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ABSTRACT OF THE DISSERTATION

A comparison framework for interleaved persistence

modules and applications of persistent homology to

problems in fluid dynamics

by RACHEL LEVANGER

Dissertation Director: Konstantin Mischaikow

We prove an algebraic stability theorem for interleaved persistence modules that

is more general than any formulations currently in the literature. We show how this

generalization leads to a framework that may be used to compare persistence modules

locally, enabling the computation of non-uniform error bounds for persistence diagrams.

We give several examples of how to use this comparison framework, and also address

an open problem on non-uniform sublevel set filtrations.

We also give two applications of persistent homology to problems in fluid dynamics.

Our first application examines the structure of the dynamics of a time-evolving system

on a two-dimensional domain, where we give examples for studying fixed points and

periodic orbits. Our second application uses persistent homology in conjunction with

techniques in computer vision to study pattern defects in the spiral defect chaos regime

of Rayleigh-Bénard convection.
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As with many modern scientific endeavors, much of the work contained in this disser-

tation is the cumulative product of many minds and could not have been accomplished

by a single individual working alone. I provide here comments about the nature of the

many collaborations that gave rise to the work presented in this dissertation.

Part I is work that I coauthored with Shaun Harker, Miroslav Kramár, and Kon-

stantin Mischaikow, and is currently in preparation to be submitted. The ideas for the

direction of this work were born out of many discussions with my coauthors and others,

most notably Vidit Nanda, Mike Lesnick, Uli Bauer, Amit Patel, and Chuck Weibel.

Chapter 5 was previously published in Physica-D [1], and Chapter 6 offers a con-

tinuation of this work with the same group of coauthors in addition to Jacek Cyranka,

Shaun Harker, and Logan Kageorge. The numerical simulations for both chapters were

computed by my coauthors at Georgia Tech and Virginia Tech. The subsampling soft-

ware used in Chapter 5 was built by Shaun Harker specifically to handle the large

amount of data generated for this study. The interface for processing the persistence

diagrams of images with PHAT, used extensively in the work of Chapter 6, was built

by Jacek Cyranka and Shaun Harker, and some of the numerical analysis software used

in this same chapter was also built by Shaun.
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Chapter 1

Introduction

Vast amounts of high-dimensional data inundate our scientific and digital communities.

To extract insight from all of this data, we must develop tools that enable us to effi-

ciently and accurately examine the structure and nature of high-dimensional datasets.

Statistical regression methods use pre-existing shapes or forms (e.g. linear, polynomial,

or logistic curves) to study the structure of a dataset by testing for best fit. Many

topological methods, in contrast, enable one to study the shape of a dataset without

presupposing some sort of structure in advance. Techniques from these latter methods

form the topic of this dissertation.

Persistent homology, a foundational tool from the field of topological data analysis,

provides a method by which one can study the shape and structure of high-dimensional

data on multiple spatial scales simultaneously. It provides a compact summary of the

multi-scale topology of a dataset in the form of a collection of persistence diagrams.

Each persistence diagram is a collection of points on the Euclidean plane, the arrange-

ment of which provides a topological signature of the underlying dataset. Figure 1.1

shows a finite point cloud and its associated (nontrivial) persistence diagrams. The

group of black persistence points, corresponding to the dimension zero homological

features, encode the connectivity of the dataset. The blue persistence points, corre-

sponding to the dimension one homological features, encode the “holes” or loops at

intermediate scales of the dataset. We direct the reader to [2, 3, 4, 5] for an introduc-

tion to this rich topic. In Chapter 5, we give an intuition for how persistence diagrams

encode the low-dimensional topological properties of the following types of datasets:

finite point clouds and scalar fields on two-dimensional domains.
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Figure 1.1: A finite point cloud (left) and its associated persistence diagrams (right).
The black points in the persistence diagram encode the connectivity of the dataset in a
similar way to a single-linkage hierarchical clustering algorithm. The blue points in the
persistence diagram encode the two loops that are present in the dataset at intermediate
scales. That is, if each of the points in the point cloud is inflated by a ball of some
radius r, for large enough r, the inflated sets would contain loop structures.

1.1 Theoretical Results

In Part I of this dissertation, we give a new theoretical result which enables the state-

ment of local error bounds for the placement of the persistence points on the Euclidean

plane. That is, if an approximation must be made in order to compute the persistence

diagrams of a dataset, e.g. for computational reasons, we provide a way to precisely

state bounds on the errors that may have been introduced by the approximation. Until

this work, statements about errors in the position of the persistence points have been

written down in the form of global, uniform error bounds (in some cases after passing

to a log scale) [6, 7, 8, 9, 10]. While it is possible to use uniform error bounds to

make local statements by restricting the portion of the persistence plane in question,

our framework gives a natural way to describe non-uniform error bounds for the entire

persistence plane at once. The framework also provides a method by which one can

easily and more accurately compare the errors introduced by different approximations.

These results, presented in Chapter 3, rest on the theory of persistence modules [5]
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and their interleavings, which were first discussed by Chazal, et al. in [7]. We prove an

algebraic stability theorem for persistence modules that extends the one established by

Bauer and Lesnick in [11] by using the generalized interleavings of Bubenik, et al. in

[12]. We provide enough background so that this chapter is self-contained from the per-

spective of persistence module theory. In Chapter 4, we give a number of examples to

illustrate how our results may be used. In particular, we show how approximations aris-

ing from discretization or subsampling affect the corresponding persistence diagrams,

provide a summary of error bounds for a number of approximations to Vietoris-Rips

and C̆ech complex filtrations, and also address an open problem posed by Bendich, et

al. in [13].

1.2 Applications

Our second contribution in this dissertation opens the door to a suite of new methods

for studying problems in fluid dynamics via tools in computational topology. Chap-

ters 5 and 6 showcase the versatility of persistent homology by using it as a tool for

dimension reduction, symmetry reduction, shape detection, and pattern recognition.

We do not assume that the reader has an extensive background in fluid dynamics, and

in fact our approach highlights a collection of methods that do not require a mathe-

matical knowledge of the underlying equations governing the dynamics of the systems

studied, making them well-suited to experimentally-collected datasets. We give a brief

description of each of the applications presented.

1.2.1 Dimension Reduction

Let f : D → R be a Morse function on a compact subset D ⊆ Rn. The function f is

precisely described by defining its values on all of D, likely an infinite set. However,

the total number of persistence points in the persistence diagrams corresponding to f

is bounded above by n × c, where c is the number of critical points of f [4]. For the

case when n = 2, we approximate f by an m1×m2-pixel digital image g. It is possible

to define the notion of a critical point in this setting, and the upper bound for the total
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number of persistence points in the persistence diagrams for g is still bounded above

by nc̃, where c̃ is the number of critical points of g (in general this requires that the

values of each pixel or voxel in g are unique, which is always possible by performing

a small perturbation of the pixel values). Thus, in the case where a digital image

approximates a smooth function, as in the work contained in this dissertation, the total

number of persistence points in the collection of persistence diagrams corresponding to

g is significantly smaller than the number of pixels in the underlying image. We use this

aspect of persistent homology extensively throughout Chapter 5, where we work in the

space of persistence diagrams rather than directly with the digital images themselves.

1.2.2 Symmetry Reduction

Fluid flow simulations are often carried out under periodic boundary conditions. This is

primarily due to the complications introduced when attempting to accurately model the

boundary effects of the fluid. Alternatively, one may be interested in studying patterns

and dynamics that arise in the bulk of the fluid flow, far away from the boundary, so

the boundary effects may be assumed to be negligible and not taken into account.

The addition of periodic boundary conditions on the governing equations for the

fluid flow simulation can introduce a number of symmetries into the system. That

is, solutions may lie on group orbits, where each solution in a group orbit is related to

many others by some symmetry, such as a translation or rotation. Often when studying

dynamical structures, it is desirable to treat solutions lying in a single group orbit as

equivalent, and thus to work with equivalence classes of solutions instead of the actual

solutions.

Classical approaches to carry out this identification involve a variety of methods.

Typically, the set of symmetries is explicitly searched in order to make the identifi-

cations. For small systems, this approach is adequate. However, when dealing with

thousands of solutions sampled from a single flow trajectory, the task becomes compu-

tationally infeasible. In contrast, homology is invariant under these types of coordinate

transformations, and so persistent homology is a natural tool for making these dynam-

ical identifications. However, it is also possible that persistent homology collapses too
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many symmetries, as the following remark serves to illustrate.

Remark 1.1. Let f : D → R be a scalar field on a topological domain D, and let

h : D → D be a homeomorphism. Then g := f ◦ h is also a scalar field on D, and the

persistence diagrams of f are equivalent to the persistence diagrams of g.

In light of this remark, it is necessary to determine if persistence diagrams are a

strong enough invariant to give different signatures for patterns that are dynamically

distinct. While this is not true in general, in Chapter 5 we establish that persistent

homology is comparable in practice to Fourier methods for symmetry reduction for

a small dataset. We sample a chaotic trajectory for sixty-seven initial conditions for

a Newton solver, which is then used to find the nearby fixed point. These solutions

are then identified by both Fourier methods and using persistence diagrams. Our

results show that both techniques determine the same number of equivalence classes of

representative dynamical patterns.

1.2.3 Shape Detection

One of the canonical applications of persistent homology is to the study of the intrinsic

structure of finite point clouds at multiple spatial scales, as in Figure 1.1 (see also

[2, 14]). In Chapter 5, we first map a collection of scalar fields resulting from simulations

of fluid flows on a 2D domain to the space of persistence diagrams to perform a data

reduction step and also to quotient out symmetries inherent in the system as a result

of the periodic boundary conditions (see previous two sections).

The space of persistence diagrams is a metric space (endowed with a variety of

metrics), and the function mapping a scalar field to its corresponding persistence di-

agrams is Lipschitz continuous with unit constant under the sup-norm metric on the

scalar fields and either the Bottleneck or Wasserstein metrics on the space of persistence

diagrams. Thus, viewing a collection of fluid flow simulations as samples along a contin-

uous trajectory in solution space, we can view their resulting persistence diagrams as a

point cloud that lie along a continuous trajectory in the space of persistence diagrams.

In the case of truly periodic dynamics, this trajectory is contained in the graph of a

continuous function that embeds the circle S1 into the space of persistence diagrams.
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Considering that we are working with numerical approximations of the scalar fields and

not true solutions, we can view this point cloud as a noisy sample of a circular structure

embedded in the space of persistence diagrams.

In Chapter 5, we show how the persistence diagrams of a point cloud obtained in

such a manner from Kolmogorov flow reflects this circular structure: the persistence

points with finite coordinates in the dimension zero persistence diagram are close to

the diagonal, indicating that the trajectory was sampled densely; and the dimension

one persistence diagram consists of a single point far from the diagonal in addition to

some small-scale noise, or points close to the diagonal.

We take this study one step further in the study of an almost-periodic orbit taken

from simulated Rayleigh-Bénard convection. In this case, we address issues that stem

from multiple time scales in the dynamics and the large number of sample points that

result from sampling densely enough to resolve the dynamical structure of the trajec-

tory. Our theoretical results in Chapter 4 (see Section 4.1.4) provide us with a precise

statement on the errors introduced by down-sampling the point cloud in order to per-

form the persistence diagram computations. While the dynamical structure of a circle

is recovered, a second prominent point in the dimension one persistence diagram indi-

cates that the trajectory might be folded or twisted, and thus additional structure is

captured by mapping the trajectory to the space of persistence diagrams.

1.2.4 Pattern Recognition

Finally, in Chapter 6 we use the Morse-theoretic underpinnings of persistent homology

as a tool in two pattern recognition problems. Specifically, we use the critical point

pairings that result from the computation of a persistence diagram as a way to local-

ize certain pattern formations in the mid-plane temperature field of Rayleigh-Bènard

convection at high Rayleigh number.

Figure 1.2 shows a sample temperature fields and its corresponding sublevel set

persistence diagrams for dimension (a) zero and (b) one. The author of this dissertation

has designed interactive software [15] that enables one to visualize the critical cell

pairings corresponding to the persistence points; once encircled on the persistence plane,
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the corresponding critical cell pairings are overlaid (in cyan) on the temperature field

as shown in the figure.

As a first application of persistent homology to pattern analysis, we use critical

cell pairings from the dimension one persistence diagrams to differentiate targets from

spirals (see Section 6.3.2). This enables an automated detection of the six canonical

defect types that are most commonly studied in the existing literature.

As a second application to pattern analysis, we use persistent homology to select

certain critical cells corresponding to saddle points or local extrema in the image. That

is, a single image may contain many critical points, but only certain critical points

will be important for distinguishing the global arrangement of the pattern; persistent

homology offers a simple method by which to select the distinguishing critical cells.

In this second application, we combine the critical cells selected through persistence

with the more classical topological defects to give a more nuanced description of a local

defect and for detecting recurring patterns. We then demonstrate how our methods

combine with standard techniques from object recognition in computer vision through

two examples.
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(a)

(b)

Figure 1.2: Sample mid-plane temperature field of Rayleigh-Bènard convection with
selected critical cell pairings overlaid in cyan (the birth cell is marked by an open circle,
and the death cell is marked by a solid circle, joined by a straight line). (a) Sublevel di-
mension zero persistence diagram with persistence points near the death axis encircled.
The corresponding persistence pairings indicate that the death critical cell “points”
to roll instabilities. (b) Sublevel dimension one persistence diagram with persistence
points far from the diagonal encircled. The corresponding persistence pairings indicate
that these correspond to rolls that are disjoint from the boundary of the image, with
the death critical cell “pointing” to the maximum of each roll.
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Persistent homology [5] is a key element in the rapidly-developing field of topologi-

cal data analysis, where it is used both as a means of identifying geometric structures

associated with data and as a data reduction tool. Any work with data involves ap-

proximations that arise from finite sampling, limits to measurement, and experimental

or numerical errors. Part I of this dissertation focuses on obtaining rigorous bounds on

the variations in persistence diagrams arising from these approximations.

To motivate this work we begin with the observation that many problems in data

analysis can be rephrased as a problem concerned with the analysis of the geometry

induced by a scalar function f : X → R. For example, consider a finite point cloud X

in a metric space X with metric ρ. Single-linkage hierarchical clustering problems are

naturally associated with the function fX : X → [0,∞) given by

fX (x) := ρ(x,X ) = min {ρ(x, ξ) : ξ ∈ X} ,

where clusters are derived from the connected components of the sublevel set

C(fX , t) := {x ∈ X : fX (x) ≤ t}

for a particular choice of t ∈ [0,∞). The collection {C(fX , t)}t∈R is called the sublevel

set filtration of X induced by f . Superlevel sets and superlevel set filtrations are defined

similarly by considering the sets {x ∈ X : t ≤ fX (x)}.

Alternatively, consider a scalar field

u : Ω→ R

arising at a particular point in time from a nonlinear physical model, e.g. the vorticity

or temperature field of a fluid, chemical density in a reaction diffusion system, forces

between particles in a granular system, etc. Patterns produced by these systems are

often associated with sublevel or superlevel sets of u.

These examples are meant to motivate our interest in studying the geometry of

the sets C(f, t). Homology provides a coarse but computable representation of this
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geometry. For each function f , t ∈ R, and n ∈ N, there is an assigned vector space

M(f)t = Hn(C(f, t), k),

where k is a field. Because each t ≤ s implies C(f, t) ⊆ C(f, s), the inclusion maps

induce the following linear maps at the level of homology:

ϕM(f)(t, s) : M(f)t →M(f)s.

This homological information can be abstracted into a persistence module, which

consists of a collection of vector spaces indexed by the real numbers, {Vt}t∈R, and

linear maps {ϕV (s, t) : Vs → Vt}s≤t∈R satisfying the following conditions:

(i) ϕV (t, t) = idVt for every t ∈ R, and

(ii) ϕV (s, t) ◦ ϕV (r, s) = ϕV (r, t) for every r ≤ s ≤ t in R.

We write (V, ϕV ) to denote the collection of vector spaces and compatible linear maps,

and will sometimes just write V for the full persistence module when the maps are

clear. We say that V is a pointwise finite dimensional (PFD) persistence module when

every Vt is finite-dimensional.

As is described in greater detail in Chapter 4, a PFD persistence module gives rise to

a persistence diagram, which is a multiset of points in the extended plane, i.e. a multiset

with some base set consisting of a collection of points in R2
, where R = R∪ {−∞,∞}.

Given a PFD persistence module (V, ϕV ), we denote its associated persistence diagram

by PD(V ). When an underlying object, such as a scalar field f : X → R, is used

to induce a persistence module (through a sublevel set filtration on X, for example),

we will write PD(f) as the persistence diagram associated to the induced persistence

module; in these cases, the persistence module will be made clear by context.

Returning to our examples, observe that we have outlined a procedure by which the

sublevel sets of a scalar field u produce a persistence diagram PD(u). If, as suggested

above, u is generated by a physical system, then there is little chance of computing

PD(u) exactly. More specifically, if u is meant to be a solution to a partial differential
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equation at a given time point, then one may expect that an approximation ũ of u has

been obtained via a numerical method. Alternatively, for an actual physical system, ũ

may represent data obtained from an experiment.

Recent computational developments have led to the routine computation of PD(ũ)

in a wide variety of settings. Thus, the natural question is how are PD(u) and PD(ũ)

related? A fundamental result [6] in the theory of persistent homology is that a variety

of metrics can be imposed on the space of persistence diagrams such that the function

PD is continuous with respect to L∞ changes in u. Recent developments by Bauer and

Lesnick [11] allow for comparisons of persistence modules through a matching of the

associated persistence points. In Chapter 3 we extend these recent results, and then

use this extension in Chapter 4 to provide explicit bounds on the location of unmatched

points and on the differences between the matched points in the persistence diagrams

that are applicable to a wide variety of naturally arising problems.

To be more explicit, consider the following example. Let (M(f), ϕM(f)) be the per-

sistence module associated with the sublevel sets of the function f : X → R, but assume

that we can only sample the sublevel sets of f at the integers Z ⊂ R. As explained in

Chapter 4, this sampling gives rise to a persistence module (M(f)′, ϕM(f)′). Figure 1.3

indicates the type of result that we obtain: the location of a computed persistence

point of PD(M(f)′) is shown along with the region of the persistence diagram within

which the matched persistence point of PD(M(f)) must lie, and the possible locations

of unmatched persistence points of PD(M(f)) and PD(M(f)′).

An outline of the chapter is as follows. In Chapter 2 we review the essential concepts

associated with persistence modules required for our results. This section defines the

notions of persistence modules and their morphisms, interleavings, induced matchings,

and the algebraic stability theorem, which form the starting point for our work.

Our theoretical results are presented in Chapter 3. We begin by extending the In-

duced Matching Theorem of Bauer and Lesnick [11]. Using a combination of ideas from

the theory of generalized interleavings of Bubenik, et al. [12] with the Induced Match-

ing Theorem, we obtain the Non-uniform Induced Matching Theorem (Theorem 3.10),

which is a more general statement about how the sizes of the kernel and cokernel of a
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Figure 1.3: A schematic diagram illustrating the quality of the approximation given in
Section 4.1.2. To illustrate the matching guaranteed by Theorem 3.13, suppose that
PD(M(f)′) contains a single off-diagonal point at (2, 6). The gray region surrounding
this point illustrates the possible location of the matched point in the “true” persistence
diagram PD(M(f)), and any unmatched points in PD(M(f)) fall in the blue region. If
any persistence points in PD(M(f)′) had fallen in the pink region, then it’s possible they
may have been introduced as a computational artifact, and may not have corresponding
matched points in PD(M(f)). The dashed lines illustrate the error bounds given by the
bottleneck distance between the approximation persistence diagram and the underlying
“true” diagram.

persistence module morphism relate to the quality of the induced matching of [11].

Next we show that generalized interleavings can be combined with the Non-uniform

Induced Matching Theorem to produce an Algebraic Stability Theorem for General-

ized Interleavings (Theorem 3.13 and easy-to-state Corollary 3.14). Our proof closely

follows Bauer and Lesnick’s proof of the Algebraic Stability Theorem [11], though we

use the Non-uniform Induced Matching Theorem to push the bounds given by gener-

alized interleavings through for a more precise statement. We believe this result (and

especially the statement of Corollary 4.2) clarifies how the monotone functions com-

prising the translation pair of a generalized interleaving relate to stability in the space

of persistence diagrams.

Chapter 4 provides applications of the above-mentioned results. The most classical

stability result is given using the bottleneck distance [6], which is akin to measuring

the largest difference between two diagrams, regardless of where the persistence points

lie on the two-dimensional persistence plane. In contrast, Theorem 3.13 gives a local
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notion of distance specified by the location of the points in each of the diagrams. In

Chapter 4 we show how Theorem 3.13 and Corollary 4.2 make it possible to describe

the errors introduced by computing a persistence diagram from an approximation.

It can be argued that for applications, the most difficult task is the construction of

the interleaving between the two persistence modules. However, as we hope the exam-

ples of Chapter 4 illustrate, once the interleavings are determined, working with our

framework is straightforward. With this in mind, we include Table 4.1 in Section 4.1.5,

providing an easily-referenced list of translation maps of generalized interleavings for

common approximations to Vietoris-Rips and C̆ech filtrations.

In Section 4.2, we consider the problem of manifold identification. In particular,

Proposition 4.26 provides, with high probability, information about the location of per-

sistence points if one randomly samples sufficiently many points on a manifold and uses

the distance function and Vietoris-Rips filtration to compute the persistence diagram.

Finally, in Section 4.3, we show how this theory can be used to address, at least in

part, a question raised by Bendich, et al. in [13] concerning variations in a persistence

diagram under a non-uniform sublevel set filtration.
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Chapter 2

Preliminaries

In this chapter, we summarize background material and establish notation for the work

we present in Part I of this dissertation. Section 2.1 provides a short overview of

persistence modules and their morphisms. Section 2.2 addresses interval decompositions

of persistence modules, barcodes, and decorated endpoints. Section 2.3 introduces the

the notion of an interleaving between two persistence modules and establishes some

properties of monotone functions. Section 2.5 recalls the results of Bauer and Lesnick

[11] concerning the matchings between barcodes induced by morphisms of persistence

modules and the traditional algebraic stability theorem, both of which we generalize in

Chapter 3.

2.1 Persistence Modules and their Morphisms

This section provides basic facts about persistence modules, presented with minimal

reference to the language of category theory. For alternative treatments, see [5, 11, 12,

16].

Definition 2.1. A persistence module is an R-indexed family of vector spaces {Vt}t∈R,

each over a field k, together with a family of linear maps {ϕV (s, t) : Vs → Vt}s≤t∈R,

called transition maps, that satisfy the following conditions:

(i) ϕV (t, t) = idVt for every t ∈ R, where idVt is the identity map on Vt, and

(ii) ϕV (s, t) ◦ ϕV (r, s) = ϕV (r, t) for every r ≤ s ≤ t in R.

We write (V, ϕV ) to denote the collection of vector spaces and compatible linear maps,

and will sometimes just write V for the full persistence module when the maps are
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clear. We say that V is a pointwise finite dimensional (PFD) persistence module when

every Vt is finite-dimensional.

Definition 2.2. Let (V, ϕV ) and (W,ϕW ) be persistence modules. A persistence module

morphism φ : V → W is a collection of linear maps {φt : Vt → Wt}t∈R such that the

following diagram commutes for all s, t ∈ R with s ≤ t.

Vs Vt

Ws Wt

φs

ϕV (s,t)

φt

ϕW (s,t)

If φt is injective (surjective) for every t ∈ R, then we say that φ is a monomorphism

(epimorphism). A persistence module morphism that is both a monomorphism and an

epimorphism is an isomorphism.

To readers familiar with category theory, persistence modules and their morphisms

form an abelian category, a fact that we essentially establish in the remainder of this

section. We also formulate analogs for several concepts from the category of vector

spaces and linear maps, such as the notion of a persistence submodule, intersections,

and direct sums. We begin with the definition of a persistence submodule.

Definition 2.3. Let (V, ϕV ) be a persistence module and let {Wt}t∈R be a family of

vector spaces such that Wt is a subspace of Vt for every t ∈ R. For s, t ∈ R with s ≤ t,

the domain restriction of the map ϕV (s, t) : Vs → Vt to the subspace Ws is expressed

by the notation ϕV (s, t)|Ws : Ws → Vt.

Definition 2.4. Let (V, ϕV ) be a persistence module. We say that (W,ϕW ) is a per-

sistence submodule of the persistence module V if W is a persistence module, Wt ⊆ Vt

for every t ∈ R, and ϕW (s, t) = ϕV (s, t)|Ws for every s, t ∈ R with s ≤ t.

It is sometimes cumbersome to establish that a persistence submodule is, indeed, a

persistence module. The following lemma gives a more direct route.

Lemma 2.5. Let (V, ϕV ) be a persistence module and let {Wt}t∈R be a family of vector

spaces such that Wt ⊆ Vt for every t ∈ R. Suppose that im ϕV (s, t)|Ws ⊆ Wt for all
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s, t ∈ R with s ≤ t and define ϕW (s, t) := ϕV (s, t)|Ws. Then (W,ϕW ) is a persistence

submodule of (V, ϕV ).

Proof. We must show that ϕW (s, t) : Ws → Wt for every s, t ∈ R with s ≤ t, and that

the maps ϕW satisfy properties (i) and (ii) in Definition 2.1.

Let s ≤ t. By hypothesis, we are given that im ϕV (s, t)|Ws ⊆Wt. Thus, ϕW (s, t) =

ϕV (s, t)|Ws : Ws → Wt, so the transition maps are defined. It remains to verify prop-

erties (i) and (ii) in Definition 2.1. We first verify property (i). Let t ∈ R. Then

ϕW (t, t) = ϕV (t, t)|Wt = idWt and property (i) is verified. To verify property (ii), let

r ≤ s ≤ t in R. Since im ϕV (r, s)|Wr ⊆Ws,

[ϕV (s, t) ◦ ϕV (r, s)]|Wr = ϕV (s, t)|Ws ◦ ϕV (r, s)|Wr .

Thus, we have

ϕW (r, t) = ϕV (r, t)|Wr

= [ϕV (s, t) ◦ ϕV (r, s)]|Wr

= ϕV (s, t)|Ws ◦ ϕV (r, s)|Wr

= ϕW (s, t) ◦ ϕW (r, s).

Hence, the maps ϕW satisfy property (ii).

With the notion of a persistence submodule established, it is possible to construct

the notion of an intersection of two persistence modules.

Definition 2.6. Suppose that (V, ϕV ) and (W,ϕW ) are both persistence submodules of

a persistence module (U,ϕU ). The intersection persistence submodule (V ∩W,ϕV ∩W )

of (U,ϕU ) is defined by the vector spaces

(V ∩W )t := Vt ∩Wt

for all t ∈ R, and transition maps ϕV ∩W (s, t) := ϕU (s, t)|(V ∩W )s defined via restriction

for every s, t ∈ R with s ≤ t.
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Proposition 2.7. Let (V, ϕV ) and (W,ϕW ) be persistence submodules of a persistence

module (U,ϕU ). The persistence module (V ∩W,ϕV ∩W ) is a persistence submodule of

(U,ϕU ).

Proof. We will use Lemma 2.5 to show that (V ∩W,ϕV ∩W ) is a persistence submodule

of (U,ϕU ). Since the intersection of two vector subspaces is again a subspace, then

(V ∩W )t = Vt ∩Wt ⊆ Ut

for every t ∈ R, so the subspace hypothesis is satisfied.

The transition maps of (V ∩W,ϕV ∩W ) are defined by ϕV ∩W (s, t) := ϕU (s, t)|(V ∩W )s

for every s, t ∈ R with s ≤ t, so it remains to show that im ϕU (s, t)|(V ∩W )s ⊆ (V ∩W )t

for every s ≤ t. Since (V, ϕV ) and (W,ϕW ) are each persistence submodules of (U,ϕU ),

then im ϕU (s, t)|Vs = im ϕV (s, t) ⊆ Vt and im ϕU (s, t)|Ws = im ϕW (s, t) ⊆Wt for every

s ≤ t. It follows that

im ϕU (s, t)|(V ∩W )s = im ϕU (s, t)|Vs∩Ws ⊆ Vt ∩Wt = (V ∩W )t

for every s, t ∈ R with s ≤ t. By Lemma 2.5, (V ∩W,ϕV ∩W ) is a persistence submodule

of (U,ϕU ).

A fundamental construction in the theory of persistence modules is a direct sum.

Definition 2.8. Let (V, ϕV ) and (W,ϕW ) be persistence modules. The direct sum

V ⊕W is formed by taking

(V ⊕W )t := Vt ⊕Wt

for all t ∈ R and

ϕV⊕W (s, t) := ϕV (s, t)⊕ ϕW (s, t)

for every s, t ∈ R with s ≤ t.

It is straightforward to show that the direct sum of two persistence modules gives

another persistence module, and we omit the proof. This notion can also be generalized
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to direct sums with an arbitrary number of summands. That is, if A is an index set

and {(Va, ϕVa)}a∈A is a family of persistence modules, the persistence module

(⊕
a∈A

Va, ϕ⊕Va

)

is defined by taking (⊕
a∈A

Va

)
t

:=
⊕
a∈A

(Va)t

for every t ∈ R, and

ϕ⊕Va(s, t) :=
⊕
a∈A

ϕVa(s, t)

whenever s, t ∈ R with s ≤ t. As we will see in the next section, this construction is

at the heart of persistence module theory and the characterization of the structure of

PFD persistence modules.

The following definitions, while rather simple, give the notions of an inclusion and

quotient of persistence modules.

Definition 2.9. Let (W,ϕW ) be a persistence submodule of a persistence module

(V, ϕV ). The inclusion morphism j : W → V is defined via the inclusion maps

jt : Wt ↪→ Vt for every t ∈ R.

Lemma 2.10. Let (W,ϕW ) be a persistence submodule of a persistence module (V, ϕV ).

The inclusion morphism j : W → V is a persistence module morphism.

Proof. Let s, t ∈ R with s ≤ t. Then jt ◦ ϕW (s, t) = jt ◦ ϕV (s, t)|Ws = ϕV (s, t)|Ws =

ϕV (s, t) ◦ js. By Definition 2.2, j : W → V is a persistence module morphism.

Definition 2.11. Let (W,ϕW ) be a persistence submodule of a persistence module

(V, ϕV ). The quotient morphism q : V → V/W is defined via the quotient maps

qt : Vt � Vt/Wt for every t ∈ R.

Lemma 2.12. Let (W,ϕW ) be a persistence submodule of a persistence module (V, ϕV ).

The quotient morphism q : V → V/W is a persistence module morphism.
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Proof. Let s, t ∈ R with s ≤ t. By the definition of the quotient persistence module,

ϕV/W (s, t) is defined to be the unique map such that

ϕV/W (s, t) ◦ qs = qt ◦ ϕV (s, t).

This is exactly what is required to make q a persistence module morphism.

A persistence module morphism φ : V →W gives rise to the following constructions,

which are central to our work in Chapter 3.

Definition 2.13. Let (V, ϕV ) and (W,ϕW ) be persistence modules and let φ : V →W

be a persistence module morphism. The persistence modules (im φ, ϕim φ) and (kerφ, ϕkerφ)

are defined by the vector spaces

(im φ)t := im φt and (kerφ)t := kerφt

for every t ∈ R. The transition maps are defined to be the restrictions of the linear

maps ϕW (s, t) and ϕV (s, t) to im φs and kerφs, respectively, for every s, t ∈ R with

s ≤ t.

The persistence module (coker φ, ϕcoker φ) is defined by the (quotient) vector spaces

(coker φ)t := coker φt = Wt/im φt, t ∈ R.

Let qt : Wt →Wt/im φt be the canonical quotient map. The transition maps ϕcoker φ(s, t)

are defined to be the unique linear maps such that for every s, t ∈ R with s ≤ t,

ϕcoker φ(s, t) ◦ qs = qt ◦ ϕW (s, t).

Proposition 2.14. Let (V, ϕV ) and (W,ϕW ) be persistence modules and let φ : V →W

be a persistence module morphism. Then im φ, kerφ, and coker φ are persistence mod-

ules.

Proof. We use Lemma 2.5 to show that (im φ, ϕim φ) is a persistence submodule of
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(W,ϕW ) and that (kerφ, ϕkerφ) is a persistence submodule of (V, ϕV ). If t ∈ R, then

im φt ⊆Wt and kerφt ⊆ Vt since φt is a linear map. Since the transition maps ϕim φ and

ϕkerφ are given by domain restriction of the transition maps ϕW and ϕV , respectively,

it remains to show that im ϕW (s, t)|im φs ⊆ im φt and im ϕW (s, t)|kerφs ⊆ kerφt for

every s, t ∈ R with s ≤ t.

Let s ≤ t. First we show that im ϕW (s, t)|im φs ⊆ im φt. For α ∈ im φs, there exists

some β ∈ Vs such that φs(β) = α. Since the diagram in Definition 2.2 commutes for all

s ≤ t, this implies that

ϕW (s, t)(α) = [ϕW (s, t) ◦ φs](β) = [φt ◦ ϕV (s, t)](β),

yielding ϕW (s, t)(α) ∈ im φt. Since α ∈ Ws was arbitrary, we have succeeded in

showing that im ϕW (s, t)|im φs ⊆ im φt. Now we show that im ϕW (s, t)|kerφs ⊆ kerφt.

Let α ∈ kerφs. Then φs(α) = 0, and hence [ϕW (s, t) ◦ φs](α) = 0. Again, by the

commutativity of the diagram in Definition 2.2, we see that

0 = [ϕW (s, t) ◦ φs](α) = [φt ◦ ϕV (s, t)](α),

so ϕV (s, t)(α) ∈ kerφt. Since α ∈ kerφs was arbitrary, we have shown that im ϕV (s, t)|kerφs ⊆

kerφt. Thus, by Lemma 2.5, im φ and kerφ are persistence submodules of W and V ,

respectively, and as such they are persistence modules.

We now show that coker φ is a persistence module. The vector spaces (coker φ)t :=

coker φt = Wt/im φt are defined for every t ∈ R since φt : Vt → Wt is a linear map.

Thus, it remains to show the transition maps ϕcoker φ(s, t) : (coker φ)s → (coker φ)t

are defined for every s, t ∈ R with s ≤ t, and they satisfy properties (i) and (ii) in

Definition 2.1.

First we show that for s, t ∈ R with s ≤ t, we have ϕcoker φ(s, t) : (coker φ)s →

(coker φ)t. By definition, ϕcoker φ(s, t)◦ qs = qt ◦ϕW (s, t), so the domain of ϕcoker φ(s, t)

is im qs = Ws/im φs, and im ϕcoker φ(s, t) ⊆ im qt = Wt/im φt. Hence, ϕcoker φ(s, t) :

(coker φ)s → (coker φ)t.
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Now we show that the transition maps satisfy property (i) of Definition 2.1. Let

t ∈ R. Then ϕcoker φ(t, t) ◦ qt = qt ◦ϕW (t, t) = qt ◦ idWt = qt, so it must be the case that

ϕcoker φ(t, t) = idim qt = idWt/im φt = idcoker φt . Hence, property (i) is satisfied.

Finally, we show that the transition maps satisfy property (ii) of Definition 2.1. Let

r ≤ s ≤ t in R. Then

ϕcoker φ(r, t) ◦ qr = qt ◦ ϕW (r, t)

= qt ◦ ϕW (s, t) ◦ ϕW (r, s)

= ϕcoker φ(s, t) ◦ qs ◦ ϕW (r, s)

= ϕcoker φ(s, t) ◦ ϕcoker φ(r, s) ◦ qr.

Since the map ϕcoker φ(r, t) is the unique map satisfying ϕcoker φ(s, t)◦qs = qt ◦ϕW (s, t),

it must be the case that ϕcoker φ(r, t) = ϕcoker φ(s, t)◦ϕcoker φ(r, s). Thus, property (ii) of

Definition 2.1 is also satisfied. We have shown that coker φ is a persistence module.

2.2 Interval Decompositions, Barcodes, and Decorated Endpoints

As suggested in the introduction, the concept of a persistence module arose as a means

of organizing families of vector spaces indexed by R and their associated linear maps.

Thus, it makes sense to consider persistence modules that are induced, in some sense,

by subsets of R. As will be seen shortly, it is the intervals of R that play an essential

role in the characterization of PFD persistence modules.

Definition 2.15. Let J ⊆ R be an interval (possibly infinite). The interval persistence

module (IJ , ϕJ) is defined by the vector spaces and transition maps

(IJ)t :=

 k if t ∈ J,

0 otherwise, and

ϕJ(s, t) :=

 idk if s, t ∈ J,

0 otherwise.

If J = ∅ is the empty interval, then (IJ)t = 0 for every t ∈ R; in this case, IJ is called
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the trivial persistence module.

Lemma 2.16. Let (IJ , ϕJ) be an interval persistence module. Any persistence submod-

ule of IJ is also an interval persistence module.

Proof. Let (V, ϕV ) be a persistence submodule of IJ . By the definition of a persistence

submodule, for every t ∈ R we know that Vt ⊆ (IJ)t, and so either Vt = 0 or Vt = k

since IJ is an interval persistence module. Additionally, for every s, t ∈ R with s ≤ t,

we have im ϕV (s, t) = im ϕJ(s, t)|Vs ⊆ Vt. If Vt = 0 for every t ∈ R, then V is the

trivial persistence module, which is an interval persistence module. Suppose that there

exist r ≤ t in R such that Vr = k = Vt, and hence r, t ∈ J . Then for any s ∈ R with

r ≤ s ≤ t, we have

idk = ϕJ(r, t)

= ϕJ(r, t)|Vr

= [(ϕJ(s, t) ◦ ϕJ(r, s)] |Vr

= ϕJ(s, t)|Vs ◦ ϕJ(r, s)|Vr

= ϕV (s, t) ◦ ϕV (r, s).

Hence, it follows that im ϕV (r, s) 6= 0, yielding Vs = k. Thus, the set {t ∈ R : Vt =

k} ⊆ R is an interval, and so V must be an interval persistence module.

The following fundamental result [16, Theorem 1.3, Theorem 1.4] [17], often referred

to as the structure theorem or interval decomposition theorem of PFD persistence

modules [11], is a consequence of the Krull-Remak-Schmidt theorem.

Structure Theorem 2.17. Let V be a PFD persistence module. There exists a (pos-

sibly infinite) family of (nonempty) R-intervals J such that

V ∼=
⊕
J∈J

IJ .

Moreover, this decomposition is unique up to a reindexing of the intervals.
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The family of interval persistence modules in the Structure Theorem is referred to

as the interval decomposition of V , and, owing to the uniqueness given by the theorem,

the family of intervals itself can be viewed as the following useful invariant.

Definition 2.18. Let V be a PFD persistence module with interval decomposition

given by the intervals J . We say that BV := J is the barcode of V .

We will have occasion to refer to the intervals in the barcode of a persistence module

explicitly. To do so, we find it convenient to use the conventions in [11, 16], which we

summarize in the following definition and subsequent remarks.

Definition 2.19. Let D = {+,−}. The set of decorated endpoints is defined to be the

set E := R×D∪{−∞,+∞}. We find it convenient to write t− := (t,−) and t+ := (t,+)

for t ∈ R. The symbol ± is used to denote both the symbols + and −, in that order,

and the symbol ∓ is used to denote both the symbols − and +, in that order.

To recover the underlying extended real number from a decorated endpoint, we

define the map π : E→ R as follows: π(t,±) = t and π(±∞) = ±∞. We will often

write πe instead of π(e) for e ∈ E to make notation uncluttered.

It is possible to define an addition operation (·) + (·) : E × R → E by taking

t± + δ := (t + δ)± and ±∞ + δ := ±∞ for all t, δ ∈ R. Subtraction is defined by

t± − δ := t± + (−δ). We define multiplication by negative one by −(·) : E → E by

taking −(±∞) := ∓∞ and −(t,±) := (−t,∓).

Endowing D = {+,−} with a total order − < + induces a total order on E with

respect to the dictionary order on R×D, taking the minimal element to be {−∞} and

the maximal element to be {+∞}. In particular, for any t ∈ R, it follows that t− < t+,

and for any s, t ∈ R with s < t, we have s+ < t−.

The ordered pairs {(c, e) ∈ E×E : c < e} can be put into one-to-one correspondence
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to the intervals in R as follows. Let b ≤ d ∈ R and assign

(−∞, d−) 7→ (∞, d)

(−∞, d+) 7→ (∞, d]

(b−, d−) 7→ [b, d)

(b−, d+) 7→ [b, d]

(b+, d−) 7→ (b, d)

(b+, d+) 7→ (b, d]

(b−,+∞) 7→ [b,+∞)

(b+,+∞) 7→ (b,+∞)

(−∞,+∞) 7→ (−∞,+∞).

We will often express an interval J ⊆ R by using its corresponding ordered pair of

decorated endpoints. As in Bauer and Lesnick [11], to avoid confusion with the usual

open intervals in R, we will denote an ordered pair (c, e) ∈ E× E with c < e as 〈c, e〉.

2.3 Interleavings of Persistence Modules

Persistence module morphisms give rise to the notion of persistence module interleav-

ings, introduced by Chazal, et al. in [7] and generalized by Bubenik, et al. in [12],

which are sometimes likened to the concept of approximate isomorphisms between per-

sistence modules. That is, two persistence modules that are interleaved are in some

way comparable to one another, if not isomorphic. Our results in Chapter 3 make this

notion of comparison precise, and we illustrate its utility in the examples that follow in

Chapter 4 and beyond.

It is in the theory of interleavings that the rich connection between a persistence

module and its indexing set (R in our case) becomes apparent. The following definition

offers a sense of what will follow.

Definition 2.20. Let S be an ordered set. A function σ : S → S is called monotone if

x ≤ y implies that σ(x) ≤ σ(y). If in addition x ≤ σ(x) for all x ∈ S, then σ is called
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a translation map. We say that σ is right-continuous if

lim
x→t,
t<x∈S

σ(x) = σ(t)

for all t ∈ S.

Monotone functions on R induce the following useful operator on the space of per-

sistence modules and their morphisms. In the language of category theory, a monotone

function σ : R→ R induces a functor Tσ from the category of persistence modules and

their morphisms to itself.

Definition 2.21. Let σ : R→ R be monotone and let (V, ϕV ) be a persistence module.

The σ-shifted persistence module (Tσ(V ), ϕTσ(V )) is defined by the vector spaces

Tσ(V )t := Vσ(t)

for every t ∈ R and transition maps

ϕTσ(V )(s, t) := ϕV (σ(s), σ(t))

for every s, t ∈ R with s ≤ t.

Let (W,ϕW ) be a persistence module and let φ : V → W be a persistence module

morphism. The σ-shifted persistence module morphism Tσ(φ) : Tσ(V ) → Tσ(W ) is

defined via the linear maps

Tσ(φ)t := φσ(t)

for every t ∈ R.

The following proposition shows that Definition 2.21 makes sense.

Proposition 2.22. Let σ : R → R be monotone. Let (V, ϕV ) and (W,ϕW ) be per-

sistence modules, and let φ : V → W be a persistence module morphism. Then

(Tσ(V ), ϕTσ(V )) is a persistence module and Tσ(φ) : Tσ(V ) → Tσ(W ) is a persistence

module morphism.
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Proof. To show that (Tσ(V ), ϕTσ(V )) is a persistence module, we first note that Tσ(V )t :=

Vσ(t) is defined for each t ∈ R, and that

ϕTσ(V )(t, t) = ϕV (σ(t), σ(t)) = idVσ(t)
= idTσ(V )

for every t ∈ R since ϕV is a transition map. Since σ is monotone, σ(s) ≤ σ(t). By

definition, ϕTσ(V )(s, t) = ϕV (σ(s), σ(t)) is a map from Tσ(V )s = Vσ(s) to Tσ(V )t = Vσ(t).

It remains to verify property (ii) of Definition 2.1. To this end, let r ≤ s ≤ t. Since

σ is monotone, σ(r) ≤ σ(s) ≤ σ(t). Thus, since ϕV is a transition map, we have

ϕTσ(V )(r, t) = ϕV (σ(r), σ(t))

= ϕV (σ(s), σ(t)) ◦ ϕV (σ(r), σ(s))

= ϕTσ(V )(s, t) ◦ ϕTσ(V )(r, s).

Hence, (Tσ(V ), ϕTσ(V )) is a persistence module.

Next we show that given a persistence module morphism φ : V → W , the map

Tσ(φ) : Tσ(V ) → Tσ(W ) is a persistence module morphism. We must show that

Tσ(φ) satisfies Definition 2.2. By definition, Tσ(φ)t : Tσ(V )t → Tσ(W )t is the map

Tσ(φ)t = φσ(t) : Vσ(t) → Wσ(t), and so it is defined since φ is a persistence module

morphism. Thus, it remains to show that Tσ(φ) satisfies the commutativity constraint.

Let s ≤ t. Then

ϕTσ(W )(s, t) ◦ Tσ(φ)s = ϕW (σ(s), σ(t)) ◦ φσ(s)

= φσ(t) ◦ ϕV (σ(s), σ(t))

= Tσ(φ)t ◦ ϕTσ(V )(s, t),

and so Tσ(φ) is a persistence module morphism.

The following propositions and corollary, while fairly elementary, are worth noting.

Lemma 2.23. Let σ : R→ R be monotone and bijective. Then its inverse σ−1 is also

monotone.
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Proof. Let s, t ∈ R with s ≤ t. Since σ is bijective, there exist x ∈ R with σ(x) = s and

y ∈ R with σ(y) = t. Moreover, since σ(x) ≤ σ(y) and σ is bijective and monotone, we

must have x ≤ y. Thus, σ−1(s) = σ−1(σ(x)) = x ≤ y ≤ σ−1(σ(y)) = σ−1(t), and so

the monotonicity of σ−1 is proved.

Lemma 2.24. Let σ, τ : R→ R be monotone functions and let (V, ϕV ) be a persistence

module. Then Tσ◦τ (V ) = Tσ[Tτ (V )].

Proof. Let t ∈ R. Then Tσ◦τ (V )t = V(σ◦τ)(t) = Vσ[τ(t)] = Tσ(Vτ(t)) = Tσ[Tτ (V )].

Equality at the level of transition maps follows similarly.

Corollary 2.25. Let σ : R→ R be a bijective monotone function and let (V, ϕV ) be a

persistence module. Then V = Tσ−1 [Tσ(V )].

The significance of Corollary 2.25 is that when σ : R→ R is both monotone and bi-

jective, the persistence module V is completely recoverable from the persistence module

Tσ(V ), and thus the barcode BV is completely recoverable from the barcode BTσ(V ).

The following definition is the key to defining an interleaving between two persistence

modules.

Definition 2.26. Let τ, σ : R → R be monotone. We call the pair of maps (τ, σ) a

translation pair if x ≤ (τ ◦ σ)(x) and x ≤ (σ ◦ τ)(x) for all x ∈ R.

We are now in a place to define an interleaving between two persistence modules.

Definition 2.27. Let (V, ϕV ) and (W,ϕW ) be persistence modules and let (τ, σ) be a

translation pair, considered as an ordered pair. We say that the persistence modules

V and W are (τ, σ)-interleaved if there exist persistence module morphisms φ : V →

Tτ (W ) and ψ : W → Tσ(V ) such that

Tτ (ψ)t ◦ φt = ϕV [t, (σ ◦ τ)(t)]

and

Tσ(φ)t ◦ ψt = ϕW [t, (τ ◦ σ)(t)]
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for all t ∈ R. We refer to these last two conditions as the commutativity constraint of

the interleaving. The maps φ and ψ are called interleaving morphisms.

Definition 2.27 leads to the following result, which is sometimes referred to as the

triangle inequality [12].

Proposition 2.28. Let (U,ϕU ), (V, ϕV ), and (W,ϕW ) be persistence modules. If U

and V are (τ, σ)-interleaved and V and W are (ρ, η)-interleaved, then U and W are

(ρ ◦ τ, σ ◦ η)-interleaved.

Proof. Since U and V are (τ, σ)-interleaved and V and W are (ρ, η)-interleaved, there

exist interleaving morphisms φ1 : U → Tτ (V ), ψ1 : V → Tσ(U), φ2 : V → Tρ(W ) and

ψ2 : W → Tη(V ) satisfying Definition 2.27. Define φ := Tτ (φ2)◦φ1 and ψ := Tη(ψ1)◦ψ2.

We will show that the persistence module morphisms φ and ψ witness a (ρ ◦ τ, σ ◦ η)-

interleaving bewteen U and W .

First we show that φ : U → T(ρ◦τ)W and ψ : W → T(σ◦η)(U). Let t ∈ R. Then

φt = Tτ (φ2)t ◦ (φ1)t = (φ2)τ(t) ◦ (φ1)(t),

which is indeed a map from Ut to W(ρ◦τ)(t) = T(ρ◦τ)(W )t. Similarly,

ψt = Tη(ψ1)t ◦ (ψ2)t = (ψ1)η(t) ◦ (ψ2)t

is a map from Wt to U(σ◦η)(t) = Tσ◦η(U)t.

It remains to show that the commutativity constraints from Definition 2.27 are

satisfied by showing that

T(ρ◦τ)(ψ)t ◦ φt = ϕU [t, (σ ◦ η ◦ ρ ◦ τ)(t)] (2.28a)

and

T(σ◦η)(φ)t ◦ ψt = ϕW [t, (ρ ◦ τ ◦ σ ◦ η)(t)] (2.28b)

for all t ∈ R. Proving (2.28a) comes down to proving the commutativity of the two

triangles and the parallelogram in the following diagram.
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Ut U(σ◦τ)(t) U(σ◦η◦ρ◦τ)(t)

Vτ(t) V(η◦ρ◦τ)(t)

W(ρ◦τ)(t)

ϕU (t,(σ◦τ)(t))

(φ1)t

ϕU ((σ◦τ)(t),(σ◦η◦ρ◦τ)(t))

(ψ1)τ(t)

(φ2)τ(t)

ϕV (τ(t),(η◦ρ◦τ)(t))
(ψ1)(η◦ρ◦τ)(t)

(ψ2)(ρ◦τ)(t)

By examining indices, one can see that the two triangles commute since U and V are

(τ, σ)-interleaved and V and W are (ρ, η)-interleaved. Additionally, the parallelogram

commutes since ψ1 : V → Tσ(U) is a persistence module morphism. Thus, observing

that φt = Tτ (φ2)t ◦ (φ1)t = (φ2)τ(t) ◦ (φ1)t and that

T(ρ◦τ)(ψ)t = ψ(ρ◦τ)(t)

= Tη(ψ1)(ρ◦τ)(t) ◦ (ψ2)(ρ◦τ)(t)

= (ψ1)(η◦ρ◦τ)(t) ◦ (ψ2)(ρ◦τ)(t),

we achieve (2.28a). The proof of equality (2.28b) is similar.

The following proposition shows how to stitch two persistence modules together

that are interleaved with a third. The author is not aware of the appearance of the

following construction in existing literature. We illustrate the use of this construction

in Section 4.1.4.

Proposition 2.29. Let (V, ϕV ), (V ′, ϕV ′), and (W,ϕW ) be persistence modules. Sup-

pose that V and W are (τ, σ)-interleaved via the morphisms φ : V → Tτ (W ) and

ψ : W → Tσ(V ), and that V ′ and W are (τ ′, σ′)-interleaved via φ′ : V ′ → Tτ ′(W ) and

ψ′ : W → Tσ′(V
′).

Let t0 ∈ R such that t0 ≤ (σ′ ◦ τ)(t0) be fixed and consider the vector spaces Ut for
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t ∈ R and linear maps ϕU (s, t) for s, t ∈ R with s ≤ t defined by

Ut =


Vt if t < t0

Vt0 if t0 ≤ t < (σ′ ◦ τ)(t0)

V ′t if (σ′ ◦ τ)(t0) ≤ t;

ϕU (s, t) =


ϕV (min{s, t0},min{t, t0}) if s ≤ t < (σ′ ◦ τ)(t0)

ϕV ′(t, (σ
′ ◦ τ)(t0)) ◦ ψ′τ(t0) ◦ φt0 ◦ ϕV (min{s, t0}, t0) if s < (σ′ ◦ τ)(t0) ≤ t

ϕV ′(s, t) if (σ′ ◦ τ)(t0) ≤ s ≤ t.

Then (U,ϕU ) is a persistence module and U and W are (η, ρ)-interleaved where

η(t) =


τ(t) if t ≤ t0

τ(t0) if t0 < t < (σ′ ◦ τ)(t0)

τ ′(t) if (σ′ ◦ τ)(t0) ≤ t;

ρ(t) =


σ(t) if t < σ−1(t0)

(σ′ ◦ τ)(t0) if σ−1(t0) ≤ t < τ(t0)

σ′(t) if τ(t0) ≤ t.

Proof. It is clear that U is a persistence module since t0 ∈ R is chosen such that

t0 ≤ (σ′ ◦ τ)(t0). The following diagram (with unlabeled arrows assumed to be the

appropriate transition maps) shows the idea behind the vector spaces of U and the

transition maps ϕU (s, t) for s < (σ′ ◦ τ)(t0) ≤ t.

Vs Vt0 V ′(σ′◦τ)(t0) V ′t

Ws Wτ(t0) Wt

ψ′
τ(t0)

◦φt0

φt0 ψ′
τ(t0)

To show that U and W are (η, ρ)-interleaved we will show that the morphisms
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φ̄ : U → Tη(W ) and ψ̄ : W → Tρ(U), where

φ̄t =


φt if t ≤ t0

φt0 if t0 < t < (σ′ ◦ τ)(t0)

φ′t if (σ′ ◦ τ)(t0) ≤ t,

ψ̄t =


ψt if t < σ−1(t0)

ψ′τ(t0) ◦ ϕW (t, τ(t0)) if σ−1(t0) ≤ t < τ(t0)

ψ′t if τ(t0) ≤ t,

give the desired interleaving of U and W . To show that φ̄ and ψ̄ are persistence module

morphisms, we first note that the monotone functions η and ρ line up with the indices

of the shifts of φ̄ and ψ̄ by inspection. Let s, t ∈ R.

We will now show that φ̄ : U → Tη(W ) is a persistence module morphism. If

s ≤ t < (σ′ ◦ τ)(t0), then φ̄s = φmin{s,t0} and φ̄t = φmin{t,t0}, and if (σ′ ◦ τ)(t0) ≤ s ≤ t,

then φ̄s = φ′s and φ̄t = φ′t, and so these cases hold. Now suppose that s < (σ′◦τ)(t0) ≤ t.

The diagram

Vs Vt0 V ′(σ′◦τ)(t0) V ′t

Wτ(s) Wτ(t0) W(τ ′◦σ′◦τ)(t0) Wτ ′(t)

φs

ψ′
τ(t0)

◦φt0

φt0 φ′
(σ′◦τ)(t0)

φ′tψ′
τ(t0)

commutes since both φ and φ′ are persistence module morphisms and since V ′ and

W are (τ ′, σ′)-interleaved, where unlabeled arrows are transition maps. It follows that

φ̄t ◦ ϕU (s, t) = ϕTη(W )(s, t) ◦ φ̄s, and thus φ̄ : U → Tη(W ) is a persistence module

morphism.

Now we will show that ψ̄ : W → Tρ(U) is a persistence module morphism. If

s ≤ t < σ−1(t0), then ψ̄s = ψs and ψ̄t = ψt, and if τ(t0) ≤ s ≤ t, then ψ̄s = ψ′s and

ψ̄t = ψ′t, so these cases are clear. Suppose that s < σ−1(t0) ≤ t ≤ τ(t0). This choice of

s and t yield ψ̄s = ψs and ψ̄t = ψ′τ(t0) ◦ ϕW (t, τ(t0)) by definition. Since s < σ−1(t0),

it follows that s ≤ (τ ◦ σ)(s) ≤ τ(t0), and so the following diagram commutes, where
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unlabeled arrows are transition maps.

Vσ(s) Vt0 V ′(σ′◦τ)(t0)

Ws W(τ◦σ)(s) Wτ(t0)

Wt

φs

ψ′
τ(t0)

◦φt0

φt0ψs ψ′
τ(t0)

ψ̄t

Hence, ψ̄t ◦ϕW (s, t) = ϕTρ(U)(s, t)◦ ψ̄s in this case as well. For σ−1(t0) ≤ s ≤ t ≤ τ(t0),

then

ψ̄t ◦ ϕW (s, t) = ψ′τ(t0) ◦ ϕW (t, τ(t0)) ◦ ϕW (s, t)

= ϕU ((σ′ ◦ τ)(t0), (σ′ ◦ τ)(t0)) ◦ ψ′τ(t0) ◦ ϕW (s, τ(t0))

= ϕTρ(U)(s, t) ◦ ψ̄s,

and so this case also holds. If s < σ−1(t0) ≤ τ(t0) < t, the commutativity of the

diagram

Vσ(s) Vt0 V ′(σ′◦τ)(t0) V ′σ′(t)

Ws W(τ◦σ)(s) Wτ(t0) Wt

φs

ψ′
τ(t0)

◦φt0

φt0ψs ψ′
τ(t0) ψ′t

ensures that ψ̄t ◦ϕW (s, t) = ϕTρ(U)(s, t)◦ ψ̄s. Finally, it remains to check the case when

σ−1(t0) ≤ s ≤ τ(t0) < t. This follows from extending the case when σ−1(t0) ≤ s ≤ t ≤

τ(t0) by the right-most commutative square in the previous diagram. Thus, we have

shown that φ̄ and ψ̄ are persistence module morphisms that witness a (η, ρ)-interleaving

between U and W .
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We must now show that φ̄ and ψ̄ satisfy the commutativity constraints of Defini-

tion 2.27. That is, for every t ∈ R, we must show that

Tη(ψ̄)t ◦ φ̄t = ϕU (t, (ρ ◦ η)(t)) (2.29a)

and

Tρ(φ̄)t ◦ ψ̄t = ϕW (t, (ρ ◦ η)(t)) (2.29b)

for all t ∈ R. First we prove (2.29a) for all t ∈ R. When τ(t) < σ−1(t0), then

(2.29a) follows from the fact that V and W are (τ, σ)-interleaved. Similarly, when

(σ′ ◦ τ)(t0) ≤ t, (2.29a) holds since V ′ and W are (τ ′, σ′)-interleaved. If t0 ≤ t <

(σ′ ◦ τ)(t0), then (2.29a) holds by the definition of (U,ϕU ). Now suppose that t ≤ t0

such that σ−1(t0) ≤ τ(t). Then (2.29a) holds from the commutativity of the following

diagram.

Vt Vt0 V ′(σ′◦τ)(t0)

Wτ(t) Wτ(t0)

φt φt0

ψ′
τ(t0)

◦φt0

ψ̄τ(t)

ψ′
τ(t0)

Thus we have shown that (2.29a) holds for every t ∈ R. We now verify that (2.29b)

holds for every t ∈ R. When t < σ−1(t0), then (2.29b) follows since V and W are

(τ, σ)-interleaved. Similarly, if τ(t0) ≤ t, then (2.29b) follows since V ′ and W are

(τ ′, σ′)-interleaved. For σ−1(t0) ≤ t < τ(t0), then (2.29b) follows by the commutativity

of the following diagram.

V ′(σ′◦τ)(t0)

Wt Wτ(t0) W(τ ′◦σ′◦τ)(t0)

φ̄(σ′◦τ)(t0)ψ̄t

ψ′
τ(t0)



35

Thus, we have also shown that (2.29b) holds for every t ∈ R. It follows that (η, ρ) is a

translation pair.

Conjecture 2.30. The function (ρ ◦ η) from Proposition 2.29 is right-continuous if

both (σ ◦ τ) and (σ′ ◦ τ ′) are right-continuous.

Recall that the trivial persistence module is one that has vector spaces Vt = 0 for

all t ∈ R, and thus all of the transition maps must be trivial maps as well. Conversely,

if every transition map of a persistence module (V, ϕV ) is trivial, then idV (t, t) = 0 for

every t ∈ R, and so we must have Vt = 0 for every t ∈ R and thus V must be the trivial

persistence module. The following definition leads to the notion of an “approximately

trivial” persistence module by relaxing this condition on the transition maps.

Definition 2.31. Let σ : R → R be a translation map. We say a persistence module

(V, ϕV ) is σ-trivial if ϕV (t, σ(t)) = 0 for all t ∈ R.

The following remark establishes intuition for how Definition 2.31 relates to the sizes

of the intervals in the barcode of a PFD persistence module.

Remark 2.32. Let (V, ϕV ) be a PFD persistence module. By the Structure Theorem,

there exists a persistence module isomorphism Φ : V →
⊕

J∈BV IJ , where each IJ is an

interval persistence module. For J ∈ BJ , let

ΠJ :
⊕
J ′∈BV

IJ ′ → IJ

be projection onto the persistence submodule corresponding to the interval persistence

module IJ . Then the transition maps ϕIJ for the interval persistence module IJ satisfy

ϕIJ (s, t) ◦ (ΠJ)s ◦ Φs = (ΠJ)t ◦ Φt ◦ ϕV (s, t)

for every s, t ∈ R with s ≤ t. Thus, if (V, ϕV ) is σ-trivial, so is IJ .

Denote J as a pair of decorated endpoints, so that J = 〈b, d〉. The significance

of Definition 2.31 is that if (V, ϕV ) is σ-trivial, the interval J can be no longer than

σ(πb)−πb, where π : E→ R is the projection to the real part of the decorated endpoint
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(or identity on ±∞). Thus, a statement about the σ-triviality of a persistence module

may be viewed as a statement about the lengths of the intervals in its barcode.

In light of Remark 2.32, the following proposition shows how the translation pair

associated to two interleaved persistence modules controls the lengths of the barcodes

in the interval decompositions of the kernel and cokernel (Definition 2.13) of the inter-

leaving morphisms.

Proposition 2.33. Suppose that (V, ϕV ) and (W,ϕW ) are PFD persistence modules

that are (τ, σ)-interleaved via interleaving morphisms φ : V → Tτ (W ) and ψ : W →

Tσ(V ). Then

(i) kerφ and coker φ are (σ ◦ τ)-trivial, and

(ii) kerψ and coker ψ are (τ ◦ σ)-trivial.

Proof. To prove (i), we first show that kerφ is (σ ◦ τ)-trivial by showing that

ϕkerφ(t, (σ ◦ τ)(t)) = 0

for every t ∈ R. To this end, fix t ∈ R. By the commutativity constraint of a (τ, σ)-

interleaving, we know that ϕV (t, (σ ◦ τ)(t)) = Tτ (ψ)t ◦ φt. Thus,

ϕV (t, (σ ◦ τ)(t))|kerφt = Tτ (ψ)t ◦ φt|kerφt = 0.

By the definition of the persistence module kerφ, we have

ϕkerφ(t, (σ ◦ τ)(t)) = ϕV (t, (σ ◦ τ)(t))|kerφt = 0,

and so we’re done.

Next, we show that coker φ is (σ ◦ τ)-trivial, which requires we show that

ϕcoker φ(t, (σ ◦ τ)(t)) = 0

for every t ∈ R. Recall from Definition 2.13 that the transition maps of the persistence
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module coker φ are defined to be the unique linear maps ϕcoker φ(r, s) such that

ϕcoker φ(r, s) ◦ qr = qs ◦ ϕTτ (W )(r, s)

for every r ≤ s ∈ R, where qr := (α 7→ α+ im φr) for every α ∈ Tτ (W )r is the quotient

map. Thus, it suffices to show that im ϕTτ (W )(t, (σ ◦ τ)(t)) ⊆ im φ(σ◦τ)(t) for every

t ∈ R. Let t ∈ R. Then

ϕTτ (W )(t, (σ ◦ τ)(t)) = ϕW (τ(t), (τ ◦ σ ◦ τ)(t)) (2.33a)

= Tσ(φ)τ(t) ◦ ψτ(t) (2.33b)

= φ(σ◦τ)(t) ◦ ψτ(t) (2.33c)

where (2.33a) follows from the definition of the maps ϕTτ (W ), (2.33b) follows from the

commutativity constraint of the interleaving morphisms φ and ψ, and (2.33c) follows

from the definition of Tσ(φ). Hence, we have shown that

im ϕTτ (W )(t, (σ ◦ τ)(t)) ⊆ im φ(σ◦τ)(t)

for every t ∈ R, from which it follows that coker φ is (σ ◦ τ)-trivial.

Finally, (ii) follows from (i) by reversing the roles of φ and ψ, creating a (σ, τ)-

interleaving of W and V ; it follows directly that kerψ and coker ψ are (τ ◦σ)-trivial.

Thus, the translation pair (τ, σ) controls the sizes of the intervals of the barcode

decompositions of the kernel and cokernel of the corresponding interleaving morphisms.

In particular, the smaller the differences (σ ◦ τ)(t)− t and (τ ◦σ)(t)− t for every t ∈ R,

the smaller the intervals in the barcodes of the kernel and cokernel of the interleaving

morphisms, effectively giving the extent to which the interleaving morphisms fail to be

isomorphisms.

The following definition relates the notion of an interleaving from [11, 7, 16] to the

generalized interleaving of Definition 2.27.

Definition 2.34. The persistence modules (V, ϕV ) and (W,ϕW ) are δ-interleaved if
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they are (τ, σ)-interleaved with τ(t) = t+ δ = σ(t) for some δ ≥ 0.

Remark 2.35. Two persistence modules that are 0-interleaved are isomorphic as persis-

tence modules.

Definition 2.34 and Remark 2.35 also hint at this notion of approximate isomor-

phism. Without being precise, if two persistence modules are δ-interleaved for δ ≥ 0,

then they are isomorphic to within a tolerance of δ in some sense, and thus their bar-

codes also differ by this tolerance of δ, again in some sense. Typically, this tolerance

is stated in terms of the bottleneck distance between two barcodes. As in Bauer and

Lesnick [11], it is possible to give this definition in terms of δ-interleavings.

Definition 2.36. Let (V, ϕV ) and (W,ϕW ) be PFD persistence modules and let BV

and BW be their associated barcodes. The bottleneck distance between BV and BW is

defined as follows:

dB(BV ,BW ) := inf{δ ≥ 0 : V and W are δ-interleaved}.

Note that as consequence of the Structure Theorem, any two persistence modules

yielding equivalent barcodes are isomorphic, and thus an application of Remark 2.35

and Proposition 2.28 makes the bottleneck distance between two barcodes well-defined.

Additionally, if two persistence modules are isomorphic, then the bottleneck distance

of their corresponding barcodes is zero. The converse of this statement, referred to

as the isometry theorem [11, 16], is a consequence of the Algebraic Stability Theorem

(Theorem 2.67).

2.4 Remarks on Translation Pairs and Constructions for Monotone

Functions

We now point out that our definition for an interleaving (Definition 2.27) differs slightly

from the one given by Bubenik, et al. [12] in that it does not require both t ≤ τ(t)

and t ≤ σ(t) for all t ∈ R, but rather that t ≤ (τ ◦ σ)(t) and t ≤ (σ ◦ τ)(t) for all

t ∈ R. This is due to the fact that Bubenik, et al. were concerned with constructing a
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monoidal category on the collection of functors induced by translation maps, and here

we are only concerned with satisfying commutativity properties, which our definition

maintains. We illustrate the use of our modified definition explicitly in Sections 4.1.1

and 4.3, where it is natural to express the interleavings such that the translation maps

may have either τ(t) < t or σ(t) < t for some or for all t ∈ R. Even so, it is often

possible to go from our case to the situation in [12], as we show next.

Definition 2.37. Let (τ, σ) be a translation pair. If there exists a bijective increasing

function γ : R→ R such that x ≤ (γ ◦ τ)(x) and x ≤ (σ ◦ γ−1)(x) for all x ∈ R, we say

that the ordered pair (τ, σ) is alignable, or alignable via γ.

Proposition 2.38. Let (V, ϕV ) and (W,ϕW ) be (τ, σ)-interleaved where (τ, σ) is alignable

via γ. Then V and Tγ(W ) are (γ ◦ τ, σ ◦ γ−1)-interleaved.

Proof. This is a straightforward application of Definition 2.37 and Prop 2.28.

Combining Proposition 2.38 with Corollary 2.25, we see that a statement about

Tγ(W ), resulting from the modified interleaving aligned via γ, will carry forward to a

statement about W through an application of Tγ−1 . Additionally, the interleaving here

would agree with the definition given in [12] since t ≤ (γ ◦ τ)(t) and t ≤ (σ ◦ γ−1)(t) for

all t ∈ R. Thus, although it is unnecessary to do so, when two persistence modules V

and W are (τ, σ)-interleaved by a translation pair alignable via some bijective monotone

function γ : R → R, one could first shift the persistence module W to Tγ(W ) to be in

the setting of [12], apply the theory we give in this chapter, and then shift the result

back to a statement about W .

The following proposition gives a class of alignable translation pairs (τ, σ).

Proposition 2.39. Let (τ, σ) be a translation pair. If either of the following hold:

(i) τ is bijective

(ii) σ is bijective

then the ordered pair (τ, σ) is alignable.
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Proof. Essentially, the problem comes down to showing the existence of a bijective

monotone function γ : R → R such that x ≤ (γ ◦ τ)(x) and x ≤ (σ ◦ γ−1)(x) for all

x ∈ R. We will do this for each of the cases listed.

To prove (i), suppose that τ is bijective. Then setting γ(x) = τ−1(x) yields x ≤

(τ−1 ◦ τ)(x) = x and x ≤ (σ ◦ τ)(x) = (σ ◦ (τ−1)−1)(x) for all x ∈ R since (τ, σ) is a

translation pair. Hence, (τ, σ) is alignable via γ = τ−1.

To prove (ii), suppose that σ is bijective. Then setting γ(x) = σ(x) yields x ≤ (σ◦τ)

and x ≤ (σ ◦ σ−1)(x) = x for all x ∈ R since (τ, σ) is a translation pair. Hence, (τ, σ)

is alignable via γ = σ.

Thus, while Proposition 2.39, Proposition 2.38, and Corollary 2.25 show that the

examples we give in Sections 4.1.1 and 4.3 could be put into the setting of [12] (all of the

translation maps are bijective), our hope is to convince the reader that our definition for

an interleaving of two persistence modules (Definition 2.27) removes a certain amount

of burden when applying the Algebraic Stability Theorem for Generalized Interleavings

(Theorem 3.13), as the function γ does not need to be constructed or applied in order

to obtain the results given by the theorem (or reversed at the end of the computation).

To achieve the results of Chapter 3, we will need the following additional concepts.

While many of the propositions we establish may at first seem unmotivated, this work

is necessary to extend the work of Bauer and Lesnick [11] to more general interleavings.

In particular, one must take care when treating the decorated endpoints of the intervals

of barcode decompositions when the translation maps are not bijective.

Our first step is to extend a monotone function σ : R → R to the extended real

numbers R := R ∪ {−∞,+∞}. For the work that follows, it will make sense to define

the extension of σ to R as follows. The asymmetry in the definition is due to the need

to establish the inequalities in Lemma 2.42.

Definition 2.40. Let σ : R→ R be monotone. We extend σ to a function σ : R → R

by defining

σ(−∞) := lim
x→−∞

σ(x) and σ(+∞) := +∞.

We call σ the closure of σ.
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If σ : R → R is monotone, then its closure σ is also monotone. If σ : R → R is

monotone and right-continuous, then by definition, its closure σ is also right-continuous.

Definition 2.41. Let S be either R or R, and let σ : S → S be monotone. The left

generalized inverse of σ, written σ−1
L : S → S, is defined as

σ−1
L (t) := inf{s ∈ S : σ(s) ≥ t}

for every t ∈ S, where by convention we set the infimum of the empty set to be

inf ∅ := +∞. The right generalized inverse of σ, written σ−1
R : σ(S)→ S is defined as

σ−1
R (t) := sup{s ∈ S : σ(s) = t}

for every t ∈ σ(S). Note the difference in the domains of σ−1
L and σ−1

R .

Note that if σ : R→ R is bijective with inverse σ−1, then σ−1
L = σ−1 = σ−1

R .

Lemma 2.42. If σ : R → R is monotone and right-continuous with σ(+∞) = +∞,

the inequalities

(σ−1
L ◦ σ)(t) ≤ t ≤ (σ ◦ σ−1

L )(t)

hold for all t ∈ R.

Proof. Let t ∈ R. First we prove that (σ−1
L ◦ σ)(t) ≤ t. By definition,

(σ−1
L ◦ σ)(t) = inf{x ∈ R : σ(x) ≥ σ(t)},

and since t satisfies σ(t) ≥ σ(t), then necessarily (σ−1
L ◦ σ)(t) ≤ t.

Now we show that t ≤ (σ ◦ σ−1
L )(t) for all t ∈ R. By the definition of σ−1

L , we have

t ≤ σ(x) for every σ−1
L (t) < x. By right-continuity, we see that

t ≤ lim
x→σ−1

L (t),

σ−1
L (t)<x

σ(x) = (σ ◦ σ−1
L )(t),

and thus the inequality t ≤ (σ ◦ σ−1
L )(t) holds for all t ∈ R with σ−1

L (t) < +∞. For
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t ∈ R with σ−1
L (t) = +∞, then by assumption, t ≤ +∞ = (σ ◦ σ−1

L )(t), and so this case

holds as well.

We now wish to promote monotone functions σ : R→ R to functions on decorated

endpoints E in such a way that monotonicity is preserved. A naive guess would be

to preserve the endpoint types, mapping t± 7→ σ(t)± for every t ∈ R with σ(t) ∈ R,

but this quickly causes issues. In particular, monotonicity is not preserved when σ is

non-injective. To illustrate, suppose that x < y for x, y ∈ R, but that σ(x) = σ(y) ∈ R.

Then x+ < y−, but we would have σ(y)− < σ(x)+. This situation is the reason behind

the following definition.

Definition 2.43. Let σ : R → R be monotone. We define the promotion of σ to the

map σ̃ : E→ E as follows:

• for t ∈ R, if there exists x ∈ R with t < x and σ(t) = σ(x), we define σ̃(t±) :=

σ(t)−, otherwise set σ̃(t±) := σ(t)±, preserving the endpoint type;

• if the closure σ of σ has σ(−∞) ∈ R, set σ̃(−∞) := σ(−∞)−, otherwise set

σ̃(−∞) := −∞; and

• set σ̃(+∞) := +∞.

Note that if σ(t) = t + δ for δ ≥ 0, then σ̃(t±) = (t + δ)± by the bijectivity of σ,

which agrees with Bauer and Lesnick’s definition in [11].

Lemma 2.44. If σ : R→ R is monotone, then the map σ̃ : E→ E is monotone.

Proof. Let c ≤ e ∈ E. We need to show that σ̃(c) ≤ σ̃(e). If either σ̃(c) = −∞

or σ̃(e) = +∞, we’re done. By the definition of σ̃, if σ̃(c) = +∞, then necessarily

c = e = +∞, and so we’re done in this case. The case where σ̃(e) = −∞ similarly

yields c = −∞, and so this case is done as well.

Now suppose that σ̃(c), σ̃(e) ∈ R × D and c < e. By the monotonicity of σ, we

know that (σ ◦ π)(c)− ≤ (σ ◦ π)(e)−, and so if σ̃(c) = (σ ◦ π)(c)−, we’re done. Suppose

that σ̃(c) = (σ ◦ π)(c)+, so at necessarily c = π(c)+ < e and thus π(c) < π(e). By
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Definition 2.43, we know that for any c < x, we have σ(c) < σ(x), and so we must have

σ̃(c) < σ̃(e).

We will have reason to define the notion of σ−1
L and σ−1

R on decorated endpoints.

These definitions are ultimately a consequence of Propositions 3.8 and 3.12.

Definition 2.45. Let σ : R → R be monotone. We define the maps σ̃−1
L : E → E and

σ̃−1
R : σ(R)×D → E as follows. Let e ∈ E. We define

σ̃−1
L (e) :=

 σ−1
L (πe)+ if (σ ◦ σ−1

L )(πe) < πe

σ−1
L (πe)− if (σ ◦ σ−1

L )(πe) ≥ πe.

Let e ∈ σ(R)×D. We define

σ̃−1
R (e) :=

 σ−1
R (πe)+ if (σ ◦ σ−1

R )(πe) = πe

σ−1
R (πe)− if (σ ◦ σ−1

R )(πe) > πe.

Proposition 2.46. Let σ : R→ R be monotone and right-continuous. For s, t ∈ σ(R)

and x ∈ R with s < x ≤ t, then σ̃−1
R (s+) ≤ σ̃−1

L (x±) ≤ σ̃−1
R (t+).

Proof. Since σ is right-continuous, we must have σ̃−1
L (e) = σ−1

L (πe)− for every e ∈ E.

Since by definition σ−1
L (y) ≤ σ−1

R (y) for every y ∈ σ(R), then by the monotonicity of

σ, necessarily σ̃−1
L (x±) ≤ σ̃−1

R (t+) whenever x ≤ t and t ∈ σ(R). Now suppose that

s ∈ σ(R) and s < x for some x ∈ R. Then by the monotonicity of σ,

σ−1
R (s) = sup{y ∈ R : σ(y) = s}

≤ inf{y ∈ R : σ(y) > s}

≤ inf{y ∈ R : σ(y) ≥ x}

= σ−1
L (x).

If (σ ◦ σ−1
R )(s) > s, then σ̃−1

R (s+) = σ−1
R (s)− ≤ σ−1

L (x)− = σ̃−1
L (x±). Suppose that

(σ ◦ σ−1
R )(s) = s. By the right-continuity of σ and the fact that (σ ◦ σ−1

R )(s) < x, it

follows that σ−1
R (s) < σ−1

L (x), whence σ̃−1
R (s+) = σ−1

R (s)+ < σ−1
L (x)− = σ̃−1

L (x±).
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To finish this section, we give an alternative characterization of the alignability of

a translation pair.

Proposition 2.47. If (τ, σ) is a translation pair and τ is right-continuous, then (τ, σ)

is alignable if and only if there exists a bijective monotone function γ : R → R such

that τ−1
L (x) ≤ γ(x) ≤ σ(x) for every x ∈ R.

Proof. Let γ : R→ R be bijective and monotone. Observe that

(γ ◦ τ)(x) ≥ x = (γ ◦ γ−1)(x)⇐⇒ τ(x) ≥ γ−1(x) (2.47a)

for all x ∈ R, and that

(σ ◦ γ−1)(x) ≥ x = (γ ◦ γ−1)(x)⇐⇒ σ(x) ≥ γ(x) (2.47b)

for all x ∈ R.

Now suppose that σ(x) < τ−1
L (x) for some x ∈ R. Then σ(x) < inf{s ∈ R : x ≤

τ(s)}, and so (τ ◦ σ)(x) < x, which is a contradiction since (τ, σ) is a translation pair.

Hence, τ−1
L (x) ≤ σ(x) for all x ∈ R.

We now want to show that γ−1 ≤ τ if and only if τ−1
L ≤ γ. For the forward

implication, suppose that γ−1(y) ≤ τ(y) for all y ∈ R. Choose x ∈ R and let y ∈ R

such that x = γ−1(y). Then

τ−1
L (x) = inf{s ∈ R : x ≤ τ(s)}

= inf{s ∈ R : γ−1(y) ≤ τ(s)}

≤ y

= γ(x).

For the reverse implication, suppose that τ−1
L (x) ≤ γ(x) for all x ∈ R. Then

τ−1
L (γ−1(x)) ≤ γ(γ−1(x)) = x.
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Thus, if τ is right-continuous, Lemma 2.42 yields

γ−1(x) ≤ (τ ◦ τ−1
L )[γ−1(x)] ≤ τ(x).

Hence, we have shown that if τ is right-continuous, then γ−1 ≤ τ if and only if

τ−1
L ≤ γ. Thus, to satisfy (2.47a) and (2.47b), it suffices to find a bijective, monotone

function γ such that τ−1
L (x) ≤ γ(x) ≤ σ(x) for every x ∈ R.

The author of this dissertation thanks Chuck Weibel for providing the following

example of a translation pair that is not alignable.

Example 2.48. Let τ(t) = t + btc for all t ∈ R, where b·c : R → R rounds every real

number down to the nearest integer (commonly the notation used is [·] : R → R, but

we will have reason to use the function d·e : R→ R as well). Then τ is right-continuous

and τ−1
L is constant from 2n to 2n+ 1 for n ∈ Z and has unit slope otherwise. If we set

σ(t) := τ−1
L (t), then it is not hard to show that (τ, σ) is a translation pair. However,

Proposition 2.47 forces γ = σ, and thus γ cannot be bijective since σ is not.

2.5 Induced Matchings on Barcodes and the Algebraic Stability The-

orem

We now summarize the results from Bauer and Lesnick’s work on induced matchings

in [11] that show how a PFD persistence module morphism φ : V →W guarantees the

existence of a matching between the barcodes BV and BW satisfying certain properties.

First we make clear what we mean by a multiset and its representation.

Definition 2.49. A multiset (S, n) is a set S together with a function n : S → Z+ with

values in the (strictly) positive integers, called a counting function. For any x ∈ S, the

number n(x) denotes the multiplicity of the element x in the multiset. We will often

write S for the multiset, dropping explicit reference to the counting function.

Definition 2.50. Let (S, n) be a multiset. We define a representation of a multiset as

the set

Rep(S, n) = {(x, k) ∈ S × Z+ : k ≤ n(x)}.
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For (x, k) ∈ Rep(S, n), the number k is called the copy number of x. We will sometimes

write Rep(S) for Rep(S, n), dropping the reference to the counting function when it is

clear.

Remark 2.51. Given a PFD persistence module V , we may view BV as a multiset. For

each J ∈ BV , we define R(J) := {x ∈ R : x ∈ J}. We then take

S = {R(J) ⊆ R : J ∈ BV },

the set of the unique intervals in the barcode of V , and define the counting function as

n(R(J)) := |{K ∈ BV : R(K) = R(J)}|,

which counts the number of times the interval R(J) appears in the family of intervals

BV . The counting function n satisfies Definition 2.49 since V is a PFD persistence

module, and hence n(I) must be finite for each interval I in S.

Representations of multisets give us a way to go from statements about multisets to

statements about sets, and so we are now in a position to give the following definitions.

Definition 2.52. Let S and T be two sets. A matching X : S →| T is given by a

bijection X : S′ → T ′, where S′ ⊆ S and T ′ ⊆ T . We define im X := T ′ and coim X :=

S′. We say that elements in S \ S′ and T \ T ′ are unmatched by X .

We say a matching X : S →| T is left-perfect (a monomorphism) if coim X = S,

right-perfect (an epimorphism) if im X = T , and perfect (an isomorphism) if it is both

left-perfect and right-perfect. If X : S →| T , we say that X−1 : T →| S is the reverse

matching of X and define it via the inverse of the bijection X : S′ → T ′.

We say that a finite, totally ordered set S withN elements is an enumerated set if it is

equipped with an order-preserving bijection from {1, ..., N} to S. If S is an enumerated

set via the bijection {1, ..., N} 3 i 7→ si ∈ S, we say that si is the ith element of S. If

S = {si}Ni=1 and T = {tj}Mj=1 are two enumerated sets, the minimal matching X from

S to T is the unique matching such that X (si) = ti for every i = 1, ...,min{N,M}.
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A matching X : S →| T can be seen as a relation on S × T given by

Gr(X ) :=
{

(s,X (s)) ∈ S × T |s ∈ S′
}
,

where Gr(X ) is called the graph of X . We define the composition of two matchings

X : S →| T and X ′ : T →| U as the relation

X ′ ◦ X = {(s, u)|(s, t) ∈ Gr(X ), (t, u) ∈ Gr(X ′) for some t ∈ T}.

The following definitions, inspired by Bauer and Lesnick [11], will enable us to

describe a particular set of matchings on representations of barcodes.

Definition 2.53. Let B be a barcode. Given b, d ∈ E, we define

〈b, ·〉B := {(〈b′, d′〉, j) ∈ Rep(B) : b′ = b} ⊆ Rep(B);

〈·, d〉B := {(〈b′, d′〉, j) ∈ Rep(B) : d′ = d} ⊆ Rep(B).

We also define the sets

`(B) := {b ∈ E : (〈b, d〉, k) ∈ Rep(B)}

and

r(B) := {d ∈ E : (〈b, d〉, k) ∈ Rep(B)},

i.e. the sets of unique left and right endpoints of intervals in B.

Remark 2.54. Notice that if B is a barcode, then

Rep(B) =
⋃

b∈`(B)

〈b, ·〉B =
⋃

d∈r(B)

〈·, d〉B,

where the unions are disjoint.

Definition 2.55. Let B be a barcode. The left-handed ordering on Rep(B) is the one
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inherited from the dictionary ordering on E×E×Z under the bijective correspondence

Rep(B) 3 (〈b, d〉, k) 7→ (b,−d, k) ∈ E× E× Z,

where multiplication of a decorated endpoint is defined as in Definition 2.19. Similarly,

the right-handed ordering on Rep(B) is the one inherited from the dictionary ordering

on E× E× Z under the bijective correspondence

Rep(B) 3 (〈b, d〉, k) 7→ (d, b, k) ∈ E× E× Z.

If Rep(B) is endowed with the left-handed ordering, then we write Rep`(B), and if it is

endowed with the right-handed ordering, we write Repr(B). Thus, for the left-handed

(right-handed) ordering on Rep(B) and a fixed left-hand endpoint b ∈ E (right-hand

endpoint d ∈ E), the longest intervals with the lowest copy numbers are listed first.

The sets given in Definition 2.53 with the left-handed and right-handed orderings

defined in Definition 2.55 serve to set us up to establish an analog of what Bauer and

Lesnick refer to as the canonical injections between barcodes [11]. In their construc-

tion, intervals in barcode representations beginning (ending) with the same decorated

endpoint are first sorted longest to shortest, with increasing copy number. Then, the

injection on representations matches the barcodes in the two barcode representations

greedily, preserving this ordering. The following definitions make this precise.

Definition 2.56. Let V and W be PFD persistence modules. The matching

bXWV c : Rep`(BV )→| Rep`(BW )

is defined as follows. For each b ∈ `(BV ), enumerate the sets 〈b, ·〉BV ⊆ Rep`(BV ) and

〈b, ·〉BW ⊆ Rep`(BW ) according to their left-handed orderings, and define the restriction

of the matching bXWV c to 〈b, ·〉BV to be the minimal matching between 〈b, ·〉BV and

〈b, ·〉BW that respects the enumerations. By Remark 2.54, this defines a matching from

Rep(BV ) to Rep(BW ).



49

The matching

dXWV e : Repr(BV )→| Repr(BW )

is defined similarly. For each d ∈ r(BV ), enumerate the sets 〈·, d〉BV ⊆ Repr(BV )

and 〈·, d〉BW ⊆ Repr(BW ) according to their right-handed orderings, and define the

restriction of the matching dXWV e to 〈·, d〉BV to be the minimal matching between

〈·, d〉BV and 〈·, d〉BW that respects the enumerations. By Remark 2.54, this defines a

matching from Rep(BV ) to Rep(BW ).

Since minimal matchings on enumerated sets are unique, so are bXWV c and dXWV e.

Thus, we say that bXWV c is the left minimal matching from Rep(BV ) to Rep(BW ) and

that dXWV e is the right minimal matching from Rep(BV ) to Rep(BW ).

Definition 2.57. Let V and W be PFD persistence modules with barcode represen-

tations Rep(BV ) and Rep(BW ). We say that a matching X : Rep(BV ) →| Rep(BW )

is

• left-admissible if it is right-perfect and X (〈b, d〉, k) = (〈b′, d′〉, j) implies b = b′ and

d′ ≤ d for every (〈b′, d′〉, j) ∈ Rep(BW ).

• right-admissible if it is left-perfect and X (〈b, d〉, k) = (〈b′, d′〉, j) implies d = d′

and b′ ≤ b for every (〈b, d〉, k) ∈ Rep(BV ).

Let U be a PFD persistence module with barcode representation Rep(BU ). We say that

a matching X : Rep(BV )→| Rep(BW ) is admissible via Rep(BU ) if it can be expressed

as the composition X = Xr ◦ X` where X` : Rep(BV ) →| Rep(BU ) is a left-admissible

matching and Xr : Rep(BU ) →| Rep(BW ) is a right-admissible matching. (Note that

this matching is defined since X` is surjective and Xr is injective.)

Definition 2.58. Let φ : V → W be a persistence module morphism. A matching

X : Rep(BV ) →| Rep(BW ) is called an admissible matching for φ if it is an admissible

matching via Rep(Bim φ).

The following theorem is a rephrasing of [11, Theorem 4.2], which we state without

proof.
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Theorem 2.59. Let V and W be PFD persistence modules.

(i) If there exists an epimorphism φ : V →W , then bXWV c : Rep(BV )→| Rep(BW ) is

left-admissible.

(ii) If there exists a monomorphism ψ : V → W , then dXWV e : Rep(BV )→| Rep(BW )

is right-admissible.

Corollary 2.60. Let φ : V →W be a PFD persistence module morphism. The match-

ing dXWim φe ◦ bX
im φ
V c : Rep(BV )→| Rep(BW ) is an admissible matching for φ.

Proof. Every persistence module morphism φ : V →W can be factored as a composition

of injective and surjective persistence module morphisms:

V im φ W.
qφ jφ

By Theorem 2.59, the matching bX im φ
V c : Rep(BV ) →| Rep(Bim φ) is left-admissible

and the matching dXWim φe : Rep(Bim φ)→| Rep(BW ) is right-admissible. By definition,

dXWim φe ◦ bX
im φ
V c is an admissible matching for φ.

Definition 2.61. Let φ : V → W be a PFD persistence module morphism. The

matching witnessed by φ is defined to be the minimal admissible matching given by the

composition Xφ := dXWim φe ◦ bX
im φ
V c.

Remark 2.62. Let φ : V → W be a PFD persistence module morphism. If φ is an

epimorphism, then Xφ = dXWW e ◦ bXWV c = bXWV c is left-admissible. If φ is a monomor-

phism, then Xφ = dXWV e ◦ bX VV c = dXWV e is right-admissible.

Proposition 2.63. Let U, V, and W be PFD persistence modules and suppose that

X : Rep(BV ) →| Rep(BW ) is an admissible matching via Rep(BU ). If X (〈b, d〉, k) =

(〈b′, d′〉, j), then b′ ≤ b < d′ ≤ d.

Proof. Since X : Rep(BV ) →| Rep(BW ) is an admissible matching via Rep(BU ), there

exists a left-admissible matching X` : Rep(BV ) →| Rep(BU ) and a right-admissible

matching Xr : Rep(BU ) →| Rep(BW ) such that X = Xr ◦ X`. Thus, there exists some
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(〈b, d′〉, k) ∈ Rep(BU ) such that X`(〈b, d〉, j) = (〈b, d′〉, k) and Xr(〈b, d′〉, k) = (〈b′, d′〉, l).

Since 〈b, d′〉 is an interval, we know that b < d′. Hence, by the definition of left-

admissible and right-admissible matchings, we see that b′ ≤ b < d′ ≤ d.

Corollary 2.64. Let φ : V →W be a PFD persistence module morphism. If Xφ〈b, d〉 =

〈b′, d′〉, then b′ ≤ b < d′ ≤ d.

Proof. By Definition 2.61, we see that Xφ = dXWim φe ◦ bX
im φ
V c. By Corollary 2.60, it

follows that Xφ is an admissible matching for φ, and hence it is an admissible matching

via Rep(Bim φ). Thus, Proposition 2.63 guarantees that Xφ〈b, d〉 = 〈b′, d′〉 yields b′ ≤

b < d′ ≤ d.

The following is proved by Bauer and Lesnick in [11] and gives a condition of func-

toriality for barcode matchings witnessed by morphisms of PFD persistence modules.

Proposition 2.65. Let U, V, and W be PFD persistence modules and let φ : U → V

and ψ : V → W be morphisms. If φ and ψ are either both injective or both surjective,

then Xψ◦φ = Xψ ◦ Xφ.

We remark that the construction of the minimal matchings guarantees the partial

functoriality property exhibited in Proposition 2.65. While this proposition is used in

the proof of the Non-uniform Induced Matching Theorem, there are perhaps other ways

to achieve the commutativity in the matchings as required by the proof. In particular,

the task is to move from a diagram of commutative persistence module morphisms to a

commutative diagram of barcode representations, but it is not explicitly necessary that

the minimal matchings are used.

Throughout the remainder of this chapter and the next, since we will be working

with the uniquely determined minimal matchings witnessed by persistence module mor-

phisms, we will often suppress the reference to both the representation and the copy

number in what follows, expressing (〈b, d〉, k) ∈ Rep(BV ) as 〈b, d〉 ∈ BV . Additionally,

we will often write X〈b, d〉 instead of X (〈b, d〉, k) to denote a matching applied to an

element of a barcode representation. However, when it is required, we will use the more

explicit notation.
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To complete this section, we consider intervals in the barcode of a PFD persistence

module exceeding a certain minimal length. Let B be a barcode and let δ ≥ 0. We

define the set

Rep(B)δ := {(〈b, d〉, k) ∈ Rep(B) : b+ δ < d}.

Bauer and Lesnick refer to the following theorem as the induced matching theorem [11].

We state it here for the convenience of the reader as a comparison to the results we

present in Chapter 3.

Induced Matching Theorem 2.66. Let φ : V → W be a PFD persistence module

morphism, let δ ≥ 0. Suppose that Xφ〈b, d〉 = 〈b′, d′〉.

(i) If coker φ is δ-trivial, then Rep(BW )δ ⊆ im Xφ and b′ ≤ b ≤ b′ + δ.

(ii) If kerφ is δ-trivial, then Rep(BV )δ ⊆ coim Xφ and d− δ ≤ d′ ≤ d.

This theorem can be thought of as the uniform induced matching theorem, since

a uniform bound of length δ is placed on the sizes of the intervals of the barcodes in

kerφ and coker φ. In [11], Bauer and Lesnick use the previous theorem to prove the

following version of the algebraic stability theorem, establishing the following important

relationship between the barcodes of two δ-interleaved PFD persistence modules.

Algebraic Stability Theorem 2.67. Let (V, ϕV ) and (W,ϕW ) be δ-interleaved PFD

persistence modules. Then there exists a matching X : Rep(BV ) →| Rep(BW ) that

satisfies the following. If X〈b, d〉 = 〈b′, d′〉, then

b′ − δ ≤ b ≤ b′ + δ,

d− δ ≤ d′ ≤ d+ δ,

and unmatched intervals in either Rep(BV ) or Rep(BW ) have length at most 2δ.

In the next chapter, we show how the notion of and interleaving given in Defini-

tion 2.27 generalizes Theorem 2.67.
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Chapter 3

The Algebraic Stability Theorem for Generalized

Interleavings

Using the ideas from Chapter 2, we now state and prove the main results of this chapter:

generalizations of the Induced Matching Theorem and the Algebraic Stability Theorem

(Theorems 2.66 and 2.67) in the context of the more general interleaving framework of

Bubenik, et al. [12] via Definition 2.27. For the remainder of this chapter, we consider

(V, ϕV ) and (W,ϕW ) to be PFD persistence modules.

We first establish an analog to the set Rep(B)δ for more general translation maps.

Recall from Definition 2.19 that π : E → R is the map that forgets the decoration of

a decorated endpoint. The reader may want to recall the following additional maps

related to a monotone function σ : R→ R:

• σ : R→ R, the extension of σ to the extended real numbers (Definition 2.40).

• σ̃ : E→ E, the promotion of σ to decorated endpoints (Definition 2.43).

• σ−1
L : R → R and σ−1

R : σ(R) → R, the left and right generalized inverses of σ

(Definition 2.41).

• σ̃−1
L : E → E and σ̃−1

R : σ(R) × D → E, the analagous left and right generalized

inverses of σ̃ (Definition 2.45).

Let B be a barcode and let σ : R → R be a translation map (Definition 2.20). We

define the following barcode representation subset:

Rep(B)σ := {(〈b, d〉, k) ∈ Rep(B) : σ̃(b) < d}.

Thus, intervals in Rep(B)σ are those that are non-empty after moving the left-hand
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endpoint forward by σ̃, taking endpoint decorations into consideration. The following

partition of decorated endpoints will be useful.

Definition 3.1. Let σ : R→ R be monotone. We say that a decorated endpoint e ∈ E

has property B(σ) if e = π(e)+ and π(e) ∈ σ(R). Otherwise, we will say that e has

property A(σ).

In particular, if a decorated endpoint e ∈ R×D has property B(σ) and σ is right-

continuous, then e = π(e)+ and π(e) = (σ◦σ−1
L )(πe). We will sometimes have reason to

refer to the set of decorated endpoints with property A(σ) by simply writing A(σ) ⊆ E,

and similarly with B(σ) ⊆ E.

Proposition 3.8, below, shows how the two types of endpoints in Definition 3.1

determine the bounds on the matching given in the Non-uniform Induced Matching

Theorem. Lemma 3.9 gives the motivation behind Definitions 3.3 and 3.6. The following

remarks will be used in the proofs of both Proposition 3.5 and 3.8.

Remark 3.2. Recall from the Structure Theorem, for every PFD persistence module

morphism (V, ϕV ) there exists an isomorphism to a direct sum of interval persistence

modules

Φ : V →
⊕
J∈BV

IJ .

For an interval (〈c, e〉, k) ∈ Rep(BV ), we write I(〈c,e〉,k) for the interval persistence

module in the direct sum corresponding to interval (〈c, e〉, k). Define

IV(〈c,e〉,k) := Φ−1[I(〈c,e〉,k)] ⊆ V,

the inverse image of the interval summand I(〈c,e〉,k) under Φ. Then

V =
⊕

(〈c,e〉,k)∈Rep(BV )

IV(〈c,e〉,k).

From this point forward we will drop the copy number so notation is not cluttered,

writing just IV〈c,e〉, understanding that it designates a particular summand. Let s, t ∈ R
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with s ≤ t. Since Φ is a persistence module isomorphism, we have

Φ−1
t ◦ ϕΦ(V )(s, t) = ϕV (s, t) ◦ Φ−1

s ,

and thus we see

Φ−1
t ◦ ϕΦ(V )(s, t)|(I〈c,e〉)s = ϕV (s, t) ◦ Φ−1

s |(I〈c,e〉)s = ϕV (s, t)|(
IV〈c,e〉

)
s

.

We will need to define transition maps indexed by decorated real numbers. Let

(V, ϕV ) be a persistence module. For any finite interval corresponding to 〈s, t〉 ∈ E×E,

we can consider the associated transition map

ϕV (π(s), π(t)).

However, to keep the notation uncluttered, we will write ϕV (s, t), where the projection

via π is understood.

Here are two constructions which will be used in the proof of Theorem 3.10.

Definition 3.3. Let (W,ϕW ) be a persistence module and let σ : R→ R be a transla-

tion map. To each t ∈ R we associate the set

S(t) := {x ∈ R : σ(x) ≤ t}.

We define a persistence submodule (W σ, ϕWσ) of W via

W σ
t :=

⋃
x∈S(t)

im ϕW (x, t) for every t ∈ R.

Clearly W σ
t is a subspace of Wt for every t since if x1 ≤ x2 ∈ S(t), then im ϕW (x1, t) ⊆

im ϕW (x2, t).

Proposition 3.4. Let (W,ϕW ) be a persistence module and let σ : R→ R be a trans-

lation map. Then (W σ, ϕWσ) is a persistence submodule of W .

Proof. To show that W σ is a persistence submodule of W , by Lemma 2.5, we must
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show that ϕW (s, t)|Wσ
s
⊆ W σ

t for all s ≤ t. To this end, let s ≤ t and let α ∈ W σ
s .

By the definition of W σ
s , there exists some x ∈ S(s) such that α ∈ im ϕW (x, s). Thus,

there exists some β ∈Wx such that ϕW (x, s)(β) = α, and so

ϕW (s, t)(α) = ϕW (s, t)[ϕW (x, s)(β)] = ϕW (x, t)(β),

yielding that ϕW (s, t)(α) ∈ im ϕW (x, t). Since σ is a translation map and x ∈ S(s),

we have x ≤ σ(x) ≤ s ≤ t, so x ∈ S(t) as well. It follows that im ϕW (x, t) ⊆ W σ
t , so

we have proved that ϕW (s, t)(α) ∈W σ
t . Since α was chosen arbitrarily, we have shown

that im ϕW (s, t)|Wσ
s
⊆W σ

t . Hence, W σ is a persistence submodule of W .

Proposition 3.5. Let (W,ϕW ) be a persistence module and let σ : R→ R be a trans-

lation map. Then the minimal matching Xjσ : Rep(BWσ) →| Rep(BW ) witnessed by

jσ : W σ ↪→W has im Xjσ = Rep(BW )σ. Moreover, if Xjσ〈b, d〉 = 〈b′, d′〉, then b = σ̃(b′).

Proof. We will first prove a preliminary result by examining the intersection of W σ

with each of the interval persistence submodules of W corresponding to the intervals

in BW (see Remark 3.2). In particular, we will show that

W σ =
⊕
J∈BW

(
W σ ∩ IWJ

)
. (3.5a)

First, it is clear that the right side of (3.5a) is a persistence submodule of W σ. We will

show that W σ is a persistence submodule of the right-hand side by showing that

im ϕW (s, t) ⊆
⊕
J∈BW

im ϕW (s, t) ∩ (IWJ )t

for every s, t ∈ R with s ≤ t. To this end, let s ≤ t. The following diagram commutes,

where Φ is the isomorphism giving the direct sum decomposition of W into interval

persistence modules, and the ϕΦ(W ) are the linear maps in the interval decomposition.
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⊕
J∈BW (IJ)s

⊕
J∈BW (IJ)t

Ws =
⊕

J∈BW Φ−1
s [(IJ)s]

⊕
J∈BW Φ−1

t [(IJ)t] = Wt

ϕΦ(W )(s,t)

Φ−1
s Φ−1

t

ϕW (s,t)
(3.5b)

In particular, we see that im ϕW (s, t)|(IWJ )s
⊆ (IWJ )t. Thus, we have

im ϕW (s, t) =
⊕
J∈BW

im ϕW (s, t)|(IWJ )s

=
⊕
J∈BW

im ϕW (s, t)|(IWJ )s
∩ (IWJ )t

⊆
⊕
J∈BW

im ϕW (s, t) ∩ (IWJ )t,

which is what we wanted to show. Thus, taking the union over all x ∈ S(t), we have

succeeded in proving equation (3.5a).

Now we will show that for every 〈c, e〉 ∈ Rep(BW ), if σ̃(c) < e, then (W σ ∩ IW〈c,e〉) ∼=

I〈σ̃(c),e〉, otherwise (W σ ∩ IW〈c,e〉) is the trivial persistence module. By Proposition 2.16,

a persistence submodule of an interval persistence module is isomorphic to an interval

persistence module, and so this makes sense to try to show. Let (〈c, e〉, k) ∈ Rep(BW )

and denote by IW〈c,e〉 the corresponding interval persistence submodule of W . For t ∈ R,

we will show that (IW〈c,e〉 ∩W
σ)t 6= 0 if and only if σ̃(c) ≤ t− < e. By the definitions of

W σ and IW〈c,e〉, we know that (IW〈c,e〉 ∩W
σ)t 6= 0 if and only if t− < e and there exists

some x ∈ S(t) such that c < x+. Let t ∈ R such that t− < e. We will show that there

exists some x ∈ S(t) with c < x+ if and only if σ̃(c) ≤ t−.

For the forwards implication, suppose there exists some x ∈ S(t) with c < x+.

Then c < x+ implies that σ̃(c) ≤ σ̃(x+) by the monotonicity of σ̃ (Lemma 2.44). But

x ∈ S(t) implies that σ(x) ≤ t which yields σ(x)− ≤ t−. Thus, if we can show that

σ̃(c) ≤ σ(x)−, it will follow that σ̃(c) ≤ t−. Suppose first that σ̃(c) = (π ◦ σ̃)(c)−. Then

(π ◦ σ̃)(c)− ≤ σ̃(x+). By the definition of σ̃, this implies that (π ◦ σ̃)(c)− ≤ σ(x)−,

and so this case is done. Now suppose that σ̃(c) = (π ◦ σ̃)(c)+, so that it is necessarily
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the case that c = c+ by Definition 2.43, and by the same definition, we know there

does not exist a y > πc such that σ(πc) = σ(y). Recall that since π(c)+ < x+, by the

definition of E we have πc < πx. By Definition 2.43 again, it must be the case that

(π ◦ σ̃)(c) < (π ◦ σ̃)(x+), and thus we have σ̃(c) ≤ σ(x)− in this case as well.

For the reverse implication, suppose that σ̃(c) ≤ t−. We will show that there exists

some x ∈ S(t) with c < x+. By our assumption and the definition of σ̃, we know

that σ(πc) ≤ t, and so πc ∈ S(t). If c = π(c)−, we can put x = πc ∈ S(t) and we

achieve c = π(c)− < π(c)+ = x+ Now suppose that c = π(c)+. First we examine the

case when σ̃(c) = (π ◦ σ̃)(c)−. By Definition 2.43, there must exist a y > πc such that

σ(πc) = σ(y) ≤ t, and so y ∈ S(t) and c < y+, so we’re done in this case. If, on the

other hand, c = c+ and σ̃(c) = (π ◦ σ̃)(c)+, then again by Definition 2.43, there cannot

exist a y > πc such that σ(πc) = σ(y). Also, σ̃(c) = (π ◦ σ̃)(c)+ ≤ t− by assumed, and

so (π ◦ σ̃)(c)+ < t. By the right-continuity of σ, we thus have limy→πc,y>πc σ(πc) < t,

and so there exists some y ∈ R with σ(y) < t, whereby y ∈ S(t) and c < y+, which is

what we desired to show.

We will now show that Xjσ : Rep(BWσ) →| Rep(BW ) is left-perfect. By Defini-

tion 2.61 and the fact that jσ is a monomorphism, Xjσ = dXWWσe ◦ bXW
σ

Wσ c = dXWWσe,

and so it is right-admissible. By the definition of right-admissibility, Xjσ is left-perfect.

Next we will show that im Xjσ = Rep(BW )σ.

Recall we have already shown that for every 〈c, e〉 ∈ Rep(BW )σ ⊆ Rep(BW ), we

have

(I〈c,e〉 ∩W σ) ∼= I〈σ̃(c),e〉 (3.5c)

for some 〈σ̃(c), e〉 ∈ Rep(BWσ), otherwise if 〈c, e〉 ∈ Rep(BW )\Rep(BW )σ then (I〈c,e〉∩

W σ) is the trivial persistence module. It follows that

W σ ∼=
⊕

〈c,e〉∈Rep(BW )σ

(I〈c,e〉 ∩W σ).

Let d ∈ r(BWσ) and consider the enumerated set 〈·, d〉BW with the right-handed or-

dering. Then 〈·, d〉BW ∩ Repr(BW )σ is also an enumerated set with the same indices
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since the enumeration on 〈·, d〉BW lists longest intervals first by definition. It follows

that (3.5c) informs a one-to-one correspondence between 〈·, d〉BW ∩ Repr(BW )σ and

〈·, d〉BWσ , and so they have the same number of elements, say Nd elements. Again since

Xjσ = dXWWσe is left-perfect, and since dXWWσe maps each interval in 〈·, d〉BWσ to the first

Nd intervals in the enumeration 〈·, d〉BW , the matching Xjσ maps 〈·, d〉BWσ to precisely

the set 〈·, d〉BW ∩Repr(BW )σ. By the construction of Xjσ = dXWWσe in Definition 2.56,

and since d ∈ r(BWσ) was arbitrary, we have proved that im Xjσ = Rep(BW )σ.

Finally, we will show that if Xjσ〈b, d〉 = 〈b′, d′〉, then b = σ̃(b′) and d′ = d. Again let

d ∈ r(BWσ) and consider (〈b, d〉, k) ∈ Rep(BWσ) such that Xjσ(〈b, d〉, k) = (〈b′, d′〉, j) ∈

Rep(BW )σ. Since Xjσ = dXWWσe then d′ = d by the definition of right-admissibility.

By the right-handed orderings associated to both 〈·, d〉BWσ and 〈·, d〉BW ∩Repr(BW )σ,

intervals are sorted ascending by their left-hand endpoint, and the copy numbers are

used as secondary orderings. Thus, by the correspondence given by (3.5c) and the

monotonicity of σ̃, it must also follow that b = σ̃(b′).

Definition 3.6. Let (V, ϕV ) be a persistence module and let σ : R→ R be a translation

map. For each t ∈ R, define

Kσ
t := kerϕV (t, σ(t))

and form the quotient vector spaces

(V/Kσ)t := Vt/K
σ
t

for every t ∈ R. To every s, t ∈ R with s ≤ t, associate the linear maps given by the

unique maps ϕV/Kσ(s, t) such that

ϕV/Kσ(s, t) ◦ qσs = qσt ◦ ϕV (s, t),

where qσt : Vt → Vt/K
σ
t is the quotient map taking α 7→ α + Kσ

t (see Definition 2.11).

Denote this collection of vector spaces and linear maps by (V/Kσ, ϕV/Kσ).

Lemma 3.7. Let (V, ϕV ) be a persistence module and let σ : R → R be a translation

map. Then (V/Kσ, ϕV/Kσ) is a persistence module.
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Proof. Define a persistence module morphism φ : V → Tσ(V ) via φt := ϕV (t, σ(t)).

ThenKσ = im φ as defined, and V/Kσ is the corresponding quotient persistence module

(see Definition 2.11).

Proposition 3.8. Let (V, ϕV ) be a persistence module, let σ : R → R be a transla-

tion map. The minimal matching Xqσ : Rep(BV ) →| Rep(BV/Kσ) witnessed by qσ has

coim Xqσ = Rep(BV )σ, and if Xqσ〈b, d〉 = 〈b′, d′〉 and

• if d ∈ A(σ), then d′ = σ̃−1
L (d);

• if d ∈ B(σ), then d′ = σ̃−1
R (d).

Proof. As in the beginning of proof of Proposiiton 3.5, we will first establish a prelimi-

nary result. Pursuant to Remark 3.2, denote by IJ the interval persistence submodule

of V corresponding to the interval J ∈ BV in the barcode decomposition of V , dropping

the reference to V . We now show that

V/Kσ ∼=
⊕
J∈BV

(IJ)

Kσ ∩ (IJ)
. (3.8a)

Consider the natural surjection

⊕
J∈BV

(IJ)t →
⊕
J∈BV

(IJ)t
Kσ
t ∩ (IJ)t

,

which has kernel
⊕

J∈BV K
σ
t ∩ (IJ)t. Since ϕV (t, σ(t)) =

⊕
J∈BV ϕV (t, σ(t))|(IJ )t for all

t ∈ R, then Kσ
t =

⊕
J∈BV K

σ
t ∩ (IJ)t. Thus,

Vt/K
σ
t
∼=
⊕
J∈BV

(IJ)t
Kσ
t ∩ (IJ)t

and so (3.8a) holds.

In what follows, we establish necessary conditions on t ∈ R such that

(I〈c,e〉)t

Kσ
t ∩ (I〈c,e〉)t

6= 0. (3.8b)
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By the definition of a quotient of vector spaces, (3.8b) is true if and only if there exists

some α ∈ (I〈c,e〉)t such that α /∈ kerϕV (t, σ(t)), which is true if and only if α 6= 0

implies that ϕV (t, σ(t))(α) 6= 0 since (I〈c,e〉)t ∼= k. But this only occurs when c < t+

and σ(t)− < e. Thus, it remains to determine for which t ∈ R we have σ(t)− < e.

Let t ∈ R. If t < σ−1
L (πe), then by the definition of σ−1

L , we must have σ(t) < πe.

Hence, σ(t)− < e, and so this case is done. Suppose now that σ−1
L (πe) ≤ t, which

implies πe ≤ (σ ◦ σ−1
L )(πe) ≤ σ(t) by the right-continuity and monotonicity of σ. If

πe < σ(t), then it cannot be the case that σ(t)− < e, and so this case is done. Now

consider the case that πe = σ(t) and suppose that e = π(e)−. Then σ(t)− = π(e)− = e

and so it cannot be the case that σ(t)− < e. Finally, if πe = σ(t) and e = π(e)+, then

σ(t)− < π(e)+ = e, and so this case holds.

Thus, for any t ∈ R with c < t+, we have shown that (3.8b) holds for two cases and

these two cases alone:

(i) t < σ−1
L (πe)

(ii) the following two conditions hold:

(a.) πe = σ(t), and

(b.) e = π(e)+.

We now determine conditions on the interval 〈c, e〉 for which finding a t ∈ R with

c < t+ and satisfying either condition (i) or condition (ii) is possible. Condition (i) is

possible only when πc ≤ t < σ−1
L (πe), and thus when σ(πc) < πe. Hence, we must have

σ̃(c) < e. If e ∈ A(σ), then these are the only such t satisfying (i). Thus, in this case,

(3.8b) gives us:

if 〈c, e〉 ∈ Rep(BV )σ and e ∈ A(σ), then
I〈c,e〉

Kσ ∩ I〈c,e〉
∼= I〈c,σ̃−1

L (e)〉. (3.8c)

Condition (ii) can only occur when e ∈ B(σ). To find the largest c ∈ E such that

(a.) can be satisfied, suppose that σ−1
L (πe) ≤ πc so that we are not in case (i). Since

c < t+ implies that π(c) ≤ t, the monotonicity and right-continuity of σ, together with
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Lemma 2.42, yield

πe ≤ (σ ◦ σ−1
L )(πe) ≤ σ(πc) ≤ σ(t).

Thus, the largest c ∈ E for which we might achieve (a.) is when πe = σ(πc). Addi-

tionally, we must also find a condition on c for which it is possible to have c < t+ and

σ(πc) = σ(t), otherwise (a.) could not be satisfied for any t ∈ R. Note that c < t+

and σ(πc) = σ(t) occurs either when c = c−, since in this case we can choose t = πc,

or when c = c+ and there exists some t > πc ∈ R with σ(t) = σ(πc). Both of these

scenarios occur precisely when σ̃(c) = σ̃(c)−. Hence, in this case we have σ̃(c) < e, and

so 〈c, e〉 ∈ Rep(BV )σ. Thus, we have established that for there to exist a t ∈ R with

c < t+ and satisfying property (ii), we must have e ∈ B(σ) and 〈c, e〉 ∈ Rep(BV )σ.

In order to establish a result analogous to (3.8c) for intervals 〈c, e〉 with e ∈ B(σ), we

must find the largest t ∈ R such that condition (ii) holds. By (a.) and the monotonicity

of σ, we must characterize the largest t ∈ R with c < t+ such that πe = σ(t). Consider

the number

ζ := sup{t ∈ R : σ(t) = π(e)}.

If σ is continuous at ζ, then σ(ζ) = πe. If σ is discontinuous at ζ, then σ(ζ) > πe by

the monotonicity and right-continuity of σ. Thus, we see that we achieve the following

characterization:

if 〈c, e〉 ∈ Rep(BV )σ and e ∈ B(σ), then
I〈c,e〉

Kσ ∩ I〈c,e〉
∼= I〈c,σ̃−1

R (e)〉. (3.8d)

We will now show that Xqσ : Rep(BV )σ →| Rep(BV/Kσ) is right-perfect. Since qσ is

an epimorphism, Definition 2.61 yields Xqσ = dX V/K
σ

V/Kσ e ◦ bX V/K
σ

V c = bX V/K
σ

V c, and so

it is left-admissible. By the definition of left-admissibility, Xqσ is right-perfect.

Next we show that coim Xqσ = Rep(BV )σ. By the correspondences given by equa-

tions (3.8c) and (3.8d) and the fact that the persistence module for V/Kσ is isomorphic

to the direct sum in (3.8a), we have shown that

V/Kσ ∼=
⊕

(〈c,e〉,k)∈Rep(BV )σ

(I(〈c,e〉,k))

Kσ ∩ (I(〈c,e〉,k))
.
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Fix some b ∈ `(BV/Kσ). Considering only the intervals with left-hand endpoint b, it fol-

lows that (3.8c) and (3.8d) determine a one-to-one correspondence between 〈b, ·〉BV ∩

Rep`(BV )σ and 〈b, ·〉BV/Kσ , and so they have the same number of elements, say Nb

elements. Again since Xqσ = bX V/K
σ

V c is right-perfect, and since bX V/K
σ

V c maps each

interval in the enumeration 〈·, d〉BW from the first Nb intervals in 〈b, ·〉BV/Kσ , the match-

ing Xqσ maps 〈b, ·〉V/Kσ to precisely the set 〈b, ·〉BV ∩ Rep`(BV )σ. By the construction

of Xqσ = bX V/K
σ

V c in Definition 2.56, and the fact that b ∈ `(BV/Kσ) was arbitrary, we

conclude that coim Xqσ = Rep(BV )σ.

Finally, we will show that if Xqσ〈b, d〉 = 〈b′, d′〉, then b = b′. Additionally, if d ∈

A(σ), then d′ = σ̃−1
L (d)−, and if d ∈ B(σ), then d′ = σ̃−1

R (d). Let b ∈ `(BV/Kσ)

and consider (〈b′, d′〉, j) ∈ Rep(BV/Kσ) such that Xqσ(〈b, d〉, k) = (〈b′, d′〉, j). Since

Xqσ = bX V/K
σ

V c then b = b′ by the definition of left-admissibility. By the left-handed

orderings associated to both 〈b, ·〉BV ∩ Rep`(BV )σ and 〈b, ·〉BV/Kσ , intervals are sorted

descending by their right-hand endpoint, and the copy numbers are used as secondary

orderings. The result follows from the correspondences given in (3.8c) and (3.8d) and

Proposition 2.46.

We have to establish one more useful lemma. It also serves to justify the formulations

of Definitions 3.3 and 3.6.

Lemma 3.9. Let (V, ϕV ) and (W,ϕW ) be persistence modules and let σ : R→ R be a

translation map. Define Kσ
t and W σ

t as in Definitions 3.3 and 3.6 for every t ∈ R. For

any morphism φ : V →W ,

(i) if im φ is σ-trivial then W σ
t ⊆ im φt ⊆Wt for every t ∈ R, and

(ii) if kerφ is σ-trivial then kerφt ⊆ Kσ
t ⊆ Vt for every t ∈ R.

Proof. We first prove (i). By definition, given a morphism φ : V → W , the cokernel

coker φ is σ-trivial if and only if

ϕcoker φ(x, σ(x)) = 0 for all x ∈ R,
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which is true if and only if

im ϕW (x, σ(x)) ⊆ im φσ(x) for all x ∈ R,

which again is true if and only if for each x ∈ R and each α ∈ Wx, there exists some

β ∈ Vσ(x) such that

ϕW (x, σ(x))(α) = φσ(x)(β).

For x ∈ S(t), the commutativity of diagram (3.9a) then implies that for such α ∈ Wx

and β ∈ Vσ(x), we have

ϕW (x, t)(α) = ϕW (σ(x), t)[ϕW (x, σ(x))(α)] = φt[ϕV (σ(x), t)(β)],

and so im ϕW (x, t) ⊆ im φt. Since x ∈ S(t) was arbitrary, we have succeeded in showing

that W σ
t =

⋃
x∈S(t) im ϕW (x, t) ⊆ im φt.

Vσ(x) Vt

Wx Wσ(x) Wt

ϕV (σ(x),t)

φσ(x) φt

ϕW (x,σ(x)) ϕW (σ(x),t)
(3.9a)

To prove (ii), we will prove both that for all morphisms φ with a σ-trivial kernel, it

follows that kerφt ⊆ Kσ
t for all t ∈ R. Let φ : V → W be a morphism such that kerφ

is σ-trivial. By definition, kerφ is σ-trivial if and only if

ϕV (t, σ(t))|kerφt = φkerφ(t, σ(t)) = 0

for all t ∈ R. Hence, kerφt ⊆ kerϕV (t, σ(t)) = Kσ
t for all t ∈ R if and only if kerφ is

σ-trivial.

We are now ready to prove our first main result. We label this generalization of

the Induced Matching Theorem with the word non-uniform since the bounds placed on
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the sizes of the barcodes in kerφ and coker φ is based on an arbitrary translation map

σ : R→ R, whereby the quantity σ(t)− t may be of variable length on t ∈ R (compare

to the uniform induced matching theorem which is the special case of what follows by

taking σ(t) = t+ δ for some δ ≥ 0).

Non-uniform Induced Matching Theorem 3.10. Let σ be a right-continuous trans-

lation map on R and let φ : V → W be a persistence module morphism. Suppose that

Xφ : BV →| BW is the admissible matching witnessed by φ, and that Xφ〈b, d〉 = 〈b′, d′〉.

(i) If coker φ is σ-trivial, then Rep(BW )σ ⊆ im Xφ and b′ ≤ b ≤ σ̃(b′).

(ii) If kerφ is σ-trivial, then Rep(BV )σ ⊆ coim Xφ. If 〈b, d〉 ∈ Rep(BV )σ and d ∈

B(σ), then σ̃−1
R (d) ≤ d′ ≤ d; otherwise, σ̃−1

L (d) ≤ d′ ≤ d.

Proof. The proofs of (i) and (ii) proceed very similarly. The general technique is to

construct a commutative diagram which sandwiches im φ betweenW andW σ for (i) and

in between V and V/Kσ for (ii). Both of these triangles contain only monomorphisms

or epimorphisms, and so by Proposition 2.65, we get a corresponding commutative

diagram on barcode matchings. After this, it is a short argument in either case to

conclude the bounds given in the statement of the theorem.

To prove (i), we note that by Lemma 3.9(i), the inclusion map j : W σ ↪→ im φ is

such that diagram (3.10a) commutes, where jφ : im φ ↪→ W is the canonical injection

associated to the map φ and let jσ : W σ ↪→W be the inclusion morphism (Proposi-

tion 3.4).

W

W σ

im φ

jφ

jσ

j (3.10a)
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Since Xφ is the admissible matching witnessed by φ, the definition of Xφ and Re-

mark 2.62 imply that Xφ = Xjφ ◦ Xqφ . By Proposition 2.65 and the commutativity of

diagram (3.10a), which consists only of injective morphisms, diagram (3.10b) commutes.

BW

BWσ BV

Bim φ

Xjφ

XφXjσ

Xj
Xqφ

(3.10b)

By commutativity of the left triangle in (3.10b), im Xjσ ⊆ im Xjφ . Hence, we see

that Rep(BW )σ = im Xjσ ⊆ im Xjφ = im Xφ. We will now prove that if Xφ〈b, d〉 =

〈b′, d′〉, then b′ ≤ b ≤ σ̃(b′). Suppose that Xjφ〈b, d′〉 = 〈b′, d′〉. Since Xjφ is right-

admissible, then b′ ≤ b. If 〈b′, d′〉 ∈ Rep(BW )σ, then there exists some 〈σ̃(b′), d′〉 ∈

Rep(BWσ) with Xjσ〈σ̃(b′), d′〉 = 〈b′, d′〉. Thus, by commutativity of the the left-hand

triangle in (3.10b), we must have Xj〈σ̃(b′), d′〉 = 〈b, d′〉. By Theorem 2.59 and Re-

mark 2.62, Xj is right-admissible, and so b ≤ σ̃(b′). If 〈b′, d′〉 /∈ Rep(BW )σ, then

d′ ≤ σ̃(b′). By Corollary 2.64, it follows that b < d′ ≤ σ̃(b′).

The proof of (ii) is similar to the proof of (i). By Lemma 3.9(ii), the quotient map

q : V/(kerφ) → V/Kσ is surjective, well-defined, and makes the triangle on the left of

diagram (3.10c) commute, where qσ is the quotient morphism from V to V/Kσ, and

qφ is the canonical surjective morphism from the factorization of φ. Hence every map

on the triangle on the left of diagram (3.10c) is surjective. By Proposition 2.65, the

diagram at the level of barcodes, right, also commutes because V/ kerφ ∼= im φ, and

Xφ is the admissible matching witnessed by φ.
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V

V/Kσ

V/ kerφ

qφ

qσ

q

BV

BV/Kσ BW

Bim φ

Xqφ

XφXqσ

Xq
Xjφ

(3.10c)

By Proposition 3.8, we have coim Xqσ = Rep(BV )σ. Thus, Rep(BV )σ = coim Xqσ ⊆

coim Xqφ = coim Xφ. Now suppose that Xφ〈b, d〉 = 〈b′, d′〉. Since Xqφ is left-admissible,

we have that d′ ≤ d.

Suppose that 〈b, d〉 ∈ Rep(BV )σ has d ∈ B(σ). Since 〈b, d〉 ∈ Rep(BV )σ there exists

some 〈b, σ̃−1
R (d)〉 ∈ Rep(BV/Kσ) such that Xq〈b, d′〉 = 〈b, σ̃−1

R (d)〉. By Theorem 2.59 and

Remark 2.62, Xq is left-admissible, so σ̃−1
R (d) ≤ d′.

Suppose that 〈b, d〉 ∈ Rep(BV )σ has d ∈ A(σ). Then there exists some 〈b, σ̃−1
L (d)〉 ∈

Rep(BV/Kσ) such that Xq〈b, d′〉 = 〈b, σ̃−1
L (d)〉. By Theorem 2.59 and Remark 2.62, Xq

is left-admissible, and so σ̃−1
L (d) ≤ d′.

Finally, suppose that 〈b, d〉 /∈ Rep(BV )σ. Then (σ−1
L ◦ π)(d) ≤ π(b). Hence, since

Corollary 2.64 yields b′ ≤ b < d ≤ d′, we have σ̃−1
L (d) ≤ (σ−1

L ◦π)(d)+ ≤ π(b)+ ≤ d′.

Remark 3.11. By Proposition 2.46, item (ii) of the Non-uniform Induced Matching

Theorem may be simplified by relaxing the bounds somewhat on intervals with right-

hand endpoint in B(σ): if Xφ〈b, d〉 = 〈b′, d′〉 and kerφ is σ-trivial, then σ̃−1
L (d) ≤ d′ ≤ d.

We use this simplified version in the Algebraic Stability Theorem for Generalized

Interleavings, which we present shortly. Let σ : R→ R be monotone. For what follows,

we will define

σ̃−1
? :=

 σ̃−1
L (e) if e ∈ A(σ), and

σ̃−1
R (e) if e ∈ B(σ)

for every decorated endpoint e ∈ E.
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Proposition 3.12. Let V be a persistence module and let τ : R → R be monotone.

There exists a right-perfect matching X : Rep(BV )→| Rep(BTτ (V )) such that coim X =

{(〈c, e〉, k) ∈ Rep(BV ) : τ̃−1
? (c) < τ̃−1

? (e)} and 〈c, e〉 7→ 〈τ̃−1
? (c), τ̃−1

? (e)〉.

Proof. Suppose that 〈c, e〉 ∈ BV and consider the corresponding interval persistence

submodule I〈c,e〉. Then I〈c,e〉 ∩ BTτ (V ) is an interval persistence submodule of BTτ (V )

with interval

{t ∈ R : c ≤ τ(t)− < τ(t)+ ≤ e}, (3.12a)

which is nonempty if and only if 〈c, e〉 ∩ τ(R) 6= ∅, where we regard 〈c, e〉 as an interval

in R. We will now find the t ∈ R such that c ≤ τ(t)−.

We first consider the case when (τ ◦τ−1
L )(πc) < πc, whereby we must have τ−1

L (πc) <

t to get c ≤ τ(t)−. If c = π(c)−, then it suffices to choose t ∈ R such that τ−1
L (πc) < t

since then c = π(c)− ≤ τ(t)−. Suppose that c = π(c)− and πc /∈ τ(R). Then for all

τ−1
L (πc) < t we also have c < τ(t)−. Now suppose that c = π(c)+ and πc ∈ τ(R)

(i.e. c ∈ B(τ)). If (τ ◦ τ−1
R )(πc) = πc, then we must have τ−1

R (πc) < t for c ≤ τ(t)−.

However, if (τ ◦ τ−1
R )(πc) > πc, then we can take τ−1

R (πc) = t for c ≤ τ(t)−.

Next we consider the case when (τ ◦ τ−1
L )(πc) ≥ πc. If (τ ◦ τ−1

L )(πc) > πc then

setting t = τ−1
L (πc) yields c ≤ τ(t)−. Suppose that (τ ◦ τ−1

L )(πc) = πc. If c = π(c)−

then t = τ−1
L (πc) yields c = π(c)− ≤ τ(t)− and so this case is done. Finally, suppose

that c = π(c)+ (i.e. c ∈ B(τ)). If (τ ◦ τ−1
R )(πc) = πc, we must have τ−1

R (πc) < t to get

c ≤ τ(t)−. If (τ ◦ τ−1
R )(πc) > πc, then we can set τ−1

R (πc) = t and have c ≤ τ(t)−.

Thus, we have succeeded in showing that if c ∈ A(τ), the left-hand endpoint of

interval (3.12a) is τ̃−1
L (c), and if c ∈ B(τ), the left-hand endpoint of interval (3.12a)

is τ̃−1
R (c). It remains to find t ∈ R such that τ(t)+ ≤ e and establish the right-hand

endpoint of interval (3.12a).

For the first case we consider e = π(e)−. If (τ ◦ τ−1
L )(πe) < πe, then setting

t = τ−1
L (πe) yields τ(t)+ ≤ e. If (τ ◦ τ−1

L )(πe) ≥ πe, then we must have t < τ−1
L (πe) for

τ(t)+ ≤ e. Now suppose that e = π(e)+. If πe /∈ τ(R), then if (τ ◦τ−1
L )(πe) < πe we can

set t = σ−1
L (πe) and get τ(t)+ ≤ e, and if (τ ◦ τ−1

L )(πe) > πe we must have t < σ−1
L (πe)

for τ(t)+ ≤ e. Finally, suppose that πe ∈ τ(R) (i.e. e ∈ B(τ)). Then if (τ ◦ τ−1
R )(πe) =
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πe, we can set t = τ−1
R (πe) to achieve τ(t)+ ≤ e, and if (τ ◦ τ−1

R )(πe) > πe, we must

have t < τ−1
R (πe) for τ(t)+ ≤ e. Hence, if e ∈ A(τ), the right-hand endpoint of interval

(3.12a) is τ̃−1
L (e), and if e ∈ B(τ), then the right-hand endpoint is τ̃−1

R (e).

To conclude the proof, note that 〈c, e〉 ∩ τ(R) 6= ∅ if and only if τ̃−1
? (c) < τ̃−1

? (e).

Thus, by the work above, we get a one-to-one correspondence between the intervals

〈c, e〉 ∈ BV with τ̃−1
? (c) < τ̃−1

? (e) and the intervals in BTτ (V ). Define X : Rep(BV ) →|

Rep(BTτ (V )) to be this matching, minimizing copy numbers.

Algebraic Stability Theorem for Generalized Interleavings 3.13. Let V and W

be (τ, σ)-interleaved persistence modules. If the composition (σ ◦ τ) is right-continuous,

then there exists a matching X : Rep(BV )→| Rep(BW ) on the barcodes of V and W

such that for each X〈b, d〉 = 〈b′, d′〉, the inequalities

τ̃−1
? (b′) ≤ b ≤ [(̃σ ◦ τ) ◦ τ̃−1

? ](b′) (3.13a)

and

(̃σ ◦ τ)
−1

L (d) ≤ τ̃−1
? (d′) ≤ d (3.13b)

are satisfied, and any unmatched intervals are contained in the sets

{〈b, d〉 ∈ BV : (̃σ ◦ τ)
−1

L (d) ≤ b}

and

{〈b′, d′〉 ∈ BW : τ̃−1
? (d′) ≤ [(̃σ ◦ τ) ◦ τ̃−1

? ](b′)}.

Proof. By Proposition 3.12, consider the matching on barcodes X ′ : Rep(BW ) →

Rep(BTτ (W )) given by 〈c, e〉 7→ 〈τ̃−1
? (c), τ̃−1

? (e)〉. The restriction of this matching to

the subset

S = {(〈c, e〉, k) ∈ Rep(BW ) : τ̃−1
? (c) < τ̃−1

? (e)}

is a bijection. That is for each (〈c̄, ē〉, j) ∈ BTτ (W ), there exists a (〈c, e〉, k) ∈ S such

that c̄ = τ̃−1
? (c) and ē = τ̃−1

? (e).

By Proposition 2.33, the Non-uniform Induced Matching Theorem, and Remark 3.11,
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the interleaving morphism φ : V → Tτ (W ) witnesses a minimal admissible matching

Xφ : Rep(BV )→| Rep(BTτ (W )) for φ such that for matched intervals Xφ〈b, d〉 = 〈b̄, d̄〉,

b̄ ≤ b ≤ (̃σ ◦ τ)(b̄) and (̃σ ◦ τ)
−1

L (d) ≤ d̄ ≤ d, (3.13c)

and unmatched intervals are contained in the sets

{〈b, d〉 ∈ BV : (̃σ ◦ τ)
−1

L (d) ≤ b} and {〈b̄, d̄〉 ∈ BTτ (W ) : d̄ ≤ (̃σ ◦ τ)(b̄)}. (3.13d)

Applying the reverse matching X ′−1, we obtain the relations b̄ = τ̃−1
? (b′) and d̄ =

τ̃−1
? (d′) for some b′, d′ ∈ E. Substituting these into (3.13c) and (3.13d), we obtain

a matching X : Rep(BV )→| Rep(BW ) such that inequalities (3.13a) and (3.13b) are

satisfied for matched intervals, and the unmatched intervals are contained in the sets

in the statement of the theorem. To show that every unmatched interval in Rep(BW )

is contained in the set {〈b′, d′〉 ∈ BW : τ̃−1
? (d′) ≤ [(̃σ ◦ τ) ◦ τ̃−1](b′)}, it remains to show

that any interval 〈b′, d′〉 ∈ Rep(BW ) \ S must also fall in this set. By the definition of

the set S, we have τ̃−1
? (d′) ≤ τ̃−1

? (b′), so by the monotonicity of (̃σ ◦ τ) and the fact

that (σ ◦ τ) is a translation map, we have τ̃−1
? (d′) ≤ [(̃σ ◦ τ) ◦ τ̃−1

? ](b′), which concludes

the proof.

While the inequalities in the Algebraic Stability Theorem for Generalized Inter-

leavings may seem impractical at first glance, when the translation maps τ and σ are

bijective, we have the following intuitive relationships between the matched intervals

〈b, d〉 ∈ BV and 〈b′, d′〉 ∈ BW . Since we ultimately want to estimate 〈b′, d′〉 from 〈b, d〉,

we rewrite the inequalities given by the theorem so that this relationship is more clear.

Corollary 3.14. Let V and W be PFD persistence modules that are (τ, σ)-interleaved

as in Theorem 3.13. If the maps τ and σ are invertible, then inequalities (3.13a) and

(3.13b) become σ̃−1(b) ≤ b′ ≤ τ̃(b) and σ̃−1(d) ≤ d′ ≤ τ̃(d), respectively. The unmatched

intervals 〈c, e〉 in either barcode have e ≤ (̃σ ◦ τ)(c).

Note that if τ(t) = t + δ = σ(t), then we are in the case of a δ-interleaving and

recover the Algebraic Stability Theorem.
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Chapter 4

Applications of the Algebraic Stability Theorem for

Generalized Interleavings

We illustrate the use of the Algebraic Stability Theorem for Generalized Interleavings

(Theorem 3.13) as part of a comparison framework for interleaved persistence modules

through a collection of applications. We find it convenient to visualize the barcode of

a persistence module using an associated multiset.

Definition 4.1. Let BV be the barcode associated to a persistence module (V, ϕV ).

The (undecorated) persistence diagram of V is the multiset

PD(V ) := ({(πb, πd) ∈ R2
: (〈b, d〉, k) ∈ Rep(BV )}, n),

where R = R ∪ {−∞,∞}, and the counting function n : R2 → Z+ is defined as

n(b, d) := |{(〈b′, d′〉, k) ∈ Rep(BV ) : πb′ = b, πd′ = d}|.

By projecting decorated endpoints to extended real numbers, we obtain the following

corollary of the Algebraic Stability Theorem for Generalized Interleavings in the context

of persistence diagrams. As in Corollary 3.14, we rewrite the first inequality so that we

can estimate the location of b′ in terms of b.

Corollary 4.2. Let V and W be (τ, σ)-interleaved persistence modules and that the

maps τ and σ are invertible. If the composition (σ ◦ τ) is right-continuous, then there

exists a matching

PDX : Rep(PD(V ))→| Rep(PD(W ))
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on the persistence diagrams of V and W such that for PDX (b, d) = (b′, d′), the inequal-

ities σ−1(b) ≤ b′ ≤ τ(b) and σ−1(d) ≤ d′ ≤ τ(d) hold, and any unmatched points (c, e)

in either persistence diagram have e ≤ (σ ◦ τ)(c).

Unfortunately, without knowledge of the endpoint decorations, there is not a direct

corollary of the Algebraic Stability Theorem for Generalized Interleavings in the con-

text of persistence diagrams for arbitrary translation pairs. This is due to the nature

of inequality (3.13b), whereby the middle term could be either the left or right gen-

eralized inverse depending on the endpoint decoration. In this case, one must apply

the Algebraic Stability Theorem for Generalized Interleavings to the barcodes and then

take the projection to extended real numbers.

4.1 Applications for Image Analysis and Large Point Clouds

Our first example shows how the persistence diagram of a real-valued function changes

after composing with a monotone perturbation of the range. Our second example ex-

amines the relationship between Z-indexed and R-indexed persistence modules, and the

third concerns errors introduced when approximating a smooth scalar field by a digital

image. Finally, we close out this section with two examples that apply to computing

persistence diagrams of large point clouds.

In the sections that follow, it will be useful to define persistence modules induced

by the sublevel sets of a scalar field.

Definition 4.3. Let D be a topological space and let f : D → R be a scalar field. Fix

a field k and choose n ∈ N. The persistence module induced by the sublevel set filtration

of D by f , denoted by (Mn(f), ϕMn(f)), is defined by

Mn(f)t := Hn(C(f, t), k), t ∈ R,

the vector spaces given by taking n-dimensional homology of the sublevel sets C(f, t) :=

{x ∈ D : f(x) ≤ t} for every t ∈ R, and the associated linear maps induced by the

inclusion maps. That is, for s, t ∈ R with s ≤ t, we define ϕMn(f)(s, t) to be the map at
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the level of homology induced by the inclusion C(f, s) ⊆ C(f, t). We will often consider

some n ∈ N to be fixed in advance and write (M(f), ϕM(f)) instead of (Mn(f), ϕMn(f)).

We will also find it useful to define persistence modules induced by finite point

clouds.

Definition 4.4. Let X be a finite metric space with metric d. The Vietoris-Rips

complex of X at scale t, denoted by R(X, t), is the simplicial complex with vertices

given by X and containing the N -simplex [xi0 , . . . , xiN ] if and only if d(xij , xik) ≤ 2t

for all j, k = 0, . . . , N . The collection {R(X, t)}t∈R is called the Vietoris-Rips filtration

associated to X.

Definition 4.5. Let X be a finite metric space with metric d. Fix a field k and choose

n ∈ N. We form the persistence module induced by the Vietoris-Rips filtration associated

to X, denoted by (MR
n (X), ϕMR

n(X)), by defining

MR
n (f)t := Hn(R(X, t), k), t ∈ R,

the vector spaces given by taking n-dimensional homology of the Vietoris-Rips complex

R(X, t) at scale t ∈ R, and the associated linear maps induced by the inclusion maps.

That is, for s, t ∈ R with s ≤ t, we define ϕMR
n(X)(s, t) to be the map at the level

of homology induced by the inclusion R(X, s) ⊆ R(X, t). We will often consider some

n ∈ N to be fixed in advance and write (MR(X), ϕX) instead of (MR
n (X), ϕMR

n(X)), with

an additional simplification in the notation of the transition maps.

Definition 4.6. Let X be a finite point cloud in a metric space M with metric d. The

C̆ech complex of X at scale t, denoted by C̆(X, t), is the simplicial complex with vertices

given by X and containing the N -simplex [xi0 , . . . , xiN ] if and only if
⋂N
j=0Bt(xij ) 6= ∅,

where Bt(x) ⊆ M is the open ball of radius t about the point x. The collection

{C̆(X, t)}t∈R is called the C̆ech filtration associated to X.

Definition 4.7. Let X be a point cloud in a finite metric space M with metric d. Fix a

field k and choose n ∈ N. We form the persistence module induced by the C̆ech filtration
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associated to X, denoted by (M C̆
n (X), ϕ

M C̆
n(X)

) by defining

M C̆
n (f)t := Hn(C̆(X, t), k), t ∈ R,

the vector spaces given by taking n-dimensional homology of the C̆ech complex C̆(X, t)

at scale t ∈ R, and the associated linear maps induced by the inclusion maps. That

is, for s, t ∈ R with s ≤ t, we define ϕ
M C̆
n(X)

(s, t) to be the map at the level of homol-

ogy induced by the inclusion C̆(X, s) ⊆ C̆(X, t). We will often consider some n ∈ N

to be fixed in advance and write (M C̆(X), ϕX) instead of (M C̆
n (X), ϕC̆

Mn(X)), with an

additional simplification in the notation of the transition maps.

The following lemma gives a useful relationship between Vietoris-Rips and C̆ech

complexes.

Lemma 4.8. Let X be a point cloud in a finite metric space M with metric d and let

t ∈ R. Then C̆(X, t) ⊆ R(X, t) ⊆ C̆(X, 2t).

Proof. The first inclusion is an immediate consequence of Definition 4.4 and 4.6. The

second inclusion is a consequence of the triangle inequality and Definition 4.6.

In the sections that follow, we will assume that a field k and a dimension n ∈ N

are fixed in advance, and so we drop reference to the dimension when referencing the

induced persistence modules defined above.

4.1.1 Perturbations of a Real-Valued Function

Our first example, while rather simple, serves to illustrate the convenience of Defini-

tion 2.27 (versus the analogous definition in [12]) in applying Theorem 3.13 and its

corollaries. While the relationship between the two persistence diagrams could be com-

puted via different means, it is a demonstration of how to apply the results from the

previous chapter.

Proposition 4.9. Let f : D → R and let g = h(f) where h : R → R is a monotone

increasing bijection. Let M(f),M(g) be the persistence modules induced by the sublevel
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set filtrations of D by f and g. Then M(g) and M(f) are (τ, σ)-interleaved where

τ(t) = h−1(t) and σ(t) = h(t),

and there exists a perfect matching PDX : PD(M(g))→| PD(M(f)) such that if PDX (b, d) =

(b′, d′),

b′ = h−1(b) and d′ = h−1(d).

In particular, every point in PD(M(f)) and PD(M(g)) is matched.

Proof. We begin by establishing the interleaving at the level of the sublevel set filtra-

tions. Let t ∈ R. Then

C(g, t) = C(h ◦ f, t) = C(f, h−1(t))

and

C(f, t) = C(h ◦ f, h(t))) = C(g, h(t)).

Thus, for s ≤ t, after applying homology, we have the following commutative diagram,

where horizontal maps are induced by inclusion and vertical maps are isomorphisms.

M(g)s M(g)t

M(f)h−1(s) M(f)h−1(t)

ϕM(g)(s,t)

ϕM(f)(h
−1(s),h−1(t))

Thus, we see that M(g) and M(f) are (τ, σ)-interleaved with τ(t) = h−1(t) and

σ(t) = h(t). Since h is bijective, Corollary 4.2 guarantees the existence of the matching

given in the statement of the proposition.

Thus, even if h(t) < t or h−1(t) < t for some t ≤ R, the result still shows that we can

determine the location of the persistence points of PD(f) by computing the persistence

points of PD(g), without first applying the inverse function h−1 to the function g.
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4.1.2 Discretizing a Persistence Module

As indicated in the introduction to Part I, in many applications we wish to use the R-

index persistence module M(f) to characterize the geometry of a function f : X → R

by examining the sublevel set filtration it induces on X. However, in practice we can

only perform a finite number of calculations. An idealized approximation is to assume

that we can compute the discretized Z-indexed persistence module M(f)Zt defined as

follows. Set

M(f)Zt := M(f)btc and ϕM(f)Z(s, t) := ϕM(f)(bsc, btc),

where b·c is the floor function. Proposition 4.11 provides an answer to the following

question: given the discretized Z-indexed persistence module M(f)Z, what are the

constraints on the persistence diagram associated to the persistence module M(f)? To

begin answering this question, we find the following corollary of the Algebraic Stability

Theorem for Generalized Interleavings useful. (Note as in Corollaries 3.14 and 4.2, we

rewrite the inequalities so that we can estimate the position of the persistence points

from the approximated persistence module via the position of the persistence points

from the approximation persistence module.)

Corollary 4.10. Let V and W be (τ, σ)-interleaved with τ(t) = t and σ right-continuous.

Then there exists a matching PDX : Rep(PD(V ))→| Rep(PD(W )) on the persistence di-

agrams of V and W such that for PDX (b, d) = (b′, d′), the inequalities σ−1
L (b) ≤ b′ ≤ b

and σ−1
L (d) ≤ d′ ≤ d hold, and any unmatched points (c, e) in either persistence diagram

have e ≤ σ(c).

Proposition 4.11. Let (V, ϕV ) be an R-indexed PFD persistence module and let (V Z, ϕV Z)

be the associated discretized Z-indexed PFD persistence module. Then V Z and V are

(τ, σ)-interleaved, where τ(t) = t and σ(t) = bt+ 1c.

Proof. Define a map φ : V Z → V by φt := ϕV (btc, t) and a map ψ : V → Tσ(V Z) by

ψt := ϕV (t, bt+1c). It is left to the reader to check that φ and ψ are persistence module

morphisms which yield a (τ, σ)-interleaving of V Z with V .
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Corollary 4.12. Let (V Z, ϕV Z) be the associated discretized Z-indexed persistence mod-

ule of an R-indexed PFD persistence module (V, ϕV ). There exists a matching PDX :

PD(V Z)→| PD(V ) such that if PDX (b, d) = (b′, d′), then

b− 1 ≤ b′ ≤ b and d− 1 ≤ d′ ≤ d.

Additionally, any unmatched points (c, e) ∈ PD(V Z) satisfy e = c + 1, and unmatched

points in (c′, e′) ∈ PD(V ) satisfy e′ ≤ bc′ + 1c.

Proof. First observe that σ−1
L (t) = dt − 1e and any persistence point (b, d) ∈ PD(V Z)

has b, d ∈ Z. Thus, a direct application of Corollary 4.10 to Proposition 4.11 yields the

result. In particular, any unmatched points (c, e) ∈ PD(V Z) actually satisfy e = c + 1

(versus e ≤ c+ 1, as is given by the theorem).

See Figure 1.3 for an illustration of an estimate of PD(V ) from PD(V Z).

4.1.3 An Example from Image Analysis

We now consider an example that illustrates the effect of using a pixelated image as

an approximation for a continuous function. To be more precise, consider a function

f : D → R where D is a rectangular region tiled by a cubical complex K [18]. An

ε-digital approximation of f over K is a piecewise constant function g : D → Q that is

constant on the interior of each cell in K and satisfies

‖f − g‖∞ ≤ ε.

Assume that we can bound values of g, for example by a function h : D → Z defined by

h(x) = dg(x)e,

where d·e : R→ Z is the function that rounds up to the next integer (d·e is the identity

on Z). We are interested in bounds on the persistence module M(f) in terms of the

persistence module that we can compute, M(h).
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Proposition 4.13. Let g : K → Q be an ε-digital approximation of f : D → R.

Define h : D → Z by h(x) = dg(x)e. Consider the sublevel set PDF persistence modules

(M(f), ϕf ) and (M(h), ϕh). Then M(h) and M(f) are (τ, σ)-interleaved, where

τ(t) = t+ ε and σ(t) = bt+ 1c+ ε.

Proof. Since ||g − f ||∞ ≤ ε, M(g) and M(f) are ε-interleaved with translation maps

εg(t) = t+ ε = εf (t). This can be seen by noting that

C(f, t) ⊆ C(g, t+ ε) and C(g, t) ⊆ C(f, t+ ε)

for all t ∈ R, and taking the interleaving maps to be the linear maps induced by the

corresponding inclusion maps at the level of homology. We leave it to the reader to

check that a similar idea as in Proposition 4.11 leads to showing that M(h) and M(g)

are (ρ, η)-interleaved with ρ(t) = t and η(t) = bt+1c. Thus, by Proposition 2.28, M(h)

and M(f) are (τ, σ)-interleaved.

Corollary 4.14. Let (M(f), ϕf ) and (M(h), ϕh) be the PDF persistence modules de-

fined in Proposition 4.13. Then there exists a matching PDX : PD(M(h))→| PD(M(f))

such that if PDX (b, d) = (b′, d′), then

db− εe − 1 ≤ b′ ≤ b+ ε and dd− εe − 1 ≤ d′ ≤ d+ ε,

and unmatched points in PD(M(h)) have d ≤ bb+ 1 + εc+ bεc, while unmatched points

in PD(M(f)) have d′ ≤ bb′ + 1c+ 2ε.

Proof. First note that (σ ◦ τ) is a right-continuous translation map and that

τ−1(t) = t− ε and σ−1
L (t) = dt− εe − 1.
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Figure 4.1: A schematic diagram illustrating the quality of the approximation given
in Section 4.1.3 where h is the discretization of an ε-digital approximation of f with
ε = .3. For clarity, we suppose that a persistence diagram with a single off-diagonal
point at (2, 6) has been computed from the approximation persistence module. Using
the classical bottleneck distance, the square and diagonal strip defined by the dashed
lines indicate the possible locations of the persistence points in the persistence diagrams
of M(f). In contrast, the matchings guaranteed by Theorem 3.13 limit the possible
location of the associated matched point in the persistence diagrams of interest to the
grey region. If any persistence points in PD(M(h)) had fallen in the pink region, then
it’s possible they may have been introduced as a computational artifact, and may not
have corresponding matched points in the persistence diagrams of interest.

In addition, we have

(σ ◦ τ)(t) = bt+ 1 + εc+ ε,

(σ ◦ τ)−1
L (t) = dt− εe − 1− ε,

(σ ◦ τ ◦ τ−1)(t) = bt+ 1c+ ε.

Furthermore, for any (b, d) ∈ PD(M(h)), we know that b, d ∈ Z. Thus, with a bit of

work one can verify the stated matching directly.

For an illustration of an estimate of PD(M(f)) from PD(M(h)), see Figure 4.1. To

conclude this section, we point out a possible implication of the quality of the error

bounds computed in these two examples. One common problem in topological data

analysis and persistent homology is the determination of a level of noise inherent in
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the system; that is, a level beyond which lifespans of points in the persistence dia-

gram are considered to be significant. This noise level is sometimes set by the known

measurement error inherent in the system. If an approximation persistence module is

(τ, σ)-interleaved with a ‘true’ persistence module, one possibility is to set the noise

level of the system to be the maximum of the functions defining the unmatched re-

gions for both the approximation and the ‘true’ persistence diagrams. In the context

of Propositions 4.11 and 4.13, Figure 4.1 illustrates that the gray region around point

(2, 6) in the computed diagram is bounded away from the noise level, while the gray

region in Figure 4.1 intersects it. Thus, it cannot be guaranteed that the matched

point in PD(M(f)) associated to point (2, 6) is distinguishable from noise, while this is

guaranteed in Proposition 4.11.

4.1.4 Two Examples for Large Point Clouds

Consider a finite a metric space (X, d). The persistence modules induced by the

Vietoris-Rips filtrations associated to X (one for each homological dimension n ∈ N)

provide geometric information that can be associated to X. The following two sections

both show how the Algebraic Stability Theorem for Generalized Interleavings (and its

corollaries) can be used to keep track of errors introduced when computing the persis-

tence diagrams induced by approximations of Vietoris-Rips complex filtrations.

Subsampling a large point cloud

Observe that for sufficiently large t ∈ R, the complex R(X, t) is a simplex of dimension

one less than the number of points in X. Thus, for large X and t, calculating the

homology of R(X, s) for every 0 ≤ s ≤ t is computationally infeasible. However, given

a dense point cloud, it is reasonable to assume that if one chooses an appropriate

subset Y ⊂ X and constructs the associated Vietoris-Rips filtration {R(Y, t)}t∈R, the

resulting persistence module (MR(Y ), ϕY ) will provide a reasonable approximation of

(MR(X), ϕX). Since it is understood that we are only concerned with the persistence

modules induced by Vietoris-Rips filtrations associated to X and Y , in what follows we

will drop the reference to the complex type and write (M(Y ), ϕY ) and (M(X), ϕX).
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The following proposition, whose proof is provided at the end of this section, quantifies

this assumption.

Proposition 4.15. Let (X, d) be a finite metric space. If Y ⊂ X is such that for every

x ∈ X there exists a y ∈ Y such that d(x, y) ≤ δ, then the persistence modules M(Y )

and M(X) are (τ, σ)-interleaved, where τ(t) = t and σ(t) = t+ δ.

Since both τ and σ are invertible, we can apply Corollary 4.2 to estimate PD(M(X))

from PD(M(Y )) as follows.

Corollary 4.16. There exists a matching PDX : PD(M(Y )) →| PD(M(X)) of the

persistence diagrams corresponding to the persistence modules M(Y ) and M(X) with

the following properties. If PDX (b, d) = (b′, d′) then b− δ ≤ b′ ≤ b and d− δ ≤ d′ ≤ d.

Moreover, all unmatched points in PD(M(Y )) and PD(M(X)) are at most δ above the

diagonal.

Figure 4.2(a) illustrates this approximation. To prove Proposition 4.15, we need a

series of lemmas and definitions.

Lemma 4.17. Let S and S′ be subsets of a point cloud X and t, δ ≥ 0. Suppose that

γ : S → S′ is a map which satisfies d(x, γ(x)) ≤ δ for all x ∈ S. Then the map

γ̃ : R(S, t)→ R(S′, t+ δ)

defined by γ̃[x0, · · · , xk] = [γ(x0), · · · , γ(xk)] is a simplicial map.

Proof. To prove that γ̃ is a simplicial map, we need to show that for every k-simplex

[x0, ..., xk] ∈ R(S, t), the k-simplex [γ(x0), ..., γ(xk)] is a simplex in R(S′, t+δ). Since the

simplices in a Vietoris-Rips complex are fully determined by its 1-skeleton, we only need

to show that the 1-skeleton of R(S, t) is mapped to the 1-skeleton of R(S′, t+δ). If [x, y]

is an edge in R(S, t), then by the definition of the Vietoris-Rips complex, d(x, y) ≤ 2t.
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(a) (b)

Figure 4.2: Schematic diagrams illustrating the quality of the matching from Corol-
laries 4.2 and 4.10 for (a) M(Y ) the persistence module given by a δ-dense subsample
Y ⊆ X with δ = 1, (b) M the adaptive persistence module for a δ-cover tree of length
one with δ = 0.5 and t1 = 3. For (b), we show a persistence diagram with three
off-diagonal points at (1, 2.5), (2, 6), and (5, 7.5). The gray regions surrounding these
points illustrate the possible locations of the associated matched points in the persis-
tence diagram of M(X). The blue region indicates the possible locations of unmatched
points in the approximated persistence diagrams as well as unmatched points in the
persistence diagram of M(X).

Thus, we have

d(γ(x), γ(y)) ≤ d(γ(x), x) + d(x, y) + d(y, γ(y))

≤ δ + 2t+ δ

= 2(t+ δ),

and so [γ(x), γ(y)] is either a 1-simplex or a 0-simplex in R(S′, t+ δ).

We aim to construct the (τ, σ)-interleaving of M(Y ) and M(X) in Proposition 4.15

explicitly, where τ(t) = t and σ(t) = t+ δ. This amounts to showing the existence of a

persistence module morphism ψ : M(X)→ Tσ(M(Y )) such that the collection of maps
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ψt : M(X)t →M(Y )t+δ makes the diagram

M(Y )t M(Y )t+δ

M(X)t M(X)t+δ

ϕM(Y )(t,t+δ)

ϕM(X)(t,t+δ)

ψt (4.18)

commute for all t ∈ R, where the vertical arrows are induced by inclusion maps

it : R(Y, t) ↪→ R(X, t). To achieve this goal we will use a simplicial homotopy. For

a treatment of this material, see [19, Chapter 8].

Definition 4.19. Let K and L be simplicial complexes and f, g : K → L simplicial

maps. Let [v0, · · · , vk] be a k-simplex in K, and define the maps

• Remove vertex vi: ∂i[v0, · · · , vk] = [v0, · · · , vi−1, vi+1, · · · , vk]

• Repeat vertex vi: ρi[v0, · · · , vk] = [v0, · · · , vi, vi, · · · , vk]

The maps f and g are said to be simplicially homotopic if there exist morphisms

hi : Kk → Lk+1 (i = 0, ..., k) from the k-skeleton of K to the (k + 1)-skeleton of L

such that ∂0h0 = f and ∂k+1hk = g. Additionally, the maps {hi} must satisfy

∂ihj =


hj−1∂i if i < j

∂ihi−1 if i = j 6= 0

hj∂i−1 if i > j + 1

and

ρihj =

 hj+1ρi if i ≤ j

hjρi−1 if i > j.

The collection of maps {hi} is called a simplicial homotopy from f to g, written f ' g.

It is known [19, Lemma 8.3.13, Theorem 8.3.8] that if f ' g, then the induced

maps on homology have f∗ = g∗. Let S, S′ be subsets of some point cloud X. By

Lemma 4.17, any map γ : S → S′ satisfying d(x, γ(x)) ≤ δ can be extended to a
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simplicial map γ̃ : R(S, t)→ R(S′, t+ δ) by defining γ̃[x0, · · · , xk] = [γ(x0), · · · , γ(xk)].

In the following lemma we show another useful result concerning the map γ̃.

Lemma 4.20. Let S, S′ be subsets of a point cloud X and t, δ ≥ 0. Suppose that

γ : S → S′ is a map satisfying d(x, γ(x)) ≤ δ for all x ∈ S and let γ̃ : R(S, t) →

R(S′, t+δ) ⊆ R(X, t+δ) be its simplicial extension. If the maps i′ : R(S′, t) ↪→ R(X, t+δ)

and i : R(S, t + δ) → R(X, t + δ) are inclusions, then i ◦ γ̃ ' i′ and so (i ◦ γ̃)∗ = i′∗ at

the level of homology.

Proof. We will define the simplicial homotopy {hi} from the map i ◦ γ̃ to the inclusion

map i′ by hi([x0, · · · , xn]) := [x0, · · · , xi, γ(xi), · · · , γ(xn)]. To prove that the maps hi

define a simplicial homotopy, we start by showing that

∂0h0[x0, · · · , xn] = ∂0[x0, γ(x0), · · · , γ(xn)]

= [γ(x0), · · · , γ(xn)]

= (i ◦ γ̃)([x0, · · · , xn])

and

∂n+1hn[x0, · · · , xn] = ∂n+1[x0, · · · , xn, γ(xn)]

= [x0, · · · , xn]

= i′[x0, · · · , xn].

The remaining properties of the maps hi can be verified by a simple calculation as well.

Thus, the map i ◦ γ̃ is simplicially homotopic to ι and so (i ◦ γ̃)∗ = ι∗ at the level of

homology.

Proof of Proposition 4.15. Recall that we need to construct a family of maps ψt such

that diagram (4.18) commutes for all t ∈ R. By assumption, there is a map γ : X → Y

such that d(x, γ(x)) ≤ δ. For each t ∈ R, define a map γ̃t : R(X, t) → R(Y, t + δ)

by γ̃t[x0, · · · , xk] := [γ(x0), · · · , γ(xk)]. By Lemma 4.17, γ̃t is a simplicial map. Set

ψt := (γ̃t)∗. It is easy to check that ψ : M(X) → Tσ(M(Y )) is a persistence module
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morphism since each map ψt is a simplicial extension of the same vertex map γ.

The upper triangle of diagram (4.18) commutes by the following argument. If

it : R(Y, t)→ R(X, t) is the inclusion map, then the map γ̃t ◦ it restricts to the identity

on R(Y, t) and so at the level of homology it is equal to ϕM (t,t+δ). The commutativity

of the lower triangle is a direct consequence of Lemma 4.20.

An Application for Cover Trees

Suppose that Y ⊂ X such that for any y ∈ Y , there exists an x ∈ X with d(y, x) ≤ δ.

The computational cost of constructing the interval decomposition of the persistence

module M(Y ) decreases when we increase the value of δ. Unfortunately, the approxi-

mation error also increases with δ. Therefore, choosing a large value of δ might lead to

a poor approximation of PD(M(X)) by PD(M(Y )). Note that the number of simplices

in the Vietoris-Rips complex increases with the filtration parameter t. This implies that

the barcodes of the persistence module M(Y ) might be computable only for a restric-

tion of M(Y ) to a short interval [0, t]. By a restriction of the persistence module M(Y )

we mean a persistence module with the vector spaces M(Y )s for s ≤ t and M(Y )t for

s > t.

To overcome this problem, we construct an approximation of M(X) that is based

on the concept of a cover tree [20].

Definition 4.21. We say that the sequence of subsets {Yi ⊆ X}mi=0 is a δ-cover tree of

length m for X, denoted Yδ, if

• (Nesting) The sequence satisfies Yi ⊃ Yi+1 for all i < m.

• (Covering) For every p ∈ Yi−1, 0 < i ≤ m, there exists a q ∈ Yi such that

d(p, q) ≤ δ2i.

• (Sparsity) For distinct p, q ∈ Yi, d(p, q) > δ2i.

We call the subset Yi ⊂ X the cover at level i.

Suppose that each M(Yi) is computable on some interval [0, ti+1], and 0 = t0 ≤

t1 ≤ · · · ≤ tm. To obtain an approximation of M(X), we will stitch the restricted
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persistence modules M(Yi) together into a single persistence module M (see Defini-

tion 4.22, below). We call this persistence module adaptive in that the intervals on

which each persistence module M(Yi) is computable may be system-dependent, and

not based on some theoretical term computed in advanced. Ideally, we would like the

vector spaces Mt to be equal to M(Yi)t for t ∈ [ti, ti+1]. However, to ensure that M

is a persistence module, we will need to modify this condition slightly. First, we will

explain how to build the adaptive approximation persistence module M for m = 1,

where Yδ is a δ-cover tree of length one for X. In this case, we will stitch together the

two persistence modules (M(Y0), ϕ0) and (M(Y1), ϕ1) at some index t1 ∈ R. To do this,

we need to define the transition maps between them. By the covering condition on Yδ,

this guarantees the existence of a map φ0 : Y0 → Y1 such that d(x, φ0(x)) < 2δ for all

x ∈ Y0. Thus, by Lemma 4.17, the map φ̃0 induces a map Φ0 : M(Y0)t1 →M(Y1)t1+2δ

after passing to the level of homology. The gap of length 2δ in the indices of the map

motivates the following choice of vector spaces for the persistence module M .

Mt :=

 M(Y0)min(t,t1) for 0 ≤ t < t1 + 2δ

M(Y1)t for t1 + 2δ ≤ t.

The transition maps for the persistence module M are defined by

ϕ(s, t) :=


ϕ0(min(s, t1),min(t, t1)) for 0 ≤ s ≤ t < t1 + 2δ

ϕ1(t1 + 2δ, t) ◦ Φ0 ◦ ϕ0((min(s, t1), t1) for 0 ≤ s < t1 + 2δ ≤ t

ϕ1(s, t) for t1 + 2δ ≤ s ≤ t.

To construct the full adaptive persistence module M for a δ-cover tree Yc with

m > 1, we repeat the above merging process for each set Yi. Again by the covering

condition, there exist maps φi : Yi → Yi+1 such that d(x, φi(x)) ≤ 2i+1δ for all x ∈ Yi.

As before, these maps induce a collection of maps Φi : M(Yi)ti+1 →M(Yi+1)ti+1+2i+1δ.

Thus, we can define the adaptive persistence module M as follows.

Definition 4.22. Let Yδ be a δ-cover tree for X of length m and 0 = t0 < t1 < . . . <

tm <∞ be an increasing sequence such that ti+1 > ti + 2iδ for i = 0, ...,m− 1 and for
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which M(Yi) is computable on [0, ti). We define the adaptive PDF persistence module

M as follows. The vector spaces of the persistence module M are given by

Mt := M(Yi)min(t,ti+1) for t ∈ Ii, i = 0, ...,m,

where

Ii :=


[0, t1 + 2δ) for i = 0

[ti + 2iδ, ti+1 + 2i+1δ) for i = 1, ...,m− 1

[tm + 2mδ,∞) for i = m.

The transition maps are defined by

ϕM (s, t) :=



ϕi(min(s, ti+1),min(t, ti+1)) for s, t ∈ Ii,

i = 0, ...,m

ϕj(tj + 2jδ,min(t, tj+1)) ◦ Φi,j ◦ ϕi(min(s, ti+1), ti+1) for s ∈ Ii, t ∈ Ij ,

0 ≤ i < j ≤ m,

where Φi,j := Φj−1 ◦ ϕj−1(tj−1 + 2j−1δ, tj) ◦ · · · ◦ Φi+1 ◦ ϕi+1(ti+1 + 2i+1δ, ti+2) ◦ Φi.

We remark that the adaptive persistence module M depends on the choice of δ > 0,

the values {ti}, and the subsamples {Yi}. Indeed, different choices of Yi could result in

different adaptive persistence modules, even if δ and {ti} remain fixed. However, re-

gardless of the exact choice of each of the subsets Yi, the persistence modules M(X) and

M are interleaved in such a way that the upper bound of the error of the approximation

depends only on δ and {ti}.

Theorem 4.23. Let X be a point cloud and M the adaptive PFD persistence module

given by Definition 4.22. Then M and M(X) are (τ, σ)-interleaved, where τ(t) = t and

σ(t) :=

 t+ 2iδ for t ∈ [ti, ti+1 − 2iδ) and i = 0, ...,m

ti + 2iδ for t ∈ [ti − 2i−1δ, ti) and i = 1, ...,m− 1.

Proof. We recall that the adaptive persistence module M is determined by δ > 0
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and the sequences {ti}mi=0 and {Yi}mi=0. The proof proceeds by induction on m. For

the case m = 0, the result is immediate by Proposition 4.15. Now suppose that M

is an adaptive persistence module defined by δ > 0, and the sequences {ti}m+1
i=0 and

{Yi}m+1
i=0 , while M ′ is an adaptive persistence module defined by the truncated sequences

{ti}mi=0 and {Yi}mi=0. By our inductive hypothesis, M ′ and M(X) are (τ, σ)-interleaved

per the definitions in Theorem 4.23. By Proposition 4.15, M(Ym+1) and M(X) are

2m+1δ interleaved. Thus, Proposition 2.29 enables us to stitch together the persistence

modules M ′ and M(Ym+1) at tm+1. The resulting persistence module M is as described

since the interleaving maps are induced by nearest neighbor maps. Moreover, the

translation maps specified by the interleaving between M and M(X) also follows from

Proposition 2.29.

Thus, an application of Corollary 4.10 yields the following.

Corollary 4.24. There exists a matching PDX : PD(M) →| PD(M(X)) of the persis-

tence diagrams corresponding to the persistence modules M and M(X) with the fol-

lowing properties. If PDX (b, d) = (b′, d′), then σ−1
L (b) ≤ b′ ≤ b and σ−1

L (d) ≤ d′ ≤ d,

where

σ−1
L (t) = min(t− 2iδ, ti+1) for t ∈ Ii, i = 0, ..,m.

Furthermore, all unmatched points (c, e) ∈ PD(M) satisfy σ−1
L (e) ≤ c, and all un-

matched points (c′, e′) ∈ BM(X) satisfy e′ ≤ σ(c′).

See Figure 4.2 for a visualization of the relationship between the persistence diagram

of a persistence module M(X) and the persistence diagram associated to an adaptive

persistence module as in Definition 4.22. As a final remark, note that the persistence

module above contains the familiar transition maps induced by inclusion of the under-

lying Vietoris-Rips complexes as well as transition maps induced by simplicial maps.

Computing the interval decomposition of persistence modules stemming from simplicial

maps is addressed in [21].
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4.1.5 A Summary of Generalized Interleavings for Filtrations of Point

Clouds

It is often not possible to compute the persistence diagram of a given filtration associ-

ated to a dataset directly, and instead an approximate persistence diagram is computed

from an interleaved persistence module. For example, often a Vietoris-Rips filtration

(Definition 4.4) is used in place of a C̆ech filtration (Definition 4.6), since the latter is

very expensive to compute [4]. Persistence module interleavings are commonly stated

in terms of an additive δ-interleaving with translation maps τ(t) = t+ δ = σ(t), δ ≥ 0,

or a multiplicative interleaving (also called a c-approximation [10]) with translation

maps τ(t) = ct = σ(t), c ≥ 1. Accordingly, the numerical error introduced by these

approximations is typically stated in terms of a bottleneck error in the first case, or a

log-bottleneck error in the latter case, in many instances considerably overstating the

amount of error introduced by the approximation.

In Table 1, we provide a list of persistence modules that approximate persistence

modules induced by common filtrations of a finite point cloud in Rn or an arbitrary

metric space. To use the table, suppose that a persistence module (V, ϕV ) is induced by

taking homology of the filtration in the first column, and a persistence module (W,ϕW )

is induced by taking homology of the filtration in the second column. The persistence

modules V and W are (τ, σ)-interleaved, where the maps τ and σ are given by the third

and fourth columns in the table. In all instances, Corollary 3.14 may then be used to

make precise statements about the errors introduced by the approximation.

The references in the first column give the location for where the interleaving is

constructed. Most often, as in the case of Lemma 4.8, this is stated in terms of inclusions

of the approximation and the original filtration, and the interleaving at the level of

persistence modules is achieved by computing the linear maps induced by inclusion at

the level of homology. However, as in Lemma 4.20 and Proposition 4.15, sometimes a

simplicial homotopy (or similar notion) is required to obtain commutativity at the level

of persistence modules.
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Point clouds in Rn

Approximate filtration Original filtration τ(t) σ(t)

Vietoris-Rips [4, Proof
of Vietoris-Rips

Lemma.]
Čech t

√
2n
n+1 t

Net-tree [8, Proof of
Proposition 20]

Čech t (1 + ε)2t

Graph induced complex
[9, Proposition 2.8]

Vietoris-Rips t+ 2ε t

Sparsified Vietoris-Rips
[21, Claim 6.1]

Vietoris-Rips t (1 + ε)t

Point clouds in an arbitrary metric space

Approximate filtration Original filtration τ(t) σ(t)

Vietoris-Rips
(Lemma 4.8)

Čech filtration 2t t

Relaxed Vietoris-Rips
[10, Lemma 4]

Vietoris-Rips t
(

1
1−2ε

)
t

Sparse weighted Rips
[22, Lemma 6.13]

Vietoris-Rips t
(

1+
√

1+δ2ε
1−ε

)
t

Table 4.1: A table of approximations for Vietoris-Rips and C̆ech filtrations for point
clouds. The first column gives the approximation and a reference to the construction
of the approximation (including the explicit construction of the interleavings), and the
second column gives the filtration that is being approximated. The third and fourth
columns list the translation maps for (τ, σ)-interleavings of the associated persistence
modules induced by taking homology of the filtrations. The values δ, ε ≥ 0 are param-
eters specified by the approximations where applicable.
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4.2 Manifold Estimation

An important application for homological methods is in manifold learning. Consider a

compact k-dimensional Riemannian submanifold M ⊂ RN . Let τ ∈ R be the largest

real number such that the open normal disk bundle of radius r of M is embedded in

RN for all r < τ . Let Bε(x) ⊂ RN denote the open ball of radius ε about x. Define

θ1 := arcsin(ε/8τ) and θ2 := arcsin(ε/16τ) and let ε > 0. Set

β1 :=
vol(M)

cosk(θ1)vol(Bk
ε/4)

and β2 :=
vol(M)

cosk(θ2)vol(Bk
ε/8)

where vol(Bk
ε ) denotes the k-dimensional volume of the standard k-dimensional ball of

radius ε. The following theorem is proven by Niyogi, Smale, and Weinberger in [23].

Theorem 4.25. Let M ⊂ RN be a compact k-dimensional Riemannian manifold and

let δ > 0. Let X = {xi | i = 0, . . . , n} ⊂ M be a finite set of points drawn i.i.d. using

the uniform probability measure on M. Let 0 < ε < τ(M)/2. Set U :=
⋃
x∈X Bε(x). If

n > β1

(
log(β2) + log

(
δ−1
))

then H∗(U) ∼= H∗(M) with probability greater than 1− δ.

The importance of this theorem is that it provides an abstract guarantee that with

high probability it is possible to compute the homology of a manifold from a finite

sampling of points. There are at least two challenges to applying this theorem in

practice. First, the proof is based on determining the Čech complex associated with

the balls used to define U , which is computationally expensive. Second, the manifold

M is unknown and thus τ is unknown, and hence it is not clear a priori how ε and n

are to be chosen. The advantage of persistent homology is that there is no particular

scale that needs to be chosen. Thus, it is natural to ask if the persistence module of

the Vietoris-Rips complex associated to X can provide information about H∗(M). To

simplify notation in what follows, we define

νN :=

√
2N

N + 1
.
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The following proposition provides an alternative interpretation of the constants and

probabilities of Theorem 4.25.

Proposition 4.26. Under the assumptions of Theorem 4.25, let (b, d) ∈ PD(MR(X))

with either b or d in the interval (ε, τν−1
N /2). Then with probability greater than 1− δ,

d ≤ bνN and the point (b, d) is a numerical artifact that does not correspond to a feature

of the underlying manifold.

Proof. By Theorem 4.25, with probability greater than 1− δ, the complex C̆(X, t) has

the homology ofM for ε ≤ t < τ/2. Hence, PD(M C̆(X)) has no persistence points (c, e)

with c or e in the interval (ε, τ/2). From Table 1, the persistence modules associated

to the Vietoris-Rips and C̆ech filtrations are (ρ, σ)-interleaved with ρ(t) = tνN and

σ(t) = t.

By Corollary 4.2, if the point (b, d) is matched to a point (c, e) in the persistence

diagram corresponding to the C̆ech filtration of X, we must have b ≤ c ≤ bνN and

d ≤ e ≤ dνN . If c, e ≤ ε then b, d ≤ ε, and if τ ≤ c, e then τν−1
N ≤ b, d. Hence, if

(b, d) has either b or d in the interval (ε, τν−1
N /2), then (b, d) must be unmatched and

so d ≤ bνN .

4.3 Addressing an Open Problem for Non-Uniform Sublevel Set Fil-

trations

Non-uniform sublevel set filtrations are examined by Bendich, et al. in [13]. Let D a

compact topological space, f : D → R, and let e : D → (0,∞). Consider the sets

C(f, re) := {x ∈ D : f(x) ≤ re(x)}

for each r ∈ R, which can be viewed as a non-uniform sublevel set filtration of X.

Taking n-dimensional homology with respect to a field k, we form a persistence module

M(f, e) with vector spaces M(f, e)r := Hn(C(f, re), k) and transition maps induced

by inclusion. Let M(f) be the persistence module induced by the usual sublevel set

filtration of D under f (with respect to the same dimension n and field k).
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In the concluding remarks of [13], the authors note that the relationship between

the difference of PD(M(f)) and PD(M(f, e)) and the function e is unknown. We show

how Corollary 4.2 gives insight into this relationship by examining an interleaving of

the persistence modules M(f, e) and M(f).

Take α = infx∈D e(x), β = supx∈D e(x), and suppose that α > 0, β < ∞. Set

r = a/α. Then a = rα ≤ re(x), and thus C(f, a) ⊆ C(f, re). Similarly, setting r = bβ,

we have be(x) ≤ bβ = r, and so C(f, be) ⊆ C(f, r). Taking τ(t) = t/α and σ(t) = tβ,

we see that (τ ◦ σ)(t) = (σ ◦ τ)(t) = (β/α)t ≥ t. Taking the interleaving morphisms

induced by these inclusions, we see that M(f, e) and M(f) are (τ, σ)-interleaved and

the translation maps are invertible. Hence there is a matching PDX : PD(M(f, e)) →|

PD(M(f)) with any PDX (b, d) = (b′, d′) satisfying

b

β
≤ b′ ≤ b

α
and

d

β
≤ d′ ≤ d

α
,

and unmatched points (c, e) satisfy e ≤ c(β/α) in both diagrams. Thus, in the case that

α > 0 and β <∞, the difference between PD(M(f)) and PD(M(f, e)) is controlled by

the minimum and maximum values that e(x) takes on X.

4.4 Comments on Future Directions

Our hope is that this new perspective will yield statements of more precise error bounds

for the computations of other objects used in TDA, for example posets [24], Reeb Graphs

[25], merge trees [26], and multi-dimensional persistence modules [27], all of which

have established interleaving theories. Recent developments give a notion of homotopy

interleavings [28], various flavors of which are exemplified in the construction of the

generalized interleavings in this chapter, so this work hints at a possible extension of

this theory as well. Additionally, this approach might shed some light on problems

concerning the Wasserstein metric for persistence diagrams, which involve statements

about non-uniform distances between points in two persistence diagrams, as opposed

to the Bottleneck metric, which only considers the single largest difference between the

collections of points [6].
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Chapter 5

Dynamical Structures in Kolmogorov and

Rayleigh-Bénard Convection Flow

We present here a very lightly edited version of [1], with many portions reproduced ver-

batim. In this work, we introduce new mathematical techniques for analyzing complex

spatiotemporal nonlinear dynamics and demonstrate their efficacy in problems from two

different paradigms in hydrodynamics. Our approach employs methods from persistent

homology [4, 3]; earlier efforts have shown that computing the homology of topological

spaces associated to scalar or vector fields generated by complex systems can provide

new insights into dynamics [29, 30, 31, 32, 33, 34].

Complex spatiotemporal systems often exhibit complicated pattern evolution. The

patterns are given by scalar or vector fields representing the state of the system under

study. As discussed in the introduction to the previous chapter, persistent homology

can be viewed as a map PD that assigns to every scalar field f a multiset of points in R2

called a persistence diagram PD(f). Essentially, we can view the persistence diagram

as a highly simplified representation of the pattern encoded by the scalar field f .

The space of all persistence diagrams, Per, can be endowed with a variety of metrics

under which PD is a Lipschitz function. This has several important implications that

we exploit in this chapter. First, the Lipschitz property implies that small changes

in the field pattern, e.g. bounded errors associated with measurements or numerical

approximations, lead to small changes in the persistence diagrams. Second, by using

different metrics, we can vary our focus of interest between larger and smaller changes

in the persistence diagrams. Moreover, by comparing different metrics, we can infer

if the changes in a pattern affect geometric features with longer or shorter lifespans.

Finally, since applying the map PD to a time series of patterns produces a time series
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in Per, the distance between the consecutive data points in Per can be used to quantify

the rate at which the geometry of the patterns is changing.

As mentioned above, the dynamics of spatiotemporal systems are characterized by

the time-evolution of the patterns corresponding to the scalar fields generated by the

system. However, capturing these scalar fields, either experimentally or numerically,

results in multi-scale high dimensional data sets. In order to efficiently analyze these

data sets, a dimension reduction must be performed. We use persistent homology to

perform nonlinear dimension reduction from a time series of patterns to a time se-

ries of persistence diagrams. We show that this reduction can cope with redundancies

introduced by symmetries (both discrete and continuous) present in the system. In

particular, this approach directly quotients out symmetries and, thereby, permits easy

identification of solutions that lie on a group orbit. Alternative approaches to nonlinear

dimension and symmetry reduction include both the method of slices [35] and recent

advances in identifying unstable exact solutions of nonlinear partial differential equa-

tions [36]. While a detailed comparison of these methods is beyond the scope of this

work, it is worth pointing out that the application of persistent homology does not rely

on knowledge of the underlying governing equations.

Separately, we also apply persistent homology to extract information about dynam-

ical structures in the reduced data. Characterizing dynamics in the space of persistence

diagrams cannot currently be done using conventional methods (e.g., linear analysis of

time delay embeddings), since choosing a coordinate system in Per is currently an open

problem [37]. However, since Per is a metric space, the geometry of the point cloud

X, generated by the time series of the reduced data, is encoded by a scalar field which

assigns to each point in Per its distance to X. We show how persistent homology may

be applied to describe dynamics by characterizing the geometry of X.

An outline of this chapter is as follows. In Section 5.1 we present an abreviated

overview of the two fluid flows examined: (1) Kolmogorov flow and (2) Rayleigh-Bénard

convection. We note here, for emphasis, that while persistent homology can be applied

to vector fields, it will be sufficient for this chapter to focus on scalar fields drawn from

these systems (specifically, one component of the vorticity field for Kolmogorov flow,
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and the temperature field for Rayleigh-Bénard convection).

In Section 5.2 we discuss key issues related to the application of persistent homology.

By now, the mathematical theory of persistent homology is well developed. Therefore,

our main emphasis is on the computational aspect of passing from the data to the

persistence diagrams. Section 5.3 describes the correspondence between the geometric

features of a scalar field and the points in its corresponding persistence diagram. Sec-

tion 5.4 discusses the structure of the space Per and the properties of the associated

metrics.

In Sections 5.5 and 5.6 we discuss how these metrics can be used to analyze dy-

namics. First, we interpret distance between the persistence diagrams representing

consecutive data points in the time series as a rate at which the geometry of the corre-

sponding scalar fields is changing. Second, we motivate and explain the procedure for

extracting the geometric structure of the point cloud in Per.

We close the chapter by applying the techniques developed to the following prob-

lems. In Section 5.7, we identify distinct classes of symmetry-related equilibria for Kolo-

mogorov flow. In Section 5.8, we show that a relative periodic orbit for Kolmogorov

flow collapses to a closed loop in Per. Finally, in Section 5.9, we deal with identifying

recurrent dynamics that occur on different time scales in our study of Rayleigh-Bénard

convection flow.

5.1 The Systems to be Studied

5.1.1 Kolmogorov Flow

For the study of turbulence in two dimensions, Kolmogorov proposed a model flow

where the evolution of a two-dimensional (2D) velocity field u(x, y, t) is given by

∂u

∂t
+ βu · ∇u = −1

ρ
∇p+ ν∇2u− αu + f (5.1)

∇ · u = 0
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(with β = 1 and α = 0). In the above equation, p(x, y) is the pressure field, ν is the

kinematic viscosity, ρ is fluid density, and f = χ sin(κy)x̂ is the forcing that drives

the flow [38]. Laboratory experiments in electromagnetically-driven shallow layers of

electrolyte can exhibit flow dynamics that are well-described by Equations (5.1) with

appropriate choices of β and α to capture three-dimensional effects, which are com-

monly present in experiments [39]. In this chapter, we refer to all models described by

Equations (5.1) (including experimentally-realistic versions) as Kolmogorov flows.

It is convenient to use the vorticity-stream function formulation [40] to study Kol-

mogorov flow analytically and numerically. Equations (5.1), written in terms of the

z-component of the vorticity field ω = (∇× u) · k̂, a scalar field, take the form

∂ω

∂t
+ βu · ∇ω = ν∇2ω − αω + χκ cos(κy). (5.2)

For the current study, we choose β = 0.83, ν = 3.26 × 10−6 m2/s, α = 0.063 s−1,

ρ = 959 kg/m3, and λ = 2π/κ = 0.0254 m. We express the strength of the forcing in

terms of a non-dimensional parameter, the Reynolds number Re =
√

λ3χ
8ν2 .

Equation (5.2) is solved numerically by using a semi-discrete, pseudo-spectral method

[41], assuming periodic boundary conditions in both x and y directions, i.e., ω(x, y) =

ω(x + Lx, y) = ω(x, y + Ly), where Lx = 0.085 m and Ly = 4λ = 0.1016 m are the

dimensions of the domain in the x and y directions, respectively. The vorticity field is

discretized in the Fourier space using 128×128 modes, which corresponds to spatially

resolving the domain on a 2D mesh with spacing ∆x = Lx/128 and ∆y = Ly/128 in

the x and y directions, respectively. A time step of dt = 1/32 is chosen for the temporal

discretization.

It is important to note that Equation (5.2), with periodic boundary conditions, is

invariant under any combination of three distinct coordinate transformations: (1) a

translation along x: Tδx(x, y) = (x+ δx, y), δx ∈ [0, Lx]; (2) a rotation by π: R(x, y) =

(−x,−y); and (3) a reflection and a shift: D(x, y) = (−x, y + λ/2). Because of these

symmetries, each particular solution to Equation (5.2) generates a set of solutions which

are dynamically equivalent. Physically, invariance under continuous translation leads to
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Figure 5.1: (a) Three-dimensional projections of a stable RPO at Re = 25.43 from the
Kolmogorov flow using the imaginary part of the three dominant Fourier modes, I1,
I2, and I3. The gray line indicates the evolution of a RPO; three snapshots sampled
from that orbit are indicated by a red diamond, a red circle, and a red square, which
are analyzed below. (b) Three-dimensional projections of a turbulent trajectory, at
Re = 26.43, using the real parts of the three dominant Fourier modes, R1, R2, and
R3. The gray line indicates the chaotic evolution of the flow, which is influenced by
the presence of unstable fixed points, indicated by red circles, which are also analyzed
below.

the existence of relative equilibria (REQ) and relative periodic orbit (RPO) solutions,

in addition to equilibria (EQ) and periodic orbit (PO) solutions.

For Re = 25.43, the flow is characterized by a steady RPO; Figure 5.1(a) shows a

projection, plotted using the three dominant Fourier modes of this RPO. The RPO has

a period 34.78 seconds and a drift speed 1.354× 10−6 m/s. The tunnel-like structure is

a result of the periodic motion superposed over the slow drift along the x-direction. For

larger forcing (Re = 26.43), the flow becomes weakly turbulent, as can be seen from

the Fourier projections in Figure 5.1(b). The turbulent dynamics in this regime are of

great interest as the flow explores a region of the state space which contains “weakly”

unstable EQ, PO, REQ, and RPO solutions. Recent theoretical advances have shown

that the identification of these solutions could aid the understanding of weakly turbulent

dynamics [42]. For instance, if the turbulent trajectory is close to an EQ solution (ω0),

which is characterized by ∂ω0/∂t = 0, we would expect the instantaneous rate of change

of ω to be relatively small, i.e., ∂ω/∂t ≈ 0. Similarly, a close pass to a PO solution would
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Figure 5.2: (a) A snapshot of the z-component of the vorticity field ω for Kolmogorov
flow from the stable relative periodic orbit found at Re = 25.43. (b) A snapshot of
the renormalized 8-bit mid-plane temperature field T ∗ for Rayleigh-Bénard convection
from the stable almost-periodic orbit found at Ra = 3000 and Pr = 1.

mean ω(t + T ) ≈ ω(t), where T is the period of the PO that is guiding the dynamics

of the turbulent trajectory. The turbulent trajectory depicted in Figure 5.1(b) passes

close to unstable EQ and REQ solutions which are indicated by the red dots.

5.1.2 Rayleigh-Bénard Convection

Rayleigh-Bénard convection is a canonical pattern forming system that has been used to

gain many new fundamental insights into the spatiotemporal dynamics of systems that

are driven far-from-equilibrium [43, 44]. Rayleigh-Bénard convection is the buoyancy

driven fluid flow that occurs when a shallow layer of fluid is heated uniformly from

below in a gravitational field. The dynamics are governed by the Boussinesq equations,

Pr−1

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u +RaT ẑ, (5.3)

∂T

∂t
+ u · ∇T = ∇2T, (5.4)

∇ · u = 0, (5.5)

where u(x, y, z, t) is a vector field of the fluid velocity, p(x, y, z, t) is the pressure field,

and T (x, y, z, t) is the temperature field. In our notation, the origin of the Cartesian

coordinates (x, y, z) at the center of the domain are at the lower heated plate where ẑ is
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a unit vector opposing gravity. Equations (5.3)-(5.5) represent the conservation of mo-

mentum, energy, and mass, respectively. The equations have been nondimensionalized

using the vertical diffusion time of heat as the time scale, the layer depth as the length

scale, and the constant temperature difference between the lower and upper plates as

the temperature scale.

In our work, we consider Rayleigh-Bénard convection in a shallow domain with a

cylindrical cross-section. The no-slip fluid boundary condition u = 0 is applied to all

material surfaces. The lower and upper plates are held at a constant temperature where

T (z = 0) = 1 and T (z = 1) = 0, respectively. The lateral sidewalls of the cylindrical

container are assumed to be perfectly conducting, which yields T (z) = 1− z.

The dynamics can be described using three non-dimensional parameters. The

Rayleigh number Ra represents the ratio of buoyancy to viscous forces. At the critical

value Rac = 1708, an infinite layer of fluid undergoes a bifurcation to straight and

parallel convection rolls. For increasing values of the Rayleigh number Ra > Rac, the

dynamics become periodic, chaotic, and eventually turbulent. The Prandtl number Pr

is the ratio of the momentum and thermal diffusivities. For typical experiments using

compressed gasses, Pr ≈ 1. Lastly, the aspect ratio of the cylindrical domain Γ is the

ratio of the domain’s radius to its depth.

We numerically integrate Eqs. (5.3)-(5.5) using a highly parallel spectral element

algorithm that has been tailored for the study of convection (c.f. [45]). Figure 5.2(b)

shows a typical pattern from a numerical simulation of Rayleigh-Bénard convection. In

this simulation, Ra = 3000, Pr = 1, and the aspect ratio of the domain is Γ = 10.

The numerical simulation is initiated from a field of small random perturbations to the

temperature field and is integrated for long times. Figure 5.2(b) illustrates the fluid

temperature field at the horizontal mid-plane (z = 1/2), where light is warm rising fluid

and dark is cool falling fluid. This image is a snap shot in time of a time-dependent

pattern where the dynamics are nearly periodic in time. The pattern shown does not

include the region near the sidewall. Specifically, a distance of one-layer depth from the

lateral sidewall is not shown (this distance is approximately the width of a convection

roll). This is done to remove the complex fluid flow that occurs in the small region near
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the sidewalls to allow our diagnostics to focus upon the bulk patterns and dynamics

(c.f. [44]).

5.2 Persistent Homology

The aim of this work is to introduce an approach for analyzing the dynamics of the

pattern evolution in spatiotemporal systems. This is done in two steps. First, we per-

form nonlinear data reduction, and then we extract information about the dynamical

structures from this reduced data. We formulate both of these tasks in terms of ana-

lyzing the structure of the sub-level sets of a scalar function f : D → R, where D is a

topological space. Tools from algebraic topology, homology in particular, are used to

capture and quantify the geometry of the sub-level sets.

Recall that given any topological space Z, homology assigns to Z a sequence of

groups Hk(Z), k = 0, 1, . . .. In the work that follows, we compute the homology groups

using Z2 coefficients, and thus each Hk(Z) is a vector space. The dimension of Hk(Z) is

called the k-th Betti number and is denoted by βk(Z). Betti numbers provide geometric

information about X: β0(Z) is the number of connected components, or pieces, of Z;

β1(Z) indicates the number of loops or tunnels in Z; and β2(Z) is the number of cavities.

Our goal is to understand structure of the sublevel sets

C(f, θ) = {x ∈ D : f(x) ≤ θ} , (5.6)

for all values of θ ∈ R. As we vary θ, the number of components, loops, and cavities

in C(f, θ) changes, implying that βk(C(f, θ)), k = 0, 1, 2, also changes. (See Section 5.3

for examples.) What is remarkable is that, under very weak conditions, we can choose

bases for the vector spaces Hk(C(f, θ)) over all values of θ such that, given a basis

element of Hk(C(f, θ)), we can identify a unique value θb at which this basis element

appears and a unique value θd at which this basis element disappears. We refer to θb

as the birth value, θd as the death value, and the pair (θb, θd) ∈ R2 as a persistence

point corresponding to the chosen basis element of Hk(C(f, θ)). The difference θd−θb is
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called the lifespan of the persistence point. Longer lifespans are associated with geomet-

ric features that persist through larger variations of θ, and persistence diagrams are a

codification of this information. Given a scalar field f , the set of associated persistence

diagrams are denoted by PD(f) = {PDk(f)}, where PDk(f) consists of all persistence

points corresponding to the k-th level of homology. Let us stress that different features

might be represented by persistence points with the same coordinates. Therefore, the

persistence diagram is a multiset, where the multiplicity of each persistence point corre-

sponds to the number of features represented by the persistence point. Moreover, every

persistence diagram contains infinitely many points at each point along the diagonal

θb = θd. The reason for the inclusion of the diagonal is made clear in Definition 5.8,

when we define metrics on the space of persistence diagrams.

For the systems introduced in Section 5.1, we first use persistent homology as a non-

linear data reduction method. For Kolmogorov flow we study the scalar field ω : D → R,

the z-component of the vorticity field, while for Rayleigh-Bénard convection we study

the scalar field T : D → R, the temperature field at the mid-plane. It is important

to note that the domains for these two scalar fields are different. For Kolmogorov

flow, the domain D is a torus since we are using periodic boundary conditions, while

for Rayleigh-Bénard convection, D is a disk. For the disk, we need only to concern

ourselves with the vector spaces Hk(C(T, θ)) for k = 0, 1. However, for the torus, the

vector spaces H2(C(ω, θ)) also need to be considered, since the torus encloses a three-

dimensional cavity. In section 5.3, we explain how the persistence diagrams PD(f)

capture important information about the patterns given by the scalar fields ω and T .

The set of all persistence diagrams PD is a metric space, denoted by Per (see Sec-

tion 5.4). Since we are studying the evolution of Kolmogorov flow and Rayleigh-Bénard

convection, we have time series of the vorticity {ωi} and temperature {Ti} fields, and,

therefore, we have time series of persistence diagrams {PD(ωi)} and {PD(Ti)}. We view

each of these time series as a point cloud X ⊂ Per. To extract information about the

dynamical structures present in the time series, we use persistent homology a second

time to quantify the geometry associated with this point cloud. This is achieved by

introducing a scalar function g : Per→ [0,∞) that gives the distance from any point in
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Per to the point cloud X and is defined by

g(x) := d(x,X) := min
xi∈X

d(x, xi), (5.7)

where d is an appropriate metric on the space of persistence diagrams. The associated

sublevel sets C(g, θ) are once again given by (5.6).

To carry out the steps mentioned above requires the ability to compute the persis-

tence diagrams PD(f). To do this, we need to calculate Hk(C(f, θ)), which requires

a discrete representation of C(f, θ) called a complex. In the context of nonlinear data

reduction, we make use of a cubical complex. When analyzing the geometry of the

point cloud, we approximate C(f, θ) using a Vietoris-Rips complex, which is a spe-

cial form of a simplicial complex (Definition 4.4). This is a classical subject and thus

there are a variety of references providing precise definitions of complexes, e.g. [4] for

Vietoris-Rips complexes and [18] for cubical complexes, discussions of issues related to

approximations [31], and how one proceeds from a complex to computing persistent

homology [46, 4]. The homological computations in this chapter were performed using

the Perseus software [47].

The numerical data for the vorticity and the temperature fields is presented in

the form of piecewise-constant functions defined on a rectangular lattice. For Kol-

mogorov flow, values of ω are reported in double precision. Recall that the vector

spaces Hk(C(ω, θ)) can only change for θ ∈ Θ, where Θ is the finite set of values that ω

attains on the given lattice. Each of the sets C(ω, θ) is a cubical complex, and we use

the Perseus software [47] to compute the corresponding persistence diagrams using only

the values θ ∈ Θ. Numerical simulations for Rayleigh-Bénard convection are carried

out with high precision as well. However, keeping in mind our goal to compare the

numerical simulations with experimental data, we convert the temperature field to an

8-bit temperature field T ∗ (an integer-valued function with values between 0 and 255),

which can be obtained experimentally. Consequences of this rescaling are examined in

Section 5.5.
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Figure 5.3: (a-d) Sublevel sets C(ω, θ) = {x ∈ D : ω(x) ≤ θ} of the vorticity field, shown
in Figure 5.2(a), for different values of θ, depicted in black. (e) PD0(ω) and (f) PD1(ω)
persistence diagrams of the vorticity field indicate the values of θ at which the con-
nected components and loops appear and disappear (merge together). Video 1 of the
supplementary materials of [1] provides an animation.

5.3 Interpreting Persistence Diagrams

The purpose of this section is to provide intuition and interpretation of the informa-

tion that persistence diagrams present. As indicated in the previous section, we are

interested in the diagrams PDk(ω), k = 0, 1, 2, of the vorticity field for Kolmogorov
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Figure 5.4: (a-d) Sublevel sets C(T ∗, θ) = {x ∈ D : T∗(x) ≤ θ} of the the renormalized
8-bit temperature field T ∗, shown in Figure 5.2(b), for different values of θ, depicted in
black. As in Figure 5.3, the persistence diagrams (e) PD0(ω) and (f) PD1(ω) indicate
the values of θ at which the connected components and loops appear and disappear
(merge together). Video 2 of the supplementary materials of [1] provides an animation.

flow, and the diagrams PDk(T
∗), k = 0, 1, of the temperature field for Rayleigh-Bénard

convection, shown in Figure 5.2.

We begin by discussing PD0(ω), shown in Figure 5.3(e), computed from a single

time snapshot of the vorticity field for the Kolmogorov flow. The minimum value of

the vorticity field is −2.7206, and therefore, C(ω, θ) = ∅ for all θ < −2.7206. At
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θ = −2.7206, two components appear, indicated by the two persistence points with

birth value θb = −2.7206. The death value of one of these two persistence points is

θd = −0.697, and so the two components merge at this value, resulting in a single

component. This explains the persistence point (−2.7206,−0.697). The reason the

other persistence point is denoted by (−2.7206,∞), with θd = ∞, is because when

features merge, a choice must be made about which topological feature (in this case,

a connected component) dies. Having a consistent choice of basis over all values of θ

requires that the homology generator associated with the geometric feature that has

the larger birth value die first. If the birth values are the same, then it does not matter

which topological feature with this birth value is chosen to be the one that persists.

In particular, this implies that the generator associated with one of these two initial

components can never die.

Figure 5.3(a) indicates the subset of D corresponding to C(ω,−1.5). We remind

the reader that the domain D for Kolmogorov flow is a torus, since the left (top) and

right (bottom) boundaries are identified. Therefore, C(ω,−1.5) consists of eight distinct

connected components instead of nine.

The existence of these eight connected components can also be extracted from

PD0(ω), shown in Figure 5.3(e). Observe that these connected components corre-

spond to connected regions with birth value θb ≤ −1.5 and death value θd > −1.5.

In Figure 5.3(e), this corresponds to the eight points in the rectangular region R−1.5 :={
(θb, θd) ∈ R2 : θb ≤ −1.5 and θd > −1.5

}
.

Figure 5.3(b) indicates that C(ω, 0) consists of four connected horizontal bands,

which agrees with the number of persistence points in the rectangular region R0 ={
(θb, θd) ∈ R2 : θb ≤ 0 and θd > 0

}
of PD0(ω). Each stripe is created as two distinct

components present in Figure 5.3(a) grow and merge, causing one component to die

each time. The deaths of these components are captured by the points in the rectangle

R−1.5 which are not in the rectangle R0, since these are components that are born

before θ = −1.5 but die before θ = 0.

Three horizontal stripes merge together before θ = 0.75, as indicated by two points

inside the rectangle R−1.5 that are not in the rectangle R0.75. The two remaining
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connected components merge together soon thereafter, and for all greater threshold

values, there is only one connected component.

To finish our analysis of PD0(ω), we turn our attention to the persistence points close

to the diagonal. These have very short lifespans, which suggests that these features may

be numerical artifacts. In our example, these points represent the narrow horizontal

bands formed in between two connected components before they merge into a single

band (see video 1 available in the supplementary materials of [1]). These narrow bands

are formed by small oscillations of the vorticity field at the places where the field is

almost constant.

We now turn our attention to the PD1(ω) persistence diagram, which characterizes

loops in C(ω, θ). From PD1(ω), we see that the first loop appears at threshold θ =

−0.963. It corresponds to one of the four horizontal bands shown in Figure 5.3(b). Each

horizontal band generates a single independent loop, corroborated by the existence of

four persistence points in the rectangle R0 of PD1(ω).

We note that the full torus has two loops captured by homology. This is expressed

in PD1(ω) by the two persistence points with θd =∞. Observe that the first loop that

appears at θ = −0.963 is equivalent to one of the toral loops, thus it cannot be killed

by any other loop, and hence is captured by the persistence point (−0.963,∞). The

other three loops present at θ = 0 correspond to the same toral loop and thus must die.

In fact, they do so by θ = 2.5. Note that the birth values θb of these persistence points

are close to the death values θd of the persistence points in R−1.5 \R0 of PD0(ω). This

implies that shortly after the components merge, they form horizontal bands across the

entire domain.

New loops are also created as the bands start merging. If two horizontal bands are

connected by n links, then the number of loops generated by this object (two bands

plus the links) is (n+ 1). Thus, the first additional loop appears when a second link is

created. In our example, this happens near the threshold 0.75.

In Figure 5.3(c), there are four distinct links between the two horizontal bands

at the top of the figure. The small punctures visible in Figure 5.3(c) are filled in

almost immediately, and the four links merge into two distinct links. The points in
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PD1(ω) that are close to the diagonal capture this behavior. The other two links are

present for a wider range of thresholds, and the loop they generate is represented by

one of the persistence points in PD1(ω) with birth coordinate slightly smaller than 0.75.

The horizontal band at the top and the horizontal band at the bottom are linked in

a similar fashion. This explains the presence of another point with birth coordinate

slightly smaller than 0.75.

At θ = 0.932, a connection from the top to the bottom boundary is created. This

loop is homologically equivalent to the second of the two independent loops of the

torus, and hence is identified by the persistence point (0.932,∞). As the threshold

passes the value 1.988, the punctures shown in Figure 5.3(d) start disappearing and the

corresponding loops start dying. Again, there are 1 + n independent loops for n > 0

punctures. Since the maximum value of ω is 2.7092, the sub-level set is the whole torus

for any threshold above this, i.e. C(ω, θ) = D for all θ ≥ 2.7092. In this case, there are

no more punctures, and the rectangle R2.7092 contains only two persistence points.

Finally, we address the PD2(ω) persistence diagram, not shown for brevity. This di-

agram contains a single persistence point at (θb,∞) = (3.01,∞). The birth coordinate,

θb, corresponds to the minimum value of θ for which C(ω, θ) = D, the whole torus.

Since C(ω, θ) = D for all θ ≥ θb, this point never dies.

We now discuss the persistence diagrams for the temperature field T ∗ shown in

Figure 5.4 for Rayleigh-Bénard convection. Again, beginning with PD0(T ∗), the points

with short lifespans correspond the large number of small connected components that

make up C(T ∗, 25), as shown in Figure 5.4(a). Points with long lifespans represent the

well-defined connected components shown in Figure 5.4(b). From the persistence dia-

gram, we can see that these components merge almost simultaneously at two threshold

values, θ ≈ 210 and θ ≈ 225.

Turning to PD1(T ∗), we note that the domain of the temperature field is a disk,

so the independent loops correspond to punctures inside of the disk. The diagram

PD1(T ∗) indicates that there are no loops with long lifespans, and the loops that do

appear do so roughly at the same threshold values at which the dominant components

merge. These features are due to the small fluctuations of the temperature field close
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to the critical values at which different rolls merge together. This is consistent with

their short lifespans.

5.4 The Space of Persistence Diagrams

As explained in the previous section, a persistence diagram codifies, in a reasonably

compact form, considerable information about the geometry of a scalar function. As

suggested by the examples, we use persistence diagrams to provide a reduced description

of the state of the dynamical system of interest at any given point in time. Therefore,

to analyze the dynamics, we need to be able to compare one collection of persistence

diagrams PD (corresponding to a snapshot of the flow pattern at an instant of time) to

another collection of diagrams PD′ (from another flow snapshot). There are a variety

of metrics that can be imposed on persistence diagrams [6, 16, 48]. The metrics used

herein rely on pairing the points p ∈ PDk in a one-to-one correspondence (bijection)

with the points in PD′k. According to the definition used here, every persistence diagram

contains an infinite number of copies of the diagonal. Hence, there are many different

bijections γ between PDk and PD′k. Roughly speaking, the distance between PD and

PD′ is defined using the bijections that minimize the maximum distance observed in

the mapping of the points p from PDk to γ(p) in PD′k. This notion is made more precise

in the following definition.

Definition 5.8. Let PD = {PDk} and PD′ = {PD′k} be two collections of persistence

diagrams. The bottleneck distance between PD and PD′ is defined to be

dB(PD,PD′) = max
k

inf
γ : PDk→PD′k

sup
p∈PDk

‖p− γ(p)‖∞, (5.9)

where ‖(a0, b0)−(a1, b1)‖∞ := max {|a0 − a1|, |b0 − b1|} and γ ranges over all bijections

between persistence points. Similarly, the degree-p Wasserstein distance is defined as

dW p(PD,PD′) =

∑
k

inf
γ : PDk→PD′k

∑
p∈PDk

‖p− γ(p)‖p∞

1/p

. (5.10)

Roughly speaking, a function f : D → R is tame if, for every θ ∈ R, the vector space
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Hk(f
−1((−∞, θ])) is finite dimensional for every k, and there are only finitely-many

thresholds at which the vector spaces change (for a precise definition see [4]). For our

purposes, it suffices to remark that if f is a piecewise-constant function on a finite

complex, then f is tame. In particular, the numerically-computed vorticity field ω and

8-bit temperature field T ∗ are tame functions.

For the remainder of this chapter, we use Perk to denote the set of persistence di-

agrams corresponding to Hk and Per to denote the set of all persistence diagrams.

Let T (D,R) denote the set of tame functions f : D → R equipped with the L∞

norm. A fundamental result [4] is that, using the Wasserstein or bottleneck metrics,

PD : T (D,R)→ Per is a Lipschitz-continuous function. In particular, if f, g ∈ T (D,R),

then

dB(PD(f),PD(g)) ≤ sup
x∈D
|f(x)− g(x)|. (5.11)

These results on Lipschitz continuity have two important implications for this work,

both stemming from the fact that our analysis is based on numerical simulations. As-

sume for the moment that f : D → R denotes the exact solution at a given time to

either Kolmogorov flow or the Boussinesq equations. Ideally, we want to understand

PD(f). Our computations of persistent homology are based on C(f̃ , θi), a cubical

complex defined in terms of the numerically-reported values θi, where f̃ represents

the associated piecewise-constant function. If the numerical approximation f̃ satisfies

supx∈D |f(x) − f̃(x)| ≤ ε, then by (5.11) we have a bound on the bottleneck distance

between the actual persistence diagram PD(f) and the computed persistence diagram

PD(f̃), so that dB(PD(f),PD(f̃)) ≤ ε. Figure 5.5 provides a schematic justification of

this claim.

As indicated in the introduction, persistent homology is invariant under certain con-

tinuous deformations of the domain. For example, if g : D → D is a homeomorphism

and f : D → R, then PD(f ◦ g) = PD(f). Of particular relevance to this work is a func-

tion g which arises as a symmetric action on the domain. In this chapter, we work with

piecewise-constant numerical approximations of the actual functions of interest, and we

cannot assume that this equality holds. However, if f is given and f ′ = f ◦ g, where g
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Figure 5.5: (a) A one-dimensional scalar field f : D → R and its piecewise constant
approximation f̃ . The dashed line shows a tame approximation of f whose persistence
diagram is identical to PD(f̃). (b) Points in the persistence diagram PD(f) are given
by closed symbols and the points in PD(f̃) are represented by open symbols. Two
points on the top have infinite death coordinate. Lines connecting the points represent
matching of the persistence points for which the bottleneck distance dB(PD(f),PD(f̃))
is realized. It follows from (5.11) that dB(PD(f),PD(f̃)) ≤ supx∈D |f(x)− f̃(x)|.

is as above, and we have an L∞ bound ε on the difference between the approximation

and the true function, then by (5.11),

dB(PD(f),PD(f ′)) ≤ ε. (5.12)

In summary, under the assumption of bounded noise or errors from numerical simula-

tions (or experimental data), we have explicit control of the errors of the distances in

Per.

5.5 Using Metrics in the Space of Persistence Diagrams

The goal of this section is twofold: one, to provide intuition about the information

contained in the different metrics, and two, to suggest how viewing a time series in Per

can provide insight into the underlying dynamics.

We begin by remarking that the bottleneck distance dB measures only the single

largest difference between the persistence diagrams and ignores the rest. The Wasser-

stein distance dW p includes all differences between the diagrams. Thus, it is always

true that

dB ≤ dW p . (5.13)



113

dB dW 2 dW 1

(PDa,PDb) 0.01 0.049 0.497
(PDa,PDc) 0.864 2.648 12.35

Table 5.1: Distances between selected persistence diagrams (rounded to 3 decimal
places) shown in Figure 5.6.

The sensitivity of the Wasserstein metric to small differences (possibly due to noise)

can be modulated by the choice of the value of p, i.e. if p > q, then one expects dW p

to be less sensitive to small changes than dW q . In the work that follows, we restrict

ourselves to the bottleneck distance dB and the Wasserstein distances dW p for p = 1, 2.

The most obvious use of these metrics is to identify or distinguish patterns. As an

example, we consider patterns along an orbit from the Kolmogorov flow. As indicated

in Section 5.1.1, this particular trajectory arises from a periodic orbit with a slow drift

along an orbit of continuous symmetry. In particular, we consider the three time points

indicated in Figure 5.1(a): two that appear to differ by the continuous symmetry, and

a third that lies on the ‘opposite’ side of the periodic orbit. Plots of the associated

vorticity fields at these points (see Figure 5.6(a)-(c)) agree with this characterization of

the time points. We want to identify this information through the associated persistence

diagrams PDa, PDb, and PDc, shown in Figure 5.6(d)-(e). Indeed, the plots of PDak and

PDbk are difficult to distinguish, but PDck is clearly distinct. To quantify this difference,

the values of the distances between these persistence diagrams under the metrics d? for

? ∈
{
B,W 2,W 1

}
are recorded in Table 5.1. Not surprisingly, the distances between

PDa and PDb are much smaller than the distances between PDa and PDc. We consider

the distances between PDa and PDb to give a rough estimate of the noise level of the

system with respect to that metric.

We now turn to the question of understanding dynamics from the time series in Per.

Let fi denote the scalar field of the system at time ti. If ∆t = ti+1 − ti is small and

the evolution of the system is continuous, then because d? (for ? ∈
{
B,W 2,W 1

}
) is a

metric,

s?(ti) =
d?(PD(fi),PD(fi+1))

∆t
(5.14)

can be interpreted as an average speed in the space of persistence diagrams over the
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Figure 5.6: Three snapshots of the vorticity fields ω from the stable relative periodic
orbit of the Kolmogorov flow, found at Re = 25.43. The vorticity fields correspond to
the (a) diamond, (b) square, and (c) circle in Figure 5.1(a). The persistence diagrams
for these three snapshots are compared in (d) and (e). The points in PDa and PDb are
almost identical because the corresponding vorticity fields are similar. The points in PDc

are more spread out and do not shadow the points in PDa so well. The same is true for
the PD1 persistence diagrams which are not shown. Thus, d?(PD

a,PDb) < d?(PD
a,PDc)

for ? ∈
{
B,W 2,W 1

}
, as indicated by Table 5.1.

time interval [ti, ti+1]. The value of s? depends on the choice of metric. For example,

sdB is the rate at which the largest change between the geometric features of the scalar

fields occurs. The speeds measured by dW p , p = 1, 2, keep track of the rate of change

between all geometric features, though to some extent, dW 2 suppresses the effect of

noise.

Figure 5.7(a) shows distances d∗ between consecutive sample points, normalized by

the maximum distance, of samples taken along approximately three periods of the stable

relative periodic orbit of the Kolmogorov flow described in Section 5.1.1. Normalizing

s∗ by the maximum speed along the orbit furnishes the same curves. Each of the

graphs of s? indicate that speed is not uniform along the orbit; there are parts of the
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Figure 5.7: (a) Distances d? between the consecutive sample points along the stable
relative periodic orbit of the Kolmogorov flow are shown for just over three periods.
Distances are normalized by their maximum value which is 0.0654 for dB, 0.2266 for
dW 2 , and 1.9143 for dW 1 . Distance between the consecutive sample points can be inter-
preted as the speed at which the orbit is traversed in the space of persistence diagrams.
Speed is not uniform along the orbit. Instead, there are parts of the orbit where the
dynamics are slow, separated by relatively fast evolution. (b) Distances d? between the
consecutive sample points along an almost-periodic orbit from Rayleigh-Bénard con-
vection are shown for approximately 2 periods. Distances are again normalized by their
maximum value which is 83.5 for dB, 113.66 for dW 2 , and 383 for dW 1 .

orbit where the geometry is changing slowly, separated by intervals of relatively fast

evolution. The evolution is extremely slow around the states 100, 240, and 380. The

values of the speed (before normalizing) are below the noise (fluctuation) levels given

by the first row of Table 5.1. This suggests that the orbit may be passing close to a

fixed point.

While the general shapes of the speed profiles for different distances are similar, there

are places where the signs of their derivatives differ. As the system starts accelerating

around t = 100, all three speeds are increasing. Around t = 130, the speed sW 1 starts

decreasing while the other two speeds are still increasing. Note that around t = 130,
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Figure 5.8: (a) Distance matrix D, generated by the dW 2 metric, for approximately
three periods of the stable relative periodic orbit of the Kolmogorov flow. The large
black patches correspond to the parts of the orbit with slow dynamics. Equally spaced
black lines parallel to the diagonal suggest periodicity of the orbit with period equal to
the distance between these lines. (b) Distance matrix D, generated by the dB metric, for
2 periods of the almost-periodic orbit of Rayleigh-Bénard convection. The checkerboard
pattern indicates that sampling is too sparse, and fast dynamics are not resolved with
the level of sampling.

the speeds rise above the noise level (fluctuations). The fact that sB and sW 2 are

both increasing means that the changes between the prominent geometric features are

growing in this region. The speed sW 1 is decreasing in this region and so the noise (error)

fluctuations are decreasing. At t = 170, the dominant geometric features start to evolve

considerably. Changes of the dominant features are the most important contributions

to all three metrics. Therefore, the derivatives of the speeds s? have the same sign

again (see video 3, 4, or 5 in the supplementary materials of [1]).

Figure 5.7(b) shows the normalized speed profiles for the Rayleigh-Bénard convec-

tion simulations. As in the case of the Kolmogorov flow, all three metrics indicate that

there are two distinct speed scales along the orbit. However, the speed profile for dB

differs significantly from those of dW 1 and dW 2 . In particular, it suggests that for sig-

nificant time periods, the major geometric features of the temperature field vary only

slightly, followed by two rapid bursts of change. This can be verified by viewing video

6, 7, or 8 of the supplementary materials of [1]. Away from the rapid bursts, sB is

close to 1. The temperature field has integer values, so the changes cannot be smaller

than 0.5. This implies that both sW 1 and sW 2 are dominated by the small fluctuations
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Figure 5.9: (a) Distance matrix representing pairwise Euclidian distances dE between
the points in (b) a point cloud X. (c-e) The blue shaded regions indicate the sub-level
sets C(X, θ) for θ = 0, 0.1755, 0.5135, and 0.816. The points, edges and triangles indicate
the Vietoris-Rips complexes R(X, θ). (c) For θ = 0.1775 the set C(f, θ) consist of three
distinct connected clusters. The same is true for R(X, θ). The points in each connected
component of C(f, θ) are connected by edges in R(X, θ). (c) The three components
remain distinct until θ = 0.5135, at which point two components of C(f, θ) merge and
an edge connecting the points in the merged components appears in R(X, θ).

which are roughly of order 1. Hence, the relative speeds sW 1 and sW 2 have essentially

the same shape.

The plots of s? hint at the underlying dynamics being that of a periodic orbit.

However, it is important to keep in mind that Per is an infinite-dimensional space, and

that periodicity in the speed of a trajectory does not imply that the trajectory lies on

a closed curve. As an example, Figure 5.7(b) suggests that there are just over four

periods of Rayleigh-Bénard convection shown, and that a single period is roughly 125

frames long. However, looking at video 6, 7, or 8 in the supplementary materials of [1],

it is clear that a full period is closer to 250 frames. Similarly, it is not obvious that

extended periods of high speed imply that the pattern changes significantly over that

time period (a periodic orbit of small diameter can exhibit high speed). This requires
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a more global geometric analysis of the time series, which we discuss shortly.

With the same data set used to generate Figure 5.7(a) and letting ωj denote the

vorticity field at time tj , Figure 5.8(a) exhibits the dW 2 distance matrix D for Kol-

mogorov flow, with color-coded entries D(i, j) := dW 2(PD(ωi),PD(ωj)). (The dB and

dW 1 distance matrices look very similar and are not shown.) Observe that D(i, i) = 0

and D is symmetric since D(i, j) = D(j, i). Furthermore, Figure 5.7(a) is a plot of

the immediate off-diagonal entries. A striking feature of the distance matrix in Fig-

ure 5.8(a) is the existence of dark lines parallel to the diagonal, spaced at intervals of

roughly 110 samples. This indicates that, in the space of persistence diagrams, the

trajectory periodically repeats the same, or nearly the same, state. Since the diagonals

are spaced at roughly 110 samples, we can indeed say that the orbit revisits very sim-

ilar states at intervals of roughly 110 samples. Similarly, the light regions close to the

diagonal in Figure 5.8(a) correspond to the times in Figure 5.7(a) at which the speed

is large, indicating significant changes in the pattern at these times.

To obtain a more global analysis we turn to Figure 5.8(b) that shows the distance

matrix D(i, j) := dW 2(PD(T ∗i ),PD(T ∗j )) for the temperature fields T ∗i corresponding

to the trajectory from Rayleigh-Bénard convection. Distances between the consecutive

temperature fields are shown in Figure 5.7(b). The dark diagonal lines are spaced

at intervals of roughly 250 samples. Thus, even though the Figure 5.7(b) suggests a

period of approximately 125, the orbit does not revisit the same state in the space of

persistence diagrams every 125 samples, but instead every 250 samples.

5.6 Analyzing a Point Cloud using Persistent Homology

The discussion in the previous section suggests that interesting information concerning

the dynamics of the geometry of time-evolving scalar fields can be obtained by studying

the time series in the space of persistence diagrams. Note that each scalar field is

represented by a persistence diagram PD(f) and thus corresponds to a point in Per.

We argue that viewing the time series as a point cloud in the space of persistence

diagrams and studying its geometry provides useful information about the dynamics.
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For a point cloud X ⊂ Per and the scalar function f : X → [0,∞) given by (5.7)

(for any of the metrics dB, dW 2 or dW 1), the sub-level set C(f, θ) defined by (5.6) is a

union of balls

C(f, θ) =
⋃

PD∈X
B(PD, θ), (5.15)

where B(PD, θ) =
{
PD′ ∈ Per : d(PD′,PD) ≤ θ

}
, and d is the appropriate metric. In

general, one should expect that the sets C(f, θ) are complicated. Therefore, computing

H∗(C(f, θ)) directly is not practical. Instead, we make use of the Vietoris-Rips complex,

given by Definition 4.4.

Observe that the Vietoris-Rips complex is determined by the distance matrix asso-

ciated with X, and hence, there is a finite set of threshold values Θ = {θi} at which the

complex changes. Thus, given a point cloud X in a metric space with metric d, the as-

sociated persistence diagrams PD(X, d) are determined by the Vietoris-Rips complexes

R(X, θ) for θ ∈ Θ.

We emphasize that the only data used to analyze a point cloud based on the persis-

tent homology of Vietoris-Rips complexes are the pairwise distances between the points

given by the distance matrix associated with X.

5.6.1 Detecting Clusters

Since β0 counts components, it is reasonable to use persistent homology as a clustering

tool. We demonstrate this idea on a point cloud with pairwise distances given by the

distance matrix shown in Figure 5.9(a). A possible configuration of the six points in

R2 is depicted in Figure 5.9(b). Using the length scale presented in Figure 5.9(b) as

an indicator of the order of magnitude at which we want to declare a separation length

for the clusters, there are three clusters. We now focus on the geometric information

conveyed by PD0(X, dE), shown in Figure 5.10.

Observe that C(f, 0) = R(X, 0) consists of 6 vertices. As θ increases, the distinct

connected components of C(f, θ) (as defined in (5.15)) start merging together. In fact,

when the balls B(xi, θ) and B(xj , θ) merge together, an edge 〈xi, xj〉 appears in R(X, θ).

Therefore, H0(C(f, θ)) = H0(R(X, θ)) for all θ ∈ R, and PD0(f) = PD0(X, dE). Note
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Figure 5.10: Persistence diagram PD0(X, dE) corresponding to the distance matrix in
Figure 5.9(a).

that it is impossible for a new connected component to appear for θ > 0. Hence, all

persistence points in PD0(X, dE) have a birth value equal to zero. The death coordinates

represent the spatial scales at which distinct connected components (clusters) merge

together. Say that we are interested in clusters where the minimal separation is on the

order of 1 length scale. These clusters correspond to the points in PD0(X, dE) with

the death coordinate greater than approximately 0.5, and there are three persistence

points that satisfy this criterion. Thus, we declare that there are three clusters. If the

relevant scale for separation is of an order of magnitude smaller, then there are five

clusters, since, in addition to the three points with death value greater than 0.5, two

points have death values slightly larger than 0.05.

Alternatively, if we are interested in dividing the data into two clusters, then

PD0(X, dE) can be used to determine the magnitude of the separation between the

clusters. Observe that the persistence point (0,∞) corresponds to the final connected

component. The persistence point (0, 0.816), with the largest finite death coordinate,

indicates that the components merged at a distance 0.816. Hence, the minimal distance

between points from the point cloud X that belong to two distinct clusters is 1.632.

5.6.2 Detecting Loops

Since β1 counts loops, it is reasonable to use persistent homology as a tool for identifying

cycles that arise from dynamics. Consider any point cloud that generates a distance
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Figure 5.11: (a) Distance matrix representing pairwise Euclidian distances dE between
the points in (b) a point cloud X. (c-e) Sets C(f, θ) for θ = 0, 0.177, 0.343 and 0.596.
The homology of C(f, θ) can be approximated by a Vietoris-Rips complex R(X, θ) given
by the vertices, edges, and triangles shown in (b-e). The first loop in C(f, θ) is created
at θ = 0.177. This loop is due to the noisy sampling and is filled in almost immediately.
The dominant loop shown in (c) is formed at θ = 0.343 and persists until θ = 0.596.

matrix as in Figure 5.11(a). Again, for the sake of intuition, we present in Figure 5.11(b)

an example of a point cloudX ⊂ R2 with pairwise distances given by the distance matrix

shown. The persistence diagrams for the associated Vietoris-Rips complex filtrations

are shown in Figure 5.12.

Applying the reasoning from the previous section, we can ask whether there is

a natural or interesting clustering of the data. If, as before, we insist that we are

interested in clusters where the minimal separation is on the order of length scale 1,

shown in Figure 5.11(b), then (0,∞) is the only persistence point with death value

greater than 0.5, i.e. at this scale there is only one component. Thus, we conclude

that from a geometric perspective we may treat the point cloud as arising from a single

dynamical structure.

We now look for cyclic structures. Observe that PD1(X, dE) contains two persistence
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Figure 5.12: Persistence diagrams (a) PD0(X, dE) and (b) PD1(X, dE) corresponding to
the distance matrix in Figure 5.11(a). The persistence diagram PD1(X, dE) contains a
dominant point (0.343, 0.596) corresponding to the robust loop shown in Figure 5.11(d)
while the point (0.177, 0.25) represents the small loop visible in Figure 5.11(c).

points. The lifespan of point (0.177, 0.250) is 0.06, which is short compared to the

order 1 length scale, and thus it is reasonable to think of this as a result of noise in the

data. This is substantiated by Figure 5.11(c), in which the loop in the Vietoris-Rips

complex R(X, 0.177) consists of four edges. An additional edge and two triangles (two

2-simplicies) appear in R(X, 0.250), see Figure 5.11(d). The triangles fill in the loop

formed by the edges of R(X, 0.177). Two of the four data points that are involved in

the construction of this loop can be viewed as arising from noise or errors associated

with sampling points from a smooth cycle.

The lifespan of persistence point (0.343, 0.596) is 0.253 and suggests that the point

cloud is generated by a loop with a minimal radius of 0.596, which is on the order of the

scale of the data. This suggests that the associated cycle, indicated in Figure 5.11(d),

represents an observable, robust dynamical feature.

5.6.3 Application to Systems with Multiple Time Scales and Large

Data Sets

Characterizing the geometry of a continuous orbit via an approximation by a discrete

time series depends on the frequency of sampling, and thus becomes a challenge in
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the setting of dynamics with multiple time scales, i.e. when the rate of change of

the patterns is far from constant. If the sampling rate is too slow, then parts of the

orbit will be poorly (or not at all) sampled. Note that the geometry of the continuous

trajectory may be more complicated than that of a circle; secondary structures might

occur if the orbit is twisted, pinched, or bent in Per. Thus, the missing parts of the

orbit could distort (or entirely miss) significant features in the geometry of the sampled

trajectory as compared to the geometry of the underlying (continuous) dynamics. Thus,

in order to obtain a description of the geometry on all relevant spatial scales, including

information about secondary structures, the sampling rate needs to be fast enough.

To determine if a trajectory has been sampled densely enough to resolve the ge-

ometry of the underlying dynamics, it is useful to compare the following three values

related to the point cloud in Per: the noise threshold of the system, the maximum

consecutive distance in the sampled trajectory, and the diameter of the point cloud.

Ideally, once a noise threshold has been computed, one would like distances between

consecutive points from the sampled trajectory to be on the length scale of the noise.

If sampling faster than this, the features detected from the sample that are on the

scale of the noise would be indistinguishable from artifacts generated from the noise in

the sample. Thus, ideally, the speed profiles (e.g. Figure 5.7 for Kolmogorov flow and

Rayleigh-Bènard convection) should have maximums no larger than the noise. Unfor-

tunately, this is not practical for reasons that will be explained next, and fortunately it

is often not necessary. For example, the length scale of the computational noise could

be much smaller than the relevant length scale of interest for studying the geometry

of the dynamics. In this case, a comparison of the maximum consecutive distance in

the sample to the diameter of the point cloud in Per is often useful. For instance, if a

point cloud has diameter 100 and the smallest relevant length scale for the geometry

to be studied is 10, then a maximum consecutive distance of 10 is sufficient for the

sampling of the time series, even if the noise threshold is on length scale 1. Thus, it

is the interplay of these three numbers that determine if one has sampled a continuous

time series densely enough.

Evaluating these three quantities from an initial time sample may indicate that an
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increase in the sample rate is required to resolve the dynamics at the relevant spatial

scale. In the context of a large-scale computation such as that required for the 3D

simulation of Rayleigh-Bénard convection, it is easier to save the data at a higher

sampling frequency than to develop numerical methods that save data based on an

adaptive time step. In Section 5.9, we demonstrate the approach introduced here using

approximately 7 × 105 equally-spaced snapshots of the temperature field of Rayleigh-

Bénard convection. It should be immediately apparent that the set X is too large to

compute the associated persistence diagrams PD(X, d?), for ? ∈ B,W 2,W 1, directly.

The first step would require computing the distance matrix for X, which would involve

49× 1010 distance computations. Note, however, that using a fast sampling rate leads

to collecting unnecessarily many samples at the places where the dynamics are slow.

This suggests that an appropriate choice of down-sampling will allow us to capture the

global geometry of the point cloud.

Definition 5.16. Let X be a point cloud in a metric space (M,d). Fix δ > 0. A set

Y ⊆ X is a δ-dense subsample of X if for every x ∈ X, there exits a y ∈ Y such that

d(x, y) < δ.

Remark 5.17. By Corollary 4.16, there is a bijection γ : PD(Y, d) → PD(X, d) with

the following property: if γ(θb, θd) = (θ′b, θ
′
d) and θ′b 6= θ′d, then 0 ≤ θ′b − θb < δ and

0 ≤ θ′d − θd < δ.

To optimize the computational cost, we wish to choose a subsample of the point

cloud Y as small as possible. A point cloud Y is δ-sparse if, for every pair of distinct

points y1, y2 ∈ Y , the distance d(y1, y2) ≥ δ. Given a point cloud X and a value δ ≥ 0,

a δ-dense and δ-sparse subsample Y may always be constructed [9]. Due to the size of

the point cloud X and the complexity of computing d? for ? ∈ B,W 2,W 1, we use an

alternate algorithm [49], which takes advantages of parallel computing structures and

metric trees to construct a subsampling which is both δ-dense and δ-sparse .
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Figure 5.13: (a) Pairwise dB distances between the EQ and REQ points in X =
{PD(ωn) | n = 1, . . . , 67} of the Komogorov flow found at Re = 26.43 using Newton’s
method. (b) Corresponding persistence diagram PD0(X, dB) shows a clear gap between
the points with death value θd = 0.1215 and θd = 0.0285. We interpret this gap as the
separation between the signal and noise. (c) Dendrogram for the EQ and REQ points
with the pairwise distances given by the matrix shown in part (a), with values halved
to show the correspondence to the persistence diagram PD0(X, dB) in (b). The den-
drogram indicates the presence of seven clusters with separation the same size as the
above-mentioned gap.

5.7 Distinguishing Equilibria

We now apply the ideas presented in Section 5.6.1 to the problem of clustering symmetry-

related equilibria of the Kolmogorov flow at Re = 26.43. As discussed in Section 5.1.1,

we sample a turbulent trajectory, shown in Figure 5.1(b). To obtain the EQ and REQ

solutions, we use a Newton method. The initial guesses for the Newton method are

the vorticity fields ω that are local minima of the L2 norm of ∂ω/∂t. In this way,

we find a collection X = {PD(ωn) : n = 1, . . . , 67} of persistence diagrams of vorticity
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fields corresponding to EQ and REQ of the Kolmogorov flow. These 67 solutions may

be related to one another through any composition of the coordinate transformations

listed in Section 5.1.1. Hence, it is non-trivial to determine how many unique classes of

solutions there are and which solutions belong to which class. To perform this analysis,

we use persistent homology.

We start by analyzing PD0(X, dB). The pairwise distances between the points in

X are shown in Figure 5.13(a). As is discussed in Section 5.4, the distance between

persistence diagrams of vorticity fields related by symmetry is small, while persistence

diagrams corresponding to the vorticity fields that are not symmetry related differ by

a larger amount. This implies that we can reformulate the question of identifying

symmetry classes of equilibria as a clustering problem.

The persistence diagram PD0(X, dB), depicted in Figure 5.13(b), shows a clear gap

between the persistence point with death value θd = 0.0285 and the persistence point

with death value θd = 0.1215. We interpret this gap as separation between the signal

and noise (numerical errors). Indeed, 0.0285 is just twice the estimate of the lower

bound on numerical errors for the Kolmogorov flow obtained in Section 5.5. There are

7 points in PD0(X, dB) with death coordinate greater than 0.12, and so we conclude

that there are seven distinct symmetry classes of solutions.

The same conclusions can be achieved using a dendrogram based on single-linkage

clustering. Figure 5.13 (c) shows the dendrogram for the different EQ a REQ points

with the pairwise distances given by the distance matrix shown in Figure 5.13 (a), with

values halved to show the correspondence with PD0(X, dB). Clearly, there are again

seven different clusters with distances larger that 0.12.

We validate the results of the persistence homology analysis by performing clustering

using the Fourier amplitudes as follows. If ω̂(kx, ky) is the Fourier amplitude of a mode

(kx, ky), then a translation of the pattern in the x or y directions in real space merely

adds to the phase of ω̂(kx, ky), leaving the magnitude unchanged. Hence, by comparing

the amplitudes of the Fourier modes we could group vorticity fields which are related by

translations. Since the conjugate modes ω̂(±kx,±ky) relate fields which are related by

inversion, to group the vorticity fields which are related by a combination of inversion
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and translation, we sum the amplitudes of the conjugate modes. Adding the amplitudes

of conjugate modes yields a “reduced matrix,” which is unique for all the vorticity fields

related by the coordinate transformations that leave the governing equations of the flow

invariant. This approach also yields 7 distinct classes.

An analysis of PD0(X, dW p), p = 1, 2, yields the same results. There are several

gaps between the death values of the points in the persistence diagrams. Again, one of

the gaps starts at roughly twice the value of the estimated lower bound of the noise.

However, the separation is less pronounced. As discussed in Section 5.5, the dW p metrics

capture all the differences between the persistence diagrams, and the local numerical

errors are summed together. Thus, a large number of small errors can obscure the

distinction between the signal and noise.

5.8 Stable Periodic Orbit of the Kolmogorov Flow

In the previous section, we demonstrated the practicality of using persistent homology

to cluster equilibria that are symmetry-related. In this section, we extend these ideas

to the setting of recurrent orbits in the context of the Kolmogorov flow.

As is indicated in Figure 5.1(a), the projection of the orbit onto the real parts of the

three dominant eigenvectors suggests a periodic orbit that is undergoing a slow drift

in the direction of the continuous symmetry. The nature of this drift is reinforced by

tracking this orbit in the space of persistence diagrams; since persistent homology is

invariant under the continuous symmetry, this type of drift is not present in Per. As

a result, we expect the time series to lie on a closed loop in Per. This is consistent

with the information provided by the distance matrix of Figure 5.7, in which the dark

lines parallel to the diagonal indicate that the distance between persistence diagrams

becomes very small at regular time intervals.

For the remainder of this section, we use the ideas of Section 5.6.2 to verify that a

circle provides a good description of geometry of the point cloud X ⊂ Per generated by

the time series sampled from the Kolmogorov flow. More precisely, we show that there

is a single dominant feature in PD0(X, dB) and a single dominant feature in PD1(X, dB),
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which agrees with the persistent diagrams for a circle.

There are two issues that need to be considered: the first is the size of the data set,

and the second is the spacing between the data points. As is indicated in Section 5.6,

we use the Vietoris-Rips complex to compute persistent homology of point clouds.

We remark that given N data points, the full Vietoris-Rips complex has 2N cells.

Considering this, we complete our analysis with the distance matrices corresponding

to dB, dW 1 , and dW 2 for 500 points, or roughly three periods of the Kolmogorov flow.

In the next section, we introduce techniques for computing persistence on larger point

clouds, which could arise due to increased sampling rates, sampling more periods, or

both.

Since we are sampling from a single continuous trajectory, the fact that PD0(X, dB),

as shown in Figure 5.14(a), suggests the existence of a single component does not come

as a surprise. The persistence diagrams for PD0(X, dW p), p = 1, 2, yield similar results

and are not shown. However, it is worth noting that this is not a foregone conclusion

as the location of and spacing between the points of the time series are dependent upon

the speed along the periodic orbit. As is clear from Figure 5.7(a), the speed of the

trajectory is not constant. However, it is fairly smooth, thus we do not expect extreme

differences in the spacings between points.

As discussed in Section 5.6.3, we compare the noise threshold, θ = 0.01 (Table 5.1),

to the maximum consecutive sample distance, dB = 0.0654 (Figure 5.7(a) caption),

and the diameter of the point cloud, 2.64 (Figure 5.8(a)). The maximum consecutive

sample distance is more than six times larger than the length scale of the noise for this

system. However, the diameter of the point cloud is more than forty times larger than

the consecutive sample distance. Thus, features on the length scale of one fortieth of

the diameter of the entire point cloud will be resolved, which is sufficiently small to

consider this an adequate sampling. We will return to this issue in the next section.

As indicated in Figure 5.14(b), the persistence diagram PD1(X, dB) clearly detects a

single dominant loop along which the data is organized. Thus, we conclude that in Per,

equipped with the metric dB, the point cloudX generated by the time series forms a loop

with a minimal radius of 0.1344. Table 5.2 shows the coordinates of the persistence point
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Figure 5.14: (a) The persistence diagram PD0(X, dB) for Kolmogorov flow at Re =
26.43. Since all points with finite death coordinates die before 0.025, there is only a
single dominant point. (b) The persistence diagram PD1(X, dB), showing the single
dominant generator at (0.0215, 0.1559).

PD1 Dominant
coordinate

Max lifespan 2nd largest lifespan

dB (0.022, 0.156) 0.134 0.013
dW 2 (0.075, 0.405) 1.366 0.105
dW 1 (0.703, 2.069) 0.330 0.016

Table 5.2: The coordinate of the dominant point in the persistence diagram PD1(X, d?)
for ? = B,W 2,W 1, its lifespan, and the second largest lifespan.

with the longest lifespan, its lifespan, and the second longest lifespan for each of the

persistence diagrams PD1(X, d?), ? ∈ B,W 2,W 1. As the table indicates, the lifespan

of the dominant point is an order of magnitude larger than the next longest lifespan

in each case, and so there is a single dominant feature in PD1(X, d?). Additionally,

note that the second longest lifespans are as small or smaller than the lower bounds on

numerical errors indicated by the first row of Table 5.1.

5.9 Almost-Periodic Orbit of Rayleigh-Bénard Convection

As mentioned in Section 5.6.3, characterizing the geometry of a continuous trajectory

becomes a challenge in the setting of dynamics with multiple time scales. To demon-

strate this, we consider the numerical simulation of Rayleigh-Bénard convection, where

from multiple perspectives it appears that the trajectory is close to a periodic orbit and
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that the rate of change in the patterns of the temperature field is far from constant. This

can be clearly seen visually (see video 6, 7, or 8 in the supplementary materials of [1]).

Moreover, both the speed plot, Figure 5.7(b), and the distance matrix, Figure 5.8(b),

suggest recurrent dynamics. However, we note that the rate of change, especially using

the bottleneck distance, is typically small except for short periods of time at which the

speed spikes. The distance matrix has a distinct checkerboard pattern, with the edges

corresponding to the spikes, again indicating a rapid and large change in location in

the space of persistence diagrams.

The maximum bottleneck distance between the consecutive sampling points is 83.5

(Figure 5.7(b) caption), while the diameter of the point cloud is only dB = 99.5 (Fig-

ure 5.8(b)). Therefore, we expect that significant portions of the trajectory are missing.

Indeed, Figure 5.15(a) shows that there are several persistence points in PD0(X, db) with

a (finite) death coordinate larger than ten. Thus, at a length scale of 20 (which is forty

times larger than the noise threshold), the sample of the trajectory is broken into sev-

eral pieces. The largest gap between different pieces of the trajectory is 40, as indicated

by the persistence point with coordinates (0, 20). This means that the sampling rate is

far from adequate.

The diagram PD1(X, dB) in Figure 5.15(b) contains a single dominant point at

(20, 32.5) with lifespan 12.5. However, unlike in our analysis of the Kolmogorov flow in

the previous section, we cannot argue that this point corresponds to a single dominant

loop along which the data is organized because of the gaps in the sampling of the orbit.

As mentioned in Section 5.6.3, the missing parts of the orbit could introduce loops of

similar size corresponding to secondary structures. These structures might occur due to

the fact that the loop corresponding to the underlying almost-periodic dynamics might

be twisted, pinched, or bent in Per. In order to obtain information about secondary

structures, we require a faster sampling rate.

We increased the sampling rate considerably and collected approximately 7 × 105

equally-spaced snapshots of the temperature field over four-and-a-half periods and com-

pute the associated persistence diagrams, producing a point cloud Y ⊂ Per. The max-

imal distances between the consecutive frames for the increased sampling rate drop to
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Figure 5.15: Persistence diagrams for 500 points of Rayleigh-Bénard convection, gen-
erated from the distance matrix shown in Figure 5.8(b). (a) The diagram PD0(X, dB)
shows the appearance of persistence points with death values significantly greater than
the noise threshold, indicating that the sampled trajectory is broken into pieces and
sampling is not fast enough to resolve the periodic orbit. (b) The diagram PD1(X, dB)
shows the presence of a loop that is born when the pieces of the orbit merge together.

dB = 4, dW 1 = 28, and dW 2 = 6.52. The new value of dB is much closer to our estimate

of the numerical error (e = 0.5) and it is more than 24 times smaller than the diameter

of the point cloud generated from the slower sampling. Since the point cloud could only

increase in diameter through increasing the sample rate, we consider this sampling rate

to be satisfactory.

Our next step is to use the ideas introduced in Section 5.6.3 to reduce the size of the

sample and to complete our analysis. First we construct a δ-dense, δ-sparse subsample

Y ′ of the point cloud Y . The smallest value of δ for which we were able to compute

the persistence diagrams PD(Y ′, dB), using 256 GB of memory, is δ = 4.5. This value

is only slightly larger than the largest distance between the consecutive states and,

since the diameter of the subsampled point cloud is 99.5, the relationship between the

length scale of the smallest detectable feature and the length scale of the diameter of

the point cloud is still sufficient to resolve the geometry of the dynamics. The resulting

persistence diagrams PD(Y ′, dB) are shown in Figure 5.16.

As shown by PD0(Y ′, dB), Figure 5.16(a), the point cloud merges to a single con-

nected component at θ = 4.5. This indicates that the sample of the trajectory is not
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Figure 5.16: Persistence diagrams for 70,000 points of Rayleigh-Bénard convection sub-
sampled with δ = 4.5, resulting in a point cloud Y ′ ⊂ Per with 523 points. (a) Per-
sistence diagram PD0(Y ′, dB) indicating a single dominant component above the noise
threshold. (b) Persistence diagram PD1(Y ′, dB) with subsampling error bounds shaded
in gray.

broken into different pieces separated from each other. Since the maximum consecutive

distance between any two points in Y is 4, the loop along which the data is organized

should be present for θ = 2. However, after subsampling, it is possible that the loop

will not be born until θ = 2+δ. Looking at the diagram PD1(Y ′, dB) in Figure 5.16(b),

we see that it contains a dominant point at (4.5, 27.75), and so the loop was indeed

born before θ = 2 + δ. This is the loop along which the point cloud is organized. Now,

there is another point, (12.5, 26) ∈ PD1(Y ′, dB), with lifespan 13.5. This point corre-

sponds to a secondary structure of the orbit. Indeed, it can be seen from the distance

matrix for the δ-sparse, δ-dense subsample (not shown for brevity) that the part of the

orbit corresponding to the fast dynamics (missing for the slow sampling rate) revisits

very similar states before continuing along the main loop. However, the development

of more sensitive tools is required to fully understand these secondary features.

We now turn our attention to the differences between the persistence diagrams of the

original point cloud Y and its subsample Y ′. The traditional stability theorem implies

that dB(PD(Y, dB),PD(Y ′, dB)) ≤ δ, and so there exists a bijection between the points

in PD(Y, dB) and PD(Y ′, dB) such that the distance between matched points is less

than 4.5. According to Remark 5.17, for the dominant point (4.5, 27.75) ∈ PD1(Y ′, dB),
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there is exactly one corresponding point in PD1(Y, dB). This point is the unique point

in PD1(Y, dB) that lies inside of the shaded box touching the point (4.5, 27.75), see

Figure 5.16(b). The same is true for the other dominant point. Moreover, there are no

points in PD1(Y, dB) outside of the shaded regions. Points in PD1(Y, dB) that do not

correspond to the off-diagonal points in PD1(Y ′, dB) can appear only δ/
√

2 ≈ 3.18 far

away from the diagonal.
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Chapter 6

Spatiotemporal Pattern Analysis for Spiral Defect Chaos

In this final chapter, we return to another problem in Rayleigh-Bénard convection

(RBC) flow. As in Chapter 5, we study the mid-plane temperature field of simulated

RBC, although at a much higher Rayleigh number (Ra ≈ 4000). As a result, the

patterns generated in the temperature field are much more complex (compare Figure 6.1

to Figure 5.2(b)). The dynamics at this value of Rayleigh number exhibit what is called

spiral defect chaos, named for the spirals that are commonly seen in such flows (there

are at least three spirals in the temperature field shown in Figure 6.1). In this chapter,

instead of focusing on the structural dynamics of the system as we did in Chapter 5,

we will focus on the evolution of the patterns themselves.

Figure 6.1: A sample mid-plane temperature field from simulated Rayeigh-Bénard con-
vection at Ra ≈ 4000.

The patterns simulated from RBC flows are called locally-striped due to the appear-

ance of parallel black and white bands, and are plentiful in nature in the form of stripes

on animals such as zebra and tropical fish, ripples on sand dunes, and cirrocumulus

cloud formations, to give just a few (of many) examples. In the laboratory, locally-

striped patterns are not only seen in RBC, but also in condensed matter physics in the



135

nematic and smectic phases of liquid crystals [50].

Our work lays the foundation for a set of techniques that can be used to study

the complicated patterns of SDC, and is designed to be transferrable from numeri-

cal simulations to experimentally-collected data. The approaches we present build on

classical topological methods for studying locally-striped patterns, augmented by per-

sistent homology and established techniques in computer vision that fall under the

general heading of object recognition.

An outline of this chapter is as follows. Section 6.1 describes classical methods for

locating point defects in a locally-striped pattern, and Section 6.2 shows how persistent

homology can be used to augment this set of defects. In Section 6.3, we describe six

canonical defect types (Figure 6.2) that are well-studied for locally-striped patterns, and

present an algorithm that locates and classifies each of these canonical defects. Due

to the complexity of the patterns in the SDC regime (Figure 6.1), not all defects can

be classified as one of these six types. We use this algorithm to compute descriptive

statistics showing the frequency of each of the canonical defects across a time series

of simulated RBC flow, as well as statistics showing the percentage of the area of

the temperature field that is considered to be defect-free, classified, or unclassified. In

Section 6.4, we use a technique from the field of computer vision to give a more nuanced

description of a defect pattern, using both topological point defects and defects located

using persistent homology to localize the pattern. Finally, in Section 6.5, we build on

the work of Section 6.4 to show how methods from computer vision typically used for

object recognition might be used to locate and analyze coherent and recurrent structures

in the SDC regime of RBC flow.

6.1 Classical Methods for Studying Locally-Striped Patterns

The simplest type of pattern seen in the mid-plane temperature field of RBC is a striped

pattern, which is due to the shape of the convection rolls that characterize the flow.

This phenomenon occurs when ∆T is large enough so that the system passes from a

conductive state to a convective state [43]. Each stripe is called a roll in the pattern,
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Canonical defects in convection patterns: (a) convex disclination, (b) con-
cave disclination, (c) dislocation, (d) grain boundary, (e) target, and (f) spiral. Images
from [52, 53, 54].

since each convection roll contributes one stripe in the pattern. Any deviation from

the ideal state is considered a defect in the pattern. Typically, defects seen in RBC fall

into one of six canonical types, pictured in Figure 6.2, although there are also studies

of more complicated configurations [43, 51]. We call regions of the pattern that are

locally-striped and free of defects defect-free.

Classical methods for studying locally-striped patterns use the phase equation [43]

as a simplistic model for the pattern. We briefly describe this approach here. Suppose

that the mid-plane temperature field is given by u : D → R, where D ⊆ R2 is a

rectangular or circular domain. Following [55], in an ideal state the temperature field

may be described completely by the equation

u(~x) = A(~x) cos[φ(~x)],

where A : D → R gives the amplitude (constant and nonzero in the ideal case) and φ(x)

is the phase. In the case of an ideal striped pattern, the phase exhibits a continuous

translational symmetry. This description also applies when the phase φ and amplitude
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A change continuously over the domain, allowing for distortions from the ideal state.

Another useful scalar field in the study of locally-striped patterns is the orientation

field, θ : D → [−π/2, π/2), which gives the orientation of the rolls in the pattern. The

orientation field is theoretically computed by expressing the local wave vector

~k(~x) = ~∇φ(~x)

as a director field (so that positive and negative directions are equivalent), and then

expressing the director field in polar coordinates with angles in [0, π) as

k~

~

(~x) =
(
k(~x), θ(~x) +

π

2

)
.

The phase shift of the director field is a matter of convention, so that the orientation

field points along the rolls instead of normal to them.

6.1.1 Topological Defects

Using the orientation field θ defined in the previous section, we compute a quantity

called the Poincaré index for each point in the domain, which essentially computes

a winding number with respect to the orientation field around each point. Suppose

that γ is a closed curve in D and that a function θ̃ is chosen such that θ̃ ≡ θ mod π is

continuous on all but, perhaps, a single point on γ. That is, θ̃ gives a continuous branch

of the orientation field θ on the curve γ, with the exception of at most a single point. In

general, the Poincaré index associated to the closed curve γ, oriented counterclockwise,

may be computed by taking

I(γ) =
1

π

∮
γ
dθ̃(~x),

which will take on integer values. Letting γr be a closed, circular curve centered at ~x

with radius r, we can define the Poincaré index at a point by taking

I(~x) = lim
r→0

1

π

∮
γr

dθ̃(~y),
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where θ̃ is chosen (for each r) so that, if possible, it is continuous on all but a single

point on γr. Points ~x for which I(~x) 6= 0 are called topological defects, and occur where

θ̃ exhibits a local discontinuity regardless of the way θ̃ is chosen. For two-dimensional

domains D, these are the only types of topological defects [43], and are often called

point defects since they occur at a point. That is, I(~y) = 0 for ~y 6= ~x in a small

neighborhood of ~x. (In contrast, the region of local discontinuities of θ̃ for orientation

fields of smooth scalar fields defined on three-dimensional domains may form a line.)

The charge of the topological defect ~x is the Poincarè index I(~x). The charges of the

defects exhibited in Figure 6.2 (a) and (b) are +1 and -1, respectively, and are called

convex and concave disclinations, respectively. Intuitively, a convex disclination occurs

at a focal point, and a concave disclination occurs where a roll branches. Notice that a

dislocation pattern (c) is composed of a pair of convex and concave disclinations. The

grain boundary exhibited in (d) is a chain of topological defects with alternating charges

+1 and -1. A perfect target (e) exhibits a single topological defect with charge +2, but

this only occurs when the rolls have perfect rotational symmetry in a neighborhood of

the point defect. In real patterns, there will be a slight asymmetry which will cause

the orientation field to have a pair of topological defects with charges both +1. Finally,

the spiral pattern (f) has a pair of topological defects with charges both +1, the same

as the target. To differentiate targets and spirals, the actual value of u may be used at

the location of the topological defect, although this is not so reliable for real patterns;

we give an alternative method for distinguishing spirals from targets in Section 6.3.2.

6.1.2 Computing the orientation field and its topological defects

While there are now many algorithms commonly used to compute the orientation fields

for locally-striped patterns [56, 55, 57], these algorithms are formulated for systems that

either have large aspect ratios or have patterns that exhibit large defect-free regions,

which is not the case in our setting (see Figure 6.3). We find that the algorithm by

Bazen and Gerez [58], originally formulated to locate singular points in fingerprint

patterns (cores and deltas), is both accurate and performant in our setting and has the

advantage of a rather simplistic description.
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Figure 6.3: A sample mid-plane temperature field from simulated Rayeigh-Bénard con-
vection with defect-free regions highlighted in blue.

While in theory the scalar field u is continuously defined on some domain D ⊂ R2,

in our setting we are working with digital image approximations. Thus, D can be given

a cubical complex structure, and the values of u are integers in [0, 255]. We shall detail

the algorithm we use to compute the orientation fields here, which is based on the one

by Bazen and Gerez [58]. Let [Gx, Gy]
T be the gradient of u and define

Gxy = GxGy

Gxx = G2
x

Gyy = G2
y

pointwise. Let

∠(x, y) =


tan−1(y/x) if x ≥ 0

tan−1(y/x) + π if x < 0 and y ≥ 0

tan−1(y/x)− π if x < 0 and y < 0.

Then the orientation field is given by

θσ =
1

2
∠

(
Nσ(Gxx −Gyy),Nσ(2Gxy)

)
,
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where Nσ is the application of a Gaussian blur of radius σ.

We then compute the topological defects by summing the differences in the orien-

tations counter-clockwise around each 2× 2 grid of pixels in the orientation field, with

phase shifts added as necessary to define what would be locally-continuous values for θ̃

(see Section 6.1.1). Any computations that result in a non-zero charge (after rounding

to the nearest integer) are considered to be topological defects. Figure 6.4 shows a

portion of the temperature field and two associated orientation fields using a Gaussian

smoothing of σ = 0.5 and σ = 2 and their corresponding topological defects. As is read-

ily seen, the amount of smoothing has a significant effect on the number of topological

defects detected in the orientation field.

One drawback of the algorithm we use is that, unlike the algorithms in [56, 57], it

does not provide the local amplitude A of the pattern. Changes in the local amplitude

of a locally-striped pattern are studied in [59], where they are shown to be important in

locating pattern defects. We present a method in Section 6.2.1 for detecting variations

in the local amplitude of the pattern that uses homological methods.

6.2 Persistent Homology and Morse Theory

In general terms, persistent homology is a tool used to encode the topological features

of a scalar field as points in the Euclidean plane, as explained in Chapter 5. Discrete

Morse theory, described first by Forman in [60], gives an alternative description of this

encoding, whereby the persistence points correspond to pairings of critical points of

the underlying scalar field. During the computation of the persistence diagrams, it

is possible to keep track of the underlying critical point pairings that give rise to the

persistent homology generators, such as with the algorithms in the software packages

Diamorse [61] and PHAT [62]. A summary of the algorithms behind these persistence

computations is beyond the scope of this work, and we encourage the curious reader to

refer to the sources provided for details. The computations contained in this analysis

were performed using the PHAT software [62].
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(a)

(b) (c)

(d) (e)

Figure 6.4: (a) A region of temperature field. The associated orientation field with
smoothing at (b) σ = 2 and (c) σ = 0.5. Poincaré index computations at each point
for smoothing at (d) σ = 2 and (e) σ = 0.5.

6.2.1 Persistent Homology and Local Amplitude Defects

While topological defects are useful for detecting deviations from an ideal striped pat-

tern that cannot be described by the phase equation due to singularities in the orienta-

tion field, defects that do result from smooth perturbations of the phase equation cannot

be detected using these methods. One particularly compelling example of a pattern de-

fect that initially involves a smooth deformation to the phase equation description is

given by the skew-varicose instability, pictured in Figure 6.5. In this pattern formation,

a region consisting of straight parallel rolls deforms continuously until the rolls pinch

off and merge together. Figures 6.5 (a-d) exhibit changes that can be described by
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continuous perturbations of the phase equation description, none of which result in the

appearance of a topological defect with nonzero charge. It is not until frame (e) (more

precisely at frame number 508) that the change in topology in the pattern is detected

using these classical methods.

Egolf, et. al [55] examine the importance of the local wave number (the magnitude

of the director field ~k in the previous section) to such types of instabilities. Approaches

based on the local wave number are able to detect, for example, a decrease in spacing

between the rolls as compared to the ideal state, or an increase in the local wave number.

However, due to the nature of the algorithm, this computation is not very precise for

complex patterns that have a low ratio of defect-free regions to regions near defects.

If the phase equation of the ideal state has constant amplitude, a local perturbation

of A at an extreme value of u (e.g. on the top or bottom of a roll), while holding the

phase φ fixed, will result in the formation of at least one saddle point in the temperature

field. Thus, it is reasonable to assume that locating saddle points in the mid-plane

temperature field will imply the detection of local amplitude fluctuations in a pattern

that is locally-striped. Examining Figure 6.5 (d) visually, one can see that a variation

in the local amplitude has taken place, evident by the appearance of saddle points on,

or variations in the intensity of, the stripes.

Essentially, then, we have reframed the question of detecting local amplitude fluc-

tuations in terms of a problem of locating saddle points in u. While there are existing

methods for locating saddle points in digital images [63, 64], these methods determine

all saddle points in the image. In an ideal locally-striped pattern, the values along

ridges or valleys will have a constant value. However, real data will exhibit small fluc-

tuations in these values, causing the appearance of many saddle points along the ridges

and in the valleys of the striped pattern, which may not be considered true defects in

the pattern. Thus, even after locating saddle points in the scalar field u, one needs a

method by which interesting saddle points may be selected. We give here a method

that utilizes persistent homology to locate saddle points in the convection patterns and

which also gives a method by which to filter the saddle points considered in the analysis.



143

(a) (b) (c) (d) (e)

Figure 6.5: Example of a skew-varicose instability. Successive frames are from samples
t = 150, 350, 450, 500, 550.

Using persistent homology to locate saddle points in a digital image

Recall that dimension zero persistent homology using a sublevel set filtration encodes

how local minima in u merge together at saddle points. Each generator will be born

at a local minimum, and will die at the saddle point to which the local minimum is

paired. Thus, the critical cells corresponding to the death of a dimension zero generator

will encode saddle points of the image. For dimension one persistent homology (also

with a sublevel set filtration), a loop is first born at a saddle point and dies at the

corresponding local maximum to which the saddle point is paired. Thus, critical cells

corresponding to the birth of a dimension one generator also encode saddle points of the

image. Figure 6.6 shows a sample mid-plane temperature field together with its sublevel

filtration persistence diagrams PD0 and PD1. Panels (a) and (b) show the saddle points

captured by PD0, while panels (c) and (d) show the saddle points captured by PD1.

The saddle points overlaid on the temperature field have been colored according to the

lifespan of the persistence points on the persistence plane. Saddle points detected by

performing superlevel set filtrations are similar and are not displayed.

As is readily seen in Figure 6.6(a) and (c), a considerable number of saddle points

that are not truly of interest have been captured by the persistence computations, the

majority of which correspond to persistence points that are close to the diagonal. By

filtering the saddle points via the location of their corresponding persistence points on

the persistence plane, it is possible to get a cleaner signature. Figure 6.7 shows saddle

points selected by regions on the persistence plane for both sublevel (red) and superlevel

(blue) set filtrations. The saddle points selected from the sublevel set filtrations, in red,

correspond to saddle points which have a value at or below the median pixel value
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(a) (b)

(c) (d)

Figure 6.6: (a) Temperature field with saddle points detected by (b) PD0 (sublevel
filtration). Points are colored according to the lifespan of the persistence points. (c)
Temperature field with saddle points detected by (d) PD1 (sublevel filtration).
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(black line in the persistence diagram), while those selected from the superlevel set

filtrations, in blue, correspond to saddle points that have values at or above the median

pixel value.

Using persistent homology to locate the emergence of new circular rolls

Another example of a local amplitude defect that can be detected by persistent

homology is the emergence of a new roll in the target pattern (Figure 6.2 (e)). In this

type of pattern, there is a radial symmetry about some central point x0 in the phase

φ of the ideal equation u(x) = A(x) cos(λ(x)φ(x)), where λ is the wavelength of the

pattern. Assuming that u(x) is smooth, the appearance of a new ring or radial roll in

the pattern at a point x0 is modulated instead by a modification of wavelength and

local amplitude. Indeed, modeling this phenomenon by a shift in phase alone (keeping

amplitude fixed) may result in a sharp corner if limx→x0 φ(x) 6= kπ.

These local minima and maxima which mark the emergence of a new ring-shaped

roll in the pattern may be characterized by the emergence of a persistent homology

generator in PD1(u). For the sublevel set filtration, these local maxima will be marked

by the critical cell corresponding to the death of the dimension one homology generators

that have a value at or below some cutoff value, and were born in lower temperature

values. Similarly, for the superlevel set filtration, these local minima will be marked by

the critical cell corresponding to the death of the dimension one homology generators

that have a value at or above some cutoff value, and were born in higher temperature

values. The choice of the value cutoffs are parameters that can be changed to capture

either more or fewer of these types of defects.

6.3 Analysis of Canonical Defects in Numerically-Simulated SDC

In this section, we will perform an analysis of the six canonical defects exhibited in

Figure 6.2 across 3, 500 frames of simulated RBC in the SDC regime. In Section 6.3.1

we describe the algorithm we use to classify the six canonical defects, which relies on

persistent homological methods described in Section 6.3.2 for differentiating spirals from

targets. We then give our analysis in Section 6.3.3.
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(a)

(b)

Figure 6.7: (a) Partitions of the persistence plane for both sublevel and superlevel set
filtrations used to find saddle points (red and blue regions) and the emergence of new
circular rolls (gray). (b) Temperature field with corresponding saddle points (red and
blue) and local minima/maxima (white) corresponding to circular rolls overlaid.
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6.3.1 Algorithm for Identifying Canonical Defects

Our method for identifying the canonical defects in the temperature field is similar to

existing methods [65], where the singular points are first clustered into groups, and then

those groups are further analyzed to assign a defect type. The relevant spatial length

scale for this data is λ = 30 pixels, which corresponds to a single wavelength. We find

that single-linkage clustering at length-scale λ/3 gives reasonable results, and we will

see in Section 6.4.1 that this factor of the wavelength is a natural length scale in the

pattern. Topological defects are clustered using single-linkage hierarchical clustering

at scale λ/3 = 10 pixels, and then each cluster is analyzed according to the following

algorithm.

Monopoles

Clusters consisting of a single topological defect are called monopoles. Necessarily,

these correspond to a topological defect with charge either +1 or −1, and so this type

of defect is classified according to its topological charge, either a convex disclination

(+1) or a concave disclination (−1).

Dipoles

Clusters containing two topological defects are called dipoles. There are two likely

combinations of topological defects for a dipole, which we describe below. The combi-

nation of two -1 charged topological defects is rare and is not included, since this would

not result in a canonical defect pattern; instead, this combination would be considered

unclassified using this schema.

Two opposite charge topological defects

When the dipole consists of a +1 and -1 pair of topological defects, then the defect

is classified as a dislocation pair.

Two +1 charge topological defects

A dipole consisting of two +1 charged topological defects is either a spiral or a

target. As discussed in Section 6.3.2, the presence of a persistent homology dimension

one generator is used to differentiate the two types of defects. We also compute the

center and radius of the spiral or target as follows. The center is computed as the
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Figure 6.8: Classification of the six canonical defects using the algorithm described in
Section 6.3.1. Labels are as follows: D+ = convex disclination; D- = concave disclina-
tion; DP = dislocation pair; GB = grain boundary; S = spiral; T = target. Defect-free
regions are shaded 50% gray, and unclassified regions and their corresponding topolog-
ical defects are left unshaded and unlabeled.
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midpoint between the two +1 topological defects. The radius is given by the distance

from this center point to the nearest topological defect (excluding the pair that define

the spiral or target).

Tripoles and larger clusters

Clusters consisting of three or more topological defects are checked to be either grain

boundaries, spirals or targets. While additional classifications are certainly possible

[65], we are only concerned with identifying the six canonical types at this stage of the

investigation.

Grain boundaries

We identify a grain boundary as a linear chain of alternating +1 and -1 topological

defects that are offset from each other by some amount. To determine if the cluster

of topological defects fits this description, we compute the line of best fit through the

defects using a singular value decomposition of the defect points, and then take the

coefficients of each of the data points with respect to this primary axis of the singular

value decomposition. This ordering is then used to check to see if the signs of the

defects are alternating.

If so, then we use the second-largest eigenvalue, ξ, in the singular value decom-

position to get a measure of spread of the datapoints along the primary axis. If the

eigenvalue ξ satisfies

2

15
λ ≤ |ξ| ≤ λ

2
,

then we classify the cluster as a grain boundary defect, where the values appearing in

the inequalities were chosen by the author as a result of direct observation of many

frames. We say that the length of the grain boundary is the number of topological

defects in the cluster.

Spirals and targets

It is often the case that a spiral or a target will be small and surrounded by concave

disclinations. We identify these types of patterns by taking the centroid of the two

positively-charged topological defects in the cluster, and then compute the distance

from this centroid to every negatively-charged topological defect in the cluster. We then
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compute the minimum distance of the two positively-charged defects to the centroid,

m+, and the minimum distance of all negatively-charged defects to the centroid, m−. If

m− is greater than the max of either 1.25m+ or (2/3)λ (to eliminate defect clusters that

are clustered too tightly), then the negatively-charged topological defects are marked as

concave disclinations. The two positively-charged topological defects are then processed

as either spirals or targets in the same way that dipoles are classified.

Unidentified clusters

Due to the complicated nature of the patterns seen in SDC, many clusters of topolog-

ical defects will not result in a classification using the above algorithm. These clusters

are marked as unclassified.

Defect-free regions

The portion of the temperature field in the complement of the region that falls

within (2/3)λ of the topological defects are considered to be defect-free. These are

considered to be portions of the temperature field that consist of parallel rolls.

Figure 6.8 shows a labeling of the temperature field at frame 1230 with the six

canonical defects, labeled using the algorithm described above. The unclassified regions

visually contain both a spiral and many targets, though the arrangement of the topo-

logical defects in these regions was too complex to yield a positive identification. The

grain boundary on the right-hand side of the image seems to have a mis-identification

on the left of the chain. Further refinement to the algorithm will both add to the

number of correctly-identified canonical defects and also make the classifications more

accurate. However, we believe the algorithm described here shows that this method is

feasible to use with this dataset, and accurate enough for a preliminary analysis.

6.3.2 Using Persistent Homology to Differentiate Spirals from Targets

Ideal spirals and targets are easily differentiated from one another by the using the value

of the temperature field in conjunction with the appearance of a pair of topological

defects of positive unit charge: a spiral is classified when the temperature field at the

topological defects has one high and one low value, and a target is classified when the

temperature field at the topological defects are either both high or both low. However,
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in the complicated patterns exhibited in SDC, the location of the topological defects

relative to the visible pattern may cause misclassifications if this method is used.

To address this issue, we will use persistent homology to obtain a more robust

signature for differentiating spirals from targets. In an ideal spiral, one of the arms can

be contracted along the spiral to the boundary, and so the first dimension persistent

homology should be relatively trivial for this pattern. In contrast, an ideal target must

be accompanied by the presence of a dominant first dimension persistence point: for a

target with a low temperature value in the center, there will be a dominant generator

in the superlevel set dimension one persistence diagram, and for a target with a high

temperature value in the center, there will be a dominant generator in the sublevel

set dimension one persistence diagram. Thus, we can use the presence or absence of a

critical cell from a dominant first homology generator to differentiate a spiral from a

target.

6.3.3 Analysis

We use the algorithm in Section 6.3.1 to study 3, 500 frames of numerically-simulated

data taken 0.1 time units apart. For each frame in the time series we compute:

• The number of each of the six canonical defects: disclinations (concave or convex),

dislocation pairs, grain boundaries, spirals, and targets.

• The histogram distributions for the counts of each of the six canonical defects.

• The total area of each of the classified cluster regions, unidentified cluster regions,

and defect-free regions as a percentage of the total area of the temperature field.

We then plot these totals as a function of the frame number (Figure 6.9).

6.4 Moving Beyond the Canonical Defects

To extend defect classification beyond the six canonical defects, we turn to ideas from

the field of computer vision. While the topological defects assign a global property to

a local point (by encoding the behavior of the orientation field around a defect point),
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(a)

(b)

(c)

(d)

Figure 6.9: Counts of the number of occurrences of each of the six types of canonical
defect patterns over 3,500 frames sampled 0.1 time units apart: (a) convex disclination,
(b) concave disclination, (c) dislocation pairs, (d) grain boundaries, (e) target, and (f)
spiral. The distributions of each of the counts in (a) to (f) are shown as box and whisker
plots in (g). The percentage of the temperature field that is unclassified, classified, or
considered to be defect-free, is shown in (h). (Continued in next figure.)
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(e)

(f)

(g)

(h)

Figure 6.9 (cont.): Counts of the number of occurrences of each of the six types of
canonical defect patterns over 3,500 frames sampled 0.1 time units apart: (a) convex
disclination, (b) concave disclination, (c) dislocation pairs, (d) grain boundaries, (e) tar-
get, and (f) spiral. The distributions of each of the counts in (a) to (f) are shown as box
and whisker plots in (g). The percentage of the temperature field that is unclassified,
classified, or considered to be defect-free, is shown in (h).
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many different configurations of the temperature field could give rise to a topological

defect of the same charge. That is, the invariant is too coarse to use as a more nuanced

descriptor of the defect. In computer vision, there are many algorithms that will gen-

erate a high-dimensional feature vector to encode the shape of the scalar field about a

point in a way that it is invariant under rotations. In general, these types of algorithms

have the same basic structure:

• Keypoint generation. Keypoints are points of interest in the image. There are

many ways to generate keypoints for an image, typically involving gradient meth-

ods for identifying corners (e.g. for architectural images). However, the temper-

ature fields we study are smooth, so we use an alternative method for generating

keypoints for RBC flows.

• Orientation assignment. In order to build rotation invariance into the matching

computation, an orientation must be assigned to each keypoint. Occasionally,

there may be more than one likely orientation, so the keypoint will be duplicated

in this step, one for each dominant orientation.

• Local feature descriptors. Instead of using local image patches directly, a high-

dimensional local feature descriptor that is rotation invariant is generated for each

keypoint. To compare the similarity of the image at two different keypoints, these

local feature descriptors are compared rather than the local image patch.

We now describe each of the components above in more detail.

Keypoint Generation

To generate keypoints on the simulated RBC temperature fields, we use topological

defects (see Section 6.1.1) and saddle points and roll emergence points as identified

by persistent homology (see Section 6.2.1). The amount of smoothing applied to the

orientation field and the regions selected in the partition of the persistence plane controls

the number of keypoints. One common algorithm from computer vision that is used to

identify keypoints in an image is the SIFT algorithm [66], a detailed description of which

is beyond the scope of this dissertation. Figure 6.10 shows a comparison of keypoints
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generated from the SIFT algorithm as implemented in the Python library OpenCV

versus keypoints given by topological and persistent homology defects. Notice that

at approximately the 8 o’clock region on the image, there is a group of saddle points

detected by persistence that are not detected by the SIFT algorithm. In addition,

the keypoints detected through topological methods seem to have a much more precise

placement with respect to the visible defects in the temperature field.

Orientation Assignment

To assign an orientation to each keypoint, we first crop a circular region from the

orientation field centered at the keypoint. From this circular region, a histogram of

orientations is generated and each dominant mode in the histogram is used to assign

an orientation to the keypoint. Notice that if an orientation field has a concentration

of orientations near π/2, the corresponding histogram is likely to have values near

−π/2 as well. Thus, we view the data as a histogram on a circle, where two modes at

π/2 and −π/2 would be considered a single mode. We then compute the maximum

value of the histogram, and then any peaks that are within some percentage of this

value are used to generate additional keypoints, each designated by its corresponding

maximum orientation. By adding additional keypoints for each peak in the orientation

histogram, the local image feature will be more robust with respect to rotation. For

example, consider a local image patch that is bimodal in orientation, with the peak

orientations nearly the same. A small perturbation in the orientation field may switch

the peak which represents the maximum, so if each keypoint is only assigned a single

orientation, small perturbations may significantly affect the rotation-invariance. By

adding a keypoint for each peak, even a small perturbation such as this will result in

a positive match. Thus, orientation assignment involves the choice of two parameters:

the radius of the circular image patch to use to build the histogram of orientations, and

the choice of percentage to use to select secondary peaks from the histogram.

Local Feature Descriptors

For each keypoint resulting from the previous computation, a local rotation-invariant
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(a)

(b)

Figure 6.10: Keypoints generated by (a) Python OpenCV SIFT implementation (col-
orings random), and (b) topological defects (yellow and cyan) with σ = 2 as the orien-
tation smoothing parameter and persistent homology defects (red and dark blue) given
by the partition in Figure 6.7.
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feature is produced. This is again accomplished by first cropping a circular region of the

orientation field centered at the keypoint location with a given radius. Then the cropped

orientation field is rotated by the orientation value assigned to the keypoint orientation,

so that the orientation field is centered consistently across the dataset (e.g., at zero).

Then the circular region is divided into eight regions according to an inner radius width.

Histograms of orientations with a common number of bins are generated for each of eight

regions from this local orientation patch. So that orientations farthest away from the

keypoint are not weighted as heavily as orientations close to the keypoint, a Gaussian

weight is applied to the local orientation field when computing the histograms. Thus,

the local feature descriptor will be 8× b, where b is the number of possible bins for the

orientation histograms in each of eight local regions. There are a number of parameters

which must be set for this step: outer radius, inner radius, Gaussian weight parameters,

and number of binning values for the histograms. See Figure 6.11 for an illustration of

the regions used and the local histograms produced for a sample keypoint.

6.4.1 Parameter Selection for Local Feature Descriptors

As discussed above, there are six parameter values which must be set to generate the

local feature descriptors generated at each keypoint (including the keypoint orienta-

tion parameters). Ideally, we would construct a cost function and find the parameter

settings which resulted in the lowest cost, testing each possible parameter setting. How-

ever, choosing only 10 possible values for each parameter results in 106 computations,

and more if additional parameter values are searched, making this approach infeasi-

ble. Thus, instead of doing an exhaustive search through parameter space, we use a

coordinate descent optimization method [67]. To test the quality of the local feature

descriptor and construct the cost function for choosing the parameters, we work with

the following hypothesis:

The temperature field for RBC varies slowly and continuously in time. For close

enough time points, the local feature descriptors at a given keypoint should be matched

to the “same” keypoint in the next frame, where the spatial location of that keypoint

may have moved somewhat due to the change in pattern. By computing the percentage
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(a) (b)

(c)

Figure 6.11: (a) The circular region used to generate the keypoint descriptor. (b) The
associated orientation field. (c) The histogram of orientations for each of the eight local
regions. Histograms go from dark orange to dark blue, inner circle to outer circle, top
to bottom, left to right.
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of keypoints that were not matched to nearby keypoints in the next sample frame, we

obtain a function whose local minima will give local optimizations of the parameter

selections used to generate the local keypoint descriptors.

The one parameter which does not fit this general idea is the secondary peak selector.

By lowering the percentage parameter, more and more peaks will be selected, adding

additional keypoints to the dataset. If that percentage is at 100%, then only one peak

will be used, and, theoretically, lowering the percentage will decrease the percentage

that aren’t matched correctly. However, lowering the percentage too far will cause the

number of added keypoints that have a good match to overwhelm the cost function

computation, and so doing a blind optimization for this value is not such a good idea.

Thus, we use a value of 80% as in [66].

Coordinate Descent Optimization of Local Feature Parameters

We construct the optimization function for the coordinate descent algorithm as

follows. Our full dataset consists of 5, 000 frames sampled 0.01 time units apart (note

that this is ten times faster than the dataset analyzed in Section 6.3.3). For frames

separated by five sample points, we compute the nearest neighbor keypoint based on a

local feature match and then compute the Euclidean distance between the corresponding

matched keypoints on the temperature field. We do this for frames 1000 to 1950 in

steps of 50. Thus, we are analyzing the keypoints from 20 different temperature fields,

and each analysis generates roughly 1700 to 2100 keypoints (the initial settings on the

radius and binning levels for the keypoints will affect this number). We compute the

percentage of matched keypoints which fall outside of a circular region of radius of 5, 10,

and 15 pixels from the original keypoint. The idea being that a more robust parameter

setting will result in fewer percentage of keypoints that fall outside of each of these

regions.

We initialize the coordinate descent algorithm with the set of values given in the first

column of Table 6.1. The second and third columns give the values used in successive

iterations. Figure 6.12 gives the plots of the loss function for each coordinate in the

first iteration of the algorithm for the first set of initial conditions. Each test iteration
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(a) Keypoint radius (b) Keypoint orientation bins

(c) Feature outer radius (d) Feature orientation bins

(e) Feature inner radius percent (f) Feature sigma divisor

Figure 6.12: Plots of the loss function as a function of the parameter setting, keeping
all other parameters fixed. The y-axis gives the percentage of keypoint matches that
fall outside of a circle of radius r about the originating keypoint.
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Parameter Initialization Iteration 1 Iteration 2

Keypoint radius * 12 12

Keypoint orientation bins 18 18 23

Feature radius 15 20 20

Feature orientation bins 18 10 10

Feature inner radius percent 50% 50% 30%

Feature sigma divisor 1 1 0.8

Table 6.1: Three iterations of the coordinate descent optimization.

Parameter Initialization Iteration 1 Iteration 2

Keypoint radius * 5 11

Keypoint orientation bins 10 19 19

Feature radius 5 20 20

Feature orientation bins 10 12 12

Feature inner radius percent 20% 50% 50%

Feature sigma divisor 0.5 1 1

Table 6.2: Three iterations of the coordinate descent optimization for a different set of
parameter initializations and a different underlying dataset.

takes on average 75 − 400 seconds, depending on the parameter settings. After just a

few iterations, the parameters stabilize such that approximately 97% of keypoints are

matched to within five pixels of their original location when compared to the frame five

sample points later.

Note that we are locating a particular local minimum of the loss function, so we

begin the process again with a different set of initial parameters and a different input

dataset to test for mode sensitivity. This time we choose frames 1025 to 1975, again in

steps of 50, yielding again 20 frames of images for the analysis. Again, the coordinate

descent algorithm stabilizes after just a few iterations to similar values as we found in

the first round, as shown in Table 6.2. By beginning the process with a different set

of initial parameters and by varying the input dataset, we can be relatively confident

that the parameters signify a robust local minimum of the system with respect to the

chosen loss function.
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1.

2.

3.

Figure 6.13: Sample temperature fields centered at keypoints for three selected clusters
for the sublevel pd0 defect types.

1.

2.

3.

Figure 6.14: Sample temperature fields centered at keypoints for three selected clusters
for the sublevel pd1 defect types.
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1.

2.

3.

Figure 6.15: Sample temperature fields centered at keypoints for three selected clusters
for the td+1 defect types.

1.

2.

3.

Figure 6.16: Sample temperature fields centered at keypoints for three selected clusters
for the td−1 defect types.
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6.4.2 Visualizing Defects in Feature Space

To visualize the defects in the constructed local feature space, we use an implementa-

tion of a Gaussian mixture model as described in [68] to cluster the data into groups,

and then view defects from each group that are close to the means of the clusters found

by the output of the algorithm. Due to the covariant nature of time series data (data

points are sampled at 0.01 time units apart), rather than use every solution from the

1000 time point series, we subsample the the time series and then compute keypoints

and local feature vectors for the reduced dataset. Since they are more numerous, we

subsample every 25th time point for persistent homology dimension 0 and topological

defect keypoints, while we sample every 5th time point for persistent homology dimen-

sion 1 keypoints. The number of keypoints we use to for visualization are pd0 = 651,

pd1 = 199, td+1 = 1, 190, and td−1 = 1, 661.

Using only the keypoint descriptors, we perform clustering using mean-field vari-

ational inference for a mixture of Gaussians, using coordinate ascent (CAVI) as the

optimization algorithm, as in [68]. We place a Gaussian prior on the cluster means

with mean given by the center of the point cloud of keypoint features, and unit vari-

ance (i.e. we assume that the cluster means originate from a Gaussian distribution

with mean given by the center of the point cloud and unit variance). We also assume

a uniform categorical prior on the cluster assignments.

We first separate each keypoint by type (e.g., topological defect with charge ±1,

persistent homology defect dimension 0 or 1) and then cluster the data into 20 subgroups

within each of these four defect types. Figures 6.13 through 6.16 show the cropped

temperature fields for five patterns from three of the 20 clusters, where the keypoint

features of the local temperature fields shown are closest to the means of the respective

clusters. We also mark the keypoint in white and give circles for the inner and outer

radii used to build the local feature vectors.
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6.5 Towards an Analysis of Coherent Structures in SDC

In general terms, a coherent structure is a localized dynamical structure that persists

beyond the time-scale of the pattern evolution of the system, and is repeatedly observed

in the system given enough time [69]. To make sense of a data-driven analysis of

coherent structures, we must establish a method by which groups of defects can be

treated together as a single pattern, and to be able to search the temperature fields for

the recurrence of such a pattern. This matching must be rotation-invariant and robust

to small perturbations, since an exact match in a system driven far from equilibrium is

highly unlikely.

In this section we leverage established techniques for object recognition for searching

an image for the presence of a training pattern (e.g., the core of a spiral or other local-

ized defect structure). These algorithms often give a matching that is invariant under

rotations and certain affine transformations of the image, which is a desirable property

to preserve for pattern recognition in this setting. In the SIFT and SURF algorithms

[66, 70], keypoints and their local feature vectors are used for object recognition using

a method called Hough transform voting. We illustrate its use here in the context of

identifying mid-scale coherent structures in RBC. That is, structures that repeat on a

scale larger than the defects identified above, but only up to the size of, say, two or

three wavelengths in the pattern.

6.5.1 The Hough Transform

We summarize the method of Hough transform voting from [70], modified so that it

works with the framework we have already established (in particular, we disregard

scale). The general idea is to define a procedure by which a given arrangement of

keypoints (and their local feature vectors) may be located in a target image and its

keypoints (and their local feature vectors). This is done by accumulating votes in what

is commonly referred to as Hough space, in this case a three-dimensional lattice space

consisting of a vector (x, y, θ), where (x, y) is a vote for the location of the localized

pattern, discretized by bins, and θ is a vote for the orientation, also discretized by bins.
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The coordinate corresponding to the highest value in the Hough space accumulator

gives the position and orientation considered to be those corresponding to the candidate

match. Finally, the collection of keypoints that voted for this coordinate are considered

the keypoints of the matched pattern. We now describe this procedure more precisely.

Let p0 be a location in the training image marking the centroid of the pattern being

searched for, and let K0 be the keypoints in an ε neighborhood of p0 along with their

local feature vectors (see Figure 6.17(a) for the set K0). Let c0(x, y) be the location

of a keypoint c0 ∈ K0 being searched (each image in the first column of Figure 6.18

represents a keypoint c0), and let c0(θ) be its orientation. Compute

v′ = (c0(x, y)− p0),

the displacement of the keypoint relative to the pattern’s centroid. Take the set K(c0),

which we will define below (see Choosing keypoints for Hough transform voting), to

be the keypoints of the target image that are candidate matches to the keypoint c0

(each image in columns 2+ of Figure 6.18, with distance not in parenthesis, represents

a keypoint c ∈ K(c0)).

The following procedure is used to estimate the relative pattern centroid in the

target image corresponding to a candidate matched keypoint c ∈ K(c0). Let c(x, y) be

the keypoint’s location in the training image and let c(θ) be its orientation. Compute

the difference in orientations between c0 and c by taking α = |c0(θ)− c(θ)| in radians,

and let v be the vector v′ rotated by α radians. We estimate the corresponding centroid

of the pattern in the target image by computing

p = v + c(x, y).

Thus, we have computed the rotation α and center p of the target pattern if the

correspondence between the keypoint c0 and c were actually correct. We then compute

which integer-valued bin α and p belong to, where the bins correspond to a discretization

of the possible locations and orientations, and increment the Hough space accumulator

at this coordinate. As in [70], we also increment neighboring coordinates in Hough
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space to avoid inaccuracies stemming from discretization of the space and improving

the number of matches (for example, two keypoints could be mapped to Hough space

coordinates that are off by a single bin due to rounding).

Once all votes have been cast by keypoints c ∈ K(c0), the coordinate in the ac-

cumulator with the maximum value is considered the winning configuration. We then

include any configurations of unit sup norm distance to the winning configuration to

further reduce eliminating good keypoint matches due to discretization and rounding.

Any keypoints in K(c0) that cast a vote for one of these lattice points is considered a

matched keypoint for the pattern. We also check to make sure more than r|K0| key-

points are matched from the training image, where r is a rate or percentage. If enough

keypoints from the training pattern are matched, then we consider the pattern to have

a positive match. Finally, we give a fitness measurement for the pattern by comput-

ing the median keypoint distance in local feature vector space for the corresponding

matched keypoints.

Choosing keypoints for Hough transform voting

Let c0 ∈ K0 be a keypoint in the training image. To select the candidate keypoint

matches K(c0), the entire collection of keypoints K of the target image is compared

against the keypoint c0 using the Euclidean distance of the corresponding local feature

vectors. In the case of a perfect match, the idea would be that the nearest neighbor

would be considered the candidate that gets to add a vote to the Hough space accumu-

lator. However, there could be many local patterns that are fairly good matches. To

resolve this problem, we choose a threshold cutoff C and consider any keypoint c ∈ K

such that if d0 = minx∈K d(c0, x), then d(c0, c) ≤ d0 + C. Thus, we define

K(c0) := {c ∈ K : d(c0, c) ≤ d0 + C}

for some cutoff distance C, where d0 is the distance from c0 to the set K as measured

in local feature space. While there are certainly more sophisticated methods for choos-

ing candidate keypoints, we use this simplified method merely as an illustration for
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(a)

(b) (c)

Figure 6.17: (a) A cropped portion of the temperature field at frame 1, 530 with key-
points overlaid. (b) The temperature field at frame 1, 100 with keypoints overlaid. (c)
The matched keypoints after performing the Hough transform voting.

how these methods may be effective for the problem at hand conceptually. A more

rigorous analysis of each of the aspects of this method should be employed for perform-

ing a statistical analysis concerning the study of coherent structures (for example, see

Section 6.4.1 where optimization was used to choose parameter values).

Sample pattern match using Hough transform voting

We now illustrate the above ideas with an example. Figure 6.17(a) shows a cropped

portion of a temperature field at frame number 1, 530, which we will refer to as the train-

ing pattern, while Figure 6.17(b) shows the temperature field at frame number 1, 100,

referred to as the target pattern. Each image has its keypoints overlaid. The training

pattern has ten keypoints including multiple keypoints for multi-modal orientations.
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Figure 6.18: Nearest neighbor search results for each of the keypoints in the training
pattern. Each row is a different keypoint in the training pattern. The first frame in
each list of images is the local feature being searched (i.e. c0 ∈ K0). The frames that
follow are the ten nearest neighbor matches in local feature space, where each keypoint
has the same type (e.g. topological defect ±1, or persistent homology dimension 0 or 1).
The distance in local feature space is printed beneath each image, listed in parenthesis
if the distance is beyond the cutoff. Thus, matches with distance not in parenthesis are
in the set K(c0).
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We set the parameters of the Hough transform voting algorithm to use 40 bins for

the location coordinates and 8 bins for the rotation coordinate. The cutoff distance C

for qualifying matches is set to 100. The rate r is set to 0.75, so that 75% of keypoints

in each localized region must be matched in order to consider the match successful.

Figure 6.18 shows, for each keypoint in the training image, the ten nearest neighbor

matches in local feature space together with their distances. If the distance for a match

is greater than the minimum neighbor match plus C = 100, it is listed in parenthesis

and was not used for Hough transform voting.

Figure 6.17(c) shows the pattern with the highest number of votes from the Hough

transform. Matched keypoints are indicated in white, and the black circle is the esti-

mated centroid. As is evident in the figure, the training pattern was correctly located

in the target pattern, and the computed centroid of the matched pattern falls (roughly)

near the corresponding center of the training pattern.

6.5.2 Tracking a Spiral Pattern Using Hough Transform Matching

We now demonstrate the efficacy of this type of approach for searching a time series for

recurrent patterns. The time series consists of 5, 000 frames sampled 0.01 time units

apart (this is ten times faster than the dataset analyzed in Section 6.3.3). We perform

Hough transform voting, again using 40 bins for the location coordinates and 8 bins for

the rotation coordinate. We use a radius of 30 for both the training pattern and for the

matched patterns. The cutoff distance C for qualifying matches is again set to 100. To

achieve a more accurate matching, the rate r is set to 0.9, so that 90% of keypoints in

each localized region must be matched in order to consider the match successful.

We first localize to a region of the temperature field a depicted in Figure 6.19(a) and

track the evolution of center of a spiral pattern by using the fitness measurement as a

distance between patterns. Figure 6.19(b) shows the distance matrix computed from the

Hough transform fitness measurement for this region of the temperature field, compared

to Figure 6.19(c), which shows the usual L2 distance between cropped portions of the

temperature field. The recurrent dynamics are evident in the Hough transform fitness

matrix, as seen in the checkerboard type pattern.
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(a)

(b) (c)

Figure 6.19: (a) Temperature field showing cropped region (white square) used to
localize a time-evolving spiral pattern. (b-c) Distance matrices of a time-evolving spiral
from frames 1000 to 1999, selected every fifth frame to generate 200 patterns. (b)
Hough transform voting fitness measurement. (c) L2 distance between the cropped
temperature fields.
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Next, we perform an ensemble pattern match by localizing the spiral pattern de-

picted in Figure 6.19(a) from frame 1055 to frame 1155, sampling at intervals of 5

frames, resulting in 21 sample patterns. Each of these 21 sample patterns are matched

against frames 1 to 4999 in the complete time series. Any positive matches have their

Hough transform fitness measurement recorded. Figure 6.20(a) shows the results of the

matching. As the picture shows, this sample ensemble pattern is representative of the

spiral from frames 750 to 2000, approximately, and a signature is somewhat detected

from frame 2000 to 3000.

We repeat the experiment, localizing over the “same” spiral pattern as seen by

the author in direct observation of the temperature field, but from different frames.

Figure 6.20(b) shows the result of the matching from sampling frames 2850 to 2950 at

intervals of 5 frames, and Figure 6.20(c) shows the result of the matching from sampling

frames 1970 to 2070 at intervals of 5 frames. We will call the spiral pattern states A,

B, and C for the patterns sampled in Figure 6.20(a), (b), and (c), respectively. The

matching signatures seem to indicate that the pattern begins in state B from roughly

frames 350 to 600, then transitions to state A from frames 750 to 2000, at which point

it enters a transient state passing through C. At frame roughly 2500, it again passes

through state B before there are no more positive matches at frame 3500.

Figure 6.21 shows cropped regions of the temperature field, where each cropping

window is the same absolute size, centered at the spiral structure being studied. Sample

(a) was taken before the spiral formed, and sample (b) marks the emergence of the spiral

(state B). Samples (c-e) show the transitions from state A to C to B, in that order.

Note that state C is significantly pinched and elongated compared to states A and B,

and the spiral in state A is slightly smaller than the spiral structure in state B. Sample

(f) gives match at the tail-end of the spiral’s lifetime, and sample (g) is taken after the

spiral signature is no longer visible in the Hough transform matching diagrams.

6.5.3 Conclusions and Future Work

The study carried out in this section only scratches the surface at what might be possible

given these techniques, as well as points to current limitations in the methodology.
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(a)

(b)

(c)

Figure 6.20: Ensemble pattern match fitness measurement plots for the spiral pattern
from Figure 6.19(a). (a) Samples from frame 1055 to frame 1155, (b) samples from
frame 2850 to 2950, (c) samples from frame 1970 to 2070, each sampled at regular
intervals of five frames, resulting in 21 patterns. Colorbars are colored from 1 to 21,
showing the sample index being matched. The horizontal dashed line at 200 gives a
heuristic for “good” matches versus spurious matches as observed by the author.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.21: Spiral pattern sampled from frames (a) 300 (b) 450 (c) 1200 (d) 2000 (e)
2800 (f) 3700 (g) 3900.

Figures 6.20 and 6.21, taken together, indicate that the current pattern matching setup

is too fine. That is, the spiral shape must match the pattern being searched almost

exactly for it to register. Our analysis only has rotation-invariance built into the pattern

matching algorithms. However, the SIFT algorithm [66] also includes a notion of scale-

invariance that could be leveraged. By adding a certain amount of scale-invariance to

the computations, we suspect that an ensemble pattern match such as the one performed

will result in more positive matches.

Once scale-invariance has been addressed, a more systematic analysis of different

recurrent structures could be undertaken. For example, portions of the temperature

field for a given portion of the time series could be either systematically or randomly

sampled, and the remainder of the time series could be searched for the recurrence of

the sampled patterns. Recurrent patterns that are statistically significant as measured

by the Hough transform fitness measurement could then be classified, perhaps through

clustering methods that use the Hough transform fitness measurement itself (in the

spirit of the distance matrix in Figure 6.19(a)).

These methods have only been thus far applied to numerically-simulated data. A

comparison to experimental data could also be beneficial. Finally, it would be prudent

to study the connection between patterns in the temperature field and the leading-

order Lyapunov vectors for the numerically-simulated data, which may pave the way

to establishing predictive analytics for these types of fluid flows.
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