
c© 2017

Marc Gamell Balmana

ALL RIGHTS RESERVED

APPLICATION-AWARE ON-LINE FAILURE RECOVERY
FOR EXTREME-SCALE HPC ENVIRONMENTS

By

MARC GAMELL BALMANA

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Manish Parashar

And approved by

New Brunswick, New Jersey

May, 2017

ABSTRACT OF THE DISSERTATION

Application-aware On-line Failure Recovery for

Extreme-scale HPC Environments

By MARC GAMELL BALMANA

Dissertation Director:

Manish Parashar

High Performance Computing (HPC) brings with it the promise of deeper insight into

complex phenomena through the execution of various extreme-scale applications, especially

those in the fields of science and engineering. The increasing computational demands of

these applications continue to push the limits of current extreme scale HPC systems. As

a result, the community is working toward achieving exascale systems able to compute

1018 floating point operations per second (FLOPS). Since these systems are expected to

contain a large number of components, reliability is one of the key anticipated challenges.

Due to the extensive periods of time that complex applications require, future systems

will likely see an increase in process and node failures during application execution. These

failures, also known as hard failures, are currently handled by terminating the execution and

restarting it from the last stored checkpoint. This checkpoint-restart methodology requires

the application to periodically save its distributed state into a centralized, stable storage –an

approach that is not expected to scale to future extreme-scale systems. While the illusion

of a failure-free machine –implemented either via hardware or system software strategies–

is adequate for current HPC systems, they may prove too costly in future extreme-scale

machines. Resilience is, therefore, a key challenge that must be addressed in order to

realize the exascale vision.

ii

This dissertation explores new models that leverage application-awareness to enable

on-line failure recovery. On-line recovery, which does not require the interruption of surviv-

ing processes in order to collectively restart the entire application, offers better cost/per-

formance tradeoffs by reducing recovery overheads. Recovering processes on-line enables

application-specific data recovery strategies and optimized in-memory checkpointing while

avoiding the repetition of initialization procedures –the least optimized part of most pro-

duction-level applications– on all processes.

This dissertation addresses three areas of research in on-line failure recovery. First, it

explores a generic global on-line recovery model, involving all processes in the recovery pro-

cess. Second, it explores optimized local recovery in which communication characteristics

of certain application classes are leveraged to reduce overheads due to failure. In partic-

ular, finite difference partial differential equation solvers using stencil operators are used

as the driving application class. Third, this dissertation demonstrates how the overhead

of multiple, independent failures can be masked to effectively reduce the impact on total

execution time. The models presented in this dissertation are implemented and evaluated

in Fenix and FenixLR, a pair of generic and extensible frameworks used to demonstrate the

concepts.

iii

Acknowledgments

First, I would like to thank my dissertation advisor Dr. Manish Parashar for his invaluable

advice, guidance, support, and example. His optimism, energy, and enthusiasm have helped

and motivated me throughout my studies at Rutgers.

I would like to thank as well Dr. Ivan Marsic, Dr. Deborah Silver, and Dr. Keita

Teranishi for serving as part of my committee members.

I thank Dr. Keita Teranishi for continuously supporting Fenix as well as my research,

for his collaboration, productive discussions, and ideas, and for providing me with the

opportunity to join his team as an intern.

I would also like to thank Dr. Rob Van der Wijngaart for his constructive criticisms

and support of the Fenix framework as well as his invaluable help while formally specifying

the Fenix interface.

I thank Dr. Daniel Katz, Dr. Hemanth Kolla, Dr. Jacqueline Chen, Dr. Jackson Mayo,

Dr. Janine Bennett, and Dr. Scott Klasky for their collaborations, valuable discussions,

and access to leadership HPC systems.

I wish to thank all of my colleagues, Dr. Ivan Rodero particularly, at The Applied Soft-

ware Systems Laboratory (TASSL) and Rutgers Discovery Informatics Institute (RDI2)

for their cheerfulness and help during my years at Rutgers.

Last but not least, I would like to express my deepest gratitude to my parents, grand-

parents, the rest of my family, and Bethann for their support, love, and inspiration. I would

like to specially thank my father, Josep, for his guidance, technical advice, and help in all

the stages of my studies. My parents have been by my side in every step and never stopped

encouraging me.

iv

Dedication

To my parents Josep and Gemma, and to Bethann.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . v

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1. Motivation . 1

1.2. State of the Art Software for Hard Failure Resilience 3

1.3. Research Challenges for Application-assisted Resilience 5

1.3.1. Support for Customizable Application Resilience 5

1.3.2. Support for On-line Recovery . 6

1.3.3. Support for Existing Code Base . 7

1.4. Overview of Presented Research . 8

1.5. Contributions . 10

1.5.1. Global Recovery . 10

1.5.2. Local Recovery . 12

1.5.3. Failure Masking . 13

1.6. Outline of this dissertation . 15

2. Background and Related Work . 16

2.1. Hard Failures in HPC Centers . 16

2.2. Application-agnostic Techniques . 18

2.2.1. Checkpoint and Restart . 18

vi

2.2.2. Message Logging . 23

2.2.3. Redundancy . 24

2.2.4. Process Migration . 24

2.2.5. Application-agnostic Runtimes . 24

2.3. Application-aware Techniques . 25

3. Understanding Node Failures on Extreme-Scale Production Runs . . . 28

3.1. Extreme Scale S3D Production Execution 28

3.2. Modeling Production Run Behavior . 30

4. Application-aware On-line Global Recovery 35

4.1. Overview . 35

4.2. The Fenix Architecture for On-line Failure Recovery 37

4.2.1. Process Recovery in Fenix . 38

4.2.2. Application-driven Data Checkpointing 40

4.3. Fenix Programming Interface . 45

4.3.1. Interface Overview . 45

4.3.2. Integrating S3D with Fenix . 46

4.3.3. A Holistic Example . 48

4.4. Empirical Evaluation . 50

4.4.1. Methodology . 51

4.4.2. Determining Failure-free Checkpoint Cost 52

4.4.3. Validating Optimal Checkpoint Rate 56

4.4.4. Evaluating the Recovery Algorithm 61

4.4.5. Surviving Highly Frequent Node Failures 67

4.4.6. Effect of the Checkpoint Size . 70

4.4.7. Evaluation Conclusion . 72

4.5. On-line Recovery for Memory-filling Applications 72

4.5.1. In-memory Checkpointing, Challenges and Benefits 72

4.5.2. Effect of Resource Allocation Increase 73

vii

4.5.3. Effect of Problem Resolution Reduction 90

5. Local Recovery for Stencil-based Scientific Applications 93

5.1. Overview . 93

5.2. Local Recovery for Stencil-based Scientific Applications 96

5.2.1. Stencil-based Scientific Applications 97

5.2.2. Local Recovery, Challenges and Benefits 100

5.3. FenixLR Implementation . 102

5.3.1. Experiences with MPI-based Implementations 102

5.3.2. Implementation Overview . 106

5.4. Experimental Evaluation . 107

5.4.1. Goal . 108

5.4.2. Methodology . 108

5.4.3. Asynchronous Checkpoint Transfer Cost and Scalability 109

5.4.4. Recovery Time for different MTBFs 110

5.4.5. Total Overhead for different MTBFs 113

5.4.6. Evaluation Conclusion . 115

6. Failure Masking on Stencil-based Applications 116

6.1. Overview . 116

6.2. Impact of Recovery Delay Propagation on Failure Masking 117

6.2.1. Delay Propagation . 117

6.2.2. Failure Masking . 119

6.3. Modeling Delay Propagation . 121

6.4. Failure Masking Analysis . 123

6.4.1. Propagation of a Multi-failure Recovery Delay on 1-D and 3-D Sim-

ulations . 124

6.4.2. Local Recovery and Failure Masking on a 3-D Simulation 125

6.4.3. Break-Even Analysis . 126

viii

6.4.4. Failure Overhead Distribution for Multi-failure Global and Local Re-

covery . 128

6.4.5. Failure Masking Probability . 134

6.4.6. Impact of Performance Variation . 136

6.4.7. Defining Time Units and Processing Elements 136

6.5. Increasing the Ghost Region Size . 139

6.5.1. A Guiding Example: 1-D, 3-point Stencil 139

6.5.2. Beyond 3-point Calculations on a 1-D Stencil 141

6.5.3. 2-D and 3-D Stencils . 142

6.6. Node-aware Mapping of Cells to Ranks . 145

6.7. Experimental Evaluation . 150

6.7.1. Experimental Evaluation Goals . 151

6.7.2. Experimental Methodology . 151

6.7.3. Experiments using a 1D PDE . 155

6.7.4. Experiments using S3D . 156

6.7.5. Increasing the Failure Propagation Window on S3D 159

7. Conclusion . 167

7.1. Conclusion . 167

7.2. Future Work . 170

Appendix A. Specification of the Fenix MPI Fault Tolerance library . . . 173

A.1. Introduction . 173

A.1.1. Functionality . 173

A.1.2. Terms and format . 174

A.2. Initialization, Rank Failure Recovery, and Teardown 176

A.2.1. Initialization . 176

A.2.2. Callback handler function recovery 182

A.2.3. Querying active ranks . 183

A.2.4. Teardown . 184

ix

A.3. Data Storage and Recovery . 185

A.3.1. Overview . 185

A.3.2. Managing data storage and recovery constructs 187

A.3.3. Probing and completing asynchronous operations 193

A.3.4. Storing and committing application data 194

A.3.5. Recovering application data . 200

A.3.6. Managing data subsets . 202

A.3.7. Accessing Fenix Data constructs . 206

A.4. Examples . 210

A.4.1. Protecting process and data with Fenix 210

A.4.2. Storing select members of a data group 213

A.4.3. Storing data objects with subsets . 213

A.4.4. Recovering data from older time stamps 216

A.4.5. Recovering one member of a data group 217

A.4.6. Recovering all members of a data group 217

A.4.7. Changing attributes of a data group member 219

References . 222

x

List of Tables

2.1. Frequency of time between consecutive failures for three different systems.

Left-most column represents the number of hours between two consecutive

failures. Three systems have been studied, all having an MTBF between 7

and 8 hours. For each presented system, ni represents the relative frequency,

as a percentage of all observed failures, and Ni shows the relative cumulative

frequency, also as a percentage. Data has been approximated to the nearest

half percentage, based on work by Tiwari et al. [146], which are obtained

from analyzing proprietary failure logs; the OLCF system refers to the Titan

Cray XK7 and is based on six months of failure logs; the LANL systems are

based on data collected for nine years. 17

3.1. Overhead and useful computation times of the S3D production run depicted

in Figure 3.1. The right-most column indicates the percentage overhead when

compared to a failure-free and checkpoint-free execution. 30

4.1. Time (in s) results of four benchmarks. The MPI column is the time to so-

lution for a regular execution of the benchmark with OpenMPI, with ULFM

disabled, and without our library. The MPI+ULFM represents the same exe-

cution enabling ULFM features (without our library). NF represents failure-

free solutions, F represents tests with one failure. 64

xi

List of Figures

3.1. Checkpoint and failure timestamps on production runs using 130,000 cores

on Titan. The x-axis represents the walltime in hours. Each row, from top

to bottom, indicates a particular event related to fault tolerance: the first

row indicates when data is being checkpointed, the second row indicates that

the MPI processes are being recovered, and the last row indicates that data

is being recovered. Vertical red lines indicate the times in which a failure

occurred (±5 seconds) . 29

3.2. Simulated overhead results of injecting nine failures at the exact same times-

tamps as occurred in the production runs (see Figure 3.1) while changing the

checkpoint frequency (x-axis). y-axis shows the stacked overhead compared

to computation that was useful. Checkpointing every 220 iterations would

have been optimal in the case of these particular nine failures. 31

3.3. Simulated results of randomly injecting nine failures while changing the

checkpoint frequency (x-axis). Error bars show variability of performing

10,000 repetitions. Checkpointing every 190 iterations offers an optimal

throughput (and minimal overhead) for the average 33

4.1. Communicator recovery in Fenix by spawning new processes. The recovery

process when using a process pool is similar. c©2014 IEEE (reprinted with

permission) Gamell et al. [66]. 39

4.2. An illustration of the checksum-based checkpointing approach. 44

4.3. Effect of checkpoint size on checkpoint time for different benchmarks, and

the two checkpointing algorithms. Both axes are in log scale. 53

4.4. Checkpoint time for different data sizes (1000 cores). c©2014 IEEE (reprinted

with permission) Gamell et al. [66]. 54

xii

4.5. Checkpoint time for different core counts (8.6 MB/core). The numbers above

each test show the aggregated bandwidth (the total checkpoint size over the

average checkpoint time). c©2014 IEEE (reprinted with permission) Gamell

et al. [66]. 55

4.6. Effect of the checkpoint period (number of actual code iterations between

two subsequent checkpoints) on the total time and the corresponding to-

tal checkpoint time for the different benchmarks and the two checkpointing

algorithms. 57

4.7. Amortized time cost of the checkpoint per iteration for different periods. y

axis in log scale. 57

4.8. Overhead of Fault Tolerance for different checkpoint rates for several failure

injection wall clock times (8.6 MB/core, 2197 cores, 90 iterations). c©2014

IEEE (reprinted with permission) Gamell et al. [66]. 60

4.9. Average overhead for different checkpoint rates. Same test as Figure 4.8.

c©2014 IEEE (reprinted with permission) Gamell et al. [66]. 60

4.10. Accumulated checkpoint time for different rates (8.6MB/core, 128 iterations,

1000 cores) . 61

4.11. Recovery overhead. (Left) Simultaneous failures on increasing number of

cores, 2197 total cores. (Right) 256-core failure on increasing number of total

cores. The subindex in the 4913-core tests indicates a different distribution of

failures within the 512-core group. c©2014 IEEE (reprinted with permission)

Gamell et al. [66]. 65

4.12. Recovery overhead of the shrink operation using the improved agreement

algorithm (ERA), compared to the base algorithm (log2phases). In Figure

4.12a, simultaneous failures on increasing number of cores are injected, while

fixing the total cores to 2197. In Figure 4.12b, 256-cores failures (i.e., 16

nodes) on increasing number of total cores are injected. The subindex in the

4913-cores tests indicates a different distribution of failures. In Figure 4.12c,

16-cores failures (i.e., 1 node) on increasing number of total cores are injected. 66

xiii

4.13. Checkpoint and failure timestamps on: (Top) production runs using 130k

cores on Titan and (Bottom) the first 600 seconds of the high frequency

node failure tests (8.6 MB/core, 2197 cores, 500 iterations, 16-core failure

injection). Only one of the 5 re-executions is shown per test. Each test

include six rows, organized by pairs. The pair’s meaning is indicated in the

zoomed area: from top to bottom, the first two indicate where the checkpoint

occurred (in red, the non-finished checkpoints), the second two indicate the

process recovery while the last two refer the data recovery. Within each pair,

the top row shows the average time, while the bottom row shows the whole

span througout the cores (i.e. the time between the first core begins until the

last core ends). c©2014 IEEE (reprinted with permission) Gamell et al. [66]. 68

4.14. Overhead of continuously injecting failures at different periods, using different

checkpoint rates. c©2014 IEEE (reprinted with permission) Gamell et al. [66]. 68

4.15. Overhead, as a percentage compared to a failure-free and checkpoint-free

execution, of the different experiments of S3D with Fenix when injecting

failures every 47, 94, and 189 seconds. The time-to-solution variability of

the five repetitions done for each test is hidden in the decimal part of the

percentages and hence, no error bars are required. 71

4.16. Comparison of three checkpoint storage methods. y-axis shows aggregated

time, relative to MinCores. 75

4.17. Effect of different application scalability (modeled using the scalability fac-

tor metric as a percentage, ranging from 75% through 100%) and increased

number of computational resources on the aggregated time. 77

4.18. Comparison of four different node MTBFs. For each MTBF, a larger number

of cores implies more failures in a given period of time. y-axis represents the

aggregated time, relative to MinCores. 78

4.19. Effect of process recovery relative to MinCores. 79

4.20. Effect of application memory usage running on an increasing number of cores,

relative to MinCores. 80

xiv

4.21. Effect of different checkpoint ratios on an increasing number of cores, relative

to MinCores. 81

4.22. Effect of increasing application scalability for different combinations of ap-

plication memory usages and checkpoint ratios. Experiments labeled “x TB,

y %” used x TB of main memory, and a checkpoint ratio of y %. Aggregated

time for each scenario is relative to MinCores. 82

4.23. Effect of increasing application memory usage for different combinations of

scalability and checkpoint ratios. An experiment labeled “z s.f., y %” has

a scalability factor of z and a checkpoint ratio of y %. Aggregated time for

each scenario is relative to MinCores. 84

4.24. Comparison of three checkpoint storage methods, simulating a total of 160,000

application iterations. Compare with Figure 4.16, which simulates 16,000 ap-

plication iterations. 85

4.25. Effect of different application scalability and increased number of computa-

tional resources on the aggregated time, simulating a total of 160,000 ap-

plication iterations. Compare with Figure 4.17a, which simulates 16,000

application iterations. 85

4.26. Effect of machine characteristics (memory size per core and node MTBF)

on two applications. The label “(50TB, 0.75 s.f.)” represents an applica-

tion with high memory requirements, while “(10TB, 1.0 s.f.)” represents

an application with good scalability but lower memory usage. Number of

iterations has been set to 160,000 for this test. Figure shows aggregated time

relative to MinCores. 86

xv

4.27. Experiments to determine the impact of bandwidth on the effectiveness of

IncMemStore. Depicted aggregated times are relative to MinCores. Experi-

ments on current machines demonstrate an effective PFS bandwidth in the

order of 12GB/s and an in-memory checkpointing bandwidth around 105

MB/s between any two MPI processes running on physically distant nodes,

while allocating 16 MPI processes in each node. The node-to-node bandwidth

is considered the bandwidth to transfer a single checkpoint from a core to

its associated remote ‘buddy’, and, as experimentally shown, is considered

to scale perfectly as more cores are added and transfer checkpoints simulta-

neously. The two studied applications represent the same as in Figure 4.26. 88

4.28. Experiments to determine the impact of bandwidth on the effectiveness of

IncMemStore (extension of Figure 4.27). 89

4.29. Effect of different problem size reductions compared to a base test of 20TB

scheduled on Pmin. 90

4.30. Effect of different problem size reductions compared to a base test of 20TB

scheduled on Pmin (extension of Figure 4.29). 91

5.1. Partitioning of a square 2D domain across four MPI ranks. 98

5.2. Partitioning of a 2D domain across five processes. This figure shows the

ghost region buffer exchange between neighboring processes in a typical im-

plementation of a stencil-based parallel application. Note how r1 maintains

a copy of the domain distributed in its neighbors in a special buffer, called

the ghost buffer. c©2015 ACM (reprinted with permission) Gamell et al. [67]. 98

5.3. This figure shows both the ghost region exchange of two cases: (1) 5-point

2D Stencil in which communication is grouped to reduce its frequency (one

communication per three iterations), or (2) 13-point 2D Stencil that commu-

nicates every iteration. 99

xvi

5.4. Possible implementation of the runtime using MPI but avoiding communi-

cator repair operations. In this version of the implementation, each MPI

communicator includes only 2 ranks. A communicator is created between

each pair of compute ranks. Each compute rank (C) in a group also requires

a binary communicator with each spare rank (S). For scalability, compute

ranks are divided in groups and a few spare ranks are assigned to each group.

In this example, each group contains five compute ranks and two spare ranks. 103

5.5. Weak scalability of FenixLR’s asynchronous checkpointing. Checkpoint size

is set to 130MB/core in all cases. As shown, job size increases do not impact

checkpointing performance, which only depends on the per-core checkpoint

size rather than the total per-job checkpoint size. c©2015 ACM (reprinted

with permission) Gamell et al. [68]. 110

5.6. Comparison of total iteration time (including checkpoint) using synchronous

and asynchronous checkpointing, for different problem sizes using a total of

4096 cores. This figure shows that overlapping communication and com-

putation is possible and beneficial in S3D. This experiment was performed

without injecting failures. 111

5.7. Time to recover from process failures with varying frequency of failure arrival

as well as varying total number of cores in the job [68]. Note that the recovery

process is perfectly scalable, tested up to 250+ thousand cores. c©2015 ACM

(reprinted with permission) Gamell et al. [68]. 112

5.8. Overall failure overhead of different MTBFs relative to a checkpoint-free,

failure-free base test execution. On top of each bar the total number of

process failures recovered throughout the execution is indicated. Job size

has been fixed to 4736 cores, corresponding to 4096 compute cores (an S3D

domain decomposed in a grid of 163 cores) and 640 spare cores, and each

checkpoint requires 217 GB. c©2015 ACM (reprinted with permission) Gamell

et al. [68]. 114

xvii

6.1. Behavior of local recovery for a stencil-based 1-D partial differential equa-

tion (PDE) solvers. X axis represents process number (or rank) and Y axis

indicates wallclock time. Each line in a figure represents a timestep, and the

color of the line represents how advanced the simulation is (i.e., it advances

from yellow to dark purple). Each red ‘X’ represents a failure. A straight line

means all processes compute the timestep at the same physical time. When

a failure occurs, the recovery delay does not get propagated immediately to

the entire domain. Instead, the immediately adjacent neighbor processes are

the first to be delayed, which in turn propagate the delay to their immedi-

ate neighbors, resulting in the delay eventually spanning across the entire

domain. Note how Figures 6.1b, 6.1c, 6.1d and 6.1e have the same recovery

overhead, i.e., as if only one failure occurred, even though they have different

numbers of failures. In case of Figure 6.1f, however, the total recovery time

is equal to sequentially recovering from two failures. c©2015 ACM (reprinted

with permission) Gamell et al. [67]. 118

6.2. Execution pattern obtained through a simulation based on the presented

model. Figure 6.2a represents a uni-dimensional stencil and uses 32 process-

ing elements, while Figure 6.2b represents a three-dimensional stencil and

uses one thousand processing elements. Figures axes have the same meaning

as in Figure 6.1: the X axis represents the sequence number of the process-

ing element (e.g. MPI rank), the Y axis represents the wall clock time, and

horizontal lines represent the completion of a particular iteration or timestep. 124

6.3. Recovery overheads for local and global recovery obtained from simulations

based on the presented model for the parallel 3D stencil code running on

100×100×100 processing elements. In this plot, each candlestick represents

the minimum, maximum, median, first and third quartiles overhead of 10048

simulations. Each simulation runs 100 iterations with Tit = 100 and TR =

300. 125

xviii

6.4. Histogram of failure overheads of four configurations. For each configuration,

fourteen histograms are shown: four with Global Recovery (GR1 to GR4)

and ten with Local Recovery (LR2 to LR20). The number i in GRi or LRi

indicates the number of failures injected in each test shown in a particular

histogram. The histogram for LR1 is identical to the GR1. Each histogram,

which contains 10048 samples, represents the overhead of recovering a ran-

dom number of injected failures. The only variation between samples is the

failure position in space and time, each following an independent uniform

distribution. The base, failure-free test takes 10,100 time units. Vertical

lines attempt to separate the parts of the histograms that have overheads

comparable to those with one, two, three, or four failures recovered globally

(respectively represented by the four top rows of histograms). The numbers

in between those vertical lines indicate the percentage of samples that fall

between each two lines, which are equivalent to pbe,i in LRi. These exper-

iments were done simulating 100 iterations with Tit = 100 and TComm = 1

(in the cases of communicating every iteration) or TComm = 2 (in the case of

communication occurring every two iterations). 129

6.5. Histogram of failure overheads of two configurations. In both cases, experi-

ments simulate 1000 iterations of a domain decomposed into 100× 100× 100

processing elements and use TR = 300. Otherwise, the configurations and

format are identical to those in Figure 6.4. 130

xix

6.6. Probability of masking multiple failures as a single failure (top row of plots),

as two or less failures (second row of plots), as three or less failures (third row

of plots), or as four or less failures (last row of plots). The Y-axis indicates

the probability, from 0 to 100%, that a particular number of injected failures

can be masked. The X-axis depicts the total number of failures injected.

The leftmost column of plots are simulated with a 27 × 27 × 27 mesh of

processing elements, the middle column is simulated with a 67 × 67 × 67

mesh, and the right column is simulated with a 100× 100× 100 mesh. The

five experiments simulated 100 iterations with Tit = 100 and TComm = 1

(by default, communicating every iteration). In cases where communication

frequency is halved or divided by three, TComm is increased to 2 and 3,

respectively, to account for the extra communication cost. Each trend line

connects a total of 20 points with each point evaluated at unit intervals from

1 through 20 along the X-axis. 133

6.7. Effect of performance variation (i.e., noise) on the total overhead compared

to a failure-free and noise-free execution. Execution parameters are set as in

Figure 6.3 and solid lines represent the median of 10048 repetitions. 137

6.8. Detail of the communication and decomposition of a 1-D Stencil computation

between 2 ranks. a) A 3-point calculation with standard communication

pattern, i.e. one transfer at the beginning of each iteration. b) Detail of two

iterations (both communication -comm.- and computation -comp.- phases)

of 3-point, 5-point, and 7-point 1D Stencils. For space economy, only Rank

ri is shown in the 5-point and 7-point figures. Crossed ghost points do not

contain a valid value in the specific iteration/phase. 141

xx

6.9. Detail of the communication and decomposition of a 2-D stencil computation

between a rank and (not-shown) its left, top, and left/top diagonal neighbor-

ing ranks. The top row represents a 5-point, 9-point, and 13-point calculation

with standard communication pattern, i.e. one transfer at the beginning of

each iteration. The bottom row represents how the data is transferred during

the communication phase –every two compute iteration, only one communi-

cation phase is performed. 142

6.10. Number of ghost cells compared to number of domain cells for different sce-

narios. Results were computed using the formula for Ci with different values

of i and p (Figure 6.10a) and different values of i and n (Figure 6.10b). . . 144

6.11. Decomposition and mapping of a two-dimensional domain into a machine

with sixteen ranks per node. (top) Domain of 144× 36 cells decomposed in

chunks, or domain sections, of 3× 3 cells each, for a total of 48× 12 chunks.

(center) Linear mapping of domain sections to ranks; a failure in a 16-rank

node (node20) affects the execution of 34 neighboring ranks in the iteration

immediately following the failure. (bottom) Quadratic mapping of domain

sections to ranks; a failure in node20 affects now only 16 neighboring ranks

in the iteration immediately after the failure, providing a much slower failure

propagation. 147

6.12. Section of a three-dimensional domain mapped to a machine with sixteen

ranks per node. The mapping of domain sections to ranks is done through

the shape of a rectangular prism. A failure in a 16-rank node (node20, set of

boxes in red) affects the execution of 40 neighboring ranks (set of boxes in

dark gray) in the iteration immediately following the failure. 148

xxi

6.13. Behavior of local recovery for a 1D PDE using 36 cores (32 compute cores

and 4 spare cores). X axis represents process number (or rank) and Y axis

indicates wallclock time. Each line in a figure represents a timestep, and the

color of the line represents how advanced the simulation is (i.e., it advances

from dark purple to yellow). Each red ‘X’ represents a failure. A straight line

means all processes compute the timestep at the same physical time. When

a failure occurs, the recovery delay does not get propagated immediately to

the entire domain. Instead, the immediately adjacent neighbor processes are

the first to be delayed, which in turn propagate the delay to their immedi-

ate neighbors, resulting in the delay eventually spanning across the entire

domain. c©2015 ACM (reprinted with permission) Gamell et al. [68]. 153

6.14. Behavior of local recovery for a 1D PDE using 13984 cores (13824 compute

cores and 160 spare cores), with failures injected every 10 seconds. c©2015

ACM (reprinted with permission) Gamell et al. [68]. 154

xxii

6.15. Execution profile of S3D while injecting different number of failures empir-

ically demonstrating the existence of the failure masking effect. Figures on

the top row represent tests with one, two, three, four, and eight node fail-

ures running on 4224 cores, corresponding to 4096 compute cores (an S3D

domain decomposed in a grid of 163 cores) and 128 spare cores. Figures on

the bottom row represent the same tests running on a larger domain with

32896 cores, corresponding to a 3-D grid of 323 as well as 128 additional spare

cores. In each figure the x-axis represents the core number (as MPI ranks in

the world communicator) while the y-axis represents the walltime, advancing

from the start of the application to its end. Each line represents the time a

particular core finishes computing a particular iteration. Note that failures,

denoted by red crosses, are recovered and rolled back locally, which translates

to a delay that is propagated throughout the domain in successive iterations.

The end-to-end time when injecting eight failures is slightly longer than in

the other cases. In all other cases, the end-to-end time is similar, demon-

strating the benefits of failure masking. Note that ghost resizing or rank

remapping have not been applied in these experiments, motivating the need

for these techniques to achieve slower propagations. c©2015 ACM (reprinted

with permission) Gamell et al. [68]. 156

6.16. End-to-end execution time of S3D while injecting multiple node failures and

recovering locally, relative to the end-to-end execution time when injecting

a single failure. A relative time similar to a unit represents failures masked

perfectly (variability is due to variable rollback overheads), while relative

times in the order of 1.06 or even 1.10 indicate that not all failures masked

each other, but some failures occurred after the delay already propagated

to that node. Note how increasing number of nodes implies a decrease of

total overhead with high failure counts (e.g. eight failures, as shown with the

trend line), indicating that an increase in core count increases failure masking

probability. c©2015 ACM (reprinted with permission) Gamell et al. [68]. . . 158

xxiii

6.17. Overhead of different levels of ghost region expansion on the end-to-end time

when compared to the unmodified, original S3D code (labeled as ‘Orig.’ in

both subfigures). The X-axis represents the number of iterations between

consecutive communications (parameter i in the model presented in Sec-

tion 6.5). The experiments were conducted using a generic Linux cluster

of 32 nodes connected via Infiniband. Each node has two Intel quad-core

Xeon E5620 processors and 24GB of RAM. Our executions used a 27-node

allocation (running 8 processes per node) to simulate a cubical domain split

into 63 = 216 homogeneous partitions. Each bar represents the average of 10

repetitions, each simulating 100 S3D iterations. No checkpoints are created

nor failures injected in any of these tests. 160

6.18. Different domain cell to rank mapping strategies on a 512-rank execution

with a failure injected in all sixteen ranks of the third node, on the 16th sec-

ond after the starting of the application. Two random mappings are tested,

providing the worst behavior, as well as two cubic configurations (2×2×2 and

4× 4× 4) and two rectangular prism configurations (1× 2× 8 and 4× 2× 2).

Note that only the rectangular prism configurations fill exactly a 16-rank

node, which is the target architecture. 161

6.19. Effects of ghost region expansion and rank remapping on the propagation

window. Each line shows an execution on 4096 ranks in which a node failure

(16 cores) is injected. The left figure includes experiments with increasing

number of ghost region sizes with a default cell-to-rank mapping. The right

figure includes a detail of the same executions with both the default map-

ping and a mapping using the rectangular prism approach. The gray area

represents the improvement in the propagation curve induced by using the

topology-aware mapping. Each line is one of four executions; the difference

between executions was unnoticeable. 162

xxiv

6.20. Detail of the execution from Figure 6.19 using the default mapping and

no ghost region extension, showing how the ranks affected by a failure are

counted. The X-axis depicts MPI rank number. The Y-axis depicts the wall-

time, and each line represents the point in time in which an S3D iteration

is finished by each rank. The number on the right of each line counts how

many ranks have been affected by the node failure indicated with a red cross. 162

6.21. Effect of ghost point size and rank re-mapping on the total number of affected

ranks by a node failure on a 512-rank execution. The node failure is injected

in all cases by injecting a 16-rank failure in the third node at the 16th second.

The gray area represents the improvement in the propagation curve induced

by using the topology-aware mapping. Each line is one of four executions;

the difference between executions was unnoticeable. 163

6.22. Execution time of the different techniques while injecting and recovering from

a single node failure. The base test is considered the left-most bar in each

of the figures, representing no ghost expansion (1×) and no cell to rank re-

mapping. The y-axis represents the total time, as a percentage compared

to the base test. The number of iterations between consecutive checkpoints

have been set to follow the degree of ghost rank expansion. Aside from the

ranks indicated in the captions, the experiments allocated an additional set

of 128 spare ranks. 164

6.23. Overhead on the total time to solution over several executions with increasing

number of failures recovered using local recovery in different scenarios. The

X-axis for each subfigure is the total number of failures, while the Y-axis

represents the overhead of each test relative to the overhead caused by a single

failure (%). For each total number of failures, the extrapolated overhead in

a theoretical execution with best-case global recovery (100% for one failure,

200% for two failures, 300% for three...) is indicated by the lighter color

(green). As such, the lighter part of each bar indicates overhead reductions

due to failure masking. 165

xxv

A.1. Incremental member store using subsets. Gray areas indicate the data being

saved by Fenix_Data_member_storev operations. 204

xxvi

1

Chapter 1

Introduction

1.1 Motivation

Exascale. To satisfy the increasing demands of science and engineering applications, the

computational power of extreme-scale systems must be increased. As a result, the HPC

community is committed to achieving working systems able to perform 1018 floating point

operations per second (FLOPS) by the end this decade [49, 48, 3] or early in the next

decade. Governments have also recognized the need to advance science through the use of

high performance systems. For example, in 2015, U.S. President Barack Obama issued an

executive order [119] urging the community to accelerate the delivery of an exascale system

over the next decade.

While exascale systems will enable computations at unprecedented scales and resolu-

tions, ultimately leading to dramatic insights into complex phenomena, achieving this goal

presents significant challenges. Current petascale systems have millions of cores (e.g., the

top system on the Top500 list, as of November 2016, achieves 93+ petaflops with 10,649,600

cores [147]) and next-generation exascale systems are expected to have an order of magni-

tude more. To achieve such computational power, it is projected that individual compute

nodes will contain thousands of cores [145]. Due to the anticipated, very large number of

cores and components, the DoE ExaOSR report [7] identifies an intensified focus on re-

silience as one of four key challenges toward exascale along with the containment of power

consumption, enhanced memory access, and a dramatic increase of parallelism. Emphasis

on these challenges has been further documented in other reports such as the Blue Waters &

TeraGrid 2009 workshop [96], as well as the Argonne National Laboratory’s 2012 resilience

workshop report [139].

2

Low reliability at scale. The mean time between failures (MTBF) for current petascale-

level systems (i.e., systems with a compute power in the order of 1015 FLOPS) is measured

in hours, and the failures typically affect either a single node or a small number of nodes.

Studies [146] show that failures, even when they are independent and therefore not related,

present statistical temporal locality. In high-end systems, this translates to long periods of

high stability (no failures) separated by periods of high instability (failures occurring much

more frequently than the MTBF). It has been shown that stable periods can last as much

as three times longer that the MTBF while failures occurring during unreliable periods

may occur, for example, more than seven times as frequently as the MTBF. This can be

observed through executions performed on the Titan Cray XK7 at ORNL OLCF, ranked

third on the Top500 list as of November 20161 [147]. According to Tiwari et al. [146],

about 29% of the failures observed on Titan over the course of several years occur within an

hour of the last failure while about 45% occur within three hours of the last failure despite

Titan’s MTBF of approximately 7.75 hours. One particular production run using 130,000

of Titan’s cores (which represents 8,125 compute nodes, or 44% of Titan’s total compute

nodes) experienced nine node failures during a 24-hour period, indicating a period of high

instability in the machine’s lifetime.

A dramatic improvement in component reliability is required to neutralize the effect of

the aforementioned heightened component counts that future extreme scale machines will

require. Architectural trends such as the predicted reduction of gate width and voltage

levels [139], however, suggest that component reliability may, in fact, decrease. As a result,

while it is difficult to predict what the actual MTBF of an exascale machine will be, some

researchers believe that it might be in the order of minutes [49]. This dissertation does

not assume any particular predicted MTBF, but instead approaches the problem using

worst-case analysis.

Risks and costs of increased hardware-level resilience. Implementing fault toler-

ance directly at the hardware level has clear advantages such as allowing the software to

build on a reliable substrate. Offering an abstraction of a failure-free machine, however,

1Titan was ranked as the first system in the November 2012 list and as the second system from June
2013 to November 2015.

3

can have significant costs associated. First, there is the cost of developing hardware-level

resilience techniques and the per-component cost to implement these techniques in silicon.

Second, hardware-based fault-tolerance can incur additional operating costs, such as in-

creased power requirements, in order to keep the extra hardware components running. An

example can be found in the hardware-implemented Error Correcting Code (ECC) technol-

ogy that is shipped with high-end DRAM modules. ECC consumes a certain amount of

power to function which can, in turn, add up to a non-negligible percentage of the power

consumption of an HPC center. Increasing power consumption should be avoided as much

as possible, as keeping a tight power budget is another big challenge that needs to be ad-

dressed in order to achieve exascale [7]. Since an exascale machine is expected to run on

20 MW, the HPC community is seeking a machine that will be 1, 000, 000/93, 014.6 ≈ 11×

more powerful than the most powerful machine (as of November 20162), but will only be

consuming 20, 000/15, 371 ≈ 1.30× more power. In order to stay within the target power

limit, one school of thought projects that only a small part of each chip will be powered at

a certain time so that most of the chip will not be operational most of the time (an effect

called dark silicon [56]). If chips contain power-hungry hardware dedicated to tolerate fail-

ures, machines will be required to turn off other parts of the hardware in order to turn on

resilience features, effectively trading off performance to improve resilience.

Heroux [80] forecasts that, while scientists and engineers do not develop mechanisms

to run their simulations in a failure-prone scenario, HPC centers and vendors will keep

building reliable machines regardless of performance penalties imposed by hardware-level

fault tolerance. Only when the community is ready will the market provide less reliable,

higher performing HPC systems. It is, therefore, imperative to provide efficient support for

failure resilience that presents more attractive tradeoffs than today’s mechanisms.

1.2 State of the Art Software for Hard Failure Resilience

It is likely that future machines will experience a significant reduction in MTBF which may

be unavoidable or, as discussed above, voluntary and accepted by applications. This MTBF

2According to Top500, Sunway TaihuLight [147].

4

reduction will directly impact applications since the typical run time of target scientific and

engineering applications will be longer than the MTBF. For this reason, resilience will be a

key design requirement for exascale systems and applications and fault tolerance techniques

will become essential. An important class of failures that must be addressed is process and

node failures (also known as hard failures or fail-stop failures), including the correlation ef-

fects in which a set of failures is triggered by a previous one. The mechanisms implemented

in this dissertation aim at addressing hard failures since other types of failures could, poten-

tially, be promoted to fail-stop failures when detected. The presented mechanisms could,

therefore, be used to tolerate other types of failures.

Research on runtime and OS level resilience explores mechanisms that offer a view of

a failure-free machine to the application by transparently handling failures. While these

techniques are attractive due to their simplicity, they offer applications only generic so-

lutions, often at high costs. Consequently, current production-level HPC systems do not

provide fault tolerant runtimes out-of-the-box. For example, hard failures that occur during

the execution of an application using the Message Passing Interface (MPI) are considered

fatal by default and result in all application processes aborting. As a result, process and

node failures are often recovered using offline techniques that restart the job or the MPI

environment from scratch, usually restoring from the last checkpoint found in stable stor-

age. While coordinated, stable-storage-based, global checkpoint/restart (C/R) is currently

the most widely accepted technique for addressing these failures, it is unclear whether this

approach will scale to exascale since the time to checkpoint will often be longer than the

expected MTBF. An important body of works actively focuses on C/R improvements to

address these issues [112].

As an alternative approach, several fault tolerant MPI runtimes have been developed,

such as MPICH-V [20], rMPI [60], MR-MPI [55], redMPI [64], and FEMPI [141]. These run-

times aim to support completely transparent failure recovery (i.e., they offer an abstraction

of a fault-free system to the application). To do so, they use one or more of the exist-

ing, application-agnostic fault tolerance techniques (e.g., creating coordinated checkpoints,

logging messages, or replicating computational resources).

5

Need for application-aware resilience. However, the abstraction of a failure-free soft-

ware stack comes with high overheads, as happens with hardware-level fault tolerance. As

suggested by recent studies [79], this abstraction will not be sustainable at extreme scales

due to the costs of implementing resilience techniques in the hardware, OS, or runtime

levels. Therefore, application-aware resilience techniques will likely be required at exascale.

1.3 Research Challenges for Application-assisted Resilience

1.3.1 Support for Customizable Application Resilience

Traditional single program multiple data (SPMD) and message passing programming mod-

els were not designed to tolerate failures. As the need for resilience becomes more prevalent,

a large number of techniques have emerged to enable resilience in applications using these

paradigms.

Application-agnostic techniques, such as automatic checkpoint and restart or redun-

dancy, focus on hiding the failures from the application. However, they result in high levels

of overhead and, therefore, are rarely used in production.

Alternatively, some application-aware techniques, such as Algorithm-Based Fault Toler-

ance (ABFT), focus on soft failures and are mainly designed for specific types of applica-

tions. For example, ABFT strategies focus on operations with matrices (e.g., linear algebra

operations such as matrix-matrix multiplication).

Other application-aware techniques, such as application-based checkpoint and restart,

can address the high overhead of runtime-based checkpoint and restart by selecting only

the parts of the data that need to be saved. Even though some SPMD optimizations store

checkpoints in memory, they only do it as a caching mechanism before pushing them to a

centralized parallel file system (PFS). When a failure occurs, in order to restart from a set

of checkpoints, all ranks are required to reload from the most recent checkpoint found in

centralized resources, causing contention. This is suboptimal since the great majority of

ranks could still have a valid checkpoint stored in local memory and, therefore, achieve a

faster restart.

6

Therefore, there is a need for a generic, customizable framework that en-

ables production codes to be independent of traditional PFS-based checkpoint-

ing with offline restart. If application-specific/domain-specific resilience algo-

rithms are not used, this framework must allow process and node failures to be

recovered by leveraging generic, optimized, application-aware resilience mech-

anisms.

1.3.2 Support for On-line Recovery

Production-level applications are rarely monolithic. Instead, they are more often composed

of multiple components and libraries used in conjunction to perform complex calculations.

Since the typical run time of these applications can often be measured in the order of tens

of hours or even days, developers focus their efforts on optimizing the parts of the code

that account for large portions of the execution time; e.g., the operations in the critical

path of the main loop. Therefore, other parts of the execution, such as the initialization

of the application itself, its components, and the libraries that are used, are generally not

optimized and can be very costly.

When a failure strikes applications that use traditional recovery procedures, all SPMD

ranks (or processes) are shut down and the message-passing domain is re-started from

scratch, launching all ranks from the beginning. These ranks are then required to re-

initialize and, most likely, recover a previously saved global checkpoint from stable storage.

Current techniques prevent optimized process and environment recovery because

modules and libraries that were initialized in all survivor ranks need to be restarted. Since

all application data is lost when the ranks or processes are shut down, current techniques

also prevent optimized application-specific data recovery that does not require data

replication. For example, some applications could tolerate an approximation on the lost

data, inaccessible due to the loss of a process or node, without the need to checkpoint –e.g.,

stencil applications can tolerate the loss of subdomains since these can be approximated

by using the contents of logically neighboring subdomains, still stored in the memory of

survivor processes. Another example can be found in distributed numerical methods which

iteratively try to minimize a parameter, the error, to reach convergence. In some cases, the

7

loss of memory contents of a process or a node may not prevent reaching convergence, but,

instead, may only imply the need to compute extra iterations before reaching it.

The required solution cannot therefore power off or disrupt survivor ranks

and their memory contents when a failure is detected; there is a need of a

runtime able to allow these ranks to continue running despite the failure.

1.3.3 Support for Existing Code Base

Some programming models offer a natural, flexible, and mostly automatic way to recover

from failures. For example, applications that follow a task-centric model decompose the

different computational parts into separate components, or ‘tasks’, which are typically fine-

grained. While this model has its own set of challenges and overheads related to fault

tolerance, its resilience can be managed in an automatic manner by rescheduling tasks that

were assigned to a failed node.

Some applications and simulations, however, can easily divide their computational com-

ponents statically among the different processors in an SPMD fashion. In these cases, the

inherent overhead that comes from task-centric’s dynamism and flexibility may, in fact, de-

crease performance when compared to an static, SPMD-like division of work. Nevertheless,

SPMD and message passing models are not designed to handle process and node failures

by default.

Furthermore, from a practical perspective, most production-level applications and sim-

ulations contain hundreds of thousands of lines of code that have already been written

following an SPMD and message passing model and have been highly optimized for several

platforms and situations over the decades. Trying to port these applications to a task-centric

model would require enormous amounts of research, development, and optimization, which

makes this option infeasible.

The de-facto standard for message passing applications, the MPI standard, does not

have support for fault tolerance as of its third version. The User-Level Failure Mitigation

(ULFM) proposal aims at adding the minimal set of operations to the MPI standard in

order to support fault tolerance. This proposal’s goal is to maximize flexibility so that the

maximum number of recovery mechanisms can be built on top of it. This comes at the

8

expense of readability and ease of use. By definition, this flexibility comes with the cost of

a highly invasive nature when it comes to the original application code, making it infeasible

to use in large code bases. For this reason, the ULFM proposal is specifically crafted to be

used as the basis for fault tolerance libraries and may not be intended to be used directly

by the application code.

A solution for process and node failures that does not require the re-write

of hundreds of thousands of lines, including complex optimization procedures,

is still, therefore, needed. The solution needs, instead, to leverage the re-

search, development, and performance optimizations achieved during the last

few decades in production-level codes. The required solution prioritizes pro-

cess and node fault tolerance for SPMD and message-passing models by only

inserting a few lines or changing a negligible portion of the code.

1.4 Overview of Presented Research

In this dissertation we aim to address the aforementioned research challenges to reduce

resilience costs.

We present Fenix, a fault tolerance framework for SPMD and MPI applica-

tions that allows programmers to incorporate on-line recovery into their code.

The Fenix framework provides a customizable resilience solution: it readily sup-

ports optimized recovery mechanisms if applications want to implement them,

but falls back to generic, high performant solutions otherwise. We leverage knowl-

edge from the application to improve scalability, reduce costs, and improve effectiveness.

An overwhelming number of scientific applications can be classified as iterative stencil

computations. These applications usually simulate physical phenomena occurring in a do-

main representative of the reality. They uniformly discretize a continuous space in a mesh

or grid of points and statically assign tiles of these points to processors. Typically, stencil

applications are composed of a number of iterations, or timesteps, each of which consists,

in turn, of two key parts: (1) computation on local tiles to advance the simulation, and (2)

9

communication with the immediate neighbors. In order to add resilience features, applica-

tions that currently use traditional C/R could be optimized using the on-line global recovery

method described above. However, due to the locality of the computations in stencil codes,

this solution is sub-optimal and its cost can be significantly decreased. In particular, com-

munication patterns in stencil applications imply that, upon failure, by allowing survivor

processes to continue the simulation, only the processes directly neighboring failed processes

are immediately affected by that failure and are, therefore, the only processes needed for

the recovery procedure.

We therefore provide a method that dynamically tolerates process and node

failures while only notifying a minimal set of ranks and enabling the vast major-

ity of unaffected computational resources to continue execution without being

required to take part in process or data recovery procedures.

Some examples of stencil-based parallel applications that could benefit from such a type

of recovery are partial differential equation (PDE) solvers using finite-difference methods,

such as applications tracking how temperature spreads in time through a particular part of

a 3D space.

If applications with locality features use a local recovery approach to tolerate a failure,

the effect of such a failure may propagate slowly throughout the machine. This contrasts

with global recovery constructs which force the failure effect to be immediately propagated

to all processing elements.

If subsequent failures occur at a distant node before the original failure delay has spread

to that node, the delay of the second set of failures will be masked with the delay of the

first failure. Therefore, their combined effects on end-to-end execution time will only be the

maximum of the recovery delays, instead of their sum. In general, the overhead of multiple,

separate, independent failures on the total execution time can appear to be the same as the

overhead of a single failure.

This provides a critical advantage for future iterations running on highly unreliable

HPC environments: the probability of multiple failures to be masked increases with higher

compute resource count and, therefore, there is an opportunity for the recovery delays to

be masked and appear as if the application was running on a quasi-reliable machine.

10

The failure masking effect is studied, described, modeled, and simulated

in order for applications with locality features to take advantage of it. Fur-

thermore, we present application algorithms and optimizations that can take

advantage of this effect to try and increase performance in faulty environments

by leveraging masking advantages.

1.5 Contributions

This dissertation aims to address the challenges mentioned above. In summary, application-

aware resilience and fault tolerance methods will likely be required at scale since the cost of

providing the application with an abstraction of a failure-free machine, either via hardware

or software techniques, will be unsustainable.

The main contribution of the presented work is a set of application-assisted resilience

techniques that offer better scalability and lower costs than state of the art techniques. A

byproduct contribution is Fenix, a scalable, efficient, flexible, and extensible framework to

enable on-line recovery. Applications may leverage their particular communication char-

acteristics to enable optimized failure recovery modes, such as local recovery, within the

framework.

Specific research contributions are described in the following subsections and are grouped

as follows: global recovery, local recovery, and failure masking.

The expected impact resulting from the presented research is the enabling of domain

scientists to focus on the implementation of an application problem itself while minimiz-

ing the additional efforts required to optimize the costs of resilience and fault tolerance.

Furthermore, these contributions are expected to decrease the overheads of fault tolerance

through the use of application-guided resilience as well as to enable an alternate resilient

computational model towards exascale.

1.5.1 Global Recovery

This area of research is focused on on-line recovery techniques that make use of all computa-

tional resources to collaboratively and transparently (i.e., without the aid of the application)

repair an MPI environment. The developed techniques enable transparent on-line process

11

recovery for parallel SPMD applications experiencing rank or node failures. These appli-

cations can then make use of the memory contents belonging to surviving processes at the

time of failure detection, as well as previously saved checkpoints, for application-specific

data recovery.

Even though these techniques are generic and can be applied to most applications,

this dissertation uses iterative finite difference solvers to experimentally demonstrate their

advantages.

Specific contributions include:

• Design of an algorithm for enabling parallel applications to transparently

recover from multi-process failures in an on-line manner.

This dissertation presents an algorithm that instantiates a specific on-line recovery

mode: upon failure, the algorithm captures the failure notification without the need

to modify the runtime and the application code, propagates the notification to the

rest of the domain, recovers the computing environment by re-spawning new executa-

bles or using spare resources, and guarantees that all processes return to a specific,

well-known position in the code. At this well-known position, the application may

perform particular, application-specific recovery procedures, which can range from

the traditional method of reloading a previously-saved checkpoint to approximating

the lost data and continuing execution without the need to reload any data.

• Analysis of application-driven implicitly coordinated checkpointing.

This dissertation analyzes how to properly create distributed, consistent checkpoints in

an application-aware manner so that the coordination is implicit and communication-

less. This approach leverages application semantics to eliminate coordination costs

altogether.

• Formal specification, prototype implementation, integration, and evalua-

tion of the on-line global recovery model with real-world simulations.

The implementation discussed in this dissertation provides applications with pro-

gramming and runtime support for hard failure on-line global recovery as well as an

12

optional implicitly coordinated, in-memory checkpointing approach to fulfill data re-

covery requirements. The evaluation of this implementation then demonstrates the

framework’s ability to support sustained performance in spite of node failures injected

at high frequencies.

• Definition of a resource allocation strategy to optimize throughput for

scalable applications with fixed problem sizes while balancing resilience

and performance.

Some applications require the usage of the entirety of the memory in their allocation.

In this case, checkpoints need to be saved in a slower, centralized storage. This disser-

tation explores the tradeoff between reduced failure rate when using the exact number

of nodes necessary to fill the entire memory of all resources and increased checkpoint

performance due to in-memory storage enabled by a larger resource allocation to free

memory.

• Study of the tradeoff between resilience and simulation resolution.

Some applications with high memory usage can reduce the resolution in certain areas

of their domain so that resilience cost can be significantly decreased by enabling the

use of more efficient data recovery techniques, such as in-memory checkpointing.

1.5.2 Local Recovery

This body of research focuses on making use of well-defined, local communication behaviors

in an application. In such environments, local recovery mechanisms can be implemented to

provide optimized and highly scalable on-line recovery. This dissertation demonstrates this

concept using an important class of applications: finite difference computations with stencil

operators. Special focus is given to isolating and minimizing the number of ranks that are

aware of a failure and, therefore, part of the process and data recovery procedure. The goal

is for this number to be directly proportional to the failure size instead of dependent on

the total domain size. In other words, the number of ranks that take part in the recovery

process needs to be constant, O(1), with respect to total domain size.

Specific contributions include:

13

• Design and development of efficient mechanisms for leveraging particular

communication patterns present in scientific simulations to effectively sup-

port failure recovery in a localized manner. Application-guided local recovery

allows unprecedented scalability while the integration with applications can be done

using the same programming interface as in the global on-line recovery case.

• Prototype implementation, integration, and evaluation of the local recov-

ery model into scientific simulations to allow processes not affected by a failure to

be agnostic of it.

1.5.3 Failure Masking

The third set of research activities focuses on studying the different aspects of failure mask-

ing as well as increasing its probability of occurring. When several failures occur in certain

applications with locality features (for example, stencil computations) using local recovery

techniques, there is a certain probability that the total overhead of failure recovery on end-

to-end execution time will be less than the addition of each failure’s individual overhead.

The probability of this effect increases with the machine’s component count, which is a

highly desirable property in the pursuit of exascale. The presented research activities focus

on describing the failure masking effect, experimentally demonstrating its existence, model-

ing it, simulating it, analyzing its probability of occurring, and studying certain application

run time patterns that allow for a further increase of its probability of occurring. The

latter study focuses on the exploration of the effects of two different techniques, targeted to

stencil codes, that effectively increase the probability of failure masking. Both techniques

focus on extending the time it takes for a generic delay (for example, one caused by failure

recovery) in a single stencil cell, or group of stencil cells owned by one or multiple ranks,

to reach other cells across the domain. The first technique explores how a reduction of the

communication frequency between the ranks of an application can dramatically increase

the probability of failure masking. The second technique explores how this probability can

be further increased by mapping domain cells to ranks in an architectural-aware manner.

This dissertation formulates both techniques, analyzes their impacts on failure recovery

delay propagation, implements and integrates them with applications, and evaluates both

14

techniques using real stencil codes at scale while injecting real node and multi-node failures.

Specific contributions include:

• Description, modeling, analysis, simulation, and experimental demonstra-

tion of the existence of the failure masking effect on stencil-based applica-

tions integrated with on-line local recovery.

When multiple failures are recovered in a local manner, the total overhead on end-to-

end execution time might appear as if only a single failure occurred. This dissertation

describes the concept, empirically demonstrates it at scale, and provides analytical

models as well as simulations and probabilistic analyses of different levels of failure

masking.

Furthermore, this dissertation provides both a quantitative comparison of global and

local on-line recovery for an increasing number of failures during an application ex-

ecution and an analysis of the probability of failure masking as a function of failure

density and various application characteristics.

• Resize of stencil ghost regions to increase failure masking probability.

By understanding certain application process communication characteristics and run-

time patterns, specific algorithms can be designed to maximize the propagation delay

of failure recovery and, therefore, effectively increase the probability of failure masking.

Increasing the ghost region size of all ranks artificially decreases the communication

frequency. For example, by doubling the ghost point region size, the communication

can occur every two iterations instead of every iteration. This dissertation studies

and evaluates this technique to demonstrate how the probability of failure masking

can be increased.

• Optimization of rank to node mapping to maximize the effects of failure

masking.

This dissertation studies how to optimally map the domain regions of simulations to

processes so that logically neighboring domains are allocated in processes that are

running in the same node. This ensures that node failures have minimal impact in

the propagation delay, thereby increasing the effect of failure masking.

15

1.6 Outline of this dissertation

This dissertation is structured as follows.

Chapter 2 provides the background and a review of related work focused on resilience

methods that have been presented to tolerate failures on large scale applications running

on HPC environments. It also compares and discusses advantages and disadvantages of the

different fault tolerance methods that have been deeply studied in the literature.

Chapter 3 presents a use case study based on production executions of a scientific parallel

simulation on top of a high-end HPC environment. This experience serves as a motivation,

since it studies the resilience techniques currently in use for production-level applications,

the amount of fault tolerance overheads that scientists are willing to tolerate, as well as

offers a first-hand experience regarding real failures occurring in top HPC systems.

Chapter 4 describes the research on global recovery performed in the context of the

Fenix framework. Fenix provides generic on-line and transparent recovery from process,

node, blade, and cabinet failures for MPI-based parallel applications, guided by optional

application-specific, implicitly-coordinated checkpoints.

Chapter 5 extends the work on the on-line recovery technique presented in Fenix to

present results on local recovery in the context of FenixLR. FenixLR can be used in appli-

cations with particular communication characteristics, such as stencil-based parallel appli-

cations.

Chapter 6 offers a conceptual and experimental description of the benefits of failure

masking, occurring when some application types recover from failures in a local manner.

Failure masking allows the overhead of several failures to appear in the end-to-end execution

time as if less failures occurred, a highly desirable property toward future extreme scale

machines. This chapter also presents models and simulations of the different aspects related

to failure masking as well as optimizations that allow its probability to increase.

Chapter 7 concludes the research presented in this dissertation by summarizing the

main contributions, their implications and expected impact, as well as outlining directions

for future work.

16

Chapter 2

Background and Related Work

Different failure modes and their characteristics are well documented [139, 148]. A failure

instance can be characterized by its domain (the component that has failed, either hard-

ware or software), a certain persistence (it may either halt execution, or it may simply

cause erratic behavior), its detectability, and its consistency. A fault is active or dormant

depending on whether it causes an error or not; is permanent, transient, or intermittent

depending on its presence; and may or may not be systematically reproducible. A large

area of research addresses specific kinds of failures, such as silent errors (e.g., silent data

corruption or SDC) or process/node failures (e.g., fail-stop errors of one or more processes).

Both process and node failures, also known as hard failures, can be caused by different

faults. This dissertation focuses on hard failures and considers node failures to be a subset

of process failures, since it essentially involves losing a set of processes (i.e., all the processes

that are running in a node).

2.1 Hard Failures in HPC Centers

Modern HPC systems, which can compute at petascale-level (i.e., at the order of 1015

FLOPS), measure values for the mean time between failures (MTBF) in terms of hours. It

has been observed that failures tend to occur in bursts separated by long periods of high

stability [146]. An example of this effect can be seen through previous work done on Titan

Cray XK7, a system with a reported average MTBF of ∼ 7.75 hours [146], where nine

failures were observed during an execution lasting 24 hours, averaging ∼ 2.67 hours [66].

This discrepancy can be explained through the study of failure distribution. Table 2.1

presents a discrete distribution of the inter-failure arrival period for three HPC systems

at ORNL and LANL, including Titan. It is important to highlight that 29% of Titan

17

Time between OLCF LANL18 LANL19
two failures (h) ni (%) Ni (%) ni (%) Ni (%) ni (%) Ni (%)

≤ 1 29 29 18 18 14 14
1− 2 11 40 13 31 11.5 25.5
2− 3 7.5 47.5 9.5 40.5 9 34.5
3− 4 8.5 56 8 48.5 7.5 42
4− 5 7 63 7 55.5 7.5 49.5
5− 6 5 68 5 60.5 7 56.5
6− 7 4 72 4.5 65 5.5 62
7− 8 3 75 4 69 4.5 66.5

MTBF ∼7.75 h ∼7.5 h ∼7.9 h

Table 2.1: Frequency of time between consecutive failures for three different systems.
Left-most column represents the number of hours between two consecutive failures. Three
systems have been studied, all having an MTBF between 7 and 8 hours. For each presented
system, ni represents the relative frequency, as a percentage of all observed failures, and Ni

shows the relative cumulative frequency, also as a percentage. Data has been approximated
to the nearest half percentage, based on work by Tiwari et al. [146], which are obtained
from analyzing proprietary failure logs; the OLCF system refers to the Titan Cray XK7
and is based on six months of failure logs; the LANL systems are based on data collected
for nine years.

failures occur within an hour of a previous failure, and around 3/4 of all failures occur more

frequently than the MTBF. In the LANL systems, similar results can be seen. An important

conclusion is that current systems experience temporal locality of failures: a failure f2 that

follows another failure f1 will occur with a high probability within one hour of the original

failure f1.

Predictions for the failure frequency of future systems, such as exascale-level HPC re-

sources, vary significantly. For example, some studies predict MTBFs in the order of min-

utes [49] while others consider future MTBFs to be only slightly lower than petascale obser-

vations. This dissertation works on the assumption that there will be some level of increase

in both the frequency of failures and the frequency of aforementioned failure bursts, but

the conclusions are not based on any specific increase level.

With this increase in MTBFs, the abstraction of a failure-free machine will quickly

become infeasible [79]. In order to reduce fault tolerance overhead at future extreme scales,

application-aware resilience will become a necessity.

18

Failure distribution. A Poisson process is typically used to model the distribution of

failure arrival times [41, 105, 137, 82, 98, 45, 34]. Furthermore, this dissertation considers

the failures to be uniformly distributed among system processes.

2.2 Application-agnostic Techniques

2.2.1 Checkpoint and Restart

Checkpoint and restart (C/R) [85, 84, 82] is the most commonly used technique in order

to provide fault tolerance in HPC systems to obtain an application-agnostic solution. In a

C/R implementation, the application state is periodically saved (e.g., using BLCR [77] or

application-level C/R) so that, upon failure, execution can be resumed from them [15]. In

the event of a failure, execution can globally resume from the last saved set of checkpoints

by accessing the stored information, instead of restarting from scratch. With this technique,

only the work done since the last checkpoint is lost due to the failure; work done up until

that point has been “saved”. This recovery model has been practiced in HPC for several

decades due to its simplicity and adaptivity to the major parallel programming models

(such as MPI [65]) which, by default, are designed to abort all active application processes

upon a process failure.

This process is independent of the number of nodes affected by the failure, i.e., if a

node or process failure occurs, all processes are typically forced to rollback to the previous

strongly consistent checkpoint.

Frequency of checkpointing. A large body of literature is devoted to dynamically

determining the optimal time between two consecutive checkpoints. A study by Young [154]

modeled the checkpointing process and calculated the optimal checkpoint interval that

minimizes the waste, assuming the node MTBF is known. Daly [41] improved Young’s

model by taking into consideration the restart time. In both cases, the authors create a

model for the cost of the end-to-end execution, and obtain the optimal interval between

checkpoints by minimizing the cost. Later studies focus on experimentally evaluating the

results of such models [137], and improving it by including a varying checkpoint interval

and modeling the failure arrival time with distributions other than Poisson (e.g., Weibull,

19

Exponential, Gamma, or Lognormal), under the assumption of reliability awareness [105].

Thanks to the study of the statistical distribution of failures, recommended intervals are

based on probabilistic failure models [124] and also take into account dynamic memory usage

of applications to reduce network usage. Some approaches [12, 13] minimize the number

of checkpoints in respect to traditional iterative checkpoint techniques while others [114]

automatically adapt the checkpoint period using dynamic information of the system failure

rate.

Consistency of distributed checkpoints. Another property that C/R systems must

ensure is global consistency of checkpoints. While each compute node checkpoints indi-

vidually, the different saved states must be coordinated with each other in order to be usable

for failure recovery: random, asynchronous memory dumps can often be unusable due to

message inconsistency, and, therefore, they can be wasteful. Thus, a communication channel

must be used for sychronization. Studies like [82] and [113] distinguish three desired states

of a communication channel: in a consistent state no internode message sent is out of se-

quence, in a transitless state there are no messages sent that have not yet been received, and

a strongly consistent state is both consistent and transitless. To ensure that the channel is ei-

ther consistent or strongly consistent during checkpoint creation, coordination protocols

must be defined. Fully coordinated techniques [54] are used due to their simple implemen-

tation. Non-blocking coordinated techniques [22, 31], also known as distributed snapshots,

build on the assumption that the network channels between all peers are FIFO. Each com-

pute node can begin the checkpoint process only when it has received notification from all

other nodes in the system (based on Chandy-Lamport global state research [31]). In block-

ing coordinated techniques [39], the channel is stopped after the reception of the notification

until the checkpoint is finished. The main advantage of coordinated protocols is that they

are application-agnostic and create globally consistent checkpoints. The major drawback,

however, is the overhead due to process synchronization. Uncoordinated protocols [21]

do not require synchronization during checkpoint creation, thus reducing overheads and

allowing application imbalance. However, during recovery, a consistent global state has to

be found by examining the checkpoints. As these protocols cannot guarantee checkpoint

global consistency on recovery, all processes may end up rolling back to the beginning of

20

the execution, i.e., the domino effect. Communication induced checkpointing [2] is a mid-

dle point between fully coordinated and uncoordinated techniques, avoiding the domino

effect. Uncoordinated checkpointing protocols can leverage message logging to avoid the

domino effect for piecewise deterministic applications [54], at the expense of logging all the

application messages. For send-deterministic applications, only a subset of all the messages

need to be logged [131, 72]. Building on these ideas, some techniques recover only a subset

of processes upon failure, while avoiding the domino effect, assuming that the application

is send-deterministic [72], or use message logging to reduce the overall waiting time upon

failure [129]. Uncoordinated protocols force the processors that survived a failure to wait

for the failed process to catch up. Therefore, a system-level optimization [19] suggests us-

ing these idle cycles to begin the execution of another application from the system queue,

therefore increasing the throughput of the system. Interestingly, a recent study focused on

its general applicability [63] claims that the effectiveness of the uncoordinated approach

depends on the application communication pattern and the performance of underlying I/O

subsystems. This result indicates the necessity of frameworks supporting application-aware

local recovery techniques.

Checkpoint Storage and Transfer. In general, checkpoints are saved to a location that

survives most system failures, known as the stable storage [82]. Typically it is implemented

via a resilient centralized storage server; its main advantage is that it is able to withstand

a complete system failure, while its main drawback is its low performance –i.e., it presents

a bottleneck due to huge data motion from distributed compute nodes to a centralized

location. Other research has explored storing the checkpoints in the local memory [125, 156],

in both local and peer-memory [155], in non-volatile memory [95], in node-local storage (such

as SSD) [120, 6], or at different storage layers [112].

In some scenarios, it is required to reduce both space and network bandwidth con-

sumed to transfer the checkpoints. To that end, studies use techniques such as eliminat-

ing duplicate memory pages of different processes before they are saved to storage [116],

compressing checkpoints [86], aggregating checkpoints [121], or both [87]. Adaptive in-

cremental checkpointing [88] uses separate cores to create a multi-level checkpoint stack

through compression. In other scenarios, it is enough to mask the checkpointing time by

21

overlapping execution of the application with transmission of checkpoints [115] or by au-

tonomically discovering application’s memory access patterns and asynchronously creating

checkpoints [118]. In some cases, encodings such as XOR or Reed-Solomon [127] are used,

mimicking RAID-like resilience [6].

To prevent the intrinsic data transfer bursts of checkpointing, staging areas (a set of

computational resources dedicated to store data in memory) have been used to cache data

and scatter the I/O operations in time [142, 103]. Checkpoint staging tries to cache the

checkpoint data in the local node [122] or a set of dedicated nodes [128, 120, 126] before

sending it to stable storage, while checkpoint staggering [32] limits the number of processes

that can concurrently write to stable storage. To further alleviate centralization issues,

burst buffers (a layer of distributed solid-state or flash devices) can be used as a cache to

the PFS, or, whenever possible, to store a copy of the most recent checkpoint to optimize

the restart procedure upon failure [102]. However, few HPC centers offer burst buffers, or

restrict their access frequency due to limited durability of the underlying devices [104, 52].

Other techniques maintain a duplicate of the process in local memory while checkpoint-

ing [144] or at all times [40]. Non-blocking checkpointing uses staging nodes to create a

multi-level checkpointing stack [133]. An optimization [112] proposes a highly scalable in-

memory filesystem (with performance similar to that of memcpy) to tolerate process failures

that, when required, pushes to a multilevel stack to extend failure coverage [125]. Further-

more, the authors offer an interface to access the checkpoint data in the local memory using

RDMA, which can be used by third-party tools to store it in the memory of a peer node.

Checkpointing in the Software Stack. C/R has typically been an application agnostic

algorithm. However; the application, the compiler, the runtime, and the OS may provide

useful knowledge to create a partial checkpoint (excluding temporary buffers) or an incre-

mental checkpoint (including only changes since the last checkpoint). As described in [82],

C/R requires a non-trivial infrastructure of subsystems in order to succeed. C/R can

be embedded in the OS, as BLCR (Berkeley Lab Checkpoint/Restart) does. BLCR is a

mechanism that can access process information and memory contents in order to store them

in a way that can be later replicated. Higher in the software stack is MPICH-V/cl [22], a

global checkpoint runtime based on MPICH and the Chandy-Lamport algorithm. Also at

22

the runtime level, a study presents an extension of OpenMPI that automatically interacts

with BLCR [85]. In a related study, the same authors present an interface to standardize the

heterogeneous mechanisms of fully coordinated, stable-storage-based full-process C/R [82].

Other Checkpointing Optimizations. Other aspects of checkpoint performance are be-

ing actively studied and improved by the community [116]: C/R has been ported to different

architectures [26], optimized for GPGPUs [144, 6], its performance has been modeled [14],

and its energy behavior has been evaluated [110].

Combining C/R with other techniques described later in this section has also been

explored [98]. A typical method is to group application processes into distinct clusters, apply

coordinated checkpointing within clusters and message logging between them [130, 73].

C/R has also been applied to help protect applications from silent error detection [4, 114],

proactively and preventively [17] or even on areas out of the scope of HPC, such as cloud

computing [45, 117].

Failure overheads towards extreme scale. Since the expected number of failures

that a system experiences is proportional to system size, traditional offline global recov-

ery may not scale to exascale due to prohibitive recovery times. The total overhead to

recover the message passing environment due to a failure depends on the size of the sys-

tem. For example, assume a system with NS nodes, in which a node has an expected life

of MTBFN seconds. The expected time to failure of the entire system, therefore, will be

MTBFS = MTBFN/NS seconds. If we assume that each failure, in average, requires R

seconds to recover, in the best case scenario, R is independent of NS . The total process

recovery overhead Os (in seconds) for an application running T seconds (towards exascale,

we can safely assume that T � MTBFS) is expected to be the total number of failures

(bT/MTBFSc) times the average recovery time, R. Hence,

Os =

⌊
T

MTBFS

⌋
·R =

⌊
T ·NS

MTBFN

⌋
·R

Dividing by T , we will obtain the relative overhead, which is

Os,r =

⌊
NS

MTBFN

⌋
·R

23

The above result shows how, in this scenario, the total overhead is proportional to the size of

the system NS , which is suboptimal. Some of the techniques presented in this dissertation

(in particular, those presented in Chapter 5 and Chapter 6) aim to reduce the total failure

overhead so much so that it becomes proportional to failure size rather than system size.

2.2.2 Message Logging

Message logging [18, 82] is a subset of event logging. It maintains a log of all messages

between processes to enable reexecution of crashed processes at a later time. To guarantee

consistency, the application is assumed to be piecewise deterministic [54]. Several desti-

nations for the message logs, such as stable storage or the compute nodes’ unused main

memory have been studied.

Three broad categories are shown in many studies [82]. In pessimistic techniques [21],

when a process sends a message, the protocol blocks computation and message delivery until

the log is written. Optimistic techniques [92] try to reduce overhead by logging messages

asynchronously. As a result, the domino effect that pessimistic protocols try to avoid is

still possible. Causal protocols [53] try to take advantage of both optimistic and pessimistic

options by ensuring that the log is either at the final destination or at least cached in a

neighbor node before resuming computation. For example, a study by Lifflander [93] done

on top of Charm++ exploits the commutative property of messages to reduce the overhead

of maintaining a message log; this study, however, requires extra constructs to describe the

commutativity of message sequences.

One problem of message logging is that, upon failure, the failed processes/nodes have

to be restarted from the beginning of the simulation, which can cause a huge penalty in all

the survivor processes for tightly coupled applications. To minimize this problem, message

logging is sometimes used in combination with uncoordinated C/R [22], which allows the

application to recover to the state immediately preceding a failure, but incurs a higher

failure-free cost. MPICH-V [20] implements two pessimistic message logging protocols and

a causal version.

24

2.2.3 Redundancy

The main idea of redundancy, or replication, [135] is to concurrently (or close to it) run one

or more replicas of the data and the computation of a process. When the main process fails,

its role can be easily transferred to another replica without the need to roll back or block

computation. Levels of replication greater than or equal to 3 are called N-Modular Redun-

dancy (NMR) and allow detection, location and correction of silent errors. MPI runtimes

that automatically apply redundancy techniques, such as rMPI, MR-MPI, or redMPI, are

being designed and implemented. The overheads of various fault tolerant techniques have

been studied, and the tradeoff between rollback-recovery and replication has been shown

[14]. Other studies [62] also motivate redundancy before C/R, arguing that redundancy

can improve MTBF and thereby enable traditional coordinated C/R in exascale systems.

Another advantage pointed out in [62] is that redundancy can naturally detect not only

fail-stop failures, but silent software and hardware errors (by simply comparing replicas).

A later publication [29] claims that the process followed in [62] is incorrect and recalculates

the results, concluding that replication is less beneficial than claimed by the original study.

The same research group later showed [16] that for a given application, traditional C/R

may not scale to exa-scale. For these scenarios, the authors show that replication is not as

wasteful.

2.2.4 Process Migration

Pro-active Process Migration uses models to predict which nodes or processes will fail,

but must be used in conjunction with other techniques to guarantee reliability [151]. It also

requires spare nodes as migration targets to continue the work.

2.2.5 Application-agnostic Runtimes

Several fault tolerant MPI runtimes exist, such as MPICH-V [20], rMPI [60], MR-MPI [55],

redMPI [64] or FEMPI [141]. All of them implement completely transparent failure recov-

ery, i.e., they offer a vision of a fault-free system to the application. To do so, each one

implements one or more of the aforementioned application-agnostic fault tolerance tech-

niques.

25

However, as explained in Chapter 1 and suggested by recent studies [79], by leveraging

the knowledge from the application, constructs that are more scalable and efficient can be

designed.

2.3 Application-aware Techniques

Algorithm-Based Fault Tolerance (ABFT) was first proposed by Huang and Abraham

[81] to detect, locate, and ideally correct silent errors in matrix operations. These errors do

not halt computation, but do produce incorrect results.

ABFT consists of augmenting matrix data with an extra checksum column and/or row.

Several matrix operations, such as matrix-matrix multiplication [74], have been proven to

possess the property that the checksum relationship from the input is maintained in the

output. Thanks to this property, a failure can be detected after the operation, by checking if

the checksum is consistent. Several matrix-matrix multiplication algorithms (Cannon, Fox,

and outer product) are studied in [35], and implemented and evaluated on GPGPUs in [47].

QR factorization is also shown and evaluated for GPGPUs [51]. Other operations, such as

Hessenberg Reduction (HR) [89], right-looking LU factorization [44], Cholesky factorization

[76], Krylov subspace iterative methods [34], FIR (Finite Impulse Response) filtering [81],

Fast Fourier transform [152], sorting [37], and median filtering [150] have been proven

to work with ABFT techniques. More recently, studies like [35] present an extension of

this scope to also support fail-stop failures. The protocol maintains a checksum of the

significant data of all the processes and the application operates in such a way that the

checksum relationship continues to hold at all times during the computation. If the data on

a node is lost, the data is recovered without the need of a checkpoint by simply unfolding

the checksum operation. In contrast with integer operations, however, during floating point

calculations – where computation is inexact – inconsistent checksums due to rounding (and

not due to silent errors) have been detected; it is difficult to distinguish between these. In

some cases, silent errors can be detected, located, and corrected on-line [47, 44], rather than

correcting them at the end of the calculation (off-line).

If an application can converge and achieve a correct (or approximately correct) outcome

even though some information is lost during the process, it is naturally fault tolerant.

26

This is a highly desirable property of a fault tolerant technique. However, not all the

algorithms can be fault tolerant by nature.

In other application categories, such as bag of tasks (or master/worker architectures),

fault tolerance can be implemented by assigning a failed task to a new resource [101],

without the need of checkpointing.

Containment Domains (CD) [38] involve augmenting applications by wrapping every

function or subroutine with preserve, detect, and recover recipes, to prevent failures from

propagating out of the subroutine from which they originate. CD is a language extension

which enables the specification of failure detection, data preservation and recovery schemes

for different code blocks in a nested and hierarchical manner. While CD present a generic

and abstract construct able to fit many kinds of applications and failure types, in this

dissertation we focus on hiding the details of state preservation, failure detection, and

failure recovery by restricting to a specific kind of applications (i.e., those whose state can

be specified by a set of data chunks and that contain strongly consistent states) and failures

(i.e., process/node failures).

Resilience in the MPI standard. To enable algorithms to work for fail-stop failures,

the MPI standard should offer a set of fault tolerance mechanisms. Dynamic features of

MPI 2, such as process re-spawning or communicator merging, would help the recovery

process, but MPI 2 lacks basic tools such as failure detection and survival. Even newer

versions of the standard, e.g., MPI 3, do not include such features yet.

Two main extensions have been suggested to support process failures. HARNESS FT-

MPI [58] was an experimental complex implementation (discontinued in 2003) that sup-

ported n − 1 node failures on an n-node execution through several modes of operation.

Based on one of the recovery modes of FT-MPI, User Level Failure Mitigation (ULFM)

[11, 10, 83] is being proposed as a minimal set of changes to the MPI Forum.

Classifying Failure Recovery Techniques. We classify recovery mechanisms in four

broad categories, disjoint two by two.

Recovery procedures can be off-line or on-line, depending on whether they require a

complete shut-down of the survivor processes or not. Traditional C/R can be considered

off-line, while all the approaches presented in this dissertation implement on-line recovery

27

constructs.

When using roll-back protocols, recovering from a failure triggers all processes (includ-

ing the spare processes) to revert to a valid state in the past, at which point the computation

is restarted from that state. Traditional C/R is a roll-back recovery mechanism. When

implementing roll-forward protocols, however, survivor processes are allowed to recon-

struct a valid state without the need to globally revert the state to a previous consistent

state. In particular, when a failure is detected, all processes construct a valid state, or

potentially valid after some extra computations. Algorithm-based Fault Tolerance tech-

niques [150, 152, 17, 47, 50] fall into this category.

The software framework presented in Chapter 4 show how efficient execution in failure-

prone scenarios can be enabled by using global online recovery in conjunction with ad-

vanced in-memory diskless checkpointing. To fill in failed processes in an online manner,

this framework leverage a spare process pool which is readily integrated with the in-memory

checkpointing mechanism. Despite its usefulness demonstrated with large scale stencil com-

putations, global rollback and synchronization are still necessary even for the response to

a single process failure. Chapter 5 and Chapter 6 presents a design of a scalable recovery

mechanism for stencil computations that allows these issues to be overcome.

28

Chapter 3

Understanding Node Failures on Extreme-Scale Production

Runs

This chapter presents the study of a production execution of the S3D combustion simulation

on 130 thousand cores during a span of 24 hours on Titan. The goal of this chapter is to

analyze the behavior of current fault tolerance techniques upon the event of real failures,

and to highlight the failures encountered and the fault tolerance actions taken.

S3D [33] is an explicit finite-difference based computational fluid dynamics (CFD) code

used to perform massively parallel direct numerical simulations (DNS) of turbulent react-

ing flows using first principles. The code incorporates high order explicit central difference

schemes for spatial derivatives and explicit low-storage Runge-Kutta schemes for temporal

integration [25]. It employs realistic gas-phase thermodynamic, molecular transport prop-

erties and detailed chemical kinetics by interfacing with the CHEMKIN library [97]. While

primarily written in Fortran 90 with MPI based parallel domain decomposition, recent ver-

sions have incorporated advanced task-based approaches and OpenAcc pragma based kernel

acceleration for heterogeneous architectures to achieve good scalability up to 200 thousand

cores on leading petascale platforms.

3.1 Extreme Scale S3D Production Execution

This section analyzes failures and fault tolerance methods used in a production execution

of the S3D application on Titan.

Figure 3.1 shows all events related to fault tolerance and failures that occurred during

a 24-hour production run of S3D. This particular execution simulated a 3D domain that

was decomposed and distributed following a 50 × 52 × 50 pattern. It was executed using

130,000 cores on the Titan Cray XK7 system at ORNL, which represents 8,125 compute

29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Failure Data recovery Process recovery Checkpoint creationWalltime (hours)

checkpoint

p.recovery

d.recovery

16 17

Figure 3.1: Checkpoint and failure timestamps on production runs using 130,000 cores
on Titan. The x-axis represents the walltime in hours. Each row, from top to bottom,
indicates a particular event related to fault tolerance: the first row indicates when data is
being checkpointed, the second row indicates that the MPI processes are being recovered,
and the last row indicates that data is being recovered. Vertical red lines indicate the times
in which a failure occurred (±5 seconds)

nodes, or ∼44% of Titan’s compute nodes. Titan is composed of 18688 16-core CPUs and

the same number of GPUs. Every pair of nodes is connected to a single custom system-

on-chip Gemini ASIC network interconnect. Gemini ASICs are connected using a 3D torus

topology. Applications can directly access network capabilities using uGNI, the user level

proprietary interface from Cray, which is forward compatible with newer versions of Cray

networks, such as Aries.

The execution experienced nine node failures distributed throughout the 24 hours, which

were recovered by stopping all MPI processes, restarting the MPI application, and reloading

checkpoints that were previously saved in the parallel file system. Each checkpoint saved

5.2 MB/core of important data –saving an aggregate of 660 GB/checkpoint. The checkpoint

operation took 55 seconds while the checkpoint loading operation took 44 seconds, and used

IO technology as described by the ADIOS project [103, 90]. This shows an empirical PFS

write bandwidth of 12 GB/s and a read bandwidth of 15 GB/s. Table 3.1 summarizes all

the overheads related to failures and fault tolerance, categorizing them depending on its

source.

Note that the overhead of checkpointing was 1.72% compared to a failure-free, checkpoint-

free execution, which was estimated by subtracting overheads from the total time of 24

hours. The rollback overhead was 22.63%. Together, all effects due to fault tolerance and

failures accounted for 31.40% when compared to the useful computation.

The checkpoint frequency for the described production runs was set to one checkpoint

every 600 iterations (each iteration lasting around 5.30 seconds) because the MTBF was

estimated to be higher than what it actually was. This can be explained by the fact that

30

Total Overhead/Useful

Useful iterations 65,752 s

Checkpoint 1,126 s 1.72 %
Process recovery 4,242 s 6.45 %
Checkpoint load 396 s 0.60 %
Rollback 14,884 s 22.63 %

Total overhead 20,648 s 31.40 %

Table 3.1: Overhead and useful computation times of the S3D production run depicted in
Figure 3.1. The right-most column indicates the percentage overhead when compared to a
failure-free and checkpoint-free execution.

node failures in HPC environments strike in frequent bursts, and are separated by longer

periods of stability [146], as described in Chapter 2. This can make it hard to predict the

checkpoint frequency that will provide the optimal benefit in all cases. In particular, the

presented execution experienced nine node failures and, therefore, a higher overhead than

expected. As mentioned, the total overhead due to checkpointig is only 1.72%, while the

rollback overhead is of 22.63%. Since there is a clear tradeoff between these two metrics, it

is understood that if checkpoints are performed more frequently (i.e. more checkpointing

overhead), the rollback cost will decrease.

This chapter presents a simulation to better understand what would have been the

best checkpoint rate for the particular case of those nine failures. Such a simulation has

been performed (1) first assuming each failure was going to strike at the exact same time as

observed in the production runs and (2) later injecting a significant number of combinations

of nine failures within the 24-hour period that the execution expanded to obtain a more

realistic estimate.

3.2 Modeling Production Run Behavior

A number of studies, such as those presented by Young [154] or Daly [41] have already ex-

plored what is the optimal interval between consecutive checkpoints depending on a number

of application and system characteristics –such as checkpoint time, expected failure rate,

and, in some cases, recovery time. Our approach, however, requires to first understand what

31

 0

 20

 40

 60

 80

 100

 120

10 110 210 310 410 510 610 710 810 910

220 its, 16.13 % 600 its, 34.63 %

O
v
e

rh
e

a
d

 o
f

F
a

u
lt
 T

o
le

ra
n

c
e

 /
 U

s
e

fu
l
C

o
m

p
u

ta
ti
o

n
 (

%
)

Iterations between consecutive checkpoints

checkpoint
recovery
rollback

Figure 3.2: Simulated overhead results of injecting nine failures at the exact same times-
tamps as occurred in the production runs (see Figure 3.1) while changing the checkpoint
frequency (x-axis). y-axis shows the stacked overhead compared to computation that was
useful. Checkpointing every 220 iterations would have been optimal in the case of these
particular nine failures.

would have been the total overhead for different checkpoint frequencies, assuming that the

node failures occurred at the exact same timestamp as they did on the production runs.

This is shown in Figure 3.2.

Increasing checkpoint frequency. As seen in Figure 3.1 and Table 3.1, data was not

checkpointed frequently enough to efficiently tolerate the high number of failures that oc-

curred. Figure 3.2 shows the overhead of fault tolerance compared to the total failure-free

and checkpoint-free execution for different checkpoint frequencies. The overhead has been

categorized in (1) rollback overhead –i.e., the time lost between a failure and the last check-

point preceding that particular failure–, (2) recovery overhead –i.e., the time to detect the

failure, turn off all MPI process and the MPI runtime, restart all MPI processes, and re-

load the checkpoints from the PFS–, and (3) checkpoint overhead –i.e., the time to save the

important application state to the PFS. To estimate the recovery overhead, we added the

average recovery overhead observed in the production runs (i.e. 471 s) and the time to load

the checkpoint from the PFS and distribute it among all MPI processes (i.e. 44 s).

The conclusion of this experiment is that an optimal checkpoint period of 220 iterations

between consecutive checkpoints would have offered a minimal total overhead of 16.13%,

when compared to a failure-free and checkpoint-free execution. Note that without previous

32

knowledge of the particular failure count that will impact the system it is less costly to

choose a checkpoint frequency that is lower than one that is too high. However, note that

the simulation estimated an overhead of 34.63% when checkpointing every 600 iterations,

while Figure 3.1 shows an overhead of 31.40% for these particular nine failures.

Modeling failure injection times. While Figure 3.2 offers an important result showing

that the optimal checkpoint period is of 220 iterations, it does so by assuming a particular

combination of nine failures. The next step in this study focuses on understanding the

effect of any combination of nine failures that may occur in a 24-hour period. Assuming

that a failure can only occur exactly every 60 seconds (i.e. every minute), simulating all

possible combinations would require simulating
(
24×60

9

)
= 7.15 · 1022 combinations, which is

not practical. Instead, we performed ten thousand repetitions of the experiment, assuming

that each failure is uniformly distributed among the 24 hours. To do that we used a

random number generator from the C++ standard (in particular, the 32-bit std::mt19937

implementation of the mersenne twister algorithm by Matsumoto and Nishimura) and the

std::uniform_int_distribution random number distribution. The results of applying

this technique by using the same behavior as in the 24-hour production runs (i.e. total

time, iteration time, checkpoint time, and recovery time) can be seen in Figure 3.3a and

Figure 3.3b. The former shows the overhead of the nine failures compared to a failure-

free and checkpoint free execution. The latter plots the throughput of the simulation, i.e.

number of iterations actually finished and not lost due to rollback caused by a failure. In

both cases, the height of each bar indicates the average of ten thousand repetitions while

the error bars in both figures show the variability between those repetitions: minimum,

maximum, first quartile, and third quartile. As can be seen in Figure 3.3a, the variability

of the total checkpointing cost among the repetitions is minimal, which is expected. The

total recovery overhead is similar in most cases, but, in some infrequent scenarios, a failure

can occur while a previous failure is still recovering, effectively truncating the recovery

time of the first failure as the new recovery process starts (this can be seen by observing

the minimum value in each recovery overhead observation). Finally, the greatest source of

variability is due to the rollback overhead. Optimistically, all failures will occur right after

a checkpoint is finished, with a total rollback overhead of zero. Pessimistically, all failures

33

 0

 20

 40

 60

 80

 100

 120

10 110 210 310 410 510 610 710 810 910

190 its, 17.66 % 600 its, 27.65 %

O
v
e

rh
e

a
d

 o
f

F
a

u
lt
 T

o
le

ra
n

c
e

 /
 U

s
e

fu
l
C

o
m

p
u

ta
ti
o

n
 (

%
)

Iterations between consecutive checkpoints

checkpoint
recovery
rollback

(a) Overhead, categorized depending on its source.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 110 210 310 410 510 610 710 810 910U
s
e

fu
l
C

o
m

p
u

ta
ti
o

n
 /

 T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
%

)

Iterations between consecutive checkpoints

(b) Throughput.

Figure 3.3: Simulated results of randomly injecting nine failures while changing the check-
point frequency (x-axis). Error bars show variability of performing 10,000 repetitions.
Checkpointing every 190 iterations offers an optimal throughput (and minimal overhead)
for the average

34

will occur right before a checkpoint is finished and, therefore, unusable. In this case, the

total rollback overhead is almost 9 ∗ (Tit × Nit,C + TC), where Tit is the time to compute

an iteration, TC is the time to checkpoint, and Nit,C is the number of iterations between

checkpoints. Henceforth, the average case is when all failures occur exactly halfway between

two consecutive checkpoints, incurring a total rollback overhead of 9 ∗ (Tit×Nit,C + TC)/2.

As can be observed in the error bars of Figure 3.3a, 50% of the repetitions incur a rollback

overhead close to this average.

The minimum overhead of 17.66% when compared to a failure-free and checkpoint-free

execution can be achieved by checkpointing every 190 iterations. In this case the average

checkpointing overhead of 5.42%, when compared to the useful computation, is similar to

the average rollback overhead of 6.09%. This contrasts with the same overheads in the real

production runs, which were of 1.72% and 22.63%, respectively, as discussed in Section 3.1.

The average simulated recovery overhead is 6.14%, while in the production runs the process

recovery overhead was observed to be 6.45% and the data recovery overhead was 0.60%,

adding a total recovery overhead of 7.05%. The difference is, as noted before, due to the

fact that in some repetitions, one or more failures can happen while a previous failure

is still not recovered. These repetitions pull the average recovery time down from the

parametrized values. This result coincides with the maximum throughput of 84.98% (see

Figure 3.3b), which can also be obtained when checkpointing every 190 iterations. Note

that this simulation estimated the average overhead of nine random failures with the same

parameters as in the production runs (i.e. checkpointing every 600 iterations) to be 27.65%,

which is similar to the actual overhead for the particular nine failures that actually occurred

(31.40%). The difference can be ignored, as the observed overhead for the nine failures was

one particular instance, while the simulated 27% overhead is the result from averaging

10,000 repetitions.

This study helped understand the behavior of S3D production runs, which is criti-

cal when evaluating the presented techniques and determining sensible parameters for the

models developed in this dissertation.

35

Chapter 4

Application-aware On-line Global Recovery

The goal of this chapter is to design, implement and evaluate a framework for enabling

recovery from process/node/blade/cabinet failures for MPI-based parallel applications in

an on-line (i.e., without disrupting the job) and transparent manner. The developed frame-

work, called Fenix, provides mechanisms for transparently capturing failures, re-spawning

new processes, fixing failed communicators, restoring application state, and returning ex-

ecution control back to the application. To enable automatic data recovery, this section

relies on application-driven, diskless, implicitly-coordinated checkpointing.

Using the S3D combustion simulation presented in Chapter 3, running on the Titan

Cray-XK7 production system at ORNL, this chapter experimentally demonstrates Fenix’s

ability to tolerate high failure rates with low overhead while sustaining performance.

4.1 Overview

Application resilience is a key challenge that must be addressed in order to realize the

exascale vision. Process/node failures, an important class of failures, are typically handled

today by terminating the job and restarting it from the last stored checkpoint, as shown in

Chapter 3. Some estimations suggest this approach might not scale to exascale.

Framework for Global Recovery. This chapter presents the design, prototype imple-

mentation, and evaluation of Fenix1, a framework aimed at enabling on-line and trans-

parent recovery from process, node, blade, and cabinet failures for parallel applications

in an efficient and scalable manner. Fenix provides mechanisms to transparently capture

1Fenix is the old English noun for Phoenix, the mythological bird that, like an application that uses the
Fenix library, is reborn from its ashes. It is also the Catalan noun for Phoenix.

36

failures, re-spawn new processes (or use spare one), fix failed communicators, restore ap-

plication state, and return the execution control back to the application. As MPI is envi-

sioned to continue being at least one of the de-facto communication libraries on exascale

systems [7, 27], Fenix targets MPI-based applications. Fenix can leverage existing check-

pointing solutions to enable automatic data recovery. It does, however, provide an in-house

implementation of application-driven, diskless, implicitly-coordinated checkpointing. This

dissertation uses this implementation to explore how application-driven checkpointing can

eliminate the cost of coordination (both explicit or implicit synchronization) under certain

assumptions, and can reduce the size of the checkpoints by saving only the essential data.

Fenix has been prototyped and has been deployed on the Titan Cray XK7 production

system at ORNL, the world’s third fastest machine as of November 2016. The presented

prototype implementation of Fenix leverages User Level Failure Mitigation (ULFM) [10, 11,

86, 9, 61], which has been proposed as a minimalist and lightweight MPI extension that

allows applications to create policies for tolerating process failures.

Experimental evaluation. This chapter also presents an experimental evaluation of the

effectiveness and scalability of Fenix using four benchmarks as well as the S3D [33] com-

bustion application, previously introduced in Chapter 3 on Titan. Results demonstrate

Fenix’s ability to tolerate high-frequency dynamically injected multi-node failures while

maintaining sustained performance of the S3D application. The evaluation also explores

extreme execution scenarios that may exist at some highly unreliable time periods of fu-

ture machines, where node failures occur with high frequency (i.e., as often as every 47

seconds). For example, when injecting node failures every 90 seconds and checkpointing

every 3 application iterations (∼5 seconds), performance is sustained with 15% overhead

when compared with a failure-free and checkpoint-free execution. Experiments also demon-

strate that coordination-less checkpointing scales perfectly up to 250 thousand cores in

a failure-free scenario, resulting in a sustained checkpoint bandwidth of ∼17 TB/s when

checkpointing every 18 seconds, with an overhead of 0.41% with respect to a checkpoint-free

execution. In this experiment S3D simulated 31+ billion grid points, resulting in 2+ TB

per checkpoint. This chapter shows how the programming overhead of using Fenix is low,

requiring less than 35 new, changed, or rearranged lines of code in S3D. Finally, this chapter

37

revisits in-memory checkpointing for memory-hungry applications. Discussions with appli-

cation developers and fault tolerance experts suggest that double in-memory checkpointing

may not be desirable. The main criticism is that some applications must use all available

node memory. This chapter investigates this issue by exploring costs and benefits of job

allocation increase to free part of the nodes’ main memory, and presents models and simu-

lations showing how using on-line recovery and in-memory checkpointing may be benefitial

even for memory-hungry applications. We compare double in-memory checkpointing with

PFS-based checkpointing, which can tolerate applications that require more memory. We

also consider an alternate mixed approach that uses all memory available to store a part of

the checkpoint in a double in-memory fashion, and the rest in PFS. The mixed approach is

an idealization that assumes that checkpoint data can be arbitrarily divided between PFS

and in-memory storage. However, as will be shown, the point that maximizes throughput is

invariably found when the mixed approach stores the entirety of the checkpoint in memory.

Outline. The rest of the chapter is organized as follows. Section 4.2 describes architectural

design of the Fenix library recovery mechanisms. Section 4.3 presents its programming

interface and integration within S3D. Section 4.4 presents an experimental evaluation of

S3D with Fenix on Titan. The chapter ends with Section 4.5 by studying how on-line

recovery may benefit memory-filling applications.

This chapter contains portions adapted from published papers by Gamell et al. [66]

(adapted with permission) c©IEEE 2014.

4.2 The Fenix Architecture for On-line Failure Recovery

In current implementations of MPI on production systems, node or process failures cause

the entire MPI job to fail. This forces applications to recover from such failures in a

bulk synchronous manner even if the failure occurs in only one node. S3D recovers from

failures by restarting from the last checkpoint, which involves reading the large checkpoint

file from persistent storage. This incurs a significant IO overhead, and additional costs

for repeating the computations since the last checkpoint. These costs can be non-trivial

even at petascale, but will certainly become prohibitive if MTBF reduces at exascale, since

the time of checkpointing to disk is typically in the order of minutes for S3D. Emerging

38

implementations of the MPI standard are expected to include mechanisms to tolerate these

faults without incurring a job failure. Leveraging such MPI implementations, specifically

ULFM [11, 10], this section presents the design of Fenix with the goal of transparently

recovering from process failures in an on-line manner. To enable automatic data recovery,

Fenix relies on a checkpoint mechanism that is able to tolerate full-node failures. While

applications can use any existing solution to realize data recovery, Fenix includes an in-

house implementation of application-driven, diskless, implicitly-coordinated checkpointing.

This implementation is presented later in this section.

4.2.1 Process Recovery in Fenix

Process recovery in Fenix involves four key stages: (i) detecting the failure, (ii) recovering

the environment, (iii) recovering the data, and (iv) restarting the execution.

Failure detection is delegated to ULFM-enabled MPI. This standard guarantees that

all MPI communications should return an ERR_PROC_FAILED error code if the runtime de-

tects a process failure in the communicator. The error codes are detected in Fenix using

MPI’s profiling interface. As a result, no changes in MPI runtime itself are required, which

will allow portability of Fenix if interfaces such as ULFM become part of the MPI standard.

The first step in environment recovery is to invalidate all the communicators and

to scatter the failure notification to all the ranks, as shown in Figure 4.1. In the current

Fenix prototype, this is done using the ULFM revoke operator for all communicators in

the system – the user must register their own communicators as discussed in Section 4.3.1.

After that, the world communicator has to be shrunk to remove failed processes, while the

rest are freed. If this step succeeds, new processes are spawned and merged with the old

communicator using the dynamic features of MPI 2. As this may reassign rank numbers,

Fenix uses the split operation to set them to their previous value. Note that this procedure

allows N − 1 simultaneous process failures, N being the number of processes running. An

alternative approach is to use processes from a previously prepared process pool instead of

spawning new processes.

Once Fenix’s communicators are recovered, a long jump is used to return execution to

Fenix_Init(), except in the case of newly spawned processes – or processes in the process

39

1 2 3 4 5

Comm

1 2 4

Comm

detects process failure

1 2 4

Comm

(revoke)

invalidate communicator

Comm

1 2 3

(shrink)

(spawn)

1 2 3

(intra)Comm

1 2

(intra)Comm

(inter)Comm

(merge)

? ? ? ? ?

Comm

? ? ? ? ?

Comm

53 (send/recv)

1 2 3 4 5

Comm

(split)

reassign rank #

Figure 4.1: Communicator recovery in Fenix by spawning new processes. The recovery
process when using a process pool is similar. c©2014 IEEE (reprinted with permission)
Gamell et al. [66].

pool – which are already inside Fenix_Init(). From there, all processes, both survivors

and newly spawned, are merged in the same execution path to get ready to recover the

data.

Data recovery in Fenix is achieved using application-driven, implicitly coordinated,

neighbor-based diskless checkpoints created as described in Section 4.2.2. The first step

towards a safe recovery is to calculate the latest set of checkpoints that are present on all the

cores (i.e., that form a strongly consistent global checkpoint) for every saved data element.

As Fenix collectively assigns an increasing natural identifier IC to every new checkpoint (note

that this is done in a distributed manner, i.e. without any synchronization/communication),

this is done by finding the maximum IC that is common to all ranks. This number, IC,max,

will correspond to the last checkpoint successfully completed by all ranks. To obtain the

identifiers of the rest of the saved elements, no communication is required; it is only needed

to find, for each saved element, the largest checkpoint identifier that is smaller than IC,max.

Finally, as Fenix uses neighbor-based checkpointing (see Section 4.2.2) to store checkpoints

40

in a neighbor node’s memory, the next step is to copy these checkpoints back to the new

process. Once the checkpoints have been copied to the local memory of the newly created

processes, the only remaining step is to replace the contents of the original element’s memory

with the contents of the checkpoint. This is done using memcpy().

Resuming execution can occur once the communicators and the data have been re-

covered. Execution can return: (i) to the beginning (after Fenix_Init), or (ii) to the last

checkpoint that completed successfully. Dynamic labeling features are used in Fenix in or-

der to allow static transfer of execution control at checkpoints. The former technique has

several design advantages for applications that require complex communicator layout. For

example, leveraging initialization code that is already existing in applications for creating

communicators, communicators can be recreated after process recovery without the need

of writing new code (see Section 4.3.2 for an example). The re-generation code is executed

after Fenix returns the execution environment to the predefined point at the beginning of

the application. In the prototype integration with S3D the code resumes at the beginning

of the execution where when a failure has been detected and recovered. As shown in Sec-

tion 4.3.2, some of the modules are re-initialized and lost communicators are transparently

re-created before going back to the computation in the main loop.

Usage in already fault-tolerant applications. An application may want to use all Fenix

tools but, in some cases, only a subset may be enough. For example, ABFT applications

that work with augmented data sets usually tolerate only silent errors. The augmented

data set, perhaps with some minor modifications, should be enough to recover from a fail-

stop failure. In similar situations, the automatic failure detection and transparent process

recovery in Fenix can speed up the recovery process.

4.2.2 Application-driven Data Checkpointing

To enable automatic data recovery, Fenix relies on a checkpoint-centric mechanism that is

able to tolerate multi-process failures. While applications can use any of the existing check-

pointing platforms or any other data recovery methods in the community, Fenix offers an

implementation featuring application-driven checkpointing, which enables implicitly coor-

dinated, application-driven, selective checkpoints. Fenix also guarantees strongly consistent

41

global checkpoints that can be safely used for restarts. Furthermore, Fenix uses neighbor-

based diskless checkpointing, which can achieve high efficiency while scaling to a large core

count. In addition, this can be achieved without the need for coordination-induced com-

munication either by the checkpoint process or assuming any synchronization done by the

application.

Selective Checkpointing. Conventional, application-agnostic checkpointing typically

saves the entire state of the application –including all its memory pages, the heap, and the

stack– even if they contain more data than necessary for recovery. In contrast, application

specific checkpoints do not have to store the entire state of each process; in Fenix, the

applications can specify which data elements should be checkpointed. The program counter

of each call to the checkpoint operation is also stored along with a copy of the checkpoint

to allow the return of the control to that point. This approach allows every element to

be independently checkpointed when the application specifies, not as a subset of a larger

checkpoint. Ideally, this should be done when the data is updated. The fact that the

application checkpoints only part of its data at a time allows to reduce the difference

between MTBF and the checkpoint time. As Chapter 3 shows, this is critical towards

exascale resilience.

Implicitly coordinated checkpointing. This technique allows the creation of check-

points locally (i.e., without requiring any communication) while the application is in a

strongly consistent state. Strongly consistent states are states in which there are no mes-

sages sent after the state that have been received before it and there are no messages sent be-

fore the state that have been received after it [82]. In other words, strongly consistent states

are states in which no messages cross the point where the state is consistent. Therefore,

checkpointing the data locally while in an strongly consistent state guarantees a set of check-

points from which a proper recovery can be achieved [82]. Application knowledge can be

used to identify such strongly consistent states and to create strongly consistent checkpoints

without the need for any explicit or implicit communication and without assuming any

synchronization (e.g., barrier). This is in contrast to creating checkpoints in an application-

agnostic manner where coordination protocols among the distributed application processes

42

are typically required, which can be expensive and lead to scalability challenges. Uncoor-

dinated checkpointing typically requires support mechanisms such as message logging to

avoid the so-called “domino effect”, which can occur in non-send-deterministic applications

as described in [72]. Assuming that the application calls Fenix_Checkpoint (a collective

operation that will perform a local checkpoint) while in a strongly consistent state, the set of

local checkpoints will form a strongly consistent global checkpoint. In case of a failure, this

checkpoint can be used for recovery as if it was created using a coordination protocol. The

main advantage of this technique is that it supports highly imbalanced applications without

requiring synchronization or any coordination-induced communication, which can degrade

performance. Other advantages of this approach include its ease of implementation and

efficiency. Fenix simply assigns an increasing natural identifier (cost O(1)) to every local

checkpoint, and, upon recovery, it calculates the maximum common identifier shared by all

processes for every saved element. Note that the cost of checkpoint creation is O(1) regard-

ing the number of nodes, as it does not require any synchronization or communication with

any other peer process. This is, therefore, an extremely scalable “protocol” that delivers

the same benefits as coordinated checkpointing with the low complexity of uncoordinated

checkpointing. The cost of checkpoint recovery is M × cost(AllReduce(integer)), where M

is the number of saved elements. This translates to a linear time O(M ×N) depending on

the number N of nodes in the worst case of a linear implementation of the MPI_Allreduce’s

max() function.

In many scientific applications there are naturally occurring patterns that can be used

to identify an appropriate location for the Fenix checkpoint operator. For example, for

iterative simulation codes such as S3D that contain an outer timestep loop, positioning

the checkpoint operator at the end of a timestep would typically result in an implicitly

coordinated checkpoint (as shown in Section 4.3). For other application structures, strongly

consistent states must be identified to determine where to position the checkpoint operator.

Possible locations may be synchronization points, sub-module finalizations, before/after

a communication-intensive period, after or during a computation-intensive region, after

updating key data, etc.

While the approach does require that the checkpointing operators are correctly placed

43

within application code, this overhead can be significantly reduced by providing an appro-

priate high-level programming interface, which will be presented in Section 4.3.

The great advantages offered by these techniques are enabled by keeping the application

in the loop. However, as the typical HPC user is a scientist programmer focused on its

problem domain, and not an expert in fault tolerance, these tasks may become overwhelm-

ing. In Section 4.3 these ideas will be exposed to the user in a simple manner to provide the

scientist an abstraction to make the usage of implicitly coordinated available and simple.

In other words, it will be shown how these advantages can be added in the application with

little intrusiveness.

Diskless Checkpointing. As many current high-end systems do not have local storage

on the compute nodes (e.g., the top 5 machines as of November 2016 do not have compute

node local storage [147], such as a hard drive or an SSD) stable storage is typically provided

through a centralized/semi-decentralized parallel filesystem (e.g., Lustre [23]). As diskless

checkpointing typically offers faster checkpoint performance [155, 112], and S3D does not

require all the memory in the compute nodes, neighbor-based checkpointing [155] has been

implemented in Fenix, in which, for every checkpoint, each node stores a copy of its local

data plus a copy of the data from a peer node. Fenix considers a group of sgroup physically-

close ranks spanning across a subset of the machine. In order to enable data to survive

node, blade, or cabinet failures (or failures of any other subset of the machine), Fenix

saves the checkpoints of all ranks in the group in the memory of ranks outside of the same

group. For example, with a peer-node size of 96 physical nodes (one Cray XK7 cabinet),

the checkpoints of one cabinet will be stored in a neighbor cabinet and as a result, from

a data perspective, correlated failures within a cabinet can be tolerated. Assuming stotal

is the total number of ranks used in the execution, to determine which remote MPI rank

rr will store a node rl checkpoint, Fenix uses rr = (rl + sgroup) mod stotal, which assumes

that the application uses at least 2 entire peer-nodes, but can work on partial peer-nodes

beyond that (e.g., 2.5 cabinets). The cost incurred from setting a larger peer-node size in

torus-like networks (Gemini [1]) is that checkpoint data will have to traverse more nodes to

reach its peer-node.

44

Currently, only one group failure is tolerated in the worst case scenario, as check-

points are saved in the ranks of a remote peer-node. In practice, however, assuming a

non-correlated distribution of failures among the group of ranks (which is certainly not an

unrealistic assumption, as the group size can be tuned to contain correlated failures), if two

groups have to fail, the probability of the failure of a node and its peer-node is:

N/2(
N
2

) =
N

2× N !
2!(N−2)!

=
(N − 2)!

(N − 1)!
=

1

N − 1
(4.1)

which for Titan translates to 1/18687 assuming a group of 16 cores (a physical node) or

1/194 assuming a group of cabinet-size (96 physical nodes). Therefore, it is highly unlikely

that if two failures occur simultaneously, no recovery by the neighbor algorithm is possible.

CS Checksums

Checksum, "a"

array checksum_id array* valid

"a" 1

"b" 2

"a" 3 x

validate "a" entry

in local index

W

time

MPI_Reduce, SUM

store the reduction

in the array* of the CS

(checksum node)

*

*

*

Figure 4.2: An illustration of the checksum-based checkpointing approach.

Furthermore, Fenix also implements checksum-based checkpointing, in which each node

stores a local copy of its own data and a dedicated rank stores the bitwise checksum of the

data from all the nodes. This process have lower memory footprint in the cores, compared

with neighbor-based checkpoints. This process is outlined in Figure 4.2. Note that helper

nodes tolerate failures as much as compute nodes do. This differs from stable storage which

is assumed to be fault tolerant on its own and, therefore, requires a separate level of data

replication.

However, without the use of more advanced encoding codes such as Reed-Solomon [127],

this method only supports one simultaneous process failure. Therefore, all experiments are

deployed with neighbor-based method.

45

4.3 Fenix Programming Interface

The API provided by Fenix prototype, for both C and Fortran, is comprised of five operators

as described in Section 4.3.1. Section 4.3.2 describes the integration of S3D with the first

Fenix prototype, and the changes required to the S3D code to tolerate process, node, blade,

and cabinet failures using Fenix.

The current version of the Fenix API (based on version 1.0.1 [70]), can be found in

Appendix A.

4.3.1 Interface Overview

The following functions make up the API of the Fenix prototype. Their usage is discussed

below.

Fenix_Checkpoint_Allocate notifies Fenix about a data element (e.g., an array) that will

be saved. Only two parameters are needed, specifying the memory location of the element

to save and its size in bytes. It returns an identifier that can be used to uniquely refer to

the element when actually performing a checkpoint.

Fenix_Init is the basic operation to initialize the Fenix library. Three parameters are re-

quired to specify the checkpointing algorithm, its parameters, and the resuming destination.

The function returns the status of the rank, specifying whether this is the first time the ap-

plication is started (i.e., Fenix_st_new), it has survived a failure (i.e., Fenix_st_survivor),

or has been respawned after a failure (i.e., Fenix_st_respawned; note that processes are

considered respawned even if the spare process pool method is used). It also returns world,

the new/repaired world communicator, which will include all processes except ones kept in

a process pool to tolerate failures.

Fenix_Comm_Add can be used to notify Fenix about the creation of user communicators.

Fenix_Checkpoint performs a checkpoint of the specified element identifier, which has

been previously initialized by Fenix_Checkpoint_Allocate.

Fenix_Finalize is the basic operation to terminate Fenix.

In terms of interface design, Fenix cannot take advantage of existing ideas about applica-

tion-level checkpointing interfaces such SRS [149] or SCR [112]. The semantics of these are

46

richer in aspects not needed by Fenix, such as (1) no need to provide SRS’s value restarting

functionality because this is automatically done by Fenix upon failure, or (2) unlike SCR,

Fenix creates checkpoints internally, and so operations such as SCR_Complete_checkpoint

or SCR_Route_file are not needed. Furthermore, our interface provides additional features

required by Fenix, such as the aforementioned registration of application communicators.

4.3.2 Integrating S3D with Fenix

As previously mentioned, changes to S3D were required in order to integrate it with the

Fenix prototype. These changes are outlined in the skeleton below.

1 allocate (yspc (nx , ny , nz , n s l v s))

2 allocate (o t h e r a r r a y s)

3 ca l l MPI Init ()

4 [. . .] ! I n i t i a l i z e non−c o n f l i c t i n g modules

5 ca l l Fen ix Checkpo int Al locate (C LOC(yspc) ,

6 s i z e o f (yspc) , ckpt yspc)

7 ca l l F e n i x I n i t (status , FENIX CHECKPOINT NEIGHBOR,

8 PEER NODE SIZE, FENIX RESUME INIT , C LOC(world))

9

10 i f (status . eq . F e n i x s t s u r v i v o r) then

11 [. . .] ! F i n a l i z e c o n f l i c t i n g modules

12 endif

13 [. . .] ! I n i t i a l i z e c o n f l i c t i n g modules

14 i f (status . eq . Fenix st new)

15 ca l l i n i t i a l i z e y s p c ()

16 endif

17

18 do ! Main loop

19 [. . .] ! I t e r a t e and update yspc array

20 i f (mod(step −1,CHECKPOINT PERIOD) . eq . 0) then

21 ca l l Fenix Checkpoint (ckpt yspc) ;

22 endif

23 enddo

24

47

25 ca l l F e n i x F i n a l i z e ()

26 ca l l MPI Final ize ()

In the original S3D code, the array allocation (lines 1,2) was done after initializing

modules (lines 10-13). It was moved to before line 5 to allow the proper invocation of

Fenix_Checkpoint_Allocate (line 5) to allocate yspc as the element to be checkpointed.

Note that conflicting modules assume a global state among all the cores to be maintained,

or are modules that must be initialized collectively, for example. These modules are note-

worthy because upon failure they must be re-initialized. One example is the S3D topology

module, which is initialized by all ranks to re-create communicators. Some modules require

finalization prior to re-initialization (e.g., the S3D derivative module). This is done on line

11.

Fenix_Init (line 7) is configured to resume to the beginning of execution instead of to

the last checkpoint, as detailed in Section 4.2.1. Therefore, after recovering from a node

failure (which is automatically detected by Fenix at every MPI operation invocation), all

ranks will return to line 7, line 10 being the first instruction executed. Survivor processes

will then finalize conflicting modules (line 11). After that, all ranks will merge in line 13 to

initialize the conflicting modules collectively and continue the simulation in the main loop.

The yspc array is initialized in line 15 the first time the execution is started.

As there is no collective synchronization in the main loop of S3D, its instructions might

be executed at different wall clock times by the different ranks. However, before and after

line 19, all ranks would have the same logical time/state (independent of the imbalance

between the ranks). In other words, the element to be checkpointed (yspc array) will

have a well-defined, globally strong-consistent value when all ranks finish, for example,

line 19. The important point is that this statement still holds when all of the different

cores reach that point, regardless of if they reach it at different wall times (i.e., indepen-

dently of any imbalance in S3D). As a result, a checkpoint done at the end of iteration

would generate a strongly consistent state. In addition, we only request a checkpoint every

CHECKPOINT_PERIOD iterations, as we will show in Section 4.4.3.

In the following code snippet we show the rest of changes to S3D. Immediately after

creating each derived communicator inside the topology module, Fenix_Comm_Add is called.

48

1 ca l l MPI Comm split (gcomm, py+1000∗pz , r , xcomm)

2 ca l l MPI Comm split (gcomm, px+1000∗pz , r , ycomm)

3 ca l l MPI Comm split (gcomm, px+1000∗py , r , zcomm)

4 ca l l Fenix Comm Add(xcomm) ;

5 ca l l Fenix Comm Add(ycomm) ;

6 ca l l Fenix Comm Add(zcomm) ;

7 [. . .]

8 ca l l MPI Comm split (gcomm, xid , r , yz comm)

9 ca l l MPI Comm split (gcomm, yid , r , xz comm)

10 ca l l MPI Comm split (gcomm, zid , r , xy comm)

11 ca l l Fenix Comm Add(yz comm) ;

12 ca l l Fenix Comm Add(xz comm) ;

13 ca l l Fenix Comm Add(xy comm) ;

The overall impact on programmability using Fenix is very low, requiring less than 35 new,

changed, or rearranged lines throughout the S3D code.

In containment domains [38] terminology, the presented integration of Fenix within S3D

can be seen as a top-level domain that isolates multi-node failures from job crashes. The

inclusion of more finely grained levels to further isolate multi-node failures is left as future

work.

4.3.3 A Holistic Example

The following listing is a simple example of usage of a parallel matrix-matrix operation,

encoded in operate().

1 int main (int argc , char∗∗ argv)

2 {
3 double A[N] [N] , B[N] [N] ;

4 unsigned int s tep ;

5 MPI Comm world ;

6 int n , m;

7 Fenix Status rank s ta tu s ;

8

9 MPI Init(&argc ,& argv) ;

49

10 Fenix Array ckpt step , ckpt A , ckpt B ;

11 Fen ix Checkpo int Al locate ((void ∗) &step ,

12 s izeof (unsigned int) , &ckpt s t ep) ;

13 Fen ix Checkpo int Al locate ((void ∗) A[0] ,

14 s izeof (double)∗N∗N, &ckpt A) ;

15 Fen ix Checkpo int Al locate ((void ∗) B[0] ,

16 s izeof (double)∗N∗N, &ckpt B) ;

17 F e n i x I n i t (&rank status ,

18 FENIX CHECKPOINT NEIGHBOR, PEER NODE SIZE,

19 FENIX RESUME CHECKPOINT,

20 &world) ;

21

22 s tep = 0 ;

23 Fenix Checkpoint (ckpt s t ep) ;

24 i n i t i a l i z e (A, B, world) ;

25 Fenix Checkpoint (ckpt A) ;

26 Fenix Checkpoint (ckpt B) ;

27

28 do {
29 operate (A, B, world) ;

30 s tep++;

31 i f (s tep % RATE CHECKPOINT == 0) {
32 Fenix Checkpoint (ckpt A) ;

33 Fenix Checkpoint (ckpt s t ep) ;

34 }
35 } while (s tep < ITERATIONS) ;

36

37 F e n i x F i n a l i z e () ;

38 MPI Final ize () ;

39 }

The basic functionality of the code presented is to operate with two huge matrices,

previously distributed among all the nodes, initialized, and updated ITERATIONS times.

Lines 11-16 allocate the three elements that will be saved during the execution, A, B and

50

step. Lines 17-20 initialize the library, requesting a neighbor checkpointing with restarting

from the last checkpoint. This concrete application does not need to use rank_status.

After this, lines 22-26 initialize the variables and checkpoint them. Lines 28-35 emulates

the main loop in which the calculations are done, and the variables are checkpointed every

RATE_CHECKPOINT iterations. As it is assumed that the matrix B is not changed by the

operate function, there is no need to checkpoint it after its initialization. Note that in

this example, the failure detection with occur during a call to an MPI operation (possibly

within operate) or during the next call to Fenix_Checkpoint.

Note that while the current prototype implementation of Fenix uses ULFM, the pre-

sented interface is independent of ULFM and could potentially be implemented using other

fault tolerance proposals that may be incorporated in the MPI standard. Therefore, the

conclusions of this chapter extend beyond the presented Fenix prototype implementation.

See Appendix A for the current version of the Fenix API.

4.4 Empirical Evaluation

If applications must tolerate high frequency failures (on the order of 30-300 seconds) that

involve only a subset of the machine (e.g., a node, a blade, a cabinet...), sources of fault

tolerance overhead must be reduced. By leveraging the fact that the majority of the system

will survive these failures, on-line recovery can be used to further contain the failure. To en-

able on-line recovery, data must survive multi-node failures. Data checkpointing is therefore

used. Specifically, Fenix implements diskless [123], double in-memory, neighbor-based [155]

checkpointing.

In this section, the capabilities and impact of a prototype implementation of Fenix

are evaluated on the Titan Cray XK7 system, using different benchmarks as well as the

S3D [33] combustion simulation. The correctness of implicitly-coordinated checkpointing

as previously described is evaluated and shown to further reduce overhead by not requiring

any synchronization (either explicit or assumed) from the different compute ranks..

The ultimate aim of the experimentation is to run an execution mimicking a future

extreme-scale scenario, in which node failures occur with extremely high frequency (i.e.,

every 47 seconds).

51

4.4.1 Methodology

In order to run this experiment, the following needs to be determined: (1) the checkpointing

implementation overhead and scalability, both in terms of data size and total core count,

(2) the optimal interval between checkpoints, calculated using the Young formula [154]

and validated with empirical results, (3) the scalability of recovery algorithms towards an

increasing number of concurrent failures within a group of ranks, and (4) the weak scalability

of the recovery algorithm. Finally, we are able to run the experiment surviving frequent

node failures assuming different system MTBFs.

Failures, or crashes, are injected by sending simultaneous SIGKILL signals to the involved

application and runtime helper processes of a node. As a result, both the processes and the

MPI runtime become unavailable to other nodes (i.e., this is seen as a real failure in the

vicinity).

In an effort to reduce the impact of performance variability, all of the experiments

presented in this section have been repeated five times, at different days of the week and at

different times of day.

Note also that all experiments assume that the future extreme scale system job scheduler

will offer the ability of adding spare ranks to the current allocation dynamically, upon failure.

This is why the run time of the extra spare ranks that are requested in the allocation is not

accounted as part of the performance, efficiency or cost. This is being actively researched

in projects like PMI-X [30]. In case this assumption is false, the possible improvements

due to the calculation of the optimal number of pre-allocated spare ranks falls out of the

scope of this dissertation. The following experiments leverage checkpointing as a vehicle for

data resilience, but improving its overall performance was not the goal of this dissertation.

As a result, the memcpy process was not optimized by the compiler. Therefore, the results

regarding checkpointing are an upper bound on the execution time.

Benchmarks. Before evaluating the framework with the S3D application, we perform

experiments through the use of four benchmarks: Laplace uses a finite difference scheme

to solve Laplace’s equation for a square matrix distributed over a logical square processor

topology. Heat computes an approximate solution to the time dependent one dimensional

heat equation (dHdt −K × d2H
dx2 = f(x, t)) using the finite difference method to discretize the

52

differential equation. Poisson solves Poisson’s equation in a 2D region using the Jacobi

iterative method to solve the linear system. Matadd uses a simple embarrassingly parallel

matrix-matrix addition kernel to implement the example shown in Section 4.3.3.

4.4.2 Determining Failure-free Checkpoint Cost

Data size test. In order to know how the different checkpointing algorithms behave at

different data scales, we first tested the four benchmarks with several data sizes.

Figure 4.3 shows the results of the four studied benchmarks. These tests have been con-

ducted using 512 MPI ranks. The results are the average of five samples of each benchmark,

where each sample is composed of ten kernel iterations. Note that each kernel iteration uses

data from previous iterations. For this reason, we specified a checkpoint at the end of each

iteration, to save the resulting data of the kernel. The values shown in the figure are, there-

fore, the average of 5 × 10 = 50 iterations. The log-log graph shows the checkpoint time

of all elements (arrays, structures, and variables) in one iteration vs the size of the data,

per rank, used by each benchmark. Each sub-plot includes both the time of the checksum

algorithm (squares) and the neighbors algorithm (circles).

As is shown and expected, both algorithms scale linearly with input data. Anomalies

witnessed in matrix-matrix addition size 8 (checksum) or heat size 8 (also checksum) could

be due to network overutilization during some, or all, of the samplings. Also, we observe

that checkpoint time is independent of the benchmark, depending only upon the data size.

Finally, the checksum algorithm is about an order of magnitude less efficient than the

neighbor-based checkpointing algorithm. However, it is still valuable because it demands

less memory from the compute nodes.

Figure 4.4 shows the checkpoint time when using the S3D application for different data

sizes, ranging from 0.07 to 15 MB per core (1 to 240 MB per node). Note that aggregating

over all cores for a large-scale production run, e.g. O(100K) cores, yields a large amount of

data in the order of terabytes.

The bars represent the average among all checkpoints, all cores, throughout five repeti-

tions, while error bars indicate variability (including minimum, maximum, first, and third

53

10-5

10-4

10-3

10-2

10-1

100

101

102

T
im

e
 (

s
)

Matrix-matrix addition Poisson

10-5

10-4

10-3

10-2

10-1

100

101

102

2 8 32 128 512 2k 8k 32k 131k

T
im

e
 (

s
)

Size (kB)

Laplace

2 8 32 128 512 2k 8k 32k 131k

Size (kB)

Heat

checksum algorithm neighbors algorithm

Figure 4.3: Effect of checkpoint size on checkpoint time for different benchmarks, and the
two checkpointing algorithms. Both axes are in log scale.

54

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.07 0.23 0.55 1.07 1.85 2.94 4.39 6.26 8.58 11.4 14.8

C
h
e
c
k
p
o
in

t
ti
m

e
 (

s
)	

	 garbage collection
memcpy()
communication

 0
 0.04
 0.08
 0.12

 0 2 4 6 8 10 12 14 16

S3D yspc array size per core (MB)

Figure 4.4: Checkpoint time for different data sizes (1000 cores). c©2014 IEEE (reprinted
with permission) Gamell et al. [66].

quartile). The three different sub-bars show the three different processes that the check-

point algorithm requires. Clearly, the communication cost dominates the execution. The

lower plot in Figure 4.4 shows that the checkpoint time is linearly dependent on data size

(for sizes greater than 1 MB/core), as expected.

The overhead caused by each array size strongly influences the choice of the size to

be used in the rest of the experiments of this chapter – 50 grid points per core, which

corresponds to 8.58 MB of the yspc array.

Studying weak scalability. Figure 4.5 shows how checkpointing scales to 250k cores

as we increase total the number of cores while achieving similar average checkpoint time,

sustaining a bandwidth of 16.8 TB/s in the test with a higher number of cores. This

experiment has been performed using the S3D application. Again, the checkpoint procedure

is dominated mostly by the transfer cost. As expected, the memcpy time remains constant

throughout all executions, and the garbage collection cost is negligible. As this test does

not need to tolerate failures, the MPICH distribution optimized by Cray is used instead of

the ULFM prototype based on OpenMPI.

55

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1000
2197

4096
8000

15625
32768

64000
125000

250047

C
h
e
c
k
p
o
in

t
ti
m

e
 (

s
)

Core count

garbage collection
memcpy()
communication

0.1TB/s

0.2TB/s

0.7TB/s

0.6TB/s

1.2TB/s

2.4TB/s

3.8TB/s

9.6TB/s

16.8TB/s

Figure 4.5: Checkpoint time for different core counts (8.6 MB/core). The numbers above
each test show the aggregated bandwidth (the total checkpoint size over the average check-
point time). c©2014 IEEE (reprinted with permission) Gamell et al. [66].

The lower communication time of the tests with less than 4k cores is due to the configured

group size. In small tests it was set to 16 nodes, while in bigger ones was set to 96 nodes

(the Cray XK7 cabinet size). As the group size is increased, messages must traverse more

Gemini nodes[1] to reach the destination. The minimum of each test (the lower point on

the error bars) is in all cases close to the third quartile. Furthermore, the median (the white

line inside the error bar) is below 0.075 in all cases but in the 64k test. These observations

indicate that 25% of cores finish the checkpoint process within a reasonably small time

window and half of them take less than 0.075 s, while others take more time. As this

section is not focused on the checkpointing process, no further analysis of this behavior is

provided.

Assuming a linear relationship between checkpoint size and checkpoint writing time

in ADIOS (which is the method used in production runs, as explained in Chapter 3),

the production run’s checkpoint time can be extrapolated assuming 8.58 MB/core. This

would be translated to a 90-second checkpoint write overhead and a 72-second checkpoint

read overhead, a 750-fold increase in the checkpoint time, compared to 0.12 s with 250

56

thousand ranks obtained with Fenix, see Figure 4.5. Note, however, that these experiments

occurred on December 2013 without the newly installed ATLAS filesystems on Titan and,

in January 2014, ATLAS is advertised to increase aggregated bandwidth to 1 TB/s [100].

Assuming this theoretical bandwidth is all used for checkpointing, and considering the

same 8.58MB/core yspc vector, the writing process would take (804GB)/(30GB/s) = 26.8

seconds and a checkpoint loading time would be (804GB)/(15GB/s) = 53.6 seconds. This

translates to 220× more time than the checkpoint time of 0.12 s with 250k ranks by using

in-memory checkpointing. Regarding data recovery time, the Fenix implementation only

requires the transfer of the checkpoints to the failed nodes, a process that can be expected

to have the same overhead as the checkpoint operation. Compared to other studies such as

CRUISE [125] – an extension of SCR [112]– the presented implementation is slower. This is

mainly due to the fact that Fenix have to send the checkpoint remotely in order to tolerate

entire-node failures, while tests done with CRUISE [125] only store checkpoints in local

main memory.

Other considerations. The cost of resuming the computation is not evaluated as it only

involves a local jump back to the start of the Fenix_Init function, which execution time

is neglibible, in the order of a few processor instructions.

Note also that in small experiments a sequential allocation within the machine by the Cray

scheduler is not ensured. Therefore, the results can be assumed to be a worst case scenario,

because the checkpoints have to traverse more nodes to reach its final destination than what

is expected to be with large contiguous allocations [1].

4.4.3 Validating Optimal Checkpoint Rate

First experiences with checkpoint frequency. After understanding how the check-

point time depends on the data size, we next analyze how the total time is affected by the

number of checkpoints performed, since an increase in the checkpoint period (the number

of actual code iterations between checkpoints) will result in a decrease in the number of

checkpoints.

Experiments with the four benchmarks have been conducted using 512 MPI ranks and

a matrix of 512× 512 elements per rank, totaling 1 GB per matrix. Each benchmark uses

57

0

2

4

6

8

10

C
h

e
c
k
s
u

m
 A

lg
o

ri
th

m

T
im

e
 (

s
)

Matrix-matrix addition

0

2

4

6

8

10

0 25 50 75 100

N
e

ig
h

b
o

rs
 A

lg
o

ri
th

m

T
im

e
 (

s
)

Checkpoint Period

Poisson

0 25 50 75 100

Checkpoint Period

Laplace

0 25 50 75 100

Checkpoint Period

Heat

0 25 50 75 100

Checkpoint Period

time to solution checkpoint time

Figure 4.6: Effect of the checkpoint period (number of actual code iterations between two
subsequent checkpoints) on the total time and the corresponding total checkpoint time for
the different benchmarks and the two checkpointing algorithms.

10-5

10-4

10-3

10-2

10-1

100

T
im

e
 (

s
)

Matrix-matrix addition Poisson

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

T
im

e
 (

s
)

Checkpoint Period

Laplace

 0 20 40 60 80 100

Checkpoint Period

Heat

checksum algorithm neighbors algorithm

Figure 4.7: Amortized time cost of the checkpoint per iteration for different periods. y axis
in log scale.

58

a different number of matrices. The results are the average of five samples, each with 100

iterations. Figure 4.6 shows checkpoint time (lower lines) and the total execution time

(upper lines), which includes checkpoint time. Note that the difference between the lines

is the benchmark computation time, which is not affected by the checkpoint period. To

minimize the total time to solution, we want to decrease the checkpoint time as much as

possible. Therefore, the longer the checkpoint period, the more efficient the execution will

be. On the other hand, longer periods translate to increased recovery time, due to the

work lost after a process failure. However, note that the cost decreases exponentially until

it stabilizes at a period of about 25-40 iterations (depending on the benchmark) for the

checksum algorithm and about 10-15 for the neighbors algorithm. This means that further

lengthening the period will probably not help reduce the checkpoint overhead, but will

increase the recovery time.

The results show that the neighbors method is more efficient, even at smaller periods,

as it has been described above. For example, from the data in the figure, during a matrix-

matrix addition over a period of 20 iterations, the application’s total checkpoint time using

checksum is 1.06 s, while when using the neighbors algorithm, the same test takes 0.06 s

to perform the checkpoints. Also, with Poisson and a period of 50 iterations, the time to

checkpoint with checksum is 0.89 s while it is 0.047 s when using neighbors.

These experiments have been conducted with a worst case assumption of a small compu-

tation time, which is much lower than the expected MTBF of future extreme-scale systems.

In the more realistic scenario of an application with much longer iterations, the proportional

impact of the checkpoint will be lower. This is shown in Figure 4.7, where we can see the

amortized time of checkpoints per iteration: the incremental time added to each iteration

in order to create checkpoints at a specific period.

Evaluating the optimal checkpoint rate. Young’s formula [154, 137] can be used

to determine TC , the optimal interval between two consecutive checkpoints, depending on

the MTBF of the system (TF) and the checkpoint time (TS). The checkpoint time has

been determined in Section 4.4.2. As in the previous weak scalability test using S3D (see

Section 4.4.2), checkpoint size is set to 8.58 MB/core, which leads to TS = 0.0748 s in the

case of 2197 cores (as shown in Figure 4.5). For a system with one million nodes, each

59

with an MTBF of 3 years, the overall system MTBF will drop to TF = 94.608 seconds.

Using second-order approximation for exponential distribution [154, 137], TC is expressed

as follows:

TC =
√

2TSTF =
√

2 · 0.0748s · 94.608s = 3.76s (4.2)

As the average S3D iteration time is 1.182 s with 50 grid points per core (over five executions

of a failure- and checkpoint-free experiment on 2197 cores), TC can be expressed as three

S3D iterations rounded due to the fact that checkpoints are triggered by the application

only at the end of iterations. Using the same procedure as in equation 4.2, the optimal

number of iterations between checkpoints can be obtained assuming system’ MTBFs of 47

seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [137], the proper usage of the formula, i.e. the correct parameter settings

and the correct rounding of TC from seconds to application iterations, needs to be verified.

To do that, the total cost induced by a set of uniformly distributed, independent failures

has been evaluated for several given checkpoint rates. Specifically, assuming an MTBF of

94 seconds, a Poisson distribution was used (rpois() with a seed of 10, λ = 10 from R

suite, version 3.0.2) to obtain ten random possible failure timestamps within the 94-second

time frame. The following timestamps were obtained: 12, 19, 24, 32, 41, 51, 61, 70, 78,

and 91. Next, 10 different number of iterations between consecutive checkpoints had to

be chosen. As the formula indicated frequent checkpoints, the concentration was focused

on the smallest five (1 through 5 iterations). Also, to have an idea of the cost with lower

frequency, another five were chosen to be disperse (10, 20, 30, 40, and 50 iterations).

For every checkpoint rate, the total overhead of fault tolerance was evaluated while

injecting a failure to every chosen failure timestamp. The overheads induced in the resulting

100 experiments, each running 90 iterations, are represented in Figure 4.8. To determine

which is the interval that offers the lowest overall overhead, Figure 4.9 shows the average of

the overheads caused by the ten different failures, on each chosen checkpoint rate. Within

the highlighted tests (2, 3, 4, and 5), checkpointing every three or four iterations offers the

best overall solution, validating in turn the result from Young’s formula.

Figure 4.10 shows the aggregated checkpoint time for different checkpoint rates, in a

128-iteration execution without injected failures. As expected, the aggregated checkpoint

60

Failure injection timestamp (s)

 0
 10
 20
 30
 40
 50
 60
 70

1 2 3 4 5 10 20 30 40 50

O
v
e

rh
e

a
d

 o
f

F
a

u
lt

T
o

le
ra

n
c
e

 (
s
)

12

data recovery
checkpoint
process recovery (shrink)
process recovery (other)
rollback

1 2 3 4 5 10 20 30 40 50

19

1 2 3 4 5 10 20 30 40 50

24

1 2 3 4 5 10 20 30 40 50

32

1 2 3 4 5 10 20 30 40 50

41

 0
 10
 20
 30
 40
 50
 60
 70

1 2 3 4 5 10 20 30 40 50

51

1 2 3 4 5 10 20 30 40 50

61

1 2 3 4 5 10 20 30 40 50

Application iterations between consecutive checkpoints

70

1 2 3 4 5 10 20 30 40 50

78

1 2 3 4 5 10 20 30 40 50

91

Figure 4.8: Overhead of Fault Tolerance for different checkpoint rates for several failure
injection wall clock times (8.6 MB/core, 2197 cores, 90 iterations). c©2014 IEEE (reprinted
with permission) Gamell et al. [66].

 0

 10

 20

 30

 40

 50

 60

1 10 20 30 40 502 3 4 5

O
v
e
rh

e
a
d
 o

f
F

a
u
lt
 T

o
le

ra
n
c
e
 (

s
)

Iterations between consecutive checkpoints

data recovery
checkpoint
process recovery (shrink)
process recovery (other)
rollback

Figure 4.9: Average overhead for different checkpoint rates. Same test as Figure 4.8. c©2014
IEEE (reprinted with permission) Gamell et al. [66].

61

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 64 128

A
c
c
u
m

u
la

te
d
 c

h
e
c
k
p
o
in

t
ti
m

e
 (

s
)

Iterations between consecutive checkpoints

garbage collection time
memcpy() time

communication time

Figure 4.10: Accumulated checkpoint time for different rates (8.6MB/core, 128 iterations,
1000 cores)

time is perfectly proportional to the number of checkpoints.

4.4.4 Evaluating the Recovery Algorithm

In this section we evaluate the recovery portion of the Fenix library, as well as check that

the implicitly coordinated approach produces reproducible results upon failure. To do this,

we first execute multiple tests with increasing core counts using the four benchmarks. Then,

we present a thorough evaluation of recovery scalability and the impact of the failure size

to the recovery cost, using the S3D application.

Tolerating failures on-line. We first used the same four benchmarks, with the number of

iterations increased to 10,000 for Laplace, 50,000 for Poisson, 20,000 for Heat, and 20,000 for

matrix-matrix addition. In all cases, a checkpoint was performed every 500 iterations. As a

result, Laplace performed a total of 20 checkpoints; Poisson, 100; Heat, and matrix-matrix

addition, 40.

All runs were repeated five times, and the averaged results are shown in Table 4.1, with

the exception of ULFM-enabled runs executing greater than 8192 MPI ranks. We were

unable to run the 32k rank and 64k rank test injecting failures, as MPI_Init would fail

to return when running with ULFM enabled. Therefore, all tests above 8192 ranks have

62

been done with ULFM disabled. Those tests are only useful to show the scalability of the

neighbors technique with implicitly coordinated checkpoints.

We witnessed anomalies in the execution times for both 8192 rank runs of Heat and

matrix-matrix addition, where the failure-free runs took longer than the corresponding

single-failure runs. This is unexpected, and probably attributable to network congestion

during the failure-free runs. We were allocated one partition on Titan, which we reused for

successive benchmark runs. It is likely that these anomalies, clustered as they are particu-

larly in performance time and partition space, were influenced by network congestion from

concurrent jobs occupying the surrounding Titan partitions. Future testing will use mul-

tiple partitions, and variations in launch time, in an effort to normalize per-run anomalies

such as these.

The total time-to-solution for the different tests increases with the number of cores,

independently of the execution type: whether standard (sans our library), or with or without

failures (using our library). Note that the checkpoint time cost of checksum algorithm

increases linearly with core count. This is expected due to the collective operations used

to calculate the checksum among all ranks. With the neighbors algorithm, however, we

observe a constant cost with increasing core count; therefore this algorithm, combined with

an implicitly coordinated approach, offers an scalable solution. Data recovery is slower when

using checksum than when using neighbors, however, as data recovery using the neighbors

algorithm is not impacted by the core count. The same observations can be made on all

four benchmarks.

We see that process recovery takes more time when it involves more cores; it is expected

that recovery time will be reduced in future versions of ULFM. In this dissertation we

used the newest developer’s version of ULFM, which in our current configuration does not

reproducibly synchronize process recovery with high core counts; in order to guarantee

process recovery, it was necessary to manually manage this synchronization using delay

(sleep) periods.

We first measured benchmark execution without any additions for fault tolerance, using

a non-fault-tolerant version of MPI (MPI column, Table 4.1). Also, we ran another set of

tests activating fault tolerance only in the runtime (MPI+ULFM column). Those two tests

63

are useful to demonstrate ULFM’s effect on the execution of regular, non-fault tolerant

applications. We can see that, even though in the great majority of benchmarks this is

negligible, there are some tests in which it differs. For example, in matrix-matrix addition

the execution is faster using ULFM in all cases, while in Laplace it depends on the number

of cores. In Poisson, ULFM penalizes the execution; while in Heat it is negligible. This

may be due to the internal implementation of both the non-fault-tolerant and ULFM MPI

versions.

In Table 4.1 we also analyze the overhead of our implementation. In the great major-

ity of cases, the fault-free time-to-solution with our library is no more than ten percent

greater than the non-fault-tolerant version’s time-to-solution, and in many cases (especially

considering the neighbors algorithm) the imposed overhead is less than five percent. This

penalty may seem significant, but when weighed against the runtime penalty of an aborted

global-checkpointing-based or even non-fault-tolerant execution –which could measure in

hours– even a ten percent premium is a comparatively small price to pay to avoid a costly

complete re-run in the event of a failure.

Note that the time-to-solution of both the checksum and the neighbors algorithms in-

cludes the checkpoint time cost, which is the factor that dominates the overhead induced

by our library. The worst case example can be seen in Poisson, where the overhead is con-

siderable because many data are checkpointed 100 times, and code execution time itself is

extremely short, between 27 and 62 seconds for MPI+ULFM executions. In other cases we

observe less than a ten percent overhead.

Increasing Failure Size. The following tests, performed using the S3D application, aim

at studying the impact of the number of simultaneous failures on the recovery process.

Given the same total number of nodes (2197 ranks) and the same problem size, failures are

injected to an increasing number of nodes, ranging from 16 to 1024 cores. In all experiments

the group size is set to 1024 so that failures are always injected inside the same group.

Note that checkpoint times in all tests are between 95-104 ms, validating conclusion from

Figure 4.5 about group size effect on checkpoint time from Section 4.4.2, which validates

the conclusions.

The results of the experiment are shown on the left side of Figure 4.11, where similar total

64

Cores MPI
MPI+
ULFM

Checksum Algorithm Neighbors algorithm
Time to solution Checkpoint Recovery Time to solution Checkpoint Recovery

NF F NF F Process Data NF F NF F Process Data

M
a
ta

d
d

512 115.507 113.897 124.986 136.862 8.649 8.599 8.462 0.564 119.981 135.377 0.554 0.427 8.508 0.055
2048 148.750 144.489 158.224 169.712 10.415 10.516 10.541 0.772 146.733 166.944 0.553 0.385 10.542 0.052
4096 173.144 166.701 182.465 204.697 11.702 11.703 16.099 1.025 177.517 200.637 0.563 0.407 16.395 0.054
8192 221.935 212.680 366.974 268.787 26.922 14.600 36.924 1.286 191.604 231.071 0.558 0.438 36.812 0.056

32768 213.073 - - - - - - - 230.171 - 0.491 - - -
65536 241.473 - - - - - - - 255.235 - 0.502 - - -

L
a
p

l. 486 150.206 145.330 155.736 169.297 8.558 8.899 8.460 0.579 149.909 168.795 0.474 0.343 8.541 0.104
2027 171.339 177.061 193.388 212.550 11.171 10.800 11.595 0.790 181.967 202.978 0.481 0.366 10.330 0.112
4098 191.592 203.696 219.012 236.997 13.667 13.494 16.210 1.609 203.869 224.110 0.497 0.359 16.377 0.106

P
o
is

so
n

512 15.563 27.714 77.397 88.063 43.881 44.451 8.387 0.886 35.127 48.327 2.480 1.888 8.427 0.116
2048 28.057 32.503 94.211 111.295 52.891 53.630 10.403 1.566 46.482 64.112 2.452 1.916 10.397 0.122
4096 60.158 62.278 139.700 152.251 58.682 58.300 15.719 1.676 66.012 89.219 2.463 1.814 15.602 0.115
8192 219.662 229.560 370.744 238.065 119.215 66.115 34.700 2.068 120.329 166.869 2.454 1.735 36.339 0.118

32768 548.770 - - - - - - - 593.933 - 2.325 - - -
65536 667.437 - - - - - - - 697.093 - 2.266 - - -

H
e
a
t 512 229.336 230.626 232.868 275.810 8.812 8.958 8.487 0.671 229.956 256.655 0.507 0.388 8.593 0.031

2048 272.071 270.060 287.094 301.558 10.910 10.896 10.483 0.877 267.420 292.741 0.480 0.391 10.495 0.034
4096 294.000 293.623 308.391 325.290 12.242 12.524 16.114 1.362 297.343 324.792 0.491 0.399 16.378 0.038

Table 4.1: Time (in s) results of four benchmarks. The MPI column is the time to solu-
tion for a regular execution of the benchmark with OpenMPI, with ULFM disabled, and
without our library. The MPI+ULFM represents the same execution enabling ULFM fea-
tures (without our library). NF represents failure-free solutions, F represents tests with one
failure.

times can be seen (process recovery time TP and data recovery time TD) regardless failure

size. It can be concluded that all parts of the recovery algorithm are scalable upon increasing

failure size. Also, this result shows how Fenix’s recovery algorithm enables tolerance to large

sets of correlated failures with no extra cost.

Weak Scalability. After showing that the recovery algorithm scales when an increasing

number of simultaneous failures occur, the effect of an increase of the total number of

cores on process and data recovery needs to be analyzed. For this purpose, the experiment

shown on the right side of Figure 4.11 is proposed. Three groups of ranks are set up per

cabinet, resulting in a group size of 512 cores, since the cabinet size on Cray XK7 is 96

processors. The experiment was performed inducing a failure of 16 nodes (256 cores) per

test, checkpointing every 16 iterations. Since the main goal of the test is to calculate the

overhead of the recovery algorithm itself, not all the costs due to fault tolerance, any chosen

checkpoint rate would have been valid. Comparing the overheads in Figure 4.11 (right),

the following can be concluded: (1) the shrink algorithm does not scale (i.e. its overhead

increases along with the number of cores), and (2) the remaining parts of process and data

recovery algorithms scale perfectly.

Impact of spatial failure distribution. It is also interesting to study how the distribu-

tion of a failure within the group impacts the recovery time. The 4913-core test in Figure

65

 0

 5

 10

 15

 20

 25

16 32 64 128
256

512
1024

O
v
e
rh

e
a
d
 o

f
R

e
c
o
v
e
ry

 (
s
)

Number of simultaneous core failures

data recovery
process recovery (shrink)
process recovery (other)

1331
2197

3375
4096

4913
0

4913
1

4913
2

Number of total cores

Figure 4.11: Recovery overhead. (Left) Simultaneous failures on increasing number of cores,
2197 total cores. (Right) 256-core failure on increasing number of total cores. The subindex
in the 4913-core tests indicates a different distribution of failures within the 512-core group.
c©2014 IEEE (reprinted with permission) Gamell et al. [66].

4.11-right shows three different distributions of a 16-node failure: 49130 injects failures in

the lower 256 ranks of the 512-core group, 49131 injects failures in the upper 256 ranks, and

49132 injects 16-node failures randomly within the group. No impact of the distribution of

the failure within the group can be observed.

Evaluating an alternative agreement algorithm. As previously noted, Figure 4.11

shows that the shrink algorithm implemented in the ULFM prototype used to perform the

experiments above does not scale (i.e. its overhead increases along with the number of

cores). The communicator shrink operation is based on the ULFM’s resilient agreement

algorithm. A new agreement algorithm, ERA, has been designed and implemented, which

focus on the practical assumption that a process can return early in the agreement pro-

cess [78]. In what follows, we re-evaluate the prior experiments to test the effect of the

new agreement algorithm on the recovery process when compared to the baseline agree-

ment algorithm (revision b24c2e4 of the ULFM prototype). Figure 4.12 shows the results

of these experiments in terms of total absolute cost of each call to the shrink operation.

On Figure 4.12a we see how the operation scales with an increasing number of failures,

from one node (16 cores) up to 64 nodes (1024 cores). We observe the drastic impact of

66

0

5

10

15

20

25

16 32 64 128
256

512
1024

O
v
e
rh

e
a
d

o
f

R
e
c
o
v
e
ry

(s
)

Number of simultaneous core failures

shrink with Log2phases
shrink with ERA

(a) Failure size variable

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3
0

4
9
1
3
1

4
9
1
3
2

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

Number of cores

25

20

15

10

5

0

(b) Failure size fixed to 256 cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

1
0
6
4
8

Number of cores

(c) Failure size fixed to 16 cores

Figure 4.12: Recovery overhead of the shrink operation using the improved agreement algo-
rithm (ERA), compared to the base algorithm (log2phases). In Figure 4.12a, simultaneous
failures on increasing number of cores are injected, while fixing the total cores to 2197. In
Figure 4.12b, 256-cores failures (i.e., 16 nodes) on increasing number of total cores are in-
jected. The subindex in the 4913-cores tests indicates a different distribution of failures. In
Figure 4.12c, 16-cores failures (i.e., 1 node) on increasing number of total cores are injected.

the new ERA agreement compared with the previous Log2phases algorithm, and the ab-

solute time is clearly smaller with the new agreement algorithm, in all cases. By using

the new agreement, however, the smaller the failure, the faster it is to recover. This is a

highly desirable property, as described in Chapter 5, and cannot be observed when using

the former agreement algorithm, in which case the recovery time takes the same amount of

time regardless of the failure size. The results shown in Figure 4.12b represent executions

injecting 256-cores failures using an increasing total number of cores. The new agreement

is not only almost an order of magnitude faster, but scales to a number of processes not

reachable before. It is also worth noting that the shape of the failure (i.e., the position

of the nodes that fail, not only the number of nodes that fail) affects the recovery time

with the new agreement algorithm, while this did not happen with the former. Finally,

Figure 4.12c shows the scalability of the Fenix framework when injecting a 16-cores failure,

which corresponds to a single node on Titan. As we can observe, the time to recover the

communicator, while exhibiting a linear behavior, remains below 1.4 seconds when using

more than 10,000 total cores. Clearly, we see a significant reduction in all cases.

67

4.4.5 Surviving Highly Frequent Node Failures

Goal. The results from the above experiments enable an empirical imitation of a future

large-scale scenario (e.g. exascale), in which node failures might occur with much high

frequency, such as one per minute in periods of high instability. The goal of this test is

to show that on-line global recovery as presented in this chapter may be a solution for

process/node failures towards these environments, at least by applications such as S3D.

Experimental set up. After determining the optimal checkpoint interval for the three

scenarios (system MTBF of 47, 94, and 189 seconds), the experiments are set up to run on

2197 cores (problem size of 13× 13× 13 with 50 grid points per core), injecting entire-node

failures (16 cores). As done in Section 4.4.3, to determine the failure injection time a Poisson

distribution with λ = 47, λ = 94, and λ = 189 seconds is used, respectively, (seed of 10 on

the same version of the R suite). The test runs for 500 iterations and different overheads

caused by all faults are measured, as well as the total time to solution. A summary of

all these events for the three cases is shown in Figure 4.14. The time stamp of all events

related to fault tolerance have been recorded as well, and are shown in the bottom side of

Figure 4.13. Despite knowing the best optimal checkpoint (calculated in Section 4.4.3) each

test was repeated with three different checkpoint rates, again validating the same conclusion

as before (see Figure 4.14): for the 47s-MTBF test, checkpoint needs to be saved every 2

iterations, every 3 for the 94s-MTBF test, and every 4 for the 189s-MTBF test. Therefore,

the discussion below is focused only on these three optimal tests.

Results. As seen in Figure 4.14, fault tolerance overhead come from three sources:

• (1) The recovery algorithm cost, which is split into (1.1) process recovery (OMPI_Comm_

shrink and other costs) and (1.2) data recovery. Data recovery is clearly negligible, as

expected from the algorithm design. Furthermore, process recovery is again negligible,

aside from communicator shrink, which is the largest cost. However, it is dependent

on the MPI implementation.

• (2) The overhead from re-execution of lost iterations, or rollback cost, is the sec-

ond highest cost, only exceeded by the aforementioned shrink cost. Note, however,

that the measured absolute rollback cost, about five seconds per failure in the 47-s

68

187

94

47

0 100 200 300 400 500 600
Execution wall time (s)

In
je

ct
ed

 s
ys

te
m

 M
TB

F
(s

)

Checkpoints

Proc. recovery

Data recovery

Lost
ckpt

Lost
ckpt

Failures

0 10000 20000 30000 40000 50000 60000 70000 80000 86400

P
ro

du
ct

io
n

ru
n

Recovery+rollback overhead3901s 1617s 1612s 4439s 1928s 6025s

Figure 4.13: Checkpoint and failure timestamps on: (Top) production runs using 130k
cores on Titan and (Bottom) the first 600 seconds of the high frequency node failure tests
(8.6 MB/core, 2197 cores, 500 iterations, 16-core failure injection). Only one of the 5 re-
executions is shown per test. Each test include six rows, organized by pairs. The pair’s
meaning is indicated in the zoomed area: from top to bottom, the first two indicate where
the checkpoint occurred (in red, the non-finished checkpoints), the second two indicate the
process recovery while the last two refer the data recovery. Within each pair, the top row
shows the average time, while the bottom row shows the whole span througout the cores
(i.e. the time between the first core begins until the last core ends). c©2014 IEEE (reprinted
with permission) Gamell et al. [66].

			MTBF - Average failure injection period (s)

0

50

100

150

200

250

2 3 4

O
v
e
rh

e
a
d
 o

f
F

a
u
lt
 T

o
le

ra
n
c
e
 (

s
)

47

data recovery
checkpoint

process recovery (shrink)
process recovery (other)

rollback

3 4 5

			Application iterations between consecutive checkpoints

94

4 5 6

189

2 3 4

No failure

Figure 4.14: Overhead of continuously injecting failures at different periods, using different
checkpoint rates. c©2014 IEEE (reprinted with permission) Gamell et al. [66].

69

MTBF test, is relatively small: ∼10% of 47. Its accumulated cost corresponds to

below 9% over a failure-free, checkpoint-free test. It is also clearly smaller than the

measured rollback cost in current production runs: 22.63% compared to a failure-free,

checkpoint-free execution. Note that this scenario is even worse than what is expected

towards exascale [49], where MTBF is predicted to be measured in minutes.

• (3) The aggregated checkpoint cost is the least significant cost of the three processes.

In the worst case test (47-s MTBF), data is checkpointed on average ∼15 times be-

tween two consecutive failures, incurring an average cost of 1.05 seconds (2.23% of 47

s).

The second row in each test of Figure 4.13 (bottom) shows the time between the mo-

ment the first core begins the checkpoint process and the moment the last core finishes

it. As this time is small for most checkpoints, and knowing that S3D does not have any

synchronization directive within its regular execution path, it can be concluded that S3D

is highly balanced. This conclusion applies for the great majority of iterations, but in some

cases cores have started/finished the checkpointing process with a noticeable amount of

imbalance, progressively resuming balanced behavior in subsequent iterations. These situ-

ations empirically demonstrate the real benefit offered by implicit coordination: no impact

was produced by the checkpoint process due to this temporal imbalance. By accumulating

the times in the second row a lower bound on the time to checkpoint for a blocking coor-

dinated protocol can be estimated. The conclusions for the 47-s, 94-s, and 189-s MTBF

test indicate, respectively, a cumulative blocking coordinated checkpoint of 76, 39, and 48

s which represent 3.4x, 3.0x, and 4.1x times more compared to using implicit coordination,

as depicted in Figure 4.14. Note that in production runs shown in Chapter 3, where I/O

costs are on the order of 55 s, coordination cost is insignificant. However, to checkpoint

frequently coordination must be implicit to significantly reduce the overhead.

For a more finely grained perspective, specific events are analyzed individually as follows.

The bottom part of Figure 4.13 shows all events related to fault tolerance. Specifically, for

each test, it includes (top to bottom): (rows 1 and 2) when checkpoints happened, (rows 3

and 4) when failures happened –and process recovery time– and (rows 5 and 6) how much

time data recovery took. Rollback time can be deduced from the last correctly finished

70

checkpoint (first/second rows in blue) to the beginning of each bar in row 4. Note that

thanks to the well-balanced behavior of S3D, at most one checkpoint was lost per failure,

which only happened in the 47-s MTBF test. The results also indicate how data recovery

time is negligible in all cases; even in the recovery around second 560 of the 47-s MTBF

test, in which data recovery took a slightly longer to finish. Also note that overall recovery

time is very stable, taking in all cases the same amount of time.

The fact that lines in row 4 always begin before equivalent ones in row 3 indicate that the

failure detection occurs at different times in every core of the system.

From a higher perspective, the tests are compared using the time to solution metric (i.e.

from the start of the execution until the last core has finished) with respect to a failure-free

and checkpoint-free execution. With failures injected every 189, 94, and 47 s, the total job

run-time penalty is as low as 10%, 15%, and 31%, respectively, as shown in Figure 4.15.

Chapter 3 shows that current production runs tolerate a cost of 31%, which is the same

cost achieved simulating failures every 47 s.

As described in Section 4.4.4, the algorithm for shrinking the communicator has been

dramatically improved. To estimate a lower bound on the total overhead we can assume

that the shrink time is negligible and subtract it in Figure 4.14. The resulting overhead is

reduced from 31% to 17%, from 15% to 8%, and from 10% to 6%. If we look at Figure

4.12a, we can observe that injecting 16-core failures in a 2197-core execution triggered a

6.85-second shrink with the former agreement algorithm and a 0.43-second shrink with the

new agreement. Given that we see a 16-fold cost reduction of the shrink operation, it is

safe to assume that the total overhead due to failures and fault tolerance has been reduced

from 31% to 17.9%, from 15% to 8.4%, and from 10% to 6.2% for the 47-s, 94-s, and 189-s

MTBFs, respectively, which is consistent with the lower bound.

4.4.6 Effect of the Checkpoint Size

Dongarra et al. [49] suggest that exascale systems are likely to have orders of magnitude

less memory per core than current systems, estimating them in the order of tens of MB.

Some estimations suggest that cores may have as low as 32 MB [17] of DRAM, assuming

100M cores [49], while other studies estimate that cores may have 250 MB [57].

71

																				MTBF - Average failure injection period (s)

0

20

40

60

80

100

120

140

160

2 3 4

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

%
)

47

31% 36% 39%

3 4 5

Application iterations between consecutive checkpoints

94

15% 15% 15%

4 5 6

189

10% 10% 10%

Figure 4.15: Overhead, as a percentage compared to a failure-free and checkpoint-free
execution, of the different experiments of S3D with Fenix when injecting failures every 47,
94, and 189 seconds. The time-to-solution variability of the five repetitions done for each
test is hidden in the decimal part of the percentages and hence, no error bars are required.

S3D, which uses relatively smaller amounts of memory per core, fits well with this

architectural assumption. However, in cases where the assumption does not hold, i.e.,

exascale systems have larger memory sizes per core, an estimate of the overall overhead due

to fault tolerance can still be drawn.

For example, for an application using 100 times the size utilized in Sections 4.4.3, 4.4.4

and 4.4.5, i.e., 858 MB/core, the 94-s MTBF experiment would require a checkpoint time

of TS = 3.74 s (experimentally evaluated on Titan), a checkpoint interval of TC = 26.61 s,

and a total overhead due to fault tolerance of approximately TC/2 + TS · TF /TC + TP +

TD = 13.30 + 13.31 + 8.06 + 3.74 = 38.41 s every 94.6 s. This corresponds to a 40.6%

overhead, compared to the 15% for the S3D example assuming 8.58 MB/core. Similarly,

using 85.8 MB/core (10 times the size used by S3D in this evaluation section), the 94s-

MTBF experiment would require a checkpoint time of TS = 0.0748 · 10 s, a checkpoint

interval of TC = 11.89 s and a total overhead due to fault tolerance of approximately

TC/2 + TS · TF /TC + TP + TD = 5.94 + 5.95 + 8.06 + 0.75 = 20.7 s every 94.6 s. This

corresponds to a 21 % overhead, compared to the 15 % for the S3D example assuming 8.58

MB/core. Therefore, the conclusions above would still apply in this case.

72

4.4.7 Evaluation Conclusion

These experiments empirically demonstrate how S3D, when augmented with Fenix, is able

to tolerate exascale-level, high frequency process/node/blade/cabinet failures, leveraging

high frequency checkpointing with a reasonable overall cost. For example, for a 94-second

system MTBF, a 15% overhead has been observed and, when using the ERA agreement,

this has been reduced to 8.4%.

4.5 On-line Recovery for Memory-filling Applications

Section 4.4 shows how on-line failure recovery, which enables applications to recover from

failures without the need to stop the surviving processes, reduces response times, letting the

application resume quickly after failures. Section 4.4 also shows that storing checkpoints

in memory, instead of in the parallel filesystem (PFS for short), yields higher scalability,

as the time spent to store or retrieve checkpoints depends only on the checkpoint size per

computational resource, rather than the aggregated checkpoint size. It has been suggested

that in-memory checkpointing, however, is not feasible for memory-hungry applications,

since they typically occupy the entire memory on all allocated resources.

This section revisits on-line failure recovery and in-memory checkpointing, focusing on

memory-hungry applications. We show that memory-hungry applications can often improve

their performance and throughput by increasing their resource allocation to enable in-

memory checkpointing. We model and simulate a wide range of application characteristics

and machine features. We include an extensive sensitivity study covering a wide range of

values for important characteristics, such as application memory usage, checkpoint size,

and scalability, as well as machine reliability, process recovery time, and checkpoint storage

bandwidth.

4.5.1 In-memory Checkpointing, Challenges and Benefits

As described in Section 4.2.2 double in-memory checkpointing stores a copy of the checkpoint

in the local core’s memory as well as in the memory of another core. In the worst case, this

approach does not tolerate a failure affecting two cores. In practice it tolerates, with high

73

probability, all failures an application will suffer, if the chosen destination core is physically

far away and shares no resources with the source, since the major fault mode in HPC

centers is single node failures [108]. An advantage that this approach offers when compared

to PFS-based checkpointing is constant weak scalability, i.e., the time to checkpoint depends

on checkpoint size per core, not aggregate size, and is therefore independent of the total

numbers of cores in the job.

In case of storing checkpoints in a centralized resource (PFS), however, an increase in

the aggregated checkpoint size implies an increase in the checkpoint I/O time. In most

cases, this is true even when using caching mechanisms as the final destination is still the

PFS. For example, checkpoints created during a production run of the S3D combustion

code using 130,000 cores of the Titan Cray XK7 at ORNL, and stored using state-of-art

I/O technology (ADIOS) required about one minute to store for as little as 5.2 MB/core

(see Chapter 3), i.e., an aggregate checkpoint size of 660 GB. Alternatively, storing 8.6

MB/core using double in-memory checkpointing requires less than 0.15 s (see Section 4.4),

independent of the number of cores (tested up to 250,000 cores).

A major limitation of in-memory checkpoint storage is that a portion of the memory

in all computational resources becomes unavailable to the application. Some applications,

however, typically require the entire memory available in the job allocation. In those cases,

in-memory checkpointing may be unusable as-is. This sections analyzes alternative usage

modes that may enable in-memory checkpointing to be used by memory-filling applications.

In particular, we study the costs and benefits of an increased job allocation or a reduced

problem resolution.

4.5.2 Effect of Resource Allocation Increase

This section explores how application execution performance and/or throughput can be

improved by (1) increasing resource allocation or (2) decreasing the problem resolution.

Specifically, this section studies how the costs of fault tolerance are affected by different

application characteristics and different machine features. In order to do so, we develop

an application execution model and implement a simulator based on the model. We then

use simulated executions of an application, injecting failures at different times. Our study

74

aims at understanding the impact of variations in the checkpoint storage destination and

bandwidth, machine reliability, process recovery time, as well as application scalability,

memory usage, and checkpoint size. For this effort to be realistic, we use the behavioral

analysis of current production-level executions presented in Chapter 3.

It is assumed that applications do not require the entire machine to fit the problem size,

but can run using only a portion of the machine.

Our results show that, in most cases, an allocation larger than the minimum allows not

only a faster end-to-end time, but also a throughput reduction. This is due to the fact that

larger allocations increase available memory, which can be used to create checkpoints faster

and in a more scalable manner.

4.5.2.1 Goals and Assumptions

Aggregated time as a metric. Metrics such as end-to-end execution time, throughput,

or floating-point operations per second (FLOPS) are commonly used to compare techniques

or decide how to perform a particular computational task. Since an increase of throughput

maximizes the use an HPC center and reduces the cost of running a job (in terms of

allocation hours), this work focuses on the optimization of throughput, and we measure it as

aggregated time (i.e., the product of wall-clock time and number of cores used). Aggregated

times reported in this section ignore the impact of spare cores, as their count is negligible

compared to the total core count.

IncMemStore. We refer to IncMemStore as the technique of storing increasing fractions

of checkpoints in memory, made possible by increasing allocation size. As will be shown,

IncMemStore may offer reduced aggregated time, which leads to a reduction of the end-to-

end execution time.

Assumptions. Assuming that the work done by an application can be performed by an

arbitrary number of cores (as long as the total problem size fits in memory) this study aims

at finding the number of cores that maximize throughput (i.e., minimizes the total number

of core-hours or process-hours spent to solve a problem). Each point in the figures in this

section represents the ensemble average of 100,000 runs with the simulator, which uses a

negative exponential distribution of failures with an expected time equaling the system

75

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10000 15000 20000 25000 30000 35000 40000

Ideal, but does not fit in memory

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

Mixed
Double in-memory
Parallel file system

Figure 4.16: Comparison of three checkpoint storage methods. y-axis shows aggregated
time, relative to MinCores.

MTBF. This means that different runs may experience different numbers of failures. In all

the experiments, the Daly formula [41] is used to calculate the optimal checkpoint frequency

(rounded to whole iterations), which depends on the time to create a checkpoint and the

expected MTBF. Finally, in all cases we define the baseline configuration MinCores as that

which exactly fits the entire application footprint, hence leaving no space for any in-memory

checkpoint data.

4.5.2.2 Impact of checkpoint storage

Assume an iterative problem with perfect scalability that requires a total of 20 TB of

memory–15 TB of which must be included in any checkpoint–and performs 16,000 itera-

tions, each of which would require 12 hours if it were to execute sequentially in a single

unit of execution. Figure 4.16 shows the aggregated time with varying numbers of cores

of such an application, assuming each core has 2 GB of main memory, and can transfer

(bidirectionally) messages to another core at 100 MB/s. Node MTBF is 1.5 years, and PFS

bandwidth is assumed to be 12.5 GB/s. The node MTBF observed during the production

executions described in Chapter 3 was of 2.5 years. We considered a shorter node MTBF to

reflect the expected reduction in MTBF due to more aggressive frequency/voltage scaling

at extreme scale; we study the effect of longer MTBFs in Section 4.5.2.4. In the figure,

76

the aggregated time is relative to MinCores, which stores the checkpoints in PFS (left-most

point of the Parallel file system line). The figure compares the three different checkpoint

storage possibilities described in Section 4.1. Since the aggregated checkpoint size is fixed

(the same problem is being solved), storing the checkpoint in PFS takes the same amount

of time, independent of the number of cores. For that reason, an increase in the number of

cores implies an increase in the aggregated time when using filesystem-based checkpointing.

The saw tooth effect in the PFS-based curve is due to the fact that adding cores speeds

up the computation, reducing the wall clock time of the program. When that reduction

exceeds a threshold at a particular core count, one less checkpoint will be written, causing

a drop in the aggregated time. These sharp drops, as well as the peaks in the mixed mode

checkpointing curves, disappear when the number of iterations is increased tenfold. They

are artifacts of the finite runtime, which makes Daly’s formula, which holds for a steady

state, non-optimal.

Alternatively, the cost of double in-memory checkpointing depends only on the size of

the local part of the checkpoint and can be implemented with high scalability (see Sec-

tion 4.4.2). Therefore, the total aggregated time of double in-memory checkpointing is

the same, independent of the number of cores used, ignoring latency. Finally, note that

by using a mixed approach, a small increase of core count above 10,000 actually damages

throughput. This is because the part of checkpoint data stored in PFS still dominates the

checkpoint cost and cannot be compensated by the small part of checkpoint data stored in

memory. As more cores are added, however, the aggregated time quickly decreases below

that of MinCores.

4.5.2.3 Impact of application scalability

In Section 4.5.2.2 we assumed linear scalability, e.g., doubling the number of cores results

in halving the iteration time. Here we analyze how the application scalability affects the

previous conclusions. To do so, we calculate the time Tit to complete an application iteration

using P cores as

Tit =
Tit,min

Sf · P/Pmin + (1− Sf)

77

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

100 %
95 %
90 %
85 %
80 %
75 %

(a) Aggregated time relative to MinCores.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10000 15000 20000 25000 30000 35000 40000

S
p

e
e

d
u

p

Number of cores

100 %
95 %
90 %
85 %
80 %
75 %

(b) Speedup of applications with different scalability factors.

Figure 4.17: Effect of different application scalability (modeled using the scalability fac-
tor metric as a percentage, ranging from 75% through 100%) and increased number of
computational resources on the aggregated time.

78

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

1-year MTBF
2-year MTBF
4-year MTBF
8-year MTBF

Figure 4.18: Comparison of four different node MTBFs. For each MTBF, a larger number
of cores implies more failures in a given period of time. y-axis represents the aggregated
time, relative to MinCores.

Pmin is the minimum number of cores required to fit the application problem, i.e.,

Pmin = M/Mpe, where M is the total memory usage of the application and Mpe the available

memory per core. Sf is the scalability factor, which ranges from 0.0 (no speedup) to 1.0

(linear speedup). Tit,min represents the time to complete one iteration using Pmin cores.

Figure 4.17b shows the speedup achieved when increasing P for applications with different

speedup factors Sf . Similarly, Figure 4.17a shows the aggregated time when using the

mixed checkpoint storage with applications with decreasing scalability factors Sf . Note

that for each value of Sf the minimal aggregated time occurs when PFS stops being used

(shaded box) and the entire checkpoint is stored in memory. Depicted applications with

Sf > 0.75 benefit from IncMemStore, which optimizes aggregated time and, therefore,

throughput. As a side effect, end-to-end execution time is also markedly shorter than for

MinCores. Section 4.5.2.6 revisits scalability impact when considering other application

features, studying a wider range of values for Sf .

4.5.2.4 Impact of the MTBF

When performing the previous simulations we assumed that each node had an MTBF of

1.5 years. We now analyze how node MTBF may affect the throughput advantages of

IncMemStore. Figure 4.18 shows that the optimal number of cores that minimizes the

79

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

1 s
10 s
100 s
250 s
500 s

Figure 4.19: Effect of process recovery relative to MinCores.

aggregated time is independent of the MTBF, while the actual throughput increase does

depend on the particular failure rate. The results in Figure 4.18 show that the benefit of

IncMemStore over PFS increases for unreliable systems.

4.5.2.5 Impact of recovery time

Since the assumed MPI process recovery model is global, all cores participate after a failure.

Therefore, a longer recovery time impacts the overall throughput gain when increasing

the number of cores. In the previous simulations, a recovery time of 10s was used as an

upper limit, based on the results of experiments performed on up to 10,648 cores on Titan

that show a recovery time below 1.4s (see Section 4.4). Figure 4.19 depicts the impact of

different recovery times, ranging from 1s to 500s, showing that while the impact is visible,

IncMemStore is still beneficial in all cases. While in reality scaling effects are involved in the

time to recover, we observe that in the range of system sizes considered (10k-100k cores),

process recovery time can be considered constant since the largest component of its cost

comes from application imbalance. Note also that the recovery time does not impact the

optimal number of cores that minimizes the aggregated time.

80

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

5 TB
10 TB
20 TB
30 TB
40 TB
50 TB

Figure 4.20: Effect of application memory usage running on an increasing number of cores,
relative to MinCores.

4.5.2.6 Impact of memory usage and checkpoint size

Application memory requirements and checkpoint ratios (we define checkpoint ratio as the

ratio of checkpoint size over application memory footprint) play a major role in the possi-

ble throughput gains of IncMemStore. Previous experiments assumed that the application

required 20 TB of main memory, and that the checkpoints needed to include 75 % of appli-

cation data (i.e., 15 TB). Figure 4.20 shows the aggregated time for an increasing number

of cores for different application memory sizes, relative to MinCores. This simulation as-

sumes a checkpoint ratio of 75% for an increasing application memory usage. The main

conclusion is that the larger the application data size, the more beneficial IncMemStore is.

In this example, applications that use a total amount of 50 TB of main memory can finish

the simulation in about 66% of the aggregated time required by MinCores. At the other

end of the spectrum, a smaller application that requires only 5 TB of memory can still

benefit from IncMemStore, using about 97% of the aggregated time required by MinCores.

Figure 4.21 shows a different scenario in which the application memory size is fixed at 20

TB and the checkpoint ratio ranges from 5% to 100%. As can be observed, the larger the

checkpoint ratio, the more cores are required to minimize the aggregate execution time,

and the more the latter can be minimized. However, larger checkpoint ratios allow lower

aggregated time minima, relative to MinCores.

81

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

5 %
25 %
50 %
75 %
100 %

Figure 4.21: Effect of different checkpoint ratios on an increasing number of cores, relative
to MinCores.

Figure 4.20 and Figure 4.21 show that both application memory usage and checkpoint

ratios impact the optimal number of cores Pmem. This is expected since both characteristics

determine the memory that needs to be available to store the entirety of the checkpoint in

memory. In particular, the optimal number of cores Pmem can be found as

Pmem = (1 + 2 · Cratio) ·
M

Mpe
= (1 + 2 · Cratio) · Pmin

where Cratio is the checkpoint ratio and is in the range [0,1] ([0,100%]), M is the total

memory requirement of the application, and Mpe is the memory available in a single core.

Figures 4.22a and 4.23a plot the minimal aggregated time (relative to MinCores) cor-

responding to Pmem. Figure 4.22a shows how the application scalability impacts three

different application memory sizes (5, 25, and 50 TB) and three different checkpoint ratios

(25%, 50%, and 100%). The figure shows how bigger application memory sizes always lead

to larger benefits from in-memory checkpointing. It can also be observed how, for applica-

tions that scale poorly, small checkpoint ratios benefit more from in-memory checkpointing

than larger ratios. For applications that scale better this effect is reversed. Applications

with smaller memory sizes (e.g., 5 TB) must have good scalability (e.g., scalability factors

higher than 95%) to benefit from IncMemStore, while medium and large applications allow

for a wider range of scalability factors (higher than about 65% and 35%, respectively) to

82

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.2 0.4 0.6 0.8 1

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Application Scalability Factor

5 TB, 25 %
5 TB, 50 %
5 TB, 100 %
25 TB, 25 %
25 TB, 50 %
25 TB, 100 %
50 TB, 25 %
50 TB, 50 %
50 TB, 100 %

(a) Aggregated time relative to base test.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

c
o

re
s

Application Scalability Factor

5 TB, 25 %
5 TB, 50 %
5 TB, 100 %

25 TB, 25 %
25 TB, 50 %
25 TB, 100 %

50 TB, 25 %
50 TB, 50 %
50 TB, 100 %

(b) Number of cores used.

Figure 4.22: Effect of increasing application scalability for different combinations of appli-
cation memory usages and checkpoint ratios. Experiments labeled “x TB, y %” used x
TB of main memory, and a checkpoint ratio of y %. Aggregated time for each scenario is
relative to MinCores.

83

obtain benefits from IncMemStore. Figure 4.22b shows the optimal number of cores that

are associated with Figure 4.22a. As described above, the scalability factor does not impact

the optimal number of cores Pmem.

Figure 4.23a focuses on the study at a smaller granularity of the effect of application

memory usage when using IncMemStore. While conclusions from this figure are consistent

with previous conclusions it is important to note that applications that require more than

about 37 TB of total aggregated main memory and have a scalability factor of at least 50%

(possibly lower) can benefit from IncMemStore in all cases, regardless of checkpoint ratio.

Applications with linear scalability benefit from IncMemStore regardless of memory usage

or checkpoint requirements. Figure 4.23b depicts the optimal number of cores associated

with each of the simulations shown in Figure 4.23a. As expected, Pmem increases linearly

with the application memory usage as well as with the checkpoint ratio.

4.5.2.7 Impact of iteration time and number of iterations

We repeated the previous simulations with different total number of iterations (16,000

and 160,000) as well as different sequential iteration times (12h, 48h, and 180h), and no

qualitiative changes were observed, aside from the smoothing of the performance curves

when using higher iteration counts (see Section 4.5.2.2). This can be seen by comparing

Figure 4.16, which simulates 16,000 application iterations, with Figure 4.24, which simulates

160,000 application iterations. Note how the curves are smooth in the latter. The same

effect can be observed by comparing Figure 4.17a and Figure 4.25.

Therefore, the number of iterations and the iteration time do not affect the aggregated

time ratio nor the optimal computation resources, regardless of the scalability of the appli-

cation, the application memory usage, or the checkpoint ratio.

4.5.2.8 Impact of memory available per core

All previous simulations assumed cores with 2GB of accessible memory (based on Titan

compute nodes). However, since it is unknown how much memory future systems will con-

tain, it is important to study the impact of this architectural aspect on the throughput

benefits of IncMemStore. Figure 4.26 shows the aggregated time when using Pmem cores,

84

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Application memory usage (TB)

0.5 s.f., 25 %
0.5 s.f., 50 %

0.5 s.f., 100 %
0.75 s.f., 25 %
0.75 s.f., 50 %

0.75 s.f., 100 %
1.0 s.f., 25 %
1.0 s.f., 50 %

1.0 s.f., 100 %

(a) Aggregated time relative to base test.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

c
o

re
s

Application memory usage (TB)

0.5 s.f., 25 %
0.5 s.f., 50 %
0.5 s.f., 100 %
0.75 s.f., 25 %
0.75 s.f., 50 %
0.75 s.f., 100 %
1.0 s.f., 25 %
1.0 s.f., 50 %
1.0 s.f., 100 %

(b) Number of cores used.

Figure 4.23: Effect of increasing application memory usage for different combinations of
scalability and checkpoint ratios. An experiment labeled “z s.f., y %” has a scalability
factor of z and a checkpoint ratio of y %. Aggregated time for each scenario is relative to
MinCores.

85

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10000 15000 20000 25000 30000 35000 40000

Ideal, but does not fit in memory

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

Mixed
Double in-memory
Parallel file system

Figure 4.24: Comparison of three checkpoint storage methods, simulating a total of 160,000
application iterations. Compare with Figure 4.16, which simulates 16,000 application iter-
ations.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

100 %
95 %
90 %
85 %
80 %
75 %

Figure 4.25: Effect of different application scalability and increased number of computa-
tional resources on the aggregated time, simulating a total of 160,000 application iterations.
Compare with Figure 4.17a, which simulates 16,000 application iterations.

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Memory per core
on Titan

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Memory per core (MB)

(50TB,0.75 s.f.) 1-year MTBF
(50TB,0.75 s.f.) 2-year MTBF
(50TB,0.75 s.f.) 4-year MTBF
(50TB,0.75 s.f.) 8-year MTBF
(10TB,1.0 s.f.) 1-year MTBF
(10TB,1.0 s.f.) 2-year MTBF
(10TB,1.0 s.f.) 4-year MTBF
(10TB,1.0 s.f.) 8-year MTBF

Figure 4.26: Effect of machine characteristics (memory size per core and node MTBF) on
two applications. The label “(50TB, 0.75 s.f.)” represents an application with high memory
requirements, while “(10TB, 1.0 s.f.)” represents an application with good scalability but
lower memory usage. Number of iterations has been set to 160,000 for this test. Figure
shows aggregated time relative to MinCores.

relative to MinCores, with increasing memory per core and different node MTBFs. Two

applications are studied: large memory requirements and Sf = 0.75, and small memory

requirements with perfect scalability (it is already evident from Figure 4.22a that poorly

scaling applications with small memory requirements do not benefit from in-memory check-

pointing, while poorly-scaling –Sf ≈ 0.35– applications with large memory requirements do

benefit). In both cases, the checkpoint ratio is 50%. A conclusion from this figure is that

applications running on unreliable machines with small memory sizes per core, may obtain

substantial benefits from IncMemStore. Note also that, when using unreliable machines

(e.g., node MTBFs of 1 or 2 years), both applications present a reduction in the aggregated

time regardless of the memory size per core, as previously shown by Figure 4.18.

The most important result, however, is that smaller available memory sizes lead to higher

savings due to IncMemStore, specially for larger applications or less reliable machines.

Exascale systems are expected to have smaller memory sizes per core than current systems,

because they need to meet strict power limits, and hence need to employ processors with

significantly more cores of lower frequency; even with a modest growth of memory per

processor, memory per core is expected to decrease. This small-memory trend is consistent

87

with current machines. For example, Titan, ranked first in the Top500 list of November

2012, has 299,008 cores and a main memory size of 598,016 GB (excluding GPU memory);

about 598, 016/299, 008 = 2 GB/core. Tianhe-2 (MilkyWay-2), ranked first in the Top500

list from June 2013 through November 2015, contains 3,120,000 cores and 1,024,000 GB of

main memory; about 1, 024, 000/3, 120, 000 ∼ 336 MB/core. Finally, Sunway TaihuLight,

ranked first in the Top500 list of June 2016, contains 10,649,600 cores with a total of

1,310,720 GB of main memory, which translates to 1, 310, 720/10, 649, 600 ∼ 126 MB/core.

Consequently our conclusion indicates the strong viability IncMemStore offers for future

machines. Note that even with current machine parameters (with higher memory sizes per

core than expected at exascale), all simulated configurations benefit from IncMemStore by

reducing the aggregated time.

4.5.2.9 Impact of checkpoint bandwidth

All experiments performed above assumed a PFS bandwidth of 660GB/55s = 12 GB/s,

based on a duration of 55 seconds for checkpoints to be created by S3D production runs

using state of the art I/O optimization techniques, and a total size of 660 GB. We used a

representative bandwidth of 0.1 TB/s for double in-memory checkpointing on 1,000 cores

(see Figure 4.5), which translates to a bandwidth of 0.1×10242/1000 = 105 MB/s per core.

Figure 4.27a shows how different PFS bandwidths affect the optimized aggregated time.

In all the cases depicted, IncMemStore delivers savings in terms of aggregated time, while

Pmem remains constant. Similar conclusions can be drawn from Figure 4.27b, which depicts

the aggregated time when using four hypothetical machines with different node-to-node

interconnect bandwidths that lead to different in-memory checkpointing bandwidth. This

result shows how the potential benefits provided by IncMemStore are more sensitive to PFS

bandwidth than to interconnect bandwidth.

Figure 4.28a shows how PFS bandwidth impacts the benefit of IncMemStore, using the

same two application profiles as before. When using the large application, most of the

configurations studied benefited greatly from IncMemStore. The benefits of IncMemStore

for the small application are more modest, compared to the big application. However,

the same conclusions apply. Figure 4.28b depicts the optimal number of cores that were

88

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

6 GB/s
12 GB/s
24 GB/s
28 GB/s

(a) Effect of PFS bandwidth on the aggregated time.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 15000 20000 25000 30000 35000 40000

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Number of cores

75 MB/s
150 MB/s
300 MB/s
600 MB/s

(b) Effect of in-memory bandwidths on the aggregated time.

Figure 4.27: Experiments to determine the impact of bandwidth on the effectiveness of
IncMemStore. Depicted aggregated times are relative to MinCores. Experiments on current
machines demonstrate an effective PFS bandwidth in the order of 12GB/s and an in-memory
checkpointing bandwidth around 105 MB/s between any two MPI processes running on
physically distant nodes, while allocating 16 MPI processes in each node. The node-to-node
bandwidth is considered the bandwidth to transfer a single checkpoint from a core to its
associated remote ‘buddy’, and, as experimentally shown, is considered to scale perfectly as
more cores are added and transfer checkpoints simultaneously. The two studied applications
represent the same as in Figure 4.26.

89

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60 70 80 90 100

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 M
in

C
o

re
s
)

Effective bandwidth of parallel filesystem (GB/s)

(50TB,0.9 s.f.) 75 MB/s in-memory
(50TB,0.9 s.f.) 150 MB/s in-memory
(50TB,0.9 s.f.) 300 MB/s in-memory
(50TB,0.9 s.f.) 600 MB/s in-memory

(10TB,1 s.f.) 75 MB/s in-memory
(10TB,1 s.f.) 150 MB/s in-memory
(10TB,1 s.f.) 300 MB/s in-memory
(10TB,1 s.f.) 600 MB/s in-memory

(a) Aggregated time with increasing PFS bandwidths for four in-memory checkpointing
bandwidths.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
o

re
s

Effective bandwidth of parallel filesystem (GB/s)

(50TB,0.9 s.f.) 75 MB/s in-memory
(50TB,0.9 s.f.) 150 MB/s in-memory
(50TB,0.9 s.f.) 300 MB/s in-memory
(50TB,0.9 s.f.) 600 MB/s in-memory

(10TB,1 s.f.) 75 MB/s in-memory
(10TB,1 s.f.) 150 MB/s in-memory
(10TB,1 s.f.) 300 MB/s in-memory
(10TB,1 s.f.) 600 MB/s in-memory

(b) Number of cores used in the experiment depicted by Figure 4.28a.

Figure 4.28: Experiments to determine the impact of bandwidth on the effectiveness of
IncMemStore (extension of Figure 4.27).

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
g

g
re

g
a

te
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 b
a

s
e

 t
e

s
t)

Total problem size (TB)

Pmem(problem size)
Pmin(problem size)
Pmem(20TB)
Pmin(20TB)
Naive

(a) Aggregated time relative to the base test.

Figure 4.29: Effect of different problem size reductions compared to a base test of 20TB
scheduled on Pmin.

used when running the optimal experiments in Figure 4.28a. It can be observed that the

checkpoint bandwidth does not impact the optimal number of cores, but, as stated above,

the application size does. It can also be observed that the large and small case featured

Pmem of 50,000 and 10,000 cores, respectively.

4.5.3 Effect of Problem Resolution Reduction

Previous experiments simulated a variety of scenarios maximizing throughput by using

IncMemStore. The latter leverages memory pressure reduction achieved by distributing a

fixed problem among a larger number of cores. However, there may be situations in which

this approach is infeasible or undesirable, e.g., if the machine does not have enough cores or

if the CPU-hour cost of larger allocations is higher than that of smaller allocations (tiered

CPU-hour costs) and the difference is not compensated by the achieved aggregated time

reduction. In those cases the user may want to reduce the problem resolution to obtain

better throughput. Nominally, reduction of memory size by a factor of x and an algorithm

with arithmetic complexity linear in memory size would also reduce aggregated time by

a factor of x. Assuming PFS, we call this the naive model and label the corresponding

curves in Figures 4.29a and 4.30a accordingly. However, if the reduced problem size is

executed on the same allocation as the original problem, other benefits may be obtained:

91

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 2 4 6 8 10 12 14 16 18 20

A
g

re
e

g
a

te
d

 t
im

e
 r

e
d

u
c
ti
o

n
 c

o
m

p
a

re
d

 t
o

 n
a

iv
e

 m
o

d
e

l

Total problem size (TB)

Pmem(problem size)
Pmin(problem size)
Pmem(20TB)
Pmin(20TB)
Naive

(a) Aggregated time reduction relative to the naive model.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

c
o

re
s

Total problem size (TB)

Resized resource count (optimal)
Resized resource count (minimal)
Fixed resource count (optimal with 20TB)
Fixed resource count (minimal with 20TB)

(b) Number of cores.

Figure 4.30: Effect of different problem size reductions compared to a base test of 20TB
scheduled on Pmin (extension of Figure 4.29).

92

(1) memory footprint is reduced, leaving more space for in-memory checkpoint storage, (2)

checkpoint sizes are also reduced and, hence, are faster to create and more readily fit in

memory made available by resolution reduction, and (3) execution time per iteration is

reduced, yielding faster results and, hence, suffering fewer failures. Figures 4.29a and 4.30a

study the combined effects of problem size reduction and in-memory checkpointing, using

a checkpoint ratio of 75%. Figure 4.30a compares results to the naive model.

Experiments labeled Pmin/mem(s) set the number of cores to either Pmin or Pmem as

described in Section 4.5.2.6, corresponding to a problem size of s. We focus on the lines

labeled Pmin(20TB) and Pmem(20TB), which fix the number of cores used at 10,000 and

25,000, respectively. The lines labeled Pmin/mem(problem size), which are plotted for com-

parison purposes, scale down or up the number of cores depending on the actual problem

size, as has been done throughout Section 4.5.2. Note that, in all cases, combining in-

memory checkpointing with problem size reduction achieves better aggregated times than

when not leveraging in-memory checkpointing. When fixing the core count to Pmin(20TB),

an interesting point occurs with 8 TB (40% of 20 TB). At this point, the aggregated time

is about 6.2% below the naive model prediction, as shown in Figure 4.29a. As can be seen

in Figure 4.30a, the aggregated time consumed is around 1.19 smaller than given by the

naive model.

Examples of applications that can directly benefit from this technique can be found in

reduced-order modeling, which seeks inexpensive but robust mathematical representations

from multiple low fidelity simulations (i.e., reduced problem sizes with lower resolution).

The associated inaccuracies of these low-fidelity simulations are corrected through the pro-

jection from a small number of high (and more expensive) fidelity simulation outputs [28].

For example, a higher fidelity simulation may require 20TB and use a certain amount of

aggregated time. Without using in-memory checkpointing, four lower-fidelity simulations

of 5TB can be executed using the same amount of aggregated time. In the same case,

when using in-memory checkpointing, we may be able to run almost five (1.19× 4 = 4.76)

lower-fidelity simulations using the same amount of aggregated time.

93

Chapter 5

Local Recovery for Stencil-based Scientific Applications

This chapter presents the design, prototype implementation, and evaluation of local recovery

approaches for certain classes of applications in FenixLR. Specifically, the feasibility of local

recovery is studied for stencil-based parallel applications, which represent a significant set of

physical simulations, and develop programming support and scalable runtime mechanisms,

to enable online and transparent local recovery on current leadership class systems. In

addition to its inherent scalability, local recovery provides several benefits. For example,

the environment does not need to be recovered globally after a failure, and only the newly

spawned processes have to rollback to the last checkpoint.

5.1 Overview

Global recovery. Chapter 4 introduced the technique of recovering from a multi-process

failure in an on-line manner; that is, enabling ranks/processes that survived a process or

multi-process failure to recover from it without disrupting them. Making all the processes

aware of the failure, and, hence, part of the recovery, is, however, suboptimal. It is costly,

less scalable and, in many situations, unnecessary. The goal of this chapter is to study

how global recovery can be substituted by local recovery under certain assumptions that

guarantee high efficiency.

Upon failure, the presented approach allows all processes in the system to continue

working and only trigger the rollback of the failed rank, which has to be substituted by a

spare resource or a re-spawned resource.

Local recovery in task-centric applications architectures. Task-centric application

architectures, such as for example “bag of non-parallel tasks”, are an ideal use case for

local recovery. In these applications, each task is assigned one or multiple processing units

94

(e.g. processor cores) in the system, and many tasks are spawned in parallel throughout

the system. When a process/node failure occurs, only failed tasks have to be restarted. All

other tasks on the system do not have to be aware of the failure, since they are independent

and do not directly communicate with each other. In order to avoid restarting each task

from the beginning, periodic checkpoints can be taken during the execution of a task, and

upon task recovery, the task can be restarted from the last checkpoint, in a local manner.

Local recovery for stencil-based parallel (MPI) applications. The aforementioned

scenario, even if it is desirable and embarrassingly scalable, it is not realistic for all kinds

of applications. Also, a large part of the community code base is already written using a

message passing framework. For example, all the processes in tightly coupled simulations

have to periodically communicate in order to advance the simulation. Therefore, a failure

in one of them will affect the others, in a direct or indirect way.

Stencil-based applications. This chapter focuses on a particular application domain

decomposition, the Stencil-based layout (which will be described in detail in Section 5.2.1,

at the core of many scientific applications that focus on iterative simulations of structured

multi-dimensional grids. Examples of Stencil-based applications range from the Jacobi itera-

tive method to partial differential equation (PDE) solvers, including more complex methods

such as adaptive mesh refinement (AMR [138]) or multigrid. A number of simulations are

considered stencil codes. Examples are S3D, which has been introduced in Chapter 3, or

the finite difference discretization of wave equations used in the Reverse Time Migration

for seismic imaging [107, 143].

An indicator of the popularity of stencil codes in the community can be found in the great

amount of studies focusing on optimizations of certain aspects of Stencil scientific simula-

tions, such as these [43, 132, 109, 153, 94], or the libraries that aim at reusing different stencil

optimizations, such as WaLBerla [59], Physis [106], Cactus [71], or LibGeoDecomp [134].

Local Recovery for Stencil-based Applications. This chapter will describe how local

recovery can be implemented for stencil applications in an efficient manner and with minimal

code transformations. As in the aforementioned “bag of tasks” example, after a failure of a

process or node is detected, spare or re-spawned resources can be used to substitute failed

ones, and the last checkpoint can be reloaded locally. Since this process does not require the

95

coordination of all ranks in the domain, recovering locally will be shown to scale perfectly,

independently of the total number of ranks in the system. While the recovery process is

taking place, the logical neighbor ranks in the stencil domain will probably not have yet

noticed the failure. They will do notice it, however, when they begin the synchronization

part of each iteration (also known as ‘timestep’). At this point, the recovery procedure

will indicate the part of the runtime that is running in these ranks where to find the newly

recovered logical neighbors.

FenixLR. This chapter will present the requirements, design, implementation, and perfor-

mance evaluation of the local recovery concept in a new framework, called FenixLR. The

main requirements of this framework are the need to share the same interface as Fenix,

which API was described in Chapter 4, and to provide efficient, scalable recovery. This

chapter will describe how, in order to provide the requirement of efficient recovery, the

architecture and implementation of FenixLR required a complete re-design when compared

to the constructs in Fenix. FenixLR has been implemented as a standalone runtime whose

only dependencies are a C++ compiler and the Cray uGNI library (i.e. no MPI runtime

needed). Since it has been built from scratch, this has been a non-trivial task. The mo-

tivation behind this decision is that fault tolerant versions of MPI, such as the prototype

implementation of ULFM [10, 9, 86, 11, 61] based on OpenMPI, do not serve FenixLR’s orig-

inal requirements. Specifically, they are not capable to deliver local recovery constructs and

their global recovery constructs’ scalability increases linearly with the number of processes.

Consistency in the Recovery Process. The approach in FenixLR uses implicit coordi-

nation as described in Section 4.2.2 to guarantee consistency: a checkpointing mechanism

where selective checkpoints are created at specific points within the application, guarantee-

ing global consistency without requiring a coordination protocol. In order to enable local

recovery, FenixLR also logs a small set of messages, which might need to be replayed after

recovery. The total size of these logged messages is negligible when comparing with the size

of the checkpoints.

Local Recovery Evaluation. FenixLR has been deployed on the Titan Cray-XK7 pro-

duction system (world’s third fastest machine as of November 2016) at ORNL. This chapter

presents an experimental evaluation of the effectiveness and scalability of local recovery in

96

FenixLR using the S3D [33] stencil-based combustion application, which has been presented

in Chapter 3.

The results of the evaluation demonstrate FenixLR’s ability to tolerate high-frequency

dynamically injected node failures while maintaining sustained performance of S3D on scales

up to 262144 Titan cores. The evaluation also explores extreme execution scenarios that

may exist at exascale, where node failures occur with high frequency (i.e., as often as every

5 seconds). For example, when injecting node failures every 30 seconds, performance is

sustained with 13.75% overhead when compared with a failure-free and checkpoint-free

execution. Finally, it is important to note that the benefits that FenixLR provides for

stencil-based applications, compared with Fenix, come with no programming overhead for

the user, since FenixLR shares the same interface as Fenix.

Outline. The rest of the chapter is organized as follows. Section 5.2 describes in detail

the characteristics and assumptions of Stencil-based codes and the benefits and challenges

of local recovery. Section 5.3 presents architectural design of the FenixLR implementation

and recovery mechanism. Finally, Section 5.4 experimentally evaluates FenixLR with S3D

on Titan.

This chapter contains portions adapted from a published paper by Gamell et al. [68]

(adapted with permission) c©ACM 2015.

5.2 Local Recovery for Stencil-based Scientific Applications

This section presents the local recovery approach and the underlying reasoning for exploring

it for stencil-based applications. Recovering from failures in a local manner implies that

(1) only processes that failed have to rollback to the last checkpoint and (2) only processes

that communicate with failed ones will detect the failure and might be involved in the

recovery process. These requirements are in contrast with global recovery, in which all the

processes are involved in the recovery and rollback to the last consistent checkpoint. Global

recovery can be costly and presents scalability challenges, and, in many situations, may be

unnecessary. Note also that local recovery is by definition an online recovery approach, i.e.

the job does not have to be disrupted.

This section first describes the key relevant characteristics of the targeted stencil-based

97

applications. It then explores the local recovery approach for this class of applications, its

benefits in case of single and multiple failures, as well as some of its associated challenges.

5.2.1 Stencil-based Scientific Applications

In this dissertation we target iterative applications with stencil-based domain partition-

ing and communication properties, such as for example, typical parallel implementations

for PDE solvers using finite-difference methods. In these applications, the application do-

main is typically partitioned using a block decomposition across the processes, as shown in

Figure 5.1. Each point in the domain can have a set of properties that evolve with time.

A typical scientific application template that falls into this definition can be a simulated

3-D space in which each point has a given set of properties that need to be recalculated over

time. To simulate this domain in an scalable way the 3-D space is partitioned in homoge-

neous subspaces. These subspaces, therefore, can be scattered throughout the processes of

the machine.

Each process perform two key tasks at every timestep: (1) computation on its local

data to advance the simulation, and (2) communication with its immediate neighbors that

based on the specific stencil used. A typical block decomposition for a 2-D stencil-based

application is illustrated in Figure 5.2. The figure also illustrates the communication pat-

tern between blocks on neighboring processes. In a typical implementation, each process

maintains a “ghost region” corresponding to the width of the stencil used around its blocks,

and populates this region from its neighbors in a “ghost region exchange” communication

step. The exchange shown in Figure 5.2 is for a 5-point stencil.

In some cases the communication frequency can be decreased by exchanging a bigger

ghost region and replicating some of the computation. If data is exchanged in groups of size

greater than one, as shown in Figure 5.3, the replicated ghost points have to be computed

as if they were internal points. At the end of each iteration, the outmost “layer” of the

ghost region is discarded. Therefore, in the case of a 2D 5-point stencil, by communicating

blocks with thickness n (as opposed to one) the application can reduce the communication

frequency: only every n iterations the ghost point buffer has to be exchanged with the

logically neighboring ranks.

98

Rank r1 Rank r2

Rank r3 Rank r4

Figure 5.1: Partitioning of a square 2D domain across four MPI ranks.

Rank r1 Rank r2

Rank r3

Ghost from r1
Ghost from r2
Ghost from r3
Ghost from r1

Data transfer

Rank r5

Rank r4

Figure 5.2: Partitioning of a 2D domain across five processes. This figure shows the ghost
region buffer exchange between neighboring processes in a typical implementation of a
stencil-based parallel application. Note how r1 maintains a copy of the domain distributed
in its neighbors in a special buffer, called the ghost buffer. c©2015 ACM (reprinted with
permission) Gamell et al. [67].

99

Rank r1 Rank r2

Rank r3

Ghost from r1
Ghost from r2
Ghost from r3
Ghost from r1

Data transfer

Figure 5.3: This figure shows both the ghost region exchange of two cases: (1) 5-point 2D
Stencil in which communication is grouped to reduce its frequency (one communication per
three iterations), or (2) 13-point 2D Stencil that communicates every iteration.

Stark et al. study the implementation of a particular stencil mini application using

a task decomposition approach [140], which could be extended to include fault tolerance

features. In contrast, we focus on a traditional SPMD stencil implementation.

Assumptions about periodic collective synchronization. Not all scientific applica-

tions offer the described iterative behavior from the beginning of the execution until the

end. Sometimes, collective operations are performed every certain number of timesteps, e.g.

for analyzing how the simulation is running, asserting certain properties are still present, or

dumping partial results to secondary storage. Even though there is a body of work on how

to perform these analysis in-situ, in-transit, and in an opportunistic manner [8, 91], some

applications still require a full, machine-wide synchronization primitive, i.e. with an effect

similar to a barrier. For example, in case of the S3D application, this interval is typically

every 16 minutes, as shown in Chapter 3.

This chapter focuses on the portion of the execution between two subsequent synchro-

nizations, and assume that this interval is long enough so that, in future extreme scale

systems, several failures might occur within it. Our goal is to enable this portion of the

simulation to run despite the number of failures and the system size. If this assumption is

unrealistic, we can assume, instead, without loss of generality, that the collective operations

can be done in an asynchronous manner. Asynchronous collectives, present since the third

100

version of the MPI standard, are promising since they can naturally support imbalance

between the processes without imposing a barrier-like behavior.

5.2.2 Local Recovery, Challenges and Benefits

Realizing local recovery for target stencil-based parallel applications, implemented using

message passing (MPI), presents several challenges and benefits.

The observation in the previous section indicates that process failures in stencil-based

applications affect the computation of immediate neighbor subdomains of lost ones.

This allows a natural adaptation of our local recovery approach, leaving the re-spawned

process to (1) redo the local computation using the data at the previous timestep restored

from the checkpoint, and (2) reestablish communication with the neighbors for the ghost

region exchange to proceed the timestepping.

Scalable runtime recovery. After a failure, the environment does not need to be recov-

ered globally, and only the newly spawned processes have to rollback to the last checkpoint.

In other words, only a constant number of processing elements (independent on the total

number of processing elements in the job or the system) need to be aware of a multi-process

failure. This is a desirable property that allows the implementation of scalable constructs,

since the scalability of recovery depends on the failure size, and not on the machine size.

Consistency. Despite the relative simplicity of local recovery for target stencil-based appli-

cations, the challenge arises to guarantee consistency in the message passing programming

model as neighbor processes must communicate to make a progress. Initially, we explored

the enforcement of a directional partial synchronization: each process had to send a token to

its logical neighbors after successfully transferring the ghost regions and checkpointing the

data for that iteration. Once a process received the token from all its respective neighbors

and, therefore, had all the data available, it was allowed to continue with the simulation.

This guaranteed that, on failure, a process would be able to send again their messages.

However, this method was not flexible. The approach we implemented leverages ghost re-

gion exchange to implement a domain specific message logging, which keeps the outgoing

messages that have been transferred since the last checkpoint. Specifically, for the 1D case,

only two messages are stored every timestep: the message sent to the rank logically in the

101

right, and the message sent to the rank logically located in the left. In 5-point 2D stencil

case, for example, four messages, are logged at each timestep. Similarly, in the 7-point 3D

case, six messages need to be logged at each timestep. However, note that the overhead of

logging the messages is negligible compared to the cost of checkpoint since the checkpoint is

several orders of magnitude larger. Message logs are kept in the sender’s local memory and

no network transfer is required. By storing the messages at the sender side, upon recovery,

the re-spawned processes will be able to request the messages again when MPI_Recv (or

derivates) are re-executed by the processes substituting the failed ones.

The presented approach differs from traditional uncoordinated checkpointing and mes-

sage logging in several aspects: (1) in the approach presented in this chapter, all created

checkpoints are strongly consistent; (2) message logging is used only to enable local re-

covery, while traditional message logging is used to enable global recovery from a set of

non-consistent checkpoints; (3) the message logging in this protocol is sender-based, local,

in-memory, and used only by the failed processes; and (4) the presented protocol guarantees

that only the failed processes need to rollback.

Note that using protocols such as those presented in [72] with the target applications (i.e.,

iterative applications with a stencil-based communication pattern), and assuming that the

uncoordinated checkpoints are consistently created (i.e., the best case scenario), a process

failure would require all processes of the system to rollback to the last checkpoint because

orphan and rolled back message dependencies would extend across all of the mesh. This is

not the case with the protocol presented in this chapter, which can guarantee that only the

failed process has to rollback while the neighbors can continue.

Low power and energy footprint. Local recovery has better power and energy behavior

as compared to global recovery as the entire system does not have to roll back and redo

computations. Furthermore, in case of local recovery, while the neighboring processes wait

for the re-spawned ones to catch up their CPU will be idle, and their power consumption can

be reduced by using techniques such as Dynamic Voltage and Frequency Scaling (DVFS).

102

5.3 FenixLR Implementation

In this section, we first describe our initial attempts at implementing our approach using an

MPI-based framework (i.e., ULFM) and the challenges faced. We then present the imple-

mentation FenixLR. Note that while FenixLR maintains the same programming interface

as Fenix, presented in Section 4.3, it has been built from scratch on top of Cray’s uGNI

interface – the only component re-used from Fenix is the checkpointing module.

Also note that using local rollback and global continue results in increased complexity

as compared to global rollback. When using global rollback, all threads are restarted from

a known previous consistent state and all lost computation and communication have to be

repeated. As a result, there is no need for the respawned threads to be distinguished from

the surviving ones, since all the recovery actions will be the same in all threads.

However, when using local rollback and global continue, the respawned threads may

need to receive messages from the non-failed threads that were already sent. As a result,

there has to be a mechanism for the respawned threads to request these messages (since the

non-failed threads did not rollback).

5.3.1 Experiences with MPI-based Implementations

One of the key operations for communicator recovery is the shrinking communicator op-

eration offered by ULFM, which eliminates failed ranks from the failed communicator,

returning a fully functioning communicator with less ranks. The cost of this operation in

the ULFM prototype evaluated was not trivial, and we experimentally determined that, as

the number of ranks in the communicator increased, the increase in the cost of the shrink

implementation was higher than linear. That is why we explored recovery options that

avoided the recovery of a global communicator, as described below. No conceptual prob-

lems of ULFM prevented its usage but, instead, the limitation was the robustness of the

prototype implementation.

Usage of a failed, non-repaired communicator. ULFM specifies that a communicator

can be re-used after a failure for point to point communications, without the need to repair

it, as long as the failure is acknowledged and no communications are initiated with the

103

(a) Communicator layout between ranks. (b) Recovery procedure after a failure.

Figure 5.4: Possible implementation of the runtime using MPI but avoiding communicator
repair operations. In this version of the implementation, each MPI communicator includes
only 2 ranks. A communicator is created between each pair of compute ranks. Each
compute rank (C) in a group also requires a binary communicator with each spare rank (S).
For scalability, compute ranks are divided in groups and a few spare ranks are assigned to
each group. In this example, each group contains five compute ranks and two spare ranks.

104

failed rank. The first prototype of our local recovery framework leveraged this property of

ULFM and, after implementing it and testing it by using a Partial Differential Equation

solver on top of the prototype ULFM implementation, inconsistencies were found in the use

of some MPI operations in a failed communicator that was not repaired. In most cases, the

runtime reached an inconsistent state after a failure and was unable to deliver messages to

survivor ranks.

Pair-based communicator layout. After several attempts to fix the aforementioned

unpredictable behavior, and provided that ULFM is the only fault tolerance proposal that

would allow local recovery, we decided to switch to a different strategy. Since each rank of

the targeted application type communicate with a constant number of ranks independent

of the total domain size, we designed a layout of communicators composed of only two

ranks. The communicators including a rank that failed can be disposed and do not need

to be repaired. Assuming no collective operations were required by the application, we

designed the creation of a particular communicator for every two process pairs that need

to communicate directly. Right before a collective operation, the communicator involving

all ranks would need to be repaired.

After a process failure, the processes that were communicating with the failed process

are free to dispose of the communicator. In order to allow for a non shrinking recovery mode,

the failed processes will be substituted with spare resources. Therefore, for this method to

work, the processes neighboring the failed one would be required to have communicators

already created with the spare ranks. This results in a number of communicators that does

not scale well with the total number of processes in the system and, therefore, we decided

to divide the compute ranks into groups of a fixed size, to which a certain number of spare

ranks would be associated. All ranks in a group would have a communicator to each of the

spare ranks in that group. For a one dimensional stencil case, the communication layout

for this possible implementation is exemplified in Figure 5.4a and the recovery mechanism

is outlined in Figure 5.4b.

As of version 2 of the MPI standard, in order to set up the communicator structure

between spare ranks, we had to create each of them at the beginning of the execution in

a collective manner. In order to create the communicators that communicate rank 0 with

105

rank 1, rank 2 with rank 3, etc. we used MPI_Comm_split to divide MPI_COMM_WORLD by

two, and recursively applying the division process until we obtained communicators with

only two ranks. The cost of this operation was O(log2(N)), where N is the total number of

ranks in the system. We had to repeat this for the communicators that connect rank 1 with

rank 2, rank 3 with rank 4, etc. The total cost of this operation, therefore, is O(R · log2(N)),

where R is the number of ranks each rank has to communicate to (i.e. in the 3-point 1D

PDE case, R = 2).

There were several issues with this solution. For example, communication patterns had

to be known beforehand. Also, collective operations would require complete communicator

fix, and that would trigger the re-creation of disposable communicators. Another problem is

that application code has to be aware of the specific internal recovery mechanisms. Finally,

the fact that a subset of all spare ranks are assigned only to one group of compute ranks

limits the flexibility of the failure size. For example, if a failure in a group happens to affect

a large number of ranks (not an unrealistic assumption, since some failures are correlated),

the runtime may not have pre-assigned enough spare ranks to a particular compute group.

However, maybe with the total number of spare ranks in the system, the runtime would

have been able to recover from that failure.

Note, however, that many of this limitations could be overcome if communicators could

be created in a non-global manner without the need of point to point communication over a

failed communicator. This could be achieved if only the ranks participating in the commu-

nicator were needed in order to create the communicator. Methodologies such as [46] cannot

be applied in our situation because MPI_Intercomm_create uses point to point communica-

tion between ranks in a failed communicator, which, as explained above, is unreliable upon

failure. By using MPI 3 MPI_Comm_create_group operation (assuming it is implemented in

a different manner than the described in the above reference), non-collective communication

creation would allow a cost of O(R) to create the topology described in Figure 5.4a. Also,

all the links between the compute ranks and the spare ranks could be eliminated, as this

can be created upon failure.

This second prototype was also implemented and tested with a one-dimensional PDE

solver. Even though the prototype showed demonstrated that the concept could work,

106

the aforementioned disadvantages of this method were apparent and, therefore, made this

solution infeasible for other, more complex, stencil computations.

Therefore, we decided to implement a more robust prototype for the FenixLR runtime

directly using uGNI constructs, avoiding the use of the MPI runtime altogether. We under-

stand that MPI-based frameworks in general and ULFM specifically are evolving rapidly

and we will revisit them once the above issues are fixed.

5.3.2 Implementation Overview

FenixLR architecture is layered and modular. Four key modules collaborate to achieve

its full functionality. First, the module dedicated to communication offers a base class

Command that abstracts out the details for a reliable request of service or a reliable com-

munication with other ranks using a particular transport layer. This is used to abstract

out the fault tolerance mechanisms from the particular operations (such as the send or the

receive of a message, a collective barrier, broadcast, or reduction, or even the transfer of

checkpoint data), which only extend the base class and are only required to implement the

logic of each operation. Second, the module dedicated to process resiliency implements the

protocols used to locally repairing the environment after a failure, which includes but is not

limited to the management of the pool of spare processes. Third, the module dedicated to

data resiliency implements the methods for creating, storing, and recovering checkpoints.

In particular, it implements a neighbor-based checkpointing such as the one described in

Chapter 4. This module offers a well-defined interface so that libraries optimized for other

data resilience methods can be plugged in instead. Finally, the transport layer also offers

a well defined interface to ease the portability to different physical communication APIs.

In our implementation, this interface has been implemented on top of uGNI, the Cray

transport layer API. In the event of a failure, the runtime takes care of orchestrating the

necessary modules during the recovery process as well as determining operations required

to be re-executed.

FenixLR allows the dynamic connection between ranks, which is key toward recovery.

This connection is implemented through a handshake process that logically connects both

ranks. When a process fails, a spare process is used in its place. This spare process

107

re-creates the handshake process with all processes that were logically connected with the

failed process. While the handshake to recreate connections is running, the failure is notified

to the rest of the domain through a background collective operation so that new process

that try to connect to the failed rank redirect the handshake request to the corresponding

spare process. If a new process tries to connect to the failed process before receiving the

collective notification, the failure will be detected and that process will start the failure

recovery procedure by contacting an available spare rank. However, this will notify that

the failure has been already recovered and will point to the correct spare rank that is

substituting the failed process. The same behavior is reproduced for multi-process failures,

which are considered simply a set of process failures.

FenixLR offers three language bindings: C, C++ and Fortran. We maintained the same

programming interface as Fenix (Chapter 4), as its low programming overhead has been

demonstrated – it required less than 35 new, changed, or rearranged lines of code for S3D.

In fact programming local recovery using FenixLR is even simpler than programming

global recovery, because the status returned by Fenix_Init() can take three different values

for global recovery (i.e., New, Respawned, or Survivor) and only two values for local recovery

– survivor status is no longer valid, since all survivor processes do not get interrupted from

their processing. This simplifies the application side of the recovery logic.

5.4 Experimental Evaluation

This section presents an experimental evaluation of the effectiveness and performance of the

local recovery techniques implemented in FenixLR using the S3D combustion simulation on

the Titan Cray XK7 at ORNL.

Chapter 4 shows that Fenix can tolerate failures in an online and global manner with

failures occurring every 47 seconds. The implementation used in Chapter 4 leveraged MPI-

ULFM to detect failures and recover from them. In the implementation presented in the

current chapter, the sources of overheads have been reduced, and the fault tolerance mecha-

nisms have been implemented on top of uGNI, Cray’s interconnect API. This section exper-

imentally evaluates how these algorithmic improvements can enable FenixLR to effectively

handle even higher failure rates (e.g. unrelated node failures coming every 5 seconds).

108

5.4.1 Goal

In summary, the goals of the experimental evaluation presented in this section are to demon-

strate that (i) using the local recovery technique presented in this chapter, FenixLR can

enable tightly-coupled stencil-based applications, such as S3D, to recover from node failures

occurring as frequently as every 5 seconds, (ii) failure recovery is scalable, and (iii) failure

recovery overhead does not need to be proportional to the system size when recovering

locally.

5.4.2 Methodology

In what follows, the experimentation methodology is presented and the experiments are

described in detail.

This section first presents an evaluation of the asynchronous checkpoint transfer tech-

nique and compare it with traditional synchronous technique, both implemented on FenixLR.

This evaluation includes an scalability test on both data size and total number of processes

and an study of asynchronous data transfer impact on S3D iteration time. Checkpoint size

has been forced to 130 MB/core, even though current S3D production runs checkpoint in

the order of 5 MB/core.

This section then studies the overheads related to the recovery process and its scalability.

In this experiment, worst-case failures are injected, i.e., sets of failures that do not allow

recovery propagation delays to merge (an effect that would produce several failures to mask

each other as described in Chapter 6) and, therefore, the total overhead is the sum of

the recovery overhead for each failure. It is shown that FenixLR handles extreme node

failures (e.g., MTBFs as low as 5 seconds) with total overheads of up to 50% in the worst

case scenario. These results empirically show that this method can be more efficient than

theoretical full redundancy (which, assuming constant resources would have a temporal

overhead of at least 100%), for the targeted class of applications.

A key goal of this evaluation is to study how the presented approach behaves at current

scales, and use this to try to explore behaviors and performance at exascale. As a result, the

experiments were conducted on up to 262,272 cores. In order to perform these experiments

node failures are injected by simultaneously sending SIGKILL signals to all application

109

processes running on a particular node. As the network setup parameters are stored in

process memory, when killing all processes in a node, no software disconnections are allowed

with connected ranks – this is consistent with the behavior of a real node failure. The

processes on the other nodes receive error codes when trying to perform a uGNI operation

with any of the processes that were killed. In this sense, the injected failures can be

considered real failures, as opposed to pretending that a process has failed by, for example,

setting a flag in-memory. In what follows, ‘failures’ refers to ‘node failures’, which are

equivalent to N -process failures, where N is the total number of processes on a system

node, blade, etc. By default, the experiments use N = 16. Unless specified otherwise, all

tests have been repeated 5 times. Error bars in all Figures show the average, first quartile,

third quartile, maximum and minimum of the 5 repetitions.

Only the experiments with MTBFs lower than a minute are displayed due to the fact

that higher MTBFs (such as 5 minutes, 10 minutes, 30 minutes, etc.) show negligible

recovery overheads relative to the total execution time.

All the experiments were performed on the Cray XK7 Titan at ORNL. Titan is composed

of 18688 16-core CPUs and the same number of GPUs. Every pair of nodes is connected

to a single custom system-on-chip Gemini ASIC network interconnect. Gemini ASICs are

connected using a 3D torus topology. Applications can directly access network capabilities

using uGNI, the user level proprietary interface from Cray, which is forward compatible

with newer versions of Cray networks, such as Aries.

5.4.3 Asynchronous Checkpoint Transfer Cost and Scalability

The goal of the first experiment is to evaluate in-memory asynchronous-transfer checkpoint

performance and scalability. Chapter 4 evaluates double in-memory checkpointing and

demonstrates that it scales independently of the number of processes.

We first reevaluate the scalability of the checkpointing mechanism implemented in

FenixLR in the event of failures, as well as with per-core data sizes sixteen times larger

than the ones evaluated in Chapter 4. Figure 5.5 represents the study of weak scalability

up to 262272 cores and checkpoint sizes of 130 MB per core while injecting failures every 10

seconds. It can be concluded that checkpointing overhead is constant and independent of

110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

576
4224

8128
13952

32896

64128

140736

262272
C

h
e
c
k
p
o
in

t
ti
m

e
 (

s
)	

	

Core count

Figure 5.5: Weak scalability of FenixLR’s asynchronous checkpointing. Checkpoint size is
set to 130MB/core in all cases. As shown, job size increases do not impact checkpointing
performance, which only depends on the per-core checkpoint size rather than the total
per-job checkpoint size. c©2015 ACM (reprinted with permission) Gamell et al. [68].

the total core count even in the event of failures, which proves as perfect weak scalability.

Impact on iteration time. Our checkpoint methodology consists of creating a local copy

of the data (e.g. memcpy()) and immediately return the control back to the application.

In the background, the data is sent to its destination while the processor is computing the

next iteration. Figure 5.6 shows the impact of checkpoint transfer on total iteration time

for different data sizes. For each data size shown in the X-axis we can observe asynchronous

checkpoint overhead in blue and synchronous checkpoint in green. In both bars, light color

refers to the iteration time itself, and bold color represents the time inside the checkpointing

call itself. As expected, the iteration time suffers from the overhead of the transfer. However,

the total iteration time (including the checkpoint creation and storage) is, in all cases,

reduced by using asynchronous checkpointing.

In this dissertation we did not tune performance by understanding S3D communication

patterns, so Figure 5.6 represents a worst-case scenario. The runtime system has this

information available and could potentially analyze it in a transparent manner, which would

dramatically decrease the impact of checkpoint transfer on the iteration time. We leave this

improvement as future work.

5.4.4 Recovery Time for different MTBFs

The goal of this second experiment is to demonstrate that FenixLR is capable of handling

high-frequency failures occurring up to every 5 seconds. This experiment also studies the

111

 0

 1

 2

 3

 4

 5

 6

33 33 42 42 53 53 66 66 80 80 95 95 112 112 130 130

It
e

ra
ti
o

n
 a

n
d

 C
h

e
c
k
p

o
in

t
ti
m

e
 (

s
)	

	

Checkpoint size per core (MB)

iteration time (async)
checkpoint time (async)
iteration time (sync)
checkpoint time (sync)

Figure 5.6: Comparison of total iteration time (including checkpoint) using synchronous and
asynchronous checkpointing, for different problem sizes using a total of 4096 cores. This
figure shows that overlapping communication and computation is possible and beneficial in
S3D. This experiment was performed without injecting failures.

overheads due to process recovery and empirically demonstrates that the performance of

FenixLR does not depend on the total number of processes (i.e. demonstrates good scala-

bility), which is highly desirable at exascale. These experiments were performed using S3D

on 4736 cores (4096 compute and 640 spare cores), unless otherwise specified.

This experiment also aims to explore the benefits of local recovery when compared to

global recovery. Consequently, in this experiment the set of failures injected are engineered

so that they do not allow propagation delays due to local recovery to merge, and therefore

the total overhead is the sum of the recovery overhead for each failure. In other words, this

experiment evaluates the worst-case local recovery overhead without the failure masking

effect, which is described and evaluated in Chapter 6.

Process recovery overhead. First, the total overhead of recovering from a failure is

studied for different failure frequencies. Figure 5.7a plots the average overhead of process

recovery for different frequencies of node failure injected during an S3D execution of about

200 seconds. Each bar represents the average time to recover the processes from a failure.

This overhead is initially seen only in the spare processes that substitute the failed ones,

and then propagates to the rest of the domain due to the communication pattern of the

112

 0

 0.01

 0.02

 0.03

 0.04

 0.05

5 10 15 20 25 30 35 40 45

P
ro

c
e
s
s
 r

e
c
o
v
e
ry

 t
im

e
 (

s
)	

	

MTBF (s)

(a) Different MTBFs. Core count fixed at 4736 cores (4096 compute cores and 640 spare cores).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

4224 8128 13952 32896 64128 140736 262272

P
ro

c
e
s
s
 r

e
c
o
v
e
ry

 t
im

e
 (

s
)	

	

Core count (including 128 spare cores)

(b) Different core count. MTBF fixed at 10 seconds.

Figure 5.7: Time to recover from process failures with varying frequency of failure arrival
as well as varying total number of cores in the job [68]. Note that the recovery process
is perfectly scalable, tested up to 250+ thousand cores. c©2015 ACM (reprinted with
permission) Gamell et al. [68].

113

application. This figure does not include overheads due to data recovery (i.e., fetching the

checkpoint). Note that fetching the checkpoint is the exact inverse process of checkpoint-

ing: First, the checkpoint has to be fetched from the neighbor that stores it in-memory to

the memory of the spare process. Then, it has to be copied using memcpy() to the appli-

cation memory. Therefore, the overhead of fetching the checkpoint will be similar to the

checkpointing overhead, shown in Figure 5.5.

Scalability. Figure 5.7b plots the average process recovery time for every failure. The

figure demonstrates that, for experiments on up to 262272 cores, the local recovery overhead

is constant and independent of the number of processes in the system. These experiments

were performed with a fixed MTBF of 10 seconds, and all the experiments used 128 spare

processes. Furthermore, experiments for system sizes smaller than 64k have been repeated

with a different total number of node failures, ranging from 1 to 8 node failures, and the

results have been averaged in the plots.

5.4.5 Total Overhead for different MTBFs

Failure Frequency. The previous experiments demonstrated that the process recovery

time for a single failure is small, and is constant and independent of the total number

of cores used by the application as well as the frequency of failures. The next set of

experiments study the total overhead due to fault tolerance, i.e., including overheads due

to checkpointing, process/data recovery and rollback. The goal of these experiments is to

compare the end-to-end execution time of a failure-free, checkpoint-free execution with the

end-to-end execution time with different MTBFs. The experiment is run using a fixed core

count of 4096 cores and 640 spare processes and a checkpoint size of 53 MB/core.

Figure 5.8 plots the results of the experiment. For different failure rates ranging from 5

to 45 seconds, Figure 5.8 plots the total overhead relative to a failure-free, checkpoint-free

execution base case. The total number of failures ranges from 48 processes (3 nodes) to 528

processes (33 nodes), as noted on top of each bar, during a total time of about 150 seconds.

The right-most bar in the figure shows the overhead of the same experiment but using

global recovery while injecting failures every 47 seconds, as described in Chapter 4. It can be

seen that by using local recovery the performance penalties are much lower, even at higher

114

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

5 10 15 20 25 30 35 40 45 47/GR

O
v
e
rh

e
a
d
 (

re
la

ti
v
e
 t
o
 b

a
s
e
 t
e
s
t)

		

MTBF (s)

recovery (process+data+rollback) total time
checkpoint total time528

240

160

112

80

64

64
48 48

48

Figure 5.8: Overall failure overhead of different MTBFs relative to a checkpoint-free, failure-
free base test execution. On top of each bar the total number of process failures recovered
throughout the execution is indicated. Job size has been fixed to 4736 cores, correspond-
ing to 4096 compute cores (an S3D domain decomposed in a grid of 163 cores) and 640
spare cores, and each checkpoint requires 217 GB. c©2015 ACM (reprinted with permis-
sion) Gamell et al. [68].

115

failure rates. For example, note that local recovery allows failures every 20 seconds with an

overhead below 25%, while global recovery allows failures every 47 seconds (∼2.35x) with an

overhead of 31% (∼1.25x). Also note that the total overhead of running the experiment in

the worst-case scenario (i.e., with node failures every 5 seconds), is 51%. That is, it is slightly

worse (i.e., 1% worse) than the theoretical best-case overhead of using 2-way redundancy.

Again, it is important to emphasize that in this experiment, we injected worst-case failures,

i.e., in which failure masking (an effect that will be described in Chapter 6) does not occur

in most cases – the only exception is the 5-s MTBF experiment, in which the total time

is just a small portion above the 10-s MTBF test. This is intentional, and has been done

to study only one of the direct advantages of process recovery as well as its scalability.

Chapter 6 studies the full advantage of local recovery, but the best case (i.e. where the

overheads from all failures merge in just one) from the current experiment can be obtained

by dividing the recovery overhead in Figure 5.8 by the number of node failures.

5.4.6 Evaluation Conclusion

These experiments demonstrate how the local recovery algorithm can tolerate multiple

unrelated failures that strike as frequently as every 5 seconds with lower overheads than

global recovery.

116

Chapter 6

Failure Masking on Stencil-based Applications

This chapter aims at experimentally and analytically studying failure masking, which can

occur when multiple failures affecting the same execution of a stencil application are recov-

ered locally: the failures may mask each other. This dissertation considers N failures to

mask each other when the effect of such failures in the end-to-end time is proportional to k,

being k smaller than N . For example, two failures can mask each other if their combined

effect on the total execution time is the same as if only one of the two occurred.

6.1 Overview

Local Recovery in Stencil-based Applications. Chapter 5 looked at how to recover

from failures in a local manner. In codes that are organized following a stencil pattern,

as described in 5.2.1, when a failure strikes, spare resources can substitute for any affected

processes or nodes. These spare resources can then reload and rollback from a previously

stored checkpoint. This process is done without the interruption of the logical neighbors.

They will, however, notice the failure when they begin the synchronization part of each

iteration or timestep. These immediate logical neighbors will therefore need to stall at this

point, waiting for the respawned ranks to catch up with the simulation.

Delay Propagation. Notice, however, that this layer of immediate neighbors L1 will be

able to synchronize with their own set of neighbors, which are in a second layer L2 (e.g.

its distance from the failed process/node is two “hops” in the simulated domain). L2 cores

will stall, however, on the next iteration. This is a recursive process that will eventually

reach all the machine, and can be seen as a “wave” that originates in the failure point and

propagates through the processes of the machine.

117

Failure Masking. Essentially, if iterations are assumed to be long enough (e.g. 5 seconds),

the propagation time will also be long. By using this principle, it can be seen how a second

failure could occur in a distant node before the original failure has spread to that node.

Of course, the recovery on this second failure will create another “wave” that will begin to

propagate. At some point in space and time, these two waves will merge, but their effects

will not be combined in an additive manner. Only the maximum of both overheads will

continue to propagate. In short, this means that the overhead on the total execution time of

two separate failures in space and time can appear to be as the recovery overhead of a single

failure. This can also be true with more than two failures, as it is shown in the experimental

evaluation. Note that the larger the machine is, the more plausible this effect becomes. It is

for this reason that the described scenario would be optimal for future extreme-scale HPC

systems.

Outline. The rest of the chapter is organized as follows. Section 6.2 describes in detail the

delay propagation characteristics and the theoretical benefits of failure masking. Section 6.3

presents an application-centric model of the delay propagation effect and, based on it,

Section 6.4 simulates the arrival of several failures to provide insights on failure masking.

Section 6.5 and Section 6.6 study two different methods to increase the probability of failure

masking through decreasing the communication frequency among the different processes.

Section 6.7 experimentally injects real node failures in S3D while running on top of FenixLR

on Titan to show how the failure masking effect really occurs.

This chapter contains portions adapted from published papers by Gamell et al. [68, 67,

69] (adapted with permission) c©ACM 2015, c©SIAM 2017.

6.2 Impact of Recovery Delay Propagation on Failure Masking

6.2.1 Delay Propagation

Using local recovery, when a failure occurs, neighboring processes can still move forward

with their computations during recovery, while the spare process is being notified and the

recovery process begins. However, the neighboring processes will eventually need data from

the restored process in order to continue, and this data will not be available until the

118

(a) No failures (b) One failure (c) Two failures

(d) Three failures (e) Seven failures (f) Nine failures

Figure 6.1: Behavior of local recovery for a stencil-based 1-D partial differential equation
(PDE) solvers. X axis represents process number (or rank) and Y axis indicates wallclock
time. Each line in a figure represents a timestep, and the color of the line represents
how advanced the simulation is (i.e., it advances from yellow to dark purple). Each red
‘X’ represents a failure. A straight line means all processes compute the timestep at the
same physical time. When a failure occurs, the recovery delay does not get propagated
immediately to the entire domain. Instead, the immediately adjacent neighbor processes
are the first to be delayed, which in turn propagate the delay to their immediate neighbors,
resulting in the delay eventually spanning across the entire domain. Note how Figures 6.1b,
6.1c, 6.1d and 6.1e have the same recovery overhead, i.e., as if only one failure occurred, even
though they have different numbers of failures. In case of Figure 6.1f, however, the total
recovery time is equal to sequentially recovering from two failures. c©2015 ACM (reprinted
with permission) Gamell et al. [67].

119

restored process has fully recovered (i.e., recomputed all lost work) and progressed to the

next communication. In other words, assume that a node failure occurs while the processes

mapped to the node are between iterations Ci−1 and Ci. Once the failure is detected,

the last checkpoint can be fetched from the checkpoint store used to restart the execution

of the failed node on either a node from a spare pool or a re-spawned node. While this

is happening, the rest of the processes can continue working as usual. The fact that the

failed process advanced beyond Ci−1 guarantees that all their immediate neighbors were

also already past this point. Note that, in order for a process to advance beyond a certain

communication point, it has to exchange information with their immediate neighbors. This

is also true even when the ghost exchange is non-blocking, because sender-based message

logging guarantees the availability of the data even when the failure occurs between the data

transfer. The iterative and stencil-like nature of the targeted applications will eventually

require immediate neighbor processes (i.e., L1 neighbors) that communicate directly with

the failed node to wait. Even though these processes can continue executing the next

iteration, it is likely that when they reach the next communication phase (i.e., Ci), the

restarted neighbors will not have reached that point yet. Therefore, the immediate neighbors

will have to wait. In turn, second-level (L2) neighbors (i.e., the immediate neighbors of L1)

will be able to continue its execution up to iteration Ci+1, and will then be blocked. This

is possible because the L1 processes are waiting at Ci, which means they are not able to

exchange data with the L2 processes at iteration Ci+1. In general, kth-layer neighbors

would be able to continue until iteration Ci+k−1 without blocking. This wave-like delay

propagation behavior can be seen in Figure 6.1b for a 1-D stencil. While we use 1-D to

illustrate the process, this behavior also applies to higher dimensions.

6.2.2 Failure Masking

When using a large number of processes, it is possible that another failure occurs on distant

processes where the delay from the first failure has not yet reached. In this case, the

recovery delay of the second failure will begin propagating from the second location, as seen

in Figure 6.1c. At some point in space and time, the delay of both failures will merge. At

this point, the total delay will be the maximum of both delays, as opposed to the addition

120

of the two. We call this effect failure masking, and an example can be seen in Figure 6.1d.

This situation is beneficial at large scales, because the impact of several failures on end-

to-end execution time will be comparable to that of a single failure. Note that this effect

can also happen with multiple failures, as seen in Figures 6.1d and 6.1e. Comparing these

four figures, we see that the total overhead is the same. This effect becomes more plausible

with larger machines and lower MTBFs, which is an ideal property for good scalability.

There may be cases, however, where failures occur after the delay of previous failures have

already reached the failed node. An example can be seen in Figure 6.1f, in which the total

execution time is comparable to that of recoverying from two failures sequentially. The

likelihood of this situation is dependent on the communication pattern of the application

and the checkpointing approach used.

Specifically, it depends on (1) the dimension of the application domain (i.e. 1D, 2D, 3D),

(2) the size of the domain assigned to each process (which will determine the checkpoint

latency), (3) the communication frequency, and (4) the amount of computation per iteration

(which will determine the latency between iterations, and is a factor of the size of the domain

per node).

Better-than-linear scalability of local recovery. To sum up, local recovery has ideal

scalability in terms of resilience overhead for Stencil-like applications due to failure masking:

(1) as the machine size grow, failures are more likely to happen with lower MTBFs and (2)

unrelated failures are distributed homogeneously among processes.

Further containing the effect of failures. One potential optimization of our approach

is the containment of the delay through the overlap of communication and computation.

For example, a process can finish all of its local computations that do not depend on

the incoming message from the slower neighbors, and can even initiate the next round of

communication of the ghost region with the un-affected neighbors so that these do not have

to be delayed yet. This communication can be initiated provided the computation of the

domain’s borders were able to finish. In other words, the delay is masked by the local

computation, diminishing the length of the outstanding delay.

The following sections study this effect in more detail by modeling propagation delays

121

due to local recovery for stencil-based computations, and simulating different failure com-

binations to determine specific probabilities.

6.3 Modeling Delay Propagation

Stencil-based computations and how they can benefit from local recovery are described in

Chapter 5, while failure masking is detailed in Section 6.2. In this section, we present a

mathematical model of the execution of stencil-based applications that capture the effects

described above. In particular, we present recurrence relations that can effectively model

the execution time and delay propagation patterns for multi-dimensional stencil-based com-

putations experiencing failures that may mask each other due to local recovery.

Datta et al. model and evaluate the intra-node performance of stencil computations us-

ing processors with different architectures, with a special focus on modeling stencil compute

performance and memory hierarchy impact [42]. Our models differ from those presented

by Datta in that we focus on inter-node performance and study how the imbalance due to

factors such as failures affect the execution.

Section 5.2 described how processing elements in parallel stencil-based codes typically

exchange ghost regions with their logical neighbors. The following recurrence relation can

be used to model this behavior for a 7-point three-dimensional stencil:

T (i, px, py, pz) =Tlocal + Tsync(i, px, py, pz)

T (0, px, py, pz) =0

Tlocal =

 Tit + TComm + r if no failure, or

Tfailure,local + r if failure

Tfailure,local =Trollback + TR

Tsync(i, px, py, pz) = max

(
max

a∈{−1,0,1}
T (i− 1, px + a, py, pz),

max
a∈{−1,1}

T (i− 1, px, py + a, pz), max
a∈{−1,1}

T (i− 1, px, py, pz + a)

)

In the previous model, we are assuming each processing element is assigned to compute

a set of cells in a 3-D domain: px, py, and pz are the three components of each processing

122

element’s position in the decomposed domain. T (i, px, py, pz) represents the wallclock time

when the processing element in coordinates (px, py, pz) finishes the computation of timestep

i. Note that, to advance an iteration, each processing element needs to synchronize with the

immediate logical neighbors. The time of this synchronization is represented by the max()

term in Tsync since it is assumed that a processing element needs to wait for their logical

neighbors to complete their previous iteration before proceeding. Tlocal is the execution

time of the local computation, where Tit models the time to locally advance the simulation

and TComm models the time to transfer data (excluding synchronization among sender and

receiver) in the event no failure occurs. TR represents the time to recover in the event of a

failure at processing element (px, py, pz). Trollback is a random variable uniformly distributed

between 0 and Tit and indicates the rollback overhead of a failure. The term r describes

other delays that can occur, such as performance variation among processing elements, and

can be used, for example, as the maximum value for a random performance noise generator.

Its value is, therefore, expected to be much smaller than Tit or TR.

To further extend this model beyond a 7-point 3-D stencil, only Tsync needs to be changed

to accommodate the new number of neighbors.

We assume that in order to start the computation at a timestep, the communication

phase of the prior iteration needs to be completed. This assumption holds for optimizations

that are applied in state-of-the-art implementations, such as overlapping the computation

of interior points with the exchange of cells in the borders with the logical neighbors. These

implementations require to stall any further computations when all local points have been

computed and new versions of ghost points need to be fetched. This case is covered by the

model since Tlocal contains TComm, the time to communicate with the neighboring processing

elements –communication that will be delayed (in Tsync) if a fast processing element needs

data that has to be fetched from a delayed neighbor processing element.

The goal of this model is to understand how delay is propagated through the domain due

to the synchronization required between logical neighbors. The cost of this synchronization

after a failure is in the order of the sum of process recovery time and rollback time. This cost

will be much higher than the latency of high-speed interconnects, which allows the model

presented to consider the costs of processing element substitution as negligible. For example,

123

in order to recover from a process failure, new resources are typically allocated far away from

the failed process. This implies that, in some network topologies, the communication latency

between the recovered processing element and their logical neighbors increases. However,

this increase when using high performance interconnects is negligible compared to the total

cost of process and data recovery, and can be masked by high-quality implementations that

overlap communication and computation.

As empirical results presented in Section 6.7 corroborate, the results and assumptions in

this model accurately represent the behavior of both simple 1-D PDEs as well as complex

stencil-based codes such as the S3D application.

6.4 Failure Masking Analysis

Based on the concepts within the model presented in Section 6.3 we have implemented a

simulator to study the progress of each processing element in the event of failures. The

simulator implements a skeleton of a stencil application and, iteratively and sequentially,

computes the execution time at each processing element for every simulated timestep. Even

though our experimental evaluation presented in Section 6.7 emulates failures using MTBF,

the simulator can randomly generate failures based on the desired failure count, the desired

MTBF, or the desired failure rate per processing element. Failures are generated uni-

formly across the processing elements, and uniformly across the run time by using C++’s

std::mt19937 random number generator and std::uniform_int_distribution random

number distribution.

In the analyses presented in this section, we abstract time as ‘time units’ (which could be

seconds or minutes) and resources as ‘processing elements’ (which could represent threads,

processes, sockets, or compute nodes). A discussion about how processing elements and

time units may be defined can be found later in this section.

Unless otherwise specified, these studies assume stencil-based simulations running on

future extreme scale machine with processing elements organized as a cube. Such a cubic

organization provides the least advantage for failure masking since any other organization

would require more iterations for delays to propagate across the domain, increasing the

124

(a) 1D simulation, 32 iterations

(b) 3D simulation, 100 iterations

Figure 6.2: Execution pattern obtained through a simulation based on the presented
model. Figure 6.2a represents a uni-dimensional stencil and uses 32 processing elements,
while Figure 6.2b represents a three-dimensional stencil and uses one thousand processing
elements. Figures axes have the same meaning as in Figure 6.1: the X axis represents
the sequence number of the processing element (e.g. MPI rank), the Y axis represents the
wall clock time, and horizontal lines represent the completion of a particular iteration or
timestep.

probability of failure masking. Production runs of S3D running on Titan assigned subdo-

mains consisting of 30 × 40 × 30 cells (i.e., a total of 36000 cells) to each core, and each

iteration required around 5 seconds to complete.

6.4.1 Propagation of a Multi-failure Recovery Delay on 1-D and 3-D Sim-

ulations

The simulations reproduce the progress of each timestep as presented in Figure 6.2. For

example, on Figure 6.2a a particular 1-D 3-point stencil execution is simulated with r = 0

and 32 processing elements. One can observe how the first and the third failure propagations

are merged. We observed similar results from the experiments injecting failures in a real

1D stencil code (see Figures 6.13 and 6.14 presented in Section 6.7). Another example

can be seen in Figure 6.2b, in which a 3-D 7-point stencil on a 100 × 100 × 100 domain is

simulated while twenty failures are injected. The failure propagation in the 3-D case is not

as straightforward to distinguish as in the 1-D case, since the X axis of the plot indicates

the processing element number, and the mapping from the processing element number to a

125

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
v
e
rh

e
a

d
 r

e
la

ti
v
e

 t
o
 f

a
il-

fr
e

e
 c

a
s
e

 (
%

)

Number of failures

Local Recovery
Global Recovery

Figure 6.3: Recovery overheads for local and global recovery obtained from simulations
based on the presented model for the parallel 3D stencil code running on 100 × 100 × 100
processing elements. In this plot, each candlestick represents the minimum, maximum,
median, first and third quartiles overhead of 10048 simulations. Each simulation runs 100
iterations with Tit = 100 and TR = 300.

3-D position is not visually trivial. However, as in the 1D case, very similar results can be

observed between the modeled 3-D case and the actual executions presented in Section 6.7.

6.4.2 Local Recovery and Failure Masking on a 3-D Simulation

Using the simulator described in the previous subsection, we experiment with the statistical

overhead of a 3-D execution on 100× 100× 100 processing elements for 100 timesteps and

an increasing number of injected failures.

For each failure injection count, we executed the simulation for 10048 times. In every

sample, we generated a new timestamp and processing element number for each failure

injected. We then plotted the minimum, first quartile, median, third quartile, and maximum

overhead on the execution time for local recovery and global recovery in Figure 6.3.

In case of the global recovery model, we applied the same delay factor TR + Trollback

to all the processing elements when a failure occurs in one (or multiple) of the processing

elements. This may be optimistic as it does not consider the potentially higher overhead

for MPI communicator recovery required when done in a collective manner, as reported in

Chapter 4. We do, however, apply the same delay effect to both cases in order to observe

126

the benefits obtained only through failure masking.

The model-based simulation shows that the delay from multiple failures is masked by

local recovery, reducing the recovery overhead down of the global recovery case by almost

an order of magnitude. In this particular case, we can see two differentiated cases: (1)

several failures mask each other as if only one single failure occured, and (2) several failures

mask each other and appear in the end-to-end run time as if two failures happened. These

two cases are indicated in Figure 6.3 by two horizontal rectangles (shown as gray in the

figure). In the first case (1), the median case from injecting 1 failure through 5 failures is

extremely similar to the case of globally recovering from a single failure, as indicated by

the first gray area. In the second case (2), the median stays around the same value from

8 up to 20 failures recovered locally, as indicated by the second grayed area. Note how in

this second case, all medians are comparable to the cost of globally recovering two failures.

In the 19- and 20-failure case, however, we can observe how the third quartile increases,

approaching the 3-failure global recovery mark (10%); this effect can be observed in the

4- and 5-failure case as well, in which their third quartiles approach the 2-failure global

recovery mark (∼7.5%). Around the 6- and 7-failure mark, the median overhead for the

local recovery case transitions from being comparable to one failure (grayed area on the left)

to being comparable to two failures recovered globally, which indicates that the executions

with 6 or 7 failures will, in this case, either mask as one failure or as two failures (i.e., with

overheads due to recovery the same as those for one or two failures) with high probability.

Conclusion. Figure 6.3 compares best-case, optimal global recovery (i.e., recovery over-

head considered equal to local recovery) with local recovery for the sake of determining

impact of more than one failure when using both techniques. It can be observed how, in the

case of global recovery, the failure overhead is additive, but, in the case of local recovery,

the overhead of multiple failures is much smaller due to the failure masking effect.

6.4.3 Break-Even Analysis

The result of failure masking is that the effect of multiple failures on the application runtime

is the same as that of a single failure. This happens when a failure at a process or node

occurs before the delay due to the local recovery of another separate process or node failure

127

has reached it. In this case, the propagating delays from the local recovery of the two failures

merge and, since the result is not additive, it appears as if only one failure occurred. Note

that this effect would also occur if more than two failures occurred and the resulting delays

from their local recovery merged similarly. However, as the number of failures that occur

within a specific window of time increases, the probability that the propagating delays due

to their local recovery will merge as describe above reduces. For example, a process or node

may fail after it has experienced the delay due to the prior failure of a process or node. In

this case, the delays due to the local recovery of the two failures will add rather than mask

each other.

In this experiment, we explore the break-even point, in terms of the number of failures

within a specific time frame, at which failure masking stops occurring. In other words, given

a number of processing elements, we determine the probability pbe,1 that a certain number of

failures occurring during a window of time, can mask each other. This study calculates pbe,1

for different failure counts, thus providing an upper limit on the total number of failures

that an application can handle so that the overhead is the same as that of one failure.

We further extend the study beyond multiple failures masking as a single failure, and

generalize it to understand the failure density thresholds pbe,n for masking failures as if n

failures occurred, for n ≥ 1. In particular, for practical purposes we will show results for

n = 1, 2, 3, 4.

Definitions and Assumptions. We want to study the probability that the total overhead

of an execution in which a certain number of failures NF occur within a time frame of TT

will be the same as the overhead when a single failure occurs. We assume a certain failure-

free execution time TT = NitTit + bNit
NC
c(TComm), where Nit is the number of iterations,

and NC is the number of iterations between communication. We also assume that NT is

the number of processing elements and NF failures are distributed uniformly in both space

(from processing element 0 to processing element NT − 1) and time (from 0 to TT).

Layered Propagation Delay. It can be inferred from the model in Section 6.3 that the

communication is performed in layers: the immediate neighbors of the failed processing

element fi (which can be considered as the originating layer li,0), can be considered li,1;

the immediate neighbors of li,1 that are not in li,0 ∪ li,1 (i.e., they have not yet noticed the

128

effects of the failure) can be considered li,2, etc. Therefore, a propagation delay due to the

local recover of a failure fi will only affect processing elements in the layer li,n after n×NC

iterations.

The results from this study (i.e., the values for {pbe,1, pbe,2, pbe,3, pbe,4} for different sce-

narios) are summarized in Figure 6.4 and Figure 6.5, which will be described and analyzed

in Section 6.4.4.

6.4.4 Failure Overhead Distribution for Multi-failure Global and Local

Recovery

Figure 6.4 shows the histogram of failure overheads of four simulations. All simulations

perform Nit = 100 iterations of Tit = 100 time units each. The basic time to communicate

is 100 times smaller than the iteration time: TComm = 1 time unit. The leftmost domain is

mapped onto 27×27×27 = 19, 683 processing elements. If we assume a processing element

is a full Cray XK7 node (16-core processor + GPU), this simulation would be in the order

of a machine similar to Titan at ORNL, with 18, 688 compute nodes. The next test –the

second from the left– is the same test scaled up 51 times to 106 processing elements. The

application domain is decomposed into 100×100×100 sub-domains, which are then mapped

to the 106 processing elements logically organized as a 100× 100× 100 cube. According to

Top500, Linpack performance on Titan is 17.59 PFLOPS. An Exascale machine has to be

around ∼58 times more powerful and, hence, this second test can be seen as a hypothetical

exascale-level simulation in which nodes are similar to those in Titan1. The first two tests

were evaluated with a recovery time of TR = 300 time units to simulate a production-level

scenario (see Chapter 3); in the third test the recovery time is reduced to TR = 50 time units

to simulate the use of optimized recovery. Finally, the rightmost test, again with TR = 300

time units, is a simulation with halved communication frequency (i.e., NC = 2 time units),

while the time to communicate is doubled (i.e., TComm = 2 time units).

For each of these configurations, a set of histograms are shown: four for Global Recovery

(for one, two, three, and four failures randomly injected), and ten for Local Recovery (for

1While in reality exascale-type nodes may include many more cores and components, we believe this
simulation is valuable due to the fact that the simulated domain will indeed be ∼51 times larger than one
that fits in Titan.

129

 5
 10
 15

GR 1

P
e

rc
e

n
ta

g
e

 o
f

E
x
e

c
u

ti
o

n
s
 l
e

a
d

in
g

 t
o

 e
a

c
h

 F
a

ilu
re

 O
v
e

rh
e

a
d

 o
n

 E
n

d
-t

o
-E

n
d

 E
x
e

c
u

ti
o

n
 T

im
e

Domain 27x27x27,
Comm. every iteration, TR=300

100.0

 5
 10
 15

GR 2
2.8 97.2

 5
 10
 15

GR 3
90.40.0 9.5

 5
 10
 15

GR 4
19.3 80.20.6

 5
 10
 15

LR 2
47.6 52.4

 5
 10
 15

LR 4
30.1 0.94.7 64.3

 5
 10
 15

LR 6
59.0 7.7 0.10.2 32.9

 5
 10
 15

LR 8
65.7 22.1 0.811.5

 5
 10
 15

LR 10
54.0 40.0 3.03.1

 5
 10
 15

LR 12
36.7 55.4 7.20.7

 5
 10
 15

LR 14
21.6 65.1 13.10.2

 5
 10
 15

LR 16
11.0 65.6 23.40.0

 5
 10
 15

LR 18
5.3 61.3 33.30.0

 5
 10
 15

 0 400 800 1200 1600 2000

LR 20
2.4 52.9 44.6

Domain 100x100x100,
Comm. every iteration, TR=300

100.0

2.9 97.1

90.50.0 9.5

19.5 79.90.6

93.5 6.5

0.266.8 33.0

0.837.3 61.9

2.118.0 79.9

4.0 0.07.6 88.5

7.5 0.02.6 89.9

11.8 0.00.9 87.2

17.2 0.1 0.00.3 82.4

22.6 0.20.1 77.1

 0 380 760 1140 1520 1900

29.4 0.20.0 70.4

Domain 100x100x100,
Comm. every iteration, TR=50

100.0

74.2 11.913.9

20.2 64.0 15.60.1

1.0 25.0 57.2 16.9

4.8 0.894.4

25.5 4.9 0.069.6

47.2 11.2 0.141.5

58.1 20.0 0.4 0.021.4

60.3 29.5 0.79.4

56.4 38.7 1.43.5

49.0 47.3 2.5 0.01.2

39.6 56.3 3.5 0.00.4

32.5 61.9 5.5 0.00.1

 0 110 220 330 440 550

24.4 68.4 7.2 0.0

Domain 100x100x100,
Comm. every two iterations, TR=300

100.0

2.9 97.1

90.50.0 9.4

19.5 79.9 0.00.6

98.9 1.1

0.093.2 6.8

0.083.3 16.7

0.171.4 28.6

0.258.8 41.0

0.246.4 53.4

0.334.6 65.1

0.625.8 73.5

0.717.3 82.0

 0 385 770 1155 1540 1925

Failure Overhead on End-to-End Execution Time

1.2 0.011.7 87.2

Figure 6.4: Histogram of failure overheads of four configurations. For each configuration,
fourteen histograms are shown: four with Global Recovery (GR1 to GR4) and ten with Local
Recovery (LR2 to LR20). The number i in GRi or LRi indicates the number of failures
injected in each test shown in a particular histogram. The histogram for LR1 is identical
to the GR1. Each histogram, which contains 10048 samples, represents the overhead of
recovering a random number of injected failures. The only variation between samples is the
failure position in space and time, each following an independent uniform distribution. The
base, failure-free test takes 10,100 time units. Vertical lines attempt to separate the parts
of the histograms that have overheads comparable to those with one, two, three, or four
failures recovered globally (respectively represented by the four top rows of histograms).
The numbers in between those vertical lines indicate the percentage of samples that fall
between each two lines, which are equivalent to pbe,i in LRi. These experiments were done
simulating 100 iterations with Tit = 100 and TComm = 1 (in the cases of communicating
every iteration) or TComm = 2 (in the case of communication occurring every two iterations).

130

 5
 10
 15

GR 2

P
e

rc
e

n
ta

g
e

 o
f

E
x
e

c
u

ti
o

n
s
 l
e

a
d

in
g

 t
o

 e
a

c
h

 F
a

ilu
re

 O
v
e

rh
e

a
d

 o
n

 E
n

d
-t

o
-E

n
d

 E
x
e

c
u

ti
o

n
 T

im
e

Comm. every iteration

100

 5
 10
 15

GR 4
2 97 0

 5
 10
 15

GR 6
7 92 1

 5
 10
 15

GR 8
0 8 89 2

 5
 10
 15

LR 2
20 80

 5
 10
 15

LR 4
58 240 18

 5
 10
 15

LR 6
21 51 24 3 01

 5
 10
 15

LR 8
3 30 43 21 3

 5
 10
 15

LR 10
1 10 34 41 13 2

 5
 10
 15

LR 12
3 19 45 26 7 0

 5
 10
 15

LR 14
1 9 34 39 14 3

 5
 10
 15

LR 16
4 19 41 23 12 1

 5
 10
 15

LR 18
1 12 35 36 13 2

 5
 10
 15

 0 730 1460 2190 2920 3650

LR 20
0 3 24 40 25 8

Comm. every two iterations

100

2 97 0

7 91 2

0 8 89 2

38 62

51 31 44

61 27 29

34 51 12 12

15 57 26 20

5 47 42 5 1

2 35 50 12 0

19 53 26 3 0

10 53 33 5

 0 730 1460 2190 2920 3650

Failure Overhead on End-to-End Execution Time

4 42 42 11 1

Figure 6.5: Histogram of failure overheads of two configurations. In both cases, experiments
simulate 1000 iterations of a domain decomposed into 100× 100× 100 processing elements
and use TR = 300. Otherwise, the configurations and format are identical to those in
Figure 6.4.

131

two, four, six, ..., twenty failures injected). Each of these histograms represent the overhead

imposed by the respective failure recovery mechanism across 10048 samples2. The only

variation per sample was the failure position in space and time (i.e., the timestamp of

every failure and the affected processing element) and, as discussed before, the failures were

injected following two independent uniform distributions for space and time.

As expected, the histogram of the overhead for globally recovering from a single failure

forms a rectangular shape with a minimum at 300 time units (i.e., TR) and a maximum

at 401 time units (i.e., Tit + TComm), centered at the average overhead of 350.5 time units.

The number ‘100’ (in gray) indicates that 100% of the samples (i.e., all 10048 samples) fall

before the first vertical grey line at position 500. The histogram for locally recovering a

single failure in all cases is the same as the one labeled ‘GR1’ and, hence, not shown.

In the case of globally recovering two failures, 2.8% of the cases fall before the first grey

line, i.e., have an overhead similar to the one as ‘GR1’. This makes sense, since there is a

small probability of both failures occurring during the same iteration (i.e., start iteration Ii

→ failure → restart Ii → failure → restart Ii → finish Ii). However, in the large majority

of cases, the overhead of globally recovering from two failures will be distributed around an

average of 701 time units (double the ‘GR1’ case). This effect can be seen in Figure 6.4 in

the triangular left-tailed shape of the histogram in all global recovery cases with more than

one failure.

The first thing one notices when analyzing the local recovery from two failures on a

smaller machine is that 47.6% of the times both failures masked each other as one failure.

The remaining 52.4% failures did not mask each other and therefore provide the same

overhead as that for global recovery. It is interesting to note, however, that (1) for the

four-failure local-recovery case, 69% of the cases masked providing overheads equal to two

failures or less and (2) 55+% of the cases when injecting 20 failures masked as four failures

or less. That is a 5-fold overhead reduction in highly volatile environments or at times when

failure bursts occur.

The situation further improves when considering the larger exascale-level simulation

2These simulations were done using a 64-rank MPI job with 157 samples per job: totaling 64×157 = 10048
samples

132

(second case in Figure 6.4). In almost 70% of the cases, tolerating 4 failures locally will

have the same overhead as tolerating a single failure. In this scenario, 70+% of the samples

mask as two failures, when injecting 20 failures.

When reducing the recovery time to less than Tit (third case in Figure 6.4), the his-

tograms for global recovery will start to overlap. This poses a challenge for this analysis,

since the separation in the local recovery cannot be easily mapped to an equivalent number

of failures recovered globally. In this case, we observed that, once again, the histogram

for ‘GR1’ is a square shape of width Tit + TComm = 101 time units starting at TR = 50.

Therefore, we concluded that in the ‘GR2’ case, the great majority of samples would be

between the values of 151 and 252, which is true (∼75% of samples). The same happens

with ‘GR3’ and ‘GR4’ and, as a result, we decided to set the division lines at 151, 252, 353,

and 454 time units. With these divisions, we can see that the pattern is very similar to the

second case with TR = 300, specially up to ‘LR6’.

Finally, the right-most subfigure in Figure 6.4 is the same test as the second subfigure

with a halved communication frequency. This can be achieved, for example, by doubling

the ghost region size and exchanging the ghost points every two iterations instead of every

iteration. If we compare, for example, the injection of ten failures with local recovery in

both cases, we can observe that ∼60% of the samples mask failures as a single failure with

half the communication frequency, as opposed to <8% in the standard test. We can also

observe that when recovering locally from 20 failures, 98.9% of the samples mask as two

failures or less with a halved communication frequency, while this percentage drops to 70.4%

in the standard test.

Figure 6.5 explores two extra configurations by injecting failures at a much smaller

density. In particular, we inject the same number of failures as in Figure 6.4 and increase the

total execution time 10 times by simulating 1000 iterations. Focusing on the left subfigure

we observe, for example, how six failures are masked as four or less in 73% of cases, or how

twenty failures are masked as eight or less with 67% probability. The right subfigure, which

plots the same experiment while decreasing communication frequency, shows an increased

advantage: six failures are masked as four or less in the great majority of cases, while twenty

failures are masked as six or less with 88% probability.

133

 0

 20

 40

 60

 80

 100

27x27x27 67x67x67 100x100x100

Simulated Domain Size

P
ro

b
a
b
ili

ty
 (

%
)

o
f
M

a
s
k
in

g
 a

ll
F

a
ilu

re
s
 a

s
 i
f
N

F
G

R
 F

a
ilu

re
s
 O

c
c
u
rr

e
d N
F

G
R

 ≤
 1

N
F

G
R

 ≤
 2

N
F

G
R

 ≤
 3

N
F

G
R

 ≤
 4

 0

 20

 40

 60

 80

 100

 0

 20

 40

 60

 80

 100

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

 0 5 10 15 20

Number of failures recovered locally

 0 5 10 15 20

TR=300
Comm. every two iterations; TR=300

Comm. every three iterations; TR=300
TR=150
TR=50

Figure 6.6: Probability of masking multiple failures as a single failure (top row of plots),
as two or less failures (second row of plots), as three or less failures (third row of plots),
or as four or less failures (last row of plots). The Y-axis indicates the probability, from 0
to 100%, that a particular number of injected failures can be masked. The X-axis depicts
the total number of failures injected. The leftmost column of plots are simulated with a
27×27×27 mesh of processing elements, the middle column is simulated with a 67×67×67
mesh, and the right column is simulated with a 100×100×100 mesh. The five experiments
simulated 100 iterations with Tit = 100 and TComm = 1 (by default, communicating every
iteration). In cases where communication frequency is halved or divided by three, TComm

is increased to 2 and 3, respectively, to account for the extra communication cost. Each
trend line connects a total of 20 points with each point evaluated at unit intervals from 1
through 20 along the X-axis.

134

Conclusion. Figure 6.4 and Figure 6.5 decomposes the simulation samples in a full his-

togram for a more in-depth analysis than the error-bar representation shown in Figure 6.3.

It also goes one step further by studying the impact of different application behaviors (e.g.,

domain and machine size, iteration length, communication duration and frequency, or differ-

ent recovery times) on the probability and level of failure masking. Figure 6.4 and Figure 6.5

reaffirms the conclusions drawn in Section 6.4.2, regardless of different application behav-

iors: (1) the overhead of multiple failures is additive in the case of global recovery, while

(2) failure masking enabled by local recovery reduces such overhead by several orders of

magnitude.

6.4.5 Failure Masking Probability

Figure 6.6 plots the cumulative probability of a certain number of failures (X axis), masked

as ‘1’, ‘2 or less’, ‘3 or less’, and ‘4 or less’ failures for five different simulation configurations

and three different system sizes. In order to compute the probabilities for a specific config-

uration and number of failures (from 1 through 20), we repeat each simulation 10048 times

varying failure locations in both space and time. We then calculate the percentage of these

repetitions in which the number of failures injected are masked as {1, 2, 3, or 4} failures.

The left column of the plots can be interpreted as a current extreme-scale machine, while

the right-most plot can be considered an exascale-level machine. In this plot, the higher

a line is, the most beneficial for failure masking a particular experiment will be. We can

observe that the recovery time is not extremely impactful in the ≤ 1 and ≤ 2 cases for the

27 × 27 × 27 machine but, as expected, it does impact other cases: shorter recovery times

(which are desirable in order to minimize the overhead in end-to-end time) decrease the

probability of failure masking when high failure counts occur.

Another observation that can be extracted from the 27 × 27 × 27 machine experiment

is that, regardless of the experiment configuration, ten failures will mask as four or less in

at least 80% of the cases. If we focus now on the experiments in which communication is

done every two or three iterations, we can observe that, with local recovery, 50% or more

of the cases will mask ten failures as two or less, and 80% or more of the cases will mask

twenty failures as three or less. This demonstrates the enormous benefit of reducing the

135

communication frequency in order to maximize the probability failure masking.

In the case of 106 processing elements, 60% or more of the cases with communication

frequency reduction mask ten failures as a single failure, while without communication

frequency reduction, in ∼50% of the cases five failures are masked as a single failure. Except

in the experiment with recovery overhead of TR = 50 time units, 70% of the cases mask

twenty failures recovered locally as two or one. Finally, it is important to note that 95% or

more of the cases will mask twenty failures recovered locally as three or less failures.

The experiments have been performed assuming a uniform distribution of failures across

space and time. While they take into account temporal correlations (e.g., failure bursts),

they do not consider spatial locality. This effect, described by Gupta et al. [75], can be

explained by the fact that some failures are triggered by hardware components shared by

multiple compute nodes, e.g., network components, power supplies, cooling subsystems.

Gupta et al. show, for example, that when a node failure occurs in Titan, the probability

of any one of ten subsequent failures (called the correlation window) ocurring in the same

physical cage is 9.42% rather than the 1.67% to be expected if failures were not correlated.

Similarly, the probability of a node failure in the same node’s location is 5.71% (rather

than the expected 0.05%). In our study we must exclude same-node failures, as we never

reuse a node after it has failed. We leave as future work the study and quantification of the

impact on failure masking probability of spatial failure correlations. Certain decrease in the

probability can be expected, but since the correlation windows are long and the absolute

probability of failures occurring in other parts of the machine compared to the probability

of them occurring in the locale is relatively high, the authors do not expect different conclu-

sions, especially in larger machines. If the study does indeed show a significant decrease in

failure masking probabilty, an interesting optimization may be to map logically close parts

of the domain to compute nodes that do not share hardware components. This optimization

would trade off network locality for an increase on masking probability.

In contrast, to avoid the spatial failure correlation effect, Gupta et al. propose to

quarantine the resources neighboring a failed node for a window of time right after a failure.

From a stencil application’s perspective, this technique implies that each node failure is

promoted to a blade/cage/cabinet failure. How this strategy impacts masking probability

136

is another interesting direction for future work.

6.4.6 Impact of Performance Variation

As explained in Section 6.3, performance variation often impact the total execution time,

and has been captured in our model by the parameter r. Due to failure recovery, processes or

nodes may be re-located within the machine topology, which may impact the total execution

time. To capture this effect we increase the performance variation after each failure has

been recovered.

Figure 6.7a shows how an increasing number of failures is masked for different values of

r and while increasing r after each failure. The sudden increase when moving from five to

six failures is the same effect explained when describing Figure 6.3. Results show that noise

does not affect the probability of failures being masked (notice that in the three subfigures

the 0% line is almost flat). Results also show that, even with larger amounts of per-failure

noise increments, the recovery overhead of multiple failures can still be masked. When

compared with noise-free results of global recovery (see Figure 6.3) we can see that failure

overheads are significantly reduced due to masking.

Figure 6.7b studies the overhead caused by an increasing amount of performance vari-

ation on the total, end-to-end time when injecting and recovering from 20 failures locally.

Figure 6.7b shows what is the total overhead while increasing the r parameter as failures

have been recovered. In particular, after each failure, the r parameter is increased, in each

of the three cases, by an amount equivalent to {0, 0.25, 0.5}% of Tit.

6.4.7 Defining Time Units and Processing Elements

The previous simulations have been set up in terms of generic time units and generic pro-

cessing elements, without actually defining these. We will now try to map these two logical,

generic concepts to their real counterparts.

Current estimates for exascale MTBFs vary significantly, so this section tries to make as

few assumptions as possible about what they might be, and therefore we provide a generic

time unit that can be adjusted accordingly to represent reality. In what follows, we discuss

two possible definitions for time units (1 second and 0.1 seconds) and their implications in

137

 0

 4

 8

 12

 16
2

%

Increment of noise:
0% 0.25% 0.5%

 0

 4

 8

 12

1
%

Increment of noise:
0% 0.25% 0.5%

 0

 4

 8

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20O
v
e

rh
e

a
d

 r
e

la
ti
v
e

 t
o

 n
o

is
e

-
a

n
d

 f
a

il-
fr

e
e

 c
a

s
e

 (
%

)

M
a

x
im

u
m

 n
o

is
e

 (r) c
o

m
p

a
re

d
 to

 T
it

0
%

Number of failures

Increment of noise:
0% 0.25% 0.5%

(a) The three scenarios show how three base values for r (0%, 1%, and 2%)
impact the overhead with an increasing number of failures. In each case, “Incre-
ment of noise” is the percentage (relative to Tit) that is permanently added to
the parameter r after a failure has been observed and recovered.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
v
e

rh
e

a
d

 r
e

la
ti
v
e

 t
o

 n
o

is
e

-/
fa

il-
fr

e
e

 (
%

)

Maximum noise (r) compared to Tit (%)

Noise incremented by 0% (of Tit) per failure
Noise incremented by 0.25% (of Tit) per failure

Noise incremented by 0.5% (of Tit) per failure

(b) Three scenarios are shown in which performance variation increases as failures
are recovered (a total of 20 failures are injected). Shaded areas show observations
within the first and third quartiles.

Figure 6.7: Effect of performance variation (i.e., noise) on the total overhead compared to
a failure-free and noise-free execution. Execution parameters are set as in Figure 6.3 and
solid lines represent the median of 10048 repetitions.

138

terms of the failure rate. Note that a recent study on the failures of current systems high-

lighted the locality of failures: machines experience long periods of times without receiving

any failures (up to three times the MTBF) while a great percentage of failures occur much

more frequently than the MTBF (for example, 30% of failures on the Titan Cray XK7 at

ORNL occur within one hour of a previous failure, while its MTBF is ∼ 7.75 hours [146],

as shown in Chapter 2). Therefore, we consider the burstiness of failures more important

than the average MTBF, and focus on making HPC centers still usable during periods of

high unreliability.

First, consider that a time unit equals a second, which implies that an application

iteration would last 1.6 minutes. While this might seem long, our experiences indicate that

it is possible for some complex simulations. As a result, a standard, failure-free simulation

will take 10,100 seconds, or about 2.8 hours. During this period of time, we injected a total

number of failures ranging from one to twenty, equivalent to bursts of failures ranging, on

average, from 168.3 minutes to 8.4 minutes.

Second, if we scale down a time unit to be 1/10th of a second (i.e., 0.1 seconds), each

iteration would take 10 seconds to complete (which is in par with our anecdotal experiences)

and the total execution time would be 1010 seconds (∼17 minutes). The failures, in these

cases, would simulate bursts of failures coming, on average, from every 16.8 minutes to

every 50.5 seconds. The application parameters for this case are consistent with executions

of the S3D combustion simulation [33] on current systems (see Chapter3).

Furthermore, we have not defined how a processing element maps to a physical compo-

nent. One of the options is to consider each processing element to be an entire compute

node that require the network to communicate with other processing elements. In the case

of the Titan Cray system at Oak Ridge, two compute nodes share the same Gemini ASIC

and, therefore, a first option could be to consider a processing element as a group of 16

cores and a GPU. In this case, each of the processing elements may be composed of several

processes or threads that would be communicating as well. A second option could be to

consider each core in a compute node as a different processing element. This would imply

that the difference in the communication cost depending on the location of the cores (i.e.,

139

cores in the same NUMA domain will communicate much faster than cores in different com-

pute nodes) is hidden or averaged within Tit or TComm, or that it is considered negligible

compared to the cost of recovering from a failure and, hence, does not affect the impacts of

failure masking. In this scenario, the 67 × 67 × 67 = 300, 763 mesh of processing elements

case can be considered similar to the total number of cores on Titan (i.e., 299,008 cores).

6.5 Increasing the Ghost Region Size

While failure masking provides scalability by itself, several application characteristics can

be taken into consideration to increase its impact and, therefore, obtain higher reductions in

the end-to-end execution time. Section 6.5 and Section 6.6 analyze particular characteristics

of stencil iterative computations that can be exploited to that end. In both cases, the goal

is to increase the time it takes for a failure in a single stencil cell to propagate and affect

all other cells across the stencil system. Ideally, the impact on the simulation time of any

optimization that increases failure masking probability should be minimal, but a trade-

off exists between the amount of propagation extension and its impact on the execution

time. This tradeoff can be exploited depending on the application characteristics, the size

of the system, and the MTBF. While presenting some related experimental conclusions in

Section 4.4, we leave for future work the break-even analysis of this tradeoff depending

on system size. Previous work [99] studies how to use ghost region expansion in order to

reduce the latency of communications by merging different messages. This section explores

the effects of communication frequency reduction achieved by an increase in the ghost region

size.

6.5.1 A Guiding Example: 1-D, 3-point Stencil

Update and Failure Propagation Windows. Assuming, for example, a 1-D, 3-point

stencil, if a change occurs in point p in iteration i, it will not be reflected in point p + k

until k iterations later (i.e. iteration i+ k). In this case, the update propagation window is

of k iterations.

However, since multiple points are associated with a rank (assume, P points per rank),

and assuming ranks communicate every iteration, a failure in the rank r including point

140

p (failure happens before completing iteration i) will propagate to rank r2 including point

p+ k before iteration i+ k. In particular, rank r+ 1 will stall in iteration i+ 1, rank r+ 2

will stall in iteration i + 2, and, in general, rank r + n will stall in iteration i + n. In the

example, r2 is r + t, where t is either t = b kP c or t = d kP e. Therefore, in this example, the

failure propagation window between point p and p + k is d kP e iterations, in the best case.

This is to compare to the update propagation window of k iterations.

Expanding the Failure Propagation Window. If, based on the previous example,

we assume the ranks in the application communicate every two iterations instead of every

iteration, the failure propagation window expands. Rank r + 1 will be able to advance an

extra iteration, and, hence, will stall in iteration i + 2. In general, rank r + n will stall in

iteration i + 2 × n. Therefore, the failure propagation window gets expanded from d kP e to

2× d kP e.

Note that the failure propagation window can never be larger than the update propa-

gation window, as that would imply violating the semantics of the algorithm.

Delaying Communication between Ranks. In order to avoid communicating every

iteration, the frequency of communication can be reduced to every several iterations. To

that end, computation of each partition’s bordering cells needs to be replicated in every

rank that needs them.

In the simplest case of a 1-D 3-point stencil, as depicted in Figure 6.8, communication

can be avoided every two iterations. Instead of exchanging a single point per border, each

rank initially fetches two points per border from the corresponding neighbor and keeps them

in the ghost point G−2 and G−1. Each rank can then finish calculating the first iteration,

which is done by updating cell C0 with previous values of cells G−1, C0, and C1, updating

cell C1 with previous values of cells C0, C1, and C2, etc. Additionally, the ghost point G−1

needs to be updated with previous values of cells G−2, G−1, and C0. After all the values are

updated in the first iteration, the rank already has the updated ghost point and, therefore,

is ready to perform the update for the second iteration without the need to communicate

with its neighbors. Note that, since in the first iteration the ghost point position G−2 was

not updated, the rank can not re-use it to calculate the new value of G−1. Henceforth, in

order to perform the third iteration, communication needs to occur, in a similar manner as

141

Rank riRank ri−1

it=0 comm

it=0 comp

it=1 comp

Rank ri

Ghost points from ri−1

Rank riRank ri−1

it=1 comm

Rank ri

3-point 5-point 7-point

Data transferGhost points from ri

It., phase

a)

b)

Figure 6.8: Detail of the communication and decomposition of a 1-D Stencil computation
between 2 ranks. a) A 3-point calculation with standard communication pattern, i.e. one
transfer at the beginning of each iteration. b) Detail of two iterations (both communication
-comm.- and computation -comp.- phases) of 3-point, 5-point, and 7-point 1D Stencils. For
space economy, only Rank ri is shown in the 5-point and 7-point figures. Crossed ghost
points do not contain a valid value in the specific iteration/phase.

described for the first iteration.

To summarize, in this simple 1-D 3-point stencil, by replicating the computation of one

ghost point and doubling the size of the message payload, the application can double the

time between two subsequent data transfers.

6.5.2 Beyond 3-point Calculations on a 1-D Stencil

More complex calculations on a particular stencil cell may require more points than the

immediately adjacent neighbors. In the case of a 5-point, 1-D stencil, in order to calculate

a particular cell Ci, five cells are required, Ci−2, Ci−1, Ci, Ci+1, and Ci+2. In the case

of a 7-point, 1-D stencil, seven adjacent cells are required, from Ci−3 to Ci+3. Therefore,

to delay the communication between cores would require a higher cost due to replication

than, when compared to the 3-point stencil example. However, this cost can be considered

negligible compared to the cost of updating the P cells associated with each rank.

In these two more complex cases, however, the same conclusion applies: by doubling the

size of the message payload, and replicating the computation of the extra ghost points (two

extra points per message in the 5-point case; and three extra points in the 7-point case),

the application can double the time between two message exchanges.

142

Transfer to top rank

5-point 9-point 13-point

Transfer to left rank Transfer to diagonal left/top rank

Communication

every iteration

Communication

every two

iterations

Transfer from top rank Transfer from left rank Transfer from diagonal left/top rank

Figure 6.9: Detail of the communication and decomposition of a 2-D stencil computation
between a rank and (not-shown) its left, top, and left/top diagonal neighboring ranks. The
top row represents a 5-point, 9-point, and 13-point calculation with standard communication
pattern, i.e. one transfer at the beginning of each iteration. The bottom row represents
how the data is transferred during the communication phase –every two compute iteration,
only one communication phase is performed.

6.5.3 2-D and 3-D Stencils

Extrapolating the same ideas from a single dimension to a multi-dimensional Ssencil requires

understanding how the domain is partitioned and which ghost points are required for each

scenario.

Two Dimensions. Figure 6.9 demonstrates that doubling the communication period

requires communicating with one extra neighbor per corner in the 2-D case. Instead of

communicating with four neighbors every iteration, the new algorithm must communicate

with exactly eight neighbors every two iterations. In a 5-point calculation, assuming the

domain size is n × n, (1) communicating every iteration requires 4n ghost cells while (2)

communicating every two iterations requires 8n+4. In a 9-point calculation, 8n and 16n+16

ghost points are required for situations (1) and (2), respectively. Finally, for a 13-point

calculation, 12n and 24n + 36 ghost cells are required. In general, for a (4p + 1)-point

143

calculation,

C1 = 4pn

C2 = 4p2 + 8pn

...

Ci = 2i(i− 1)p2 + 4ipn

where Ci is the number of ghost cells required for communicating every i iterations, and

p is the thickness of the calculation (e.g., p = 1 for a 5-point calculation, or p = 2 for a

9-point calculation).

Three Dimensions. In the 3-D case, the domain is typically decomposed into cubes and

the neighboring ranks near each face of the cube are required to update the faces. As a

result, each rank communicates with six neighbors every iteration (i = 1). If the commu-

nication frequency needs to be reduced to two iterations (i = 2), each rank will require

communication with 6 + 12 = 18 neighboring ranks, as the regions in the diagonals associ-

ated with the twelve edges will be required to update the six faces. If the communication

frequency needs to be further reduced (e.g., i = 3), the ranks with cells in the diagonals

near the eight vertices will also need to be contacted by each rank because those cells will

be required in order to update the cells near the cube edges. In this case, each rank will

communicate with 6 + 12 + 8 = 26 neighboring ranks. For any i such that i ≥ 3, only these

26 neighboring ranks will be needed for ghost exchange provided that i ≤ n/p. The latter

formula assumes a three dimensional domain where each dimension is of size n. For the

case where i > n/p, ghost regions would extend naturally into additional ranks. However,

this case is not feasible in practice, since p is typically small and n is typically large in real

production scenarios. Any practical reduction of communication frequency should, there-

fore, require interaction with a maximum of 26 ranks during the population of ghost region

cells.

In a 3-D domain, the number of ghost cells required to communicate every i iterations

is as follows, for a (6p+ 1)-point calculation:

144

 0

 2
 4

 6
 8

 10
 12

 14
 16

 1 2 3 4 5 6 7 8

G
ho

st
 p

oi
nt

 c
ou

nt
 a

s
a

 p
er

ce
nt

ag
e

of
 d

om
ai

n
po

in
t

co
un

t

Number of iterations between communication (i)

19-point operator (p=3)
13-point operator (p=2)
7-point operator (p=1)

(a) Effect of the number of iterations between com-
munication when operating on a cubical domain with
side n = 1000.

 0

 5

 10

 15

 20

 25

 100 500 1000 1500 2000

G
ho

st
 p

oi
nt

 c
ou

nt
 a

s
a

 p
er

ce
nt

ag
e

of
 d

om
ai

n
po

in
t

co
un

t

Size of each dimension (n)

Comm. every it. (i=1)
Comm. every two its. (i=2)

Comm. every three its. (i=3)
Comm. every four its. (i=4)

(b) Effect of the size of each dimension of the cubical
domain when using a 7-point Stencil operator.

Figure 6.10: Number of ghost cells compared to number of domain cells for different sce-
narios. Results were computed using the formula for Ci with different values of i and p
(Figure 6.10a) and different values of i and n (Figure 6.10b).

C1 = 6(1)pn2

C2 = 6(2)pn2 + (12np2)

C3 = 6(3)pn2 + 3(12np2) + 1(8p3)

C4 = 6(4)pn2 + 6(12np2) + 4(8p3)

...

Ci = 6ipn2 +
(i− 1)i

2
(12np2) +

(i− 2)(i− 1)i

6
(8p3)

= 6ipn2 + 6(i− 1)ip2n +
4

3
(i− 2)(i− 1)ip3

where the factor that multiplies (12np2) is the (i − 1)-th triangular number and the

factor that multiplies (8p3) is the (i− 2)-th tetrahedral number (for i = 1, the factor is 0).

n3 + Ci can be used to theoretically determine the algorithmic worst-case cost of the

computational portion of each iteration. It is important to note that the minimal cost of

the computational portion is n3 + C1 in any case.

Figure 6.5.3 plots Ci using different values of i, n, and p. Specifically, it shows 100Ci/n
3,

the percentage of the cell points that the ghost region represents for each case, when com-

pared to the domain region (which size is n3). The main conclusion, which can be extracted

145

from Figure 6.10b, is that the overhead on the computation cost of extending the ghost re-

gion is negligible for bigger values of n. In the cases where n is small, however, the overhead

of ghost region extension will be low or negligible only when the cost of communication is

larger than the cost of computation. In that case, extending the ghost region implies an in-

crease of the computation that is traded off by a larger decrease of the total communication

cost.

6.6 Node-aware Mapping of Cells to Ranks

A typical approach when running an MPI application on a multi-core system is to allocate

multiple MPI ranks in each socket; usually one rank per core or one rank per physical

thread. As a result, a failure in any of the components shared by all cores in the socket

(e.g. on-chip L3 cache, memory subsystem, network interface, power supply, or operating

system) will affect multiple MPI ranks at once.

Henceforth, when trying to reduce the costs of fault tolerance, application developers

and tuners need to take into consideration the underlying architecture. Specifically, this

section focuses on the effect of the mapping of a decomposed stencil domain to the different

available MPI ranks.

Assumptions. In this section, we assume that a particular rank is mapped into a specific

socket/node statically by the MPI implementation (in this case, we will use FenixLR as

presented in Section 5.3) when the MPI application is first started. Therefore, any changes

require the mapping of cells to ranks by the application or a fault-aware library (in this

case, the top layer within FenixLR).

We also assume a homogeneous system in which all the sockets/nodes have the same

compute characteristics. Therefore, the computation time required to update a particular

stencil cell or group of cells should be the same regardless of the mapping of cells to ranks.

This mapping, however, may affect the network transfer costs depending on the network

topology, since neighbor cells may be located in different parts of the machine depending

on the mapping. The possible effects due to network characteristics will be accounted for

when evaluating the approach.

146

Related Work. Barrett et al. [5] found that misalignment of MPI ranks to the 3D torus

topology of Cray XE6 can decrease the performance of 3D stencil applications. In their

study, many ghost cell exchanges were not translated to message exchange between physi-

cally adjacent nodes, as the MPI ranks were placed to shape a long rectangular geometry.

This was resolved through manual rank reordering to reduce the average network hop counts

of ghost cell exchange. Another rank reordering idea has been applied in the context of

multicore nodes where current MPI implementations exploit shared memory copy to im-

prove the message passing performance among the ranks placed in the same physical node.

Brandfass et al. [24] demonstrated how rank reordering is able to confine interprocess com-

munications within a single node in their unstructured CFD applications. Although this

work is intended for stencil computations, we study how rank reordering can reduce the

speed of propagation of the recovery delay due to message exchange.

One-dimensional Stencil Domain. A one-dimensional domain can be decomposed into

different homogeneous chunks, i.e., each containing the same number of cells, and the best

cell-to-rank mapping can be achieved by linearly mapping cells to contiguous ranks. As-

suming a node failure, the number of cells who are affected by the failure increases by two

every iteration: a failure in iteration i affects two cells when iteration i+ 1 is reached, four

cells when iteration i + 2 is reached, and so on. In this sense, it is intuitive to understand

that the best mapping to minimize the recovery propagation of a node failure is the linear

mapping. With a random mapping, for example, the number of cells affected by a failure

increase much faster as iterations advance. Other mappings less extreme than the random

mapping can be less harmful to the failure propagation time, but a linear mapping still

provides the best case.

Two-dimensional Stencil Domain. In the two-dimensional case, however, a linear

mapping might not be the best when trying to minimize the rate of increase of the number

of cells affected by a node failure. Assuming a 16-rank node, the best mapping to minimize

the propagation effect would be to assign four-by-four blocks of cells to the sixteen ranks

in each node, as shown in the bottom of Figure 6.11. In the linear mapping case displayed

in the center of Figure 6.11, a node failure would affect 34 cells during the first iteration,

while in the quadratic mapping case, the same failure would affect 16 cells during the first

147

Linear Cell-to-Rank Mapping

Quadratic Cell-to-Rank Mapping

Domain Decomposition of Cells

Cells in a rank Failed rank Rank immediately affected by the failure

node20

node20

Figure 6.11: Decomposition and mapping of a two-dimensional domain into a machine with
sixteen ranks per node. (top) Domain of 144 × 36 cells decomposed in chunks, or domain
sections, of 3×3 cells each, for a total of 48×12 chunks. (center) Linear mapping of domain
sections to ranks; a failure in a 16-rank node (node20) affects the execution of 34 neighboring
ranks in the iteration immediately following the failure. (bottom) Quadratic mapping of
domain sections to ranks; a failure in node20 affects now only 16 neighboring ranks in the
iteration immediately after the failure, providing a much slower failure propagation.

148

Figure 6.12: Section of a three-dimensional domain mapped to a machine with sixteen
ranks per node. The mapping of domain sections to ranks is done through the shape of
a rectangular prism. A failure in a 16-rank node (node20, set of boxes in red) affects the
execution of 40 neighboring ranks (set of boxes in dark gray) in the iteration immediately
following the failure.

iteration. The conclusion is that a standard, default, linear mapping –that provided an

optimal failure propagation contention in the 1-D case– is not optimal in the 2-D case.

Three-dimensional Stencil domain. By default, S3D –our guiding stencil scientific

computation– assigns each part of the decomposed 3-D domain following a linear mapping,

assigned based on MPI_CART_CREATE using Fortran order. It assigns first cells in the X

direction maintaining the Y and Z fixed; when there are no more cells in the X direction, it

continues assigning cells from the line parallel to the X-axis and the next corresponding Y

value; finally, when the first X-Y plane is completely mapped to the corresponding ranks, it

continues filling cells from the parallel X-Y plane with the next Z value, following the same

methodology. In other words, assuming that there are Nx cells in the X direction, NY cells

in the Y direction and NZ cells in the Z direction, and we want to map a single cell to a

149

rank, the rank number R would be assigned the cell (CX , CY , CZ), where

CZ =

⌊
R

NXNY

⌋
CX = (R− CZNXNY) mod NX

CY =

⌊
(R− CZNXNY)

NX

⌋

This linear mapping is suboptimal, since a failure in a 16-rank node may affect 66

neighboring ranks in the first iteration after the failure.

To reduce the rapidity with which the number of affected ranks increase, we can decom-

pose the domain into perfect cubes or use other kinds of space-filling curves. Since complex

space-filling curves may imply irregular mappings (i.e. the cells assigned to a particular

node do not form a homogeneous “shape” in the 3-D domain), the failure propagation

speed may depend on the failed node. Since this is not a desirable property, this chapter

studies how to assign cells to nodes so that the 3-D shapes of the cells are exactly the same

in all nodes.

In particular, as depicted in Figure 6.12, for a machine with sixteen ranks per node,

a 4 × 2 × 2 rectangular prism (in any direction) homogeneous mapping minimizes the

rapidity of failure delay propagation to 40 neighboring ranks in the first iteration after the

failure.

We can generalize the rectangular prism mapping depicted in Figure 6.12 as follows.

Making the same assumptions as before, as well as the fact that the rectangular prism

shape must be GX × GY × GZ (for example, 4 × 2 × 2 in the figure), with a size of SG =

GXGYGZ ranks, the rank number R would be assigned in the core number (CoX , CoY , CoZ)

of the compute node with coordinates (CnX , CnY , CnZ), and would be mapped to the cell

150

(CX , CY , CZ), where

CnZ =

⌊
R

GZNXNY

⌋
CnX =

(
R

SG
− CnZNXNY

GXGY

)
mod

NX

GX

CnY =

(
R

SG
− CnZNXNY

GXGY

)/
NX

GX

CoZ = (R mod SG) / (GXGY)

CoX = ((R mod SG)− (CoZGXGY)) mod GX

CoY = ((R mod SG)− (CoZGXGY))/GX

CX = (CnXGX) + CoX

CY = (CnYGY) + CoY

CZ = (CnZGZ) + CoZ

6.7 Experimental Evaluation

This section presents the experimental evaluation performed to determine the performance

and effectiveness of the local recovery and failure masking approaches (as described in

Section 6.2, modeled in Section 6.3, and evaluated in Section 6.4), as well as ghost region

extension and rank remapping that target to enhance the probability of failure masking

(as described in Section 6.5 and Section 6.6, respectively). The experimental evaluation is

based on the S3D combustion simulation, a large scale stencil computation, running on top

of the Titan Cray XK7 supercomputer at ORNL.

This evaluation demonstrates that the algorithms implemented in FenixLR, as presented

in Section 5.3, efficiently tolerate multiple process, node, and multinode failures occurring

at a wide range of frequencies. It also demonstrates that the total recovery overhead can be

reduced due to multiple failure masking. In general, this section shows that, even though

the overhead of globally recovering from N independent failures is in the order of N × O1

(where O1 represents the average overhead of recovering from a single failure), the total

overhead is closer to O1 when the same N failures are recovered locally. This section shows

151

the benefits of FenixLR’s local recovery capabilities using S3D on up to 140736 cores (140608

+ 128 spare cores). It is experimentally demonstrated how in real scenarios, local recovery

can mask failures, i.e., result in a total overhead that is comparable to one failure recovery,

regardless the number of failures.

Chapter 4 has used a Fenix implementation on top of a ULFM prototype to successfully

recover from failures occurring as frequently as every 47 seconds. Chapter 5 has demon-

strated how the FenixLR implementation reduces sources of overhead and offers optimized

recovery constructs able to tolerate failures occurring as frequently as every 5 seconds.

6.7.1 Experimental Evaluation Goals

As this section discusses the experimental evaluation of failure masking, the following are

the main goals to be addressed: (1) show that, by using the presented failure masking

methodologies, stencil computations such as the tightly-coupled S3D combustion simulation

can tolerate failures coming at high rates, (2) establish that, with local recovery, the total

overhead ON of recovering from N failures is not necessarily N×O1 (being O1 the overhead

of recovering from a single failure), and (3) demonstrate, experimentally, that the probability

of multiple failures masking each other can be increased by application-aware algorithmic

changes such as ghost region expansion and cell-to-rank mapping.

Following subsections present the methodology of experimentation as well as describe

the experiments in detail.

6.7.2 Experimental Methodology

A key goal of this evaluation is to study how the presented approach behaves at current

scales, and use this to explore behaviors and performance due to future extreme-scale failure

rates. As a result, we have conducted our experiments on up to 140608 cores. As mentioned

above, all the experiments were performed on the Cray XK7 Titan at ORNL.

The evaluation first experimentally demonstrates the full benefit of local recovery ca-

pabilities in FenixLR: its ability to mask multiple failures. To that end, using S3D on up

to 140608 (plus 128 spare ranks), the experiments demonstrate how real node failures can

mask each other, obtaining a similar overhead regardless of the number of randomly injected

152

failures.

The section ends by studying how the techniques studied in Section 6.5 and Section 6.6

can increase the probability of failure masking.

All the aforementioned experiments inject node failures, which are simulated by deter-

mining all application processes in execution in a particular node and sending simultaneous

SIGKILL signals to all of these processes. As the network setup parameters are stored in

process memory, when killing the processes no software disconnections are allowed – this

is consistent with the behavior if a real node failure occurs. Processes on other nodes will

receive error codes when trying to perform a uGNI operation with the processes that failed.

In what follows, ‘failures’ refer to ‘node failures’, which is equivalent to N -process failures,

where N is the total number of processes on a system node, blade, etc. By default, the

experiments use N = 16. All the experiments present the average, first and third quartile,

maximum, and minimum of five repetitions, unless otherwise specified.

As mentioned above, it has been observed that, statistically, failures tend to cluster

together in time, appearing as periods of time with high instability separated by more sta-

ble periods [146]. For example, even though Titan’s MTBF is approximately 7.75 hours,

around 30% of all failures occur within one hour of a previous failure. The goal of these

experiments is to focus on extreme cases in which unrelated failures occur within short pe-

riods of time. In particular, we are interested in those periods of high instability that may

occur on future extreme scale machines. As failure distribution predictions and MTBFs

of future extreme scale systems vary significantly, this section presents a worst case study

and, therefore, focuses on experiments with failures frequencies below one minute. If we

consider lower failure frequencies in the order of tens of minutes (or even hours), negligible

overheads can be observed due to failures when recovered using the presented techniques.

Specifically, long simulations experiencing low failure frequencies observe: (1) negligible

aggregated checkpointing cost due to its low overhead and relatively low frequency, (2) roll-

back overhead similar to that of checkpointing (assuming checkpoint frequency is adjusted

correctly following Daly’s approach [41]), and (3) negligible process recovery cost (as shown

by Figure 5.7).

153

(a) One process failure (b) Two process failures

(c) Three process failures (d) Four process failures

Figure 6.13: Behavior of local recovery for a 1D PDE using 36 cores (32 compute cores and
4 spare cores). X axis represents process number (or rank) and Y axis indicates wallclock
time. Each line in a figure represents a timestep, and the color of the line represents
how advanced the simulation is (i.e., it advances from dark purple to yellow). Each red
‘X’ represents a failure. A straight line means all processes compute the timestep at the
same physical time. When a failure occurs, the recovery delay does not get propagated
immediately to the entire domain. Instead, the immediately adjacent neighbor processes
are the first to be delayed, which in turn propagate the delay to their immediate neighbors,
resulting in the delay eventually spanning across the entire domain. c©2015 ACM (reprinted
with permission) Gamell et al. [68].

154

(a) Base execution (b) One node failure

(c) Four node failures (d) Ten node failures

Figure 6.14: Behavior of local recovery for a 1D PDE using 13984 cores (13824 compute
cores and 160 spare cores), with failures injected every 10 seconds. c©2015 ACM (reprinted
with permission) Gamell et al. [68].

155

6.7.3 Experiments using a 1D PDE

The first experiment tries to study the behavior of local recovery for a one-dimensional

stencil-based Partial Differential Equation (PDE) solver, or 1D PDE for short. Figure 6.13

shows several executions of 1D PDE on 32 compute cores and 4 spare cores with different

number of failures. These figures are based on results obtained from actual runs on Titan

(Cray XK7 at ORNL) during which we injected real process failures as described above.

The X axis in the plots represents the core number (or rank number), and the Y axis

represents wall clock time. Each rank simulates a certain number of points in the 1-D

domain. Adjacent ranks operate on adjacent spans of the 1-D domain. Each horizontal

line in a plot represents an iteration (i.e., every time the solver communicates with the

neighbors in order to advance the solution). Red crosses represents injected process failures.

A straight line means that all processes complete the iteration at the same physical time.

When a failure occurs, the recovery delay does not get propagated immediately to the entire

domain, but, instead, the neighbor processes that are immediately adjacent to the recovered

process are the first to be delayed. This delay propagates out to their neighbors in the next

iteration, and their neighbor’s neighbors in the following iteration, and the process repeats

until the entire domain is eventually covered. Note how the two, three and four failure cases

shown in Figures 6.13b, 6.13c and 6.13d have a similar recovery overhead as the one failure

case, i.e., Figure 6.13a.

Figure 6.14 shows a longer experiment using a larger number of processes and injecting

node failures – 13984 total cores, including 13824 compute cores and 160 spare cores. As we

can observe, in this case the delay propagation waves caused by the failures do not merge.

As a result, in this case the total time to solution only increases by the time to recover from

a single failure, independently of the total number of failures.

By comparing Figure 6.13 with Figure 6.2 (left) and Figure 6.14 with Figure 6.2 (right),

it can be seen that results from the model and simulation accurately predict the real exper-

imental results. This implies that the presented discrete event simulator does capture the

benefit of local recovery. The results presented above not only validate our algorithm and

implementation, but also demonstrate that local recovery can be beneficial in extreme scale

environments, where high-frequency failures are expected. The results also demonstrate

156

(a) 4224c 1f

(b) 4224c 2f

(c) 4224c 3f

(d) 4224c 4f

(e) 4224c 8f

(f) 32896c 1f

(g) 32896c 2f

(h) 32896c 3f

(i) 32896c 4f

(j) 32896c 8f

Figure 6.15: Execution profile of S3D while injecting different number of failures empirically
demonstrating the existence of the failure masking effect. Figures on the top row represent
tests with one, two, three, four, and eight node failures running on 4224 cores, corresponding
to 4096 compute cores (an S3D domain decomposed in a grid of 163 cores) and 128 spare
cores. Figures on the bottom row represent the same tests running on a larger domain with
32896 cores, corresponding to a 3-D grid of 323 as well as 128 additional spare cores. In each
figure the x-axis represents the core number (as MPI ranks in the world communicator) while
the y-axis represents the walltime, advancing from the start of the application to its end.
Each line represents the time a particular core finishes computing a particular iteration.
Note that failures, denoted by red crosses, are recovered and rolled back locally, which
translates to a delay that is propagated throughout the domain in successive iterations. The
end-to-end time when injecting eight failures is slightly longer than in the other cases. In all
other cases, the end-to-end time is similar, demonstrating the benefits of failure masking.
Note that ghost resizing or rank remapping have not been applied in these experiments,
motivating the need for these techniques to achieve slower propagations. c©2015 ACM
(reprinted with permission) Gamell et al. [68].

that local recovery is a scalable approach, both in the number of failures and the size of the

system.

6.7.4 Experiments using S3D

Figure 6.15 shows the behavior of local recovery for the S3D Stencil 3-D PDE solver. Each

line in this figure represents a timestep, and the color of the line represents how advanced

the simulation is – it advances from yellow to dark purple. The X axis in the plots represents

the rank number, which is linearly mapped to the 3D domain in S3D. This mapping between

3D space and 1D ranks is done in a straightforward manner – beginning at point (0,0,0) we

157

assign rank numbers by counting first in the Z direction, followed by the Y direction and

finally in the X direction. The Y axis represents wall clock time. In the caption for each

plot, a ‘c’ refers to cores and an ‘f’ refers to the number of node failures injected. Note how

the overheads in the first three columns are the same, which empirically demonstrates how

failure masking works. The plots in these figures follow the same format as Figure 6.13.

In the 3D case, however, the communication pattern between ranks is not as obvious in

the plots as in the 1D case due to the mapping of ranks to the 3D domain. Stencil-based

communications in the 3D domain proceed as follows: each process (except along the edges)

communicates with its six neighboring processes in the up/down, front/back and left/right

directions.

All experiments have allocated 128 spare ranks and either 4096 or 32768 ranks. Failures

counts ranging from 1 through 8 have been injected to study how the propagation of the

recovery is spread across the nodes as well as how the recovery delay propagation wave due

to different failures interact, in the case of S3D. It is important to note that, in all cases,

the total time to solution (the height of the uppermost iteration) is similar regardless of the

total number of failures. This holds in all cases except the execution of 4096 ranks while

injecting 8 failures, since one of the failures strikes in a node that have been already delayed

by a previous failure.

Figure 6.16 summarizes the relative costs of recovering from different numbers of failures

(from 1 to 8) at different scales (4096, 8000, 13824, 32768, 64000 and 140608 cores). Each

bar represents the average of five executions, except for experiments larger than 64000

ranks due to allocation issues. These issues also affected scheduled experiments with larger

failure counts. The Y axis represents the execution time relative to the average overhead of

suffering a single failure. Therefore, the figure depicts how the overheads of different failures

are masked, showing how comparable is the total overhead of a particular test to that of

a single failure. In most cases, the overheads are very similar, varying around 2% or lower

in cases where failures are completely masked. The variability is due to the fact that the

rollback overhead is the main factor in the recovery process and it depends on the distance

of a particular failure to the last checkpoint. A failure occurring right after a checkpoint

will have minimal rollback overhead while a failure occurring right before a checkpoint will

158

Figure 6.16: End-to-end execution time of S3D while injecting multiple node failures and
recovering locally, relative to the end-to-end execution time when injecting a single failure.
A relative time similar to a unit represents failures masked perfectly (variability is due to
variable rollback overheads), while relative times in the order of 1.06 or even 1.10 indicate
that not all failures masked each other, but some failures occurred after the delay already
propagated to that node. Note how increasing number of nodes implies a decrease of
total overhead with high failure counts (e.g. eight failures, as shown with the trend line),
indicating that an increase in core count increases failure masking probability. c©2015 ACM
(reprinted with permission) Gamell et al. [68].

have a rollback overhead practically equivalent to recomputing an entire iteration one more

time. In cases where this relative overhead increases up to 6%, or even 12%, at least one

failure occurred in a node after it had been delayed by the recovery of a previous failure. An

example of this can be seen in Figure 6.15, where, as mentioned before, comparing Figure

6.15e with Figure 6.15a, Figure 6.15b, or Figure 6.15d shows a non-negligible increase in

the total time to solution due to a failure occurring after the propagation of a prior failure.

In this specific case, the node experiencing the third failure (counting from the left) has

experienced a delay due to the second failure.

Results in Figure 6.16 and Figure 6.15 show, therefore, that benefits of failure masking

can be of critical importance when trying to minimize the overheads of recovery.

The results presented in Section 6.7.3 and Section 6.7.4 have demonstrated how local

recovery enables failure masking, which is also highly desirable at extreme-scales. Specifi-

cally, it has been empirically demonstrated that, with local recovery, the total overhead ON

of recovering from N failures is not necessarily N×O1 (being O1 the overhead of recovering

from a single failure).

159

6.7.5 Increasing the Failure Propagation Window on S3D

The goal of this experiment is to demonstrate that by exploiting the characteristics described

in Section 6.5 and Section 6.6 the opportunity for masking failures is increased. To this end,

the current set of experiments shows how the failure propagation window can be expanded

by increasing the ghost region size and re-mapping cells to ranks. As described before, the

failure propagation window is the pace at which the number of ranks affected by a particular

failure increases.

The failure propagation window closes when the effect of recovering from a failure reaches

all the ranks in the machine and can be measured (1) generically using number of iterations

computed since the iteration in which the failure occurred or (2) specifically using any

measure of time. Unless otherwise indicated, the results in this part of the evaluation section

use the former, more generic, method for measuring the failure propagation window.

We augmented the S3D main code loop to extend the communication frequency by

increasing the ghost region size and replicating part of the ghost region in two different

ranks. We also augmented the part that decomposes and maps the simulated domain in

the different ranks to support the topology described in Figure 6.12.

Evaluating the Overhead of Ghost Region Expansion. To evaluate the overhead

of the ghost region expansion technique on the execution time we performed a set of ex-

periments using the unmodified S3D as well as the augmented code. Figure 6.17 shows

the results of different levels of ghost region expansion, starting from a single layer of ghost

points and increasing it to allow communication up to every ten iterations. As the computa-

tion and the communication are overlapped by using asynchronous operations, the portion

of each bar labeled ‘Communication’ represents the time spent in relevant MPI operations.

Figure 6.17a was created performing 100 iterations of S3D, parameterized as in the rest of

the experiments in this section. The results show an increasing overhead due to ghost region

expansion. In particular, since communicating every iteration requires message exchange

with 6 neighbors and communicating every two iterations requires contacting 18 neighbors,

the communication time is significantly larger in the latter case. The figure shows how the

impact of decreasing the communication frequency to once every three or four iterations is

below 25%.

160

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Orig. 1 2 3 4 5 6 7 8 9 10

E
n

d
-t

o
-e

n
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 O
ri
g

.)
		

Number of iterations between communication

Computation
Communication

(a) S3D execution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Orig. 1 2 3 4 5 6 7 8 9 10

E
n

d
-t

o
-e

n
d

 t
im

e
 (

re
la

ti
v
e

 t
o

 O
ri
g

.)
		

Number of iterations between communication

Computation
Communication

(b) S3D execution modified to operate on one
floating-point number per cell, instead of nine.

Figure 6.17: Overhead of different levels of ghost region expansion on the end-to-end time
when compared to the unmodified, original S3D code (labeled as ‘Orig.’ in both subfig-
ures). The X-axis represents the number of iterations between consecutive communications
(parameter i in the model presented in Section 6.5). The experiments were conducted us-
ing a generic Linux cluster of 32 nodes connected via Infiniband. Each node has two Intel
quad-core Xeon E5620 processors and 24GB of RAM. Our executions used a 27-node al-
location (running 8 processes per node) to simulate a cubical domain split into 63 = 216
homogeneous partitions. Each bar represents the average of 10 repetitions, each simulating
100 S3D iterations. No checkpoints are created nor failures injected in any of these tests.

A similar set of executions that use and communicate a single real number per cell

(rather than nine real numbers per cell) is shown in Figure 6.17b to exemplify a slightly

different application pattern. In this case, it can be observed that ghost region expansion

could actually benefit execution time rather than negatively impacting it. In particular,

trading off extra computation per iteration (by increasing ghost region size) in order to

decrease communication frequency offers an overall gain in performance.

As a conclusion, the executions depicted in Figure 6.17 demonstrate the importance of

understanding and studying the aforementioned tradeoff in each individual stencil applica-

tion. Particular application behaviors influence the optimal communication frequency and

the impact it has on both computational performance and fault tolerance overhead.

Comparing Different Domain Cells to Rank Mappings. The first test needs to

determine the effect of the domain cell to rank mapping on the propagation delay shape.

To that end, Figure 6.18 shows different mapping strategies on a 512-rank execution with

a failure injected in sixteen ranks. The worst behavior can be observed when randomly

assigning the cells to the ranks. The figure shows the behavior of two random mappings.

Figure 6.18 also depicts tests done with two regular configurations: cubes of side two and

161

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8 9

N
um

be
r

of
 a

ffe
ct

ed
 r

an
ks

Simulation iteration number

Random (1)
Random (2)

Cubic (2x2x2)
Cubic (4x4x4)

R. prism (1x2x8)
R. prism(4x2x2)

Figure 6.18: Different domain cell to rank mapping strategies on a 512-rank execution with
a failure injected in all sixteen ranks of the third node, on the 16th second after the starting
of the application. Two random mappings are tested, providing the worst behavior, as well
as two cubic configurations (2×2×2 and 4×4×4) and two rectangular prism configurations
(1× 2× 8 and 4× 2× 2). Note that only the rectangular prism configurations fill exactly a
16-rank node, which is the target architecture.

cubes of side four, both providing power of two total number of cores – and, hence, divisible

by the total domain size of 512. Either configurations are suboptimal, since the total

number of ranks included in such cubes are not the exact number of rank in a node of

Titan. Therefore, two extra configurations based on rectangular prisms are tested. The

sizes of these two extra configurations are 1 × 2 × 8 and 4 × 2 × 2, and in both cases the

total number of ranks per decomposed shape is exactly sixteen, which matches the target

architecture. The results show that the rectangular prism of 4× 2× 2 and the cubic shape

of side 2 have a similar propagation delay curve. The remaining experiments with rank

re-mapping use the rectangular prism of 4× 2× 2, unless otherwise indicated.

Ghost Region Extension and Rank Re-Mapping Empirical Evaluation. Figure

6.19 shows several executions of S3D on 4096 cores, in which a single node failure was

injected by killing the 16 ranks running on it. In particular, all the processes in node 31

received a SIGKILL at the 25th second from the beginning of the execution. On the X-

axis, the iteration number is plotted while the Y-axis represents the total number of MPI

ranks affected by the recovery overhead of that failure. The number of ranks affected are

counted as depicted in Figure 6.20. The left subfigure of Figure 6.19 shows the profile of

162

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

N
um

be
r

of
 a

ffe
ct

ed
 r

an
ks

Simulation iteration number

Propagation of a 16-core failure with different ghost region sizes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60
Simulation iteration number

Detail comparing default mapping with rectangular prism mapping

RR improvements
1x ghost size
2x ghost size
4x ghost size
6x ghost size
8x ghost size
1x ghost size, RR
2x ghost size, RR
4x ghost size, RR
6x ghost size, RR
8x ghost size, RR

Figure 6.19: Effects of ghost region expansion and rank remapping on the propagation
window. Each line shows an execution on 4096 ranks in which a node failure (16 cores)
is injected. The left figure includes experiments with increasing number of ghost region
sizes with a default cell-to-rank mapping. The right figure includes a detail of the same
executions with both the default mapping and a mapping using the rectangular prism
approach. The gray area represents the improvement in the propagation curve induced
by using the topology-aware mapping. Each line is one of four executions; the difference
between executions was unnoticeable.

 15

 20

 25

 30

 35

 40

 0 512 1024 1536 2048 2560 3072 3584 4096

W
al

lti
m

e
(s

)

MPI Rank

0
0
0
0
0

192
480
896
1440
2112
2912

3840

4096
4096
4096
4096

Figure 6.20: Detail of the execution from Figure 6.19 using the default mapping and no
ghost region extension, showing how the ranks affected by a failure are counted. The X-axis
depicts MPI rank number. The Y-axis depicts the walltime, and each line represents the
point in time in which an S3D iteration is finished by each rank. The number on the right
of each line counts how many ranks have been affected by the node failure indicated with
a red cross.

163

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

N
um

be
r

of
 a

ffe
ct

ed
 r

an
ks

Simulation iteration number

RR improvements
2x ghost size
4x ghost size

2x ghost size, RR
4x ghost size, RR

Figure 6.21: Effect of ghost point size and rank re-mapping on the total number of affected
ranks by a node failure on a 512-rank execution. The node failure is injected in all cases by
injecting a 16-rank failure in the third node at the 16th second. The gray area represents
the improvement in the propagation curve induced by using the topology-aware mapping.
Each line is one of four executions; the difference between executions was unnoticeable.

propagation of the affected ranks for different ghost sizes, from the base case of one to the

extreme case of eight. In each case, a test labeled ‘Gx ghost size’ represents a test in which

the communication is done every G iterations. The scale of these experiments being small

(4096 cores), at least when compared with production runs, for the base case of no ghost

region extension, the failure is propagated to all the ranks in the domain quickly: in less

than 5 iterations. When extending the ghost region to as low as twice the original size, this

number is extended to 16 iterations, and in the extreme case of eight times the ghost size,

the propagation delay is extended to 80 iterations. On the other hand, the right part of the

same figure shows a zoomed detail of the same five cases. Each of the cases was repeated

with a topology-aware 4 × 2 × 2 rectangular prism mapping (as shown in Figure 6.12).

The re-mapping tests are marked as ‘RR’ and plotted in a dashed line. The respective

improvements of re-mapping the ranks in each of the ghost size extension cases are depicted

as a gray area between both dashed and non-dashed lines. In all cases, especially with

higher ghost size ranges, re-mapping the ranks as a rectangular prism as opposed to the

default linear mapping offers a delayed propagation of the failure, which is an extremely

desirable effect. In all ten cases, each line is one out of four executions: the reason why

only one is included is due to unnoticeable difference between the different executions –i.e.

164

 40

 50

 60

 70

 80

 90

 100

1x 2x 4x 6x 8x

Ex
ec

ut
io

n
tim

e
(p

er
ce

nt
ag

e
of

 b
as

e
te

st
)

Ghost size expansion

Ghost expansion
Ghost expansion + rank remapping

(a) 4096 ranks

 40

 50

 60

 70

 80

 90

 100

1x 2x 4x 6x 8x

Ex
ec

ut
io

n
tim

e
(p

er
ce

nt
ag

e
of

 b
as

e
te

st
)

Ghost size expansion

Ghost expansion
Ghost expansion + rank remapping

(b) 32768 ranks

Figure 6.22: Execution time of the different techniques while injecting and recovering from
a single node failure. The base test is considered the left-most bar in each of the figures,
representing no ghost expansion (1×) and no cell to rank re-mapping. The y-axis represents
the total time, as a percentage compared to the base test. The number of iterations between
consecutive checkpoints have been set to follow the degree of ghost rank expansion. Aside
from the ranks indicated in the captions, the experiments allocated an additional set of 128
spare ranks.

the lines almost overlap.

A similar experiment has been repeated with a much smaller domain of 512 total ranks,

and is depicted in Figure 6.21. In this case, a node failure has been injected in the 16th

second (all sixteen ranks running in node 3 receive a SIGKILL at the 16th second).

Additionally, the performance of the techniques described in Section 6.5 and Section 6.6

are studied by this empirical evaluation while injecting a single node failure. Figures 6.22a

and 6.22b depict the total, end-to-end, execution time when using 1×, 2×, 4×, 6×, and 8×

ghost region expansion combined with both rank re-mapping and no re-mapping, while run-

ning on 4,000 and 32,000 ranks. These experiments are performed using a cube S3D domain

decomposed on 16× 16× 16 ranks and 32× 32× 32 ranks, respectively. The checkpoint pe-

riod has been adjusted to coincide with the ghost region expansion rate, since checkpointing

involves communication with a pre-determined neighboring rank, and this communication

needs to be delayed to maximize the failure delay propagation window. Therefore, the

increase in performance when expanding the ghost region and further delaying communica-

tion is both due to the savings from reducing communication latency and synchronization

as well as reduced usage of bandwidth from the checkpointing process.

As can be observed in both cases, the use of rank re-mapping has no performance

penalty, while greatly improving the probability of failure masking, as expected and shown

165

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4

O
ve

rh
ea

d
of

 t
es

t
di

vi
de

d
by

 O
ve

rh
ea

d
of

 s
in

gl
e

fa
ilu

re
 (

%
)

Number of node failures

2x ghost
 size

1 2 3 4

2x ghost
 size, RR

1 2 3 4

4x ghost
 size

1 2 3 4

4x ghost
 size, RR

(a) Two and four times ghost region expansion; de-
fault and rectangular prism rank mapping techniques.
All executions run S3D on 512 ranks with an addi-
tional 64 spare ranks. Overheads are compared with
the single failure, “2x ghost size” test.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 4 8

O
ve

rh
ea

d
of

 t
es

t
di

vi
de

d
by

 O
ve

rh
ea

d
of

 s
in

gl
e

fa
ilu

re
 (

%
)

Number of node failures (16 cores/node)

4096 cores

1 4 8

32768 cores

(b) No ghost region expansion; 4 × 2 × 2 rectangular
prism rank mapping. The subfigure on the left used
S3D with 4096 compute ranks and 128 spare ranks,
and the subfigure on the right used S3D with 32768
compute ranks and 128 spare ranks.

Figure 6.23: Overhead on the total time to solution over several executions with increasing
number of failures recovered using local recovery in different scenarios. The X-axis for each
subfigure is the total number of failures, while the Y-axis represents the overhead of each
test relative to the overhead caused by a single failure (%). For each total number of failures,
the extrapolated overhead in a theoretical execution with best-case global recovery (100%
for one failure, 200% for two failures, 300% for three...) is indicated by the lighter color
(green). As such, the lighter part of each bar indicates overhead reductions due to failure
masking.

previously in the right part of Figure 6.19.

Staircase Behavior of Ghost Region Extension. Note that, in both Figure 6.19 and

Figure 6.21, the cases with extended ghost region present a staircase shaped profile, which

is more pronounced the larger the extension. This shape can be explained by understanding

that during the horizontal part of each ‘stair’, the delay of recovery is not propagated for

several iterations. The reasoning behind the periods of non-propagation lies in the fact

that, by increasing the ghost region size G times, the communication among ranks will only

occur every G iterations, and the delay is only propagated while communication occurs.

Total Overhead for Different Number of Failures. Figure 6.23a depicts the total

overhead of several failures when compared to the overhead of recovering from a single

failure. Each subfigure represents a different combination of ghost region size increase and

rank re-mapping technique, namely 2x and 4x ghost sizes each with both a default linear

rank mapping and a 4×2×2 rectangular prism mapping. For each failure count, Figure 6.23a

166

compares the total overhead with local recovery of real executions with a theoretical, best-

case global recovery. The comparison with global recovery in these Figures is considered

to be best-case since the recovery cost (excluding the rollback cost) is considered to be

identical in both local and global recovery, which is not a safe assumption even at medium

scales of hundreds or thousands of cores. We can observe that when jumping from 2 to 4

ghost region size extension multipliers the opportunities of failure masking are increased

and, therefore, the total overheads are lower in the case of three and four node failures.

The same happens when changing the mapping strategy from linear to based on a 4× 2× 2

rectangular prism, in both the cases of 2x and 4x ghost regions sizes. The results show only

a single experiment for each test.

In Figure 6.23b the same overhead and comparison with global recovery that was de-

picted by Figure 6.23a can be observed. In this case, the scale is increased from 512 ranks

to 4096 and 32768, respectively. Local recovery offers a much lower overhead than global

recovery, as seen in the 512-rank case, which can be explained through the benefits of fail-

ure masking. It can be seen how the local recovery version offers a higher reduction in the

32768-rank execution than in the 4096-rank case, which is expected, since the possibilities

of failure masking are increased in larger domains.

167

Chapter 7

Conclusion

7.1 Conclusion

Science and engineering applications increasingly rely on very large-scale simulations to

make advances, facilitate discovery, and inspire deeper understanding in their respective

fields. The expectation of such advancements motivates the need to achieve exascale com-

puting capability by early next decade. The enormous scale and complexity of an exascale

system, which will most likely be composed of a very large number of hardware and soft-

ware components, poses many challenges, one of which is system reliability. On current

petascale systems, process and node failures are observed, on average, every few hours, and

it is expected that the reliability of future HPC systems will decrease.

With exascale systems, the expected reduction in reliability will directly impact appli-

cations since the typical run time of target scientific applications will be longer than the

MTBF. As a result, resilience will be a key design requirement for exascale systems and

applications, establishing fault tolerance techniques as a necessity. Hardware-level fault

tolerance has clear advantages, such as allowing the software to assume a reliable substrate.

To counter, the abstraction of a failure free machine may not be sustainable due to its

elevated implementation and maintenance costs. In order to efficiently tolerate frequent

failures, different lines of research have suggested the introduction of significant algorithmic

or even programming model switches away from traditional SPMD (single program, multi-

ple data) approaches. Since most existing simulations use (and are proven to be accurate

with) an SPMD model and are composed of hundreds of thousands of lines, making such

drastic changes to the model is costly. As an alternative, HPC centers recommend that

users periodically create either application-agnostic or application-specific checkpoints and

store them in the parallel filesystem (PFS), assumed to be resilient due to techniques such

168

as data replication. Once a failure occurs, surviving application processes must be stopped

and the application can be restarted from the last checkpoint. This technique is known as

PFS-based checkpoint and restart (C/R).

This dissertation presents the technique of on-line recovery through application-awareness.

In particular, this dissertation presents and discusses the advantages and limitations of

global and local recovery, as well as describes how to enable multiple failure masking in

highly unreliable resources. As a part of this discussion, the Fenix and FenixLR frameworks

are presented as an attractive and viable alternative to PFS-based C/R, having better per-

formance and resilience tradeoffs. Through Fenix and FenixLR, this dissertation describes,

implements, models, and evaluates online and application-aware resilience approaches for

SPMD and MPI applications. Application-aware online recovery addresses some of the

shortcomings of traditional PFS-based C/R. It eliminates the overhead associated with

process restart as well as allows an application’s memory space to survive failures and be

used for either the more efficient reconstruction of application state or the optimization of

checkpoint storage.

In this dissertation we have explored an approach for online, transparent recovery from

high-frequency process, node, blade, and cabinet failures in MPI-based parallel applications

using application-guided checkpointing as a data resilience method. Also presented are the

design and implementation of this approach within the Fenix framework, supplemented by

the deployment of Fenix on the Titan Cray XK7 production system at ORNL. With the

addition/alteration/rearrangement of less than 35 lines of code, Fenix was able to introduce

resilience into the S3D combustion application. We also presented an extensive experimental

evaluation of Fenix on Titan using S3D while injecting real failures. These experiments

demonstrate that the combination of techniques implemented in Fenix provide a viable

solution for addressing failures at extreme scales. The viability of Fenix as a solution is

only further evident when considering that the observed 18% overhead is lower than that

which can be observed in current S3D large-scale production runs experiencing 9 failures

per day on Titan. The scalability of each stage of failure recovery in Fenix was evaluated,

concluding that data checkpointing, data recovery, and process recovery scale well with an

169

increase in the number of cores.

This dissertation has also presented the advantages, most prominently in the area of

scalability, of application-aware checkpointing to support transparent node failure recovery

and demonstrates its ability to eliminate the cost of coordination under certain assumptions.

Implicit coordination allows diskless, neighbor-based checkpointing to scale up to 250,000

cores and shows a 300%-400% benefit compared to blocking coordinated checkpointing, even

in a highly balanced application like S3D. This reaffirms what recent studies suggest [79]:

the vision of a failure-free machine will not be sustainable in future systems and application-

aware resilience techniques will likely be required at exascale.

Certain applications, however, may not require recovery at a global level after a failure

and, therefore, may benefit from local hard failure recovery approaches. For example, par-

allel stencil computations, which represent a large class of parallel computing applications

such as finite-difference methods, exhibit unique computation and communication patterns

– multiple iterations, each composed of computation on local data and communication

with immediate neighbors. This dissertation shows that, should a multi-process failure of

a stencil computation be recovered in a local manner, only the immediate neighbors are

immediately affected by the recovery delay of that particular failure while the rest of the

domain is allowed to continue the simulation in a failure-agnostic way. This dissertation

implements and experimentally evaluates local recovery algorithms as implemented in the

FenixLR framework on top of Titan while injecting real failures. Experiments with S3D

demonstrate that local recovery provides an optimized resilience solution for stencil-based

applications when tolerating node failures occurring as frequently as every 5 seconds on

scales up to 250,000+ cores. For example, an overall resilience overhead of less than 14%

was observed when injecting node failures every 30 seconds. Furthermore, our experiments

confirm the scalability of local recovery stages in FenixLR and demonstrate that process

recovery aspects provide better scalability with increasing number of cores than global re-

covery constructs.

Building on the communication pattern of stencil applications, we model, simulate, and

experimentally demonstrate how the delay of recovering from a failure in a local manner

170

propagates slowly across a machine. Therefore, if a subsequent failure occurs at distant node

before the original failure delay has spread to that node, the delay due to the second failure

is masked by the delay due to the first one. In general, we show that failure masking allows

for the reduction of overhead on total execution time due to recovery from multiple failures

down to a level comparable to that of a lower failure count. For example, experimental

results have shown an S3D execution where four failures masked each other in an execution

with 140,000+ cores to provide an overhead equal to that of a single failure.

The dissertation also describes two application-level optimizations that can be applied

to improve the effect and probability of failure masking. These two techniques involve

increasing the size of the ghost region and cell-to-rank mapping so that the propagation

effect of any node failure is limited or reduced. Both techniques revolve around the concept

of decreasing the communication frequency to increase the failure propagation window.

7.2 Future Work

The lines of research presented in this dissertation can be expanded in several directions,

including the following:

• Exploring Data Recovery through Checkpoint-less Data Extrapolation.

Some scientific simulations can tolerate a certain degree of indeterminism in the so-

lution. In other words, instead of requiring an exact solution, some applications may

tolerate an approximate one. For example, a PDE simulation that simulates the tem-

perature of a domain might accept some approximation in parts of the domain that

are not critical. In the case where ranks of a parallel application simulating non-

critical parts are affected by a failure, data that was lost due to the failure can be

extrapolated using data that survived in logically neighboring ranks.

A possible direction for exploring data recovery may be to evaluate the impact of

failures when recovered in a checkpoint-less manner as well as when recovered by

using checkpoints. The proposed approach can be considered semi-local since, even

though the environment would be globally restored, the execution would be resumed

locally: survivor ranks are neither required to rollback nor observe the failure – the

171

framework automatically uses the computational resources of different ranks to fix the

environment.

• Extending On-line Failure Recovery for Multi-Application Workflows. Sci-

entific simulations may require several applications to be coupled together in or-

der to cooperatively reach a solution. A typical example is the simulation-analysis-

visualization workflow in which one of the applications is running a simulation and,

in a separate set of nodes, a second application analyzes a particular state of the

simulated data to extract conclusions or, for example, to create a visualization for the

scientists to manually inspect or monitor application state.

A possible direction to extend the work in this dissertation is to explore on-line re-

covery with multi-application workflow. In current scenarios, the failure of one of the

applications would stall the workflow as a whole. Specifically, a first step toward this

exploration would be to apply global recovery concepts within each application in the

workflow and local recovery among applications to recover from failures that affect

only one of the applications. A second step could study how simultaneous failures

affecting different applications in the workflow can be tolerated. A final study might

determine the feasibility of using local recovery within each of the applications as well

as between them.

• Studying Gradual Degradation Feasibility for different Application Types.

The approach for global recovery as well as local recovery presented in this dissertation

implements non-shrinking recovery. By pre-allocating spare compute resources, Fenix

and FenixLR allow non-shrinking process/node failure recovery which in turn provides

the application with the same amount of computational resources (i.e. same number

of MPI processes) before and after each failure. This methodology, however, can only

tolerate as many failures as spare resources pre-allocated. To overcome this problem

altogether, it is expected that future systems will provide dynamic node allocation.

For example, the job scheduler of a future system may dynamically provide new

resources to jobs that suffered node failures.

172

Some applications, however, readily support dynamism in the total number of pro-

cesses and can quickly adapt to shrinking scenarios where resources disappear due

to failures. An example can be found in bag-of-tasks applications, where a leader

spawns tasks to a set of sub-resources. If a sub-resource is lost, its assigned task

can be simply rescheduled to other resources. A possible direction for future work

might be to study the feasibility of shrinking recovery for more complex application

decompositions, such as bulk-synchrounous applications.

173

Appendix A

Specification of the Fenix MPI Fault Tolerance library

A.1 Introduction

This appendix provides a specification of Fenix (based on version 1.0.1 [70]), a software

library compatible with the Message Passing Interface (MPI) to support fault recovery

without application shutdown. The library consists of two modules. The first, termed

process recovery, restores an application to a consistent state after it has suffered a loss of

one or more MPI processes (ranks). The second specifies functions the user can invoke to

store application data in Fenix managed redundant storage, and to retrieve it from that

storage after process recovery.

A.1.1 Functionality

Fenix is used (1) to repair communicators whose ranks suffered one or more failures detected

by the MPI runtime, and (2) to restore state to application variables and arrays from

redundant data storage.

Process recovery. Within the Fenix framework, only communicators derived from the

communicator returned by Fenix_Init are eligible for reconstruction. After commu-

nicators have been repaired, they contain the same number of ranks as before the

failure occurred, unless the user did not allocate sufficient redundant resources (spare

ranks) and instructed Fenix not to create new ranks. In this case communicators will

still be repaired, but will contain fewer ranks than before the failure occurred.

To ease adoption of MPI fault tolerance, Fenix automatically captures any errors

resulting from MPI library calls that experienced a failure due to a damaged com-

municator (other errors reported by the MPI runtime are ignored by Fenix and are

174

returned to the application, for handling by the application writer). In other words,

programmers do not need to replace calls to the MPI library with calls to Fenix (for

example, Fenix_Send instead of MPI_Send).

Current implementation

Fenix uses MPI’s PMPI profiling interface. This currently means that it is incompat-

ible with other software tools that need access to the profiling interface as well. It is

expected that this restriction will be lifted soon via MPI extensions similar to that

proposed by Schulz and De Supinski [136].

End current implementation

Data recovery. Fenix provides its own redundant data storage API to facilitate data re-

covery along with process recovery, but the user can choose other data recovery op-

tions to meet a variety of application needs. For example, data could be recovered by

approximately interpolating values from unaffected, topologically neighboring ranks

instead of by reading stored redundant data. In addition, the user may decide to

use external libraries such as GVR (Global View Resilience [36]) or SCR (Scalable

Checkpoint/Restart [111, 112]) to restore rank data after a failure. The crux is that

the program does not have to be shut down and restarted.

Any Fenix function without a return type, e.g. Fenix_Init, may be implemented via

macros, in which case it cannot be used to resolve function pointers. It is up to the imple-

mentation to decide which functions are macros.

Current implementation

Fenix currently does not have a thread safety model.

End current implementation

A.1.2 Terms and format

When describing Fenix functions, we will indicate for each function argument whether it

provides an input value (i.e. it is read by the function), an output value (i.e. it is set by

the function), or both, using [IN], [OUT], and [INOUT], respectively. If a parameter is

175

an opaque data type accessed by a handle and the handle itself is not changed by a Fenix

function, but the contents of the data type may be, we still label the parameter as [INOUT],

in keeping with the MPI specification.

For each function we list whether it is collective or not. If a function is not collective,

it has strictly local completion semantics, and other ranks in the associated communicator

may safely skip the call. If collective, all ranks in a specific communicator must call that

function at logically the same time. Since collective-ness does not imply communication,

a collective function may have either local, non-local, or globally synchronizing completion

semantics. Collective operations are labeled as follows:

(collective operation, local). If a collective function has local completion semantics, the

function will not trigger any synchronization nor communicate across ranks, but re-

sults may be incorrect if not called by all ranks in the associated communicator.

(collective operation, non-local). If a collective function has non-local completion se-

mantics, the calling rank potentially communicates with other ranks. All ranks in the

associated communicator are allowed to synchronize, but they are not required to;

consequently, the function should not be used for synchronization.

(collective operation, global synch). If a collective function is globally synchronizing it

is automatically non-local. No ranks in the associated communicator can complete

the function until all ranks have called it.

This specification contains sections that give advice to users, or that clarify the current

implementation of Fenix. These sections are indicated by

Advice to users

Example advice.

End advice to users

and

Current implementation

Example clarification.

End current implementation,

176

respectively. They are not part of the specification.

A.2 Initialization, Rank Failure Recovery, and Teardown

A.2.1 Initialization

Fenix Init (collective operation, global synch)

void Fenix_Init(

MPI_Comm comm,

MPI_Comm *newcomm,

int *role,

int *argc,

char ***argv,

int spare_ranks,

int spawn,

MPI_Info info,

int *error);

This function is used (1) to activate the Fenix library, (2) to specify extra resources in

case of rank failure, and (3) to create a logical resumption point in case of rank failure.

The program may rely on the state of any variables defined and set before the call to

Fenix_Init. But note that the code executed before Fenix_Init is executed by all ranks

in the system (including spare ranks, see below).

Fenix_Init is a blocking function call. Specifically, when it is called for the first time

(i.e., before any failure has happened), it will block until all ranks in communicator comm

have reached it. After an error is intercepted by Fenix, and if Fenix_Init is chosen as

the resumption point (default behavior, which can be modified via the info parameter, see

below), no ranks are allowed to exit from Fenix_Init until all active ranks (any ranks in

the execution that are not spare ranks are called active) have returned control to it.

Current implementation

While Fenix_Init is called explicitly only once in a user code, control is transferred into

177

it indirectly by the Fenix library whenever an active rank calls an MPI function whose

associated resilient communicator has been damaged (a condition automatically intercepted

by Fenix), based on ULFM’s failure notification mechanism. Consequently, the function may

experience delay if certain ranks do not call MPI communication functions for a long time,

or only call MPI functions involving communicators that were not affected by the error.

End current implementation

Spare ranks are not released from Fenix_Init until they have been used by Fenix to

repair damaged resilient communicators, or until Fenix_Finalize has been called by the

active ranks (at which time remaining spare ranks automatically call MPI_Finalize and

exit). When a failure occurs and is recovered by Fenix, surviving ranks resume execution

returning from Fenix_Init (or elsewhere depending on the "resume_mode" key in info).

Replacement ranks that are created using MPI_Comm_spawn (invoked by Fenix once the

spare ranks have been depleted, subject to the rank repair policy specified by the user)

start executing the main program, including MPI_Init and Fenix_Init and any preceding

statements. Consequently, spawned replacement ranks experience a different control flow

than survivor ranks or spare ranks, which may affect the correctness of MPI calls placed

before Fenix_Init, especially collective communications. It is the user’s responsibility to

avoid such problems.

This function must be called by all ranks in comm, after MPI_Init or MPI_Init_thread.

All calling ranks must pass the same values for the parameters comm, spare_ranks, spawn,

and info. Fenix_Init must be called exactly once by each rank. It is recommended to

access argc and argv only after executing Fenix_Init, since command line arguments

passed to this function that apply to Fenix may be removed by Fenix_Init.

Parameters:

• comm [IN] - communicator that includes any spare ranks (see below) the user deems

necessary. It will be used by Fenix to derive a resilient communicator. We define

a resilient communicator as one whose accesses are monitored by Fenix, which will

repair it in case it suffers failed ranks. Any communicator derived from a resilient

communicator is automatically resilient itself. To enable successful recovery from

failures via Fenix, the user should only use resilient communicators. MPI_COMM_WORLD

178

is a valid value for comm. MPI_COMM_SELF is not a valid value for comm.

• newcomm [OUT] - resilient communicator, returned and managed by Fenix and derived

from comm, to be used by the application instead of comm. Ranks in the resilient

communicator are assigned in the same order as in comm. Let the number of ranks in

comm be C, the number of spare ranks S (equals spare_ranks), and the number of

ranks failed thus far F (F is assumed 0 at the first invocation of Fenix_Init). Upon

exit from Fenix_Init newcomm contains:

– (C − S) ranks if spawn equals true, and

– (C − S)−max(F − S, 0) ranks if spawn equals false.

If newcomm equals NULL, Fenix will tacitly replace every occurrence of communicator

comm in the code with Fenix_Init’s resilient output communicator.

Current implementation

To fulfill the condition stated in the last sentence, a Fenix implementation may need

to use MPI’s profiling interface.

The current implementation uses MPI’s profiling interface. If newcomm equals NULL,

the interface will intercept any use of comm and replace it with the resilient commu-

nicator (which is stored inside Fenix and is not visible to the user).

End current implementation

Advice to users

If comm equals MPI_COMM_WORLD and newcomm equals NULL, MPI_COMM_WORLD can be

used as a resilient communicator. This constitutes a significant convenience, since the

user would not need to replace occurrences of MPI_COMM_WORLD in the code explicitly

with a different resilient communicator.

End advice to users

• role [OUT] - upon return, contains one of the following values, indicating the most

recent history of the calling rank:

179

– FENIX_ROLE_INITIAL_RANK - this is the value returned to all ranks the first

time the program is started (i.e. the first time Fenix_Init returns after the

user invoked a program launcher, e.g. mpirun – not when individual ranks are

reconstructed by Fenix to recover from a failure).

– FENIX_ROLE_RECOVERED_RANK - this rank replaces a failed rank since the latest

resilient communicator restoration (or initialization) by Fenix. The rank was

taken either from the pool of existing spare ranks managed by Fenix, or was

newly created by Fenix using MPI_Comm_spawn.

– FENIX_ROLE_SURVIVOR_RANK - this rank was not affected by the rank failure that

triggered the latest resilient communicator restoration by Fenix.

The role parameter always indicates the role of a rank since the last exit from Fenix_

Init. For example, assume a certain rank receives the RECOVERED role due to a failure.

If it survives a subsequent failure, the role output parameter will now indicate that

this rank is a SURVIVOR rank.

• argc [INOUT] - pointer to the number of arguments provided by the argc argument

to main, or NULL.

• argv [INOUT] - pointer to the argument vector provided by the argv argument to

main, or NULL.

• spare_ranks1 [IN] - the number of ranks in comm that are exempted by Fenix in

the construction of the resilient communicator by Fenix_Init. These ranks are kept

in reserve to substitute for failed ranks. Failed ranks in resilient communicators are

replaced by spare or spawned ranks.

Current implementation

First, spare ranks are used to substitute failed ranks. When these are depleted, either

(1) failed ranks are substituted with spawned ranks (if spawn equals true), or (2)

survivor ranks are compacted to shrink the resilient communicator (if spawn equals

1While it may be more accurate to use the term spare MPI processes, since spare ranks taken from comm

are to be used for substitution in other communicators, we stick with the shorter term for readability.

180

false).

End current implementation

Ranks to be used as spare ranks by Fenix will be available to the application only

before Fenix_Init, or after they are used to replace a failed rank, in which case they

turn into active ranks. This specification refers to the latter as RECOVERED ranks.

Note that all spare ranks that have not been used to recover from failures (and,

therefore, are still reserved by Fenix and kept inside Fenix_Init) will automatically

call MPI_Finalize and exit when all active ranks have entered the Fenix_Finalize

call.

• spawn [IN] - boolean value used to specify whether Fenix may attempt to spawn

replacement ranks or not.

– If spawn equals false and insufficient spare ranks are available to replace all

failed ranks, no new ranks will be spawned to fill out original communicators.

Failures will be resolved by Fenix by “compacting” survivor ranks within their

respective resilient communicators, such that they retain the same order as be-

fore the failure, but they are numbered successively and contiguously within the

shrunk communicator.

Note that this mode, in combination with requesting no spare ranks, can be used

to force a shrinking communicator repair mechanism.

– If spawn equals true and insufficient spare ranks are available to replace all

failed ranks, some or all required new ranks will be spawned, using MPI_Comm_

spawn, to fill out original communicators. A correct Fenix implementation must

use MPI_Comm_spawn to implement this feature, and must pass the entire key-

value dictionary of the info parameter of Fenix_Init in the info parameter of

MPI_Comm_spawn.

Advice to users

The last sentence may imply that a user can control where and how to allocate

respawned ranks through the info parameter, even though that is dependent on

181

the MPI and Fenix implementations.

End advice to users

Current implementation

Rank spawning in response to a failure is not supported in the current imple-

mentation.

End current implementation

• info [IN] - MPI_Info object to further modify Fenix’s process recovery behavior. The

application may pass MPI_INFO_NULL to indicate default behavior.

At least the "resume_mode" key must be recognized by the Fenix implementation.

This key is used to indicate where execution should resume upon rank failure for all

active (non-spare) ranks in any resilient communicators, not only for those ranks in

communicators that failed. The following values associated with the "resume_mode"

key must be supported by the Fenix implementation:

– "fenix_init" - execution resumes at logical exit of Fenix_Init.

• error [OUT] - used to signal that a non-fatal error or special condition was en-

countered in the execution of Fenix_Init, or FENIX_SUCCESS otherwise. It has the

same value across all ranks released by Fenix_Init. If spawning is explicitly disabled

(spawn equals false) and spare ranks have been depleted, Fenix will repair resilient

communicators by shrinking them and will report such shrinkage in the error return

parameter through the value FENIX_WARNING_SPARE_RANKS_DEPLETED. If spawning is

enabled but fails to create the required new ranks in the absence of a sufficient number

of spare ranks, Fenix will repair resilient communicators by shrinking them and will

report such shrinkage in the error return parameter through the value FENIX_ERROR_

SPAWNING_FAILED.

Fenix Initialized

int Fenix_Initialized(

int *flag);

182

This function can be used to check whether Fenix has been initialized.

No Fenix functions may be called before Fenix_Init or after Fenix_Finalize, except

Fenix_Initialized.

Parameter:

• flag [OUT] - true if Fenix_Init has been called and false otherwise.

A.2.2 Callback handler function recovery

Fenix Callback register

int Fenix_Callback_register(

void (*recover)(MPI_Comm, int, void*),

void *callback_data);

This function registers a callback to be invoked after a failure has been recovered by Fenix,

and right before resuming application execution (e.g., returning from Fenix_Init by de-

fault). If this function is called more than once, the different callbacks registered will be

called in the same order they were registered.

Callbacks will only be invoked by survivor ranks, since spare ranks or respawned ranks

had no way to register them before a failure: they only execute code after Fenix_Init

once the Fenix recovery procedure (which includes calling all registered callback functions)

is completely finished.

FENIX_ERROR_CALLBACK_NOT_REGISTERED will be returned if there is an error while

trying to register the callback function.

If a user callback function returns, Fenix will assume that no error occurred within the

callback function. Therefore, if an error does occur, it needs to be either solved within the

callback or escalated by using mechanisms such as MPI_Abort by it.

Parameters:

• recover [IN] - the callback function to be registered.

• callback_data [IN] - a pointer to application-specific data to be passed as the last

parameter when calling the callback. Note that NULL is an acceptable value.

183

Callback functions need to observe the following prototype:

void my_recover_callback(

MPI_Comm comm,

int error,

void *callback_data);

Since the registration of callback functions is not a collective operation, the callback

itself should not perform any MPI communication.

Callback function parameters:

• comm [IN] - contains the resilient communicator returned by Fenix_Init. When the

callback function is invoked by Fenix, this communicator has already been repaired

by Fenix and, therefore, callback’s comm parameter is identical to newcomm as returned

by Fenix_Init.

• error [IN] - indicates any error that may have occurred during the recovery process.

See Section A.2.1 for more details.

• callback_data [IN] - contains the pointer passed when registering the callback (last

parameter of Fenix_Callback_register). Note that this may be NULL.

A.2.3 Querying active ranks

Even though the application can obtain information about the roles of ranks after a failure,

that may require a collective communication among ranks in the target resilient commu-

nicator. Fenix has access to this information locally and the application can access it by

using the following operations.

Fenix Get number of ranks with role

int Fenix_Get_number_of_ranks_with_role(

MPI_Comm comm,

int role,

int *number_of_ranks);

184

This function returns the total number of ranks in resilient communicator comm that

have a particular role.

Parameters:

• comm [IN] - resilient communicator whose ranks are being queried.

• role [IN] - queried role. See the description of the role output parameter of Fenix_

Init for a clarification of the possible values.

• number_of_ranks [OUT] - number of ranks in comm whose role equals role.

Fenix Get role

int Fenix_Get_role(

MPI_Comm comm,

int rank,

int *role);

This function can be used to query a particular rank in resilient communicator comm

about its role.

Parameters:

• comm [IN] - resilient communicator whose rank is being queried.

• rank [IN] - rank whose role is requested.

• role [OUT] - the role of the queried rank. See the description of the role output

parameter of Fenix_Init for a clarification of the possible values.

A.2.4 Teardown

Fenix Finalize (collective operation, global synch)

int Fenix_Finalize(void);

185

This function cleans up all Fenix internal state. If an MPI program using the Fenix

library terminates normally (i.e., not due to a call to MPI_Abort, or an unrecoverable error)

then each such rank must call Fenix_Finalize before it exits. It must be called before

MPI_Finalize, and after Fenix_Init. There shall be no Fenix calls after this function,

except Fenix_Initialized.

As noted in the description of Fenix_Init, all spare ranks that have not been used

to recover from failures are still reserved by Fenix and kept inside Fenix_Init. Fenix will

force remaining spare ranks to call MPI_Finalize and exit when all active ranks have called

Fenix_Finalize.

Advice to users

Sometimes users may want to remove ranks proactively from the execution, for example

because monitoring data shows that failure of a rank is imminent. This can be accomplished

simply by calling exit on the targeted ranks, followed by an invocation of MPI_Barrier.

The removed ranks will not reach the barrier, causing an error among the remaining ranks

in the resilient communicator supplied to the barrier function. This error will be intercepted

by Fenix, which will attempt to repair the affected communicator, excluding any eliminated

ranks2.

The smaller the communicator used in the invocation of the barrier is chosen, the slower

the effect of removing ranks from that communicator may percolate to other ranks.

End advice to users

A.3 Data Storage and Recovery

A.3.1 Overview

Fenix provides options for redundant storage of application data to facilitate application

data recovery in a transparent manner. Fenix contains functions to control consistency

of collections of such data, as well as their level of persistence. Functions with the prefix

Fenix_Data_ perform store, versioning, restore and other relevant operations and form the

Fenix data recovery API.

2An out-of-band solution could also be sending a SIGKILL signal to the targeted ranks.

186

The user can select a specific set of application data, identified by its location in memory,

label it using Fenix_Data_member_create, and copy it into Fenix’s redundant storage space

through Fenix_Data_member_(i)store(v) at a certain point in time.

The user may group semantically similar pieces of data, called members or group mem-

bers, into disjoint data groups, which can be managed by the Fenix_Data_group_ set of

functions.

Subsequently, Fenix_Data_commit assigns a unique time stamp to the resulting data

snapshot, marking the stored data as potentially recoverable after a loss of ranks. Commit-

ting a data group also finalizes all preceding Fenix store operations involving a data group.

Therefore, a snapshot is identified by its time stamp (an integer automatically incremented

by one) and refers to the memory state of data members in a group. If a member was not

stored when creating a particular snapshot S2, but was stored when creating a previous

snapshot S1, Fenix considers the stored copy in S1 to be the state of that member in S2

(see example in Section A.4.4).

Individual data members in a snapshot can be restored whenever they are needed with

Fenix_Data_member_restore, for example after a failure occurs. We note that the Fenix’s

data storage and recovery facility aims primarily to support in-memory recovery.

Populating redundant data storage using Fenix may involve dispersion of data created by

one rank to other ranks within the system (see, e.g., Chapter 4), making the store operation

semantically a collective operation. However, Fenix does not require store operations to

be globally synchronizing. For example, execution of Fenix_Data_member_store for a

particular collection of data could potentially be finished in some ranks, but not yet in

others. And if certain ranks nominally participating in the storage operation have no actual

data movement responsibility, Fenix is allowed to let them exit the operation immediately.

Consequently, Fenix data storage functions should not be used for synchronization purposes.

If snapshots are created by the application (following Fenix_Init), both recovered ranks

as well as surviving ranks after a failure may be supplied with data from a valid and

consistent state taken before the failure occurred. This behavior is controlled by the user.

187

A.3.2 Managing data storage and recovery constructs

A.3.2.1 Grouping data objects and ranks with data groups

Fenix Data group create (collective operation, local)

int Fenix_Data_group_create(

int group_id,

MPI_Comm comm,

int start_time_stamp,

int depth);

Creates an instantiation of a Fenix data group, identified by a unique, user-specified

integer.

A Fenix data group provides dual functionality. First, it serves as a container for a set

of data objects (members) that are committed together, and hence provides transaction

semantics. Second, it recognizes that Fenix_Data_member_store is an operation carried

out collectively by groups of ranks, but not necessarily by all active ranks in the MPI

environment. Hence, it adopts the convenient MPI vehicle of communicators to indicate

the subset of ranks involved.

All ranks in resilient communicator comm must pass the same values for all parameters.

Parameters:

• group_id [IN] - identifier of the group, unique among all active MPI ranks in the

application (not only in comm). If a group with this group_id was already created

in the past and has not been deleted, the start_time_stamp and depth parameters

of this invocation will be ignored, since Fenix automatically determines the correct

values based on the previous invocation. The recreated group will logically be the

same as the one previously in existence.

Note that group_id functions as a handle to the group, to be used in creating data

members associated with the group, storing these members, committing the group,

as well as recovering data after a failure. It must be a nonnegative integer less than

FENIX_GROUP_ID_MAX, with the latter value guaranteed to be at least 230.

188

• comm [IN] - resilient communicator. The ranks in comm participate as a logical unit

in the storage and recovery of the data stored by the corresponding Fenix_Data_

member_(i)store(v) call.

Current implementation

If the buddy rank mechanism is used for redundant data storage (the default method,

see Chapter 4), there have to be at least two ranks in the communicator to be able

to recover data after a rank failure. However, if these ranks are collocated on the

same processor or within the same node, they are more likely to fail together than

if they are located on different nodes. In general, the resilient communicator should

be chosen such that it is possible to define a buddy rank that is outside the expected

failure envelope of the rank that created the data to be stored.

End current implementation

• start_time_stamp [IN] - each subsequent data snapshot of this group has an index

that uniquely identifies the snapshot within the group. This index is called a time

stamp. The start_time_stamp is the index of the first data snapshot of this group

to be written, and can be defined by the user (for example, set to zero); this value

will be incremented by one automatically each time the group is committed.

The user-supplied start_time_stamp must be a nonnegative integer less than FENIX_

TIME_STAMP_MAX, with the latter value guaranteed to be at least 230.

• depth [IN] - the number of successive data snapshots (see Fenix_Data_commit(_

barrier) in Section A.3.4.2) of this group that are retained by Fenix, in addition

to the last one, and that can be recovered by calling Fenix data member restore

functions (see Section A.3.5). For example, a depth of 0 means Fenix will keep only the

necessary data to restore the most recent snapshot, while it will mark older snapshots

for deletion. These will be removed automatically whenever Fenix_Data_commit or

Fenix_Data_commit_barrier is called. A depth of −1 means Fenix will not remove

any older snapshots automatically. In that case only explicit, manual deletion of out

of date snapshots is possible.

189

The predefined constant FENIX_DATA_GROUP_WORLD_ID constitutes a group_id identi-

fying a group instance as if created by calling:

Fenix_Data_group_create(

FENIX_DATA_GROUP_WORLD_ID, // group_id

comm, // communicator

0, // start_time_stamp

0); // depth

where comm is the resilient communicator produced when Fenix_Init returned most

recently. In other words, FENIX_DATA_GROUP_WORLD_ID is a convenient constant to represent

a data group involving all active ranks via a reserved group_id, an initial time stamp of

zero, and a garbage collection depth of zero (i.e., Fenix will keep only the last snapshot).

Applications that do not need the flexibility of the more general Fenix grouping mecha-

nism can, therefore, avoid having to create a specific group and can use this generic group

instead.

Fenix Data group delete (collective operation, local)

int Fenix_Data_group_delete(

int group_id);

Deletes a user-created data group. Any Fenix data group except FENIX_DATA_GROUP_

WORLD_ID can be deleted.

When a data group is no longer needed, its resources can be released (and its group_id

be made available for use in other groups) with this function. It will recursively delete all

its members. This function may only be called before any store or commit operations have

been carried out involving the group or its members (see below).

Parameters:

• group_id [IN] - id of the group to be destroyed.

A.3.2.2 Describing application data with data group members

Fenix Data member create (collective operation, local)

190

int Fenix_Data_member_create(

int group_id,

int member_id,

void *source_buffer,

int count,

MPI_Datatype datatype);

Fenix data groups are composed of members that describe the actual application data.

This function creates a new data member and assigns it into a particular group.

All calling ranks in the group’s communicator must pass the same values for the param-

eters member_id, datatype, and group_id.

Parameters:

• group_id [IN] - identifier of the data group containing the member.

• member_id [IN] - integer unique within the data group that identifies the data in

source_buffer. The user-supplied member_id must be a nonnegative integer less

than FENIX_MEMBER_ID_MAX, with the latter value guaranteed to be at least 230.

• source_buffer [IN] - address of data to be copied to redundant storage maintained

by Fenix. Note that this parameter may also be specified using the function Fenix_

Data_member_attr_set. The latter is critical for non-survivor ranks (i.e., FENIX_

ROLE_RECOVERED_RANK) after a failure. In that case data group members are implicitly

recreated by Fenix when the programmer calls Fenix_Data_group_create, but any

pointer to the application data is invalid and must be supplied explicitly by the user

for each group member. Survivor ranks will use the source buffer pointer specified

before the failure, unless it is overwritten by Fenix_Data_member_attr_set.

• count [IN] - maximum number of contiguous elements of type datatype of the data

to be stored3. This parameter does not need to be the same in all ranks calling this

function.

3To avoid problems related to using an int to identify sizes (such as 32-bit integers not being big enough
to address all the memory, we will use MPI_Count once it is adopted by the MPI Forum.

191

• datatype [IN] - data type of each element in source_buffer.

Fenix Data member delete (collective operation, local)

int Fenix_Data_member_delete(

int group_id,

int member_id);

When a data group member is not needed, it may be deleted using this function.

Note that members can be added to or deleted from a group at any point between the

calls to Fenix_Data_group_create and Fenix_Data_group_delete, but not any longer

once any group member has been stored in Fenix’ redundant data storage, or once a data

group has been committed.

Parameters:

• group_id [IN] - identifier of the group containing this member.

• member_id [IN] - unique integer within the named group that identifies the data

member.

A.3.2.3 Accessing redundancy policies

Fenix Data group get redundancy policy

int Fenix_Data_group_get_redundancy_policy(

int group_id,

int policy_name,

void *policy_value,

int *flag);

This function is used to query Fenix for the type of policy it applies to safeguard all

meta-data and application data (group members) by dispersing copies of that data. The

resilience of data in Fenix’ redundant data storage depends on the specified policy.

At least the following policy must be defined:

192

• FENIX_DATA_POLICY_PEER_RANK_SEPARATION, which determines one of the simplest

types of data redundancy, namely preserving a copy of the data on a peer rank within

the same resilient communicator corresponding to the data group. In this case, the

policy_value input parameter is the rank_separation, and has a default value

equivalent to half of the size of the communicator associated with the group. A

single copy of the data stored locally on rank my_rank will also be stored on rank

(my_rank+rank_separation) mod comm_size, where comm_size equals the size of

the communicator associated with the relevant data group. We note that depending

on the layout of the ranks of the communicator across the physical resources of the

system (nodes, racks, cabinets), different values of the rank_separation parameter

should be selected to obtain the desired data resilience. For example, assuming a

communicator spanning ranks mapped to nodes distributed in two physical cabinets

(where ranks 0 to cabinet_size−1 are in one cabinet and ranks cabinet_size to

(2*cabinet_size)−1 are in the other), rank_separation can be set to cabinet_size

so that all stored members in the group are replicated in both cabinets.

Parameters:

• group_id [IN] - identifier of the group whose policy is sought.

• policy_name [IN] - name of policy whose value is sought.

• policy_value [OUT] - value of corresponding policy.

• flag [OUT] - true if a policy value was extracted; false if no policy is associated with

the key.

Fenix Data group set redundancy policy (collective operation, local)

int Fenix_Data_group_set_redundancy_policy(

int group_id,

int policy_name,

void *policy_value,

int *flag);

193

This function is used to set the type of policy Fenix applies to safeguard all meta-data

and application data.

All calling ranks in this group’s resilient communicator must pass the same values for

the parameters group_id, policy_name, and the contents of policy_value.

Group redundancy policies can only be set before the first store operation of a member of

group_id, or the first commit operation of the group_id. When a member is first stored or

the group is first committed, group redundancy is considered frozen and cannot be changed,

not even after a failure.

• group_id [IN] - identifier of the group.

• policy_name [IN] - name of policy.

• policy_value [IN] - value of corresponding policy.

• flag [OUT] - true if a policy value was set; false if no policy is associated with the

key, or if the policy is read-only (this could be a policy that is set at the time Fenix

is built or initialized). Upon successful return of this function, all calling ranks are

guaranteed to have the same value in the memory position pointed to by flag.

A.3.3 Probing and completing asynchronous operations

In many instances programmers can identify useful work to do by the application while a

potentially costly Fenix operation is taking place. For this purpose Fenix supports asyn-

chronous operations that return control to the application immediately, but that need to be

probed and/or finished later. The functions needed, Fenix_Data_wait and Fenix_Data_

test, are described below.

Fenix Data wait (collective operation, non-local)

int Fenix_Data_wait(

Fenix_Request request);

Waits for a non-blocking operation identified by request.

194

The user must always call Fenix_Data_wait in order to guarantee the successful com-

pletion of a non-blocking collective or non-collective operation (unless Fenix_Data_test

returns with flag equaling true).

Users are allowed to call Fenix_Data_wait with a null or inactive request argument. In

this case the operation returns immediately.

Users should be aware that Fenix implementations are allowed, but not required, to

synchronize ranks during the completion of a non-local collective operation.

Parameters:

• request [IN] - handle to the asynchronous operation.

Fenix Data test

int Fenix_Data_test(

Fenix_Request request,

int *flag);

Tests for the completion of a non-blocking operation identified by request.

Users are allowed to call Fenix_Data_test with a null or inactive request argument. In

this case the operation returns with flag equal to true.

• request [IN] - handle to the asynchronous operation.

• flag [OUT] - The call returns immediately with flag equal to true if the operation

is already completed. The call returns with flag equal to false, otherwise.

A.3.4 Storing and committing application data

A.3.4.1 Storing data group members

Fenix Data member store (collective operation, non-local)

int Fenix_Data_member_store(

int group_id,

195

int member_id,

Fenix_Data_subset subset_specifier);

This function is used to safeguard the data belonging to a particular member of the data

group. It places one or more copies of data residing in source_buffer (supplied in the call

to the function Fenix_Data_member_create) in Fenix’ redundant data storage.

Current implementation

After creating a copy of this member in the calling rank’s memory, Fenix will transfer this

local copy to its final destination(s), e.g. non-volatile memory, peer’s memory, a file on a

local hard disk.

End current implementation

This function may fail if not enough memory can be allocated to store data of the

specified size. When the call returns, the application can safely modify the data in source_

buffer marked for safeguarding, since Fenix is required to have at least one copy of the data

member before returning from this function. The saved data, however, will only be available

for recovery after being time stamped via committing the group (see Section A.3.4.2). Such

recovery requires the group identifier, the member identifier, and the logical time stamp of

the saved data.

Multiple calls to Fenix_Data_member_store with the same member_id without interven-

ing commit calls will lead to storing (parts of) the same application data object. Depending

on the value of subset_specifier, this may lead to overwriting the data (loss of data), or

incremental storage of the full data member.

Parameters:

• group_id [IN] - identifier of the group associated with this member.

• member_id [IN] - integer label that uniquely identifies a member of the data group

(see Fenix_Data_member_create). FENIX_DATA_MEMBER_ALL will store all members

associated with the specified group. All ranks in the group’s resilient communicator

must use the same value for member_id.

• subset_specifier [IN] - specifier of the subset of data to be stored. The choice of

196

this parameter, while in principle strictly local, needs to result in subsets of identical

extent in all calling ranks.

Advice to users

The requirement on resultant subset extent minimizes the need for the library to

coordinate between the rank whose member needs to be safeguarded and the agent

managing Fenix’ non-local redundant data storage (which could be another rank in

the system), thus resulting in performance improvement. Users are encouraged to use

this function instead of Fenix_Data_member_storev (see below) whenever possible.

End advice to users

When a subset_specifier different than FENIX_DATA_SUBSET_FULL is supplied, Fenix

will only store the positions in the application source buffer that are in the subset.

When subset_specifier equals FENIX_DATA_SUBSET_EMPTY, no data will be stored.

Fenix Data member storev (collective operation, non-local)

int Fenix_Data_member_storev(

int group_id,

int member_id,

Fenix_Data_subset subset_specifier);

This function is the same as Fenix_Data_member_store, except that the extents of the

actual subsets realized by the choice of parameter subset_specifier and parameter count

in the call to Fenix_Data_member_create can be different in different ranks.

Fenix Data member istore (collective operation, local)

int Fenix_Data_member_istore(

int group_id,

int member_id,

Fenix_Data_subset subset_specifier,

Fenix_Request *request);

197

This function has the same effect as Fenix_Data_member_store, except that it returns

immediately, even before the data has been stored safely. Data in the application source

buffer marked for safeguarding may be overwritten once a call to Fenix_Data_wait on

request has returned.

Current implementation

Fenix_Data_member_istore copies the application data into local memory before returning

and starts the asynchronous transfer to its final destination. Therefore, in the current

implementation, marked data in the application source buffer may be overwritten once the

call to Fenix_Data_member_istore returns.

End current implementation

The result of multiple calls to Fenix_Data_member_istore with overlapping subsets

and without intervening calls to Fenix_Data_wait is undefined.

Parameters:

• request [OUT] - handle to the asynchronous store operation.

Fenix Data member istorev (collective operation, local)

int Fenix_Data_member_istorev(

int group_id,

int member_id,

Fenix_Data_subset subset_specifier,

Fenix_Request *request);

This function is the same as Fenix_Data_member_istore, except that the extents of

actual subsets realized by the choice of parameter count in function Fenix_Data_member_

create and parameter subset_specifier can be different in different ranks.

A.3.4.2 Making stored data recoverable with data group commits

Fenix Data commit (collective operation, local)

198

int Fenix_Data_commit(

int group_id,

int *time_stamp);

This function is used to freeze the current state of a data group, together with all its

application data that has been stored in Fenix’ redundant storage, and label it with a time

stamp, thus creating a snapshot of the stored application data. Only data that has been

committed is eligible for recovery through Fenix_Data_member_restore.

An application needs to call Fenix_Data_wait for all pending asynchronous Fenix_

Data_member_istore(v) operations in the group before committing.

Note that not all members in the group need to be stored (with Fenix_Data_member_

store or any other variant) in order for a commit to succeed. See Section A.4.2 for an

example of partial storage.

Whenever Fenix_Data_commit is called, Fenix will automatically remove any snapshots

that are older than the depth specified in Fenix_Data_group_create.

Because the commit has local completion semantics, it cannot be used for synchroniza-

tion. Consequently, there is no guarantee that a data member in a snapshot created with

Fenix_Data_commit is consistent, which is a requirement for being recoverable. A data

snapshot is consistent with respect to a group member if all ranks in the group’s commu-

nicator have committed their stores to that group with the same time stamp, and if the

member existed on all ranks at the time of the commit. Consistency can be ensured by

calling the globally synchronizing function Fenix_Data_barrier, see Section A.3.4.4.

Parameters:

• group_id [IN] - identifier of the group to commit.

• time_stamp [OUT] - pointer to index of the committed data. NULL is a valid value,

in which case the automatically incremented index is not returned to the application.

The time_stamp parameter will be a nonnegative integer no larger than FENIX_TIME_

STAMP_MAX, with the latter value guaranteed to be at least 230.

199

A.3.4.3 Removing application data

Fenix Data commit delete

The following function removes irretrievably a specific snapshot of a data group. A

snapshot is a set of stored group members identified by the time stamp (an integer returned

by Fenix_Data_commit) they were committed.

This function can be used in addition to, or instead of, the garbage collection that Fenix

may perform, which is controlled by the depth parameter in Fenix_Data_group_create.

int Fenix_Data_commit_delete(

int group_id,

int time_stamp);

• group_id [IN] - group whose commit(s) should be removed.

• time_stamp [IN] - the time stamp of the requested commit. The special value of

FENIX_DATA_COMMIT_LATEST will always remove the latest commit. The special value

of FENIX_DATA_COMMIT_ALL can be used to remove all commits.

A.3.4.4 Data consistency and garbage collection

Fenix Data barrier (collective operation, global synch)

int Fenix_Data_barrier(

int group_id);

This function enforces consistency of data and meta-data for the data group with label

group_id. It will remove from redundant storage any inconsistent snapshots, to reduce

storage pressure.

• group_id [IN] - Fenix data group

Fenix Data commit barrier (collective operation, global synch)

200

int Fenix_Data_commit_barrier(

int group_id,

int *time_stamp);

This function combines, for convenience, the consistency enforcement of Fenix_Data_

barrier with the time stamp function of Fenix_Data_commit. It is equivalent to issuing

these two functions, in that order.

Upon completion of this call, only completely consistent snapshots of the specified group

remain in Fenix’ redundant storage, and any snapshots older than the depth specified in

the call to Fenix_Data_group_create have been removed (the latter is ignored if depth

equals −1).

A.3.5 Recovering application data

After a failure is recovered and control is returned to the application (for example, by

returning from Fenix_Init), the application may need to restore previous data snapshots.

The first step is to recreate the groups using the repaired communicators, which can be done

using Fenix_Data_group_create, as explained in Section A.3.2.1. Members, however, do

not need to be recreated, since both their meta-data (in particular, the member_id, the

count, and the datatype) and application data are saved in Fenix’ redundant storage.

Fenix Data member restore (collective operation, global synch)

int Fenix_Data_member_restore(

int group_id,

int member_id,

void *target_buffer,

int max_count,

int time_stamp);

This function is used to retrieve data from stored and consistently committed members.

If the member is inconsistent across the snapshot, it will removed from the snapshot on all

ranks, similar to what Fenix_Data_barrier would do.

201

All ranks in the group’s resilient communicator must pass the same values for the pa-

rameters group_id, member_id, and time_stamp.

This function can only be used if the size of the communicator used to store the data

is the same as that at the time of data recovery (this implies non-shrinking communicator

recovery in case of a rank loss). See function Fenix_Data_member_restore_from_rank for

other cases.

If the size of the buffer needing to receive the recovery data is unknown for a particular

rank, it can be queried using the functions described in Section A.3.7.3.

Parameters:

• group_id [IN] - group that contains the requested data.

• member_id [IN] - this value must match the member identifier that was supplied when

Fenix_Data_member_store was called.

• target_buffer [OUT] - the requested stored data will be written contiguously at this

local address. If NULL, no attempt will be made to fetch and restore data. This is

useful for selective recovery of application data. Each calling rank will receive the

selected data from the corresponding rank in the communicator used at the time the

snapshot was taken.

• max_count [IN] - the requested stored data, if found, will only be recovered if its size

is max_count times the size of datatype or less.

• time_stamp [IN] - time stamp of the first snapshot to be inspected for the presence of

valid recovery data. Fenix will inspect successively older available consistent snapshot

members until it has found for each element of the requested member a valid recovery

value. The availability of such data depends on the choice of subsets used in data

storage calls, and potentially selective member removal or time stamp skipping. If no

value is found, the corresponding element of the receiving buffer is left unchanged.

An example of recovery of data from a snapshot taken at a time earlier than that

specified in the restore call can be found in Section A.4.4. The special time stamp

value of FENIX_DATA_COMMIT_LATEST will always identify the group’s latest consistent

commit.

202

Fenix Data member restore from rank (collective operation, global synch)

int Fenix_Data_member_restore_from_rank(

int group_id,

int member_id,

void *target_buffer,

int max_count,

int time_stamp,

int source_rank);

This function works the same way as Fenix_Data_member_restore, except that the

source rank for the data to be recovered is specified explicitly by each calling rank.

Parameters:

• source_rank [IN] - specifies the rank (in the resilient communicator associated with

group_id) that performed the data store and whose data is being recovered. Its value

can be set independently by all ranks in the communicator.

We note that this function does not require that the resilient communicator is the same

size as the older, failed communicator, and can be used for any recovery pattern consistent

with its definition, as long as the value for source_rank is valid (within the size of the old

communicator).

A.3.6 Managing data subsets

Fenix data group members are used to provide resilient caches for sets of application data

that are contiguous in memory. Each set is represented by a pair consisting of {start_

pointer,count}. Subsets represent logical subsets of such sets. They allow the user to

indicate which elements (zero or more elements between 0 and count-1) will be selected

for a particular Fenix_Data_member_store operation or its variants (see example in Sec-

tion A.4.3). They provide a convenient mechanism to reduce the burstiness of data traffic to

the final destination of stores (such as I/O subsystems) accessed by Fenix_Data_member_

store calls. They also provide a way to store only the elements of a group member that

changed since the last commit call.

203

When calling Fenix_Data_member_(i)store(v) with a non-trivial value of Fenix_

Data_subset, the subset must properly reference positions contained within the entire data

object defined by the value of count in the corresponding Fenix_Data_member_create call.

The constant FENIX_DATA_SUBSET_FULL of type Fenix_Data_subset selects all the data

indicated by the user via the count parameter specified in Fenix_Data_member_create.

The constant FENIX_DATA_SUBSET_EMPTY of type Fenix_Data_subset defines a subset con-

taining no elements.

An example of the usage of subsets is as follows. Assume an array of ten elements set

initially to a particular set of values. An application iteratively changes the elements in

the array, one element per iteration. In this scenario, the application can decide to initially

store the entire array, and then, at a specific iteration, store only the changed element by

selecting it with subsets.

Another example of an array in a contiguous memory layout is illustrated by Figure A.1.

In this example, the second and third Fenix_Data_member_storev invocations store subsets

of an array by block patterns. Fenix provides a data type to allow users to define the relative

location and size of individual blocks.

Current implementation

During the store call and its variants, the Fenix implementation decides how to perform the

actual store, based on the data size and granularity of blocks, as well as the properties of

underlying I/O subsystems. See Fenix_Data_member_store for more details.

End current implementation

Fenix Data subset create

int Fenix_Data_subset_create(

int num_blocks,

int start_offset,

int end_offset,

int stride,

Fenix_Data_subset *subset_specifier);

204

Initial member store

Second member store

Commit (time stamp 0)

Third member store

Commit (time stamp 1)

num blocks = 4

array end offsets

Commit (time stamp 2)

num blocks = 3

array start offsets

array end offsets

array start offsets

Figure A.1: Incremental member store using subsets. Gray areas indicate the data being
saved by Fenix_Data_member_storev operations.

Creates a subset based on num_blocks pairs of {start_offset,end_offset}, {start_

offset+stride,end_offset+stride}, {start_offset+2*stride,end_offset+2*stride},

etc. The value of start_offset must be smaller than or equal to the value of end_offset

to indicate non-negative block size. Otherwise, the function returns an error code.

Parameters:

• num_blocks [IN] - the number of contiguous data blocks.

• start_offset [IN] - an integer indicating the index of the first element of the first

data block.

• end_offset [IN] - an integer indicating the index of the last element of the first data

block.

• stride [IN] - regular shift between successive data blocks.

• subset_specifier [OUT] - name of the subset specifier, to be used in storing data.

Fenix Data subset createv

int Fenix_Data_subset_createv(

205

int num_blocks,

int* array_start_offsets,

int* array_end_offsets,

Fenix_Data_subset *subset_specifier);

Creates a subset based on num_blocks pairs of {start_offset,end_offset}. The value

of start_offset must be smaller than or equal to end_offset to indicate non-negative

block size. Otherwise, the function returns an error code.

• num_blocks [IN] - the number of contiguous data blocks, which also defines the number

of elements in array_start_offsets and array_end_offsets.

• array_start_offsets [IN] - an integer array, which indicates the index of the first

elements for each data block (the start_offset in the pair {start_offset,end_

offset}). The value indicates the number of data elements from the beginning of the

data registered at Fenix_Data_member_create.

• array_end_offsets [IN] - an integer array, which indicates the index of the last ele-

ment for each data block (the end_offset in the pair {start_offset,end_offset}).

The value indicates the number of data elements from the beginning of the data

registered at Fenix_Data_member_create.

• subset_specifier [OUT] - name of the subset specifier, to be used in storing data.

Fenix Data subset delete

int Fenix_Data_subset_delete(

Fenix_Data_subset *subset_specifier);

Deletes a previously-created subset. This only refers to meta-data related to the subset;

no application data is removed.

• subset_specifier [INOUT] - name of the subset specifier, as returned by the subset_

specifier parameter in Fenix_Data_subset_create. The handle is set to FENIX_

SUBSET_NULL.

206

A.3.7 Accessing Fenix Data constructs

These functions provide the means to access and alter the information and attributes for

Fenix’s data recovery and its internals. The status of individual stored objects can be

queried by pointing to the corresponding Fenix data group and the member_id. Examples

in Section A.4.5 and Section A.4.6 show how these functions can be used.

A.3.7.1 Querying data group members

Fenix Data group get number of members

int Fenix_Data_group_get_number_of_members(

int group_id,

int *number_of_members);

Parameters:

• group_id [IN] - Fenix data group whose information is sought.

• number_of_members [OUT] - number of available distinct member of this group. Man-

ually deleted members are not included in this number.

Fenix Data group get member at position

int Fenix_Data_group_get_member_at_position(

int group_id,

int *member_id,

int position);

Parameters:

• member_id [OUT] - the unique identifier of the Fenix_Data_member sought.

• group_id [IN] - Fenix data group whose information is sought.

207

• position [IN] - sequence number of the requested Fenix_Data_member. position

must be a value between 0 and number_of_members-1 (number_of_members as re-

turned by Fenix_Data_group_get_number_of_members). The member positions will

be returned in the order the user added members to the Fenix data group, i.e. oldest

first, newest last (e.g., the first member added by the user will have position 0).

Deleted members will not be included in this list.

A.3.7.2 Querying commits

Fenix Data group get number of commits

int Fenix_Data_group_get_number_of_commits(

int group_id,

int *number_of_commits);

Parameters:

• group_id [IN] - Fenix data group whose information is sought.

• number_of_commits[OUT] - number of locally available, distinct commits (snapshots)

of this group. This number may include commits that are inconsistent across the

group’s communicator. Ususally the user will want to know only the number of

consistent commits, because no recovery of inconsistent commits can succeed. If there

is the possibility of inconsistency, a call to Fenix_Data_barrier or other cleanup may

be performed first to ensure only consistent commits remain.

Fenix Data group get commit at position

int Fenix_Data_group_get_commit_at_position(

int group_id,

int position,

int *time_stamp);

Parameters:

208

• group_id [IN] - Fenix data group whose information is sought.

• position [IN] - sequence number of the requested commit. position must be a value

between 0 and number_of_commits-1 (number_of_commits as returned by Fenix_

Data_group_get_number_of_commits). Snapshot positions will be returned in the

reverse order in which the user committed them, i.e. oldest last, newest first (e.g. the

most recent available commit will have position=0).

• time_stamp [OUT] - the unique index of the commit (snapshot) sought.

A.3.7.3 Accessing data group member attributes

Fenix Data member attr get (collective operation, non-local)

int Fenix_Data_member_attr_get(

int group_id,

int member_id,

int attribute_name,

void *attribute_value,

int *flag,

int source_rank);

Certain properties can be assigned to members of Fenix data groups. These properties,

called attributes, can be queried using this function.

All ranks in the group’s resilient communicator must pass the same values for the pa-

rameters member_id, attribute_name, and group_id.

Parameters:

• group_id [IN] - Fenix data group whose information is sought.

• member_id [IN] - unique integer within group associated with group_id that identifies

the data member in Fenix’s redundant data storage.

209

• attribute_name [IN] - name of the particular attribute, consisting of the prefix

FENIX_DATA_MEMBER_ATTRIBUTE_, followed by a suffix. At least the following suf-

fixes must be valid: SOURCE_BUFFER, COUNT, DATATYPE, and SIZE.

• attribute_value [OUT] - the attribute value of the particular member of the target

data group.

• flag [OUT] - true if an attribute value was extracted; false if no attribute is associated

with the key.

• source_rank [IN] - for attributes that are rank-dependent (such as FENIX_DATA_

MEMBER_ATTRIBUTE_COUNT), specifies the rank in the group’s resilient communicator

that contains the attribute whose value is sought.

Fenix Data member attr set

int Fenix_Data_member_attr_set(

int group_id,

int member_id,

int attribute_name,

void *attribute_value,

int *flag);

This function can be used to set an attribute related to a member. Attributes can

only be set before the first store operation of member_id or commit operation of group_

id that occur after returning from Fenix_Init. When a member is stored or a group is

committed, attributes are considered frozen until the next failure occurs. After a failure,

the execution will be returned from Fenix_Init, at which point attributes may be reset

before any subsequent stores. In particular, at least the attribute FENIX_DATA_MEMBER_

ATTRIBUTE_SOURCE_BUFFER must be writable after a failure is recovered.

• group_id [IN] - Fenix data group whose information is sought.

• member_id [IN] - unique integer within group associated with group_id that identifies

the data member in Fenix’s redundant data storage.

210

• attribute_name [IN] - name of the particular attribute. Attribute names with the

suffix COUNT and DATATYPE are read-only.

• attribute_value [IN] - the attribute value of the particular member of the target

data group.

• flag [OUT] - true if the attribute value was set; false if no attribute is associated

with the key or if the attribute is read-only.

A.4 Examples

This section presents some examples on how to use Fenix in different scenarios.

For convenience, the following abbreviations are used:

#d e f i n e BUF FENIX DATA MEMBER ATTRIBUTE SOURCE BUFFER

#d e f i n e FULL FENIX DATA SUBSET FULL

#d e f i n e LATEST FENIX DATA COMMIT LATEST

#d e f i n e FENIX WORLD FENIX DATA GROUP WORLD ID

#d e f i n e COUNT FENIX DATA GROUP MEMBER ATTRIBUTE COUNT

#d e f i n e TYPE FENIX DATA GROUP MEMBER ATTRIBUTE DATATYPE

#d e f i n e VP void ∗

A.4.1 Protecting process and data with Fenix

We show two versions of the same mini-example application, one without fault tolerance,

and one augmented with Fenix that tolerates failures in an on-line manner.

/∗ Non−f a u l t−t o l e r a n t ve r s i on ∗/

i n t main (i n t argc , char ∗∗ argv)

{

i n t i t , A[1 0 0] , B [5 0] ;

MPI Init(&argc , &argv) ;

i n i t i a l i z e (A, B) ;

211

f o r (i t =0 ; i t <1000 ; i t ++) {

work1 (A, MPI COMM WORLD) ;

i f (A[0] > 200) {

work2 (A, B, MPI COMM WORLD) ;

}

}

MPI Final ize () ;

}

/∗ Fault t o l e r a n t v e r s i on with Fenix ∗/

i n t main (i n t argc , char ∗∗ argv)

{

i n t i t , A[1 0 0] , B[5 0] , r o l e , f l a g , e r r o r ;

MPI Comm new comm world ;

MPI Init(&argc , &argv) ;

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e ,

&argc , &argv ,

10 , // num spare ranks

0 , // no−spawn

MPI INFO NULL ,

&e r r o r) ;

/∗ r e g a r d l e s s o f ro l e , we (re) c r e a t e the data group ∗/

Fen ix Data group create (

66 , // group id

new comm world , // r e s i l i e n t communicator

0 , // s t a r t i n g index f o r snapshots

0) ; // depth

i f (! e r r o r && r o l e == FENIX ROLE INITIAL RANK) {

/∗ no f a i l u r e occurred ∗/

212

i t = 0 ;

i n i t i a l i z e (A, B) ;

Fenix Data member create (66 , 90 , (VP)& i t , 1 , MPI INT) ;

Fenix Data member create (66 , 91 , (VP)A, 100 , MPI INT) ;

Fenix Data member create (66 , 92 , (VP)B, 50 , MPI INT) ;

/∗ make B r e c o v e r a b l e ∗/

Fenix Data member store (66 , 92 , FULL) ;

Fenix Data commit barr ier (66 , NULL) ;

} e l s e i f (! e r r o r) {

/∗ ranks recovered from a f a i l u r e , now r e s t o r e data ∗/

Fenix Data member restore (66 , 90 , (VP)& i t , 1 , LATEST) ;

Fenix Data member restore (66 , 91 , (VP)A, 100 , LATEST) ;

Fenix Data member restore (66 , 92 , (VP)B, 50 , LATEST) ;

/∗ need to say where member data l i v e s , f o r f u tu r e s t o r e s ∗/

Fenix Data member attr set (66 , 90 , BUF, (VP)& i t , &f l a g) ;

Fenix Data member attr set (66 , 91 , BUF, (VP)A, &f l a g) ;

Fenix Data member attr set (66 , 92 , BUF, (VP)B, &f l a g) ;

} e l s e {

// There was an e r r o r in Fenix

MPI Abort (MPI COMM WORLD, −1);

}

/∗ i t may be i n i t i a l i z e d or recovered ∗/

f o r (; i t <1000; i t++) {

Fenix Data member store (66 , 90 , FULL) ;

work1 (A, new comm world) ;

i f (A[0] > 200) {

work2 (A, B, new comm world) ;

Fenix Data member store (66 , 92 , FULL) ;

}

213

Fenix Data member store (66 , 91 , FULL) ;

Fenix Data commit barr ier (66 , NULL) ;

}

F e n i x F i n a l i z e () ;

MPI Final ize () ;

}

A.4.2 Storing select members of a data group

The following scenario is a valid Fenix usage demonstrating that not all members need to

be stored before committing a group. It assumes a data group labeled 66 was previously

created.

// Create members

Fenix Data member create (66 , 0 , (void ∗)&a , 1 , MPI INT) ;

Fenix Data member create (66 , 1 , (void ∗)&b , 1 , MPI INT) ;

// Store members as part o f commit with time stamp 0

a = myrank ;

b = myrank+1;

Fenix Data member store (66 , 0 , FENIX DATA SUBSET FULL) ;

Fenix Data member store (66 , 1 , FENIX DATA SUBSET FULL) ;

Fenix Data commit (66 , &t s) ; // a f t e r th i s , t s equa l s 0

// Store only member ’b ’ f o r commit with time stamp 1

b = myrank+100;

Fenix Data member store (66 , 1 , FENIX DATA SUBSET FULL) ;

Fenix Data commit (66 , &t s) ; // a f t e r th i s , t s equa l s 1

A.4.3 Storing data objects with subsets

/∗ Non−f a u l t−t o l e r a n t ve r s i on ∗/

i n t main (i n t argc , char ∗∗ argv)

{

214

i n t i t ;

double A[1 0 0 0 0] ;

const i n t lda = 100 ;

MPI Init(&argc , &argv) ;

i n i t i a l i z e (A) ;

f o r (i t =0 ; i t <100 ; i t ++) {

work1 (A[lda ∗ i t + i t] , MPI COMM WORLD) ;

}

}

/∗ Fault t o l e r a n t v e r s i on with Fenix ∗/

i n t main (i n t argc , char ∗∗ argv)

{

i n t i t , A[1 0 0 0 0] , o f f s e t s [1 0 0] , s i z e s [1 0 0] , r o l e ;

i n t s t a r t o f f s e t A [1 0 0] , e n d o f f s e t A [1 0 0] ;

const i n t lda = 100 ;

Fenix Data subset subset LU ;

MPI Init(&argc , &argv) ;

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e , . . .) ;

/∗ r e g a r d l e s s o f ro l e , we (re) c r e a t e the data group ∗/

Fen ix Data group create (

66 , // group id

new comm world , // r e s i l i e n t communicator

0 , // s t a r t i n g index f o r snapshots

0) ; // depth

i f (! e r r o r && r o l e == FENIX ROLE INITIAL RANK) {

/∗ no f a i l u r e occurred ∗/

i t = 0 ;

215

i n i t i a l i z e (A) ;

Fenix Data member create (66 , 90 , (VP)& i t , 1 , MPI INT) ;

Fenix Data member create (66 , 91 , (VP)A, 10000 , MPI DOUBLE) ;

Fenix Data member store (66 , FENIX DATA MEMBER ALL, FULL) ;

Fenix Data commit (66 , NULL) ;

} e l s e {

/∗ ranks recovered from a f a i l u r e , now r e s t o r e data ∗/

Fen ix Data re s to r e (66 , 90 , (VP)& i t , 1 , LATEST) ;

Fen ix Data re s to r e (66 , 91 , (VP)A, 10000 , LATEST) ;

}

f o r (; i t <100 ; i t ++) {

Fenix Data member store (66 , 90 , FULL) ;

/∗ Create a subset ∗/

f o r (j = i t ; j < 100 ; j++) {

s t a r t o f f s e t A [j] = j ∗100 + j ;

e n d o f f s e t A [j] = s t a r t o f f s e t A [j] + lda ;

}

Fen ix Data subse t c r ea t ev (100− i t , s t a r t o f f s e t A ,

end o f f s e t A , &subset LU) ;

work1 (A[lda ∗ i t + i t]) ;

Fenix Data member store (66 , 91 , subset LU) ;

Fenix Data commit (66 , NULL) ;

Fen ix Data subs e t de l e t e (&subset LU) ; // garbage c o l l e c t i o n

}

}

216

A.4.4 Recovering data from older time stamps

An example of restoring members not included in the snapshot with the specified time

stamp, but present in an earlier snapshot, can seen in lines 20–23 of the following scenario.

The data group is labeled 66.

// Create members

Fenix Data member create (66 , 0 , (void∗)&a , 1 , MPI INT) ;

Fenix Data member create (66 , 1 , (void∗)&b , 1 , MPI INT) ;

// Store members f o r snapshot with time stamp 0

a = myrank ;

b = myrank+1;

Fenix Data member store (66 , 0 , FENIX DATA SUBSET FULL) ;

Fenix Data member store (66 , 1 , FENIX DATA SUBSET FULL) ;

Fenix Data commit (66 , &t s) ; // a f t e r th i s , t s=0

// Store member ’b ’ f o r snapshot with time stamp 1

b = myrank+100;

Fenix Data member store (66 , 1 , FENIX DATA SUBSET FULL) ;

Fenix Data commit (66 , &t s) ; // a f t e r th i s , t s=1

// Store member ’ a ’ f o r snapshot with time stamp 2

a = myrank+200;

Fenix Data member store (66 , 0 , FENIX DATA SUBSET FULL) ;

Fenix Data commit (66 , &t s) ; // a f t e r th i s , t s=2

// Restore members

Fenix Data member restore (66 , 0 , (void∗)&new a , 1 , 1) ;

// new a now conta in s ”myrank” (l i n e 5)

Fenix Data member restore (66 , 1 , (void∗)&new b , 1 , 1) ;

// new b now conta in s ”myrank+100” (l i n e 11)

217

A.4.5 Recovering one member of a data group

This example assumes that ranks have knowledge of (1) the group identifier group_id, (2)

the size of the communicator associated with that group (same size as new_comm_world),

(3) the features of the member sought (in particular, member_id, count, and datatype)

and (4) the specific time stamp ts of the sought consistent snapshot.

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e ,

&argc , &argv ,

num spare ranks ,

0 , // no−spawn

MPI INFO NULL ,

&e r r o r) ;

i f (! e r r o r && r o l e != FENIX ROLE INITIAL RANK) {

// Fa i l u r e s u c c e s s f u l l y recovered

Fen ix Data group create (group id , new comm world ,

0 , // These l a s t two params are ignored ,

0) ; // s i n c e group id a l r eady e x i s t e d

MPI Type size (datatype , &d t s i z e) ;

u i n t 8 t r ecove red data = (u i n t 8 t ∗) mal loc (count∗ d t s i z e) ;

Fenix Data member restore (

group id , member id , (VP)&recovered data , count , t s) ;

// At t h i s point , the a p p l i c a t i o n has i t s r ecovered data in

// a l l p o s i t i o n s o f member pointers .

// Now, the a p p l i c a t i o n should i n s p e c t the se e lements to t ry

// and determine what to do with the recovered data .

}

A.4.6 Recovering all members of a data group

This example assumes that ranks have the knowledge of (1) the group identifier group_

id as well as (2) the size of the communicator associated with that group (same size as

218

new_comm_world).

This example assumes that the recovered rank has no knowledge about the application

data contained in the members that were stored. This is a corner case, since the application

should be aware of the data associated with a member identifier in a group.

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e ,

&argc , &argv ,

num spare ranks ,

0 , // No−spawn

MPI INFO NULL ,

&e r r o r) ;

MPI Comm rank(new comm world , &my rank) ;

i f (! e r r o r && r o l e != FENIX ROLE INITIAL RANK) {

// Fa i l u r e s u c c e s s f u l l y recovered

Fen ix Data group create (group id , new comm world ,

0 , // These l a s t two params are ignored ,

0) ; // s i n c e group id a l r eady e x i s t e d

Fenix Data group get number of members (

group id , &number of members) ;

u i n t 8 t ∗∗member pointers = (u i n t 8 t ∗∗)

mal loc (number of members∗ s i z e o f (u i n t 8 t ∗)) ;

i n t ∗member counts = (i n t ∗)

mal loc (number of members∗ s i z e o f (i n t)) ;

MPI Datatype ∗member datatypes = (MPI Datatype ∗)

mal loc (number of members∗ s i z e o f (MPI Datatype)) ;

f o r (i n t m=0 ; m<number of members ; m++) {

Fenix Data group get member at pos i t i on (

group id , &member id , m) ;

219

Fenix Data member attr get (group id , member id , COUNT,

(VP)&member counts [m] , &f l ag , my rank) ;

Fenix Data member attr get (group id , member id , TYPE,

(VP)&member datatypes [m] , &f l ag , my rank) ;

MPI Type size (member datatypes [m] , &d t s i z e) ;

member pointers [m] = (u i n t 8 t ∗) mal loc (count∗ d t s i z e) ;

Fen ix Data group get commit at pos i t i on (

group id , 0 , &time stamp) ;

Fenix Data member restore (

group id , member id , (VP)&(member pointers [m]) ,

member counts [m] , time stamp) ;

}

// At t h i s point , the a p p l i c a t i o n has i t s r ecovered data in

// a l l p o s i t i o n s o f member pointers .

// Now, the a p p l i c a t i o n should i n s p e c t the se e lements to t ry

// and determine what to do with the recovered data .

}

A.4.7 Changing attributes of a data group member

This example demonstrates how to use Fenix_Data_member_attr_set() to change at-

tributes before the first Fenix_Data_member_store call.

i n t i v a l ;

double dval [2] ;

i n t new count = 2 ;

MPI Datatype member datatype = MPI DOUBLE;

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e ,

&argc , &argv , num spare ranks ,

0 , // No−spawn

220

MPI INFO NULL , &e r r o r) ;

MPI Comm rank(new comm world , &my rank) ;

Fen ix Data group create (66 , new comm world , 0 , 0) ;

// Fenix Data i s c r ea ted f o r s i n g l e i n t e g e r

Fenix Data member create (66 , 90 , (VP)& iva l , 1 , MPI INT) ;

// Change the address o f the source b u f f e r

Fenix Data member attr set (66 , 90 , BUF, (VP) dval , &f l ag , my rank) ;

// Change the number o f e lements

Fenix Data member attr set (66 , 90 , COUNT,

(VP) &new count , &f l ag , my rank) ;

// Change the datatype

Fenix Data member attr set (66 , 90 , TYPE,

(VP)&member datatype , &f l ag , my rank) ;

// F i r s t s t o r e c a l l

Fenix Data member store (66 , 90 , FULL) ;

The following example shows how to change an attribute to point Fenix to a new source

buffer for data recovery after a failure has occurred.

F e n i x I n i t (MPI COMM WORLD, &new comm world , &ro l e ,

&argc , &argv ,

num spare ranks ,

0 , // No−spawn

MPI INFO NULL ,

&e r r o r) ;

// (re−) c r e a t e group , r e g a r d l e s s o f r o l e o f c a l l i n g rank

221

Fen ix Data group create (66 , new comm world ,

0 , // s t a r t i n g index f o r snapshots ; ignored i f

// not INITIAL RANK

0) ; // depth ; ignored i f not INITIAL RANK

// Only c r e a t e the data member once

i f (! e r r o r && r o l e == FENIX ROLE INITIAL RANK) {

// a l l o c a t e space f o r the member

double ∗ l i s t = (double ∗) mal loc (s i z e o f (double)∗10 00) ;

Fenix Data member create (66 , 91 , (VP) l i s t , 1000 , MPI DOUBLE) ;

}

// recovered ranks need to r e a l l o c a t e space

i f (! e r r o r && r o l e == FENIX ROLE RECOVERED RANK) {

double ∗ l i s t = (double ∗) mal loc (s i z e o f (double)∗10 00) ;

Fenix Data member attr set (66 , 91 , BUF, (VP) l i s t , &f l a g) ;

}

// At t h i s point , the a p p l i c a t i o n can i s s u e s t o r e c a l l s f o r

// the data member a s s o c i a t e d with l i s t

222

References

[1] R. Alverson, D. Roweth, and L. Kaplan. The Gemini System Interconnect. In IEEE
18th Annual Symposium on High Performance Interconnects (HOTI), pages 83–87,
Aug 2010.

[2] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. de Mel. An analysis of communi-
cation induced checkpointing. In Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing. Digest of Papers, FTCS 1999 - DSN, pages 242–249, 1999.

[3] S. Amarasinghe and et al. ExaScale Software Study: Software Challenges in Extreme
Scale Systems. Technical report, DARPA IPTO, Air Force Reserach Lab, Sept. 2009.

[4] G. Aupy, A. Benoit, T. Herault, Y. Robert, F. Vivien, and D. Zaidouni. On the Com-
bination of Silent Error Detection and Checkpointing. In The 19th IEEE Pacific Rim
International Symposium on Dependable Computing - 2013, PRDC 2013, Vancouver,
Canada, Dec 2013. IEEE.

[5] R. F. Barrett, S. D. Hammond, C. T. Vaughan, D. W. Doerfler, M. A. Heroux,
J. P. Luitjens, and D. Roweth. Navigating an evolutionary fast path to exascale. In
Proceedings of the 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, SCC ’12, pages 355–365, Washington, DC, USA, 2012. IEEE
Computer Society.

[6] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and
S. Matsuoka. FTI: High Performance Fault Tolerance Interface for Hybrid Systems.
In Proceedings of International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2011, 2011.

[7] P. Beckman, R. Brightwell, B. R. de Supinski, M. Gokhale, S. Hofmeyr, S. Krish-
namoorthy, M. Lang, B. Maccabe, J. Shalf, and M. Snir. Exascale Operating Sys-
tems and Runtime Software Report. Technical report, US Department of Energy,
December 2012.

[8] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky,
H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang, and
J. Chen. Combining In-situ and In-transit Processing to Enable Extreme-scale Scien-
tific Analysis. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC 2012, pages 49:1–49:9, Los Alami-
tos, CA, USA, 2012. IEEE Computer Society Press.

[9] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra. A Proposal for
User-Level Failure Mitigation in the MPI-3 Standard. Technical report, Innovative
Computing Laboratory, University of Tennessee, February 2012.

223

[10] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra. Post-failure re-
covery of MPI communication capability: Design and rationale. International Journal
of High Performance Computing Applications, 2013.

[11] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An
evaluation of user-level failure mitigation support in MPI. In Proceedings of the 19th
European conference on Recent Advances in the Message Passing Interface, EuroMPI
2012, pages 193–203, Berlin, Heidelberg, 2012. Springer-Verlag.

[12] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. A
Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in Standard MPI. In
C. Kaklamanis, T. Papatheodorou, and P. Spirakis, editors, Euro-Par 2012 Paral-
lel Processing, volume 7484 of Lecture Notes in Computer Science, pages 477–488.
Springer Berlin Heidelberg, 2012.

[13] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra. Extending
the scope of the Checkpoint-on-Failure protocol for forward recovery in standard MPI.
Concurrency and Computation: Practice and Experience, 2013.

[14] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche,
T. Herault, Y. Robert, F. Vivien, and D. Zaidouni. Unified Model for Assessing
Checkpointing Protocols at Extreme-Scale. Rapport de recherche RR-7950, INRIA,
Oct 2012.

[15] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Checkpointing
strategies for parallel jobs. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pages 33:1–33:11,
New York, NY, USA, 2011. ACM.

[16] M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. Using group repli-
cation for resilience on exascale systems. International Journal of High Performance
Computing Applications, 2013.

[17] M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello, S. Matsuoka, and
N. Maruyam. Improving the Computing Efficiency of HPC Systems Using a Com-
bination of Proactive and Preventive Checkpointing. International Parallel and Dis-
tributed Processing Symposium, 0:501–512, 2013.

[18] A. Bouteiller, G. Bosilca, and J. Dongarra. Redesigning the message logging model
for high performance. Concurrency and Computation: Practice and Experience,
22(16):2196–2211, 2010.

[19] A. Bouteiller, F. Cappello, J. Dongarra, A. Guermouche, T. Herault, and Y. Robert.
Multi-criteria Checkpointing Strategies: Response-Time versus Resource Utilization.
In Euro-Par, Euro-Par 2013, pages 420–431, 2013.

[20] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V
Project: A Multiprotocol Automatic Fault-Tolerant MPI. International Journal of
High Performance Computing Applications, 20(3):319–333, 2006.

[21] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Dongarra. Reasons for a pes-
simistic or optimistic message logging protocol in MPI uncoordinated failure, recovery.

224

In IEEE International Conference on Cluster Computing and Workshops, CLUSTER
2009, pages 1–9, 2009.

[22] B. Bouteiller, P. Lemarinier, K. Krawezik, and F. Cappello. Coordinated checkpoint
versus message log for fault tolerant MPI. In Proceedings of the IEEE International
Conference on Cluster Computing, pages 242–250, 2003.

[23] P. J. Braam. Lustre: A Scalable, High Performance File System. https://http:

//www.lustre.org/docs.html, 2004. Accessed: 2014-03-15.

[24] B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI communication
optimization. Computers & Fluids, 80:372–380, 2013.

[25] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge-
Kutta and General Linear Methods. Wiley-Interscience, New York, NY, USA, 1987.

[26] J. Cao, K. Arya, and G. Cooperman. Transparent Checkpoint-Restart over Infini-
Band. CoRR, abs/1312.3938, 2013.

[27] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward Exascale
Resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388, Nov 2009.

[28] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via
a least-squares Petrov–Galerkin projection and compressive tensor approximations.
International Journal for Numerical Methods in Engineering, 86(2):155–181, April
2011.

[29] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. Combining Process Replication
and Checkpointing for Resilience on Exascale Systems. Rapport de recherche RR-
7951, INRIA, May 2012.

[30] R. Castain, J. Ladd, D. Solt, and G. Brown. PMIx Community Meeting at SC’15,
Austin, TX, USA, November 2015.

[31] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

[32] Y. S. Chang, S. Y. Cho, and B. Y. Kim. Performance evaluation of the striped
checkpointing algorithm on the distributed RAID for cluster computer. In Proceedings
of the 2003 international conference on Computational science: PartII, ICCS 2003,
pages 955–962, Berlin, Heidelberg, 2003. Springer-Verlag.

[33] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky,
W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende,
and C. S. Yoo. Terascale direct numerical simulations of turbulent combustion using
S3D. Computational Science and Discovery, 2(1):015001, Jan. 2009.

[34] Z. Chen. Online-ABFT: an online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP 2013, pages
167–176, New York, NY, USA, 2013. ACM.

[35] Z. Chen and J. Dongarra. Algorithm-Based Fault Tolerance for Fail-Stop Failures.
IEEE Trans. Parallel Distrib. Syst., 19(12):1628–1641, Dec 2008.

https:// http://www.lustre.org/docs.html
https:// http://www.lustre.org/docs.html

225

[36] A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein,
Z. Zheng, R. Schreiber, et al. Versioned distributed arrays for resilience in scientific
applications: Global view resilience. Journal of Computational Science, 2015.

[37] Y.-H. Choi and M. Malek. A fault-tolerant systolic sorter. IEEE Transactions on
Computers, 37(5):621–624, 1988.

[38] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and
M. Erez. Containment domains: a scalable, efficient, and flexible resilience scheme
for exascale systems. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2012, pages 58:1–58:11, Los
Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[39] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and F. Cap-
pello. Blocking vs. Non-Blocking Coordinated Checkpointing for Large-Scale Fault
Tolerant MPI. In ACM/IEEE Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 18–18, Nov 2006.

[40] A. Cunei and J. Vitek. A new approach to real-time checkpointing. In Proceedings of
the 2nd international conference on Virtual execution environments, VEE 2006, pages
68–77, New York, NY, USA, 2006. ACM.

[41] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems, 2006.

[42] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization and
performance modeling of stencil computations on modern microprocessors. SIAM
Rev., 51(1):129–159, Feb. 2009.

[43] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[44] T. Davies and Z. Chen. Correcting soft errors online in LU factorization. In Proceed-
ings of the 22nd international symposium on High-performance parallel and distributed
computing, HPDC 2013, pages 167–178, New York, NY, USA, 2013. ACM.

[45] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello. Optimization of
Cloud Task Processing with Checkpoint-restart Mechanism. In Proceedings of SC13:
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2013, pages 64:1–64:12, New York, NY, USA, 2013. ACM.

[46] J. Dinan, S. Krishnamoorthy, P. Balaji, J. R. Hammond, M. Krishnan, V. Tippa-
raju, and A. Vishnu. Noncollective Communicator Creation in MPI. In Y. Cotronis,
A. Danalis, D. S. Nikolopoulos, and J. Dongarra, editors, EuroMPI, volume 6960 of
Lecture Notes in Computer Science, pages 282–291. Springer, 2011.

[47] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen. Matrix Multiplication on GPUs
with On-Line Fault Tolerance. In IEEE 9th International Symposium on Parallel and
Distributed Processing with Applications (ISPA), 2011, pages 311–317, 2011.

226

[48] J. Dongarra and e. a. . The International Exascale Software Project: a Call To Co-
operative Action By the Global High-Performance Community. Int. J. High Perform.
Comput. Appl., 23(4):309–322, Nov. 2009.

[49] J. Dongarra and et al. The International Exascale Software Project Roadmap. Inter-
national Journal of High Performance Computing Applications, 25(1):3–60, 2011.

[50] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-based fault
tolerance for dense matrix factorizations. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, PPoPP 2012, pages
225–234, New York, NY, USA, 2012. ACM.

[51] P. Du, P. Luszczek, S. Tomov, and J. Dongarra. Soft error resilient QR factorization
for hybrid system with GPGPU. In Proceedings of the second workshop on Scalable
algorithms for large-scale systems, ScalA 2011, pages 11–14, New York, NY, USA,
2011. ACM.

[52] S. El Sayed, S. Graf, M. Hennecke, D. Pleiter, G. Schwarz, H. Schick, and M. Stephan.
Using GPFS to Manage NVRAM-Based Storage Cache, pages 435–446. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[53] E. Elnozahy and W. Zwaenepoel. Manetho: transparent roll back-recovery with low
overhead, limited rollback, and fast output commit. IEEE Transactions on Comput-
ers, 41(5):526–531, 1992.

[54] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408,
Sep 2002.

[55] C. Engelmann and S. Bohm. Redundant Execution of HPC Applications with MR-
MPI. In Proceedings of the 10th IASTED International Conference on Parallel and
Distributed Computing and Networks, PDCN 2011, pages 31–38, Innsbruck, Austria,
2011. ACTA Press, Calgary, AB, Canada.

[56] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. SIGARCH Comput. Archit. News, 39(3):365–
376, June 2011.

[57] ExaCT Center for Exascale Simulation of Combustion in Turbulence. Performance
Modeling for ExaCT Codes, internal presentation, September 2012.

[58] G. E. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World. In Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 346–353, London, UK, 2000. Springer-Verlag.

[59] C. Feichtinger, S. Donath, H. Kstler, J. Gtz, and U. Rde. Walberla: {HPC} software
design for computational engineering simulations. Journal of Computational Science,
2(2):105 – 112, 2011. Simulation Software for Supercomputers.

[60] K. Ferreira, R. Oldfield, J. Stearley, J. Laros, K. Pedretti, R. Brightwell, and
R. Riesen. rMPI: Increasing Fault Resiliency in a Message-Passing Environment.

227

Technical Report SAND2011-2488, Sandia National Laboratories, Albuquerque, NM,
April 2011.

[61] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros, K. Pedretti, R. Brightwell,
and T. Kordenbrock. Increasing Fault Resiliency in a Message-Passing Environment,
Oct 2009.

[62] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti, R. Brightwell,
R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the viability of process replication
reliability for exascale systems. In Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2011, pages 44:1–
44:12, New York, NY, USA, 2011. ACM.

[63] K. B. Ferreira, S. Levy, P. Widener, D. Arnold, and T. Hoefler. Understanding
the effects of communication and coordination on checkpointing at scale. In Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis
(SC14), 2014.

[64] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detec-
tion and correction of silent data corruption for large-scale high-performance comput-
ing. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2012, pages 78:1–78:12, 2012.

[65] M. P. Forum. Mpi: A message-passing interface standard. Technical report, Univer-
sity of Tennessee Knoxville, Knoxville, TN, USA, 1994.

[66] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Exploring
Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’14. c©2014 IEEE. Some passages of this disser-
tation have been reprinted from this publication with permission from the copyright
holder, 2014.

[67] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and M. Parashar.
Exploring Failure Recovery for Stencil-based Applications at Extreme Scales. In The
24th International ACM Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’15. c©2015 ACM. Some passages of this dissertation have been
reprinted from this publication with permission from the copyright holder, 2015.

[68] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and M. Parashar.
Local recovery and failure masking for stencil-based applications at extreme scales. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’15, pages 70:1–70:12. c©2015 ACM. Some passages
of this dissertation have been reprinted from this publication with permission from
the copyright holder, 2015.

[69] M. Gamell, K. Teranishi, H. Kolla, J. Mayo, M. A. Heroux, J. Chen, and M. Parashar.
Scalable Failure Masking for Stencil Computations using Ghost Region Expansion
and Cell to Rank Re-mapping (accepted for publication). SIAM Journal on Scientific
Computing, 2017.

228

[70] M. Gamell, R. F. Van der Wijngaart, K. Teranishi, and M. Parashar. Specification of
Fenix MPI Fault Tolerance library, version 1.0.1. Technical Report SAND2016-10522,
Sandia National Laboratories, Livermore, CA, October 2016.

[71] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf.
The Cactus framework and toolkit: Design and applications. In Vector and Parallel
Processing – VECPAR’2002, 5th International Conference, Lecture Notes in Com-
puter Science, Berlin, 2003. Springer.

[72] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello. Uncoordinated
Checkpointing Without Domino Effect for Send-Deterministic MPI Applications. In
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
989–1000, 2011.

[73] A. Guermouche, T. Ropars, M. Snir, and F. Cappello. HydEE: Failure Contain-
ment without Event Logging for Large Scale Send-Deterministic MPI Applications.
In IEEE 26th International Parallel and Distributed Processing Symposium, 2012,
IPDPS 2012, pages 1216–1227, 2012.

[74] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, and R. A. van de Geijn. Fault-Tolerant
High-Performance Matrix Multiplication: theory and practice. In International Con-
ference on Dependable Systems and Networks. DSN 2001., pages 47–56, 2001.

[75] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell. Understanding and
exploiting spatial properties of system failures on extreme-scale hpc systems. In Pro-
ceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’15, pages 37–44, Washington, DC, USA, 2015. IEEE
Computer Society.

[76] D. Hakkarinen and Z. Chen. Algorithmic Cholesky factorization fault recovery.
In IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
pages 1–10, 2010.

[77] P. H. Hargrove and J. C. Duell. Berkeley Lab Checkpoint/Restart (BLCR) for Linux
clusters. In Journal of Physics: Conference Series, volume 46, page 494. IOP Pub-
lishing, 2006.

[78] T. Herault, A. Bouteiller, G. Bosilca, M. Gamell, K. Teranishi, M. Parashar, and
J. Dongarra. Practical scalable consensus for pseudo-synchronous distributed sys-
tems. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’15, pages 31:1–31:12, New York, NY,
USA, 2015. ACM.

[79] M. A. Heroux. Toward Resilient Algorithms and Applications. In Proceedings of the
3rd Workshop on Fault-tolerance for HPC at Extreme Scale, FTXS 2013, pages 1–2,
New York, NY, USA, 2013. ACM.

[80] M. A. Heroux. Resilience research is essential but failure is unlikely, April 2016. SIAM
PP16, Resilience Toward Exascale Computing Symposium.

[81] K.-H. Huang and J. Abraham. Algorithm-Based Fault Tolerance for Matrix Opera-
tions. IEEE Transactions on Computers, C-33(6):518–528, 1984.

229

[82] J. Hursey. Coordinated checkpoint/restart process fault tolerance for MPI applica-
tions on HPC systems. PhD thesis, Indiana University, Indianapolis, IN, USA, 2010.
AAI3423687.

[83] J. Hursey and R. Graham. Building a Fault Tolerant MPI Application: A Ring Com-
munication Example. In IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, IPDPSW, pages 1549–1556, 2011.

[84] J. Hursey, T. I. Mattox, and A. Lumsdaine. Interconnect agnostic checkpoint/restart
in Open MPI. In Proceedings of the 18th ACM international symposium on High
Performance Distributed Computing, HPDC 2009, pages 49–58, New York, NY, USA,
2009. ACM.

[85] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine. The Design and Implementation
of Checkpoint/Restart Process Fault Tolerance for Open MPI. In IEEE International
Parallel and Distributed Processing Symposium, pages 1–8, 2007.

[86] D. Ibtesham, D. Arnold, P. Bridges, K. Ferreira, and R. Brightwell. On the Viabil-
ity of Compression for Reducing the Overheads of Checkpoint/Restart-Based Fault
Tolerance. In 41st International Conference on Parallel Processing (ICPP), pages
148–157, 2012.

[87] T. Islam, K. Mohror, S. Bagchi, A. Moody, B. De Supinski, and R. Eigenmann.
MCREngine: A scalable checkpointing system using data-aware aggregation and com-
pression. In International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2012, pages 1–11, Nov 2012.

[88] I. Jangjaimon and N.-F. Tzeng. Adaptive Incremental Checkpointing via Delta Com-
pression for Networked Multicore Systems. In IEEE 27th International Symposium
on Parallel and Distributed Processing (IPDPS), pages 7–18, May 2013.

[89] Y. Jia, G. Bosilca, P. Luszczek, and J. J. Dongarra. Parallel reduction to hessen-
berg form with algorithm-based fault tolerance. In Proceedings of SC13: Interna-
tional Conference for High Performance Computing, Networking, Storage and Anal-
ysis, page 88. ACM, 2013.

[90] C. Jin, S. Klasky, S. Hodson, W. Yu, J. Lofstead, H. Abbasi, K. Schwan, M. Wolf,
W. Liao, A. Choudhary, et al. Adaptive io system (adios). Cray User’s Group, 2008.

[91] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klasky, N. Podhorszki, and
H. Abbasi. Using Cross-layer Adaptations for Dynamic Data Management in Large
Scale Coupled Scientific Workflows. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2013, pages
74:1–74:12, New York, NY, USA, 2013. ACM.

[92] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using asyn-
chronous message logging and checkpointing. In Proceedings of the seventh annual
ACM Symposium on Principles of distributed computing, PODC 1988, pages 171–
181, New York, NY, USA, 1988. ACM.

[93] E. M. Jonathan Lifflander, H. Menon, P. Miller, S. Krishnamoorthy, and L. Kale.
Scalable replay with partial-order dependencies for message-logging fault tolerance.
In Proceedings of IEEE Cluster 2014, Madrid, Spain, September 2014.

230

[94] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and
explicit optimizations for stencil computations. In Proceedings of the 2006 Workshop
on Memory System Performance and Correctness, MSPC ’06, pages 51–60, New York,
NY, USA, 2006. ACM.

[95] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Optimizing Checkpoints
Using NVM as Virtual Memory. In IEEE 27th International Symposium on Parallel
Distributed Processing, pages 29–40, May 2013.

[96] D. S. Katz, J. Daly, N. DeBardeleben, M. Elnozahy, B. Kramer, L. Lathrop, N. Nys-
trom, K. Milfeld, S. Sanielevici, S. Cott, and L. Votta. 2009 fault tolerance for
extreme-scale computing workshop, Albuquerque, NM - March 19-20, 2009. Techni-
cal Report ANL/MCS-TM-312, Argonne National Laboratory, December 2009.

[97] R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K.
Moffat, A. E. Lutz, G. DixonLewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S.
Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart,
P. Glarborg, C. Wang, and O. Adigun. Chemkin collection. Reaction Design, Inc.,
San Diego, CA., 2000.

[98] K. Kharbas, D. Fiala, F. Mueller, K. B. Ferreira, and C. Engelmann. Combining
Partial Redundancy and Checkpointing for HPC. In ICDCS, pages 615–626. IEEE,
2012.

[99] F. B. Kjolstad and M. Snir. Ghost cell pattern. In Proceedings of the 2010 Workshop
on Parallel Programming Patterns, ParaPLoP ’10, pages 4:1–4:9, New York, NY,
USA, 2010. ACM.

[100] O. R. N. Laboratory. Atlas Transition. https://www.olcf.ornl.gov/kb_articles/
atlas-transition/, 2014. Accessed: 2014-03-15.

[101] C. Leopold and M. Süß. Observations on MPI-2 support for hybrid master/slave
applications in dynamic and heterogeneous environments. In Proceedings of the 13th
European PVM/MPI User’s Group conference on Recent advances in parallel virtual
machine and message passing interface, EuroPVM/MPI 2006, pages 285–292, Berlin,
Heidelberg, 2006. Springer-Verlag.

[102] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn. On the role of burst buffers in leadership-class storage systems. In 012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), pages
1–11. IEEE, 2012.

[103] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua,
J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf,
K. Wu, and W. Yu. Hello ADIOS: the challenges and lessons of developing leader-
ship class I/O frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453–1473, 2014.

[104] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen. Duracache: A durable ssd cache us-
ing mlc nand flash. In Proceedings of the 50th Annual Design Automation Conference,
DAC ’13, pages 166:1–166:6, New York, NY, USA, 2013. ACM.

https://www.olcf.ornl.gov/kb_articles/atlas-transition/
https://www.olcf.ornl.gov/kb_articles/atlas-transition/

231

[105] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Păun, and S. Scott. An op-
timal checkpoint/restart model for a large scale high performance computing system.
In IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008, pages 1–9, April 2008.

[106] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis: An implicitly parallel
programming model for stencil computations on large-scale gpu-accelerated super-
computers. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 11:1–11:12, New York,
NY, USA, 2011. ACM.

[107] G. A. McMECHAN. Migration by extrapolation of time-dependent boundary values*.
Geophysical Prospecting, 31(3):413–420, 1983.

[108] E. Meneses, X. Ni, T. Jones, and D. Maxwell. Analyzing the interplay of failures and
workload on a leadership-class supercomputer. In Cray User Group 2015, Chicago,
IL, 2015.

[109] P. Micikevicius. 3d finite difference computation on gpus using cuda. In Proceed-
ings of 2Nd Workshop on General Purpose Processing on Graphics Processing Units,
GPGPU-2, pages 79–84, New York, NY, USA, 2009. ACM.

[110] B. Mills, R. E. Grant, K. B. Ferreira, and R. Riesen. Evaluating Energy Savings
for Checkpoint/Restart. In Proceedings of the 1st International Workshop on Energy
Efficient Supercomputing, E2SC 2013, pages 6:1–6:8, New York, NY, USA, 2013.
ACM.

[111] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski. Detailed modeling, design,
and evaluation of a scalable multi-level checkpointing system. Lawrence Livermore
National Laboratory (LLNL), Tech. Rep. LLNL-TR-440491, 2010.

[112] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling,
and Evaluation of a Scalable Multi-level Checkpointing System. In Proceedings of the
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2010, pages 1–11, Washington, DC, USA, 2010. IEEE
Computer Society.

[113] R. Netzer and Y. Xu. Replaying distributed programs without message logging. In
Proceedings of the Sixth IEEE International Symposium on High Performance Dis-
tributed Computing, pages 137–147, 1997.

[114] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart for
Soft and Hard Error Protection. In Proceedings of SC13: International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2013, pages
7:1–7:12, New York, NY, USA, 2013. ACM.

[115] X. Ni, E. Meneses, and L. Kale. Hiding Checkpoint Overhead in HPC Applications
with a Semi-Blocking Algorithm. In IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 364–372, 2012.

232

[116] B. Nicolae. Towards Scalable Checkpoint Restart: A Collective Inline Memory Con-
tents Deduplication Proposal. In Proceedings of the IEEE 27th International Sympo-
sium on Parallel and Distributed Processing, IPDPS 2013, pages 19–28, Washington,
DC, USA, 2013. IEEE Computer Society.

[117] B. Nicolae and F. Cappello. BlobCR: Efficient Checkpoint-restart for HPC Appli-
cations on IaaS Clouds Using Virtual Disk Image Snapshots. In Proceedings of In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2011, pages 34:1–34:12, New York, NY, USA, 2011. ACM.

[118] B. Nicolae and F. Cappello. AI-Ckpt: leveraging memory access patterns for adap-
tive asynchronous incremental checkpointing. In Proceedings of the 22nd interna-
tional symposium on High-performance parallel and distributed computing, HPDC
2013, pages 155–166, New York, NY, USA, 2013. ACM.

[119] B. Obama. Executive Order – Creating a National Strategic Comput-
ing Initiative. https://www.whitehouse.gov/the-press-office/2015/07/29/

executive-order-creating-national-strategic-computing-initiative, July
2015. Accessed: 2016-05-17.

[120] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing Checkpoint Performance
with Staging IO and SSD. In Proceedings of the International Workshop on Storage
Network Architecture and Parallel I/Os, SNAPI 2010, pages 13–20, Washington, DC,
USA, 2010. IEEE Computer Society.

[121] X. Ouyang, R. Rajachandrasekar, X. Besseron, H. Wang, J. Huang, and D. K. Panda.
CRFS: A lightweight user-level filesystem for generic checkpoint/restart. In Interna-
tional Conference on Parallel Processing (ICPP), pages 375–384. IEEE, 2011.

[122] J. Plank. Improving the performance of coordinated checkpointers on networks of
workstations using RAID techniques. In Reliable Distributed Systems, 1996. Proceed-
ings., 15th Symposium on, pages 76–85, 1996.

[123] J. Plank, K. Li, and M. Puening. Diskless checkpointing. Parallel and Distributed
Systems, IEEE Transactions on, 9(10):972–986, 1998.

[124] F. Quaglia. Combining periodic and probabilistic checkpointing in optimistic simula-
tion. In Parallel and Distributed Simulation, 1999. Proceedings. Thirteenth Workshop
on, pages 109–116, 1999.

[125] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda. A 1 PB/s file
system to checkpoint three million MPI tasks. In Proceedings of the 22nd inter-
national symposium on High-performance parallel and distributed computing, HPDC
2013, pages 143–154, New York, NY, USA, 2013. ACM.

[126] R. Rajachandrasekar, X. Ouyang, X. Besseron, V. Meshram, and D. K. Panda. Can
Checkpoint/Restart Mechanisms Benefit from Hierarchical Data Staging? In Pro-
ceedings of the International Conference on Parallel Processing - Volume 2, Euro-Par
2011, pages 312–321, Berlin, Heidelberg, 2012. Springer-Verlag.

[127] I. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative

233

[128] C. A. Reiss, J. Lofstead, and R. Oldfield. Implementation and evaluation of a staging
proxy for checkpoint i/o. CSRI Summer Proceedings 2008, page 131, 2008.

[129] R. Riesen, K. Ferreira, D. Da Silva, P. Lemarinier, D. Arnold, and P. G. Bridges.
Alleviating scalability issues of checkpointing protocols. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012, pages 18:1–18:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[130] T. Ropars, A. Guermouche, B. Uçar, E. Meneses, L. V. Kalé, and F. Cappello. On the
Use of Cluster-Based Partial Message Logging to Improve Fault Tolerance for MPI
HPC Applications. In Euro-Par (1), Euro-Par 2011, pages 567–578, 2011.

[131] T. Ropars, T. V. Martsinkevich, A. Guermouche, A. Schiper, and F. Cappello. SPBC:
Leveraging the Characteristics of MPI HPC Applications for Scalable Checkpointing.
In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2013, pages 8:1–8:12, New York, NY, USA, 2013.
ACM.

[132] G. Roth, G. Roth, J. Mellor-crummey, J. Mellor-crummey, K. Kennedy, K. Kennedy,
R. G. Brickner, and R. G. Brickner. Compiling stencils in high performance for-
tran. In In Supercomputing 97: Proceedings of the 1997 ACM/IEEE conference on
Supercomputing (CDROM, pages 1–20. ACM Press, 1997.

[133] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and
S. Matsuoka. Design and Modeling of a Non-blocking Checkpointing System. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2012, pages 19:1–19:10, Los Alamitos, CA, USA,
2012. IEEE Computer Society Press.

[134] A. Schäfer and D. Fey. Libgeodecomp: A grid-enabled library for geometric decom-
position codes. In Proceedings of the 15th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
285–294, Berlin, Heidelberg, 2008. Springer-Verlag.

[135] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[136] M. Schulz and B. R. De Supinski. PN MPI tools: A whole lot greater than the sum
of their parts. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
page 30. ACM, 2007.

[137] P. Shastry and K. Venkatesh. Selection of a Checkpoint Interval in Coordinated
Checkpointing Protocol for Fault Tolerant Open MPI. International Journal on Com-
puter Science and Engineering, 2(6):2064–2070, 2010.

[138] S. Sinha and M. Parashar. Adaptive runtime partitioning of amr applications on
heterogeneous clusters. In Proceedings of the 3rd IEEE International Conference on
Cluster Computing, volume 22, pages 435–442. IEEE Computer Society, 2001.

[139] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Be-
lak, P. Bose, F. Cappello, B. Carlson, and et al. Addressing Failures in Exascale
Computing. U.S. DoE, 2013.

234

[140] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and C. T.
Vaughan. Early experiences co-scheduling work and communication tasks for hybrid
mpi+x applications. In Proceedings of the 2014 Workshop on Exascale MPI, ExaMPI
’14, pages 9–19, Piscataway, NJ, USA, 2014. IEEE Press.

[141] R. Subramaniyan, V. Aggarwal, A. Jacobs, and A. George. FEMPI: A Lightweight
Fault-tolerant MPI for Embedded Cluster Systems. In H. R. Arabnia, editor, 14th
Annual European Symposium on Algorithms, ESA 2006, pages 3–9. CSREA Press,
2006.

[142] Q. Sun, T. Jin, M. Romanus, H. Bui, F. Zhang, H. Yu, H. Kolla, S. Klasky, J. Chen,
and M. Parashar. Adaptive data placement for staging-based coupled scientific work-
flows. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’15, pages 65:1–65:12, New York, NY,
USA, 2015. ACM.

[143] W. W. Symes. Reverse time migration with optimal checkpointing. Geophysics, pages
213–221, 2007.

[144] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi. CheCUDA: A Check-
point/Restart Tool for CUDA Applications. In International Conference on Parallel
and Distributed Computing, Applications and Technologies, pages 408–413, 2009.

[145] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,
E. Lusk, and J. L. Traff. MPI at Exascale. Procceedings of SciDAC, 2, 2010.

[146] D. Tiwari, S. Gupta, and S. S. Vazhkudai. Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads on extreme-scale systems. In
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 25–36, June 2014.

[147] Top500.org. The Top500 List. http://www.top500.org/list/2016/11/, 2016. Ac-
cessed: 2016-12-15.

[148] M. Turmon, R. Granat, D. Katz, and J. Lou. Tests and tolerances for high-
performance software-implemented fault detection. IEEE Transactions on Comput-
ers, 52(5):579–591, 2003.

[149] S. S. Vadhiyar and J. Dongarra. SRS: A Framework for Developing Malleable and
Migratable Parallel Applications for Distributed Systems. Parallel Processing Letters,
13(2):291–312, 2003.

[150] B. Vinnakota and N. Jha. A dependence graph-based approach to the design of
algorithm-based fault tolerant systems. In 20th International Symposium on Fault-
Tolerant Computing. FTCS-20. Digest of Papers., pages 122–129, 1990.

[151] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive process-level live mi-
gration in HPC environments. In International Conference for High Performance
Computing, Networking, Storage and Analysis., pages 1–12, 2008.

[152] S.-J. Wang and N. Jha. Algorithm-based fault tolerance for FFT networks. IEEE
Transactions on Computers, 43(7):849–854, 1994.

http://www.top500.org/list/2016/11/

235

[153] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization. In
2009 33rd Annual IEEE International Computer Software and Applications Confer-
ence, volume 1, pages 579–586, July 2009.

[154] J. W. Young. A First Order Approximation to the Optimum Checkpoint Interval.
Commun. ACM, 17(9):530–531, Sept. 1974.

[155] G. Zheng, X. Ni, and L. V. Kalé. A scalable double in-memory checkpoint and
restart scheme towards exascale. In IEEE/IFIP 42nd International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 1–6, 2012.

[156] G. Zheng, L. Shi, and L. Kale. FTC-Charm++: an in-memory checkpoint-based
fault tolerant runtime for Charm++ and MPI. In IEEE International Conference on
Cluster Computing, pages 93–103, 2004.

	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	State of the Art Software for Hard Failure Resilience
	Research Challenges for Application-assisted Resilience
	Support for Customizable Application Resilience
	Support for On-line Recovery
	Support for Existing Code Base

	Overview of Presented Research
	Contributions
	Global Recovery
	Local Recovery
	Failure Masking

	Outline of this dissertation

	Background and Related Work
	Hard Failures in HPC Centers
	Application-agnostic Techniques
	Checkpoint and Restart
	Message Logging
	Redundancy
	Process Migration
	Application-agnostic Runtimes

	Application-aware Techniques

	Understanding Node Failures on Extreme-Scale Production Runs
	Extreme Scale S3D Production Execution
	Modeling Production Run Behavior

	Application-aware On-line Global Recovery
	Overview
	The Fenix Architecture for On-line Failure Recovery
	Process Recovery in Fenix
	Application-driven Data Checkpointing

	Fenix Programming Interface
	Interface Overview
	Integrating S3D with Fenix
	A Holistic Example

	Empirical Evaluation
	Methodology
	Determining Failure-free Checkpoint Cost
	Validating Optimal Checkpoint Rate
	Evaluating the Recovery Algorithm
	Surviving Highly Frequent Node Failures
	Effect of the Checkpoint Size
	Evaluation Conclusion

	On-line Recovery for Memory-filling Applications
	In-memory Checkpointing, Challenges and Benefits
	Effect of Resource Allocation Increase
	Effect of Problem Resolution Reduction

	Local Recovery for Stencil-based Scientific Applications
	Overview
	Local Recovery for Stencil-based Scientific Applications
	Stencil-based Scientific Applications
	Local Recovery, Challenges and Benefits

	FenixLR Implementation
	Experiences with MPI-based Implementations
	Implementation Overview

	Experimental Evaluation
	Goal
	Methodology
	Asynchronous Checkpoint Transfer Cost and Scalability
	Recovery Time for different MTBFs
	Total Overhead for different MTBFs
	Evaluation Conclusion

	Failure Masking on Stencil-based Applications
	Overview
	Impact of Recovery Delay Propagation on Failure Masking
	Delay Propagation
	Failure Masking

	Modeling Delay Propagation
	Failure Masking Analysis
	Propagation of a Multi-failure Recovery Delay on 1-D and 3-D Simulations
	Local Recovery and Failure Masking on a 3-D Simulation
	Break-Even Analysis
	Failure Overhead Distribution for Multi-failure Global and Local Recovery
	Failure Masking Probability
	Impact of Performance Variation
	Defining Time Units and Processing Elements

	Increasing the Ghost Region Size
	A Guiding Example: 1-D, 3-point Stencil
	Beyond 3-point Calculations on a 1-D Stencil
	2-D and 3-D Stencils

	Node-aware Mapping of Cells to Ranks
	Experimental Evaluation
	Experimental Evaluation Goals
	Experimental Methodology
	Experiments using a 1D PDE
	Experiments using S3D
	Increasing the Failure Propagation Window on S3D

	Conclusion
	Conclusion
	Future Work

	Appendix A. Specification of the Fenix MPI Fault Tolerance library
	Introduction
	Functionality
	Terms and format

	Initialization, Rank Failure Recovery, and Teardown
	Initialization
	Callback handler function recovery
	Querying active ranks
	Teardown

	Data Storage and Recovery
	Overview
	Managing data storage and recovery constructs
	Probing and completing asynchronous operations
	Storing and committing application data
	Recovering application data
	Managing data subsets
	Accessing Fenix Data constructs

	Examples
	Protecting process and data with Fenix
	Storing select members of a data group
	Storing data objects with subsets
	Recovering data from older time stamps
	Recovering one member of a data group
	Recovering all members of a data group
	Changing attributes of a data group member

	References

