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ABSTRACT OF THE DISSERTATION

Spatially Controlled Relay Beamforming

by DIONYSIOS KALOGERIAS

Dissertation Director:

Athina P. Petropulu

This thesis is about fusion of optimal stochastic motion control and physical layer

communications. Distributed, networked communication systems, such as relay beam-

forming networks (e.g., Amplify & Forward (AF)), are typically designed without ex-

plicitly considering how the positions of the respective nodes might affect the quality

of the communication. Optimum placement of network nodes, which could potentially

improve the quality of the communication, is not typically considered. However, in

most practical settings in physical layer communications, such as relay beamforming,

the Channel State Information (CSI) observed by each node, per channel use, although

it might be (modeled as) random, it is both spatially and temporally correlated. It

is, therefore, reasonable to ask if and how the performance of the system could be im-

proved by (predictively) controlling the positions of the network nodes (e.g., the relays),

based on causal side (CSI) information, and exploitting the spatiotemporal dependen-

cies of the wireless medium. In this work, we address this problem in the context of

AF relay beamforming networks. This novel, cyber-physical system approach to relay

beamforming is termed as “Spatially Controlled Relay Beamforming”.
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First, we discuss wireless channel modeling, however, in a rigorous, Bayesian frame-

work. Experimentally accurate and, at the same time, technically precise channel mod-

eling is absolutely essential for designing and analyzing spatially controlled communi-

cation systems. In this work, we are interested in two distinct spatiotemporal statistical

models, for describing the behavior of the log-scale magnitude of the wireless channel:

1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a

stationary, Gaussian stochastic field in continuous space and discrete time (say,

for instance, time slots). Under such assumptions, spatial and temporal statisti-

cal interactions are determined by a set of time and space invariant parameters,

which completely determine the mean and covariance of the underlying Gaus-

sian measure. This model is relatively simple to describe, and can be sufficiently

characterized, at least for our purposes, both statistically and topologically. Ad-

ditionally, the model is rather versatile and there is existing experimental evi-

dence, supporting its practical applicability. Our contributions are summarized

in properly formulating the whole spatiotemporal model in a completely rigorous

mathematical setting, under a convenient measure theoretic framework. Such

framework greatly facilitates formulation of meaningful stochastic control prob-

lems, where the wireless channel field (or a function of it) can be regarded as a

stochastic optimization surface.

2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state:

This is a completely novel approach to wireless channel modeling. In this ap-

proach, the communication medium is assumed to behave as a partially observ-

able (or hidden) system, where a hidden, global, temporally varying underlying

stochastic process, called the channel state, affects the spatial interactions of the

actual channel magnitude, evaluated at any set of locations in the plane. More

specifically, we assume that, conditioned on the channel state, the wireless chan-

nel constitutes an observable, conditionally Gaussian stochastic process. The

channel state evolves in time according to a known, possibly non stationary, non
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Gaussian, low dimensional Markov kernel. Recognizing the intractability of gen-

eral nonlinear state estimation, we advocate the use of grid based approximate

nonlinear filters as an effective and robust means for recursive tracking of the

channel state. We also propose a sequential spatiotemporal predictor for tracking

the channel gains at any point in time and space, providing real time sequential

estimates for the respective channel gain map. In this context, our contribu-

tions are multifold. Except for the introduction of the layered channel model

previously described, this line of research has resulted in a number of general,

asymptotic convergence results, advancing the theory of grid-based approximate

nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymp-

totic optimality are relaxed, and, at the same time, the mode of convergence is

strengthened. Although the need for such results initiated as an attempt to the-

oretically characterize the performance of the proposed approximate methods for

statistical inference, in regard to the proposed channel modeling approach, they

turn out to be of fundamental importance in the areas of nonlinear estimation and

stochastic control. The experimental validation of the proposed channel model, as

well as the related parameter estimation problem, termed as “Markovian Chan-

nel Profiling (MCP)”, fundamentally important for any practical deployment, are

subject of current, ongoing research.

Second, adopting the first of the two aforementioned channel modeling approaches, we

consider the spatially controlled relay beamforming problem for an AF network with a

single source, a single destination, and multiple, controlled at will, relay nodes.

We consider a time slotted system, where the relays update their positions before

the beginning of each time slot. Under a general, rigorous and theoretically grounded

framework, based on a version of the so-called Fundamental Lemma of Stochastic Con-

trol, we propose a novel, 2-stage stochastic programming formulation for specifying

both beamforming weights and relay positions at each time slot. The objective is to

maximize the expected (long term) Quality-of-Service (QoS) of the network, at each

time slot, based on causal Channel State Information (CSI), while respecting a total

transmit power budget at the relays. The resulting motion control problem is shown to
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be equivalent to a set of much simpler, 2-dimensional subproblems, which may be solved

in a distributed fashion, one at each relay. However, these problems are all nonconvex,

and their objectives are impossible to evaluate analytically. Then, two methods are

proposed, one based on the Method of Statistical Differentials, and one relying on the

multidimensional Gauss-Hermite Quadrature Rule (brute force). Both methods allow

approximate, closed form evaluation of the aforementioned objectives, enabling the use

of any preferable nonlinear solver, thus allowing the determination of approximately

optimal relay controls.

Additionally, we show analytically that, although positions are optimized myopi-

cally at each time slot (based on all available CSI, though), the average network QoS

is nondecreasing across time slots, as long as the temporal dependence of the commu-

nication medium is sufficiently strong. Synthetic numerical simulations are presented,

confirming our theoretical predictions and corroborating the efficacy of the proposed

approach.

The extension of this formulation, when the second of the channel modeling ap-

proaches presented above is adopted, in which the channel is modeled as partially ob-

servable Markovian system, is nontrivial and constitutes a subject of further research.
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Chapter 1

Introduction

In the first chapter of this work, we present the basic relay beamforming model, which

will be of central interest in our subsequent developments. Based on this network-

ing model, the problem of spatially controlled beamforming is naturally introduced,

however in an informal and intuitive way. Additionally, the contributions and the out-

line of this dissertation are briefly presented, serving as a roadmap and connecting all

theoretical and applied concepts, presented and developed in this work.

1.1 System Model

On a compact, square planar regionW ⊂ R2, we consider a wireless cooperative network

consisting of one source, one destination and R ∈ N+ assistive relays, as shown in Fig.

??. Each entity of the network is equipped with a single antenna, being able for both

information reception and broadcasting/transmission. The source and destination are

stationary and located at pS ∈ W and pD ∈ W, respectively, whereas the relays

are assumed to be mobile; each relay i ∈ N+
R moves along a trajectory pi (t) ∈ S ⊂

W − {pS ,pD} ⊂ W, where, in general, t ∈ R+, and where S is compact. We also

define the supervector p (t) ,
[
pT

1 (t) pT
2 (t) . . . pT

R (t)
]T
∈ SR ⊂ R2R×1. Additionally,

we assume that the relays can cooperate with each other, either by exchanging local

messages, or by communicating with a local fusion center, through a dedicated channel.

Hereafter, as already stated above, all probabilistic arguments made below presume

the existence of a complete base probability space of otherwise completely arbitrary

structure, prespecified by a triplet (Ω,F ,P). This base space models a universal source

of randomness, generating all stochastic phenomena in our considerations.

Assuming that a direct link between the source and the destination does not exist,



2

Source Destination

pS

W ⊂ R2

pD

pi (t)

pj (t)

f (pi
(t) ,

t) g (p
i (t) , t)

f (
p
j (t) , t ) g

(
pj

(t) ,
t
)

S ⊂ W

Figure 1.1: A schematic of the system model considered.

the role of the relays is determined to be assistive to the communication, operating in

a two phase Amplify & Forward (AF) relaying mode [1–10]. Fix a T > 0, and divide

the time interval [0, T ] into NT time slots, with t ∈ N+
NT

denoting the respective time

slot. Let s (t) ∈ C, with E
{
|s (t)|2

}
≡ 1, denote the symbol to be transmitted at time

slot t. Also, assuming a flat fading channel model, as well as channel reciprocity and

quasistaticity in each time slot, let the sets {fi (t) ∈ C}
i∈N+

R
and {gi (t) ∈ C}

i∈N+
R

contain

the random, spatiotemporally varying source-relay and relay-destination channel gains,

respectively. These are further assumed to be evaluations of the separable random

channel fields or maps f (p, t) and g (p, t), respectively, that is, fi (t) ≡ f (pi (t) , t) and

gi (t) ≡ g (pi (t) , t), for all i ∈ N+
R and for all t ∈ N+

NT
.

If P0 > 0 denotes the transmission power of the source, during AF phase 1, the

signals received at the relays can be expressed as

ri(t),
√
P0fi(t) s(t) + ni(t) ∈ C, (1.1)

for all i ∈ N+
R and for all t ∈ N+

NT
, where ni (t) ∈ C, with E

{
|ni (t)|2

}
≡ σ2, constitutes

a zero mean observation noise process at the i-th relay, independent across relays.

During AF phase 2, all relays simultaneously retransmit the information received, each

modulating their received signal by a weight wi (t) ∈ C, i ∈ N+
R. The signal received at

the destination can be expressed as

y (t),
√
P0

∑

i∈N+
R

wi(t) gi(t) ri(t)
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≡
√
P0

∑

i∈N+
R

wi(t) gi(t) fi(t) s(t)

︸ ︷︷ ︸
signal (transformed)

+
∑

i∈N+
R

wi(t) gi(t)ni(t) + nD(t)

︸ ︷︷ ︸
interference + reception noise

∈ C, (1.2)

for all i ∈ N+
R and t ∈ N+

NT
, where nD (t) ∈ C, with E

{
|nD (t)|2

}
≡ σ2

D, constitutes a

zero mean, spatiotemporally white noise process at the destination.

In the following, it is assumed that the channel fields f (p, t) and g (p, t) may be

statistically dependent both spatially and temporally, and that, as usual, the processes

s (t), [f (p, t) g (p, t)], ni (t) for all i ∈ N+
R, and nD (t) are mutually independent. Also,

we will assume that, at each time slot t, CSI {fi (t)}
i∈N+

R
and {gi (t)}

i∈N+
R

is known

exactly to all relays. This may be achieved through pilot based estimation.

1.2 AF Beamforming via Convex Optimization

In classical AF relay beamforming, choice of the relay retransmission weights wi(t) , i ∈

N+
R constitutes a central problem. Of course, relay weights should be chosen optimally,

according to some meaningful performance criterion. In the simple, one source, one

destination setting, of interest in this work, we may identify two basic such criteria,

which admit relatively simple solutions, and which, in a sense, may be considered dual

to each other [1, 2, 9].

1.2.1 Network Quality-of-Service (QoS) Maximization

A fundamentally important beamforming criterion, which will be of central importance

in our work, is that of enhancing network Quality-of-Service (QoS), or, in other words,

maximizing the respective SINR at the destination, subject to a total power budget

at the relays. At each time slot t ∈ N+
NT

, given instantaneous CSI and with w (t) ,

[w1 (t) . . . wR (t)]T , this may be achieved by formulating the constrained optimization

problem [2,9]

maximize
w(t)

PS (t)

PI+N (t)

subject to PR (t) ≤ Pc

, (1.3)
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where PR (t), PS (t) and PI+N (t) denote the random instantaneous power at the relays,

that of the signal component and that of the interference plus noise component at the

destination (see (1.2)), respectively and where Pc > 0 denotes the total available relay

transmission power. Using the mutual independence assumptions regarding CSI related

to the source and destination, respectively, (1.3) can be reexpressed analytically as [9]

maximize
w(t)

wH (t) R (p (t) , t)w (t)

σ2
D +wH (t) Q (p (t) , t)w (t)

subject to wH (t) D (p (t) , t)w (t) ≤ Pc

, (1.4)

where, dropping the dependence on (p (t) , t) or t for brevity,

D , P0diag

([
|f1|2 |f2|2 . . . |fR|2

]T)
+ σ2IR ∈ SR++, (1.5)

R , P0hhH ∈ SR+, with h , [f1g1 f2g2 . . . fRgR]T and (1.6)

Q , σ2diag

([
|g1|2 |g2|2 . . . |gR|2

]T)
∈ SR++. (1.7)

Note that the program (1.4) is always feasible, as long as Pc is nonnegative. It is well

known that the optimal value of (1.4) can be expressed in closed form as [9]

Vt ≡ V (p (t) , t) , Pcλmax

((
σ2
DIR + PcD

−1/2QD−1/2
)−1

D−1/2RD−1/2

)
, (1.8)

for all t ∈ N+
NT

. Exploiting the structure of the matrices involved, Vt may also be

expressed analytically as [2]

Vt ≡
∑

i∈N+
R

PcP0 |f (pi (t) , t)|2 |g (pi (t) , t)|2

P0σ
2
D |f (pi (t) , t)|2 + Pcσ

2 |g (pi (t) , t)|2 + σ2σ2
D

,
∑

i∈N+
R

VI (pi (t) , t) , ∀t ∈ N+
NT
. (1.9)

1.2.2 Total Relay Power Minimization

The second relay beamforming criterion of interest in this work is that of minimizing

the transmission power at the relays, while satisfying a user specified QoS demand at

the destination. This demand is quantified via an explicit lower bound on the achieved

SINR, which has to be strictly respected at the destination. In a sense, this problem
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constitutes a dual version of the SINR maximization problem, previously considered in

Section 1.2.1. Its structure, though, is somewhat more complicated, as we shall shortly

see. At each time t ∈ N+
NT

and given instantaneous CSI, transmission power minimiza-

tion at the relays this may be achieved by formulating the constrained optimization

problem [2,9]

minimize
w(t)

PR (t)

subject to
PS (t)

PI+N (t)
≥ ζ

, (1.10)

where PR (t), PS (t) and PI+N (t) denote the same quantities as in Section 1.2.1, re-

spectively and where ζ > 0 denotes the time slot independent QoS requirement at

the destination, translated in a hard SINR constraint. As with (1.3), (1.10) can be

reexpressed analytically as [9]

minimize
w(t)

wH (t) D (p (t) , t)w (t)

subject to
wH (t) R (p (t) , t)w (t)

σ2
D +wH (t) Q (p (t) , t)w (t)

≥ ζ
, (1.11)

where the matrices D (p (t) , t), R (p (t) , t) and Q (p (t) , t) are defined as in (1.5),(1.6)

and (1.7), respectively. Note that, contrary to (1.4), program (1.11) will not be feasible

for any choice of ζ > 0. This is due to the fact that the constraint in (1.11) may be

expressed equivalently as

wH (R− ζQ)w ≥ ζσ2
D, (1.12)

from where it trivially follows that, if the matrix R−ζQ is strictly negative definite, then

there is no w such that wH (R− ζQ)w takes a positive value. This fact is important,

as it introduces considerable complications when one is interested in a motion aware

formulation. For now, however, let us assume that ζ is chosen sufficiently small, such

that (1.11) is feasible; we will revisit this issue later on. Under these circumstances,

the optimal value of (1.4) can be expressed in closed form as [9]

Vt ≡ V (p (t) , t)

,
ζσ2

D

λmax

(
D−1/2 (p (t) , t) (R (p (t) , t)− ζQ (p (t) , t)) D−1/2 (p (t) , t)

) , (1.13)

for all t ∈ N+
NT

. It is very important to observe that, in this case, Vt does not ad-

mit any known analytical expression, simply because the eigenstructure of the matrix
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D−1/2 (R− ζQ) D−1/2, being a sum of a full rank and a rank-1 matrices, is, in general,

unknown.

1.3 Spatially Controlled Wireless Communications: Basic Concepts

In both relay beamforming formulations previously presented in Section 1.2, as well

as in distributed, networked communication systems, in general, spatial placement of

network nodes is rarely taken into account as a system design factor, although it is

clear that it could potentially improve the quality of the communication. This is due to

the widely accepted and experimentally validated fact that, at least in most practical

settings in physical layer communications, including relay beamforming, the Channel

State Information (CSI) observed by each node, per channel use, is both spatially and

temporally correlated. It is, therefore, reasonable to ask if and how the performance of

the system could be improved by (predictively) controlling the positions of the network

nodes (e.g., the relays), based on causal side (CSI) information, and exploiting the

spatiotemporal dependencies of the wireless medium.

In this work, this problem is addressed in the context of AF relay beamforming

networks. This novel, cyber-physical system approach to relay beamforming is thereafter

termed as “Spatially Controlled Relay Beamforming”. Intuitively, if, at each time slot t,

we are given causal information about the current and past positions of the relays and

the observed CSI, then, naturally, the high-level goal is to try to predictively decide on

the future positions of the relays, which will in some sense further optimize our agreed

future beamforming objective. This should be considered as a temporally dynamic

procedure, as the actions should be determined sequentially across time slots, depending

on what has been observed so far.

There are multiple interesting questions arising in this general concept of spatially

controlled relay beamforming (and wireless communications, in general), and which

need to be addressed. These questions may be categorized as follows:

1. Dynamic Wireless Channel Modeling : We have to agree on a specific model for

describing the spatiotemporal interactions of the communication medium. This
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model might be either stochastic or deterministic, either hierarchical (layered) or

simply parametric, and should exhibit certain properties, which will allow precise

problem formulation and performance analysis. Although spatial and temporal

wireless channel models are separately available in the literature, development of

accurate representations for joint spatiotemporal channel modeling constitutes an

active research direction.

2. Scheduling of Communications and Controls: We have to agree on the temporal

order of the different tasks need to be carried out by the network. Should the

relays move-and-beamform (or communicate, in general), beamform-and-move,

or beamform while moving?

3. Formulation: There are multiple choices for meaningful problem formulation.

For example, we might be interested in a multistage or myopic, fully or partially

dynamic, single-period or multi-period formulation. Additionally, what causal

information will be used for updating the locations of the relays?

4. Optimality and Guarantees: It will be readily apparent that rigorous analysis of

such systems is far from trivial. Depending on the particular problem formulation

adopted, the resulting system inherits unique properties, translated into useful

theoretical guarantees. Such guarantees are extremely important in practice,

because they provide performance quantification in advance, prior to numerical

simulation or practical deployment.

Our contributions are generally concentrated around the various subproblems induced

by each of the aforementioned categories. Additionally, this work presents a holis-

tic treatment of the spatially controlled relay beamforming problem, which rigorously

combines relay communications and stochastic motion control into a unified framework.

This framework is sufficient for formulating other interesting and/or extended problems

in spatially controlled communications, as well; several of them are the subject of our

current and future research.
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1.4 Contributions of the Dissertation

1.4.1 Performance Analysis of Grid-Based Approximate Nonlinear

Stochastic Filtering

We consider the problem of approximating optimal in the Minimum Mean Squared

Error (MMSE) sense nonlinear filters in a general, discrete time setting. More specifi-

cally, we consider a class of nonlinear, partially observable stochastic systems, comprised

by a (possibly nonstationary) hidden stochastic process (the state), observed through

another conditionally Gaussian stochastic process (the observations). Under general

assumptions, we show that, given an approximating process which, for each time step,

is stochastically convergent to the state process under an appropriate sense, an approx-

imate filtering operator can be defined, which converges to the true optimal nonlinear

filter of the state in a strong and well defined sense. In particular, the convergence is

compact in time and uniform in a completely characterized measurable set of probabil-

ity measure almost unity, also providing a purely quantitative justification of Egoroff’s

Theorem for the problem at hand. The results presented in this work can form a com-

mon basis for the analysis and characterization of a number of heuristic approaches

for approximating optimal nonlinear filters, such as approximate grid based techniques,

known to perform well in a variety of applications.

In particular, we then revisit the development of grid based recursive approximate

filtering of general Markov processes in discrete time, partially observed in conditionally

Gaussian noise. The grid based filters considered rely on two types of state quantiza-

tion: The Markovian type and the marginal type. We propose a set of novel, relaxed

sufficient conditions, ensuring strong and fully characterized pathwise convergence of

these filters to the respective MMSE state estimator. In particular, for marginal state

quantizations, we introduce the notion of conditional regularity of stochastic kernels,

which, to the best of our knowledge, constitutes the most relaxed condition proposed,

under which asymptotic optimality of the respective grid based filters is guaranteed.

Further, we extend our convergence results, including filtering of bounded and continu-

ous functionals of the state, as well as recursive approximate state prediction. For both
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Markovian and marginal quantizations, the whole development of the respective grid

based filters relies more on linear-algebraic techniques and less on measure theoretic

arguments, making the presentation considerably shorter and technically simpler.

This work has been published in:

• D. S. Kalogerias and A. P. Petropulu, “Asymptotically Optimal Discrete Time

Nonlinear Filters From Stochastically Convergent State Process Approximations,”

IEEE Transactions on Signal Processing, vol. 63, no. 13, pp. 3522 – 3536, July

2015.

• D. S. Kalogerias and A. P. Petropulu, “Grid-Based Filtering of Markov Processes

Revisited: Recursive Estimation & Asymptotic Optimality,” IEEE Transactions

on Signal Processing, vol. 64, no. 16, pp. 4244 - 4259, July 2016.

1.4.2 Hierarchical Wireless Channel Modeling & Markovian Channel

Profiling (MCP)

We propose a nonlinear filtering framework for approaching the problems of channel

state tracking and spatiotemporal channel gain prediction in mobile wireless networks,

in a Bayesian setting. We assume that the (log-scale) wireless channel constitutes

an observable (by the sensors/network nodes), spatiotemporal, conditionally Gaussian

stochastic process, which is statistically dependent on a set of hidden channel parame-

ters, called the channel state. The channel state evolves in time according to a known,

non stationary, nonlinear and/or non Gaussian Markov stochastic kernel. Recognizing

the intractability of general nonlinear state estimation, we advocate the use of grid

based approximate filters as an effective and robust means for recursive tracking of

the channel state. We propose a sequential spatiotemporal predictor for tracking the

channel gains at any point in time and space, providing real time sequential estimates

for the respective channel gain map, for each sensor in the network. Non trivial, real

time recursive estimators of the variance of the channel gain map predictions are also

developed. Additionally, we show that all three estimators converge towards the true

respective MMSE optimal estimators, in a common, relatively strong sense. Numerical
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simulations corroborate the effectiveness of the proposed approach.

This work has been published in:

• D. S. Kalogerias and A. P. Petropulu, “Nonlinear SpatioTemporal Channel Gain

Map Tracking in Mobile Cooperative Networks,” 16th IEEE International Work-

shop on Signal Processing Advances in Wireless Communications (SPAWC 2015),

Stockholm, Sweden, June/July 2015.

• D. S. Kalogerias and A. P. Petropulu, “Sequential channel state tracking & spa-

tiotemporal channel prediction in mobile wireless sensor networks,” CSPL Tech-

nical Report, Rutgers, The State University of New Jersey, 2015. Available at

Arxiv.

• A. Dimas, C. Koumpouzi, D. S. Kalogerias and A. P. Petropulu, “Markovian

Channel Profiling: Parameter Estimation & Space-Time Recursive Tracking”,

under preparation, 2017.

1.4.3 Spatially Controlled Relay Beamforming via Distributed Stochas-

tic Programming

The problem of enhancing Quality-of-Service (QoS) in power constrained, mobile re-

lay beamforming networks, by optimally and dynamically controlling the motion of

the relaying nodes, is considered, in a dynamic channel environment. We assume a

time slotted system, where the relays update their positions before the beginning of

each time slot. Modeling the wireless channel as a Gaussian spatiotemporal stochastic

field, we propose a novel 2-stage stochastic programming problem formulation for op-

timally specifying the positions of the relays at each time slot, such that the expected

QoS of the network is maximized, based on causal Channel State Information (CSI)

and under a total relay transmit power budget. This results in a schema where, at

each time slot, the relays, apart from optimally beamforming to the destination, also

optimally, predictively decide their positions at the next time slot, based on causally

accumulated experience. Exploiting either the Method of Statistical Differentials, or
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the multidimensional Gauss-Hermite Quadrature Rule, the stochastic program consid-

ered is shown to be approximately equivalent to a set of simple subproblems, which are

solved in a distributed fashion, one at each relay. Optimality and performance of the

proposed spatially controlled system are also effectively assessed, under a rigorous tech-

nical framework; strict optimality is rigorously demonstrated via the development of an

original version of the Fundamental Lemma of Stochastic Control, and, performance-

wise, it is shown that, quite interestingly, the optimal average network QoS exhibits an

increasing trend across time slots, despite our myopic problem formulation. Numerical

simulations are presented, experimentally corroborating the success of the proposed

approach and the validity of our theoretical predictions.

This work has been published in:

• D. S. Kalogerias and A. P. Petropulu, “Mobile Beamforming & Spatially Con-

trolled Relay Communications,” 41st IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2014), Shanghai, China, March 2016

(invited, selected as the “Best Paper of the Special Sessions”).

• D. S. Kalogerias and A. P. Petropulu, “Enhancing QoS in Spatially Controlled

Beamforming Networks via Distributed Stochastic Programming,” 42nd IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP

2017), New Orleans, LA, USA, March 2017.

• D. S. Kalogerias and A. P. Petropulu, “Spatially Controlled Relay Beamform-

ing, Part I: 2-Stage QoS Enhancement Policies,” IEEE Transactions on Signal

Processing, to be submitted in early 2017.

• D. S. Kalogerias and A. P. Petropulu, “Spatially Controlled Relay Beamform-

ing, Part II: Optimality Analysis & Extensions,” IEEE Transactions on Signal

Processing, to be submitted in early 2017.
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1.5 Outline of the Dissertation

The rigorous investigation of the spatially controlled beamforming problem has led

to the development of fundamental and generally applicable theoretical contributions,

as well, especially in the context of approximate Bayesian inference and stochastic

nonlinear filtering. Therefore, we have decided to dedicate separate chapters to the

presentation of general theoretical results. Those chapters will be usually presented

prior to the relevant chapters discussing wireless channel modeling, and the actual

formulation of the spatially controlled relay beamforming problem.

In Chapter 2, we present a complete and rigorous analysis of approximate nonlinear

filtering in discrete time, with a focus on grid-based approximate nonlinear filtering of

Markov processes, observed in conditionally Gaussian noise. First, a general asymptotic

result is established, regarding general, possibly non-Markovian approximate filters.

Subsequently, this result is exploited in order to provide strong asymptotic optimality

guarantees for grid-based, recursive approximate filters, under various settings. The

analysis is theoretically precise and is presented under a convenient measure-theoretic

framework.

Chapter 3 is devoted to the discussion of the two distinct channel modeling ap-

proaches advocated and exploited in the dissertation. The two models are presented

under the assumption of a set of possibly mobile, single antenna nodes in the space,

communicating with some spatially fixed, reference base station. The first of these

models is based on parametric spatiotemporal Gaussian random fields. We present a

complete formulation of the model, its basic functional characteristics, as well as its

fundamental topological properties. The second channel model constitutes a hierar-

chical Bayesian modeling approach, where the communication medium is described as

a partially observable Markovian system. The hidden layer of the system, called the

channel state, which models the temporal changes in the surrounding environment, af-

fects the spatiotemporally interacting, actual channel magnitudes in a nonlinear way.

Leveraging our results from Chapter 2, we present a rigorous treatment of the prac-

tically important problems of spatiotemporal channel state estimation and channel
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map tracking/prediction, under a grid-based approximate nonlinear filtering frame-

work. Synthetic numerical simulations are also presented, confirming the effectiveness

of our approach.

Chapter 4 deals with the main problem of interest in the dissertation, namely, that

of properly formulating the spatially controlled relay beamforming problem under rea-

sonable assumptions, as well as providing a viable and effective solution. In this chapter,

we adopt exclusively the parametric spatiotemporal random field channel model pre-

sented in Chapter 3, mainly because of its practical relevance and simple structure.

The beamforming under consideration is selected to be the QoS maximization prob-

lem, introduced earlier in Section 1.2.1. The main idea in Chapter 4 is to formulate

the spatially controlled relay beamforming problem, under a fully dynamic stochastic

environment. In such a dynamic formulation, and assuming a time slotted system, the

relays are expected to update their positions at each time slot, based on their experience

accumulated so far, in order to further enhance the QoS of the network. We propose

a myopic stochastic programming framework, where, at each time slot, the relays opti-

mize their positions at the next time slot, based on CSI accumulated up to the current

time slot. Optimality and performance of the proposed system is technically justified,

under a rigorous, measure theoretic framework. Additionally, representative numerical

simulations are presented, confirming the success of the proposed approach, as well as

our theoretical predictions.

Finally, Chapter 5 concludes the dissertation and provides various directions for

further research and development.

1.6 Notation

It will be soon noticeable to the reader that mathematical notation in each of the

chapters to follow is somewhat intense. We will freely redefine variables, but all notation

will be consistent within sections. However, same basic conventions will be universal

throughout the main body of the dissertation, as follows.

Whenever applicable, the state vector will be represented as Xt, its approximations
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as X
LS
t . All other matrices and vectors, either random or not, will be denoted by

boldface letters (to be clear by the context). Real valued random variables and abstract

random elements will be denoted by uppercase letters. Calligraphic letters and formal

script letters will denote sets and σ-algebras, respectively. Table 1.1 shows a list of

common, additional conventions, which have been globally adopted in the dissertation.

Additional special purpose notation will be specified explicitly, within each respective

section.
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Table 1.1: Notation

Symbol Meaning

= “equals” (indirect equivalence)

≡ “coincides” (immediate equivalence)

, “equals by definition”

(·)T Matrix transposition

λmin (·) Minimum eigenvalue operator

λmax (·) Maximum eigenvalue operator

σ {·} σ-algebra generated by (·)
(a random element)

‖x‖p, x ∈ Cn
`p-norm of a vector;

‖x‖p , (
∑n

i=1 |xi|
p)

1/p
, x ∈ Cn

‖X‖2, X ∈ Cn×n
Spectral norm of a matrix;
‖X‖2 , max‖x‖2≡1 ‖Xx‖2

‖X‖F , X ∈ Cn×n
Frobenius norm of a matrix;

‖X‖2 ,
√∑n

i=1

∣∣Xij

∣∣2

X � 0, X ∈ Cn×n Positive demidefiniteness

X � 0, X ∈ Cn×n Positive definiteness

In×n or In, both ∈ Cn×n Finite dimensional
identity operator of dimension n.

R+ [0,∞)

R++ (0,∞)

N+ {1, 2, . . .}
N+
n , n ∈ N+ {1, 2, . . . , n}

Nn, n ∈ N+ {0} ∪ N+
n ≡ {0, 1, 2, . . . , n}

{A,B} × {C,D}
(A, B, C, D are sets)

{A × C,A×D,B × C,A×D}
(overloading of the Cartesian Product)
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Chapter 2

Grid-Based Nonlinear Stochastic Filtering

A novel, complete and rigorous convergence analysis of approximate nonlinear filtering

in discrete time is presented. The ultimate focus of the analysis is grid-based approxi-

mate nonlinear filtering of Markov processes, observed in conditionally Gaussian noise.

First, a general asymptotic result is established, applicable to general, possibly non-

Markovian, non-recursive approximate estimators. Then, this result is exploited, pro-

viding strong asymptotic optimality guarantees for grid-based, recursive approximate

filters, under various settings.

2.1 Asymptotically Optimal Discrete Time Nonlinear Filters From

Stochastically Convergent State Process Approximations

2.1.1 Introduction

Nonlinear stochastic filtering refers to problems in which a stochastic process, usually

called the state, is partially observed as a result of measuring another stochastic pro-

cess, usually called the observations or measurements, and the objective is to estimate

the state or some functional of it, based only on past and present observations. The

nonlinearity is due to the general, possibly non Gaussian nature of the state and ob-

servations processes, as well as the fact that, in general, the state may be partially

observed as a nonlinear functional of the observations. Usually, nonlinear state estima-

tors are designed so as to optimize some performance criterion. Most commonly, this

corresponds to the Minimum Mean Squared Error (MMSE), which is also adopted in

this work.

A desirable feature of a nonlinear filter is recursiveness in time, as it greatly reduces
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computational complexity and allows for real time estimation as new measurements

become available. However, not all nonlinear filters possess this important property

[11, 12]. Recursive nonlinear filters exist for some very special cases, such as those

in which the transition model of the state process is linear (Gauss-Markov), or when

the state is a Markov chain (discrete state space) [13–16]. In the absence of recursive

filter representations, practical filtering schemes have been developed, which typically

approximate the desired quantities of interest, either heuristically (e.g., Gaussian ap-

proximations [17, 18]) or in some more powerful, rigorous sense (e.g., Markov chain

approximations [19,20]).

In this work, we follow the latter research direction. Specifically, we consider a

partially observable system in discrete time, comprised by a hidden, almost surely

compactly bounded state process, observed through another, conditionally Gaussian

measurement process. The mean and covariance matrix of the measurements both

constitute nonlinear, time varying and state dependent functions, assumed to be known

apriori. Employing a change of measure argument and using the original measurements,

an approximate filtering operator can be defined, by replacing the “true” state process

by an appropriate approximation. Our contribution is summarized in showing that if

the approximation converges to the state either in probability or in the C-weak sense

(Section II.C), the resulting filtering operator converges to the true optimal nonlinear

filter in a relatively strong and well defined sense; the convergence is compact in time and

uniform in a measurable set of probability measure almost unity (Theorem 2.3). The

aforementioned set is completely characterized in terms of a subset of the parameters of

the filtering problem of interest. Consequently, our results provide a purely quantitative

justification of Egoroff’s theorem [21] for the problem at hand, which concerns the

equivalence of almost sure convergence and almost uniform convergence of measurable

functions.

To better motivate the reader, and in order to embed the problems to be considered

in the framework of the dissertation, let us describe two problems that fit the scenario

described above and can benefit from the contributions of this work, namely, those of

sequential channel state estimation and (sequential) spatiotemporal channel prediction.
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These problems will be considered in detail later in Chapter 3. Modern distributed

networks usually consist of cooperating mobile sensors, each of them being capable

of observing its communication channel (under a flat fading assumption), relative to

a reference point in the space. In most practical scenarios, the dominant quantities

characterizing the wireless links, such as the path loss exponent and the shadowing

power, may be modeled as stochastic processes themselves. For instance, such behavior

may be due to physical changes in the environment and also the inherent randomness

of the communication medium itself. Then, the path loss exponent and the shadowing

power can be collectively considered as the hidden state (suggestively called the channel

state) of a partially observable system, where the channel gains measured at each sensor

can be considered as the corresponding observations. In general, such observations are

nonlinear functionals of the state. Assuming additionally that the channel state is

a Markov process, the main results presented herein can essentially provide strong

asymptotic guarantees for approximate sequential nonlinear channel state estimation

and spatiotemporal channel prediction, enabling physical layer aware motion planning

and stochastic control. For more details, the reader is referred to Chapter 3.

The idea of replacing the process of interest with some appropriate approximation

is borrowed from [20]. However, [20] deals almost exclusively with continuous time

stochastic systems and the results presented in there do not automatically extend to

the discrete time system setting we are dealing with here. In fact, the continuous time

counterparts of the discrete time stochastic processes considered here are considerably

more general than the ones treated in [20]. More specifically, although some relatively

general results are indeed provided for continuous time hidden processes, [20] is primar-

ily focused on the standard hidden diffusion case, which constitutes a Markov process

(and aiming to the development of recursive approximate filters), whereas, in our set-

ting, the hidden process is initially assumed to be arbitrary (as long as it is confined to

a compact set). Also, different from our formulation (see above), in [20], the covariance

matrix of the observation process does not depend on the hidden state; the state affects

only the mean of the observations. Further, the modes of stochastic convergence con-

sidered here are different compared to [20] (in fact, they are stronger), both regarding
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convergence of approximations and convergence of approximate filters.

The results presented in this work provide a framework for analyzing a number of

heuristic techniques for numerically approximating optimal nonlinear filters in discrete

time, such as approximate grid based recursive approaches, known to perform well in

a wide variety of applications [22,23]. Additionally, our results do not refer exclusively

to recursive nonlinear filters. The sufficient conditions which we provide for the conver-

gence of approximate filtering operators are independent of the way a filter is realized

(see Section 2.1.3). This is useful because, as highlighted in [24], no one prevents one

from designing an efficient (approximate) nonlinear filter which is part recursive and

part nonrecursive, or even possibly trying to combine the best of both worlds, and there

are practical filters designed in this fashion [24].

2.1.2 Partially Observable System Model & Technical Preliminaries

In this section, we give a detailed description of the partially observable (or hidden)

system model of interest and present our related technical assumptions on its compo-

nents. Additionally, we present some essential background on the measure theoretic

concept of change of probability measures and state some definitions and known re-

sults regarding specific modes of stochastic convergence, which will be employed in our

subsequent theoretical developments.

2.1.2.1 Hidden Model: Definitions & Technical Assumptions

First, let us set the basic probabilistic framework, as well as precisely define the hidden

system model considered throughout this work:

• All stochastic processes considered below are fundamentally generated on a com-

mon complete probability space (the base space), defined by a triplet (Ω,F ,P),

at each time instant taking values in a measurable state space, consisting of some

Euclidean subspace and the associated Borel σ-algebra on that subspace. For

example, for each t ∈ N, the state process Xt ≡ Xt (ω), where ω ∈ Ω, takes

its values in the measurable state space
(
RM×1,B

(
RM×1

))
, where B

(
RM×1

)
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constitutes the Borel σ-algebra of measurable subsets of RM×1.

• In this work, the evolution mechanism of state process Xt is assumed to be arbi-

trary. However, in order to avoid unnecessary technical complications, we assume

that, for each t ∈ N, the induced probability measure of Xt is absolutely contin-

uous with respect to the Lebesgue measure on its respective state space. Then,

by the Radon-Nikodym Theorem, it admits a density, unique up to sets of zero

Lebesgue measure. Also, we will generically assume that for all t ∈ N, Xt ∈ Z

almost surely, where Z constitutes a compact strict subset of RM×1. In what

follows, however, in order to lighten the presentation, we will assume that M ≡ 1.

Nevertheless, all stated results hold with the same validity if M > 1 (See also

Assumption 2.2 below).

• The state Xt is partially observed through the observation process

yt , µt (Xt) + σt (Xt) + ξt ∈ RN×1, ∀t ∈ N, (2.1)

where, conditioned on Xt and for each t ∈ N, the sequence
{
µt : Z 7→ RN×1

}
t∈N

is known apriori, the process σt (Xt) ∼ N (0,Σt (Xt) � 0) constitutes Gaussian

noise, with the sequence {Σt : Z 7→ DΣ}t∈N, where DΣ is a bounded subset of

RN×N , also known apriori, and ξt
i.i.d.∼ N

(
0, σ2

ξIN×N

)
.

As a pair, the state Xt and the observations process described by (2.1) define a very wide

family of partially observable systems. In particular, any Hidden Markov Model (HMM)

of any order, in which the respective Markov state process is almost surely confined in

a compact subset of its respective Euclidean state space, is indeed a member of this

family. More specifically, let us rewrite (2.1) in the canonical form

yt ≡ µt (Xt) +
√

Ct (Xt)ut ∈ RN×1, ∀t ∈ N, (2.2)

where ut ≡ ut (ω) constitutes a standard Gaussian white noise process and, for all

x ∈ Z, Ct (x) , Σt (x) + σ2
ξIN×N ∈ DC, with DC bounded. Then, for a possibly

nonstationary HMM of order m, assuming the existence of an explicit functional model

for describing the temporal evolution of the state (being a Markov process of order m),
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we get the system of standardized stochastic difference equations

Xt ≡ ft
(
{Xt−i}i∈N+

m
,W t

)
∈ Z

yt ≡ µt (Xt) +
√

Ct (Xt)ut

, ∀t ∈ N, (2.3)

where, for each t, ft : Zm×W a.s.7→ Z (with Zm , ×m times Z) constitutes a measurable

nonlinear state transition mapping and W t ≡ W t (ω) ∈ W ⊆ RMW×1, denotes a

(discrete time) white noise process with state space W. For a first order stationary

HMM, the above system of equations reduces to

Xt ≡ f (Xt−1,W t) ∈ Z

yt ≡ µt (Xt) +
√

Ct (Xt)ut

, ∀t ∈ N, (2.4)

which arguably constitutes the most typical partially observable system model encoun-

tered in both Signal Processing and Control, with plethora of important applications.

Let us also present some more specific assumptions, regarding the nature (bound-

edness, continuity and expansiveness) of the aforementioned sequences of functions.

Assumption 2.1. (Boundedness) For later reference, let

λinf , inf
t∈N

inf
x∈Z

λmin (Ct (x)) , (2.5)

λsup , sup
t∈N

sup
x∈Z

λmax (Ct (x)) , (2.6)

µsup , sup
t∈N

sup
x∈Z
‖µt (x)‖2 , (2.7)

where each quantity of the above is uniformly and finitely bounded for all t ∈ N and

for all x ∈ Z. If x is substituted by the stochastic process Xt (ω), then all the above

definitions continue to hold in the essential sense. For technical reasons related to the

bounding-from-above arguments presented in Section IV, containing the proof of the

main result of this work, it is also assumed that λinf > 1, a requirement which can

always be satisfied by appropriate normalization of the observations.

Assumption 2.2. (Continuity & Expansiveness) All members of the functional

family
{
µt : Z 7→ RN×1

}
t∈N

are uniformly Lipschitz continuous, that is, there exists a
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bounded constant Kµ ∈ R+, such that, for all t ∈ N,

‖µt (x)− µt (y)‖2 ≤ Kµ |x− y| , ∀ (x, y) ∈ Z × Z. (2.8)

Additionally, all members of the functional family
{

Σt : Z 7→ DΣ ⊂ RN×N
}
t∈N

are

elementwise uniformly Lipschitz continuous, that is, there exists some universal and

bounded constant KΣ ∈ R+, such that, for all t ∈ N and for all (i, j) ∈ N+
N × N+

N ,

∣∣∣Σij
t (x)−Σij

t (y)
∣∣∣ ≤ KΣ |x− y| , ∀ (x, y) ∈ Z × Z. (2.9)

If x is substituted by the stochastic process Xt (ω), then all the above statements are

understood in the almost sure sense.

Remark 2.1. As we have already said, for simplicity, we assume that Z ⊂ R, that is,

M ≡ 1. In any other case (when M > 1), we modify the Lipschitz assumptions stated

above simply by replacing |x− y| with ‖x− y‖1, that is, Lipschitz continuity is meant

to be with respect to the `1 norm in the domain of the respective function. If this

holds, everything that follows works also in RM>1, just with some added complexity

in the proofs of the results. Also, because ‖x‖2 ≤ ‖x‖1 for any x ∈ RM , the assumed

Lipschitz continuity with respect to `1 norm can be replaced by Lipschitz continuity

with respect to the `2 norm, since the latter implies the former, and again everything

holds. Further, if M > 1, convergence in probability and L1 convergence of random

vectors are both defined by replacing absolute values with the `1 norms of the vectors

under consideration. �

2.1.2.2 Conditional Expectations, Change of Measure & Filters

Before proceeding with the general formulation of our estimation problem and for later

reference, let us define the complete natural filtrations of the processes Xt and yt as

{Xt}t∈N ,
{
σ
{
{Xi}i∈Nt

}}
t∈N

and (2.10)

{Yt}t∈N ,
{
σ
{
{yi}i∈Nt

}}
t∈N

, (2.11)

respectively, and also the complete filtration generated by both Xt and yt as

{Ht}t∈N ,
{
σ
{
{Xi,yi}i∈Nt

}}
t∈N

. (2.12)
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In all the above, σ {Y } denotes the σ-algebra generated by the random variable Y .

In this work, we adopt the MMSE as an optimality criterion. In this case, one would

ideally like to discover a solution to the stochastic optimization problem

inf
X̂t

E
{∥∥∥Xt − X̂t

∥∥∥
2

2

}

subject to E
{
X̂t

∣∣∣Yt
}
≡ X̂t

, ∀t ∈ N, (2.13)

where the constraint is equivalent to confining the search for possible estimators X̂t

to the subset of interest, that is, containing the ones which constitute Yt-measurable

random variables. Of course, the solution to the program (2.13) coincides with the

conditional expectation [25]

E {Xt|Yt} ≡ X̂t, ∀t ∈ N, (2.14)

which, in the nonlinear filtering literature, is frequently called a filter. There is also an

alternative and very useful way of reexpressing the filter process X̂t, using the concept

of change of probability measures, which will allow us to stochastically decouple the

state and observations of our hidden system and then let us formulate precisely the

approximation problem of interest in this work. Change of measure techniques have

been extensively used in discrete time nonlinear filtering, mainly in order to discover

recursive representations for various hidden Markov models [12,15,16,26]. In the follow-

ing, we provide a brief introduction to these type of techniques (suited to our purposes)

which is also intuitive, simple and technically accessible, including direct proofs of the

required results.

Change of Probability Measure in Discrete Time:

Demystification & Useful Results

So far, all stochastic processes we have considered are defined on the base space

(Ω,F ,P). In fact, it is the structure of the probability measure P that is responsible

for the coupling between the stochastic processes Xt and yt, being, for each t ∈ N,

measurable functions from (Ω,F ) to (R,B (R)) and
(
RN ,B

(
RN
))

, respectively. In-

tuitively, the measure P constitutes our “reference measurement tool” for measuring



24

the events contained in the base σ-algebra F , and any random variable serves as a

“medium” or “channel” for observing these events.

As a result, some very natural questions arise from the above discussion. First,

one could ask if and under what conditions it is possible to change the probability

measure P, which constitutes our fixed way of assigning probabilities to events, to

another measure P̃ on the same measurable space (Ω,F ), in a way such that there

exists some sort of transformation connecting P and P̃. Second, if we can indeed

make the transition from P to P̃, could we choose the latter probability measure in a

way such that the processes Xt and yt behave according to a prespecified statistical

model? For instance, we could demand that, under P̃, Xt and yt constitute independent

stochastic processes. Third and most important, is it possible to derive an expression

for the “original” filter X̂t ≡ EP {Xt|Yt} under measure P, using only (conditional)

expectations under P̃ (denoted as EP̃ {·| ·})?

The answers to all three questions stated above are affirmative under very mild

assumptions and the key result in order to prove this assertion is the Radon-Nikodym

Theorem [27]. However, assuming that the induced joint probability measure of the

processes of interest is absolutely continuous with respect to the Lebesgue measure of

the appropriate dimension, in the following we provide an answer to these questions,

employing only elementary probability theory, avoiding the direct use of the Radon-

Nikodym Theorem.

Theorem 2.1. (Conditional Bayes’ Theorem for Densities) Consider the (possi-

bly vector) stochastic processes Xt (ω) ∈ RNt×1 and Yt (ω) ∈ RMt×1, both defined on the

same measurable space (Ω,F ), for all t ∈ N. Further, if P and P̃ are two probability

measures on (Ω,F ), suppose that:

• Under both P and P̃, the process Xt is integrable.

• Under the base probability measure P (resp. P̃), the induced joint probability mea-

sure of
(
{Xi}i∈Nt , {Yi}i∈Nt

)
is absolutely continuous with respect to the Lebesgue mea-

sure of the appropriate dimension, implying the existence of a density ft (resp.
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f̃t), with

ft :

(
×
i∈Nt

RNi×1

)
×
(
×
i∈Nt

RMi×1

)
7→ R+. (2.15)

• For each set of points, it is true that

f̃t (· · · ) ≡ 0 ⇒ ft (· · · ) ≡ 0, (2.16)

or, equivalently, the support of ft is contained in the support of f̃t.

Also, for all t ∈ N, define the Likelihood Ratio (LR) at t as the {Ht}-adapted, nonneg-

ative stochastic process1

Λt ,
ft (X0, X1, . . . , Xt, Y0, Y1, . . . , Yt)

f̃t (X0, X1, . . . , Xt, Y0, Y1, . . . , Yt)
. (2.17)

Then, it is true that

X̂t ≡ EP {Xt|Yt} ≡
EP̃ {XtΛt|Yt}
EP̃ {Λt|Yt}

, (2.18)

almost everywhere with respect to P.

Proof of Theorem 2.1. See Section 2.1.6 (Appendix). �

Remark 2.2. The {Ht}-adapted LR process

Λt ≡ Λt

(
Xt , {Xi}i∈Nt ,Yt , {Yi}i∈Nt

)
, t ∈ N, (2.19)

as defined in (2.17), actually coincides with the restriction of the Radon-Nikodym

derivative of P with respect to P̃ to the filtration {Ht}t∈N, that is,

dP (ω)

dP̃ (ω)

∣∣∣∣∣
Ht

≡ Λt (Xt (ω) ,Yt (ω)) , ∀t ∈ N, (2.20)

a statement which, denoting the collections {xi}i∈Nt and {yi}i∈Nt as xt and yt, respec-

tively, is rigorously equivalent to

P (F) ≡
∫

F
Λt (Xt (ω) ,Yt (ω)) dP̃ (ω)

≡
∫

B
Λt
(
xt, yt

)
d2tP̃(Xt,Yt)

(
xt, yt

)

1
With zero probability of confusion, we use {Yt}t∈N and {Ht}t∈N to denote the complete filtrations

generated by Yt and {Xt, Yt}.
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≡ P(Xt,Yt) (B) ≡ P ((Xt,Yt) ∈ B) , (2.21)

(2.22)

∀F , {ω ∈ Ω |(Xt (ω) ,Yt (ω)) ∈ B} ∈Ht and (2.23)

∀B ∈
(
⊗
i∈Nt

B
(
RNi×1

))
⊗
(
⊗
i∈Nt

B
(
RMi×1

))
, ∀t ∈ N, (2.24)

respectively (in the above, “⊗” denotes the product operator for σ-algebras). Of course,

the existence and almost everywhere uniqueness of Λt are guaranteed by the Radon-

Nikodym Theorem, provided that the base measure P is absolutely continuous with

respect to P̃ on Ht (P �Ht
P̃). Further, for the case where there exist densities

characterizing P and P̃ (as in Theorem 1), demanding that P �Ht
P̃ is precisely

equivalent to demanding that (2.16) is true and, again through the Radon-Nikodym

Theorem, it can be easily shown that the derivative Λt actually coincides with the

likelihood ratio process defined in (2.17), almost everywhere. �

Now, let us apply Theorem 1 for the stochastic processes Xt and yt, comprising our

partially observed system, as defined in Section II.A. In this respect, we present the

following result.

Theorem 2.2. (Change of Measure for the Hidden System under Study)

Consider the hidden stochastic system of Section II.A on the usual base space (Ω,F ,P),

where Xt ∈ Z and yt ∈ RN×1, almost surely ∀t ∈ N, constitute the hidden state process

and the observation process, respectively. Then, there exists an alternative, equivalent

to P, base measure P̃ on (Ω,F ), under which:

• The processes Xt and yt are statistically independent.

• Xt constitutes a stochastic process with exactly the same dynamics as under P.

• yt constitutes a Gaussian vector white noise process with zero mean and covari-

ance matrix equal to the identity.

Additionally, the filter X̂t can be expressed as in (2.18), where the {Ht}-adapted stochas-

tic process Λt, t ∈ N is defined as in (2.25) (top of next page).
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Λt ,
∏

i∈Nt

λi (2.25)

,
∏

i∈Nt

exp

(
1

2
‖yi‖22 −

1

2
(yi−µi (Xi))

T
(
Σi (Xi)+σ2

ξIN×N

)−1
(yi−µi (Xi))

)

√
det
(
Σi (Xi) + σ2

ξIN×N

)

≡

exp


1

2

∑

i∈Nt

‖yi‖22 − (yi−µi (Xi))
T
(
Σi (Xi)+σ2

ξIN×N

)−1
(yi−µi (Xi))




∏

i∈Nt

√
det
(
Σi (Xi) + σ2

ξIN×N

) ∈ R++

Proof of Theorem 2. Additionally to the similar identifications made above (see (2.19))

and for later reference, let

Y t , {yi}i∈Nt and yt , {yi}i∈Nt . (2.26)

First, we construct the probability measure P̃, this way showing its existence. To

accomplish this, define, for each t ∈ N, a probability measure P̃Rt on the measurable

space (Rt,B (Rt)), where

Rt ,
(
×
i∈Nt

R
)
×
(
×
i∈Nt

RN×1

)
, (2.27)

being absolutely continuous with respect to the Lebesgue measure on (Rt,B (Rt)) and

with density f̃t : R 7→ R+. Since, for each t ∈ N, the processes Xt (ω) and yt (ω) are

both, by definition, fixed and measurable functions from (Ω,Ht) to (Rt,B (Rt)), with2

Ht ⊆H∞ , σ

{⋃

t∈N
Ht

}
⊆ F , (2.28)

measuring any B ∈ B (Rt) under P̃Rt can be replaced by measuring the event (preim-

age)

{ω ∈ Ω| (Xt,Y t) ∈ B} ∈ Ht under another measure, say P̃, defined collectively for

all t ∈ N on the general measurable space (Ω,H∞) as

P̃ ({ω ∈ Ω| (Xt,Y t) ∈ B}) ≡ P̃ ((Xt,Y t) ∈ B) , P̃Rt (B) , ∀B ∈ B (Rt) .

2H∞ constitutes the join, that is, the smallest σ-algebra generated by the union of all Ht, ∀t ∈ N.
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That is, the restriction of the probability measure P̃ to the σ-algebra H∞ is induced by

the probability measure P̃R∞ (also see Kolmogorov’s Extension Theorem [12]). Further,

in order to define the alternative base measure P̃ fully on (Ω,F ), we have to extend

its behavior on the remaining events which belong to the potentially finer σ-algebra F

but are not included in H∞. However, since we are interested in change of measure

only for the augmented process (Xt,Y t), these events are irrelevant to us. Therefore, P̃

can be defined arbitrarily on these events, as long as it remains a valid and consistent

probability measure.

Now, to finalize the construction of the restriction of P̃ to Ht, ∀t ∈ N, we have to

explicitly specify the density of P̃Rt , or, equivalently, of the joint density of the random

variables (Xt,Y t), f̃t, for all t ∈ N. According to the statement of Theorem 2, we have

to demand that

f̃t
(
xt, yt

)
≡ f̃Yt|Xt

(
yt
∣∣ xt
)
f̃Xt (xt)

= f̃Yt
(
yt
)
fXt (xt)

=


∏

i∈Nt

f̃yi
(yi)


 fXt (xt)

=




∏

i∈Nt

exp

(
−‖yi‖

2
2

2

)

√
(2π)N



fXt (xt)

≡

exp


−1

2

∑

i∈Nt

‖yi‖22




√
(2π)N(t+1)

fXt (xt) . (2.29)

Next, by definition, we know that, under P, the joint density of (Xt,Y t) can be

expressed as

ft
(
xt, yt

)
≡ fYt|Xt

(
yt
∣∣ xt
)
fXt (xt)

≡


∏

i∈Nt

fyi|Xi (yi|xi)


 fXt (xt)
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=




∏

i∈Nt

exp

(
yTi C−1

i yi
−2

)

√
det (Ci) (2π)N



fXt (xt)

≡

exp


∑

i∈Nt

yTi C−1
i yi
−2





∏

i∈Nt

√
det (Ci)



√

(2π)N(t+1)

fXt (xt) , (2.30)

where, for all t ∈ N,

yt ≡ yt (xt) , yt − µt (xt) ∈ RN×1 and (2.31)

Ct ≡ Ct (xt) ≡ Σt (xt) + σ2
ξIN×N ∈ DC, (2.32)

where DC constitutes a bounded subset of RN×N . From (2.29) and (2.30), it is obvious

that the sufficient condition (2.16) of Theorem 1 is satisfied (actually, in this case, we

have an equivalence; as a result, the change of measure is an invertible transformation).

Applying Theorem 1, (2.18) must be true by defining the {Ht}-adapted stochastic

process

Λt ≡ Λt (Xt,Y t) ,
ft (Xt,Y t)
f̃t (Xt,Y t)

≡
fYt|Xt (Y t| Xt)
f̃Yt|Xt (Y t| Xt)

≡
fYt|Xt (Y t| Xt)

f̃Yt (Y t)

≡

exp


∑

i∈Nt

‖yi‖22 − (yi (Xi))
T (Ci (Xi))

−1 yi (Xi)

2




∏

i∈Nt

√
det (Ci (Xi))

, (2.33)

or, alternatively,

Λt ≡
∏

i∈Nt

λi ,
∏

i∈Nt

exp


∑

i∈Nt

‖yi‖22 − (yi (Xi))
T (Ci (Xi))

−1 yi (Xi)

2




√
det (Ci (Xi))

, (2.34)

therefore completing the proof. �

2.1.2.3 Weak & C-Weak Convergence of (Random) Probability Measures

In the analysis that will take place in Section IV, we will make use of the notions of

weak and conditionally weak (C-weak) convergence of sequences of probability measures.
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Thus, let us define these notions of stochastic convergence consistently, suited at least

for the purposes of our investigation.

Definition 2.1. (Weak Convergence [28]) Let S be an arbitrary metric space, let

S , B (S) be the associated Borel σ-algebra and consider a sequence of probability

measures {πn}n∈N on S . If π constitutes another “limit” probability measure on S

such that

lim
n→∞

πn (A) = π (A) ,

∀A ∈ S such that π (∂A) ≡ 0,

(2.35)

where ∂A denotes the boundary set of the Borel set A, then we say that the sequence

{πn}n∈N converges to π weakly or in the weak sense and we equivalently write

πn
W−→

n→∞
π. (2.36)

Of course, weak convergence of probability measures is equivalent to weak conver-

gence or convergence in distribution, in case we are given sequences of (S,S )-valued

random variables whose induced probability measures converge in the aforementioned

sense.

Next, we present a definition for conditionally weak convergence of probability mea-

sures. To avoid possibly complicating technicalities, this definition is not presented in

full generality. Rather, it is presented in an appropriately specialized form, which will

be used later on, in the analysis that follows.

Definition 2.2. (Conditionally Weak Convergence) Let (Ω,F ,P) be a base prob-

ability triplet and consider the measurable spaces
(
Si,Si , B (Si)

)
, i = {1, 2}, where

S1 and S2 constitute a complete separable metric (Polish) space and an arbitrary metric

space, respectively. Also, let {Xn
1 : Ω→ S1}n∈N be a sequence of random variables, let

X2 : Ω→ S2 be another random variable and consider the sequence of (regular) induced

conditional probability distributions (or measures) PnXn
1 |X2

: S1 × Ω→ [0, 1], such that

PnXn
1 |X2

(A|X2 (ω)) ≡ P (Xn
1 ∈ A|σ {X2}) , (2.37)
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P − a.e., for any Borel set A ∈ S1. If X1 : Ω → S1 constitutes a “limit” random

variable, whose induced conditional measure PX1|X2
: S1 × Ω→ [0, 1] is such that

lim
n→∞

PnXn
1 |X2

(A|X2 (ω)) = PX1|X2
(A|X2 (ω)) ,

∀A ∈ S1 such that π (∂A) ≡ 0 and P − a.e.,
(2.38)

then we say that the sequence
{
PnXn

1 |X2

}
n∈N

converges to PX1|X2
conditionally weakly

( C-weakly) or in the conditionally weak ( C-weak) sense and we equivalently write

PnXn
1 |X2

( ·|X2)
W−→

n→∞
PX1|X2

( ·|X2) . (2.39)

Remark 2.3. Actually, C-weak convergence, as defined above, is strongly related to

the more general concepts of almost sure weak convergence and random probability

measures. For instance, the reader is referred to the related articles [29] and [30]. �

Further, the following lemma characterizes weak convergence of probability mea-

sures (and random variables) [28].

Lemma 2.1. (Weak Convergence & Expectations) Let S be an arbitrary met-

ric space and let S , B (S). Suppose we are given a sequence of random variables

{Xn}n∈N and a “limit” X, all (S,S )-valued, but possibly defined on different base prob-

ability spaces, with {PXn}n∈N and PX being their induced probability measures on S ,

respectively. Then,

Xn D−→
n→∞

X ⇔ PXn
W−→

n→∞
PX , (2.40)

if and only if

E {f (Xn)} ≡
∫

S
fdPXn −→

n→∞

∫

S
fdPX ≡ E {f (X)} , (2.41)

for all bounded, continuous functions f : S → R.

Of course, if we replace weak convergence by C-weak convergence, Lemma 2.1 con-

tinues to hold, but, in this case, (2.41) should be understood in the almost everywhere

sense (see, for example, [30]). More specifically, under the generic notation of Definition

2.2 and under the appropriate assumptions according to Lemma 2.1, it will be true that

E {f (Xn
1 )|X2} (ω) −→

n→∞
E {f (X1)|X2} (ω) , (2.42)
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for almost all ω ∈ Ω.

2.1.3 Problem Formulation & Statement of Main Results

In this section, we formulate the problem of interest, that is, in a nutshell, the problem

of approximating a nonlinear MMSE filter by another (asymptotically optimal) filtering

operator, defined by replacing the true process we would like to filter by an appropriate

approximation. Although we do not deal with such a problem here, such an approxi-

mation would be chosen in order to yield a practically realizable approximate filtering

scheme. We also present the main result of this work, establishing sufficient conditions

for convergence of the respective approximate filters, in an indeed strong sense.

Let us start from the beginning. From Theorem 2.2, we know that

EP {Xt|Yt} ≡
EP̃ {XtΛt|Yt}
EP̃ {Λt|Yt}

, ∀t ∈ N, (2.43)

where the RHS constitutes an alternative representation for the filter on the LHS, which

constitutes the optimal in the MMSE sense estimator of the partially observed process

Xt, given the available observations up to time t. If the numerical evaluation of either

of the sides of (2.43) is difficult (either we are interested in a recursive realization of

the filter or not), one could focus on the RHS, where the state and the observations

constitute independent processes, and, keeping the same observations, replace Xt by

another process XA
t , called the approximation, with resolution or approximation param-

eter A ∈ N (for simplicity), also independent of the observations (with respect to P̃), for

which the evaluation of the resulting “filter” might be easier. Under some appropriate,

well defined sense, the approximation to the original process improves as A→∞. This

general idea of replacing the true state process with an approximation is employed in,

for instance, [19,20], and will be employed here, too.

At this point, a natural question arises: Why are we complicating things with change

of measure arguments and not using XA
t directly in the LHS of (2.43)? Indeed, using

classical results such as the Dominated Convergence Theorem, one could prove at least

pointwise convergence of the respective filter approximations. The main and most im-

portant issue with such an approach is that, in order for such a filter to be realizable



33

in any way, special attention must be paid to the choice of the approximation, regard-

ing its stochastic dependence on the observations process. This is due to the original

stochastic coupling between the state and the observations of the hidden system of

interest. However, using change of measure, one can find an alternative representation

of the filter process, where, under another probability measure, the state and observa-

tions are stochastically decoupled (independent). This makes the problem much easier,

because the approximation can also be chosen to be independent of the observations.

If we especially restrict our attention to recursive nonlinear filters, change of measure

provides a rather versatile means for discovering recursive filter realizations. See, for

example, the detailed treatment presented in [12].

Thus, concentrating on the RHS of (2.43), we can define an approximate filtering

operator of the process Xt, also with resolution A ∈ N, as

EA (Xt|Yt) ,
EP̃
{
XA
t ΛA

t

∣∣∣Yt
}

EP̃
{

ΛA
t

∣∣∣Yt
} , ∀t ∈ N. (2.44)

Observe that the above quantity is not a conditional expectation of XA
t , because XA

t

does not follow the probability law of the true process of interest, Xt [20]. Of course,

the question is if and under which sense,

EA (Xt|Yt)
?−→

A→∞
EP {Xt|Yt} , (2.45)

that is, if and in which sense our chosen approximate filtering operator is asymptotically

optimal, as the resolution of the approximation increases. In other words, we are looking

for a class of approximations, whose members approximate the process Xt well, in the

sense that the resulting approximate filtering operators converge to the true filter as

the resolution parameter increases, that is, as A → ∞, and under some appropriate

notion of convergence. In this respect, below we formulate and prove the following

theorem, which constitutes the main result of this work (recall the definition of C-

weak convergence given in Section II.C). In the following, 1A : R→ {0, 1} denotes the

indicator of the set A. Also, for any Borel set A, 1A (·) constitutes a Dirac (atomic)

probability measure. Equivalently, we write 1A (·) ≡ δ(·) (A).
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Theorem 2.3. (Convergence to the Optimal Filter) Pick any natural T <∞ and

suppose either of the following:

• For all t ∈ NT , the sequence
{
XA
t

}
A∈N

is marginally C-weakly convergent to Xt,

given Xt, that is,

PA

X
A
t |Xt ( ·|Xt)

W−→
A→∞

δXt (·) , ∀t ∈ NT . (2.46)

• For all t ∈ NT , the sequence
{
XA
t

}
A∈N

is (marginally) convergent to Xt in prob-

ability, that is,

XA
t
P−→

A→∞
Xt, ∀t ∈ NT . (2.47)

Then, there exists a measurable subset Ω̂T ⊆ Ω with P-measure at least 1−(T + 1)1−CN

exp (−CN), such that

lim
A→∞

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣EA (Xt|Yt)− EP {Xt|Yt}
∣∣∣ (ω) ≡ 0, (2.48)

for any free, finite constant C ≥ 1. In other words, the convergence of the respective

approximate filtering operators is compact in t ∈ N and, with probability at least 1 −

(T + 1)1−CN exp (−CN), uniform in ω.

Interestingly, as noted in the beginning of this section, the mode of convergence of

the resulting approximate filtering operator is particularly strong. In fact, it is inter-

esting that, for fixed T , the approximate filter EA (Xt|Yt) converges to EP {Xt|Yt}

(uniformly) in a set that approaches the certain event, exponentially in N . That is,

convergence to the optimal filter tends to be in the uniformly almost everywhere sense,

at an exponential rate (in N). Consequently, it is revealed that the dimensionality of

the observations process essentially stabilizes the behavior of the approximate filter, in

a stochastic sense. Along the lines of the discussion presented above, it is clear that

Theorem 2.3 provides a way of quantitatively justifying Egoroff’s theorem [21], which

bridges almost uniform convergence with almost sure convergence, however in an indeed

abstract fashion.

Remark 2.4. The C-weak convergence condition (2.46) is a rather strong one. In partic-

ular, as we show later in Lemma 2.8 (see Section IV), it implies L1 convergence, which
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means that it also implies (marginal) convergence in probability (which constitutes the

alternative sufficient condition of Theorem 2.3). In simple words, (2.46) resembles a sit-

uation where, at any time step, one is given or defines an approximation to the original

process, in the sense that, conditioned on the original process at the same time step,

the probability of being equal to the latter approaches unity. At this point, because

C-weak convergence is stronger than (and implies) convergence in probability, one could

wonder why we presented both as alternative sufficient conditions for filter convergence

in Theorem 2.3 (and also in Lemma 2.10 presented in Section IV). The reason is that,

contrary to convergence in probability, condition (2.46) provides a nice structural cri-

terion for constructing state process approximations in a natural way, which is also

consistent with our intuition: If, at any time step, we could observe the value of true

state process, then the respective value of the approximation at that same time step

should be “sufficiently close” to the value of the state. Condition (2.46) expresses this

intuitive idea and provides a version of the required sense of “closeness”. �

In order to demonstrate the applicability of Theorem 2.3, as well as demystify the

C-weak convergence condition (2.46), let us present a simple but illustrative example.

The example refers to a class of approximate grid based filters, based on the so called

marginal approximation [22], according to which the (compactly restricted) state pro-

cess is fed into a uniform spatial quantizer of variable resolution. As we will see, this

intuitively reasonable approximation idea constitutes a simple instance of the condition

(2.46).

More specifically, assume that Xt ∈ [a, b] ≡ Z, ∀t ∈ N, almost surely. Let us

discretize Z uniformly into A subintervals, of identical length, called cells. The l-th

cell and its respective center are denoted as Z lA and xlA, l ∈ N+
A . Then, letting XA ,{

xlA

}
l∈N+

LS

, the quantizer QA : (Z,B (Z)) 7→
(
XA, 2XA

)
is defined as the bijective and

measurable function which uniquely maps the l-th cell to the respective reconstruction

point xlA, ∀l ∈ N+
A . That is, QA (x) , xlA if and only if x ∈ Z lA . Having defined the

quantizer QA (·), the Marginal Quantization of the state is defined as [22]

XA
t (ω) , QA (Xt (ω)) ∈ XA, ∀t ∈ N, P − a.s., (2.49)
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where A ∈ N is identified as the approximation parameter. That is, Xt is approximated

by its nearest neighbor on the cell grid. That is, the state is represented by a discrete

set of reconstruction points, each one of them uniquely corresponding to a member of

a partition of Z.

By construction of marginal state approximations, it can be easily shown that (see

Section 2.2)

XA
t (ω)

P−a.s.−→
A→∞

Xt (ω) , (2.50)

a fact that will be used in the following. Of course, almost sure convergence implies

convergence in probability and, as we will see, C-weak convergence as well. First, let

us determine the conditional probability measure PA

X
A
t |Xt (dx|Xt). Since knowing Xt

uniquely determines the value of XA
t , it must be true that

PA

X
A
t |Xt (dx|Xt) ≡ PA

QA(Xt)|Xt (dx|Xt)

≡ δQA(Xt)
(dx) , P − a.s.. (2.51)

However, from Lemma 2.1, we know that weak convergence of measures is equivalent

to showing that the expectations E
{
f
(
XA
t

)∣∣∣Xt

}
converge to E {f (Xt)|Xt} ≡ f (Xt),

for all bounded and continuous f (·), almost everywhere. Indeed,

E
{
f
(
XA
t

)∣∣∣Xt

}
(ω) ≡

∫

Z
f (x)PA

X
A
t |Xt (dx|Xt (ω))

≡
∫

Z
f (x) δQA(Xt(ω)) (dx)

≡ f (QA (Xt (ω)))
P−a.s.−→
A→∞

f (Xt (ω)) , (2.52)

due to the continuity of f (·). Consequently, we have shown that

PA

X
A
t |Xt ( ·|Xt) ≡ δQA(Xt)

(·) W−→
A→∞

δXt (·) , (2.53)

fulfilling the first requirement of Theorem 2.3. This very simple example constitutes

the basis for constructing more complicated and cleverly designed state approximations

(for example, using stochastic quantizers). The challenge here is to come up with such

approximations exhibiting nice properties, which would potentially lead to the devel-

opment of effective approximate recursive or, in general, sequential filtering schemes,
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well suited for dynamic inference in complex partially observable stochastic nonlinear

systems. As far as grid based approximate recursive filtering is concerned, a relatively

complete discussion of the problem is presented in Section 2.2 of this dissertation, where

marginal state approximations are also treated in full generality.

An important and direct consequence of Theorem 2.3, also highlighted by the exam-

ple presented above, is that, interestingly, the nature of the state process is completely

irrelevant when one is interested in convergence of the respective approximate filters, in

the respective sense of the aforementioned theorem. This fact has the following pleasing

and intuitive interpretation: It implies that if any of the two conditions of Theorem 2.3

are satisfied, then we should forget about the internal stochastic structure of the state,

and instead focus exclusively on the way the latter is being observed through time.

That is, we do not really care about what we partially observe, but how well we observe

it; and if we observe it well, we can filter it well, too. Essentially, the observations

should constitute a stable functional of the state, of course in some well defined sense.

In this work, this notion of stability is expressed precisely through Assumption 2.1 and

2.2, presented earlier in Section II.

Note, however, that the existence of a consistent approximate filter in the sense

of Theorem 2.3 does not automatically imply that this filter will be efficiently imple-

mentable; usually, we would like such a filter to admit a recursive/sequential represen-

tation (or possibly a semirecursive one [24]). As it turns out, this can happen when

the chosen state approximation admits a valid semimartingale type representation (in

addition to satisfying one of the sufficient conditions of Theorem 2.3). For example,

the case where the state is Markovian and the chosen state approximation is of the

marginal type, discussed in the basic example presented above, is treated in detail in

Section 2.2.

Remark 2.5. The filter representation (2.43) coincides with the respective expression

employed in importance sampling [23,31]. Since, under the alternative measure P̃, the

observations and state constitute statistically independent processes, one can directly

sample from the (joint) distribution of the state, fixing the observations to their respec-

tive value at each time t (of course, assuming that a relevant “sampling device” exists).
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However, note that that due to the assumptions of Theorem 2.3, related at least to con-

vergence in probability of the corresponding state approximations, the aforementioned

result cannot be used directly in order to show convergence of importance sampling or

related particle filtering techniques, which are directly related to empirical measures.

The possible ways Theorem 2.3 can be utilized in order to provide asymptotic guaran-

tees for particle filtering (using additional assumptions) constitutes an interesting open

topic for further research. �

The rest of our development is fully devoted in the detailed proof of Theorem 2.3.

2.1.4 Proof of Theorem 2.3

In order to facilitate the presentation, the proof is divided in a number of subsections.

2.1.4.1 Two Basic Lemmata, Linear Algebra - Oriented

Parts of the following useful results will be employed several times in the analysis that

follows3.

Lemma 2.2. Consider arbitrary matrices A ∈ CN1×M1, B ∈ CN1×M1, X ∈ CM2×N2,

Y ∈ CM2×N2, and let ‖·‖M be any matrix norm. Then, the following hold:

• If either

– N1 ≡M1 ≡ 1, or

– N1 ≡ N2 ≡M1 ≡M2 and ‖·‖M is submultiplicative,

then

‖AX−BY‖M ≤ ‖A‖M ‖X−Y‖M + ‖Y‖M ‖A−B‖M . (2.54)

• If N2 ≡ 1, M1 ≡M2 and ‖·‖M constitutes any subordinate matrix norm to the `p

vector norm, ‖·‖p, then

‖AX−BY‖p ≤ ‖A‖M ‖X−Y‖p + ‖Y‖p ‖A−B‖M . (2.55)

3
In this work, Lemma 2.3 presented in this subsection will be applied only for scalars (and where

the metric considered coincides with the absolute value). However, the general version of the result
(considering matrices and submultiplicative norms) is presented for the sake of generality.
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Proof of Lemma 2.2. We prove the result only for the case where N1 ≡ N2 ≡M1 ≡M2

and ‖·‖M is submultiplicative. By definition of such a matrix norm,

‖AX−BY‖M ≡ ‖AX + AY −AY −BY‖M

≡ ‖A (X−Y) + (A−B) Y‖M

≤ ‖A (X−Y)‖M + ‖(A−B) Y‖M

≤ ‖A‖M ‖(X−Y)‖M + ‖Y‖M ‖(A−B)‖M , (2.56)

apparently completing the proof. The results for the other two cases considered in

Lemma 2.2 can be readily shown following similar procedure. �

Lemma 2.3. Consider the collections of arbitrary, square matrices

{
Ai ∈ CN×N

}
i∈Nn

and
{

Bi ∈ CN×N
}
i∈Nn

.

Then, for any submultiplicative matrix norm ‖·‖M, it is true that

∥∥∥∥∥
n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤
n∑

i=0



i−1∏

j=0

∥∥Aj

∥∥
M






n∏

j=i+1

∥∥Bj

∥∥
M


 ‖Ai −Bi‖M . (2.57)

Proof of Lemma 2.3. Applying Lemma 2.2 to the LHS of (2.57), we get
∥∥∥∥∥
n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≡
∥∥∥∥∥A0

n∏

i=1

Ai −B0

n∏

i=1

Bi

∥∥∥∥∥
M

≤ ‖A0‖M

∥∥∥∥∥
n∏

i=1

Ai −
n∏

i=1

Bi

∥∥∥∥∥
M

+

∥∥∥∥∥
n∏

i=1

Bi

∥∥∥∥∥
M

‖A0 −B0‖M . (2.58)

The repeated application of Lemma 2.2 to the quantity multiplying ‖A0‖M on the RHS

of the expression above yields
∥∥∥∥∥
n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤ ‖A0‖M ‖A1‖M

∥∥∥∥∥
n∏

i=2

Ai −
n∏

i=2

Bi

∥∥∥∥∥
M

+ ‖A0‖M

∥∥∥∥∥
n∏

i=2

Bi

∥∥∥∥∥
M

‖A1 −B1‖M +

∥∥∥∥∥
n∏

i=1

Bi

∥∥∥∥∥
M

‖A0 −B0‖M , (2.59)

where, the “temporal pattern” is apparent. Indeed, iterating (2.59) and proceeding

inductively, we end up with the bound
∥∥∥∥∥
n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤
n∑

i=0



i−1∏

j=0

∥∥Aj

∥∥
M



∥∥∥∥∥∥

n∏

j=i+1

Bj

∥∥∥∥∥∥
M

‖Ai −Bi‖M (2.60)

and the result readily follows invoking the submultiplicativeness of ‖·‖M. �
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2.1.4.2 Preliminary Results

Here, we present and prove a number of preliminary results, which will help us towards

the proof of an important lemma, which will be the key to showing the validity of

Theorem 2.3.

First, under Assumption 2.2, stated in Section II.A, the following trivial lemmata

hold.

Lemma 2.4. Each member of the functional family {Σt : Z 7→ DΣ}t∈N is Lipschitz

continuous on Z, in the Euclidean topology induced by the Frobenius norm. That is,

∀t ∈ N,

‖Σt (x)−Σt (y)‖F ≤ (NKΣ) |x− y| , (2.61)

∀ (x, y) ∈ Z × Z, for the same constant KΣ ∈ R+, as defined in Assumption 2.2. The

same also holds for the family {Ct : Z 7→ DC}t∈N.

Proof of Lemma 2.4. By definition of the Frobenius norm,

‖Σt (x)−Σt (y)‖F ≡
√√√√

∑

(i,j)∈N+
N×N

+
N

(
Σij
t (x)−Σij

t (y)
)2

≤
√ ∑

(i,j)∈N+
N×N

+
N

K2
Σ |x− y|2

≡
√
N2K2

Σ |x− y|2, ∀t ∈ N (2.62)

and our first claim follows. The second follows trivially if we recall the definition of

each Ct (x). �

Lemma 2.5. For each member of the functional family {Ct : Z 7→ DC}t∈N, it is true

that, ∀t ∈ N,

|det (Ct (x))− det (Ct (y))| ≤ (NKDET ) ‖Ct (x)−Ct (y)‖F , (2.63)

∀ (x, y) ∈ Z × Z, for some bounded constant KDET ≡ KDET (N) ∈ R+, possibly

dependent on N but independent of t.
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Proof of Lemma 2.5. As a consequence of the fact that the determinant of a matrix

can be expressed as a polynomial function in N2 variables (for example, see the Leibniz

formula), it must be true that, ∀t ∈ N,

|det (Ct (x))− det (Ct (y))| ≤ KDET

∑

(i,j)∈N+
N×N

+
N

∣∣∣Cij
t (x)−Cij

t (y)
∣∣∣

≡ KDET ‖Ct (x)−Ct (y)‖1 , (2.64)

where the constant KDET depends on maximized (using the fact that the domain DC

is bounded) (N − 1)-fold products of elements of Ct (x) and Ct (y), with respect to x

(resp. y) and t. Consequently, although KDET may depend on N , it certainly does not

depend on t. Now, since the `1 entrywise norm of an N ×N matrix corresponds to the

norm of a vector with N2 elements, we may further bound the right had side of the

expression above by the Frobenius norm of Ct (x)−Ct (y), yielding

|det (Ct (x))− det (Ct (y))| ≤ NKDET ‖Ct (x)−Ct (y)‖F , (2.65)

which is what we were set to prove. �

Remark 2.6. The fact that the constant KDET may be a function of the dimension

of the observation vector, N , does not constitute a significant problem throughout

our analysis, simply because N is always considered a finite and fixed parameter of

our problem. However, it is true that the (functional) way N appears in the various

constants in our derived expressions can potentially affect speed of convergence and, for

that reason, it constitutes an important analytical aspect. Therefore, throughout the

analysis presented below, a great effort has been made in order to keep the dependence

of our bounds on N within reasonable limits. �

We also present another useful lemma, related to the expansiveness of each member

of the functional family
{

C−1
t : Z 7→ D

C
−1

}
t∈N

.

Lemma 2.6. Each member of the functional family
{

C−1
t : Z 7→ D

C
−1

}
t∈N

is Lipschitz

continuous on Z, in the Euclidean topology induced by the Frobenius norm. That is,

∀t ∈ N,
∥∥∥C−1

t (x)−C−1
t (y)

∥∥∥
F
≤ KINV |x− y| , (2.66)
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∀ (x, y) ∈ Z ×Z, for some bounded constant KINV ≡ KINV (N) ∈ R+, possibly depen-

dent on N but independent of t.

Proof of Lemma 2.6. As a consequence of Laplace’s formula for the determinant of a

matrix and invoking Lemma 2.2, it is true that

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F

≡
∥∥∥∥

adj (Ct (x))

det (Ct (x))
− adj (Ct (y))

det (Ct (y))

∥∥∥∥
F

≤ ‖adj (Ct (x))− adj (Ct (y))‖F
det (Ct (x))

+ ‖adj (Ct (y))‖F
|det (Ct (x))− det (Ct (y))|

det (Ct (x)) det (Ct (y))
, (2.67)

where adj (A) denotes the adjugate of the square matrix A. Since Ct (x) (resp. Ct (y))

is a symmetric and positive definite matrix, so is its adjugate. Employing one more

property regarding the eigenvalues of the adjugate [32] and the fact that λinf > 1, we

can write

‖adj (Ct (y))‖F ≤
√
N ‖adj (Ct (y))‖2

≡
√
Nλmax (adj (Ct (y)))

≡
√
N max

i∈N+
N

∏

j 6=i
λj (Ct (y))

≤
√
N det (Ct (y)) , (2.68)

and then (2.67) becomes

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F
≤ ‖adj (Ct (x))−adj (Ct (y))‖F

det (Ct (x))
+
√
N
|det (Ct (x))−det (Ct (y))|

det (Ct (x))

≤ ‖adj (Ct (x))− adj (Ct (y))‖F
λNinf

+
N3KDETKΣ

λNinf
|x− y| .

(2.69)

Next, the numerator of the first fraction from the left may be expressed as

‖adj (Ct (x))− adj (Ct (y))‖F ≡
√√√√

∑

(i,j)∈N+
N×N

+
N

(
adj (Ct (x))ij − adj (Ct (y))ij

)2

≡
√√√√

∑

(i,j)∈N+
N×N

+
N

(
(−1)i+j

[
Mij (Ct (x))−Mij (Ct (y))

])2
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≡
√ ∑

(i,j)∈N+
N×N

+
N

(
Mij (Ct (x))−Mij (Ct (y))

)2
, (2.70)

where Mij (Ct (x)) denotes the (i, j)-th minor of Ct (x), which constitutes the deter-

minant of the (N − 1)× (N − 1) matrix formulated by removing the i-th row and the

j-th column of Ct (x). Consequently, from Lemma 2.5, there exists a constant Kdet,

possibly dependent on N , such that, ∀t ∈ N,

‖adj (Ct (x))− adj (Ct (y))‖F ≤
√ ∑

(i,j)∈N+
N×N

+
N

N4K2
detK

2
Σ |x− y|2, (2.71)

or, equivalently,

‖adj (Ct (x))− adj (Ct (y))‖F ≤ N
3KdetKΣ |x− y| , (2.72)

∀ (x, y) ∈ Z × Z. Therefore, combining with (2.69), we get

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F
≤ N3

λNinf
(KDET +Kdet)KΣ |x− y|

≤
27λ

−3/ log(λinf)
inf(

log
(
λinf

))3 (KDET +Kdet)KΣ |x− y|

, KINV |x− y| , (2.73)

and the proof is complete. �

Next, we state the following simple probabilistic result, related to the expansiveness

of the norm of the observation vector in a stochastic sense, under both base measures

P and P̃ considered (see Section 2.1.2.2).

Lemma 2.7. Consider the random quadratic form

Qt (ω) , ‖yt (ω)‖22 ≡ ‖yt (Xt (ω)) + µt (Xt (ω))‖22 , t ∈ N. (2.74)

Then, for any fixed t ∈ N and any freely chosen C ≥ 1, there exists a bounded constant

γ > 1, such that the measurable set

Tt ,
{
ω ∈ Ω

∣∣∣∣∣sup
i∈Nt

Qi (ω) < γCN (1 + log (t+ 1))

}
(2.75)
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satisfies

min
{
P (Tt) , P̃ (Tt)

}
≥ 1− exp (−CN)

(t+ 1)CN−1
, (2.76)

that is, the sequence of quadratic forms {Qi (ω)}i∈Nt is uniformly bounded with very

high probability under both base measures P and P̃.

Proof of Lemma 2.7. First, it is true that

‖yt (ω)‖22 ≡ ‖yt (Xt (ω)) + µt (Xt (ω))‖22

≡ ‖yt (Xt (ω))‖22 + 2yT
t (Xt (ω))µt (Xt (ω)) + ‖µt (Xt (ω))‖22

≤ ‖yt (Xt (ω))‖22 + 2 ‖yt (Xt (ω))‖2 µsup + µ2
sup. (2.77)

Also, under P, for each t ∈ N, the random variable yt (Xt) constitutes anN -dimensional,

conditionally (on Xt) Gaussian random variable with zero mean and covariance matrix

Ct (Xt), that is

yt |Xt ∼ N
(
0,Ct (Xt) ≡ Cyt|Xt

)
. (2.78)

Then, if Xt is given,

Qt (ω) , ‖yt (Xt (ω))‖22 (2.79)

can be shown to admit the very useful alternative representation (for instance, see [33],

pp. 89 - 90)

Qt ≡
∑

j∈N+
N

λj (Ct (Xt))U
2
j , ∀t ∈ N, with (2.80)

{
Uj
}
j∈N+

N

i.i.d.∼ N (0, 1) . (2.81)

From (2.80), one can readily observe that the statistical dependence of Qt on Xt con-

centrates only on the eigenvalues of the covariance matrix Ct (Xt), for which we have

already assumed the existence of a finite supremum explicitly (see Assumption 2.1).

Consequently, conditioning on the process Xt, we can bound (2.80) as

Qt ≤ λsup
∑

j∈N+
N

U2
j , λsupU, with U ∼ χ2 (N) , (2.82)

almost everywhere and everywhere in time, where the RHS is independent of Xt. Next,

from ([34], p. 1325), we know that for any chi squared random variable U with N
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degrees of freedom,

P
(
U ≥ N + 2

√
Nu+ 2u

)
≤ exp (−u) , ∀u > 0. (2.83)

Setting u ≡ CN (1 + log (t+ 1)) for any C ≥ 1 and any t ∈ N,

P
(
U ≥ N + 2N

√
C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1))

)
≤ exp (−CN)

(t+ 1)CN
. (2.84)

a statement which equivalently means that, with probability at least 1 − (t+ 1)−CN

exp (−CN),

U < N + 2N
√
C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1)) . (2.85)

However, because the RHS of the above inequality is upper bounded by 5CN

(1 + log (t+ 1)),

P (U < 5CN (1 + log (t+ 1)))

≥ P
(
U < N + 2N

√
C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1))

)

≥ 1− exp (−CN)

(t+ 1)CN
. (2.86)

Hence, ∀i ∈ Nt,

P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

∣∣Xi

)
≤ P (U ≥ 5CN (1 + log (t+ 1)))

≤ exp (−CN)

(t+ 1)CN
, (2.87)

and, thus,

P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

)
=

∫
P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

∣∣Xi

)
dPXi

≤ exp (−CN)

(t+ 1)CN

∫
dPXi ≡

exp (−CN)

(t+ 1)CN
. (2.88)

However, we would like to produce a bound on the supremum of all the Qi, i ∈ Nt.

Indeed, using the naive union bound,

P


⋃

i∈Nt

{
Qi ≥ 5λsupCN (1 + log (t+ 1))

}

 ≤

∑

i∈Nt

P
(
Qi ≥ λsup5CN (1 + log (t+ 1))

)

≤ (t+ 1) exp (−CN)

(t+ 1)CN
≡ exp (−CN)

(t+ 1)CN−1
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or, equivalently,

P
(

sup
i∈Nt

Qi < 5λsupCN (1+log (t+1))

)
≡P

({
Qi < 5λsupCN (1+log (t+1)) , ∀i ∈ Nt

})

≡ P


⋂

i∈Nt

{
Qi < 5λsupCN (1+log (t+1))

}



≥ 1− exp (−CN)

(t+ 1)CN−1
, (2.89)

holding true ∀t ∈ N. Consequently, working in the same fashion as above, it is true

that, with at least the same probability of success,

sup
i∈Nt

Qi (ω) < 5λsupCN (1 + log (t+ 1)) + 2
√

5λsupCN (1 + log (t+ 1))µsup + µ2
sup

< 5λsup

(
1 + 2µsup + µ2

sup

)
CN (1 + log (t+ 1)) (2.90)

or, setting γ1 , 5λsup
(
1 + µsup

)2
> 1,

sup
i∈Nt

Qi (ω) < γ1CN (1 + log (t+ 1)) . (2.91)

Now, under the alternative base measure P̃, yt constitutes a Gaussian vector white

noise process with zero mean and covariance matrix the identity, statistically indepen-

dent of the process Xt (see Theorem 2). That is, for each t, the elements of yt are

themselves independent to each other. Thus, for all t ∈ N and for all i ∈ Nt and using

similar arguments as the ones made above, it should be true that

P̃ (Qi < 5CN (1 + log (t+ 1))) ≥ 1− exp (−CN)

(t+ 1)CN
(2.92)

and taking the union bound, we end up with the inequality

P̃
(

sup
i∈Nt

Qi < 5CN (1 + log (t+ 1))

)
≥ 1− exp (−CN)

(t+ 1)CN−1
. (2.93)

Defining γ , max {γ1, 5} ≡ γ1, it must be true that, for all t ∈ N,

min

{
P
(

sup
i∈Nt

Qi < γCN (1 + log (t+ 1))

)
, P̃
(

sup
i∈Nt

Qi < γCN (1 + log (t+ 1))

)}

≥ 1− exp (−CN)

(t+ 1)CN−1
, (2.94)

therefore completing the proof of the lemma. �
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Continuing our presentation of preliminary results towards the proof of Theorem

(2.3) and leveraging the power of C-weak convergence and Lemma 2.1, let us present the

following lemma, connecting C-weak convergence of random variables with convergence

in the L1 sense.

Lemma 2.8. (From C-Weak Convergence to Convergence in L1) Consider the

sequence of discrete time stochastic processes
{
XA
t

}
A∈N

, as well as a “limit” process

Xt,t ∈ N, all being
(
R,S , B (R)

)
-valued and all defined on a common base space

(Ω,F ,P). Further, suppose that all members of the collection
{{

XA
t

}
A∈N

, Xt

}
t∈N

are

almost surely bounded in Z ≡ [a, b] (with −∞ < a < b <∞) and that

PA

X
A
t |Xt ( ·|Xt)

W−→
A→∞

δXt (·) ≡ 1(·) (Xt) , ∀t ∈ N, (2.95)

that is, the sequence
{
XA
t

}
A∈N

is marginally C-weakly convergent to Xt, given Xt, for

all t. Then, it is true that

E
{∣∣∣Xt −XA

t

∣∣∣
}
−→
A→∞

0, ∀t ∈ N, (2.96)

or, equivalently, XA
t
L1−→

A→∞
Xt, for all t.

Proof of Lemma 2.8. Let all the hypotheses of Lemma 2.8 hold true. Then, we know

that, ∀t ∈ N,

lim
n→∞

PA

X
A
t |Xt (A|Xt (ω)) = δXt(ω) (A) , P − a.e., (2.97)

for all continuity Borel sets A ∈ S . Using the tower property, it is also true that

E
{∣∣∣Xt −XA

t

∣∣∣
}
≡ E

{
E
{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}}
. (2.98)

Therefore, in order to show that XA
t
L1−→

A→∞
Xt for each t ∈ N, it suffices to show that

E
{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω)

a.s.−→
A→∞

0, ∀t ∈ N. (2.99)

Then, the Dominated Convergence Theorem would produce the desired result.

Of course, because all members of the collection
{{

XA
t

}
A∈N

, Xt

}
t∈N

are almost

surely bounded in Z, all members of the collection
{{∣∣∣Xt −XA

t

∣∣∣
}
A∈N

}
t∈N

must be

bounded almost surely in the compact set Ẑ , [0, 2δ] ⊂ R, where δ , max {|a| , |b|}.
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Let us define the continuous and bounded function

f (x) ,





x, if x ∈ Ẑ

2δ, if x > 2δ

0, if x < 0

. (2.100)

Then, from Lemma 2.1 and using conditional probability measures it must be true that

for each t ∈ N, a version of the conditional expectation of interest is explicitly given by

E
{
f
(∣∣∣Xt −XA

t

∣∣∣
)∣∣∣σ {Xt}

}
(ω) ≡

∫
f (|Xt (ω)− x|)PA

X
A
t |Xt (dx |Xt (ω)) −→

A→∞

−→
A→∞

∫
f (|Xt (ω)− x|) δXt(ω) (dx) ≡ 0, P − a.e., (2.101)

since, for each ω ∈ Ω, Xt (ω) is constant. Further, by definition of f ,

E
{
f
(∣∣∣Xt −XA

t

∣∣∣
)∣∣∣σ {Xt}

}
(ω) ≡ E

{∣∣∣Xt −XA
t

∣∣∣1(|Xt−XA
t |)
(
Ẑ
)∣∣∣σ {Xt}

}
(ω)

≡ E
{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω) , P − a.e., (2.102)

and for all t ∈ N, which means that

E
{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω)

a.s.−→
A→∞

0, ∀t ∈ N. (2.103)

Calling dominated convergence proves the result. �

Additionally, the following useful (to us) result is also true. The proof, being ele-

mentary, is omitted.

Lemma 2.9. (Convergence of the Supremum) Pick any natural T <∞. If, under

any circumstances,

E
{∣∣∣Xt −XA

t

∣∣∣
}
−→
A→∞

0, ∀t ∈ NT , (2.104)

then

sup
t∈NT

E
{∣∣∣Xt −XA

t

∣∣∣
}
−→
A→∞

0. (2.105)

2.1.4.3 The Key Lemma

We are now ready to present our key lemma, which will play an important role in

establishing our main result (Theorem 2.3) later on. For proving this result, we make

use of all the intermediate ones presented in the previous subsections.
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Lemma 2.10. (Convergence of the Likelihoods) Consider the stochastic process

Λ̂t ,

exp


−1

2

∑

i∈Nt

yT
i (Xi) C−1

i (Xi) yi (Xi)




∏

i∈Nt

√
det (Ci (Xi))

,
Nt

Dt
, t ∈ N. (2.106)

Consider also the process Λ̂A
t , NA

t /D
A
t , defined exactly the same way as Λ̂t, but replacing

Xi with the approximation XA
i , ∀i ∈ Nt. Further, pick any natural T <∞ and suppose

either of the following:

• For all t ∈ NT , the sequence
{
XA
t

}
A∈N

is marginally C-weakly convergent to Xt,

given Xt, that is,

PA

X
A
t |Xt ( ·|Xt)

W−→
A→∞

δXt (·) , ∀t ∈ NT . (2.107)

• For all t ∈ NT , the sequence
{
XA
t

}
A∈N

is marginally convergent to Xt in proba-

bility, that is,

XA
t
P−→

A→∞
Xt, ∀t ∈ NT . (2.108)

Then, there exists a measurable subset Ω̂T ⊆ Ω, such that

lim
A→∞

sup
t∈NT

sup
ω∈Ω̂T

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}

(ω) ≡ 0, (2.109)

where the P,P̃-measures of Ω̂T satisfy

min
{
P
(

Ω̂T

)
, P̃
(

Ω̂T

)}
≥ 1− exp (−CN)

(T + 1)CN−1
, (2.110)

for any free but finite constant C ≥ 1.

Proof of Lemma 2.10. From Lemma 2.2, it is true that

∣∣∣Λ̂t − Λ̂A
t

∣∣∣ ≡
∣∣∣∣∣
Nt

Dt
− NA

t

DA
t

∣∣∣∣∣ ≤

∣∣∣Nt −NA
t

∣∣∣
∣∣∣DA

t

∣∣∣
+ |Nt|

∣∣∣∣
1

Dt
− 1

DA
t

∣∣∣∣

≤

∣∣∣Nt −NA
t

∣∣∣
∣∣∣DA

t

∣∣∣
+

∣∣∣∣
1

Dt
− 1

DA
t

∣∣∣∣ . (2.111)
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We first concentrate on the determinant part (second term) of the RHS of (2.111).

Directly invoking Lemma 2.3, it will be true that

∣∣∣∣
1

Dt
− 1

DA
t

∣∣∣∣

≡

∣∣∣∣∣∣∣∣

t∏

i=0

1√
det (Ci (Xi))

−
t∏

i=0

1√
det
(
Ci

(
XA
i

))

∣∣∣∣∣∣∣∣

≤
t∑

i=0



i−1∏

j=0

1√
det
(
Cj

(
Xj

))







t∏

j=i+1

1√
det
(
Cj

(
XA
j

))




×

∣∣∣∣
√

det (Ci (Xi))−
√

det
(
Ci

(
XA
i

))∣∣∣∣
√

det (Ci (Xi)) det
(
Ci

(
XA
i

))

=
t∑

i=0




i−1∏

j=0

1√√√√
N∏

n=1

λn
(
Cj

(
Xj

))







t∏

j=i+1

1√√√√
N∏

n=1

λn

(
Cj

(
XA
j

))




×

∣∣∣∣
√

det (Ci (Xi))−
√

det
(
Ci

(
XA
i

))∣∣∣∣
√√√√

N∏

n=1

λn
(
Cj

(
Xj

))
λn

(
Cj

(
XA
j

))

≤
t∑

i=0

1

2λ
Ni/2
inf λ

N(t−i)/2
inf

∣∣∣det (Ci (Xi))− det
(
Ci

(
XA
i

))∣∣∣
λNinf

≡ 1

2
√
λ
N(t+2)
inf

t∑

i=0

∣∣∣det (Ci (Xi))− det
(
Ci

(
XA
i

))∣∣∣ . (2.112)

From Lemma 2.5, we can bound the RHS of the above expression as

∣∣∣∣
1

Dt
− 1

DA
t

∣∣∣∣ ≤
NKDET

2
√
λ
N(t+2)
inf

t∑

i=0

∥∥∥Ci (Xi)−Ci

(
XA
i

)∥∥∥
F

≡ NKDET

2
√
λ
N(t+2)
inf

t∑

i=0

∥∥∥Σi (Xi)−Σi

(
XA
i

)∥∥∥
F
. (2.113)
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And from Lemma 2.4, (2.113) becomes

∣∣∣∣
1

Dt
− 1

DA
t

∣∣∣∣ ≤
N2KDETKΣ

2
√
λ
N(t+2)
inf

t∑

i=0

∣∣∣Xi −XA
i

∣∣∣ . (2.114)

We now turn our attention to the “difference of exponentials” part (first term) of

the RHS of (2.111). First, we know that

t∏

i=0

det
(
Ci

(
XA
i

))
≥

t∏

i=0

N∏

j=1

λinf ≡ λN(t+1)
inf , (2.115)

yielding the inequality ∣∣∣Nt −NA
t

∣∣∣
∣∣∣DA

t

∣∣∣
≤

∣∣∣Nt −NA
t

∣∣∣
√
λ
N(t+1)
inf

, (2.116)

where λinf > 1 (see Assumption 2.1). Next, making use of the inequality [20]

|exp (α)− exp (β)| ≤ |α− β| (exp (α) + exp (β)) , (2.117)

∀ (α, β) ∈ R2, the absolute difference on the numerator of (2.116) can be upper bounded

as

∣∣∣Nt −NA
t

∣∣∣ ≤ 1

2

∣∣∣∣∣
t∑

i=0

yT
i (Xi) C−1

i (Xi) yi (Xi)− yT
i

(
XA
i

)
C−1
i

(
XA
i

)
yi

(
XA
i

) ∣∣∣∣∣
(
Nt + NA

t

)

≤
t∑

i=0

∣∣∣yT
i (Xi) C−1

i (Xi) yi (Xi)− yT
i

(
XA
i

)
C−1
i

(
XA
i

)
yi

(
XA
i

)∣∣∣ . (2.118)

Concentrating on each member of the series above in the last line of (2.118) and calling

Lemma 2.2, it is true that

∣∣∣yT
i (Xi)

[
C−1
i (Xi) yi (Xi)

]
− yT

i

(
XA
i

) [
C−1
i

(
XA
i

)
yi

(
XA
i

)]∣∣∣

≤ ‖yi (Xi)‖2
∥∥∥C−1

i (Xi) yi (Xi)−C−1
i

(
XA
i

)
yi

(
XA
i

)∥∥∥
2

+

+
∥∥∥C−1

i

(
XA
i

)
yi

(
XA
i

)∥∥∥
2

∥∥∥yi (Xi)− yi

(
XA
i

)∥∥∥
2
. (2.119)

Calling Lemma 2.2 again for the term multiplying the quantity ‖yi (Xi)‖2 in the RHS

of the above expression, we arrive at the inequalities

∣∣∣yT
i (Xi) C−1

i (Xi) yi (Xi)− yT
i

(
XA
i

)
C−1
i

(
XA
i

)
yi

(
XA
i

)∣∣∣

≤ ‖yi (Xi)‖2
∥∥∥C−1

i (Xi)
∥∥∥

2

∥∥∥yi (Xi)− yi

(
XA
i

)∥∥∥
2
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+
∥∥∥yi

(
XA
i

)∥∥∥
2

∥∥∥C−1
i

(
XA
i

)∥∥∥
2

∥∥∥yi (Xi)− yi

(
XA
i

)∥∥∥
2

+ ‖yi (Xi)‖2
∥∥∥yi

(
XA
i

)∥∥∥
2
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λinf

∥∥∥yi (Xi)− yi
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2

+

∥∥∥yi
(
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)∥∥∥
2
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i

(
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i

)∥∥∥
2
, (2.120)

or, equivalently,

∣∣∣yT
i (Xi) C−1

i (Xi) yi (Xi)− yT
i

(
XA
i

)
C−1
i

(
XA
i

)
yi

(
XA
i

)∣∣∣

≤
‖yi (Xi)‖2 +

∥∥∥yi
(
XA
i

)∥∥∥
2

λinf

∥∥∥yi (Xi)− yi

(
XA
i

)∥∥∥
2

+

+ ‖yi (Xi)‖2
∥∥∥yi

(
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i

)∥∥∥
2

∥∥∥C−1
i (Xi)−C−1

i

(
XA
i

)∥∥∥
2
. (2.121)

Now, recalling Assumption 2.2, the definition of yi (Xi) (resp. for XA
i ) and invoking

Lemma 2.6, it must be true that

∣∣∣yT
i (Xi) C−1

i (Xi) yi (Xi)− yT
i

(
XA
i

)
C−1
i

(
XA
i

)
yi

(
XA
i

)∣∣∣

≤
‖yi − µi (Xi)‖2 +

∥∥∥yi − µi
(
XA
i

)∥∥∥
2

λinf

∥∥∥µi (Xi)− µi
(
XA
i

)∥∥∥
2

+ ‖yi − µi (Xi)‖2
∥∥∥yi − µi

(
XA
i

)∥∥∥
2

∥∥∥C−1
i (Xi)−C−1

i

(
XA
i

)∥∥∥
2

≤
(
Kµ

2
(
‖yi‖2 + µsup

)

λinf
+KINV

(
‖yi‖2 + µsup

)2
)∣∣∣Xi −XA

i

∣∣∣

, Θ (yi)
∣∣∣Xi −XA

i

∣∣∣ . (2.122)

Using the above inequality, the RHS of (2.116) can be further bounded from above as
∣∣∣Nt −NA

t

∣∣∣
∣∣∣DA

t

∣∣∣
≤

sup
i∈Nt

Θ (yi)

√
λ
N(t+1)
inf

t∑

i=0

∣∣∣Xi −XA
i

∣∣∣ . (2.123)

Therefore, we can bound the RHS of (2.111) as

∣∣∣Λ̂t − Λ̂A
t

∣∣∣ ≤




sup
i∈Nt

Θ (yi)

√
λ
N(t+1)
inf

+
N2KDETKΣ

2
√
λ
N(t+2)
inf




t∑

i=0

∣∣∣Xi −XA
i

∣∣∣ . (2.124)

Taking conditional expectations on both sides of (2.124), observing that the quantity

supi∈Nt Θ (yi) constitutes a {Yt}-adapted process and recalling that under the base
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measure P̃ (see Theorem 2), the processes yt and Xt (resp. XA
t ) are statistically inde-

pendent, we can write

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}
≤




sup
i∈Nt

Θ (yi)

√
λ
N(t+1)
inf

+
N2KDETKΣ

2
√
λ
N(t+2)
inf


EP̃

{
t∑

i=0

∣∣∣Xi −XA
i

∣∣∣
}
, (2.125)

P̃ − a.e., and, because P �Ht
P̃, P − a.e. as well. From the last inequality, we can

readily observe that in order to be able to talk about any kind of uniform convergence

regarding the RHS, it is vital to ensure that the random variable supi∈Nt Θ (yi) is

bounded from above. However, because the support of ‖yi‖2 is infinite, it is impossible

to bound supi∈Nt Θ (yi) in the almost sure sense. Nevertheless, Lemma 2.7 immediately

implies that there exists a measurable subset Ω̂τ ⊆ Ω with

min
{
P
(

Ω̂τ

)
, P̃
(

Ω̂τ

)}
≥ 1− exp (−CN)

(τ + 1)CN−1
(2.126)

such that, for all ω ∈ Ω̂τ ,

sup
i∈Nτ
‖yi (ω)‖22 ≡ sup

i∈Nτ
‖yi‖22 < γCN (1 + log (1 + τ)) , (2.127)

for some fixed constant γ > 1, for any C ≥ 1 and for any fixed τ ∈ N. Choosing

τ ≡ T <∞, it is true that

sup
i∈Nt

Θ (yi) ≤ sup
i∈NT

Θ (yi)

≤ sup
i∈NT

[
Kµ

2
(
‖yi‖2 + µsup

)

λinf
+KINV

(
‖yi‖2 + µsup

)2
]

<

(
Kµ

2γ̃

λinf
+KINV γ̃

2

)
CN (1 + log (1 + T ))

, KoCN (1 + log (1 + T )) , ∀t ∈ NT , (2.128)

where γ̃ ,
√
γ + µsup. Therefore, it will be true that

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}

≤


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

t∑

i=0

EP̃
{∣∣∣Xi −XA

i

∣∣∣
}
, (2.129)

for all t ∈ NT , with probability at least

1− exp (−CN)

(T + 1)CN−1
,
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under either P or P̃. Further,

t∑

i=0

EP̃
{∣∣∣Xi −XA

i

∣∣∣
}
≤ (t+ 1) sup

τ∈Nt
EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}
. (2.130)

Then, with the same probability of success,

EP̃
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t
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≤
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2 (T + 1)
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)
sup
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EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}

, KG (T ) sup
τ∈Nt

EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}
, ∀t ∈ NT , (2.131)

where KG (T ) ≡ O (T log (T )). Alternatively, upper bounding the functions comprised

by the quantities t,N, λinf in the second and third lines of the expressions above as

(note that, obviously, t+ 1 ≥ 1, ∀t ∈ R+)

N (t+ 1)√
λ
N(t+1)
inf

≤ max
t∈R+

N (t+ 1)2

√
λ
N(t+1)
inf

and (2.132)

N2 (t+ 1)√
λ
N(t+2)
inf

≤ max
t∈R+

N2 (t+ 1)2

√
λ
N(t+2)
inf

, (2.133)

respectively, we can also define

KG (T ),
16KoC (1+log (1+T ))λ

−2/ log(λinf)
inf

N
(
log
(
λinf

))2 +
8KDETKΣλ

−N
inf λ

−2/ log(λinf)
inf(

log
(
λinf

))2 , (2.134)

where, in this case, KG (T ) ≡ O (log (T )). Note, however, that although its dependence

on T is logarithmic, KG (T ) may still be large due to the inability to compensate for

the size of Ko. In any case, for all ω ∈ Ω̂T ,

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}

(ω) ≤ KG (T ) sup
τ∈Nt

EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}
, ∀t ∈ NT , (2.135)

Therefore, we get

sup
ω∈Ω̂T

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}

(ω) ≤ KG (T ) sup
τ∈Nt

EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}
, ∀t ∈ NT (2.136)
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and further taking the supremum over t ∈ NT on both sides, it must be true that

sup
t∈NT

sup
ω∈Ω̂T

EP̃
{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt
}

(ω) ≤ KG (T ) sup
t∈NT

sup
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EP̃
{∣∣∣Xτ −XA

τ

∣∣∣
}

≡ KG (T ) sup
t∈NT

EP̃
{∣∣∣Xt −XA

t

∣∣∣
}
. (2.137)

Finally, if either

PA

X
A
t |Xt ( ·|Xt)

W−→
A→∞

δXt (·) ≡ 1(·) (Xt) , ∀t ∈ NT , (2.138)

or

XA
t
P−→

A→∞
Xt, ∀t ∈ NT (2.139)

and given that since the members of
{
XA
t

}
A∈N

are almost surely bounded in Z, the

aforementioned sequence is also uniformly integrable for all t ∈ N, it must be true that

(see Lemma 2.8)

EP̃
{∣∣∣Xt −XA

t

∣∣∣
}
−→
A→∞

0, ∀t ∈ NT . (2.140)

Then, Lemma 2.9 implies that

sup
t∈NT

EP̃
{∣∣∣Xt −XA

t

∣∣∣
}
−→
A→∞

0, (2.141)

which in turn implies the existence of the limit on the LHS of (2.137). QED. �

2.1.4.4 Finishing the Proof of Theorem 2.3

Considering the absolute difference of the RHSs of (2.44) and (2.43), it is true that (see

Lemma 2.2)

∣∣∣∣∣∣
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≡

∣∣∣∣∣∣
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{

Λ̂A
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, (2.142)

due to the fact that the increasing stochastic process

∏
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
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is {Yt}-adapted. Then, we can write
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≡
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(2.144)

Let us first focus on the difference on the numerator of the second ratio of the RHS of

(2.144). Recalling that δ ≡ max {|a| , |b|}, we can then write
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}
, (2.145)

On the other hand, for the denominator for (2.144), it is true that
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, P̃,P − a.e., (2.146)

since the process
∑

i∈Nt

(
‖yi‖2 + µsup

)2
is {Yt}-adapted. Now, from Lemma 2.7, we know

that

sup
i∈Nt
‖yi‖22 ≤ sup

i∈NT
‖yi‖22 < γCN (1 + log (T + 1)) , ∀t ∈ NT , (2.147)
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where the last inequality holds with probability at least 1 − (T + 1)1−CN exp (−CN),

under both base measures P and P̃, for any finite constant C ≥ 1. Therefore, it can be

trivially shown that

EP̃
{

Λ̂A
t

∣∣∣Yt
}
≥

exp


−

(√
γCN (1 + log (T + 1)) + µsup

)2
(T + 1)
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


√
λN(t+1)
sup

> 0, (2.148)

for all t ∈ NT , implying that

inf
t∈NT

inf
ω∈Ω̂T

inf
A∈N

EP̃
{

Λ̂A
t

∣∣∣Yt
}

(ω) > 0, (2.149)

where Ω̂T coincides with the event

{
ω ∈ Ω

∣∣∣∣∣sup
i∈Nt
‖yi‖22 < γCN (1 + log (T + 1)) ,∀t ∈ NT

}

with P,P̃-measure at least 1− (T + 1)1−CN exp (−CN). Of course, the existence of Ω̂T

follows from Lemma 2.7. Putting it altogether, (2.144) becomes (recall that the base

measures P and P̃ are equivalent)
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∣∣∣

≤
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∣∣∣Yt
} , P, P̃ − a.e., (2.150)

where δ ≡ max {|a| , |b|}. Taking the supremum both with respect to ω ∈ Ω̂T and

t ∈ NT on both sides, we get

sup
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sup
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, (2.151)

with

min
{
P
(

Ω̂T

)
, P̃
(

Ω̂T

)}
≥ 1− exp (−CN)

(T + 1)CN−1
. (2.152)
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Finally, calling Lemma 2.10 and Lemma 2.9, and since the denominators of the fractions

appearing in (2.151) are nonzero, its RHS tends to zero as A→∞, under the respective

hypotheses. Consequently, the LHS will also converge, therefore completing the proof

of the Theorem 2.3. �

2.1.5 Conclusion

In this work, we have provided sufficient conditions for convergence of approximate,

asymptotically optimal nonlinear filtering operators, for a general class of hidden stochas-

tic processes, observed in a conditionally Gaussian noisy environment. In particular,

employing a common change of measure argument, we have shown that using the same

measurements, but replacing the “true” state by an approximation process, which con-

verges to the former either in probability or in the C-weak sense, one can define an

approximate filtering operator, which converges to the optimal filter compactly in time

and uniformly in an event occurring with probability nearly 1, at the same time con-

stituting a purely quantitative justification of Egoroff’s theorem for the problem of

interest. The results presented in this work essentially provide a framework for analyz-

ing the convergence properties of various classes of approximate nonlinear filters (either

recursive or nonrecursive), such as existing grid based approaches, which are known to

perform well in various applications.

2.1.6 Appendix: Proof of Theorem 2.1

The proof is astonishingly simple. Let the hypotheses of the statement of Theorem 1

hold true. To avoid useless notational congestion, let us also make the identifications

Xt , {Xi}i∈Nt and Yt , {Yi}i∈Nt . (2.153)

Now, by definition of the conditional expectation operator and since we have assumed

the existence of densities, it is true that

X̂t ≡ EP {Xt|Y0, Y1, . . . , Yt}

=

∫
xtfXt|Yt (xt| Yt) dxt
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=

∫
xtf(Xt,Yt) (xt,Yt) dxt

fYt (Yt)

≡

∫
xtft (x0, x1, . . . xt,Yt)

t∏

i=0

dxi

∫
ft (x0, x1, . . . xt,Yt)

t∏

i=0

dxi

≡

∫
xtλtf̃t

(
{xi}i∈Nt ,Yt

) t∏

i=0

dxi

∫
λtf̃t

(
{xi}i∈Nt ,Yt

) t∏

i=0

dxi

, (2.154)

where

λt ,
ft (x0, x1, . . . xt, Y0 (ω) , Y1 (ω) , . . . , Yt (ω))

f̃t (x0, x1, . . . xt, Y0 (ω) , Y1 (ω) , . . . , Yt (ω))

≡ λt
(
{xi}i∈Nt ,Yt (ω)

)
∈ R+, ∀ω ∈ Ω, (2.155)

constitutes a “half ordinary function - half random variable” likelihood ratio and where

the condition (2.16) ensures its boundedness. Of course, although the likelihood ra-

tio can be indeterminate when both densities are zero, the respective points do not

contribute in the computation of the relevant integrals presented above, because these

belong to measurable sets corresponding to events of measure zero. From (2.154) and

by definition of the conditional density of {Xi}i∈Nt given {Yi}i∈Nt , we immediately get

X̂t ≡ EP {Xt|Yt}

≡

∫
xtλtf̃Xt|Yt

(
{xi}i∈Nt

∣∣∣Yt
) t∏

i=0

dxi

∫
λtf̃Xt|Yt

(
{xi}i∈Nt

∣∣∣Yt
) t∏

i=0

dxi

=
EP̃ {XtΛt|Y0, Y1, . . . , Yt}
EP̃ {Λt|Y0, Y1, . . . , Yt}

≡ EP̃ {XtΛt|Yt}
EP̃ {Λt|Yt}

, (2.156)

which constitutes what we were initially set to show. �
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2.2 Grid Based Nonlinear Filtering Revisited: Recursive Estimation

& Asymptotic Optimality

2.2.1 Introduction

It is well known that except for a few special cases [13–16,24], general nonlinear filters

of partially observable Markov processes (or Hidden Markov Models (HMMs)) do not

admit finite dimensional (recursive) representations [11, 12]. Nonlinear filtering prob-

lems, though, arise naturally in a wide variety of important applications, including

target tracking [35,36], localization and robotics [37,38], mathematical finance [39] and

channel prediction in wireless sensor networks (see Section 3.2), just to name a few.

Adopting the Minimum Mean Square Error (MMSE) as the standard optimality cri-

terion, in most cases, the nonlinear filtering problem results in a dynamical system in

the infinite dimensional space of measures, making the need for robust approximate

solutions imperative.

Approximate nonlinear filtering methods can be primarily categorized into two

major groups [40]: local and global. Local methods include the celebrated extended

Kalman filter [?], the unscented Kalman filter [?], Gaussian approximations [18], cuba-

ture Kalman filters [?] and quadrature Kalman filters [?]. These methods are mainly

based on the local “assumed form of the conditional density” approach, which dates

back to the 1960’s [17]. Local methods are characterized by relatively small compu-

tational complexity, making them applicable in relatively higher dimensional systems.

However, they are strictly suboptimal and, thus, they at most constitute efficient heuris-

tics, but without explicit theoretical guarantees. On the other hand, global methods,

which include grid based approaches (relying on proper quantizations of the state space

of the state process [19, 20, 22]) and Monte Carlo approaches (particle filters and re-

lated methods [23]), provide approximations to the whole posterior measure of the state.

Global methods possess very powerful asymptotic optimality properties, providing ex-

plicit theoretical guarantees and predictable performance. For that reason, they are

very important both in theory and practice, either as solutions, or as benchmarks for

the evaluation of suboptimal techniques. The main common disadvantage of global
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methods is their high computational complexity as the dimensionality of the underly-

ing model increases. This is true both for grid based and particle filtering techniques

[31,41–44].

In this work, we focus on grid based approximate filtering of Markov processes ob-

served in conditionally Gaussian noise, constructed by exploiting uniform quantizations

of the state. Two types of state quantizations are considered: the Markovian and the

marginal ones (see [22] and/or Section 2.2.3). Based on existing results [12, 22, 40],

one can derive grid based, recursive nonlinear filtering schemes, exploitting the prop-

erties of the aforementioned types of state approximations. The novelty of our work

lies in the development of an original convergence analysis of those schemes, under

generic assumptions on the expansiveness of the observations (see Section 2.2.2). Our

contributions can be summarized as follows:

1) For marginal state quantizations, we propose the notion of conditional regularity

of Markov kernels (Definition 2.4), which is an easily verifiable condition for guaran-

teeing strong asymptotic consistency of the resulting grid based filter. Conditional

regularity is a simple and relaxed condition, in contrast to more complicated and po-

tentially stronger conditions found in the literature, such as the Lipschitz assumption

imposed on the stochastic kernel(s) of the underlying process in [22].

2) Under certain conditions, we show that all grid based filters considered here con-

verge to the true optimal nonlinear filter in a strong and controllable sense (Theorems

2.6 and 2.7). In particular, the convergence is compact in time and uniform in a mea-

surable set occurring with probability almost 1; this event is completely characterized

in terms of the filtering horizon and the dimensionality of the observations.

3) We show that all our results can be easily extended in order to support filters of

functionals of the state and recursive, grid based approximate prediction (Theorem 2.8).

More specifically, we show that grid based filters are asymptotically optimal as long as

the state functional is bounded and continuous; this is a typical assumption (see also

[12,20,45]). Of course, this latter assumption is in addition to and independent from any

other condition (e.g., conditional regularity) imposed on the structure of the partially

observable system under consideration. As it will be seen in Chapter 3, this simple
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property has been proven particularly useful, in the context of channel estimation in

wireless sensor networks. The assumption of a bounded and continuous state functional

is more relaxed as compared to the respective bounded and Lipschitz assumption found

in [22].

Another novel aspect of our contribution is that our original theoretical development

is based more on linear-algebraic arguments and less on measure theoretic ones, making

the presentation shorter, clearer and easy to follow.

Relation to the Literature

In this work, conditional regularity is presented as a relaxed sufficient condition for

asymptotic consistency of discrete time grid based filters, employing marginal state

quantizations. Another set of conditions ensuring asymptotic convergence of state ap-

proximations to optimal nonlinear filters are the Kushner’s local consistency conditions

(see, example, [19, 20]). These refer to Markov chain approximations for continuous

time Gaussian diffusion processes and the related standard nonlinear filtering problem.

It is important to stress that, as it can be verified in Section IV, the constraints

which conditional regularity imposes on the stochastic kernel of the hidden Markov

process under consideration are general and do not require the assumption of any spe-

cific class of hidden models. In this sense, conditional regularity is a nonparametric

condition for ensuring convergence to the optimal nonlinear filter. For example, hid-

den Markov processes driven by strictly non-Gaussian noise are equally supported as

their Gaussian counterparts, provided the same conditions are satisfied, as suggested

by conditional regularity (see Section IV). Consequently, it is clear that conditional reg-

ularity advocated in this work is different in nature than Kushner’s local consistency

conditions [19,20]. In fact, putting the differences between continuous and discrete time

aside, conditional regularity is more general as well.

Convergence of discrete time approximate nonlinear filters (not necessarily recur-

sive) was previously studied in Section 2.1. No special properties of the state were

assumed, such as the Markov property; it was only assumed that the state is almost

surely compactly supported. In this work, the results of Section 2.1 provide the tools for
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showing asymptotic optimality of grid based, recursive approximate estimators. Fur-

ther, our results will be leveraged later in Chapter 3, showing asymptotic consistency of

sequential spatiotemporal estimators/predictors of the magnitude of the wireless chan-

nel over a geographical region, as well as its variance. The estimation is based on

limited channel observations, obtained by a small number of sensors.

2.2.2 System Model & Problem Formulation

2.2.2.1 System Model & Technical Assumptions

All stochastic processes defined below are defined on a common complete probability

space (the base space), defined by a triplet (Ω,F ,P). Also, for a set A, B (A) denotes

the respective Borel σ-algebra.

Let Xt ∈ RM×1 be Markov with known dynamics (stochastic kernel)4

Kt : B
(
RM×1

)
× RM×1 7→ [0, 1] , t ∈ N, (2.157)

which, together with an initial probability measure PX−1
on
(
RM×1,B

(
RM×1

))
, com-

pletely describe its stochastic behavior. Generically, the state is assumed to be com-

pactly supported in RM×1, that is, for all t ∈ {−1} ∪ N, Xt ∈ Z ⊂ RM×1, P − a.s..

We may also alternatively assume the existence of an explicit state transition model

describing the temporal evolution of the state, as

Xt , ft (Xt−1,Wt) ∈ Z, ∀t ∈ N, (2.158)

where, for each t, ft : Z ×W a.s.7→ Z constitutes a measurable nonlinear state transition

mapping with somewhat “favorable” analytical behavior (see below) and Wt ≡Wt (ω) ∈

W ⊆ RMW×1, for t ∈ N, ω ∈ Ω, denotes a white noise process with state space W. The

recursion defined in (2.158) is initiated by choosing X−1 ∼ PX−1
, independently of Wt.

The state Xt is partially observed through the conditionally Gaussian process

RN×1 3 yt|Xt
i.i.d.∼ N

(
µt (Xt) ,Σt (Xt) + σ2

ΣIN

)
, (2.159)

4
Hereafter, we employ the usual notation Kt (A |Xt−1 ≡ x ) ≡ Kt (A|x), for A Borel.
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σΣ ≥ 0, with conditional means and variances known apriori, for all t ∈ N. Additionally,

we assume that Σt (Xt) � 0, with Σt : Z 7→ DΣ, for all t ∈ N, where DΣ ⊂ RN×N

is bounded. The observations (2.159) can also be rewritten in the canonical form

yt ≡ µt (Xt) +
√

Ct (Xt)ut, for all t ∈ N, where ut ≡ ut (ω) constitutes a standard

Gaussian white noise process and, for all x ∈ Z, Ct (x) , Σt (x) + σ2
ΣIN . The process

ut is assumed to be mutually independent of X−1, and of the innovations Wt, in case

Xt ≡ ft (Xt−1,Wt).

The class of partially observable systems described above is very wide, containing

all (first order) Hidden Markov Models (HMMs) with compactly supported state pro-

cesses and conditionally Gaussian measurements. Hereafter, without loss of generality

and in order to facilitate the presentation, we will assume stationarity of state transi-

tions, dropping the subscript “t” in the respective stochastic kernels and/or transition

mappings. However, we should mention that all subsequent results hold true also for

the nonstationary case, if one assumes that any condition hereafter imposed on the

mechanism generating Xt holds for all t ∈ N, that is, for all different “modes” of the

state process. As in Section 2.1, Assumptions 2.1 and 2.2 are hereafter considered to

be in power.

Remark 2.7. In certain applications, conditional Gaussianity of the observations given

the state may not be a valid modeling assumption. However, such a structural as-

sumption not only allows for analytical tractability when it holds, but also provides

important insights related to the performance of the respective approximate filter, even

if the conditional distribution of the observations is not Gaussian, provided it is “suffi-

ciently smooth and unimodal”. �

2.2.2.2 Prior Results & Problem Formulation

Before proceeding and for later reference, let us define the complete natural filtrations

generated by the processes Xt and yt as {Xt}t∈N∪{−1} and {Yt}t∈N, respectively.

Adopting the MMSE as an optimality criterion for inferring the hidden process Xt

on the basis of the observations, one would ideally like to discover an efficient way

for evaluating the conditional expectation or filter of the state, given the available



65

information encoded in Yt, sequentially in time. Unfortunately, except for some very

special cases, [13–16], it is well known that the optimal nonlinear filter does not admit

an explicit finite dimensional representation [11,12].

As a result, one must resort to properly designed approximations to the general

nonlinear filtering problem, leading to well behaved, finite dimensional, approximate

filtering schemes. Such schemes are typically derived by approximating the desired

quantities of interest either heuristically (see, e.g. [17, 18]), or in some more powerful,

rigorous sense, (see, e.g., Markov chain approximations [19, 20, 22], or particle filtering

techniques [23, 45]). In this work, we follow the latter direction and propose a novel,

rigorous development of grid based approximate filtering, focusing on the class of par-

tially observable systems described in Section 2.2.2.A. For this, we exploit the general

asymptotic results presented in Section 2.1.

As in Section 2.1, our analysis is based on the well known representation of the

optimal filter, employing the simple concept (at least in discrete time) of change of

probability measures (see, e.g., [12, 15, 16, 46]). Let EP {Xt|Yt} denote the filter of

Xt given Yt, under the base measure P. Then, there exists another (hypothetical)

probability measure P̃ [12], equivalent to P, such that

EP {Xt|Yt} ≡
EP̃ {XtΛt|Yt}
EP̃ {Λt|Yt}

, (2.160)

where Λt ,
∏
i∈Nt Li (Xi,yi) and Lt (Xt,yt) ,

(√
2π
)N N (yt;µt (Xt) ,Ct (Xt)), for

all t ∈ N, with N (x;µ,C) denoting the multivariate Gaussian density as a function

of x, with mean µ and covariance matrix C. Here, we also define Λ−1 ≡ 1. The

most important part is that, under P̃, the processes Xt (including the initial value

X−1) and yt are mutually statistically independent, with Xt being the same as under

the original measure and yt being a Gaussian vector white noise process with zero

mean and covariance matrix the identity. As one might guess, the measure P̃ is more

convenient to work with. It is worth mentioning (see Section 2.1) that the Feynman-

Kac formula (2.160) is true regardless of the nature of the state Xt, that is, it holds

even if Xt is not Markov. In fact, the machinery of change of measures can be applied

to any nonlinear filtering problem and is not tied to the particular filtering formulations
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considered in this work [12].

Let us now replace Xt in the RHS of (2.160) with another process X
LS
t , called the

approximation, with resolution or approximation parameter LS ∈ N (conventionally),

also independent of the observations under P̃, for which the evaluation of the resulting

“filter” might be easier. Then, we can define the approximate filter of the state Xt

ELS (Xt|Yt) ,
EP̃
{
X
LS
t Λ

LS
t

∣∣∣Yt
}

EP̃
{

Λ
LS
t

∣∣∣Yt
} , ∀t ∈ N. (2.161)

It was shown in Section 2.1 that, under certain conditions, this approximate filter is

strongly asymptotically consistent, as follows.

Theorem 2.4. (Convergence to the Optimal Filter) Pick any natural T <∞ and

suppose either of the following:

• For all t ∈ NT , the sequence
{
X
LS
t

}
LS∈N

is marginally C-weakly convergent to

Xt, given Xt, that is,

PLS
X
LS
t

∣∣∣Xt ( ·|Xt)
W−→

LS→∞
δXt (·) , ∀t ∈ NT . (2.162)

• For all t ∈ NT , the sequence
{
X
LS
t

}
LS∈N

is (marginally) convergent to Xt in

probability, that is,

X
LS
t

P−→
LS→∞

Xt, ∀t ∈ NT . (2.163)

Then, there exists a measurable subset Ω̂T ⊆ Ω with P-measure at least 1−(T + 1)1−CN

exp (−CN), such that

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ELS (Xt|Yt)−EP {Xt|Yt}
∥∥∥

1
(ω) −→

LS→∞
0, (2.164)

for any free, finite constant C ≥ 1. In other words, the convergence of the respective

approximate filtering operators is compact in t ∈ N and, with probability at least 1 −

(T + 1)1−CN exp (−CN), uniform in ω.

Theorem 2.4 constitutes the full-blown version of Theorem 2.3 of Section 2.1.3, and

is presented here for completeness. Let us also recall some basic facts from our earlier

development, presented in Section 2.1.
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Remark 2.8. It should be mentioned that Theorem 2.4 holds for any process Xt, Markov

or not, as long as Xt is almost surely compactly supported. �

Remark 2.9. The mode of filter convergence reported in Theorem 2.4 is particularly

strong. It implies that inside any fixed finite time interval and among almost all pos-

sible paths of the observations process, the approximation error between the true and

approximate filters is finitely bounded and converges to zero, as the grid resolution in-

creases, resulting in a practically appealing asymptotic property. This mode of conver-

gence constitutes, in a sense, a practically useful, quantitative justification of Egorov’s

Theorem [21], which abstractly relates almost uniform convergence with almost sure

convergence of measurable functions. Further, it is important to mention that, for fixed

T , convergence to the optimal filter tends to be in the uniformly almost everywhere

sense, at an exponential rate with respect to the dimensionality of the observations,

N . This shows that, in a sense, the dimensionality of the observations stochastically

stabilizes the approximate filtering process. �

Remark 2.10. Observe that the adopted approach concerning construction of the ap-

proximate filter of Xt, the approximation X
LS
t is naturally constructed under the base

measure P̃, satisfying the constraint of being independent of the observations, yt. How-

ever, it is easy to see that if, for each t in the horizon of interest, X
LS
t is {Xt}-adapted,

then it may be defined under the original base measure P without any complication;

under P̃, Xt (and, thus, X
LS
t ) is independent of yt by construction. In greater gener-

ality, X
LS
t may be constructed under P, as long as it can be somehow guaranteed to

follow the same distribution and be independent of yt under P̃. As we shall see below,

this is not always obvious or true; if fact, it is strongly dependent on the information

(encoded in the appropriate σ-algebra) exploited in order to define the process X
LS
t , as

well as the particular choice of the alternative measure P̃. �

2.2.3 Uniform State Quantizations

Although Theorem 2.3 presented above provides the required conditions for convergence

of the respective approximate filter, it does not specify any specific class of processes

to be used as the required approximations. In order to satisfy either of the conditions



68

of Theorem 2.3, X
LS
t must be strongly dependent on Xt. For example, if the approx-

imation is merely weakly convergent to the original state process (as, for instance, in

particle filtering techniques), the conditions of Theorem 2.3 will not be fulfilled. In

this work, the state Xt is approximated by another closely related process with discrete

state space, constituting a uniformly quantized approximation of the original one.

Similarly to [22], we will consider two types of state approximations: Marginal

Quantizations and Markovian Quantizations. Specifically, in the following, we study

pathwise properties of the aforementioned state approximations. Nevertheless, and as in

every meaningful filtering formulation, neither the state nor its approximations need to

be known or constructed by the user. Only the (conditional) laws of the approximations

need to be known. To this end, let us state a general definition of a quantizer.

Definition 2.3. (Quantizers) Consider a compact subset A ⊂ RN , a partition

Π , {Ai}i∈N+
L

of A and let B ,
{
{bi}i∈N+

L

}
be a discrete set consisting of distinct

reconstruction points, with bi ∈ RM ,∀i ∈ N+
L . Then, an L-level Euclidean Quantizer is

any bounded and measurable function QL : (A,B (A)) 7→
(
B, 2B

)
, defined by assigning

all x ∈ Ai ∈ Π, i ∈ N+
L to a unique bj ∈ B, j ∈ N+

L , such that the mapping between the

elements of Π and B is one to one and onto (a bijection).

2.2.3.1 Uniformly Quantizing Z

For simplicity and without any loss of generality, suppose that Z ≡ [a, b]M (for a ∈ R

and b ∈ R with obviously a < b), representing the compact set of support of the state

Xt. Also, consider a uniform L-set partition of the interval [a, b], ΠL , {Zl}l∈NL−1
and,

additionally, let ΠLS
, ×

M times
ΠL be the overloaded Cartesian product of M copies

of the partitions defined above, with cardinality LS , LM . As usual, our reconstruc-

tion points will be chosen as the center of masses of the hyperrectangles comprising

the hyperpartition ΠLS
, denoted as x

{lm}m∈N+
M

LS
≡ x{lm}LS

, where lm ∈ NL−1. According

to some predefined ordering, we make the identification x
{lm}
LS

≡ xlLS , l ∈ N+
LS

. Fur-

ther, let XLS ,
{
x1
LS
,x2

LS
, . . . ,x

LS
LS

}
and define the quantizer QLS : (Z,B (Z)) 7→



69

(
XLS , 2

XLS
)

, where

QLS (x) , x{lm}LS
≡ xlLS ∈ XLS

iff x ∈ ×
m∈N+

M

Zlm , Z
l
LS
∈ ΠLS

. (2.165)

Given the definitions stated above, the following simple and basic result is true. The

proof, being elementary, is omitted.

Lemma 2.11. (Uniform Convergence of Quantized Values) It is true that

lim
LS→∞

sup
x∈Z

∥∥QLS (x)− x
∥∥

1
≡ 0, (2.166)

that is, QLS (x) converges as LS →∞, uniformly in x.

Remark 2.11. We should mention here that Lemma 2.11, as well as all the results to be

presented below hold equally well when the support of Xt is different in each dimension,

or when different quantization resolutions are chosen in each dimension, just by adding

additional complexity to the respective arguments. �

2.2.3.2 Marginal Quantization

The first class of state process approximations of interest is that of marginal state

quantizations, according to which Xt is approximated by its nearest neighbor

X
LS
t (ω) , QLS (Xt (ω)) ∈ XLS , ∀t ∈ {−1} ∪ N, (2.167)

P − a.s., where LS ∈ N is identified as the approximation parameter. Next, we present

another simple but important lemma, concerning the behavior of the quantized stochas-

tic process X
LS
t (ω), as LS gets large. Again, the proof is relatively simple, and it is

omitted.

Lemma 2.12. (Uniform Convergence of Marginal State Quantizations) For

Xt (ω) ∈ Z, for all t ∈ N, almost surely, it is true that

lim
LS→∞

sup
t∈N

ess sup
ω∈Ω

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1
≡ 0, (2.168)

that is, X
LS
t (ω) converges as LS → ∞, uniformly in t and uniformly P-almost every-

where in ω.
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Remark 2.12. One drawback of marginal approximations is that they do not possess

the Markov property any more. This fact introduces considerable complications in

the development of recursive estimators, as shown later in Section 2.2.4. However,

marginal approximations are practically appealing, because they do not require explicit

knowledge of the stochastic kernel describing the transitions of Xt. �

Remark 2.13. Note that the implications of Lemma 2.12 continue to be true under the

base measure P̃. This is true becauseX
LS
t is {Xt}-adapted, and also due to the fact that

the “local” probability spaces (Ω,X∞,P) and
(

Ω,X∞, P̃
)

are completely identical.

Here, X∞ , σ
{⋃

t∈N∪{−1}Xt

}
constitutes the join of the filtration {Xt}t∈N∪{−1}. In

other words, the restrictions of P and P̃ on X∞ -the collection of events ever to be

generated by Xt- coincide; that is, P|X∞ ≡ P̃
∣∣∣
X∞

. �

2.2.3.3 Markovian Quantization

The second class of approximations considered is that of Markovian quantizations of

the state. In this case, we assume explicit knowledge of a transition mapping, modeling

the temporal evolution of Xt. In particular, we assume a recursion as in (2.158), where

the process Wt acts as the driving noise of the state Xt and constitutes an intrinsic

characteristic of it. Then, the Markovian quantization of Xt is defined as

X
LS
t , QLS

(
f
(
X
LS
t−1,Wt

))
∈ XLS , ∀t ∈ N, (2.169)

with X
LS
−1 ≡QLS (X−1)∈XLS , P−a.s., and which satisfies the Markov property trivially;

since XLS is finite, it constitutes a (time-homogeneous) finite state space Markov Chain.

A scheme for generating X
LS
t is shown in Fig. 2.1.

At this point, it is very important to observe that, whereas Xt is guaranteed to be

Markov with the same dynamics and independent of yt under P̃, we cannot immedi-

ately say the same for the Markovian approximation X
LS
t . The reason is that X

LS
t is

measurable with respect to the filtration generated by the initial condition X−1 and

the innovations process Wt and not with respect to {Xt}t∈N∪{−1}. Without any ad-

ditional considerations, Wt may very well be partially correlated relative to yt and/or
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X
LS
t (ω)QLS

(·)Time &
Nature (Ω)

Wt (ω) f (·, ·) z−1

Figure 2.1: Block representation of Markovian quantization. As noted in the cloud,
“Nature” here refers to the sample space Ω of the base triplet (Ω,F ,P).

X−1, and/or even non white itself! Nevertheless, P̃ may be chosen such that Wt indeed

satisfies the aforementioned properties under question, as the following result suggests.

Lemma 2.13. (Choice of P̃) Without any other modification, the base measure P̃

may be chosen such that the initial condition X−1 and the innovations process Wt

follow the same distributions as under P and are all mutually independent relative to

the observations, yt.

Proof of Lemma 2.13. See Section 2.2.7.6 (Appendix F). �

Lemma 2.13 essentially implies that Markovian quantizations may be constructed

and analyzed either under P or P̃, interchangeably. Also adapt Remark 2.13 to this

case.

Under the assumption of a transition mapping, every possible path of Xt (ω) is

completely determined by fixing X−1 (ω) and Wt (ω) at any particular realization, for

each ω ∈ Ω. As in the case of marginal quantizations, the goal of the Markovian

quantization is the pathwise approximation of Xt by X
LS
t , for almost all realizations of

the white noise process Wt and initial value X−1. In practice, however, as noted in the

beginning of this section, knowledge of Wt is of course not required by the user. What

is required by the user is the transition matrix of the Markov chain X
LS
t , which could

be obtained via, for instance, simulation (also see Section IV).

For analytical tractability, we will impose the following reasonable regularity as-

sumption on the expansiveness of the transition mapping f(·, ·):

Assumption 2.3. (Expansiveness of Transition Mappings) For all y ∈ W,

f : Z ×W 7→ Z is Lipschitz continuous in x ∈ Z, that is, possibly dependent on each
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y, there exists a non-negative, bounded constant K (y), where supy∈W K (y) exists and

is finite, such that

‖f (x1,y)− f (x2,y)‖1 ≤ K (y) ‖x1 − x2‖1 , (2.170)

∀ (x1,x2) ∈ Z × Z. If, additionally, supy∈W K (y) < 1, then f(·, ·) will be referred to

as uniformly contractive.

Employing Assumption 2.3, the next result presented below characterizes the con-

vergence of the Markovian state approximation X
LS
t to the true process Xt, as the

quantization of the state space Z gets finer and under appropriate conditions.

Lemma 2.14. (Uniform Convergence of Markovian State Quantizations) Sup-

pose that the transition mapping f : Z ×W 7→ Z of the Markov process Xt (ω) is Lips-

chitz, almost surely and for all t ∈ N. Also, consider the approximating Markov process

X
LS
t (ω), as defined in (2.169). Then,

lim
LS→∞

ess sup
ω∈Ω

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1
≡ 0, ∀t ∈ N, (2.171)

that is, X
LS
t (ω) converges as LS →∞, in the pointwise sense in t and uniformly almost

everywhere in ω. If, additionally, f (·, ·) is uniformly contractive, almost surely and for

all t ∈ N, then it is true that

lim
LS→∞

sup
t∈N

ess sup
ω∈Ω

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1
≡ 0, (2.172)

that is, the convergence is additionally uniform in t.

Proof of Lemma 2.14. See Section 2.2.7.1 (Appendix A). �

Especially concerning temporally uniform convergence of the quantization schemes

under consideration, and to highlight its great practical importance, it would be useful

to illustrate the implications of Lemmata 2.12 and 2.14 by means of the following simple

numerical example.

Example 2.1. Let Xt be a scalar, first order autoregressive process (AR (1)), defined

via the linear stochastic difference equation

Xt , αXt−1 +Wt, ∀t ∈ N, (2.173)
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Figure 2.2: Absolute errors between each of the quantized versions of the AR (1) process
of our example, and the true process itself, respectively, for (a) α ≡ 0.6 (stable process)
and (b) α ≡ 1 (a random walk).
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where Wt
i.i.d∼ N (0, 1) ,∀t ∈ N. In our example, the parameter α ∈ [−1, 1] is known

apriori and controls the stability of the process, with the case where α ≡ 1 corresponding

to a Gaussian random walk. Of course, it is true that the state space of the process

defined by (2.173) is the whole R, which means that, strictly speaking, there are no

finite a and b such that Xt ∈ [a, b] ≡ Z, ∀t ∈ N, with probability 1. However, it is true

that for sufficiently large but finite a and b, there exists a “large” measurable set of

possible outcomes for which Xt, being a Gaussian process, indeed belongs to Z with

very high probability. Whenever this happens, we should be able to verify Lemmata

2.12 and 2.14 directly.

Additionally, it is trivial to verify that the linear transition function in (2.173) is

always a contraction, with Lipschitz constant K ≡ |α|, whenever the AR (1) process of

interest is stable, that is, whenever |α| < 1.

Fig. 2.2(a) and 2.2(b) show the absolute errors between two AR (1) processes and

their quantized versions according to Lemmata 2.12 and 2.14, for α ≡ 0.6 and α ≡ 1,

respectively. From the figure, one can readily observe that the marginal quantization

of Xt always converges to Xt uniformly in time, regardless of the particular value of α,

experimentally validating Lemma 2.12. On the other hand, it is obvious that when the

transition function of our system is not a contraction (Lemma 2.14), uniform conver-

gence of the respective Markovian quantization to the true state Xt cannot be guaran-

teed. Of course, we have not proved any additional necessity regarding our sufficiency

assumption related to the contractiveness of the transition mapping of the process of

interest, meaning that there might exist processes which do not fulfill this requirement

and still converge uniformly. However, for uniform contractions, the convergence will

always be uniform whenever the process Xt is bounded in Z. �

2.2.4 Recursive Estimation & Asymptotic Optimality

It is indeed easy to show that when used as candidate state approximations for defining

approximate filtering operators in the fashion of Section 2.2.2.B, both the marginal and

Markovian quantization schemes presented in Sections 2.2.3.B and 2.2.3.C, respectively,

converge to the optimal nonlinear filter of the state Xt. Convergence is in the sense of
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Theorem 2.3 presented in Section 2.2.2.B, corroborating asymptotic optimality under a

unified convergence criterion.

Specifically, under the respective (and usual) assumptions, Lemmata 2.12 and 2.14

presented above imply that both the marginal and Markovian approximations converge

to the true state Xt at least in the almost sure sense, for all t ∈ N. Therefore, both will

also converge to the true state in probability, satisfying the second sufficient condition

of Theorem 2.3. The following result is true. Its proof, being apparent, is omitted.

Theorem 2.5. (Convergence of Approximate Filters) Pick any natural T < ∞

and let the process X
LS
t represent either the marginal or the Markovian approxima-

tion of the state Xt. Then, under the respective assumptions implied by Lemmata

2.12 and 2.14, the approximate filter ELS (Xt|Yt) converges to the true nonlinear filter

EP {Xt|Yt}, in the sense of Theorem 2.3.

Although Theorem 2.5 shows asymptotic consistency of the marginal and Markovian

approximate filters in a strong sense, it does not imply the existence of any finite dimen-

sional scheme for actually realizing these estimators. This is the purpose of the next

subsections. In particular, we develop recursive representations for the asymptotically

optimal (as LS →∞) filter ELS (Xt|Yt), as defined previously in (2.44).

For later reference, let us define the bijective mapping (a trivial quantizer) QeLS :
(
XLS , 2

XLS
)
7→
(
VLS , 2

VLS
)

, where the set VLS ,
{

e
LS
1 , . . . , e

LS
LS

}
contains the com-

plete standard basis in RLS×1. Since xlLS is bijectively mapped to e
LS
l for all l ∈ N+

LS
,

we can write xlLS ≡ Xe
LS
l , where X ,

[
x1
LS
x2
LS

. . . x
LS
LS

]
∈ RM×LS constitutes the

respective reconstruction matrix. From this discussion, it is obvious that

EP̃
{
X
LS
t Λ

LS
t

∣∣∣Yt
}
≡XEP̃

{
QeLS

(
X
LS
t

)
Λ
LS
t

∣∣∣Yt
}
, (2.174)

leading to the expression

ELS (Xt|Yt) ≡
XEP̃

{
QeLS

(
X
LS
t

)
Λ
LS
t

∣∣∣Yt
}

EP̃
{

Λ
LS
t

∣∣∣Yt
} , (2.175)

for all t ∈ N, regardless of the type of state quantization employed. We additionally

define the likelihood matrix

Λt,diag
(
Lt

(
x1
LS
,yt

)
. . . Lt

(
x
LS
LS
,yt

))
∈RLS×LS . (2.176)
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Also to be subsequently used, given the quantization type, define the column stochastic

matrix P ∈ [0, 1]LS×LS as

P (i, j) , P
(
X
LS
t ≡ xiLS

∣∣∣XLS
t−1 ≡ x

j
LS

)
, (2.177)

for all (i, j) ∈ N+
LS
× N+

LS
.

At this point, it will be important to note that the transition matrix P defined in

(2.177) is implicitly assumed to be time invariant, regardless of the state approximation

employed. Under the system model established in Section 2.2.2.A (assuming temporal

homogeneity for the original Markov process Xt), this is unconditionally true when one

considers Markovian state quantizations, simply because the resulting approximating

process X
LS
t constitutes a Markov chain with finite state space, as stated earlier in

Section 2.2.3.C. On the other hand, the situation is quite different when one considers

marginal quantizations of the state. In that case, the conditional probabilities

P
(
X
LS
t ≡ xiLS

∣∣∣XLS
t−1 ≡ x

j
LS

)
≡ P

(
Xt ∈ ZiLS

∣∣∣Xt−1 ∈ ZjLS
)
, (2.178)

which would correspond to the (i, j)-th element of the resulting transition matrix, are,

in general, not time invariant any more, even if the original Markov process is time

homogeneous. Nevertheless, assuming the existence of at least one invariant measure (a

stationary distribution) for the Markov processXt, also chosen as its initial distribution,

the aforementioned probabilities are indeed time invariant. This is a very common

and reasonable assumption employed in practice, especially when tracking stationary

signals. For notational and intuitional simplicity, and in order to present a unified

treatment of all the approximate filters considered in this work, the aforementioned

assumption will also be adopted in the analysis that follows.

2.2.4.1 Markovian Quantization

We start with the case of Markovian quantizations, since it is easier and more straight-

forward. Here, the development of the respective approximate filter is based on the fact

that X
LS
t constitutes a Markov chain. Actually, this fact is the only requirement for

the existence of a recursive realization of the filter, with Lemma 3 providing a sufficient
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condition, ensuring asymptotic optimality. The resulting recursive scheme is summa-

rized in the following result. The proof is omitted, since it involves standard arguments

in nonlinear filtering, similar to the ones employed in the derivation of the filtering

recursions for a partially observed Markov chain with finite state space [12, 15, 47], as

previously mentioned.

Theorem 2.6. (The Markovian Filter) Consider the Markovian state approxima-

tion X
LS
t and define Et , EP̃

{
QeLS

(
X
LS
t

)
Λ
LS
t

∣∣∣Yt
}
∈ RLS×1, for all t ∈ N. Then,

under the appropriate assumptions (Lipschitz property of Lemma 2.14), the asymptoti-

cally optimal in LS approximate grid based filter ELS (Xt|Yt) can be expressed as

ELS (Xt|Yt) ≡
XEt

‖Et‖1
, ∀t ∈ N, (2.179)

where the process Et satisfies the linear recursion

Et ≡ ΛtPEt−1, ∀t ∈ N. (2.180)

The filter is initialized setting E−1 , EP
{
QeLS

(
X
LS
−1

)}
.

Remark 2.14. It is worth mentioning that, although formally similar to, the approx-

imate filter introduced in Theorem 2.6 does not refer to a Markov chain with finite

state space, because the observations process utilized in the filtering iterations corre-

sponds to that of the real partially observable system under consideration. The quantity

ELS (Xt|Yt) does not constitute a conditional expectation of the Markov chain associ-

ated with P , because the latter process does not follow the probability law of the true

state process Xt. �

Remark 2.15. In fact, Et may be interpreted as a vector encoding an unnormalized

point mass function, which, roughly speaking, expresses the belief of the quantized state,

given the observations up to and including time t. Normalization by ‖Et‖1 corresponds

precisely to a point mass function. �

Remark 2.16. For the benefit of the reader, we should mention that the Markovian filter

considered above essentially coincides with the approximate grid based filter reported

in ([23], Section IV.B), although the construction of the two filters is different: the
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former is constructed via a Markovian quantization of the state, whereas the latter [23]

is based on a “quasi-marginal” approach (compare with (2.178)). Nevertheless, given

our assumptions on the HMM under consideration, both formulations result in exactly

the same transition matrix. Therefore, the optimality properties of the Markovian filter

are indeed inherited by the grid based filter described in [23]. �

2.2.4.2 Marginal Quantization

We now move on to the case of marginal quantizations. In order to be able to come

up with a simple, Markov chain based, recursive filtering scheme, as in the case of

Markovian quantizations previously treated, it turns out that a further assumption is

required, this time concerning the stochastic kernel of the Markov process Xt. But

before embarking on the relevant analysis, let us present some essential definitions.

First, for any process Xt, we will say that a sequence of functions {fn (·)}n is PXt−UI,

if {fn (·)}n is Uniformly Integrable with respect to the pushforward measure induced

by Xt, PXt , where t ∈ N ∪ {−1}, i.e.,

lim
K→∞

sup
n

∫

{|fn(x)|>K}
|fn (x)| PXt (dx) ≡ 0. (2.181)

Second, given LS , recall from Section 2.2.3.A that the set ΠLS
contains as members

all quantization regions of Z, ZjLS , j ∈ N+
LS

. Then, given the stochastic kernel K ( ·| ·)

associated with the time invariant transitions of Xt and for each LS ∈ N+, we define

the cumulative kernel

K
(
A|∈ZLS (x)

)
,

∫

ZLS (x)
K (A|θ)PXt−1

(dθ)

P
(
Xt−1 ∈ ZLS (x)

)

≡
E
{
K (A|Xt−1)1{

Xt−1∈ZLS (x)
}}

E
{
1{

Xt−1∈ZLS (x)
}}

≡ E
{
K (A|Xt−1)|Xt−1∈ZLS (x)

}
, (2.182)

for all Borel A ∈ B
(
RM×1

)
and all x ∈ Z, where ZLS(x) ∈ ΠLS

denotes the unique

quantization region, which includes x. Note that if x is substituted by Xt−1 (ω),
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the resulting quantity ZLS (Xt−1 (ω)) constitutes an Xt-predictable set-valued ran-

dom element. Now, if, for any x ∈ Z, K ( ·|x) admits a stochastic kernel density

κ : RM×1 × RM×1 7→ R+, suggestively denoted as κ (y|x), we define, in exactly the

same fashion as above, the cumulative kernel density

κ
(
y|∈ZLS (x)

)
, E

{
κ (y|Xt−1)|Xt−1∈ZLS (x)

}
, (2.183)

for all y ∈ RM×1. The fact that κ
(
·|∈ZLS (x)

)
is indeed a Radon-Nikodym derivative

of K
(
·|∈ZLS (x)

)
readily follows by definition of the latter and Fubini’s Theorem.

Remark 2.17. Observe that, although integration is with respect to PXt−1
on the RHS of

(2.182), K
(
·|∈ZLS (·)

)
is time invariant. This is due to stationarity of Xt, as assumed

in the beginning of Section 2.2.4, implying time invariance of the marginal measure

PXt , for all t ∈ N ∪ {−1}. Additionally, for each x ∈ Z, when A is restricted to

ΠLS
, K
(
A|∈ZLS (x)

)
corresponds to an entry of the (time invariant) matrix P , also

defined earlier. In the general case, where the aforementioned cumulative kernel is

time varying, all subsequent analysis continues to be valid, just by adding additional

notational complexity. �

In respect to the relevant assumption required on K ( ·| ·), as asserted above, let us

now present the following definition.

Definition 2.4. (Cumulative Conditional Regularity of Markov Kernels) Con-

sider the kernel K ( ·| ·), associated with Xt, for all t ∈ N. We say that K ( ·| ·) is Con-

ditionally Regular of Type I (CRT I), if, for PXt ≡ PX−1
-almost all x, there exists a

PX−1
− UI sequence

{
δIn (·) ≥ 0

}
n∈N+

with δIn (·) a.e.−→
n→∞

0, such that

sup
A∈ΠLS

∣∣K (A|x)−K
(
A|∈ZLS (x)

)∣∣ ≤
δILS (x)

LS
. (2.184)

If, further, for PX−1
-almost all x, the measure K ( ·|x) admits a density κ ( ·|x) , and

if there exists another PX−1
− UI sequence

{
δIIn (·) ≥ 0

}
n∈N+

with δIIn (·) a.e.−→
n→∞

0, such

that

ess sup
y∈RM×1

∣∣κ (y|x)− κ
(
y|∈ZLS (x)

)∣∣ ≤ δIILS (x) , (2.185)

K ( ·| ·) is called Conditionally Regular of Type II (CRT II). In any case, Xt will also be

called conditionally regular.
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A consequence of conditional regularity is the following Martingale Difference (MD)

[11,12] type representation of the marginally quantized process QeLS
(
X
LS
t

)
.

Lemma 2.15. (Semirecursive MD-type Representation of Marginal Quanti-

zations) Assume that the state process Xt is conditionally regular. Then, the quantized

process QeLS
(
X
LS
t

)
admits the representation

QeLS
(
X
LS
t

)
≡ PQeLS

(
X
LS
t−1

)
+Me

t + ε
LS
t , (2.186)

where, under the base measure P̃,Me
t ∈ RLS×1 constitutes an Xt-MD process and

ε
LS
t ∈ RLS×1 constitutes a {Xt}-predictable process, such that

• if Xt is CRT I, then

∥∥∥εLSt
∥∥∥

1
≤ δILS (Xt−1) −→

LS→∞
0, P̃ − a.s., (2.187)

• whereas, if Xt is CRT II, then

∥∥∥εLSt
∥∥∥

1
≤ |b− a|M δIILS (Xt−1) −→

LS→∞
0, P̃ − a.s., (2.188)

everywhere in time.

Proof of Lemma 2.15. See Section 2.2.7.2 (Appendix B). �

Now, consider an auxiliary Markov chain Z
LS
t ∈ VLS , with P (defined as in (2.177))

as its transition matrix and with initial distribution to be specified. Of course, Z
LS
t

can be represented as Z
LS
t ≡ PZLSt−1 + M̃

e

t , where M̃
e

t ∈ RLS×1 constitutes a Zt-MD

process, with {Zt}t∈N being the complete natural filtration generated by Z
LS
t .

Due to the existence of the “bias” process ε
LS
t in the martingale difference repre-

sentation of QeLS
(
X
LS
t

)
(see Lemma 2.15), the direct derivation of a filtering recursion

for this process is difficult. However, it turns out that the approximate filter involving

the marginal state quantization X
LS
t , ELS (Xt|Yt), can be further approximated by the

also approximate filter

ẼLS (Xt|Yt) ,
XEP̃

{
Z
LS
t Λ

Z,LS
t

∣∣∣Yt
}

EP̃
{

Λ
Z,LS
t

∣∣∣Yt
} , (2.189)
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for all t ∈ N, where the functional Λ
Z,LS
t is defined exactly like Λ

LS
t , but replacing

X
LS
t with Z

LS
t . This latter filter indeed admits the recursive representation proposed

in Theorem 2.6 (with P defined as in (2.177), reflecting the choice of a marginal state

approximation).

Consequently, if we are interested in the asymptotic behavior of the approximation

error between ẼLS (Xt|Yt) and the original nonlinear filter EP {Xt|Yt}, we can write

∥∥∥EP {Xt|Yt} − ẼLS (Xt|Yt)
∥∥∥

1

≤
∥∥∥EP {Xt|Yt} − ELS (Xt|Yt)

∥∥∥
1

+
∥∥∥ELS (Xt|Yt)− ẼLS (Xt|Yt)

∥∥∥
1
. (2.190)

However, from Theorem 2.5, we know that, under the respective conditions,

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ELS (Xt|Yt)− EP {Xt|Yt}
∥∥∥

1
−→
LS→∞

0. (2.191)

Therefore, if we show that error between ELS (Xt|Yt) and ẼLS (Xt|Yt) vanishes in the

above sense, then, ẼLS (Xt|Yt) will converge to EP {Xt|Yt}, also in the same sense.

It turns out that if Xt is conditionally regular, the aforementioned desired statement

always holds, as follows.

Lemma 2.16. (Convergence of Approximate Filters) For any natural T < ∞,

suppose that the state process Xt is conditionally regular and that the initial measure of

the chain Z
LS
t is chosen such that

EP̃
{
Z
LS
−1

}
≡ EP

{
QeLS

(
X
LS
−1

)}
. (2.192)

Then, for the same measurable subset Ω̂T ⊆ Ω of Theorem 2.3, it is true that

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ELS (Xt|Yt)− ẼLS (Xt|Yt)
∥∥∥

1
−→
LS→∞

0. (2.193)

Additionally, under the same setting, it follows that

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ẼLS (Xt|Yt)− EP {Xt|Yt}
∥∥∥

1
−→
LS→∞

0. (2.194)

Proof of Lemma 2.16. See Section 2.2.7.3 (Appendix C). �

Finally, the next theorem establishes precisely the form of the recursive grid based

filter, employing the marginal quantization of the state.
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Theorem 2.7. (The Marginal Filter) Consider the marginal state approximation

X
LS
t and suppose that the state process Xt is conditionally regular. Then, for each

t ∈ N, the asymptotically optimal in LS approximate filtering operator ẼLS (Xt|Yt) can

be recursively expressed exactly as in Theorem 2.6, with initial conditions as in Lemma

2.16 and transition matrix P defined as in (2.177).

Remark 2.18. (Weak Conditional Regularity) All the derivations presented above

are still valid if, in the definition of conditional regularity (Definition 2), one replaces

almost everywhere convergence of the sequences
{
δIn (·)

}
n

and
{
δIIn (·)

}
n

with conver-

gence in probability. This is due to the fact that uniform integrability plus convergence

in measure are necessary and sufficient conditions for showing convergence in L1 (for

finite measure spaces). Consequently, if we focus on, for instance, CRT I (CRT II is

similar), it is easy to see that in order to ensure asymptotic consistency of the marginal

approximate filter in the sense of Theorem 2.7, it suffices that, for A ∈ ΠLS
and for any

ε > 0,

PXt−1

(
sup
A

∣∣K(A|x)−K
(
A|∈ZLS(x)

)∣∣> ε

LS

)
−→
LS→∞

0, (2.195)

for all t ∈ N (in general), given the stochastic kernel K ( ·| ·) and for the desired choice

of the quantizer QLS (·). Here, the PXt−UI sequence
{
δIn (·)

}
n

is identified as

δILS (x) ≡ sup
A∈ΠLS

LS
∣∣K (A|x)−K

(
A|∈ZLS (x)

)∣∣ , (2.196)

for all LS ∈ N+ and for almost all x ∈ RM×1. In other words, it is required that, for

any ε > 0,

sup
A∈ΠLS

∣∣K (A|Xt−1)−K
(
A|∈ZLS (Xt−1)

)∣∣≤ ε

LS
, (2.197)

with probability at least 1−πt−1(ε, LS), for all t ∈ N (in general), where, for each t,

{πt−1(ε, n)}
n∈N+ constitutes a sequence vanishing at infinity. This is a considerably

weaker form of conditional regularity, as stated in Definition 2. �

2.2.4.3 Extensions: State Functionals & Approximate Prediction

All the results presented so far can be extended as follows. First, if
{
φt : RM×1 7→ RMφt

×1
}
t∈N

is a family of bounded and continuous functions, it is easy
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to show that every relevant theorem presented so far is still true if one replaces Xt by

φt (Xt) in the respective formulations of the approximate filters discussed. This is made

possible by observing that (2.18) still holds if we replace Xt by φt (Xt), by invoking

the Continuous Mapping Theorem and using the boundedness of φt (Xt), instead of the

boundedness of Xt, whenever required.

Second, exploiting very similar arguments as in the previous sections, it is possible to

derive asymptotically optimal ρ-step state predictors, where ρ > 0 denotes the desired

(and finite) prediction horizon. In particular, under the usual assumptions [12], it is

easy to show that, as in the filtering case, the optimal nonlinear temporal predictor

EP
{
Xt+ρ

∣∣Yt
}

can be expressed through the Feynman-Kac type of formula

EP
{
Xt+ρ

∣∣Yt
}
≡ EP̃

{
Xt+ρΛt

∣∣Yt
}

EP̃ {Λt|Yt}
, ∀t ∈ N. (2.198)

Therefore, in analogy to (2.175), it is reasonable to consider grid based approximations

of the form

ELS
(
Xt+ρ

∣∣Yt
)
≡

XEP̃
{
QeLS

(
X
LS
t+ρ

)
Λ
LS
t

∣∣∣Yt
}

EP̃
{

Λ
LS
t

∣∣∣Yt
} , (2.199)

for all t ∈ N. Focusing on marginal state quantizations (the Markovian case is similar,

albeit easier), then, exploiting Lemma 2.15 and using induction, it is easy to show that

QeLS
(
X
LS
t+ρ

)
≡ P ρQeLS

(
X
LS
t

)
+

ρ∑

i=1

P ρ−iMe
t+i +

ρ∑

i=1

P ρ−iε
LS
t+i, ∀t ∈ N. (2.200)

Thus, using simple properties of MD sequences, it follows that the numerator of the

fraction on the RHS of (2.199) can be decomposed as

ELS
(
Xt+ρ

∣∣Yt
)

≡
XP ρEP̃

{
QeLS

(
X
LS
t+ρ

)
Λ
LS
t

∣∣∣Yt
}

EP̃
{

Λ
LS
t

∣∣∣Yt
} +

X

ρ∑

i=1

P ρ−iEP̃
{
ε
LS
t+iΛ

LS
t

∣∣∣Yt
}

EP̃
{

Λ
LS
t

∣∣∣Yt
} . (2.201)

The first term on the RHS of (2.201) is analyzed exactly as in the proof of Lemma 2.16.

For the second term, it is true that
∥∥∥∥∥X

ρ∑

i=1

P ρ−iEP̃
{
ε
LS
t+iΛ

LS
t

∣∣∣Yt
}∥∥∥∥∥

1

≤Mγ

√
λ
−N(t+1)
inf

ρ∑

i=1

EP̃
{∥∥∥εLSt+i

∥∥∥
1

}
, (2.202)
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which can be treated as an extra error term, also in the fashion of Lemma 2.16.

Putting it altogether (state functionals plus prediction), the following general theo-

rem holds, covering every aspect of the investigation presented in this work.

Theorem 2.8. (Grid Based Filtering/Prediction & Functionals of the State)

For any deterministic functional family
{
φt : RM×1 7→ RMφt

×1
}
t∈N

with bounded and

continuous members and any finite prediction horizon ρ ≥ 0, the strictly optimal filter

and ρ-step predictor of the transformed process φt (Xt) can be approximated as

ELS
(
φt+ρ

(
Xt+ρ

)∣∣Yt
)
, Φt+ρ

P ρEt

‖Et‖1
∈ RMφt

×1, (2.203)

for all t ∈ N, where the process Et ∈ RLS×1 can be recursively evaluated as in Theorem

2.6, P is defined according to the chosen state quantization and

Φt+ρ ,
[
φt+ρ

(
x1
LS

)
. . . φt+ρ

(
x
LS
LS

)]
∈ RMφt

×LS . (2.204)

Additionally, under the appropriate assumptions (see Lemma 2.14 and Lemma 2.16,

respectively) the approximate filter is asymptotically optimal. in the sense of Theorem

2.3.

Remark 2.19. As Theorem 2.8 clearly states, for each choice of state functionals and any

finite prediction horizon, convergence of the respective approximate grid based filters

is in the sense of Theorem 2.3. This implies the existence of an exceptional measurable

set of measure almost unity, inside of which convergence is in the uniform sense. It

is important to emphasize that this exceptional event, Ω̂T , as well as its measure, are

independent of the particular choice of both the bounded family {φt}t and the prediction

horizon ρ. This fact can be easily verified by a quick detour of the proof of Theorem 2.3.

In particular, for any fixed choice of T , Ω̂T characterizes exclusively the growth of the

observations yt, which are the same regardless of filtering, prediction, or any functional

imposed on the state. Therefore, stochastically uniform (in Ω̂T ) convergence of one

estimator implies stochastically uniform convergence of any other estimator, within

any class of estimators, constructed employing any uniformly bounded and continuous

class of functionals of the state and finite prediction horizons. �
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2.2.4.4 Filter Performance

The uncertainty of a filtering estimator can be quantified via its posterior quadratic

deviation from the true state, at each time t. This information is encoded into the

posterior covariance matrix

V{Xt|Yt} ≡ E
{
XtX

T
t

∣∣∣Yt
}
−E {Xt|Yt}(E {Xt|Yt})T, (2.205)

for all t ∈ N. Next, in a general setting, we consider asymptotically consistent approx-

imations of V
{
φt+ρ

(
Xt+ρ

)∣∣Yt
}

, which, at the same time, admit finite dimensional

representations. In the following, ‖·‖E1 denotes the entrywise `1-norm for matrices,

which upper bounds both the `1-operator-induced and the Frobenius norms.

Theorem 2.9. (Posterior Covariance Recursions) Under the same setting as in

Theorem 2.8, the posterior covariance matrix of the optimal filter of the transformed

process φt+ρ
(
Xt+ρ

)
can be approximated as

VLS
(
φt+ρ

(
Xt+ρ

)∣∣Yt
)
, Φt+ρ

[
diag

(
P ρEt

‖Et‖1

)
−P

ρEt

‖Et‖1

(
P ρEt

‖Et‖1

)T
]
ΦT
t+ρ, (2.206)

for all t∈N. Under the appropriate assumptions (Lemma 2.14/2.16), the approximate

estimator is asymptotically optimal in the sense of Theorem 2.3.

Proof of Theorem 2.9. See Section 2.2.7.4 (Appendix D). �

2.2.5 Analytical Examples & Some Simulations

This section is centered around a discussion about the practical applicability of the grid

based filters under consideration, mainly in regard to filter implementation, as well as

the sufficient conditions for asymptotic optimality presented and analyzed in Section

2.2.4. In what follows, we consider a class of 1-dimensional (for simplicity), common

and rather practically important additive Nonlinear AutoRegressions (NARs), where

Xt evolves according to the stochastic difference equation

Xt ≡ h (Xt−1) +Wt, ∀t ∈ N, (2.207)

X−1 ∼ PX−1
, where h (·) constitutes a uniformly bounded and at least continuous

nonlinear functional and Wt is a white noise process with known measure. To ensure



86

that the state is bounded, we will assume that the white noise Wt follows, for each

t ∈ N, a zero location (and mean), truncated Gaussian distribution in [−α, α], with

scale σ and with density

fW (x) ,
ϕ (x/σ)

2σΦ (α/σ)− σ1[−α,α] (x) , ∀x ∈ R, (2.208)

where ϕ (·) and Φ (·) denote the standard Gaussian density and cumulative distribution

functions, respectively. Under these considerations, if supx∈R |h (x)| ≡ B, then |Xt| ≤

B + α and, thus, Z is identified as the set [a, b ≡ −a], with b , B + α.

2.2.5.1 Markovian Filter

In this case, the respective approximation of the state process is given by the quantized

stochastic difference equation

X
LS
t , QLS

(
h
(
X
LS
t−1

)
+Wt

)
, ∀t ∈ N, (2.209)

initialized as X
LS
−1 ≡ QLS (X−1), with probability 1. In order to guarantee asymptotic

optimality of the respective approximate filter described in Theorem 2.6, the original

process Xt is required to at least satisfy the basic Lipschitz condition of Assumption 2.3.

Indeed, if we merely assume that h (·) is additionally Lipschitz with constant Lh > 0

(that is, regardless of the stochastic character of Wt, in general), then the function

f (x, y) , h (x) + y, (x, y) ∈ [−B,B]× [−α, α] (2.210)

is also Lipschitz with respect to x (for all y), with constant Lh as well. Therefore, under

the mild Lipschitz assumption for h (·), we have shown that the resulting Markovian

filter will indeed be asymptotically consistent. In practice, we expect that a smaller

constant Lh would result in better performance of the approximate filter, with best

results if h (·) constitutes a contraction, which makes f (·, y) uniformly contractive in y.

The above is indeed true, since filtering is essentially implemented via a stochastic dif-

ference equation itself, and, in general, any discretized approximation to this difference

equation is subject to error accumulation.

Of course, in order for the Markovian filter to be realizable, both the transition

matrix P and the initial value E−1 have to be determined. In all cases, under our
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assumptions, P (and obviously E−1) may be determined during an offline training

phase, and stored in memory. A brute force way for estimating P is to simulate Xt

(recall that the stochastic description of the transitions of Xt is known apriori). Then,

P can be empirically estimated using the Strong Law of Large Numbers (SLLN). The

aforementioned procedure results in excellent performance in practice (see Section 3.2).

Exactly the same idea may be employed in order to estimate E−1, given the initial

measure of Xt. Note that the above described empirical method for the estimation of

P and E−1 does not assume a specific model describing the temporal evolution of Xt,

or any particular choice of state quantization. Thus, it is generally applicable.

However, for the specific (though general) class of systems discussed above, we may

also present an analytical construction for P (and E−1, assuming PX−1
is known),

resulting in compact, closed form expressions. Indeed, by definition of X
LS
t , P (i, j)

and each Z iLS , whose center is xiLS , we get

P (i, j) ≡ P
(
h
(
X
LS
t−1

)
+Wt ∈ ZiLS

∣∣∣XLS
t−1 ≡ x

j
LS

)

=

∫

ZiLS

fW

(
x−h

(
xjLS

))
dx, (2.211)

which, based on (2.207), can be written in closed form as

P (i, j)≡
Φ

(
pijLS(α,B)

σ

)
−Φ
(
qijLS(α,B)

σ

)

2σΦ (α/σ)−σ 1(−∞,p)(q) , (2.212)

for all (i, j) ∈ N+
LS
× N+

LS
, where

pijLS (α,B) , min

{
α,xiLS−h

(
xjLS

)
+
B + α

LS

}
and (2.213)

qijLS (α,B) , max

{
−α,xiLS−h

(
xjLS

)
−B + α

LS

}
. (2.214)

Consequently, via (2.212), one may obtain the whole matrix P for any set of parameters

σ, α,B and for any resolution LS . As far as the initial value E−1 is concerned, assuming

that the initial measure of Xt, PX−1
, is known and recalling that the mapping QeLS (·)

is bijective, it will be true that

E−1 ≡
∑

j∈N+
LS

e
LS
j P

(
X
LS
−1 ≡ x

j
LS

)
, (2.215)
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where P
(
X
LS
−1 ≡ x

j
LS

)
≡
∫
ZjLS
PX−1

(dx) , for all j ∈ N+
LS

. Thus, E−1 can be evaluated

in closed form, as long as the aforementioned integrals can be analytically computed.

2.2.5.2 Marginal Filter

Marginal filters are, in general, slightly more complicated. However, at least in theory,

they are provably more powerful than Markovian filters, as the following result suggests.

Theorem 2.10. (Additive NARs are Almost CRT II) Let Xt ∈ R evolve as in

(2.207), with X−1 ∼ PX−1
, and where

• h (·) is continuous and uniformly bounded by B > 0.

• Wt follows the truncated Gaussian law in [−α, α], α > 0, with scale zero and

location σ > 0.

Then, for any quantizer QLS (·) and any initial measure PX−1
, Xt is almost condi-

tionally regular, in the sense that

ess sup
y∈R

∣∣κ(y|x)−κt
(
y|∈ZLS(x)

)∣∣≤δIILS (x)+fW (α) , (2.216)

for some uniformly bounded, time invariant, nonnegative sequence
{
δIIn (·)

}
n∈N+

, con-

verging to zero PXt-almost everywhere, for all t ∈ {−1} ∪ N.

Proof of Theorem 2.10. See Section 2.2.7.5 (Appendix E). �

As Theorem 2.10 suggests, regardless of the respective initial measures and without

any additional assumptions on the nature of h (·), except for continuity, the truncated

Gaussian NARs under consideration are almost conditionally regular of type II, in

the sense that the relevant condition on the respective stochastic kernel is modified by

adding the drift fW (α). In general, this drift parameter might cause error accumulation

during the implementation of the marginal filter. On the other hand though, it is true

that for any fixed scale parameter σ, fW (α) ≡ O
(
exp

(
−α2

))
. Thus, for sufficiently

large α, fW (α) will not essentially affect filter performance.
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Nevertheless, technically, this drift error can vanish, if one considers a white noise

Wt following a distribution admitting a finitely supported and essentially Lipschitz in

[−α, α] density, taking zero values at ±α. This is possible by observing that the proof to

Theorem 2.10 in fact works for such densities, without significant modifications. Then,

fW (±α) ≡ 0 and, hence, the resulting NAR will be CRT II. Such densities exist and are,

in fact, popular; examples are the Logit-Normal and the Raised Cosine densities, which

constitute nice truncated approximations to the Gaussian density, or more interesting

choices, such as the Beta and Kumarasawmy densities.

Regarding the implementation of the marginal filter, unlike the Markovian case,

closed forms for the elements of P (t) are very difficult to obtain, because they explicitly

depend on the marginal measures of Xt, for each t, as (2.182) suggests. Even if PX−1
is

an invariant measure, implying that the transition matrix is time invariant, the closed

form determination of P (i, j) requires proper choice of PX−1
, which, in most cases,

cannot be made by the user. Therefore, in most cases, P (t) has to be computed via, for

instance, simulation, and employing the SLLN. As restated above, this simple technique

gives excellent empirical results. Also, assuming knowledge of the initial measure PX−1
,

E−1 is again given by (2.215).

In order to demonstrate the applicability of the marginal filter, as well as empirically

evaluate the training-by-simulation technique advocated above, below we present some

additional experimental results (note that the following also holds for the Markovian

filter, under the appropriate assumptions). As we shall see, these results will also

confirm some aspects of the particular mode of convergence advocated in Theorem

2.3. Specifically, consider an additive NAR of the form discussed above, where h (x) ≡

tanh (1.3x) ∈ (−1, 1), that is, B ≡ 1, and where α ≡ 1 and σ ≡ 0.3. Additionally, the

resulting state process Xt is observed via the nonlinear functional yt ≡ [Xt]
3 1N+wt (1n

being the n-by-1 all-ones vector), where wt
i.i.d∼ N

(
0, σ2

wIN

)
, σ2

w ≡ 2, for all t ∈ N. In

order to stress test the marginal approximation approach, we set PX−1
≡ U [−2, 2] and

we arbitrarily assume stationarity of Xt, regardless of PX−1
being an invariant measure

or not. This is a common tactic in practice. Under this setting, E−1 ≡ L−1
S 1LS , whereas

a single P is estimated offline from 3 · 105 samples of a single simulated version of Xt.



90

5 10 15 20 25 30 35 40 45 50

Grid Resolution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
o
rs
t
A
b
sd
o
lu
te

E
rr
o
r

T ≡ 150, # of Trials: 10

N ≡ 4

N ≡ 12

N ≡ 20

Figure 2.3: Marginal filter: worst error with respect to filter resolution (LS), over 10
trials and for different values of N .

As Theorem 2.3 suggests, one should be interested in the approximation error be-

tween the approximate and exact filters of Xt. However, the exact nonlinear filter of Xt

is impossible to compute in a reasonable manner; besides, this is the motive for develop-

ing approximate filters. For that reason, we will further approximate the approximation

error by replacing the optimal filter of Xt by a particle filter (an also approximate global

method), but employing a very high number of particles. The resampling step of the

particle filter is implemented using systematic resampling, known to minimize Monte

Carlo (MC) variation [23]. In our simulations, 5000 particles are employed in each

filtering iteration.

In the above fashion, Fig. 2.3 shows, for each filtering resolution LS , ranging from

2 to 50, the worst absolute approximation error, chosen amongst 10 realizations (MC

trials) of the (approximate) filtering process, where the filtering horizon was chosen as

T ≡ 150 time steps. The error process depicted in Fig. 2.3 provides a good approxi-

mation to the exact uniform approximation error of (2.164) in Theorem 2.3.

From the figure, we observe that convergence of the worst approximation error is

confirmed; for all values of N , a clear strictly decreasing error trend is identified, as
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LS increases. This roughly justifies Theorem 2.3. What is more, at least for the 10

realizations collected for each combination of N and LS , the decay of the approximation

error is superstable, for all values of N . This indicates that, in practice, the realizations

of the approximate filtering process, which will ever be observed by the user, will be

such that convergence to the optimal filter is indeed uniform, and almost monotonic

(the “outliers” present at LS ≡ 22, 30, 34 are most probably due to the use of a particle

filter -a randomized estimator- for emulating the true filter of Xt). In the language

of Theorem 2.3, it will “always” be the case that ω ∈ Ω̂T (an event occurring with

high probability). This in turn implies that, although general, Theorem 2.3 might

be somewhat looser than reality for “good” hidden model setups. Finally, another

practically significant detail, which is revealed via Fig. 2.3, and seems to be a common

feature of grid based methods, is that the uniform error bound of the approximate

filters does not increase as a function of N . Note that this fact cannot be verified via

Theorem 2.3.

2.2.6 Conclusion

We have presented a comprehensive treatment of grid based approximate nonlinear

filtering of discrete time Markov processes observed in conditionally Gaussian noise,

relying on Markovian and marginal approximations of the state. For the Markovian

case, it has been shown that the resulting approximate filter is strongly asymptotically

optimal as long as the transition mapping of the state is Lipschitz. For the marginal

case, the novel concept of conditional regularity was proposed as a sufficient condition

for ensuring asymptotic optimality. Conditional regularity is proven to be potentially

more relaxed, compared to the state of the art in grid based filtering, revealing the

potential strength of the grid based approach, and also justifying its good performance

in applications. For both state approximation cases, convergence to the optimal filter

has been proven to be in a strong sense, i.e., compact in time and uniform in a fully

characterized event occurring almost certainly. Additionally, typical but important ex-

tensions of our results were discussed and justified. The whole theoretical development
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was based on a novel methodological scheme, especially for marginal state approxima-

tions. This focused more on the use of linear-algebraic techniques and less on measure

theoretic arguments, making the presentation more tangible and easier to grasp. In

our companion work (see Section 3.2), the results presented herein have been success-

fully exploited, providing theoretical guarantees in the context of channel estimation in

mobile wireless sensor networks.

2.2.7 Appendices

2.2.7.1 Appendix A: Proof of Lemma 2.14

Consider the event E , {ω ∈ Ω |Xt (ω) ∈ Z, ∀t ∈ N} of unity probability measure, that

is, with P (E) ≡ 1. Of course, by our assumptions so far, P (Ec) ≡ 0, with

Ec , {ω ∈ Ω |Xt (ω) /∈ Z, for some t ∈ N} (2.217)

being an “impossible” measurable set. Then, for ω ∈ E , we have Xt (ω) ∈ Z for all

t ∈ N and we may rewrite (2.169) as

X
LS
t (ω) = f

(
X
LS
t−1 (ω) ,Wt (ω)

)
+ ε

LS
t (ω) , (2.218)

for some bounded process ε
LS
t (ω). By Assumption 2.3,

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1
≤K(Wt (ω))

∥∥∥XLS
t−1(ω)−Xt−1(ω)

∥∥∥
1
+
∥∥∥εLSt (ω)

∥∥∥
1
, (2.219)

for all t ∈ N. By construction of the quantizer QLS (·), it is easy to show that, for all

ω ∈ E ,
∥∥∥εLSt (ω)

∥∥∥
1
≤ M |b− a| /2LS , for all t ∈ N. Then, iterating the right hand side

of (2.219) and using induction, it can be easily shown that

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1

≤
(

t∏

i=0

K(Wi (ω))

)∥∥∥XLS
−1 (ω)−X−1 (ω)

∥∥∥
1
+
M |b−a|

2LS


1+

t∑

j=1

t∏

i=j

K(Wi (ω))


, (2.220)

where X
LS
−1 (ω) and X−1 (ω) constitute the initial values of the processes X

LS
t (ω) and

Xt (ω), respectively. Let us focus on the second term on the RHS of (2.220). Since,
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by assumption, the respective Lipschitz constants are bounded with respect to the

supremum norm in E and for all t ∈ N, it holds that

t∑

j=1

t∏

i=j

K (Wi (ω)) ≤ sup
ω∈E

t∑

j=1

t∏

i=j

K (Wi (ω)) ,
t∑

j=1

t∏

i=j

K
(
W ∗i
)
. (2.221)

Note, however, that the supremum of (2.221) in t ∈ N indeed might not be finite.

Likewise, regarding the first term on the RHS of (2.220), we have

t∏

i=0

K(Wi (ω)) ≤ sup
ω∈E

t∏

i=0

K(Wi (ω)) ,
t∏

i=0

K
(
W ?
i

)
. (2.222)

As a result, assuming only Lipschitz continuity of f (·, ·) and recalling that X
LS
−1 ≡

QLS (X−1), taking the supremum on both sides (2.220) yields

sup
ω∈E

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1
≡ ess sup

ω∈Ω

∥∥∥XLS
t (ω)−Xt (ω)

∥∥∥
1

≤M |b− a|
2LS


1+

t∑

j=1

t∏

i=j

K
(
W ∗i
)
+

t∏

i=0

K
(
W ?
i

)

 −→
LS→∞

0, (2.223)

where the convergence rate may depend on each finite t, therefore only guaranteeing

convergence of X
LS
t (ω) in the pointwise sense in t and uniformly almost everywhere in

ω. Now, if f(·, ·) is uniformly contractive for all ω ∈ E , and for all t ∈ N, then it will be

true that K (Wt (ω)) ∈ [0, 1), surely in E and everywhere in time as well. Consequently,

focusing on the second term on the RHS of (2.220), it should be true that

1 +
t∑

j=1

t∏

i=j

K (Wi (ω)) ≤ 1 +
t∑

j=1

t∏

i=j

sup
l∈N

sup
ω∈E

K (Wl (ω))

,1 +
t∑

j=1

t∏

i=j

K∗≡
t∑

j=0

Kj
∗=

1−Kt+1
∗

1−K∗
≤ 1

1−K∗
, (2.224)

where K∗ ∈ [0, 1) constitutes a global “Lipschitz constant” for f (·, ·) in E and for all

t ∈ N. The situation is of course similar for the simpler first term on the RHS of (2.220).

As a result, we readily get that

sup
t∈N

ess sup
ω∈Ω

∥∥∥XLS
t (ω)−Xt(ω)

∥∥∥
1
≤M |b−a|

2LS

2−K∗
1−K∗

, (2.225)

where the RHS vanishes as LS →∞, thus proving the second part of the lemma. �
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2.2.7.2 Appendix B: Proof of Lemma 2.15

Since the mapping QeLS (·) is bijective and using the Markov property of Xt, it is true

that

EP̃
{
QeLS

(
X
LS
t

)∣∣∣Xt−1

}
≡ EP̃

{
QeLS

(
X
LS
t

)∣∣∣Xt−1

}

≡
∑

j∈N+
LS

e
LS
j P̃

(
Xt ∈ ZjLS

∣∣∣Xt−1

)
. (2.226)

First, let us consider the case where Xt is CRT II. Then, assuming the existence of a

stochastic kernel density, it follows that there is a nonnegative sequence
{
δIILS (·)

}
LS∈N

+

converging almost everywhere to 0 as LS →∞, such that, for all y ∈ RM×1, κ (y|x) ≤

δIILS (x) + κ
(
y|∈ZLS (x)

)
. Thus, for each particular choice of (y,x), there exists a

process εLS (y,x) ∈
[
−δIILS (x) , δIILS (x)

]
, such that

κ (y|x) ≡ εLS (y,x) + κ
(
y|∈ZLS (x)

)
. (2.227)

Consequently, (2.226) can be expressed as

EP̃
{
QeLS

(
X
LS
t

)∣∣∣Xt−1

}
=
∑

j∈N+
LS

e
LS
j

∫

ZjLS

κ (xt|Xt−1 (ω)) dxt

=
∑

j∈N+
LS

e
LS
j

∫

ZjLS

κ
(
xt|∈ZLS (Xt−1 (ω))

)
dxt + ε

LS
t

≡
∑

j∈N+
LS

e
LS
j P̃

(
X
LS
t ≡ xjLS

∣∣∣XLS
t−1

)
+ ε

LS
t , (2.228)

where the {Xt}-predictable error process ε
LS
t ∈ RLS×1 is defined as

ε
LS
t ,



{∫

ZjLS

εLS (xt, Xt−1) dxt

}

j∈N+
LS




T

. (2.229)

Then, since the state space of QeLS
(
X
LS
t

)
is finite with cardinality LS , we can write

EP̃
{
QeLS

(
X
LS
t

)∣∣∣Xt−1

}
≡ PQeLS

(
X
LS
t−1

)
+ ε

LS
t , (2.230)

or, equivalently,

EP̃
{
QeLS

(
X
LS
t

)
− PQeLS

(
X
LS
t−1

)
− εLSt

∣∣∣Xt−1

}
, EP̃ {M

e
t |Xt−1} ≡ 0. (2.231)
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As far as the quantity
∥∥∥εLSt

∥∥∥
1

is concerned, it is true that

∥∥∥εLSt
∥∥∥

1
≤
∑

j∈N+
LS

∫

ZjLS

∣∣εLS (xt, Xt−1)
∣∣ dxt

≤
∑

j∈N+
LS

∫

ZjLS

δIILS (Xt−1) dxt

= |b− a|M δIILS (Xt−1) −→
LS→∞

0, P̃ − a.s. (2.232)

and for all t ∈ N.

For the case where Xt constitutes a CRT I process, the situation is similar. Specif-

ically, (2.226) can be expressed as

EP̃
{
QeLS

(
X
LS
t

)∣∣∣Xt−1

}
≡
∑

j∈N+
LS

e
LS
j P̃

(
X
LS
t ≡ xjLS

∣∣∣XLS
t−1

)
+ ε

LS
t , (2.233)

where the process ε
LS
t ∈ RLS×1 is defined similarly to the previous case as

ε
LS
t ,

[
εLS

(
Z1
LS
, Xt−1

)
. . . εLS

(
ZLSLS , Xt−1

)]T
, (2.234)

with

∥∥∥εLSt
∥∥∥

1
≡
∑

j∈N+
LS

∣∣∣εLS
(
ZjLS , Xt−1

)∣∣∣

≤
∑

j∈N+
LS

δILS (Xt−1)

LS
≡ δILS (Xt−1) −→

LS→∞
0, (2.235)

P̃ − a.s. and for all t ∈ N. The proof is complete. �

2.2.7.3 Appendix C: Proof of Lemma 2.16

Let us first recall some identifications. First, it can be easily shown that

EP̃
{

Λ
LS
t

∣∣∣Yt
}
≡
∥∥∥EP̃

{
QeLS

(
X
LS
t

)
Λ
LS
t

∣∣∣Yt
}∥∥∥

1

,
∥∥∥EX

t

∥∥∥
1
, and (2.236)

EP̃
{

Λ
Z,LS
t

∣∣∣Yt
}
≡
∥∥∥EP̃

{
Z
LS
t Λ

Z,LS
t

∣∣∣Yt
}∥∥∥

1

,
∥∥∥EZ

t

∥∥∥
1
. (2.237)
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Then, we can write5

∥∥∥ELS (Xt|Yt)− ẼLS (Xt|Yt)
∥∥∥

1
≤ ‖X‖1

∣∣∣
∥∥∥EZ

t

∥∥∥
1
−
∥∥∥EX

t

∥∥∥
1

∣∣∣+
∥∥∥EX

t −EZ
t

∥∥∥
1∥∥∥EX

t

∥∥∥
1

. (2.238)

Since ‖X‖1 ≡M max {|a| , |b|} ,Mγ and using the reverse triangle inequality, we get

∥∥∥ELS (Xt|Yt)−ẼLS (Xt|Yt)
∥∥∥

1
≤2Mγ

∥∥∥EX
t −EZ

t

∥∥∥
1∥∥∥EX

t

∥∥∥
1

. (2.239)

Since Z
LS
t is a Markov chain, it can be readily shown that EZ

t satisfies the linear

recursion EZ
t = ΛtPE

Z
t−1, for all t ∈ N (also see Theorem 2.6). Similarly, using the

martingale difference type representation given in Lemma 2.15, it easy to show that

EX
t satisfies another recursion of the form

EX
t = ΛtPE

X
t−1 + ΛtEP̃

{
ε
LS
t Λ

LS
t−1

∣∣∣Yt−1

}
, ∀t ∈ N. (2.240)

Then, by induction, the error process EZ
t −EX

t satisfies

EZ
t −EX

t =


∏

i∈Nt

(Λt−iP )



(
EZ
−1 −EX

−1

)

−
∑

j∈Nt

(
j−1∏

i=0

(Λt−iP )

)
Λt−jEP̃

{
ε
LS
t−jΛ

LS
t−j−1

∣∣∣Yt−j−1

}
, (2.241)

for all t ∈ N. Setting

EZ
−1 ≡ EP̃

{
Z
LS
−1

}
≡ EP

{
QeLS

(
X
LS
−1

)}
≡ EX

−1 (2.242)

and taking the `1-norm of EZ
t −EX

t , it is true that

∥∥∥EZ
t −EX

t

∥∥∥
1
≤
∑

τ∈Nt

(
t−τ−1∏

i=0

∥∥∥Λ̂t−i

∥∥∥
1

)∥∥∥Λ̂τ

∥∥∥
1
EP̃
{

Λ̂
LS
τ−1

∥∥∥εLSτ
∥∥∥

1

∣∣∣Yτ−1

}

≤
∑

τ∈Nt

√
λ
−N(t−τ+1)
inf

√
λ−Nτinf EP̃

{∥∥∥εLSτ
∥∥∥

1

∣∣∣Yτ−1

}

≡
√
λ
−N(t+1)
inf

∑

τ∈Nt

EP̃
{∥∥∥εLSτ

∥∥∥
1

}
, P̃ − a.e., (2.243)

5
Here, ‖A‖1 denotes the operator norm induced by the `1-vector norm.
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since the process ε
LS
t is {Xt}-predictable and, under P̃, the processes Xt and yt are

statistically independent.

Now, assuming, for example, that Xt is CRT II (the case where Xt is CRT I is

similar), we get

∥∥∥EZ
t −EX

t

∥∥∥
1
≤
√
λ
−N(t+1)
inf |b− a|M

∑

τ∈Nt

EP̃
{
δIILS(Xτ−1)

}

≤ |b− a|M
N log

(
λinf

) sup
τ∈Nt

EP̃
{
δIILS(Xτ−1)

}
, (2.244)

P̃−a.e. (and, since P and P̃ are equivalent, P−a.e. as well) and for all t ∈ N. Regarding

the denominator on the RHS of (2.239), in the last part of the proof of Theorem 2.3,

the authors have shown that, in general, for any fixed T <∞,

inf
t∈NT

inf
ω∈Ω̂T

inf
LS∈N

EP̃
{

Λ
LS
t

∣∣∣Yt
}

(ω) > 0, (2.245)

where Ω̂T ⊆ Ω constitutes exactly the same measurable set of Theorem 2.4, occur-

ring with P-probability at least 1− (T+1)1−CNexp (−CN), for C ≥ 1. Thus, (2.239)

becomes

∥∥∥ELS (Xt|Yt)− ẼLS (Xt|Yt)
∥∥∥

1
≤

2Mγ|b− a|M sup
τ∈Nt

EP̃
{
δIILS (Xτ−1)

}

N log
(
λinf

)
inf
LS∈N

∥∥∥EX
t

∥∥∥
1

, (2.246)

P − a.e., and taking the supremum both with respect to ω ∈ Ω̂T and t ∈ NT on both

sides, we get

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ELS (Xt|Yt)− ẼLS (Xt|Yt)
∥∥∥

1
(ω)

≤
2Mγ |b− a|M sup

τ∈NT
EP̃
{
δIILS (Xτ−1)

}

N log
(
λinf

)
inf
t∈NT

inf
ω∈Ω̂T

inf
LS∈N

∥∥∥EX
t

∥∥∥
1

(ω)
. (2.247)

Since the sequence
{
δIILS (·)

}
LS

is PX−1
≡ PXt− UI, it is trivial that the sequence

{
δIILS (Xt−1 (·))

}
LS

is uniformly integrable, for all t ∈ NT . Then, because δIILS (Xt−1 (·))
a.e.−→

LS→∞
0 (with respect to P̃), Vitali’s Convergence Theorem implies that EP̃

{
δIILS (Xt−1)

}

−→
LS→∞

0, for all t ∈ NT , which in turn implies that supτ∈NT EP̃
{
δIILS (Xτ−1)

}
−→
LS→∞

0.

Thus, the RHS of (2.247) converges, and so does its LHS as well. �
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2.2.7.4 Appendix D: Proof of Theorem 2.9

For simplicity and clarity in the exposition, we consider the standard case where

φt (Xt) ≡ Xt, for all t ∈ N and ρ ≡ 1. Starting with the definitions, since V{Xt|Yt} is

given by (2.54), for all t ∈ N, it is reasonable to define the grid based “filter”

VLS (Xt|Yt) , ELS
(
XtX

T
t

∣∣∣Yt
)
− ELS(Xt|Yt)

(
ELS(Xt|Yt)

)T
, (2.248)

for all t ∈ N, where ELS
(
XtX

T
t

∣∣∣Yt
)

constitutes an entrywise operator on the matrix

XtX
T
t ∈ RM×M , defined as

ELS
(
XtX

T
t

∣∣∣Yt
)

(i, j) ,
1

‖Et‖1
∑

l∈N+
LS

xlLS (i)xlLS (j)Et (l) (2.249)

,
1

‖Et‖1
∑

l∈N+
LS

φij
(
xlLS

)
Et (l) , Φij Et

‖Et‖1
, (2.250)

for all (i, j) ∈ N+
M × N+

M . In the above, the function(al) φij : RLS×1 → R is obviously

bounded as continuous. Then, making use of the triangle inequality, the entrywise

`1-norm of VLS {Xt|Yt} − V {Xt|Yt} may be bounded from above by the sum of the

entrywise `1-norms of the differences between the first (Difference 1) and the second

(Difference 2) terms on the RHSs of (2.54) and (2.248), respectively. For Difference 1,

∥∥∥ELS
(
XtX

T
t

∣∣∣Yt
)
−E
{
XtX

T
t

∣∣∣Yt
}∥∥∥

E

1

≤M2 sup
(i,j)∈N+

M×N
+
M

∣∣∣∣E
{
φij (Xt)

∣∣∣Yt
}
−Φij Et

‖Et‖1

∣∣∣∣ , (2.251)

for all t ∈ N, where we have exploited the definitions above and which means that

Difference 1 converges to zero as LS → ∞, in the sense of Theorem 2.8, for any fixed

natural T < ∞ and for the same measurable set Ω̂T of Theorem 2.8 (also see Remark

2.19). For Difference 2, it is easy to show that

∥∥∥∥E
LS(Xt|Yt)

(
ELS(Xt|Yt)

)T
−E{Xt|Yt}(E{Xt|Yt})T

∥∥∥∥
E

1

≤
(∥∥∥ELS(Xt|Yt)

∥∥∥
1

+ ‖E{Xt|Yt}‖1
)∥∥∥ELS(Xt|Yt)−E{Xt|Yt}

∥∥∥
1

≤ 2Mγ
∥∥∥ELS(Xt|Yt)−E{Xt|Yt}

∥∥∥
1
, (2.252)
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for all t ∈ N, where we recall that γ ≡ max {|a| , |b|}. Again, Difference 2 converges

to zero as LS → ∞, exactly in the same sense as Difference 1 above. Consequently,

putting it altogether, we have shown that

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥VLS (Xt|Yt)− V {Xt|Yt}
∥∥∥
E

1
−→
LS→∞

0, (2.253)

proving asymptotic consistency of the approximate estimator.

Now, in order to show that VLS (Xt|Yt) indeed has the form advocated in Theorem

2.9, it suffices to observe that (2.249) in fact coincides with the (i, j)-th element of the

matrix

Xdiag

(
Et

‖Et‖1

)
XT ≡ ELS

(
XtX

T
t

∣∣∣Yt
)
, (2.254)

for all t ∈ N. The proof is now complete. �

2.2.7.5 Appendix E: Proof of Theorem 2.10

ess sup
y∈R

∣∣κ(y|x)−κt
(
y|∈ZLS(x)

)∣∣

≡ess sup
y∈R

∣∣∣∣∣∣∣∣∣
κ(y|x)−

∫

ZLS (x)
κ(y| θ)PXt−1

(dθ)

P
(
Xt−1 ∈ ZLS (x)

)

∣∣∣∣∣∣∣∣∣
≡ess sup

y∈R

∣∣∣∣∣∣∣∣∣

∫

ZLS (x)
κ(y|x)−κ(y| θ)PXt−1

(dθ)

P
(
Xt−1 ∈ ZLS (x)

)

∣∣∣∣∣∣∣∣∣

≤ ess sup
y,θ∈ZLS (x)

|κ (y|x)− κ (y| θ)| ≡ ess sup
y,θ∈ZLS (x)

|fW (y − h (x))− fW (y − h (θ))|

≤ ess sup
y,θ∈ZLS (x)

∣∣∣∣ϕ
(
y − h (x)

σ

)
1[−α,α] (y − h (x))− ϕ

(
y − h (θ)

σ

)
1[−α,α] (y − h (θ))

∣∣∣∣
2σΦ (α/σ)− σ ,

≤ ess sup
y,θ∈ZLS (x)




min

{
ϕ

(
y−h (x)

σ

)
, ϕ

(
y−h (θ)

σ

)}∣∣1[−α,α](y−h (x))−1[−α,α](y−h (θ))
∣∣

2σΦ (α/σ)− σ

+

∣∣∣∣ϕ
(
y−h (x)

σ

)
−ϕ
(
y−h (θ)

σ

)∣∣∣∣
2σΦ (α/σ)− σ


 (2.255)

By Definition 2.4 and the additive model under consideration, it is obvious that we

are interested in CRT II, which, for the case of an arbitrary initial measure PX−1
, is
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equivalent to the strengthened global demand that

ess sup
y∈RM×1

∣∣κ (y|x)− κt
(
y|∈ZLS (x)

)∣∣ ≤ δIILS ,t (x) , (2.256)

being true PXt− a.e., for some PXt− UI, nonnegative sequence
{
δIIn,t (·)

}
n∈N+

, with

δIIn,t (·) −→
n→∞

0, PXt−a.e, for all t ∈ {−1} ∪ NT , for some desired T ∈ [0,∞]. Of

course, κt
(
·|∈ZLS (·)

)
is defined exactly as in (2.183), but with an explicit subscript

“t”, indicating possible temporal variability.

Then, in regard to the additive NAR under consideration and using the respective

definitions, it is true that (see (2.255))

ess sup
y∈R

∣∣κ(y|x)−κt
(
y|∈ZLS(x)

)∣∣ ≤ ess sup
y∈R,θ∈ZLS (x)

ϕ
(α
σ

)
+

∣∣∣∣ϕ
(
y−h (x)

σ

)
−ϕ
(
y−h (θ)

σ

)∣∣∣∣
2σΦ (α/σ)− σ

≡ fW (α) + ess sup
y∈R,θ∈ZLS (x)

∣∣∣∣ϕ
(
y−h (x)

σ

)
−ϕ
(
y−h (θ)

σ

)∣∣∣∣
2σΦ (α/σ)− σ

≤ fW (α) +

sup
θ∈ZLS (x)

|h (x)− h (θ)|
(

2σ2Φ (α/σ)− σ2
)√

2eπ
, PXt−a.e.,

(2.257)

for all t ∈ {−1}∪NT . From (2.257), it is almost obvious that supθ∈ZLS (x) |h (x)− h (θ)|

vanishes as LS →∞. Indeed, for each fixed x, by definition of ZLS (x), it follows that

sup
θ∈ZLS (x)

|h (x)−h (θ)| ≡ sup∣∣∣θ−QLS (x)
∣∣∣≤B+α

LS

|h (x)−h (θ)|

≡
∣∣h (x)−h

(
θ∗LS (x)

)∣∣ , (2.258)

where θ∗LS (x) −→
LS→∞

x, PXt−a.e.. Thus, due to the continuity of h (·),

sup
θ∈ZLS (x)

|h (x)− h (θ)| −→
LS→∞

0, (2.259)

PXt−a.e., for all t ∈ {−1} ∪ NT . Now, note that supθ∈ZLS (x) |h (x)− h (θ)| ≤ 2B, set

δIILS (x) ,

sup
θ∈ZLS (x)

|h (x)− h (θ)|
(

2σ2Φ (α/σ)− σ2
)√

2eπ
(2.260)

and choose T ≡ ∞. The proof is complete. �
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2.2.7.6 Appendix F: Proof of Lemma 2.13

This is a technical proof and requires a deeper appeal to the theoretics of change of

probability measures. Until now, we have made use of the so called reverse [12] change

of measure formula

EP {Xt|Yt} ≡
EP̃ {XtΛt|Yt}
EP̃ {Λt|Yt}

, ∀t ∈ N. (2.261)

Formula (2.261) is characterized as reverse, simply because it provides a representation

for the conditional expectation of Xt under the original base measure P via operations

performed exclusively under another auxiliary, hypothetical base measure P̃. In full

generality, the likelihood ratio process Λt on the RHS of (2.261) may be expressed as

Λt≡

∏

i∈Nt

exp

(
1

2
‖yi‖22 −

1

2
(yi − µi (Xi))

T
(
Σi (Xi) + σ2

ξIN×N

)−1
(yi − µi (Xi))

)

∏

i∈Nt

√
det
(
Σi (Xi) + σ2

ξIN×N

)

≡
∏

i∈Nt

√
(2π)N

exp

(
−1

2
‖yi‖22

)
exp

(
−1

2
(yi−µi (Xi))

T
(
Σi (Xi)+σ2

ξIN×N

)−1
(yi−µi (Xi))

)

√
(2π)N

√
det
(
Σi (Xi) + σ2

ξIN×N

)

≡
∏

i∈Nt

N (yi;µi (Xi) ,Ci (Xi))

N (yi; 0, I)

,
∏

i∈Nt

Li (Xi,yi) ∈ R++, (2.262)

for all t ∈ N. Also, Λ−1 ≡ 1. Note that we have slightly overloaded the definition of the

Λi’s and Li’s, compared to (2.18). But this is fine, since the term exp
(
−‖yt‖22 /2

)
is

{Yt}-adapted. Here, Λt, as defined in (2.262), is interpreted precisely as the restriction

of the Radon-Nikodym derivative dP/dP̃ on the filtration {Ht}t∈N, generated by both

Xt (including X−1 in H0) and yt. That is,

dP
dP̃

∣∣∣∣
Ht

≡ Λt, ∀t ∈ N ∪ {−1} with (2.263)

1 ≡ Λ−1. (2.264)

Observe that, for at t ∈ N, Yt ⊂ Ht and, thus, (2.261) is a valid expression. In other

words, the Radon-Nikodym Theorem is applied accordingly on the measurable space

(Ω,Ht), for each t ∈ N.
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However, because the base measures P and P̃ are equivalent on Ht (that is, the one

is absolutely continuous with respect to the other), it is possible, in exactly the same

fashion as above, to “start” under P and express conditional expectations under P̃ via

a forward change of measure formula. In particular, it is true that

EP̃ {Xt|Yt} ≡
EP
{
XtΛ

−1
t

∣∣∣Yt
}

EP
{

Λ−1
t

∣∣∣Yt
} , ∀t ∈ N (2.265)

where, as it is natural, this time we have

dP̃
dP

∣∣∣∣∣
Ht

≡ Λ−1
t , ∀t ∈ N ∪ {−1} with (2.266)

1 ≡ Λ−1
−1. (2.267)

From the above, one may realize that the “mechanics” of the change of measure pro-

cedures (forward and reverse), at least in discrete time, are very well structured and

much simpler than they may initially seem to be at a first glance. In more generality, it

is true that if Ct is a sub σ-algebra of Ht and for a {Ht}-adapted process Ht [?,12,15],

EP̃ {Ht|Ct} ≡
EP
{
HtΛ

−1
t

∣∣∣Ct
}

EP
{

Λ−1
t

∣∣∣Ct
} , ∀t ∈ N. (2.268)

And, of course, we can even evaluate (conditional) probabilities under P̃ as

P̃ (Ht ∈ A|Ct) ≡ EP̃
{
1{Ht∈A}

∣∣Ct
}
≡

EP
{
1{Ht∈A}Λ

−1
t

∣∣∣Ct
}

EP
{

Λ−1
t

∣∣∣Ct
} , ∀t ∈ N, (2.269)

for any Borel set A.

Now, consider the process Xt ≡ f (Xt−1,Wt) , t ∈ N. As assumed throughout this

work, Xt is Markov under P, with Wt being a white noise (i.i.d.) innovations process.

Also, under P̃, Xt is again Markov with exactly the same dynamics, but independent of

yt. However, at this point nothing is known regarding the nature of Wt (distribution,

whiteness) and how it is related to X−1 and yt. The proof of the remarkable fact that,

without any other modification, P̃ may be chosen such that Wt indeed satisfies the

aforementioned properties under question, follows.

Without changing the respective Radon-Nikodym derivatives for either the forward

or reverse change of measure formulas presented above, let us enlarge the measurable
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space for which the change of measure procedure is valid, by defining {Ht}t∈N to be the

joint filtration generated by, yt, the initial condition X−1 and the innovations process

Wt (Why enlarged?). Our goal in the following will be to show the following, regarding

the base measure P̃, defined, for each t ∈ N, on the enlarged measurable space (Ω,Ht):

1. First, we will show that, under P̃, the observations process yt is mutually inde-

pendent of both X−1 and Wt and therefore also independent of the state Xt.

2. Second, we will show that, under P̃, Wt is white and identically distributed as as

under P (in addition to it being independent of yt from (1)).

3. Third, we will show that, under P̃, Xt is Markov with the same dynamics as

under P (in addition to it being independent of yt from (1)).

In order to embark on the rigorous proof of the above, define, for each t ∈ N, the

auxiliary σ-algebra H −
t , generated by {yi}i∈Nt−1

, X−1 and {Wi}i∈Nt .

1. For any α ∈ RN×1, it is true that (the “≤” operator is interpreted in the elementwise

sense)

P̃
(
yt ≤ α

∣∣∣H −
t

)
≡ EP̃

{
1{yt≤α}

∣∣H −
t

}

≡
EP
{
1{yt≤α}Λ

−1
t

∣∣∣H −
t

}

EP
{

Λ−1
t

∣∣∣H −
t

}

=
EP
{
1{yt≤α}L

−1
t

∣∣∣H −
t

}

EP
{
L−1
t

∣∣∣H −
t

} , ∀t ∈ N. (2.270)

Let us consider the denominator EP
{
L−1
t

∣∣∣H −
t

}
. We have

EP
{
L−1
t

∣∣∣H −
t

}
≡ EP

{ N (yt; 0, I)

N (yt;µt (Xt) ,Ct (Xt))

∣∣∣∣H
−
t

}

= EP





N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)

N
(
µt (Xt) +

√
Ct (Xt)ut;µt (Xt) ,Ct (Xt)

)

∣∣∣∣∣∣
H −
t



, (2.271)

and given the facts that knowledge ofX−1 and {Wi}i∈Nt completely determines {Xi}i∈Nt
and that the observations are conditionally independent given the states {Xi}i∈Nt , we

get, for every t ∈ N,

EP
{
L−1
t

∣∣∣H −
t

}
=

∫ N (yt; 0, I)

N (yt;µt (Xt) ,Ct (Xt))
N (yt;µt (Xt) ,Ct (Xt)) dyt ≡ 1. (2.272)
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Likewise, concerning the numerator EP
{
1{yt≤α}L

−1
t

∣∣∣H −
t

}
, it is true that

EP
{
1{yt≤α}L

−1
t

∣∣∣H −
t

}
≡ EP

{
1{yt≤α}

N (yt; 0, I)

N (yt;µt (Xt) ,Ct (Xt))

∣∣∣∣H
−
t

}

=

∫
1{yt≤α}N (yt; 0, I)

N (yt;µt (Xt) ,Ct (Xt))
N (yt;µt (Xt) ,Ct (Xt)) dyt

≡
∫
1{yt≤α}N (yt; 0, I) dyt, (2.273)

or, equivalently,

P̃
(
yt ≤ α

∣∣∣H −
t

)
≡ P̃ (yt ≤ α) , ∀t ∈ N (2.274)

and for any α ∈ RN×1. Therefore, yt is white standard normal under P̃ and, addition-

ally, mutually independent of X−1 and Wt and, therefore, mutually independent of Xt,

too.

2. Similarly, concerning the innovations process Wt, for any α ∈ RMW×1, it is true that

P̃ (Wt ≤ α |Ht−1 ) ≡
EP
{
1{Wt≤α}L

−1
t

∣∣∣Ht−1

}

EP
{
L−1
t

∣∣∣Ht−1

} , ∀t ∈ N. (2.275)

In this case, for the denominator, we again have

EP
{
L−1
t

∣∣∣Ht−1

}
≡EP





N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)

N
(
µt (Xt) +

√
Ct (Xt)ut;µt (Xt) ,Ct (Xt)

)

∣∣∣∣∣∣
Ht−1



, (2.276)

but because Xt ≡ f (Xt−1,Wt), knowledge of X−1 and {Wi}i∈Nt−1
completely deter-

mines {Xi}i∈Nt−1
, the processes Wt and ut are mutually independent and since the

random variable Wt is independent of {yi}i∈N+
t−1

, we get

EP
{
L−1
t

∣∣∣Ht−1

}

=

∫

Wt

∫

ut

N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)

N
(
µt (Xt) +

√
Ct (Xt)ut;µt (Xt) ,Ct (Xt)

)N (ut; 0, I) dutPWt
(dWt)

=

∫

Wt

∫

ut

√
det (Ct (Xt))N

(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)
dutPWt

(dWt)

≡
∫

Wt

∫

ut

det
(√

Ct (Xt)
)
N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)
dutPWt

(dWt)

=

∫

Wt

∫

ut

N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)
d
[
µt (Xt) +

√
Ct (Xt)ut

]
PWt

(dWt)

≡
∫

Wt

PWt
(dWt)
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≡ 1. (2.277)

Likewise, the numerator can be expanded as

EP
{
1{Wt≤α}L

−1
t

∣∣∣Ht−1

}

≡
∫

Wt

1{Wt≤α}

∫

ut

N
(
µt (Xt) +

√
Ct (Xt)ut; 0, I

)
N (ut; 0, I)

N
(
µt (Xt) +

√
Ct (Xt)ut;µt (Xt) ,Ct (Xt)

)dutPWt
(dWt)

≡
∫

Wt

1{Wt≤α}PWt
(dWt) , (2.278)

or, equivalently,

P̃ (Wt ≤ α |Ht−1 ) ≡ P̃ (Wt ≤ α) ≡ P (Wt ≤ α) , ∀t ∈ N (2.279)

and for any α ∈ RMW×1. Therefore, Wt is white under P̃, in addition to it being

independent of yt and with the same distribution as under P.

3. It suffices to show that, under P̃, the initial condition X−1 has the same distribution

as under P. If this is true, then, given all the above facts, under P̃, the process

Xt ≡ f (Xt−1,Wt) , t ∈ N is Markov with the same dynamics as under P. Indeed, for

any α ∈ RM×1, it is trivially true that

P̃ (X−1 ≤ α) ≡ P̃ (X−1 ≤ α |{∅,Ω})

=
EP
{
1{X−1≤α}Λ

−1
t

}

EP
{

Λ−1
t

} , ∀t ∈ N ∪ {−1} . (2.280)

Simply, choose t ≡ −1. QED. �
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Chapter 3

Space-Time Dynamic Wireless Channel Modeling

In addition to the temporal variation of the wireless medium, recently, considerable

interest has been expressed concerning its spatial variation as well. Such knowledge

are beneficial in emerging areas such as mobile beamforming [48] spatially controlled

communications (which is the concentration of the dissertation, as well), mobility en-

hanced physical layer security [49–51], communication-aware motion and path planning,

network routing, connectivity maintenance and physical layer based dynamic coverage

[52–54]. In all these cases, dynamic spatiotemporal channel estimation/tracking and

prediction becomes an essential part of mobility control, since it would provide valu-

able physical layer related information (channel maps), which is necessary for dynamic

decision making and stochastic control.

Two distinct models describing the spatiotemporal interactions of the communica-

tion channel, the latter seen holistically as a stochastic space-time field, are presented

below. The first model is based on parametric spatiotemporal Gaussian random field

theory. The second model is based on a hierarchical approach to channel modeling. Ad-

ditionally, for the latter model, non-trivial statistical inference is discussed, under an

approximate grid-based nonlinear filtering framework, exploiting the results presented

previously in Chapter 2.

The two models are presented under the assumption of a set of possibly mobile,

single antenna nodes in the space, communicating with some spatially fixed, reference

base station, as in Section 1.1. Both models are based on the and widely acceptable

description of the respective communication links as a multiplicative stochastic system,

consisting of three components; path loss, shadowing (large scale fading), and multipath

(small scale) fading.
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3.1 Parametric Spatiotemporal Gaussian Channel Modeling

This section introduces a general parametric stochastic model for describing the spa-

tiotemporal evolution of the wireless channel. For the benefit of the reader, a more

intuitive justification of this general model is also provided. Additionally, some ex-

tensions to the model are briefly discussed, highlighting its versatility, along with some

technical considerations, which will be of importance later, for analyzing the theoretical

consistency of the subsequently proposed techniques.

3.1.1 Large Scale Gaussian Channel Modeling in the dB Domain

At each space-time point (p, t) ∈ S × N+
NT

, the source-relay channel field may be

decomposed as the product of three space-time varying components [55], as

f (p, t) ≡ fPL(p)︸ ︷︷ ︸
path loss

fSH(p, t)︸ ︷︷ ︸
shadowing

fMF (p, t)︸ ︷︷ ︸
fading

eJ
2π‖p−pS‖2

λ , (3.1)

where J ,
√
−1 denotes the imaginary unit, λ > 0 denotes the wavelength employed

for the communication, and:

1. fPL (p) , ‖p− pS‖−`/22 is the path loss field, a deterministic quantity, with ` > 0

being the path loss exponent.

2. fSH (p, t) ∈ R is the shadowing field, whose square is, for each (p, t) ∈ S × N+
NT

, a

base-10 log-normal random variable with zero location.

3. fMF (p, t) ∈ C constitutes the multipath fading field, a stationary process with

known statistics.

The same decomposition holds in direct correspondence for the relay-destination chan-

nel field, g (p, t). Additionally, if “⊥⊥” means “is statistically independent of”, it is

assumed that [56]

[
fMF (p, t) gMF (p, t)

]
⊥⊥
[
fSH (p, t) gSH (p, t)

]
and (3.2)

fMF (p, t) ⊥⊥ gMF (p, t) . (3.3)
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In particular, if the phase of fMF (p, t) is denoted as φf (p, t) ∈ [−π, π], is further

assumed that
∣∣∣fMF (p, t)

∣∣∣ ⊥⊥ φf (p, t) , (3.4)

and the same for for gMF (p, t). It also follows that

[∣∣∣fMF (p, t)
∣∣∣
∣∣∣gMF (p, t)

∣∣∣
]
⊥⊥
[
fSH (p, t) gSH (p, t)

]
. (3.5)

We are interested in the magnitudes of both fields f (p, t) and g (p, t). Instead of

working with the multiplicative model described by (3.1), it is much preferable to work

in logarithmic scale. We may define the log-scale magnitude field

F (p, t) , αS (p) `+ σS (p, t) + ξS (p, t) , (3.6)

where we define

−αS (p) , 10 log10 (‖p− pS‖2) , (3.7)

σS (p, t) , 10 log10

(
fSH (p, t)

)2
and (3.8)

ξS (p, t) , 10 log10

∣∣∣fMF (p, t)
∣∣∣
2
− ρ, with (3.9)

ρ , E
{

10 log10

∣∣∣fMF (p, t)
∣∣∣
2
}
, (3.10)

for all (p, t) ∈ S × N+
NT

. It is then trivial to show that the magnitude of f (p, t) may

be reconstructed via the bijective formula

|f (p, t)| ≡ 10ρ/20 exp

(
log (10)

20
F (p, t)

)
, (3.11)

for all (p, t) ∈ S × N+
NT

, a “trick” that will prove very useful in the next section.

Regarding g (p, t), the log-scale field G (p, t) is defined in the same fashion, but replacing

the subscript “S” by “D”.

For each relay i ∈ N+
R, let us define the respective log-scale channel magnitude

processes Fi (t) , F (pi (t) , t) and Gi (t) , G (pi (t) , t), for all t ∈ N+
NT

. Of course, we

may stack all the Fi (t)’s defined in (3.6), resulting in the vector additive model

F (t) , αS (p (t)) `+ σS (t) + ξS (t) ∈ RR×1, (3.12)
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where αS (t), σS (t) and ξS (t) are defined accordingly. We can also define G (t) ,

αD (p (t)) ` + σD (t) + ξD (t) ∈ RR×1, with each quantity in direct correspondence

with (3.12). We may also define, in the same manner, the log-scale shadowing and

multipath fading processes σiS(D) (t) , σS(D) (pi (t) , t) and ξiS(D) (t) , ξS(D) (pi (t) , t),

for all t ∈ N+
NT

, respectively.

Next, let us focus on the spatiotemporal dynamics of {|fi (t)|}i and {|gi (t)|}i, which

are modeled through those of the shadowing components of {Fi (t)}i and {Gi (t)}i. It

is assumed that, for any NT and any deterministic ensemble of positions of the relays

in N+
NT

, say {p (t)}
t∈N+

NT

, the random vector

[
F T (1) GT (1) . . . F T (NT ) GT (NT )

]T
∈ R2RNT×1 (3.13)

is jointly Gaussian with known means and known covariance matrix. More specifically,

on a per node basis, we let ξiS(D) (t)
i.i.d.∼ N

(
0, σ2

ξ

)
and σiS(D) (t)

i.d.∼ N
(

0, η2
)

, for

all t ∈ N+
NT

and i ∈ N+
R [56, 57]. In particular, extending Gudmundson’s model [58]

in a straightforward way, we propose defining the spatiotemporal correlations of the

shadowing part of the channel as

E
{
σiS (k)σjS (l)

}
, η2 exp

(
−
∥∥pi (k)− pj (l)

∥∥
2

β
− |k − l|

γ

)
, (3.14)

and correspondingly for
{
σiD (t)

}
i∈N+

R

, and additionally,

E
{
σiS (k)σjD (l)

}
, E

{
σiS (k)σjS (l)

}
exp

(
−‖pS − pD‖2

δ

)
, (3.15)

for all (i, j) ∈ N+
R ×N+

R and for all (k, l) ∈ N+
NT
×N+

NT
. In the above, η2 > 0 and β > 0

are called the shadowing power and the correlation distance, respectively [58]. In this

fashion, we will call γ > 0 and δ > 0 the correlation time and the BS (Base Station)

correlation, respectively. For later reference, let us define the (cross)covariance matrices

ΣSD (k, l) , E
{
σS (k)σT

D (l)
}

+ 1{S≡D}1{k≡l}σ
2
ξIR ∈ SR, (3.16)

as well as

Σ (k, l) ,


ΣSS (k, l) ΣSD (k, l)

ΣSD (k, l) ΣDD (k, l)


 ∈ S2R, (3.17)
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for all (k, l) ∈ N+
NT
× N+

NT
. Using these definitions, the covariance matrix of the joint

distribution describing (3.13) can be readily expressed as

Σ ,




Σ (1, 1) Σ (1, 2) . . . Σ (1, NT )

Σ (2, 1) Σ (2, 2) . . . Σ (2, NT )

...
...

. . .
...

Σ (NT , 1) Σ (NT , 2) · · · Σ (NT , NT )



∈ S2RNT . (3.18)

Of course, in order for Σ to be a valid covariance matrix, it must be at least positive

semidefinite, that is, in S2RNT
+ . If fact, for nearly all cases of interest, Σ is guaranteed

to be strictly positive definite (or in S2RNT
++ ), as the following result suggests.

Lemma 3.1. (Positive (Semi)Definiteness of Σ) For all possible deterministic

trajectories of the relays on SR × N+
NT

, it is true that Σ ∈ S2RNT
++ , as long as σ2

ξ 6= 0.

Otherwise, Σ ∈ S2RNT
+ . In other words, as long as multipath (small-scale) fading is

present in the channel response, the joint Gaussian distribution of the channel vector

in (3.13) is guaranteed to be nonsingular.

Proof of Lemma 3.1. See Section 3.1.4.1 (Appendix A). �

3.1.2 Model Justification

As already mentioned, the spatial dependence among the source-relay and relay-

destination channel magnitudes (due to shadowing) is described via Gudmundson’s

model [58] (position related component in (3.14)), which has been very popular in the

literature and also experimentally verified [56, 58, 59]. Second, the Laplacian type of

temporal dependence among the same groups of channel magnitudes also constitutes

a reasonable choice, in the sense that channel magnitudes are expected to be signifi-

cantly correlated only for small time lags, whereas, for larger time lags, such dependence

should decay at a fast rate. For an experimental justification of the adopted model,

see, for instance, [60]. Of course, one could use any other positive (semi)definite kernel,

multiplying Gudmundson’s spatial correlation exponential kernel, without changing the

statement and proof of Lemma 3.1. Third, the incorporation of the spherical/isotropic

BS correlation term in our proposed general model (in (3.15)) can be justified by the
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Figure 3.1: A case where source-relay and relay-destination links are likely to be corre-
lated.

the existence of important cases where the source and destination might be close to

each other and yet no direct link may exist between them, as least as far as relay beam-

forming is concerned, which is the main ultimate focus of this work. See, for instance,

Fig. 3.1, where a “large” physical obstacle makes the direct communication between

the source and the destination impossible. Then, relay beamforming can be exploited in

order to enable efficient communication between the source and the destination, making

intelligent use of the available resources, in order to improve or maintain a certain QoS

in the network. In such cases, however, it is very likely that the shadowing parts of the

source-relay and relay-destination links will be spatially and/or temporally correlated

among each other, since shadowing is very much affected by the spatial characteristics

of the terrain, which, in such cases, is common for both beamforming phases (recall

that an AF policy is considered). Of course, by taking the BS station correlation δ → 0,

one recovers the generic/trivial case where the source-relay and relay-destination links

are mutually independent.
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3.1.3 Extensions & Some Technical Considerations

It should be also mentioned that our general description of the wireless channel as a

spatiotemporal Gaussian field, does not limit the covariance matrix Σ to be formed as

in (3.18); other choices for Σ will work fine in our subsequent developments, as long as,

for each fixed t ∈ N+
NT

, some mild conditions on the spatial interactions of the fields

σS(D) (p, t) and ξS(D) (p, t), are satisfied. In what follows, we consider only the source-

relay fields σS (p, t) and ξS (p, t). The same arguments hold for the relay-destination

fields σD (p, t) and ξD (p, t), in direct correspondence.

Fix t ∈ N+
NT

. Recall that, so far, we have defined the statistical behavior of both

σS (p, t) and ξS (p, t) only on a per-node basis. However, since the spatiotemporal

statistical model introduced in Section 3.1.1 is assumed to be valid for any possible

trajectory of the relays in SR×N+
NT

, each relay is allowed to be anywhere in S, at each

time slot t. This statistical construction induces the statistical structure (the laws) of

both fields σS (p, t) and ξS (p, t) on S.

As far as σS (p, t) is concerned, it is straightforward to see that it constitutes a

Gaussian process with zero mean, and a continuous and isotropic covariance kernel

Σσ : R2 → R, defined as

Σσ (τ ) , η2 exp

(
−‖τ‖2

β

)
, (3.19)

where τ , p − q ≥ 0, for all (p,q) ∈ S2, which agrees with the model introduced in

(3.14), for k ≡ l (Gudmundson’s model). Thus, σS (p, t) is a well defined random field.

However, this is not the case with ξS (p, t). Under no additional restrictions, ξS (p, t)

and ξS (q, t) are implicitly assumed to be independent for all (p,q) ∈ S2, such that

p 6= q. Thus, we are led to consider ξS (p, t) as a zero-mean white process in continuous

space. However, it is well known that such a process is technically problematic in a

measure theoretic framework. Nevertheless, we may observe that it is not actually

essential to characterize the covariance structure of ξS (p, t) for all (p,q) ∈ S2, with

p 6= q. This is due to the fact that, at each time slot t ∈ N+
NT

, it is physically impossible

for any two relays to be arbitrarily close to each other. We may thus make the following

simple assumption on the positions of the network nodes/sensors/relays, at each time
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slot t ∈ N+
NT

.

Assumption 3.1. (Relay Separation) There exists an εMF > 0, such that, for all

t ∈ N+
NT

and any ensemble of relay positions at time slot t, {pi (t)}
i∈N+

R
, it is true that

inf
(i,j)∈N+

R×N
+
R

with i 6=j

∥∥pi (t)− pj (t)
∥∥

2
> εMF . (3.20)

Assumption 3.1 simply states that, at each t ∈ N+
NT

, all relays are at least εMF

distance units apart from each other. If this constraint is satisfied, then, without any

loss of generality, we may define ξS (p, t) as a Gaussian field with zero mean, and with

any continuous, isotropic (say) covariance kernel Σξ : R2 → R, which satisfies

Σξ (τ ) ,





σ2
ξ , if τ ≡ 0

0, if ‖τ‖2 ≥ εMF

, (3.21)

and is arbitrarily defined otherwise. A simple example is the spherical, compactly

supported kernel with width εMF , defined as [61]

Σo (τ )

σ2
ξ

,





1− 3

2

‖τ‖2
εMF

+
1

2

(‖τ‖2
εMF

)3

, if ‖τ‖2 < εMF

0, if ‖τ‖2 ≥ εMF

. (3.22)

Of course, across (discrete) time slots, ξS (p, t) inherits whiteness without any technical

issue.

We should stress that the above assumptions are made for technical reasons and

will be transparent in the subsequent analysis, as long as the mild constraint (3.20) is

satisfied; from the perspective of the relays, all evaluations of ξS (p, t), at each time slot,

will be independent to each other. And, of course, εMF may be chosen small enough,

such that (3.20) is satisfied virtually always, assuming that the relays are sufficiently

far apart from each other, and/or that, at each time slot t, their new positions are

relatively close to their old positions, at time slot t− 1.

Based on the explicit statistical description of σS (p, t) and ξS (p, t) presented above,

we now additionally demand that both are spatial fields with (everywhere) continuous

sample paths. Equivalently, we demand that, for every ω ∈ Ω, σS (ω,p, t) ∈ C (S)
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and ξS (ω,p, t) ∈ C (S) , where C (A) denotes the set of continuous functions on some

qualifying set A. Sample path continuity of stationary Gaussian fields may be guar-

anteed under mild conditions on the respective lag-dependent covariance kernel, as the

following result suggests, however in a, slightly weaker, almost everywhere sense.

Theorem 3.1. (a.e.-Continuity of Gaussian Fields [62–64]) Let X (s), s ∈ RN , be

a real-valued, zero-mean, stationary Gaussian random field with a continuous covariance

kernel ΣX : RN → R. Suppose that there exist constants 0 < c < +∞ and ε, ζ > 0,

such that

1− ΣX (τ )

ΣX (0)
≤ c

|log (‖τ‖2)|1+ε , (3.23)

for all τ ∈
{
x ∈ RN

∣∣∣ ‖x‖2 < ζ
}

. Then, X (s) is P-almost everywhere sample path

continuous, or, equivalently, P − a.e.-continuous, on every compact subset K ⊂ RN

and, therefore, on RN itself. Additionally, X (s) is bounded, P-almost everywhere, as

well.

Utilizing Theorem 3.1 and generically assuming that Σξ , Σo, it is possible to

show that both fields σS (p, t) and ξS (p, t) satisfy the respective conditions and thus,

that both fields are a.e.-continuous on S. For σS (p, t), the reader is referred to ([63],

Example 2.2). Of course, instead of Σσ, any other kernel may be considered, as long

as the condition Theorem 3.1 is satisfied.

As far as ξS (p, t) is concerned, let us choose ε ≡ 1 and ζ ≡ 1 . We thus need to

show that, for every τ , ‖τ‖2 ∈ [0, 1), it holds that

1− Σo (τ )

Σo (0)
≤ c

(log (‖τ‖2))2 , (3.24)

or, equivalently,

1−
(

1− 3

2

τ

εMF
+

1

2

(
τ

εMF

)3
)
1{τ<εMF } ≤

c

(log (τ))2 , (3.25)

for some finite, positive constant c. We first consider the case where 1 > τ ≥ εMF > 0

(whenever εMF < 1, of course). We then have

1 ≤ (log (εMF ))2

(log (τ))2 ,
c1

(log (τ))2 , (3.26)
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easily verifying the condition required by Theorem 3.1. Now, when 0 ≤ τ < min {εMF , 1},

it is easy to see that there exists a finite c2 > 0, such that

τ ≤ c2

(log (τ))2 . (3.27)

If τ ≡ 0, then the inequality above holds for any choice of c2. If τ > 0, define a function

h : (0, 1)→ R+, as

h (τ) , τ (log (τ))2 . (3.28)

By a simple first derivative test, it follows that

h (τ) ≤ max
τ∈(0,1)

h (τ)

≡ h (exp (−2))

≡ 4 exp (−2) , ∀τ ∈ (0, 1) . (3.29)

Consequently, (3.27) is (loosely) satisfied for all τ ∈ [0,min {εMF , 1}) ⊆ (0, 1), by

choosing c2 ≡ 4 exp (−2). Now, observe that

3

2

τ

εMF
− 1

2

(
τ

εMF

)3

<
3

2

τ

εMF
≤ 3c2

2εMF (log (τ))2 . (3.30)

Finally, simply choose

c ≡ max

{
c1,

3c2

2εMF

}

≡ max

{
(log (εMF ))2 ,

6 exp (−2)

εMF

}
< +∞, (3.31)

which immediately implies (3.25). Therefore, we have shown that, if we choose Σξ ≡ Σo

, then, for any fixed, but arbitrarily small εMF > 0, the spatial field ξS (p, t) will also

be almost everywhere sample path continuous.

Observe that, via the analysis above, sample path continuity of the involved fields

can be ascertained, but only in the only almost everywhere sense. Nevertheless, it

easy to show that there always exist everywhere sample path continuous fields σ̃S (p, t)

and ξ̃S (p, t), which are indistinguishable from σS (p, t) and ξS (p, t), respectively [65].

Therefore, there is absolutely no loss of generality if we take both σS (p, t) and ξS (p, t)

to be sample path continuous, everywhere in Ω, and we will do so, hereafter.



116

Sample path continuity of all fields σS(D) (p, t) and ξS(D) (p, t) will be essential in

Chapter 4, where we rigorously discuss optimality of our proposed relay motion control

framework, with special focus on the relay beamforming problem.

We close this section by discussing, in some more detail, the temporal properties of

the evaluations of the fields σS (p, t) and σD (p, t) at any deterministic set of N (say)

positions {pi ∈ S}i∈N+
N

, same across all NT time slots. This results in the zero-mean,

stationary temporal Gaussian process

C (t) ,
[
{σS (pi, t)}i∈N+

N
{σD (pi, t)}i∈N+

N

]T
∈ R2N×1, t ∈ N+

NT
, (3.32)

with matrix covariance kernel ΣC : Z→ S2N
+ , defined, under the specific spatiotemporal

model considered, as

ΣC (ν) , exp

(
−|ν|
γ

)
Σ̃C ∈ S2N

+ , (3.33)

where ν , t− s, for all (t, s) ∈ N+
NT
× N+

NT
,

Σ̃C ,


1 κ

κ 1


4 Σ̂C ∈ S2N

+ , (3.34)

κ , exp

(
−‖pS − pD‖2

δ

)
< 1, (3.35)

Σ̂C (i, j) , Σσ

(
pi − pj

)
, ∀ (i, j) ∈ N+

N × N+
N , (3.36)

and with “4” denoting the operator of the Kronecker product. Then, the following

result is true.

Theorem 3.2. (C (t) is Markov) For any deterministic, time invariant set of points

{pi ∈ S}i∈N+
N

, the vector process C (t) ∈ R2N×1, t ∈ N+
NT

, as defined in (3.32)-

(3.36), may be represented as a stable order-1 vector autoregression, satisfying the linear

stochastic difference equation

X (t) ≡ ϕX (t− 1) +W (t) , t ∈ N+
NT
, (3.37)

where

ϕ , exp (−1/γ) < 1, (3.38)

X (0) ∼ N
(
0, Σ̃C

)
and (3.39)
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W (t)
i.i.d.∼ N

(
0,
(

1− ϕ2
)

Σ̃C

)
, ∀t ∈ N+

NT
. (3.40)

In particular, C (t) is Markov.

Proof of Theorem 3.2. The proof is a standard exercise in time series; see Section 3.1.4.2

(Appendix B). �

From a practical point of view, Theorem 3.2 is extremely valuable. Specifically,

the Markovian representation of C (t) may be employed in order to efficiently simulate

the spatiotemporal paths of the communication channel on any finite, but arbitrarily

fine grid. This is important, since it allows detailed numerical evaluation of all meth-

ods developed in this work. Theorem 3.2 also reveals that the channel model we have

considered actually agrees with experimental results presented in, for instance, [60,66],

which show that autoregressive processes constitute an adequate model for stochasti-

cally describing temporal correlations among wireless communication links.

Remark 3.1. Unfortunately, to the best of our knowledge, the channel process along a

specific relay trajectory, presented in Section 3.1.1, where the positions of the relays

are allowed to vary across time slots is no longer stationary and may not be shown to

satisfy the Markov Property. Therefore, in our analysis presented hereafter, we regard

the aforementioned process as a general, nonstationary Gaussian process. All inference

results presented below are based on this generic representation. �

Remark 3.2. For simplicity, all motion control problems in this work are formulated on

the plane (some subset of R2). This means that any motion of the relays of the network

along the third dimension of the space is indifferent to our channel model. Nevertheless,

under appropriate (based on the requirements discussed above) assumptions concerning

3D wireless channel modeling, all subsequent arguments would hold in exactly the same

fashion when fully unconstrained motion in R3 is assumed to affect the quality of the

wireless channel. �
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3.1.4 Appendices

3.1.4.1 Appendix A: Proof of Lemma 3.1

In the following, we will rely on an incremental construction of Σ. Initially, consider

the matrix

Σ̃ ,




Σ̃ (1, 1) Σ̃ (1, 2) . . . Σ̃ (1, NT )

Σ̃ (2, 1) Σ̃ (2, 2) . . . Σ̃ (2, NT )

...
...

. . .
...

Σ̃ (NT , 1) Σ̃ (NT , 2) · · · Σ̃ (NT , NT )



∈ SRNT , (3.41)

where, for each combination (k, l) ∈ N+
NT
× N+

NT
, Σ̃ (k, l) ∈ SR, with

Σ̃ (k, l) (i, j) , Σ̃
(
pi (k) ,pj (l)

)

, η2 exp

(
−
∥∥pi (k)− pj (l)

∥∥
2

β

)
, (3.42)

for all (i, j) ∈ N+
R × N+

R. By construction, Σ̃ is positive semidefinite, because the well

known exponential kernel Σ̃ : R2 × R2 → R++ defined above is positive (semi)definite.

Next, define the positive definite matrix

K ,


1 κ

κ 1


 , with (3.43)

κ , exp

(
−‖pS − pD‖2

δ

)
< 1 (3.44)

and consider the Tracy-Singh type of product of K and Σ̃

Σ̃K , K ◦ Σ̃ ,




K 4 Σ̃ (1, 1) K 4 Σ̃ (1, 2) . . . K 4 Σ̃ (1, NT )

K 4 Σ̃ (2, 1) K 4 Σ̃ (2, 2) . . . K 4 Σ̃ (2, NT )

...
...

. . .
...

K 4 Σ̃ (NT , 1) K 4 Σ̃ (NT , 2) · · · K 4 Σ̃ (NT , NT )



∈ S2RNT ,

(3.45)

where “4” denotes the operator of the Kronecker product. Then, for each (k, l) ∈

N+
NT
× N+

NT
, we have

K 4 Σ̃ (k, l) ≡


 Σ̃ (k, l) κΣ̃ (k, l)

κΣ̃ (k, l) Σ̃ (k, l)


 ∈ S2R. (3.46)
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It is easy to show that Σ̃K is positive semidefinite, that is, in S2RNT
+ . First, via a simple

inductive argument, it can be shown that, for compatible matrices A,B,C,D,

(AB) ◦ (CD) ≡ (A ◦C) (B ◦D) . (3.47)

Also, for compatible A,B, it is true that (A ◦B)T ≡ AT ◦BT . Since K and Σ̃ are sym-

metric, consider their spectral decompositions K ≡ UKΛKUT
K and Σ̃ ≡ U

Σ̃
Λ

Σ̃
UT

Σ̃
.

Given the identities stated above, we may write

Σ̃K ≡ K ◦ Σ̃ ≡
(
UKΛKUT

K

)
◦
(
U

Σ̃
Λ

Σ̃
UT

Σ̃

)

≡
(
UK ◦U

Σ̃

) (
ΛK ◦Λ

Σ̃

) (
UT

K ◦UT
Σ̃

)

≡
(
UK ◦U

Σ̃

) (
ΛK ◦Λ

Σ̃

) (
UK ◦U

Σ̃

)T
, (3.48)

where
(
UK ◦U

Σ̃

) (
UT

K ◦UT
Σ̃

)
≡
(
UKUT

K

)
◦
(
U

Σ̃
UT

Σ̃

)
≡ I2 ◦ IRNT ≡ I2RNT

, and

where the matrix ΛK◦ΛΣ̃
is easily shown to be diagonal and with nonnegative elements.

Thus, since (3.48) constitutes a valid spectral decomposition for Σ̃K, it follows that

Σ̃K ∈ S2RNT
+ .

As a last step, let E ∈ SNT , such that

E (k, l) , exp

(
−|k − l|

γ

)
, (3.49)

for all (k, l) ∈ N+
NT
× N+

NT
. Again, E is positive semidefinite, because the well known

Laplacian kernel is positive (semi)definite. Consider the matrix

Σ̃E , (E 4 12R×2R)� Σ̃K ∈ S2RNT , (3.50)

where “�” denotes the operator of the Schur-Hadamard product. Of course, since

the matrix 12R×2R is rank-1 and positive semidefinite, E 4 12R×2R will be positive

semidefinite as well. Consequently, by the Schur Product Theorem, Σ̃E will also be

positive semidefinite. Finally, observe that

Σ ≡ Σ̃E + σ2
ξI2RNT

, (3.51)

from where it follows that Σ ∈ S2RNT
++ , whenever σ2

ξ 6= 0. Our claims follow. �
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3.1.4.2 Appendix B: Proof of Theorem 3.2

Obviously, the vector process X (t) is Gaussian with mean zero. This is straightforward

to show. Therefore, what remains is, simply, to verify that the covariance structure of

X (t) is the same as that of C (t), that is, we need to show that

E
{
X (s)XT (t)

}
≡ E

{
C (s)CT (t)

}
, (3.52)

for all (s, t) ∈ N+
NT
× N+

NT
.

First, consider the case where s ≡ t. Then, we have

E {X (s)X (t)} ≡ E
{
X (t)XT (t)

}

= ϕ2E
{
X (t− 1)XT (t− 1)

}
+
(

1− ϕ2
)

Σ̃C . (3.53)

Observe, though, that, similarly to the scalar order-1 autoregressive model, the quantity

Σ̃C ≡ E
{
X (0)XT (0)

}
(3.54)

is a fixed point of the previously stated recursion for E
{
X (t)XT (t)

}
. Therefore, it

is true that

E
{
X (t)XT (t)

}
≡ Σ̃C ≡ ΣC (0) ≡ E

{
C (t)CT (t)

}
, (3.55)

which the desired result.

Now, consider the case where s < t. Then, it may be easily shown that

E {X (s)X (t)} ≡ ϕ2E
{
X (s− 1)XT (t− 1)

}
+ ϕE

{
W (s)XT (t− 1)

}
. (3.56)

Let us consider the second term on the RHS of (3.56). Expanding the recursion, we

may write

ϕE
{
W (s)XT (t− 1)

}
≡ ϕE

{
W (s)

(
ϕXT (t− 2) +W T (t− 1)

)}

≡ ϕ2E
{
W (s)XT (t− 2)

}

...

≡ ϕt−sE
{
W (s)W T (s)

}

≡ ϕt−s
(

1− ϕ2
)

Σ̃C . (3.57)
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We observe that this term depends only on the lag t− s. Thus, it is true that

E {X (s)X (t)} ≡ ϕ2E
{
X (s− 1)XT (t− 1)

}
+ ϕt−s

(
1− ϕ2

)
Σ̃C

= ϕ2·2E
{
X (s− 2)XT (t− 2)

}
+ ϕt−s

(
1− ϕ2

)
Σ̃C

(
1 + ϕ2

)

...

≡ ϕ2sE
{
X (0)XT (t− s)

}
+ ϕt−s

(
1− ϕ2

)
Σ̃C

∑

i∈Ns−1

(
ϕ2
)s−1

= ϕ2sE
{
X (0)XT (t− s)

}
+ ϕt−s

(
1− ϕ2s

)
Σ̃C . (3.58)

Further, we may further expand E
{
X (0)XT (t− s)

}
in similar fashion as above, to

get that

E
{
X (0)XT (t− s)

}
≡ ϕt−sΣ̃C . (3.59)

Exactly the same arguments may be made for the symmetric case where t < s. There-

fore, it follows that

E {X (s)X (t)} ≡ ϕ|t−s|Σ̃C

≡ exp

(
−|t− s|

γ

)
Σ̃C

≡ ΣC (t− s) (3.60)

for all (s, t) ∈ N+
NT
× N+

NT
, and we are done. �

3.2 Hierarchical Spatiotemporal Channel Modeling & Tracking

3.2.1 Introduction

The first basic approach to joint hierarchical spatiotemporal channel (specifically shad-

owing) tracking and prediction was presented in [67,68], where the use of Channel Gain

(CG) maps was advocated as an advantageous alternative to Power Spectral Density

(PSD) maps for cooperative spectrum sensing in the context of cognitive radios. Al-

though analytically appealing, the state space model considered in [67,68] for describing

the evolution of the wireless channel is rather restrictive; both the temporal dependen-

cies of the shadowing field and its spatial interactions are characterized by purely linear
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relationships, focusing mainly on modeling the spatiotemporal variations of the trend

of the field.

In this work, the descriptive channel parameters (e.g., the path loss exponent, the

shadowing power, etc.), referred to here as the channel state, are assumed to be tem-

porally varying. Specifically, the whole channel state constitutes a Markov process,

with known, but potentially non stationary, nonlinear and/or non Gaussian transition

model. Then, the spatiotemporal evolution of the channel is modeled as a two layer

stochastic system, or, in more specific terms, as a Hidden Markov Model (HMM) [12].

Our main contributions are summarized in the following. 1) Recognizing the in-

tractability of state estimation in partially observable nonlinear systems, we show that

grid based approximate nonlinear filtering is meaningfully applicable to the channel

state tracking and spatiotemporal channel prediction problems of interest. Due to the

relatively small dimension of the channel state, grid based methods constitute excel-

lent approximation candidates for the problems at hand. Exploiting filtered estimates

of the channel state, a recursive spatiotemporal predictor of the channel gains (mag-

nitudes) is developed (Theorem 3.4), providing real time sequential estimates for the

respective CG map, for each sensor in the network. Relevant recursive estimators

of the (conditional) variance of the channel gain predictions are also developed, pro-

viding the user with an additional measure of estimate uncertainty (Theorem 3.5).

2) Leveraging the fundamental theory developed in Section 2.2, we provide condi-

tions, under which the proposed channel state tracker, spatiotemporal predictor and

conditional variance estimator, briefly described above, are asymptotically optimal, in a

common, strong sense (Theorems 3.4 and 3.5), providing a unified convergence criterion

for all three sequential estimators.

The proposed statistical model describing the joint spatiotemporal behavior of the

channel is inspired by [56], where the channel state was assumed to be constant through

time and space, therefore constituting a set of fixed but unknown parameters. More-

over, the proposed formulation is more general than [67], since it can deal with complex

variations in the channel characteristics, other than linear variations in the shadowing
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trend. However, in our state space description of the channel, spatial statistical de-

pendencies are present only in the observations process, whereas in [67], the trend of

the shadowing component of the channel, constituting the hidden state, respectively, is

jointly spatiotemporally colored. Also, here, we will consider the detrended problem,

which, as stated, is similar to the one treated in [56] (in a non Bayesian framework).

This is a good approximation of reality [52–54, 56, 59]. A complete channel model,

combining both a non zero spatiotemporally varying shadowing trend in the fashion of

[67, 68] with the temporally varying channel parameters advocated here, would result

in a non trivial problem in nonlinear estimation and constitutes a subject of future

research.

Note on notation : In this work, notation is generic and is not in direct agreement

with Section 1.1. This is because the respective channel modeling problem is considered

in generic terms. However, it should be easy for the reader to make the necessary con-

nections. Additionally, the reader might observe that some quantities, defined previously

in Section 3.1, are refined under another framework. This is intentional and is made

for the sake of clarity in the exposition. Essentially, the meaning of those quantities

will depend on the particular channel model considered.

3.2.2 System Model & Problem Formulation

Here, for simplicity, we consider the wireless network illustrated in Fig. 3.2. This net-

work may be seen as either the source-relay or relay-destination half of the beamforming

network of Section 1.1. As before, the environment is assumed to be a compact planar

region S ⊂ R2, where there exists a fixed, stationary antenna at a reference position

pref ∈ S, capable of at least information broadcasting. There also exist a set of N single

antenna sensors, possibly mobile and located at pi ≡ pi (t) ∈ S, i ∈ N+
N , monitoring the

channel relative to the reference antenna. These sensors may be a subset of the total

nodes in the network and are responsible for the respective channel estimation tasks.

The sensors can cooperate, and further, can either communicate with a fusion center

(in a centralized setting), or exchange basic messages amongst each other (in a decen-

tralized/infrastructureless scenario) using a low rate dedicated channel. Concerning
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(
pi, Ypi

(Xt)
)
∈ S×C

i ∈ N+
N , t ∈ N

Reference

Network Nodes
(Possibly Mobile)

pi

pref ∈ S

pj

Space S ⊂ R2

Figure 3.2: The wireless network of interest.

channel modeling, we adopt a flat fading model between each node and the reference

antenna. It is additionally assumed that channel reciprocity holds and that all network

nodes can perfectly observe their individual channel realizations (e.g. magnitudes and

potentially phases) relative to the reference antenna [56]. The channels are modeled

as spatially and temporally correlated, discrete time random processes (spatiotemporal

random fields), sharing the same channel environment, at least as far as the underlying

characteristics of the communication medium are concerned.

As already mentioned, the channel state encompasses statistics of the communi-

cation medium, and is here modeled as a multidimensional discrete time stochastic

process, evolving in time according to a known statistical model. The channel state

is assumed to be hidden from the network nodes; the nodes can observe their respec-

tive channel realizations, but they cannot directly observe the characteristics of the

mechanism that generates these realizations.

3.2.2.1 Hierarchical Description of the Wireless Channel

Let Xt ≡ Xt (ω) ⊂ RM×1, t ∈ N, ω ∈ Ω denote the hidden channel state. As in Section

3.1, and employing generic notation, the relative to the reference antenna complex
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channel process at each network node i ∈ N+
N can be decomposed as [55]

Yi (pi (t) , Xt) ≡ Ypi
(Xt) ≡ Y PL

pi
(Xt)︸ ︷︷ ︸

path loss

Y SH
i (Xt)︸ ︷︷ ︸

shadowing

YMF
pi

(t)
︸ ︷︷ ︸

fading

exp

(
J

2πdi (t)

λ

)
, (3.61)

where J ,
√
−1, λ > 0 denotes the wavelength employed for the communication, and

where: 1) Y PL
pi

(Xt) ∈ R denotes path loss, defined as

Y PL
pi

(Xt) ,
∥∥pi (t)− pref

∥∥−`(Xt)/2
2

, (di (t))−`(Xt)/2 , (3.62)

where ` (Xt) > 0 is the state dependent path loss exponent, which is the same for all

network nodes. 2) Y SH
i (Xt) ∈ R denotes the shadowing part of the channel model. Its

square, conditionally on Xt, constitutes a base-10 log-normal random variable with zero

location and scale depending on Xt. 3) YMF
pi

(t) ∈ C represents multipath fading, which,

for simplicity, is assumed to be a spatiotemporally white1, strictly stationary process

with fully known statistical description, not associated with Xt, therefore being an

unpredictable complex “observation noise”. Making the substitution Yi (pi (t) , Xt) ←

exp (−J2πdi (t) /λ)Yi (pi (t) , Xt), we can define the observation of node i in logarithmic

scale as

yit , 10 log10

∣∣Ypi
(Xt)

∣∣2 − 10E
{

log10

∣∣∣YMF
pi

(t)
∣∣∣
2
}

= −10` (Xt) log10 (di (t)) + 10 log10

(
Y SH
i (Xt)

)2

+ 10 log10

∣∣∣YMF
pi

(t)
∣∣∣
2
, αit` (Xt) + σit (Xt) + ξit, (3.63)

where (·) denotes the zero mean version of a random variable. We should emphasize

here that by “measurement” or “observation” we refer to the predictable component of

the channel, which is described in terms of the channel magnitude.

Remark 3.3. In the above, we have assumed that the path loss exponent is spatially

invariant over S. This assumption is essential for our subsequent derivations. It should

hold in sufficiently small, spatially homogeneous environments, in a statistical sense.

1
See [56] and references therein for arguing about the validity of this assumption. Also, throughout

this work, the samples of a discrete time white stochastic process are understood to be independent.
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For instance, the path loss exponent is spatially invariant when changes in the spa-

tial characteristics of the environment have a common global effect on the large scale

characteristics of the wireless channel. Also see [54,56] and the references therein. �

3.2.2.2 Modeling SpatioTemporal Correlations of the Observations

In similar fashion as in [52–54,56,59], where relevant experimental verification was also

presented, the following further assumptions are made2: ξit
i.i.d.∼ N

(
0, σ2

ξ

)
,∀i ∈ N+

N and

∀t ∈ N [57]. Second, conditioned on Xt, σ
i
t (Xt)

i.d.∼ N
(

0, η2 (Xt)
)
,∀i ∈ N+

N . This stems

from the fact that
(
Y SH
i (Xt)

)2
is (base-10) log-normally distributed. Additionally, it is

assumed that the members of the set
{
σit (Xt)

}
i∈N+

N

constitute jointly normal, spatially

correlated random variables with conditional on Xt autocorrelation kernel (covariance

matrix) [56,58]

Σt (θ (Xt)) (i, j) , θ1 (Xt) exp

(
− dij (t)

θ2 (Xt)

)
, (3.64)

for all (i, j) ∈ N+
N × N+

N , where dij (t) ,
∥∥pi (t)− pj (t)

∥∥
2
∈ R+ and θ (Xt) ,

[θ1 (Xt) θ2 (Xt)]
T with θ1 (Xt) ≡ η2 (Xt). As in Section 3.1, this is the Gudmund-

son’s model, where, in this case, the first parameter, θ1 (Xt), is the shadowing power,

controls the variance of the shadowing part of the channel, whereas the second, θ2 (Xt),

is the correlation distance, controls the decay rate of the spatial correlation between the

channels for each pair of network nodes. Note that instead of (3.64), any other kernel

can be assumed, as long as it satisfies some mild continuity properties (see below).

In order to completely define an overall observation process for all nodes in the

network, we may stack the N individual channel processes of (3.63), yielding

yt ≡ αt` (Xt) + σt (Xt) + ξt, ∀t ∈ N, (3.65)

where yt ∈ RN×1, αt ∈ RN×1, σt (Xt) ∈ RN×1 and ξt ∈ RN×1 are defined accord-

ingly. The observation process (3.65) can also be rewritten in the canonical form

yt ≡ αt` (Xt) +
√

Ct (Xt)ut, ∀t ∈ N, where ut ≡ ut (ω) constitutes a standard Gaus-

sian white noise process and Ct (Xt) , Σt (θ (Xt))+σ2
ξIN×N ∈ DC, with DC obviously

bounded.

2
In what follows, “i.d.” means “identically distributed” and “i.i.d.” means “independent and i.d.”.
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3.2.2.3 Modeling Temporal Correlations of the State

Let us now concentrate more on the channel state process Xt ∈ RM×1. In this work,

we will assume that Xt constitutes a Markov process with known but nonlinear and

(possibly) nonstationary dynamics, described by a stochastic kernel Kt : B
(
RM×1

)
×

RM×1 7→ [0, 1] , t ∈ N (B (A) denotes the Borel σ-algebra generated by the set A). Also,

we will assume that the state is compactly supported, that is, ∀t ∈ N, Xt ∈ [a, b]M ,

Z ⊂ RM×1, almost surely. Depending on the available information, instead of using

stochastic kernels, we may alternatively assume that Xt , ft (Xt−1,Wt) ∈ Z,∀t ∈ N,

where, for each t, ft : Z ×W a.s.7→ Z constitutes a state transition mapping and Wt ≡

Wt (ω) ∈ W ⊆ RMW×1, for t ∈ N, ω ∈ Ω, denotes a white noise process with known

measure and state space W.

From now on, without loss of generality, we will drop the subscript “t” from both

the stochastic kernels and transition mappings governing Xt, therefore assuming sta-

tionarity of the state. In the case of nonstationary nonlinear dynamics, all subsequent

conditions on the stochastic mechanism generating Xt (see Section 3.2.3) must hold for

all t ∈ N (that is, for each “mode” of the state Xt). Further, for mathematical sim-

plicity, we will assume that ` (Xt) ≡ Xt (1) ∈ R and θ (Xt) ≡ [Xt (2) Xt (3)]T ∈ RM×1,

that is, M ≡ 3. From the previous discussion, it follows that the partially observable

system defined above can be described by





Xt |Xt−1 ∼ K (Xt ∈ dx |Xt−1 ) or

Xt ≡ f (Xt−1,Wt)

yt ≡ AtXt + σt (Xt) + ξt

, ∀t ∈ N, (3.66)

where At ,
[
αt 0N×(M−1)

]
∈ RN×M .

Remark 3.4. The assumption that the channel state is almost surely compactly sup-

ported in Z is not restrictive. There is no constraint on how large Z is; it just needs

to be compact. In fact, our approach will still be valid as long as the state process

lies in some compact set, at least with very high probability. Here, the aforementioned

compactness assumption is made mainly for analytical tractability. �
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3.2.2.4 Technical Assumptions

In addition to the above and in favor of supporting our analytical arguments presented in

subsequent sections, we make the following mild assumptions on the functional structure

of the observation process of (3.66). First, throughout this work, we assume that

λinf ≡ inf
t∈N

inf
x∈Z

λmin (Ct (x)) > 1, (3.67)

a requirement which can always be satisfied by appropriate normalization of the ob-

servations. Second, regarding modeling spatial correlations due to shadowing, any

choice of autocorrelation kernel is permitted, as long as the resulting covariance ma-

trix Σt : Z 7→ DΣ ⊂ RN×N is elementwise Lipschitz continuous on Z with respect to

the `1-norm, uniformly in N (Assumption 2.2 in Section 2.1). Note that the isotropic

autocorrelation previously defined by (3.64) can be easily verified to satisfy the afore-

mentioned Lipschitz assumption, considering the compactness of the state vector.

3.2.2.5 Precise Definition of Problems of Interest

Let us now define the problems of interest in this work in a mathematically precise

way. Hereafter, strict optimality will be meant to be in the Minimum Mean Square

Sense (MMSE). Also, in the following, the natural filtration generated by the causal

observation process yt is defined as the sequence {Yt}t∈N, where Yt , σ
{
{yi}i∈Nt

}
,

for all t ∈ N.

Problem 3.1. (Sequential Channel State Tracking (SCST)) Develop a sequen-

tial, finite dimensional scheme for (approximately) evaluating the optimal filter or ρ-

step predictor of the channel state Xt on the basis of the available channel magnitude

observations up to time t, given by

X̂t+ρ , E
{
Xt+ρ

∣∣Yt
}
, ∀t ∈ N, (3.68)

where ρ ≥ 0 constitutes the prediction horizon . The computational complexity of the

sequential scheme may not grow as more observations become available.

Problem 3.2. (Sequential Spatiotemporal Channel Prediction (SSCP)) De-

velop a sequential, finite dimensional scheme for (approximately) evaluating the optimal
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spatiotemporal predictor of the channel magnitude at position q ∈ R2 and time t + ρ

(ρ ≥ 0 is the prediction horizon) given the available channel magnitude observations up

to time t, expressed as

ŷt+ρ (q) , E
{
yt+ρ (q)

∣∣Yt
}
, ∀t ∈ N. (3.69)

Again, the computational complexity of the sequential scheme may not grow as more

observations become available.

It should be emphasized that the main ingredients rendering the Bayesian solution

of the SCST and SSCP problems possible are the assumption of spatial invariance of

the path loss exponent in S, as well as modeling the log-shadowing part of the wireless

channel as a conditionally Gaussian stochastic process. As a result, the channel mea-

surements at the sensors can be stochastically described by the HMM defined through

(3.66), enabling the use of the theory of nonlinear filtering for deriving effective recur-

sive algorithmic schemes allowing temporal tracking/prediction of the channel state, as

well as spatiotemporal prediction of the channel itself at unobserved locations.

As we will see later in Section 3.2.4, the SSCP problem can be solved sequentially

using the respective sequential solution of the SCST problem. However, unfortunately,

it is well known that, except for some very special cases [13–16], the respective nonlinear

filtering and prediction problems do not admit any known sequential (in particular,

recursive) representation [11,12]. Therefore, in order to solve the SCST problem defined

above, one typically has to rely on carefully designed and robust approximations to the

problem of nonlinear filtering of Markov processes in discrete time, focusing on the class

of systems (HMMs) described by (3.66). This is exactly where the theory developed

in Chapter 2 may be exploited, providing theoretical guarantees for correctness and

stability.

3.2.3 Grid-Based Approximate Filtering: Preliminaries

In the following, we present some preliminary results in asymptotically optimal, approx-

imate recursive filtering of Markov processes. These results were previously developed

in Section 2.2, and are presented here for immediate reference and completeness.
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3.2.3.1 Uniform State Quantizations

In the previous section, we have assumed that Xt ∈ Z ≡ [a, b]M ,∀t ∈ N, a.s., where,

geometrically, Z constitutes an M -hypercube, representing the compact set of support

of the state Xt. In the fashion of Section 2.2, let us discretize Z into LS , LM

hypercubic M -dimensional cells of identical volume (each dimension is partitioned in to

L intervals). The center of mass of the l-th cell is denoted as xlLS , l ∈ N+
LS

. Then, letting

XLS ,
{
xlLS

}
l∈N+

LS

, the quantizer QLS : (Z,B (Z)) 7→
(
XLS , 2

XLS
)

is defined as the

bijective and measurable function which uniquely maps the l-th cell to the respective

reconstruction point xlLS , ∀l ∈ N+
LS

, according to some predefined ordering. That is,

QLS (x) , xlLS if and only if x belongs to the respective cell. Given QLS (·), we consider

the following discrete approximations of the process Xt:

• The Markovian Quantization of the state, defined as

X̃
LS
t , QLS

(
f
(
X̃
LS
t−1,Wt

))
∈ XLS , ∀t ∈ N. (3.70)

where we have assumed explicitly apriori knowledge of a transition mapping, and

• The Marginal Quantization of the state, defined as

X
LS
t , QLS (Xt) ∈ XLS , ∀t ∈ N. (3.71)

Additionally, for later reference, define the column stochastic matrices P̃ ∈ [0, 1]LS×LS

and P ∈ [0, 1]LS×LS as

P̃ (i, j) , P
(
X̃
LS
t ≡ xiLS

∣∣∣ X̃LS
t−1 ≡ x

j
LS

)
and (3.72)

P (i, j) , P
(
X
LS
t ≡ xiLS

∣∣∣XLS
t−1 ≡ xjLS

)
, (3.73)

for all (i, j) ∈ N+
LS
×N+

LS
, obviously related to the Markovian and marginal state quan-

tizations, respectively. Due to its structure, P̃ can at least be constructed simulating

X̃
LS
t . From the Law of Large Numbers, the entries of P̃ can be estimated with arbi-

trary precision from a sufficiently large number of realizations of X̃
LS
t , t ∈ NT , for some

T <∞. Similarly, P can be estimated also with arbitrary precision from multiple real-

izations of X
LS
t . Note, however, that in this case, it is possible to obtain P only using
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λt

(
xjLS

)
,

exp

(
−1

2

(
yt−Atx

j
LS

)T (
Σt

(
xjLS

)
+ σ2

ξIN×N

)−1 (
yt−Atx

j
LS

))

√
det
(
Σt

(
xjLS

)
+ σ2

ξIN×N

) (3.74)

> 0, ∀j ∈ N+
LS

available realizations of the state, without actually knowing either the stochastic kernel

or the transition mapping of Xt (if such exists). For example, this could be made

possible in sufficiently controlled physical experiments, specially designed for system

identification, where the state Xt would be a fully observable stochastic process. In all

subsequent analytical arguments, we will assume perfect knowledge of either P̃ or P ,

depending on the type of state quantization employed. The case where the aforemen-

tioned transition matrix is imperfectly known (as it actually happens in reality) or not

(initially) known at all raises interesting questions with practical significance, however

out of the scope of this particular work.

3.2.3.2 Asymptotically Optimal Recursive Estimators

Leveraging the ensemble of results presented in Section 2.2, we may carefully formulate

the following fundamental result, which will be the basis for all subsequent analysis. In

the following, QeLS :
(
XLS , 2

XLS
)
7→
(
BLS , 2

BLS
)

constitutes a fixed bijective mapping

between the sets XLS and BLS ,
{

e
LS
l

}
l∈N+

LS

, where the latter contains as elements

the complete standard basis in RLS×1.

Theorem 3.3. (Approximate Filtering of Markov Processes) Define the recon-

struction and likelihood matrices

X ,
[
x1
LS
x2
LS

. . . x
LS
LS

]
∈ RM×LS and (3.75)

Λt , diag
(
λt

(
x1
LS

)
. . . λt

(
x
LS
LS

))
∈ RLS×LS , (3.76)

respectively, where, for all t ∈ N, λt

(
xjLS

)
is given by (3.74) (top of page). Then,

for any deterministic functional family
{
φt : RM×1 7→ RMφt

×1
}
t∈N

with bounded and
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continuous members, and any finite prediction horizon ρ ≥ 0, the optimal filter and

ρ-step predictor of the transformed process φt (Xt) may be approximated as

ELS
(
φt+ρ

(
Xt+ρ

)∣∣Yt
)
, Φt+ρ

P ρEt
‖Et‖1

∈ RMφt
×1, (3.77)

for all t ∈ N, where the process Et ∈ RLS×1 on the RHS of (3.77) satisfies the simple

linear recursion

Et ≡ ΛtPEt−1, ∀t ∈ N, (3.78)

with P ≡ P̃
(
P
)

being the transition matrix when the Markovian (marginal) quantiza-

tion is employed, and

Φt+ρ ,
[
φt+ρ

(
x1
LS

)
. . . φt+ρ

(
x
LS
LS

)]
∈ RMφt

×LS . (3.79)

The filter is initialized accordingly setting E−1 ≡ E
{
QeLS

(
X̃
LS
−1

)}
or E

{
QeLS

(
X
LS
−1

)}
.

Additionally, pick any natural T <∞ and suppose either of the following:

• The Markovian quantization is employed, whose initial value coincides with that

of Xt, and f : Z ×W a.s.7→ Z is Lipschitz in Z, for every element of W.

• The marginal quantization is employed and Xt is conditionally regular.

Then, for any finite prediction horizon ρ ≥ 0, there exists a measurable subset Ω̂T ⊆ Ω

with P-measure at least 1− (T + 1)1−CN exp (−CN), such that

sup
t∈NT

sup
ω∈Ω̂T

∥∥∥ELS
(
φt+ρ

(
Xt+ρ

)∣∣Yt
)
− E

{
φt+ρ

(
Xt+ρ

)∣∣Yt
}∥∥∥

1
−→
LS→∞

0, (3.80)

for any free, finite constant C ≥ 1.

We observe that the two quantization strategies of interest (Markovian and marginal)

both guarantee the same filter performance, in the sense that the respective approx-

imate filters converge to the optimal MMSE state estimator under the same criteria.

However, the assumptions on the internal nonlinear dynamics of the hidden state are

quite different for the two types of state quantization considered and require different

level of apriori knowledge about the structure of the hidden system under consideration

(e.g., system description via a transition mapping or a stochastic kernel).
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3.2.4 SCST & SSCP in Mobile Wireless Networks

In this section, we present the main results of this work. In a nutshell, we propose two

theoretically consistent sequential algorithms for approximately solving the SCST and

SSCP problems, defined previously in Section 3.2.2.5, both derived as applications of

Theorem 3.3, presented in Section 3.2.3. Non trivial, real time recursive estimators of

the variance of the proposed spatiotemporal channel predictors are also developed.

3.2.4.1 SCST

At this point, it is apparent that Theorem 3.3 in fact directly provides us with an ef-

fective approximate and recursive estimator for the channel state Xt. Simply, choose

φt as the identity, for all t ∈ N (recall that the channel state is assumed to be almost

surely compactly supported). Therefore, Theorem 3.3 immediately solves the SCST

problem, since the resulting filtering/prediction scheme is sequential and, as new chan-

nel measurements become available, its computational complexity is fixed, due to time

invariance of the type of numerical operations required for each filter update.

3.2.4.2 SSCP

Defining the natural filtration generated by both the state Xt and the observations yt

as {Ht}t∈N, Ht , σ
{
{Xt,yi}i∈Nt

}
and using the tower property of expectations, it is

true that ŷt (q) ≡ E {E {yt (q)|Ht}|Yt} , for all t ∈ N. Let us define the quantities

αq , −10 log10

(∥∥q− pref
∥∥

2

)
, (3.81)

σq (Xt)
∣∣Xt

def∼ N
(

0, η2 (Xt)
)

and (3.82)

ξq def∼ N
(

0, σ2
ξ

)
, (3.83)

where, also by definition,

E






σt (Xt)

σq (Xt)




σt (Xt)

σq (Xt)



T
∣∣∣∣∣∣∣
Xt




,


 Σt (Xt) σq

t (Xt)
(
σq
t (Xt)

)T
η2 (Xt)


 , (3.84)

with each element of σq
t (Xt) ∈ RN×1 given by

σq
t (Xt) (j) , θ1 (Xt) exp

(
−
∥∥q− pj (t)

∥∥
2

θ2 (Xt)

)
, (3.85)
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for all j ∈ N+
N . Then, it must be true that

yt (q) ≡ AqXt + σq (Xt) + ξq, (3.86)

where Aq ,
[
αq 01×(M−1)

]
∈ R1×M , since yt (q) can be equivalently considered as an

additional observation, measured by an imaginary sensor at position q, which of course

was not used for state estimation in the SCST problem treated above. Using well known

properties of jointly Gaussian random vectors [25],

E {yt (q)|Ht} = AqXt+
(
σq
t (Xt)

)T
C−1
t (Xt) (yt−AtXt)

, φt (Xt,yt) . (3.87)

As a result, ŷt (q) can be expressed as

ŷt (q) ≡ E {φt (Xt,yt)|Yt} , (3.88)

that is, the SSCP problem coincides with the problem of sequentially evaluating the

optimal nonlinear filter of the functional φt (·, ·). However, note that Theorem 3.3 is

not directly applicable for developing an approximate recursive filter for the MMSE

optimal predictor (3.88), because the functional φt (·, ·) depends, except for the state,

on the observations process (sensor measurements) as well. However, exploiting the

linearity of φt (·, ·) on yt, the following result is true, which constitutes a generalization

of Theorem 3.3, and provides a closed form approximate solution to the SSCP problem,

at the same time enjoying asymptotic optimality in the sense of Theorem (3.3).

Theorem 3.4. (Approximate Solution to the SSCP Problem) The optimal spa-

tiotemporal predictor of the channel magnitude at an arbitrary position q ∈ R2, ŷt+ρ (q),

can be approximated as

ELS
(
yt+ρ (q)

∣∣Yt
)
,





〈
φt (yt) ,

Et
‖Et‖1

〉
, ρ ≡ 0

AqX
P ρEt
‖Et‖1

, ρ ≥ 1

, (3.89)

for all t ∈ N, where the process Et ∈ RLS×1 can be recursively evaluated as in Theorem

3.3 and where the stochastic process φt (yt) ∈ RLS×1 is defined as

φt (yt) ,
[
φt

(
x1
LS
,yt

)
. . . φt

(
x
LS
LS
,yt

)]T
, (3.90)
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with φt : RM×1 × RN×1 7→ R defined as in (3.87). Additionally, under the same

conditions as in Theorem 3.3, it is true that

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣ELS
(
yt+ρ (q)

∣∣Yt
)
− ŷt+ρ (q)

∣∣∣ −→
LS→∞

0. (3.91)

Proof of Theorem 3.4. See Section 3.2.7.1 (Appendix A). �

Theorem 3.4 presented above provides asymptotically optimal estimators for the

approximate evaluation of the conditional expectation of yt+ρ (q), for all ρ ≥ 0 and

q ∈ R2. In a practical setting, though, the availability of a measure of uncertainty of

the point estimate ŷt+ρ (q) would also be of interest. Next, we provide approximate

estimators for the conditional variance of yt+ρ (q), given the available information up

to and including time t, Yt. In the following, let B ,
[
0 1 01×(M−2)

]
∈ R1×M .

Theorem 3.5. (Approximate Filters for the Conditional Variance of Channel

Predictions) The optimal predictor of the variance of yt+ρ (q), conditional on the

filtration {Yt}t∈N, at an arbitrary position q ∈ R2, VYt

{
yt+ρ (q)

}
, can be approximated

as follows:

If ρ ≡ 0,

VLSYt
(yt (q)) , σ2

ξ +

〈
φVt (yt) ,

Et
‖Et‖1

〉

−
(
ELS (yt (q)|Yt)

)2
, (3.92)

whereas, if ρ > 0,

VLSYt

(
yt+ρ (q)

)
, σ2

ξ +

〈
φVt+ρ,

P ρEt
‖Et‖1

〉

−
(
ELS

(
yt+ρ (q)

∣∣Yt
))2

, (3.93)

for all t ∈ N. In the above, the process Et ∈ RLS×1 can be recursively evaluated as in

Theorem 3.3, the process φt (yt) ∈ RLS×1 is defined as

φVt (yt) ,
[
φVt

(
x1
LS
,yt

)
. . . φVt

(
x
LS
LS
,yt

)]T
, (3.94)

with φVt

(
xjLS ,yt

)
∈ R given by (3.97) and (3.98) (bottom of next page), and

φVt+ρ ,
[
φVt+ρ

(
x1
LS

)
. . . φVt+ρ

(
x
LS
LS

)]T
∈ RLS×1, (3.95)
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with φVt+ρ

(
xjLS

)
,
(
AqxjLS

)2
+BxjLS , j ∈ N+

LS
. Additionally, under the usual circum-

stances, it is true that

sup
t∈NT
ω∈Ω̂T

∣∣∣VLSYt

(
yt+ρ (q)

)
− VYt

{
yt+ρ (q)

}∣∣∣ −→
LS→∞

0. (3.96)

Proof of Theorem 3.5. See Section 3.2.7.2 (Appendix B). �

3.2.4.3 Computational Complexity: A Fair Comparison

A careful inspection of the filtering schemes proposed for the solution of the SCST

and SSCP problems, respectively, reveals that, in the worst case, the computational

complexity of both algorithms scales as O
(
L2
S + LSN

3
)

. The two algorithms can also

be combined into one with the same computational requirements. The cubic term is

due to the inversion and the determinant calculation of the involved covariance matrices

and it is computationally bearable, at least for a relatively small number of sensors.

However, note that when the sensors are stationary or when their trajectories are fixed

and known apriori, these operations may be completely bypassed by precomputing

the required set of matrices and storing them in memory. Then, the computational

complexity reduces to O
(
L2
S + LSN

2
)

.

Treating N as a constant, the complexity of both algorithms considered scales as

O
(
L2
S

)
. In the particular problems we are interested in here, though, the state di-

mension M is relatively low, almost always between 2 and 5 (here, it is assumed that

M ≡ 3 at most), which makes grid based filters practically feasible. Additionally, as

it has already been shown in [56] in a non Bayesian framework, the sensitivity of the

quality of spatial channel prediction on the estimation error of the shadowing power

and decorrelation distance of the channel is indeed very weak, making it possible to

potentially consider a lower quantization resolution for the aforementioned quantities

without significant compromise in terms of the prediction quality. As a result, grid

φVt

(
xjLS ,yt

)
, φ2

t

(
xjLS ,yt

)
+ ψo

t,q

(
xjLS

)
+BxjLS ∈ R, (3.97)

ψo
t,q

(
xjLS

)
,
(
σq
t

(
xjLS

))T
C−1
t

(
xjLS

)
σq
t

(
xjLS

)
∈ R, j ∈ N+

LS
. (3.98)
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based approximate filters are indeed adequate for the problems of interest, taking ad-

vantage of their strong asymptotic properties.

Naturally, particle filters [23,69] would constitute the rivals of our grid based filtering

approach. Particle filters exhibit a computational complexity of O (LS), with LS being

the number of particles [23]. That is, their complexity is one order of magnitude smaller

compared to the complexity of grid based filters. Note, though, that in grid based

filtering, the one and only computational operation incurring a complexity of O
(
L2
S

)

is the Matrix-Vector (MV) operation PEt−1. In fact, in the numerical simulations

conducted in Section 3.2.5, it was revealed that, at least for the problems of interest, the

required operations on the involved covariance matrices are far more computationally

intensive than the aforementioned MV multiplication. These operations would be also

required in any particle filter implementation as well.

Continuing the comparison with particle filters, another issue of major importance

is filter behavior with respect to the curse of dimensionality. Particle filters do suffer

from the curse. In general, their expected approximation error scales exponentially with

respect to the dimensionality of the HMM under consideration [41–43, 70]. Of course,

it can be easily seen that grid based filters also suffer from similar drawbacks, a fact

that strengthens the common belief that, at least in the context of nonlinear filtering,

the curse of dimensionality constitutes a ubiquitous phenomenon.

3.2.4.4 Advantages of Grid Based Filters over Particle Filters

When applied to lower dimensional hidden systems, which are of interest in this work

(see previous section), grid based filtering possesses some definite advantages over par-

ticle filtering techniques. From the theoretical point of view, as stated in Theorems

3.3, 3.4 and 3.5, the convergence of the grid based approximate filters proposed in this

work for effectively solving the SCST and SSCP problems is compact in time and,

most importantly, uniform in a purely characterized set of almost full probability mea-

sure, which explicitly depends on T and N . In favor of the particle filtering approach,

Egoroff’s Theorem [21] states that almost sure convergence implies almost uniform con-

vergence, that is, there exists a measurable set of arbitrarily small measure, such that
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the convergence is uniform in the complement of this set (almost uniform convergence).

However, Egoroff’s Theorem constitutes a purely abstract result, being of small prac-

tical importance, providing no practically useful theoretical guarantee. On the other

hand, for the proposed grid based filters, Egoroff’s Theorem is purely quantitatively

justified. In fact, for fixed T , convergence to both the MMSE optimal nonlinear fil-

ter and channel gain map tracker (channel spatiotemporal predictor) occurs uniformly

in a common set that approximates the certain event, at an exponential rate in N .

As a result, the dimensionality of the observations process stochastically stabilizes the

proposed approximate filter. This is practically important because it shows that the

proposed estimators will behave better with a larger number of channel measurements,

favoring networks with a large number of sensors. Our results provide a way of the-

oretically justifying the aforementioned intuitively expected behavior of the proposed

estimators. To the best of our knowledge, such type of results do not exist in the case of

particle filters. Also see for a thorough theoretical comparison of grid based filters with

particle filters, showing that, at least theoretically, a larger class of hidden processes

can be supported by the former, compared to the latter.

From the practical point of view, grid based approximate filters exhibit two impor-

tant advantages over particle filters, as follows. First, at least for lower dimensional

systems, grid based filters require a smaller number of quantization cells when compared

to the number of particles required in order to attain the same level of performance.

See the comparative survey [44], where this favorable behavior of grid based filters is

clearly demonstrated. Of course, smaller number of cells are practically important,

since, this way, the actual computational resources required for the implementation of

the filtering process are greatly reduced, also justifying the somewhat higher compu-

tational complexity of grid based filtering schemes. Second, grid based approximate

filters can be implemented in a lot easier and definitely more robust manner, compared

to particle filtering schemes. One reason for this is that grid based filters constitute

truly recursive and deterministic estimators, without the need of any random sampling

operation, which can be a complicated procedure, especially for hidden systems with
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complex internal nonlinear dynamics. Additionally, it is well known [23,45] that parti-

cle filters suffer from some inherent defects, such as the problem of properly choosing

the importance density and the phenomenon of particle degeneracy, potentially causing

performance degradation. On the other hand, by nature, grid based filters require no

fine tuning at all and their performance is determined almost exclusively by the grid

resolution, in order to ensure satisfactory filtering performance.

3.2.5 Numerical Simulations

The effectiveness of the proposed estimation schemes will be validated through a number

of synthetic experiments. Specifically, we consider N ≡ 30 sensors randomly scattered

on a fine square grid, in the region S ≡ [0, 40]2 (in m×m). The position of the reference

antenna is fixed at pref ≡ [25 10]T . The variance of the multipath fading is set at σ2
ξ ≡ 2

and, as far as shadowing is concerned, we assume that the correlation distance is known

and equal to 10m. As a result, in this example, the channel state is two dimensional,

with Xt (1) ≡ µ (Xt) and Xt (2) ≡ η2 (Xt) ≡ θ (Xt). Each component of the channel

state evolves according to

Xt (1) ≡ tanh (γ (Xt−1 (1)− 2)) +Wt + 2, and (3.99)

Xt (2) ≡ 0.3 |tanh (sin (γXt−1 (2)Wt) +

+Xt−1 (2)Wt) +Wt|+ 25, ∀t ∈ N, (3.100)

for some arbitrary but known initial conditions, where γ ≡ 1.6 and Wt ≡ clip[−1,1] (Gt),

Gt
i.i.d.∼ N (0, 1), with clip[−1,1] (·), denoting the hard limiter operation into [−1, 1]. Note

the strong coupling between the two equations, driven by the same noise realizations.

The above equations attempt to model a situation where the path loss exponent is

somewhat slowly varying between 0 and 4, whereas the shadowing power is rapidly

varying between 25 and 25.6. The state Xt ≡ [Xt (1) Xt (2)]T was uniformly quantized

into LS ≡ 302 cells (that is, L ≡ 30). Concerning state quantization, the marginal type

was employed, where the transition matrix P ≡ P was simulated from 105 realizations

of the Markov process under consideration. More specifically, each entry of the ma-

trix, corresponding to a conditional probability, was estimated by counting how many
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Figure 3.3: (a) Demonstration of channel state tracking for 250 time steps. The es-
timates are produced from the observations of 30 randomly scattered sensors in the
square region [−20m, 20m]2. (b) Spatial prediction and temporal tracking of the chan-
nel combined. The spatial grid consists of 3600 points and the results are obtained
using just 30 spatial measurements.
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times the respective event happens given the respective condition, how many times the

respective condition happens and, then, dividing the former with the latter. For sim-

plicity, we focus on the case where ρ ≡ 0, that is, we consider the problems of temporal

filtering of the channel state and spatial prediction of the channel, both being instances

of the SCST and SSCP problems, respectively.

Fig. 3.3a demonstrates the channel state tracking (temporal filtering of the state)

for 250 time steps, according to the experimental setting stated above. As illustrated

in the figure, the quality of the estimates is very good, considering the nonlinearity

present both in the state process and the observations at each sensor in the network.

It also apparent that the produced estimation process behaves in a stable manner, as

time increases.

The filter of the channel state can subsequently be used for predicting the channel

magnitude at unexplored positions. This is illustrated in Fig. 3.3b. The random field

used for modeling the spatial channel process was generated using a spatial grid of 3600

points and the respective predicted values were obtained from just N ≡ 30 randomly

scattered spatial channel measurements in the region of interest. From the figure, it can

be seen that the quality of the predicted process is very good, especially considering

the fact that the channel is reconstructed using only 0.83 % of the total number of grid

points in the region of interest. Of course, the quality of the spatial prediction improves

as the number of spatial measurements (and therefore nodes/sensors) increases.

The practical advantages of the grid based filtering approach discussed in this work

against particle filtering techniques will also be experimentally evaluated, confirming

the discussion presented in Section 3.2.4.4. Focusing only on hidden state estimation

(in our context, SCST), let us additionally fix the shadowing power as η2 ≡ 25, set

σ2
ξ ≡ 4.1 and assume that the time varying path loss coefficient µ (Xt) ≡ Xt evolves

according to the non-Gaussian model

Xt ≡ tanh (γ (Xt−1 − 2)Wt) +Wt + 2, ∀t ∈ N, (3.101)

with the rest of parameters same as before. This system simulates a particularly noisy

environment for state estimation, which is typical in wireless channel realizations. Fig.
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Figure 3.4: (a) MSE comparison between particle and grid based filters. Left: Monte
Carlo (MC) estimate of the MSE for T ≡ 300 time instants (103 MC trials). Right:
MSE as a function of grid resolution/number of particles. (b) MSE as a function of
training realizations: Left: keeping N fixed and varying LS . Right: keeping LS fixed
and varying N .
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3.4a shows two different comparisons of the achieved MSE between the grid based

estimator described herein and a standard SIR (Sequential Importance Resampling)

particle filter with systematic resampling in the resampling step, known to minimize

the Monte Carlo (MC) variation [23]. Resampling is performed at each iteration of

the particle filter. Specifically, Fig. 3.4a (left) shows an MC estimate of the MSE for

T ≡ 300 time instants of the operation of the two filtering schemes, where LS ≡ 10,

N ≡ 10 and the total number of MC trials averaged in order to produce the presented

results is 1000. From the figure, it is apparent that the grid based filter performs

considerably better than the particle filter. The average MSE for the grid based filter

more than 3dB lower than that for the particle filter, which translates into more than

twice as large quadratic error for the latter. What is more, the fluctuations of the

estimates of the MSE around the average is quite larger for the particle filter compared

to the grid based one, translating in larger variance of the corresponding state estimates.

Fig. 3.4a (right) shows the MSE of the two filtering schemes as a function of the

grid resolution/number of particles, LS . N is the same as before and the respective

estimates of the MSE were computed by time averaging of T ≡ 3000 filtering estimates.

Again, grid based filtering performs strictly better than particle filtering, since all MSE

estimates for the former are strictly smaller than the respective estimates for the latter,

for the same LS . In particular, we observe that grid based filtering with a grid resolution

of 10 to 20 performs better than particle filtering utilizing 50 particles, or more. Overall,

Fig. 3.4a shows that grid based filters perform better especially in the low-resolution-

high-noise regime, which is important regarding the applications of interest in this

work.

Finally, Fig. 3.4b provides an experimental assessment of the discussed grid based

filters with respect to model mismatch. As noted earlier in this section, the transition

matrix P is produced using the Law of Large Numbers, by simulation. This is performed

as an offline training phase, before the actual operation of the approximate filter. As

a result, it is important to at least experimentally verify the behavior of the filter

as a function of the number of state realizations employed in the training phase for

estimating P . This is what Fig. 3.4b depicts, where the hidden system is assumed to
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be the same as before (see (3.101)), but where η2 ≡ 1 and σ2
ξ ≡ 1. These choices are

made in order to reduce the error floor of the filtering process, making the errors due

to model mismatch more pronounced.

More specifically, Fig. 3.4b (left) shows the MSE, computed by time averaging

as above, as a function of training realizations, for different values of LS , keeping N

fixed at 10. From the figure, it is apparent that the sensitivity to model mismatch is

very well behaved, with around 200 training realizations being sufficient in order for

the approximate filter to reach its error floor. The situation is similar in Fig. 3.4b

(right), where LS ≡ 20 and N is varying. However, in this case, a larger number of

realizations (∼ 3000) is required in order to achieve the respective MSE floors. This is

due to the larger grid resolution (LS ≡ 20). Nevertheless, in any case, the sensitivity

to model mismatch shows a definitely regular behavior, and a relatively small number

of (channel) state realizations is required in order for the respective grid based filters

to be able to produce consistent estimates.

3.2.6 Conclusion

A nonlinear filtering framework was proposed for addressing the fundamental problems

of sequential channel state tracking and spatiotemporal channel prediction in mobile

wireless sensor networks. First, we formulated the channel observations at each sen-

sor as a partially observable nonlinear system with temporally varying state and spa-

tiotemporally varying observations. Then, a grid based approximate filtering scheme

was employed for accurately tracking the temporal variation of the channel state, based

on which we proposed a recursive spatiotemporal channel gain predictor, providing real

time sequential CG map estimation at each sensor in the network. Non trivial, ap-

proximate recursive estimators of the variance of the CG map predictions were also

proposed. Further, we showed that all three estimators are asymptotically optimal, in

the sense that they converge to the respective optimal MMSE estimators/predictors,

in a technically strong sense. In addition to these theoretical results, numerical simu-

lations were presented, validating the practical effectiveness of the proposed approach

and increasing the user’s confidence for practical consideration in real world wireless



145

networks.

3.2.7 Appendices

3.2.7.1 Appendix A: Proof of Theorem 3.4

Let us first consider the filtering case, that is, the one where ρ ≡ 0. Substituting (3.87)

to (3.88) and defining

χ1
t,q (Xt) ,

((
σq
t (Xt)

)T
C−1
t (Xt)

)T
∈ RN×1 and (3.102)

χ2
t,q (Xt) ,

(
σq
t (Xt)

)T
C−1
t (Xt)AtXt ∈ R, t ∈ N, (3.103)

we can write

ŷt (q) ≡ AqE {Xt|Yt}+
(
E
{
χ1
t,q (Xt)

∣∣∣Yt
})T

yt − E
{
χ2
t,q (Xt)

∣∣∣Yt
}
. (3.104)

Then, for all t ∈ N, define the approximate operator

ELS (yt (q)|Yt) , AqELS (Xt|Yt)

+
(
ELS

(
χ1
t,q (Xt)

∣∣∣Yt
))T

yt − ELS
(
χ2
t,q (Xt)

∣∣∣Yt
)
. (3.105)

Using the triangle inequality, the Cauchy-Schwarz Inequality and the fact that the `2

norm of a vector is upper bounded by its `1 norm, it is true that

∣∣∣ELS (yt (q)|Yt)− ŷt (q)
∣∣∣

≤
∣∣αq∣∣

∥∥∥
(
ELS (Xt|Yt)− E {Xt|Yt}

)∥∥∥
1

+ ‖yt‖2
∥∥∥ELS

(
χ1
t,q (Xt)

∣∣∣Yt
)
− E

{
χ1
t,q (Xt)

∣∣∣Yt
}∥∥∥

1

+
∣∣∣ELS

(
χ2
t,q (Xt)

∣∣∣Yt
)
− E

{
χ2
t,q (Xt)

∣∣∣Yt
}∣∣∣ . (3.106)

Now, from Lemma 2.7, it follows that for any natural T < ∞, there exists a bounded

γ > 1, such that supt∈NT ‖yt (ω)‖2 <
√
γCN (1 + log (T + 1)), for all ω ∈ Ω̂T ⊆ Ω, with

measure at least 1 − (T + 1)1−CN exp (−CN), exactly as in Theorem 3.3. Therefore,

invoking Theorems 3.3 and 2.8, it readily follows that, under the respective conditions,

lim
LS→∞

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣ELS (yt (q)|Yt)− ŷt (q)
∣∣∣ ≡ 0, (3.107)
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showing the second part of the theorem, when ρ ≡ 0. For the first part, observe that

ELS (yt (q)|Yt) can be explicitly expressed as (see Theorems 3.3 and 2.8)

ELS (yt (q)|Yt) ≡
〈(
AqX

)T
+
(
Ψ1
t,q

)T
yt + χ2

t,q,
Et
‖Et‖1

〉
, (3.108)

where

Ψ1
t,q ,

[
χ1
t,q

(
x1
LS

)
. . . χ1

t,q

(
x
LS
LS

)]
∈ RN×LS , (3.109)

(
ψ2
t,q

)T
,
[
χ2
t,q

(
x1
LS

)
. . . χ2

t,q

(
x
LS
LS

)]
∈ R1×LS (3.110)

and which, after simple algebra, can be easily shown to coincide with the vector process

φt (yt) of Theorem 3.4.

In the prediction case (ρ ≥ 1), the procedure is slightly different. Let us define
{

Q+ρ
t

}
t∈N

, Q+ρ
t , σ

{{
Xi+ρ,yi, yi (q)

}
i∈Nt

}
, the complete filtration generated by

Xt+ρ,yt and yt (q). Also, note that, for all ρ ≥ 1, the augmented observation vector

process (and therefore each one of its elements) yaugt+ρ ,
[
yt+ρ yt+ρ (q)

]T ∈ R(N+1)×1 is

conditionally independent of yaugt ,yaugt−1, . . ., given the state at time t + ρ, Xt+ρ. Thus,

using the tower property, it is true that

ŷt+ρ (q) ≡ E
{
E
{
yt+ρ (q)

∣∣Q+ρ
t

}∣∣∣Yt
}

≡ E
{
E
{
AqXt+ρ + σq (Xt+ρ

)
+ ξq∣∣Xt+ρ

}∣∣Yt
}

≡ AqE
{
Xt+ρ

∣∣Yt
}
. (3.111)

Consequently, defining the approximate spatiotemporal predictor ELS
(
yt+ρ (q)

∣∣Yt
)
,

AqELS
(
Xt+ρ

∣∣Yt
)
, substituting ELS

(
Xt+ρ

∣∣Yt
)

from Theorem 3.3 and following a very

similar convergence analysis to the filtering case treated above, the respective results

present in the statement of Theorem 3.4 follow. The proof is complete. �

3.2.7.2 Appendix B: Proof of Theorem 3.5

Fix q ∈ R2. If ρ ≡ 0, the conditional variance of yt (q) given Yt is given by

VYt
{yt (q)} = E

{
y2
t (q)

∣∣∣Yt
}
− ŷ2

t (q) , ∀t ∈ N. (3.115)
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Also, from (3.87), we have E
{
y2
t (q)

∣∣∣Ht

}
= VHt

{yt (q)}+φ2
t (Xt,yt). Using the tower

property in (3.115), we get

VYt
{yt (q)} ≡ E

{
VHt
{yt (q)}

∣∣Yt
}

+ E
{
φ2
t (Xt,yt)

∣∣∣Yt
}
− ŷ2

t (q) , ∀t ∈ N, (3.116)

what is otherwise called the Law of Total Variance. From (3.116), we observe that

VYt
{yt (q)} can be split as a nonlinear combination of three estimators.

Using well known properties of jointly Gaussian random vectors and the definition

of ψo
t,q (·) in (3.98), it is true that [25] VHt

{yt (q)} = σ2
ξ + η2 (Xt) + ψo

t,q (Xt), and,

therefore,

E
{
VHt
{yt (q)}

∣∣Yt
}
≡σ2

ξ+E
{
BXt+ψ

o
t,q (Xt)

∣∣Yt
}
, (3.117)

for all t ∈ N, with B ≡
[
0 1 01×(M−2)

]
∈ R1×M . For the second term on the RHS of

(3.116), from (3.87) and after quite some algebra, we arrive at the expression

φ2
t (Xt,yt)=yT

t Γ
q
t (Xt) yt +ψαt,q (Xt) yt + ψβt,q (Xt) , (3.118)

holding true for all t ∈ N, where ψαt,q (·), ψβt,q (·) and Γ q
t (·) are defined as in (3.112),

(3.113) and (3.114), respectively. Consequently, VYt
{yt (q)} can be expressed as

VYt
{yt (q)} ≡ σ2

ξ + yT
t E
{
Γ q
t (Xt)

∣∣Yt
}

yt

+ E
{
ψαt,q (Xt)

∣∣Yt
}

yt − ŷ2
t (q)

+ E
{
BXt + ψo

t,q (Xt) + ψβt,q (Xt)
∣∣∣Yt
}
, ∀t ∈ N. (3.119)

Now, for all t ∈ N, define the approximate filtering operator

VLSYt
(yt (q)) , σ2

ξ + yT
t ELS

(
Γ q
t (Xt)

∣∣Yt
)
yt

+ ELS
(
ψαt,q (Xt)

∣∣Yt
)
yt −

(
ELS (yt (q)|Yt)

)2

ψαt,q (Xt) , 2AqXt

(
σq
t (Xt)

)T
C−1
t (Xt)− 2 (AtXt)

T Γ q
t (Xt) ∈ R1×N (3.112)

ψβt,q (Xt) , A
qXt

(
AqXt − 2

(
σq
t (Xt)

)T
C−1
t (Xt)AtXt

)

+ (AtXt)
T Γ q

t (Xt)AtXt ∈ R (3.113)

Γ q
t (Xt) ,

((
σq
t (Xt)

)T
C−1
t (Xt)

)T
×
(
σq
t (Xt)

)T
C−1
t (Xt) ∈ RN×N , t ∈ N. (3.114)
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+ ELS
(
BXt + ψo

t,q (Xt) + ψβt,q (Xt)
∣∣∣Yt
)
, (3.120)

where ELS
(
Γ q
t (Xt)

∣∣Yt
)
∈ RN×N is defined as

ELS
(
Γ q
t (Xt)

∣∣Yt
)
,

1

‖Et‖1
∑

j∈N+
LS

Γ q
t

(
xjLS

)
Et (j) . (3.121)

Using the triangle inequality as in the proof of Theorem 3.4, the error
∣∣∣VLSYt

(yt (q))− VYt
{yt (q)}

∣∣∣ is bounded from above by the sum of the errors between

each pair of true and approximate estimators, respectively (excluding σ2
ξ ). Then, be-

cause of the boundedness and continuity of the functionals associated with the third

and fifth terms on the RHS of (3.120), these will converge to the respective MMSE

optimal estimators, in the sense of Theorem 3.3 (also see Appendix A). Thus, we only

need to focus on the second and fourth terms on the RHS of (3.120).

For the second term, the Cauchy-Schwarz Inequality and the consistency of the

spectral norm imply that

∣∣∣yT
t ELS

(
Γ q
t (Xt)

∣∣Yt
)
yt − yT

t E
{
Γ q
t (Xt)

∣∣Yt
}

yt

∣∣∣

≤ ‖yt‖22
∥∥∥ELS

(
Γ q
t (Xt)

∣∣Yt
)
− E

{
Γ q
t (Xt)

∣∣Yt
}∥∥∥

2
. (3.122)

As in the proof of Theorem 3.4 presented above, we know that supt∈NT ‖yt (ω)‖22<

γCN (1 + log (T + 1)) , for all ω ∈ Ω̂T ⊆ Ω, with P
(

Ω̂T

)
≥ 1−(T + 1)1−CN exp (−CN) .

As a result, it suffices to show that

∥∥∥ELS
(
Γ q
t (Xt)

∣∣Yt
)
− E

{
Γ q
t (Xt)

∣∣Yt
}∥∥∥

2
−→
LS→∞

0, (3.123)

uniformly in Ω̂T and for all t ∈ NT . Of course, it is true that E
{
Γ q
t (Xt)

∣∣Yt
}

(i, j) ≡

E
{
Γ q
t (Xt) (i, j)

∣∣Yt
}
, for all (i, j) ∈ N+

N × N+
N , that is, the conditional expectation of

Γ q
t (Xt) given Yt is the matrix formed by the respective conditional expectations of

each entry. But observe that the approximate estimator ELS
(
Γ q
t (Xt)

∣∣Yt
)

in (3.121)

also satisfies the same property. As a result, the error matrix ELS
(
Γ q
t (Xt)

∣∣Yt
)
−

E
{
Γ q
t (Xt)

∣∣Yt
}
, RYt

t,q contains as elements the errors of the corresponding entries.

Additionally, we can easily show that

∥∥∥RYt
t,q

∥∥∥
2
≤
∥∥∥RYt

t,q

∥∥∥
F
≤ N sup

(i,j)∈N+
N×N

+
N

∣∣∣RYt
t,q (i, j)

∣∣∣ . (3.124)
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Now, all entries of Γ q
t (Xt) are of the form

Γ q
t (Xt) (i, j) ≡

(
σq
t (Xt)

)T
C−1
t (Xt) (i)×

(
σq
t (Xt)

)T
C−1
t (Xt) (j) , (3.125)

for all (i, j), from where it follows that each Γ q
t (Xt) (i, j) constitutes a bounded and

continuous functional of the (almost surely compactly supported) state Xt, for all t ∈

NT . Therefore, the conditions of Theorem 3.3 are satisfied, from which it follows that

supt∈NT sup
ω∈Ω̂T

∥∥∥RYt
t,q

∥∥∥
2
−→
LS→∞

0, which is what we were set to show.

Regarding the fourth term on the RHS of (3.120), it is true that

∣∣∣∣
(
ELS (yt (q)|Yt)

)2
− ŷ2

t (q)

∣∣∣∣

≡
∣∣∣ELS (yt (q)|Yt)− ŷt (q)

∣∣∣
∣∣∣ELS (yt (q)|Yt) + ŷt (q)

∣∣∣ . (3.126)

Since, from Theorem 3.4, we know that the error
∣∣∣ELS (yt (q)|Yt)− ŷt (q)

∣∣∣ converges to

zero in the sense of Theorem 3.3, it will suffice to show that the quantity
∣∣∣ELS (yt (q)|Yt) + ŷt (q)

∣∣∣ is uniformly bounded in Ω̂T and for all t ∈ NT . Indeed,

the triangle inequality implies that

∣∣∣ELS (yt (q)|Yt) + ŷt (q)
∣∣∣ ≤

∣∣∣ELS (yt (q)|Yt)
∣∣∣+ |E {φt (Xt,yt)|Yt}| . (3.127)

Again from the Cauchy-Schwarz Inequality, it can be easily shown that

|E {φt (Xt,yt)|Yt}| ≤ C1
t,q + C2

t,q ‖yt‖2 , (3.128)

where

C1
t,q , sup

x∈Z

∣∣∣Aqx+
(
σq
t (x)

)T
C−1
t (x)Atx

∣∣∣ and (3.129)

C2
t,q , sup

x∈Z

∥∥∥
(
σq
t (x)

)T
C−1
t (x)

∥∥∥
2
, (3.130)

implying that sup
t∈NT

sup
ω∈Ω̂T

|E {φt (Xt,yt)|Yt}| ≤ Cq, with

Cq, sup
t∈NT

C1
t,q+

(√
γCN (1+log (T + 1))

)
sup
t∈NT

C2
t,q, (3.131)

where the RHS is always finite, by assumption. For the first term on the RHS of (3.127),

by definition of ELS (yt (q)|Yt) and using Hölder’s Inequality, we have (see Theorem
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3.4)

∣∣∣ELS (yt (q)|Yt)
∣∣∣ ≤ sup

j∈N+
LS

∣∣∣φt
(
xjLS ,yt

)∣∣∣

≤ C1
t,q + C2

t,q ‖yt‖2 , (3.132)

as above, yielding the same uniform bound for
∣∣∣ELS (yt (q)|Yt)

∣∣∣. The above lead directly

to the inequality

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣ELS (yt (q)|Yt) + ŷt (q)
∣∣∣ ≤ 2Cq, (3.133)

showing uniform boundedness in Ω̂T and NT . Therefore,

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣VLSYt
(yt (q))− VYt

{yt (q)}
∣∣∣ −→
LS→∞

0. (3.134)

The explicit form of VLSYt
(yt (q)) presented in Theorem 3.5 can be determined after

some algebraic manipulations of (3.120).

The case where ρ > 0 is similar, albeit simpler. Specifically, the conditional variance

of yt+ρ (q) given Yt is given by VYt

{
yt+ρ (q)

}
, E

{
y2
t+ρ (q)

∣∣∣Yt
}
− ŷ2

t+ρ (q) , for all

t ∈ N. Also, recall the definition of the filtration
{

Q+ρ
t

}
t∈N

in the proof of Theorem

3.4. Then, the law of total variance reads

VYt

{
yt+ρ (q)

}

≡ E
{
V

Q
+ρ
t

{
yt+ρ (q)

}∣∣∣Yt
}

+ E
{(
AqXt+ρ

)2∣∣∣Yt
}
− ŷ2

t+ρ (q) , ∀t ∈ N. (3.135)

Exploiting the fact that yt+ρ (q) is conditionally independent of yaugt ,yaugt−1, . . ., given

the state at time t + ρ, Xt+ρ and using the tower property, it can be shown that

V
Q

+ρ
t

{
yt+ρ (q)

}
= BXt+ρ + σ2

ξ , yielding

VYt

{
yt+ρ (q)

}

≡ σ2
ξ + E

{
BXt+ρ

∣∣Yt
}

+ E
{(
AqXt+ρ

)2∣∣∣Yt
}
− ŷ2

t+ρ (q) , ∀t ∈ N. (3.136)

Let us define the approximate predictor

VLSYt

(
yt+ρ (q)

)
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, σ2
ξ + ELS

((
AqXt+ρ

)2
+BXt+ρ

∣∣∣Yt
)
−
(
ELS

(
yt+ρ (q)

∣∣Yt
))2

, ∀t ∈ N. (3.137)

Since
(
AqXt+ρ

)2
+ BXt+ρ is functionally independent of the observations, Theorem

3.3 can be applied to arrive at the estimator of Theorem 3.5. Further, the convergence

analysis of the approximate predictor is very similar to the case where ρ ≡ 0, treated

in detail above, and it is omitted. QED. �

3.2.8 A Note on Practical Applicability

The validation and verification of the proposed model based approach to spatiotemporal

wireless channel estimation/prediction, as well as its adaptation, on the basis of real

experimental data, is a challenging task. It constitutes an important topic for further

investigation in our research agenda.

In particular, we are currently in the process of developing an efficient meta-method,

termed as Markovian Channel Profiling (MCP), which will ultimately solve the re-

spective parameter estimation problem, enabling the use of the channel map tracking

methods described above. Additionally, efforts are currently made for the complete

experimental validation of the proposed channel modeling approach, using real world

wireless channel measurements, coming from inexpensive sensing equipment, such as

consumer oriented cell phones.
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Chapter 4

Spatially Controlled Relay Beamforming: 2-Stage Optimal

Policies

4.1 Introduction

Distributed, networked communication systems, such as relay beamforming networks

[1, 2, 6, 7, 9, 10, 71] (e.g., Amplify & Forward (AF)) are typically designed without ex-

plicitly considering how the positions of the networking nodes might affect the quality

of the communication. Optimum physical placement of assisting networking nodes,

which could potentially improve the quality of the communication, does not constitute

a clear network design aspect. However, in most practical settings in physical layer

communications, the Channel State Information (CSI) observed by each networking

node, per channel use, although (modeled as) random, it is both spatially and tempo-

rally correlated. It is, therefore, reasonable to ask if and how system performance could

be improved by controlling the positions of certain network nodes, based on causal

side (CSI) information, and exploiting the spatiotemporal dependencies of the wireless

medium.

Recently, autonomous node mobility has been proposed as an effective means to

further enhance performance in various distributed network settings. In [72], optimal

transmit AF beamforming has been combined with potential field based relay mobility

control in multiuser cooperative networks, in order to minimize relay transmit power,

while meeting certain Quality-of-Service (QoS) constraints. In [50], in the framework of

information theoretic physical layer security, decentralized jammer motion control has

been jointly combined with noise nulling and cooperative jamming, maximizing the net-

work secrecy rate. In [51], optimal relay positioning has been studied in systems where

multiple relays deliver information to a destination, in the presence of an eavesdropper,
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with a goal of maximizing or achieving a target level of ergodic secrecy.

In the complementary context of communication aware (comm-aware) robotics, node

mobility has been exploited in distributed robotic networks, in order to enhance system

performance, in terms of maintaining reliable, in-network communication connectivity

[73–76], and optimizing network energy management [77]. Networked node motion con-

trol has also been exploited in special purpose applications, such as networked robotic

surveillance [78] and target tracking [79].

In [50,51,72], the links among the nodes of the network (or the related statistics) are

assumed to be available in the form of static channel maps, during the whole motion of

the jammers/relays. However, this is an oversimplifying assumption in scenarios where

the channels change significantly in time and space [56,67,68].

In this paper, we try to overcome this major limitation, and we consider the problem

of optimally and dynamically updating relay positions in one source/destination relay

beamforming networks, in a dynamic channel environment. Different from [50, 51, 72],

we model the wireless channel as a spatiotemporal stochastic field ; this approach may

be seen as a versatile extension of a realistic, commonly employed “log-normal” channel

model [56]. We then propose a 2-stage stochastic programming problem formulation,

optimally specifying the positions of the relays at each time slot, such that the Signal-

to-Interference+Noise Ratio (SINR) or QoS at the destination, at the same time slot,

is maximized on average, based on causal CSI, and subject to a total power constraint

at the relays. At each time slot, the relays not only beamform to the destination, but

also optimally, predictively decide their positions at the next time slot, based on their

experience (causal actions and channel observations). This novel, cyber-physical system

approach to relay beamforming is termed as Spatially Controlled Relay Beamforming.

Exploiting the assumed stochastic channel structure, it is first shown that the pro-

posed optimal motion control problem is equivalent to a set of simpler, two dimensional

subproblems, which can be solved in a distributed fashion, one at each relay, without

the need for intermediate exchange of messages among the relays. However, each the

objectives of the aforementioned subproblems involves the evaluation of a conditional

expectation of a well defined ratio of almost surely positive random variables, which is
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impossible to perform analytically, calling for the development of easily implementable

approximations to each of the original problems. Two such heuristics are considered.

The first is based on the so-called Method of Statistical Differentials [80], whereas

the second constitutes a brute force approach, based on the multidimensional Gauss-

Hermite Quadrature Rule, a readily available routine for numerical integration. In both

cases, the original problem objective is replaced by the respective approximation, which,

in both cases, is shown to be easily computed via simple, closed form expressions. The

computational complexity of both approaches is also discussed and characterized. Sub-

sequently, we present an important result, along with the respective detailed technical

development, characterizing the performance of the proposed system, across time slots

(Theorems 4.4 and 4.5). In a nutshell, this result states that, although our problem

objective is itself myopic at each time slot, the expected network QoS exhibits an in-

creasing trend across time slots (in other words, the expected QoS increases in time,

within a small positive slack), under optimal decision making at the relays. Lastly, we

present representative numerical simulations, experimentally confirming both the effi-

cacy and feasibility of the proposed approach, as well as the validity of our theoretical

predictions.

During exposition of the proposed spatially controlled relay beamforming system,

we concurrently develop and utilize a rigorous discussion concerning the optimality of

our approach, and with interesting results (Section 4.5.1 / Appendix B). Clearly, our

problem formulation is challenging; it involves a variational stochastic optimization

problem, where, at each time slot, the decision variable, a function of the so far available

useful information in the system (also called a policy, or a decision rule), constitutes

itself the spatial coordinates, from which every network relay will observe the underlying

spatiotemporal channel field, at the next time slot. In other words, our formulation

requires solving an optimal spatial field sampling problem, in a dynamic fashion. Such a

problem raises certain fundamental questions, not only related to our proposed spatially

controlled beamforming formulation, but also to a large class of variational stochastic

programs of similar structure.

In this respect, our contributions are partially driven by assuming an underlying
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complete base probability space of otherwise arbitrary structure, generating all random

phenomena considered in this work. Under this general setting, we explicitly iden-

tify sufficient conditions, which guarantee the validity of the so-called substitution rule

for conditional expectations, specialized to such expectations of random spatial (in gen-

eral) fields/functions with an also random spatial parameter, relative to some σ-algebra,

which makes the latter parameter measurable (fixed) (Definition 4.6 & Theorem 4.6).

General validity of the substitution rule, without imposing additional, special condi-

tions, traces back to the existence of regular conditional distributions, defined directly

on the sample space of the underlying base probability space. Such regular conditional

distributions cannot be guaranteed to exist, unless the sample space has nice topologi-

cal properties, for instance, if it is Polish [81]. In the context of our spatially controlled

beamforming application, such structural requirements on the sample space, which, by

assumption, is conceived as a model of “nature”, and generates the spatiotemporal

channel field sampled by the relays, are simply not reasonable. Considering this, our

first contribution is to show that it is possible to guarantee the validity of the form

of the substitution rule under consideration by imposing conditions on the topological

structure of the involved random field, rather than that of the sample space (a part

of its domain). This results in a rather generally applicable problem setting (Theorem

4.6).

In this work, the validity of the substitution rule is ascertained by imposing simple

continuity assumptions on the random functions involved, which, in some cases, might

be considered somewhat restrictive. Nevertheless, those assumptions can be signifi-

cantly weakened, guaranteeing the validity of the substitution rule for vastly discontin-

uous random functions, including, for instance, cases with random discontinuities, or

random jumps. The development of this extended analysis, though, is out of the scope

of this paper, and will be presented elsewhere.

The validity of the substitution rule is vitally important in the treatment of a wide

class of variational stochastic programs, including that involved in the proposed spa-

tially controlled beamforming approach. In particular, leveraging the power of the sub-

stitution rule, we develop a version of the so-called Fundamental Lemma of Stochastic
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Control (FLSC) [82–87] (Lemma 4.2), which provides sufficient conditions that permit

interchange of integration (expectation) and max/minimization in general variational

(stochastic) programming settings. The FLSC allows the initial variational problem

to be exchanged by a related, though pointwise (ordinary) optimization problem, thus

efficiently reducing the search over a class of functions (initial problem) to searching

over constants, which is, of course, a standard and much more handleable optimization

setting. In slightly different ways, the FLSC is evidently utilized in relevant optimal-

ity analysis both in Stochastic Programming [84,85], and in Dynamic Programming &

Stochastic Optimal Control [82,83,86,87].

A very general version of the FLSC is given in ([84], Theorem 14.60), where un-

constrained variational optimization of integrals of extended real-valued random lower

semicontinuous functions [85], or, by another name, normal integrands [84], with re-

spect to a general σ-finite measure, is considered. Our version of the FLSC may be

considered a useful variation of Theorem 14.60 in [84], and considers constrained varia-

tional optimization problems involving integrals of random functions, but with respect

to some base probability measure (that is, expectations). In our result, via the tower

property of expectations, the role of the normal integrand in ([84], Theorem 14.60) is

played by the conditional expectation of the random function considered, relative to a

σ-algebra, which makes the respective decision variable of the problem (a function(al))

measurable. Assuming a base probability space of arbitrary structure, this argument

is justified by assuming validity of the substitution rule, which, in turn, is ascertained

under our previously developed sufficient conditions. Different from ([84], Theorem

14.60), in our version of the FLSC, apart from natural Borel measurability require-

ments, no continuity assumptions are directly imposed on the structure on either the

random function, or the respective conditional expectation. In this respect, our result

extends ([84], Theorem 14.60), and is of independent interest.

On the other hand, from the strongly related perspective of Stochastic Optimal

Control, our version of the FLSC may be considered as the basic building block for

further development of Bellman Equation-type, Dynamic Programming solutions [86,

87], under a strictly Borel measurability framework, sufficient for our purposes. Quite
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differently though, in our formulation, the respective cost (at each stage of the problem)

is itself a random function (a spatial field), whose domain is the Cartesian product of

a base space of arbitrary topology, with another, nicely behaved Borel space, instead

of the usual Cartesian product of two Borel spaces (the spaces of state and controls),

as in the standard dynamic programming setting [86, 87]. Essentially, our formulation

is “one step back” as compared to the basic dynamic programming model of [86, 87],

in the sense that the cost considered herein refers directly back to the base space.

As a result, different treatment of the problem is required; essentially, the validity

of the substitution rule for our cost function bypasses the requirement for existence

of conditional distributions, and exploits potential nice properties of the respective

conditional cost (in our case, joint Borel measurability).

Finally, emphasizing on our particular problem formulation, our functional assump-

tions, which guarantee the validity of the substitution rule, combined with the FLSC,

result in a total of six sufficient conditions, under which strict optimality via problem

exchangeability is guaranteed (conditions C1-C6 in Lemma 4.3). Those conditions are

subsequently shown to be satisfied specifically for the spatially controlled beamforming

problem under consideration (verification Theorem 4.1), ensuring strict optimality of a

solution obtained by exploiting problem exchangeability.

4.2 Spatially Controlled Relay Beamforming

As mentioned above, the beamforming objective adopted will be maximization of the

Signal-to-Interference+Noise Ratio (SINR) at the destination (measuring network QoS),

under a total power budget at the relays, as in Section. For the single-source single-

destination setting considered herein, the aforementioned beamforming problem admits

a closed form solution, a fact which will be important in deriving optimal relay motion

control policies, in a tractable fashion. But first, let us present the general scheduling

schema of the proposed mobile beamforming system, as well as some technical prelim-

inaries on stochastic programming and optimal control, which will be used repeatedly

in the analysis to follow.
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Figure 4.1: Proposed TDMA-like joint scheduling protocol for communications and
controls.

4.2.1 Joint Scheduling of Communications & Controls

At each time slot t ∈ N+
NT

and assuming the same carrier for all communication tasks, we

employ a basic joint communication/decision making TDMA-like protocol, as follows:

1. The source broadcasts a pilot signal to the relays, which then estimate their respec-

tive channels relative to the source.

2. The same procedure is carried out for the channels relative to the destination.

3. Then, based on the estimated CSI, the relays beamform in AF mode (assume perfect

CSI estimation).

4. Based on the CSI received so far, strategic decision making is implemented, motion

controllers of the relays are determined and relays are steered to their updated

positions.

The above sequence of actions is repeated for all NT time slots, corresponding to the

total operational horizon of the system. This simple scheduling protocol is graphically

depicted in Fig. 4.1.
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Concerning relay kinematics, it is assumed that the relays obey the differential

equation

ṗ (τ) ≡ u (τ) , ∀τ ∈ [0, T ] , (4.1)

where u , [u1 . . . uR]T ∈ SR, with ui : [0, T ]→ S being the motion controller of relay

i ∈ N+
R. Apparently, relay motion is in continuous time. However, assuming the relays

may move only after their controls have been determined and up to the start of the next

time slot, we can write

p (t) ≡ p (t− 1) +

∫

∆τt−1

ut−1 (τ) dτ, ∀t ∈ N2
NT
, (4.2)

with p (1) ≡ pinit, and where ∆τt ⊂ R and ut : ∆τt → SR denote the time interval that

the relays are allowed to move in and the respective relay controller, in each time slot

t ∈ N+
NT−1. It holds that u (τ) ≡∑

t∈N+
NT−1

ut (τ)1∆τt
(τ), where τ belongs in the first

NT − 1 time slots. Of course, at each time slot t, ∆τt must be sufficiently small such

that the temporal correlations of the CSI at adjacent time slots are sufficiently strong.

These correlations are controlled by the correlation time parameter γ, which can be a

function of the slot width. Therefore, the velocity of the relays must be of the order

of (∆τt)
−1. In this work, though, we assume that the relays are not explicitly resource

constrained, in terms of their motion.

Now, regarding the form of the relay motion controllers ut−1 (τ) , τ ∈ ∆τt−1, given

a goal position vector at time slot t, po (t) , it suffices to fix a path in SR, such that the

points po (t) and p (t− 1) are connected in at most time ∆τt. A generic choice for such

a path is the straight line1 connecting poi (t) and pi (t− 1), for all i ∈ N+
R. Therefore,

we may choose the relay controllers at time slot t− 1 ∈ N+
NT−1 as

uot−1 (τ) ,
1

∆τt−1
(po (t)− p (t− 1)) , ∀τ ∈ ∆τt−1. (4.3)

As a result, any motion control problem considered hereafter can now be formulated in

terms of specifying the goal relay positions at the next time slot, given their positions

at the current time slot (and the observed CSI).

1
Caution is needed here, due to the possibility of physical collisions among relays themselves, or

among relays and other physical obstacles in the workspace, S. Nevertheless, for simplicity, we assume
that either such events never occur, or that, if they do, there exists some transparent collision avoidance
mechanism implemented at each relay, which is out of our direct control.
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In the following, let C (Tt) denote the set of channel gains observed by the relays,

along the paths of their point trajectories Tt , {p (1) . . . p (t)}, t ∈ N+
NT

. Then, Tt
may be recursively updated as Tt ≡ Tt−1 ∪ {p (t)}, for all t ∈ N+

NT
, with T0 , ∅.

In a technically precise sense, {C (Tt)}t∈N+
NT

will also denote the filtration generated

by the CSI observed at the relays, along Tt, interchangeably. In other words, in case

the trajectories of the relays are themselves random, then C (Tt) denotes the σ-algebra

generated by both the CSI observed up to and including time slot t and p (1) . . . p (t),

for all t ∈ N+
NT

. Additionally, we define C (T0) ≡ C ({∅}) as C (T0) , {∅,Ω}, that is,

as the trivial σ-algebra, and we may occasionally refer to time t ≡ 0, as a dummy time

slot, by convention.

4.2.2 2-Stage Stochastic Optimization of Beamforming Weights and

Relay Positions: Base Formulation & Methodology

At each time slot t ∈ N+
NT

, given the current CSI encoded in C (Tt), we are inter-

ested in determining wo (t) , [w1 (t) w2 (t) . . . wR (t)]T , as an optimal solution to a

beamforming optimization problem, as a functional of C (Tt). Let the optimal value

(say infimum) of this problem be the process Vt ≡ V (p (t) , t), a functional of the CSI

encoded in C (Tt), depending on the positions of the relays at time slot t.

Suppose that, at time slot t−1, an oracle reveals C (Tt ≡ Tt−1 ∪ {p (t)}), which also

determines the channels corresponding to the new positions of the relays at the next time

slot t. Then, we could further consider optimizing Vt with respect to p (t), representing

the new position of the relays. But note that, C (Tt) is not physically observable and in

the absence of the oracle, optimizing Vt with respect to p (t) is impossible, since given

C (Tt−1), the channels at any position of the relays are nontrivial random variables.

However, it is reasonable to search for the best decision on the positions of the relays at

time slot t, as a functional of the available information encoded in C (Tt−1), such that

Vt is optimized on average. This procedure may be formally formulated as a 2-stage
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w∗ (t− 1)

@ Time Slot t− 1

Beamforming
Optimization

Relay Controller
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{fi, gi}: CSI at
(po (t− 1) , t− 1)

po (t) and
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t−1 (τ) , τ ∈ ∆τt−1
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Figure 4.2: 2-Stage optimization of beamforming weights and spatial relay controllers.
The variables wo (t− 1), uot−1 and po (t) denote the optimal beamforming weights and
relay controllers at time slot t − 1, and the optimal relay positions at time slot t,
respectively.

stochastic program [85],

minimize
p(t)

E {V (p (t) , t)}

subject to p (t) ≡M (C (Tt−1)) ∈ C (po (t−1)) ,

for some M : R2R(t−1) → R2R

, (4.4)

to be solved at each t − 1 ∈ N+
NT−1, where C : R2R ⇒ R2R is a multifunction, with

C (po (t− 1)) ⊆ SR representing a physically feasible spatial neighborhood around the

point po (t− 1) ∈ SR, the decision vector selected at time t − 2 ∈ NNT−2 (recall that

t ≡ 0 denotes a dummy time slot). Note that, in general, the decision selected at t− 2,

po (t− 1), may not be an optimal decision for the respective problem solved at t − 2

and implemented at t− 1. To distinguish po (t− 1) from an optimal decision at t− 2,

the latter will be denoted as p∗ (t− 1), for all t ∈ N2
NT

. Also note that, in order for

(4.4) to be well defined, important technical issues, such as measurability of Vt and

existence of its expectation at least for each feasible decision p (t), should be precisely

resolved. Problem (4.5), together with the respective beamforming problem with opti-

mal value Vt (which will focus on shortly) are referred to as the first-stage problem and

the second-stage problem, respectively [85]. Hereafter, aligned with the literature, any

feasible choice for the decision variable p (t) in (4.5), will be interchangeably called an

(admissible) policy. A generic block representation of the proposed 2-stage stochastic

programming approach is depicted in Fig. 4.2.
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Mainly due to the arbitrary structure of the function M, (4.4) is too general to

consider, within a reasonable analytical framework. Thus, let us slightly constrain the

decision set of (4.4) to include only measurable decisions, resulting in the formulation

minimize
p(t)

E {V (p (t) , t)}

subject to p (t) ≡M (C (Tt−1)) ∈ C (po (t−1)) ,

M−1 (A) ∈ B
(
R2R

)
, ∀A ∈ B

(
R2R(t−1)

)
, (4.5)

provided, of course, that the stochastic program (4.5) is well defined. The second

constraint in (4.5) is equivalent to M being Borel measurable, instead of being any

arbitrary function, as in (4.4).

Provided its well definiteness, the stochastic program (4.5) is difficult to solve, most

importantly because of its variational character ; the decision variable p (t) is con-

strained to be a functional of the CSI observed up to and including time t − 1. A

very powerful tool, which will enable us to both make (4.5) meaningful and overcome

the aforementioned difficulty, is the Fundamental Lemma of Stochastic Control [82–87],

which in fact refers to a family of technical results related to the interchangeability of

integration (expectation) and minimization in general stochastic programming. Under

the framework of the Fundamental Lemma, in Appendix A, we present a detailed dis-

cussion, best suited for the purposes of this work, which is related to the important

technical issues, arising when one wishes to meaningfully define and tractably simplify

“hard”, variational problems of the form of (4.5).

In particular, Lemma 4.3, presented in Section 4.5.1.4 (Appendix A), identifies

six sufficient technical conditions (conditions C1-C6, see statement of Lemma 4.3),

under which the variational problem (4.5) is exchangeable by the structurally simpler,

pointwise optimization problem

minimize
p(t)

E {V (p (t) , t) |C (Tt−1)}

subject to p (t) ∈ C (po (t−1))

, (4.6)

to be solved at each t − 1 ∈ N+
NT−1. Observe that, in (4.6), the decision variable p (t)

is constant, as opposed to (4.5), where the decision variable p (t) is itself a functional

of the observed information at time slot t − 1, that is, a policy. Provided that CSI
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C (Tt−1) and po (t−1) are known and that the involved conditional expectation can be

somehow evaluated, (4.6) constitutes an ordinary, nonlinear optimization problem.

If Lemma 4.3 is in power, exchangeability of (4.5) by (4.6) is understood in the sense

that the optimal value of (4.5), which is a number, coincides with the expectation of

optimal value of (4.6), which turns out to be a measurable function of C (Tt−1). In

other words, minimization is interchangeable with integration, in the sense that

inf
p(t)∈Dt

E {V (p (t) , t)} ≡ E

{
inf

p(t)∈C(p
o
(t−1))

E {V (p (t) , t) |C (Tt−1)}
}
, (4.7)

for all t ∈ N2
NT

, where Dt denotes the set of feasible decisions for (4.5). What is more,

under the aforementioned technical conditions of Lemma 4.3, exchangeability implies

that, if there exists an admissible policy of (4.5), say p∗ (t), which solves (4.6), then

p∗ (t) is also optimal for (4.5). Additionally, Lemma 4.3 implies existence of at least one

optimal solution to (4.6), which is simultaneously feasible and, thus, optimal, for the

original stochastic program (4.5). If, further, (4.6) features a unique optimal solution,

say p∗ (t), then p∗ (t) must be an optimal solution to (4.5).

In the next subsection, we will specify the optimal value of the second-stage sub-

problem, Vt, for each time t ∈ N+
NT

. That is, we will consider a fixed criterion for

implementing relay beamforming (recourse actions) at each t, after the predictive de-

cisions on the positions of the relays have been made (at time t − 1) and the relays

have moved to their new positions, implying that the CSI at time at time t has been

revealed. Of course, one of the involved challenges will be to explicitly show that Con-

ditions C1-C6 are satisfied for each case considered, so that we can focus on solving

the ordinary nonlinear optimization problem (4.6), instead of the much more difficult

variational problem (4.5). The other challenge we will face is actually solving (4.6).

Remark 4.1. It would be important to note that the pointwise problem (4.5) admits

a reasonable and intuitive interpretation: At each time slot t − 1, instead of (deter-

ministically) optimizing Vt with respect to p (t) in C (po (t−1)), which is, of course,

impossible, one considers optimizing a projection of V (p, t), p ∈ SR onto the space of

all measurable functionals of C (Tt−1), which corresponds to the information observed

by the relays, up to t − 1. Provided that, for every p ∈ SR, V (p, t) is in the Hilbert
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space of square-integrable, real-valued functions relative to P, L2 (Ω,F ,P;R), it is then

reasonable to consider orthogonal projections, that is, the Minimum Mean Square Er-

ror (MMSE) estimate, or, more accurately, prediction of V (p, t) given C (Tt−1). This,

of course, coincides with the conditional expectation E {V (p, t) |C (Tt−1)}. One then

optimizes the random utility E {V (p, t) |C (Tt−1)}, with respect to p in the random set

C (po (t−1)), as in (4.6).

Although there is nothing technically wrong with actually starting with (4.6) as

our initial problem formulation, and essentially bypassing the technical difficulties of

(4.5), the fact that the objective of (4.6) depends on C (Tt−1) does not render it a useful

optimality criterion. This is because the objective of (4.6) quantifies the performance of

a single decision, only conditioned on C (Tt−1), despite the fact that an optimal solution

to (4.6) (provided it exists) constitutes itself a functional of C (Tt−1). In other words,

the objective of (4.6) does not quantify the performance of a policy (a decision rule); in

order to do that, any reasonable performance criterion should assign a number to each

policy, ranking its quality, and not a function depending on C (Tt−1). The expected

utility E {Vt} of the variational problem (4.5) constitutes a suitable such criterion. And

by the Fundamental Lemma, (4.5) may be indeed reduced to (4.6), which can thus be

regarded as a proxy for solving the former.

There are two main reasons justifying our interest in policies, rather than individual

decisions. First, one should be interested in the long-term behavior of the beamforming

(in our case) system, in the sense that it should be possible to assess system perfor-

mance if the system is used repeatedly over time, e.g., periodically (every hour, day) or

on demand. For example, consider a beamforming system (the “experiment”), which

operates for NT time slots and dependently restarts its operation at time slots kNT +1,

for k in some subset of N+. This might be practically essential for maintaining system

stability over time, saving on resources, etc. It is then clear that merely quantifying the

performance of individual decisions is meaningless, from an operational point of view;

simply, the random utility approach quantifies performance only along a specific path

of the observed information, C (Tt−1), for t ∈ N+
NT

. This issue is more profound when

channel observations taking specific values correspond to events of zero measure (this



165

is actually the case with the Gaussian channel model introduced in Section ??). On

the contrary, it is of interest to jointly quantify system performance when decisions are

made for different outcomes of the sample space Ω. This immediately results in the

need for quantifying the performance of different policies (decision rules), and this is

only possible by considering variational optimization problems, such as (4.5).

Additionally, because decisions are made in stages, it is of great interest to consider

how the system performs across time slots, or, in other words, to discover temporal

trends in performance, if such trends exist. In particular, for the beamforming problem

considered in this work, we will be able to theoretically characterize system behavior un-

der both suboptimal and optimal decision making, in the average (expected) sense (see

Section 4.2.4), across all time slots; this is impossible to do for each possible outcome

of the sample space, individually, when the random utility approach is considered.

The second main reason for considering the variational program (4.5) as our main

objective, instead of (4.6), is practical, and extremely important from an engineering

point of view. The expected utility approach assigns, at each time slot, a number to

each policy, quantifying its quality. Simulating repeatedly the system and invoking the

Law of Large Numbers, one may obtain excellent estimates of the expected performance

of the system, quantified by the chosen utility. Therefore, the systematic experimental

assessment of a particular sequence of policies (one for each time slot) is readily possible.

Apparently, such experimental validation approach is impossible to perform by adopting

the random (conditional) utility approach, since the performance of the system will be

quantified via a real valued (in general) random quantity. �

Remark 4.2. The stochastic programming methodology presented in this subsection is

very general and can support lots of choices in regard to the structure of the second-

stage subproblem, Vt. As shown in the discussion developed in Appendix A, the key

to showing the validity of the Fundamental Lemma is the set of conditions C1-C6. If

these are satisfied, it is then possible to convert the original, variational problem into

a pointwise one, while strictly preserving optimality. �
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4.2.3 SINR Maximization at the Destination

The basic and fundamentally important beamforming criterion considered in this work

is that of enhancing network QoS, or, in other words, maximizing the respective SINR

at the destination, subject to a total power budget at the relays. At each time slot

t ∈ N+
NT

, given CSI encoded in C (Tt) and with w (t) , [w1 (t) . . . wR (t)]T , this may

be achieved as in Section 1.2.1, by formulating the constrained optimization problem

[2,9]

maximize
w(t)

E {PS (t)|C (Tt)}
E {PI+N (t)|C (Tt)}

subject to E {PR (t)|C (Tt)} ≤ Pc

, (4.8)

where Pc > 0 denotes the total available relay transmission power. It was shown earlier

in Section 1.2.1, that the optimal value of (4.8) may be expressed analytically as [2]

Vt ≡
∑

i∈N+
R

PcP0 |f (pi (t) , t)|2 |g (pi (t) , t)|2

P0σ
2
D |f (pi (t) , t)|2 + Pcσ

2 |g (pi (t) , t)|2 + σ2σ2
D

,
∑

i∈N+
R

VI (pi (t) , t) , ∀t ∈ N+
NT
. (4.9)

Adopting the 2-stage stochastic optimization framework presented and discussed in

Section 4.2.2, we are now interested, at each time slot t− 1 ∈ N+
NT−1, in the program

maximize
p(t)

E




∑

i∈N+
R

VI (pi (t) , t)





subject to p (t) ≡M (C (Tt−1)) ∈ C (po (t−1)) ,

M−1 (A) ∈ B
(
R2R

)
, ∀A ∈ B

(
R2R(t−1)

)

, (4.10)

where po (1) ∈ SR is a known constant, representing the initial positions of the relays.

But in order to be able to formulate (4.10) in a well defined manner fully and and sim-

plify it by exploitting the Fundamental Lemma, we have to explicitly verify Conditions

C1-C6 of Lemma 4.3 in Section 4.5.1.4 of Appendix A. To this end, let us present a

definition.

Definition 4.1. (Translated Multifunctions) Given H ⊂ RN , A ⊆ RN and any
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fixed h ∈ H, D : RN ⇒ RN is called the (H,h)-translated multifunction in A, if and

only if D (y) , {x ∈ A|x− y ∈ H}, for all y ∈ A− h ,
{
x ∈ RN

∣∣∣x+ h ∈ A
}

.

Note that translated multifunctions, in the sense of Definition 4.1, are always unique

and non empty, whenever y ∈ A − h. We also observe that, if y /∈ A − h, D (y)

is undefined; in fact, outside A − h, D may be defined arbitrarily, and this will be

irrelevant in our analysis. The following assumption on the structure of the compact-

valued multifunction C : R2R ⇒ R2R is adopted hereafter, and for the rest of this

work.

Assumption 4.1. (C is Translated) Given any arbitrary compact set 0 ∈ G ⊂ SR,

C constitutes the corresponding (G,0)-translated, compact-valued multifunction in SR.

Then, the following important result is true.

Theorem 4.1. (Verification Theorem / SINR Maximization) Suppose that, at

time slot t − 1 ∈ N+
NT−1, the selected decision at t − 2, po (t− 1) ≡ po (ω, t− 1), is

measurable relative to C (Tt−2). Then, the stochastic program (4.10) satisfies conditions

C1-C6 and the Fundamental Lemma applies (see Appendix A, Section 4.5.1.4, Lemma

4.3). Additionally, as long as the pointwise program

maximize
p

∑

i∈N+
R

E {VI (pi, t)|C (Tt−1)}

subject to p ∈ C (po (t−1))

(4.11)

has a unique maximizer p∗ (t), and po (t) ≡ p∗ (t), then po (t) is C (Tt−1)-measurable

and the condition of the theorem is automatically satisfied at time slot t.

Proof of Theorem 4.1. See Appendix B. �

As Theorem 4.1 suggests, in order for conditions C1-C6 to be simultaneously sat-

isfied for all t ∈ N2
NT

, it is sufficient that the program (4.11) has a unique optimal

solution, for each t. Although, it general, such requirement might not be particularly

appealing, for the problems of interest in this work, the event where (4.11) does not
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have a unique optimizer is extremely rare, almost never occurring in practice. Nev-

ertheless, uniqueness of the optimal solution to (4.11) does not constitute a necessary

condition for C (Tt−1)-measurability of the optimal decision at time slot t − 1. For

instance, p∗ (t) will always be C (Tt−1)-measurable when the compact-valued, closed

multifunction C : R2R ⇒ R2R is additionally finite-valued, and po (t) ≡ p∗ (t). This

choice for C is particularly useful for practical implementations. In any case, as long

as conditions C1-C6 are guaranteed to be satisfied, we may focus exclusively on the

pointwise program (4.11), whose expected optimal value, via the Fundamental Lemma,

coincides with the optimal value of the original problem (4.10).

By definition, we readily observe that the problem (4.11) is separable. In fact, given

that, for each t ∈ N+
NT−1, decisions taken and CSI collected so far are available to all

relays, (4.11) can be solved in a completely distributed fashion at the relays, with the

i-th relay being responsible for solving the program

maximize
p

E {VI (p, t)|C (Tt−1)}

subject to p ∈ Ci (po (t−1))

, (4.12)

at each t−1 ∈ N+
NT−1, where Ci : R2 ⇒ R2 denotes the corresponding part of C, for each

i ∈ N+
R. Note that no local exchange of intermediate results is required among relays;

given the available information, each relay independently solves its own subproblem. It

is also evident that apart from the obvious difference in the feasible set, the optimization

problems at each of the relays are identical. The problem, however, with (4.12) is that

its objective involves the evaluation of a conditional expectation of a well defined ratio of

almost surely positive random variables, which is impossible to perform analytically. For

this reason, it is imperative to resort to the development of well behaved approximations

to (4.12), which, at the same time, would facilitate implementation. In the following,

we present two such heuristic approaches.



169

4.2.3.1 Approximation by the Method of Statistical Differentials

The first idea we are going to explore is that of approximating the objective of (4.12)

by truncated Taylor expansions. Observe that VI can be equivalently expressed as

VI (p, t) ≡ 1

σ2
D

Pc
|g (p, t)|−2 +

σ2

P0
|f (p, t)|−2 +

σ2σ2
D

PcP0
|f (p, t)|−2 |g (p, t)|−2

(4.13)

,
1

VII (p, t)
,

for all (p, t) ∈ S × N+
NT

. Then, for t ∈ N2
NT

, we may locally approximate

E {VI (p, t)|C (Tt−1)} around the point E {VII (p, t)|C (Tt−1)} (see Section 3.14.2 in

[80]; also known as the Method of Statistical Differentials) via a first order Taylor ex-

pansion as

E {VI (p, t)|C (Tt−1)} ≈ 1

E {VII (p, t)|C (Tt−1)} , (4.14)

or via a second order Taylor expansion as

E {VI (p, t)|C (Tt−1)} ≈
E
{

(VII (p, t))2
∣∣∣C (Tt−1)

}

(E {VII (p, t)|C (Tt−1)})3 , (4.15)

where it is straightforward to show that the square on the numerator can be expanded

as

(VII (p, t))2 ≡
(
σ2σ2

D

PcP0

)2

|f (p, t)|−4 |g (p, t)|−4 + 2
σ2σ2

D

PcP0
|f (p, t)|−2 |g (p, t)|−2

+ 2

(
σ2

P0

)2
σ2
D

Pc
|f (p, t)|−4 |g (p, t)|−2 + 2

σ2

P0

(
σ2
D

Pc

)2

|f (p, t)|−2 |g (p, t)|−4

+

(
σ2

P0

)2

|f (p, t)|−4 +

(
σ2
D

Pc

)2

|g (p, t)|−4 . (4.16)

The approximate formula (4.15) may be in fact computed in closed form at any point

p ∈ S, thanks to the following technical, but simple, result.

Lemma 4.1. (Big Expectations) Under the wireless channel model introduced in

Section ??, it is true that, at any p ∈ S,

[F (p, t) G (p, t)]T
∣∣∣C (Tt−1) ∼ N

(
µF,Gt|t−1(p) ,ΣF,G

t|t−1(p)
)
, (4.17)
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for all t ∈ N2
NT

, and where we define

µF,Gt|t−1(p),
[
µFt|t−1 (p) µGt|t−1 (p)

]T
, (4.18)

µFt|t−1 (p),αS (p) `+ cF1:t−1 (p) Σ−1
1:t−1

(
m1:t−1−µ1:t−1

)
∈ R, (4.19)

µGt|t−1 (p),αD (p) `+ cG1:t−1 (p) Σ−1
1:t−1

(
m1:t−1−µ1:t−1

)
∈ R and (4.20)

ΣF,G
t|t−1 (p),




η2 + σ2
ξ η2e−

‖pS−pD‖2
δ

η2e−
‖pS−pD‖2

δ η2 + σ2
ξ




−


c

F
1:t−1 (p)

cG1:t−1 (p)


Σ−1

1:t−1


c

F
1:t−1 (p)

cG1:t−1 (p)



T

∈ S2
++, (4.21)

with

m1:t−1,
[
F T (1) GT (1) . . . F T (t− 1) GT (t− 1)

]T
∈ R2R(t−1)×1, (4.22)

µ1:t−1, [αS(p (1)) αD(p (1)) . . . αS(p (t−1)) αD(p (t−1))]T `∈R2R(t−1)×1, (4.23)

cF1:t−1 (p),
[
cF1 (p) . . . cFt−1 (p)

]
∈ R1×2R(t−1), (4.24)

cG1:t−1 (p),
[
cG1 (p) . . . cGt−1 (p)

]
∈ R1×2R(t−1), (4.25)

cFk (p),

[{
E
{
σS(p, t)σjS(k)

}}
j∈N+

R

{
E
{
σS(p, t)σjD(k)

}}
j∈N+

R

]
, ∀k ∈ N+

t−1 (4.26)

cGk (p),

[{
E
{
σD(p, t)σjS(k)

}}
j∈N+

R

{
E
{
σD(p, t)σjD(k)

}}
j∈N+

R

]
, ∀k ∈ N+

t−1 and

(4.27)

Σ1:t−1,




Σ (1, 1) · · · Σ (1, t− 1)

...
. . .

...

Σ (t− 1, 1) · · · Σ (t− 1, t− 1)



∈ S2R(t−1)

++ , (4.28)

for all (p, t) ∈ S × N2
NT

. Further, for any choice of (m,n) ∈ Z × Z, the conditional

correlation of the fields |f (p, t)|m and |g (p, t)|n relative to C (Tt−1) may be expressed

in closed form as

E {|f (p, t)|m |g (p, t)|n|C (Tt−1)}

≡10(m+n)ρ/20 exp


log (10)

20


m

n



T

µF,Gt|t−1(p)+

(
log (10)

20

)2

m

n



T

ΣF,G
t|t−1(p)


m

n





, (4.29)

at any p ∈ S and for all t ∈ N2
NT

.
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Proof of Lemma 4.1. See Appendix B. �

Since, by exploitting Lemma 4.1 and (4.16), formula (4.15) can be evaluated without

any particular difficulty, we now propose the replacement of the original pointwise

problem of interest, (4.12), with either of the heuristics

maximize
p

1

E {VII (p, t)|C (Tt−1)}

subject to p ∈ Ci (po (t−1))

(4.30)

and

maximize
p

E
{

(VII (p, t))2
∣∣∣C (Tt−1)

}

(E {VII (p, t)|C (Tt−1)})3

subject to p ∈ Ci (po (t−1))

, (4.31)

to be solved at relay i ∈ N+
R, at each time t − 1 ∈ N+

NT−1, depending on the order of

approximation employed, respectively. Observe that Jensen’s Inequality directly implies

that the objective of (4.30) is always lower than or equal that of (4.31) and that of the

original program (4.12), as well. As a result, (4.30) is also a lower bound relaxation to

(4.12). Both approximations are technically well behaved, though, as made precise by

the next theorem.

Theorem 4.2. (Behavior of Approximation Chains I / SINR Maximiza-

tion) Both heuristics (4.30) and (4.31) each feature at least one measurable maxi-

mizer. Therefore, provided that any of the two heuristics is solved at each time slot

t − 1 ∈ N+
NT−1, that the selected one features a unique maximizer, p̃∗ (t), and that

p̃∗ (t) ≡ po (t), for all t ∈ N2
NT

, the produced decision chain is measurable and condi-

tion C2 is satisfied at all times.

Proof of Theorem 4.2. See Appendix B. �

Theorem 4.2 implies that, at each time slot t ∈ N+
NT−1 and under the respective

conditions, the chosen heuristic constitutes a well defined approximation to the original

problem, (4.12) and, in turn, to (4.10), in the sense that all conditions C1-C4 are

satisfied.
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At this point, it will be important to note that, for each p ∈ S, computation of the

conditional mean and covariance in (4.17) of Lemma 4.1 require execution of matrix

operations, which are of expanding dimension in t ∈ N2
NT

; observe that, for instance,

the covariance matrix Σ1:t−1 is of size 2R (t− 1), which is increasing in t ∈ N2
NT

. Fortu-

nately, however, the increase is linear in t. Additionally, the reader may readily observe

that the inversion of the covariance matrix Σ1:t−1 constitutes the computationally dom-

inant operation in the long formulas of Lemma 4.1. The computational complexity of

this matrix inversion, which takes place at each time slot t− 1 ∈ N+
NT−1, is, in general,

of the order of O
(
R3t3

)
elementary operations. Fortunately though, we may exploit

the Matrix Inversion Lemma, in order to reduce the computational complexity of the

aforementioned matrix inversion to the order of O
(
R3t2

)
. Indeed, by construction,

Σ1:t−1 may be expressed as

Σ1:t−1 ≡


 Σ1:t−2 Σc

1:t−2

(Σc
1:t−2)

T
Σ (t− 1, t− 1)


 , (4.32)

where

Σc
1:t−2 , [Σ (1, t− 1) . . . Σ (t− 2, t− 1)]T ∈ R2R(t−2)×2R. (4.33)

Invoking the Matrix Inversion Lemma, we obtain the recursive expression

Σ−1
1:t−1 =




Σ−1
1:t−2 + Σ−1

1:t−2Σ
c
1:t−2S

−1
t−1 (Σc

1:t−2)
T

Σ−1
1:t−2 −Σ−1

1:t−2Σ
c
1:t−2S

−1
t−1

−S−1
t−1 (Σc

1:t−2)
T

Σ−1
1:t−2 S−1

t−1


 , with

(4.34)

St−1 , Σ (t− 1, t− 1)− (Σc
1:t−2)

T
Σ−1

1:t−2Σ
c
1:t−2 ∈ S2R

++, (4.35)

where St−1 is the respective Schur complement. From (4.34) and (4.35), it can be easily

verified that the most computationally demanding operation involved is Σ−1
1:t−2Σ

c
1:t−2,

of order O
(
R3t2

)
. Since the inversion of St−1 is of the order of O

(
R3
)

, we arrive at a

total complexity of O
(
R3t2

)
elementary operations of the recursive scheme presented

above, and implemented at each time slot t−1. The achieved reduction in complexity is

important. In most scenarios, R, the number of relays, will be relatively small and fixed

for the whole operation of the system, whereas t, the time slot index, might generally
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take large values, since it is common for the operational horizon of the system, NT , to be

large. Additionally, the reader may readily observe that the aforementioned covariance

matrix is independent of the position at which the channel is predicted, p. As a result,

its inversion may be performed just once in each time slot, for all evaluations of the

mean and covariance of the Gaussian density in (4.17), for all different choices of p on

a fixed grid (say). Consequently, if the total number of such evaluations is P ∈ N+,

and recalling that the complexity for a matrix-vector multiplication is quadratic in the

dimension of the quantities involved, then, at worst, the total computational complexity

for channel prediction is of the order of O
(
PR2t2 +R3t2

)
, at each t−1 ∈ N+

NT−1. This

means that a potential actual computational system would have to be able to execute

matrix operations with complexity at most of the order of O
(
PR2N2

T +R3N2
T

)
, which

constitutes the worst case complexity, over all NT time slots. The analysis above

characterizes the complexity for solving either of the heuristics (4.30) and (4.31), if the

feasible set Ci is assumed to be finite, for all i ∈ N+
R. Of course, if the quantity RNT is

considered a fixed constant, implying that computation of the mean and covariance in

(4.17) is considered the result of a black box with fixed (worst) execution time and with

input p, then, at each t − 1 ∈ N+
NT−1, the total computational complexity for channel

prediction is of the order of O (P ) function evaluations, that is, linear in P .

4.2.3.2 Brute Force

The second approach to the solution of (4.12), considered in this section, is based on the

fact that the objective of the aforementioned program can be evaluated rather efficiently,

relying on the multidimensional Gauss-Hermite Quadrature Rule [88], which constitutes

a readily available routine for numerical integration. It is particularly effective for

computing expectations of complicated functions of Gaussian random variables [89].

This is indeed the case here, as shown below.

Leveraging Lemma 4.1 and as it can also be seen in the proof of Theorem 4.1

(condition C6), the objective of (4.12) can be equivalently represented, for all t ∈ N2
NT

,
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via a Lebesgue integral as

E {VI (p, t)|C (Tt−1)} =

∫

R2
r (x)N

(
x;µF,Gt|t−1(p) ,ΣF,G

t|t−1(p)
)

dx, (4.36)

for any choice of p ∈ S, where N (·;µ,Σ) : R2 → R++ denotes the bivariate Gaussian

density, with mean µ ∈ R2×1 and covariance Σ ∈ S2×2
+ , and the function r : R2 → R++

is defined exploitting the trick (3.11) as

r (x) ≡ r (x1, x2) ,
PcP0102ρ/10 [exp (x1 + x2)]

log(10)
10

P0σ
2
D [exp (x1)]

log(10)
10 +Pcσ

2 [exp (x2)]
log(10)

10 +10−ρ/10σ2σ2
D

, (4.37)

for all x ≡ (x1, x2) ∈ R2. Exploitting the Lebesgue integral representation (4.36), it

can be easily shown that the conditional expectation may be closely approximated by

the double summation formula (see Section IV in [89])

E {VI (p, t)|C (Tt−1)} ≈
∑

l1∈N
+
M

$l1

∑

l2∈N
+
M

$l2
r

(√
ΣF,G
t|t−1(p)q(l1,l2) + µF,Gt|t−1(p)

)
,

(4.38)

where M ∈ N+ denotes the quadrature resolution, q(l1,l2) ,
[
ql1 ql2

]T ∈ R2×1 denotes

the (l1, l2)-th quadrature point and $(l1,l2) ,
[
$l1

$l2

]T ∈ R2×1 denotes respective

weighting coefficient, for all (l1, l2) ∈ N+
M × N+

M . Both sets of quadrature points and

weighting coefficients are automatically selected apriori and independently in each di-

mension, via the following simple procedure [89,90]. Let us define a matrix J ∈ RM×M ,

such that

J (i, j) ,





√
min {i, j}

2
, |j − i| ≡ 1

0, otherwise

, ∀ (i, j) ∈ N+
M × N+

M . (4.39)

That is, J constitutes a hollow, tridiagonal, symmetric matrix. Let the sets

{λi (J) ∈ R}
i∈N+

M
and

{
vi (J) ∈ RM×1

}
i∈N+

M

contain the eigenvalues and normalized

eigenvectors of J , respectively. Then, simply, quadrature points and the respective

weighting coefficients are selected independently in each dimension j ∈ {1, 2} as

qlj ≡
√

2λlj (J) and (4.40)

$lj
≡
(
vlj (J) (1)

)2
, ∀lj ∈ N+

M . (4.41)
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In (4.41), vlj (J) (1) denotes the first entry of the involved vector.

Under the above considerations, in this subsection, we propose, for a sufficiently

large number of quadrature points M , the replacement of the original pointwise problem

(4.12) with the heuristic

maximize
p

∑

(l1,l2)∈N+
M×N

+
M

$l1
$l2

r

(√
ΣF,G
t|t−1(p)q(l1,l2) + µF,Gt|t−1(p)

)

subject to p ∈ Ci (po (t−1))

, (4.42)

to be solved at relay i ∈ N+
R, at each time t− 1 ∈ N+

NT−1. As in Section 4.2.3.1 above,

the following result is in power, concerning the technical consistency of the decision

chain produced by considering the approximate program (4.42), for all t ∈ N2
NT

. Proof

is omitted, as it is essentially identical to that of Theorem 4.2.

Theorem 4.3. (Behavior of Approximation Chains II / SINR Maximization)

Consider the the heuristic (4.42). Then, under the same circumstances, all conclusions

of Theorem 4.2 hold true.

Since the computations in (4.40) and (4.41) do not depend on p or the information

collected so far, encoded in C (Tt−1), for t ∈ N2
NT

, quadrature points and the respective

weights can be determined offline and stored in memory. Therefore, the computational

burden of (4.38) concentrates solely on the computation of an inner product, whose

computational complexity is of the order ofO
(
M2
)

, as well as a total of M2 evaluations

of r
(√

ΣF,G
t|t−1(p)q(l1,l2)+µ

F,G
t|t−1(p)

)
, for each value of p. Excluding temporarily the

computational burden of µF,Gt|t−1(p) and ΣF,G
t|t−1(p), each of the latter evaluations is of

fixed complexity, since each involves elementary operations among matrices and vectors

in R2×2 and R2×1, respectively and, additionally, the involved matrix square root can

be evaluated in closed form, via the formula [91]

√
ΣF,G
t|t−1(p) ≡

ΣF,G
t|t−1(p) +

√
det
(
ΣF,G
t|t−1(p)

)
I2

√
tr
(
ΣF,G
t|t−1(p)

)
+ 2

√
det
(
ΣF,G
t|t−1(p)

) ∈ S2×2
+ , (4.43)

where we have taken into account that ΣF,G
t|t−1(p) is always a (conditional) covariance

matrix and, thus, (conditionally) positive semidefinite. As a result and considering
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the last paragraph of Section 4.2.3.1, if (4.38) is evaluated on a finite grid of possi-

ble locations, say P ∈ N+, then, at each t − 1 ∈ N+
NT−1, the total computational

complexity of the Gauss-Hermite Quadrature Rule outlined above is of the order of

O
(
PM2 + PR2t2 +R3t2

)
elementary operations / function evaluations. This will be

the total, worst case computational complexity for solving (4.42), if the feasible set Ci is

assumed to be finite, for all i ∈ N+
R. As noted above, a finite feasible set greatly simpli-

fies implementation, since a trial-and-error approach may be employed for solving the

respective optimization problem. If M is considered a fixed constant (e.g., M ≡ 103),

and the same holds for Rt ≤ RNT , then, in each time slot, the total complexity of the

Gauss-Hermite Quadrature Rule is of the order of O (P ) evaluations of (4.38), that is,

linear in P . In that case, the whole numerical integration routine is considered a black

box of fixed computational load, which, in each time slot, takes p as its input. Observe

that, whenever M ≈ RNT , the worst case complexity of the brute force method, de-

scribed in this subsection, over all NT time slots, is essentially the same as that of the

Taylor approximation method, presented earlier in Section 4.2.3.1.

4.2.4 Theoretical Guarantees: Network QoS Increases Across Time

Slots

The proposed relay position selection approach presented in Section 4.2.3 enjoys a very

important and useful feature, initially observed via numerical simulations: Although a

2-stage stochastic programming procedure is utilized independently at each time slot for

determining optimal relay positioning and beamforming weights at the next time slot,

the average network QoS (that is, the achieved SINR) actually increases, as a function

of time (the time slot). Then, it was somewhat surprising to discover that, additionally,

this behavior of the achieved SINR can be predicted theoretically, in an indeed elegant

manner and, as it will be clear below, under mild and reasonable assumptions on the

structure of the spatially controlled beamforming problem under consideration. But

first, it would be necessary to introduce the following definition.

Definition 4.2. (L.MD.G Fields) On (Ω,F ,P), an integrable stochastic field Ξ :
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Ω × RN × N → R is said to be a Linear Martingale Difference (MD) Generator, rel-

ative to a filtration {Ht ⊆ F}t∈N, and with scaling factor µ ∈ R, or, equivalently,

L.MD.G♦ (Ht, µ), if and only if, for each t ∈ N+, there exists a measurable set Ωt ⊆ Ω,

with P (Ωt) ≡ 1, such that, for every x ∈ RN , it is true that

E {Ξ (x, t)|Ht−1} (ω) ≡ µE {Ξ (x, t− 1)|Ht−1} (ω) , (4.44)

for all ω ∈ Ωt.

Remark 4.3. A fine detail in the definition of a L.MD.G♦(Ht, µ) field is that, for each

t ∈ N, the event Ωt does not depend on the choice of point x ∈ RN . Nevertheless, even

if the event where (4.44) is satisfied is indeed dependent on the particular x ∈ RN , let

us denote it as Ωx,t, we may leverage the fact that conditional expectations are unique

almost everywhere, and arbitrarily define

E {Ξ (x, t)|Ht−1} (ω) , µE {Ξ (x, t− 1)|Ht−1} (ω) , (4.45)

for all ω ∈ Ωc
x,t, where P

(
Ωc
x,t

)
≡ 0. That is, we modify both, or either of the random

elements E {Ξ (x, t− 1)|Ht−1} and E {Ξ (x, t)|Ht−1}, on the null set Ωc
x,t, such that

(4.44) is satisfied. Then, it may be easily verified that both such modifications result

in valid versions of the conditional expectations of Ξ (x, t− 1) and Ξ (x, t) relative to

Ht−1, respectively and satisfy property (4.44), everywhere with respect to ω ∈ Ω.

In Definition 4.2, invariance of Ωt with respect to x ∈ RN , in conjunction with

the power of the substitution rule for conditional expectations (Section 4.5.1.1), will

allow the development of strong conditional arguments, when x is replaced by a random

element, measurable relative to Ht−1. �

Remark 4.4. There are lots of examples of L.MD.G stochastic fields, satisfying the

technical properties of Definition 4.2. For completeness, let us present two such ex-

amples. Employing generic notation, consider an integrable real-valued stochastic field

Y (x, t), x ∈ RN , t ∈ N. Let the natural filtration associated with Y (x, t) be {Yt}t∈N,

with Yt , σ
{
Y (x, t) ,x ∈ RN

}
, for all t ∈ N. Also, consider another, for simplicity

temporal, integrable real-valued process W (t) , t ∈ N. Suppose, further, that Y (x, t) is

a martingale with respect to t ∈ N (relative to {Yt}t∈N), and that W (t) is a zero mean
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process, independent of Y (x, t). In particular, we assume that, for every t ∈ N+, there

exist events ΩY
t ⊆ Ω and ΩW

t ⊆ Ω, satisfying P
(

ΩY
t

)
≡ 1 and P

(
ΩW
t

)
≡ 1, such that,

for all x ∈ RN ,

E {Y (x, t)|Yt−1} (ω) ≡ Y (ω,x, t− 1) and (4.46)

E {W (t)|Yt−1} (ω) ≡ 0, (4.47)

for all ω ∈ ΩY
t

⋂
ΩW
t , where, apparently, P

(
ΩY
t

⋂
ΩW
t

)
≡ 1.

Our first, probably most basic example of a L.MD.G field is simply the martingale

Y (x, t) itself. Of course, in order to verify this statement, we need to show that it

satisfies the technical requirements of Definition 4.2, relative to a given filtration; in

particular, let us choose {Yt}t∈N to be that filtration. Then, for every (x, t) ∈ RN×N+,

it is trivial to see that

E {Y (x, t)|Yt−1} (ω) ≡ Y (ω,x, t− 1) ≡ E {Y (x, t− 1)|Yt−1} (ω) , (4.48)

for all ω ∈ ΩY
t , where Y (x, t− 1) is chosen as our version of E {Y (x, t− 1)|Yt−1},

everywhere in Ω. As a result, the martingale Y (x, t) is itself a L.MD.G♦ (Yt, 1), as

expected.

The second, somewhat more interesting example of a L.MD.G field is defined as

X (x, t) , %Y (x, t) +W (t) , (4.49)

for all (x, t) ∈ RN × N, where, say, 0 < % ≤ 1. In order to verify the technical

requirements of Definition 4.2, let us again choose {Yt}t∈N as our filtration. Then, for

every (x, t) ∈ RN × N+, there exists a measurable set ΩY,W
x,t ⊆ Ω, with P

(
ΩY,W
x,t

)
≡ 1,

such that, for all ω ∈ ΩY,W
x,t ,

E {X (x, t)|Yt−1} (ω) ≡ %Y (ω,x, t− 1) + E {W (t)}

≡ %Y (ω,x, t− 1) . (4.50)

Therefore, we may choose our version for E {X (x, t)|Yt−1} as

E {X (x, t)|Yt−1} (ω) ≡ %Y (ω,x, t− 1) , ∀ω ∈ Ω. (4.51)
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In exactly the same fashion, we may choose, for every (x, t) ∈ RN × N+,

E {X (x, t− 1)|Yt−1} (ω) ≡ %Y (ω,x, t− 1) , ∀ω ∈ Ω. (4.52)

Consequently, for every (x, t) ∈ RN × N+, it will be true that

E {X (x, t)|Yt−1} (ω) ≡ %Y (ω,x, t− 1) ≡ E {X (x, t− 1)|Yt−1} (ω) , (4.53)

for all ω ∈ Ω, showing that the field X (x, t) is also L.MD.G♦ (Yt, 1). �

Leveraging the notion of a L.MD.G field, the following result may be proven,

characterizing the temporal (in discrete time) evolution of the objective of myopic

stochastic programs of the form of (4.5). In order to introduce the result, let us define

the family
{

P↑
t

}
t∈N+

NT

, with P↑
t being the limit σ-algebra generated by all admissible

policies at time slot t, defined as

P↑
t , σ





⋃

p(t)∈Dt

σ {p (t)}



 ⊆ C (Tt−1) , ∀t ∈ N+

NT
, (4.54)

with P↑
1 being the trivial σ-algebra; recall that p (1) ∈ SR is assumed to be a constant.

Also, for every t ∈ N+
NT

, let us define the class

Dt ≡
{

p : Ω→ SR
∣∣∣p−1 (A) ∈P↑

t , for all A ∈ B
(
SR
)}

. (4.55)

The result now follows.

Theorem 4.4. (L.MD.G Objectives Increase over Time) Consider, for each

t ∈ N2
NT

, the maximization version of the 2-stage stochastic program (4.5), for some

choice of the second-stage optimal value V (p, t), p ∈ SR, t ∈ N2
NT

. Suppose that

conditions C1-C6 are satisfied at all times and let p∗ (t) denote an optimal solution to

(4.10), decided at t− 1 ∈ N+
NT−1. Suppose, further, that, for every t ∈ N+

NT
,

• V (p, t) is L.MD.G♦ (Ht, µ), for a filtration
{

Ht ⊇P↑
t

}
t∈N+

NT

and some µ ∈ R,

and that

• V (·, ·, t) is both SP♦CHt
and SP♦CIHt−1

, with Dt ⊆ CHt
⊆ IHt

(Remark 4.8 /

Section 4.5.1.1).



180

Then, for any admissible policy po (t− 1), it is true that

µE {V (po (t− 1) , t− 1)} ≡ E {V (po (t− 1) , t)} and (4.56)

µE
{
V
(
p∗ (t− 1) , t− 1

)}
≤ E

{
V
(
p∗ (t) , t

)}
, ∀t ∈ N2

NT
. (4.57)

In particular, if µ ≡ 1, the objective: • does not decrease by not updating the decision

variable, and • is nondecreasing over time, under optimal decision making.

Proof of Theorem 4.4. See Appendix B. �

Remark 4.5. When the stochastic program under study is separable, that is, when the

objective is of the form

V (p (t) , t) ≡
∑

i∈N+
M

Vi (pi (t) , t) (4.58)

(and the respective constraints of the problem decoupled), then, in order to reach the

conclusions of Theorem 4.4 for V , it suffices for Theorem 4.4 to hold individually for

each Vi, i ∈ N+
M . This is true, for instance, for the spatially controlled beamforming

problem (4.10). �

We may now return to the beamforming problem under consideration, namely

(4.10). By Remark 4.5 and Theorem 4.4, it would suffice if we could show that the

field V (p, t) is a linear MD generator, relative to a properly chosen filtration. Unfor-

tunately, though, it does not seem to be the case; the statistical structure of V (p, t)

does not match that of a linear MD generator exactly, relative to any reasonably chosen

filtration. Nevertheless, under the channel model of Section ??, it is indeed possible

to show that V (p, t) is approximately L.MD.G♦ (C (Tt−1) , 1), a fact that explains, in

an elegant manner, why our proposed spatially controlled beamforming framework is

expected to work so well, both under optimal and suboptimal decision making.

To that V (p, t) is approximately L.MD.G♦ (C (Tt−1) , 1), simply consider project-

ing V (p, t− 1) onto C (Tt−2), via the conditional expectation E {V (p, t− 1)|C (Tt−2)}.

Of course, and based on what we have seen so far, E {V (p, t− 1)|C (Tt−2)} can be

written as a Lebesgue integral of V (p, t− 1) expressed in terms of the vector field

[F (p, t− 1) G (p, t− 1)]T , times its conditional density relative to C (Tt−2). It then
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easy to see that this conditional density will be, of course, Gaussian, and will be of ex-

actly the same form as the conditional density of [F (p, t) G (p, t)]T relative to C (Tt−1),

as presented in Lemma 4.1, but with t replaced by t−1. Likewise, E {V (p, t)|C (Tt−2)}

is of the same form as E {V (p, t− 1)|C (Tt−2)}, but with all terms

exp

(
−1

γ

)
, exp

(
−2

γ

)
, . . . , exp

(
− t− 2

γ

)
(4.59)

simply replaced by

exp

(
−2

γ

)
, exp

(
−3

γ

)
, . . . , exp

(
− t− 1

γ

)
, (4.60)

for all t ∈ N3
NT

. Of course, if t ≡ 2, we have

E {V (p, 2)|C (T0)} ≡ E {V (p, 2)}

≡ E {V (p, 1)} ≡ E {V (p, 1)|C (T0)} . (4.61)

Now, for γ sufficiently large, we may approximately write

exp

(
−x+ 1

γ

)
≈ exp

(
−x
γ

)
, ∀x > 1, (4.62)

and, therefore, due to continuity, it should be true that

E {V (p, t)|C (Tt−2)} ≈ E {V (p, t− 1)|C (Tt−2)} , (4.63)

for all t ∈ N2
NT

(and everywhere with respect to ω ∈ Ω). As a result, we have shown

that, at least approximately, V (p, t) is L.MD.G♦ (C (Tt−1) , 1). We may then invoke

Theorem 4.4 in an approximate manner, leading to the following important result.

Hereafter, for x ∈ R and y ∈ R, x . y will imply that x is approximately smaller or

equal than y, in the sense that x ≤ y + ε, where ε > 0 is some small slack.

Theorem 4.5. (QoS Increases over Time Slots) Consider the separable stochastic

program (4.10). For γ sufficiently large, and for any admissible policy po (t− 1), it is

true that

E {VI(poi (t− 1) , t− 1)} ≈ E {VI(poi (t− 1) , t)} , (4.64)

E
{
VI
(
p∗i (t− 1) , t− 1

)}
. E

{
VI
(
p∗i (t) , t

)}
, ∀i ∈ N+

R (4.65)
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E {V (po (t− 1) , t− 1)} ≈ E {V (po (t− 1) , t)} and (4.66)

E
{
V
(
p∗ (t− 1) , t− 1

)}
. E

{
V
(
p∗ (t) , t

)}
, (4.67)

for all t ∈ N2
NT

. In other words, approximately, the average network QoS: • does not

decrease by not updating the positions of the relays and • is nondecreasing across time

slots, under (per relay) optimal decision making.

Theorem 4.5 is very important from a practical point of view, and has the following

additional implications. Roughly speaking, under the conditions of Theorem 4.5, that

is, if the temporal interactions of the channel are sufficiently strong, the average network

QoS is not (approximately) expected to, at least abruptly, decrease if one or more relays

stop moving at some point. Such event might indeed happen in an actual autonomous

network, possibly due to power limitations, or a failure in the motion mechanisms of

some network nodes. In the same framework, Theorem 4.5 implies that the relays

which continue moving contribute (approximately) positively to increasing the average

network QoS, across time slots. Such behavior of the proposed spatially controlled

beamforming system may be also confirmed numerically, as discussed in Section 4.3.

For the record, and as it will be also shown in Section 4.3, relatively small values for

the correlation time γ, such as γ ≡ 5, are sufficient in order to practically observe the

nice system behavior promised by Theorem 4.5. This fact makes the proposed spatially

controlled beamforming system attractive in terms of practical feasibility, and shows

that such an approach could actually enhance system performance in a well-behaved,

real world situation.

4.3 Numerical Simulations & Experimental Validation

In this section, we present synthetic numerical simulations, which essentially confirm

that the proposed approach, previously presented in Section 4.2, actually works, and

results in relay motion control policies, which yield improved beamforming performance.

All synthetic experiments were conducted on an imaginary square terrain of dimensions

30×30 squared units of length, withW ≡ [0, 30]2, uniformly divided into 30×30 ≡ 900

square regions. The locations of the source and destination are fixed as pS ≡ [15 0]T and
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Figure 4.3: Comparison of the proposed strategic relay planning schemes, versus an
agnostic, randomized relay motion policy.

pD ≡ [15 30]T . The beamforming temporal horizon is chosen as T ≡ 40 and the number

of relays is fixed at R ≡ 8. The wavelength is chosen as λ ≡ 0.125, corresponding to

a carrier frequency of 2.4GHz. The various parameters of the assumed channel model

are set as ` ≡ 3, ρ ≡ 20, σ2
ξ ≡ 20, η2 ≡ 50, β ≡ 10, γ ≡ 5 and δ ≡ 1. The variances of

the reception noises at the relays and the destination are fixed as σ2 ≡ σ2
D ≡ 1. Lastly,

both the transmission power of the source and the total transmission power budget of

the relays are chosen as P ≡ Pc ≡ 25 (≈ 14dB) units of power.

The relays are restricted to the rectangular region S ≡ [0, 30]× [12, 18]. Further, at

each time instant, each of the relays is allowed to move inside a 9-region area, centered at

each current position, thus defining its closed set of feasible directions Ci, for each relay

i ∈ N+
R. Basic collision and out-of-bounds control was also considered and implemented.

In order to assess the effectiveness of our proposed approach, we compare both

heuristics (4.30) and (4.31) against the case where an agnostic, purely randomized relay

control policy is adopted; in this case, at each time slot, each relay moves randomly

to a new available position, without taking previously observed CSI into consideration.

For simplicity, we do not consider the brute force method presented earlier in Section
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4.2.3.2. For reference, we also consider the performance of an oracle control policy at

the relays, where, at each time slot t − 1 ∈ N+
NT−1, relay i ∈ N+

R updates its position

by noncausally looking into the future and choosing the position pi, which maximizes

directly the quantity VI (pi, t), over Ci (pi (t− 1)). Of course, the comparison of all

controlled systems is made under exactly the same communication environment.

Fig. 4.3 shows the expectation and standard deviation of the achieved QoS for all

controlled systems, approximated by executing 4000 trials of the whole experiment. As

seen in the figure, there is a clear advantage in exploiting strategically designed relay

motion control. Whereas the agnostic system maintains an average SINR of about

4 dB at all times, the system based on the proposed 2nd order heuristic (4.31) is clearly

superior, exhibiting an increasing trend in the achieved SINR, with a gap starting from

about 0.5 dB at time slot t ≡ 2, up to 3 dB at time slots t ≡ 10, 11, . . . , 40. The 1st

order heuristic (4.30) comes second, with always slightly lower average SINR, and which

also exhibits a similar increasing trend as the 2nd order heuristic (4.31). Additionally,

it seems to converge to the performance achieved by (4.31), across time slots. The

existence of an increasing trend in the achieved average network QoS has already been

predicted by Theorem 4.4 for a strictly optimal policy, and our experiments confirm this

behavior for both heuristics (4.30) and (4.31), as well. This shows that both heuristics

constitute excellent approximations to the original problem (4.12). Consequently, it is

both theoretically and experimentally verified that, although the proposed stochastic

programming formulation is essentially myopic, the resulting system performance is

not, and this is dependent on the fact that the channel exhibits non trivial temporal

statistical interactions. We should also comment on the standard deviation of all sys-

tems, which, from Fig. 4.3, seems somewhat high, relative to the range of the respective

average SINR. This is exclusively due to the wild variations of the channel, which, in

turn, are due to the effects of shadowing and multipath fading; it is not due to the

adopted beamforming technique. This is reasonable, since, when the channel is not ac-

tually in deep fade at time t (an event which might happen with positive probability),

the relays, at time t − 1, are predictively steered to locations, which, most probably,

incur higher network QoS. As clearly shown in Fig. 4.3, for all systems under study,
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Figure 4.4: Performance of the proposed spatially controlled system, at the presence of
motion failures.
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Figure 4.5: Performance of the proposed spatially controlled system, at the presence of
motion failures.
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including that implementing the oracle policy, an increase in system performance also

implies a proportional increase in the respective standard deviation.

Next, we experimentally evaluate the performance of the system at the presence of

random motion failures in the network. Hereafter, we work with the 2nd order heuristic

(4.31), and set T ≡ 20. Random motion failures are modeled by choosing, at each trial,

a random sample of a fixed number of relays and a random time when the failures occur,

that is, at each time, the selected relays just stop moving; they continue to beamform

staying still, at the position each of them visited last. Two cases are considered; in

the first case, motion failures happen if and only if t ∈ [12, 15] (Figs. 4.4a and 4.5a),

whereas, in the second case, t ∈ [5, 6] (Figs. 4.4b and 4.5b). In both cases, zero, one,

three and five relays (chosen at random, at each trial) stop moving. Two cases for γ

are considered, γ ≡ 5 (Figs. 4.4a and 4.4b) and γ ≡ 15 (Figs. 4.5a and 4.5b).

Again, the results presented in Fig. 4.4 pleasingly confirm our predictions implied

by Theorem 4.4 (note, however, that Theorem 4.4 does not support randomized mo-

tion failures; on the other hand, our simulations are such in order to stress test the

proposed system in more adverse motion failure cases). In particular, Fig. 4.4a clearly

demonstrates that a larger number of motion failures induces a proportional, relatively

(depending on γ) slight decrease in performance; this decrease, though, is smoothly

evolving, and is not abrupt. This behavior is more pronounced in Fig. 4.5a, where the

correlation time parameter γ has been increased to 15 (recall that, in Theorem 4.4, γ is

assumed to be sufficiently large). We readily observe that, in this case, over the same

horizon, the operation of the system is smoother, and decrease in performance, as well

as its slope, are significantly smaller than those in Fig. 4.4a, for all cases of motion

failures. Now, in Figs. 4.4b and 4.5b, when motion failures happen early, well before

the network QoS converges to its maximal value, we observe that, although some relays

might stop moving at some point, the achieved expected network QoS continues ex-

hibiting its usual increasing trend. Of course, the performance of the system converges

values strictly proportional to the number of failures in each of the cases considered.

This means that the relays which continue moving contribute positively to increasing

network QoS. This has been indeed predicted by Theorem 4.4, as well.
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4.4 Conclusions

We have considered the problem of enhancing QoS in time slotted relay beamforming

networks with one source/destination, via stochastic relay motion control. Modeling

the wireless channel as a spatiotemporal stochastic field, we proposed a novel 2-stage

stochastic programming formulation for predictively specifying relay positions, such

that the future expected network QoS is maximized, based on causal CSI and under

a total relay power constraint. We have shown that this problem can be effectively

approximated by a set of simple, two dimensional subproblems, which can be distribu-

tively solved, one at each relay. System optimality was tediously analyzed under a

rigorous mathematical framework, and our analysis resulted in the development of an

extended version of the Fundamental Lemma of Stochastic Control, which constitutes a

result of independent interest, as well. We have additionally provided strong theoretical

guarantees, characterizing the performance of the proposed system, and showing that

the average QoS achieved improves over time. Our simulations confirmed the success of

the proposed approach, which results in relay motion control policies yielding significant

performance improvement, when compared to agnostic, randomized relay motion.

4.5 Appendices

4.5.1 Appendix A: Measurability & The Fundamental Lemma of Stochas-

tic Control

In the following, aligned with the purposes of this paper, a detailed discussion is pre-

sented, which is related to important technical issues, arising towards the analysis and

simplification of variational problems of the form of (4.5).

At this point, it would be necessary to introduce some important concepts. Let us

first introduce the useful class of Carathéodory functions [85, 92]2.

2
Instead of working with the class of Carathéodory functions, we could also consider the more general

class of random lower semicontinuous functions [85], which includes the former. However, this might
lead to overgeneralization and, thus, we prefer not to do so; the class of Carathéodory functions will
be perfectly sufficient for our purposes.
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Definition 4.3. (Carathéodory Function) On (Ω,F ,P), the mapping H : Ω ×

RN → R is called Carathéodory, if and only if H (·,x) is F -measurable for all x ∈ RN

and H (ω, ·) is continuous for all ω ∈ Ω.

In the analysis that follows, we will exploit the notion of measurability for closed-

valued multifunctions.

Definition 4.4. (Measurable Multifunctions [84, 85]) On the measurable space

(Ω,F ), a closed-valued multifunction X : Ω⇒ RN is F -measurable if and only if, for

all closed A ⊆ RN , the preimage

X−1 (A) ,
{
ω ∈ Ω

∣∣∣X (ω)
⋂
A 6= ∅

}
(4.68)

is in F . If F constitutes a Borel σ-algebra, generated by a topology on Ω, then an

F -measurable X will be equivalently called Borel measurable.

We will also make use of the concept of a closed multifunction (Remark 28 in [85],

p. 365), whose definition is also presented below, restricted to the case of Euclidean

spaces, of interest in this work.

Definition 4.5. (Closed Multifunction) A closed-valued multifunction X : RM ⇒

RN (a function from RM to closed sets in RN ) is closed if and only if, for all sequences

{xk}k∈N and {yk}k∈N, such that xk −→
k→∞

x, yk −→
k→∞

y and xk ∈ X (yk), for all k ∈ N,

it is true that x ∈ X (y).

4.5.1.1 Random Functions & The Substitution Rule for Conditional Ex-

pectations

Given a random function g (ω,x), a sub σ-algebra Y , another Y -measurable random

element X, and as long as E {g (·,x)|Y } exists for all x in the range of X, we would

also need to make extensive use of the substitution rule

E {g (·, X)|Y } (ω) ≡ E {g (·, X (ω))|Y } (ω)

≡ E {g (·,x)|Y } (ω)|x≡X(ω) , P − a.e., (4.69)
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which would allow us to evaluate conditional expectations, by essentially fixing the

quantities that are constant relative to the information we are conditioning on, carry

out the evaluation, and then let those quantities vary in ω again. Although the substi-

tution rule is a concept readily taken for granted when conditional expectations of Borel

measurable functions of random elements (say, from products of Euclidean spaces to

R) are considered, it does not hold, in general, for arbitrary random functions. As far

as our general formulation is concerned, it is necessary to consider random functions,

whose domain is a product of a well behaved space (such as RN ) and the sample space,

Ω, whose structure is assumed to be and should be arbitrary, at least in regard to the

applications of interest in this work.

One common way to ascertain the validity of the substitution rule is by exploitting

the representation of conditional expectations via integrals with respect to the relevant

regular conditional distributions, whenever the latter exist. But because of the arbitrary

structure of the base space (Ω,F ,P), regular conditional distributions defined on points

in the sample space Ω cannot be guaranteed to exist and, therefore, the substitution rule

may fail to hold. However, as we will see, the substitution rule will be very important

for establishing the Fundamental Lemma. Therefore, we may choose to impose it as

a property on the structures of g and/or X instead, as well as establish sufficient

conditions for this property to hold. The relevant definition follows.

Definition 4.6. (Substitution Property (SP )) On (Ω,F ,P), consider a random

element Y : Ω → RM , the associated sub σ-algebra Y , σ {Y } ⊆ F , and a random

function g : Ω × RN → R, such that E {g (·,x)} exists for all x ∈ RN . Let CY be any

functional class, such that3

CY ⊆ IY ,




X : Ω→ RN

∣∣∣∣∣∣∣

X−1 (A) ∈ Y , for all A ∈ B
(
RN
)

E {g (·, X)} exists




. (4.70)

We say that g possesses the Substitution Property within CY , or, equivalently, that g is

SP♦CY , if and only if there exists a jointly Borel measurable function h : RM ×RN →

3
Hereafter, statements of type “E {g (·, X)} exists” will implicitly imply that g (·, X) is an F -

measurable function.
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R, with h (Y (ω) ,x) ≡ E {g (·,x)|Y } (ω), everywhere in (ω,x) ∈ Ω × RN , such that,

for any X ∈ CY , it is true that

E {g (·, X)|Y } (ω) ≡ h (Y (ω) , X (ω)) , (4.71)

almost everywhere in ω ∈ Ω with respect to P.

Remark 4.6. Observe that, in Definition 4.6, h is required to be the same for all X ∈ CY .

That is, h should be determined only by the structure of g, relative to Y , regardless of

the specific X within CY , considered each time. On the other hand, it is also important

to note that the set of unity measure, where (4.71) is valid, might indeed be dependent

on the particular X. �

Remark 4.7. Another detail of Definition 4.6 is that, because E {g (·,x)} is assumed

to exist for all x ∈ RN , E {g (·,x)|Y } also exists and, as an extended Y -measurable

random variable, for every x ∈ RN , there exists a Borel measurable function hx : RM →

R, such that

hx (Y (ω)) ≡ E {g (·,x)|Y } (ω) , ∀ω ∈ Ω. (4.72)

One may then readily define a function h : RM × RN → R, such that h (Y (ω),x)≡

E {g (·,x)|Y } (ω), uniformly for all points, ω, of the sample space, Ω. This is an

extremely important fact, in regard to the analysis that follows. Observe, however, that,

in general, h will be Borel measurable only in its first argument ; h is not guaranteed

to be measurable in x ∈ RN , for each Y ∈ RM , let alone jointly measurable in both its

arguments. �

Remark 4.8. (Generalized SP ) Definition 4.6 may be reformulated in a more general

setting. In particular, Y may be assumed to be any arbitrary sub σ-algebra of F , but

with the subtle difference that, in such case, one would instead directly demand that

the random function h : Ω × RN → R, with h (ω,x) ≡ E {g (·,x)|Y } (ω), everywhere

in (ω,x) ∈ Ω×RN , is jointly Y ⊗B
(
RN
)

-measurable and such that, for any X ∈ CY

(with CY defined accordingly), it is true that

E {g (·, X)|Y } (ω) ≡ h (ω,X (ω)) , P − a.e.. (4.73)
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Although such a generalized definition of the substitution property is certainly less

enlightening, it is still useful. Specifically, this version of SP is explicitly used in the

statement and proof of Theorem 4.4, presented in Section 4.2.4. �

Keeping (Ω,F ,P) of arbitrary structure, we will be interested in the set of g’s which

are SP♦IY . The next result provides a large class of such random functions, which is

sufficient for our purposes.

Theorem 4.6. (Sufficient Conditions for the SP♦IY ) On (Ω,F ,P), consider a

random element Y : Ω → RM , the associated sub σ-algebra Y , σ {Y } ⊆ F , and a

random function g : Ω× RN → R. Suppose that:

• g is dominated by a P-integrable function; that is,

∃ψ ∈ L1 (Ω,F ,P;R) , such that sup
x∈RN

|g (ω,x)| ≤ ψ (ω) , ∀ω ∈ Ω, (4.74)

• g is Carathéodory on Ω× RN , and that

• the extended real valued function E {g (·,x)|Y } is Carathéodory on Ω× RN .

Then, g is SP♦IY .

Proof of Theorem 4.6. Under the setting of the theorem, consider any Y -measurable

random element X : Ω → RN , for which E {g (·, X)} exists. Then, E {g (·, X)|Y }

exists. Also, by domination of g by ψ, for all x ∈ RN , E {g (·,x)|Y } exists and

constitutes a P-integrable, Y -measurable random variable. By Remark 4.7, we know

that

E {g (·,x)|Y } (ω) ≡ h (Y (ω) ,x) , ∀ (ω,x) ∈ Ω× RN , (4.75)

where h : RM × RN → R is Borel measurable in its first argument. However, since

E {g (·,x)|Y } (ω)

≡ h (Y (ω) ,x) is Carathéodory on Ω × RN , h is Carathéodory on RM × RN , as well.

Thus, h will be jointly B
(
RM

)
⊗B

(
RN
)

-measurable (Lemma 4.51 in [92], along with

the fact that R is metrizable).
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We claim that, actually, h is such that

E {g (·, X)|Y } ≡ h (Y,X) , P − a.e.. (4.76)

Employing a common technique, the result will be proven in steps, starting from

indicators and building up to arbitrary measurable functions, as far as X is con-

cerned. Before embarking with the core of the proof, note that, for any x1 and x2

in RN and any A ∈ F , the sum g (·,x1)1A + g (·,x2)1Ac is always well defined, and

E {g (·,x1)1A} and E {g (·,x2)1Ac} both exist and are finite by domination. This im-

plies that E {g (·,x1)1A}+E {g (·,x2)1Ac} is always well-defined, which in turn implies

the validity of the additivity properties (Theorem 1.6.3 and Theorem 5.5.2 in [27])

E {g (·,x1)1A+g (·,x2)1Ac}≡E {g (·,x1)1A}+E {g (·,x2)1Ac} ∈ R, and (4.77)

E {g (·,x1)1A + g (·,x2)1Ac |Y } ≡ E {g (·,x1)1A|Y }+ E {g (·,x2)1Ac |Y } , (4.78)

P − a.e.. Hence, under our setting, any such manipulation is technically justified.

Suppose first that X (ω) ≡ x̃1A (ω), for some x̃ ∈ RN and some A ∈ Y . Then, by

([27], Theorem 5.5.11 & Comment 5.5.12), it is true that

E {g (·, X)|Y } ≡ E {g (·, x̃)1A + g (·,0)1Ac |Y }

≡ E {g (·, x̃)1A|Y }+ E {g (·,0)1Ac |Y }

≡ 1AE {g (·, x̃)|Y }+ 1AcE {g (·,0)|Y }

≡ 1Ah (Y, x̃) + 1Ach (Y,0)

≡ h (Y, x̃1A)

≡ h (Y,X) , P − a.e., (4.79)

proving the claim for indicators.

Consider now simple functions of the form

X (ω) ≡
∑

i∈N+
I

x̃i1Ai (ω) , (4.80)

where x̃i ∈ RN , Ai ∈ Y , for all i ∈ N+
I , with Ai

⋂Aj ≡ ∅, for i 6= j and
⋃
i∈N+

I
Ai ≡ Ω.
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Then, we again have

E {g (·, X)|Y } ≡ E




∑

i∈N+
I

g (·, x̃i)1Ai

∣∣∣∣∣∣∣
Y





≡
∑

i∈N+
I

E
{
g (·, x̃i)1Ai

∣∣Y
}

≡
∑

i∈N+
I

1AiE {g (·, x̃i)|Y }

≡
∑

i∈N+
I

1Aih (Y, x̃i)

≡ h


Y,

∑

i∈N+
I

x̃i1Ai




≡ h (Y,X) , P − a.e., (4.81)

and the proved is claimed for simple functions.

To show that our claims are true for any arbitrary random function g, we take

advantage of the continuity of both h and g in x. First, we know that h is Carathéodory,

which means that, for every ω ∈ Ω, if any sequence
{
xn ∈ RN

}
n∈N

is such that xn −→
n→∞

x (for arbitrary x ∈ RN ), it is true that

h (Y (ω) ,xn) ≡ E {g (·,xn)|Y } (ω) −→
n→∞

E {g (·,x)|Y } (ω) ≡ h (Y (ω) ,x) . (4.82)

Second, we know that g is Carathéodory as well, also implying that, for every ω ∈ Ω,

if any sequence
{
xn ∈ RN

}
n∈N

is such that xn −→
n→∞

x, it is true that

g (ω,xn) −→
n→∞

g (ω,x) . (4.83)

Next, let
{
Xn : Ω→ RN

}
n∈N

be a sequence of simple Borel functions, such that, for

all ω ∈ Ω,

Xn (ω) −→
n→∞

X (ω) . (4.84)

Note that such a sequence always exists (see Theorem 1.5.5 (b) in [27]). Consequently,

for each ω ∈ Ω, we may write (note that g is F⊗B
(
RN
)

-measurable; see ([92], Lemma

4.51))

g (ω,Xn (ω)) −→
n→∞

g (ω,X (ω)) , (4.85)
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that is, the sequence {g (·, Xn)}n∈N converges to g (·, X), everywhere in Ω.

Now, let us try to apply the Dominated Convergence Theorem for conditional ex-

pectations (Theorem 5.5.5 in [27]) to the aforementioned sequence of functions. Of

course, we have to show that all members of the sequence {g (·, Xn)}n∈N are dominated

by another integrable function, uniformly in n ∈ N. By assumption, there exists an

integrable function ψ : Ω→ R, such that

|g (ω,x)| ≤ ψ (ω) , ∀ (ω,x) ∈ Ω× RN . (4.86)

In particular, it must also be true that

|g (ω,Xn (ω))| ≤ ψ (ω) , ∀ (ω, n) ∈ Ω× N, (4.87)

verifying the domination requirement. Thus, Dominated Convergence implies the exis-

tence of an event ΩΠ1
⊆ Ω, with P

(
ΩΠ1

)
≡ 1, such that, for all ω ∈ ΩΠ1

,

E {g (·, Xn)|Y } (ω) −→
n→∞

E {g (·, X)|Y } (ω) . (4.88)

Also, for every ω ∈ Ω
⋂

ΩΠ1
≡ ΩΠ1

, (4.82) yields

h (Y (ω) , Xn (ω)) −→
n→∞

h (Y (ω) , X (ω)) . (4.89)

However, by what we have shown above, because the sequence {Xn}n∈N consists of

simple functions, then, for every n ∈ N, there exists ΩΠ
n ⊆ Ω, with P (ΩΠ

n) ≡ 1, such

that, for all ω ∈ ΩΠ
n ,

E {g (·, Xn)|Y } (ω) ≡ h (Y (ω) , Xn (ω)) . (4.90)

Since N is countable, there exists a “global” event ΩΠ2
⊆ Ω, with P

(
ΩΠ2

)
≡ 1, such

that, for all ω ∈ ΩΠ2
,

E {g (·, Xn)|Y } (ω) ≡ h (Y (ω) , Xn (ω)) , ∀n ∈ N. (4.91)

Now define the event ΩΠ3
, ΩΠ1

⋂
ΩΠ2

. Of course, P
(
ΩΠ3

)
≡ 1. Then, for every

ω ∈ ΩΠ3
, (4.88), (4.89) and (4.91) all hold simultaneously. Therefore, for every ω ∈ ΩΠ3

,

it is true that (say)

h (Y (ω) , Xn (ω)) −→
n→∞

E {g (·, X)|Y } (ω) and (4.92)
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h (Y (ω) , Xn (ω)) −→
n→∞

h (Y (ω) , X (ω)) , (4.93)

which immediately yields

E {g (·, X)|Y } (ω) ≡ h (Y (ω) , X (ω)) , P − a.e., (4.94)

showing that g is SP♦IY . �

Remark 4.9. Note that the assumptions of Theorem 4.6 can be significantly weakened,

guaranteeing the validity of the substitution rule for vastly discontinuous random func-

tions, including, for instance, cases with random discontinuities, or random jumps.

This extended analysis, though, is out of the scope of the paper and will be presented

elsewhere. �

4.5.1.2 A Base Form of the Lemma

We will first state a base, very versatile version of the Fundamental Lemma, treating a

general class of problems, which includes the particular stochastic problem of interest,

(4.5), as a subcase.

Lemma 4.2. (Fundamental Lemma / Base Version) On (Ω,F ,P), consider a

random element Y : Ω → RM , the sub σ-algebra Y , σ {Y } ⊆ F , a random function

g : Ω × RN → R, such that E {g (·,x)} exists for all x ∈ RN , a Borel measurable

closed-valued multifunction X : RN ⇒ RN , with dom (X ) ≡ RN , as well as another

Y -measurable random element ZY : Ω→ RN , with ZY (ω) ≡ Z (Y (ω)), for all ω ∈ Ω,

for some Borel Z : RM → RN . Consider also the decision set

FY
X (ZY ) ,




X : Ω→ RN

∣∣∣∣∣∣∣

X (ω) ∈ X (ZY (ω)) , a.e. in ω ∈ Ω

X−1 (A) ∈ Y , for all A ∈ B
(
RN
)




, (4.95)

containing all Y -measurable selections of X (ZY ). Then, FY
X (ZY ) is nonempty. Suppose

that:

• E {g (·, X)} exists for all X ∈ FY
X (ZY ), with inf

X∈FY
X(ZY )

E {g (·, X)} < +∞, and

that
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• g is SP♦FY
X (ZY ).

Then, if Y denotes the completion of Y relative to the restriction P|Y , then the optimal

value function infx∈X (ZY ) E {g (·,x)|Y } , ϑ is Y -measurable and it is true that

inf
X∈FY

X(ZY )

E {g (·, X)} ≡ E
{

inf
x∈X (ZY )

E {g (·,x)|Y }
}
≡ E {ϑ} . (4.96)

In other words, variational minimization over FY
X (ZY ) is exchangeable by pointwise (over

constants) minimization over the random multifunction X (ZY ), relative to Y .

Remark 4.10. Note that, in the statement of Theorem 4.7, assuming that the infimum

of E {g (·, X)} over FY
X (ZY ) is less than +∞ is equivalent to assuming the existence of

an X in FY
X (ZY ), such that E {g (·, X)} is less than +∞. �

Before embarking with the proof of Lemma 4.2, it would be necessary to state an

old, fundamental selection theorem, due to Mackey [93].

Theorem 4.7. (Borel Measurable Selections [93]) Let (S1,B (S1)) and (S2,B (S2))

be Borel spaces and let (S2,B (S2)) be standard. Let µ : B (S1) → [0,∞] be a stan-

dard measure on (S1,B (S1)). Suppose that A ∈ B (S1) ⊗B (S2), such that, for each

y ∈ S1, there exists xy ∈ S2, so that
(
y, xy

)
∈ A. Then, there exists a Borel subset

O ∈ B (S1) with µ (O) ≡ 0, as well as a Borel measurable function φ : S1 → S2, such

that (y, φ (y)) ∈ A, for all y ∈ S1 \ O.

Remark 4.11. Theorem 4.7 refers to the concepts of a Borel space, a standard Borel

space and a standard measure. These are employed as structural assumptions, in order

for the conclusions of the theorem to hold true. In this paper, except for the base

probability space (Ω,F ,P), whose structure may be arbitrary, all other spaces and

measures considered will satisfy those assumptions by default. We thus choose not

to present the respective definitions; instead, the interested reader is referred to the

original article, [93]. �

We are now ready to prove Lemma 4.2, as follows.

Proof of Lemma 4.2. As usual with such results, the proof will rely on showing a dou-

ble sided inequality [82–84, 86, 87, 94]. There is one major difficulty, though, in the
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optimization setting considered, because all infima may be potentially unattainable,

within the respective decision sets. However, it is immediately evident that, because g

is assumed to be SP♦FY
X (ZY ), and via a simple application of the tower property, it

will suffice to show that

inf
X∈FY

X(ZY )

E {h (Y,X)} ≡ E
{

inf
x∈X (ZY )

h (Y,x)

}
. (4.97)

This is because it is true that, for any Y -measurable selection of X (ZY ), say X : Ω→

RN , for which E {g (·, X)} exists,

E {g (·, X)|Y } (ω) ≡ h (Y (ω) ,x)|x=X(ω) , ∀ω ∈ ΩΠX
, (4.98)

where the event ΩΠX
∈ F is such that P

(
ΩΠX

)
≡ 1 and h is jointly Borel, satisfying

E {g (·,x)|Y } ≡ h (Y (ω) ,x) , (4.99)

everywhere in (ω,x) ∈ Ω× RN .

For the sake of clarity in the exposition, we will break the proof into a number of

discrete subsections, providing a tractable roadmap to the final result.

Step 1. FY
X (ZY ) is nonempty.

It suffices to show that there exists at least one Y -measurable selection of X (ZY ),

that is, a Y -measurable random variable, say X : Ω → RN , such that X (ω) ∈

X (ZY (ω)), for all ω in the domain of X (ZY ).

We first show that the composite multifunction X (ZY (·)) : Ω⇒ RN is Y -measurable.

Recall from Definition 4.4 that it suffices to show that

XZ−1
Y (A) ,

{
ω ∈ Ω

∣∣∣X (ZY (ω))
⋂
A 6= ∅

}
∈ Y , (4.100)

for every closed A ⊆ RN . Since the closed-valued multifunction X is Borel measurable,

it is true that X−1 (A) ∈ B
(
RN
)

, for all closed A ⊆ RN . We also know that ZY is

Y -measurable, or that Z−1
Y (B) ∈ Y , for all B ∈ B

(
RN
)

. Setting B ≡ X−1 (A) ∈

B
(
RN
)

, for any arbitrary closed A ⊆ RN , it is true that

Y 3 Z−1
Y

(
X−1 (A)

)
≡
{
ω ∈ Ω

∣∣∣ZY (ω) ∈ X−1 (A)
}
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≡
{
ω ∈ Ω

∣∣∣X (ZY (ω))
⋂
A 6= ∅

}

≡ XZ−1
Y (A) , (4.101)

and, thus, the composition X (ZY (·)) is Y -measurable, or, in other words, measurable

on the measurable (sub)space (Ω,Y ).

Now, since the closed-valued multifunction X (ZY ) is measurable on (Ω,Y ), it ad-

mits a Castaing Representation (Theorem 14.5 in [84] & Theorem 7.34 in [85]). There-

fore, there exists at least one Y -measurable selection of X (ZY ), which means that

FY
X (ZY ) contains at least one element. F

Step 2. ϑ is Y -measurable.

To show the validity of this statement, we first demonstrate that, for any chosen

h : RM × RN → R, as in Definition 4.6, the function ξ : RM → R, defined as

ξ (y) , inf
x∈X (Z(y))

h (y,x) , ∀y ∈ RM , (4.102)

is measurable relative to B
(
RM

)
, the completion of B

(
RM

)
relative to the pushfor-

ward PY . This follows easily from the following facts. First, the graph of the measurable

multifunction X (Z (·)) is itself measurable and in B
(
RM

)
⊗B

(
RN
)

(Theorem 14.8

in [84]), and, therefore, analytic (Appendix A.2 in [86]). Second, h is jointly Borel

measurable and, therefore, a lower semianalytic function (Appendix A.2 in [86]). As

a result, ([87], Proposition 7.47) implies that ξ is also lower semianalytic, and, conse-

quently, universally measurable (Appendix A.2 in [86]). Being universally measurable,

ξ is also measurable relative to B
(
RM

)
, thus proving our claim. We also rely on the

definitions of both Y and B
(
RM

)
, stated as (Theorem 1.9 in [95])

B ∈ Y ⇐⇒ B ≡ C
⋃
D
∣∣∣ C ∈ Y and D ⊆ O ∈ Y , with P|Y (O) ≡ 0 (4.103)

B ∈ B
(
RM

)
⇐⇒ B ≡ C

⋃
D
∣∣∣ C ∈ B

(
RM

)

and D ⊆ O ∈ B
(
RM

)
, with PY (O) ≡ 0. (4.104)

Now, specifically, to show that ϑ is measurable relative to Y , it suffices to show
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that, for every Borel A ∈ B
(
R
)
,

ϑ−1 (A) , {ω ∈ Ω|ϑ (ω) ∈ A} ∈ Y . (4.105)

Recall, that, by definition of ξ, it is true that ξ (Y (ω)) ≡ ϑ (ω), for all ω ∈ Ω. Then,

for every A ∈ B
(
R
)
, we may write

ϑ−1 (A) ≡ ξY −1 (A)

≡ {ω ∈ Ω| ξ (Y (ω)) ∈ A}

≡
{
ω ∈ Ω|Y (ω) ∈ ξ−1 (A)

}

, Y −1
(
ξ−1 (A)

)
. (4.106)

But ξ−1 (A) ∈ B
(
RM

)
, which, by (4.104), equivalently means that ξ−1 (A) ≡ GA

⋃HA,

for some GA ∈ B
(
RM

)
and some HA ⊆ EA ∈ B

(
RM

)
, with PY (EA) ≡ 0. Thus, we

may further express any A-preimage of ϑ as

ϑ−1 (A) ≡ Y −1
(
GA
⋃
HA
)

≡ Y −1 (GA)
⋃
Y −1 (HA) . (4.107)

Now, because GA is Borel and Y is a random element, it is true that Y −1 (GA) ∈ Y .

On the other hand, HA ⊆ EA, which implies that Y −1 (HA) ⊆ Y −1 (EA), where

P|Y
(
Y −1 (EA)

)
≡ PY (EA) ≡ 0. (4.108)

Therefore, we have shown that, for every A ∈ B
(
R
)
, ϑ−1 (A) may always be written

as a union of an element in Y and some subset of a P|Y -null set, also in Y . Enough

said. F

Step 3. For every X ∈ FY
X (ZY ), it is true that h (Y,X) ≥ infx∈X (ZY ) h (Y,x) ≡ ϑ.

For each ω ∈ Ω (which also determines Y ), we may write

ϑ (ω) ≡ inf
x∈X (Z(Y (ω)))

h (Y (ω) ,x)

≡ inf
M(Y (ω))∈X (ZY (ω))

h (Y (ω) ,M (Y (ω))) , (4.109)
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whereM : RM → RN is of arbitrary nature. Therefore, ϑ may be equivalently regarded

as the result of infimizing h over the set of all, measurable or not, functionals of Y ,

which are also selections of X (ZY ). This set, of course, includes FY
X (ZY ). Now, choose

an X ≡ MX (Y ) ∈ FY
X (ZY ), as above, for some Borel measurable MX : RM → RN .

Then, it must be true that

ϑ (ω) ≤ h (Y (ω) ,MX (Y (ω))) ≡ h (Y (ω) , X (ω)) , (4.110)

everywhere in ω ∈ Ω. F

Step 4. It is also true that

inf
X∈FY

X(ZY )

E {h (Y,X)} ≥ E
{

inf
x∈X (ZY )

h (Y,x)

}
. (4.111)

From Step 3, we know that, for every X ∈ FY
X (ZY ), we have

h (Y,X) ≥ ϑ. (4.112)

At this point, we exploit measurability of ϑ, proved in Step 2. Since, by assumption,

inf
X∈FY

X(ZY )

E {h (Y,X)} ≡ inf
X∈FY

X(ZY )

E {g (·, X)} < +∞, (4.113)

it follows that there exists XF ∈ FY
X (ZY ), such that E {h (Y,XF )} < +∞ (recall that

the integral E {g (·, XF )} exists anyway, also by assumption). Since (4.112) holds for

every X ∈ FY
X (ZY ), it also holds for XF ∈ FY

X (ZY ) and, consequently, the integral of ϑ

exists, with E {ϑ} < +∞. Then, we may take expectations on both sides of (4.112)

(Theorem 1.5.9 (b) in [27]), yielding

E {h (Y,X)} ≥ E {ϑ} , ∀X ∈ FY
X (ZY ). (4.114)

Infimizing additionally both sides over X ∈ FY
X (ZY ), we obtain the desired inequality.

We may also observe that, if inf
X∈FY

X(ZY )
E {h (Y,X)} ≡ −∞, then

inf
X∈FY

X(ZY )

E {h (Y,X)} ≡ E {ϑ} ≡ −∞, (4.115)
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and the conclusion of Lemma 4.2 holds immediately. Therefore, in the following, we

may assume that inf
X∈FY

X(ZY )
E {h (Y,X)} > −∞. F

Step 5. For every ε > 0, n ∈ N and every y ∈ RM , there exists x ≡ xy ∈ X (Z (y)),

such that

h
(
y,xy

)
≤ max {ξ (y) ,−n}+ ε. (4.116)

This simple fact may be shown by contradiction; replacing the universal with exis-

tential quantifiers and vice versa in the above statement, suppose that there exists ε > 0

, n ∈ N, and y ∈ RM such that, for all x ∈ X (Z (y)), h (y,x) > max {ξ (y) ,−n}+ ε.

There are two cases: 1) ξ (y) > −∞. In this case, max {ξ (y) ,−n} ≥ ξ (y), which

would imply that, for all x ∈ X (Z (y)),

h (y,x) > ξ (y) + ε, (4.117)

contradicting the fact that ξ (y) is the infimum (the greatest lower bound) of h (y,x)

over X (Z (y)), since ε > 0. 2) ξ (y) ≡ −∞. Here, max {ξ (y) ,−n} ≡ −n, and, for all

x ∈ XZ (y), we would write

h (y,x) > −n+ ε ∈ R, (4.118)

which, again, contradicts the fact that −∞ ≡ ξ (y) is the infimum of h (y,x) over

X (Z (y)). Therefore, in both cases, we are led to a contradiction, implying that the

statement preceding and including (4.116) is true. The idea of using the maximum

operator, so that ξ (y) may be allowed to take the value −∞, is credited to and borrowed

from ([84], proof of Theorem 14.60). F

Step 6. There exists a Borel measurable function ξ̃ : RM → R, such that

ξ̃ (y) ≡ ξ (y) , ∀y ∈ Rξ ⊇ Rξ, (4.119)

where Rξ ∈ B
(
RM

)
is such that PY

(
Rξ
)
≡ 1, and Rξ ∈ B

(
RM

)
is such that

PY
(
Rξ
)
≡ 1, where PY denotes the completion of the pushforward PY .
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From ([95], Proposition 2.12), we know that, since ξ is B
(
RM

)
-measurable, there

exists a B
(
RM

)
-measurable function ξ̃ : RM → R, such that

ξ̃ (y) ≡ ξ (y) , ∀y ∈ Rξ, (4.120)

where Rξ is an event in B
(
RM

)
, such that PY

(
Rξ
)
≡ 1. However, from Step 2

(see (4.104)), we know that Rξ ≡ Rξ
⋃REξ , where Rξ ∈ B

(
RM

)
and PY

(
REξ
)
≡ 0.

Then, it may be easily shown that PY
(
Rξ
)
≡ PY

(
Rξ
)
≡ 1 and, since PY and PY

agree on the elements of B
(
RM

)
, PY

(
Rξ
)
≡ 1, as well. F

Step 7. There exists a (P, ε, n)-optimal selector Xε
n ∈ FY

X (ZY ): For every ε > 0 and

for every n ∈ N, there exists Xε
n ∈ FY

X (ZY ), such that

h (Y,Xε
n) ≤ max

{
inf

x∈X (ZY )
h (Y,x) ,−n

}
+ ε, P − a.e.. (4.121)

This is the most crucial property of the problem that needs to be established, in

order to reach to the final conclusions of Lemma 4.2. In this step, we make use of

Theorem 4.7. Because Theorem 4.7 works on Borel spaces, in the following, it will be

necessary to work directly on the state space of the random element Y , equipped with

its Borel σ-algebra, and the pushforward PY . In the following, we will also make use

of the results proved in Step 5 and Step 6.

Recall the definition of ξ in the statement of Lemma 4.2. We may readily show

that the multifunction X (Z (·)) is B
(
RM

)
-measurable. This may be shown in exactly

the same way as in Step 1, exploitting the hypotheses that the multifunction X and

the function Z are both Borel measurable. Borel measurability of X (Z (·)) will be

exploited shortly.

Compare the result of Step 5 with what we would like to prove here; the statement

preceding and including (4.116) is not enough for our purposes; what we would actually

like is to be able to generate a selector, that is, a function of y such that (4.116) would

hold at least almost everywhere with respect to PY . This is why we need Theorem 4.7.

The idea of using Theorem 4.7 into this context is credited to and borrowed from [96].
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From Step 2 and Step 6, we know that ξ is B
(
RM

)
-measurable and that there

exists a Borel measurable function ξ̃ : RM → R, such that ξ̃ (y) ≡ ξ (y) , everywhere in

y ∈ Rξ, where Rξ ∈ B
(
RM

)
is such that PY

(
Rξ
)
≡ PY

(
Rξ
)
≡ 1. Then, it follows

that

ξ̃ (y) ≡ inf
x∈X (Z(y))

h (y,x) , (4.122)

for all y ∈ Rξ.

Define, for brevity, XZ (y) , X (Z (y)), for all y ∈ RM . Towards the application of

Theorem 4.7, fix any ε > 0 and any n ∈ N and consider the set

Πε,n
XZ ≡





(y,x) ∈ RM × RN

∣∣∣∣∣∣∣∣∣∣

x ∈ X (Z (y))

h (y,x) ≤ max
{
ξ̃ (y) ,−n

}
+ ε

, if y ∈ Rξ

x ∈ X (Z (y)) , if y ∈ Rcξ




. (4.123)

We will show that Πn
ε constitutes a measurable set in B

(
RM

)
⊗B

(
RN
)

. Observe

that Πε,n
XZ ≡ ΠXZ

⋂
(Πε,n⋃Πrem), where we define

ΠXZ ,
{

(y,x) ∈ RM × RN
∣∣∣x ∈ X (Z (y))

}
, (4.124)

Πε,n ,
{

(y,x) ∈ RM × RN
∣∣∣y ∈ Rξ, h (y,x) ≤ max

{
ξ̃ (y) ,−n

}
+ ε
}

and (4.125)

Πrem ,
{

(y,x) ∈ RM × RN
∣∣∣y ∈ Rcξ

}
. (4.126)

Clearly, it suffices to show that both ΠXZ and Πε,n are in B
(
RM

)
⊗B

(
RN
)

. First,

the set ΠXZ is the graph of the multifunction XZ , and, because XZ is measurable, it

follows from ([84], Theorem 14.8) that ΠXZ ∈ B
(
RM

)
⊗B

(
RN
)

. Second, because g is

SP♦FY
X (ZY ), h is jointly Borel measurable. Additionally, Rξ is Borel and ξ̃ is Borel as

well. Consequently, Πε,n can be written as the intersection of two measurable sets, im-

plying that it is in B
(
RM

)
⊗B

(
RN
)

, as well. And third, Πrem ∈ B
(
RM

)
⊗B

(
RN
)

,

sinceRcξ is Borel, as a complement of a Borel set. Therefore, Πε,n
XZ ∈ B

(
RM

)
⊗B

(
RN
)

.

Now, we have to verify the selection property, set as a requirement in the statement

of Theorem 4.7. Indeed, for every y ∈ Rξ, there exists xy ∈ X (Z (y)), such that

(4.116) holds, where ξ (y) ≡ ξ̃ (y) (see Step 6 and above), while, for every y ∈ Rcξ,

any xy ∈ X (Z (y)) will do. Thus, for every y ∈ RM , there exists xy ∈ RN , such that
(
y,xy

)
∈ Πε,n

XZ . As a result, Theorem 4.7 applies and implies that there exists a Borel
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subset RcΠε,nXZ of PY -measure 0, as well as a Borel measurable selector Sεn : RM → RN ,

such that, (y, Sεn (y)) ∈ Πε,n
XZ , for all y ∈ RΠ

ε,n
XZ

. In other words, the Borel measurable

selector Sεn is such that

Sεn (y) ∈ X (Z (y)) and

h (y,Sεn (y)) ≤ max
{
ξ̃ (y) ,−n

}
+ ε, ∀y ∈ Rξ

⋂RΠ
ε,n
XZ
, Rξ

Π
ε,n
XZ
,

(4.127)

where, of course, PY
(
Rξ
⋂RΠ

ε,n
XZ

)
≡ 1. Additionally, (4.127) must be true at y =

Y (ω), as long as ω is such that the values of Y are restricted to Rξ
Π
ε,n
XZ

. Equivalently,

we demand that

ω ∈
{
ω ∈ Ω|Y (ω) ∈ Rξ

Π
ε,n
XZ

}
≡ Y −1

(
Rξ

Π
ε,n
XZ

)
, Ωε

n. (4.128)

But Rξ
Π
ε,n
XZ
∈ B

(
RM

)
and Y is a random element and, hence, a measurable function

for Ω to RM . This means that Ωε
n ∈ Y and we are allowed to write

P (Ωε
n) ≡

∫

Y
−1

(
Rξ

Π
ε,n
XZ

) P (dω)

=

∫{
y∈RM

∣∣∣y∈Rξ
Π
ε,n
XZ

} PY (dy)

≡ PY
(
Rξ

Π
ε,n
XZ

)
≡ 1. (4.129)

Therefore, we may pull (4.127) back to the base space, and restate it as

Sεn (Y (ω)) ∈ X (ZY (ω)) and

h (Y (ω) , Sεn (Y (ω))) ≤ max {ξ (Y (ω)) ,−n}+ ε, ∀ω ∈ Ωε
n,

(4.130)

where Ωε
n ⊆ Ω is an event, such that P (Ωε

n) ≡ 1. Then, by construction, Sεn (Y ) ∈

FY
X (ZY ). As a result, for any choice of ε > 0 and n ∈ N, the selector Xε

n , Sεn (Y ) ∈

FY
X (ZY ) is such that

E {g (·, Xε
n)|Y } (ω) ≤ max {ϑ (ω) ,−n}+ ε, P − a.e.. (4.131)

We are done. F

Step 8. It is true that

inf
X∈FY

X(ZY )

E {h (Y,X)} ≤ E
{

inf
x∈X (ZY )

h (Y,x)

}
. (4.132)
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Define the sequence of random variables
{
$n : Ω→ R

}
n∈N as (see the RHS of

(4.121))

$n (ω) , max {ϑ (ω) ,−n} , ∀ (ω, n) ∈ Ω× N. (4.133)

Also, recall that E {ϑ} < +∞. Additionally, observe that

$n (ω) ≤ max {ϑ (ω) , 0} ≥ 0, ∀ (ω, n) ∈ Ω× N, (4.134)

where it is easy to show that E {max {ϑ, 0}} < +∞. Thus, all members of {$n}n∈N
are bounded by an integrable random variable, everywhere in ω and uniformly in n,

whereas it is trivial that, for every ω ∈ Ω, $n (ω) ↘
n→∞

ϑ (ω) .

Consider now the result of Step 7, where we showed that, for every ε > 0 and for

every n ∈ N, there exists a selector Xε
n ∈ FY

X (ZY ), such that

h (Y,Xε
n) ≤ $n + ε, P − a.e.. (4.135)

We can then take expectations on both sides (note that all involved integrals exist), to

obtain

E {h (Y,Xε
n)} ≤ E {$n}+ ε. (4.136)

Since Xε
n ∈ FY

X (ZY ), it also follows that

inf
X∈FY

X(ZY )

E {h (Y,X)} ≤ E {$n}+ ε. (4.137)

It is also easy to see that $n fulfills the requirements of the Extended Monotone Con-

vergence Theorem ([27], Theorem 1.6.7 (b)). Therefore, we may pass to the limit on

both sides of (4.137) as n→∞, yielding

inf
X∈FY

X(ZY )

E {h (Y,X)} ≤ E {ϑ}+ ε. (4.138)

But ε > 0 is arbitrary. F

Finally, just combine the statements of Step 4 and Step 8, and the result follows,

completing the proof of Lemma 4.2. �
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Remark 4.12. Obviously, Lemma 4.2 holds also for maximization problems as well,

by defining g ≡ −f , for some random function f : Ω × RN → R, under the corre-

sponding setting and assumptions. Note that, in this case, we have to assume that

sup
X∈FY

X(ZY )
E {f (·, X)} > −∞. �

Remark 4.13. Lemma 4.2 may be considered a useful variation of Theorem 14.60 in [84],

in the following sense. First, it is specialized for conditional expectations of random

functions, which are additionally SP♦FY
X (ZY ), in the context of stochastic control.

The latter property allows these conditional expectations to be expressed as (Borel)

random functions themselves. This is in contrast to ([84], Theorem 14.60), where it is

assumed that the random function, whose role is played by the respective conditional

expectation in Lemma 4.2, is somehow provided apriori. Second, Lemma 4.2 extends

([84], Theorem 14.60), in the sense that the decision set FY
X (ZY ) confines any solution to

the respective optimization problem to be a Y -measurable selection of a closed-valued

measurable multifunction, while at the same time, apart from natural (and important)

measurability requirements, no continuity assumptions are imposed on the structure

of the random function induced by the respective conditional expectation; only the

validity of the substitution property is required. In ([84], Theorem 14.60), on the other

hand, it is respectively assumed that the involved random function constitutes a normal

integrand, or, in other words, that it is random lower semicontinuous. �

Remark 4.14. In Lemma 4.2, variational optimization is performed over some subset of

functions measurable relative to Y ≡ σ {Y }, where Y is some given random element.

Although we do not pursue such an approach here, it would most probably be possible

to develop a more general version of Lemma 4.2, where the decision set would be appro-

priately extended to include Y -measurable random elements, as well. In such case, the

definition of the substitution property could be extended under the framework of lower

semianalytic functions and universal measurability, and would allow the development

of arguments showing existence of everywhere ε-optimal and potentially everywhere

optimal policies (decisions), in the spirit of [86,87]. �
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4.5.1.3 Guaranteeing the Existence of Measurable Optimal Controls

Although Lemma 4.2 constitutes a very useful result, which enables the simplification

of a stochastic variational problem, by essentially replacing it by an at least structurally

simpler, pointwise optimization problem, it does not provide insight on the existence

of a common optimal solution, within the respective decision sets.

On the one hand, it is easy to observe that, similarly to ([84], Theorem 14.60), if

there exists an optimal selection X∗ ∈ FY
X (ZY ), such that

X∗ ∈ arg min
x∈X (ZY )

E {g (·,x)|Y } 6= ∅, P − a.e., (4.139)

and Lemma 4.2 applies, then, exploitting the fact that g is SP♦FY
X (ZY ), we may write

inf
X∈FY

X(ZY )

E {g (·, X)} ≡ E {ϑ} ≡ E {ξ (Y )}

= E
{
h
(
Y,X∗

)}

= E
{
E
{
g
(
·, X∗

)∣∣Y
}}

≡ E
{
g
(
·, X∗

)}
, (4.140)

implying that the infimum of E {g (·, X)} over X ∈ FY
X (ZY ) is attained by X∗; there-

fore, X∗ is also an optimal solution to the respective variational problem. Con-

versely, if X∗ attains the infimum of E {g (·, X)} over X ∈ FY
X (ZY ) and the infimum is

greater than −∞, then both E
{
g
(
·, X∗

)}
and E {ϑ} are finite, which also implies that

E
{
g
(
·, X∗

)∣∣Y
}

and ϑ are finite P − a.e.. As a result, and recalling Step 3 in the

proof of Lemma 4.2, we have

E
{
E
{
g
(
·, X∗

)∣∣Y
}
− ϑ

}
≡ 0 and (4.141)

E
{
g
(
·, X∗

)∣∣Y
}
− ϑ ≥ 0, P − a.e.. (4.142)

and, consequently, ϑ ≡ E
{
g
(
·, X∗

)∣∣Y
}

, P − a.e..

Unfortunately, it is not possible to guarantee existence of such an X∗ ∈ FY
X (ZY ),

in general. However, at least for the purposes of this paper, it is both reasonable and

desirable to demand the existence of an optimal solution X∗, satisfying (??) (in our

spatially controlled beamforming problem, we need to make a feasible decision on the
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position of the relays at the next time slot). Additionally, such an optimal solution, if

it exists, will not be available in closed form, and, consequently, it will be impossible to

verify measurability directly. Therefore, we have to be able to show both existence and

measurability of X∗ indirectly, and specifically, by imposing constraints on the struc-

ture of the stochastic optimization problem under consideration. One way to do this,

emphasizing on our spatially controlled beamforming problem formulation, is to restrict

our attention to pointwise optimization problems involving Carathéodory objectives,

over closed-valued multifunctions, which are additionally closed -see Definition 4.5.

Focusing on Carathéodory functions is not particularly restrictive, since it is already

clear that, in order to guarantee the validity of the substitution rule (the SP Property),

similar continuity assumptions would have to be imposed on both random functions

g and E {g (·, ·)|Y } ≡ h, as Theorem 4.6 suggests. At the same time, restricting

our attention to optimizing Carathéodory functions over measurable multifunctions,

measurability of optimal values and optimal decisions is preserved, as the next theorem

suggests.

Theorem 4.8. (Measurability under Partial Minimization) On the base subspace

(Ω,Y , P|Y ), where Y ⊆ F , let the random function H : Ω×RN → R be Carathéodory,

and consider another random element Z : Ω → RN , as well as any compact-valued

multifunction X : RN ⇒ RN , with dom (X ) ≡ RN , which is also closed. Additionally,

define H∗ : Ω→ R as the optimal value to the optimization problem

minimize
x

H (ω,x)

subject to x ∈ X (Z (ω))
, ∀ω ∈ Ω. (4.143)

Then, H∗ is Y -measurable and attained for at least one Y -measurable minimizer X∗ :

Ω→ RN . If the minimizer X∗ is unique, then it has to be Y -measurable.

Proof of Theorem 4.8. From ([85], pp. 365 - 367 and/or [84], Example 14.32 & Theorem

14.37), we may immediately deduce that H∗ is Y -measurable and attained for at least

one Y -measurable minimizer X∗, as long as the compact (therefore closed, as well)-

valued multifunction X (Z (·)) : Ω ⇒ RN is measurable relative to Y . In order to

show that the composition X (Z (·)) is Y -measurable, we use the assumption that the
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compact-valued multifunction X : RN ⇒ RN is closed and, therefore, Borel measurable

(Remark 28 in [85], p. 365). Then, Y -measurability of X (Z (·)) follows by the same

arguments as in Step 1, in the proof of Lemma 4.2. �

Remark 4.15. It would be important to mention that if one replaces RN with any

compact (say) subsetH ⊂ RN in the statement of Theorem 4.8, then the result continues

to hold as is. No modification is necessary. In our spatially controlled beamforming

problem, this compact set H is specifically identified either with the hypercubic region

SR, or with some compact subset of it. �

4.5.1.4 Fusion & Derivation of Conditions C1-C6

Finally, combining Theorem 4.6, Lemma 4.2, Theorem 4.8 and Corollary ??, we may

directly formulate the following constrained version of the Fundamental Lemma, which

is of central importance regarding the special class of stochastic problems considered in

this work and, in particular, (4.5).

Lemma 4.3. (Fundamental Lemma / Fused Version) On (Ω,F ,P), consider

a random element Y : Ω → RM , the sub σ-algebra Y , σ {Y } ⊆ F , a random

function g : Ω× RN → R, such that E {g (·,x)} exists for all x ∈ RN , a multifunction

X : RN ⇒ RN , with dom (X ) ≡ RN and , as well as another function ZY : Ω → RN .

Assume that:

C1. X is compact-valued and closed, and that

C2. ZY is a Y -measurable random element.

Consider also the nonempty decision set FY
X (ZY ). Additionally, suppose that:

C3. E {g (·, X)} exists for all X ∈ FY
X (ZY ), with inf

X∈FY
X(ZY )

E {g (·, X)} < +∞,

C4. g is dominated by a P-integrable function, uniformly in x ∈ RN ,

C5. g is Carathéodory on Ω× RN , and that

C6. E {g (·,x)|Y } ≡ h (Y,x) is Carathéodory on Ω× RN .
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Then, the optimal value function infx∈X (ZY ) E {g (·,x)|Y } , ϑ is Y -measurable, and

it is true that

inf
X∈FY

X(ZY )

E {g (·, X)} ≡ E
{
g
(
·, X∗

)}
≡ E {ϑ} , (4.144)

for at least one X∗ ∈ FY
X (ZY ) , such that X∗ (ω) ∈ arg minx∈X (ZY ) E {g (·,x)|Y } (ω),

everywhere in ω ∈ Ω. If there is only one minimizer attaining ϑ, then it has to be

Y -measurable.

Proof of Lemma 4.3. We just carefully combine Theorem 4.6, Lemma 4.2 and Theorem

4.8. First, if conditions C4-C6 are satisfied, then, from Theorem 4.6, it follows that g

is SP♦IY . Then, since FY
X (ZY ) ⊆ IY , g is SP♦FY

X (ZY ), as well. Consequently, with

C1-C3 being true, all assumptions of Lemma 4.2 are satisfied, and the first equivalence

of (4.144) from the left is true. Additionally, from Theorem 4.8, it easily follows that the

optimal value ϑ is Y -measurable, attained by an at least one Y -measurable X∗, which,

of course, constitutes a selection of X (Z (Y )) ≡ X (ZY ), or, equivalently, X∗ ∈ FY
X (ZY ).

Then, because g is SP♦FY
X (ZY ), we may write

ϑ ≡ inf
x∈X (ZY )

E {g (·,x)|Y }

≡ inf
x∈X (ZY )

h (Y,x)

≡ h
(
Y,X∗

)

≡ E
{
g
(
·, X∗

)∣∣Y
}
, P − a.e., (4.145)

which yields the equivalence E {ϑ} ≡ E
{
g
(
·, X∗

)}
. The proof is complete. �

Remark 4.16. Note that, because, in Lemma 4.3, X∗ (ω) ∈ X (ZY (ω)), everywhere

in ω ∈ Ω, it is true that X∗ is actually a minimizer of the slightly more constrained

problem of infimizing E {g (·, X)} over the set of precisely all Y -measurable selections of

X (ZY ). Denoting this decision set as FY ,E
X (ZY ) ⊆ F

Y
X (ZY ), the aforementioned statement

is true since, simply,

inf
X∈FY ,E

X(ZY )

E {g (·, X)} ≥ inf
X∈FY

X(ZY )

E {g (·, X)} ≡ E
{
g
(
·, X∗

)}
(4.146)
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=⇒ inf
X∈FY ,E

X(ZY )

E {g (·, X)} ≡ E
{
g
(
·, X∗

)}
. (4.147)

where we have used the fact that X∗ ∈ FY ,E
X (ZY ). This type of decision set is considered,

for simplicity, in (4.5), which corresponds to the original formulation of the spatially

controlled beamforming problem. �

Lemma 4.3 is of major importance, as it directly provides us with conditions C1-C6,

which, being relatively easily verifiable, at least for our spatially controlled beamforming

setting, ensure strict theoretical consistency of the methods developed in this paper.

At this point, our discussion about the Fundamental Lemma has been concluded. �

4.5.2 Appendix B: Proofs / Section 4.2

4.5.2.1 Proof of Theorem 4.1

Since, in the following, we are going to verify conditions C1-C6 of Lemma 4.3 in Section

4.5.1.4 (Appendix A) for the 2-stage problem (4.10), it will be useful to first match it to

the setting of Lemma 4.3, term-by-term. Table 4.1 shows how the components of (4.10)

are matched to the respective components of the optimization problem considered in

Lemma 4.3. For the rest of the proof, we consider this variable matching automatic.

Keep t ∈ N2
NT

fixed. As in the statement of Theorem 4.1, suppose that, at time

slot t− 1 ∈ N+
NT−1, po (t− 1) ≡ po (ω, t− 1) is measurable relative to C (Tt−2). Then,

condition C2 is automatically verified. F

Next, let us verify C1. For this, we will simply show directly that closed-valued

translated multifunctions, in the sense of Definition 4.1, are also closed. Given two

closed sets H ⊂ RN , A ⊆ RN and a fixed reference h ∈ H, let D : RN ⇒ RN be

(H,h)-translated in A and consider any two arbitrary sequences

{xk ∈ A}k∈N and {yk ∈ A− h}k∈N , (4.148)

such that xk −→
k→∞

x, yk −→
k→∞

y and xk ∈ D (yk), for all k ∈ N. By Definition 4.1,

xk ∈ D (yk) if and only if xk − yk ∈ H, for all k ∈ N. But xk − yk −→
k→∞

x− y and H

is closed. Therefore, it is true that x − y ∈ H, as well, showing that D is closed. By
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Problem of Lemma 4.3 2-Stage Problem (4.10)

Random element Y : Ω→ RM
All relay positions and channel observations,

up to (current) time slot t− 1

σ-Algebra Y , σ {Y } σ-Algebra C (Tt−1), jointly generated
by the above random vector

Random Function
g : Ω× RN → R

Optimal value of the second-stage problem,
V (·, ·, t− 1) : Ω× SR → R++

Multifunction X : RN ⇒ RN ,
with dom (X ) ≡ RN

Spatially feasible motion region
C : SR ⇒ SR, with dom (C) ≡ SR

Function ZY : Ω→ RN
Selected motion policy at time slot t− 2,

po (·, t− 1) : Ω→ SR

Decision set FY
X (ZY )

Decision set Dt
(precisely matched with FY ,E

X (ZY ))

Table 4.1: Variable matching for (4.10) and the respective problem considered in Lemma
4.3.

Assumption 4.1, C : R2R ⇒ R2R is the (G,0)-translated multifunction in SR, for some

compact and, hence, closed, G ⊂ SR. Consequently, the restriction of C in SR is closed

and C3 is verified. F

Condition C5 is also easily verified; it suffices to show that both functions |f (·, ·, t)|2

and |g (·, ·, t)|2 are Carathéodory on Ω×S, or, in other words, that the fields |f (p, t)|2

and |g (p, t)|2 are everywhere sample path continuous. Indeed, if this holds, VI (·, ·, t)

will be Carathéodory, as a continuous functional of |f (·, ·, t)|2 and |g (·, ·, t)|2, and since

V

([
pT

1 . . . pT
R

]T
, t

)
≡
∑

i∈N+
R

VI (pi, t) , (4.149)

it readily follows that V (·, ·, t) is Carathéodory on Ω×SR. In order to show (everywhere)

sample path continuity of |f (p, t)|2 (respectively |g (p, t)|2) on S, we may utilize (3.11).

As a result, sample path continuity of |f (p, t)|2 is equivalent to sample path continuity

of

F (p, t) ≡ αS (p) `+ σS (p, t) + ξS (p, t) , ∀p ∈ S. (4.150)

Of course, αS is a continuous function of p. As long as the fields σS (p, t) and ξS (p, t)

are concerned, these are also sample path continuous; see Section 3.1.3. Enough said.

F

We continue with C3. Since we already know that V (·, ·, t) is Carathéodory, it

follows from ([92], Lemma 4.51) that V (·, ·, t) is also jointly measurable relative to
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F ⊗B
(
SR
)

. Next, let p (t) ≡ p (ω, t) ∈ SR be any random element, measurable with

respect to C (Tt−1) and, thus, F , too. Then, from ([92], Lemma 4.49), we know that

the pair (p (t, ω) , (t, ω)) is also F -measurable. Consequently, |V (·,p (·, t) , t)|2 must be

F -measurable, as a composition of measurable functions. Additionally, V (·, ·, t) is, by

definition, nonnegative. Thus, its expectation exists (Corollary 1.6.4 in [27]), and we

are done. F

Conditions C4 and C6 need slightly more work, in order to be established. To

verify C4, we have to show existence of a function in L1 (Ω,F ,P;R), which dominates

V (·, ·, t), uniformly in p ∈ SR. Everywhere in Ω, again using (3.11), and with c ,

log (10) /10 for brevity, we may write

V

([
pT

1 . . . pT
R

]T
, t

)
≡
∑

i∈N+
R

PcP0 |f (pi, t)|2 |g (pi, t)|2

P0σ
2
D |f (pi, t)|2 + Pcσ

2 |g (pi, t)|2 + σ2σ2
D

≤ P0

σ2

∑

i∈N+
R

|f (pi, t)|2

≤ P0

σ2

∑

i∈N+
R

sup
pi∈S
|f (pi, t)|2

≡ 10ρ/10P0R

σ2 sup
p∈S

exp (cF (p, t))

≡ 10ρ/10P0R

σ2 exp

(
c sup

p∈S
F (p, t)

)

≡ 10ρ/10P0R

σ2 exp

(
c sup

p∈S
αS (p) `+ σS (p, t) + ξS (p, t)

)

,
10ρ/10P0R

σ2 exp

(
c sup

p∈S
αS (p) `+ χS (p, t)

)

≤ 10ρ/10P0R

σ2 exp

(
c` sup

p∈S
αS (p)

)
exp

(
c sup

p∈S
χS (p, t)

)

, ϕ (ω, t) > 0, ∀ω ∈ Ω. (4.151)

Due to the fact that αS is continuous in p ∈ S and that S is compact, the Extreme Value

Theorem implies that the deterministic term supp∈S αS (p) is finite. Consequently, it

suffices to show that

E

{
exp

(
c sup

p∈S
χS (p, t)

)}
< +∞, (4.152)
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provided, of course, that the expectation is meaningfully defined. For this to happen, it

suffices that the function supp∈S χS (p, t) is a well defined random variable. Since both

σS (p, t) and ξS (p, t) are sample path continuous, it follows that the sum field σS (p, t)+

ξS (p, t) is sample path continuous. It is then relatively easy to see that supp∈S χS (p, t)

is a measurable function. See, for instance, Corollary ??, or [64]. Additionally, the

Extreme Value Theorem again implies that supp∈S χS (p, t) is finite everywhere on Ω,

which in turn means that the field χS (p, t) is at least almost everywhere bounded on

the compact set S.

Now, in order to prove that (4.152) is indeed true, we will invoke a well known

result from the theory of concentration of measure, the Borell-TIS Inequality, which

now follows.

Theorem 4.9. (Borell-TIS Inequality [64]) Let X (s), s ∈ RN , be a real-valued,

zero-mean, Gaussian random field, P-almost everywhere bounded on a compact subset

K ⊂ RN . Then, it is true that

E
{

sup
s∈K

X (s)

}
< +∞ and (4.153)

P
(

sup
s∈K

X (s)− E
{

sup
s∈K

X (s)

}
> u

)
≤ exp


− u2

2 sup
s∈K

E
{
X2 (s)

}


 , (4.154)

for all u > 0.

As highlighted in ([64], page 50), an immediate consequence of the Borell-TIS In-

equality is that, under the setting of Theorem 4.9, we may further assert that

P
(

sup
s∈K

X (s) > u

)
≤ exp


−

(
u− E

{
sup
s∈K

X (s)

})2

2 sup
s∈K

E
{
X2 (s)

}


 , (4.155)

for all u > E {sups∈KX (s)}.

To show (4.152), we exploit the Borell-TIS Inequality and follow a procedure similar

to ([64], Theorem 2.1.2). First, from the discussion above, we readily see that the field

χS (p, t) does satisfy the assumptions Theorem 4.9. Also, because χS (p, t) is the sum

of two independent fields, it is true that

E
{
χ2
S (p, t)

}
≡ η2 + σ2

ξ . (4.156)
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As a result, Theorem 4.9 implies that E {sups∈KX (s)} is finite and we may safely write

E

{
exp

(
c sup

p∈S
χS (p, t)

)}
≡
∫ ∞

0

P
(

exp

(
c sup

p∈S
χS (p, t)

)
> x

)
dx

≡
∫ ∞

0

P
(

sup
p∈S

χS (p, t) >
log (x)

c

)
dx. (4.157)

In order to exploit (4.155), it must hold that

log (x)

c
> E

{
sup
s∈K

X (s)

}
⇔ x > exp

(
cE
{

sup
s∈K

X (s)

})
> 0. (4.158)

Therefore, we may break (4.157) into two parts and bound from above, namely,

E

{
exp

(
c sup

p∈S
χS (p, t)

)}

≡
∫ exp(cE{supp∈S χS(p,t)})

0

P
(

sup
p∈S

χS (p, t) >
log (x)

c

)
dx

+

∫ ∞

exp(cE{supp∈S χS(p,t)})
P
(

sup
p∈S

χS (p, t) >
log (x)

c

)
dx

≤
∫ exp(cE{supp∈S χS(p,t)})

0

dx

+

∫ ∞

exp(cE{supp∈S χS(p,t)})

exp



−

(
log (x)

c
− E

{
sup
p∈S

χS (p, t)

})2

2
(
η2 + σ2

ξ

)




dx

≤ exp

(
cE

{
sup
p∈S

χS (p, t)

})

+ c

∫ ∞

E{supp∈S χS(p,t)}

exp(cu) exp



−

(
u− E

{
sup
p∈S

χS (p, t)

})2

2
(
η2 + σ2

ξ

)




du. (4.159)

Since both terms on the RHS of (4.159) are finite, (4.152) is indeed satisfied. Conse-

quently, it is true that

E {ϕ (·, t)} < +∞⇔ ϕ (·, t) ∈ L1 (Ω,F ,P;R) . (4.160)

Enough said; C4 is now verified. F



217

Moving on to C6, the goal here is to show that, for each fixed t ∈ N2
NT

, the well

defined random function H : Ω× SR → R, defined as

H (ω,p) , E {V (p, t) |C (Tt−1)} (ω) , (4.161)

is Carathéodory. Observe, though, that we may write

H (ω,p) ≡
∑

i∈N+
R

HI (ω,pi), (4.162)

where the random function HI : Ω× S → R is defined as

HI (ω,p) , E

{
PcP0 |f (p, t)|2 |g (p, t)|2

P0σ
2
D |f (p, t)|2 + Pcσ

2 |g (p, t)|2 + σ2σ2
D

∣∣∣∣∣C (Tt−1)

}
(ω) . (4.163)

Because a finite sum of Carathéodory functions (in this case, in different variables) is

obviously Carathéodory, it suffices to show that HI is Carathéodory.

First, it is easy to see that HI (·,p) constitutes a well defined conditional expectation

of a nonnegative random variable, for all p ∈ S. Therefore, what remains is to show

that HI (ω, ·) is continuous on S, everywhere with respect to ω ∈ Ω. For this, we

will rely on the sequential definition of continuity and the explicit representation of

HI as an integral with respect to the Lebesgue measure, which exploits the form of

the projective system of finite dimensional distributions of |f (p, t)|2 and |g (p, t)|2. In

particular, because of the trick (3.11), it is easy to show that HI can be equivalently

expressed as the Lebesgue integral

HI (ω,p) =

∫

R2
r (x)N (x;µ2 (ω,p) ,Σ2 (ω,p)) dx, (4.164)

where the continuous function r : R2 → R++ is defined as

r (x) ≡ r (x1, x2) ,
PcP010ρ/10 [exp (x1 + x2)]

log(10)
10

P0σ
2
D [exp (x1)]

log(10)
10 +Pcσ

2 [exp (x2)]
log(10)

10 +10−ρ/10σ2σ2
D

, (4.165)

for all x ≡ (x1, x2) ∈ R2, and N : R2 × S × Ω → R++, corresponds to the jointly

Gaussian conditional density of F (p, t) and G (p, t), relative to C (Tt−1), with mean

µ2 : (ω,p)→ R2×1 and covariance Σ2 : (ω,p)→ S2×2
++ explicitly depending on ω and p

as

µ2 (ω,p) ≡ µ2 (C (Tt−1) (ω) ; p) and (4.166)
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Σ2 (ω,p) ≡ Σ2 (C (Tt−1) (ω) ; p) , ∀ (ω,p) ∈ Ω× S. (4.167)

Via a simple change of variables, we may reexpress HI (ω,p) as

HI (ω,p) ≡
∫

R2
r (x+ µ2 (ω,p))N (x; 0,Σ2 (ω,p)) dx. (4.168)

It is straightforward to verify that both µ2 (ω, ·) and Σ2 (ω, ·) are continuous func-

tions in p ∈ S, for all ω ∈ Ω. This is due to the fact that all functions involving p in the

wireless channel model introduced in Section ?? are trivially continuous in this variable.

Equivalently, we may assert that the whole integrand r (x+ µ2 (ω, ·))N (x; 0,Σ2 (ω, ·))

is a continuous function, for all pairs (ω,x) ∈ Ω×R2. Next, fix ω ∈ Ω, and for arbitrary

p ∈ S, consider any sequence {pk ∈ S}k∈N, such that pk −→
k→∞

p. Then, HI (ω, ·) is

continuous if and only if HI (ω,pk) −→
k→∞

HI (ω,p). We will show this via a simple

application of the Dominated Convergence Theorem. Emphasizing the dependence on

p as a superscript for the sake of clarity, we can write

r
(
x+ µp

2

)
N
(
x; 0,Σp

2

)

≤r
(
x+ µp

2

)
N
(
x; 0,Σp

2

)

≡r
(
x+ µp

2

) exp

(
−1

2
xT [Σp

2

]−1
x

)

2π
√

det
(
Σp

2

)

≤r
(
x+ µp

2

) exp

(
−1

2
λmin

([
Σp

2

]−1
)
‖x‖22

)

2π
√

det
(
Σp

2

)

≡r
(
x+ µp

2

)
exp

(
− ‖x‖22

2λmax
(
Σp

2

)
)

2π
√

det
(
Σp

2

)

≤ P010ρ/10

σ2

[
exp
(
x1 + µp

2 (1)
)] log(10)

10

exp

(
− ‖x‖22

2λmax
(
Σp

2

)
)

2π
√

det
(
Σp

2

)

≤ P010ρ/10

σ2

[
exp

(
x1+sup

p∈S
µp

2 (1)

)] log(10)
10

exp


−

‖x‖22
2sup

p∈S
λmax

(
Σp

2

)




2π
√

inf
p∈S

det
(
Σp

2

)
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,
P010ρ/10

σ2 [exp(x1 + p1)]
log(10)

10

exp

(
−‖x‖

2
2

2p2

)

2π
√
p3

, ψ (ω,x) , (4.169)

where, due to the continuity of µ2 (ω, ·) and Σ2 (ω, ·), the continuity of the maximum

eigenvalue and determinant operators, the fact that S is compact, and the power of the

Extreme Value Theorem, all extrema involved are finite and, of course, independent of

p. It is now easy to verify that the RHS of (4.169) is integrable. Indeed, by Fubini’s

Theorem (Theorem 2.6.4 in [27])

∫

R2
ψ (ω,x) dx

=
P010ρ/10

σ2

exp

(
log (10)

10
p1

)

√
p3

∫

R2

exp

(
log (10)

10
x1

)
1

2π
exp

(
−‖x‖

2
2

2p2

)
dx

≡ P010ρ/10

σ2

exp

(
log (10)

10
p1

)
p2

√
p3

∫

R2

exp

(
log (10)

10
x1

)
1

2πp2
exp

(
−‖x‖

2
2

2p2

)
dx

=
P010ρ/10

σ2

exp

(
log (10)

10
p1

)
p2

√
p3

∫

R
exp

(
log (10)

10
x1

)
1√

2πp2
exp

(
− x2

1

2p2

)
dx1

=
P010ρ/10

σ2

exp

(
log (10)

10
p1 (ω)

)
p2 (ω)

√
p3 (ω)

exp

(
p2 (ω)

2

(
log (10)

10

)2
)
< +∞, (4.170)

for ω ∈ Ω. That is,

ψ (ω, ·) ∈ L1

(
R2,B

(
R2
)
,L;R

)
, ω ∈ Ω, (4.171)

where L denotes the Lebesgue measure. We can now call Dominated Convergence;

since, for each x ∈ R2 (and each ω ∈ Ω),

r (x+µ2 (ω,pk))N (x; 0,Σ2 (ω,pk)) −→
k→∞

r (x+µ2 (ω,p))N (x; 0,Σ2 (ω,p)) (4.172)

and all members of this sequence are dominated by the integrable function ψ (ω, ·), it

is true that

HI (ω,pk)≡
∫

R2
r (x+ µ2 (ω,pk))N (x; 0,Σ2 (ω,pk)) dx
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−→
k→∞

∫

R2
r (x+ µ2 (ω,p))N (x; 0,Σ2 (ω,p)) dx ≡HI (ω,p) . (4.173)

But {pk}k∈N and p are arbitrary, showing that HI (ω, ·) is continuous, for each fixed

ω ∈ Ω. Hence, HI is Carathéodory on Ω× S. F

The proof to the second part of Theorem 4.1 follows easily by direct application of

the Fundamental Lemma (Lemma 4.3; also see Table 4.1) �

4.5.2.2 Proof of Lemma 4.1

In the notation of the statement of the lemma, the joint conditional distribution of

[F (p, t) G (p, t)]T relative to the σ-algebra C (Tt−1) can be readily shown to be Gaus-

sian with mean µF,Gt|t−1(p) and covariance ΣF,G
t|t−1(p), for all (p, t) ∈ S×N2

NT
. This is due

to the fact that we have implicitly assumed that the channel fields F (p, t) and G (p, t)

are jointly Gaussian. It is then a typical exercise (possibly somewhat tedious though)

to show that the functions µF,Gt|t−1 and ΣF,G
t|t−1 are of the form asserted in the statement

of the lemma. Regarding the proof for (4.29), observe that we can write

E {|f (p, t)|m |g (p, t)|n|C (Tt−1)}

≡ 10(m+n)ρ/20E
{

exp

(
log (10)

20
(mF (p, t) + nG (p, t))

)∣∣∣∣C (Tt−1)

}

≡ 10(m+n)ρ/20E
{

exp

(
log (10)

20
[mn] [F (p, t) G (p, t)]T

)∣∣∣∣C (Tt−1)

}
, (4.174)

with the conditional expectation on the RHS being nothing else than the conditional mo-

ment generating function of the conditionally jointly Gaussian random vector

[F (p, t) G (p, t)]T at each p and t, evaluated at the point (log (10) /20) [mn]T , for

any choice of (m,n) ∈ Z × Z. Recalling the special form of the moment generating

function for Gaussian random vectors, the result readily follows. �

4.5.2.3 Proof of Theorem 4.2

It will suffice to show that both objectives of (4.30) and (4.31) are Carathéodory in

Ω× S. But this statement may be easily shown by analytically expressing both (4.30)

and (4.31) using Lemma 4.1. Now, since both objectives of (4.30) and (4.31) are

Carathéodory, we may invoke Theorem 4.8 and Corollary ?? (Appendix A), in an
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inductive fashion, for each t ∈ N2
NT

, guaranteeing the existence of at least one C (Tt−1)-

measurable decision for either (4.30), or (4.31), say p̃∗ (t), which solves the optimization

problem considered, for all ω ∈ Ω. Proceeding inductively gives the result. �

4.5.2.4 Proof of Theorem 4.4

By assumption, V (p, t) is L.MD.G♦ (Ht, µ), implying, for every t ∈ N+
NT

, the exis-

tence of an event Ωt ⊆ Ω, satisfying P (Ωt) ≡ 1, such that, for every p ∈ SR,

µE {V (p, t− 1)|Ht−1} (ω) ≡ E {V (p, t)|Ht−1} (ω) , ∀ω ∈ Ωt. (4.175)

Fix t ∈ N2
NT

. Consider any admissible policy po (t) at t, implemented at t and

decided at t − 1 ∈ N+
NT−1. By our assumptions, V (·, ·, t) is SP♦CHt

. Additionally,

because po (t) is admissible, it will be measurable relative to the limit σ-algebra P↑
t

and, hence, measurable relative to Ht. Thus, there exists an event Ωp
o

t ⊆ Ω, with

P
(

Ωp
o

t

)
≡ 1, such that, for every ω ∈ Ωp

o

t ,

E {V (po (t) , t)|Ht} (ω) ≡ E {V (p, t)|Ht} (ω)|p=p
o
(ω,t)

≡ ht (ω,po (ω, t)) , (4.176)

where the extended real-valued random function ht : Ω × SR → R is jointly Ht ⊗

B
(
SR
)

-measurable, with ht (ω,p) ≡ E {VI (p, t)|Ht} (ω), everywhere in (ω,p) ∈ Ω×

SR.

Also by our assumptions, V (·, ·, t) is SP♦CHt−1
, as well. Similarly to the arguments

made above, if po (t) is assumed to be measurable relative to the limit σ-algebra P↑
t−1,

or, in other words, admissible at t− 1, then it will also be measurable relative to Ht−1.

Therefore, there exists an event Ωp
o

t
− ⊆ Ω, with P

(
Ωp

o

t
−

)
≡ 1, such that, for every

ω ∈ Ωp
o

t
− ,

E {V (po (t) , t)|Ht−1} (ω) ≡ E {V (p, t)|Ht−1} (ω)|p=p
o
(ω,t)

≡ h
t
− (ω,po (ω, t)) , (4.177)

where the random function h
t
− : Ω × SR → R is jointly Ht−1 ⊗B

(
SR
)

-measurable,

with h
t
− (ω,p) ≡ E {V (p, t)|Ht−1} (ω), everywhere in (ω,p) ∈ Ω×SR. Note that, by



222

construction, po (t) will also be admissible at time t and, therefore, measurable relative

to and Ht, as well.

Now, we combine the arguments made above. Keep t ∈ N2
NT

fixed. At time slot

t− 2 ∈ NNT−2, let po (t− 1) ≡ po (ω, t− 1) be a C (Tt−2)-measurable admissible policy

(recall that C1-C6 are satisfied by assumption; also recall that, if t ≡ 2, C (Tt−2) ≡

C (T0) is the trivial σ-algebra). At the next time slot t − 1 ∈ N+
NT−1, let us choose

po (t) ≡ po (ω, t− 1); in this case, po (t) will also be C (Tt−2)-measurable and result in

the same final position for the relays at time slot t ∈ N2
NT

. As a result, the relays just

stay still. Under these circumstances, at time slot t−1 ∈ N+
NT−1, the expected network

QoS will be E {V (po (t− 1) , t− 1)}, whereas, at the next time slot t ∈ N2
NT

, it will be

E {V (po (t− 1) , t)}. Exploiting (4.175), we may write

µht−1 (ω,p) ≡ h
t
− (ω,p) , ∀ (ω,p) ∈ Ωt

⋂
Ωp

o

t−1

⋂
Ωp

o

t
− × SR, (4.178)

where, obviously, P
(

Ωt

⋂
Ωp

o

t−1

⋂
Ωp

o

t
−

)
≡ 1. Consequently, it will be true that

µht−1 (ω,po (ω, t− 1)) ≡ h
t
− (ω,po (ω, t− 1)) , ∀ω ∈ Ωt

⋂
Ωp

o

t−1

⋂
Ωp

o

t
− . (4.179)

From (4.176) and (4.177), it is also true that

µE {V (po (t− 1) , t− 1)|Ht−1} (ω) ≡ E {V (po (t− 1) , t)|Ht−1} (ω) , (4.180)

almost everywhere with respect to P. This, of course, implies that

µE {V (po (t− 1) , t− 1)} ≡ E {V (po (t− 1) , t)} , (4.181)

and for all t ∈ N2
NT

, since t was arbitrary.

Since (4.181) holds for all admissible policies decided at time slot t− 2 ∈ NNT−2, it

will also hold for the respective optimal policy, that is,

µE
{
V
(
p∗ (t− 1) , t− 1

)}
≡ E

{
V
(
p∗ (t− 1) , t

)}
, ∀t ∈ N2

NT
. (4.182)

Next, as discussed above, the choice po (t) ≡ p∗ (ω, t− 1) constitutes an admissible

policy decided at time slot t − 1 ∈ N+
NT−1; it suffices to see that p∗ (ω, t− 1) ∈

C
(
p∗ (ω, t− 1)

)
, by definition of our initial 2-stage problem, because “staying still”
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is always a feasible decision for the relays. Consequently, because the optimal policy

p∗ (t) results in the highest network QoS, among all admissible policies, it will be true

that

µE
{
V
(
p∗ (t− 1) , t− 1

)}
≤ E

{
V
(
p∗ (t) , t

)}
, ∀t ∈ N2

NT
, (4.183)

completing the proof of Theorem 4.4. �
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Chapter 5

Conclusions & Future Research Directions

This dissertation is the first systematic piece of work on spatially controlled communica-

tions and, in particular, on spatially controlled relay beamforming, which is, admittedly,

a novel and highly interdisciplinary topic. The design of such systems is far from triv-

ial. We have demonstrated the importance of realistic wireless channel modeling, as

well as the need for utilizing and advancing theory and technical background from the

vast area of Operations Research, such as stochastic programming, which is clearly

non-traditional in the typical wireless communications and signal processing literature.

In a nutshell, and for the first time, we were able to propose an effective, reasonably

complicated spatially controlled relay beamforming system, suitable for realistic space

and time varying communication channel environments. The performance of the pro-

posed system was analyzed and predicted under a rigorous theoretical framework. Our

numerical simulations, in different stages of this work provided experimental evidence

which confirmed our theoretical predictions, and showed great potential of the proposed

system. In other words, our work is not only theoretically correct, but is expected to

result in significant (non-marginal) performance gains in practice.

Our research in the context of spatially controlled communications, also stimulated

novel theoretical research, with significant intellectual merit. In particular, our need to

characterize the performance of the hierarchical channel model of Chapter 3, led to the

development of new insightful results related to the convergence properties and asymp-

totic consistency of approximate nonlinear filters, both in Markov and non-Markov

cases. Additionally, our extensive work in the theoretical analysis of the proposed spa-

tially controlled beamforming system led to the development, among other results, of

a new, generalized version of the Fundamental Lemma of Stochastic Control, which is
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of independent theoretical and practical interest.

In conclusion, we would also like to provide a few directions for future research,

initiated by the research developed herein:

• As the reader might have noticed, although, in Chapter 3, two wireless channel

models have been presented and analyzed, whereas in Chapter 4, the proposed

spatially controlled beamforming system is designed assuming only one of them,

namely, that assuming the channel is a parametric spatiotemporal Gaussian field.

Therefore, an immediate direction for future research is to reformulate and ex-

tend the system proposed in Chapter 4 under a hierarchical channel modeling

assumption (the second model presented in Chapter 3), which, due to to time

constraints, has not been pursued in the dissertation. Such a channel model,

although slightly more complicated, would provide more numerically efficient so-

lution (due to Markovianity), and potentially increased flexibility.

• In the same context, real-world, experimental validation of the HMM-based, hi-

erarchical channel model of Chapter 3 will be highly valuable, since it would

provide evidence that such a model is practically relevant and realistic, therefore

justifying its consideration in the design of a spatially controlled communication

system. Additionally, the development of efficient methods for parameter estima-

tion, which have not been pursued herein, are of high practical importance. At

this point, this is a subject of current, active research.

• Another directly relevant research direction is the complete solution of the power

minimization beamforming problem of Section 1.2.2. Although the power mini-

mization problem was pursued at a preliminary stage in [97], its solution is far

from complete and requires further developments.

• In Chapter 4, we proposed relay motion control schemes, based, however, on a

myopic optimization approach, where the relays decide their future positions, by

optimizing an one-step-ahead conditional cost. As we saw, in this case, it was

also possible to characterize the performance of the system across time-slots, in

an effective and elegant manner. What about multi-stage formulations of the
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problem? Finite horizon or infinite horizon (stationary) solutions? In particular,

would such an approach result in better per-slot performance than the myopic

approach? And, would a per-slot characterization of system performance be pos-

sible?

• In the same spirit, what about controlling risk? In the numerical simulations

provided, we have seen that, although the average performance of the system

improves (average SINR), its variance also increases. Therefore, in a practical

setting, it might be reasonable to search for solutions which also control the vari-

ability of the optimal system performance, in order to enhance system robustness,

in a stochastic sense. There is increased interest in risk-averse stochastic program-

ming over the last two decades, mainly in the Operations Research community,

which may be leveraged and further developed in order to provide such robust

solutions.

• Another possible research direction can be the consideration of other, potentially

simpler models for describing the space time evolution of the communication chan-

nel. For instance, on such possibility could be the adoption of “more discrete”

channel models of, say, the Gilbert-Elliot, “good”, “bad”, “better” type. Such an

approach would be very different from what we have considered so far, and would

require effective channel characterization, in terms of ensuring a certain perfor-

mance level of the communication network under consideration, and then utilizing

such knowledge for performing stochastic decision making. The main benefit of

such an approach would be a much lower expected computational complexity, as

well as the potential for identifying optimal resource allocation policies in closed

form (for example, of the threshold type).

• Finally, there are numerous extensions of the idea of spatially controlled relay

beamforming to physical layer communication tasks other than relay beamform-

ing, such as Physical Layer Security and Privacy, Spectrum Sensing, Radar and

Target Detection & Tracking, Multiuser/MIMO networks, Energy Harvesting and

Green Communications, to name a few.



227

In this dissertation, we have provided the first systematic framework to spatially con-

trolled communications, focusing on a basic beamforming scenario. We have shown

that this idea is feasible, and that it provides significant performance gains. We thus

hope that our research will initiate interest in the context of spatially controlled com-

munications, and that this dissertation is just the beginning.
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