying that given the number of iterations k, the precision of

the solution is approximately O(1/k).

This chapter is published in [DR17].

35

Chapter 4

Selective Linearization for Multi-Block Convex Optimization

4.1 Introduction

In recent years, we have seen extensive development of the theory and methods for structured

regularization, one of the most fundamental techniques to address the “big data” challenge.

The basic problem is to minimize the following objective function with two components

(blocks):

min
[
F (x) = f1(x) + f2(x)

]
, (4.1)

where f1(·) is the loss function and f2(·) is a penalty function that imposes structured

regularization to the model. Both functions are usually convex, but may be nonsmooth.

Many data mining and machine learning problems can be cast within this framework, and

efficient methods were proposed for these problems. The first group are the operator splitting

methods originating from [DR56] and [PR55], and later developed and analyzed by [BC11,

Com09, EB92, LM79], among others. Their dual versions, known as Alternating Direction

Methods of Multipliers (ADMM) (see, [GM76, GM75, GT89]), found many applications in

signal processing (see, e.g., [BPC+10, CP11], and the references therein). Sometimes, they

are called split Bregman methods (see, e.g., [GO09, YX11]).

The Alternating Linearization Method (ALIN) of [KRR99] handles problems of form

(4.1) by introducing an additional improvement test to the operator splitting methods,

which decides whether the proximal center should be updated or stay unchanged, and which

of the operator splitting formulas should be applied at the current iteration. Its convergence

mechanism is different than that of the splitting methods; it adapts some ideas of bundle

methods of nonsmooth optimization [HUL93, Kiw85, Rus06]. The recent application of

ALIN to structured regularization problems in [LPR14] proved very successful, with fast

36

convergence, good accuracy, and scalability to very large dimensions. In may be worth

noticing that the recent application of the idea of alternating linearization by [GMS13]

removes the update test from the method of [KRR99], thus effectively reducing it to an

operator splitting method.

Most of existing techniques for structured regularization are designed to handle the

two-block problem of form (4.1).

In this section, we plan to extend the ALIN framework to optimization problems involv-

ing multiple components. Namely, we aim to solve the following problem:

min
{
F (x) =

N∑
i=1

fi(x)
}
, (4.2)

with convex (possibly nondifferentiable) functions fi : Rn → R, i = 1, . . . , N , where the

number of component functions, N , may be arbitrarily large. We only assume that the

minimum exists.

In a typical application, f1(·) may be the loss function, similar to problem (4.1), while

the penalty function is a sum of multiple components. This type of generalization has many

practical applications, including low rank matrix completion, compressed sensing, dynamic

network analysis, and computer vision.

To the best of the authors’ knowledge, It is known that a direct generalization of the

ADMM to three or more blocks may fail to converge [CHYY14]. A known way is to introduce

N copies x1 = x2 = · · · = xN of x, and reduce the problem to the two-function case in the

space RnN [CP11]:

min
N∑
i=1

fi(x
i) + I(x1, . . . , xN)

with I(·) denoting the indicator function of the subspace x1 = x2 = · · · = xN . Similar ideas

were used in stochastic programming, under the name of Progressive Hedging [RW91]. A

method for three blocks with one function being differentiable was theoretically analyzed

in [CP12, Vu13].

Our new algorithm, which we call the Selective Linearization Method (SLIN), does not

replicate the decision variables. It generates a sequence of points xk ∈ Rn with a monotonic

sequence of corresponding function values
{
F (xk)

}
. At each iteration, it linearizes all but

37

one of the component functions and uses a proximal term penalizing for the distance to

the last iterate. In a sense, each step is a backward step of the form employed in operator

splitting. The order of processing the functions is not fixed; the method uses precise criteria

for selecting the function to be treated exactly at the current step. It also employs special

rules for updating the proximal center. These two rules distinguish our approach from the

simultaneously proposed incremental proximal method of [Ber15], which applies to smooth

functions only, and achieves linear convergence rate in this case.

The algorithm is a multi-block extension of the Alternating Linearization method for

solving two-block nonsmooth optimization problems. Global convergence and convergence

rate of the new algorithm are proved. Specifically, the new algorithm is proven to require

at most O
(

ln(1/ε)/ε
)

iterations to achieve solution accuracy ε. when the functions fi(·)

are smooth

In section 4.2, we present the method. And we prove its global convergence in section

4.3. The convergence rate is derived in section 4.4.

4.2 The SLIN Method

Our method derives from two fundamental ideas of convex optimization: the Moreau–Yosida

regularization of F (·),

FD(y) = min
{
F (x) +

1

2

∥∥x− y∥∥2

D

}
, (4.3)

and the proximal step for (4.2),

proxF (y) = arg min
{
F (x) +

1

2

∥∥x− y∥∥2

D

}
. (4.4)

In the formulas above, the norm ‖x‖D =
(
〈x,Dx〉

)1/2
with a positive definite matrix D. In

applications, we shall use a diagonal D, which leads to major computational simplifications.

The proximal point method carries out the iteration xk+1 = proxF (xk), k = 1, 2, . . . and is

known to converge to a minimum of F (·), if a minimum exists [Roc76].

The main idea of our method is to replace problem (4.2) with a sequence of approximate

problems of the following form:

min
x
fjk(x) +

∑
i 6=jk

f̃ki (x) +
1

2

∥∥x− xk∥∥2

D
. (4.5)

38

Here k = 1, 2, . . . is the iteration number, xk is the current best approximation to the

solution, jk ∈ {1, . . . , N} is an index selected at iteration k, and f̃ki are affine minorants of

the functions fi, i ∈ {1, . . . , N} \ {jk}. These minorants are constructed as follows:

f̃ki (x) = fi(z
k
i) + 〈gki , x− zki 〉,

with some points zki ∈ Rn and specially selected subgradients gki ∈ ∂fi(zki). Thus, problem

(4.5) differs from the proximal point problem in (4.3) by the fact that only one of the func-

tions fi(·) is treated exactly, while the other functions are replaced by affine approximations.

The key elements of the method are the selection of the index jk, the way the affine

approximations are constructed, and the update rule for the proximal center xk. In formula

(4.5) and in the algorithm description below we write simply i 6= jk for i ∈ {1, . . . , N}\{jk}.

We also write j in place of jk; it will not lead to any misunderstanding.

We denote the function approximating F (x) in (4.5) by

F̃ k(x) = fjk(x) +
∑
i 6=jk

f̃ki (x).

Selective Linearization (SLIN) Algorithm

Step 0: Set k = 1 and j1 ∈ {1, . . . , N}, select x1 ∈ Rn and, for all i 6= j1, linearization

points z1
i ∈ Rn where the corresponding subgradients g1

i ∈ ∂fi(z1
i) exist. Define f̃1

i (x) =

fi(z
1
i) + 〈g1

i , x − z1
i 〉 for i 6= j1. Choose parameters β ∈ (0, 1), and a stopping precision

ε > 0.

Step 1: Find the solution zkjk of the fjk -subproblem (4.5) and define

gkjk = −
∑
i 6=jk

gki −D(zkjk − x
k). (4.6)

Step 2: If

F (xk)− F̃ k(zkjk) ≤ ε, (4.7)

then stop. Otherwise, continue.

Step 3: If

F (zkjk) ≤ F (xk)− β
(
F (xk)− F̃ k(zkjk)

)
, (4.8)

then set xk+1 = zkjk (descent step); otherwise set xk+1 = xk (null step).

39

Step 4: Select

jk+1 = arg max
i 6=jk

{
fi(z

k
jk

)− f̃ki (zkjk)
}
. (4.9)

For all i 6= jk+1, set zk+1
i = zki and gk+1

i = gki (so that f̃k+1
i (·) ≡ f̃ki (·)). Increase k by 1

and go to Step 1.

Few comments are in order. Since the point zkjk is a solution of the subproblem (4.5),

the vector gkjk calculated in (4.6) is indeed a subgradient of fjk at zkjk ; in fact, it is exactly

the subgradient that features in the optimality condition for (4.5) at zkjk . Therefore, at all

iterations, the functions f̃ki (·) are minorants of the functions fi(·). This in turn implies that

F̃ k(·) is a lower approximation of F (·). Consequently, F (xk) − F̃ k(zkjk) ≥ 0 in (4.7), with

F (xk) = F̃ k(zkjk) equivalent to xk being the minimizer of F (·).

In practical implementation of the algorithm, the points zki need not be stored. It is

sufficient to memorize αki = fi(z
k
i)−〈gki , zki 〉 and the subgradients gki . At Step 4, we then set

αk+1
i = αki and gk+1

i = gki for all i ∈ {1, . . . , N} \ {jk, jk+1}, while αk+1
jk

= fi(z
k
i)− 〈gki , zki 〉.

For jk+1 these data are not needed, because the function fjk+1
(·) will not be linearized at

the next iteration.

In some cases, the storage of the subgradients gki may be substantially simplified.

Example 4.2.1. Suppose

F (x) =
N∑
i=1

ϕi(a
T
i x),

with convex functions ϕi : R → R and ai ∈ Rn, i − 1, . . . , n. Then every subgradient of

fi(x) = ϕi(a
T
i x) has the form gki = σki ai, with σki ∈ ∂ϕi(aTi zki). The scalars σki are sufficient

for recovering the subgradients, because the vectors ai are part of the problem data.

4.3 Global convergence

We assume that ε = 0 in Step 2. To prove convergence of the algorithm, we consider two

cases: with finitely or infinitely many descent steps.

We first address the finite case and show that the proximal center updated in the last

descent step must be an optimal solution to problem (4.2). To this end, we prove that if a

null step is made at iteration k, then the optimal objective function values of consecutive

40

subproblems are increasing and the gap is bounded below by a value determined by

vk = F (xk)− F̃ k(zkjk). (4.10)

We shall also use this result in the proof of convergence rate.

We denote the optimal objective function value of subproblem (4.5) at iteration k by

ηk = min
x
fjk(x) +

∑
i 6=jk

f̃ki (x) +
1

2

∥∥x− xk∥∥2

D
.

Lemma 4.3.1. If a null step is made at iteration k, then

ηk+1 ≥ ηk +
1− β

2(N − 1)
µ̄kvk, (4.11)

where

µ̄k = min
{

1,
(1− β)vk

(N − 1)‖skjk+1
− gkjk+1

‖2
D−1

}
, (4.12)

with an arbitrary skjk+1
∈ ∂fjk+1

(zkjk).

Proof. The change from the fjk -subproblem to the fjk+1
-subproblem can be viewed as two

steps: first is the change of fjk(·) to f̃kjk(·), followed by the change of f̃kjk+1
(·) to fjk+1

(·).

By the selection of the subgradient (4.6) and the resulting construction of f̃kjk(·), the first

operation does not change the solution and the optimal value of the subproblem. Thus the

optimal value of (4.5) satisfies the following equation:

ηk = min
x

N∑
i=1

f̃ki (x) +
1

2

∥∥x− xk∥∥2

D
. (4.13)

Since xk+1 = xk at a null step, and fjk+1
≥ f̃kjk+1

, the second operation can only increase

the optimal value of the last problem. Therefore, ηk+1 ≥ ηk.

Consider the family of relaxations of the fjk+1
-subproblem at iteration k + 1:

Q̂k(µ) = min
x

{ ∑
i 6=jk+1

f̃k+1
i (x) + (1− µ)

(
fjk+1

(zkjk+1
) + 〈gkjk+1

, x− zkjk+1
〉
)

+ µ
(
fjk+1

(zkjk) + 〈skjk+1
, x− zkjk〉

)
+

1

2

∥∥x− xk∥∥2

D

}
,

(4.14)

with parameter µ ∈ [0, 1]. In the above relaxation, the function fjk+1
(·) is replaced by a

convex combination of its two affine minorants: one at the point zkjk+1
, which is f̃kjk+1

(·) used

at iteration k, and the other one at the kth trial point zkjk , with an arbitrary subgradient

41

skjk+1
. Due to (4.13), the value of (4.14) with µ = 0 coincides with ηk. Therefore, the

difference between ηk+1 and ηk can be estimated from below by the increase in the optimal

value Q̂k(µ) of (4.14) when µ moves away from zero. That is,

ηk+1 − ηk ≥ max
µ∈[0,1]

Q̂k(µ)− Q̂k(0). (4.15)

Define δk = F (zkjk)− F̃ k(zkjk). Note that δk ≥ 0, since fi ≥ f̃ki for i 6= jk. We also define

µk = min
{

1, δk

(N−1)
∥∥skjk+1

−gkjk+1

∥∥2

D−1

}
, so µk ∈ [0, 1].

Here we use the fact of parametric optimization (see Danskin’s theorem in [Ber03]). By

direct calculation, and with the use of (4.6), the solution of (4.14) has the form

x̂(µ) = xk −D−1
[N∑
i=1

gki + µ
(
skjk+1

− gkjk+1

)]
= zkjk − µD

−1
(
skjk+1

− gkjk+1

)
.

Using the definitions following (4.14) and the fact that x̂(0) = zkjk , the derivative of Q̂k

can be expressed as first differentiate with respect to µ and then substitute x̂(µ) to the

derivative as follows:

Q̂′k(µ) = 〈skjk+1
− gkjk+1

, x̂(µ)〉

+
(
fjk+1

(zkjk)− 〈skjk+1
, zkjk〉

)
−
(
fjk+1

(zkjk+1
)− 〈gkjk+1

, zkjk+1
〉
)

= 〈skjk+1
− gkjk+1

, x̂(µ)− zkjk〉

+ fjk+1
(zkjk)−

(
fjk+1

(zkjk+1
) + 〈gkjk+1

, zkjk − z
k
jk+1
〉
)

≥ 〈skjk+1
− gkjk+1

, x̂(µ)− zkjk〉+
F (zkjk)− F̃ k(zkjk)

N − 1

= −µ
∥∥skjk+1

− gkjk+1

∥∥2

D−1 +
δk

N − 1
.

(4.16)

In the inequality above, we used the definition (4.9) of jk+1 and the fact that the maximum

of the differences fj(z
k
jk

)− f̃kj (zkjk) over j 6= jk is larger than their average. Thus

Q̂k(µk)− Q̂k(0) =

∫ µk

0
Q̂′k(µ) dµ ≥ µk

(
δk

N − 1
− 1

2
µk
∥∥skjk+1

− gkjk+1

∥∥2

D−1

)
. (4.17)

Substitution of the definition of µk yields

ηk+1 ≥ ηk +
µkδk

2(N − 1)
. (4.18)

If a null step is made at iteration k, then the update step rule (4.8) is violated. Thus,

δk = F (zkjk) − F̃ k(zkjk) > (1 − β)vk. Plugging this lower bound on δk into (4.18) and using

the definition of µ̄k, we obtain the postulated bound (4.11).

42

Finally, we remark that skjk+1
6= gkjk+1

, because fjk+1
(zkjk) > f̃kjk+1

(zkjk).

We also need to estimate the size of the steps made by the method.

Lemma 4.3.2. At every iteration k,

1

2

∥∥zkjk − proxF (xk)
∥∥2

D
≤ FD(xk)− ηk. (4.19)

Proof. Since F (·) ≥ F̃ k(·) and zkjk is a solution of the strongly convex problem (4.5), we

have

FD(xk) = F
(

proxF (xk)
)

+
1

2

∥∥proxF (xk)− xk
∥∥2

D

≥ F̃ k
(

proxF (xk)
)

+
1

2

∥∥proxF (xk)− xk
∥∥2

D

≥ F̃ k(zkjk) +
1

2

∥∥zkjk − xk∥∥2

D
+

1

2

∥∥zkjk − proxF (xk)
∥∥2

D

= ηk +
1

2

∥∥zkjk − proxF (xk)
∥∥2

D
.

(4.20)

Rearranging, we obtain (4.19).

We are now ready to prove optimality in the case of finitely many descent steps.

Theorem 4.3.1. Suppose ε = 0, the set K = {1} ∪ {k > 1 : xk 6= xk−1} is finite and

inf F > −∞. Let m ∈ K be the largest index such that xm 6= xm−1. Then xm ∈ ArgminF .

Proof. We argue by contradiction. Suppose xm /∈ ArgminF . If ε = 0 the method cannot

stop, because F̃ k(zkjk) ≤ F (proxF (xm)) < F (xm), for all k ≥ m. Therefore, null steps

are made at all iterations k ≥ m, with xk = xm. By Lemma 4.3.1, the sequence {ηk}

is nondecreasing and bounded above by F (xm). Hence ηk+1 − ηk → 0. The right hand

side of estimate (4.19) with xk = xm for k ≥ m, owing to the monotonicity of {ηk}, is

nonincreasing, and thus the sequence {zkjk} is bounded. Since the subgradients of a finite-

valued convex function are locally bounded (see Theorem 23.4 in [Roc70]), the differences∥∥skjk+1
−gkjk+1

∥∥
D−1 appearing in the definition of µ̄k in Lemma 4.3.1 are bounded from above.

Therefore, vk → 0. As F (xm) ≥ ηk ≥ F (xm)− vk, we have ηk ↑ F (xm).

On the other hand, the inequality F̃ k(·) ≤ F (·) implies that ηk ≤ FD(xm) for all k ≥ m.

Since xm /∈ ArgminF , we have FD(xm) < F (xm), which contradicts the convergence of {ηk}

to F (xm).

43

We now address the infinite case. Note that the update test (4.8) can be expressed as

follows:

F̃ k(zkjk) ≥ − 1

β
F (zkjk) +

1− β
β

F (xk). (4.21)

Theorem 4.3.2. Suppose ArgminF 6= ∅. If the set K = {k : xk+1 6= xk} is infinite, then

limk→∞ x
k = x∗, for some x∗ ∈ ArgminF .

Proof. Consider iteration k ∈ K (descent step). From the optimality condition for (4.5) we

obtain

0 ∈ ∂
[
fjk(zkjk) +

∑
i 6=jk

f̃ki (zkjk)
]

+D
(
zkjk − x

k
)
, (4.22)

which yields

D(xk − xk+1) ∈ ∂
[
fjk(zkjk) +

∑
i 6=jk

f̃ki (zkjk)
]
. (4.23)

Then for any point x∗ ∈ ArgminF we obtain

F (x∗) ≥ F̃ k(x∗) ≥ F̃ k(xk+1) +
〈
D(xk − xk+1), x∗ − xk+1

〉
. (4.24)

Hence

∥∥xk+1 − x∗
∥∥2

D
=
∥∥xk − x∗∥∥2

D
+ 2
〈
D(xk+1 − xk), xk − x∗

〉
+
∥∥xk+1 − xk

∥∥2

D

≤
∥∥xk − x∗∥∥2

D
+ 2
〈
D(xk+1 − xk), xk+1 − x∗

〉
≤
∥∥xk − x∗∥∥2

D
+ 2
(
F (x∗)− F̃ k(xk+1)

)
.

Using (4.21), we can continue this chain of inequalities as follows∥∥xk+1 − x∗
∥∥2

D
≤
∥∥xk − x∗∥∥2

D
+ 2
(
F (x∗)− 1

β
F (xk+1) +

1− β
β

F (xk)
)

=
∥∥xk − x∗∥∥2

D
+ 2
(
F (x∗)− F (xk)

)
+

2

β

(
F (xk)− F (xk+1)

)
.

(4.25)

Thus, adding up (4.25) for all k ∈ K, k ≤ m, and noting that the null steps do not change

the proximal centers, we obtain

∥∥xm+1− x∗
∥∥2

D
≤
∥∥x1− x∗

∥∥2

D
+ 2

∑
k∈K
k≤m

(
F (x∗)−F (xk)

)
+

2

β

∑
k∈K
k≤m

(
F (xk)−F (xk+1)

)
. (4.26)

The term 2
∑

k∈K,k≤m
(
F (x∗) − F (xk)

)
is non-positive, and the last term is bounded by

2
β

(
F (x1) − F (x∗)

)
. Thus, several conclusions follow from inequality (4.26). First, the se-

quence {xk}k∈K is bounded, because their distances to x∗ are bounded. Secondly, rewriting

44

(4.26) as

∑
k∈K,k≤m

(
F (xk)− F (x∗)

)
≤ 1

2

(∥∥x1 − x∗
∥∥2

D
−
∥∥xm+1 − x∗

∥∥2

D

)
+

1

β

(
F (x1)− F (xm+1)

)
,

and letting m→∞ in K, we deduce that

∑
k∈K

(
F (xk)− F (x∗)

)
≤ 1

2

∥∥x1 − x∗
∥∥2

D
+

1

β

(
F (x1)− F (x∗)

)
. (4.27)

Consequently, F (xk)→ F (x∗) as k →∞ in K. As the null steps do not change the proximal

centers, we also have F (xk)→ F (x∗), when k →∞.

To prove that the sequence of proximal centers converges to an optimal solution, note

that since the infinite sequence {xk}k∈K is bounded, it has a convergent subsequence whose

limit x̂ is a minimizer of F . Without loss of generality, we substitute x̂ for x∗ in the above

derivations, and add (4.25) for all k ∈ K such that ` ≤ k ≤ m. For any 1 ≤ ` ≤ m we

obtain the following analog of (4.26):

∥∥xm+1 − x̂
∥∥2

D
≤
∥∥x` − x̂∥∥2

D
+ 2

∑
k∈K
k≤m

(
F (x̂)− F (xk)

)
+

2

β

∑
k∈K
k≤m

(
F (xk)− F (xk+1)

)
≤
∥∥x` − x̂∥∥2

D
+

2

β

(
F (x`)− F (x̂)

)
.

The right hand side of the last inequality can be made arbitrarily small by choosing ` from

the subsequence converging to x̂. Therefore the entire sequence {xk}k∈K is convergent to

x̂.

We finish this section with a number of conclusions, which will be useful in the analysis

of the rate of convergence.

Lemma 4.3.3. If there is a descent step at iteration k, then

ηk+1 − ηk ≥ −
∥∥xk+1 − xk

∥∥2

D
≥ 1

β

(
F (xk+1)− F (xk)

)
. (4.28)

Proof. By (4.6),
N∑
i=1

gki +D(xk+1 − xk) = 0. (4.29)

45

The optimal value of (4.5) at iteration k + 1 can be then estimated as follows:

ηk+1 = min
x

{
fjk+1

(x) +
∑
i 6=jk+1

f̃k+1
i (x) +

1

2

∥∥x− xk+1
∥∥2

D

}

≥ min
x

{ N∑
i=1

f̃k+1
i (x) +

1

2

∥∥x− xk+1
∥∥2

D

}

=
N∑
i=1

f̃k+1
i (xk+1) + min

x

{〈 N∑
i=1

gki , x− xk+1
〉

+
1

2

∥∥x− xk+1
∥∥2

D

}
= F̃ k(xk+1) + min

x

{
−
〈
D(xk+1 − xk), x− xk+1

〉
+

1

2

∥∥x− xk+1
∥∥2

D

}
.

The minimizer on the right hand side is x = 2xk+1 − xk, and we conclude that

ηk+1 ≥ F̃ k(xk+1)− 1

2

∥∥xk+1 − xk
∥∥2

D
= ηk −

∥∥xk+1 − xk
∥∥2

D
,

which proves the left inequality in (4.28). To prove the right inequality, we observe that

the test (4.8) for the descent step is satisfied at iteration k, and thus

F (xk)− F (xk+1) ≥ β
(
F (xk)− F̃ k(xk+1)

)
≥ β

(
F̃ k(xk)− F̃ k(xk+1)

)
.

The expression on the right hand side can be calculated with the use of (4.29), exactly as

in the derivations above, which yields

F (xk)− F (xk+1) ≥ β
∥∥xk+1 − xk

∥∥2

D
.

This proves the right inequality in (4.28).

We can now summarize convergence properties of the sequences generated by the algo-

rithm.

Corollary 4.3.1. Suppose ArgminF 6= ∅ and ε = 0. Then a point x∗ ∈ ArgminF exists,

such that:

(i) lim
k→∞

xk = lim
k→∞

zkjk = x∗;

(ii) lim
k→∞

ηk = F (x∗).

Proof. The convergence of {xk} to a minimum point x∗ has been proved in Theorems 4.3.1

and 4.3.2. It remains to verify the convergence properties of {zkjk} and {ηk}. It follows from

Lemmas 4.3.1 and 4.3.3 that the sequence ηk − 1
βF (xk) is nondecreasing. Since ηk ≤ F (xk)

46

by construction, the sequence ηk is bounded from above, and thus convergent. Therefore, a

limit η∗ of {ηk} exists and η∗ ≤ F (x∗). If the number of descent steps is finite, the equality

η∗ = F (x∗) follows from Theorem 4.3.1. If the number of descent steps is infinite, inequality

(4.8) at each descent step k yields:

F (xk)− ηk ≤ F (xk)− F̃ k(xk+1) ≤ 1

β

(
F (xk)− F (xk+1)

)
.

Passing to the limit over descent steps k →∞ we conclude that η∗ ≥ F (x∗). Consequently,

η∗ = F (x∗) and assertion (ii) is true.

The convergence of the sequence {zkjk} to x∗ follows from inequality (4.19), because

xk → x∗ and ηk → F (x∗).

4.4 Rate of Convergence

Our objective in this section is to estimate the rate of convergence of the method. To this

end, we assume that ε > 0 at Step 2 (inequality (4.7)) and we estimate the number of

iterations needed to achieve this accuracy. We also make an additional assumption about

the growth rate of the function F (·).

Assumption 4.4.1. The function F (·) has a unique minimum point x∗ and a constant

α > 0 exists, such that

F (x)− F (x∗) ≥ α
∥∥x− x∗∥∥2

D
,

for all x ∈ Rn.

Assumption 4.4.1 has a number of implications on the properties of the method. First, we

recall from [Rus06, Lem. 7.12] the following estimate of the Moreau–Yosida regularization.

Lemma 4.4.1. For any point x ∈ Rn, we have

FD(x) ≤ F (x)−
∥∥x− x∗∥∥2

D
ϕ

(
F (x)− F (x∗)∥∥x− x∗∥∥2

D

)
, (4.30)

where

ϕ(t) =

t2 if t ∈ [0, 1],

−1 + 2t if t ≥ 1.

47

Proof. See [Rus06, Lem. 7.12].

Lemma 4.4.2. Suppose Assumption 4.4.1 is satisfied. Then the stopping test (4.7) implies

that

F (xk)− F (x∗) ≤ ε

min(α, 1)
. (4.31)

Proof. As F̃ k(·) ≤ F (·), the stopping criterion implies that

FD(xk) = min
x

{
F (x) +

1

2

∥∥x− xk∥∥2

D

}
≥ min

x

{
F̃ k(x) +

1

2

∥∥x− xk∥∥2

D

}
= F̃ k(zkjk) +

1

2

∥∥zkjk − xk∥∥2

D
≥ F (xk)− ε.

(4.32)

Consider two cases.

Case 1: If F (xk)− F (x∗) ≤
∥∥xk − x∗∥∥2

D
, then (4.30) with x = xk yields

FD(xk) ≤ F (xk)−
(
F (xk)− F (x∗)

)2∥∥xk − x∗∥∥2

D

.

Combining this inequality with (4.32), we conclude that(
F (xk)− F (x∗)

)2∥∥xk − x∗∥∥2

D

≤ ε. (4.33)

Substitution of the denominator by the upper estimate (F (xk)− F (x∗))/α implies (4.31).

Case 2: F (xk)− F (x∗) >
∥∥xk − x∗∥∥2

D
. Then (4.30) yields

FD(xk) ≤ F (xk)− 2
(
F (xk)− F (x∗)

)
+
∥∥xk − x∗∥∥2

D
.

With a view to (4.32), we obtain

2
(
F (xk)− F (x∗)

)
−
∥∥xk − x∗∥∥2

D
≤ ε,

which implies that F (xk)− F (x∗) ≤ ε in this case.

Lemma 4.4.3. Suppose Assumption 4.4.1 is satisfied. Then at any iteration k we have

F (xk)− ηk ≥ 2ϕ(α)

1 + 2ϕ(α)

(
F (xk)− F (x∗)

)
.

Proof. By Lemma 4.3.2,

F (xk)− ηk ≥ F (xk)− FD(xk).

48

To derive a lower bound for the right hand side of the last inequality, we use Assumption

4.4.1 in (4.30) with x = xk. We obtain

FD(xk) ≤ F (xk)−
∥∥xk − x∗∥∥2

D
ϕ(α). (4.34)

By the definition of the Moreau–Yosida regularization, for any optimal solution x∗ we have

F (x∗) +
1

2

∥∥x∗ − xk∥∥2

D
≥ FD(xk),

and thus ∥∥xk − x∗∥∥2

D
≥ 2
(
FD(xk)− F (x∗)

)
.

Substitution to (4.34) yields

F (xk)− FD(xk) ≥ 2
(
FD(xk)− F (x∗)

)
ϕ(α),

which can be manipulated to

F (xk)− FD(xk) ≥ 2ϕ(α)

1 + 2ϕ(α)
(F (xk)− F (x∗)

)
.

This can be combined with the first inequality in the proof, to obtain the desired result.

In order to estimate the number of iterations of the method needed to achieve the pre-

scribed accuracy, we need to consider two aspects. First, we prove linear rate of convergence

between descent steps. Then, we estimate the numbers of null steps between consecutive

descent steps.

By employing the estimate of Lemma 4.4.2, we can address the first aspect. To simplify

notation, with no loss of generality, we assume that α ∈ (0, 1] (otherwise, we would have to

replace α with ᾱ = min(α, 1) in the considerations below).

Lemma 4.4.4. Suppose x∗ is the unique minimum point of F (·) and Assumption 4.4.1 is

satisfied. Then at every descent step k, when the update step rule (4.8) is satisfied, we have

the inequality:

F (zkjk)− F (x∗) ≤ (1− αβ)
(
F (xk)− F (x∗)

)
. (4.35)

Proof. It follows from the update rule (4.8) that

F (zkjk) ≤ F (xk)− β
(
F (xk)− F̃ k(zkjk)

)
.

49

Using Lemma 4.4.2 with ε = F (xk)− F̃ k(zkjk), we obtain

F (xk)− F (x∗) ≤ 1

α

(
F (xk)− F̃ k(zkjk)

)
.

Combining these inequalities and simplifying, we conclude that

F (zkjk) ≤ (1− β)F (xk) + β
(
αF (x∗)− αF (xk) + F (xk)

)
= F (xk)− αβ

(
F (xk)− F (x∗)

)
.

Subtracting F (x∗) from both sides, we obtain the linear rate (4.35).

We now pass to the second issue: the estimation of the number of null steps between

two consecutive descent steps. We shall base it on the analysis of the gap F (xk)− ηk.

By virtue of Corollary 4.3.1, the sequence points {zkjk} generated by the algorithm

are uniformly bounded. Since subgradients of finite-valued convex functions are locally

bounded, the subgradients of all fjk are bounded, and thus a constant M exists, such that∥∥skjk+1
− gkjk+1

∥∥2

D−1 ≤M

at all null steps. With no loss of generality, we assume that ε ≤ (N − 1)M .

Lemma 4.4.5. If a null step is made at iteration k, then

F (xk)− ηk+1 ≤ γ
(
F (xk)− ηk

)
, (4.36)

where

γ = 1− 1

2

(
1− β
N − 1

)2 ε

M
. (4.37)

Proof. By Lemma 4.3.1, we have

F (xk)− ηk+1 ≤ F (xk)− ηk − 1− β
2(N − 1)

µ̄kvk. (4.38)

On the other hand,

vk = F (xk)− F̃ k(zkjk) = F (xk)− ηk +
1

2

∥∥zkjk − xk∥∥2

D
≥ F (xk)− ηk. (4.39)

Combining the last two inequalities, we conclude that

F (xk)− ηk+1 ≤ F (xk)− ηk − 1− β
2(N − 1)

µ̄k
(
F (xk)− ηk

)
=

(
1− 1− β

2(N − 1)
µ̄k

)(
F (xk)− ηk

)
.

(4.40)

50

Consider the definition (4.12) of µ̄k in Lemma 4.3.1. If µ̄k = 1, then 1 − 1−β
2(N−1) µ̄k is no

greater than the bound (4.37), because ε ≤ (N−1)M . Otherwise, µ̄k is given by the second

case in (4.12). Since the algorithm does not stop, we have vk > ε, and thus

µ̄k ≥
(1− β)ε

(N − 1)M
.

Substitution to (4.40) yields (4.37).

Let x(`−1), x(`), x(`+1) be three consecutive proximal centers in the algorithm (` ≥ 2).

We want to bound the number of iterations with the proximal center x(`). To this end, we

bound two quantities:

1. The optimal objective value of the first subproblem with proximal center x(`), whose

iteration number we denote by k(`):

ηk(`) = min fjk(`)(x) +
∑
i 6=jk(`)

f̃
k(`)
i (x) +

1

2

∥∥x− x(`)
∥∥2

D
. (4.41)

We need an upper bound for F (x(`))− ηk(`).

2. The optimal objective value of the last subproblem with proximal center x(`), occur-

ring at iteration k′(`) = k(`+ 1)− 1:

ηk
′(`) = min fjk′(`)(x) +

∑
i 6=jk′(`)

f̃
k′(`)
i (x) +

1

2

∥∥x− x(`)
∥∥2

D
. (4.42)

We need an upper bound for F (x(`))− ηk′(`) which implies the update rule (4.8).

In the following we discuss each issue separately.

Recall that according to the algorithm, x(`) is the optimal solution of the last subproblem

with proximal center x(`−1). Let fjk(`)−1
be the non-linearized component function of the

last subproblem with proximal center x(`−1), whose optimal solution is x(`). The optimal

value of the subproblem (4.5) is

ηk(`)−1 = fjk(`)−1
(x`) +

∑
i 6=jk(`)−1

f̃
k(`)−1
i (x(`)) +

1

2

∥∥x(`) − x(`−1)
∥∥2

D
. (4.43)

Lemma 4.4.6. If a descent step is made at iteration k(`)− 1, then

F (x(`))− ηk(`) ≤ 3

2β

(
F (x(`−1))− F (x(`))

)
. (4.44)

51

Proof. The left inequality in (4.28) yields

ηk(`) ≥ ηk(`)−1 −
∥∥x(`) − x(`−1)

∥∥2

D
.

Since F (x(`)) ≤ F (x(`−1)), we obtain

F (x(`))− ηk(`) ≤ F (x(`−1))− ηk(`)−1 +
∥∥x(`) − x(`−1)

∥∥2

D
.

As iteration k(`)− 1 is a descent step, the update rule (4.8) holds. Thus

F (x(`−1))− ηk(`)−1 =
[
F (x(`−1))− F̃ k(`)−1(x(`))

]
− 1

2

∥∥x(`) − x(`−1)
∥∥2

D

≤ 1

β

[
F (x(`−1))− F (x(`))

]
− 1

2

∥∥x(`) − x(`−1)
∥∥2

D
.

Combining the last two inequalities we obtain

F (x(`))− ηk(`) ≤ 1

β

(
F (x(`−1))− F (x(`))

)
+

1

2

∥∥x(`) − x(`−1)
∥∥2

D
.

The right inequality in (4.28) can be now used to substitute
∥∥x(`) − x(`−1)

∥∥2

D
on the right

hand side to obtain (4.44).

We can now integrate our results.

Applying Lemma 4.4.3, we obtain the following inequality at every null step with prox

center x(`):

F (x(`))− ηk ≥ 2ϕ(α)

1 + 2ϕ(α)

(
F (x(`))− F (x∗)

)
≥ 2ϕ(α)

1 + 2ϕ(α)

(
F (x(`))− F (x(`+1))

)
.

(4.45)

From Lemma 4.4.6 we know that for ` ≥ 2 the initial value of the left hand side (immediately

after the previous descent step) is bounded from above by the following expression:

F (x(`))− ηk(`) ≤ 3

2β

(
F (x(`−1))− F (x(`))

)
. (4.46)

Lemma 4.4.5 established a linear rate of decrease of the left hand side. Therefore, the

number n` of null steps with proximal center x(`), if it is positive, satisfies the inequality:

3

2β

(
F (x(`−1))− F (x(`))

)
γn`−1 ≥ 2ϕ(α)

1 + 2ϕ(α)

(
F (x(`))− F (x(`+1))

)
.

Consequently, for ` ≥ 2 we obtain the following upper bound on the number of null steps:

n` ≤ 1 +
1

ln(γ)
ln

(
4βϕ(α)

3(1 + 2ϕ(α))

F (x(`))− F (x(`+1))

F (x(`−1))− F (x(`))

)
. (4.47)

52

If the number n` of null steps is zero, inequality (4.35) yields

F (x(`))− F (x(`+1))

F (x(`−1))− F (x(`))
≤ F (x(`))− F (x∗)

F (x(`−1))− F (x∗)−
(
F (x(`))− F (x∗)

) ≤ 1
1

1−αβ − 1
.

Elementary calculations prove that both logarithms on the right hand side of (4.47) are

negative, and thus inequality (4.47) is satisfied in this case as well.

Suppose there are L proximal centers appearing throughout the algorithm: x(1), x(2),

. . . , x(L). They divide the progress of the algorithm into L series of null steps. For the

first series, similarly to the analysis above, we use (4.45) and Lemma 4.4.5 to obtain the

estimate

n1 ≤ 1 +
1

ln(γ)
ln

(
2ϕ(α)

1 + 2ϕ(α)

F (x(1))− F (x(2))

F (x(1))− η1

)
. (4.48)

For the last series, we observe that the inequality F (x(`)) − ηk ≥ ε/2 has to hold at each

null step at which the stopping test was not satisfied. We use it instead of (4.45) and we

obtain

nL ≤ 1 +
1

ln(γ)
ln

(
β

3

ε

F (x(L−1))− F (x(L))

)
. (4.49)

We aggregate the total number of null steps for different proximal centers throughout the

algorithm and we obtain the following bound:

L∑
`=1

n` =
1

ln(γ)

[
ln

(
2ϕ(α)

1 + 2ϕ(α)

)
+ (ln

(
β

3

)
+ (L− 2) ln

(
4βϕ(α)

3(1 + 2ϕ(α))

)
+ ln

(
ε

F (x(1))− η1

)]
+ L

(4.50)

Let us recall the definition of γ in (4.37), and denote

C =
1

2

(
1− β
N − 1

)2 1

M
,

so that γ = 1 − εC. Since ln(1 − εC) < −εC, we derive the following inequality for the

number of null steps:

L∑
`=1

n` ≤
1

−εC

[
ln

(
2ϕ(α)

1 + 2ϕ(α)

)
+ ln

(
β

3

)
+ (L− 2) ln

(
4βϕ(α)

3(1 + 2ϕ(α))

)
+ ln

(
ε

F (x(1))− η1

)]
+ L.

(4.51)

Let us now derive an upper bound on the number L of proximal centers. By virtue of (4.7)

and (4.8), descent steps are made only if

F (xk)− F (x∗) ≥ βε;

53

otherwise, the method must stop. To explain it more specifically, if F (xk) − F (x∗) ≤ βε,

then F (xk) − F (zkjk) ≤ βε. If a descent step were made, F (zkjk) ≤ F (xk) − βvk. Then

βvk ≤ βε. Since vk ≤ ε, the algorithm would have already stopped, which contradicts our

assumption. It follows from Lemma 4.4.4, that

(1− αβ)L−1
(
F (x(1))− F (x∗)

)
≥ βε.

Therefore,

L ≤ 1 +
ln(βε)− ln

(
F (x1)− F (x∗)

)
ln(1− αβ)

. (4.52)

As a result, we have the final bound for the total number of descent and null steps:

L− 1 +

L∑
`=1

n` ≤
1

εC

[
ln F (x(1))−F (x∗)(1−αβ)

βε

ln(1− αβ)
ln

(
4βϕ(α)

3(1 + 2ϕ(α))

)

+ ln

(
1 + 2ϕ(α)

2ϕ(α)

)
+ ln

(
3

β

)
+ ln

(
F (x(1))− η1

ε

)]

+ 2
ln(βε)− ln

(
F (x(1))− F (x∗)

)
ln(1− αβ)

+ 1.

(4.53)

Therefore, in order to achieve precision ε, the number of steps needed is of order

L+

L∑
`=1

n` ∼ O

(
1

ε
ln

(
1

ε

))
.

This is almost equivalent to saying that given the number of iterations k, the precision of

the solution is approximately O(1/k).

This chapter is accepted to publish in SIAM Journal on Optimization at the time of

defense. The first version was submitted in [DLR15].

54

Chapter 5

Numerical Illustration

5.1 Application to structured regularized regression problems

In many areas in data mining and machine learning, such as computer vision and com-

pressed sensing, the resulting optimization models consist of a convex loss function and

multiple convex regularization functions, called the composite prior models in [HZLM11].

For example, in compressed sensing, the linear combination of the total variation (TV)

norm and L1 norm is a popular regularizer in recovering Magnetic Resonance (MR) images.

Formally, the models are formulated as follows:

min
x∈Rn

F (x) = f(x) +

N∑
i=1

hi(Bix), (5.1)

where f is the loss function to measure the goodness-of-fit of the data, while the functions

hi are regularization terms. All the functions are convex but not necessarily smooth.

The SLIN algorithm introduced in our paper can be directly applied to solve the general

problem (5.1). It can be further specialized to take advantage of additional features of the

functions involved. In the following subsection we discuss one such specialization.

5.1.1 Fused lasso regularization problem

The problem is defined as follows:

min
x

1

2

∥∥b−Ax∥∥2

2
+ λ1

∥∥x∥∥
1

+ λ2

p−1∑
j=1

∣∣xj+1 − xj
∣∣, (5.2)

where A is an m × n matrix, and λ1, λ2 > 0 are fixed parameters. This model contains

two regularization terms: the lasso penalty h1(x) = λ1‖x‖1, and the fused lasso penalty

h2(x) = λ2
∑

j |xj+1 − xj |. We denote the first function as f(x) := 1
2

∥∥b− Ax∥∥2

2
. In models

55

with a quadratic loss function, we found it convenient to use the matrix D = diag(ATA) in

the proximal term of the method [LPR14, Sec. 3].

In order to solve each subproblem, we need the gradient of f(·) and subgradients of the

regularization functions, which are readily available. Our method requires their explicit

calculation at the initial iteration only; at later iterations they are obtained implicitly, as

described in Step 1 of the algorithm.

With these, we can solve each subproblem iteratively.

The f-subproblem. Skipping the constants, the f -subproblem has the form:

min
x

1

2

∥∥b−Ax∥∥2

2
+ gTh1x+ gTh2x+

1

2

∥∥x− xk∥∥2

D
. (5.3)

This is a unconstrained quadratic optimization problem and its optimal solution can be

obtained by solving the following linear system of equations:

(ATA+D)x = AT b− gh1 − gh2 +DTxk.

It can be very efficiently solved by the preconditioned conjugate gradient method with

preconditioner D, as discussed in [LPR14, Sec. 3], because the condition index of the

system is uniformly bounded. Only matrix–vector multiplications are involved, facilitating

the use of a sparse structure of A. After the solution is obtained, the gradient of f(x) and

its linearization can be determined by Step 1 of the SLIN algorithm.

The h1-subproblem. The subproblem is defined as follows (ignoring the constants):

min
x
gTf x+ λ1

∥∥x∥∥
1

+ gTh2x+
1

2

∥∥x− xk∥∥2

D
. (5.4)

This problem is separable in the decision variables, with the following closed-form solution:

(xh1)i = sgn(τi) max
(

0, |τi| −
λ1

di

)
, i = 1, . . . , n.

Here τi = xki −
(gf)i+(gh2)i

di
.

The solution of the h1-subproblem gives a new subgradient of h1 at the minimal point.

The h2-subproblem. The subproblem is defined as follows (ignoring the constants):

min
x
gTf x+ gTh1x+ λ2

p−1∑
j=1

∣∣xj+1 − xj
∣∣+

1

2

∥∥x− xk∥∥2

D
.

56

Exactly as described in [LPR14], this problem can be equivalently formulated as a con-

strained optimization problem:

min
x,z

gTf x+ gTh1x+ λ2

∥∥z∥∥
1

+
1

2

∥∥x− xk∥∥2

D
, subject to Rx = z, (5.5)

with an (n− 1)×n matrix R representing the system zj = xj+1− xj , j = 1, . . . , n− 1. The

Lagrangian of problem (5.5) has the form

L(x, z, µ) = gTf x+ gTh1x+ λ2

∥∥z∥∥
1

+ µT (Rx− z) +
1

2

∥∥x− xk∥∥2

D
,

where µ is the dual variable. The minimum of the Lagrangian with respect to z is finite

if and only if
∥∥µ∥∥∞ ≤ λ2. Under this condition, the minimum value of the z-terms is zero

and we can eliminate them from the Lagrangian. We arrive to its reduced form,

L̂(x, µ) = gTf x+ gTh1x+ µTRx+
1

2

∥∥x− xk∥∥2

D
.

To calculate the dual function, we minimize L̂(x, µ) with respect to x. After elementary

calculations, we obtain the solution

x̃h2 = xk −D−1(gf + gh1 +RTµ).

Substituting it back to the Lagrangian, we obtain the following dual problem:

max
µ
−1

2
µTRD−1RTµ+ µTR(xk −D−1gf −D−1gh), subject to

∥∥µ∥∥∞ ≤ λ2.

This problem can be treated as a box-constrained quadratic programming problem, for

which many efficient algorithms are available, for example coordinate-wise optimization

[LPR14, Sec. 4]. Due to the structure of R, the computational effort per iteration is linear

in the problem dimension.

5.1.2 Overlapping group lasso problem

We consider the following problem

min
x

1

2Kλ

∥∥b−Ax∥∥2

2
+

K∑
j=1

dj
∥∥xGj∥∥2

(5.6)

where A ∈ Rm×n. This model contains the first function as f(x) := 1
2Kλ ||b − Ax||

2
2 where

parameter λ > 0 and number of groups K are pre-specified parameters. The second part is

57

a sum of regularization terms, each penalty function as hj(x) = dj ||xGj ||2 where the weights

dj > 0 are known parameters. Gj ⊆ {1, . . . , p} is the index set of a group of variables and xGj

denotes the subvector of x with coordinates in Gj . This group regularizer has been proven

useful in high-dimensional statistics with the capability of selecting meaningful groups of

features. The groups could overlap as needed. As the quadratic term has a coefficient of

1
2Kλ , the diagonal matrix D in the proximal term of the method is set to D = 1

Kλdiag(ATA).

The f-subproblem. The f -subproblem has the form:

min
x

1

2Kλ

∥∥b−Ax∥∥2

2
+

K∑
j=1

gTj x+
1

2

∥∥x− xk∥∥2

D
.

It has the same structure as the f -subproblem of the general structured fused lasso example,

and can be solved in the same way; just the matrix D is different.

The hj-subproblem. The hj-subproblem is defined as follows (ignoring the constants):

min dj
∥∥xGj∥∥2

+ 〈s, x〉+
1

2

∥∥x− xk∥∥2

D
. (5.7)

where s = gf +
∑

j′ 6=j ghj′ ; with gf denoting a subgradient of the function f , and ghj′ the

subgradients of hj′ used in (4.5). To simplify notation, from now on we write G for Gj .

The decision variables that are outside of the current group G, which we denote x−G ,

have the following closed-form solution:

x−G = xk−G −D−1
−Gs−G .

The variables in the current group G can be calculated as follows. If xG 6= 0, the necessary

and sufficient optimality condition for (5.7) is the following equation:

djxG∥∥xG∥∥2

+ sG +DG(xG − xkG) = 0. (5.8)

We denote

dj∥∥xG∥∥2

= κ, (5.9)

This leads to

xi =
Diix

k
i − (s)i

κ+Dii
, i ∈ G. (5.10)

Substituting into (5.9), after simple manipulations, we obtain the following equation for κ:∑
i∈Gj

(
Diix

k
i − (s)i

1 + Dii
κ

)2

= d2
j . (5.11)

58

Since the left hand side of this equation is an increasing function of κ, we can easily solve it

by bisection, if a solution exists. If the columns if A are normalized, then all Dii = 1, and

equation (5.11) can be solved in closed form.

Letting κ → ∞ on the left hand side, we obtain the condition for the existence of a

solution of (5.11): ∑
i∈Gj

(
Diix

k
i − (s)i

)2
> d2

j . (5.12)

If inequality (5.12) is satisfied, κ can be found by bisection and xG follows from (5.10). If

(5.12) is not satisfied, the only possibility is that the optimal solution of (5.7) is xG = 0.

5.2 Numerical Results

In this section, we present some experimental results for problems (5.2) and (5.6). All these

studies are performed on an 1.8 GHZ, 4GB RAM computer using MATLAB.

5.2.1 Fused lasso experiments

We evaluate SLIN against six competing methods to assess the effectiveness of our approach.

These methods are different in their treatments on four main features, namely, the selection

of the block to be optimized, the sufficient improvement test, the choice of the proximal

parameterD and the choice of the relaxation parameter. The first one is a direct extension of

the alternating linearization method [LPR14], labeled as Cyclical Linearization. It processes

the blocks cyclically in a fixed order and performs the improvement test after every block

with proximal parameter D, to decide whether to update the current value of xk. The

second method also processes the blocks cyclically in a fixed order but updates xk after

processing all blocks without any test. In the case of two blocks, it would correspond to

the Douglas–Rachford operator splitting method of [LM79]; see [LPR14]. We use the name

Cyclical Douglas–Rachford (labeled DRC). The third and fourth methods are similar to

DRC , except that we use over relaxation (with a fixed parameter 1.5) and under relaxation

(with a fixed parameter 0.5). We label them as “DRC over relax” and “DRC under relax”.

The fifth modification is Cyclical Douglas–Rachford with proximal parameter ρ, where ρ

is set to the average of the diagonal values of ATA. We label it as DRρ. Finally, we

59

compare with [Vu13], a splitting method, which is essentially the same as [Con13]. Table

5.1 summarizes the differences on main features among above methods.

Method Selection Update Proximal Relaxation
Label Rule Rule Parameter D Parameter δ

SLIN X X X
Cyclical Linearization X X
DRC X
DRC over relax X X
DRC under relax X X
DRρ

Table 5.1: Main features comparison
over relax: δ = 1.5; under relax: δ = 0.5

We first investigate how these methods approach the optimal objective function value

differently. The elements of the matrix design matrix A are generated independently using

a Gaussian distribution with mean zero and unit variance. The dependent variables are

b = Ax + ε , where ε is a Gaussian noise with variance 10−2. Among the xj ’s, 10% equal

1, 20% equal 2, and the rest are zero. For fused lasso, we set the tuning parameters λ1 =

λ2 = 0.5 and the stopping tolerance ε = 10−3, and run all the methods until convergence or

reaching maximum iteration count of 1000. The stopping test for all methods but the one

of [Vu13] is the same; it is based on test (4.7). For the method of [Vu13], the test is to reach

the objective function value at which SLIN stopped, or 1000 iterations, whichever comes

first. Then we plot the log(Error) versus the number of iteration in Figure 5.1 (m = 10000,

n = 1000) and Figure 5.2 (m = 3000, n = 4000). The second case is under-determined and

it does not satisfy Assumption 4.4.1.

In the figures, Error is defined as the difference between the optimal value F (x∗) (ob-

tained by SLIN) and the current function value for each method respectively. Since we are

plotting log(Error), we delete the last point of SLIN in the figures. In both experiments,

SLIN reaches the desired accuracy in a much smaller number of iterations than required

by the other methods. Among DRC , DRC over relax and DRC under relax, DRC under

relax is the slowest. Vũ’s splitting method makes good improvement at the start, then

slows down and cannot achieve the same level of accuracy as SLIN in the maximum allowed

number of iterations. When the design matrix is under-determined, Vũ’s splitting method

60

does not converge. DRρ is extremely slow or does not converge, for any value of ρ that we

tried.

10
0

10
1

10
2

10
3

Iterations

-10

-5

0

5

10

15

20

ln
(F

(x
)

-
F

(x
*
))

SLIN
Cyclical Linearization

DR
C

DR
C over relax

DR
C under relax

DR

Vu splitting

Figure 5.1: Comparison of SLIN and other algorithms on the fused lasso example when
m = 10000, n = 1000

Next we make running time comparison on these methods. Figure 5.3 and Figure 5.4

report the running time of SLIN and six competing algorithms for problems with different

sample sizes (m) and dimensions (n). We run all the algorithms until they satisfy their

stopping criteria or use twice the time that SLIN does. Judging from the figures, SLIN

performs the best except in a small scale case (m = 500, n = 1000). Its advantage increases

with the scale of the problem.

In Table 5.2, we report the performance of SLIN for different values of the parameter

β. We report the average results and their standard deviation. Similar results are observed

for experiments with different sample sizes and dimension. Based on these analysis, we use

β = 0.5 in all our experiments.

61

10
0

10
1

10
2

10
3

Iterations

-10

-5

0

5

10

15

20

ln
(F

(x
)

-
F

(x
*
))

SLIN
Cyclical Linearization

DR
C

DR
C over relax

DR
C under relax

DR

Vu splitting

Figure 5.2: Comparison of SLIN and other algorithms on the fused lasso example when
m = 3000, n = 4000

β Iterations Time Relative Error

0.2 76(25.61) 0.82(0.95) 0.0200(0.0100)
0.5 28(24.70) 0.39(0.64) 0.0080(0.0037)
0.8 74(33.72) 1.08(0.63) 0.0400(0.0200)

Table 5.2: The effect of different values of β in the SLIN algorithm for the fused lasso
problem with m = 1000 and n = 300.

5.2.2 Overlapping group lasso experiments

In this Section we compare SLIN with existing techniques on the tree-structured, fixed order,

and random order overlapping group examples. These results demonstrate the flexibility of

SLIN and its applicability to problems with complex regularization structures.

Tree-structured overlapping groups

In a tree-structured overlapping group lasso problem, described in [JMOB11b], the groups

correspond to the nodes of a tree. The design matrix and input vector are centered and

62

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sample size

5

10

15

20

25

30

35

40

45

R
u

n
n

in
g

 t
im

e

SLIN
Cyclical Linearization

DR
C

DR
C over relax

DR
C under relax

DR

Vu splitting

Figure 5.3: Running time of SLIN and other methods on the fused lasso problem as sample
size changes when n = 1000.

normalized to have unit `2-norms. We conduct the speed comparisons between our approach

and FISTA [JMOB11b]. From Table 5.3 we can see that the SLIN algorithm is faster in

terms of both iteration number and computational time.

Parameters Methods Iter Time

m = 100, n = 10 SLIN 11.60(0.70) 0.0897(0.0035)
K = 8 FISTA 25.20(2.85) 0.1385(0.0138)

Table 5.3: Comparison of SLIN and FISTA on tree-structured overlapping group lasso
problem.

Fixed order overlapping groups

We simulate data from a linear model with an overlapping group structure. The entries are

sampled from i.i.d. normal distributions, xj = (−1)j exp(−(j − 1)/100), and b = Ax + ε,

with the noise ε sampled from the standard normal distribution. Assuming that the inputs

63

500 1000 1500 2000 2500 3000 3500 4000

Variable dimension

0

100

200

300

400

500

600

R
u

n
n

in
g

 t
im

e

SLIN
Cyclical Linearizaton

DR
C

DR
C over relax

DR
C under relax

DR

Vu splitting

Figure 5.4: Running time of SLIN and other methods on the fused lasso example as dimen-
sion changes when m = 3000.

are ordered, we define a sequence of K groups of 100 adjacent inputs with an overlap of 10

variables between two successive groups, so that

G = {{1, . . . , 100}, {91, . . . , 190}, . . . , {n− 99, . . . , n}}, (5.13)

where n = 90K + 10. We adopt uniform weights dj = 1/K and set λ = K/5.

To demonstrate the efficiency and scalability of the SLIN algorithm, we compare SLIN

with several specialized methods for overlapping group lasso problems: PDMM of [CDZ15,

WBL14], sADMM or Jacobian ADMM of [DLPY13], PA-APG of [Yu13] and S-APG of

[CLK+12]. All experiments are run sequentially, that is, no parallel processing features

were exploited. We run the experiments 10 times with different samples of the matrix A;

we report the average results. The stopping test for all dual methods is based on the relative

change in the iterates: ‖xk+1 − xk‖/‖xk‖ ≤ ε.

Figure 5.5 plots the convergence of the objective function values versus the number of

iterations, for the number of groups K = 100. For the dual methods PDMM and sADMM,

64

we report the values of the augmented Lagrangian. They go from super optimal (because

the iterates are infeasible) and converge to the optimal value. In Figures 5.6 and 5.7, we

vary the group number and sample size and we report the computational time. The SLIN

algorithm uses the smallest iteration number but its computational time is worse than

that of PDMM, which has been specially coded for problems of this structure. The two

“accelerated” methods, PA-APG and S-APG, are the slowest in most tests.

10
0

10
1

10
2

10
3

10
4

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

O
b

je
c
ti
v
e

 v
a

lu
e

SLIN
PDMM
PA-APG
S-APG
sADMM

Figure 5.5: Comparison of SLIN and other algorithms on the overlapping group lasso prob-
lem when K = 100,m = 1000.

Randomly overlapping groups

In the next stage, we conduct additional comparison between SLIN and PDMM on group

lasso problems with randomized overlapping, which do not exhibit the regular group struc-

ture specified in (5.13).

This type of problem arises in applications such as bioinformatics, where one uses prior

information to model potential overlapping of groups of variables. For example, in high

throughput gene expression analysis, the number of parameters to be estimated is much

65

10 20 30 40 50 60 70 80 90 100

group number

0

10

20

30

40

50

60

70

R
u
n
n
in

g
 t
im

e

SLIN
PDMM
sADMM
PA-APG
S-APG

Figure 5.6: Running time of SLIN and other methods on the overlapping group lasso prob-
lem as group number changes when m = 1000

greater than the sample size. One often utilizes information including gene ontology to

define group overlaps among genes, thereby achieving structured regularization [VRMV14].

The resulting overlaps are “arbitrary” (depending on the specific gene ontology) and more

complex than the systematic overlapping example described in (5.13). We generate test

cases in which the indices in each of the 100 groups were assigned to the n locations.

As a result, the number of overlapping variables between the groups was random, and

multiple group membership is possible. The performance of the two methods on randomized

overlapping group lasso problems is summarized in Tables 5.3 and 5.4.

For fair comparison of the methods, we run PDMM on each instance of the problem.

PDMM is set to run to “tol” = 10−4 or 2,000 iterations, whichever came first. We set

the tuning parameters dg = 0.01/K, and 0.02/K, respectively. Then SLIN is set to run

until the objective function values obtained were as good as that of PDMM. We run the

experiments 10 times with different samples of the randomly generated groups; in Tables

5.4 and 5.5 we report the average results and their standard deviations. In all cases, the

66

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sample size

0

50

100

150

200

250

300

350

R
u
n
n
in

g
 t
im

e

PDMM

sADMM

PA-APG

S-APG

Figure 5.7: Running time of SLIN and other methods on the overlapping group lasso prob-
lem as sample size changes when K = 100

number of iterations of SLIN is much smaller than that of PDMM. In the determined cases,

where m = 1000 and n = 800, the running time of SLIN is usually better than that of

PDMM. In the under-determined cases, where m = 500 and n = 600, the running time of

SLIN is slightly worse than that of PDMM.

In summary, we can conclude that SLIN is a highly efficient and reliable general-purpose

method for multi-block optimization of convex nonsmooth functions. It successfully com-

petes with dedicated methods for special classes of problems.

Most of the results presented here were included in a manuscript submitted for publi-

cation to a leading optimization journal. A reviewer insisted that we also test the splitting

method of section 2.4 which he/she called “the method of Condat.” However, the method

has not been tested by its authors and no guidance as to its implementation was available.

After the results presented here have been included, the associate editor requested to remove

the numerical section entirely.

67

Parameters Methods Iter Time

m = 1000, n = 800 SLIN 280 (15.82) 5.42(0.36)
K = 80, dg = 0.01/K PDMM 638(21.14) 5.48(0.10)

m = 1000, n = 800 SLIN 308 (16.11) 5.38(0.43)
K = 90, dg = 0.01/K PDMM 836(29.33) 7.19(0.39)

m = 1000, n = 800 SLIN 331 (13.05) 5.89(0.28)
K = 100, dg = 0.01/K PDMM 991 (75.51) 8.91(0.81)

m = 1000, n = 800 SLIN 306 (11.79) 5.53(0.23)
K = 80, dg = 0.02/K PDMM 560(59.47) 4.75(0.45)

m = 1000, n = 800 SLIN 330 (11.19) 5.63(0.22)
K = 90, dg = 0.02/K PDMM 620(38.33) 5.65(0.91)

m = 1000, n = 800 SLIN 364 (13.77) 6.09(0.31)
K = 100, dg = 0.02/K PDMM 741(58.06) 4.14 (0.47)

Table 5.4: Comparison SLIN and PDMM in solving the overlapping group lasso of randomly
generated groups. Determined cases with m = 1000 and n = 800.

Parameters Methods Iter Time

m = 500, n = 600 SLIN 1280 (39.73) 17.75(0.60)
K = 80, dg = 0.01/K PDMM 1453(157.07) 12.01(1.03)

m = 500, n = 600 SLIN 1119 (57.76) 16.61(1.00)
K = 90, dg = 0.01/K PDMM 1566(61.63) 13.88(1.63)

m = 500, n = 600 SLIN 973 (39.46) 13.72(1.241)
K = 100, dg = 0.01/K PDMM 1753 (122.27) 16.75(2.64)

m = 500, n = 600 SLIN 792 (36.58) 9.79(0.73)
K = 80, dg = 0.02/K PDMM 968(39.82) 7.53(0.54)

m = 500, n = 600 SLIN 722 (23.46) 8.87(0.65)
K = 90, dg = 0.02/K PDMM 1170(102.16) 9.57(1.00)

m = 500, n = 600 SLIN 683 (15.66) 8.01(0.41)
K = 100, dg = 0.02/K PDMM 1208(70.30) 10.81 (1.21)

Table 5.5: Comparison SLIN and PDMM in solving the overlapping group lasso of randomly
generated groups. Underdetermined cases with m = 500 and n = 600

68

Chapter 6

Conclusion and Future Research Plan

6.1 Conclusion

We consider the problem of minimizing a sum of several convex non-smooth functions. In

this thesis, we introduce a new algorithm called the selective linearization method, which

iteratively linearizes all but one of the functions and employs simple proximal steps. The

algorithm is a form of multiple operator splitting in which the order of processing partial

functions is not fixed, but rather determined in the course of calculations. It proposes one

of the first operator-splitting type methods which are globally convergent for an arbitrary

number of operators without artificial duplication of variables. This algorithm is a multi-

block extension of the alternating linearization (ALIN) method for solving structured non-

smooth convex optimization problems.

Global convergence is proved and estimates of the convergence rate are derived. Specifi-

cally, under a strongly convex condition, the number of iterations needed to achieve solution

accuracy ε is of order O
(

ln(1/ε)/ε
)
. It is a new contribution even in the case of two blocks.

The technique invented by us can be also used to derive the rate of convergence of the

classical bundle method, for which no convergence rate estimate has been available so far.

We have done extensive comparison experiments in structured regularization problems

such as large-scale fused lasso regularization problems and overlapping group lasso problems.

The numerical results demonstrate the efficacy and accuracy of the method.

6.2 Future research plan

In the area of convex optimization, many directions of study and improvement for the

SLIN algorithm exist. Based on the fact that the subgradient needs to be bounded, SLIN

69

algorithm can only deal with unconstrained multi-block non-smooth optimization problems.

One direction for future study is to design an algorithm for multi-block convex problem with

linear operators and analyze the convergence pattern of the algorithm for the following

general constrained problems:

min
x∈X

F (x) = f1(x) +
N∑
i=2

fi(Mx). (6.1)

It is interesting to study the convergence rate of the SLIN algorithm on general convex, but

not strongly convex, objective functions.

It is also interesting to study the influence of different linearization order on the com-

ponent functions on the convergence and convergence rate of the SLIN algorithm. Our

current algorithm uses a deterministic rule to specify the order based on the difference the

component functions and their linearized approximations. I plan to explore the random

linearization order rule and come up with a stochastic version and online versions of SLIN

algorithms to facilitate the multi-block objective appearing in many online optimization

and stochastic optimization settings.

The study of non-convex optimization algorithms has aroused increasing interest in the

field of optimization applied in machine learning and deep learning problems. However,

the understanding of convergence of many large-scale non-convex optimization problems is

pretty limited. As SLIN is one of the algorithms originally aimed for large-scale convex op-

timization, I plan to study the convergence performance of (variants of) the SLIN algorithm

on some classes of non-convex optimization problems.

On the other hand, the simplicity and efficiency of the selective linearization framework

suggests that it can be extended to solve many problems that are currently of interest for

many other machine learning and data mining problems including low rank matrix comple-

tion and compressed MR image reconstruction, and even some deep learning problems.

70

References

[BC11] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Op-
erator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC. Springer, New York, 2011.

[Ben09] Y. Bengio. Learning deep architectures for ai. Foundations and Trends in
Machine Learning, 2(1):1127, 2009.

[Ber03] D. P. Bertsekas. Convex Analysis and Optimization. Athena Scientif, with A.
Ned́ıc and A. E. Ozdaglar, 2003.

[Ber15] D. P. Bertsekas. Incremental aggregated proximal and augmented lagrangian
algorithms. Technical Report Report LIDS-3176, Department of Electrical En-
gineering and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Mass., 2015.

[BGLS03] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical
optimization. theoretical and practical aspects. 2003.

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

[CDZ15] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos. An augmented la-
grangian method for distributed optimization. Mathematical Programming,
152(1-2):405–434, 2015.

[CE16] P. Combettes and J. Eckstein. Asynchronous block-iterative primal-dual de-
composition methods for monotone inclusions. Mathematical Programming,
pages 1–28, 2016.

[CHYY14] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of admm for multi-
block convex minimization problems is not necessarily convergent. Mathemat-
ical Programming, pages 1–23, 2014.

[CLK+12] X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing. Smoothing proxi-
mal gradient method for general structured sparse regression. The Annals of
Applied Statistics, 6(2):719–752, 2012.

[Com09] P. L. Combettes. Iterative construction of the resolvent of a sum of maximal
monotone operators. J. Convex Anal., 16(3-4):727–748, 2009.

[Con13] L. Condat. A primal–dual splitting method for convex optimization involving
lipschitzian, proximable and linear composite terms. Journal of Optimization
Theory and Applications, 158(2):460–479, 2013.

71

[CP11] P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal pro-
cessing. In Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering, Springer Optimization and Its Applications, pages 185–212. Springer,
2011.

[CP12] P. L. Combettes and J. C. Pesquet. Primal-dual splitting algorithm for solv-
ing inclusions with mixtures of composite, lipschitzian, and parallel-sum type
monotone operators. Set-Valued and Variational Anal., 20:307–330, 2012.

[DHHH13] C. Demiralp, E. Hayden, J. Hammerbacher, and J. Heer. Exploring high-
dimensional rna sequences from in vitro selection. IEEE Biological Data Visu-
alization, 2013.

[DLPY13] W. Deng, M. J. Lai, Z. Peng, and W. Yin. Parallel multi-block admm with o
(1/k) convergence. Technical report, 2013.

[DLR15] Y. Du, X. Lin, and A. Ruszczynski. Selective Linearization For Multi-Block
Convex Optimization. ArXiv e-prints, November 2015.

[DR56] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–
439, 1956.

[DR17] Y. Du and A. Ruszczyński. Rate of convergence of the bundle method. J
Optim Theory Appl, 2017.

[EB92] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators. Math.
Programming, 55(3, Ser. A):293–318, 1992.

[Eck17] J. Eckstein. A simplified form of block-iterative operator splitting and an asyn-
chronous algorithm resembling the multi-block alternating direction method of
multipliers. Journal of Optimization Theory and Applications, pages 1–28,
2017.

[ES09] J. Eckstein and B. F. Svaiter. General projective splitting methods for sums of
maximal monotone operators. SIAM J. Control Optim., 48(2):787811, 2009.

[EY15] J. Eckstein and W. Yao. Understanding the convergence of the alter- nating
direction method of multipliers: Theoretical and computational perspectives.
Pacific Journal of Optimization, 11(4):619644, 2015.

[GM75] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de
dirichlet non linéaires. Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, 9(2):41–76, 1975.

[GM76] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation. Computers & Mathematics
with Applications, 2(1):17–40, 1976.

72

[GMS13] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods
for minimizing the sum of two convex functions. Mathematical Programming,
(141):349–382, 2013.

[GO09] T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM J. Imaging Sci., 2(2):323–343, 2009.

[GT89] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting
methods in nonlinear mechanics, volume 9. SIAM, 1989.

[HL17] M. Hong and Z. Luo. On the linear convergence of the alternating direction
method of multipliers. Mathematical Programming, 162(1):165199, 2017.

[HUL93] J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Al-
gorithms. II, volume 306 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1993.

[HY15] B. He and X. Yuan. On the convergence rate of douglas-rachford operator
splitting method. Mathematical Programming, 153(2):715722, 2015.

[HZLM11] J. Huang, S. Zhang, H. Li, and D. Metaxas. Composite splitting algo-
rithms for convex optimization. Computer Vision and Image Understanding,
115(12):1610–1622, 2011.

[JMOB11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hier-
archical sparse coding. Journal of Machine Learning Research, 12(Jul):2297–
2334, 2011.

[JMOB11b] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for
hierarchical sparse coding. Journal of Machine Learning Research, 12(1):2297–
2334, 2011.

[Kiw83] K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex mini-
mization. Mathematical Programming, 27(3):320–341, 1983.

[Kiw85] K. C. Kiwiel. Methods of Descent for Nondifferentiable Optimization, volume
1133 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

[Kiw95] K. C. Kiwiel. Proximal level bundle methods for convex nondifferentiable op-
timization, saddle-point problems and variational inequalities. Mathematical
Programming, 69(1-3):89–109, 1995.

[KRR99] K. C. Kiwiel, C. H. Rosa, and A. Ruszczyński. Proximal decomposition via
alternating linearization. SIAM Journal on Optimization, 9(3):668–689, 1999.

[Kwa15] T. Kwartler. Intro to text mining using tm, opennlp and topic models. Open
Data Science Conference, 2015.

[Lan15] G. Lan. Bundle-level type methods uniformly optimal for smooth and nons-
mooth convex optimization. Mathematical Programming, 149(1-2):1–45, 2015.

73

[Lem78] C. Lemaréchal. Nonsmooth optimization and descent methods. Research Re-
port 78-4, International Institute of Applied Systems Analysis, Laxenburg, Aus-
tria, 1978.

[LM79] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

[LMZ15] T. Lin, S. Ma, and S. Zhang. On the global linear convergence of the admm
with multiblock variables. SIAM Journal on Optimization, 25(3):14781497,
2015.

[LNN95] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle
methods. Mathematical Programming, 69(1-3):111–147, 1995.

[LPR14] X. Lin, M. Pham, and A. Ruszczyński. Alternating linearization for struc-
tured regularization problems. The Journal of Machine Learning Research,
15(1):3447–3481, 2014.

[Mif82] R. Mifflin. A modification and an extension of Lemaréchal’s algorithm for
nonsmooth minimization. In D. C. Sorensen and R. J. B. Wets, editors, Non-
differential and Variational Techniques in Optimization, 17:77–90, 1982.

[PR55] D. W. Peaceman and H. H. Rachford. The numerical solution of parabolic and
elliptic differential equations. J. Soc. Indust. Appl. Math., 3:28–41, 1955.

[Roc70] A. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Roc76] R. T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, 1976.

[Rus86] A. Ruszczyński. A regularized decomposition method for minimizing a sum of
polyhedral functions. Mathematical Programming, 35(3):309333, 1986.

[Rus06] A. Ruszczyński. Nonlinear optimization, volume 13. Princeton University
Press, 2006.

[RW91] R. T. Rockafellar and R. J. B. Wets. Scenarios and policy aggregation in op-
timization under uncertainty. Mathematics of operations research, 16(1):119–
147, 1991.

[TW07] R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh
data using the fused lasso. Biostatistics, pages 1–12, 2007.

[VRMV14] S. Villa, L. Rosasco, S. Mosci, and A. Verri. Proximal methods for the latent
group lasso penalty. Computational Optimization and Applications, 58(2):381–
401, 2014.

[Vu13] B. C. Vu. A splitting algorithm for dual monotone inclusions involving co-
coercive operators. Advances in Computational Mathematics, 38(3):667–681,
2013.

[WBL14] H. Wang, A. Banerjee, and Z. Q. Luo. Parallel direction method of multipliers.
pages 13–64. Neural Information Processing System (NIPS), 2014.

74

[Yu13] Y. L. Yu. Better approximation and faster algorithm using the proximal av-
erage. In Advances in Neural Information Processing Systems, pages 458–466,
2013.

[YX11] G. B. Ye and X. Xie. Split Bregman method for large scale fused Lasso.
Comput. Statist. Data Anal., 55(4):1552–1569, 2011.

[ZGWY15] J. Zhou, P. Gong, Z. Wang, and J. Ye. Mining structured sparsity beyond
convexity. ICDM Tutorial, 2015.

