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ABSTRACT OF THE DISSERTATION

Self-shrinkers and singularity models of the mean curvature

flow

by Siao-Hao Guo

Dissertation Director: Natasa Sesum

This doctoral dissertation aims to generalize the uniqueness and existence results of self-
shrinkers with a conical end. In addition, we study the type II singularity of Velazquez’s
solution to the mean curvature flow. Our results include the following:

1. Given a smooth, symmetric and homogeneous of degree one function f (A1, , Ay)
and a properly embedded cone C in R"*!, we show that under some suitable conditions
on f over the principal curvatures of C, there is at most one f self-shrinker (i.e. a
hypersurface ¥ in R"! for which f (k1,--- , kn) + %X - N = 0 holds, where k1, -, Ky
are principal curvatures of ) that is asymptotic to the given cone C at infinity.

2. Given a smooth, symmetric and homogeneous of degree one function f (A1, -+, Ap)
satisfying 9;f > 0 Vi =1,---,n, and a rotationally symmetric cone C in R**!, we
show that there is a f self-shrinker that is asymptotic to the given cone C at infinity.

3. Veldzquez discovered a solution to the mean curvature flow which develops a type
II singularity at the origin. He showed that by performing a time-dependent rescaling of
the solution around the origin, the rescaled flow converges in the C° sense to a minimal
hypersurface which is tangent to Simons’ cone at infinity. We prove that the rescaled
flow actually converges locally smoothly to the minimal hypersurface, which appears to

be the singularity model of the type II singularity. Moreover, we show that the mean
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curvature of the solution blows up near the origin at a rate which is smaller than that

of the second fundamental form. This is a joint work with N. Sesum.
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Introduction

0.1 Hypersurface and second fundamental form

Let ¥ be an immersed, orientable hypersurface in a Riemannian space (M”“, (, )),

i.e. there is a manifold M" and a parametrization
X: M" - M

so that ¥ = X (M). The immersion X is called the position vector of ¥.. Let Ny be an
unit-normal vector field on ¥. Then the second fundamental form As is a defined to be

2-tensor on X so that
Ax (V, W) = (=DyNx;,, W) = (DyW, Nx)

for any tangent vector fields V', W on X, where D is the Levi-Civita connection of
Riemannian metric (, ) on M. It follows that the Hessian of the position vector X is
given by

VX (V, W) = As (V, W) Ny

Notice that the second fundamental form Ay is a symmetric 2-tensor, so at each point
it has eigenvalues {k1,- -, Kp}, which are called principal curvatures. We then define
the mean curvature Hy, to be the trace of the second fundamental form, or equivalently

the sum of all the principal curvatures, i.e.
Hs, =trAs = k1 + - + kn

Note that

Ay X = Hx Ny,



0.2 Mean curvature flow

Let {3t}g<;<7 be a smooth one-parameter family of hypersurfaces in a Riemannian

space (M”H, (, >) That is, there is a manifold M™ and a smooth homotopy
X: M"x[0,T) — M

so that ¥y = X; (M), where Xy = X (-, t) : M™ — M"*! is the position vector of the
time-slice ¥;. Assume for simplicity that M is a closed manifold (i.e. compact without

boundary), then we have the following evolution formula for the area of hypersurfaces:

d

df dpy = —/ <atXt7 N2t> Hzt dp
U m M

where pu; is pull-back measure of 3; on M. This suggests a simple and natural way to

decrease the area along the flow: move hypersurfaces in such a way that
<8tXt7 N2t> - HEt

In other words, consider a motion of hypersurfaces for which the normal speed at each
point is determined by the mean curvature. Such a motion of hypersurfaces is called a
“mean curvature flow” (MCF). By reparametrizing the flow if necessary (for instance,
replace X; by X; o ¢, for some well-chosen smooth one-parameter family of diffeomor-
phisms ¢; : M — M), we may assume that each point moves in the normal direction.

In that case, we have the following equation:
0 Xt = Hy, Ny, = Ay, Xy

which resembles the heat equation. For simplicity, here we only consider MCF in an
Euclidean space.

There are many applications for MCF. In material science, Mullins used this flow to
model the evolution of interfaces of metals. In geometry, MCF can be used to classify
hypersurfaces with specific curvature conditions. In addition, since there are many
similarities between the MCF and Ricci flow, people often compare these two flows, in

the hope that the study of one flow can shed light on the study of the other.



0.3 Singularities of mean curvature flow

Unlike the heat equation, MCF is a quasilinear equation of the position vector and in
general it may develop singularities in finite time. For instance, let’s consider the evolu-
tion of a closed hypersurface by MCF in an FKuclidean space. Before starting the flow,
let’s enclose the hypersurface by a large sphere. Then we observe the evolution of these
two objects by MCF. Due to the maximum principle, the two evolving hypersurfaces
must keep away from each other whenever the flows are smoothly defined. Therefore,
the MCF of the given closed hypersurface must develop singularities before the sphere
shrinks to a point in finite time.

Since singularities are inevitable in most of the cases, understanding their formation
plays an important role in the study of MCF. In particular, we are interested to know
at the first singular time, what is the sturcture of the singular set and what the flow
looks like near singularities.

Ecker and Huisken in [EH| proved the following smooth estimates for the MCF. Let
{Zt}o<t<7 be a smooth MCF and P be a point. If there is 7 > 0 and 0 < A < oo so
that

sup  sup  r|dAg| <A
(T—r2,T) S:NB(P;r)

then for any m € N, there holds

sup sup "l |V7E”tAgt’ <C(n, A, m)
(r-,7) TenB(Pi3)

In particular, {3;} is smooth in a neighborhood of P upto time 7. Therefore, singu-
larities of MCF can be characterized by the blow-up of the second fundamental form.
Moreover, by the maximum principle, if a closed MCF {Et}ogt 7 develops singularities
as t /T, there holds

limsup sup VT —t |Ag,| >0
T %

Singularities are then classified according to the blow-up rate of the second fundamental

form. A singular point P is said to be a type I singularity if there holds

limsup sup VI —t|Ag,| < oo
t T S,NB(P;r)



for some r > 0. Otherwise, it’s called a type II singularity.

In order to see what the flow looks like near a singularity, we zoom in on that point
by doing a parabolic rescaling. One crucial ingredient in the analysis is Huisken’s mono-
tonicity formula (cf. [Hu2[). More precisely, let {:}y<, 7 be a MCF (with polynomial

volume growth) which develops a singularity at P as t /T, there holds

d *7@1{&; Pt|)2 X, N 2 *7@5&7 Pt|)2

e - t » e -
- | VAN (X :—/ <H + ) SdH" (X
dt Js, (4n (T —t))2 (X2) 5, U 2(T=1)) (4n(T—1)% (%)

(1)
Now consider the following rescaling of the flow:

1
Hs: %T_t(zt_P)

It satisfies the following equation

, —InT <s<
s=—1In(T—t)

1
85Y9'NHS:HHS+5Y5'NHS

where Y is the position vector of II;. By (1), there holds

d [ e il 1 2 emalvel’
= — dH" (Ys) = —/ (Hns +5Ys- Nm) 7 dH" (V)
ds Ju, (4m)2 s 2 (4m)2

In particular,

1 2
d —71Ys]
(v <0
ds Il (477')2

Thus, the local area of the rescaled hypersurfaces are uniformly bounded. By the com-
pactness theorem, {IL;} _, p, . subconverges in the sense of Radon measure as s * oo

(cf. [I]). Furthermore, by (1), any limiting hypersurfaces II satisfies
1
Hi + B Y - Ng=20

which are called “self-shrinkers” since it generates a self-similar solution to the MCF.
More precisely,

Y =P+ VT —t1l, t<T
defines a MCF for ¢t < T. Roughly speaking, we can use {it}t<T to approximate the
behavior of {3;} near the point P as t / T. Note that in the case when P is a type I
singularity, there holds

limsup sup |Am| <o
s,/'00 II,NB(O;re®)



for some r > 0. In fact, by the smooth estimates for MCF, all the higher order covariant
derivatives of Ay, are also locally uniformly bounded in spacetime. By the compactness

theorem, the {Hs}fln(T) subconverges in the smooth topology.

<s<oo

0.4 Self-shrinkers

Recall that a hypersurface 3 is called a self-shrinker if it satisfies
1
Hy, + 5 X Ny =0

where X is the position vector of Y. The classification of self-shrinkers is crucial to
the study of singularities of MCF. There are some important progress in this direction.
For instance, Huisken proved that a complete, mean convex self-shrinker with polyno-
mial volume growth and bounded second fundamental form must be congruent with a
generalized cylinder
sk (@) x R*

for some k € {1,---, n}, where S (\/ﬂ) is the sphere in R¥*! with radius v/2k. Later
Colding and Minicozzi improved the above result by dropping the hypothesis of bounded
second fundamental form (cf. [CM]). Moreover, they proved that generalized cylinders
are actually the only “stable” hypersurfaces among all self-shrinkers.

In the case of two-dimensional self-shrinkers, Ilmanen conjectured that any complete
self-shrinker with at most quadratic area growth have finitely many ends, which is
either asymptotic to a cone or a cylinder. Wang has many results devoted to prove
this conjecture. In particular, she proved the uniqueness of self-shrinkers with a given
conical end (cf. [W]). On the other hand, Kapouleas, Kleene and Moller use the gluing
method to construct complete self-shrinkers with genus and a conic end (cf. [KKM]).

Motivated by the result in [W], we would like to see under what kind of conditions
can we extend the uniqueness to a more general class of flow such as a geometric flow
defined by a symmetric, homogeneous of degree one function of principal curvatures? In
Chapter 1, we show that if the nonlinearity of the defining function of the aforementioned
flow is sufficiently small, self-shrinkers to such flow which are asymptotic to a given cone

at infinity are unique.



In Chapter 2, we manage to prove the existence of self-shrinkers to the aforemen-
tioned flow with a conical end. As Kleene and Moller did in [KM], we use a fixed point

argument to find a rotationally symmetric solution.

0.5 Type II singularity

To study type II singularities, Hamilton developed a rescaling process by which the
rescaled flow subconverges to an eternal MCF with uniform bounded second fundamen-
tal form (cf. [M]). In the case of the mean convex MCF, by the convexity estimate (cf.
[HS]) and Harnack estimate (cf. [Hal), it can be shown that the blow-up flow is actually
a translating MCF.

In order to study type II singularities in other cases, in Chapter 3 we analyze
Veldzquez’s solution to the MCF (cf. [V]). In that case, the singularity model is given

by a minimal hypersurface, which is a stationary solution to the MCF.



Chapter 1

Uniqueness of self-shrinkers to the degree-one curvature

flow with a tangent cone at infinity

1.1 Introduction

Let C be an orientable and properly embedded smooth cone (excluding the vertex O)
in R"*1. Suppose that 3 is an orientable and properly embedded smooth hypersurface
in R"™! which satisfies

H—i—%X-N:O vXeXx
Ciae
0X —3%C aspo\(0

where NN is the unit-normal vector and H = —Vys - N is the mean curvature of X.
Then ¥ is called a self-shrinker to the mean curvature flow (i.e. 8;X*+ = HN) which
is smoothly asymptotic to the cone C at infinity. It follows that the rescaled family
of hypersufaces {Et = \/th} forms a mean curvature flow starting from ¥ (when
t = —1) and converging locally smoothly to C as ¢t , 0. Wang in [W] proves the
uniqueness of such self-shrinkers by showing the following: suppose X is also a self-
shrinker which is asymptotic to the same cone, then outside a compact set, S =v—tiX
can be regarded as a normal graph of h; defined on 3, \ Bg for some R > 0; moreover,

given € > 0 and choose R large accordingly, there holds

‘&h — Agth

<e(|Vsnh| + [n)

=0
t=0

d
Using the idea in [ESS|, Wang derives a Carleman’s inequality for the heat operator
on the flow {¥;}, applies it to the localization of h, and uses the unique continuation

principle (see |[EF|, for instance) to conclude that h = 0.



On the other hand, Andrews in [A] consider the motion of hypersurfaces in R**!
moved by some degree one curvature. More precisely, given a smooth, symmetric and
homogeneous of degree-one function f = f(Ar,---, A,) which satisfies 9;f > 0 Vi,

consider the following evolution of hypersurfaces:
XXt =f(k1,-, k)N

where k1,---, Kk, are the principal curvatures of the evolving hypersurface. For in-
stance, if we take the curvature function to be f (A1, , A\p) = A1+ + A, then this
corresponds to the mean curvature flow. And we call an orientable C? hypersurface ¥

in R"1to be a “f self-shrinker” to the above “f curvature flow” provided that
1
f(Kla"' ) KJn) + §XN:0

holds on ¥. Likewise, the rescaled family of “f self-shrinkers” is a self-similar so-
lution to the f curvature flow; that is, the one-parameter family of hypersurfaces
{Et =/t Z} <o I8 A f curvature flow. In the case when 3 is smoothly asymptotic to
the cone C at infinity, the rescaled flow {¥;},_, will converge locally smoothly to C as
t /0.

In this chapter we extend the uniqueness result of [W] to the class of f self-shrinkers
with a tangent cone C at infinity. Based on Wang’s idea of proving the uniqueness
for the mean curvature flow, which works perfectly for the f curvature flow as well,
we add some additional treatments for the nonlinearity of f (which is not a concern
in Wang’s case because the curvature function there is linear). The crucial step is to
derive Carleman’s inequality for the associated parabolic operator to the f curvature
flow under some conditions on the nonlinearity of f , the uniform positivity of 9;f and
also some curvature bounds of C. For this part, we are motivated by the work of Nguyen
in [N] as well as Wu and Zhang in [WZ]| for deriving Carleman’s inequality for parabolic
operator with variable coefficients.

In order to state our main result, Theorem 1.5, we have to introduce some notaions,
definitions and basic assumptions. We put all of these in Section 1.2.

In Section 1.3, we essentially follow the proof of [W] to show that if ¥ and % are f

self-shrinker which are asymptotic to the given cone C at infinity, then outside a compact



set,f]t = thfl can be regarded as a normal graph of h; defined on 3 \ Bp, for some
R > 0, which satisfies some parabolic equation and vanishes at time 0. We would also
give some estimates on the coefficients of the parabolic operators.

In Section 1.4, we follow the idea of [ESS] for treating the backward uniqueness of
the heat equation (which is also used in [W] to deal with the uniqueness of self-shrinkers
of the mean curvature flow) to show that the deviation h; would vanishes outside some
compact set. We would first use the mean value inequality for parabolic equations and
a local type of Carleman’s inequalities to show the exponential decay of the deviation
hiy ast 0 as in [N|. Then we are devoted to derive a different type of Carleman’s
inequalities (based on the estimates of the coefficients of the parabolic operator which
we derive in Section 1.3) and use it to show that h; vanishes outside a compact set. In
the end, we use the unique continuation principle to characterize the overlap region of

Y and 2.

1.2 Assumptions and main results

Definition 1.1. (A regular cone)
Let C be an orientable and properly embedded smooth cone (excluding the vertex

O) in R™*L; that is, C is an orientable and properly embedded hypersurface in R"*!

satisfying oC=C Ve € Ry and O ¢ C.
We then define what it means for a hypersurface to be asymptotic to the cone C at

infinity:

Definition 1.2. (Tangent cone at infinity)
A C* hypersurface ¥ in R**! (with k& € N) is said to be C* asymptotic to C at
Cck
infinity provided that oX %% C as o \, 0 (see [L] for the C* topology of hypersurfaces

in R™*1). In this case, C is called the tangent cone of X at infinity.

For a given C? orientable hypersurface ¥ in R™*! its shape operator (or Weingarten

map) A% sends tangent vectors to tangent vectors and is defined by

A#* (V)= —DyN
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for any tangent vector field V' on ¥, where N is the unit-normal of . The second

fundamental form A is defined to be a 2 tensor on X such that
AV, W)=A"(V)- W

for any tangent vector fields V and W on 3. The components of A# and A with respect

to a given local frame {ej,- -, e,} of the tangent bundle of ¥ are defined by
A# () = Alej. Alene)) = Ay

and we are used to denote A% and A by their components like A% ~ Ag and A ~ A;;.
Note that A# is a self-adjoint operator with repect to the dot product restricted to the
tangent space (or equivalently, A is a symmetric 2 tensor), so A% is diagonalizable. The
eigenvectors of A# are called principal vectors and its eigenvalues are called principal
curvatures, which are denoted by ki1, , k,. The mean curvature is defined to be
H=tr (A#) = K1+ -+ Kpn, which is a linear, symmetric and homogeneous of degree-
one function of the shape operator (or the principal curvatures). Here we consider a

more general type of degree-one curvature.

Definition 1.3. (The degree-one curvature function)
Let FF = F(S) be a conjugation-invariant, homogeneous of degree-one function
whose domain © (in the space of n X n matrices) containing a neighborhood of the

set consisting of all the values of shape operator AC# of C; besides, F' can be written as

a C? function composed with the the elementary symmetric functions &, --- , &, (for
instance, & = tr and &,, = det) and 5;; >0 (i.e. gst is a positive matrix).

Note that by the conjugation-invariant and homogeneous property of F, we may
assume that € is closed under conjugation and homothety; that is, if S € €, then so
are RSR™! and oS for any invetible n x n matrix R and positive number p.

Also, by the condition that F can be written as a C3 function composed with the
the elementary symmetric functions, it induces a symmetric, homogeneous of degree-one
function f such that

F(S)=f(An 5 An)
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whenever Aq,---, A, are the eigenvalues of the matrix S; the function f is defined and
C3 on an open set U (in R™) containing a neighborhood of the set consisting of all the
values of the pricinpal curvature vector (/iﬁ”, cee /fg) of C. Likewise, we may assume

that the domain U is closed under permutation and homothety.

In fact, at a diagonal matrix S = diag (A1, -+, A,), there holds (see [A]):
oF
875{ (8) =0if (M1, An) by (1.1)
O°F S) = 0%f (A An) 056 1.2
8538821( )_ mf( IR n) 1504l ()
O’F 0if — Ot

(S) = 02.f (M, An) 6ij0kt + 0udy; ifi#k (1.3)

8S7a8L Ai = N
Since F' is well-defined on conjugacy classes, (1.1), (1.2), (1.3) can be applied to any
diagonalizable matrix in €. For instance, by (1.1), we have

oF

Py (A?) ~ 0;f (/‘f(fa T “2) 0ij

where AZ?E ~ k468;; is the shape operator (and principal curvatures) of C. Hence, by the

condition that aFj > 0 on 2, we may assume that 0;f >0 Vi=1,---, non O.

Now let U be an open neighborhood of the set consisting of the all the shape operator

A? of Cat Xe e CN (Bg \ B;) in 2. Note that we may assume that U is closed under
3

conjugation and that 55; is uniformly positive on U; that is, there exist a constant
A € (0, 1] so that

) 1 )
A < —— < X5j (1.4)

Also, we have

x = sup ) ‘Vc <§§; (A?)) ‘ (1.5)

Xceln (B3\B%

= sup

‘ 0*F
Xceln (33\3%)

— as.jasllC (A#) (le?);‘ <CnC | F HCZ(U))
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where Aé’k and VCAZ?E are the shape operator of C and its covariant derivative at Xg,
respectively; B, is the ball of radius ¢ in R+, We give a more precise estimate of s

in (1.164) for the case when C is rotationally symmetric.

Now we can define the F' self-shinker:

Definition 1.4. (F self-shinker)

An oriented C? hypersurface ¥ (excluding its boundary) in R**! is called a F self-
shinker (or f self-shrinker) provided that F is defined on the shape operator A% of ¥
(i.e. A7 € ) and satisfies

F(a%) + %X-N:()
where X is the position vector, N is the unit-normal, and A# is the shape operator of
Y; or equivalently, f is defined on the principal curvatures of ¥ (i.e. (k1, -, kp) € U)

and satisfies

1
f("ilv"'vl{'n) + iXNZO

where K1, -+, kK, are the principal curvatures of X.
Note that the rescaled family of F self-shrinkers forms a self-similar solution to the
F curvature flow. More precisely, the one-parameter family {Et =+/—t 2}71 <i<p 18 2

motion of a hypersurface moved by F' curvature vector. That is,
ox*t = F (aF) N

where 9; X' is the normal projection of 9;X. Besides, for each time slice ¥ = \/—t %,

there holds

F(A#> +§('_g:0

We would prove the following uniqueness result F' self-shrinkers with a tangent cone

in Section 1.4:

Theorem 1.5. (Uniqueness of self-shrikers with a conical end)

Assume that s < 67X\3 (in (1.4), (1.5)). Then for any properly embedded F self-
shrinkers ¥ and % which are C° asymptotic to the cone C at infinity, there exists R =
R (E, >,C U, | F les@y, A %) > 1 so that ¥\ Br = X\ Bg. Moreover, let
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¥ = {X exn i) Y coincides with ¥ in a neighborhood of X}

then X9 is a nonempty hypersurface, which satisfies 0X° C (82 U 62).

Remark 1.6. In the case of |[W], F' = & (or equivalentsly, f (A1, -+, An) = A1+ -+ Ap)
is a linear function, so (by (1.5), (1.2), (1.3)) 2> = 0 and the hypothesis of Theorem 1.5

is trivially satisfied. On the other hand, consider

En

F=& +
! 6gnfl

or equivalently,

H?:l Ai

f()\h... , /\n) — (/\1_|_..._|_)\n) + €
Z?ﬂ <Hj7éi )‘j>

and take C to be a rotationally symmetric cone. Then by Theorem 1.5 and (1.164) in

Section 1.4, the uniqueness holds when 0 < € < 1.

1.3 Deviation between two I’ self-shinkers with the same asymptotic

behaviour at infinity

Let ¥ be a properly embedded F self-shrinker (in Definition 1.4) which is C® asymptotic
to the cone C at infinity.

By Definition 1.2, pX can be arbitrary C° close to C on any fixed bounded set of
R™*! which is away from the origin (e.g. on By \B%) as long as o is sufficiently small,
so any “rescaled C° quantities” of ¥\ Br can estimated by that of C for R > 1. Below
we would show these in detail.

First of all, there exists R > 1 (depending on X, C) such that outside a compact
set, ¥ is a normal graph over C \ Bg, say X = ¥ (X¢) = X¢ + ¥ Nc, where X is the
position vector of C and N¢ is the unit-normal of C at X¢. Consequently, we can define
the “normal projecton” II (to be the inverse map of ¥) which sends X € ¥ to X¢ €
C. Moreover, by the rescaling argument, we may assume that H" (Z N (Bgr \ Br)) <

C (n,C)r" for all r > R (i.e. ¥ has polynomial volume growth).
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On the other hand, fix X¢ € C\ Bg, |3(C]_1C = C is locally (near |j(C|_1Xc) a

graph over the tangent hyperplanethe T| C, so by Definition 1.2, ]XclflE must

Xel1Xe
also be a local graph over T| Kol XCC and is C® close to the corresponding graph of
X ¢|71C = C. Furthermore, we may choose a uniform constant p € (0, 3] (depending on
the dimension n, the volume and the C3 bound of the curvature of C N (Bg \ B %)) S0
that near | X¢| ' X¢, the graphes of |X¢|7'C = C and |X¢|~'% are defined on BZIXcl =
{ZL‘ e R"

|z| < p]Xc|} C Tx.-1%.C and the C! norm of the local graph of C is small.
By undoing the rescaling, it tranlates into the following: there exists R = R (%, C) > 1

so that near each X¢ € C \ Bg, C and ¥ can be repectively parametrized by

Xe = X () = Xe + (z, w (2))

X =X (z) = Xe + (z, u(z))

for v = (z1, -+, zp) € B", such that w(0) =0, 9,w(0) = 0 and

ol Xe|’
Rl ™ W gz + 1| 0w loo(mn . )< = (1.6)
olXel olXcl” — 16
el 1 82 [|pmqmn . )+ + | Kelt || 8% [pmsn . )< C(nC)  (L7)
olXel plXcl

| Xe| ™ [Ju—w | (BP‘XC‘)WLH L u— 0w || 1 (BplXc‘)+‘ cl |l Oyu—0w |1, Bre ) T

N 1
Xl ) 03u = % i )< 1o (18)

IXecl
where we assume the unit-normal of C at X¢ to be (0, 1) for ease of notation (and hence
I1(X (0)) = X¢). Note that (1.6) is the rescale of the smallness of the C' norm of the
local graph of C, while (1.8) is the rescale of the small C® difference between the local
graphes of |X¢|!C and |X¢|~'%.

By Definition 1.2 and the rescaling argument, the same thing holds for each rescaled

hypersurface ¥; = /—t3, t € [—1,0) as well. That is, outside a compact set, 3
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is a normal graph over C \ Bg (with R > 1 depending on X, C); besideis, near each

Xc €C\ Bg, 3 is a graph over T\ -1 %

C and can be parametrized by
X, (2) = X (x,t) = Xe + (2, w () = Xe + (z, u(z, t))

which satisfies

X -1 “y t - [e'e] n ax Yy t _ax S n X 82 y t _82 o "
| C| || u( ) w ||L (Bplffc\) + ” 'll( ) w ”L (BPIX(:\) +| C| ” a:u( ) W ||L (Bp\Xcl
. 1
co | Xt BPu e t) — B2 co(gn < = 1.9
+ | C’ || xu( ) W ||L (BP\XC\) =16 ( )

We call t — X(z, t) = Xe + (2, u(x, t)) is the “vertical parametrization” of the flow
{Et}_1<i<0- Note that by (1.6), (1.9) and 0 < p < %, we have

3 5 A 5. 4
el < 1 X(z, )] = [ Xe+ (2, u(z, 1)) | < -] Xc]

for x € BZ ., t€[—=1,0); that is, | X| is comparable with |X¢|. Also, we still have the

following polynomial volume growth for X;:
H" (2N (Bx \ By)) <C(n, C)1" (1.10)

for allr > R.

On the other hand, ¥ is a F self-shrinker, which we can use to improve (1.9). To see
this, observe that under the condtions of being a F' self-shrinker and having a tangent
cone C at infinity, the rescaled flow {Et =/t Z}_l <4< TOVES by F curvature vector
and converges (in the locally C® sense) to the cone C as t ,* 0. In other words, we
can define a F' curvature flow {¥;} ;o with Xy = /=t ¥ for t € [-1, 0) and %o =C
which is continuous upto ¢ = 0 (in the locally C® sense). Besides, near each Xe € C\ Br
(with R > 1 depending on 3, C), we have the vertical parametrization of the flow (as

above) for t € [—1, 0] and the evolution of u; satisfies (by Definition 1.4)

dpu = \/1+\8xu|2F(Aff (z, t)) for (w1, , @) € Bl ~1<t<0  (L11)
5
u(-, t) “w on BZA ast /0 (1.12)

where the shape operator At# () ~ Ag (x, t) of ¥y (with respect to the local coordinate
frame {1 Xy, -+, O, X¢}) is equal to

Al (z, 1) = 0, (8%%212) (1.13)

) +
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It follows (by using (1.11), (1.9), (1.6), (1.7) and (1.13)) that
O] = |Xe| T+ 1008 | F (1%el4] (2, 1) |
< el (1510w D)) I F o)
rlXcl
in which we use the homogeneity of F. Similarly, by differentiating (1.11) and using the

homogenity of the derivatives of F', we get

el 11060 0) lqon ) +1%el | 900, 0 (o,

v |3 2
p\Xc|) +[Xel” | 9:05u (-, 1) HLO"(B"A )

plXel

+|Xel* || 8i03u (-, t) lpeqn 1< C (s Cy Il Flleswn) (1.14)

cl
which implies (by (1.14) and (1.11))

0
() —w| S/t Ora (-, )| < C(n, C I F llesw) [Xel™ (=)

Likewise, integrate the estimates for derivatives in (1.14) to get Vt € [—1, 0]

[ Xel 1w (, t)=w lpeepn ) +1Xel? || Doy £)=0aw oo (pn ) +1Xel? || D2u (-, ) =03 || (5
plXcl plXcl

+|Xel* || OFu (- t) — 3w ”LC’O(BZD(C‘) <C(n C I Flleswy) (—1) (1.15)

which is the improvement of (1.9) by using the F' self-shrinker equation (1.11).
In view of the pull-back metric g;; (z, t) = 0;;+0;u (z, t) Oju (x, t) and the associated

Christoffel symbols
Opu (z, t) O%u(x, t
Ff(ﬂ?,t):k( )z]( )
J 1+ |0pu(z, t)|?

together with (1.13), (1.15), the comparablity of |X| and |X¢|, (1.4), (1.5) and the

(1.16)

continuity and homogeniety of F' (and its derivatives), there exits R > 1 (depending on

%, C, U, || F sy, A #) such that for X; € 3 \ Bg, the following hold:

|X,| A¥ cU (1.17)
Ny _OF [ 4\ OF w24
0 < — = — < =0 .
o) < 557 (At ) Py (\Xt\At ) < 19 (1.18)

)

n

plX

cl

)
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A\Z Sjasl (4#) (vsat) | = | > asa;gs,g (1X41))-(1Xu2vs, 4t | < 2
’ (1.19)
X AT | + X2 Vs, AT + 12X | V3, A7 <C(n, C) (1.20)

where AZ% is the shape operator of ¥; at X; and VgtAZ% is the covariant derivative of

oF
Y

A# (with rescpect to ¥;). Note that F' is homogeneous of degree 1 is of degree 0

daF

95705 is of degree —1.

Now let 3 to be a F' self-shrinker which is also C® asymptotic to C at infinity. By the
same limting behaviour, ¥ is Cclose to ¥ (in the rescale sense) for | X| > 1, and hence
it can be regarded as a normal graph of a function h defined on . Later we would
derive an elliptic equation which is satisfied by h. To this end, we need the following two
lemmas (Lemma 1.7 & Lemma 1.9). The first one gives the decay rate of the fuction h
and the difference of the shape operators between X and Y as | X'| * oo; in the second

one, we estimate the coefficients of the differential equation to be satisfied by h.

Lemma 1.7. There exits R = R (Z, >0, C, || F ||C3(U)> > 1 so that outside a compact

set, Y is a normal graph over ¥\ Br and can be parametrized as
X =X+hN for X e X\ Br

where N is the inward unit-normal of ¥ and h is the deviation of ¥ from ¥. Besides,

there hold

X o) + 1XPVh o) + 1HXPVER (oo < C (0, C || F lleswy)
(1.21)

|IXP (A# =A%) gy + LT (Vo A# = Va#) s < C (0, C L F llesn)
(1.22)

HXPVEAT || oo (s 5) < C (10, C, || F lleswy) (1.23)
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where A% is the shape operator of Y at X = X + hN and Vs A¥ is the covariant
derivative of A# (which can be regarded as a 2-tensor on ¥ wvia the normal graphic

parametrization) with rescpect to 3.

Proof. Choose R > 1 (depending on %, %, n, C, | F lc3@y) so that ¥\ Bgr and
> \ Bg have the local graph coordinates over tangent hyperplanes of C with appropriate
estimates for the graphes as before. That is, for each Xex \ Bg, we can respectively

parametrize ¥ and ¥ locally (near II (X ) =Xc € C) by

X=X(x)=1I (X) + (x, u(z))

~ A~

X=X@=1 (X) + (2, ()

for . = (1,---, xp) € BZ\H(X)V which satisfy (by (1.6), (1.7), (1.8) and the compara-

bility of |X| and |X¢|)

X! o (B Ay || oo gn X102 |l oermn
B Y P R L R R b (] E Y P
54| a5
+ X" [| Opu ||L°°(BZ|H(X)‘) <C(n,C) (1.24)
X_l 1 o0 n 8JZN o0 n X 82~ o0 n
D P R L XY PR (T E Y PR
X4 823 || poo(gn <C 1.25
IR 05 e, 1< C 0, ) (1.25)

Also, by applying the triangle inequality to (1.15), we get

X|la- so( 70 X2 || 8p8 — O || oo gn X3 8% — &2
I X[la—u]g (B2 5 +[ X[ || 01 ullg (Bl +[ X7 || 0 |

ITI(

(x

+X|* | 8} — Ou lze<mn <C(n C | Flleswy) (1.26)

)
By (1.26), we may assume that 3 is a normal graph of & defined on X\ Bg; that is, for

each x € B" .
(X)

e , there is a unique y € BZ -, such that
2

| (X))l

A (=0pu, 1) A .
M(X) + (2, u(@) + W)t = T (X) + w3y (27
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or equivalently,

Ozu h(z) -
x — ——— | =(y,u
( 1+ [0y u\Q u @)+ 1+ |8$u]2> @5 @)
where % is the unit normal N of ¥ at II (X) + (2, u(z)). In other words, h is
defined implicitly by the following equation
. h(x)
u(Y(z) — v+ —————=| =0 1.28
(5(2) ( 1+@w> (129
where
Y(@) = o — hiz) e (1.29)
V14 |0ul? .

defines a map from B” 2(%)) into B ) Since |h (z) | stands for the distance from

(%
the point II (X) + (¢p(z), @ ((x))) on B (i.e. the RHS of (1.27)) to X, we immediately

have

h(@)] < [ (¥(@) —u(@(@)] <O (n, C, || Fllosw)) X7

To proceed further, first notice that for the unit normal vectors of ¥ and &

_ (_852117 1) N7 ) = (_8:Eﬁ7 1)
YOS A T i aar e
respectively, we may assume, by (1.26), (1.24), that
- 1
| N—-N HLOO(BZlH(A) )yt Noyp— N [ (B} ) <3
which implies that for each = € B"|H( L)
N ((2)) - N(z) > N(z) - N(z) = [N (¢(x)) = N(2)| [N ()|
> 1~ (IN @) - N @@)] + IN @) - N@)) > (1.31)

Let

Ozu s
© ) =u - - +
(z5) =1 (36 ’ 14+ | Opu |2> (u 1+ | Ozu |2)

then by (1.28), (1.29) and (1.31), we have © (z, h(z)) = 0 and

0,0 (z, h(x)) = —/1+ | B, (4(a)) N (4(x)) - () < —>
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Therefore, by the implicit function theorem, we have h € C? <B’;|H ()]
2

doing the implicit differentiation of (1.28) (or © (x, h(z)) = 0), we get

> . Besides, by

1+90a0-05u .

Oih = (5o — O 1.32
Virioap T RO e

. o2
- 6jﬁ o - 0; (9311 + 8ju ke = | h
V14 |0.ul? (14 |0,ul?)2

in which we sum over repeated indicies. Note that we can use (1.32), together with

(1.24) and (1.26), to estimate J,h. For instance, for the first term on the RHS of the

equation, we have
|00 — | < |Gino) —duorh| + |duorh — Ol

afju<g;—9h Osu )’d& 951! \2W

1
<C(nC, | F X2+ /
<C(m C I F lleswy) 1X] Z Viroul ) |V it P

<C(n,C | Flosay) 1XI72

Thus we get || 0zh HLOO(BZ\H(XN) < C(n,C || Fllesan) |X|~2. Similarly, doing the
2
implicit differentiation of (1.32) and using (1.24) and (1.26) yields || 92h || o (pn )

Fin(X)l

<C(n, C || Fllesw) |X|73. The bounds on the covariant derivatives of h follow from

the the following estimates on the pull-back metric g;; = ;X - 9;X and the Christoffel

symbols Ffj in (1.16) associated with the local coordinates = = (z1,- -, zp):
5]
57;j < 9ij = 1+ 8iu6ju < 161'] (1.33)
Tk = Mm?m <C(n,C, F)|X|! (1.34)
" 1+ |Opul2" ™ — T

where we have used (1.24). This completes the derivation of (1.21).
As for (1.22), let’s first observe that the normal graph reparametrization of )

amounts to the following change of variables:

Ozu

V14 |0zul?

X =1 (X) +(y, d(y) with y=1(z) =z — h(z) (1.35)

Note that from (1.35), (1.24) and (1.21), we have

0y )
Ok _ gt _ 1.5, (”l) PN L ) (|X|—2) (1.36)

du; NEurETA
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By taking R sufficiently large, we may assume that  : B%H(X)\ — Imy C BZ|H(X)| is

a C? diffeomorphism and the inverse of g% satisfies

g;”;’ =5+ 0 (\Xﬁ)

It follows that the components of shape operators A# of & and A% of ¥ with respect

to the local coodinates x = (1, - , ,) are respectively equal to

< Oy Oz Oy, ; Oy,
I iy i ’ L A=, | 1.37
PO oy M\ 1+ 9,52 ) lv=e@) ' "\ /1 + [0,ul? (1.37)
in which we sum over repeated indicies. Using the triangle inequality, combined with

(1.24), (1.26), (1.35), (1.21) and (1.36), we then get from (1.37) that

Al _ Al

3 3

<C(n, C || Fllosan) IXI72

Due to (1.33), the above implies that
A —AF| <C(n,C | F llosn) 1XT7
Also, in view of Vy A% ~ Vrfig, Vs A# ~ VrAg and
V, Al = 9,A] — T3, A1 + TI A3, V, Al =08,A] — T5,AI + TI A2 (1.38)
in which we sum over repeated indicies, we can similarly derive

Vs A# — Vs A#| <C(n,C, | F |leswy) 1X[7

This completes (1.22).
(1.23) follows from taking one more derivative of (1.38) and use (1.37), (1.34), (1.24),
(1.26) and (1.33). O

Next, we’d like to define a 2-tensor a on X (outside a compact set), which would be
served as the coefficients of the differential equation to be satisfied by the deviation h.

Note that by (1.17), Lemma 1.7 (in particular (1.22)), we may assume that
(1-0)|X|A* +9|X|A* cU VX eX\Bg, 0c]0,1] (1.39)

where A# is the shape operator of & at X = X + hN.
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Definition 1.8. In the setting of Lemma 1.7, let’s take a local coordinate z = (x1,- - , xy,)

of ¥ (outside a compact set) so that ¥ and ¥ can be respectively parametrized as
X=X (z), X(z)=X(z)+h(z)N (z)
where h (x)is the deviation and N (z) is the unit-normal of 3 at X (x). Then we define
g . . . L gF -
a¥ (z) = aj (x) ¢ (z) with () :/ iyl ((1 —0) | X| A% (2) + 0| X| A* (x)) do
k 0 i

and its symmetrization

a¥ () = 3 (& (z) + 2" ()

where g% () is the inverse of the pull-back metric g;; = 8;X - 9; X, A% (z) ~ Ag () =
—0;N - 0;X is the shape operator of ¥ at X (z), /leé (x) ~ flg (x,t) = —O;N - 9;X is
the shape operator of ¥ at X (z) with N (z) being the unit-normal of ¥ at X (z).
Note that
al (x) = /01 ggg ((1 — 0)|X| A* () + 0] X| A* (x)) df

_ /01 j;. (1= 0) 4% (2) + 4% () ) ap

oF

since 557 is homogeneous of degree 0; besides, the operator a is independent of the

choice of local coordinates and hence defines a 2-tensor on X.

We have the following estimates for the tensor a, which is based on (1.18), (1.19),

(1.20), (1.22), (1.23) and the homogeneity of F' and its derivatives.

Lemma 1.9. There exits R= R (Z, ¥, C, U, | F {les@ys As %) > 1 such that

% <a< ; (1.40)
\X|‘Vga‘ < 35 (1.41)
X VEa| <C (. €| F llos) (1.42)

for all X € &\ Bg.
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Proof. By (1.18), (1.19), (1.39), (1.22), the homogeneity and continuity of F' (and its
derivatives), there exists R = R (E, >,C U, | F les@y, A %) > 1 such that

A

i i L oF i 3 i
i< al :/0 o5 (- 0) X1 4% +0/X 4%) a0 < 55,
x| v2!] = 1x1] /0 Z 853851 —0) A* £ 04%) (1 -0)V, 4, + 09, 4L) do

1= 0) |X| A% + 01X| AF) (1 - ) | X2V, A} + 01X 2V, 4} ) do| < 3
1/”[5]85[()11 X1 A#)-((1 - 0) XY, AL+ 01X PV, AL )
Likewise, with the help of (1.20), (1.23), we can get

X% VEa| <C(n, C, || F llosw)
The conclusion follows immediately. O

Now we are in a position to derive an elliptic equation satisfied by h.

Proposition 1.10. There exits R = R (E, 3, C, U, | F {lesys A %) > 1 such that

the deviation h satisfies
1
Vs (adh) = 5 (X - Vsh = h) O (X7 |Vsh| + O (1X|72) |n| (1.43)

for X € ©\ Bg, where
(adh) Zv aV;h)

in local coordinates and the notation O (\X\*l) means that
0(XI7) | <€ (n, €, I F llos) 1X]™

Proof. Fix X € ¥\ Bp and take a local coodinate z = (z1,- - - , 2,) of ¥ which is normal

and pricipal (w.r.t. ¥) at X = X (0). That is

—0, A/

_ 5. k
— 65, T,

= Kibij

9ij =0 =0

where g;; is the pull-back metric, Ff:j is the Christoffel symbols and Ag is the shape

operator of ¥ at X (z). Denote the principal direction of ¥ at X by
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Throughout the proof, we adopt the Einstein summation convension (i.e. summing over
repeated indicies). Recall that we regard ) (outside a compact set) as a normal graph
over ¥\ Br and parametrize it by X = X () + h(z)N(z). We then want to compute
some geomtric quantities of 3 in terms of this local coordinate at X (0) = X + hN e

First, we compute

0; X = (1 — Kih) e; +Vih N

=0

= (0 — Abn) BX + o0 N

=0

OFX| == (ABVih+ AJVih+ VoAb - R) e + (A + ViR — AFR)N - (1.44)

J

x=0

which (together with Lemma 1.7) gives the metric of ¥, its inverse and determinant as

follows:
Vih V;h
Gij| = (1 —rih)? 0+ Vih Vih = (1 — w;ih)? (6 + ——2—
gszo ( Kih)” 65 + J ( Kih) <]+(1—/€ih)2)
’ VihVih \
G = (1 —Kh) 2 (5i-+’ d > 1.45
9|, = ) I ) (1.45)
= (1+2k;h) 69 + O (|X|—2) IVsh| +O (\X|—3) Ih|
Vih V,h
det § =(1—r1h)?--- 1—nnh2det(5i-+w>
g _, =@ =rh)"( ) It Ay
—1-2Hh+ O (\X|—2) IVsh| +0 (\X|—3) Ih|
and also the unit-normal of 3
N = (det§) 2 HX A AKX (1.46)

n

= (et )2 [ =S (Vi [T —rjh) | e + (1= kih)--- (1 = ruh) N
i=1 i

n

= > (1w + 0 (1X172) V2h| + 0 (1X17°) n]) Vih-c;
i=1
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+ (1 +0 (\fq—?) Vsh| + O (yf(y—?’) \h|) N

By (1.44), (1.45), (1.46) and Lemma 1.7, we compute the shape operator of Yat
X (0):

Al

(3

= Ay g™ = (@ij( : N) g* (1.47)

z=0

- <A,~k +V23h+0 (|X|—2) Vsih| + O (|X|—2) \h|) ((1 +2k;h) 6% + O (|X|—2) |v2hy)

+ (Aik +V23h+0 (|X|—2) IVssh| + O (|X|—2) \h|) 0 (|X|—3) Ih|

— A7 + 85 9%h + 0 (1X172) (IVsh] + |h)

and

X N| =X.N-X-Vsh+h+0 (|X|—1) Vssh| + O (|X|—2) | (1.48)

0

Thus, in view of the F self-shrinker equation satisfied by ¥ and fl, we get

ozF(A#>—F<A#>+%(X-N—X-N) (1.49)
=0
Lor . . ; 1
O (a0 dt ) a0 (A — ) — L x . ven -
_/0 o5 (1= 0) A% +04#) do- (& - A]) = 2 (X -Fsh—h)
+0 (IX[71) Vsl +0 (1X172) |n|
. 1 . .
—ald"Vhh — S (X Vsh = h)+0 (|X|—1) Vsh| +0 (|X|—2) In|
. 1 . .
= a*VAh = Z(X-Vsh = h)+0 (\Xy—l) IVsh| + O (\X|_2) Ih|
1 . )
= (a, V&h) — 5 (X Vsh = )+ 0 (IX") [Vsh] +0 (IX72) |n
Note that by the symmetry of the Hessian and Lemma 1.9, we have
y 1 .. )
(a, V3h) = a"Vih = 3 (2 +a'") Vi;h = (a, VEh) (1.50)

=V, (a¥V;h) — (Via¥) V;h = Vs - (adh) + O (\Xrl) Vs

(1.43) follows from combining (1.49) and (1.50). O
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Our goal is to show that h vanishes on X\ B for some R > 1, which would be done
in the next section through Carleman’s inequality. For that purpose, we first observe
that for each ¢ € [—1, 0), ¥; = /—t % is (outside a compact set) also a normal graph
over X\ Bp, and it can be parametrized as f(t = X;+ htN;. For the rest of this section,
we would show that each h; = h (-, t) satisfies a similar equation as h (-, —1) does in
Proposition 1.10. Due to the property that {Zt},ngo form a F' curvature flow, it turns
out that the evolution of h; satisfies a parabolic equation. We then give some estimates
for the coefficients of the parabolic equations (as in Lemma 1.9) , which is crucial for
deriving the Carleman’s inequality in the next section.

Now fix ¢t € [—1, 0) and define a 2-tensor a; on ¥; = \/—t X as in Definition 1.8.
First, take a local coordinate © = (x1,--- , x,) of ¥; (outside a compact set) so that X

and X, can be respectively parametrized as
Xt = Xt ([I}) s Xt (.Z') = Xt (.%') + ht (l’) Nt (l')

We define

or (1 -0) 4F (@) + 047 (@) ao

s . . ] 1
a/ (z) = Zaﬁg(w, t) gfj () with aj(z, 1) = /O 25

k

and its symmetrization

where g/ (x) is the inverse of the pull-back metric gij (z, 1) = 0; Xy (x) - 0;X¢ (),
Afé (x) ~ Ag (xz,t) = —0;N¢ (x) - 0; X (x) is the shape operator of ¥; at X; (z) with
N¢ (z) being the unit-normal of ¥; at X; (z), At# ~ flﬁ (2, t) = —0;N; () - 9; X, () is
the shape operator of ¥, at X (x) with N, () being the unit-normal of ¥, at X, ().

Then we have the following lemma, which is an analogous of Proposition 1.10 for

Ye=+—tX, t € [—1, O)

Lemma 1.11. There exits R = R<E, ¥, C, U, | F {les@ys As %) > 1 such that for

each t € [—1, 0), the deviation hy satisfies

1
Vs, - (at dht)_m(Xt-VEtht — ) = O (|1Xe|71) [V, he| +O (1X¢|72) |he| (1.51)
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for Xy € ¥;\ Bg, where Vy, - (a;dhy) = Z” A\ (aijvjht> and
01X | <C(n C I F lleay) X4l
Also, we have

11Xe] bt oo (s Bry + X PV 50t oo ) + 1 IXP VSR | oo (081

<C(n, C || Flles)) (=) (1.52)
Proof. Fix t € [-1, 0) and X, € Y \ Bg, then we have X = \/%t € ¥\ Bg and
Vs, - (agdhy) — —— (X, -V h — b)) | = —— (Vs - (@dh) — > (X - Vgh — )
e - Ay dhg 2(—t) t IWLZ t Xt_ = »-(a 5 by z,

= —= (0 (1317) Ivshl +0 (1%172) 1) |

= (0(1X7) 195l +0 (1%072) Inal) |

Similarly, to derive (1.52), it suffices to rescale (1.21) to get

Kl el + XV bl + 15V el |
t
= (=) (1| |Al + X[ Vsh| + |XPIV%R]) |

<C(n,C, || Flleswy) (—t)

Next, we define the “normal parametrization” of the flow:

Definition 1.12. X; = X (-, t) is called a “normal parametrization” for the motion of

a hypersurface {¥;} provided that
Ox = F ()N

That is, each particle on the hypersurface moves in normal direction during the flow.

(See also Definition 1.4)
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In the derivation of the parabolic equation to be satisfied by hy = h (-, t), we would
start with a “radial parametrization” of the flow {3:} ,,_ (i.e. each particles on the
hypersurface moves in the radial direction along the flow, see the proof of Propostion
1.13 for more deatails), then we make a trasition to the “normal parametrization” by
using a time-dependent tangential diffeomorphism. Note that in general, the “radial
parametrization” exists only for a short period of time (unlike the “vertical parametriza-
tion”), so later in the proof, we would do a “local” (in spacetime) argument, which is

quite sufficient for deriviving the equation.

Proposition 1.13. There exits R = R (E, ¥, C, U, | F {les@ys A %) > 1 so that in
the normal parametrization of the F' curvature flow {X¢}_1o,( , the deviation hy sat-
isfies

Ph = 8ih— Vs, - (a(-, t) dh) (1.53)

=0 (1X:|7Y) Vs, | + O (1Xe|72) |

h(,t)=0 ast 70 (1.54)

for X; € %\ Bg, —1 <t <0, where a(-, t) = ay.

Proof. Fixt e [-1,0), X € ¥; \ Br, and take a local coordinate x = (z1, - , zy,) of &;
around X. Define the “radial parametrization” of the flow starting at time ¢ near the
point X by

X(z, t) =

For this parametrization, we can decompose the velocity vector into the normal part

and the tangential part as follows:

0 X(z, t) = ————X;(z) (1.55)

-1
RNV

—F (4@ 0) N - Y 2(1_t)gij (2, £) (X (&, 1) - ;X (, )) 0:X (z, 1)

(X (2) - Ni (2)) Ni (2) + ng (z) (X; (2) - 9;X; (2)) 0iX; ()
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in which we use the F self-shrinker equation of ¥; = \/—¢X (in Definition 1.4) and
the homogeniety of F. Note that the normal part agrees with Definition 1.4 for the F

curvature flow. Now consider the following ODE system:

Oy — z; 2(1_75) G (0, ) (X (2, £) - 0,X (x, 1)) (1.56)

Let the solution (which exists at least for a while) to be z = ¢, (§). In other words, ¢;
is the local diffeomorphism on X; generated by the tangent vector field ﬁX (x, t)T.
By (1.55) and (1.56), the reparametrization X (¢; (£), t) of the flow becomes a normal

parametrization.

On the other hand, in the radial parametrization, h(z, t) = Y=h;(x). Thus, by

T

(1.56) and Lemma 1.11, we get

2 (e (€)1} = O (. oD s ¢ @) (X @ 1) X (@,1) kb (2 1)

z=0p1(£)
= h(n )+ X (2 1) Vs, h)
2(-t) r=p1(£)
= Vs, - (@(, t) dhy) + O (1X71) [V, hel + O (I1Xe]72) (el | o6
which proves (1.53).
(1.54) follows from (1.52). O

Lastly, we conclude this section by some estimates on the 2-tensor a (-, t) on each
time-slice Y.
Proposition 1.14. There exits R = R (E, S,C U, || F les@y, A %) > 1 so that for
€[-1,0), X; € X\ Bg, there hold

W >

<a(,t) < (1.57)

> w

|Xt|‘Vgta(-, t)‘ < 35 (1.58)

X[Vl )| <C (0, C I F lesn) (1.59)
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X |oa, B] <€ (n, ¢ F llosy) (1.60)

where the time derivative in the last term is taken with respect to the normal parametriza-

tion of the flow {¥:} ;.

Proof. We adopt the Einstein summation convension throughout the proof.

By using the rescaling argument and the homogenity of the derivatives of F', (1.57),
(1.58), (1.59) follow from (1.40), (1.41), (1.42), respectivly. As for (1.60), note that in

normal parametrization, we have
orall (1) = 0y (ai(t) gt ) = (9iaf (1) oY +2af(0) F (AF) 47 (161)

in which we use the following evolution equation for the metric along the F' curvature

flow {:} 14 (see [A]):
Orgiy (t) = —2F (AF) Ay (1), ugl! = 2F (AF) AP (1.62)

By the rescaling argument, (1.17), and the homogeneity of F' and its derivatives, we can

estimate each term in (1.61) by

X2 |F (aF) AP

= |F(1x14F) - 1x0) A7

<C(n, C || Fllesy)

and
1 2
] O°F N )
2 i _ 2 B 4 # ' B l l
| X+ | ‘8ta]| | X¢| ’ ; 855(95’@ ((1 0) Al + 6A; ) ((1 9)6tAk+93tAk) d@’
O*F 4 - . o
‘/ asﬂasl (1= 0) X AF + 01X A7) - (1= 0) |XiPo AL + 01X, AL ) dﬂ‘

1 ~
<C(n,C | Fllesq) ‘/0 (=o)X Lo AL + 01X, P9, AL) b

Thus, to establish (1.60), it suffices to show that

X210, AF | < C (n, C, || F lesn) (1.63)

X210, AT — 9, AF| < C (n, C, || F llos ) (1.64)
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for all X; € ¥;\ Bg, t € [-1, 0).
Firstly, let’s recall the evolution equation for the shape operator Az% in the normal

parametrization along the flow (see [A]):

OF
asL,

OF ;

oAl(0) = G (A7) VAl + 5o (AF) - (D A0 (19

N O*F
8505

which yields (1.63) by the rescaling argument, (1.20) and the homogeneity of F' and its

(AF) - g AL () VAL (D)

derivatives.

Secondly, we would like to compute 0 (Aff — Af) in the normal parametrization (of
{2t} _1<i<0) by using the same trick as in the proof of Proposition 1.13. Fix te[-1,0),
X e ¥; \ Bg, and take a local coordinate z = (21, , z,) of ¥; which is normal at
X = X (0). Consider the radial parametrization of the flow starting at time # near the

point X by X (x, t e X;(z). Then we have
==

flg (z, t) — Ag (z,t) = \/\/:::: (flz (z, 1) — Ag (z, f))

Let x = ¢ (§) with ¢; = id to be the local diffeomorphism on 3; generated by the

tangent vector field ﬁ X (, )" as before. Then the reparametrization X (¢ (€), t)

of the flow becomes a normal parametrization and we have

0 (A (2 (©). 1) - Al (@ (©).0) |, = (04 -04)) (er(0.)  (166)

£=0,t=t

e (€), 1) (X (e (), 8)- X (20 (), 1) (06 (00 (), 8) = O] (21(€) . 1)) |

2 (_t)g £=0, 1=t

=3 (l_f) {(A10) - 4lD) + o (X X)) (Vedi(h - veal®) ) } |

Note that for each ¢ € [—1, 0), by the rescaling argument and (1.22), we have

~ # ~
11Xl (A7 = AF) Diwqmngm + 11X (T AT = Vo, AF) limmazg (167
<{I1XP (A% = A7) g + | X1 (VA% = V547 ) [ ps g } (1)
<C(n,C, || Flleswy) (—1)

Combining (1.66) and (1.67) to get (1.64). O
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1.4 Carleman’s inequalities and uniqueness of I’ self-shrinkers with a

tangent cone

This section is a continuation of the previous section. Here we still assume that ¥ and by
are properly embedded F self-shrinkers (in Definition 1.4) which are C® asymptotic to
the cone C at infinity, and they induce F' curvature flows {3} ;. and {it}—1<t<0
with ¥y = /=1 %, ¥y = /=t for t € [-1, 0) and ¥y = C = . We also consider_tﬁe
deviation hy = h (-, t) of ¥ from ¥y for t € [—1, 0] (we set hg = 0), which is defined
on ¥; \ Br with R > 1 (depending on &, %, C, U, | F sy, A, #). For the function
h, recall that we have Proposition 1.13 and Proposition 1.14. Note that the Einstein
summation convension is adopted throughout this section (i.e. summing over repeated
indicies).

At the beginning, we would like to improve the decay rate of hy; as t 0 in (1.52)
to exponential decay. To achieve that, we need Proposition 20, which is due to [EF]
and [N] for different cases. The proof (of Proposition 1.19) would be included here for
readers’ convenience, and it is based on two crucial lemma. The first one is a mean

value inequality for parabolic equations from [LSU].

Lemma 1.15. (Mean value inequality)
Let P = 9; — 9; (a¥ (z, t) 9;) be a differential operator such that aij =a(, t) €

CH(BD) fort € [-1,0], a¥ = a’*, and

) D
AU < gl < Zgi
Sa =3

| (2, 1) — a¥ (3, 7) | < L (yx —E| 4+t —£|%)

for some X € (0, 1], L > 0, where B} = {x e R"||z| < 1}.

Suppose that u € C*! (B} x [T, 0]) satisfies
1 1
|Pul < L <T|amu| + T|u|>
for some T € (0, 1], then there holds

[ (z, £)] + V=E|0wu (2, )| < C (n, A, L) 72( . ful
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for (z,t) € Q (0, 0; @), where Q (x, t; ) = B? (z) x (=12, 0) is the parabolic cylinder

centered at (x, t) and f;, means the average of a function on the domain D.

Remark 1.16. To prove the above lemma, we may consider the following change of

variables:
(x,t) = (ﬁfc, Tf)
In the new variables, the equation in Lemma 1.15 becomes
)8511—8@. (¥ (VT'&, TF) 05,) ] < L(|95u] + [u])
for 7 € B{‘/ﬁ, t € [~1,0]. Then apply the standard theorem from |[LSU] to the new
equation.

The second lemma is a local type of Carleman’s inequalities from [EFV].

Lemma 1.17. (Local Carleman’s inequality)
Let P = 0y — 9; (a" (z, t) 0;) be a differential operator such that al = a'(- 1) €

CH(BY) forte[-1,0], a¥ = a’", a¥ (0, 0) = 69 and

y 1.
AU < gl < Zgi
sa’ sy

' (2, t) — a¥ (3, 7) | < L (yg; |+t £|%)

for some X € (0, 1], L > 0, where B} = {x e R"”

lz| < 1}.
Then for any fixed constant M > 4, there exists a non-increasing function @ :
(—%, 0) — Ry satisfying =t < ¢ (t) < —t for some constant ¢ = o (n, X, L) > 1, so

that for any constant § € (07 ﬁ) and function v € c?! (B{Z X (—%, 0]), there holds

MQ/ V2o M®s dr dt + M/ 10,V [* s M @5 da dt

Sa/ |Pv|2go(15_M<I>5dxdt+(UM)MiuIO)/ (|02v[* +v?) d:c+oM/v2go(5_M<I>5da:L
<
2

where @5 (t) = @ (t —0) and ®s(x, t) = P (x,t — ) = m exp (—%)

Remark 1.18. Note that the last term on the RHS of the above inequality vanishes

provided that V’ = 0.
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Now we state the proposition (of showing the exponential deay) and then follow [EF]

and |N]| to give it a proof:

Proposition 1.19. (Ezponential decay/ Unique continuation principle)
Let P = 9; — 9; (a¥ (z, t) 0;) be a differential operator such that aij =a(-,t) €

! (BY) forte[-1, 0], a¥ = a’?, and

y 1.
AU < g < Zgi
sa’ sy

| (2, t) — a¥ (3, 7) | < L (yx —E| 4+t —£|%)

for some X € (0, 1], L > 0, where B} = {x e R |z] < 1},

Suppose that u € C*1 (B} x [T, 0]) satisfies

1 1
Pu| < L —=|0,u]l + =|u 1.68
Pl < 2 lol + ) (165
for some T € (0, 1], and that either u vanishes at (0, 0) to infinite order (see [EF]), i.e.
VEeN 3C>0 st lu(z t)| < Cy(z] + v=t)" (1.69)
or u vanishes identically at t = 0 (see [N]), i.e.

=0 1.70
ul,_, (1.70)

Then there exit A= A(n, X\, L) >0, a = a(n, X, L) € (0, 1) so that
lu(z, t)| + |0zu(x, t)] (1.71)

1
< Aedi (|| Opu || oo By x—1,00) + || 0 | Loe(Byx [T, 0]))

forz e By, te [—aT, 0).

Remark 1.20. Later we would apply Propostion 1.19 under the condition (1.70) to show
the exponential decay of the deviation h as t /0. On the other hand, the proposition
implies that under the condition (1.69), the function v in (1.68) must vanish identically
at t = 0; in particular, it implies that u vanishes identically in the case when u is time-
independent. Such phenomenon is called the “unique continuation principle” and would

be used at the end of this section.
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Proof. By doing some kind of change of variables like = a*/ (0, 0)7% T, We may assume
(for simplicity) that a¥/ (0, 0) = §%.

In the proof, we will focus on dealing with the case of (1.69), since the same argument
work for the case of (1.70) with only a slight difference, which we would point out on
the way of proof.

Fix a constant M € [%, o0) (to be chosen), where 0 = o (n, A, L) > 1 is

the constant that appears in Lemma 1.15. Then for any € € (0, min {ﬁ, 1}), choose

smooth cut-off functions ¢ = {(x), n. = n(t) and n = n(t) such that

xBr, <C<xBr, | Clle2<4

1/2
] SMe=X[520 X[5Lo SNSX[52,q N0 ase N0

2
10me| < QMX[ 2 —1] T —X[-¢,0]
M €

;1
' M
where xpr is the characteristic function of Bf. Let v (z, t) = ((x)ne(t) u(z, t) be a
= 0 and convergers pointwisely to v (z, t) =

t=0
C(x)n(t)u(x, t) as € \ 0. Besides, we have

localization of u, which satisfies v,

Pl < Lon (loal + 7l (172

2L
+C (A, L) (10zu] + [u]) XB1\B, (z) + 2LM |U|X[ ] (t) + - [uf X[, 0 (t)

-2 -1
M M

1 1 2L
<1 ((ploavid + vl )+ €O LM (0] + fal) e (o) + 2 lxg-c 0

where E = {(3}, t) € B} x [-1, O)‘ F<|p|<lor 37 <t < _ﬁl} Note that in the case
of (1.70), it suffices to consider v (without using the e cut-off) in order to make the
function vanishing at ¢ = 0.

Then for each § € (0, 47), by Lemma 1.15 (applied to v¢) and (1.72), there holds

M2/ V2 M®s dr dt + M/ |0,vel* o5 M B s do dt
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2 2
< 20L2/ (;2 + |81;;6| >¢§‘M<I>5 dzdt+2C (A, L) JMQ/ (10zu]” +u?) 5" @ da dt
E

4o L2

0
/ / s MBsdrdt + (oMM sup/ (|0zvel® +v2) da

—eJ By t
By our choice of M, the first term on the RHS of the above inequality can be absorbed
by its LHS. Thus, we get

M2/ VchgM‘I)(; drdt < C (A, L) O'M2/ (|836u|2 +u?) <p(157M<I'5 dx dt (1.73)
E

M 2, 2 doL? [° -M
+4(cM)™  sup (|0zul* + u*) do + 5 s M P, drdt
—T<t<0J By € —eJB;

Now choose an integer & > M + %, then by (1.69) the last term on the RHS of (1.73)

can be estimated by

2 0
4"2L / / w2l My da dt (1.74)
€ —e J By
—|z?
40L2/ / Cr (lz] + v— )( 3) exp (4(Jtia)) drdi
~e /B, (=)™ (47 (=t + 6))2

<C(n,C ML)I/O / = e I (—t +0) dt
= n? k? 07 Y 62 e B1 —t+ 5 eXp 4(—t+ (5) X

0 oo
< C(n, Cy, o, M, L);/ {/0 (‘£|2+1)M+2 xp( |§’2> d{}(—t—i—&)gﬂ di

—€

€4 06)212 —55t2

SC(TL, Cka g, M? L)( 2

€

In view of (1.74), apply the monotone convergence theorem to (1.73) by first letting

0 ¢ 0 and then € \, 0 to arrive at

/ w2 M@ dx dt (1.75)
B,

< C (A, L)a/ (10,u® +u?) "M@ dzdt + (oMM sup / (|0pu?* +v?) da
E —T<t<0J By
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< C(n, A, L) <0/E o' M drdt + (UM)M> (H Oz (|7 oo 3y x 7o) + Il 0 ||%°°(B1><[—T,0])>

Note that in the case of (1.70), we can get (1.75) directly from taking the limit as § \, 0
without using (1.74).

Next, we would like to estimate the first term on the RHS of (1.75). For (z, t) € E,

either % <t< ﬁl, in which case we have

1-M M—142
— 1 M

@ M® (z, 1) < <t) P — (1.76)

a (4m (=1))2 (4mo)2

or % < |z| < 1and _WQ <t < 0, in which case we have
M—1 n

-y oM M3 M
@ P (x, t) < () - exp< ) 1.77
EO<\Tom)  @nan: " \6an (177)

M-1 5 n M—-142
(O'M) (%)2 _ (UM)Mfl % 2 M—l—i—% 1+3
(M) e (S ) A et

M—142
1 2
< <60<M_1+n>>
e 2

Note that in (1.77) we use the fact that the function 9 (£) = €M ~172 exp (%) achieves

M/16

its minimum on R at & = .
+at & M-1+2

On the other hand, for any (y, s) € B1 X [8_—]\14, 0), the parabolic cylinder @ (y, s; \/—s) =
4

B"— (y) x (25, 5) is contained in BY), x (3F, 0) and hence the LHS of (1.75) is bounded
below by

2 M exp :;/;1 2
uw VM ®drdt > - TE u”dxdt (1.78)
B X(%,O) (4.77')2 (—25) 2 Q(y,s;\/fs)

1/2

Combining (1.75), (1.76), (1.77), (1.78), we conclude that for (y, s) € Q (0, 0; 577),

/ u? dx dt (1.79)
Q(y,v/=5)

640 M—1+3
<Coua L) (B n) (100 B na + 10 B )
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Now let 8 = % (647")_1. For each (y, s) € B T, 0), we choose M = £

—S

—B
?/4 X [4L2(n+a)
2
so that M > w (and note that g~ < s < 0). By (1.79), we get

1
2
][ lu| dzdt < <][ u? dxdt) (1.80)
Q(y,s;\/TS) Q(%SH/TS)
<O A L0 (5) T (10 lumqmcimop + 1 lminnay)

1
B\ %
<C(n, A\ L, o) (24> (II 021 [ oo By x =7, 00) + | Wl Loo(By x [T, 0))

Let ¢ =

-1
%, A = max{C’(n, A L,o), <§1n2> }, then (1.71) follows from

(1.80) and Lemma 1.15. O

Combining Propostion 1.13, Proposition 1.14 and Proposition 1.19, we can show the

exponential decay of hy as t 0 as in [W].

Proposition 1.21. (Ezponential decay of the deviation)

There exist R = R (z, ,C, U, || F llesw, A %) >1L,A=A(n, C, | Flleswy, ) >
0, « =a(n, C || Fllcswy, A) € (0,1) such that for X € %\ Bg, t € [~a, 0), there
holds

Vbl + Bl < A exp (’XM’)

Proof. Fix X € £\ B with R = R (2, ,C,U, | Fllesw, A %) > 1, first we would
like to show that near X, there is a “normal parametrization” for the flow {%;} for
te[-1,0].

Recall that in the begining of Section 1.3, we show that there exists a constant
p=p(n,C) e (0,1)so that near X, each ¥; is the graph of the function u; = u (-, t)

defined on BZ CTg Clorte [—1, 0], where X¢ = II (X ) is the the normal projection

X
of X onto C. Note that |X¢| is comparable with |X|. In other words, locally near X,

we have the following “vertical parametrization” of the flow {¥;}_;,-:

X =X (z,t)=Xe+ (x, u(z, t))
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Here we assume that the unit-normal of C at X¢ to be (0, 1) for ease of notation. For
this vertical parametrization, we may decompose the velocity vector into normal and

tangential components as follows:

where A% (x, t), N (x, t) are the shape operator and the unit-normal of ¥; at X (z, t),
respectively. Note that the normal component is given by Definition 1.4 for the F
curvature flow.

Next, we would like to do suitable change of variables to go from this “vertical
parametrization” to the “noramal parametrization” of the flow (see Definition 1.12). For
that purpose, we use the same trick as in Proposition 1.13. Let z = ¢; (§) with ¢_; = id

to be the local diffeomorphism on ¥; generated by the following tangent vector field:

V=) T g O = T LV e 1) 6K
i=1 =1

That is, ¢ (§) = ¢ (&, t) satisfies

Orpr = (V' (B1, 1) -+, V' (i, 1), 61 (§) =¢ (1.81)

in which, by (1.9) and (1.14), we have

Vi < C(n,C || Fllesy) IXITH Vi=1,--+,n (1.82)

Thus, by taking R sufficiently large, ¢; is well-defined for £ € BZ|X\’ te[-1,0]. It
2
follows that the reparametrization X = X (¢ (§), t) of the flow becomes a “normal

parametrization” near X for t € [—1, 0]; that is,

0

(X (00(8), ) = F (4% (81 (9). D) N (4:(6) . 1

Let gij (§, 1) = Og, (X (¢ (§), 1)) - Og, (X (¢ (&), t)) be the pull-back metric associ-
ated with this “normal parametrization”, then by the evolution equation for the metric

in [A], the homogeneity of F' and the condition that ¢_; = id, we have

Ougis (1) = —2F (A% (91(), 1)) Aij (6¢(8), ) (1:83)
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= =2 X (00 (&), ) [ (|X (6:(9), )| 4% (6:(8), 1)) Ay (@1 (9) . 1
gij (&, —1) =65 + Ou (&, —1) Oju (&, —1) (1.84)
where the second fundamental form A; (z) ~ A;; (x, t) is equal to

02u(z, 1)

A (2 1) =
i@ 1) NAESEENEADIE

(1.85)

By (1.85), (1.6), (1.7), (1.8), (1.17) and the comparability of | X (z, t) | and | X[, the ¢2

norm of the matrix 0d.g;; (&, t) satisfies
’atgij (éa t)| <C (’I’L, C, H F ”Cl(U)) ’X’72 (186)

So by (1.84), (1.6), (1.8) and (1.86), the pull-back metric g;; (&, t) is equivalent to the
dot product 6;;.
Let Ffj (&, t) be the Christoffel symbols associated with the metric g;; (€, t), then we
have
oy = %gkl (vi.élj + Vg — Vléij) (1.87)

. ~ Opu(€ —1) Ofu(E ~1)
T (& =1 = — + 10z (673*1) 2

(1.88)

where g” = O01g;j = —2F (A#) A;;. Similarly, and also by (1.20), the homogeneity of

the derivative of F', the equivalence of g;; and d;;, we have

O] < C (n, C || Flleran) 1X17°

|Fi€] (67 _1)‘ <C (n) C, H F ||C'1(U)) |X’71

which implies

0% (€. )| <C (n, C || F ller) 1XI7! (1.89)

Now consider the deviation h in the local coordinates (, t), then the equation in

Proposition 1.13 becomes

0k — {06, (a% (¢, 1) 9e,h) + T (6, 1) ' (&, 1) 9, h } | (1.90)
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<C (0. C | Flleawy) (IX1719eh] + 1X172I1)

h(£0)=0 (1.91)

where a/ (¢, t) = a’? (¢, t) satisfies (by Proposition 1.14 and (1.89))

o S *g” (57 t) S a" (57 t) S 7923 (gv t) S 6"
C (n7 C, H F ||C3(U)) 3 A A
(1.92)
X1[0ca’ (¢, )| + [P0 (6, )| <C (0, C, I Flloswy, A)  (193)
Thus, by (1.89), (1.92), (1.84) and (1.86), the equation (1.90) is equivalent to
‘ath — ¢, (a7 (&, 1) D¢, ) ( (1.94)

<C (n7 C, | £ ||C3(U)7 )\) (|XA |_1\8§h| + ’X\_2|h|)
f ,t)e B% o —1, 0].
or (g ) g‘xl X [ ]

Let’s consider the following change of variables:

(= ((Px)z (Piv\ 7
en==En=((5%) & (51x)°7)
and let h = h o), a¥ = a¥ o). Then (1.94) and (1.91) in the new variables become

]at—f} g (aw' @® agjh> ‘ < C(n, C, || Flleswys M p) (19ch] + [B)  (1.95)

B’ -0 (1.96)
and (1.92), (1.93) are translated into

A

C(n, C | Fllesan)

i 1.
< 5 ) (1.97)

08 (€7) | + |0 (£1) | < € (n,C, | F oy, A p) (1.98)

for £ € By, f e [— (g\X\)_Q, 0].



42

Applying Proposition 1.19 to h (5, 5)7 we may conclude that there exist A = A (n, C, || F sy )\) >
0,a=a(nC, | F les@y, A) € (0, 1) for which the following holds:

|0zh] + | (1.99)

~ 1 - 7
< A exp ([\f) (H Ogh ’LW(B{Lx{—(’;l}()_Q,OD + | R HLOO<B?X[_(5X|)2’0D>
for (57 {) c B% X [—a (%\X‘\)_Q, 0). By undoing change of variables, (1.99) becomes

21 X119gh + |n] (1.100)

<A exp ('X'> <;’\f<\ lochll .. IRl )
At L (Bgmx[fl,o}) L (Bglxlx[fl,o})

for (€, 1) € BZ|X| X [—a, 0). Note that the pull-back metric g;; (¢, t) is equivalent to
8
the dot product ¢;; and that | X (x, t)| is comparable with |X|. The conclusion follows

immediately. O

Next, we’d like to go from the exponential decay to identically vanishing of the
deviation h outside a compact set. To this end, we have to derive a different type of
Carleman’s inequality on the flow {¥;} _;_,,, which is done through two lemma. The

first lemma is a modification of the integral equality in [EF].

Lemma 1.22. Let (M, g,) be a flow of Riemannian manifolds and P be a differential

operator on the flow defined by
Pv=0v — Vg, - (agdv) = 0 — V; (a (-, t) V;v)

where a; = a(-, t) is a symmetric 2-tensor on M. Then given functions G, ¥ €
C*Y (M x [-T, 0]) with G > 0, define a function ® as

0G4V, (aV;G) + Sir(0g) G

)
G

(1.101)

- g 1
=9 InG + V;(a’V;InG) + aV;InGV;InG + §tr(8tg)

and a 2-tensor Y as

g o 1 .
T = a*al'ViInG — 5&5@” (1.102)
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1/, , : , g
+ 5 (a’kvkaﬂ + "V et — alkvka”) VilnG
It follows that for any u € C2' (M x [=T, 0]), there holds

/M {(2@' — (@ - ¥)a") V;uVju + % (¥ — V; (aYV;¥) + (& — ) V) u2} G dw

g 1
:/ 2 Pu <8tu+ a’V;InGV u+ 2\1111) G duy (1.103)
M
g 1 2
—/ 2 <8tu+ a’V;InGVu+ 2\I/u> Gduy
M
g 1
-0 {/ (a”Viu Viu — \Ilu2> Gd,ut}
M 2
where p is the volume form of (M, g,).

Proof. Let’s begin with
O {/ aijviuvjquut} (1.104)
M

= /M {2aijVju V:0uG + a“¥V;u Vu <8tG + %tr (0:9) G) + 8;aYV;u Vju G} dp
in which we use the commutativity
Ordu=domu, du~ V;u
and the evolution equation of the volume form:
O dpiy = %tr (Org) dpt (1.105)

Applying integation by parts on (M, g,), (1.104) becomes
/M —2(V; (a7V;u) + a7V;1In G Vju) du G dpu+ /M a1V, uV;u (@G + Vi (VG + %tr (D19) G>

— /M a’V;u V;uVy (alelG> dus + /M 9,a"V,u ViuG duy (1.106)
By (1.101), integrating by parts twice and the symmetry of a;, (1.106) becomes

—2/ (Vi (a”V;u) + a”V;InG V;u) atquutJr/ a’VauVudGdy,  (1.107)
M M
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+/ {Vkaijviu Vju a’“lv, InG - 2V, (aijviu) Viu aklvl InG — 2a7V,u Viu Vjaklvl In G} Gduy
M
-2 / aV;uViu ale?lG dp + / 8’ V,;u ViuG dpy
M M
Then we recognize (1.107) (in order to make up the term Pu) to get

2/ {(Z“)tu -V (aijvju)) <8tu + aklvklnGVlu) — (6tu)2 — 249V, InGVju 6tu} G duy
M
(1.108)
+ /M Pa¥V,u ViuGdps — 2 /M a gk (V?l InG+V;InGV;ln G) ViuVieuGduy

—i—/ {aklvka” VilnGV;uV u — 2aijVjakl V;InGV;uViu+ 8,a”V;u Vju} G du
M

By (1.102), (1.108) becomes
2/ {(&tu — V; (a?V;u)) (8,511 +d"V,InG Vlu) — (O +a"v; lnGVju)2} G dyy
M

+/ @aijviuvjqu,ut— 2/ Tijviuvjqu,ut
M M

3 1 g
= Q/MPu (atu_|_ a’V;InGV u+ 2\IJu> Gdus — /M (8,511— Vi (awvju)) Yu G duy

g 1 2 . 1
_2/ <8tu+ a’V;InG V u+ 2\I/u> Gdut+2/ <8tu +a”V;InGVju+ 2\Ifu> Yu G du
M M
1 y g
—2/ \I!2u2Gdut—/ (2YY — ©a") V;u Vu G dpy (1.109)
M M

For the second term of (1.109), by the product rule and integration by parts, we get

—/ (Ou— Vi (a”"Vju)) u G duy (1.110)
M
= —;/ (0® — V; (a"Vu?) + 247 Vu Vju) UG dpy

M

= 1/ <at\11G+ v (8tG+ L. (0:9) G)) u? dps— Oy (/ 1\1121120 dut>—/ aVuViu VG dyy
2 Jm 2 M 2 M

—l—% /M {vj (aijvi@) G+ 24d9V,;,G V¥ 4+ UV (aijviG) } u* dpsg
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- ;/ (0,0 + V; (a"V;¥) + ¥ + 0 V;InG V,;¥) uQGdut—/ Va’VuVuG du
M M

1
—815 (/ *\IIZUZG dut>
M 2

Likewise, for the fourth term of (1.109), we have

g 1
2/ <8tu+ a’V;InGV,u+ 2\Ilu> VuG dpy (1.111)
M

:/ 8tu2\I/Gdut+/aijVZ-GVqu\IJd,utnL/‘If2u2Gdut
M M M

— _/ <8t\I/G + W <6tG + %tr@tg G>> u?dps + 0y (/ (2TE: dut> + / U22G dyy
M M M

- /M (V; (aijviG) U+ d9V,G V;¥) u? dpy

- _/ (0¥ + @V + V"V, InGV;¥ — U?)*Gdp, + 0, </ \IfuzGd,ut)
M M
Combining (1.109), (1.110), (1.111) to get (1.103). O

We hereafter consider the Riemannian manifold in Lemma 1.22 to be each time-
slice 3; with the induced metric g; evolving (in “normal parametrization”) like dyg =
—2F (A#) A (see [A]) and the differential operator (in Lemma 1.22) to be the one in
Proposition 1.13.

For the second lemma, we would choose suitable weight function G' and auxiliary
function ¥ in Lemma 1.22 in order to bound the LHS of (1.103) from below. The choice
of G is due to [ESS] and [W]. As for ¥, it is not shown in [W] but is used here to deal
with the last term in (1.102), which comes from the nonlinear nature of F' (see Definition
1.8). Note that in the linear case when F' (S) = tr (S) (see [W]), the coefficients of the
differenital operator in Proposition 1.13 becomes a¥/ = ¢g%; besides, (1.102) is reduced
to

T = g% gV, InG — HAY

The idea of using an auxiliary function for the nonlinear case is motivated by [N].
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Lemma 1.23. Assume that > < 67%)\3 in (1.1) and (1.2). Then there exists R =

R (E, S,C U || F les@y, A %) > 1 so that for any constants M > 1, 7 € (0, 1], let

G =exp (M(t+7)|X|% + |X|2> (1.112)

2
U= <§M(t+¢) X2 +2> all (X - 9,X) (X -9;X) + M|X|2 (1.113)

1/3 _1 A
—1-5 <2M t+7) X2+ 2> <tr(a) - 3>
A 3 _5 2 ii
+ tr(a)—g + 1M(t+7)]X] 2(tr(a)\X\ —aJ(X-GiX)(X-ﬁjX))
(note that G > 0 and ¥ > 0), there hold

2
279 — (& — ¥)a" > %gij (1.114)
1 y A2
3 (00 — V; (aV;¥) + (& —0) ) > §|X| (1.115)

for X € 3¢\ Bg, t € [-7, 0), where tr (a) = g;ja”, ® and Y% are defined in (1.101) and
(1.102), respectively, with the covariant derivative is taken w.r.t Xy, Oyg = —2F (A#) A,

and o = a¥.

Remark 1.24. In view of Proposition 1.14, the hypothesis that s < 6~%\3 amounts
to requiring the smallness of | X||Vy,al (compared with the ellipticity of a). Similar
hypothesis also appears in [N] and [WZ| when using Carleman’s inequalities to prove

the backward uniqueness of parabolic equations.
Proof. Let’s start with computing the covariant derivatives of In G:

V:InG = <;M (t —|-T) |X|7% + 2> (X . 81X) (1.116)

ViinG = @M(HT) X7 + 2) (gij + X - N Ay) (1.117)

=2 (4 1) [X]7E (X Py — (X 0X) (X 0,X)
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ot <2M (t+7) X% + 2) F (A#) Ayj

and its evolution

8InG = M|X|? + <;’M(t+7)\X|—% +2> (X -0,X) (1.118)

3 3 _1 #)?
= MIX[3 42t (SM(t+7)|X]7% +2 F(A )
in which we use the F' curvature flow equation in normal parametrization (see Definition

1.12)
X = F (A#) N

and the F' self-shrinker equation for ¥; = /=t ¥ (in Definition 1.4):
XN = 2tF (a%)

Thus, by (1.101), (1.116), (1.117) and (1.118), we have

2
o= <M(t+7') 1X|"2 +2> all (X - 9;X) (X - 0;X) + M|X|2 (1.119)

+% (gM (t+7) | X]"% + 2> tr (a)

+tr (a) + %M(t—i—T) 1X|73 (tr(a) | X2 — a¥ (X - 9,X) (X - 9;X))

+ @M (t+7)]X|"2 + 2) {(Viaij) (X - 0;X) + 2tF (A#) (F (A#) + aifAij> }— F (A#> H

which, together with (1.113), implies that

(1.120)

Wl >

A (3
<1>—\11:2<2M(t+r)|X|5+2> +

+ <2M (t+7)| X7 + 2> { (Vkakl) (X - 0, X) + 2tF (A#) (F (A#) + aklAkl> }— F (A#) H

By (1.102), (1.116), (1.117) and (1.120),
ij ij 3 -1 ik jl A ij
277 — (& — ¥)a" = §M(t+7')|X| 242 (a a”gkl—gaj (1.121)

. N 3 .
+ <2&lkaﬂgkl — 3a”> + §M (t+ 1) \X|_gamaﬂ (|X|2gkl — (X -0 X) (X - 8[X))
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+ (2M (t+7)|1X|7% + 2> {amvkajl +a*Va' — a*viald — a”Vkakl} (X -9,X)

+ @M (t+7)| X2 + 2) (QaikaﬂAkl —allafla, — F (A#) aiﬂ‘) % F (A#)
o P (A7) Hat

which can be estimated from below, using (1.57), (1.58), (1.60), (1.17), (1.20) and the

homogeneity of F', by

.y y 3 _1 A2 7\ i -2
2% — (® — ¥)a? > §M(t+7)]X] 242 1536y g7 +0 (1X]7?)

(1.122)
2

A2
+§g” +0 (|1X]7?)
where the notation O (]X|~2) means that
0(XI7) | < C(n, €, | F llcawy) 1X]72

Then (1.114) follows from (1.112) and the hypothesis (2 < 6=#A3) provided that R > 1
(independing of M and 7).

On the other hand, by (1.57), (1.58), (1.17), (1.20), the homogeniety of F, the
hypothesis that » < 674\3 (note that A € (0, 1]) and R > 1 (independing of M and

T), we can estimate (1.120) from below by
3 _1 )\ —92 )\ —92
®—U > (SM(t+7)|X[72 42 6—3%+O(|X| ) +§+O(|X] )

A A
— 1.12
G ( 3)

3
>(SM@E+7) X2 +2) 2+
2 9
Similarly, from the F' self-shrinker equation for »;, we can estimate the tangential

component of the position vector by
2
XTP = |XP — (X N)? = |XP — (2 F (4%)) (1.124)

= |X? - (2tF (yxyA#>>2 X7 = X[+ 0 (1X]7)

Consequently, (1.113) can be estimated (from below), using (1.57) and (1.124), by

2
v > <2M(t—i—r) 1X| "2 +2) al (X -0,X) (X -9;X)+ M|X|2 (1.125)
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3 )
> <2M(t—|—7) X2 +2> <3\X|2 +0 (\X|—2)> + M|X|2
Multiplying (1.123) and (1.125) to get

3 51
(®— W)U > <2M(t+7) X2 +2> SNIXP (1.126)

A

3 2 3 A
(M E+7) X727 +2) AHXPH(SM(t+7)|X]7F+2) M X [P+ SMIX|3
2 27 2 9 6
To achieve (1.115), let’s first rearrange (1.113) to get
3 2
U= <2M(t+7) X2 +2> ak (X - 9, X) (X - 9.X) + M|X|2 (1.127)
3 ! a' (X -0 X) (X -0, X) A
SM(t X["242) (tr(a) — -z
+(2 t+7) X2+ ><r(a) X2 6>
a" (X - 9.X) (X -9X) A
| X[? 3

Then we would like to take time-derivative of (1.127) and estimate it by using Propo-
sition 1.14, (1.17), (1.20), the homogeneity of F' and its derivatives, the F' self-shrinker
equaiton for ¥; (ie. X - N = 2tF (A%)) and the F curvature flow equation (i.e.
X = F(A*)N)), and also assuming that R > 1 (depending on \). Note that
we could simplify the compuation by taking “normal coodinates” of ¥;. For instance,

let’s compute and estimate the time-derivative of the first term in (1.127):

3 ; 2
O { (2M (t+7)|X|"2 + 2> af (X . 0,X) (X - 8lX)} (1.128)

1 X -F(A")N
—9 <3M(t+7) e +2> {§M|Xy—% + gM(t—i—T) <—2|X|—3> ‘gq)

5 } aM (X - 0, X) (X

2

+ @M (t+7)|X[72 + 2) {<8takl) (X - 0pX) (X - 8X) + 2a% (X - 8,X) (X - (F (A#> N))}
By taking normal coordinates, we may assume that (at the point of consideration)

gij = 0ij (so the norm is Proposition 1.14 becomes ¢? norm), {1 X, -+, 8, X, N} is an

orthonomal basis for R"*! and the last term in (1.128) can be computed and estimated

by

4 OF ( \# j # K
) (F (A )N) L (A ) (&Ai) N + F(A ) (—Al 0kX)

05!
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= O (1x14%) () ¥ + (10 (11.4%) (k) =0 (1)

so (1.128) can be estimated by

<3M(t+r) 1X|"3 +2> (3M\X\*% + MO (yxy*%)) a (X - 8,X) (X - 8,X)

2
+ <§M(t+7) X7+ 2) o (1)

By doing the same thing to other terms in (1.127), we arrive at

O = <§M (t+7) X2 + 2) (3M|Xr% +M-O (|X|*%>> af (X - 8,X) (X - 9,X)
(1.129)
3

+ @M(t +7)|X] 73+ 2)20(1) + M0 (IX[7%)+ <2M(t+7) 1X]72 + 2) O (X2 +0(1x|?)

9 2
> (;M(t F) X+ 2> <3AM|X|3) + <;)M (t+7) X7 + 2) O(1)+M-O (|X|’%>
Similarly, we can compute V; (aij V; \I') and estimate it by

Vi (aVV;¥) = a" V¥ + (Via”) (V; 1) (1.130)

- @M(t Fr)X]7E + 2)20(1) + <§M(t )X + 2) O (|X|7?)+M-0 (!X\—%)

Then (1.115) follows from (1.126), (1.129) and (1.130). O

Using the above two lemma, we can derive the following Carleman’s inequality on

the flow {3} |, (With ¥o =C).

Proposition 1.25. (Carleman’s inequality)

Assume that ¢ < 674\3 in (1.4) and (1.5). Then there exists R > 1 (depending on
v, %, C U, I F' lleswy, A, ) so that for any constants M > 1, 7 € (0, 1], and one-
parameter family of C? functions u; = u (-, t) which is compactly supported in ¥ \ Br

for each t € [—T, 0] and is differentiable in time, there holds

2 0
Ag/ / (IVs,ul® +u?) G dH" dt (1.131)
—T Zt
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0
g/ |Pu’G dH"dt + 3/ Vs u*G(:, —7) dH"
—7 J X A DI

+;/C\1f(-, 0) u2 (-, 0) G (-, 0) dH"

where H™ is the n—dimensional Hausdorff measure; P, G and U are defined in (1.53),

(1.112), (1.113), respectively.

Proof. Apply Lemma 1.22 to the hypersurface 3; (with 0,9 = —2F (A#) A), the differ-

ential operator P and the function u; to get

/Z {(ﬂij —(®—¥)aY) VuVu+ % (0¥ — V; (aV;¥) + (& — ¥) ¥) u2} GdH"

» 1 By 1 2
:/ 2Pu <8tu+ a’V;InGV;u+ 2\I/u> Gd?—l"—/ 2 <8tu+ a’V;InGV;u+ 2\I/u> GdH"
Et Zt

s 1
~0, {/ <awviu Vu-— 2\1/112) Gd?—[”} (1.132)
P
By Cauchy-Schwarz inequality, the RHS of (1.132) is bounded from above by

|Pu*G dH"™dt — 0, {/ <aifviuvju— ;qfﬁ) Gd?—l”} (1.133)
%

Zt t

By Lemma 1.23 and R > 1, the LHS of (1.132) is bounded from below by

)\2

=~ [ (|Vs,ul® +u®) GdH" (1.134)
9 Js,

Combining (1.132), (1.133), (1.134), we get

)\2
5 (IVs,ul* +u?) GdH" (1.135)
pI

g/ |Pu*G dH"™dt — 0 {/ (:ﬂviuvju— ;qfﬁ) Gd?—l”}
Zt Zt

Integrate (1.135) in time from —7 to 0 and then use (1.57) and ¥ > 0 to conclude

(1.131). O

Now we are ready to show that h vanishes outside a compact set. We basically

follows the proof in [ESS] (which is also used in [W]).
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Theorem 1.26. Suppose that 3 < 64\% in (1.4) and (1.5), then there extists R =
R (E, >,C U, | F les@y, A %) > 1 so that the deviation h (-, —1) of ¥ from ¥ van-

ishes on ¥\ Br. In other words, Y =X outside the ball Bg.

Proof. Choose R > 1 (depending on %, %, C, U, | F lles@y, A) so that Proposition
1.13, Proposition 1.14, Proposition 1.21, Proposition 1.25 and (1.20) hold; in particular,

we may assume that for all X € ¥;\ By, t € [T, 0]

A
[Ph| < & (Vs,h] + [A]) (1.136)
2
|Vs,h| + |h] <A exp <|)./i7|5> (1.137)

where A = A(n,C, | Flleswy, A) > 0, 7 = min{a(n, C, | F [caw), A), 1} (see
Proposition 22).
For any given M > 1 and R > 4R + 1, choose a smooth cut-off function ¢ = ¢ (X)

so that
XBr-1\Bry =G < XBr\Bg (1.138)
|D¢| + |D*¢| <3
Note that D¢ is supported in E = {X € ]R"‘H‘R <|X|<R+1lorR-1< |X]| < R}

Let u(-, t) = Ch(-, t), then u(, t) is compactly supported in ¥; \ Bg for each

t € [, 0], and we have, by (1.136), (1.137), (1.138)

‘Pu‘ - ‘Q‘Ph — hP( - 2a7V( vjh‘ (1.139)
A
< g Vsl + ful) + C(n, C, | Flleswy) (IVseh| + |RI) x&
A X
< 6 (IVsu| + [u))+ C (7% C, | F HC3(U)a )\) exp At XE

u(-,0)=0 (1.140)

By (1.139), (1.140), Proposition 1.25 and (1.137), we get

)\2 0 )\2 0
/ / (IVsu? +v®) GdH"dt < / / (IVsul? +u?) G dH" dt
9 —7 J X 18 —7 J 3¢
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C(n, C, || Flleswy, A / / exp< ) G dH"dt (1.141)
—T EtﬁE
+C(n, C, | F s )\)/ exp —2M G(—71)dH"
y Ly Cc3(U)» . AT )

where G is defined in (1.112). Note that by the choice 7 < & , we can estimate the last

two terms on the RHS of (1.141) by

/ / exp( ) GdH"dt < / / exp (MT|X’% - ]X]2> dH"dt (1.142)
—7 JXNE SiNE

and
ex _2ﬁ G _ dH"” _ 2 n

p Ar (, —7) dH" < exp (—|X|?) dH (1.143)

Consequently, by (1.142), (1.143) and noting that the first term on the RHS of (1.141)

can be abosorbed by its LHS, we get from (1.141) that

2 0
AS/ / (IVsul® +u?) G dH" dt (1.144)
—T Zt

0
<C € F o) [ /E e (Mrx|} - |XP) e

4C (0, €, | F ey N) [ exp (<IXP) an

0
<o el Flew [ [ e (MR- (R 1))
-7 t R—1 R

0
+C (n, C, || Flles@y, A) / / exp (MT (R+1) 3 R2> dH"dt
—71 J 3N BR\BR+1)

+C (1, C, || F lleswy: A) / exp (—|X[2) dH”

-7

The first term on the RHS of (1.144) goes away as R 7 oco; the last term is bounded
from above by C (n, C, || F les @y, A) because of (1.10). For the LHS of (1.144), we

have

2 0
/\/ / (IVsul® +u?) GdH dt > / / - w’GdH"dt
8 -7 J 5 % Etﬁ(B»R,l\BMg)
AQ
> 2 exp (4MTR2 / / h2 dH"dt
18 Z J%n(Br-1\Bar)
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Therefore, let R " oo in (1.144), we arrive at

/ / h? dH"dt (1.145)
Z JEi\Bagr

< exp (—4MTR%) C (n, C, || Fllesys V) {exp (2\/§MTR%) + 1}

Let M oo in (1.145), we get hy = h (-, t) vanishes on ¥ \ Byg for t € [—7F, 0], and
hence f]_g = \/g Y coincides with E_% = \/g > outside Bypr, which in turn shows that

Y coincide with ¥ outside the ball of radius R = O

4R )
A /7‘/2
By the previous theorem and the “unique continuation principle” in Proposition 20

(see also Remark 1.20), we have the following conclusion on the overlap region of ¥ and

3.

Theorem 1.27. Under the same hypothesis of Theorem 1.26, let
0 — {X exn i) S coincides with ¥ in a neighborhood of X}
then X9 is a nonempty hypersurface and 9%° C (82 U 85])

Proof. Note that %9 is a nonempty hypersurface follows from Theorem 1.26 and the
definition of X0,

Suppose that 90X ¢ (82 U 85]), then pick X € 90 \ (82 U 65)) and choose a
sequence {Xm € EO} converging to X. Note that N (X) =N (X) since N (Xm> =
N <Xm> for all m € N, where N , N are the unit-normal of ¥ and X, respectively.
Thus, near X , 2 and 3 can be regraded as graphes of u and u, respectively, over By C

TeY = TXfJ for some p € (0, 1). That is, ¥ and ¥ can be respectively parametrized by

~

X=X@=X+(z,u(x), X=X =X+ (z () for x € B,

in which we assume that N (X ) =N (X' ) = (0, 1) for ease of notation. Note also that
Ag 0) = /Lj (0) since A7 (x,,) = Aij () for all m € N, where x,, is the coordinates of
X, (e X (zm) = X,n) and
; oju(x) ~ s oju(x)
A () ~ Al (2) = 0; | == |, A7 ()~ A (2) = 6, | L=
(@) ~ 4] (2) ( H,axw) @)~ A = 2D

(1.146)
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are the shape operators of ¥ and, respectively. As a result, we may assume (by

choosing g small if necessary) that 121'27 (x) is so closed to Ag (x) that the set
= {(1 —0) Al (z) + 04 (x))az € B, 0o, 1}}

is a bounded subset of 2 and there holds

< ggj (1= 0) 4% (@) + 04% (2)) <

)

A

>l —

for some A\ € (0, 1].

From the F' shrinker equation in Definition 1.4, we get

V1+ |02 F (Ag' (x))—i— % (e 0u) =0, /1+ |00 F (Ag’ (x))+ % (i — z-9,i) = 0
(1.147)

Substracting (1.147) and using (1.146) and the mean value theorem, we then get an

equation for v =1{i —w:

a’ 05w + b9, + %v =0 (1.148)
with
i ] or i oF ~ Ok Oju
+ () :/0 {8Sj <(1 —0) A% (@) + 047 (x)> Sk <(1 —0) AT () + 047 (m)) W}
Z (1.149)
' L oF - Dpettg 0211
i) =— [ 2 ((1-0)a* # () Okl Oilo.
@) == [ 05 (-0 4" @it @) B0 s

do

) Ojug agkug + Orug 8i2ju9

L oF -
_ Il _ # #
/0 5" (- 0) 4% (@) + 04# (2) e
F

1 . 2
+3 / 8—k ((1 —0) A* (z) + 9AF (ac)) Oyt Oito Oitdo Fiuo
0 05 (1 + |9,u[2)2

; 1
_ Omy 0 — —x;
\/1+|8xu9|2 2

where 1y = (1 — 0) u + Ou. Note that (1.148) is equivalent to the following divergence

+/01F ((1 — 0) A% (2) + 0A* (:v))

form equation:

ij Ji ij Ji )
—a,(“ - ajv> - (—ai<“ > >+bﬂ> ;v + %V (1.151)
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And by (1.149), (1.150) and (1.146), we have the following estimates for the coefficients

of (1.151):
A aid 4 qit
< < .
[ Ouug [P0y~ 2 C(H F ey, ”u||02(33)> (1.152)
(Bg)
9,09 + 6] < C (I F llcay 1w llos(sy)) (1.153)

On the other hand, since X,, € £° and X,, — X as m /" 00, v is vanishing at each
neighborhood of x,, and x,, — 0 as m * co. Thus, by Proposition 1.19 and Remark
1.20, v vanishes on B" (2, 1 (@ — |2m])) for all m € N, which implies that v vanishes
on B" (07 %g). In other words, ¥ coincides with ¥ in a neighborhood of X , which

contradicts with X € 90, O

Lastly, we would like to estimate s (defined in (1.5)) in the rotationally symmetric
case. For that purpose, we have to first compute the covariant derivatives of the second

fundamental form of C.

Lemma 1.28. At each point X¢ = (osv, s)€ C (with v € S" 1 s > 0), pick an

orthonormal basis {ef, cee eg} for T'x.C so that eg = (Ulyﬂlr)z, then we have
1
c C\ _ Cs. . . Cc _ _C _ Cc _
AC (C,L',ej)—/ﬂ:i(sl], wzthﬁl——ﬁnil—U|Xc’7 Hn—o (1154)
c c c —1 kS .
VeAc (e, €5, €f) = U|XC’25M = — !Xc\%’ Vi, j#n (1.155)

VCAC (62'67 6?7 eg) = VCAC (61C7 egn 6%) = VCAC (egn egv eg) =0 VZ, j? k 7é n
(1.156)
where Ac is the second fundamental form of C and V¢Ace is its covariant derivative.

Note that Ac and V¢Ac are totally symmetric tensors (by Codazzi equation).
Proof. Let’s parametrize C by

Xe = (0sv,s) forveS" ! seRy
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and take an othornomal local frame {ef, N efL} of C so that

8 X (O'I/ 1)
C S C )
" ‘554<C’ \/1—|—O’2 ( )

By the general formula for the principal curvatures of hypersuface of revolution, we get

1 1
C C C
1 T e ok (1155
Since {ef, e eg} forms a principal basis at each point, so by (1.158) we have

A =6 = ! _ whenever i # n (1.159)

v ' oosV1+02  olXe|
Agj =0=A%, wheneveri # j

where Aij = Ac (ef, ejc). Also, by the orthonormality of {e(f, ceey eg} and the product
rule, the Christoffel symbols CFfj = (Di? ejc-) . ei satisfy

°py. = (Dgi ef) L= (ng ef.) Lo = T, (1.160)

Thus, from (1.159) and (1.160), we deduce that whenever i, j # n or i = j = n, there
holds
VRAS = Do (A7) — “Ty,A5; — “TiyAG = Dee (A7) (1.161)

JJ

By (1.161), (1.159) and (1.157), we get

1 1
VCAS = D¢ (k56;5) = as< )5
! ¢ (170,) V1+ o2 osv1+o2) 7
-1 —
87 = S
o(l+02)s2  o]Xc2

ifi, j#n
which verifies (1.155).

By (1.161), (1.159) and noting that |X¢| is invariant along €§ for k # n , we get

1
Vi AL = D (K§0i5) = Dee <G]Xc]> 0i; =0 ifi, 5, k#n (1.162)
From (1.161) and (1.159), we have
VEAS, =Dy (AS,) =0 Vi (1.163)

Then (1.156) follows from (1.162) and (1.163). O
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Combining (1.1), (1.2), (1.3) with Lemma 1.28, we conclude the following:

Proposition 1.29. The constant » defined in (1.5) can be estimated by

% < Cln (‘82 (1 0) ‘ n ‘alf (?, 0) O f (?, 0) D (1.164)
Proof. At each point X¢ € C, take an orthonormal basis {ef, cee eg} for T'x,C so that
eC = &% Then by (1.2), (1.3), Lemma 1.28 and the homogeneity of the derivatives
of f, we get
2 C\ _ C ... C
aszasy (0] = [r 08 AT ) 0T ()
9SS K§ — K

(1 (.0)| + o (.0) -0 (.0)

which implies that

| c'(Z 575t (40) (VcAé*)Z\

Therefore,

n = sup ‘

0’F " N
XCGCQ(Bg\B%) o 8S7a8L. (Ac> (VcAc>k‘

< (1 (.0) + s (1.0) - (1.)
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Chapter 2

Existence of self-shrinkers to the degree-one curvature flow

with a rotationally symmetric conical end

2.1 Introduction

Let C™ be a rotationally symmetry cone, say
C= {(sz, s) ‘ vesl sc ]R+}

with o > 0. Suppose that X is an orientable and properly embedded smooth hypersur-

face in R which satisfies
1
H+§X-N:0 vXeX

COO
02 25 C as o\, 0

where X is the position vector, N is the unit-normal, H = k1 + - - - 4+ Kk, is the mean
curvature and kq,--- , Kk, are the principal curvatures of 3. Note that k1,---, k, are
defined to be the eigenvalues of the second fundamental form A, which is a bilinear form
defined by

AV, W)=DyW - -N

for tangent vector fields V and W. Then 3 is called a self-shrinker to the mean curvature
flow (MCF: an one-parameter family of hypersurfaces for which 9, X+ = HN holds)
which is C* asymptotic to the cone C at infinity. It follows that the rescaled family
of hypersufaces {Zt = \/th} forms a mean curvature flow starting from ¥ (when
t = —1) and converging locally C*¥ to C as t 0. In the case when ¥ is rotationally

symmetric, one can parametrize it by

X (v, 8) = (x(s)v, ), veES" s€(c1 ca)
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for some constants 0 < ¢; < ca < 0o. We may orient it by the unit-normal

—v, O
N (nor) (2.1)
1+ (0s)?
At each point X € ¥, choose an orthonormal basis {e1, - , e,} for Tx3 so that
. _ 0sX  (Osrv, 1)
"0 X 1+ (0st)2
then {e1, -, e,} forms a set of principal directions of ¥ at X with principal curvatures
1 —0?

Kl =+ " =Fkpl]=—"F—o—o, kK = T%T (2.2)

r/1+00)2 " (14 ()2}

As a result, ¥ is a rotationally symmetric self-shrinker to the MCF if and only if

n—1 0?r
r 1 + |0sr|?

1
) + 5 (sOstr —r)=0 (2.3)

Kleene and Moller showed in [KM]| that there exists a unique rotationally symmetric

self-shrinker
¥: X=X (v,s) = (r(s)r,s), veS" ! seclR, )

where the radial function r = r(s) satisfies (2.3) and

S)I‘(S) - 08‘ < M, s

2(n—1)

asr—a‘ <

by analyzing the following representation formula for the above ODE:

r(s) =os
| o 1 [¢ -1
+s/s > {/x € exp <—2/x 7 (14 (@ (7)?) d7-> [2(5) (1+ @ (5))2)] df}dx
On the other hand, let f = f (\1,---, A\,) be a C*, symmetric and homogeneous of

degree-one function defined on € C R™ which satisfies
0;f>0 VYi=1,---,n

Note that by the property of f, we may assume that its domain €2 is invariant under

permutation and homothety, i.e.

()\U(l),--- 7)‘0(71))7(9)\17"' , 0An) € Q YoeS" 0>0
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provided that (A1, -+, A,) € €, where S™ is the symmetric group.

Andrews in [A] considered the following evolution of hypersurfaces in R™*1:
O X" = [ (K1, s k) N

where k1, --- , Kk, are the principal curvatures of the evolving hypersurface. In partic-
ular, if we take the curvature function to be f (A1, -+, A\p) = Ay + -+ + A, then it
becomes the mean curvature flow. We call an orientable C? hypersurface ¥ in R"! to

be a “f self-shrinker” to the above “f curvature flow” provided that
1
f(R1, -, kn) + §X-N:O

holds on . As the MCF, the rescaled family of “f self-shrinkers” is a self-similar
solution to the f curvature flow; that is, the one-parameter family of hypersurfaces
{Zt = \/th}KO is a f curvature flow. Furthermore, if ¥ is C* asymptotic to the cone
C at infinity, the rescaled flow {¥;},_ converges locally CFtoCast 0.

In this chapter we extend the existence result in [KM] to the class of f self-shrinkers

with a tangent cone at infinity. We show the following:

Theorem 2.1. Suppose that f is C¥T' in a bounded neighborhood K of (?, 0) =
(1,---,1,0) € R™ with k > 3. Then there exist R = R (n, k,C, K, || f ||Ck+1(lc)) >1
and u € C§[R, o0) such that

—
M +u(s)|v, s ‘Z/GSn_l,SE[R7 00)

is a rotationally symmetric f self-shrinker which is C*asymptotic to C at infinity. Be-

sides, the corresponding self-similar solution to the F curvature flow is given by

gs

Y =/t Y = os —t +u(s)|v, s||ves™t se VIR, x)

fort e [—1,0), where u; (s) = +/—tu (\/%7) and it satisfies

k+26k—1
s

|'8% Ut || ooy, 00) + | 57050t [l poery—tr, 00y -+ || Ut || oo [/=ER, o)

< O (n kIl f llexgey) (7
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| s* 05 ur || ooy =im, 00) < € (n’ k C, Il ”Ck(’c)) (=)

for allt € [-1,0).

Note that in view of the principal curvatures of C:

1
n§:~--:ﬁ271:7 KE =0

osV1+o2 "
(see (2.2)) and the homogeneity of f, the condition that f is C**! in a bounded neigh-
borhood K of (?, 0) = (1,---,1,0) € R implies that f is C*t! in an open set
containing all the principal curvatures (Hf, cee /i,cl) of C.
In the next section, we would use a similar representation formula as in [KM] to study
the ODE corresponding to the f self-shrinker equation. Then we use that, together with

Banach fixed point theorem, to show the existence of f self-shrinkers.

2.2 Proof of the main result
First of all, given a hypersurface of revolution ¥ in R"*! parametrized by
X(v,8)=(r(s)v,s) forveS" 1 se (e, )

for some constants 0 < ¢; < ¢g < 00. By (2.1) and (2.2), ¥ is a rotationally symmetric

f self-shrinker if and only if

1 — —0%r 1 sOgr—r
f 1, E A L S 2.4
WIT@N? (1t @) 2V @n? 24
— . . .
where 1 = (1,---,1) € R®". By the homogeneity of f, (2.4) is equivalent to
1—» =0 1
2 _ S —
£ (8ST; as'r7 T, S) = f (T 1 s 1—|—(887")2> + 5 (S (937" — T') =0 (25)
where
@ =5 =f (2T L)+ S ep—2) (26)
P4, P, 2 8) = 5 ) 1+p2 9 Sp — %2 .

On the other hand, ¥ is C* asymptotic to C at infinity if

s ck
or 2 —o0s == 0 asp\0 (2.7)



63

Let
u(s)=r(s)—os (2.8)

then (2.7) can be written
Ck
ou <Z> Jos ) as 0N\, 0 (2.9)

which is equivalent to
u(s)=o0(s), Osu=o(1), -, 6§u= O(Sl_k) as s N oo

Now we would like to get an equation of u by first plugging 7 (s) = os + u (s) into

(2.5) and then using Taylor’s theorem get an expansion. To achieve that, let’s define

3(u(s), ) =o0s+0u(s) (2.10)
p(u(s), ) =0s(cs+0u(s)) =0+00su (2.11)
q(u(s), 0) =0%(os +0u(s)) = 600%u (2.12)

then (2.5) can be written as

p(q(u(s), 1)7 p(u(s)a 1)7 3(U(S)a 1)33):0

By Taylor’s theorem, (2.6), (2.10), (2.11), (2.12) and the homogeneity of f and its
derivatives (with f being of degree 1, d;f being of degree 0 and 8i2j f being of degree

—1), the above equation becomes

0= @(q (u7 1)7 p (u7 1)7 3 (uv 1)7 S) (2'13)

= (a(u, 0), p(u, 0), 3(u, 0), 5) + G {p(a(u, 0), p(u, 0), 5(u,0),s)}|

+/ 33 {0 (a(us 0) . p(u, ). 3(u, 0), 5)} (1—60)do
0

u
1402 s — 0252
1=

- 19 7—>
Cr(2re) MET), RUET, 1
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— A (T
—éf(?, 0)— anjig_la;o)a?u— Zlalffz;o)u+ %(s@su—u)—l— Qu

with the quadratic term Qu being

B Losd2, fow B 2,))2
Qu(s) = </O )t (1 9)d0> (0Fu) (2.14)

! 2 o Aa%p? . 29 (1-3p%)\ . 2
+</0 (Usannf w7(1+p2)4+3nf w 1) (1 —0)do | (0su)

+(/01<Z”105 fou;ZJr%Z aifw(le)de)uz

! 2qp 2p
+2</ <0562 fow( +p)3+8f w(1+p2)2) (1—9)d9>a§u68u

1 n-1 1 n—1
+2</ > e 0>d9)“82“2< 3 o5 fow%“‘M)“&“

1+ p2)%;
whero 3 = (4(5), 8, p = p(u (s}, 6) 4 = (s}, ) anc

=w(u(s =o0s L 7 _—aluls). 0)
w=wluls), 6)= <3<u<s>,0>1’1+p<u<s>,e>2> (2.15)

_< L= —2005 0%u )
L+02% 7 14 (0 4 005u)°

Rearrange (2.13) to get

1 1+ 02

Lu=0%u— ————— (505u —u) (2.16)
20,1 (T, 0)
— —
_ f(1,o) n—laif<1,0)
== s Tl ut Qu
Onf ( L, 0) i—1
where L is a linear differential operator defined by
1 1402
L= — T _(s0,-1) (2.17)
29, f ( 1 0)

To summarize, in order to find a rotationally symmetric F' self-shrinker ¥ which is
C*k asymptotic to C at infinity, it suffices to solve the ODE (2.5) with the condition

(2.7), which (by (2.8)) amounts to solving the problem (2.16, 2.9). We would do this
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by regarding (2.16) as a fixed point problem of a nonlinear map in a suitable normed
space of functions where (2.9) is satisfied and the nonlinear map is a contraction. Then
the existence of solutions to our problem is assured by Banach’s fixed point theorem.
To this end, we need two lemma.

In the first lemma, we analyze the linear differential operator £ in (2.17). We derive
a representation formula for the associated problem as in [KM], which is then used to
estimate its solutions.
Lemma 2.2. Fiz R > 0, then for any n € Cy[R, ) (i.e. n € C'[R, 00) and n — 0 as

s/ o0), there is a unique C?[R, oo) solution w to the following problem:

Lw=mn on[R, c0) (2.18)
E)&:(sasw—w)—>0 ass /oo (2.19)
s
where L is defined in (2.17). Besides, w satisfies the following estimates: ¥y > 0
1 onf (T, 0)
max {|| s7w || Loo[r, 00y, | 877 Osw || poor, 00) } < 4W 1870 [|Loc (R, o0) (2:20)
| 702w || oo R, 00) < 4 || 87 || L0 [R, 00) (2.21)

and w € CJ" 2[R, oo) whenever n € CP'[R, o) for m € N.

Proof. Firstly, if w € C?[R, o) were a solution to the linear problem (2.18, 2.19), it
must satisfy the following: given a sequence {R; € (R, 00)} .y such that R; 7 oo as

j /oo, then from (2.17), (2.18) and (2.19), we get

9 (W 2 s 1402 wy 7 '
W%"fﬁ') & (R; O;w(R;) — w(R;)) = 0 asj oo (2.23)
j

From (2.22), we get

; R; 1 R 1 2
W(ij) — (R; Osw(R;) —W(Rj))/ x? exp —/ T%dq- dx
RJ s 2/, Onf ( 1, ())

(2.24)

w(s) = s
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+s /SRj % (/ng £ exp (; LsT{de) n(§) d§> dx

B 1 l+o 2 o )
s [ (/ feXP(48f(1 5 ¢ ))n(é)df)d

Note that in the last two terms of (2.24), we have

R; 1 1 2 oe] 1
/ T2 exp —1_‘_7: (Rj2 - x2) dx < / x2dr = - (2.25)
s Onf ( T, 0) s s

1+ 02
[eolimigea)e o
1402 onf (T, 0)
/ §exp< 4af2_1 O) (52532)) al§:21+702

Fix s € [R, o0), we take limit (as j  00) of (2.24) and use (2.23) and (2.25) to get

w( /S (/ £ exp ( 48 12_0 ) (52 x2)> n(§) d§) dz (2.27)

Conversly, if we define a function w by (2.27), then w € C2[R, oo) and it satisfies

Osw = /OO 1 (/ Eexp( ‘113;2100)(521:2)) n(ﬁ)dﬁ) dx (2.28)
14 o2
—/ §exp( 48f<1 0) (5232))77(5)615

1 1+a 1 1402
O*w = 2 _ g d¢ + 2.29
W 28nf 3 0 / £exp< 4af(1 0) (¢ S))n(€)§ n(s) (2.29)

From (2.17), (2.27), (2.28) and (2.29), we immediately get (2.18). To verify (2.19), we

use (2.26) and that ¢ vanishes at infinity to get

14+0° 2 2
X2 (/ fexp( (T ¢ x))n(&)ds)d:c
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%
o.f (1,0
§2f<) (sup]n(f)])/ d—x—>0 ass /' 0o
E>s s x?

1+ o2

|s Osw — w|</ gexp( IH(}F)(§282)) (&) d§ — 0

48nf(1 0
%
onf (T, 0
§21gr02) (?ign(i)\)-m ass /' 00

Thus, (2.27) defines a solution to the linear problem (2.18, 2.19).

To sum up, there is a unique C2[R, co) solution to the linear problem (2.18, 2.19),
which is given by (2.27). The derivatives of the solution are given by (2.28) and (2.29),
respectively.

Now given 7 > 0, we would like to verify (2.20). Note that we may assume ||

87N ||Lo[R,00)< 00; otherwise there’s nothing to prove. Then for each s € [R, o), by

(2.27), (2.28) and (2.26), we have

ﬂwwﬂss/’ / £ exp 48;250)@2—¥)§ﬂmamgcm
%
w1 ouf(T,0
< 8/8 3;221S02> (sgs) (§”|n(€)|)> dx (2.30)
O, f (T, 0) )
= QW gg CHLIIN
and
sl <s [ 5| [ e 48;Zf0>@?—¥>£HMQM§cm
I 1+0® o o) e d 2.31
[ Teew |- TTa () ¢ o (231)
O f (?, 0) .
< 4W gg CHLI

For (2.21), we can get it from (2.17), (2.18), (2.30) and (2.31) as follows:

0_2
02w (s)| = 8|2 — )@@w@»—w@»+n@>

‘28 f(?,o
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1 1402

- (M o,w(s s7w(s s m(s
§26nf(?,0)( 0sw(s)| + s7|w(s)[) + s7|n(s)]

< 4sup (£7[n(&)])
>R

Lastly, from (2.29), we can see that w € C""?[R, c0) as long as € CJ"[R, o) for

m € N. O

Next, let’s consider a normed space which we are going to work with. Fix R > 0,

define a norm
” v ” = max{ ” sV HL"O[R,oo)u ” 32851) HL°°[R,OO)7 ) H Ska.ls(ilv ”L°°[R,oo)

|| 850k || oo, o0) } (2.32)

and a vector space

S = {v e CX[R, oo)‘ v l< oo} (2.33)

Note that v € S if and only if v € C§[R, oo) and it decays at infinity with the following

rate:
v=20 (5_1) , Osv =0 (5_2) AR 8§_1U =0 (s_k) ,
o lw=0 <3_k> as s /oo
For instance, s™! € 3. Also, & with the norm || - || is a Banach space. In the second

lemma, we estimate Qu in (2.14) for v € S.

Lemma 2.3. Given M > 0, there is R = R(C, K, M) > 1 such that for any v € I
with || v ||< M, we have

w(v, 8)e K VO e, 1] (2.34)

and Qu € CS_Q[R, o0) satisfing
max{ || SSQU ||L°°[R,oo)? H SG&SQU HLC’O[R,oo)v' Tty H 8k+28§_3QU ||L°°[R,oo)

N SH22Qu i o0y b < C (ks € S llexeys M) (2.35)
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Moreover, if we take v € I with || 0 ||< M, there holds

max { || 5> (Qu = QF) [l ir,000: | 8° (05 Qv = sQ0) [l et o0y, » | 82 (077 Qu — 047Q0) || oo
(2.36)
2 (072Qu = 0572Q0) im0y } < C (m K € I S llgwsngey M) Il v =3 |
Note that the Banach space (3, || - ||) is defined in (2.32, 2.33), w (v, 0) is defined
by (2.15) and Qu is defined by (2.14).

Proof. Let R > 1 be a constant to be determined. For each A > 2R, consider the
following change of variables:

s = A& (2.37)

(&) = Av (4g) (2.38)

for € € [%, 1].

From (2.32), the condition || v ||< M implies that

< — Aerd k—1<7
19 sy = max {1 T ey 10T lpmpy g} < M

1
27

And (2.15) is translated into

1 2472002
L+ A720Z 1+ (0 + A7200:%)

w(v(s),0) = 2) =T (0 (€),0) (240

Thus, by (2.40) and (2.39), we can verify (2.34) by choosing R > 1 (depending on
C,K, M) .

Also, let’s consider the following change of variables:

G (T, 0= (s),0) =0+ A0 (¢) (2.41)
D), 0)=p(s),0) =0+ A200:% (2.42)
TV, 0)=Aqv(s),0) =007 (2.43)

Qu(€) = A° Qu (4¢) (2.44)
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From (2.14), we can write out (2.44) in terms of (2.40), (2.41), (2.42) and (2.43) as

1 2 >
Qo(e) = /W(l—@)d& (037)° (2.45)
ey
2
Hotpto@ 4725 | 050w 2T (1-377) R
t / A4 P! A2 2\3 (L—=0)do [ (0c70")
’ (1+7°) (1+p)
(St oga2fo W) + 25 il oo W
+ / : (1—0)do | (v)?
(0 (%)
1 2 S g >
+2/ "50”2{0“ 2OV gfod 20 | (1-0yas | 2T o
0 () (- 7)
1n1 —
+2/ Zfoi (1—-6)do | T R#D
7 (F)
1n1 o %7 e
_9 / d 2“; (1—0)do | 0 0

Note that from (2.45), (2.40), (2.34), (2.41), (2.42), (2.43), (2.38) and (2.37), we have

Qv e Ck? B, 1]

and by (2.39) it satisfies

<
” Qu ”Ck_S[%,l] < ¢ <TL, k7 Ca H f HCk—l(IC)7 M) (246)
_o$—>
| 82 2Qu HLOO[%J] <C <n, ki C, Il f lexgeys M) A (2.47)

<
Note that in (2.47) we have used the fact that k > 3 and 82_2Qv is linear in 82“7
Rped
Similarly, we can define ¥ and a in the same fashion and then use the mean value

theorem to get

7 352 Apeg
1 Q5 = @ llgssps < € (m ks Gl f lloweys M) 10 =T Ny, (249)

_9$—>
| 952 Qu — o~ 204 [P (2.49)
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= Apg
< C (k€ I f llossgeys M) (1T = 0T Ny +4 10 =T llgways )
Finally, undoing change of variables for (2.46), (2.47), (2.48) and (2.49) leads to the

conclusion. O

Now we are ready to show the existence of the problem (2.16), (2.9), which yields
the solution to (2.5), (2.7) via the formula (2.8).

Theorem 2.4. There exists R = R (n, k, C, K, || f Hok+1(,<)) > 1 and u € & such that

= e (7
Euza;—(i_{fo) f(;;0>—gfw(j<2;())u+Qu on [R, 00)

where 3 is a subspace of CK[R, o) defined in (2.33), L is the linear differential operator

defined in (2.17) and Q is a nonlinear operator defined by (2.14). It follows that r (s) =

os+u(s) solves

1—  —9r 1
-1, —>— 5 (80sr —1) = ;
f<7“ , 1+(8ST)2> + 2(887" r)=0 on[R, )

Ck
gr(s>—08$0 as 0\, 0

0
(1)

ags

Moreover, we have the asymptotic formula u (s) = +u(s) with the error term

u € C§[R, 00) satisfying

| s> u | oo (R, 00) + |l s10,u | oo (R, 00) + |l s* 2ok 1y | oo[R, 00) < C (n, k, C, || f ||ck(iC))

I #4105 lmir ) < C (s e €. I 1 £ lewgo))

gs

Remark 2.5. We find the asymptotic formula u (s) ~ by doing iteration of (2.5),

( 2.7). More precisely, let 7o (s) = os and define 7 (s) to be the solution of

1= =9 1
f(ml’ ]W>+ 5(8857"1*7"1)—0

Ck
ory <8>—O'S 260 aso\,0
o
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Proof. Let M > 0 and R > 1 be constants to be chosen, and take R sufficiently large (de-
pending on C, K, M) so that Lemma 2.3 can be verified. Let B = {U € %} | v]|< M}
be the closed ball of radius M in the Banach space (S, || - ||) defined in (2.32), (2.33).

By Lemma 29, for each v € B, we can define Fv to be the unique solution to the

following problem:

- -
2 f(1,0 n=1g;f (1,0
L(Fv) = ! +_(>7 ( ) - <22)v + Qu on [R, c0) (2.50)
Onf ( L, 0) 7% - 77
}—1;(8) & (s0sFv—Fv) -0 ass oo (2.51)

Since Qu € CS_Q[R, 00), F maps B into C§[R, 00). In fact, we would show that Fv € B
and F is a contraction on B if we choose M and R appropriately.
First of all, let’s consider

v(s) = Fu(s) — M (2.52)

gs

Then we have v € C§[R, o0) (since Fv € C§[R, 00)). Also, by plgging (2.52) into (2.50,

2.51), we get
- —
F(T0) 1y [ n2ar(To),
78 Onf ( L, 0) i=1 o 5
Y& (s0sv—v) =0 ass "oo (2.54)
s

By Lemma 29 (with v = 3) and Lemma 30, (2.53, 2.54) implies that

max {|| s®v | zoo (R, 00)s | s10v | Lo (R, 00) } (2.55)
— — —
< 8anf(1,o) 7(7,0) s o:f (T, 0) R
— 1 +O'2 o + Z 0_2 || sSv HL‘X’[R,OO) + R2

=1

<C (m kI f llewgey M)

| %02V oo o) < C (7, K € | S llewreys M) (2:56)
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7,0
Besides, if we take © € B and define Vv = Fov — f(as ) , then similarly we have

- — . El ~
Lo = —2f<1 0) + 1+020) (iaf<10>:2+ Q@) (2.57)

3 — 2
s O f ( 1 — o

» | <

& (s0sV—v) -0 ass Moo (2.58)

By doing subtraction of (2.53, 2.54) with (2.57, 2.58), we get

1407 n*&-f(? )v—a
Lv—7) = m ( ; 3 S+ (Qu- QU)) (2.59)

$0s(v—V)—(v—=V)} -0 ass oo (2.60)

which yields, by Lemma 2.2 (with v = 3) and Lemma 2.3, that

max {[| s> (v = 9) || zoc(r, 00y || 8% (Osv = 05V) || oo, 00) } (2.61)

5~ | 5% (Q0— OF) l1ein o
< 42 ( ) [ s(v—="70) [[ror,o00) +4 - L*°[R, 00)

< C(nk € 1 f lewsrgey, M) [l v =5

| 8% (92v = 929) || Lo [R,00) < C (7% k Co [l f llewrr iy M) | v—721| (2.62)

Next, differentiate (2.53), (2.59) and use the formula

0L — LO, = — Hiaas (2.63)

28f<1 0)

and also (2.55), (2.56), (2.61), (2.62) to get

E 1
c<asv)=6f<1’0)+ 1—1—0’2())( V_Zaf( ) (?fz)ﬂwv)

ost o, f (T

9sv

S

& (s02v—0,v) =0 ass S oo (2.65)
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—
o 1+02 (1 ) ”‘laif<170) V=7 i
L (aSV — 3sv) = m (2 (85V — asV) — : 0_2 83 < 32 > + 83 (Q’U — Q’U)

(2.66)

OV — OgV
s

& {s (afv - 83\7—) —(0sv—05%) } =0 ass Soo (2.67)

By the gradient estimates in Lemma 2.2 (with v = 4) Lemma 2.3, (2.55) and (2.61),
(2.64, 2.65) and (2.66, 2.67) yield that

— — —
502 8"f(1’0>f<1’0> 4 nlaf(l ) 2
| 8”05V || [R, 00) < {24 T > +2 || s70sV || oo [R, 00) +4;2 | s°0sv || oo
(2.68)
=2oif | $505Q0 || oo (R, s
+8Z ( ) | 50 (LR, 00) +4 72 AL )}
S C (n7 k7 C? H f HCk(IC)a M)
| 5*03 (000 < C (1 K € | f leweys M) (2.69)

|5 (02 = 020) ll e ey < { 211 8% (Bv = 039) o ) +4

7

19, f (T), O) )
—— || 82 (35 — BsD) || oo (R, o

(o)
1

(2.70)

I'5° (85Qu — 0520) ||, 00)
7 j

tos(1)

+8Z

| s(v—="0) 1R, 00) +4

< C(n,k €| f llowsrgey M) [l v =15 |

|5 (037 = O3V) im0 € (n ko Il f llgwsgey M) o =31l (271)

Continue this process until we arrive at

— A (T
g(a;2)ak2(f<1’o>)+ 1*"20) (”aswvZlaZf(i’O)agz(fz)wg?Q

os3 O f (?
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k—2
% & (sask‘lv - &5‘2v) =0 ass oo (2.73)

=1

— . El ~
£ (02 - 957%) = . ; 2?02 0 (k 3 2 (o2 — ok 29) - Zl was“ <vsgv>)

(2.74)
1+ 02

&J(?,O)ag_2 (Qu — Q9)

+

GE*QV — 8;(*2\7

S

& {5 <8};_1v — 8?‘10) - (85_2v - 8};_2\7) } —0 ass oo (2.75)

and also

| 510K || LR 00)< C (n, ke C Il f Hlewreys M) (2.76)

| skt (aﬁ*%-@ﬁ*%) LR, 00) < C (n ky C [ f ooy, M) fo—=oll (2.77)

By the gradient estimates in Lemma 2.2 (with v = k+1), Lemma 2.3, (2.76) and (2.77),
(2.72, 2.73) and (2.74, 2.75) imply that

— —
8nf(1,0> f(l,())
k+2 gk—1 k+1 qk—2
| P20 oo < { 8oz #7107 | =g | liminog (279)

n—1 azf (T), 0>
+2 (k= 2) | SO (e o) +4 Y ——g—
=1

k+1qk—2 (Y
1 #197 (5) eiroo

+4

| $t2052Qu | Lo [R, o) }
R

<0 (nk, €. £ llowger. M)

| sV || LR, 00) < C (n, k, C 11 f llexirys M) (2.79)

I gk+2 (8;"1v _ 8?’%7) ”Lw[R,OO) < {2 (k—=2) | gkt (8}2\/ — 8?*%7) HLoo[R,oo)
(2.80)
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n19,f (?, o)

~ k+2 k—2 k=205
k+1 gk—2 | s (35 Qu — 05 Qv) HLOO[R,oo)
+4;U2||S+8 (S) ||L°°[ROO)+4 R
< O(n kIl f llewnpey M) o =2
| 841 (0kv = 59) lpoeim,oe) < € (K, € |l M) 1o =31l (281)

.
From (2.55). (2.68) to (2.76), (2.78) and (2.79), we see that Fo (s) = 22D 1y (s) ¢

ags

G and it satisfies

f (?, o)
| Foll <] — I+ 1l vl (2.82)

_>
r(1.9) L e
< [ D0+ maxd S0 i o 5 80 i
=0

ﬁ
F(T0) 1 C(mk el S e M)
e LH R
Besides, from (2.61), (2.70) to (2.77), (2.80) and (2.81), we have

<

|| Fo—Fo||=]v—"0] (2.83)
1 . . 1
< max§ o D N 7 (90 = 039) |l Lo(r, o0 = | s (3§V - 35‘7> 2[R, )
=0

Cn, k C, || f lloxrrxcy, M
I ot M)

< — Jo—3|
Now choose ( )
= ( IHE
and take R even larger so that
C (TL, k, C, || f ||Ck+1(IC)7 M) 1
< =
R 2

Then we have F : B — B is a contraction.

By the contraction mapping theorem, there is a unique fixed point u of F in B.

Moreover, let

gs gs

T —
u(s) = Fu(s) — M =u(s) — M

}
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then by (2.55), (2.68) to (2.76), (2.78) and (2.79), u € CK[R, o) satisfies
{ |8 u || zoo(r, 00) + || 8° 05U |z (R, 00) - + || 8T205 0 || oo, 00)
| O e o) b < C (m ks ol f vy
Then the conclusion follows immediately. O

The following theorem is a direct result of Theorem 2.4:

Theorem 2.6. There erist R = R <n, k,C, K, || f Hck+1(,c)> > 1 and u € C§[R, o)

such that
/(1.9

gs

\g
Il

os + +u(s) |y, s ‘ueS"‘l,se[R,oo)

is a rotationally symmetric F self-shrinker which is C*asymptotic to C at infinity. Be-

sides, the corresponding self-similar solution to the F curvature flow is given by

gs

Et:\/—tzz os —t +Ut(3) v, s Vesnilvse[\/jt‘FL OO)

fort e [—1,0), where u; (s) = +/—tu (\/}J and it satisfies

k+20k—1
s

|'8% Ut || ooy, 00) + | 5° 05Ut | pooy=tr,00) +- -+ || Ut || oo [/=ER, o)

< C(nk Gl £ llovy) (<1

| 8" 108t || ooyt 00) < C (n’ k C, Il f ”Ok(’c)) (=)

for allt € [-1, 0).
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Chapter 3

Analysis of Velazquez’s solution to the mean curvature flow

with a type II singularity

3.1 Introduction

J.J.L. Veldzquez in [ V] constructed a solution to the mean curvature flow which develops

a type II singularity. Below is his result:

Theorem 3.1. Let n > 4 be a positive integer. If tg < 0 and |to| < 1 (depending on
n), then there is a O (n) x O (n) symmetric mean curvature flow {X¢}; 4o so that
1. {Et}t0§t<0 develops a type 11 singularity at O ast 70 in the sense that there is

0<o=o0(n)<i (see (3.23)) so that the second fundamental form of $; satisfies

lim sup sup (—t)%”LU |As,| >0
t/0  £,nB(0;v—t)

2. The type 1 rescaled hypersurfaces

fi.-

C?-converge to Simons’ cone C in any fived annulus centered at O (i.e. B(O; R)\

2

i

t=—e—% } —In(—tg)<s<oo

B(O;r) with0<r<R < o0) as s / oo.

3. The type 11 rescaled hypersurfaces

t=—(207)20 1
2o (—tg)27 <<

locally C°-converges to a minimal hypersurface My, (see Section 8.2), which is tangent

to Stmons’ cone C at infinity.

Velazquez’s idea is to find a O (n) x O (n) symmetric solution to the “normalized mean

curvature flow” {IIs}, which exists for a long time and converges (locally and away

0<s<o0
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from O) to Simons’ cone C as s /" co. Note that the minimal cone C is a self-shrinker
with a singularity at the origin and that this singularity of C forces the normalized mean

curvature flow {II,} to develop a singularity at O as s * co. Consequently, the

sp<s<o0
corresponding mean curvature flow {3;}, , o develop a type Il singularity at O in finite
time (as ¢ * 0). In addition, he used the comparison principle to show that the type
II rescaled hypersurfaces convergers locally uniformly, in the C” sense, to a minimal
hypersurface M.

The motivation of studying Veldzquez’s solution comes from two natural questions.
The first one is whether the minimal hypersurface My, is the singularity model of the
type II singularity at O? Note that the minimal hypersurface is stationary, which is a
special case of the “translating mean curvature flow”. Veldzquez’s result make us believe
that this is true. However, we cannot be assured by his result since he only show that
the type II rescaled hypersurfaces converges to My, in the C° sense. Secondly, we would
like to know whether the mean curvature of Veldzquez’s solution blows up as ¢ 0
or not. There is a long-lasting question in the study of mean curvature flow: “Does
the mean curvature blow up at the first singular time?” The answer is positive under a
variety of hypotheses. For instance, if the mean curvature flow is rotationally symmetric
or its singularities belong to type I, then the mean curvature must blow up (see [K]| and
[LS]). People believe this is true in general for low-dimensional mean curvature flow, and
it has been verified by Li and Wang (see [LW]) for the 2-dimensional case. However,
people are skeptical about this for high-dimensional mean curvature flow, and they
think Veldzquez’s solution might be a counterexample. Heuristically speaking, the type
IT rescaling of Veldzquez’s solution converges to a “minimal hypersurface”, so it seems
that there is a chance for the mean curvature of Veldzquez’s solution to stay bounded

upto the first singular time.

Here we answer both of the above questions. More explicitly, we show the following:

Theorem 3.2. Let {¥i}, ;o be Veldzquez’s solution in Theorem 3.1 with n > 5. By
choosing proper initial data outside a small ball centered at O, the origin is the only

singularity of the solution at the first singular time t = 0. Moreover, the type 11 rescaled
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hypersurfaces {T'v} 1 ____ converges locally smoothly to the minimal hypersurface

20(—t0)27 =

My as T S oo. It follows that the second fundamental form of ¥y satisfies

0 < limsup sup (—t)%ﬂr |Ay,| < o0
0 %

In addition, the mean curvature of ¥ blows up ast /0 at a rate which smaller than
that of the second fundamental form. More precisely, there hold

lim sup sup (—t)%_g |Hs,| >0
t/0 2th<o;C(n)(—t)%+“)

lim sup sup (—t)%+(1_29)g |Hy,| < o0
iS00 %,

for some constant 0 < o= p(n) < 1.

Proof. The smooth convergence of the type II rescaled hypersurfaces {I';} to My as
7 /4 oo and the fact that the origin is the only singularity of {¥;} at ¢ = 0 follow from
Theorem 3.17 (see also Remark 3.18). The blow-up rates of the second fundamental
form Ay, and mean curvature Hy, can be found in Proposition 3.19, Proposition 3.20,

Proposition 3.21 and Proposition 3.22. O

To improve the convergence of the type II rescaled flow, all we need is to derive
some smooth estimates (see Proposition 3.13 and Proposition 3.14). One of the key
ingredients to achieve that is to use the curvature estimates in [EH|. As for the blow-up
of the mean curvature, it follows from the smooth convergence of type II rescaled flow
and L’Hopital’s rule. Moreover, by modifying Velazquez’s estimates, we show that the
blow-up rate of the mean curvature is smaller than that of the second fundamental form.

The chapter is organized as follows. In Section 3.2, we introduce the minimal hy-
persurface My, found by Veldzquez and then derive some smooth estimates for it. In
Section 3.3, we specify the set up for constructing Veldzquez’s solution and define vari-
ous regions and rescalings for analyzing the solution. In Section 3.4, we state the key a
priori estimates (Proposition 3.13 and Proposition 3.14) and explain how to use them
to construct Veldazquez’s solution (for the sake of completeness) and to see the behav-
ior of the solution in different regions (see Theorem 3.17). In Section 3.5, we explain

why the mean curvature blows up and why its blow-up rate is smaller than that of the
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second fundamental form. Lastly, in Section 3.6, Section 3.7 and Section 3.8 we prove

Proposition 3.13 and Proposition 3.14 for completion of the argument.

3.2 Minimal hypersurfaces tangent to Simons’ cone at infinity

Let

C:{<7"V, rw)‘r>0; V,weSnfl}

be Simons’ cone, where n > 4 is a positive integer and S?! is the unit sphere in R™. It

is shown in |V] that there is a smooth minimal hypersurface

M= { (rl/, LZAJ(r)w)’ r>0;v,we S"_l}
in R2" which is tangent to C at infinity, and that the function 1 (r) satisfies

- .
%—F(n—l) (8;w—{> =0
1+<8r¢) ¥

and
034 (r) > 0
B, (0) =0, Tim, s 2207 — 925
¥ (r) >r, lim, 7 12(:1_7“ — 2%
where
—(2n — 4n? — 2 1
oo (2n 3)+\/2n 0n+7€[_27_1)

is a root of the quadratic polynomial
ala—1)+2n—-1)(a+1)=0 (3.1)
By symmetry, studying M is equivalent to analyzing the projected curves

Mz{(r,zﬁ(r))‘rzo}

C={(r,r) r>0} (3.2)
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Note that M is a convex curve which lies above C (i.e. 9 (r) > r for r > 0); moreover,
M intersects orthogonally with the vertical ray { (0, r)| 7 > 0} (i.e. 9,4 (0) = 0) and is
asymptotic to C at infinity (i.e. ¢ (r) = r+O (%) as 7 * 00). Therefore, M is a graph

over C; more precisely,

SRUCTRLICTEE S
={(<r—w<r>>j§,< w55 ) |z wa;)}

Velazquez in [V] showed that the function v (r) satisfies

637,1/} rar¢+¢_

and

0% (r) >0

0 (58) =1, 20—

$(0)) _ #(0) : P(r) _
() (W) =7 lim; 7o 5" =1

More generally, for each k& > 0, we can define
My, = ks M

Then M, is also a minimal hypersurface in R?” which is tangent to C at infinity. Notice

that
M = { <7“1/, &k (r) w)) r>0;v,w GS”_l}

where

By rescaling, we deduce that

02,4
Trw]f . + (TL _ 1) ( . _ ) =0 (34)
1+ (&wk) Uk
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81%7’4;]{? (T> >0

i (0) = 0, lim, rog Z)=1 — g 973

Do (r) > 7, limy roe BT — foF

\

Moreover, there holds a “monotonic” property of the rescaling family, i.e. @Zkl (r) <

1[1;@ (r) whenever 0 < k; < ko < 0o. To see that, let’s first derive the following lemma.

Lemma 3.3. The function vy, (r) satisfies

~

U (r) — 70y (1) > 0 (3.5)

forr > 0. In addition, there holds

o D) =105 (1) st

r /100 re

(3.6)

Proof. Notice that

which means the function (r) — r8,4) is decreasing. Furthermore, we have

i PO o) <&(T)_T+ 1_6T1/}(T>> —(1-a)2% >0

r /oo re r ,/'00 re re

which implies

A~

$(r) =1 (r) >0
for > 1. The conclusions follow immediately. O
Now we show the monotonic property of the rescaling family.

Lemma 3.4. There holds
b > 0

In other words, 1y is monotonically increasing in k.

Proof. By definition, we have

O i (2) = Ok (lﬂﬁ ) (kﬁ Z))
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O

C,ie
Mic={ (r. b ()| = 0} (3.7)

where
Yy (r) = k1= 1 (k: e r) (3.8)

By rescaling, the function 1)y, (r) satisfies
83r¢k Tarwk + wk B
@y T Ty = (39
837“11% (T) >0

Pe(0)\ _ ¥x(0 : Pr(r) _
o () 5. )

Note that ¥ (r) \, 0 as r * 0co. Below we have the decay estimates for iy, (7).

Lemma 3.5. For any m € Z, there holds
|07y ()] < C(n, m) kre™™

i (0)
forr > :“/5 )

Proof. By rescaling, it is sufficient to check for k£ = 1.

From

lim v (r) =1 = lim Or (r)

r—oo o r—oo qro—!

{2

r

we have

 10r (r)l} < C(n)ro?
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for r > %. In particular, there is R > 1 (depending on n) so that

max{‘w)

r

1
Jorw < g
for r > R. By (3.9), we have

PO (1) + 6 (1)
= g20)

02 () = —2(n—1) (1+ (09 (1))

It follows that

02,46 (r)] < € () r™
for > R. Continuing differentiating the equation of ¢ (r) and using induction yields
0" (r)] < C(n, m)re™™

forr>R,meZ.,.

On the other hand, by the above choice of R = R (n), we have

sup "M (r)| < R™TY sup |97 ()] < C'(n, m)
0 cre 0 <o

for any m € Z,. Therefore, we conclude that for any m € Z4
07" (r)] < C(n, m)r*™™
$(0)
for r > 3 O
As a corollary, we have the following decay estimates for the higher order derivatives

of 1y ().

Lemma 3.6. For any m > 2, there holds

8;”1%6 (r)‘ < C(n, m) kre™™
forr >0.

Proof. By rescaling, it is sufficient to check for k = 1.

Let’s first parametrize the projected curve M by

2= ((r= ) s () )



In this parametrization, the normal curvature of M is given by
Opp (r)
(1+ @w (1))

Ay =

3
2

Let V y; be the covariant derivative of M, ie.
O f (r)
L+ (0 (r))?

By Lemma 3.5, there is R > 1 (depending on n) so that

max{‘zb(r)

r

Vi f = for f e C' (M)

1
3

oI} <

and

21" |V Apl < C(nm) |27
for r > R, m € Z4. Notice that
2] = VPO

is comparible with r for r > R.

Next, let’s reparametrize M by

z=(rdm)

In this parametrization, the normal curvature is given by
929 (r)

Ax = 3

(1 + (2,0 (r)>2> ’
and the covariant derivative is defined by
orf (1)
1+ (0.4 (7"))2

Val = for f e C' (M)

Note also that by (3.4), we have
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



for r > R = R (n). Then by (3.10), (3.11), (3.12), (3.13) and (3.14), we infer that

" (r)

< C(n,m)re—™

for r > 2R, m > 2.

On the other hand, by the above choice of R = R (n), there holds

sup r’m¢

0<r<2R

o) < R s

o ()| < € n, m)

for any m > 2. Consequently, we get

o ()| < € ny m)ro

forr >0, m> 2.
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O]

Lastly, we conclude this section by estimating the difference between v and its

asymptotic function appeared in (3.9).

Lemma 3.7. The function iy, () satisfies

lr (r) — kr®| < C(n) k3 32

}arwk (r) — kar“fl‘ < C(n) kP p3e3

Ui (0)
forr > f/i )

Proof. Without loss of generality, we may assume k = 1.

First, let’s rewrite the equation of ¢ (1) as

2
ro2 =—2(n—1) M <8ﬂl) + ¢> (3.15)
1- (¢ "
Let
Pzaﬂ/l(?”)a Q:’(pf‘r)
and
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Then from (3.15), we deduce

OyP =—2(n—1) 4L (P4 Q)

1-Q
(3.16)
hQ=P—-Q
On the other hand, by (3.1), we can also deduce that
roZr® =—-2(n—1) (87«7“0‘ + T)
r
Let
P, =0r%= aro‘_l, Qs = L re—1
r
and
b =In(r)
Similarly, there holds
OgPr=—-2(n—1)(Pc+ Qx)
(3.17)

Now subtract (3.17) from (3.16) to get

Oy (P—P) = —2(n—1) (P = P.) +(Q - Q) — 2 (n— 1) LHENHD

h(Q—-Qu)=(P-PF)—(Q-Q.)
Note that by (3.9) we have

lim T
r—00 re r—00 re

which implies

(P*4@*)(P+Q)

PP, ~2(n—1) S
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and

Then we have

(3.18)

Notice that

« 1o —a+1 0 o le}
L=

1 1 0 —a+1 1 1

where
. —(2n—3) —V4n2 —20n + 17
o = < «
2

and

n) @b or n ﬂ
IF ()] < C(n)e?eth g h>1<\/§>

$(0)
It follows that for any R > h > In ( NG ),

R
O ()] < A |6 ()| + /h EN ) | £ (6 de

< (e(—a-i-l)R ’@ (R)’) e(a—l)h + C’(n) e3(o¢—1)h

Note that
O(R)=o0 (e(o‘*l)R)

as R — oo by (3.18). Let R " oo to get

1© (h)| < C (n)3eb for h > In <¢\(f(2))>
which yields
’@W (r) — Oﬂ’afl‘ + ‘7/17(]“) —r < o) 3D for r> 1/}\([(2))
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3.3 Admissible mean curvature flow

Let n > 5 be a positive integer and A = A(n) > 1, 0 < p < 1 < [ (depending on
n, A), to < 0 with |tg| < 1 (depending on n, A, p, B) be constants to be determined.
Recall that an one-parameter family of smooth hypersurfaces {Et}to <p<i D R?", where

t < 0 is a constant, is called a mean curvature flow (MCF) provided that
0:X: - Ny, = Hy, (3.19)

where X; is the position vector, Ny, and Hy, are the unit normal vector and mean
curvature of X, respectively. We define the MCF {Et}t0<t<£ to be admissible if every

time-sclice Y; is a complete, embedded and smooth hypersurface which satisfies
1. 3; is O (n) x O (n) symmetric and it can be parametrized as
St={(zv, d(z, )w) |z >0;v,w e S”_l} (3.20)

where 4 (z, t) is a smooth function which satisfies

9% 14 o,u 1
Ott=—=22" _ 4+ (n—1 R 3.21
L= g T )< z u> (3:21)

@(0,t)>0, 0,0(0,t)=0

fortg <t < {. Note that the above condition means that the projected curve

S = {(z, @ (x, t))] x>0} (3.22)

lives in the first quadrant and intersects orthogonally with the vertical ray { (0, z)| > 0}.

2. The projected curve ¥; is a graph over C outside B (O; B (—t)%'w), where

1 2 11
= —— -, — '2
o 2+1—a€[6’2) (3.23)

Equivalently, this is saying that 3 is a normal graph over C outside B (O; B(—t) %JFU) .

In other words, we can reparametrize Y; by

X (z, v, w) = ((x —u(x, t)) %, (x 4+ u(z, t)) \O/Ji) (3.24)

1
for x > B(—t)277, v, w € S*1, where u (x, t) is a smooth function satisfying

0% u T O0u+u
fry Tz 2 — 1 _— .2
O 1+ (0yu)? T2-1) 22 — u? (3:25)
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3. For the function w (z, t), there holds
2 |0 (x, )] < A ((—t)2 2% + x%“) . ie{0,1,2) (3.26)

1 o
for B(—1)277 < x < p, to < t <, where Ay = 3 (a+3) is a constant (see

Proposition 3.8).

In order to analyze an admissible MCF, below we divide the space into three (time-

dependent) regions and do proper rescaling for small regions.
e The outer region — ¥; \ B (O; v —t)

e The intermediate region — X; N (B (0; V=t)\ B (O; B (—t)%Jr”)): here we

perform the “type I” rescaling

1
I, = P (3.27)
RV N
By this rescaling, the intermediate region is then dilated to become
I, N (B(0; 1)\ B (0; Be™ %))
for so < s < 8, where s = —In(—tg) and § = —In (—t) Note that so > 1 iff

’to’ < 1.

e The tip region - >;N B (O; I} (—t)%'HT): here we perform the “type II” rescaling

1
I, = e PN (3.28)
(_t) 2 tzf(ZUT)%
By this rescaling, the intermediate region is dilated to become
'y NB(0; B)
H _ 1 o 1 .
for 19 < 7 < 7, where 19 = o T = 3o () Note that 79 > 1 iff |tp| < 1.

In the outer region, we parametrize ¥; by

Xi (o) = (= ule ) 25 (@ uto ) 25)

V2 V2
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and study the function u (z, t) via (3.25). In B (0; p) \ B (O; v/—t), Veldzquez showed

that by choosing suitable initial data (see Section 3.4), there holds
w(z, t) ~ x?2tl

However, the behavior outside B (O; p) was not clear in [V]. Here we complete this part
by providing smooth estimate for ¥; \ B (O; p).
In the intermediate region, we first do the type I rescaling and parametrize the

rescaled hypersurface Il by

Ya (4 v ) = <<y 0 ) 5 (0 9) Q‘%) (3.29)

where
1
vy, s) = —u(V—-ty,t (3.30)
=Wt
From (3.25), we derive
02, v ov+v 1
vy Yy
= +2(n—-1 + = (—ydyv+v 3.31
S 1—1—(6y’l))2 ( ) yz_,UQ 2( Yoy ) ( )
Notice that (3.26) is equivalent to
y Oy (y, 8)] < Aem? (y“ + y%“) , ie{0,1,2} (3.32)

for fe7?° <y < pe%, sp < s < §. To study the function v (y, s), Veldzquez linearized

(3.31) and showed that

2500 (y)

v(y, s)~e
by (3.32) and the choice of initial data (see Section 3.4), where Ay and ¢3 (y) are the

first positive eigenvalue and eigenfunction of the linearized operator (see Proposition

3.8). More precisely, (3.31) can be rewritten as

0sv = —Lv+ Qu (3.33)
where
0 1
Lv=— (8§yv +2(n—1) yy;zﬂj +5 (Y + v)) (3.34)

ooty 22\ oy u? 2(n—1) 1
() et ()
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is the (negative) linearization of the RHS of (3.31), and

2
_ (8yv)° (2) v v
Q= o 02,0 +2(n—1) 1_Z’<Z>2 <y - y2> (3.35)

is the remaining (quadratic) parts. Veldzquez showed that the linear differential operator

L has the following properties (see [V]):

Proposition 3.8. Define an inner product

2

(v1, v) :/ vi (y)va (y) y? Ve Tdy
0

and the associated norm
vl = Vv, v)
Let H be the Hilbert space formed by the completion of C2° (Ry) with respect to the

following inner product:
(Vl, V2) = <8yV1, 8va> + <V17 V2>

Then we have
v

)

2 4
S o
(2n — 3)

and L is a bounded linear operator in H, which satisfies

2 2
1Oyv™ + vl

2n—3

_ oo v\ _ 1
<[,V1, V2> = (8yv1, 8yV2> 2 (n 1) < Y N Y > 5 <V1, V2>

4n? —20n + 17
(2n — 3)?
Note that 4n% — 20n + 17 > 1 ifn>4.

(Lv, v) >

l,vII* — 2@n—3) v (3.36)

6n —7
-3

Moreover, the eigenvalues and eigenfunctions of L are given by

1
No=—g(l—a)+i, fori=0,1,2 (3.37)

v
"4

and

N =

goi(y):ciyO‘M<—i,n—i—oz—
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respectively, where c¢; > 0 is the normalized constant so that

llgill = \/ <90i, </7i> =1

and M (a, b; &) is the Kummer’s function defined by

L Saatl) a1
M (a, b; §) =1 +; b(b+1)--(b+j—1) !

and satisfying
EZeM (a, b; §) + (b— &) 0:M (a, b; &) — aM (a, b; §) =0

In addition, the family of eigenfunctions {@;},_y 1 .. forms a complete orthonormal

set in H, and Ao is the first positive eigenvalue of L, i.e.
)\07 )\1 < 0, )\2 > 0
Remark 3.9. The first three eigenfunctions of £ are given by

wo (y) = coy®

o1 (y) =c1y™ (1 +N1y?)

e2 (y) = cay™ (1 +20y° + Loy?)

where

Note that
8§yg02 () =c2y* ?(a(a—1)+271(a+2) (a+1)y? + o (a+4) (@+3)y*) >0
for y > 0. In addition, for those constants, there hold

05—1—4:2)\2—{—1
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Furthermore, when n > 1, we have
1 1
ax—1—-—, o - — —
n 2 2n
1 1 1
——, MR-, l=1l-—
! on’ 72 2n

)\0 ~ —1 o
Lastly, in the tip region, we do the type II rescaling to get
I ={(zv, 0 (2, ")w) |22 0; v,w e S* '} (3.38)
where
1
(2 7) = ——— i (=) 2, 1) (3.39)
(775) 2 t=—(207) %o
From (3.21) we derive
92,4 1) g 1 %—Fa( 2o+ ) (3.40)
2 z w 20T N '

0,0 =
1+ (0,w)
w(0,7)>0, 0,w(0,7)=

for 9 < 7 < 7. Veldzquez showed that by chooing suitable initial data (see Section 3.4),

there holds
Cco ~
w(z, T) —L2% (2)

for some k =~ 1, where 1[% is the function defined in Section 3.2. On the other hand, by

the admissible condition and rescaling, we can regard the rescaled projected curve
(3.41)

{(z,w(z7)[2=0}

r.=
In other words, I'; can be reparametrized as a

as a graph over C outside B (O; )

normal graph over C outside B (O; f3), say
Ze (o) = (6 = w0 ) T G ) ) (3.42)
(zvw)=(z—w(zT1)—, z4+w(z, 7)) — .
V2 V2
for z > 3, where
1 1y,
w(z, 7) = T U ((—t)2 z, t
(_t) 2 t:—(207)7%
(3.43)
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From (3.25) we derive

2
aTw:Lwﬁz(n—n
1+ (0,w)

Notice that (3.26) is equivalent to

z 0w +w %—i—a
22 —w? 20T

(—z0,w+w) (3.44)

2X0+1

P ‘8210 (2, 7')‘ <A (zo‘ + W

> . ie{0, 1,2} (3.45)

1 1
for B<z<por)2tie, 1o <7 <7

3.4 Construction of Velazquez’s solution

For readers’ convenience and also for the sake of the completeness of the argument,
in this section we show how Veldzquez’s solution is constructed. We basically follow
Velazquez’s idea in [V] and modify his proofs and estimates. Also, our setting is slightly
different from that in [V] since we assume more condtions in order to get better results.
The key step is Proposition 3.13 and Proposition 3.14. The main theorem in this section
is Theorem 3.17.

The idea is as follows. At the initial time tg, we would choose a bunch of “initial
hypersurfaces” {Zg?o’al)}(ao " (as candidates) and move each of them by the mean
curvature vector. We then nglanage to show that for each i € [to, 0), there is an index
(ag, a1) for which the corresponding mean curvature flow {Zgao’al)} - exits and is
admissible up to time ¢. In addition, we would establish uniform estimates for these
solutions. Lastly, by the compactness theory, we then get a solution to the MCF which

exists and is admissible for tg <t < 0 and also admits those uniform estimates.

Let’s start with choosing a proper family of initial hypersurfaces. Let

{Egao’al)

0

(ag, 1) € B* (05 g7V }

be a continuous two-parameters family of complete, embedded and smooth hypersurfaces

so that each element Eggo’al) is admissible at time ty and satisfies

1. The funtion v (y, so) = (@ @) (y, s¢) (defined in (3.29)) of the type I rescaled

hypersurface

_ 1 E(ao,al)

Hggo,al) — — i
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is given by

v (y, 50) = e (1@ W)+ %o () + D <y>) (3.46)
C2 C1 Co

T (14 a1 +ao+ (2+a1) N1y + T2y4)

for %Be‘“s‘) <y< 2p6870 (see Proposition 3.8 and Remark 3.9).

. The function u(z, to) = u(®9)(x, ty) (defined in (3.24)) of Eggo’al) is chosen to

be
TQ$2>\2+1
1424

for x 2 p so that
lu(z, to)| < £ min{z, 1}

0,u (2, to)| < % (3.47)

for x > %p.

. The function (-, 79) = (% ®) (-, 79) (defined in (3.38)) of the type II rescaled
hypersurface
1

Z(GOMH)
(—tg)2+®

e, a1) _ y

70
is chosen to be
w (Z, TO) ~ w1+a1+ao (Z)

for 0 < z < /8 so that

¢1_Bga_g (2) < w(z, 1) < ¢1+5%a—3 (2)
0 = 9, (0, 70) < D10 (2, 1) < 1 (3.48)
0 < 02,4 (2, 70) < C(n)
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for 0 < z < 5. Furthermore, if we reparametrize the projected curve F&‘go"“) as a

graph over C, the function w(®:%) (2, 79) = w (2, 79) (defined in (3.42)) satisfies

w (Z7 TO) A Yitar+ao (z>
for 1 < 2 < so that

0 <wl(z m) < C(n):*

10,0 (2, 70)] < C(n)z271 (3.49)

0 < 2 w(z, ) < C(n)z22
for % <z <58,

The following remark shows that (3.46) fits in with the admissible condition and is

compatible with (3.47).

Remark 3.10. By (3.30) and Remark 3.9, (3.46) is equivalent to
o+l (1 T a1 T ao T
sto) = (=) 2 — —— |+ — — |+ — —
u(z, to) = (-t (@m( _t> qsm( Tt) CO%( Tt))

= (1 “+ a1 + ao) (—t0)2 ¢+ (2 + (11) 7 (—t(]) xot? + TQI‘QAQ—H

2

—t —t0\?
— g2+l (TQ +24+a)N ( 0> + (14 a1+ ap) (:1:20> > (3.50)
for %B (—to)%JrU <z < 2p. In particular, there hold

2 |0iu(z, 1) < C(n) ((—t)Qaza+x2A2H>, ie{0,1,2)

u(z, to)

< o) (B + 0™ (3.51)

1
for 28 (—t9)2™" < x < 2p. Thus, we may assume that

2|0 (, )| < g((—t)%am”ﬁl), ie{0,1,2}
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for (—to)%JrU < x < p, provided that A > 1 (depending on n). Also by (3.47), (3.48)
and (3.51), we may assume that

ﬁ(x, to) >0

for z > 0, provided that 0 < p < 1 < § (depending on n). Furthermore, by (3.50) we

_ 20+ —to
u(z, tg) = 2" (T2+O(x2>>

for /—to < x < 2p, which is comparible with (3.47) provided that 0 < p < 1 (depending

have

on n) and |tp| < 1 (depending on n, p).
The following remark shows that (3.46), (3.48) and (3.49) are compatible.

Remark 3.11. By (3.48), f‘%o’al) (see (3.41)) is a convex curve which lies between

M s s and M_ 3. s (see (3.7)) and intersects orthogonally with the vertical
1-B3%~3 1+83%"2

ray {(0, z)| z > 0}. Hence, if we reparametrize FS‘;O’“” as a graph over C, it follows

that

1/1176%%% (2) < wl(z,10) < Y

3 (2)

Then (3.49) is compatible with (3.48) in view of Lemma 3.5.

3
14827

On the other hand, by (3.43) and Remark 3.9, (3.46) is equivalent to

(e (755)+ 2 2 (59))

z

2 2 \2
=2¢ <1—|—CL1+CL0+(2+G1)T12+T2< ) > (3.52)
2071

w|R

w (z, 19) = (2070)

2071y

for %B <z<2p (207’0)%"'%, which means

2
w(z, 10) = <1+a1+a0+0< & ))zo‘

20719

for %B < z <+y/207. By Lemma 3.7, we then get

w(z, 10) =9 (2)] < |w(z, 70) = 2% + [2% =4 (2)]

2
< <|ao\ + la1| + C (n) <Z + z2(a—1)>> 0 < O (n) fAo-D 0
0

20T
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for %,8 <z < (207’0)% , provided that 5 > 1 (depending on n) and 79 > 1 (depending

on n, ). Note also that Lemma 3.7 yields

Uy, gy () 0 () = (#6307 4 O (20D ) 20

in which we have

5

Consequently, we get

3 (2)

Uy gy (2) Swlz ) < ga

for %ﬂ <z< (207’0)%, provided that § > 1 (depending on n) and 79 > 1 (depending

on n, f3).

Next, for each (ag, a1) € B (0; g2V, by [EH] Zﬁgo’al) can be flowed by (3.19)

for a short period of time. Let’s denote the corresponding solution by {Zﬁ“o’ a1) } Given

t € [to, 0), let O; be a set consisting of all (ag, a1) € B2 (0; 2@~Y) for which

e The corresponding mean curvature flow {Zgao’al)} exists for tg < t < t and can

be extended beyond time {.
. {E%ao’al)} is admissible for t; < t < {.
Clearly,
0, = 5° (0: )
and O; is non-increasing in t.
Now let ¢ (r) be a smooth, non-decreasing function so that

0, for r <0
¢(r)=

1, for r > 1
For each t > tg, we define a map ®; : O; — R? by

<C (e”y—B) ¢ (pe% - y) v (- 8), 900>

®; (ag, a1) =

<C(€“y -8)¢ (PG% - Z/) v(s, 8), a 901>

s=—In(—t)

(3.53)

(3.54)
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where the inner product (-,-) is defined in Proposition 3.8 and v (y, s) = v(%0:91) (y, s)
is the function of I\ defined in (3.29) with s = —In (—t). Note that the localized
function

By 5) = ey = B) C (ped —y) vy, 9)
appeared in (3.54) is supported in [,86_05, pe%} and would be studied carefully in Propo-

sition 3.26. When ¢ = ¢y, we have the following lemma.
Lemma 3.12. If s > 1 (depending on n, p, ), there hold

S C(n) 672(n+a7%)050

KC (e70y — B) ¢ (pe%o - y) ©i, st> — 0ij

S C (n) e—(n+a—%)aso

H (1 — ¢ (7Y =p) ¢ (pe?ﬂ - y)) i
for i, j € {0, 1,2}, where sp = —1In(—tg) and @; is the i eigenfunction of L (see

Proposition 3.8).

Proof. Notice that
(@i, pj) = by
and

Cem™y=B) ¢(pe¥ —y) »1  as s Moo

Then we compute

‘<C (e70y — B) ¢ (pe%o - y) @i, <Pj> — 0ij

<(1 —((ey=B) ¢ (pe%o - y)) ©i, wj>’

< (BtL)eme0 n ] 02(n—1) —de cih | g2(n—1) —%d
=/ loips|y e y + lpivsly e Yy

50
pe2 —1

<C DT o 2(n—1) 4 - 2Xi+2X+2, 2(n—1) *ﬁd
< (n) i y“y Yy + 1y Yy e fTdy
pe s —

e

N

[
S

S C(’I’L) e—2(n+a—%)aso

It follows that
2

H(l —C(e™y—B) ¢ (pe%o - y)) ©i
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S

:<@—C@“%—5)C@5?—@>%,@—C@”%—B)C@ég—@>w>
g<(1—<@f“y—ﬁ)C(m%l—y>>¢uwﬁ
< C(n) e 2(nta—3)oso

O

By (3.46) and Lemma 3.12, the function ®;, converges uniformly to the identity map

in B> (O; 52(0‘_1)) as to 0. Thus, if |tg| < 1 (depending on n, ), we have

(0, 0) ¢ By, <a§2 (o; 52<af1>)>

and

1::d%§0d,B2<O;ﬂ%a_U),HLOD::(bg<®m,B2<O;ﬂ%a_U),HLOD
= deg (P, Os,, (0, 0)) (3.55)

In addition, notice that O; is an open subset of B2 (O; 52(0‘_1)) (by the continuous
dependence on the initial data), and that ®; is continuous in the parameter ¢t. Then we

consider the following index set
1= {t S [to, O)| deg ((I)t, Ot, (0, O)) = 1}

Below are crucial a priori estimates of {Eiao’al)} for which
to<t<t:

@4, (ao, a1) = (0, 0)
We leave the proof in Section 3.6, Section 3.7 and Section 3.8.

Proposition 3.13. Let n > 5 be a positive integer and choose ¢ = ¢ (n) > 0, ¥ =

¥ (n) € (0, 1) so that

n+a—35 1
0 in{d ——2, — 3.56
<§<m1n{ T a ,/\2} (3.56)
—1—a<19< ) l-a)s 1—a 1 (3.57)
min — .
-« n+a—|—%’2—a’20

Assume that (ag, a1) € Oy, for which

<I>t1 ((lo, al) = (O, 0)
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where t1 € [tg, 0) is a constant. Suppose that

(ao, al) S Ot

for some t € [t1, e71t1]. Then if A > 1 (depending onn), 0 < p < 1 < 3 (depending
onn, A) and |tg| < 1 (depending on n, A, p, B), we have the following estimates.

1. The function u (x, t) defined in (3.20) satisfies
2 (x, t) >0 (3.58)

for()gxgp,togtgf.

2. The function u (x, t) defined in (3.24) satisfies

fu (e, )] < 4 min{e, 1}

Op (2, B)] <} (3.59)

| |0%u(, 0] < Conp)
for x > %p, togtgi’, and
i|ai é N2« 2o+1 .
2|0 (z, t)] < 5 (—t)" 2%+ , ie{0,1,2} (3.60)

1., o
for B(=1)277 <z <p, tog <t<t.
3. In the tip region, if we do the type 11 rescaling, the rescaled function w(z, T)

defined in (3.39) satisfies

@1—25&*3 (2) <w(z 7)< ¢1+2ﬁa*3 (2)

0 < 0.(z,7) < 143272 (3.61)

}832113 (z, 7')‘ < C(n)

\

for0<2z2<38, 90 <7 <7, where T = 1

20_(_{)20‘ .

Furthermore, we have the following asymptotic formulas and smooth estimates for

the solution in Proposition 3.13.
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Proposition 3.14. Under the hypothesis of Proposition 3.13, there is

ke (1 - C(?’L, A7 P 6) (_t(])§>\2 ) 1+ C(?’L, Aa P B) (_t0)§>\2)

so that for any given 0 < § < 1, m, l € Z, the following smooth estimates hold.

1. In the outer region, the function u(x, t) of Z‘gao’al) defined in (3.24) satisfies

omolu(z, t)‘ <C(n, p, 6, m, 1) (3.62)

foer%p, t0+52§t§£, and

:L,m+2l

oo <u (@)= 2 iyt <\/_7>>‘ <C(n, A, 6, m, 1) pP g2t
(3.63)

for (x, t) satisfying %\/ —t<zxz< %p, to 4+ 6222 < t < t. Note that

k Aot} z 2ha+1 —t  (—t)?
co S (J:ﬁ) ke 2+ L2 + x?

(see Proposition 3.8 and Remark 3.9).

2. In the intermediate region, if we rescale the hypersurface by the type 1 rescaling
(see (3.27)), then the function v (y, s) of the rescaled hypersurface rr{ee: o) defined in
(5.29) satisfies

ym—f—QZ

k
m 0l
ool (v<y, o-E

. e_’\25502 (y)>‘ < C(n, A, 0, m, 1) e_%se_hsyo‘+2 (3.64)

for (y, s) satisfying e 77¢ <y <2, 5o+ 6%y*> < s < §, and

Y omal (0 (y, ) — e i ()| < C (n, A, 6, 1) BB 2erlesa) sy
(3.65)

for (y, s) satisfying %Be“’s <y <e V9 5o+ 6%y? < s < §, where § = —1In (—tD) and

%:min{g)\g—ﬁo <n—|—a—{—z> , §22,2(A2—|—(0z—2)290)} >0 (3.66)
g:l—%(l—a)(l—ﬁ)e(o,ﬂ) (3.67)

are constants. Note that

k
ge_’\zs% (y) = ke %y (1 + 211y + Loy*)
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e~y (e7y) = ke 20y (1 +0 ((e“y)_Q(l_a)))

(see Proposition 3.8 and (3.8) ).
3. In the tip region, if we rescale the hypersurface by the type 11 rescaling (see
(3.28)), then the function W (z, T) of the rescaled hypersurface pieo ) defined in (3.58)

satisfies

g2 | gmal <w (2, 7) — O (z)) ] < C(n, m, 1) o3 <T> E (3.68)

70

for0<z<2B,10+6> <71 <7, where t = 1

Remark 3.15. By Proposition 3.13, Proposition 3.14 and [EH]|, we may infer that if
(ag, a1) € Oy, and

@4, (ag, a1) = (0, 0)
then (ag, a1) € Og-14,. In other words, Egg“al) is a “good” candidate of initial hyper-

surfaces to flow.

We then have the following corollary.

Corollary 3.16. If |to| < 1 (depending on n), then we have T = [to, 0).

Proof. Notice that by (3.55) we have tg € Z. Then we would like to prove the corollary
by induction.
Assume that t; € Z. The goal is to show that t5 € 7 for any ¢y € [tl, e_ltl]. By
definition, there holds
deg (P4, O, (0,0)) =1

It follows that there is (ag, a1) € Oy, for which
P4, (ag, a1) = (0, 0)

By Remark 3.15, we then have (ag, a1) € O, and (0, 0) ¢ ®, (00,) for all t; <t < ts.
Consequently, Oy, is non-empty and the degree of ®; at (0, 0) is well defined in Oy, for
each t; < t < ty. Since ®; is continuous in ¢, by the homotopy invariance of degree,
there holds

deg (Pt,, Oy, (0, 0)) = deg (P4, Oy, (0, 0))
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In addition, by Remark 3.15, (0, 0) ¢ ®;, (O, \ Oy,), which, by the excision property

of degree, implies that
deg (q)tu Ot27 (07 0)) = deg (Cbtlv Otl’ (Oa 0)) =1
Therefore, we get to € Z. O

Now we are ready to prove the existence theorem of Veldzquez’s solution.

Theorem 3.17. Let n > 5 be a positive integer. If |to] < 1 (depending on n), there
is an admissible mean curvature flow {31}, o, (see Section 5.3) for which the the
functions u(x, t) and u(x, t) (defined in (3.20) and (3.24), respectively) satisfy (3.58)
and (3.59). Besides, in the tip region, if we perform the type 11 rescaling, the rescaled
function w (-, T) (defined in (3.39)) satisfies (3.61).

In addition, there is
ke (1-Cm)(~)™, 14 (n) (~1)™?)

so that for any given 0 < § < 1, m,l € Z, there hold

1. In the outer region, the function u(z, t) of ¥y defined in (3.24) satisfies (3.62)
and (3.63).

2. In the intermediate region, if we do the type 1 rescaling, the function v (y, s)
of the rescaled hypersurface Iy defined in (3.29) satisfies (3.64) and (3.65).

3. In the tip region, if we do the type II rescaling, the function w (-, T) of the
rescaled hypersurface Iz defined in (3.38) satisfies (3.68).

Proof. Lett; > tg be a sequence so that t; 0. By Corollary 3.16, there is (aé, ail) €Oy
for which
4, (ap, a1) = (0, 0)

By the uniform estimates in Proposition 3.13 and Proposition 3.14, we may assume (by

passing to a subsequence) that as i — oo,

glabai)
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and the functions {a(aé’ai) (z, t)} and {u(“é’ai) (z, t)} of Ef%’“i) (defined in (3.20)
and (3.24)) converge locally smoothly to @ (x, t) and u (z, t), respectively. The con-
clusion follows immediately by passing the uniform estimates (in Proposition 3.13 and

Proposition 3.14) to limit. O

Remark 3.18. Let {¥;}, o, be Veldzquez’s solution in Theorem 3.17. From (3.29),
(3.30), (3.63) and (3.64), the type I rescaled hypersurfaces I (see (3.27)) converges

smoothly to C on any fixed annulus centered at O, i.e. for any 0 < r < R < 00,

I, <5 ¢ in B(O; R)\ B(O;r)

as s /* co. Likewise, from (3.38), (3.42), (3.43), (3.65) and (3.68), the type II rescaled

hypersurfaces I'; (see (3.28)) converges to M, locally smoothly, i.e.
C’OO
I, =% M,

In addition, by the admissible conditions, the projected curve %; (see (3.22)) is a graph
over C outside B (O; B (—t)%ﬂr). By (3.58) and the admissible conditions, we know
that inside B <O; B (—t)%+a), ¥ is a convex curve which intersects orthogonally with
the vertical ray { (0, )| = > 0}; moreover, if we zoom in at O by the type II rescaling,
by (3.4) and (3.79), the rescaled curve I'; (see 3.41) lies above C and tends to it for
z / B. Therefore, T is a graph over C inside B (O; (), which in turn implies that >,

is also graph over C inside B (O; B (—t)%J“U). Hence, we get

S ={(z, iz, 1)) x>0}

(-t a5 )| o2 2001

3.5 Type II singularity and blow-up of the mean curvature

In this section we explain why Velazquez’s solution (see Theorem 3.17) develops a type
IT singularity at the origin and why its mean curvature blows up as ¢t ,/* 0. The lower

bound for the blow-up rate of the second fundamental form is already shown in [V],
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while the upper bound (of the second fundamental form) and the blow-up of the mean
curvature are new results.

To estimate the second fundamental form and mean curvature, we would use the
asymptotic formulas in Theorem 3.17 to examine the solution in each region separately.

Let’s start with analyzing the outer region by (3.24), (3.59) and (3.60).

Proposition 3.19. Let {¥t}, <, be Velazquez’s solution in Theorem 3.17. In the

outer region, the second fundamental form of ¥y is bounded by
V—t|Asg,| < C(n)
for %to <t<O0.

Proof. In the outer region, we parametrize 3; by (3.24). The second fundamental form

is then given by

92, u
] 1+(8zu)?
Ay, = g,
1+ (Ozu)
st
By (3.59) and (3.60), we have
max {|“20] |0, (, ]} < §
|02,u(z, t)| < C(n)
for x > \/—t, %to <t < 0. The conclusion follows immediately. O

In the intermediate region, we first do the type I rescaling and study the rescaled
hypersurface by (3.29), (3.30), (3.60), (3.64) and (3.65). Then we undo the rescaling to

get the estimates for the solution.

Proposition 3.20. Let {¥t}, <, be Velazquez’s solution in Theorem 3.17. In the
intermediate region, the second fundamental form and the mean curvature of ¥; are
bounded by

(=4)2%7 |4z,| < C(n)
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(—)2 07207 | 7y, | < O (n, to)

for 3to <t <0, where 0 < o < 5 and 0 < o < 1 are constants defined in (3.23) and

(3.67), respectively.

Proof. In the intermediate region, we rescale Veldzquez’s solution by

oVt s
which can be parametrized by (3.29). The second fundamental form and the mean

curvature of Il are then given by

Bgyv
1 14+(8yv)*
An, = ——— Low g
1+ (ayv) —14+0yv
o I
1 92, v )
Hy, = ( vy 2+2(n_1)y2yv+2v>
L5 @ \1F 0 P

S N <5SU — % (—yOyv + v))
1+ (9yv)?

By (3.30) and (3.60), we have

v(y, 1)

max
{1

0 (v )} < Cmye eyt < g

02,0 (y, s)| < C(n) (e 25y )y~t < C'(n) e

for feT?* <y <1, —In (—%to) < s < 00. Thus, we get
[ A, | < C(n)e”
in the intermediate region for —In (—%to) < s < oo.
As for the mean curvature, notice that

% e—A2s 9 (y) for 671905 <y<l1
v(y, s)~

e~ oS ¢k (easy) for /86—0'8 < Y < 6—1905
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We then compute
Y _1 ﬁ —A2s
<8S +5 9 2) (ch ©2 (y)

1
= <as + %@, - 2) (ke—hsya (1+201y* + T2y4))

= —2ke 25y (1 + T1y2)

and

1
<as + %ay - 2) (6_08 Q/)k’ (easy))

- _ (; + a) e (Yr (2) — 209 (2))

z=eT5y

- (3+o) e (a-arEr+o (@)
= —2ke 25y (1 +0 ((e”sy)fﬂlf’l)))

It follows, by (3.64) and (3.65), that

(£ 2) vt

< '(83 + %Gy —~ 1> (ke‘*"%z (y)> ‘ + C(n, to) e (6‘*25y°‘)

2 (&)

< ’—le*’\QSyo‘ (1+ T1y2)’ + C(n, to)e ™ (e*)‘”ya)
< C(n, to) e **y* < C (n, to)

for e V75 < y<1,—In (—%to) < 5 < 00, and

(2 2) vt

1
< ’ (as +29,- 2) (€™ v (e“y>)‘ + O (n, to) e (e 72y 7?)

< )—leikﬁya (1 +0 ((easy)fQ(lfoz)))’ + C’(n, tO) (ef)\gsyafl> (672gasy71)
< C(n, tO) e—Azsya—l (y + e—QQasy—l) < C(TL, tO) 6(1—29)05
for Be=7 <y <e Y% —In (—%to) < s < 0o. Consequently,

|00 — 3 (—y Oyv + v)|

\/1+18,]?

|Hr1,| = < C(n, to) e(1—20)0s
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Lastly, by the relation

Am, (y) = V-t As, (V—=ty)|,__..

Hp, (y) = V—t Hy, (\/jty) ‘t:—e*s

the conclusion follow easily. O

In the tip region, we do the type II rescaling and study the rescaled hypersurface by

(3.38), (3.61) and (3.68). Then we undo the rescaling to get estimates of the solution.

Proposition 3.21. Let {¥:}, ;o be Velazquez's solution in Theorem 5.17. In the tip

region, the second fundamental form and the mean curvature of ¥y satisfy

lis
Gy S G0 As] < C )
(—1)2+0=207 | oy, | < C (n, to)

for $to <t < 0, where 0 < 0 < % and 0 < ¢ < 1 are constants defined in (3.23) and

(3.67), respectively.

Proof. In the tip region, we first rescale Veldzquez’s solution by

(_t)E—HT t:—(20’7’)5?1
which can be parametrized by (3.38). Then the second fundamental form and the mean
curvature of I'; are given by

92,
148, w|?
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By (3.61), we have
1

for 0 < z < 3, % (—;to)_% < 7 < 0o. Thus, we get

i < Mrl<

As for the mean curvature, note, from (3.6), that

1 1,0\ 1, )
‘<8T+2+ zﬁz—2+ >¢k(z) Z'—2+ <¢k(z)—23z¢k(z)>

20T 20T 20T

By (3.68), we get

1 1
5+o0 5+o\ .
(874- 2207 20, — 2207 )w(z, T)

+ C(n, to) (207)" ¢

1 1
5+T0 s+o\ -
< 2 _ 2
- <8T + 20T 29; 20T )7/% (2)
< C(n, ty) (207)"°
Thus,
N 1to A N
Or — 33— (=2 0,0 + w)‘
|Hp_| = < C(n, ty) (207)"°
14 (9.0)?
The conclusion follows by noting that
e \lio )
Arc(2) = (=07 As (0347 2)|
o lis _ 1., ‘
Hr, ()= (=087 Hs ((-03472)|
O

Lastly, we would like to show that the mean curvature blows up in the tip region at

1 ast /0.

1
£)2°

a rate at least
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Proposition 3.22. Let {3}, o, be Velazquez’s solution in Theorem 3.17. Let Hy, ()

be the mean curvature of 3; at
Xt (JZ‘, v, (,U) = (’IV7 ﬂ(d?, t)CO)
(see (3.20)). Then for any z > 0, there holds

1
5—0

limsup (—t)
t 70

Hs, ((—t)%+" z)‘ >0

Proof. Note that

>

t

1 o2 Dt 1
14 (9,0)? N+ (0a11) v

o
- ar (3.69)
14 (9,0)?
We claim that for any z > 0, there holds
‘&m ((—t)%“ 2, t) ‘
lim sup >0 (3.70)

t,0 (_t)—%“’
The conclusion follows immediately from (3.61), (3.69) and (3.70).

To prove (3.70), we use a contradiction argument. Suppose that there is z > 0 so

that

‘&ta ((—tﬁ*" 2, t)‘
lim sup T =0
t 0 (—t)" 2zt

then obviously,

lim ‘atﬂ ((_t)éjg - t)‘ =0 (3.71)
t,70 (_t)*§+0

Recall that by (3.68), we have

1 1 1 N
—a((-t)t s t) =0z, —— | = z as t 0
I GURED) (= o) = 2 b
It follows, by L’Hopital’s rule, that

~ (0 ((_t)é_'_o— 2, t)
i (2) = lim : = lim .
t 0 (_t)§+a t 0 _ (% + U) (_t)—§+a

1
~ _f\3tOo
8tu (( t) Z, t) O (z 1 )
: " 20 (

_t)Qa'
Notice that the limit on the RHS exists because of (3.68) and (3.71), so L’'Hépital’s rule
is applicable here. Thus, we get
Byt ((—t)%” 2, t)
A0 (1 —3+0
A (h+o) (-
by (3.5), which contradicts with (3.71). O

=y, (2) — 20:9% (2) >0
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3.6 (" estimates in Proposition 3.13 and Proposition 3.14

Starting from this section, we are devoted to prove Proposition 3.13 and Proposition
3.14. From now on, we focus on the estimate of the admissible MCF {Egao’al) }t0<t<£
for which o

@4, (ao, a1) = (0, 0) (3.72)
where tg < t1 < { < 0 are constants and ¢ <e~'ty. In this section, we would show that

if 0 < p < 1 < f (depending on n, A) and [tg| < 1 (depending on n, A, p, B) , there

a2+ a2 < C(n, A, p, B) (—to)*™ (3.73)

where ¢ > 0 is a constant defined in (3.56). Moreover, there is

holds

ke (1 —C(n, A, p, B) (—t)™, 14+C (n, A, p, B) (_to)w) (3.74)
so that the following hold.
1. In the outer region, the function u (z, t) of Egao’al) defined in (3.24) satisfies
lu(z, t) — u(x, to)| < C(n)Vt—to (3.75)
fora:Z%p,togtgf, and
k A2ty x %, 20a+1
wiw ) - Loy (E)] < 0 A p B Cr)F e @376)

V-t

o <t <t, where > > 0 is a constant defined in (3.66). Note

k 1 T —t —t\2
a (—t))\2+2 ©2 <_t> = 1{31,‘2>\2+1 (TQ + 2T1 (.’£2> + <332> )

2. In the intermediateregion, if we do the type I rescaling, the function v (y, s) of

o
=
W=
9
~
IA
8
(VAN
>
-

the rescaled hypersurface I\ ") defined in (3.29) satisfies

k _ s — xS — s, &
u%@—eMm@ﬂscmAmﬁw () @)

C2

for %e_%s <y </GSAgs, sp < s < 8, and

‘(U (y’ 8) _ e 0S W (6sz))‘ <C (n) 60_36_290(5_80) (e—)\zsya) (3.78)
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for %Be“’s <y< %e‘ﬁ"s, so < s <8, where § = —1In (—f) and 0 < p < ¥ <1 are
constants (see (3.57) and (3.67) for definition). Note that

k
58 e (y) = ke Ty (14 21y + Toy?)

e (¢7y) = he My (140 ((e779) 207

3. In the tip region, if we do the type II rescaling, the function @ (z, 7) of the

rescaled hypersurface T\ ) defined in (3.38) satisfies

A~

w(15a—3(f)9)k(z) < w(z, 7)< @(Hﬂa_s(f)g)k(z) (3.79)

0

1
for0< 2z < (207’)5(1_’9), 70 <7 <7, where 7 = 1

20 (1)
To achieve that, we first establish (3.77) (see Proposition 3.26) by using the energy
estimate and Sobolev inequality. Next, we use the comparison principle and the bound-
ary values of (3.77) to show (3.76) (see Proposition 3.27) and (3.79) (see Proposition
3.28). Then we use (3.79) to deduce (3.78) by rescaling and analyzing the projected
curves. Lastly, we use the gradient and curvature estimates in [EH] to prove (3.75) (see
Proposition 3.29). The ideas of proving (3.76), (3.77) and (3.79) are due to Veldzquez

(see [V]). Here we improve his estimates to get better results.

Remark 3.23. By the above C0 estimates, we deduce that
217 - 1) 2t < (e, ) < 2(14 201 + ) 2P
for V=t <z < p, ty<t<t and
2(14201 +05) e 2%y < w(y, s) < 2e72%”

for %66_05 <y <1, sy <s <3, provided that 5> 1 (depending on n) and |tg| < 1
(depending on n, A, p, 5). In Section 3.8, we would use these etstimates to choose the

constant A = A (n).

In order to prove (3.77), we need the following two lemmas. The first lemma is the

energy estimates for solutions to a parabolic equation associated with the linear operator



116

L (see (3.34)). Recall that in Proposition 3.8, the eigenvalues of £ satisfy A; > Az > 1

for ¢ > 3.

Lemma 3.24. Let H, be the closed subspace of H (see Proposition 3.8) spanned by

eigenfunctions {@;};~5 of L. Given

2
f('a 3) € L2 ([807 §]7 L2 (R—H y2(n—1)€—y4dy>)

and h € Hy, let v (-, s) € C ([so, §]; Hy) be the weak solution of

(Os +L)v (-, s)=Ff(,8) forsp<s<s

(3.80)
\'% (', So) =h
Then for any 0 < & < 1, there hold
v (-, )17
1 S
< o—2(1-8)Xs(s=50) ||y (. 2 / ~2(1-8)As(s—8) || 2
<o ool + i [ Of (- &) de
and
<‘CV ('7 S) y V ('a S)>
< 6—2(1—5)>\3(S—80) <£h h> 215 e 2(1—8)As(s ||f( )||2 dé-
for so < s < &, where the inner product (-,-) and the corresponding norm ||-|| are defined

i Proposition 8.8.

Proof. Let {vy,},,~5 be the Galerkin’s approximation of v. Namely,

Vi (4, 8) = Y <e‘*i<5‘50> (h, @i) + / N0 (£ €), ) d€> i (v)

i=3 50

Then we have

OsVim, (4, 8) + LV (-, 8) =i (1, 8)  for 5o < s < §

Vm ('7 80) = 2213 <h7 901> i — h in H*

where

=D (. 8), i) ei = f( ) inL2<[50,§];L <R y2 Ve~ dy>>

=3
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It follows that

<88Vm ('7 S)? Vm ('7 8)> + <£Vm ('7 8)7 Vm (‘7 S)) = <fm ('7 8)7 Vm (‘7 S))

which, by Cauchy-Schwarz inequality, yields
20, IV (5 I + A IV (5 DI < gl (- )1 + == [l (- )]
2 ' ’ - ' 45)\

2 1 2
s ||Vm "y < —2(1—=6)A m\ S m "
& Bulun (DI < ~2(0=8)Na o (-, I+ 35 (- 5]
for any 0 < 0 < 1. Thus, by integrating the inquality with repect to s, we get
Ve (-5 5| (3.81)

< AN (sl 4 g [N o )

for s < s < s.

Similarly, we have

(Osvim (5 8) OV (v 8)) + (Lvim (-5 8) ;s Osvim (-5 8)) = (Fu (5 ), Osvim (-, 8))

Substitute Osvp, (-, ) = —Lvp, (-, s) + (-, s) into the above equation to get

5 05 (L - 5), v (5 9)) = = (L (- 5). Lvm () -+ (L - 5) )
By Cauchy-Schwarz inequality, we get
0, (L - 5), vin (- )
< =21 8) {Lvm (- 8), Lum (> 9)) + g [l (5 )]
< =2(1= ) 2 (Cvn (- 8), v () + 55 (- 9
for any 0 < § < 1. Thus, we have
(Lvm (5 8) 5 vim (-, $)) (3.82)

1 S
< 6_2(1_6)>\3(5_50) <£Vm ('7 30) sy Vi ('7 SO)> + 275 e H1=9)As(s ||f ( )HQdf
S0

for s < s < s.
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On the other hand, for any m, [ > 3, there holds
Os (Vi (5 8) =vi (-, 8)) + LV (- ) =vi (+ 8)) = (- 8) =i (-, )
By the same arguments as above, for any 0 < § < 1, we can deduce that

IVim (-5 8) = Vi (-, 8)|1? (3.83)

< 6_2(1_5)>\3(S_80) HVm ('a 80) — Vi ('7 SO)||2

L7 oa—s(s—g) 2
S=E I (. €)—F (-
+25}\3/506 [fm (-, &) = (¢, OII7d
and

(L(vm (5 8) =vi(58), (vm (-5 8) =vi (-5 6))) (3.84)

< e 2UmONET0N(£ (v (-, 50) =i (5 50)) 5 vim (= 50) = vi (- %0))

b [ e 20N g () — (-, €2 de
2% /.,

for sy < s < s. Therefore, by (3.36), (3.83), (3.84) and the uniqueness of weak solutions,
we get

Vi, — v in C ([so, §]; Hy)

The conclusion follows by passing (3.81) and (3.82) to limit. O

The second lemma is a Sobolev type inequality for functions in H, which is the

Hilbert space defined in Proposition 3.8.

Lemma 3.25. Functions in H are actually continuous, i.e., H C C (R}). Moreover,

for any v € H, there holds

1 (y+1)?
v(y)| < C(n) ( —Tte ? ) ([[Oyvl + [Iv]l)
y 2

fory > 0.



119

Proof. Let’s first assume that v € C* (Ry) N H.

For each 0 < y < 1, by the fundamental theorem of calculus, we have

<z<y

v<y>=v<z>+/yayv<s>ds v

VIS

which, by Hélder’s inequality, implies

INwFSCQW@P+yﬁﬂ%WQF%>

Y 2
< O + O g (/ oy <s>|252<"1>e3df>

22
for % < z < y. Integrate the above inequality against 220D e=T 4z from % to y to get

4 22 Yy 2
’V (y)F (/J z2(n—1)6—7 dz) < Cﬁ |V (z)‘g 22("_1)6_sz
2 2

Yy 2 ) 22
+C () i ( /1o <s>\252<n—1>e—id§) ( [ e dz)
Yy Y
2 2

which implies

1 v ne1) _22
v (y)I* < C(n) 1 (/y v (2)]? 22" Ve dz)
5

Yy 2
£O0) s ( /10w <s>1252<"—1>e—id§)

That is,
1

1
n—3

V@) < Co) ( M+ ramr)

< O (m) =1 (Jovll + M)

Y
for 0 <y < 1.

Likewise, for each y > 1, by the fundamental theorem of calculus, we have

v(y)zv(z)—/ oy (E)de  Vy<c<y+l
Yy
which implies
2 2 y+l 2
v ()| SC<!v(z>\ G df)
Yy

(y+1)

2 y+1 £2
<O ()P + Cy2n DS ( [ o <£>|2§2<”—1>e—4d5)
Yy
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22
("=1)e=F dz from y to y + 1 to get

o (YT oy 22 vt 2 2n-1) —=
v (y)] z e 1dz| <C v (2)|" = e idz
y y

2 y+1 2 y+1 L2
_*_Cy*Q(n*l)@% </ |8yv (§)|2§2(n1)e§4d£> </ 22(”1)e4d2’>
Y Y

which yields

for y < z < y + 1. Integrate both sides againt 22

(y+1)?

NP <€y 20 (P + o)

(y+1)?

< C(n) e T (]| + V)

for y > 1.

More generally, given a function v € H, then choose a sequence {v;} C C} (Ry)NH

so that
H
Vi — V
By the above arguments, we have
1 (w+1)?
vi ()] < C(ﬂ)( — te )(IlayViHJr [Ivill)
y 2
1 (+1)?
Vi (y) =vi W) < C(n) | — +e 7 | ([10yvi = Oyvjll + llvi = vjl)
y 2

for y > 0. It follows, by the second inequality, that

Cloc
v =% v

Hence v € C' (R4). In addition, by passing the first inequality to limit, we get

1 (y+1)?

v(y)l < C(n) < o te ) Ayl + VI

Y
for y > 0. O

Now we are ready to prove (3.77). The idea is to linearize (3.31) and do Fourier
expansion. The condition (3.72) allow us to control the evolution of components in
negative eigenvalue functions. For the remainder terms, we can use the energy estimate

and Sobolev inequality to get a L estimate.
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Proposition 3.26. If 0 < p < 1 < 8 (depending on n, A) and so > 1 (depending
onn, A, p, B), then (5.73) holds. Moreover, there is a constant k satisfying (3.74),
for which the function v (y, s) of the type 1 rescaled hypersurface rriee o) (see (3.31))
satisfies (3.77).

Proof. Let
U(y,s) = ((e”y—p) ¢ (pe% —~ y) v (y, 5)

then v (-, s) € C'([so, §]; H). From (3.33), we have
(68 + [’) v ('7 S) = Qu ('7 S)
which implies

Os+L)v (-, 8) = f(,8)=fi(, 8)+ ful, s)+ fin (-, 8) (3.85)

where

fily 8) = C(ey = B) ¢ (pef —y) Qu(y, s)

) =¢' @ =) e (20,0 9+ (-2 (04 1)0) v o))

—("(e7y = B) €7 v (y. 9)

We claim that
If (- 8)l < C(n, A, p, B) e (1T (3.86)

for s9 < s < §, provided that 0 < p < 1 < 8 (depending on n, A) and sp > 1
(depending on n, A, p, 3), where the norm ||-|| is defined in Proposition 3.8. Notice that
by (3.32), we have

max {

v (y, s)

» |9y (v, 5)|} < Ae 28 (y‘kl +y2>\2) <A (Bafl +p2’\2)
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for fe7 7% <y < pe%, so we have

v (y, s)

W =

o 9 <

max {

for Be=7% < y < pe3 provided that 0 < p < 1 < f3 (depending on n, A). To prove

(3.86), we use (3.32) to get
1l = |[¢ ey = B) ¢ (et ~y) Quw, 9)|

2
(6_)\28 (ya_1 n y2>\2>> o 28 <ya—2 I y2/\2—1> X<ﬁe—as,pe%)

< C(n)A3

< C (n) AP e (IHe)hes

|

1

2—¢
a—1 22 a—2+¢(a—1) 20 —142¢2
(7 o) (o T ) X et

< C(n)A3 e~ (1<) A2s
o] 2 =
< C(n) A3 e—(1+6)A2s (/ (y2(0—2+€(04—1)) + y2(2/\2—1+2€>\2)> yz(n—l)e—ﬂdy> ’
0
< O (n) A3 e (Fe)es

since ¢ <Ayt <land 2(a—2+¢(a—1))+2(n—1)> —1;

Ifull < € () A 252 Xgemos, 31110-22)
(B+1)e 0 :
< C (n) Ae—)\zs /ﬁ . yQ(a—2)y2(n—1)dy

nta—3 < C(n) ABnJra*%e*(lJrc))\zs

e2
C(n)Ae—Azs (/"’ y2(2A2+2)y2(n_1)e_zfdy>
pe

< C(n)Ae % (Be™7®)

2X2+2

and
e—)xzsy X(pe%717p€%>

[fuzll < C(n) A

1
2

S
Z-1

< C(n)Ae 2% < O (n) Ae~(Fe)hes

provided that sp > 1 (depending on n, p).

2—¢
(6—)\23 <ya—1 i y2A2)) <ya—2+§(a—l) +y2)\2—1+2§)\2) X(gews,pe%)
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Next, we would like to estimate the components of negative eigenvalue functions in
the Fourier expansion of v (-, s). For each i € {0, 1}, by Proposition 3.8, (3.72) and
(3.85), we have

as <’6(7 3)7 (Pi> + >\i (6(7 8)7 90i> = <f ('7 8)7 90i>

(O 81), 9i) =0

Note that A; = Ay — (2 —4) < 0 and

Therefore, for s1 < s < §, we have

(0 8), @i =

[0 0w < [[etn9 1 1ag
S C (n, A, P, ﬁ) e_(’\2_2)(5_51)e—(1+§)>\251
< C(n, A, p, B) e FePhes

and for sy < s < s1, we have

[0 8), wi)| =

[ <f<-,s>,%>d5' < [ eenEp (o) ag

< C(n, A, p, B)e (e

Thus, for i € {0, 1}, there holds
(@ (-, 5), i)l < C(n, A, p, B) e IFeles (3.87)

for sy < s < §. In addition, for ¢ € {0, 1}, by Lemma 3.12 we have

.= A250

(@, s0), i) — aie

— ‘<C(6030y -5)<¢ (pe%o _ y> v (-, 50, ¢ %> _ gge—taso

— ¢~ A250

<C(easoy -B8)¢ <pe%° — y) <612g02 (y) + %wo (y) + %901 (y)> , CiSOi> —a;

<C(n, A, p, e H2%
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which, together with (3.87), implies

la;| < 2% (T (-, s0), i)

+ ‘ehso (0 (-, s0), cipi) — a;
< C(n, A, p, B)e N>

We continue to estimate the components of the first positive eigenvalue functions in
the Fourier expansion of v (-, s). By Proposition 3.8, Lemma 3.12, (3.46) and (3.85), we

have

0 (22 (T (-, 8), p2)) = €**(f (-, 5), ¢2)

€220 (T (-, 80), capa) — 1| < C (n) e 272
Now let

k= e251 (0 (-, 1), c202)

then for s; < s < §, we have

€225 (5, 5) capa) k| = [T 08), ) = (T ) 2 00)

s s1+1
-\ eu f),w)d&‘ < [T e el

S1 1

< C(n, A, p, B)e 728

(since § < s1 4+ 1), and for sp < s < s we have

[ @), ca00) = b = [ @ 5), c20) = T 51), )

[ o, <p2>d€' </
< C(n, A, p, B)e*

s

|| f (- 6) de

Thus, we get

k—1] < ‘k — (T (-, 59), €2 ‘P2>’ T ‘emo ¥ (-, s0), c2pa) — 1

and

< C(n, A, p, B)e(1Fo)s (3.88)
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for s < s < s.
Now we would like to estimate the remaining parts in the Fourier expansion of

v (-, s). Let

5* (‘a 5) = 5(7 5) - Z<5(’ 5)7 @i> Pi

=0
then v (-, s) € C([so, s1]; Hy), where H, is defined in Lemma 3.24. By Proposition

3.8 and (3.85), we have

2
(05 + L) T (- 8) = )= Y (F(9) v e = fulys)

1=0
Note that | f« (-, s)]| < ||f (-, s)|| and that A3 = A2 + 1. By Lemma 3.24, for any

0 <d <1, we have

13 (-, 8)I1”

< e 2 5 ( so)|f + o [ M0, ) g
3 Jsg

(L (-, 8), Ui (-, 8)
= 2P0 (25, (), 5 (- 50)) + o / SO £ (-, )P dg
for sg < s < 5. We claim that
[T (-, s0)ll + 11£54 (-, s0)[| < C (n, A, p, B) e (1HN220 (3.89)

Note that since ¢ < A\, !, there is § € (0, 1) so that (1 — &) (A2 + 1) > (1 +¢) A2. Thus,
we get

13 (o 8)II* + (L0 (-, 8), T (s 8)) < C(n, A, p, f) e 2(F

which, by (3.36), yields
[0, ¢, )7+ 18,8 (-, s)IIP < C(n, A, p, B) e 20H)kes

By Lemma 3.25, we then get

B (v, 8)| < C (1) (10,5 (- ) + 5 (- 9)]) <yn1_1 +e“’f£>2>

1 2
< C(n, A, p, B)e”(Fes (n% +et ) (3.90)
y
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for sy < s < §. To prove (3.89), we use Proposition 3.8, Lemma 3.12, (3.46) and previous

computation for derving (3.87) and (3.88) to get

2
5 (-5 s0)ll = |7 s0) = D (@ (-, 50), i) i

=0

2. 2. 2

< 5(7 80) - e_)\QSO Z 7:()01 + |le A2s0 ?z@z - Z <:6(7 50)7 S01> Pi
=0 1= =0
2 a 2 1
_ S0 3 ~ _
< emheo (1 —C(e™y=P) ¢ (Pe 2 - y)) > ﬁ%‘ +> - |0 s0), cii) — aze A250
i=0 " i=0

where ao = 1, and

2
125, (- so)ll = || £ (€ ey = 8) ¢ (pe® = y) v (s s0)) = DO (T ), i) A
=0
30 2 a; 2
- c(uw%ymc(mzy)fM%Ej;w>§j@msxw»Mw
i=0 " i=0
50 2 a; 2 a;
<e L (C (e™y —=5) ¢ <p€7 - Z/) ; CZ%) e Z;Ai%
2 2 a
+ Z <U( ) 3) ) 901> )‘iSOi —€ Azs0 Z %Az()@z
=0 i=0
2 s
< Jhll+ 37 @ s0), i) — aie ™
i=0
where
2(n—1
h) =<y =) e (<200 s+ (-2 4 B0, 0)

+¢ (pe%o - y) ((—g + 2(ny—1)> v (y, s0) +20yv (v, so)>
—¢" (e70y = B) ™ v (y, s0) = ¢" (pe¥ —y) v (y. s0)

Note that by similar computation as for fi (-, s) and fiu (-, s), we have
IB]| < C (n, A, p, B) e~ (1Fs)2s0

Hence,

LT (-, s0)|| < C(n, A, p, B) e~ (1F)2s0
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Lastly, combining (3.87), (3.88), and (3.90), we conclude

2
SEC8), 9o () + T, 8) — e (y)
=0

. ko
’v(y, s) — —e My (y)’ = o

2

—A2s

1
<D T s), e e ()] +
=0

(. 5), 02) 02 )~ Ee oy <y>\ T 9, )

y" 2

for sp < s < 5. As a result, for %6_‘9‘73 <y <1, we have

2
< C(?’L, Aa Ps B) e_(1+§)>\28 <11 + e(yzl) )

k —Aa2s €_§>\28 —Xos, a+2
v (y7 S) - ae ©2 (y) < C(n7 A7 P, B) nta+3 € Y
Y 2

< C(n, A, p, B) e—(€A2—ﬁa(n+a+%))se—)\staJrg

and for 1 <y < v/cAgs, we have

v( _ E —A2s < C A —GA2s % —Xas, a+2
Y, S) e w2 (y)| < C(n, A, p, B) | e e e 2y

_SA2

<SC(n, A, p, B)e 2 P ooy t?

O
As a corollary, by (3.30), Proposition 3.26 and Remark 3.9, we get
k Aot+1 z 2
£ — o pyets < C(n, A —t)* (—t) 2*F
wlei )= £ i ()] £ €l ) (07 (0
< C(n, A, p, B) (—t)* 2?2 H (3.91)

for 3v/=t <2 < \/hotln(—t), tg <t < t. Below we use (3.25), (3.50), (3.91) and the

comparison principle to prove (3.76).

Proposition 3.27. If 0 < p < 1 (depending on n, A) and |ty| < 1 (depending on n,
A, p), there holds (3.76).

Proof. First, by (3.26) we have

max {

u(z, t)

|0 (x, t)|} < A ((—t)Zxa’l —|—:1:2’\2> <

|
W =
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for \/Shot In(—t) < z < p, tg < t < £, provided that 0 < p < 1 (depending on n, A)
and |to| < 1 (depending on n, A, p).

By (3.25), (3.26) and Remark 3.9, there holds

|0vu (z, t)] < C'(n (} u(z, t)| +

Opu (z, t) ’

T

< C(n)A (xa+2 + (—t)? $O‘_2> < C(n, A) 2z

for /Aot In(—t) <z < p,to <t < {. In addition, we have

d <k( 12212 o, f)) — k9, (Tgx%“ 2Ty (=) 202 4 (—t)? xa)
= =2k (2% + (—t) 2?)
Thus, we get
o, (u (2, 1) — k (—t)2F2 oy (\/g”jt))’ < C(n, A)2°+2 (3.92)

for \/Shot In(—t) <z < p, to <t <t

On the other hand, at time tg, by (3.66), (3.73) and (3.74), there holds

o to) = k(o0 () ]

NE
>\2 3 _1’ - |ai] . <
o ( () + 2 ol («—7))
< C(n, A, p, B) (—to)” 2™ (3.93)

for /sAa2t In(—t) <z < p. Moreover, by (3.91) we have

w(e, 1) — 2 (—epeth g

X
C2 AV
for x = \/<hot In(—t), to < t < L.

Combining (3.92), (3.93) and (3.94), we get

w(z, t) — k(—t)2 g (é) ‘

< C (na A7 P 6) (_tO)%$2A2+1 + C (n7 A) $a+2 (t - tO)

)‘ < O A p, B)(—to) e (3.99)

<O (n, A, p, B) (—tg)” x*2*!

for \/shatIn(—t) < z < p, to < t < t. The conclusion follows by (3.91) and the

above. O
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Next, by (3.30) and Proposition 3.26, we have

2

>‘ < C(n, A, p, B) (207) % —2°
20T

k a
w(z, T) — - (207)2 o <

z
V20T

1
for 1 (207)20 < 2 < V207, 79 < 7 < #. Notice that

k a z 22 22 \?
— (207)2 =k 14+21—+15 [ —
02( o) P2 (\/%) : ( * 120’7'+ 2(207‘)

Z2

w (z, 7) — k2% < C (n) —2°

20T

Hence we get

1

for % (207)2(1_19) < z < V207, 19 < 7 < 7, provided that 79 > 1 (depending on n, A,

p, 3). On the other hand, by Lemma 3.7 and (3.74), we have
[r (2) — k2% < C(n) k32372 < C'(n) 2372

for z > WT(S)’ provided that 79 > 1 (depending on n, A, p, §). Therefore, we get

w(z, 7) = Pr (2)] < |w(z, 7) = k2% + [k2% — ¢ (2)]
2

< C(n) (Z

2(a—1) «a

Y- +z ) z (3.95)
for % (207’)%(1719) < 2 <V207, 10 < 17 < 7. Now consider the projected curves M), and
pleo-) (see (3.7) and (3.41)), which can be viewed as graphes of w (z, 7) and 1y (2)

over C (see (3.2)), respectively. Thus, (3.95) implies that

~

(7~ ()] < C o) (2 4] 5o

20T
for (207’)%(1719) <z< %\/207, 70 < 7 < 7, provided that 79 > 1 (depending on n, A,
p, B). In particular, there holds

A~

W (2, 7) =y (2)| < C(n)(207)7" 22 (3.96)

for z = (207)%(1_19) , 0 <7 < 7, since 0 < 9 < 329 (see 3.57).

—Q

In addition, when 7 = 719, by (3.52), (3.73) and (3.74), we have
jw(z, 70) = (2)] < |w(z, 70) = k2% + [k — ¢ (2)]

2
< (1= + faol + ] + C o) (o + 20 ) 2
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< (Cn, A, p, B) 2om)™ 2% + € (n) ((20m) " + gD ) 20
< C (n) A1

for p < z < 2(207’0)%(1719), provided that 79 > 1 (depending on n, A, p, 5). By
reparametrizing fﬁg‘o"”) and My, we deduce that

~

W (2, 10) — i (2)| < C (n) pHAD 2 (3.97)

for %5 <z< (2070)%(1_19), provided that 79 > 1 (depending on n, A, p, ).
Below we use (3.40), (3.96), (3.97) and the comparison principle to prove (3.79). We
follow Velazquez’s idea of using the perturbation of 1&;C to construct barriers; moreover,

we allow the perturbation to be time-dependent.

Proposition 3.28. If 3> 1 (depending on n) and 79 > 1 (depending on n, A, p, 3),

there holds (3.79). In particular, we have

—e
‘u}(z, ) — b (z)‘ < C(n) g3 (;) 2 (3.98)
for <z < (207’)%(1_19), 0 <7<7T, and
2\ 0
i) = (2)] < C e (2 (3.99)
for0<z<58, i <7<T7T.
Proof. Given functions A (7) and p (1), we define the perturbation of ¢y, by
. - z 1 N z
U (2, 7) = U <> = A (1) Y | ————
k e A (1) ()

(see also (3.3)). By (3.4), there holds

0 62 A)\’M 82’ A’\vlj' l . R
' e Z A 20T k k
1+ (0:00") o
1 . )\L )\L
(it A oo AT :
_< 207 *1_a@”0(w“>r&mw0 o) (rorin )|
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2 _ 2 7
+ /’LL 12 - 8rg¢k (T) — : + (TL . 1) 87‘1/}7]? (T)
AT <1+ (arwk (T)) ) (1+ <Lwﬁ(r)) ) .
T_Aii*au
(3.100)
Notice that
on (02" () = A (9 () = r 0 ()
7‘:)\171&“
(3.101)
. 1 .
Ou (0" (=) = A= (rovhe )|
Tﬁ)\liau
Moreover, by (3.6), there holds
lim Yr (1) — Ok — k lim M:k(l—a) 93t
r /oo ro r /oo re
which implies
O (r) =10l = (1+0(1)) (1— ) 27510 (3.102)

for r > 3, if 5> 1 (depending on n) and 79 > 1 (depending on n, A, p, [3).

To get a lower barrier, we set
N AL, p—
w— (Z, 7-) = ¢k (Z¢ 7-)

with

T

A_<T>=1—m—3( ) p () =1

where 8 > 1 (depending on n). Firstly, for the initial value, by Lemma 3.4 and (3.48),

70

we have

~ ~

- (2, 70) = Ur_(r)k (2) = Y(1-pa—3)(110(1)) (2) < W (2, T0) (3.103)

for 0 < z < %6, provided that 8 > 1 (depending on n). Also, for each %5 <z

1

(2070)21"7 by (3.101), (3.102), (3.97) and the mean value theorem, there is A_ (1)

IN

IN

A« < 1 so that

W_ (2, 70) = ¥r(2) + (A= (10) — 1) 0y (12}’?“ (Z))‘

A=, 2=z =—5
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M (W (24) — 24 D (Z*)>
(3.104)

— _ pa—3
U (2) = B4
e < w(z, T0)

< i (2) = (1-0(1) "2
provided that 8 > 1 (depending on n). Secondly, for the boundary value, fix 7o <7 < 7
and let z = (207)%(1779). By (3.96), (3.101), (3.102) and the mean value theorem, there

is A_ (79) < A« <1 so that
)]
(d}k (Z) A=A, 2=24=
T—a

W (z,70) = ¢ (2) + (A (70) —1) O

AT (@k (24) — 24 Ot (2’*))

o)
< () - (o) (2) T

) (3.105)

< P (2) —C(n)(207) 2% < W (2, 7)

provided that 79 > 1 (depending on n, (), since 0 < o < ¢. Thirdly, for the equation,

by (3.100), there holds
2 b A R 1
i — [ 2= ) (a < —A> +
1+ (0,w-) z w_ 201
1 2a
s+o L A (1) -
— _ 2 11—« _
r=—v"
PO
- oa— T —e
St + <0
2 (1—a)A_ (1)
r=—"F
PGS

for0 <2< (207’)%(1_’9), 70 < 7 < 7, provided that 5> 1 (depending on n). Then we

subtract the above equation from (3.40) to get
a(w—w)—< ! 2(w—A)+”_1a(w—w)> (3.106)
’ L+ (9:0)* ) ’ ) '
2 ; n 1 — :
N 02, 0_ (0,0 + 0,w_) 2+az o (m_w)_(rf Al 2+0> (@
(1 n (azw)Q) 1+ (azm_f) 207 Wi | 207
>0
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min w—w-_)(z, 7)

Now we are ready to show that w_ is a lower barrier. Let
(uA} - w*)min (T) = 1
0§Z§(2O’T)7(1719)

then by (3.103) and (3.104), we have
(w - w—)min (TO) >0

(r) >0 Vri<r<7t

We claim that
(’LZ) - w*)min

Suppose the contrary, then there is 79 < 77" < 7 so that
(3.107)

(0 = W) i (1) <O
stays negative all the way

min

Let 75 € [10, 71) be the first time after which (& — w_)
(3.108)

up to 71. By continuity, there holds

(@ = W) i (19) = 0

On the other hand, by (3.105), the negative minimum of w — w_ for each time-slice is

achieved in [O, (207’)%(1_0)) Hence, applying the maximum principle to (3.106), we

1
2

n—1

+o . .
ww_ )(w_w—)m1n>0

20T

get
0- (w - w—)min - (

Notice that
2w (0, 7) =0= 9,w—_ (0, 7) Vr<t<7
So at z = 0, by L’Hopital’s rule, the third term in (3.106) is interpreted as

n =) (2, 7) = (n— 1) 82, (i — w_) (0, 7)

lim
z—0 z
n—1

v oot as) (w0 — i), (T)) 20

It follows that
Or (ef

which, together with (3.107), contradicts with (3.108).

Next, for the upper barrier, we set
. At
W+ (Za T) = wk+ e (Za T)
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with
a3 (T\¢ -3 e (7Y ¢
aem =140 (2) 1 ) =1 a5 e (2)
70 70
where
1 . Qﬁk (T> - T 67"’(72’6 (r)
= = — f - .

d=10(n, P) -0 oglfrnggﬂ v (1) >0 (3.109)

by (3.5). Note that by (see (3.4)),
0< iy (r) <1,  &p(r)>0 (3.110)

for all » > 0. Firstly, for the initial value, given 0 < z < %B, by Lemma 3.4, (3.48),

(3.101), (3.102) and the mean value theorem, there are

1
1+ 550‘73 < A < A4 (7o), 1< pw < iy (10)
so that
. ~141pa-3 1
Wy (2, T0) = ¢k+26 (2, 10)
1 o
+ <)\+ (10) — (1 + 55“ 3>> O\ (7%\’” (Z))
A=, =[x, 2=2x=—T
AET&#*
_ A
+ (4 (10) — 1) O (% (z)) ’/\:)\*7 i, 2
Aa}_aﬂ*
~l4Lpam3 1 ,8“‘3)\5% - A
_ gt (1) + ey (wk (22) — 2, 00 (z*))
%
_ A © -
— 58273 (20 1*@47;47(z*ag¢k(ag)
~14lge-3 1 a*?’)\i%‘” s _ A 5
= Yy, 2 (2, 10) + 62(1_00 (1 - ﬂ (2070) 1+9) <¢k (24) — 24 Otpe (Z*))
A1+lﬁa—3’1 ~ “
2 wk 2 (27 7—0) = ¢(1+%6a73)k (27 TO) - w(1+%5a73)(1+0(1)) (27 7—0)

> w (2, T0) (3.111)

provided that 3 > 1 (depending on n). Also, for each 28 < z < (2070)%(1_’9), by (3.67),
(3.97), (3.101), (3.102), (3.109), (3.110) and the mean value theorem, there are

L< A <Ai(m0), 1< p < py (7o)
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so that

TI)+ (Z, 7'0) = l/}k (Zy TO) + (A-l- (TO) - 1) a)\ (T/Ajli\’u (Z)> ’)\:)\ U=, Z2=25= £

Ao

Mk

+ (p4 (10) — 1) O, (77[)2‘“ (Z)> ‘)\:)\*, B=on, Z=20 = —

. a—3>\;%a . . _ ;%a .
= e ) e (G () = 22 0 22)) = 857 (20m) R (2040 (1)

5 0 3 —anetl o 0B*7P —l1-9)(1-a)
2 ¢k (Zv 7—0) + (1+O(1)),8 My 272 2% — 'ug (20’7—0) 2 <

*

N 1 o
= i (2, 70) + 5 (1 +o0(1)) BO3u 02 2o

11—
1 -3 atl 24 z
+ 289322 | 14+0(1) 22 i - 5 | —SF—
2" (( W g = <(2UTO)%(1_79)> )

A 1 a
> Yy (2, 10) + 3 (14+0(1)) ,BO‘*S/UL;O‘Z%z“ > w(z, 70) (3.112)

provided that 8 > 1 (depending on n), since z < (2070)%(1_19). Secondly, for the

boundary value, fix 790 < 7 < 7 and let z = (207)%(1_19), by (3.67), (3.96), (3.101),

(3.102), (3.109), (3.110) and the mean value theorem, there are

L< A <Ay (7)), 1< e < py (1)

so that

W) =)+ e =D (R @)

ALY

+ (et (1) = 1) Oy (@[}2# (Z)) ‘AzA*, H=pox, 2=2x=——T

e
4 )\i*a

=)+ 0 (D) P () - 200 )

087 (207) 71 (T> SR (o)

70 Hx

2 o —-e a—3 -0
> P () + (1+0(1) F%u, o2 ( o 97 (T> 2or)-b0-D0-0)
70 M 70

7 1 a—3, —agett (T ¢ fo
> Bl + g (o) sr s (I)
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l—a
oas (7Y ¢ 4 oft ma _ 2 d
oY)
(3.113)

provided that 79 > 1 (depending on n, f3), since z = (2070)%(1_"9) and 0 < o < 9.

Thirdly, by (3.100) and (3.110), there holds
by — Ocythy +(n—1) <3z7f1+ —1> oA (—z 004 + Wy)
T\ L+ (0,0, g ) 207 W T W
2 -1 92,.9) O
_ Mll § - r;wk(r) - 5 —|—(n—1) w;f(r)
(o) (-5 |
=1
)\}Lia M

5+0, s
- 207 F * 1
AT ’
= S ) (roe () Z
)\_~1__1a My
>2(1-0(8*7%)) 687" (20m0)° (207) 7" <11133r¢k (r) +(n—1) 87”1/)7]? (7“)>
T:Aii o
9 a—3 -0 _ R ~
% (7;) ) (2UT) 1 <¢k (T) - rar?l}k (r)) _ z

—(14+0(B*?)) <2+0+
>0

ST =4y (1) — 7 Oy (1)

provided that 79 > 1 (depending on n, A, ), since
27

aﬂﬁk (7")

20— (10 (1)r > (140 (1) k(1 -0) 2
for r > 1 (noting that & < —1). Then we subtract the equation of w; (z, 7) by (3.40)

to get
o, n—1 . .
ST
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021y (0.0 + 0.1 5+o -1 540
I 20+ (004 + 0:0) 227 0. iy — ) — | — + 2 (g — )
(14 @01)%) (14 (00)?) 207 brd - 207
>0
To show that w; is an upper barrier, let
min Wy —w) (2, 7)

(121+ - w)min (7—) = 1
0§Z§(2O’T)7(1719)

Note that by (3.111) and (3.112), we have
(’UAJ+ - ﬁ))min (TO) >0

We claim that
(W4 — W),y (1) >0 for mp <7t<7T
Suppose the contrary, then there is 79 < 77" < 7 so that
— W), 15 negative all the way up to

Let 7 € [10, 7f) be the first time after which (&
71, then by the continuity, we must have
(g = @) i (15) = 0 (3.116)

On the other hand, by (3.113), the minimum of @™ — & for each time-slice is achieved

1
5+o\ . .
2 >(w+_w)min 20

20T

in |0, (207’)%(1_19)) Applying the maximum principle to (3.114), we get

n—1
W4 W

Or (Wy — W) pin — (

Note that at z = 0, we always have
Vri<7<T

0, (0, 7) =0= 0,4 (0, 7)

so L’Hopital’s rule implies
-1 -1
lim © = 9, (i — ) (2, 7) = = 82 (w4 — 1) (0, 7)
z—0 z
It follows that
_ (=L g, Iio
fu":+u*,d . 220' (’u)+ w)min) Z O
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which, together with (3.115), contraditcts with (3.116).

Lastly, by (3.101) and p4 (7) > 1, we have

Wy (2, 7) =t (2, 1) < O (2, ) = U, ok (2)

Thus, we get

~

Dr_ (e (2) =0 (2, 7) < (2, 7) <y (2, 7) < D (o (2)

For (3.98), given 1o < 7 <7, 8 < 2 < (207’)%(17’9), by (3.101), (3.102) and the mean
value theorem, there is 1 < A, < A4 (7) so that

A~

D (1) = r (2, 1) + (Mg (1) — 1) By @’;\N (Z)) ‘)\:)\* R

[e]
4 )\ifa

= Py (2, 7) + B3 <:o> (W (22) — 24 Dy (Z*)>

11—«

< dule) + Qo2 (2) T

70

Similarly,

B r) 2 (o) — (14 0(1)2°F g <)

70
As for (3.99), given 1o < 7 < 7, 0 < z < 56, by (3.101), (3.102) and the mean value

theorem, there is 1 < A, < A4 (7) so that

~

) = dilz )+ On ()= 1) 0 (6" ()|

A=y, 2=24=—+

~

= Py (2, 7) + B0 (T>_g sl (1/% (24) — 2 Outhy, (Z*)>

T0 11—«
R 6“‘36 T —0
< J—
S Uk (2 1)+ l—a \1n

where

¢ = sup (% (1) = r Oy (1) < C ()

r>0
(by (3.102)). Similarly,

R R a—3 —0
o) B (e ) - S (T>

1—a \1p
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As a corollary, if we regard the projected curves I:S_ao,cu) and M, as graphes over C,
(3.98) implies
-0
jw (2 7) — i (2)] < C () g2 () o (3.117)
70

for 36<z<1 (207)%(1_0), 70 < 7 < 7. Then (3.78) follows immediately by (3.43).

Lastly, we prove (3.75) by using the gradient and curvature estimates in [EH].

Proposition 3.29. If 0 < p < 1 (depending on n, A) and |ty| < p* (depending on n),
there holds (3.75). Moreover, we have

|Opu(z, )] S 1

(3.118)
C
|02 u(, t)| < S
foraz>1tp to <t <t
Proof. For ease of notation, we denote Egao’al) by ;. Let’s first parametrize 3, by

(3.24), i.c.
X, (2, v, w) = ((w —u(z, to)) % (z +u(z, to)) \%)

for > ¢p, v, w € S""!. Then the (upward) unit normal vector of ¢, at Xy, is given

by

1+ Oyu (z, to) —v 1 — Ozu(z, to) w

1+ @, 10)72) V2 \1+ uu o, 1)) V2

Note that by (3.47) we have

max {

Now fix z, > %p and let

NEtO (Xto) =

u(z, to)

W=

9 (a, to>|} <

p.

=

for z >

(n-1) copies

Ve =ws=|0,---,0,1
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(T + u (x4, to)) “ >

Xy = Xy (513*7 Vi, w*) = ((l‘* - u($*7 tO)) \/§

U
\/?j

Notice that

Xy = X2 2 S —ue 0)? (1= 0n)?) + 5 @ ue ) (1- - w)?)
> w; <1— W )Zmax{l — -, 1— (w-w*)Q}

2
> n max{l— (v-1)?, 1— (w'w*)Q}

Thus, for X;, € ¥, N B (X*; 31—0 p), there holds

| Vo1
min{v - vy, w-w.} > 10
which implies
L 2 \/1 + (Opu (2, t0))”
(Nsyy (Xig) €)= (14 Opu (z, to)) (v - vi) + (1 — Opu (z, to)) (w - wy)
VIO _ 1010 (3.119)

Velx +w-wie 2491
By the gradient estimates in [EH]|, we then get

sup (Ngto . e)_1

-1
X, — X[ +2n(tt0)>
YioNB(Xx; 350)

(350)°

for X; e ¥,NB <X*; \/(%p)Q —2n(t — t0)>, where Ny, (X¢) is the unit normal vector

(N5, (X;) €)' < (1 -

of 3; at X;. Consequently,

2
(N (X)) -e) ' < (1 - <§’(1)> ) 120\/\2? (3.120)

for X; e X:NB (X*; \/(3—11,0)2 —2n(t— to)). It follows, by the curvature estimates in
|[EH]|, that

|As, (X)| < C (n) <\/t1_—t0 * ;)

for Xy € ¥;NB (X*; \/(3%p)2 —2n(t — t0)>, where Ay, (X}) is the second fundamental

form of ¥; at X;. Thus, by choosing |tg| < p? (depending on n), we may assume that

1 2—2n(t—t) > 1
327 0) = 33°
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for all to <t <, and
C (n)
t— 1o

[As, (Xo)| < (3.121)

for X, € SN B (Xy; &), to <t <t
Next, consider the “normal parametrization” for the MCF {3}, ¢, i.e. let Xy (7, v, w) =

X (z, v, w; t) so that

O X (x, v, w; t) = Hy, (X (z, v, w; t)) Ny, (X (z, v, w; 1))

X (z, v, w; to) = Xy, (2, v, w)
For each z > p, v, w € S"71, let Uz, v,w) € (to, f] be the maximal time so that
1
Xi(z,v,w) € yNB <Xt0 (z, v, w); 33p>

for all tg <t < {(4 ,,.). Then we have

C
00Xs o 1 0] = 18, (Xi (o1 )] <
and hence
| X (z, v, w) — Xy (2, v, w)| < C(n)VEt—to (3.122)

for all tg < t < t(; 5,0y Thus, if [to| < 1 (depending on n), we may assume that

Uz, v,w) = ¢ and

di <zt\B (O; ;p) S\ B (o; ;p» cOmVITT  (3123)

forall tg <t < f, where dg is the Hausdorff distance. It follows that

lu(z, t) —u(z, to)] < C(n)vVt—to

forx > 1p to <t <t
Furthermore, by taking x = z,, v = v, w = w, in (3.119) and replace tg by t, one

could get

(N, (X5 (0, v, ) - €)= /14 (O (a2, 1))

So by (3.120) and (3.122) , we have

|0zu(zy, t)] <1 (3.124)

~
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fortg <t <t (and any z, > %p) For the second derivative, notice that
‘agzu (T, t)‘
(1 + (B (24, t))Q)

By (3.121), (3.122) and (3.124), we conclude

3 < |A2t (Xt (x*a Vi, w*))|

N

fortg <t <t (and any z, > %p) O

3.7 Smooth estimates in Proposition 3.13 and Proposition 3.14

This section is a continuation of Section 3.6. For ease of notation, from now on, let’s
denote Egao’al) by X, r{aoa1) by I'; and rrlao a1) by II,. Here we would like to show
that if 0 < p < 1 < 8 (depending on n, A) and |tg] < 1 (depending on n, A, p, §) ,

then

e In the outer region, the function u (z, t) of Egao’al) defined in (3.24) satisfies

(3.59).

e In the tip region, if we do the type II rescaling, the function w (z, 7) of the

rescaled hypersurface 14 *) defined in (3.38) satisfies satisfies (3.61).

Moreover, for any 0 < § < 1, m, I € Z, there hold the following higher order derivatives

estimates.

1. In the outer region, the function u (z, t) of Egao’al) defined in (3.24) satisfies

(3.62) and (3.63) (see Proposition 3.33 and Proposition 3.34).

2. In the intermediate region, if we do the type I rescaling, the function v (y, s)
of the rescaled hypersurface I\ ™" defined in (3.29) satisfies (3.64) and (3.65)

(see Proposition 3.35).

3. In the tip region, if we do the type II rescaling, the function @ (z, 7) of the
rescaled hypersurface T\ ) defined in (3.38) satisfies (3.68) (see Proposition

3.41).
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We establish (3.59) and (3.61) by using the maximum principle and curvature estimates
in [EH]. Then we use Krylov-Safonov estimates and Schauder estimates, together with
(3.26) (which is equivalent to (3.32) and (3.45)), (3.59) and (3.61), to derive (3.62),
(3.63), (3.64), (3.65) and (3.68).

Let’s start with proving (3.59). The C? estimats has already been shown in Propo-
sition 3.27 and Proposition 3.29, in which we also get the first and second derivative
bounds for u (z, t) (see (3.118)). In the next lemma, we improve the first derivative
bound in Proposition 3.29 by using the maximum principle, which turns out to be

useful when we derive an improved second derivative estimate in Lemma, 3.32.

Lemma 3.30. If 0 < p < 1 (depending on n, A) and |to| < 1 (depending on n, p),
there holds

sup |Opu (2, t)] < sup |Opu(z, to)| + C'(n, p) VI —lo

1 1
r23p T25p

forty <t <fi.

Proof. First, differentiate (3.25) with respect to = to get

1

O (azu) - W ag:c (8mu) - (a (xa t) a;?:xu +0b (l‘, t)) Ox (azu) =f (% t)
where
oz 1) = —20u (x, t)
o (14 @, )’
B 2(n—1)
b(z,t) = ; (1 - (u(zt))2>
A u(z, t) (O (x, 1))
P D (M) (1~ @eu (@, 1))

2 (1_ (u(ﬁ,t)>2>2

For each R > 2, let n(x) be a smooth function so that

X(ipore1) =75 X(pm)

10am (2)] + 07,1 (2)] < C (p) (3.125)
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It follows that

O (n Oyu) — 1+(18u)2 02, (0wu) — (a(x, t) O%u+b(x, 1)) On (nOyu)
2
- <1fz§7u)2 + (ale, ) Out b, 1)) an) (Oxu) (3.126)
2 2
+"7(1’) f (CC, t) - maxn (3mu)
Now let

(n 8$u)max (t) = m;}X (n (x) Opu (, t))

By (3.26), (3.47) and (3.118), if 0 < p < 1 (depending on n, A), || < 1 (depending
on n, p), we may assume that

(

u(z,t) ‘ < %

|0z (z, )] <1 (3.127)

02,0 (x, t)] < )

for z > %p, to <t < t. Thus, by (3.125) and (3.127), applying the maximum principle
to (3.126) yields

. ¢ p)
max — H

O (n Opu)

which implies
(77 axu)max (t) S (77 aIu)max (tU) + C (TL, p) \4 t— 750

Likewise, if we define

(1 Ott) i (1) = min (1 (2) Byu (2, 1))

T

by the same argument, we get

(1 02) g (1) = (1 0tt) iy (t0) — C (1, p) VE =t
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Before moving on to the second derivative estimate, we derive the following lemma,

which is about some properties of the cut-off functions to be used.
Lemma 3.31. Let n(r) be a smooth, non-increasing function so that
X(=00,0) =M < X(—c0,1)

and n (r) vanishes at v =1 to infinite order. Then

2
p @0
roon(r)
forr < 1.
Proof. By L’Hopital’s rule, we have
2
lim O ()" =2 1lim 927 (r) =0
r 1 n (’I”) r 1

Also, for » < 0 or r > 1, there holds

Thus, the conclusion follows easily. O

Below is an improved estimate for the second derivative of u (s, t) in the outer region.
Note that the proof requres |0 u (z, )| < %, which is guqranteed by (3.47) and Lemma
3.30.

Lemma 3.32. If 0 < p < 1 (depending on n, A) and |ty| < 1 (depending on n, p),
there holds

sup |07,u (x, t)] < sup |92,u(z, to)| + C (n, p)
z>%p x>5p

fortogtﬁf.

Proof. Differentiating (3.25) with respect to x twice yields

1 —6 0,u
2 agm (8§mu)7

0y (02,u)— 1+ (0wu)? (1+(m)2> m
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200
(1 + (axu)2>

) (s am - o0 )

For each R > 2, let n(z) be a smooth function so that

and 7 () is increasing in [p, p| and decreasing on [R — 1, R]; moreove, 1 (z) vanishes

at r = %p and x = R to infinite order. Notice that by Lemma 3.31, we may assume

(92 ())?

n@) @)+ |02, ()| < C(p) (3.128)

It follows that

2 e~ 92 2 )| TP 52, ) . 2w
Oy (namz ) 1+ (axu)2 O (Wam ) (1 N (8xu)2>2 (8361 ) + . (1 B (%)2) 0 (na
_ 2((11 -~ @;‘;) (et - S ((11 : (( ;) 02
+ (Opu (1= (%

—60,u

(14 @u?)’
2
_m 021 Oy (amu)

Note that we can rewrite the last term on the RHS of the above equation as

—W — 0z ()

2
1+ (Opu)?

2 ) 2 O 2 ) — 2
021 Oy (8xocu) 14 (axu)Q n (am (77 8xocu) (02) (69096“))

So the equation of 7 92, u can be rewritten as

Lo (n92,u) (3.129)

9y (n 2 -
t (77 xggu) 14 (8xu)2 Tx g
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—60u 5,
(@)’ e (1-(%7) 1+@w’ <n> Or (n0:50)

= —a(x, t)n (0%u)" +b (@, t) (02,u)° + c(z, 1) (32u) +n (2) f (z, 1)

where
a(zx, t)= ’ (1 — ((%Cu)?
(1+ @.u)?)
__ 60mu
b(z, t) = (1 N (896“)2)2
(. 1) = _2(n— 1)n(z) (1 + (%) =6 () 336“)
) 2 (1 B (%>2)2
9z ~2(n—=1) 9 (0um)’

1+ (CRT (1 _ (%)2) 14 (Opu)® 1

4(n —1) (1—(8xu)2) a2 N
=y ()= (6)) )
By (3.26), (3.47), (3.118) and Lemma 3.30, if 0 < p < 1 (depending on n, A) and

|to] < 1 (depending on n, p), we have

max {

for x > ip, to <t < t, which, together with (3.128), implies

u(z, t)

1
3

o0} <

1000 < a(z,t) <2

(3.130)
b (x, )| + lc(z, )] + |f (2, )] < C(n, p)

for z > ip, to <t <t Now let

M= max (z) 0%, u (x, t)
1p<a<R, to<i<i
If

M < | max (17 (z) aixu (z, tg))+
Lp<a<R
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then we are done; otherwise, we have
M > max (n(z)0%u(z, t()))Jr
1p<e<R
In the later case, let (74, t.) be a maximum point of 792 u in the spacetime, i.e.

then we have %,0 < 2y < R, tg < t < {. Applying the maximum pricinple to (3.129)

yields
0 < —a(zy, t) 0 (22) (02,0 (20, )" + b (2, 1)) (8200 (w4, £.))°
e (e, t) (02,0 (20, 1)) + 71 (22) f (0, )
— iy (e )M b 1) M ) el )M 0 (@) f 2 )

It follows, by Young’s inequality and (3.130), that

- 8<M>3+m <|c<x*, t*>|>3+ FICHED P

3\ a(zy, ts) 3 a (T, ty) a (x4, ty)

Therefore, in either case, we have

. max  n(x) 02 u(x, t) < max (n () 02 u (z, to))+ +C (n, p)
1p<a<R, to<t<i z>1p

Likewise, by the same argument, one could show that

min 7 (x)d2,u(x, t) > —min (n(z) 9% u(x, to)) — C (n, p)
L<z<R,to<t<i x>

O]

In the next proposition, we apply the standard regularity theory for parabolic equa-

tions to (3.25), together with (3.59), to derive (3.62).
Proposition 3.33. There holds (3.59).

Proof. Given 0 < § < 1, let’s fix z, > %p, to + 62 < t, <t By (3.59) and Krylov-

Safonov Holder estimates (applying to (3.25)), there is

7:7(n7 p)E(O, 1)
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so that
6],y (enrins8) < C (0 9y ) [l e oty < C s 8) (3.131)

Next, differentiate (3.25) with respect to = to get

O (a:(:u) 1t (awu)g 8951 (896 )
—20,u02,u 2(n—1) 9 4(n—1) (%) dpu
- 2 (Ozu) (Ozu)
(1 + (8xu)2) @ (1 - (%)2) 22 (1 - (3)2)2
—4(n-1)(3)

2
2 (1-(%)°)
Then by (3.59) and Krylov-Safonov Hélder estimates (applying to the above equation

of d,u), we may assume that for the same exponent ~, there holds

[Ozu],, ‘ZHL%(Q(m,t*;é))

< C(n, p, 0) (3.132)

;Q(a,ta; 3) <C(n, p,9) <”8"5UHL°"(Q(I*J*;5)) * ‘

It follows, by (3.59), (3.131), (3.132) and Schauder C?7 estimates (applying to (3.25)),

that

[02:4] 00,125 2) < € (0 2 0) [l o (g, 11 2)) < € (s 91 )

3

By the bootstrap argument, one could show that for any m € Z., there holds

5)) + [0 ]

2% m+1

5 < C(n, p, 6, m) (3.133)

Ha;nuHLOO(Q(Cv*v ’Y%Q(ﬂc*ﬂf*?m

Moreover, by (3.25) and (3.133), we immediately get

195" B oo 5 y) T 105" 0l o

m+3

) )So(nvpa (S,TTL)

T, b JN,t*?m

for any m € Z. Differentiating (3.25) with respect to ¢ and using the above estimates

gives

H@gba}?uHLw(Q( 5 1Y) + [07 07 u] < C(n, p, 6, m)

S
:B*,t*;m ’Y;Q(w*,t*;m)

for any m € Z. Continuing this process and using induction yields

‘ Lo (Q (st gy

for any m, l € Z. O

agaguH . [agagu] < C(n, p, 8 m, 1)

% Qe b i)
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In the following proposition, we prove (3.63) by using (3.25), (3.26), (3.76), (3.91)

and the regularity theory for parabolic equations.

Proposition 3.34. If 0 < p < 1 (depending on n, A) and |to| < 1 (depending on n,

A, p), there holds (3.63).

Proof. Notice that by (3.26), we have

max {

u(z, t)

o ol) < g

(3.134)

2 |0 (z, 1) < A ((—t)2 2% 4 332’\2+1> <O, A)z®tl vie{0, 1,2} (3.135)

for %\/—t < x < p, tyg <t <t provided that 0 < p < 1 (depending on n, A) and

|to| < 1 (depending on n, A, p).

Given 0 < § < 1, let’s fix (x4, ti) so that
1 3 2.2 :
Ev—t*Sw*Szp, t0+5x*§t*§t
Define
h(r,t)=u (m:*, te + L:cz)

for % <r< %, —62 <1 <0. From (3.25), there holds

Ah—a(r,)0*h—0b(r,1)0h—c(r,)h=0

where
1
a (Tv L) = 2
1+ (aa:u ((l), t)) T=TTs, t=tsx 4122
1 2(n—1
b(Tv [‘) = - (n ) 2
T 1— u(:):,t))
x T=TTy, t=ts+122
1 2(n—1
C(T, L) - 3 (n )

T=TT s, t=tx+122

By (3.134), (3.135) and Krylov-Safonov Hélder estimates, there is

y=7(n,A)€(0,1)

(3.136)
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so that

[h]v;Q(l,O;g) <C(n,9) Hh”L""(Q(l,O;é)) <C(n, A, ) "UE)\ZH

In other words, we get

951 [u]«,;Q(m*,t*; gx*) <C (nv Aa 6) JU?ZH (3137)

Next, differentiate (3.25) with respect to = to get

1
O (Opu) — ———02, (0 3.138
Oe) {0 (On) (3.138)
—20, 2 — 4(n—1) (%) 0,
1 Opu (z 02,u) N 2(n—1) 0, (Owtt) — 1 [4(n-1) (%) dpu (010
x 2\2 1 (w)? x2 22
(1+ @) (2) (1- )
1 —4(n—1) (u)
T a2 (22 T
1- (%))
Define
h(r, 1) = dyu (ra, te + L.%'z)
then we have
dh—a(r, )02 h—b(r,0)0h—¢c(r,)h=f(r ) (3.139)
where
.0 1
a(r, ) =
1 + (aﬂcu (x7 t))Q :p:m:*,tzt*ercz
- —20,u(x, t) (02 t —
b(er):} u(z, t) (z02,u(x ))+ 2(n—1)

' (1 + (Qpu (2, t))2)2 1 (@)2

T=7Ts, t=t.+122

[
=~
—~
S
|
—_
~—
/N
£
8|8
N
N—
&Qv
IS
—~
8
o~
~—

<
o
7 N\
[a—
|
~
I
£
8 (R
o~
=
~—
)

T=TTs, t=ts+122

T=TT s, t=tx+122
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By (3.134), (3.135) and Krylov-Safonov Hélder estimates, we may assume that for the

same exponent -y, there holds

h

[~L;Q(1,o;g) <C(n, A 9) (

H}NLHLOO(Q(LO;&)) + HfHL“’(Q(l,O;é)))

< C(n, A, §) a?

which implies

x] [Opu] < C(n, A, §) z2 (3.140)

Y5 Qe t; S
Thus, by (3.134), (3.135), (3.137), (3.140), applying Schauder C*? estimates to (3.136)
yields

02,k

. ]%Q(LO; 2) < C(n, A, 9) HhHLOO(Q(l,O; 8)) < C(n, A, 0) xz)\z—l-l

which implies

a7 [97,u] ) < C(n, A, §) g2t (3.141)

¥ Q(;r*,t*; gac*
By the bootstrap and rescaling argument, one could show that for any m € Z_,, there
holds

) Tt 2[00

z) Haorcnu”Loo(Q(x*,t*; z ]W;Q(x*,t*;%“x*)

)
m—+1 T

< C(n, A, 0, m) xz)‘2+1 (3.142)

It follows, by (3.25) and (3.142), that

m+2 || gm m+2+y [qm
20 el e )+ 200U e, )

)
T, b 3T

< C(n, A, 6, m) a2

for any m € Z. Then differentiate (3.25) with respect to ¢ and use the above estimates

to get

20O ull e (015 gy T OO 0 00

< C(n, A, 6, m)a*!
Continuing this process and using induction yields

g2 ‘ g2y [8;” aiu}

a;”aguH

L>(Q(wx, t3 mrpdrrres)) 7% Q@ sy gryr )
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< C(n, A, 6, m) x>t (3.143)

for any m, l € Z+.

On the other hand, by Proposition 3.8, there holds

(05 + £) (ke 03 (y)) = 0

By a rescaling argument, we get

(at _gp 2=, 2(”2_1)) <k (—t)2F2 gy (”)) =0 (3.144)

x T

In addition, by (3.25) we have

(at—aﬁx— 2("; Vo, 2(”332_ 1)) ul(z, t) = f(;? 2 (3.145)
where
w2 () 2= 1) (2)°
fla, t) = 1+(8mu)2( Do) + (o) (z Opu) + e

Note that by (3.134) and (3.143) we have

.Z‘:H—Ql )

amaLf (z, t)H A a [(’%?é’éf (z, t)}

A CICRA == 2 )) 7 Q@ b5 sy )

< C(n, A, 6, m, 1) g2 g2r2t1 (3.146)

for any m, | € Z. Subtract (3.144) from (3.145) to get

(at O = 2(7195_1)890 - 20;;”) <u (2, 1) — k (—£)72 @y (\/%)) _f (;Z t)

Then by the rescaling argument, together with (3.146) and Schauder estimates, we get

1 X
a0} (u (z, t) — k (—)*72 o <\/ >
—t Lo(Q(2x, e mrpdra®s))

u(z, t) — k(—t)12 oy <\/””‘_7>

LEZH—QZ

< C(n, A, 0, m, 1)

G G )

0] f (1)

2 (Q(@, e mrpdrpree))

m 1
+C (n, A, §, m, 1) Zin+2j ‘
=0 j=0

1=0 7=

% Qe ta: iy e )
< C(TL, Aa 5, m, l) ((_t0)§>\2 + inQ) xi)\g—l—l

for any m, l € Z. O
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Below we use (3.31), (3.32), (3.77), (3.78) and the regularity theory to show (3.64)
and (3.65).

Proposition 3.35. If B > 1 (depending on n, A), so > 1 (depending on n, A, (),
there hold (3.64) and (3.65).

Proof. By (3.32), we have
Yy ‘850 (y, s)| < Ae 28 (yo‘ + y2)‘2+1> < C(n, A) e P25y~ (3.147)
for Be™7% <y <3, 59 < s < 8. In particular, we may assume that

max {

for e <y <3, s9g < s < 8, provided that 8> 1 (depending on n, A).

v (y, s)

o 91 £ O Ayt <

Now given 0 < § < 1 and fix (yx, s«) so that

3
SBETTS U <2 sk Ty < s <5
From (3.31), we have
1 12(n—-1) ¢ 1 [2(n-1) ¢
v — ————Pv— | 2 - |- 5 | 5 +% |v=0
1+ (ay'u) vy Yy 1— <§) 2 y2 1— (g) 2

By (3.147) and Krylov-Safonov Hélder estimates, there is

7:7(7% A)E(O, 1)

so that

yz [v]'ﬂQ(y*:s*; %y*) S ¢ (n, 5) HUHLOO(Q(Z/MSH‘SZ/*)) S C (n7 A7 5) €_>\28*y3 (3148)
Differentiate (3.31) with respect to y to get

L2 (9,0

0s (Oyv) — ———
(y”) 1+(8yv)2 vy

(200 W) | 20-1) g 5 () — L 4(n—1>(§)3yv

AN e O Y W (O]
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[ —4m=1(2)
= y2 <1 ) <v)2>2
y
By (3.147) and Krylov-Safonov Hélder estimates, we may assume that for the same ~,
there holds

v
Y

Lo(Q(yx, s 6y*))>
< C(n, A, §)e 25 yo! (3.149)

vi Wyv]v;@(y*,s*;%y*) <C(m A 9) <‘|83/U"L°°(Q(y*,s*;5y*)) T

By (3.147), (3.148) and (3.149), applying Schauder C%7 estimates to (3.31) yields

v [05,0], ) < C A ) [0l e ) <C A, 0) ¢—Nasey0

.0
$Q(ye, 543 Sy Yur Sx5 S Y

(3.150)

Then by the bootstrap argument, one could show that

y |0 (g, s Ty [ (g, )]

Mz @y o0 =20)) 15Qyers0t 5r1)

< C(n, A, 8, m)e 225y (3.151)

for all m € Z,. Furthermore, by (3.31) and (3.151), we get

2|9 D (y, s +yl [0 050 (y, 9)]

i @@uersns sige)) 3 Qe 50e)

< C(n, A, 5, m) e 25y

for all m > 0. Diffrentiating (3.31) with respect to s and using the above estimates

gives

+4 Hama2 y’ HLOO ( + ym+4+’y [8m (y’ S)]

Yoo Su5 2=y )) Vi Qs 545 725 Ux)

S C (n7 A? 5? m) >\2S*y§<¥

Continuing this process and using induction yields

m+2lHamal (y, 5 )H gy [amal (v, 3)}

L2 (Q(ye 543 gy ) 7 Qs 843 T ve)

< C(n, A, 8, m, 1) e 25y (3.152)

for any m, l € Z.
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If e~V <y, < 2, recall that by Proposition 3.8, there holds

0.+ (£

C2

e %0y (y)> =0

That is,

(et o) ()

In addition, from (3.31) we have

(as—a§y+;<2(n—1)—y;>ay_;<2(n_1)+y22>>v(y7 S):h(zés)

where

2
B0 201 ()
el G Ty

Notice that by (3.152), the function h (y, s) satisfies

h(yv 8):_

o o atn (. 5| oy [opalh (y, )]

Lo (Q(y, 545 mrar1¥+)) % Qe 545 oY+ )
< C(n, A, 6, m, 1) (e*)‘Qs*yﬁ‘ 1>2 (e*AQS*yf‘>

=C(n, A, 6, m, 1) (e*)‘”*yf 2)2 (e*)""s*ny)

=C(n, A, 6, m, [)e > (e*)‘zs*y*a”) (3.155)

for any m, | € Z. Then we substract (3.153) from (3.154) to get

(as—8§y+;<2(n—1)—z“’;)ay—;<2(n—1)+y22>) (U_C’ZG—&SW(y)) :yh2

By (3.155) and Schauder estimates, we get

m—|—2l

ool (v 5) — ()

C2

L22(Q(y=s 855 mparrav=))

<O A Sm ) [oy, s)— e (y)

Lo2(Q(y=s 855 parrr¥+))

+C (n, A, 8, m, 1) Zzy”% 10,05k e o

=0 j=0 (y*’s*;m+gl+ly*))
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m 1

+C (n, A, 6, m, 1) Yy (9,08

i=0 JZO WQ(y*,s*;my*)

< C(n, A, 8 my 1) em (hmyet?)

for any m, l € Z..

If %56_08* <y, < e Y75 notice that

1 2 0:94k (2) + i (2)
Ot (2) =0=——— P ahp(2) + 2(n—1
wk( ) 1+(az¢k(z))2 1/%( ) ( ) Zg_wz(z)
Let
0 (y, s) =e 7% (e7%y) (3.156)
then we have
05 + 0 (—y DD + V) = 25+ 2(n—1) L0t
s Yoy 1+ (9,0)% ™ y2 — 2
Then we subtract the above equation from (3.31) to get
. 9 y 1 y 1 y 1
05 (v=1) —a(y, s) 9, (v—1) - ;bW §) 0 (v — 1) — ?C(y, s) (v —1) = R 5)
(3.157)
where
W) = g
) T =
1+ (8,v)°
— (y92,0) (Oyv + Oyv — 2
bz, 7)= 0 ygﬂ;)( v yj))Q 120 1)2 - y?
(1 + (Oyv) ) <1 + (0y0) > 1— (5)
2(n—1)<8y17+§)(§+z> 2(n—1) o2
c(z, )= 5 5 5 + 5
(-6 0-6)) -G
Fen) = (5+0) P (w0040
Note that by Lemma 3.5 and (3.156), we have
y™ 0 (y, s)| < C(n, m) e~ 25y (3.158)

for y > B, which yields

v+ opals (v )| 00k (3, 9)|

Lm(Q(thhmy*)) "ﬂQ(y*yS*;my*)
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< C(n, 9, m,1) (e‘AQS*ny)
< C(n, 8, m, 1) e 2075 (e*)""s*yf) (3.159)

since %ﬂe“’s* < y. < e7Y7% Thus, by (3.152), (3.158), (3.159) and applying Schauder
estimates to (3.157), we get

g2 ool vy, 5) 0 (v, )|

v Lw(Q(y*’S*;m+gl+2y*))

<C(n, A, 6, m,1)|v(y, s) — 0y, S)HLOO(Q(

Yoo S5 oY)

m

1=0 j=0 y*,s*;my*))

m
+C(n, A, 6m, 1) YDy [0,000] o

L5
=0 =0 Ys S35 m+2z+1y*)

< C(?’L, A, 6, m, l) (ﬁa_ge_QQJ(s*_SO)S_AQS*yf + 6_21908* <e—>\25*y3)>
S C(n7 A7 67 m, l) 6&—36—290(3*—50)6—A23*y3
provided that sp > 1 (depending on n, 3). Notice that 0 < ¢ < 9. O
Next, we would like to prove (3.61). The CY estimate is already shown in Proposition
3.28. Below we would prove the first and second derivatives estimates in Lemma 3.38
and Lemma 3.40, respectively. Before that, notice that by (3.45) we have

Z2A2+1

(207)>

2t ‘(Xw (z,7)| < A <z°‘ + ) < C(n, A) 2%, ied{0, 1,2} (3.160)

1
for <z < (207)5(1_19), 7o < 7 < 7; in particular, we have

max {’“’(ZZT) (3.161)

1
3

o (e 1)l <

for 6 <z < (207’)%(176), 70 < 7 < 7, provided that 5 > 1 (depending on n, A). In the
following lemma, we show how to transform the above estimates for w (z, 7) to w (z, 7)
via the projected curve I'; defined in (3.41). This lemma is useful since it provides the

“boundary values” for estimating w (z, 7) in the rescaled tip region.
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Lemma 3.36. If 5 > 1 (depending on n, A) and 79 > 1 (depending on n, A, p, 3),
there hold
0.0 (2, 7) — 1] < C(n, A)z*7! (3.162)

02,0 (2, T)| < C(n, A)z%7? (3.163)

for2p<z<3 (207)%(1_19), 70 <7< T

Proof. Let’s first parametrize the projected curve I'; by

1 1
Ze= (=0 m) S5, i) )
In this parametrization, there hold
Np, -e= —0:w (2 7)
V14 0w (2, 7))
07w (2, T)
T, = 3

(14 @w (= 7))*
where Ny and Ap_ are the (upward) unit normal vector and normal curvature of I'- at

Z., respectively, and
(7 )
e=|—, —
V2 V2
By (3.160) and (3.161), we get

s <1zl = ) <

INp_-e| <C(n)A|Z | (3.164)

|Ap | < C(n)A|Z|*? (3.165)

for <z < (207’)%(1779), <1717

Now we reparametrize I'; as
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In that case, we have

Ze = 2 + (i (2, 7))

1- z U )
Ny -e= 0 (2, 7) (3.166)

\/2 (1 + (9.0 (2, T))Q)

02 (2, 7)

Ap, = . (3.167)
(1+ (@0 (2, 7))
Note that by (3.3), (3.74) and (3.79), there holds
Lz
< — < 1
coy S s S C (n) (3.168)

for 28 < 2z < %(207)%(1_19), provided that 8 > 1 (depending on n) and 79 > 1
(depending on n, A, p, ). Moreover, by (3.164) we may assume

1
Ne el < ——
[Np, el < 100v/2

for 28 < 2 < % (207)%(1_19). Since

1- 1
lim =

p—>Foo ,/2(1 +p2) ¢\/§
it follows, by (3.166), that
0,0 (2, )] < C (3.169)

for 28 < z < 3v/207. The conclusion follows by (3.164), (3.165), (3.166), (3.167),
(3.168) and (3.169). O

Remark 3.37. Note that for the last lemma, when 7 = 79, by (3.52) we have

—d,w (z, 1)

v V14 0w (2, 7))

Np

>0

1
for %ﬁ <z < (207’)5(14}), 790 < 7 < 7. Consequently, by the same argument and

(3.166), we can show that

0<1—0.(z 1) < C(n, A)z2t (3.170)
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Below we use (3.40), (3.48), (3.162) and the maximum principle to show the first

derivative estimate in (3.61).
Lemma 3.38. If 3> 1 (depending on n, A), there holds
0 < db(z 1) < 14372 (3.171)

for0<z<p% <7<+

Proof. By differentiating (3.40), we get

1
07 (0,0) = ————— 02 (9.0 3.172
(0:10) T (002 (0:10) (3.172)

n—1 2000w ito R 11 .

+ _ _2 z |0, (0,w)+ (n—1) (12}2 - 22> (0.w)

2
z (1 X (@LD)Q) 20T
Notice that for the last term on the RHS of (3.172), by (3.4) and (3.79), there holds

1 1

i >z & e —
w(z71) > 2 w2 (z, 1) 22

<0 (3.173)

for0<2z2<pB%, 9<1<7.
Let
(0.w)

= in 0,w(z,
7) puin 2w (2, T)

Then (9,W),,;, (7o) > 0 by (3.48). We claim that

min (

(00),, (7) >0 (3.174)

for 9 < 7 < 7. To prove that, we use a contradiction argument. Suppose that there is

71 > 79 so that

*

(0,w) 1) <0

min (
Let 75 > 79 be the first time after which (0,w),;, stays negative all the way up to 7.

By continuity, we have

(0,w) 70) >0

min (
Note that by (3.40) and (3.162), the negative minimum of 9, (z, 7) for each time-slice
must be attained in (0, 62), provided that 8 > 1 (depending on n, A). Applying the
maximum principle to (3.172) (and noting (3.173)) yields

Or (020) i, = (0 —1) <1 :

w2 22
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for 75 < 7 < 7{. It follows that

(azw)min (Tg) S (8Zw)min (Tik) <0
which is a contradiction.
Next, let
(6Zw)max (T) = 0?22%2 aZUA) (Z7 T)
Then
(azw)max (7—0) <1

by (3.48) and (3.170). We claim that
(0:0) e (1) < 145272

for 19 < 7 < 7. Suppose the contrary, then there is 7" > 79 so that

Let 7§ > 79 be the first time after which (0,w) is greater than 1 + 3%~? all the way

max

up to 71. By continuity, we have

Notice that by (3.162), there holds
0.0 (8%, 7) < 14+C(n, A)g207D < 145772

provided that 8 > 1(depending on n, A). Thus, the maximum of 0, (z, 7) for each
time-slice which is greater than 1 4+ 392 must be attained in (O, 52), provided that
B > 1 (depending on n, A). Applying the maximum principle to (3.172) (and using
(3.173) and (3.174)) yields

Or (0,w), .. <0

max —

for 75 <7 < 7. It follows that
(8Zw)max (T(Sk) Z (azw)max (Tik) > 1 + /804—2

which is a contradiction. O
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Then we start to show the second derivative estimate in (3.61). Note that the second
fundamental form of I'; (in the parametrization of (3.38)) is given by
2w
1 14|82
Ap, = — o o (3.175)

\/ 1+ [9.0) :

By (3.79) and (3.171), to estimate 92,1 (2, 7) is equivalent to estimate Ap_. In the

—1
% In—1

following lemma, we derive an evolution equation of Ar_ and use that, together with
(3.48), (3.163) and the maximum principle, to show that Ap_ can be estimated for a

short period of time.

Lemma 3.39. If 8> 1 (depending on n, A), then there is § > 0 (depending on n) so

that the second fundamental form of I'; satisfies

max |Ar.| < C(n)
I'+NB(0;3p5)

for 1o <7 <min{ry + 6, 7}. In particular, there holds
|02, (2, 7)| < C (n)
for0<2z<3B, 79 <7 <min{ry+ 9, 7}.

Proof. By (3.48), (3.79), (3.162), (3.163) and (3.175), the second fundamental form of

I'; satisfies

¢ = |Ar |? Ar (Z)]? < C© 3.176
| Ff\maX(TO)JrZTGFfTI}?;Tl:SB! r, (Z;)]” < C(n) ( )

provided that 8 > 1 (depending on n, A). By reparametrization of the flow, we may

derive an evolution equation for Ap_ as follows:

1+ 20
Let
h(r)= Ar,|?
(7) R [Ar. |

If h(1) < € for 79 < 7 < 7, then we are done. Otherwise, there is 71 > 79 so that

h(r) > €
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Let 75 > 79 be the first time after which h is greater than € all the way up to 7. By
continuity, we have

h(rg) < € (3.178)

Note that the maximum for each time-slice must be attained in the interior of I'; N

B (0; 35). By applying the maximum principle to (3.177), we get
d:h (1) < 202 (1)
for 75 <7 < 7{, which implies

. h(5)
B T AL AT

Thus, by (3.176), (3.178) and (3.179), there is 6 = ¢ (n) so that
h(r) <2¢

for 7§ <7 < min {75 + 9, 77}. For this choice of § > 0, we claim that
h(r) <2¢

for 9 < 7 < min {7 + 0, 7}; otherwise, we may get a contradiction by the above

argument. Then the conclusion follows immediately by (3.79), (3.171) and (3.175). O

In the following lemma, we use Ecker-Huisken interior estimate for MCF to estimate
Ar, for 9+ < 7 < 7. Combining with Lemma 3.39, we then get the second derivative

estimate in (3.61).

Lemma 3.40. If 3> 1 (depending on n, A), there holds
|02, (2, T)| < C (n)
for0<z<38, 0 <7<T.
Proof. By Lemma 3.39, there is 6 = § (n) so that
\aﬁzw (z, 7)| < C(n)

for 0 < z <38, 70 < 7 < min{ry+9, 7}. Hence, to prove the lemma, we have to

consider the case when 7 — 19 > 4.
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Fix 9+ 6 <7 <7 and let

=, = (207'*)%+$ z

_ {(ry, h(r. 1))

—(20m) 77 (17 L )

207Tx

r>0,veS"lwe S”_l}

, —(207'*)57: <1 i >>
20T,
1

Then {Z,} defines a MCF for — (207) ((T*) - 1) <1 < 0. Note that

where

h(r, 1) = (207'*)%+$ 0 ;1
(207)2

&

70

and

provided that 79 > 1(depending on n). By (3.39), we may rewrite h (r, 1) as

lis
A L 2 . r Ty
h(’l", L)_ <1_20_7_*> w . %-i-o’ ) . 20
(1 - 207—*) < B 2UT*>

By (3.79) and (3.171), we have

h(r, 1) > 0] (3.180)

(3.181)

ASY
>
~—~

~
1
2
<5

.

l

W i~

1.5 20 <
(=) (=)
20Ty 20T
for 0 < r <48, 7% <1 <0, provided that 79 > 1 (depending on n). Note that the unit

normal vector of =, at X, (r, v, w) = (ru, h (r, ) w) is given by

which satisfies

h
(3.182)
)
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where
(2n-1) copies n copies
—— - ——
e=|0--,0,1|, 0=(0-"0

Now fix 0 < z, < 308 and let

X, = <z*y*, ﬂ(z*, 0) w*) = (2uls, W (24, To) Wy)

(n-1) copies

where vy, =w, = | 0,---, 0, 1|, we claim that

(Nz, (r, v, w)-e) ' < == (3.183)

for X, € 5, N B2 (X*, g’%), —g < ¢ < 0. Then by the curvature estimate in [EH], the

second fundamental form of I';, at X, satisfies

— |4z o (224 2 —owm
[Ar., ()] = |4z, (X)] < ><W +¢;> = C(n)

It follows that
|3§ZU§ (2, 7'*)|

(1 + (D10 (2, T*))Q)

Now let’s come back to (3.183). First notice that for each

X, (r,v,w) € 5,nB*" <)(* ¢(0)> , _g

< ’AFT (X*)| < C(n)

3
2

IN
IA
o

) 2\/5
there holds

0 1= ((0.9) )" < = < 212

which, together with (3.180), implies

» |
e > )

(0, w) ez (3.184)

Then (3.183) follows by (3.181), (3.182) and (3.184). O

Below we use (3.4), (3.40), (3.61), (3.79) and the standard regularity theory for

parabolic equations to prove (3.68).
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Proposition 3.41. If 8> 1 (depending on n) and 19 > 1 (depending on n, (), there

holds (3.68).
Proof. Firstly, let @ (z, 7) and 4, (z) be radially symmetric functions so that

Then by (3.99), (3.171) and (3.61), there hold
(2, 7) =y (1) < Cm) o (£)

;

(3.185)

Vv (2, 7)] < 1+ %72

}VQﬁJ (z,7)| < C(n)

for z € B(O; 38), 10 <7 <7, m € Z;, where

Also, by (3.4) and Lemma 3.6, we get
(3.186)

o], < com

for all m > 1. In addition, from (3.4) and (3.40), we have

) 1+ (0.)° el \ a1
O = n—1 ? 0= | = ) 2
z 1_|_ (8Z’LU)2 T
and
~ 0\ 2
1+ azwk n—1 R _

( 1 ) az : 8z¢k - nA !

B 5 k
14+ (azlbk)




168

which yield
. 1 1
Vw n +2+U(—z-V'[v—|—ﬁJ)

Orly = \/ 1+ [Va|* V - - — 5
V1+ [Vl v or
n—1

1
5+0
0. 1 2 A
1(207 )zlw+<2a7'>w w

n ~ ~ n
- Oz, W Oy, Ww R
7] z,zjw -

:i; I 2z
(3.187)
and
/ v —1
-0 = 1+}v,¢k ¢k; TL{p )
1+‘ k
" 0,4y, Oz A -1
_ Z 5y — = k fiﬂ 2’f % - (3.188)
i,j=1 1+ ‘Wk ¢k

Then we subtract (3.188) from (3.187) to get
or (- by) - ; <6Z-j - m> 02, (@~ )
z": doi et 02,1, 02,0 8§izj12’k (8zq’fv + 3zq72’k> 5 ( b — )
_ L, (W —
(1+|Vﬁ;\2) <1+ ‘v{bk‘z) '

q=1

+
po 1+ !Vw\ 201
n—1 % +o . -
B ('ﬁﬂbk + 20T ) <w_¢k>
1
29y j -
=2= ( z -V, (2) + (z)) = f(z 1) (3.189)
Note that by (3.6), we have
(3.190)

vmaLf (2 )| < Oy m, 1)
forzeR", 7o <7<7,m>0.
Now fix 0 < § < 1 and 2z, € B(0; 28), 70+ 6% < 7. < 7. By (3.185), (3.186) and

Krylov-Safonov Hélder estimate (applying to (3.189)), there is

'7:’7('”)6(07 1)
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so that

3.191
L;Q(Z*,n; 39) ( )

W iy L |rf||Loo<Q(z*,m>)> < C(n)

gC(n)(

‘L""(Q(Z*,T*;tﬂ)
provided that § > 1 (depending on n) and 79 > 1 (depending on n, /3). Next, for each
p € {1,---, n}, differentiate (3.187) with respect to z, to get

V2 (9., W) (V, V)
1+ |Vl

Or (0z,) = & (0,) —

< <V1n (1 + |V'[U|2> , vw>

A ~ 12 A
Vel Vi — Vin <1+|V'w| ) : V(@zpw)>

N | —

1 _
—<2“’z7 v<azpw>>+” 0., )

20T w

n O, W 0y W
— 5i._u 32__3ZA
;1< ! 1+va\2> s, (02 0)

Zizj

n (S 0 0., Ds D2, b — ST (1+\vw|2)aziwagizqw
8zq (azpﬁ])

g (1+ \vaQ)Q

1 _
_Z ’ 7 Zq 8zq (8Zpﬁ]) + = 21 (azpﬁ))
q=1

20T

Then by (3.185) and Krylov-Safonov Hélder estimates, we may assume that for the same

exponent -y, there holds
51+’7 [V@}’Y;Q(z*ﬂ'*; %5) S C (n) (5 Hv,ﬁ)”LOQ(Q(Z*,T*;(S)) S C (n) (3192)

Therefore, by (3.185), (3.186), (3.191) and (3.192), we can apply Schauder %7 esti-

mates to (3.189) to get

g HV (“’ B d’k) HL“’(Q(Z*,T*; ) F > HV2 (“’ - d”“) HLN(Q(Z*,T*; 15))

824 [92 (- )|

’\/;Q(Z*,T*; %5)

+ 8 1 o)) + 07| 4] %Q(Z*vwéfs))

)LOO(Q(Z*7T*§ 14))
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<C(n) <5“3 (:;)gml) < C(n) D) (;) (3.193)

provided that 79 > 1 (depending on n, f3).
The conclusion follows by using the bootstrap argument on (3.189) and repeatedly

differentiating equations with respect to 7. O

3.8 Determining the constant A

In this section, we would finish the proof of Proposition 3.13 and Proposition 3.14.
What'’s left is to show (3.58) and choose A = A (n) > 1 so that (3.60) holds. To this

end, it suffices to show that
1. In the outer region, the function u (x, t) defined in (3.24) satisfies
2 [Ohu(z, t)| < C(n)2*2 ™ Vie{o, 1,2} (3.194)
D2 u(z, t) >0 (3.195)
for V=t <a<p tg<t<ti;

2. In the intermediate region, if we perform the type I rescaling, the type I rescaled

function v (y, s) defined in (3.29) satisfies
Yy ‘8;1) (y, 8)| < C (n) e 5y* Vie{0, 1,2} (3.196)
2
OV (Y, 8) >0 (3.197)
for 28e77* <y <1, 89 < s < 8§;

3. Near the tip region, if we perform the type II rescaling, the type II rescaled

function w (z, 7) defined in (3.42) satisfies
2t |8iw (z, 7')‘ <C(n)z“® v ie {0, 1,2} (3.198)

for B < 2z <28, 7o <7 < 7. In addition, the type II rescaled function w (z, 7)
defined in (3.38) satisfies
D2 (2, 7)>0 (3.199)

for0<z<5b8,190<7<T7.
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Note that (3.196) is equivalent to
2’ | (z, t)| < C(n) (—t)*2*  Vie{o, 1,2}

for 23 (—t)éﬂf <z </t tg <t <t (see (3.30) and (3.37)). Also, (3.198) is equivalent
to
2’ | (z, t)| < C(n) (—t)*2*  Vie{o, 1,2}

for B(—t)277 < o < 28(~t)2%7, ty < t < (see (3.23) and (3.43)). Moreover, by
(3.195), (3.197), (3.199) and rescaling, we can show (3.58), i.e. the projected curve ¥,
is convex in B (O; p) for tg <t < i

Recall that in Remark 3.23, we already show the C” estimates in (3.194) and (3.196).
As for the derivatives, notice that the smooth estimates in Proposition 3.13 does not
imply (3.194), (3.196) and (3.198), since those estimates doest not extend to the initial
time. Therefore, in this section we compensate that by showing how to estimate the
quantities in (3.194), (3.196) and (3.198) from the initial time to some extent. The idea
is to derive evolution equations for these quantities and use the following lemma (see
Lemma 3.42), together with (3.46), (3.50) and (3.52), to show that they can be bounded
in terms of n for a short period of time. Below is the lemma which we would use to

prove the derivatives estimates in (3.194) and (3.196).
Lemma 3.42. Suppose that h(r, t) is a function which satisfies
Ah — a(r, )02 h — b(r,1)0.h = f(r, 1)

for%grgg,()gLST, with
a(r,t) >0
max{|a(r, ), |b(r, )]} < M

for % <r< %, 0<:¢< T, where T, M > 0 are constants. Then there hold

h(r,e) < %rgra?%h(ry 0) + C (M) (HhHLN([%,%]X[O,T]) + HfHLOO([%,%]X[O,T]))
h(r, o) = Ig;l%h(r’ 0) - C(M)L(HhHLoo([%,g]x[o,ﬂ) +||f||Loo([%,g]X[o,ﬂ))
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Proof. Let n(r) be a smooth function so that

and 7 (r) vanishes at % and % to infinite order. Note that by Lemma 3.31, we may

assume that

2
B 10 )] + ok )] 51
It follows that
0. (uh) — a(r, 1) 0%, (k) — b (r, 1) 0 () (3.200

=nfr) — (a (r,0) 8,2:T77 + b(r, ) &n) h—2a(r, ) 0ynoh

For the last term on RHS of (3.200), if we evaluate it at any maximum point of

n(r)h(r, ¢) for each time-slice, either n = 0 and hence

om=0= —2a(r,t) Omoh=0 (3.201)
or 0 < n <1, in which case we have

O (nh) =0 < nd-h+hdm=0

which yields
9,n)°
—2a(r, ) Omoh =2a(r, 1) Gr)”, (3.202)

Now let

(1) max (1) = max (n (r) b (r, 1))
By (3.201) and (3.202), if we apply the maximum principle to (3.200), we get
0, (1) < C () (Il (3, g1t0.7) + 13, 310079
which implies
(1) e (1) < (D) (0) + € (M) ¢ (1A oo (s, 370 77) + I oo (2,210, 77))

Similarly, if we define

() i (1) = in (1 () o (1, ¢))
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then we have
(M) in () = (0]) i, (0) — C(M)L(llhl\Lm([%,g]X[o,ﬂ) + ||f”L0<>([%,%]><[077'])>
[

To prove the derivatives estimates in (3.194), we divide the region into two parts:

<z <pand /=t <z < 3p. In the following proposition, we show (3.194) for
P P 4
P

[N [SCIN [V

< x < p by using (3.25), (3.50), (3.59) and Lemma 3.42.

Proposition 3.43. If |[tg| < 1 (depending on n, A, p, B), then there hold

%TQ (20 +1) 227 < dou(x, 1) < ;TQ (200 + 1) 22 (3.203)
O (x, 1) < gTz (200 + 1) (22g) 22021 (3.204)

1
% u(z, t) > e (2X2 4+ 1) (2X2) 22271 > 0 (3.205)

for3p<az<Sp tog<t<i

Proof. Let

h =g~ t
(ryt) == Oru (z, )m:rp,t:to—sz

From (3.25), we derive

Oh—a(r, )02 h—0b(r,1)0h=f(r 1)

where
1
a(’l", L) —
1 + (8£Bu (-:Ua t))2 x:rp7t:t0+[,p2
-2 ax ,t 82 ,t B
by~ L[ 2220 1) (R ) | 2= 1)

' (14 @ue. 1)) - (e

) 2
x=rp, t=tg+i1p?

f(ru) = pr;izi:l ((1 + (3322(% t))2> ((ﬁxu (= t)))

T=rp, t=to+Lp>
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N p 2 =2z (Opu (, t)) (02,u (z, 1)) N 2(n—1)
22212 2 2 2
et (1+ (@ (e, 1)) 1 (uz)

)2 <_ 2o (2X2 + 1)
r2h2+2 14 (Opu (z, 1))

(Ozu (z, 1))

r=rp, t=tg+1p?

) @ (e 1)

x=rp, t=tg+1p?
21 | [ 4(n—1) ((Bpu(z, t)* -1
£ ( ) (u(z, 1))

T et o 2
(1 (u(z,t)) )
— (=
x=rp, t=to+ip>

It follows, by (3.59) and Lemma 3.42, that

min h(r,0) — C(n,p)t < h(r,t) < max h(r,0) + C(n, p)t

<r<

IN
5
IA

ol
=
Njw

4
—2), —2), t—to
T, 720U (Th, 1) < max (27 20u (w, to) ) + C(n, p) —
lpﬁxﬁgp p
—9Xg . —2) t—1to
x, “20yu (x4, t) >  min (a: Opu (z, to)) - C(n, p) —
$p<a<3p p

for %p <z, < %p, to < t < t. Therefore, if |tg] < 1 (depending on n, A, p, (), then
(3.203) follows immediately from the above, (3.50) and (3.73).
For the second derivative, note that we have the following evolution equation:

O <$_2)\2+1832393u) - 1 (18 )2 agm <$_2/\2+16£zu)
U

1 [ =6z (0pu) (02,u) 2(n—1) 2(2Aa —1) Patlg?
() -G Ty o (o7 )

R (02,0)* (1 -3 (0,0)?) L1201 (H)ou 20— (1+®)?) (2.
2A2+1 (1 R (8xu)2>3 (1 _ (%)2)2 <1 B (%)2>2 TT
2X — 1 —62 (Opu) (02,u)  2(n—1) 2)\g — 2 (6%,0)
A () @) e

4(n—1) ((Bpu)? —1) (1+3(%)?
+1:2/\12+2 ( (1 ~ (3)2))3(, ) (Oyu)
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L [(4m-1) (1 - (8xu)2) ((g)2+3)
222 +3 (1 B (%)2>3

By the same argument (as for the first derivative), we can show (3.204) and (3.205). O

+

()

Now we show the derivatives estimates in (3.194) for /—t < z < %p by using (3.25),

(3.26), (3.50), (3.63) and Lemma 3.42.

Proposition 3.44. If 0 < p < 1 (depending on n, A) and |ty| < 1 (depending on n,
A, p, B), then there hold

20 +21 (a+2)+ 1o (202 4+ 1)) 2% < Gpu(z, t) < 275 (200 +1) 222 (3.206)

Dou(z,t) < 2(a(a—1) 4271 (a+2) (a+1)+ T2 (20 + 1) (2X2)) 22271 (3.207)

1
2 u(x, t) > 572 (2% +1) (2Xg) 22271 >0 (3.208)
for\/—tgacg%p, togtgf.
Proof. First, fix x, € [%x/—t , %p] and let
h = g~ t
(T7 L) v axu (x7 ) T=TTs, t=to+122

From (3.25), we derive

Oh—al(r,t)0rh—"b(r,0)0ch=f(r )

where
1
a(r, )=
( ) 1+ (aﬁvu (l‘, t))2 T=TT s, t=tg+172
b(r. 1) = 1 —20,u (x, t) (ac 02, u (z, t)) 2(n—1)

T (@)1 (wen)

T=TTx, t=to+172

f =5 <<1+ (aji?x, t))2> (e t>>>

T=TTs, t=to+122
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1 g —20,u (z, t) (z 02,u (z, t)) 2(n—1)
(1+@uten?) 1 ()’

%2 (_11/\?6(5;\2(; ;))2) (x_”?&vu (z, t))

(:C_2’\2 Oru (x, t))

T=rx., t=tg+i122

T=rx., t=tg+i1a2

L(n—1) <(8xu (z, 1) — 1) (x_m_lu (z, t))

9\ 2
,t
T=rT«, t=tg+iLx2

Notice that by (3.26) we have

max {

u(z, t)

0 (x, )], | 02 (a, t)\} < Cn A)e™ < |

g;fQ)‘QilJri ‘6;’& <$7 t)‘ S C(nv A)’ i€ {0’ 1’ 2}

for %\/—t <z <p tg<t<t provided that 0 < p < 1 (depending on n, A) . It

follows, by Lemma 3.42, that

min_h(r,0) — C(n, A)t < h(r,t) < max h(r,0) + C(n, A)¢

: 1 3
<r< 5<r<y

N
lw

which implies

t—to
2

229 0 (, t) < 2229 u(x, to)) + C(n, A
272 0,u (x )_éfr;?ng(w u(z, 1)) + C (n, A)

t—t
P29,y (2., 1) > min (:L'_2)\2azu (z, to)) — C(n, A) - 0
L/ Tosa<p P

for tg <t < tg+ 6222, Thus, by (3.50) and (3.73), we can choose 0 < § < 1 (depending

on n, A) so that
2421 (a+2)+ 1o (20 4+ 1)) 2222 < dyu(z, t) < 205 (20 + 1) 22 (3.209)

for (z, t) satisfying v/—t < < 3p, tg <t < tg+46%2?, provided that [to| < 1 (depending
on n? A" p’ IB)'
On the other hand, by this choice of § = § (n, A), (3.63) implies

Oy (u(m, HoF

C2

(—1)*2+2 oy (é)) ’ < C(n, A) p*Poa?
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for (z, t) satisfying v—t <z < %p, to + 0222 < t < t, where

O (ck; (%2 g <\/I_7>> — fa?» (1@ (200 +1) + 277 (a +2) <;§> +a <;§>2>

It follows, by (3.74), that
24211 (a+2)+ 15 (202 4+ 1)) 2222 < du(z, t) < 205 (20 + 1) 2?2 (3.210)

for (z, t) satisfying /=t < z < 3p, tg <t < to+46%2?, provided that |to| < 1 (depending
onn, A, p, #). Then (3.206) follows immediately from (3.209) and (3.210).

As for the second derivatives, we have the evolution equation:

8, (ac‘”ﬁlaﬁxu) B 1 52 (x—2A2+1a£$u>

14 (Opu)® ™

_ 2 _ _
1 6 Opu (z amz;) 2(n 13 2(2), 12) 9, <x72>\2+1a§xu>
T\ 1+ @aw?) -G 1O

—9 (m agzu)Q <1 -3 (8,1;“)2) . 12(n—1) ( e
(1+ @e?)’ (- ) (-7

RS PV —60pu (x 02, u) L2 ) L @D (26 - 2)) <x_2’\2+18§xu>

" (1+ @) -G L+ (Ou)”

1 [4m—1) (1 - (&cU)z) ((%)2 + 3)) (x_%_lu)
5 (1- @)

By a similar argument, we can deduce (3.207) and (3.208). O

In the following proposition, we prove (3.196) by using (3.31), (3.32), (3.46), (3.64),
(3.65) and Lemma 3.42.

Proposition 3.45. If > 1 (depending on n, A) and sop > 1 (depending on n, A, p,
B), then there hold

1
2(a+ 871 (a0 +2) + 1612 (22 + 1)) e 25y 1 < v (y, s) < 50&67)\253/0{71
(3.211)
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20y, s) < 2(a(a—1)+8Y1 (a+2) (a+ 1)+ 163 (2A2 + 1) (2A2)) e 25y

(3.212)

8§yv (y,s) > =(a(a—1))e 2%y 2 >0 (3.213)

N =

for2B8e79% <y <1, 59 <s<8.
Proof. Firstly, for each y, € [%ﬂe“’s‘), 1], let

hr,.)= e)‘ZSy_aH@yv (v, S)‘

Y=TYx, s=s0+1y2

From (3.31), we derive

oh —al(r, ) 83,rh —b(r,)0rh=f(r, 1)

where
1
1+ (9yv (y, 5))°

Y=TYs, S=80+1y2

b (7“ L) _ 1 —2 (ayv (y, 5)) (y agy’U (y, s)) N 9 (TL _ 1) yg
| (1+@0?) - (1

)
Y Y=rys, s=80+1y2

1 2(a—1
f (7’, L) = 2 (1 n (éyv (y’)s))2> <e>\2sy—a+28§yv (y7 8))

Y=TYx, s=s0+1y2

a—1 =20y, s) (yo2v(y, s)) 2(n—1)

r? (1 + (O (v, s))2)2 ! 1-— (%)

+

> (ez\zsyfoﬂrlayv (y’ S))
2

Y=TYx, S=S0+LY5

1 —a(a—1) a—1, 2 A2s, —a+1
+ = - +A 2Py~ T Oy (y,
T2<1+<6yv<y, SRR Gt A

Y=TYx, s=50+1y2

1 [ 4=1) (@O0 9)-1)

_’_7

a (1 _ <v<yy,s>)2>2

("o, )

Y=TYs, s=50+1y2
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Notice that by (3.32) we have

max {

v (y, s)

100 (y, s)]

y Oy, (v, S)I} < C(n, A)e ™yt <

Wl

Py dlu (y, s)| < C(n,A)  Vie{0,1,2}

for %ﬁe“’s <y <2 59 <s < s, provided that 5> 1 (depending on n, A). Then by

Lemma 3.42 and (3.32), we get

min h(r,0) — C(n, A)¢ < h(r,t) < max h(r,0) + C(n, A)¢

<r< RS

IS
wlw
ol
Njw

which implies

S — 80
2

*

e)‘QSy;aHayv (y«, ) <  max (e&soy*a“ayv (y, so)) + C(n, A)
Be—os<y<2

S — S0
2

*

Ay Oy, ) > min (0" (y, s0)) = C (0, A)
Be 78 <y<2

for s < s < s+ 0%y2. It follows, by (3.46) and (3.73), that we can choose 0 < § < 1

(depending on n, A) so that

2 (a+ 871 (@ +2) + 1675 (2A 4+ 1)) e 2%y < v (y, s) < %ae_’\ﬁy“_l
(3.214)
for (y, s) satisfying 28e™7° < y < 1, 59 < s < sg + 62y?, provided that so > 1
(depending on n, A, p, 3).

On the other hand, by the above choice of § =6 (n, A), (3.64) and (3.65) yield

k
8y (’U (y7 S) _ 767)\25 09 (y)>' < C(n, A) e~ *S (ef)\zsyoﬂrl)
2
for (y, s) satisfying e 77% <y < 1, 50 + 6%y> < s < §, and
‘8?/ (v (y, 8) —e 7%y (e”sy))‘ < C(n, A) 5“‘26—290(5—80) (e—/\zsya—l)

for (y, s) satisfying 2B8e=7° <y < e7Y7% s + 6%y> < s < 5. Note that

2
9, (CQBA” 2 (y>> = ke 2y (@421 (a4 2)y" + 12 (X0 + 1)y
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9, (7% b (7)) = fie 28y (a 1O ((easy)—Q(l—a)))

It follows, by (3.74), that

2(a+ 871 (+2) + 1672 (22 + 1)) e 25y < v (y, s) < %ae*)‘wyo‘*l
(3.215)
for (y, s) satisfying 28e77% <y < 1, s9+6%y* < s < §, provided that 8 > 1 (depending
on n, A) and sgp > 1 (depending on n, A). Then (3.211) follows from (3.214) and
(3.215).

As for the second derivative, we derive the following evolution equation:

1
0, (exgsy—a+263yv> _ 52 (ez\gsy—a—i—Za;yU)

1-'-(8:,/0)2 vy

Y (1+ (8yv)2)2 1 - (5)2
2
_ y12 —2 (y a(gllﬂ;)_ (glv):;iagﬂ])Q) _ 3/22 + )\2y2 (ez\zsyfaJrZa;y,U)
Y

1 [ —6(9yv) (?/ af,y”) 2(n—1) _ C‘/ﬁ2 2(a—2) 9 (e)\zsy—a—f—QaQ v)
2 1+ 0] v

2
2 ) - ) (2eyo+202,0)
(-6))

a—2 60w (¥d,v)  2(n-1) ¢* L_a=3 (eAzsy—oc-‘rQaQ U)
2 2 2
SO\ (o) 1-(3) 2 e .

Y ST 1 N Gy IO ) P,
|- (1)) y
N 1n=1) (1= @0)%) <3+(;>2) (o)

L)

Using the same argument as for the first derivative, (3.212) and (3.213) can be proved.

< |

O
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Note that by (3.43) and (3.196), we get
20w (z, T)| < C (n) 2° v ie{o, 1,2} (3.216)

for 268 < z < V207, 10 < 7 < 7. Also, by (3.205), (3.208), (3.213) and rescaling, the
projected curve I'; (see (3.41)) is convex in the corresponding rescaled region. More
explicitly, we have

02 (2, 7)>0 (3.217)

for 3 < z < p(207’)é+$, 70 < 7 < 7. Below we prove (3.199) by using (3.4), (3.40),
(3.79), (3.171) and (3.217).

Lemma 3.46. If 5 > 1 (depending on n, A) and 79 > 1 (depending on n, A, p, 3),
there holds (3.199).

Proof. From (3.40), we deduce that

Or (050) = T g 0z (020) (3.218)

n—1 6(0.0) (afzw) % 0 1o (82 w) —
3 — z zz
z (1 + (azw)Q) 2

1 2 lio R 1 0. .

Notice that the last term on the RHS is positive, i.e.

+

1 0 (z 1)
23w (z, 7)

2(n—1) ( ) D (2, 7) >0 (3.219)

for 0 <z <58, 7190 <7 <7, since by (3.4), (3.74), (3.79) and (3.171), we have

<w G, T))S > <¢1‘25‘“3 (Z)>3 > (142 (1-2679) (5/6’)""1)3

V4 z
> 1482 > 0.0 (2, 1) (3.220)

for 0 < z <58, 19 < 7 < 7, provided that § > 1 (depending on n, A) and 79 > 1
(depending on n, A, p, 3).
Now let
(92w

2, (1) = min 8331@ (z, 7)

)min 0<2<58
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Note that by (3.48) we have

Now we would like to prove

(02.0) (1) >0

min -
for 79 < 7 < 7 by contradiction. Suppose that (8§Z12))min (1) fails to be non-negative

for all 79 < 7 < 7, there must be 7{ > 79 so that
9
(02.2) 5, () < 0

Let 75 > 79 be the first time after which (ngw)mm is negative all the way up to 7{. By
continuity, we have
N
(02:0) i, (75) 2 0

On the other hand, by (3.171) and (3.217), there hold

for 79 < 7 < 7. As a result, the negative minimum of 92,4 (z, 7) for each time-slice

must be achieved in (0, 538). Then by the maximum principle (applying to (3.218)),

(3.79), (3.219) and (3.220), we get
2 — 6 (0,0)° 2 12 ito

0. (P w)  >|-——F(Pw). +|(n-1)=-5)-2— o2 )

( )mln — ( 1+ (82;711)2 ( )mln ( ) 'LU2 ( )mln

Z (6 (82111)2 (agzw)?nln> (agzw)mln Z 6 (1 + 604_2)2 (azzw)fnm

for 75 < 7 < 1. It follows that (82,w) min (70) < 0, which is a contradiction. O

Recall that by the admissible conditions (see Section 3.3), the projected curve T,
(see (3.41)) is a graph over C outside B (O; 8). By (3.199) and also the admissible

conditions, we also know that inside B (O; 3), I'; is a convex curve which intersects

orthogonally with the vertical ray { (0, z)| z > 0}, i.e. 9,w (0, 7) = 0. Furthermore, by
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(3.4) and (3.79), ['; lies above C and tends to it as z /3. Therefore, we conclude that

', is “entirely” a graph over C and

L, ={(z,w(z 7)) 2> 0} (3.221)

~{(-uem g erut )| a2 290

Remark 3.47. For the admissible conditions in Section 3.3, we only require the function

w(z, T) (see (3.42)) is defined for z 2 B. However, by the convexity (see (3.199)) and

the above argument, we find the domain of definition for w (z, 7) is given by

w (0, 7)

V2

On the other hand, by (3.74) and (3.79), we may assume that inside B (O; 53), T'; is

<z< o

bounded between M1 and M3, provided that 8 > 1 (depending on n) and 79 > 1
2 2

(depending on n, A, p, B). In particular, we have

w (07 7-) 1[}2 (0)
TOSSquS? \/5 = \/i

which means w (z, 7) is defined for z > sz(;)’ 170 < 7 < 7. In addition, since I'; is a

convex curve which lies below M3 and tends to C, we deduce that
2

_ ()

0 <w(z 1) < w% (z) < 520 (3.222)
V2
for % <z <58, 9 <7 < 7. Note that the slope of the linear function on the RHS
satisfies R R
$2(0) ¥2(0)
v () e (2R)
0< = < = =1
12(0) 2(0)
V2 V2

Lastly, in order to prove (3.198), we need the following two lemmas, which provide

smooth estimates of the function w (z, 7) in the rescaled tip region.

Lemma 3.48. If 5 > 1 (depending on n, A) and 79 > 1 (depending on n, A, p, 3),
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there holds

;

jw(z7) = () < Cm) B2 (5)

-1 < dw(z 1) < (3.223)

Wl

0 < w(z 1) <C(n)

\

for P49 < s <38, <7<

Proof. By (3.79), inside B (O; 53), the projected curve I'; is bounded between M (1 5 _3( i >,g)k
- 0

and M —o\ , which implies
(=) )

1_60473 (L

¢<1_Ba3(:0)—g)k(z) <w(z 1) < ¢(1+ﬁa3(%>—g)k(2)

for % <z <3, 70 <7 <7. Then by (3.9), (3.74) and using a similar argument as

in the proof of Proposition 3.28, we can derive the C? estimate of (3.223).
As for the first derivative, note that by (3.45), (3.199), (3.217) and the admissible
conditions in Section 3.3, T'; is a convex curve which intersects orthogonally with the

vertical ray { (0, z)| z > 0}. Thus, we have

02w (z, 7) >0
ow(z, 7) > dw (w(\(}’{), T) =-1 (3.224)

dw(z,7) < Ow(36,7) < C(n, A)pyt

Wl

for w\z}) <2 <3p, 19 <7 <7, provided that 8> 1 (depending on n, A).
Lastly, for the second derivative, notice that by (3.61), the normal curvature of T,

(in terms of W (z, 7)) satisfies

|Ap. | = CELICD]| N C (n) (3.225)

(1+ @ (=, 7))

for 0 < 2 < 38, 70 < 7 < 7. Now if we reparametrize ', by means of w (z, 7), the
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normal curvature is then given by

2
Ap = F0(7) (3.226)
2

(1 + (0w (2, T))2> ?

The second derivative estimate in (3.61) follows from (3.224), (3.225) and (3.226). O

The following lemma can be regarded as a counterpart of Proposition 3.40.

Lemma 3.49. If 8 > 1 (depending on n, A) and |19| > 1 (depending on n, A, p, ),

then for any 0 < 0 < 1, m, l € Z4, there holds

572 |omal (w (=, ) — s (2)] < € (. m, 1) g () (3.227)
70

for (2, 7) satisfying s (0) < 2 <28, 1+ 82 <7 < 7.

Proof. By mimicking the proof of Proposition 3.41 and using (3.9), (3.44), (3.222),
(3.223) and Lemma (3.5), we can deduce (3.227). O

Below we show that the Clestimate of (3.198) follows directly from the C° estimate

of (3.223).

Proposition 3.50. If 3> 1 (depending on n) and 79 > 1 (depending on n, A, p, 3),
there holds
|lw(z, )] < C(n)z" (3.228)

for 25 (0) < 2 <28, 79 < 7 < 7.
Proof. By Lemma 3.5, (3.74) and (3.223), we have
2wz, )| < 27k ()] + 27w (2, 1) = i (2)]

< 27k (2)] + (28) " lw (2, 7) =k (2)]

< Cn) <1+5-3 (0)> < Cn)

for 21&2 (0) <z <28, 19 <71 <7, provided that § > 1 (depending on n). O

In the following proposition, we show the first derivative estimate of (3.198) by using

the maximum principle and (3.227).
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Proposition 3.51. If 8> 1 (depending on n) and 79 > 1 (depending on n, A, p, 3),
there holds
0w (2, 7)| < C(n) 2271 (3.229)

f0r21ﬁ2(0) <z2<28, <7< T
Proof. From (3.44), we derive

! 5 02, (2T o,w) (3.230)

67- (z_a-i-laZQU) - m

—20,w 02, w 2(n—1) 1 z o
- 5 2 + N2 - <2 + 0') % (9z (Z +18;;’11))
(1+ @:w)?) :(1- (%))

=z 3 Oz, W o 2
1+ (0:w) 22(1_(%)>
o | 2(0.w) (02,w) 2(n—1) 1 z «
Tla—1)z (1 N 1 (w)? _<2+0>207_ 1+ (0.0)2
+@w?) 2(1-(2) 2 (1+ @)
Let
Mboundary = Tg%ﬁ_f_ { z_a+182w (Za 7—)‘2:21[,2(0) ) z_a+1azw (Z’ T)’z:2,8}
Mipitial =  max 2z “M9,w (2, 79)
2¢02(0)<2<28

Then by (3.216) and (3.223), we have
Mboundary < C(n)
By (3.49), we have
Minitial < C'(n)

Let

h(t)= max 2z 0wz, 7)
2¢2(0)<2<28

and

M = maX{Mboundarya Minitial}

If h(r) < M for 9 < 1 < 7, then we are done. Otherwise, there is 7 > 79 for which

h(r{)>M
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Let 73 be the first time after which h is greater than M all the way upto time 7{. By
continuity, we have

hirg) <M
Applying the maximum principle to (3.230) (and using (3.222) and (3.223)) yields
O-h < C(n)p™*
which implies that
h(r) < M+C(n)p~* (1 —15)
for 75 <7 < 7. Now choose 0 < ¢ < 1 (depending on n) so that
h(r) < M+1
for 75 <7 <715 +¢B“. By the above argument, we claim that

~max 2 *Mow(z, 7)) < M+1 (3.231)
2¢2(0)<z<28

for 19 < 7 < 19 + €89, otherwise, we would get a contradiction by the above argument.

On the other hand, by (3.227) we have

T

(5% 16, (1w (2, 7) — i ()] < C (m) B ()

70

for ¢y (0) < z < 28, 70 + e8> < 7 < #. It follows, by (3.1), (3.74) and Lemma 3.5, that

000 (2, 1) < 2O (2) + C (n) (e67)7E g3 <> e
0

< 27 (2) +C(n) 7272 < C(n) (3.232)

for s (0) <z <28, 10+eB* <7 <7, provided that § > 1 (depending on n) and
7o > 1 (depending on n, A, p, 5). Note that ¢ = € (n).

Combining (3.231) with (3.232) yields
o.w (z,7) < C(n)22!
for 1[12 (0) < z2<28, 19 <7 <7. By a similar argument, we can show that

d,w (z, 7) > —C (n) 271
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Next, given any constant p, from (3.44) we derive the following evolution equation

in order to estimate the second derivative of (3.198).

1

Or (27 P22 w) — —————— 02, (277202 3.233

(2 zzw) 1 + (azw)2 zz (Z zzw) ( )

. —6 (azw) (agzw) 2 (n B 1) _ <1 4 > z + 2 (p B 2) o ( —p+282
2 zz

L (p—2) —6(8Zw)(832w)+ 2(n—1) _<1 0) 1 p—3

2 (1+ (@Zw)2)2 2 (1-(2)°)

1| 4(n-1 o2 w2 W) 1 w2 o
5y (ot s 0wt ) e

—i—% (14£n(;)12)>3 (1 — (8zw)2) <3 + <Z>2> (z7Pw)

The following lemma is essential for the derivation of the second derivative estimates in

(3.198), and its proof is very similar to the one in the previous lemma

Lemma 3.52. If 1o > 1 (depending on n, A, p, B), there holds
’z@fzw (z, 7')‘ < C(n)

for 2t (0) < 2 <28, 19 < T < 7.

Proof. Let

2 2
Mboundary = ngéﬁf' { z azzw (Zv T) ’2221/32(0) » 2 azzw (Z’ T) ’z:?ﬁ}

2
Minitial = ~max 205w (2, 7o)
29p2(0)<2<283
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By (3.49), (3.216) and (3.223), we have
M = maX{Mboundarya Minitial} < C(TL)

Define

h(t)= max z0%w(z, 7)
2th2(0)<2<28

If h(r) < M for 79 < 7 < 7, then we are done. Otherwise, there is 7 > 79 for which
h(rf)>M

Let 73 be the first time after which h is greater than M all the way upto time 7;. By
continuity, we have

h(tg) <M
Applying the maximum principle to (3.233) with p = 1 (and using (3.222) and (3.223))
yields

0:-h(r) < C(n)(h(r)+1)

which implies that
h(r) < C(n)7 (M +C(n)) < 2(M+C(n))
for 7§ <71 <75 + ¢, where 0 < ¢ = ¢ (n) < 1. Thus, we claim that

Cmax 202w (z, 7) < 2(M +C (n)) (3.234)
2tp2(0)<2<28

for 79 < 7 < 719 + €; otherwise, we would get a contradiction by the above argument.

On the other hand, by (3.227) we have

e |02 (w(z, 7) — x (2))] < C(n) B> <T>

T0
for 205 (0) < z < 283, T9+¢ < 7 < #, which, together with (3.1), (3.74) and Lemma 3.5,
implies

202w (2, 7) < 2024 (2) + C (n)e g3 <T> _Qz < C(n) (3.235)

70

for 2y (0) < 2 < 28, 70+ < 7 < 7 (since € = & (n)).
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By (3.234) and (3.235), we get
202w (2 7) < C ()
for 29y (0) < z2<28, 79 <7 < 7. Similarly, by a similar argument, we can show that
202w (2, 7) 2 —=C(n)
0

Now we are ready to show the second derivative estimate of (3.198) with the help of

the previous lemma.

Proposition 3.53. If 79 > 1 (depending on n), there holds
}afzw (2, 7')‘ < C(n) 2072

for 25 (0) < 2 <28, 10 < 7 < 7.

Proof. Let

Mboundary = 7—0H<l?—)<(7°— { z_a+28gzw (Z, T) ‘Z:m&z(o) , Z—Ol-i-?agzw (Z, 7') |z:25}

_ —a+242
Minitial =  max 2z “7707,w (z, 10)
212 (0)<z<28

By (3.49), (3.216) and (3.223), we have
M = max {Mboundary7 Minitial} <C (TL)
Define
h(t)= max 2 202 w(z, 1)
242(0)<2<28
If h(r) < M for 79 < 7 < 7, then we are done. Otherwise, there is 7 > 79 for which

h(r{)>M

Let 73 be the first time after which h is greater than M all the way upto time 7{. By

continuity, we have
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By applying the maximum principle to (3.233) with p = a and using (3.222), (3.223),
(3.228) and (3.229), we get

O-h(1) < C(n)(h(r)+1)
which implies that
h(t) < C(n)"" ™ (M+C(n)) <2(M+C(n))
for 75 <7 <75 +¢, where 0 < e =¢(n) < 1. Thus, we infer that

S max 2 292w (2, 7) < 2(M +C(n)) (3.236)
21p2(0)<2z<28

for 19 < 7 < 19+¢, since otherwise, we would get a contradiction by the above argument.

On the other hand, by (3.227) we have

02, (w (2 7) — i (2))] < € (m) 5o () -

70
for 24 (0) < 2z < 28, 79+ e < 7 < 7, which, together with (3.74) and Lemma 3.5,

implies

-0
z7a+2azzw (2, 7) < zfa+28gzwk (z2) + C(n) pe—3 (T> Zt2

T0
< 27292 4 (2) + C(n) BT < C(n) (3.237)

for 205 (0) < 2 < 28, 70+ ¢ < 7 < 7, provided that 3> 1 (depending on n). Notice
that e = £ (n).

Combining (3.236) with (3.237) yields
D2 w(z, 1) < C(n)z*2
for 21[}2 (0) < z<28, 19 <7 < 7. Likewise, by a similar argument, we can show

agzw (z, 7) > =C'(n) 202
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