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ABSTRACT OF THE DISSERTATION

New Control Methods for Multi-Time-Scale Linear

Systems with Smart Grid Applications

by Kliti Kodra

Dissertation Director: Professor Zoran Gajić

Power systems within smart grid architectures are generally large scale and have a

tendency to exhibit multiple time-scales when modeled in their entirety due to the

presence of physical components of different nature and parasitic parameters associ-

ated with them. Research in current literature primarily focuses on studying power

system architectures based on a two time-scale decomposition. In this dissertation, we

use singular perturbation theory to investigate time-scale decomposition and related

anomalies and propose new control methods by considering the presence of multiple

time-scales.

We start with an open-loop study of a simplified model of an islanded microgrid in

singularly perturbed form with highly oscillatory and highly damped modes. Simula-

tion results and analytical analysis conclude that the model does not contain any slow

time-scales even though the eigenvalue distribution of the model tells otherwise. While

the singular perturbation parameter is very small, the classical two time-scale decom-

position in this case is not effective. On the other hand, the modes corresponding to the

fastest time-scales provide a very accurate approximation of the original model. The

results obtained via singular perturbation methods are also corroborated by using the

balancing realization technique. Namely, only the states corresponding to the fastest
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modes are dominant.

Motivated by the structure of the state-space input matrix of the previous problem,

we consider a new class of singularly perturbed systems where individual inputs control

slow and fast modes independently. We study the linear quadratic regulator optimal

control problem for three cases that are common in real physical systems, namely when

the inputs are completely decoupled or independent, when weak coupling is present

between the inputs, and when the fast subsystem is weakly controlled. We obtain

the zero-order approximation solution of the continuous algebraic Riccati equations for

each case in terms of simplified sub-problems which avoid possible ill-conditioning. As

a follow-up, parallel recursive algorithms based on fixed-point methods are proposed

to improve the error of the approximations leading to the accurate solution of Riccati

equations and the cost functional in a few iterations of the algorithm. These results are

further extended to the stochastic case. The linear-quadratic Gaussian control problem

is investigated and its solution is also obtained very accurately in an iterative fashion.

Lastly, implicit singularly perturbed systems with multiple time-scales are consid-

ered. The Schur decomposition is utilized to transform the control matrix into an

upper quasi-triangular form where the time-scales are explicitly ordered and a sin-

gularly perturbed model is obtained after perturbation parameters are evaluated and

extracted. The standard multi-time-scale system is then decoupled into individual time-

scales by sequentially applying an invariant transformation. Multi-time-scale control

of the Schur-decomposed system is then considered. Control based on the eigenvalue

placement method is initially proposed, where the individual decoupled states are fed

back sequentially instead of the whole state vector. Furthermore, we design a combined

optimal control-eigenvalue placement scheme, where linear-quadratic control is applied

to the fastest subsystem and eigenvalue assignment is used for the rest of the states.
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Chapter 1
Introduction

1.1 Motivation

H
igh demands in energy worldwide and outdated power grid infrastructures have

lead to a new paradigm shift that is commonly referred as the smart grid. While

the traditional grid is unidirectional in nature, the smart grid is characterized by a

two-way flow of electricity and information between the utility and the customer. In

addition to being more efficient than the current infrastructure, the smart grid offers a

lower environmental impact by incentivizing consumers to better manage and efficiently

use energy [1]. While there are major technical challenges to be overcome prior to a full-

scale implementation, current research has been promising and experimental modern

grids set up worldwide have shown superior benefits over the existing grid [2]-[4]. Table

1.1 shows a side by side comparison of the traditional grid versus the new and improved

smart grid [1].

A formal definition of the concept of smart grid is provided by the U.S. Department

of Energy (DOE) [5]:

“An automated, widely distributed energy delivery network, the Smart Grid will be char-

acterized by a two-way flow of electricity and information and will be capable of moni-

toring everything from power plants to customer preferences to individual appliances. It

incorporates into the grid the benefits of distributed computing and communications to

deliver real-time information and enable the near-instantaneous balance of supply and

demand at the device level.”

Several advantages have been identified in the implementation of smart grids. The

benefits among others include [6]:
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• Improved reliability;

• Increased physical, operational, and cyber-security against attack or natural dis-

asters;

• Ease of repair;

• Increased information available to users;

• Increased energy efficiency;

• Integration of renewable sources;

• Reduction in peak demand.

Table 1.1: Traditional vs. smart grid

Traditional Grid Smart Grid

Centralized generation Generation everywhere
One way power flow Power flows from everywhere

Utility controlled Anyone may participate
Predictable behavior Chaotic behavior

An advantage of the smart grid is that it treats the overall grid as network of smart

microgrids. A microgrid is simply defined as an electrical energy distribution network

that includes a cluster of loads, distributed sources (including renewable sources), trans-

mission systems and storage systems [6]. Because a microgrid contains both loads and

sources (typically renewable sources such as wind turbines, solar panels, fuel cells etc.),

electric power can be generated within the microgrid. The latter can be coupled with

utility power grid via a single connection known as point of common coupling (PCC).

The electrical energy can flow in either direction based on customer needs or unex-

pected emergencies. For example, if a microgrid is “islanded” (disconnected from the

main grid), the sources within the microgrid continue to power the users without re-

quiring power from the utility grid. Other advantages include self-healing capabilities

and power usage from the utility if any disturbances are present in the microgrid [5].

Besides a relatively high initial investment, there are additional hurdles associated with
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smart grids as well as microgrids. Majority of the issues that need to be addressed fall

into the following categories [7]

• Communications;

• Demand response applications;

• Security;

• Integration of energy sources in the microgrid.

As it was stated earlier, for a power grid to be “smart” a two-way interaction between

the grid and the user is necessary hence communication technologies are paramount

for reliable operation and management. Various of these existing communication and

networking technologies be it wired or wireless can be utilized in the smart grid [8].

The challenge is to design communication protocols that would be necessary to provide

reliable information for areas such as advanced metering infrastructure (AMI), wide-

area situational awareness, and distribution grid management. Ongoing research in

wireless communications is addressing these questions [9]-[11].

When it comes to demand response applications, the goal is to allow the utility

company to manage the users’ electric loads. Using incentives such as lowering the

price or offering coupons, the utility company can temporarily modify the use of elec-

tricity during peak times. This in turn increases the efficiency and reduces the odds

of frequent blackouts. While the user-utility interaction seems simplistic, it is quite

a complicated process. Tools such as control techniques, optimization, game theory,

and microeconomics have been used to study this two-way interaction [12]-[13]. Recent

research encompasses development of new machine learning algorithms to aid the de-

mand response application process and make scheduling easier for the user [14]-[15].

Among the bullet points listed above, one of the most important and challenging areas

of the overall smart grid infrastructure is cybersecurity. The latter is convoluted in

nature due to the diversity of the architecture but nonetheless it is a top priority and

is indispensable to avoid cyber attacks which might go undetected and compromise the

whole system [16]. Intrusions in the grid such as malware attacks can have devastating
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consequences leading to major blackouts. Due its importance, cybersecurity in smart

grids has had special attention by researchers lately [16]-[17]. Most recently, control

theoretic methods to devise security measures for protection from cyber attacks have

been developed [18]-[19]. While recent results are promising for the time being, adver-

sarial attacks will always be a concern hence new strategies will have to be developed

continuously to guarantee uninterrupted operation.

Lastly, integration of renewable energy sources such as fuel cells, solar panels, and wind

turbines in microgrids is essential in maintaining a steady power flow as well as impor-

tant to achieve independence from non-renewable sources. One of the most prevalent

fields to address issues arising in this area has been control theory. The latter has been

used extensively in modeling, optimization, controller and filter design, and estimation

to ensure effective integration of renewable sources into the grid [7], [20]-[24]. One area

that has been overlooked in the distributed energy resources (DERs) that are connected

to microgrids as well as the microgrids themselves are the different time-scales that arise

when they are modeled and the impact of time-scales in model order reduction (MOR).

While techniques for time-scale separation and order reduction have been used in dif-

ferent formulations for DERs, microgrids, and storage devices [25]-[26] anomalies or

proper time-scale decomposition considerations and how they can be effectively used in

MOR have not been investigated.

Motivated by these shortcomings, we attempt to address the aforementioned issues

in this dissertation by making use of singular perturbation theory. Specifically, the

dissertation focuses on three different areas of need: (i) correctly identifying time-scales

present in microgrid or DER models, (ii) investigation of the optimal control problem for

said models by introducing two input control and developing corresponding algorithms

to efficiently obtain the solutions, (iii) develop schemes to obtain explicit multi-time-

scale models from implicit ones and design controllers based on individual time-scales.

The methods developed in this dissertation improve on computational savings, simplify

design, avoid possible ill-conditioning, and help to clearly identify available time-scales

in the system.
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1.2 Background

Time-scale decomposition and MOR of power systems have been studied extensively

in literature, see [27]-[30] and references therein. In this section we review existing

literature on order reduction methods and time-scale decomposition as well as their

application to DERs and other elements within the microgrid.

1.2.1 Model Order Reduction

Model reduction is an indispensable tool used in analysis, controller design, and

simulations of large-scale systems primarily due to very high orders that these models

can reach [31]-[36]. The premise of model reduction algorithms is to obtain new reduced-

order models that have the same characteristics as the original one, hence simplifying the

design process and alleviating computational costs. Because of the various parameters

associated with each plant, there is no universal model reduction algorithm [31]. In this

section, we review a few common MOR methods and their applications to power grid

elements such as DERs and microgrids.

Model reduction is very helpful and generally necessary for transient/small signal

analysis in power grid elements models such as machine interconnections, DERs, and

microgrids due to the fact that their physical models contain a large number of variables.

To rectify this drawback, numerous order reduction algorithms have been developed

over the years to decrease the system order without affecting the performance. Some

of the most effective methods used in power systems are balancing transformation [31]-

[36], Krylov subspace methods [37], Kron reduction [26], gramian-based methods [38],

and singular perturbation techniques [26]-[29]. Depending on the type of the model

under investigation, each method has its own advantages. For example, in [37], Krylov

subspace techniques has been used to simplify complicated models of power systems that

can be used in a microgrid environment. This family of order reduction algorithms is

based on moment matching methods where the leading coefficients of the power series

expansion of the reduced transfer around a nominal point has to match the leading

coefficients of the original transfer function to ensure accuracy [37]. One of the main
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advantages of Krylov subspace algorithms lies in the computational efficiency. In [38],

gramian-based reduction methods are used to investigate large sparse power system

descriptor models. These techniques avoid computation of spectral projections onto

deflating subspaces of finite eigenvalues which are typically needed when dealing with

descriptor systems [38]. Again, this method is beneficial for computational efficiency

especially when used in large scale systems (more than one thousand states). Kron

reduction is another popular method used in power systems and lately has found to be

effective in the study of microgrids [26], [39]. The concept of Kron reduction is fairly

simple; it eliminates the nodes in an electrical network where the voltage or current is

zero. In addition to computational savings, the reduction simplifies transient and small

signal analysis.

Lastly, singular perturbation methods have been very effective when parasitic pa-

rameters are identified in the system. For power system this could mean parasitic

resistance, capacitance, or inductance during interconnections of DERs between them-

selves or the grid [29], [40]-[41]. The small parameter, which in this dissertation will

be denoted by ε, causes a slow and fast time-scale separation and if the fast time-

scale is much faster, the slow subsystem with a boundary layer correction from the fast

subsystem provides a good approximation of the original model [42]-[43]. Singular per-

turbation methods have also been used in conjunction with other methods such as Kron

[26] and balancing [30] (see [44]-[45] for additional information on balancing-singular

perturbation combination) to attain even better results. One interesting observation

that has not been investigated earlier with the use of singular perturbations in power

systems is that existing modes may be misclassified. For example, seemingly slow modes

might in fact be fast modes. This dissertation addresses this observation.

As discussed earlier, each method has its own advantages and can be superior over

others depending on the application. The system and the problem formulation are the

prime factors that influence the selection of the most effective technique to carry out

order degeneration.
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1.2.2 Time-Scale Separation

Time-scale separation in this dissertation is exclusively based on singular perturba-

tion theory hence the discussion in this section is limited to time-scale separation using

singular perturbation methods. As mentioned in the previous sub-section, one of the

main reasons for separation of time-scales lies in the degeneration of the original model

to a low-order one. Fast transients generally attenuate very rapidly therefore the slow

subsystem can be used to approximate the original plant [46]. In addition, separating

the modes is also beneficial for modeling purposes. An example where the fast subsys-

tem is used to detect the fast transients occurring in a power system is mentioned in the

next paragraph. Since singular perturbation theory is the basis theoretical framework

for the contributions in this dissertation, a more detailed overview of it is presented in

the next chapter.

A brief survey of singular perturbation theory applied to power systems modeling

and stability analysis is discussed in [27]. Topics in [27] include synchronous machine

modeling, decomposition of large power networks, order reduction of dynamic models,

and transient stability analysis using direct methods. The discussion in [27] is restricted

to two time-scale systems with slow and fast dynamics. Time-scale separation in power

systems has focused in numerous areas over the years. For example, in [29], the problem

is focused on generators used in the grid. Here, singular perturbation techniques have

been utilized to obtain the slow and fast modes associated with the generators. These

fast subsystem is then used to model the generators and other related components such

as static exciters and power system stabilizers. Similarly in [40], time-scale decompo-

sition is used for order-reduction and modeling in interconnected multi-machine power

systems. Singular perturbation theory is used in this case to produce improved mod-

els without adding the network transient equations. Both slow and fast subsystems

are used for analysis and modeling in [40], unlike in [29] where only fast modes are

of interest. In [47], time-scale decomposition is used for modeling for dynamic voltage

analysis. The quasi-steady state equation is used for order reduction implying that the

slow modes serve as a good approximation of the overall model. In addition, integral
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manifold theory is used to compare the results of the reduced-order model and the

original. In [41], a different approach is considered compared to the aforementioned lit-

erature. The authors still consider a two time-scale singularly perturbed problem but

they explore the case when high oscillations and low damping occurs in power systems

such as machine interconnection. The oscillations are classified as fast modes.

As evident by the literature review, the use of singular perturbation methods in

power systems has been primarily used for modeling or order reduction in the two-

time-scale sense. In this dissertation, multi-time-scale singularly perturbed systems

have been studied and techniques for control design have been proposed. Furthermore,

the case when separate inputs control slow and fast time-scales has been investigated.

The latter is motivated by models of real physical systems that can be controlled more

efficiently by introducing corresponding inputs for each time-scale.

1.3 Dissertation Objective

Earlier it was discussed that singular perturbation techniques have been heavily

used in power systems in the context of two time-scales. Depending on the application,

slow or fast modes can be used separately or in conjunction for modeling, control, or

both. Some examples such as renewable energy sources or events such as the occurrence

of islanded microgrids (IMs) [48] or interconnection of DERs within a microgrid were

discussed previously. To ensure high accuracy in MOR and proper time-scale decompo-

sition, it is essential to carefully investigate these models prior to designing controllers

or filters. For example, while for a two time-scale model with a large separation of

its time-scales might seem right to use the slow subsystem to approximate the original

model, it is not always true as it will be shown later. This large separation between the

slow and fast modes also serves as motivation to design dedicated controllers instead of

using the same one for both time-scales. In addition, we are not always dealing with a

two time-scale decomposition (e.g. [49]-[50] where three time-scales are evident), hence

it is necessary to develop a theoretical framework to address these issues for better

results.
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The objective of this research is to investigate system having the same properties as

the aforementioned examples. Inspired by real physical systems, we propose methods to

simplify multi-time-scale modeling as well as develop new control design methods using

the simplified models. Furthermore, we consider two time-scale systems controlled by

two inputs controlling the slow and the fast subsystems independently and solve the

optimal control problem iteratively to avoid ill-conditioning which is prone in singular

perturbation systems. While one input is frequently used and it has been shown to

work well, two inputs are more effective when the time-scale separation is large. Here,

it is important to note that the input matrix is partitioned in a specific structure as it

will be discussed later [48].

Previous work on the theoretical methods developed in this research comes from

several references. For example, for the multi-time-scale problem, the work is primarily

based on [51]. In [51], the Chang transformation [52] is sequentially applied to decouple

multi-time-scale systems. In contrast, we initially use an ordered Schur decomposition

prior to applying the sequential algorithm. To accomplish the ordered decomposition

methods from [53]-[58] have been utilized. For the work in Chapter 3, the main refer-

ences are [59]-[60]. Our work differs from [59]-[60] in the sense that two control inputs

are used for control instead. Additional references concerning recursive methods for the

solution of deterministic as well as stochastic linear singular perturbation systems are

given in [67]-[70].

1.4 Dissertation Outline and Contributions

The dissertation is organized into five chapters. Chapter 1 serves as the introduc-

tion of the dissertation and covers the motivation behind this work, background and

literature review, the dissertation objective and outline, and the contributions made.

Chapter 2 is a time-scale analysis of an IM model derived in [48]. In this chapter, we

start off with the model description and background on singular perturbation methods.

Then, the latter are used to analyze the MOR performance of the IM model open-loop

model. Several remarks and findings are presented in this chapter but the major obser-

vation is an anomaly in time-scale decomposition using singular perturbation methods.
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Chapter 3 covers a new class of singular perturbation systems. Here, optimal control

of singularly perturbed systems containing different structure input matrices is con-

sidered. The case when two inputs are present instead of one is investigated. The

optimal linear-quadratic regulator (LQR) is solved iteratively in terms of reduced-order

sub-problems to avoid possible ill-conditioning. In addition, the problem has been ex-

tended to stochastic linear filtering where the optimal linear-quadratic Gaussian (LQG)

is also solved iteratively. Chapter 4 focuses on multi-time-scale singularly perturbed

systems. Ordered Schur decomposition is used to convert a general implicit multi-

time-scale model into explicit form where all the available time-scales are ordered. The

new model is later decoupled into individual time scales. Initial control is proposed by

utilizing eigenvalue placement and then a hybrid optimal LQR eigenvalue placement

controller design follows. Finally, Chapter 5 contains conclusions and directions for

ongoing and future work. A graphical organization of the dissertation is shown in Fig.

1.1.

Note on Notation: In several instances throughout this dissertation, the same sym-

bols have been used for similar quantities. Unless otherwise stated or referenced, the

quantities pertain to the specific chapter or section where they are used.

The major contributions of this dissertation are as follows.

1. In Chapter 2 a sixth-order linear model of an IM system with highly damped

and highly oscillatory behavior is analyzed. Open-loop analysis is initially per-

formed on the said model and based on simulation results we show that the slow

subsystem does not generate an accurate representation of the original model as

is typical in singular perturbation theory. On the other hand, the fourth-order

fast subsystem provides a good approximation of the original sixth-order system.

Further analytical analysis of the eigenvalues of the model reveals that instead it

contains fast and very fast modes i.e. the slow modes are nonexistent and the very

fast modes contain the system’s dynamics. The anomaly in singular perturbation

theory unveiled in this chapter was published in [71] and is another manuscript

is under preparation for journal publication [72].
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Chapter 2: Time-Scale 
Analysis of an Islanded 
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Scale Control via Use of 
Combined Controllers 

Chapter 1: Introduction 

Chapter 5: Conclusions 
and Future Work 

Figure 1.1: Outline of the dissertation

2. In Chapter 3, motivated by the system discussed in Chapter 2 as well as other

physical systems [59]-[60], we consider a new class of singularly perturbed systems

which has uniquely partitioned input matrix structures and is controlled by two

inputs. The LQR problem is initially investigated. We start by obtaining the zero-

order solution of the continuous algebraic Riccati equations (CAREs) and show

that that instead of solving two separate CAREs to obtain the LQR gain, only

one CARE and a matrix algebraic equation are sufficient to obtain the solution.

Parallel algorithms based on fixed-point iteration methods are proposed to deter-

mine the error of the original CARE equations and their corresponding zero-order

approximations. This work is further extended to the LQG problem where the

solution has been similarly simplified and parallel algorithms have been proposed

to obtain the accurate cost function in a few iterations. The developed methods
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improve on computational efficiency as well as avoid possible ill-conditioning aris-

ing due to the presence of perturbation parameter ε. The deterministic part of

this research was published in [73]. The stochastic part was published in [74] and

a more extended version is currently under review for journal publication in [75].

3. In Chapter 4 we consider systems containing multiple time-scales. An ordered

Schur form decomposes the system matrix into a quasi-triangular form where

eigenvalues are clustered in 1× 1 or 2× 2 blocks (for real and complex eigenval-

ues respectively) in a ordered fashion. The ratio of the magnitude of the fastest

eigenvalue of the slowest cluster with the slowest eigenvalue of the rest of clusters

determines the perturbation parameters and from there an explicit singularly per-

turbed system is obtained. Next, Chang transformation [52] is used sequentially

to completely decouple the system into independent time-scales. We show that

our method simplifies time-scale decoupling due to the quasi-triangular form of

the system matrix. Then, controller design is proposed based on individual time-

scales. The eigenvalue placement method is investigated where individual states

from the decoupled subsystems are fed back sequentially instead of the whole

state vector. Lastly, controller design based on a combination of pole placement

and optimal control is considered where LQR has been used as a primary tool

for the fastest subsystem and eigenvalue assignment is used for the rest of the

subsystems. Part of this research was published in [76] and another manuscript

is currently in preparation for journal publication.
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Chapter 2
Time-scale Analysis of an Islanded Microgrid Model

M
icrogrids are considered building blocks of the future smart grid because they

are very reliable, integrate renewable energy sources, and can operate indepen-

dent of the main grid (islanded mode) if needed [7]. In addition, they enable generation

of energy at the point of consumption which is cost efficient, helps avoid blackouts,

and is to control. As the current electrical grid is slowly upgraded to a state-of-the-art

system, extensive research is necessary in all areas encompassing operation, control,

and safety to ensure uninterrupted operation [5]-[7].

One of the main issues associated with microgrids and the DERs within them is

modeling of the system [6]. It is typical for microgrid, DERs, or other elements such as

synchronous machines and their interconnections to reach order of hundreds of variables

when modeled in their entirety. In addition to computational burdens, the large system

order makes controller design quite difficult to implement due to numerous feedback

loops hence, almost always there is a need for MOR. In Chapter 1, we reviewed related

literature on order reduction methods applied to microgrids and DERs as well as some

challenges faced during the process.

In this chapter, we focus on a six-order model of an IM system [48]. This model

represents a simplified scenario right after the microgrid has been disconnected from the

main grid. Two model-reduction methods have been considered to simplify the dynam-

ics; first the singular perturbation method and then direct truncation (DT) method of

the balanced model. Three different singular perturbation techniques have been utilized

for analysis:

• Residualized singular perturbation (perturbation parameter ε is 0)

• Generalized singular perturbation (perturbation parameter ε is not 0)
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• Order reduction based on the fast subsystem

While the model under consideration is not large-scale, the motivation behind order

reduction is to exploit an anomaly in the time-scale decomposition using singular per-

turbations.

The rest of the chapter is organized as follows. Section 2.1 contains an overview

of the main theoretical framework of this dissertation, namely singular perturbation

methods. In Section 2.2 a description of the model is provided. The performance

evaluation of the order reduction techniques is discussed in Section 2.3. Section 2.4

discusses some remarks and findings. We explicitly show that the microgrid model

under investigation containing both highly and lightly damped, highly oscillatory modes

contains fast and very fast but no slow modes. Hence, we cannot have an approximation

of the original model based on the slow subsystem as is typical in singular perturbation

methods. In Section 2.5 we show that the IM model can be also successfully analyzed

using model order-reduction methods based on the balancing transformation. In this

section a table containing numerical errors of the reduced-order models for different

input is also provided. In Section 2.6, the frequency responses of the reduced-order

models using the combination of both techniques have been explored and finally, Section

2.7 concludes the chapter.

2.1 Background on Singular Perturbation Methods

Singular perturbation theory has its origins in the 1950s initially appearing in ap-

plied mathematics research [77]. The theory was later adopted for use in controls due

to its versatility in time-scale separation and order reduction. In this section we give a

brief overview of singular perturbation techniques for linear systems. While this back-

ground would be adequate for this dissertation, the reader can refer to [43], [46] and

references therein for more advanced topics. A standard linear time-invariant (LTI)
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singularly perturbed system given in equation (2.1), [46]

ẋ1(t) = A1x1(t) + A2x2(t) + B1u(t), x1(t0) = x10

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t), x2(t0) = x20

y(t) = C1x1(t) + C2x2(t) + Du(t)

(2.1)

For the system in (2.1), the following is assumed.

Assumption 2.1: Pairs (A,B) and (A,C) are controllable and observable respec-

tively.

We denote

A =

 A1 A2

1
εA3

1
εA4

 , B =

 B1

1
εB2

 , C =
[
C1 C2

]
, D = 0 (2.2)

where ε is a small positive singular perturbation parameter (0 < ε� 1) that for a real

physical system might represent parameters such as small time constants in electrical

circuits or small masses in mechanical systems. In this dissertation we assume that the

perturbation parameter ε is obtained from the ratio of eigenvalues of adjacent time-scale

clusters unless stated otherwise. Specifically, ε is evaluated as the ratio of the fastest

eigenvalue of the slow subsystem with the slowest eigenvalue of the fast subsystem.

Matrices A1 and A4 are of dimensions r×r and (n−r)×(n−r), respectively. While

not always the case (see for example [78]), in the rest of the dissertation the following

is assumed.

Assumption 2.2: Matrix A4 is invertible and asymptotically stable.

For sufficiently small ε, the dynamics of singularly perturbed system in (2.1) can

be approximated by the dynamics of lower-dimensional slow and fast subsystems [46],

[79].

The slow subsystem is given by

˙̄x1(t) = A0x̄1(t) + B0u(t)

y(t) = C0x̄1(t) + D0u(t)

(2.3)

Equation (2.3) is known as the residualized model and is obtained by solving the second

equation of the quasi-steady state system of (2.1) obtained by setting ε = 0. The
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matrices A0, B0, C0, and D0 are defined in (2.4).

A0 := A1 −A2A
−1
4 A3 , C0 := C1 −C2A

−1
4 A3

B0 := B1 −A2A
−1
4 B2 , D0 := D−C2A

−1
4 B2

(2.4)

The fast subsystem is given by

ε ˙̄x2(τ) = A4x̄2(τ) + B2u(τ)

y(τ) = C2x̄2(τ) + Du(τ)

(2.5)

where τ = t
ε . According to the theory of singular perturbation [46], the approximations

satisfy

x1(t) = x̄1(t) +O(ε), ∀t ≥ t0

x2(t) = x̄2(t)−A−14 (A3x̄1(t) + B2u(t)) +O(ε), ∀t ≥ t0 +O(ε)

(2.6)

The eigenvalues of the system in equation (2.3), λ(A0), differ by an O(ε) perturbation

from the slow eigenvalues of the original system. Similarly, the eigenvalues of the fast

subsystem (2.5) differ by an O(ε) perturbation from the fast eigenvalues λ(A4/ε) of

the full-order model. Hence, the smaller ε, the better the approximation.

A summary of the important features of the singularly perturbed systems are given

as follows [43].

1. The residualized system in (2.3), is of reduced order and cannot satisfy all of the

given boundary conditions of the original perturbed problem.

2. There exists a boundary layer where the solution changes rapidly. The boundary

conditions that are lost during the process of degeneration are buried inside the

boundary layer.

3. To recover the lost initial conditions and improve on the approximation, a correc-

tion is usually needed and that is accomplished by stretching the boundary layer

using a stretching transformation such as τ = t/ε.

4. The singularly perturbed problem in (2.1) has two separated characteristic roots

giving rise to slow and fast modes in its solution hence the reason for a two-time

scale property. The simultaneous presence of slow and fast phenomena makes the

problem ill-conditioned from a numerical solution point of view.
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Comments: In this dissertation, the term “sufficiently small” is used in a few occasions

to indicate that the singular perturbation parameter ε is small enough such that theory

holds. It is important to note that while ε is generally much smaller than one, it is

problem dependent. Its variation has been discussed in [80]-[81] and more recently in

[45].

2.1.1 Exact Time-Scale Decomposition

Earlier we pointed out that degenerating the full-order model by setting ε = 0, only

an approximation of the original model is obtained and a boundary layer correction is

needed to account for setting ε = 0. Fortunately, there is a similarity transformation

usually referred as the Chang transformation that decouples the dynamics of a two

time-scale system into independent slow and fast subsystems. A linear singularly per-

turbed system (2.1) can be transformed into pure-slow and pure-fast subsystems via

this transformation as follows [52].z1(t)
z2(t)

 =

I− εML −εM

L I

x1(t)
x2(t)

 = T

x1(t)
x2(t)

 (2.7a)

x1(t)
x2(t)

 =

 I εM

−L I− εLM

z1(t)
z2(t)

 = T−1

z1(t)
z2(t)

 (2.7b)

The application of the transformation in equation (2.7) to a singularly perturbed system

leads to

ż1(t) = (A1 −A2L)z1(t) + (B1 −MB2 − εMLB1)u(t)

= Asz1(t) + Bsu(t)

εż2(t) = (A4 + εLA2)z2(t) + (B2 + εLB1)u(t)

= Afz2(t) + Bfu(t)

y(t) = (C1 −C2L)z1(t) + (C2 − εC2LM + εC1M)z2(t) + Du(t)

= Csz1(t) + Cfz2(t) + Du(t)

(2.8)
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where

As = A1 −A2L , Bs = B1 −MB2 − εMLB1

Af = A4 + εLA2 , Bf = B2 + εLB1

Cs = C1 −C2L , Cf = C2 − εC2LM + εC1M

(2.9)

L and M satisfy the following algebraic equations [52]

A4L−A3 − εL(A1 −A2L) = 0

MA4 −A2 + ε(MLA2 −A1M + A2LM) = 0
(2.10)

A unique solution to (2.10) exists when ε is sufficiently small and under Assumption

2.2. Several algorithms that can be used to solve (2.10), see for example [67], [82]-[83].

The algorithm based on the Newton’s method has a quadratic rate of convergence of

O(ε2i) and is outlined below [84].

D
(i)
1 L(i+1) + L(i+1)D

(i)
2 = Q(i)

D
(i)
1 = A4 + εL(i)A2 D

(i)
2 = −ε(A1 −A2L

(i))

Q(i) = A3 + εL(i)A2L
(i) L(0) = A−14 A3

(2.11)

Once L is obtained from (2.11), we can solve the second equation in (2.10) as a linear

Sylvester equation to obtain M directly as

M(i+1)D
(i+1)
1 + D

(i+1)
2 M(i+1) = A2 (2.12)

Because the initial guess of this algorithm satisfies ‖L − L(0)‖ = O(ε), it converges in

only a few iterations. If the algorithm diverges or the performance is not satisfactory

then the eigenvector method of [82] or the fixed-point iteration method of [67] must be

used. The latter is often very effective due to its linear convergence; after each iteration

the accuracy improves by O(ε). Equation (2.13) summarizes the fixed-point method to

solve the L-equations.

A4L
(i+1) = A3 + εL(i)(A1 −A2L

(i))

L(0) = A−14 A3, i = 0, 1, 2, . . .

(2.13)

Matrix M is obtained after each iteration by solving the Sylvester equation in (2.10).
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Figure 2.1: Schematic of the islanded system

2.2 Model Description

A simplified diagram of the IM system which is a typical setup used widely in

smart grid systems is shown in Fig. 2.1. Kirchhoff’s circuit laws have been used

to obtain a third-order model. Under balanced conditions the initial model can be

transformed into an αβ-reference frame, which is further simplified by applying a dq

transformation leading to a six order model [48]. The state variable vector is x =[
Vd Vq Itd Itq ILd ILq

]′
∈ R6, the input vector is u =

[
Vtd Vtq

]′
∈ R2, and the

output vector is y =
[
Vd Vq

]′
∈ R2 [48], where Vd and Vq represent the voltages at the

point of common coupling (PCC) after the dq transformation, Itd and Itq represent the

currents originating from the distributed generation (DG) unit, ILd and ILq represent

load currents, and Vtd and Vtq represent the voltages at the DG unit. Matrices A, B,

and C representing the state, input, and output matrices respectively are given below.

A =



− 1
RC ω0

1
C 0 − 1

C 0

−ω0 − 1
RC 0 1

C 0 − 1
C

− 1
Lt

0 −Rt
Lt

ω0 0 0

0 − 1
Lt

−ω0 −Rt
Lt

0 0

1
L 0 0 0 −ω0

ql
ω0

0 1
L 0 0 −ω0 −ω0

ql



B =

0 0 1
Lt

0 0 0

0 0 0 1
Lt

0 0


T

, C =

0 1 0 0 0 0

1 0 0 0 0 0


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The numerical values of the parameters in matrices A and B are given in Table 2.1.

They include the resistance and inductance of the voltage-sourced converter (VSC)

filter at the DG unit, the load nominal resistance, inductance, and capacitance, the

inductor quality factor, and the system nominal frequency. Substituting the quantities,

Table 2.1: Parameters of the IM system

Quantity Numerical Value

Resistance of VSC filter Rt = 1.5mΩ
Inductance of VSC filter Lt = 300µH

Load nominal capacitance C = 62.86µF
Load nominal inductance L = 111.9mH
Load nominal resistance R = 76 Ω
Inductor quality factor ql = 120

System nominal frequency f0 = 60Hz

we obtain the following numerical values for the system and control matrices.

A =



−209.32 376.99 15908 0 −15908 0

−376.99 −209.32 0 15908 0 −15908

−3333.3 0 −5 376.99 0 0

0 −3333.3 −376.99 −5 0 0

8.9366 0 0 0 −3.1416 376.99

0 8.9366 0 0 −376.99 −3.1416



B =



0 0

0 0

3333.3 0

0 3333.3

0 0

0 0


The model under consideration is stable and exhibits oscillatory behavior as can be

observed from the eigenvalues given in Table 2.2. Using the standard theory of sin-

gular perturbation, [46], and information about the system eigenvalues, it is obvious

that they are clustered into two groups: complex conjugate pairs located close to the
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imaginary axis that are considered slow and eigenvalues located far from the imaginary

axis which are responsible for the system’s fast dynamics. It is customary in singularly

perturbed systems to appropriately eliminate the fast modes and approximate the sys-

tem dynamics by the slow modes only. We will show in the next two sections that such

an approximation will produce poor results due to the existence of both lightly and

highly damped, highly oscillatory modes. The case of lightly damped highly oscillatory

modes has been considered in [41].

Table 2.2: Eigenvalues of the IM model

i λi
1 −3.15 + 377.0j
2 −3.15− 377.0j
3 −107.16 + 7668.06j
4 −107.16− 7668.06j
5 −107.16 + 6914.07j
6 −107.16− 6914.07j

Before investigating model reduction via singular perturbations, it is important to

note that the present structure of the model is not in standard singularly perturbed

form. To resolve this issue, we introduce a permutation matrix that serves as a similarity

transformation.

PIM =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0


Matrix PIM swaps the rows of the original matrix such that the new model is in standard

singularly perturbed form. That is, the eigenvalues of the residualized system (2.4),

λ(A0) correspond to the two slowest eigenvalues of the system and λ(A4/ε) correspond

to the remaining four fastest eigenvalues. The new matrices Ā = PIMAPIM , Ā =

PIMB, and C̄ = CPIM of the standard singularly perturbed system are now given as
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Ā =



−3.1416 −376.99 0 0 8.9366 0

376.99 −3.1416 0 0 0 8.9366

0 0 −5 376.99 0 −3333.3

0 0 −376.99 −5 −3333.3 0

−15908 0 0 15908 −209.32 −376.99

0 −15908 15908 0 376.99 −209.32



B̄ =

0 0 3333.3 0 0 0

0 0 0 3333.3 0 0


T

, C̄ =

0 0 0 0 0 1

0 0 0 0 1 0



2.3 Model Reduction Performance Evaluation

To evaluate the performance of the singular perturbation reduction methods on

the IM model, the step and impulse responses are used. We compare the slow and

fast subsystems obtained using the classical singular perturbation techniques and exact

decoupling via the Chang transformation with the responses of the original full order

model shown in Fig. 2.2 and Fig. 2.3. All simulations in this dissertation have been

performed using MATLAB R©.
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Figure 2.2: Step response of the original model

2.3.1 Order Reduction via Classical Singular Perturbations

Traditionally, the slow subsystem model defined in (2.3) and (2.4) has been success-

fully used for power systems model reduction [26]-[47]. We attempt the same with our
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Figure 2.3: Impulse response of the original model
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Figure 2.4: Step response of reduced-order slow subsystem (no correction)

IM system by initially residualizing it (ε = 0) to obtain the reduced models. Table 2.3

shows the eigenvalue clusters after the residualization and it is clear that these eigen-

values are very close to the original ones. However, the responses of the residualized

system give a very poor approximation of the original perturbed model as presented in

Fig. 2.4 and Fig. 2.5 despite the fact that ε is very small (see Fig. 2.2 and Fig. 2.3

and note different time axis).

The small parameter ε for our problem is evaluated as the ratio of the real parts of

the fastest slow and slowest fast eigenvalues ε = Re{λsmax}/Re{λfmin
} ≈ 0.03 [85].

Table 2.3: Slow and fast subsystems eigenvalues of the residualized IM model (ε = 0)

i λi
1 −3.16 + 378.0j
2 −3.16− 378.0j

3 −107.16 + 7658.1j
4 −107.16− 7658.1j
5 −107.16 + 6904.3j
6 −107.16− 6904.3j

It is important to note that the responses in Fig. 2.4 and Fig. 2.5 do not include a
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Figure 2.5: Impulse response of reduced-order slow subsystem (no correction)
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Figure 2.6: Step response of reduced-order slow subsystem (with correction)

boundary layer correction. To improve the approximation, we add the DC gain of the

fast subsystem to the residualized model as follows [85].

Gapp(s) ≈ C0(sI−A0)
−1B0 + D−C2A

−1
4 B2 (2.14)

Equation (2.14) has shown to be effective when ε is very small as in our case. The

responses due to (2.14) are shown in Fig. 2.6 and Fig. 2.7. Clearly, no improvement

is observed over the responses of the residualized model without a boundary layer

correction.

Interestingly, looking at the responses of the fast subsystem in Fig. 2.8 and Fig. 2.9

we observe that the behavior of both responses matches that of the original (numerical

errors of the original and approximate responses will be evaluated later in this chapter).
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Figure 2.7: Impulse response of reduced-order slow subsystem (with correction)
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The impact of the fast subsystem in approximating the perturbed model will be explored

later.
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Figure 2.8: Step response of fast subsystem
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Figure 2.9: Impulse response of fast subsystem

In the next sub-section we make use of the exact decomposition of the time-scales

to further investigate the anomaly.

2.3.2 Order Reduction via Exact Time-Scale Decomposition

Since the previous results were not satisfactory, we employ exact time-scale decom-

position based on the Chang transformation to re-investigate MOR for the singularly

perturbed model. Using the methods of Section 2.1.1, we decouple the model into ex-

actly slow and fast modes. Table 2.4 shows the eigenvalue clusters after the accurate

decomposition.

We carry out the same simulations as in the previous section. The step and impulse

responses of the slow second order model are initially generated (Fig. 2.10 and Fig.

2.11 respectively).

As in the residualized case (responses are not the same), we see that the approxima-

tion is very poor for both responses. While insignificant to our problem, the boundary
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Table 2.4: Slow and fast subsystems eigenvalues of the exactly decoupled IM model

i λi
1 −3.15 + 377j
2 −3.15− 377j

3 −107.16 + 7668.1j
4 −107.16− 7658.1j
5 −107.16 + 6914.1j
6 −107.16− 6914.1j

0 0.5 1 1.5 2
1

1

1

1

Time [s]

A
m

pl
itu

de

Figure 2.10: Slow subsystem step response via exact decomposition (with correction)

layer correction based on the DC gain of the fast subsystem had a minor effect on the

responses of the slow subsystem unlike in the residualized case. The plot belonging to

the case without a correction are not shown here due to redundancy.

The responses based on the fast subsystem via Chang are very similar to the ones

generated using the fast subsystem method earlier. The step response of the exactly

decoupled system in Fig. 2.12 matches that of the original system. Likewise, the

impulse response is very accurate (see Fig. 2.13).

Based on both singular perturbation methods that we tested above, we observed

that the dynamics of the original system were were more accurately emulated by the

fast subsystems. Using this fact as motivation, in the next sub-section we attempt

order-reduction just based on the fast subsystem. We assume that ẋ1(t) = 0.

2.3.3 Reduced Model Using the Fast Subsystem

In classical singular perturbations when ε = 0, the fast transients cause the fast

subsystem to decay rapidly leading to the quasi-steady-state model. It was shown

earlier using simulations that such a quasi steady-state slow model produces a very



27

0 0.5 1 1.5 2
−5

0

5
x 10

−3

Time [s]

A
m

pl
itu

de
Figure 2.11: Slow subsystem impulse response via exact decomposition (with correction)
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Figure 2.12: Fast subsystem step response via exact decomposition

poor approximation. In this section we investigate the case when the slow subsystem

is in steady state and the reduced model is based on the fast subsystem. While this

method is not intuitive, we propose it based on our previous observations that the fast

subsystem retained the properties of the overall full-order model.

The set of equations for this type of singularly perturbed system is shown in Eq.

(2.15).

0 = A1x1(t) + A2x2(t) + B1u(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t) + Du(t)

(2.15)

Another assumption pertaining to this section is imposed.

Assumption 2.3: Matrix A1 is invertible.

An approximation of the model based on the fast subsystem is then given as

εẋ2(t) = Af
fx2(t) + Bf

fu(t)

y(t) = Cf
fx2(t) + Df

fu(t)

(2.16)

where

Af
f := A4 −A3A

−1
1 A2 , Cf

f := C2 −C1A
−1
1 A2

Bf
f := B2 −A3A

−1
1 B1 , Df

f := D−C1A
−1
1 B1

(2.17)
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Figure 2.13: Fast subsystem impulse response via exact decomposition
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Figure 2.14: Step response based on fast subsystem residualization
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Figure 2.15: Impulse response based on fast subsystem residualization

The eigenvalues of subsystem (2.16)-(2.17) for the IM system are −106.05±7472.2j

and −111.42 ± 7095.3j. Fig.2.14 and Fig. 2.15 shows the step and impulse response

respectively of the fast subsystem (2.16)-(2.17). While somewhat similar to the step

response of the original model, it is not as accurate as the response of the fast subsystem

obtained using the Chang transformation. Nonetheless, the responses are more accurate

than the responses of the slow subsystem shown in Fig. 2.6 and Fig. 2.7.

In this section we have explored all the MOR possibilities of slow-fast decomposed

system and came to two interesting conclusions:

1. The slow subsystem that is expected to approximate the original model well pro-

duced poor results even though parameter ε is very small.



29

2. The fast subsystem that is not expected to approximate the original model pro-

duced better results even though the time-scale separation is large.

In the following section we explain analytically why this anomaly is happening.

2.4 Time-Scales of Highly Damped Highly Oscillatory Systems

It is interesting to note that the model being investigated contains lightly and highly

damped and highly oscillatory modes. Relevant analysis and discussions about singu-

larly perturbed systems with sustained high frequency oscillations and slightly damped

modes can be found in [41]. The authors use algebraic decomposition and a technique

based on (2.7) to decouple the system into slow, fast, and oscillatory subsystems. Then,

if the fast modes decay in the fast time scales during a boundary layer interval and the

initial conditions of the oscillatory subsystem are much smaller than that of the slow

subsystem, an approximation of the original model can be obtained just by using the

slow modes. As it will be shown, the IM model under investigation does not contain any

slow modes hence the methods presented in [46] and [41] cannot be used to successfully

decouple the system.

We start by considering the eigenvalues of the IM model. Using ε ≈ 0.03 (see [85])

the model’s eigenvalues in Table 2.2 can be rewritten as

Table 2.5: Eigenvalues of the IM model as a function of ε

i λi

1 −3.15 +
11.31

ε
j

2 −3.15− 11.31

ε
j

3
−3.2148

ε
+

6.9013

ε2
j

4
−3.2148

ε
− 6.9013

ε2
j

5
−3.2148

ε
+

6.2227

ε2
j

6
−3.2148

ε
− 6.2227

ε2
j
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To facilitate the problem, we propose to investigate the system transformed into

the modal canonical form. A similarity transformation T can be found such that the

system matrix is transformed into the modal form [86]. The same conclusion can be

drawn by transforming the system matrix A into the Schur form via the QR algorithm.

The QR algorithm is considered the most efficient method for finding the system eigen-

values [53].

Note that the modal form is known to be numerically ill-conditioned when the eigen-

values are close to each other. Hence, in our case it is only used for theoretical consid-

erations. The Schur form on the other hand is numerically well-conditioned even when

the eigenvalues are repeated or close to each-other. The modal form for our model is

given by

Ā =



α1
β1
ε

... 0 0
... 0 0

−β1
ε

α1
... 0 0

... 0 0

· · · · · ·
... · · · · · ·

... · · · · · ·

0 0
...
α2

ε

β2
ε2

... 0 0

0 0
... −β2

ε2
α2

ε

... 0 0

· · · · · ·
... · · · · · ·

... · · · · · ·

0 0
... 0 0

...
α3

ε

β3
ε2

0 0
... 0 0

... −β3
ε2

α3

ε



(2.18)

The state-space form corresponding to the system matrix (2.18) is given as

dz(t)

dt
≡ ż(t) = Āz(t) (2.19)

Since the term 1
ε is present in all the elements of matrix Ā, (2.19) is multiplied by

ε on both sides to obtain

ε
dz(t)

dt
= εĀz(t) (2.20)

It is clear from (2.18) and (2.20) that all six state variables are fast. In addition, the

last four state variables are much faster than the first two since the last four contain

elements that are multiplied by 1
ε . With a change of time scales, namely dt

ε = dτ , (2.20)
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can be written as

dz(τ)

dτ
= Āεz(τ) =



εα1 β1
... 0 0

... 0 0

−β1 εα1
... 0 0

... 0 0

· · · · · ·
... · · · · · ·

... · · · · · ·

0 0
... α2

β2
ε

... 0 0

0 0
... −β2

ε
α2

... 0 0

· · · · · ·
... · · · · · ·

... · · · · · ·

0 0
... 0 0

... α3
β3
ε

0 0
... 0 0

... −β3
ε

α3



(2.21)

Finally, the system in (2.21) is put in standard singularly perturbed form as follows

ż1(τ) =

εα1 β1

−β1 εα1

 z1(τ)

εż2(τ) =

εα2 β2

−β2 εα2

 z2(τ)

εż3(τ) =

εα3 β3

−β3 εα3

 z3(τ)

(2.22)

It can be observed that in this original system there are no slow dynamics. The

fast dynamics are represented by state variable z1(τ) and the very fast dynamics are

represented by z2(τ) and z3(τ). This real physical model shows that its response can-

not be approximated by the slower dynamics as it is typical in power systems since

here only fast and very fast modes are present. The advantage of the method above is

that it explicitly shows that the system under investigation does not contain any slow

dynamics, hence we should not expect the slow subsystem obtained via singular pertur-

bation techniques to approximate the overall model. It is interesting to point out that

using only the fast modes (belonging to z1(τ)) does not produce a good approximation.

However, the fourth-order approximation based on the very fast modes represented by

z2(τ) and z3(τ) produces an excellent approximation in the original coordinates.

Another interesting observation is that irrespective of the time-scales, the original

IM model lacks a feedthrough matrix, i.e. D = 0 but for the residualized system (2.4)
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D0 6= 0. This occurrence is introducing an input term to the output even though there

is no input in the original output equation. Similarly we can look at this event in the

frequency domain. The transfer function of the original model is given by

Gorig(s) = C(sI−A)−1B (2.23)

On the other hand, the transfer function of the residualized model (2.4) due to the

added input becomes

Gresidue(s) = C0(sI−A0)
−1B0 + D0 (2.24)

This is reflected in the earlier simulation results (more so in the step response). By

considering Fig. 2.4 and Fig 2.5 or Fig. 2.6 and Fig. 2.7 where a correction has

been introduced, we see that the input dominates the response. For example, while we

observe a small jitter in the beginning of the step response, it is practically one, just

like the input.

2.5 Model Reduction Based on Balancing

For a linear system in balanced coordinates the Hankel singular values (HSV) serve

as a measure for the dynamic importance of state components [31]-[32]. If a HSV

is relatively small, the influence of the corresponding state component on the output

and input energy is low therefore this state component can be discarded to obtain a

reduced-order system [31]. These states also correspond to weakly controllable and

weakly observable parts of the system. Let us consider a LTI system represented by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(2.25)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the system input vector and

y(t) ∈ Rp is the system output vector. The open-loop transfer function is given by

G(s) = C(sI−A)−1B + D (2.26)

It is assumed that the system is asymptotically stable and that the pairs (A,B) and

(A,C) are both controllable and observable [35]. Using the balancing transformation
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xb(t) = Tx(t), det(T ) 6= 0, the new system in balanced coordinates becomes

ẋb(t) = Abx(t) + Bbu(t)

yb(t) = Cbx(t) + Dbu(t)

(2.27)

The matrices in (2.27) are given by

Ab = TAT−1, Bb = TB, Cb = CT−1, Db = D (2.28)

The system in (2.27) is partitioned as follows

Ab =

A1 A2

A3 A4

 ,Bb =

B1

B2

 ,Cb =
[
C1 C2

]
,Db = D

Σ =

Σ1 0

0 Σ2


Σ1 = diag(σ1, σ2, ...σr), Σ2 = diag(σr+1, σr+2, ...σn)

where Σ represents the HSV of the balanced system. Then the reduced-order model

obtained via DT is given by

ẋ1(t) = A1x1(t) + B1u(t)

y(t) = C1x1(t) + Du(t)

G1(s) = C1(sI−A1)
−1B1 + D

(2.29)

(2.29) is also balanced, asymptotically stable, and minimal and it has been shown that

its H∞ norm satisfies [32]

‖G(s)−G1(s)‖∞ ≤ 2(σr+1 + σr+2 + ...+ σn) (2.30)

It is known that the DT method does not preserve the DC gain. Another order reduction

method for balanced linear singularly perturbed systems which preserves the system

DC gain is considered in [33] and [85].

2.5.1 Reduced Model via Balancing Transformation

The HSV of the system are key to determining the lowest order the balanced system

can be truncated without sacrificing performance. Fig. 2.16 shows the Hankel singular
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Figure 2.16: Hankel singular values of the original model

values map. Based on the HSV, the last two states can be neglected and we expect an

accurate representation of the original model’s response using the reduced model.

Fig. 2.17 shows the step response of the balanced model reduced to order four. The

response is almost identical to that of the original model (Fig. 2.2). Note that (2.30)

can be used as an estimate of the approximation error. In our case the approximation

error is ‖G(s)−G1(s)‖∞ = 7.87× 10−4.
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Figure 2.17: Step response of balanced model truncated to order four
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Figure 2.18: Impulse response of balanced model truncated to order four

2.5.2 Numerical Errors of the Reduced Models

The absolute errors of the reduced models considered so far are summarized in Table

2.6. The Euclidean norm defined as ‖x−x̂‖2 = (
∑n

i=1(xi−x̂i)2)1/2 is used as the metric



35

for comparison. x represents the response vector of the original model and x̂ represents

the response vector of a reduced-order model. Both the step and impulse inputs are

considered for the fast subsystems only since it was shown that the approximation based

on the slow subsystem gave very poor results. In Table 2.6, Responseorig represents

the response vector of the full order model, ResponseresidueFast represents the vector of

the fast subsystem when the original is residualized, ResponsefastChang represents the

response vector of the fast subsystem obtained via the Chang transformation (see (2.8)-

(2.9)), ResponsefastBased represents the response vector of the approximation based on

the fast subsystem as given in (2.15)-(2.17), and finally, ResponsebalDT
represents the

response vector of the reduced model via balancing transformation (2.29).

Table 2.6: Numerical errors of reduced-order models

Step Response Impulse Response

‖Responsefull − ResponseresidueFast‖2 9.75× 10−2 1.78× 102

‖Responsefull − ResponsefastChang‖2 3.01× 10−4 1.12× 10−1

‖Responsefull − ResponsefastBased‖2 4.69 3.27× 104

‖Responsefull − ResponsebalDT
‖2 3.01× 10−4 1.12× 10−1

Note that the responses of the residualized system and the slow subsystem based

on the Chang transformation are not compared to the original responses since the

approximation was very poor as observed in the simulations.

From Table 2.6 we can see that the step response performs better than the impulse

response. For the latter, the largest error occurs when the reduced model based on the

fast subsystem is compared to the full-order model. Intuitively, we would not expect an

accurate representation of the original model since we are letting ẋ1 = 0 which violates

the principle of classical singular perturbation theory. Nonetheless, as the simulations

showed, the response based on the fast subsystem was closer to the original model’s

counterpart than the corresponding response of the residualized model.

The approximation of the fast subsystem of the residualized model based on the

impulse response shows a large error as well. For the step response, we notice that

the approximation based on the fast subsytem contains the largest error. On the other
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hand, the fast subsystem obtained using the Chang transformation and the truncated

model are equally accurate. These results agree with previous observations based on

simulations.

2.6 Frequency Response of the Reduced Models

As we observed earlier in this chapter, singular perturbation techniques were not

able to successfully obtain a reduced-order model of the IM system. What is interesting

about the model under investigation is that it is highly oscillatory and highly damped.

We showed that for these types of systems, large imaginary parts contribute to faster

time-scale even though the real parts are classified as slow. For these reasons, further

investigation in frequency domain is carried out in this section for the reduced-order

models . We initially start with the six-order model [48] in balanced form. Four cases

are investigated.

1. Model reduced to order four using DT and residualization. [85], [33]

2. Model reduced to order two using DT and residualization.

3. Model reduced to order four using DT and then to order two using residualization.

4. Model reduced to order four using residualization and then to order two using

DT.

The Bode plots (magnitude and frequency) are shown below for each case.

Case 1

In Case 1, the balanced system has been directly truncated and reduced using the

residualization technique. The model has been reduced from order six to order four.

The magnitude and frequency plots for the two cases and the full order model are shown

in Fig. 2.19.

The responses are practically the same in all three cases.
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Figure 2.19: Frequency response of original and reduced models (To order 4)

Case 2

Case 2 is similar to Case 1 with the only difference being that the models have been re-

duced to order two instead of four. Fig. 2.20 shows the results. The frequency response

using DT is almost the same as that of the full order model while using residualization

we can notice some differences. At ω = 7 × 103 [rad/sec] the magnitude plot of the

residualized reduced model is missing a notch that is present in both DT-reduced and

original models. In addition, when ω = 4 × 105 [rad/sec], the error of the magnitude

plot of the residualization method starts increasing. Similar observations can be made

about the phase plot.

Case 3

DT provides better accuracy for higher frequencies while residualization performs bet-

ter at lower frequencies [33]. Combining these two techniques then should provide a

good approximation of the frequency response. Fig. 2.21 shows the frequency response

when the model is initially reduced to order four via DT and then to order two using

the residualization method. The response is similar to that of Case 2.
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Figure 2.20: Frequency response of original and reduced models (To order 2)

Case 4

Case 4 is also a combination of both techniques but residualization has been performed

first to reduce the model to order four then DT is used to further reduce the model

to order two. The results can be seen in Fig. 2.22. The only difference exhibited in

both the magnitude and phase responses is the missing notch at ω = 7× 103 [rad/sec].

Otherwise the frequency responses match.
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Figure 2.21: Frequency response of original and reduced models (DT/Residualization)
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Figure 2.22: Frequency response of original and reduced models (Residualization/DT)

Case 3 and Case 4 provide two cases where the model is reduced twice. While the

final reduced models in both cases miss the notch at ω = 7 × 103 [rad/sec], Case 4

(Residualization/DT) does not contain any errors at higher frequencies unlike Case 3

(DT/Residualization). This observation agrees with theory since DT is the final step

of model reduction and as mentioned above, it performs better than residualization at

higher frequencies [33].

From the simulations above we see that the results agree with conclusions we reached

in the time domain. Specifically, reduction of the model to order four (using balancing

or singular perturbations), leads to an accurate approximation of the original model.

On the other hand, if the model is reduced to order two, we notice discrepancies in

both magnitude and phase.

2.7 Conclusion

In this chapter we studied order reduction methods applied to an IM model. The-

oretically, the singular perturbation method should provide a good approximation of

the model when it is reduced to order two (corresponding to the slow subsystem) in

combination with the gain of the fast subsystem. It is observed that the latter is not

the case. It is was shown explicitly that this system containing both lightly and highly
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damped, highly oscillatory modes does not posses any slow dynamics, hence the slow

subsystem obtained via singular perturbations does not approximate the original sys-

tem and that for such a system, very fast modes must be included in the reduced-order

models. In addition, the model is also reduced by truncating the balanced system based

on the HSV. The reduced model in this case has an almost identical response as the

original model. Combinations of DT and singular perturbations in frequency domain

were also investigated. The observations in this chapter are very important and serve

as guidelines to the designer who would be considering controller or filter design for

highly oscillatory systems.
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Chapter 3
Optimal Control for a New Class of Singularly Perturbed

Linear Systems

T
he model investigated earlier as well as other models of real physical systems used

in power grids [87], [88] serve as motivation for the work in this chapter. Such

models exhibit two time-scale properties and have a specially partitioned input matrix

structure that makes it more effective for the system to have two inputs controlling

the slow and fast subsystems individually. For example, hardware or events within

a microgrid, while being part of the same system operate at different sampling times

ranging from milliseconds to seconds [89]-[90]. One control input might be very effective

for one subsystem however it could impact the performance of the other. With this

in mind, we develop a new class of singularly perturbed systems with two control

inputs that individually control each time-scale. Motivated by models of real physical

systems, we also investigate the case when weak coupling exists between inputs and

when the fast subsystem is weakly controlled. We focus on the optimal control problem,

both the LQR and the LQG, and develop algorithms based on fixed-point iteration

methods to solve the LQR and the LQG while avoiding ill-conditioning and improving

on computational efficiency. Similar work has been considered in [67], [59] and [60]

however, what distinguishes this work is the fact that both slow and fast subsystems

are controlled by individual inputs instead of a universal one.

The purpose of this chapter is to analyze and solve the LQR and LQG problems for

this new class of singularly perturbed systems. Inspired by models of real physical sys-

tems, we explore three different input matrix structures. For each of them we consider

the optimal control problem and show how to efficiently obtain the solution in terms of

reduced-order sub-problems. The rest of this chapter is organized as follows.
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In Section 3.1 the problem is formulated. Recursive reduced-order methods for the

new classes of singularly perturbed systems are described in Section 3.2. The problem

is extended to linear stochastic filtering in Section 3.3. A case study is investigated in

Section 3.4 and finally Section 3.5 concludes the chapter.

3.1 Problem Formulation

The singularly perturbed structure (2.1) that corresponds to a model of a real

physical system with one input was considered in [60] for three cases namely, strongly

controlled slow modes and weakly controlled fast modes, strongly controlled slow modes,

weakly controlled fast modes respectively. It is important to emphasize that input

matrices in (2.1) apply to one input vector that controls both the slow and fast state

variables. Motivated by models of real physical systems [87]-[88], [91], we have found

that a more general and efficient structure of singularly perturbed systems can be

obtained by using two vector inputs: one that controls the slow subsystem and the

other for controlling the fast subsystem. The state-space form of such control systems

is given by

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B4u2(t)

(3.1)

It is important to note that using the classical singular perturbation approach in (2.1),

will lead to complications while forming the reduced-order slow and approximate fast

subsystems. Namely, by setting ε = 0 [46], we have

ẋ1s(t) = A1x1s(t) + A2x2s(t) + B1u1(t) (3.2a)

0 = A3x1s(t) + A4x2s(t) + B4u2(t) (3.2b)

Subsituting x2s(t) from (3.2b) into (3.2a), we obtain

ẋ1s(t) = (A1 −A2A
−1
4 A3)x1s(t) + B1u1(t)−A2A

−1
4 B4u2(t) (3.3)

Equation (3.3) implies that the slow approximate subsystem is now controlled by both

the slow and the fast (u1(t) and u2(t) respectively) control inputs. Similarly, the fast
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approximate subsystem x2f (t) = x2(t)− x2s(t) will be controlled by both inputs. Fur-

thermore, employing the most common technique based on the Chang transformation

[52] to decouple the system into slow and fast subsystems will also lead to each individ-

ual system being controlled by both control inputs. The drawback of having u1(t) and

u2(t) concurrently control both subsystems is that controller design and analysis will

be considerably more complicated. A more concrete example of what was discussed

earlier would be an electromechanical system that has mechanical components that

operate in seconds and electrical circuitry that operates in milliseconds. Intuitively,

two inputs would be more effective. To rectify this issue, we consider a state-space

model where u1(t) and u2(t) are present and consider the optimal control problem and

approach its solution using reduced-order equations which also avoids possible numer-

ical ill-conditioning. In this dissertation we are considering three special cases for the

state-space input matrix B. These cases seem to be common occurrences in models of

physical system (see earlier references). Other structures are possible and can be easily

obtained under different assumptions. The three matrix structures are as follows.

(i) B =

B1 0

0 1
εB4

 , (ii) B =

B1 εB2

B3
1
εB4


(iii) B =

B1 0

0 B4


(3.4)

We start the problem with a standard cost function associated with the infinite

horizon LQR problem of the singularly perturbed system as in (3.5) that has to be

minimized.

J =
1

2

∫ ∞
0

(xT (t)Qx(t) + uT (t)Ru(t))dt (3.5)

where R > 0 and without loss of generality we assume that it is partitioned as

R =

R1 0

0 R4

 (3.6)

Q ≥ 0 and its structure is partitioned as in (3.7).

Q =

 Q1 εQ2

εQT
2 εQ3

 (3.7)
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Then, the optimal solution u(t) subject to x(t) is

u(t) =
[
u1(t) u2(t)

]T
= −R−1BTPx(t)

(3.8)

where matrix B is given by

B =

B1 0

0 1
εB4

 (3.9)

Matrix P is the solution of the CARE given in (3.10).

ATP + PA + Q−PBR−1BTP = 0 (3.10)

The required structure of the solution matrix P comes from the nature of the solution

of (3.10) and is given as

P =

 P1 εP2

εPT
2 εP3

 (3.11)

Comments: Two-vector input multi-parameter singularly perturbed systems were con-

sidered within the multi-modeling concept that originated in [92] – deterministic, and

in [93] – stochastic (see also [94]-[95] and references therein). The multi-modeling has

been studied in different setup by Mukaidani and his colleagues (see for example [96],

[97] and references therein). The input matrix for the multimodeling structures is given

in terms of two small positive singular perturbation parameters ε1 and ε2 of the same

order of magnitude. This structure of the input matrix is different from the input

matrix structures considered in this dissertation and leads to completely different prob-

lems solvable under different assumptions that require dynamic game theory problem

formulations involving the use of Nash and Pareto optimal control strategies.

Comments: While in this chapter we only consider two time-scales, the theoretical

framework can be extended to the multi-time-scale case (more on multi-time-scale sys-

tems in the next chapter). That is, we would need to introduce as many inputs as the

number of time-scales available. In that case, the derivations would be more involved

and new assumptions will have to be imposed.
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Remark 3.1 Ill-conditioning is quite common in singularly perturbed system due to the

presence of ε. In [60] a case study of a hydro power plant model revealed that available

methods were not able to solve the CARE associated with the LQR problem. Popular

algorithms such as Laub’s method (used in MATLAB R©) [98] or the MacFarlane-Potter

algorithm [99], utilize transformation matrices under the assumption that they are non-

singular to obtain the CARE solution. In [60], these transformation matrices happen to

be near singular hence current algorithms failed to solve the CARE. However, reduced-

order algorithms such as the ones used in this chapter were able to obtain an accurate

solution.

In the next sections, we show how to solve (3.10) efficiently in terms of reduced-order

problems and eliminate possible numerical ill-conditioning associated with the original

full-order problem for each case.

3.2 Reduced-Order Methods for the New Class of Singularly Per-

turbed Systems

This section presents detailed derivations and imposes the required assumptions for

the new class of singularly perturbed linear systems for all three cases. We will refer to

case (i), case (ii), and case (iii) as decoupled inputs case, weakly coupled inputs case,

and weakly controlled fast subsystem case respectively.

3.2.1 Decoupled Inputs Case

The input matrix structure considered in this section is encountered frequently in

models of real physical system as mentioned earlier. The singularly perturbed state-

space model for this case is as follows.

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B4u2(t)

(3.12)

Substituting the appropriate matrix B as well as using (3.7) and (3.11) in (3.10), we

obtain the following matrix algebraic equations (note that due to the symmetry of
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CARE only three equations are needed).

AT
1 P1 + AT

3 PT
2 + P1A1 + P2A3 + Q1 −P1S1P1 −P2S4P

T
2 = 0 (3.13a)

εAT
1 P2 + AT

3 P3 + P1A2 + P2A4 + Q2 − εP1S1P2 −P2S4P3 = 0 (3.13b)

εAT
2 P2 + AT

4 P3 + εPT
2 A2 + P3A4 + Q3 − ε2PT

2 S1P2 −P3S4P3 = 0 (3.13c)

where S is defined as

S = BR−1BT =

B1R
−1
1 BT

1 0

0 1
ε2

B4R
−1
4 BT

4


=

S1 0

0 1
ε2

S4


(3.14)

Next, we find the zero-order approximation of (3.13). For ε ≈ 0, the zero-order approx-

imation of (3.13) becomes

AT
1 P

(0)
1 + AT

3 P
(0)T
2 + P

(0)
1 A1 + P

(0)
2 A3 + Q1 −P

(0)
1 S1P

(0)
1 (3.15a)

−P
(0)
2 S4P

(0)T
2 = 0

AT
3 P

(0)
3 + P

(0)
1 A2 + P

(0)
2 A4 −P

(0)
2 S4P

(0)
3 = 0 (3.15b)

AT
4 P

(0)
3 + P

(0)
3 A4 −P

(0)
3 S4P

(0)
3 = 0 (3.15c)

The superscript (0) denotes an approximate quantity. Approximate solutions (3.15)

differ from the original CARE by O(ε). The zero-order equations (3.15) can be further

simplified by initially obtaining the solution of (3.15c), that is P
(0)
3 = 0. The latter

leads to the solution of (3.15b). Substituting P
(0)
2 in (3.15a) we obtain a CARE whose

solution is P
(0)
1 . The equations for P

(0)
1 , P

(0)
2 , and P

(0)
3 are as follows.

AT
0 P

(0)
1 + P

(0)
1 A0 + Q1 −P

(0)
1 (S1 + A2A

−1
4 S4A

−T
4 AT

2 )P
(0)
1 = 0 (3.16a)

P
(0)
2 + P

(0)
1 A2A

−1
4 = 0 (3.16b)

P
(0)
3 = 0 (3.16c)

where

A0 = A1 −A2A
−1
4 A3



47

To be able to solve (3.16a), we need the following assumption [32]

Assumption 3.1 Pairs (A0, B1) and (A0, Chol{Q1}) are stabilizable and detectable

respectively.

In Assumption 3.1, Chol{·} stands for the Cholesky factorization.

Remark 3.2 Equations (3.16) show that a reduced-order CARE of order n and a ma-

trix algebraic equation can be used to obtain an approximate solution P = P (0)+O(ε) of

what used to be the CARE of order n+m. This is an advantage since the original full-

order CARE is numerically ill-conditioned due to the presence of 1
ε element in matrix A.

Remark 3.3 Note that while formulating the slow reduced-order decoupled algebraic

equations (3.16), the coefficients of the fast subsystem (A4 and B4) appropriately mod-

ify the coefficients of the reduced-order slow algebraic equation (3.16a) which has been

the case also in the classical formulation of the singularly perturbed linear-quadratic

(LQ) optimal control problem [46]. The method proposed in this section achieves con-

trol inputs that are dynamically decoupled, and with slow and fast controls controlling

only the slow and fast subsystems respectively. This is realized by utilizing the solution

of the corresponding slow and fast equations. That has not been the case in the classical

formulation of the optimal LQ-problem.

In the rest of this section, the error of matrix P for the approximation introduced

above is investigated. The approximate CARE solution P(0) obtained in (3.16) can be

written in terms of the original CARE solution P. In essence we have

P = P(0) +O(ε) =

 P
(0)
1 εP

(0)
2

εP
(0)T
2 εP

(0)
3

 (3.17)

Defining an error matrix E

E =

E1 E2

ET
2 E3

 (3.18)
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the solution Pj , j = 1, 2, 3 in terms of the approximation errors becomes

Pi = P
(0)
j + εEj , j = 1, 2, 3 (3.19)

The error equations are obtained by subtracting (3.15) from (3.13) after (3.19) has been

substituted in the latter. This leads to

DT
1 E1 + E1D1 + DT

2 ET
2 + E2D2 = εH1 (3.20a)

E2A4 + E1A2 + DT
2 E3 + Q2 = H2 + εH3 (3.20b)

E3A4 + AT
4 E3 + Q3 + P

(0)T
2 A2 + AT

2 P
(0)
2 = −ε(AT

2 E2 + ET
2 A2) + εH4 (3.20c)

where

D1 = A1 − S1P
(0)
1

D2 = A3 − S4P
(0)T
2

H1 = E1S1E1 + E2S4E
T
2

H2 = P
(0)
1 S1P

(0)
2 −AT

1 (P
(0)
2 + εE2)

H3 = P
(0)
1 S1E2 + E1S1P

(0)
2 + E2S4E3 + εE1S1E2

H4 = P
(0)T
2 S1P

(0)
2 + εP

(0)T
2 S1E2 + εET

2 S1P
(0)
2 + ε2ET

2 S1E2 + E3S4E3

(3.21)

By inspecting (3.20), we observe that the cross-coupling terms and non-linear terms

are multiplied by ε. Using these facts, a reduced-order fixed-point parallel algorithm

is proposed to solve (3.20). Fixed-point iteration methods are usually good candidates

to solve equations of the type F (x) = 0 iteratively. F (x) = 0 can be rewritten as

x = x − F (x) or x = G(x). The latter is used to define the fixed-point iteration

problem as

x(i) = G(i)(x) (3.22)

Eq. (3.22) is guaranteed to converge given

‖x(i) − x(i−1)‖ ≤ ρ‖G(i)(x)−G(i−1)(x)‖ (3.23)

where ρ is a constant that must be less than one. For the singularly perturbed problem

under consideration, ρ is equivalent to ε. Since we defined 0 < ε � 1, convergence is

guaranteed.



49

Other iterative algorithms have been used to solve the CARE for singularly per-

turbed systems. Among the most common are those originating from the Newton

method. For example in [61], the CARE of the corresponding guaranteed cost control

problem of uncertain singularly perturbed systems is solved via a Newton method-based

algorithm. While the Newton method is generally very effective when a good initial

guess is used for the first iteration, for certain problems, the solution might not con-

verge at all as it was shown in [59]. Note that unlike in this dissertation where only the

symmetric case of the CARE has been considered, in [61] the CARE is non-symmetric.

The symmetric CARE case solved via fixed-point iterations in this dissertation can also

been solved via the hybrid Newton fixed-point algorithm presented in [62] (pp. 72-76).

In addition, techniques such as power series methods, Taylor series, and asymptotic

expansions have also been successfully used to acquire the solution of the CARE [63]-

[66]. However, to obtain a very accurate solution or when the perturbation parameter

is not sufficiently small, these methods can be computationally complex due to their

non-recursive nature. Comparisons between the aforementioned techniques and fixed-

point iteration methods are presented in [59] and [63] where it was shown that the

performance of fixed-point iteration methods is superior.

The next step in the design of the algorithm would be to obtain the initial conditions

of the errors. E
(0)
1 , E

(0)
2 , E

(0)
3 are obtained by solving (3.20) after setting ε = 0.

DT
1 E

(0)
1 + E

(0)
1 D1 + DT

2 E
(0)T
2 + E

(0)
2 D2 = 0 (3.24a)

E
(0)
2 A4 + E

(0)
1 A2 + DT

2 E
(0)
3 + Q2 = H2 (3.24b)

E
(0)
3 A4 + AT

4 E
(0)
3 + Q3 + P

(0)T
2 A2 + AT

2 P
(0)
2 = 0 (3.24c)

Initially, (3.24c) is solved as a Lyapunov equation to obtain E
(0)
3 . Then, E

(0)
2 is isolated

from (3.24b) leading to

E
(0)
2 = (H2 −E

(0)
1 A2 −DT

2 E
(0)
3 −Q2)A

−1
4 (3.25)

Then, E
(0)
1 is obtained from (3.24a) after the expression for E

(0)
2 is substituted from

(3.25) (likewise for E
(0)T
2 ). Lastly, (3.24a) is solved algebraically to get E

(0)
2 in terms of

E
(0)
1 and E

(0)
3 .
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Conversely, the initial conditions can be taken as E
(0)
1 = 0, E

(0)
2 = 0, E

(0)
3 = 0

but the trade-off would be the number of iterations to achieve the desired solution.

After some algebra, the algorithm for the new class of singularly perturbed systems

follows.

E
(i+1)
1 As + AT

s E
(i+1)
1 = D3A

−1
4 D2 + DT

2 A−T4 DT
3 + εH

(i)
1 (3.26a)

E
(i+1)
2 A4 + E

(i+1)
1 A2 + DT

2 E
(i+1)
3 + Q2 = H

(i)
2 + εH

(i,i+1)
3 (3.26b)

E
(i+1)
3 A4 + AT

4 E
(i+1)
3 + AT

2 P
(0)
2 + P

(0)T
2 A2 = −ε(AT

2 E
(i)
2 + E

T (i)
2 A2) (3.26c)

+ εH
(i)
4

where As = D1 − A2A
−1
4 D2 and D3 = DT

2 E
(i+1)
3 + Q2 − H

(i)
2 − εH

(i,i+1)
3 . P

(i)
j =

P
(0)
j + εE

(i)
j , j = 1, 2, 3 and matrices Hk, k = 1, 2, 3, 4 in (3.21) are updated in each

iteration as follows.

H
(i)
1 = E

(i)
1 S1E

(i)
1 + E

(i)
2 S4E

T (i)
2

H
(i)
2 = P

(0)
1 S1P

(0)
2 −AT

1 (P
(0)
2 + εE

(i)
2 )

H
(i)
3 = P

(0)
1 S1E

(i)
2 + E

(i)
1 S1P

(0)
2 + E

(i)
2 S4E

(i)
3 + εE

(i)
1 S1E

(i)
2

H
(i,i+1)
4 = P

(0)T
2 S1P

(0)
2 + εP

(0)T
2 S1E

(i)
2 + εE

T (i)
2 S1P

(0)
2 + ε2E

T (i)
2 S1E

(i)
2

+ E
(i+1)
3 S4E

(i+1)
3

Solution of recursive equations similar to (3.26) are discussed in [67], [82]-[83]. Essen-

tially the solution is obtained by initially solving (3.26c) then (3.26a) and lastly (3.26b).

The pseudocode containing the steps of the solution is presented in Algorithm 1.

Algorithm 1 Evaluate E(i)

1: procedure Solve Recursive Equations
2: while solution of E(i) converges do

3: solve (3.26c) as Lyapunov to obtain E
(i)
3

4: update: P
(i)
3 ← P

(0)
3 + εE

(i)
3

5: solve (3.26a) as Lyapunov to obtain E
(i)
1

6: update: P
(i)
1 ← P

(0)
1 + εE

(i)
1

7: solve (3.26b) algebraically to obtain E
(i)
2

8: update: P
(i)
2 ← P

(0)
2 + εE

(i)
2
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The rate of convergence of this algorithm is summarized by the following theorem

Theorem 3.1 Under assumption 1, (3.26) converges to the exact solution of the error

with convergence rate O(ε) [59].

‖Ej −E
(i)
j ‖ = O(εi), i = 1, 2, 3, · · · ; j = 1, 2, 3 (3.27)

Proof. The proof starts by showing the existence of a bounded solution of E1, E2,

and E3 in the neighborhood of ε∗ ∈ [εmin, εmax]. It is sufficient to show that the

corresponding Jacobian in (3.28) is non-singular at ε = 0 [59].

J(ε) =



∂F1

∂E1

∂F1

∂E2

∂F1

∂E3

∂F2

∂E1

∂F2

∂E2

∂F2

∂E3

∂F3

∂E1

∂F3

∂E2

∂F3

∂E3

 (3.28)

Fi, i = 1, 2, 3 in (3.28) represents each of the equations in (3.20). The complete Jaco-

bian, after (3.26a) has been algebraically manipulated into a more explicit form (see

Appendix A for more details), becomes

J(ε) ,


J11 0 0

J21 J22 J23

0 0 J33

+


O(ε) O(ε) 0

0 O(ε) O(ε)

0 O(ε) 0

 (3.29)

The entries in the second matrix come from elements containing the ε term in (3.20).

To guarantee that J(ε) is non-singular, we have to show that the diagonal blocks are

non-singular as well. They can be represented by using a Kronecker product

J11 = AT
s ⊗ In + In ⊗AT

s

J22 = AT
4 ⊗ Im

J33 = AT
4 ⊗ Im + Im ⊗AT

4

(3.30)

where In and Im are identity matrices of corresponding dimensions. J22 and J33 are

both dependent on A4 therefore they are invertible by Assumption 2.1. As is the feed-

back matrix of the slow subsystem hence asymptotically stable. Therefore, a bounded

solution for the error matrix E is guaranteed. The convergence rate can be found by
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subtracting the error equations (3.20) from the proposed algorithm (3.26) for i = 0.

The norm of this difference for the third equation becomes

(E3 −E
(1)
3 )A4 + AT

4 (E3 −E
(1)
3 ) = εF(E2,E3, ε) (3.31)

Feedback matrix A4 is asymptotically stable and E2 and E3 are bounded implying

‖E3 −E
(1)
3 ‖ = O(ε) (3.32)

Similar results are obtained for the remaining two equations resulting in

‖Ej −E
(1)
j ‖ = O(ε), j = 1, 2, 3 (3.33)

Repeating this procedure for i = 2, 3, . . . , and using (3.33) and (3.21) it can be shown

that

‖Hj −H
(i−1)
j ‖ = O(εi), i = 1, 2, 3, · · · (3.34)

and

‖E−E(i)‖ = O(εi), i = 1, 2, 3, · · · (3.35)

The proof is complete. �

Equation (3.35) suggests that the algorithm has linear convergence, implying that

the accuracy improves in each iteration by O(ε). Having knowledge of the error matrix

for each iteration, the approximate solution P of the CARE is then given by

P(i) =

 P
(0)
1 + εE

(i)
1 ε(P

(0)
2 + εE

(i)
2 )

ε(P
(0)T
2 + εE

T (i)
2 ) ε(P

(0)
3 + εE

(i)
3 )

 (3.36)

The static feedback gain is then

G(i) = −R−1BTP(i) (3.37)

Under this feedback the cost function becomes

J (i) =

∫ ∞
0

[xT (t)(Q + G(i)TRG(i))x(t)]dt (3.38)

The integral in (3.38) is evaluated by finding the solution of the following Lyapunov

equation [32]

(A− SP(i))TV(i) + V(i)(A− SP(i)) + Q + P(i)TSP(i) = 0 (3.39)



53

We assume that the system initial conditions are distributed on the unit sphere therefore

J (i) is simply evaluated as

J (i) = tr{V(i)} (3.40)

Convergence of the approximate optimal cost (3.40) is related to the convergence of the

approximate solution P(i) and the corresponding feedback gain G(i) [101]. If P(i)−P =

O(εi), where i is a positive integer, then J(i) − Jopt = O(ε2i). This indicates that

convergence to the exact solution is reached in only a few iterations when ε is sufficiently

small.

3.2.2 Weakly Coupled Inputs Case

A more general case of what was considered earlier is when the input matrix does

not contain any zero partitions causing the singularly perturbed system input matrix to

be weakly coupled. Likewise, this matrix structure has been known to occur in models

of real physical systems such as the ones stated in the introduction and is generally

common. The state-space model corresponding to this case is now given by

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t) + εB2u2(t)

εẋ2(t) = A3x1(t) + A4x2(t) + εB3u1(t) + B4u2(t)

(3.41)

Note that input u2(t) in the first equation and input u1(t) in the second equation are

multiplied by ε. This creates the weak coupling between the inputs. Due the structure

of the input matrix, the algebra in this case is more involved but the procedure is no

different than the earlier case.

To obtain the individual CAREs, we start by substituting the corresponding matrix

B, matrices R and Q defined in (3.6)-(3.7) and matrix (3.11) in (3.10).

AT
1 P1 + AT

3 PT
2 + P1A1 + P2A3 + Q1 −P1S1P1 −P2S4P

T
2 − εZ11 (3.42a)

− ε2Z12 = 0

εAT
1 P2 + AT

3 P3 + P1A2 + P2A4 + εQ2 −P2S4P3 − εZ21 − ε2Z22 (3.42b)

− ε3Z23 = 0

εAT
2 P2 + AT

4 P3 + εPT
2 A2 + P3A4 + εQ3 −P3S4P3 − ε2Z31 − ε4Z32 = 0 (3.42c)
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where S1 and S4 are defined in (3.14) and Zij , i, j = 1, 2, 3 are defined as follows.

Z11 = P2B3R
−1
1 BT

1 P1 + P1B1R
−1
1 BT

3 PT
2 + P2B4R

−1
4 BT

2 P1 + P1B2R
−1
4 BT

4 PT
2

Z12 = P1B2R
−1
4 BT

2 P1 + P2B3R
−1
1 BT

3 PT
2

Z21 = P1B1R
−1
1 BT

1 P2 + P1B1R
−1
1 BT

3 P3 + P1B2R
−1
4 BT

4 P3

Z22 = P2B3R
−1
1 BT

1 P2 + P2B4R
−1
4 BT

2 P2 + P2B3R
−1
1 BT

3 P3

Z23 = P1B2R
−1
4 BT

2 P2

Z31 = PT
2 B1R

−1
1 BT

1 P2 + P3B3R
−1
1 BT

1 P2 + P3B4R
−1
4 BT

2 P2 + PT
2 B1R

−1
1 BT

3 P3

+ PT
2 B2R

−1
4 BT

4 P3 + P3B3R
−1
1 BT

3 P3

Z32 = PT
2 B2R

−1
4 BT

2 P2

(3.43)

For ε = 0, the zero-order approximation of (3.42) is the same as the decoupled inputs

case discussed previously. The error equations are obtained by subtracting (3.15) from

(3.42) after (3.19) has been substituted in (3.42) and the fixed-point iteration algorithm

is designed the same way as the case presented in the previous section. The error

equation are as follows.

E1D1 + DT
1 E1 + E2D2 + DT

2 ET
2 −Y1 = εH5 (3.44a)

E2A4 + E1A2 + AT
1 P

(0)
2 + εAT

1 E2 + AT
3 E3 + Q2 = H6 + εH7 (3.44b)

E3A4 + AT
4 E3 + AT

2 P
(0)
2 + P

(0)T
2 A2 + εE2A2 + εAT

2 E2 + Q3 = H8 + εH9 (3.44c)

As in the decoupled inputs case, error equations (3.44) have non-linear terms and cross-

coupling terms multiplied by ε hence fixed-point iteration methods are great candidates

to obtain their accurate solution. In addition, error equations (3.44) have a familiar

structure hinting that the algorithm for this case would follow the same steps. That is,

the first and last equations in (3.44) are Lyapunov equations that can easily be solved,

and the solution of the second equation for E2 is obtained algebraically after all other

quantities are known.

Matrix D1 and D2 were defined in the previous section and the rest of unknown

matrices are defined as follows.
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Y1 = P
(0)
2 B3R

−1
1 BT

1 P
(0)
1 + P

(0)
1 B1R

−1
1 BT

3 P
(0)T
2 + P

(0)
2 B4R

−1
4 BT

2 P
(0)
1

+ P
(0)
1 B2R

−1
4 BT

4 P
(0)T
2

H5 = E1S1E1 + E2S4E
T
2 + εZ̄12 + P

(0)
2 B3R

−1
1 BT

1 E1 + E2B3R
−1
1 BT

1 P
(0)
1

+ εE2B3R
−1
1 BT

1 E1 + P
(0)
1 B1R

−1
1 BT

3 ET
2 + E1B1R

−1
1 BT

3 P
(0)T
2

+ εE1B1R
−1
1 BT

3 ET
2 + P

(0)
2 B4R

−1
4 BT

2 E1 + E2B4R
−1
4 BT

2 P
(0)
1

+ εE2B4R
−1
4 BT

2 E1 + P
(0)
1 B2R

−1
4 BT

4 E2 + E1B2R
−1
4 BT

4 P
(0)T
2

+ εE1B2R
−1
4 BT

4 E2

H6 = P
(0)
2 S4E3 + E2S4P

(0)
3 + P

(0)
1 B1R

−1
1 BT

1 P
(0)
2 + P

(0)
1 B1R

−1
1 BT

3 P
(0)
3

+ P
(0)
1 B2R

−1
4 BT

4 P
(0)
3

H7 = E2S4E3 + Z̄22 + εZ̄33 + P
(0)
1 B1R

−1
1 BT

1 E2 + E1B1R
−1
1 BT

1 P
(0)
2

+ εE1B1R
−1
1 BT

1 E2 + P
(0)
1 B1R

−1
1 BT

3 E3 + E1B1R
−1
1 BT

3 P
(0)
3

+ εE1B1R
−1
1 BT

3 E3 + P
(0)
1 B2R

−1
4 BT

4 E3 + E1B2R
−1
4 BT

4 P
(0)
3

+ εE1B2R
−1
4 BT

4 E3

H8 = P
(0)
3 S4E3 + E3S4P

(0)
3

H9 = E3S4E3 + Z
(0)
31 + εZ̄32 + ε2Z̄33

where Z̄ij , i, j = 1, 2, 3 are updated quantities after (3.19) has been substituted. The

initial conditions for the errors are evaluated from the equations below.

E
(0)
1 A1 + E

(0)
2 A3 + AT

1 E
(0)
1 + AT

3 E
(0)T
2 = H̄5 (3.45a)

E
(0)
2 A4 + E

(0)
1 A2 + AT

1 P
(0)
2 + AT

3 E
(0)
3 + Q2 = H6 (3.45b)

E
(0)
3 (A4 − S4P

(0)
3 ) + (AT

4 −P
(0)
3 S4)E

(0)
3 + AT

2 P
(0)
2 + P

(0)T
2 A2 + Q3 = 0 (3.45c)

where H̄5 is the same as H5 except that all the terms containing ε are set to zero.

The solution of the error equations is easily obtained by initially solving (3.45c) as a

Lyapunov equation for E
(0)
3 . Then, E

(0)
1 is obtained from (3.45a) after E

(0)
2 is substituted

from (3.45b). Finally, E
(0)
2 is obtained from (3.45b). After the initial conditions for the



56

errors are obtained, the parallel algorithm is as follows.

AT
LE

(i+1)
1 + E

(i+1)
1 AL + H

(i,i+1)
R A−1F A3 + AT

3 A−TF H
T (i,i+1)
R −H5 = 0 (3.46a)

E
(i+1)
2 AF + E

(i+1)
1 A2 + AT

1 P
(0)
2 + εAT

1 E
(i)
2 + (AT

3 −P
(0)
2 S4)E

(i+1)
3 (3.46b)

+ Q2 = Z
(0)
21 + εH

(i)
7

E
(i+1)
3 AF + AT

FE
(i+1)
3 + AT

2 P
(0)
2 + P

(0)T
2 A2 + εE

(i)
2 A2 + εAT

2 E
(i)
2 (3.46c)

+ Q3 = εH
(i+1)
9

where AL = A1 − A2A
−1
F A3, HR = Z

(0)
21 + εH

(i)
7 − AT

1 P
(0)
2 − εAT

1 E
(i)
2 − (AT

3 −

P
(0)
2 S4)E

(i+1)
3 − Q2, and AF = A4 − S4P

(0)
3 . The solution of the algorithm follows

the same steps as Algorithm 1, namely (3.46c) is initially solved, then the solution of

(3.46a) is obtained after E2 is substituted and lastly, (3.46b) is solved algebraically to

obtain E
(i)
2 . The rate of convergence of the algorithm is the same as in the decou-

pled inputs case, that is O(ε) per iteration. Matrix P(i), which is used to determine

the approximate optimal gain is given by (3.36) and the approximate cost function is

evaluated using (3.40).

3.2.3 Weakly Controlled Fast Subsystem

In this section, the case when the input matrix is not affected by the perturbation

parameter is considered. The structure of matrix B in this case gives the following

state-space model.

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t)

εẋ2(t) = A3x1(t) + A4x2(t) + εB4u2(t)

(3.47)

After the matrices have been substituted in (3.10), the reduced-order CAREs now

become

AT
1 P1 + AT

3 PT
2 + P1A1 + P2A3 + Q1 −P1S1P1 − ε2P2S4P

T
2 = 0 (3.48a)

εAT
1 P2 + AT

3 P3 + P1A2 + P2A4 + εQ2 − εP1S1P2 − ε2P2S4P3 = 0 (3.48b)

εAT
2 P2 + AT

4 P3 + εPT
2 A2 + P3A4 + εQ3 − ε2PT

2 S1P2 − ε2P3S4P3 = 0 (3.48c)
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The zero-order approximation of (3.48) is simply

AT
1 P

(0)
1 + AT

3 P
(0)T
2 + P

(0)
1 A1 + P

(0)
2 A3 + Q1 −P

(0)
1 S1P

(0)
1 = 0 (3.49a)

AT
3 P

(0)
3 + P

(0)
1 A2 + P

(0)
2 A4 = 0 (3.49b)

AT
4 P

(0)
3 + P

(0)
3 A4 = 0 (3.49c)

(3.49a) and (3.49b) are the same as in the other previously discussed cases. The only

difference are the last two terms on the left-hand side of (3.49a). Nonetheless, the

simplification of (3.49) follows the same steps as the first two cases and one CARE and

an algebraic equation are obtained as shown in (3.50).

AT
0 P

(0)
1 + P

(0)
1 A0 + Q1 −P

(0)
1 S1P

(0)
1 = 0 (3.50a)

P
(0)
2 + P

(0)
1 A2A

−1
4 = 0 (3.50b)

P
(0)
3 = 0 (3.50c)

The error equations for this case are as follows.

E1D1 + DT
1 E1 + AT

3 ET
2 + E2A3 = εH10 (3.51a)

E2A4 + AT
3 E3 + E1A2 + AT

1 P
(0)
2 = H11 + εH12 (3.51b)

E3A4 + AT
4 E3 + AT

2 P
(0)
2 + P

(0)T
2 A2 + Q3 = εH13 − ε(AT

2 E2 + ET
2 A2)

where

D1 = A1 − S1P
(0)
1

H10 = E1S1E1 + P
(0)
2 S4P

(0)T
2 + εP

(0)
2 S4E

T
2 + εE2S4P

(0)T
2 + ε2E2S4E

T
2

H11 = P
(0)
1 S1P

(0)
2 − εA

T
1 E2 −Q2

H12 = P
(0)
1 S1E2 + E1S1P

(0)
2 + εE1S1E2 + P

(0)
2 S4P

(0)
3 + P

(0)
2 S4E3

+ εE2S4P
(0)
3 + ε2E2S4E3

H13 = P
(0)T
2 S1P

(0)
2 + εP

(0)T
2 S1E2 + εET

2 S1P
(0)
2 + ε2ET

2 S1E2 + P
(0)
3 S4P

(0)
3

+ εP
(0)
3 S4E3 + εE3S4P

(0)
3 + ε2E3S4E3

(3.52)

The zero-order error equations needed to obtain the initial conditions of the algorithm
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are

E
(0)
1 D1 + DT

1 E
(0)
1 + AT

3 E
(0)T
2 + E

(0)
2 A3 = 0 (3.53a)

E
(0)
2 A4 + AT

3 E
(0)
3 + E

(0)
1 A2 + AT

1 P
(0)
2 = P

(0)
1 S1P

(0)
2 −Q2 (3.53b)

E
(0)
3 A4 + AT

4 E
(0)
3 + AT

2 P
(0)
2 + P

(0)T
2 A2 + Q3 = 0 (3.53c)

As in the last two cases, (3.53c) and (3.53a) are solved as Lyapunov equations to obtain

E
(0)
3 and E

(0)
1 (after E

(0)
2 has been substituted in (3.53a)). Lastly, E

(0)
2 is obtained by

solving (3.53b) algebraically.

The proposed algorithm to obtain the errors follows.

E
(i+1)
1 D0 + DT

0 E
(i+1)
1 + AT

3 A−T4 H
T (i,i+1)
0 + H

(i,i+1)
0 A−14 A3 = εH

(i)
10 (3.54a)

E
(i+1)
2 A4 + AT

3 E
(i+1)
3 + E

(i+1)
1 A2 + AT

1 P
(0)
2 = H

(i)
11 + εH

(i,i+1)
12 (3.54b)

E
(i+1)
3 A4 + AT

4 E
(i+1)
3 + AT

2 P
(0)
2 + P

T (0)
2 A2 + Q3 = εH

(i)
13 (3.54c)

− ε(AT
2 E

(i)
2 + E

T (i)
2 A2)

where D0 = D1 −A2A
−1
4 A3 and H0 = H11 + εH12 −AT

1 P
(0)
2 −AT

3 E3.

Similarly, the solution of (3.54) follows the same steps as Algorithm 1. The ap-

proximate matrix P(i) is defined in (3.36). Just like in the decoupled inputs and the

weakly coupled inputs cases, Theorem 3.1 holds and the approximate cost function is

evaluated using (3.40).

Remark 3.4 By investigating all three cases we see that there is an additional advan-

tage. The solution of the zero-order approximation for all three cases is simplified to a

CARE and an matrix algebraic equation. For the first and second cases, the solution

is exactly the same. The CARE in the third case has less terms terms compared to the

other two. This is very advantageous from a computational perspective when large scale

models are considered (see [102]) as well as for avoiding possible ill-conditioning that

could occur.

Example 3.1 To illustrate the efficiency of the algorithm proposed in this section,

we look at an example. The following fourth-order stable singularly perturbed model
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corresponds to the decoupled inputs case.

A =



0 1 0 0

0 0 1 0

0 0 0 100

−150 −505 −470 −125


, B =


1 0

2 0

0 100

0 100

 , Q =



1 0 0.01 0.02

0 2 0.01 0.03

0.01 0.01 0.02 0

0.02 0.03 0 0.02


, R = 1

The eigenvalues of the model are −0.538± 0.174j and −61.962± 207.429j . Using

the ratio of the real part of the eigenvalue of the fast cluster with the real part of

the eigenvalue of the slow cluster, the singular perturbation parameter is ε = 0.01.

The results of the approximate CARE solution P(i) versus the original P are shown in

Table 3.1. It is evident that in a few iterations, the approximate solution approaches

the original one1.

Table 3.1: Convergence of approximate CARE solution to the actual value.

Iteration (i) ||P (i) − P || |J (i) − Jopt|
0 6.3338162 ×10−3 3.7268571×10−4

1 7.8903535 ×10−7 9.4213526×10−13

2 3.3152804 ×10−8 1.0214052×10−14

3 1.0518355 ×10−9 1.7541524×10−14

4 3.0019249 ×10−11 2.3092639×10−14

5 8.8380134 ×10−13 2.2870594×10−14

6 3.7457814 ×10−14 2.6201263×10−14

7 2.2773932 ×10−14 2.4424907×10−15

8 2.3022198 ×10−14 6.6613381×10−15

3.3 Linear Stochastic Filtering for the New Class of Singularly Per-

turbed Systems

As a follow-up of the above work, we extend the problem when noise is added to

the model. The presence of disturbance is a realistic representation of physical systems.

As an example, we can consider a microgrid setup where events such as geomagnetic

influence, load demands, or interconnection of multiple components cause unwanted

1In this dissertation O(10−13) or less is considered zero to computer accuracy.
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disturbances [103]-[105]. The latter are usually modeled as white noise.

Linear stochastic filtering, and more specifically the iterative solution of the LQG

problem is considered for the three different input matrix structures discussed previ-

ously. The general LTI stochastic system in state-space form now has the following

form

ẋ(t) = Ax(t) + Bu(t) + Fw(t)

y(t) = Cx(t) + Du(t) + v(t)

(3.55)

where x ∈ Rn+m are the state variables, u ∈ Rp is the control vector input, and y ∈ Rq

is the system output. w ∈ Rr1 and v ∈ Rr2 are zero-mean stationary Gaussian white

noise processes (N (0, µ1) and N (0, µ2) respectively) and their intensities are positive

definite i.e. W > 0 and V > 0.

3.3.1 Decoupled Inputs Case

The matrices of the decoupled input case are partitioned as follows.

B =

B1 0

0 1
εB4

 , C =

C1 0

0 C4

 , F =

F1 0

0 1
εF4

 (3.56)

Note the similar structure of matrices B and C due to duality.

Substitution of these matrices in the singularly perturbed system (3.55) leads to

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t) + F1w1(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B4u2(t) + F4w2(t)

y1(t) = C1x1(t) + v1(t)

y2(t) = C4x2(t) + v2(t)

(3.57)

Next, we consider a performance measure given in (3.58).

J = lim
tf→∞

1

tf
E
{∫ tf

0

[
x(t)TQx(t) + uT (t)Ru(t)

]
dt

}
(3.58)

The optimal control u(t) for (3.58) is given as [46]u1(t)
u2(t)

 = −

F1x̂1(t) + F2x̂2(t)

F3x̂1(t) + F4x̂2(t)

 (3.59)
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where the regulator gains Fi, i = 1, 2, 3, 4 are given by

F1 := R1
−1BT

1 P1

F2 := εR1
−1BT

1 P2

F3 := R4
−1BT

4 PT
2

F4 := R4
−1BT

4 P3

(3.60)

and Pi, i = 1, 2, 3 are the solution of the regulator-type CARE. Optimal estimated

states x̂1 and x̂2 of this stochastic singularly perturbed system are obtained from the

Kalman filter [46]:

˙̂x1(t) = A1x̂1(t) + A2x̂2(t) + B1u1(t) + [K1C1x̃1(t) + K2C4x̃2(t)] (3.61a)

ε ˙̂x2(t) = A3x̂1(t) + A4x̂2(t) + B4u2(t) + ε [K3C1x̃1(t) + K4C4x̃2(t)] (3.61b)

where x̃1(t) = x1(t)− x̂1(t) and x̃2(t) = x2(t)− x̂2(t) denote the slow and the fast state

errors respectively. Ki, i = 1, 2, 3, 4 are the filter’s gain matrices given as follows.

K1 := Σ1C
T
1 V−11

K2 := Σ2C
T
4 V−14

K3 := εΣT
2 CT

1 V−11

K4 := Σ3C
T
4 V−14

(3.62)

where K is partitioned as

K =

 K1 K2

1
εK3

1
εK4


Matrix V has the same structure as matrix R and Σi, i = 1, 2, 3 are solutions of the

filter-type CAREs

AΣ + FWFT + ΣAT −ΣCTV−1CΣ = 0 (3.63)

Due to the nature of the solution, the steady-state error covariance matrix Σ is parti-

tioned as in (3.64).

Σ =

Σ1 Σ2

ΣT
2

1
εΣ3

 (3.64)
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Substituting the inputs from (3.59) into the Kalman filters (3.61) we obtain

˙̂x1(t) = (A1 −B1F1)x̂1(t) + (A2 −B1F2)x̂2(t) + K1ν̄1(t) + K2ν̄2(t) (3.65a)

ε ˙̂x2(t) = (A3 −B4F3)x̂1(t) + (A4 −B4F4)x̂2(t) + K3ν̄1(t) + K4ν̄2(t) (3.65b)

where ν̄1(t) = C1x̃1(t) and ν̄2(t) = C4x̃2(t) are the innovation processes driving (3.65a)

and (3.65b) respectively. The filtering structure in (3.65) contains both slow and fast

dynamics and as it will be evident later when the complete solution of the LQG is

considered, it is necessary to decouple the filter into slow and fast subsystems. To

decouple the filter’s dynamics, the invariant transformation in (2.7) is used to obtain

exactly slow and fast subsystems.

After the decoupling, the filter in new coordinates becomes

˙̂
ξ(t) = [(A1 −B1F1)− (A2 −B1F2)L]ξ̂(t) + (K1 − εMLK1 − εMK3)ν1(t) (3.66a)

+ (K2 − εMLK2 − εMK4)ν2(t)

ε ˙̂η(t) = [(A4 −B4F4) + εL(A2 −B1F2)]η̂(t) + (K3 + εLK1)ν1(t) (3.66b)

+ (K4 + εLK2)ν2(t)

The innovation processes after the transformation become

ν1(t) = y1(t)−C1ξ̂(t)− εC1Mη̂(t)

ν2(t) = y2(t) + C4Lξ̂(t)− (C4 − εC4LM)η̂(t)

(3.67)

and the optimal control in new coordinates is now given by

u1(t) = −(F1 − F2L)ξ̂(t)− [F2 + ε(F1 − F2L)M]η̂(t) (3.68a)

u2(t) = −(F3 − F4L)ξ̂(t)− [F4 + ε(F3 − F4L)M]η̂(t) (3.68b)

Matrices M and L needed to obtain the solution of the decoupled filter (3.66) are

evaluated by solving a weakly non-linear and a linear equation

(A4 −B4F4)L− (A3 −B4F3)− εL[(A1 −B1F1)− (A2 −B1F2)L] = 0 (3.69a)

M(A4 −B4F4)− (A2 −B1F2)− ε[(A1 −B1F1)− (A2 −B1F2)L]M (3.69b)

+ εML(A2 −B1F2) = 0
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An iterative separation technique to solve for M and L follows. The technique developed

in [106] is used to obtain both L and M.

L(i+1) = (A4 −B4F
(N)
4 )−1(A3 −B4F

(N)
3 ) + ε(A4 −B4F

(N)
4 )−1L(i)[(A1 −B1F

(N)
1 )

− (A2 −B1F
(N)
2 )L(i)] (3.70a)

M(i+1) = ε{[(A1 −B1F
(N)
1 )− (A2 −B1F

(N)
2 )L(N)]M(i)

s −M(i)L(N)(A2 −B1F
(N)
2 )}

× (A4 −B4F
(N)
4 )−1 + (A2 −B1F

(N)
2 )(A4 −B4F

(N)
4 )−1

(3.70b)

for i = 1, 2, . . . , N . F
(N)
1 , F

(N)
2 , F

(N)
3 , F

(N)
4 are determined by substituting the last

iteration of the corresponding partition of (3.36) in (3.60). Likewise, L(N) is the value

of the last iteration of (3.70a). The initial conditions of the algorithm are

L(0) = (A4 −B4F
(0)
4 )−1(A3 −B4F

(0)
3 )

M(0) = (A2 −B1F
(0)
2 )(A4 −B4F

(0)
4 )−1

Theorem 3.2 Under the conditions of Theorem 3.1, (3.70a) and (3.70b) converge to

the exact solution L and M with convergence rate O(ε)

‖L− L(i)‖ = O(εi), i = 1, 2, · · · , n

‖M−M(i)‖ = O(εi), i = 1, 2, · · · , n

Proof We prove this theorem by following similar steps as the proof for Theorem 3.1.

We initially form the difference of the first iteration with the zero-order approximation

(initial conditions) for both L and M. We can see by observing (3.70) and the initial

conditions that the resulting difference is O(ε) in both cases i.e.

‖L(1) − L(0)‖ = O(ε)

‖M(1) −M(0)‖ = O(ε)

Continuing in this fashion for other iterations, we conclude that after each iteration the

accuracy improves by O(ε). For ε sufficiently small, both L and M converge in just a

few iterations. �

At this point we observe that for a complete solution of the LQG problem, both

recursive solutions of the regulator and filter-type CAREs are needed. We already
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obtained the solutions of the regulator-type CARE in the previous section. Here, we

give a detailed solution of the filter-type CARE only for the first case. The steps to

obtain the solution for the other two cases are very similar. Likewise, solution can be

obtained by making use of the duality of the regulator and filter.

After all the matrices have been substituted in (3.63) we obtain

A1Σ1 + A2Σ
T
2 + Σ1A

T
1 + Σ2A

T
2 + F1W1FT

1 −Σ1S1Σ1 −Σ2S4ΣT
2 = 0 (3.71a)

εA1Σ2 + A2Σ3 + Σ1A
T
3 + Σ2A

T
4 +−εΣ1S1Σ2 −Σ2S4Σ3 = 0 (3.71b)

εA3Σ2 + A4Σ3 + εΣT
2 AT

3 + Σ3A
T
4 + F4W4FT

4 − ε2ΣT
2 S1Σ2 (3.71c)

−Σ3S4Σ3 = 0

where S1 = CT
1 V−11 C1 and S4 = CT

4 V−14 C4. The zero-order approximation of (3.71)

becomes

A1Σ
(0)
1 + A2Σ

(0)T
2 + Σ

(0)
1 AT

1 + Σ
(0)
2 AT

2 + F1W1FT
1 −Σ

(0)
1 S1Σ

(0)
1 (3.72a)

−Σ
(0)
2 S4Σ

(0)T
2 = 0

A2Σ
(0)
3 + Σ

(0)
1 AT

3 + Σ
(0)
2 AT

4 −Σ
(0)
2 S4Σ

(0)
3 = 0 (3.72b)

A4Σ
(0)
3 + Σ

(0)
3 AT

4 + F4W1FT
4 −Σ

(0)
3 S4Σ

(0)
3 = 0 (3.72c)

The zero-order equations (3.72) can be further simplified by initially obtaining the

solution of Lyapunov equation (3.72c). The latter leads to the solution of (3.72b).

Substituting Σ
(0)
2 in (3.72a) we obtain a CARE whose solution is Σ

(0)
1 . The equations

for Σ
(0)
1 , Σ

(0)
2 , and Σ

(0)
3 are as follows.

D2Σ
(0)
1 + Σ

(0)
1 D

T
2 −Σ

(0)
1 D3Σ

(0)
1 +Q1 = 0 (3.73a)

Σ
(0)
2 = −A2Σ

(0)
3 D

−T
1 −Σ

(0)
1 AT

3D−T1 (3.73b)

A4Σ
(0)
3 + Σ

(0)
3 AT

4 + F4W4FT
4 −Σ

(0)
3 S4Σ

(0)
3 = 0 (3.73c)
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where

D1 = A4 − Σ
(0)
3 S4

D2 = A1 −A2D−11 A3 −A2Σ3
(0)D−T1 S4D

−1
1 A3

D3 = S1 + AT
3D−T1 S4D

−1
1 A3

Q1 = F1W1FT
1 −A2D−11 Σ

(0)
3 AT

2 −A2Σ
(0)
3 D

−T
1 AT

2 −A2Σ3
(0)D−T1 S4D

−1
1 Σ3A

T
2

To be able to solve (3.73a), we need the following assumption [46].

Assumption 3.2 The triple (D2, CT
1 , Chol{Q1}) is stabilizable-detectable respectively.

Equations (3.73) show that a reduced-order CARE of order n and a Lyapunov

equation of order m are used to obtain an approximate solution Σ = Σ(0) + O(ε) of

what used to be the CARE of order n + m. This is an advantage since the original

full-order filter-type CARE can be numerically ill-conditioned due to the presence of 1
ε

element in matrix A.

As in the regulator-type case discussed earlier, equations (3.73) are just an O(ε)

approximation of the actual CARE solution. Namely, we have the following.

Σ = Σ(0) +O(ε) =

 Σ
(0)
1 Σ

(0)
2

Σ
(0)T
2

1
εΣ

(0)
3

+O(ε) (3.74)

To improve the approximation, we start by defining an error matrix Es.

Es =

Es1 Es2

EsT2 Es3

 (3.75)

The actual CARE solution can now be written in terms of the error defined in (3.75).

Σi = Σ
(0)
i + εEsi , i = 1, 2, 3 (3.76)

To obtain the error equations, corresponding (3.76) are substituted in (3.71). Then,
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(3.72) is subtracted from the result.

D4Es1 + Es1DT
4 + A2Es

T
2 + Es2A

T
2 − ε(Es1S1Es1 + Es2S4EsT2 ) (3.77a)

−Σ
(0)
2 S4Es

T
2 −Es2S4Σ(0)T

2 = 0

A1Σ
(0)
2 + εA1Es2 + A2Es3 + Es1A

T
3 + Es2A

T
4 −Σ

(0)
1 S1Σ

(0)
2 −Σ

(0)
2 S4Es3 (3.77b)

−Es2S4Σ(0)
3 = εH1

D1Es3 + Es3DT
1 + A3Σ

(0)
2 + εA3Es2 + Σ

(0)T
2 AT

3 + εEsT2 AT
3 = εH2 (3.77c)

where

D4 = A1 −Σ1S1

H1 = Σ
(0)
1 S1Es2 + Es1S1Σ(0)

2 + εEs1S1Es2 + Es2S4Es3

H2 = Σ
(0)T
2 S1Σ(0)

2 + εΣ
(0)T
2 S1Es(0)2 + εEsT2 S1Σ

(0)
2 + ε2EsT2 S1Es2 + Es3S4Es3

(3.78)

Cross-coupling terms and all the non-linear terms are multiplied by ε in (3.77)

hinting that a reduced-order fixed-point algorithm can be used to obtain the solution.

The initial conditions namely Es
(0)
1 , Es

(0)
2 , Es

(0)
3 are obtained by solving (3.77) after

setting ε = 0. Initially (3.77c) is solved as a Lyapunov equation to obtain Es
(0)
3 . Then,

Es
(0)
1 is obtained from (3.77a) after the expression for Es

(0)
2 is substituted from (3.77b).

Lastly, (3.77b) is solved algebraically to get Es
(0)
2 . The proposed recursive algorithm

to obtain the error is as follows.

D5E
(i+1)
1 + E

(i+1)
1 DT

5 +D6 = εH3 (3.79a)

Es
(i+1)
2 DT

1 + A1Σ
(0)
2 + εA1Es

(i)
2 + A2Es

(i+1)
3 + Es

(i)
1 AT

3 −Σ
(0)
1 S1Σ

(0)
2 (3.79b)

−Σ
(0)
2 S4Es

(i+1)
3 = εH(i,i+1)

1

D1Es
(i+1)
3 + Es

(i+1)
3 DT

1 + A3Σ
(0)
2 + εA3Es2 + Σ

(0)T
2 AT

3 + εEsT2 AT
3 = εH(i)

2 (3.79c)

where

D5 = A1 −A2D−11 A3 −Σ
(0)
1 S1 + Σ

(0)
2 S4D

−1
1 A3

D6 = A2D−11 Γ + ΓD−T1 AT
2 −Σ

(0)
2 S4D

−1
1 ΓT − ΓD−T1 S4Σ

(0)T
2

H3 = Es
(i)
1 S4Es

(i)
1 + Σ

(0)
2 S4D

−1
1 ΓT + Σ

(0)
2 S4D

−1
1 ΠT + ΠD−T1 S4Σ

(0)T
2

+ Es
(i)
2 S4Es

(i)T
2 −A2D−11 ΠT −ΠD−T1 AT

2

(3.80)
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Γ and Π are respectively defined as Γ = Σ
(0)
1 S1Σ

(0)
2 +Σ

(0)
2 S4Es

(i+1)
3 −A1Σ

(0)
2 −A2Es

(i+1)
3

and Π = Σ
(0)
1 S1Es

(i)
2 + Es

(i)
1 S1Σ

(0)
2 + εEs

(i)
1 S1Es

(i)
2 + Es

(i)
2 S4Es

(i+1)
3 . Matrices Σ

(i)
j =

Σ
(0)
j +εEs

(i)
j , j = 1, 2, 3 and matrices Hk, k = 1, 2, 3, Γ, and Π are updated accordingly

in each iteration.

The solution follows similar steps as for the regulator-type CARE. Namely, (3.79c)

is solved, then (3.79a) after Es
(i)
2 is substituted, and lastly the solution of (3.79b) is

obtained. The steps of the solution are presented in Algorithm 2.

Algorithm 2 Evaluate Es(i)

1: procedure Solve Recursive Equations
2: while solution of Es(i) converges do

3: solve Lyapunov (3.79c) to obtain Es
(i)
3

4: Σ
(i)
3 ← Σ

(0)
3 + εEs

(i)
3

5: solve Lyapunov (3.79a) to obtain Es
(i)
1

6: Σ
(i)
1 ← Σ

(0)
1 + εEs

(i)
1

7: solve (3.79b) algebraically to obtain Es
(i)
2

8: Σ
(i)
2 ← Σ

(0)
2 + εEs

(i)
2

The following theorem summarizes the rate of convergence of the error.

Theorem 3.3 Under Assumption 2.1, (3.79) converges to the exact solution of the

error with convergence rate O(ε).

‖Esj −Es
(i)
j ‖ = O(εi), i = 1, 2, 3, · · · ; j = 1, 2, 3 (3.81)

Proof. The proof is similar to that of Theorem 3.2. The existence of a bounded

solution of Es1, Es2, and Es3 is guaranteed if the corresponding Jacobian of the error

equations is non-singular. Due to the duality between the regulator and filter-type

CARE, we are guaranteed non-singularity since it was proved before that the Jacobian

for the regulator-type CARE is non-singular. Next, to find the rate of convergence, the

difference of the proposed algorithm for i = 0 and the error equations is obtained. For

the third equation this becomes.

(Es3 −Es
(1)
3 )D1 +DT

1 (Es3 −Es
(1)
3 ) = εF(Es2,Es3, ε) (3.82)

Similarly, this can be shown for the other equations. Repeating this procedure leads to

‖Es−Es(i)‖ = O(εi), i = 1, 2, 3, · · · (3.83)
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The proof is complete. �

Next, we consider the complete solution of the LQG. It is well-known that the

solution of the LQG is divided into two parts collectively known as the separation

theorem [107]. First, the optimal control law u(t) = −Gx̂(t) is obtained by solving

the LQ problem (i.e. solving the regulator-type CARE to evaluate G) and then, the

Kalman filter is used to obtain the optimal estimated states. The Kalman filter gain

is evaluated by utilizing the solution of the filter-type CARE. The iterative solution of

the regulator and filter-type CARE were discussed earlier therefore we now focus on

the complete solution of the LQG.

To do so, we rewrite the cost functional in terms of the trace and make use of the co-

variance matrices of both, the original states and the estimated states after decoupling.

An augmented system is then formed to obtain the numerical values of the variances of

the original and optimal estimated decoupled states which are then used to calculate

the cost functional. Details on how the solution is achieved iteratively follow.

For notational convenience and to simplify the algebra, we rewrite the inputs, filter

equations, and innovation processes. Starting with the approximate inputs, we have

u(i)(t) = −φ(i)1 ξ̂(i)(t)− φ(i)2 η̂(i)(t) (3.84a)

u(i)(t) = −φ(i)3 ξ̂(i)(t)− φ(i)4 η̂(i)(t) (3.84b)

Likewise, the approximate filter equations can be simplified as

˙̂
ξ(i)(t) = α

(i)
1 ξ̂(i)(t) + γ

(i)
1 ν

(i)
1 (t) + γ

(i)
2 ν

(i)
2 (t) (3.85a)

ε ˙̂η(i)(t) = α
(i)
2 η̂(i)(t) + γ

(i)
3 ν

(i)
1 (t) + γ

(i)
4 ν

(i)
2 (t) (3.85b)

where the approximate innovation processes are given by

ν
(i)
1 (t) = y1(t)− ρ(i)1 ξ̂(i)(t)− ρ(i)2 η̂(i)(t)

ν
(i)
2 (t) = y2(t)− ρ(i)3 ξ̂(i)(t)− ρ(i)4 η̂(i)(t)

Quantities αj , j = 1, 2, γj , j = 1, 2, 3, 4, ρj , j = 1, 2, 3, 4 , and φj , j = 1, 2, 3, 4 are

equivalent to corresponding approximate expressions in (3.66), (3.67), and (3.68).
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The solution of the suboptimal criterion

J (i) = lim
tf→∞

1

tf
E

{∫ tf

0

[
x(i)T (t)Qx(i)(t) + u(i)T (t)Ru(i)(t)

]
dt

}
(3.86)

is given in terms of the trace as [108]

J (i) = tr{Qq(i)11 + φ(i)TRφ(i)q
(i)
22 } (3.87)

where

φ(i) =

φ(i)1 φ
(i)
2

φ
(i)
3 φ

(i)
4


and matrix q(i) is evaluated from the covariance matrix of the original and estimated

states. Namely,

Cov(x1(t), x2(t)) =

Cov(xT1 (t)x1(t)) Cov(xT1 (t)x2(t))

Cov(xT2 (t)x1(t)) Cov(xT2 (t)x2(t))

 (3.88a)

Cov(ξ̂(t), η̂(t)) =

Cov(ξ̂T (t)ξ̂(t)) Cov(ξ̂T (t)η̂(t))

Cov(η̂T (t)ξ̂(t)) Cov(η̂T (t)η̂(t))

 (3.88b)

The unknown quantities are then given as follows.

q
(i)
11 = Var

x(i)1 (t)

x
(i)
2 (t)

 , q
(i)
22 = Var

ξ̂(i)(t)
η̂(i)(t)


The numerical values of q11 and q22 are obtained by using the augmented system in

(3.89) which is driven by white noise.

ẋ
(i)
1 (t)

εẋ
(i)
2 (t)

˙̂
ξ(i)(t)

ε ˙̂η(i)(t)


=



A1 A2 −B1φ
(i)
1 −B1φ

(i)
2

A3 A4 −B4φ
(i)
3 −B4φ

(i)
4

γ
(i)
1 C1 γ

(i)
2 C4 α

(i)
1 − γ

(i)
1 ρ

(i)
1 − γ

(i)
2 ρ

(i)
3 −γ(i)1 ρ

(i)
2 − γ

(i)
2 ρ

(i)
4

γ
(i)
3 C1 γ

(i)
4 C4 −γ(i)3 ρ

(i)
1 − γ

(i)
4 ρ

(i)
3 α

(i)
2 − γ

(i)
3 ρ

(i)
2 − γ

(i)
4 ρ

(i)
4





x
(i)
1 (t)

x
(i)
2 (t)

ξ̂(i)(t)

η̂(i)(t)



+



F1 0 0 0

0 F4 0 0

0 0 γ
(i)
1 γ

(i)
2

0 0 γ
(i)
3 γ

(i)
4





w1(t)

w2(t)

v1(t)

v2(t)


(3.89)
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We rewrite the overall augmented system as

Ż(i)(t) = A(i)Z(i)(t) + G(i)w̃(t) (3.90)

where the matrices and vectors in (3.90) represent quantities of the augmented system.

It is well-known that in steady state, the covariance matrix of the augmented state Z(i)

is given by the solution of the following Lyapunov equation [108].

A(i)q(i) + q(i)A(i)T + G(i)W̃G(i)T = 0 (3.91)

where W̃ = diag(W V) and matrix q(i) is partitioned as

q(i) =

 q(i)11 q
(i)
12

q
(i)T
12 q

(i)
22


With all the quantities known, the solution of the LQG can be obtained iteratively until

the algorithm converges (i = 0, 1, 2, · · · ) i.e.

φ
(i)
j → φactualj ; j = 1, 2, 3, 4

α
(i)
j → αactual

j ; j = 1, 2

γ
(i)
j → γactualj ; j = 1, 2, 3, 4

ρ
(i)
j → ρactualj ; j = 1, 2, 3, 4

J (i) → Jopt

where actual quantities denote values when actual solutions of the regulator and filter-

type CARE are used to evaluate φj , αj , γj , and ρj .

The optimal performance cost is evaluated as follows [108].

Jopt = tr(PFWPT + ΣFTRF)

= tr(PKVKT + ΣQ)

(3.92)

3.3.2 Weakly Coupled Inputs

Due to similarities with the decoupled inputs case, in this section as well as the next,

the recursive solution of the filter-type CARE will be skipped. Instead, we assume that

the solution of both the regulator and filter-type CAREs are already obtained and focus

on the solution of the LQG.
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Matrices C and F have the following structure for this case.

C =

C1 C2

C3 C4

 , F =

F1 εF2

F3
1
εF4

 (3.93)

After substitutions, the state-space system becomes

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t) + εB2u2(t) + F1w1(t) + εF2w2(t)

εẋ2(t) = A3x1(t) + A4x2(t) + εB3u1(t) + B4u2(t) + εF3w1(t) + F4w2(t)

y1(t) = C1x1(t) + C2x2(t) + v1(t)

y2(t) = C3x1(t) + C4x2(t) + v2(t)

(3.94)

The optimal control in this case is the same as (3.59) but the expressions for the gains

differ. The regulator gains are as follows.

F1 := R1
−1BT

1 P1 + εR1
−1BT

3 PT
2

F2 := εR1
−1BT

1 P2 + εR1
−1BT

3 P3

F3 := εR4
−1BT

2 P1 + R4
−1BT

4 PT
2

F4 := ε2R4
−1BT

2 P2 + R4
−1BT

4 P3

(3.95)

As before, the optimal state is estimated via the Kalman filter and its structure is given

in (3.96).

˙̂x1(t) = A1x̂1(t) + A2x̂2(t) + B1u1(t) + εB2u2(t) + [K1C1 + K2C3] x̃1(t) (3.96a)

+ [K1C2 + K2C4] x̃2(t)

ε ˙̂x2(t) = A3x̂1(t) + A4x̂2(t) + εB3u1(t) + B4u2(t) + ε [K3C1 + K4C3] x̃1(t) (3.96b)

+ [K3C2 + K4C4] x̃2(t)

x̃1(t) = x1(t)− x̂1(t) and x̃2(t) = x2(t)− x̂2(t) denote the slow and the fast state errors

respectively. Filter gains Ki, i = 1, 2, 3, 4 are given as follows.

K1 := Σ1C
T
1 V−11 + Σ2C

T
2 V−11

K2 := Σ2C
T
4 V−14 + Σ1C

T
3 V−14

K3 := εΣT
2 CT

1 V−11 + Σ3C
T
2 V−11

K4 := εΣT
2 CT

3 V−14 + Σ3C
T
4 V−14

(3.97)
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After (3.96) is decoupled into exactly slow and fast subsystems and the corresponding

substitutions for the inputs are made, the structure of the filter in new coordinates

becomes

˙̂
ξ(t) = [(A1 −B1F1 − εB2F3)− (A2 −B1F2 − εB2F4)L]ξ̂(t) (3.98a)

+ (K1 − εMLK1 − εMK3)ν1(t) + (K2 − εMLK2 − εMK4)ν2(t)

ε ˙̂η(t) = [(A4 −B4F4 − εB3F2) + εL(A2 −B1F2)− εB2F4]η̂(t) (3.98b)

+ (K3 + εLK1)ν1(t) + (K4 + εLK2)ν2(t)

The innovation processes after the transformation become

ν1(t) = y1(t)− (C1 −C2L)ξ̂(t)− (εC1M + C2[I− εLM])η̂(t)

ν2(t) = y2(t)− (C3 −C4L)ξ̂(t)− (εC3M + C4[I− εLM])η̂(t)

(3.99)

Since the optimal control in new coordinates is only dependent on Fi, i = 1, 2, 3, 4, it is

the same as (3.68). Matrices L and M satisfy the following equations.

(A4 −B4F4 − εB3F2)L− (A3 −B4F3 − εB4F3) (3.100a)

− εL[(A1 −B1F1 − εB2F3)− (A2 −B1F2 − εB2F4)L] = 0

M(A4 −B4F4 − εB3F2)− (A2 −B1F2 − εB2F4) (3.100b)

− ε[(A1 −B1F1 − εB2F3)− (A2 −B1F2 − εB2F4)L]M

+ εML(A2 −B1F2 − εB2F4) = 0

The algorithm used in (3.70) can be used to solve (3.100) after corresponding substitu-

tions.

At this point, we are able to obtain the LQG solution iteratively. The only differ-

ences from the previous section are the quantities in (3.84), (3.85), and the quantities

of the innovation processes. The new augmented system now becomes



ẋ
(i)
1 (t)

εẋ
(i)
2 (t)

˙̂
ξ(i)(t)

ε ˙̂η(i)(t)


= A



x
(i)
1 (t)

x
(i)
2 (t)

ξ̂(i)(t)

η̂(i)(t)


+



F1 εF2 0 0

εF3 F4 0 0

0 0 γ
(i)
1 γ

(i)
2

0 0 γ
(i)
3 γ

(i)
4





w1(t)

w2(t)

v1(t)

v2(t)


(3.101)
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where A is defined as

A =

A1 A2 −(B1φ
(i)
1 + εB2φ

(i)
3 ) −(B1φ

(i)
2 + εB2φ

(i)
4 )

A3 A4 −(B4φ
(i)
3 + εB3φ

(i)
1 ) −(B4φ

(i)
4 + εB3φ

(i)
2 )

γ
(i)
1 C1 + γ

(i)
2 C3 γ

(i)
1 C2 + γ

(i)
2 C4 α

(i)
1 − γ

(i)
1 ρ

(i)
1 − γ

(i)
2 ρ

(i)
3 −γ(i)1 ρ

(i)
2 − γ

(i)
2 ρ

(i)
4

γ
(i)
3 C1 + γ

(i)
4 C3 γ

(i)
4 C4 + γ

(i)
3 C2 −γ(i)3 ρ

(i)
1 − γ

(i)
4 ρ

(i)
3 α

(i)
2 − γ

(i)
3 ρ

(i)
2 − γ

(i)
4 ρ

(i)
4


(3.102)

In each iteration, the quantities in A tend to their actual values as in the previous case.

Namely,

φ
(i)
j → φactualj ; j = 1, 2, 3, 4

α
(i)
j → αactual

j ; j = 1, 2

γ
(i)
j → γactualj ; j = 1, 2, 3, 4

ρ
(i)
j → ρactualj ; j = 1, 2, 3, 4

J (i) → Jopt

The optimal cost functional is given by (3.92).

3.3.3 Weakly Controlled Fast Subsystem

Matrices C and F are now partitioned as follows.

C =

C1 0

0 C4

 , F =

F1 0

0 F4

 (3.103)

Substitution of the matrices in the state-space representation of the stochastic singularly

perturbed system (3.55) gives

ẋ1(t) = A1x1(t) + A2x2(t) + B1u1(t) + F1w1(t)

εẋ2(t) = A3x1(t) + A4x2(t) + εB4u2(t) + εF4w2(t)

y1(t) = C1x1(t) + v1(t)

y2(t) = C4x2(t) + v2(t)

(3.104)
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where the regulator gains Fi, i = 1, 2, 3, 4 are given by (matrix R is partitioned as

before)

F1 := R1
−1BT

1 P1

F2 := εR1
−1BT

1 P2

F3 := εR4
−1BT

4 PT
2

F4 := εR4
−1BT

4 P3

(3.105)

Optimal estimated states x̂1 and x̂2 of the singularly perturbed system are obtained

from the Kalman filter [46]:

˙̂x1(t) = A1x̂1(t) + A2x̂2(t) + B1u1(t) + K1C1x̃1(t) + K2C4x̃2(t) (3.106a)

ε ˙̂x2(t) = A3x̂1(t) + A4x̂2(t) + εB4u2(t) + K3C1x̃1(t) + K4C4x̃2(t) (3.106b)

where x̃1(t) = x1(t)− x̂1(t) and x̃2(t) = x2(t)− x̂2(t) denote the slow and the fast state

errors respectively. Ki, i = 1, 2, 3, 4 are the filter’s gain matrices and are defined as in

(3.62). Matrix V has the same structure as matrix R and Σi are obtained from the

solution of the filter-type CARE. Substituting the inputs into the Kalman filter (3.106),

we obtain

˙̂x1(t) =(A1 −B1F1)x̂1(t) + (A2 −B1F2)x̂2(t) + K1ν1(t) + K2ν2(t) (3.107a)

ε ˙̂x2(t) =(A3 − εB4F3)x̂1(t) + (A4 − εB4F4)x̂2(t) + K3ν1(t) + K4ν2(t) (3.107b)

where ν1(t) = C1x̃1(t) and ν2(t) = C4x̃2(t) are the innovation processes driving (3.107a)

and (3.107b) respectively. The filtering structure in (3.107) contains both slow and fast

dynamics and we need to decouple it to obtain exactly slow and fast subsystems.

The filter in new coordinates becomes

˙̂
ξ(t) = [(A1 −B1F1)− (A2 −B1F2)L]ξ̂(t) + (K1 − εMLK1 −MK3)ν1(t) (3.108a)

+ (K2 − εMLK2 −MK4)ν2(t)

ε ˙̂η(t) = [(A4 − εB4F4)− εL(A2 −B1F2)]η̂(t) + (K3 + εLK1)ν1(t) (3.108b)

+ (K4 + εLK2)ν2(t)
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The innovation processes after the transformation become

ν1(t) = y1(t)−C1ξ̂(t)− εC1Mη̂(t)

ν2(t) = y2(t) + C4Lξ̂(t)− (C4 − εC4LM)η̂(t)

(3.109)

The optimal control in new coordinates is given by (3.68). Matrices M and L needed to

obtain the solution of the decoupled filter are evaluated by solving a weakly non-linear

and a linear equation

(A4 − εB4F4)L− (A3 − εB4F3)− εL[(A1 −B1F1)− (A2 −B1F2)L] = 0 (3.110a)

M(A4 − εB4F4)− (A2 −B1F2)− ε[(A1 −B1F1)− (A2 −B1F2)L]M (3.110b)

+ εML(A2 −B1F2) = 0

Algorithm (3.70) can be used to solve for L and M after corresponding subsitutions.

For simplicity, the approximate input and approximate filters can be written as in (3.84)

and in (3.85). The same method is followed for the innovation processes. As before,

the solution of the suboptimal criterion can be obtained from

J (i) = tr{Qq(i)11 + φ(i)TRφ(i)q
(i)
22 } (3.111)

where

φ(i) =

φ(i)1 φ
(i)
2

φ
(i)
3 φ

(i)
4


and q

(i)
11 and q

(i)
22 are the variances of the original and new coordinates respectively. The

overall augmented system for the weakly controlled fast subsystem case is as follows.

ẋ
(i)
1 (t)

εẋ
(i)
2 (t)

˙̂
ξ(i)(t)

ε ˙̂η(i)(t)


=



A1 A2 −B1φ
(i)
1 −B1φ

(i)
2

A3 A4 −εB4φ
(i)
3 −εB4φ

(i)
4

γ
(i)
1 C1 γ

(i)
2 C4 α

(i)
1 − γ

(i)
1 ρ

(i)
1 − γ

(i)
2 ρ

(i)
3 −γ(i)1 ρ

(i)
2 − γ

(i)
2 ρ

(i)
4

γ
(i)
3 C1 γ

(i)
4 C4 −γ(i)3 ρ

(i)
1 − γ

(i)
4 ρ

(i)
3 α

(i)
2 − γ

(i)
3 ρ

(i)
2 − γ

(i)
4 ρ

(i)
4





x
(i)
1 (t)

x
(i)
2 (t)

ξ̂(i)(t)

η̂(i)(t)



+



G1 0 0 0

0 εG4 0 0

0 0 γ
(i)
1 γ

(i)
2

0 0 γ
(i)
3 γ

(i)
4





w1(t)

w2(t)

v1(t)

v2(t)


(3.112)
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The iterative procedure to obtain (3.111) follows the same steps as before and is run

until the approximate quantities approach the actual ones and the approximate cost

functional approaches the optimal, that is:

φ
(i)
j → φactualj ; j = 1, 2, 3, 4

α
(i)
j → αactual

j ; j = 1, 2

γ
(i)
j → γactualj ; j = 1, 2, 3, 4

ρ
(i)
j → ρactualj ; j = 1, 2, 3, 4

J (i) → Jopt

where Jopt is evaluated using (3.92).

Example 3.2 Another example follows to illustrate the solution of the LQG using the

proposed method. This example corresponds to the first considered case. The following

fourth-order stable singularly perturbed model is considered.

A =



0 1 0 0

0 0 1 0

0 0 0 100

−208 −216 −122 −80


, B =



1 0

2 0

0 100

0 100


, C =

1 1 0 0

0 0 1 1



The eigenvalues of the model are −0.89 ± 0.966j and −39.11 ± 102.61j leading to

ε = 0.02. In addition, for this example we select the intensity matrices V and W to be

I2×2 and I2×2 respectively. And finally, G1 = B1 and G4 = B4. Table 3.2 shows that

in a few iterations, the approximate performance criterion approaches the original one.

The difference is O(ε) in the zeroth iteration and eventually tends to zero (to computer

accuracy).

3.4 Case Study

In this section, a case study follows to illustrate the iterative methods developed in

this chapter to obtain the solution of the LQR and the LQG.
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Table 3.2: Comparison of the optimal performance and approximate performance eval-
uated using proposed algorithm.

Iteration (i) |J (i) − J |
0 2.5086635 ×10−1

1 3.0092710 ×10−6

2 3.3886959 ×10−8

3 1.6283028 ×10−9

4 1.2251729 ×10−9

5 7.5612405 ×10−11

6 7.1089801 ×10−12

7 3.7125858 ×10−13

8 6.9277917 ×10−14

3.4.1 Model Description

The model investigated is a fourth order RC ladder circuit used frequently for analog-

to-digital conversion purposes including microgrids where the these type of circuits are

used in the available electronics [88]. x1(t) ∈ R2 and x2(t) ∈ R2 represent slow and

fast state variables respectively. The eigenvalues of this system are given as λRC =

{−27.64,−72.36,−287.69,−1112.31}. Matrix B has a structure corresponding to the

first case and for this example the natural choice for the perturbation parameter based

on the eigenvalue separation is ε = 0.05. Matrix R is chosen to be identity and G is

selected to be the same as B. Matrix Q and the state-space matrices are as follows.

A =



− 3
2RC

1
RC 0 0

1
RC − 2

RC 0 0

0 0 − 2
εRC

1
εRC

0 0 1
εRC − 3

2εRC


, B =



1
2RC 0

0 0

0 0

0 1
2εRC



C =

 1
2RC 0 0 0

0 0 0 1
2RC

 , Q =



1 0 0.01 0.02

0 2 0.01 0.03

0.01 0.01 0.02 0

0.02 0.03 0 0.02


where R = 5× 103 Ω and C = 100× 10−6 F .
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The model is stable and matrix A4 is invertible. To test out the convergence and the

accuracy of the algorithm proposed in (3.26), the norm of the difference of approximate

and original solutions of the CARE is evaluated. In addition, the difference of the

optimal and the approximate cost functions is obtained. Note that depending on the

application, this model can be further modified to by introducing additional components

leading to additional states.

3.4.2 Simulation Results

The results for the LQR case are shown in Table 3.3 for eleven iterations (the

first iteration where i = 0 represents zero-order approximate quantities). It is evident

that the difference becomes very small in both columns in only a few iterations of the

algorithm eventually reaching zero (to computer accuracy).

Table 3.3: Norm of the difference of approximate and original CARE solutions and
difference of optimal and approximate cost functions

Iteration (i) ||P (i) − P ||2 |J (i) − Jopt|

0 1.3273989 ×10−4 6.8142844×10−6

1 2.4812770 ×10−7 1.0401090×10−11

2 4.3468860 ×10−8 3.1757930×10−13

3 1.016505 ×10−8 1.7069679×10−14

4 2.5504348 ×10−9 1.1241008×10−15

5 6.4928189 ×10−10 1.2490009×10−16

6 1.6592750 ×10−10 2.7755576×10−17

7 4.2455934 ×10−11 3.4694470×10−17

8 1.0868064 ×10−11 4.1633363×10−17

9 2.7825205 ×10−12 4.8572257×10−17

10 1.1262267 ×10−13 2.0258312×10−17

In addition, Table 3.4 shows the solution of the LQG. In this case the intensity

matrices V and W have been selected to be identity. Namely, V = I2×2 and W = I2×2.

Both the solution of the filter-type CARE and the evaluation of the the cost function

are presented. The error goes to zero very rapidly for the optimal cost function. For
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this particular example, the lack of sub-matrices A2 and A3 aids the filter-type CARE

solution to reach the actual value in the first iteration as shown in the second column

of Table 3.4.

In both cases, the solution agrees with the results of Theorem 3.1. In addition, the

solution of the L and M equations (needed for the decoupling of the Kalman filter)

agrees with Theorem 3.2 and with the work of [101] (the solution of the cost functional

converges faster than the solution of CARE).

Table 3.4: Norm of the difference of approximate and original filter-type CARE solu-
tions and difference of optimal and approximate cost functions

Iteration (i) ||Σ(i) − Σ||2 |J (i) − Jopt|

0 7.1070216 ×10−15 1.3957807×10−3

1 7.1070216 ×10−15 7.0459238×10−10

2 7.1070216 ×10−15 2.1409985×10−11

3 7.1070216 ×10−15 1.2048140 ×10−12

4 7.1070216 ×10−15 8.7485574×10−14

5 7.1070216 ×10−15 2.8865799×10−14

6 7.1070216 ×10−15 2.7533531×10−14

7 7.1070216 ×10−15 2.3980817×10−14

8 7.1070216 ×10−15 2.3536728×10−14

9 7.1070216 ×10−15 2.4424907×10−14

10 7.1070216 ×10−15 4.2642772×10−15

3.5 Conclusion

This chapter investigated the LQR and LQG control problems for a new class of

singularly perturbed. Three cases were investigated namely, when two inputs control

slow and fast subsystems independently, when the controls are weakly coupled, and

when the fast subsystem is weakly controlled. We showed that the solution of three

CARE of a system of size m + n can be obtained by solving reduced CARE of size m

and a matrix algebraic equation. This method has computational advantages as well
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as avoids possible numerical ill-conditioning. In addition, we established recursive algo-

rithms to evaluate the error of the approximation. The problem was then investigated

when disturbances were present and the complete solution of the LQG was obtained

accurately in a few iterations for all three cases. A case study of a real physical system

(used in microgrid setups) demonstrated the efficiency of the proposed methods.
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Chapter 4
Multi-Time-Scale Systems Control via Use of Combined

Controllers

P
revious chapters considered only the analysis of two-time-scale singularly per-

turbed systems. In this chapter we focus on system where multiple time scales

might arise. While singular perturbation methods are commonly used to analyze sys-

tems containing slow and fast modes, in practice we are faced with problems that

contain multiple time-scales. Such examples include fuel cell systems [49]-[50] where

the electrochemical subsystem of the fuel cell operates in seconds, the chemical part

(energy balance and mass balance) operates in minutes, and the electrical part evolves

in milliseconds [109]. Other cases of real physical systems that are well-known to have

multiple time-scales are heavy-water reactors [110]-[112], chemical reactions [113]-[114],

aerospace systems [115], biological models [116], power systems [117], and road vehicles

[118]. Given the multitude of physical systems that operate in different time-scales, it

is important to extend the analysis of classical singular perturbation theory to include

all the time-scale present in the system. Multi-time-scale singularly perturbed systems

and multi-parameter singularly perturbed systems have been studied in different as-

pects in control such as time-scale decoupling [51], [119]-[120], game theory [121], [122],

and linear systems [123]. Unlike previous research, in this chapter develop a method

that can convert any implicit singularly perturbed system into explicit form. The term

implicit singularly perturbed system refers to system such as the ones mentioned earlier

that contain multiple separated eigenvalue clusters.

We present a numerically well-conditioned method that simplifies the implicit multi-

time-scale singularly perturbed problem. The standard explicit form is obtained and

it is decoupled into individual time-scales afterwards. This technique simplifies the
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complex analysis of singularly perturbed model and leads to milder computational

conditions for controller design simulations.

The method is based on an ordered Schur decomposition that orders the eigenvalues

of the system in ascending order along the diagonal and since it is an invariant trans-

formation, the properties of the original system are not affected. Singular perturbation

parameters εi, i = 1, 2, · · · , N are extracted to obtain the standard explicit singular

perturbation form. The Chang transformation (2.7) is then used sequentially to decou-

ple the system into individual time-scales. Unlike in [51] where two algebraic equations

have to be solved to obtain decoupled systems for each time-scale, our method entails

only the solution of one Sylvester equation.

Next, two methods for controller design have been presented. Initially, controller

design based on eigenvalue assignment where only states from individual subsystems

are fed back is considered. The process is done sequentially until full-state feedback is

accomplished. Afterward, a combined eigenvalue placement-linear quadratic controller

is proposed. LQ is used for the fastest subsystem while eigenvalue assignment is used

for the rest. This hybrid technique provides flexibility for the designer in that the LQ

weights can be chosen depending on the problem. This chapter is organized as follows.

In Section 4.1, the motivation behind the research is discussed. The problem is

formulated in Section 4.2 where the Schur decomposition is introduced. Singular per-

turbation parameter extraction and time-scale decoupling are discussed in Section 4.3

and 4.4 respectively. Controller design methods are considered in Section 4.5 and a

case study is discussed in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.1 Motivation

Classical singular perturbation techniques have been commonly used to successfully

model and analyze systems whose eigenvalues are grouped into two disjoint clusters

representing slow and fast modes. The eigenvalue distribution of such systems is shown

in Fig. 4.1. The latter is the most researched variant of singular perturbation meth-

ods; see [46], [52], [85] and references therein for example. As an extension to this
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work, research in multi-parameter and multi-time-scale singular perturbations tech-

niques followed. The latter systems are characterized by multiple time-scales and their

eigenvalues are typically distributed as shown in Fig. 4.2; see [120]-[122]. Note that

in both cases the system either lacks oscillations or is lightly oscillatory. Another case

Distribution of Eigenvalues

O(1)O(1/ε)

Figure 4.1: Classical singular perturba-
tion eigenvalue distribution

Distribution of Eigenvalues

... 
O(1/ε2) O(1/ε) O(1)O(1/εN)

Figure 4.2: Eigenvalue distribution for
multi-time-scale systems

is when the singularly perturbed system contains slightly damped, highly oscillatory

modes. To the best of our knowledge, this case has only been discussed in [41]. Fig. 4.3

shows the eigenvalue distribution for these classes of systems. It is important to observe

that the eigenvalues having imaginary part O(1ε ) are classified as fast even though their

corresponding real parts are O(ε).

As motivation, we return our attention to the IM model investigated in Chapter 2.

Distribution of Eigenvalues

Figure 4.3: Highly oscillatory sys-
tem eigenvalue distribution

Distribution of Eigenvalues

O(1/ε2)

O(1/ε2)

O(1/ε)

O(1)

Figure 4.4: Eigenvalues of the mi-
crogrid model

Its eigenvalues are pictorially represented in Fig. 4.4. As stated earlier, (2.22) shows
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explicitly that the original system does not contain any slow dynamics. In fact, state

variable z1(τ) is fast and z2(τ) and z3(τ) are very fast. Using only the fast modes

which happen to the be the slowest modes in this model did not produce a good ap-

proximation. However, the fourth-order approximation based on the very fast modes

represented by z2(τ) and z3(τ) produces an excellent approximation in the original co-

ordinates.

The observations from the cases presented in Fig. 4.3 and Fig. 4.4 lead to the con-

clusion that when complex eigenvalues λi := −αi ± βij, i = 1, 2, · · · , n with βi � αi

are present, the imaginary part is essential in determining the time-scale the eigenvalue

belongs to. Fig. 4.5 illustrates this concept. Eigenvalues enclosed within the green

triangle belong to the slowest time-scale available. The area in between the red and

green triangles contains eigenvalues belonging to the next fastest time-scale and this

trend continues for all other time-scales available in the system. In this chapter, we

Distribution of Eigenvalues

 

 

O(1)

O(1/ε)

O(1/εN) O(1/ε2) O(1/ε)

O(1/ε2)

O(1)
... 

... 

... 

Figure 4.5: Time-scale spread for a multi-time-scale model

focus on asymptotically stable systems that can have eigenvalues distributed anywhere

in the closed left-half plane. Apart from obtaining an explicit singularly perturbed form

from an implicit multi-time-scale system, we also focus on controller design methods

for such systems.
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4.2 Problem Formulation

As noted in the earlier sections, many real physical systems contain small inherent

parameters when they are modeled. This forces parts of the system to operate in

different time-scales. Some of these systems are falsely classified as having only two

time-scales and classical singular perturbation techniques are used for analysis and

design. While literature on multi-time-scale singular perturbed systems exists, in this

dissertation we develop a method that brings an implicit singularly perturbed system

into the standard explicit form by extracting the perturbation parameters. The small

separation parameters, 0 < εN � εN−1 � . . . � ε1 = 1, represent the multiple

time scales with ε1 being associated with the slowest state variable and the εN being

associated with the fastest. We consider a general implicit multiple time scale no-input

problem as shown in (4.1).

ẋ(t) = A(ε)x(t) (4.1)

where x(t) = [x1(t) x2(t) . . . xN (t)]T is the state vector. To simplify the problem we

employ the Schur decomposition to transform the model into a well-conditioned form,

extract the perturbation parameter, and then sequentially decouple it to obtain the

individual time scales. Schur decomposition is an efficient method used to find the

system’s eigenvalues by utilizing the QR algorithm [54]. To introduce the Schur de-

composition, we add two definitions.

Definition 4.1 For real matrices, a unitary matrix is a matrix T such that TT = T−1.

Definition 4.2 A Hessenberg matrix is an n×n matrix for which aij = 0 for i > j+1.

A Hessenberg matrix has the following form.

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
0 a32 a33 · · · a3n
0 0 a43 · · · a4n

0 0 0
. . .

...

0 0 0 · · · ann


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The next theorem summarizes the process of transforming a real n× n matrix into

into its Schur decomposed form.

Theorem 4.1 For a matrix A ∈ Rn×n there exits a unitary matrix T ∈ Rn×n such

that TTAT = Ã is upper quasi-triangular, upper triangular (all real eigenvalues),

Hessenberg (all complex eigenvalues).

Ã =


R11 R12 · · · R1N

0 R22 · · · R2N

...
. . .

. . .
...

0 · · · 0 RNN

 (4.2)

Matrix blocks Rij , i = j can be 1×1 or 2×2. 1×1 blocks correspond to real eigenvalues

while 2× 2 blocks correspond to complex eigenvalues.

Proof The proof of this theorem can be found in [53]. �

One drawback that is associated with the QR algorithm is that it is computationally

expensive. Each iteration requires O(n3) operations [53]. To rectify this issue, prior

to applying the QR algorithm another orthogonal similarity transformation is applied

to obtain a Hessenberg matrix (at this stage the eigenvalues are not located along the

diagonal). The new transformation U can be a Householder reflection or a product of

Givens rotations (see below) [54].

The transformation of interest, z(t) = Tx(t), obtained from the QR algorithm can

be found such that the unitary matrix T decomposes the system into the Schur form

where the eigenvalues appear arbitrarily along the diagonal of Ã. An additional trans-

formation has to be employed to achieve desired reordering (ascending) of the system

matrix [53], [55], [57]. A direct swapping algorithm is commonly used for adjacent

eigenvalue swapping [56]. The steps of this algorithm are shown in Algorithm 3. While
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Algorithm 3 Adjacent Eigenvalue Reordering

1: Solve the Sylvester equation

Rn,nX−XRn+1,n+1 = αRn,n+1

where α is a constant used to avoid overflow
2: Evaluate the QR factorization [

−X αI
]T

= QR

3: Use Q to obtain ordered Schur form

Ã = QTAQ

4: Standardize 2× 2 blocks if any

the direct swapping method is very popular, it is usually very effective when the eigen-

values are real. Another algorithm for eigenvalue reordering which is numerically stable,

quite inexpensive computationally, and deals very well when complex eigenvalues are

present is based on the Givens rotation [53], [56]-[58]. For a 2× 2 case let

R =

λ1 r12

0 λ2

 , λ1 6= λ2

If λ1 and λ2 need to be swapped then, a Givens rotation J(1, 2, θ) is formed such that

J(1, 2, θ)

 r12

λ2 − λ1

 =

∗
0


Then, the new transformation matrix G− 1 = T1J(1, 2, θ)T is such that

GT
1 AG1 =

λ2 r12

0 λ1


This method can be extended to any n× n matrix in Schur form to achieve desired or-

dering of the eigenvalues provided that λi 6= λj (no repeated eigenvalues). The complete

transformation matrix in that case would be G = G1G2 · · ·Gn (for n swappings).

Upon applying the ordered Schur algorithm, the dynamic equation takes the follow-

ing form

ż(t) = Ãz(t) (4.3)
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where

Ã =


Ã11 Ψ12 . . . Ψ1N

0 Ã22 . . . Ψ2N

...
...

. . .
...

0 0 . . . ÃNN

 (4.4)

Diagonal block matrices Ãij , i = j contain the system’s eigenvalues in descending order.

z(t)1, z(t)2, . . . , z(t)N are vectors each representing each time scale and Ψij are matrix

blocks of appropriate dimensions. Note that blocks Ãij , i = j represent individual

time-scales rather than individual eigenvalues. At this point, the system is still in im-

plicit form. In the next section, we propose a method in which the small perturbation

parameters are evaluated and extracted to form a standard multi-time-scale singularly

perturbed system.

4.3 Singular Perturbation Parameter Extraction

Prior to decoupling the transformed system it is essential to convert it to standard

explicit singularly perturbed form by extracting the small perturbation parameters from

the system matrix so that time-scale decoupling and controller design based on individ-

ual time-scales can follow. This is achieved by defining the perturbation parameters.

For two time-scale systems ε is commonly evaluated as ε = max Re{λs}/min Re{λf}.

However, since earlier we observed that fast phenomena caused by highly oscillatory

modes (corresponding to large imaginary parts of the eigenvalues) have an impact in

time-scale separation, we have to take into account the imaginary parts of the eigenval-

ues as well. Hence, we evaluate the perturbation parameter as the ratio of the magni-

tudes of the smallest eigenvalue of the slowest time-scale with the smallest eigenvalue

of the current time-scale (for all time-scales) i.e.

εi =
min|λslowest|
min|λcurrent|

, i = 1, 2, · · · , N (4.5)

Eq. (4.5) ensures that the singular perturbation parameters are 0 < εN � εN−1 �

· · · � ε1 = 1. Since the system is in ordered Schur form, the perturbation parameters
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can be easily evaluated using (4.5) and extracted to put the system into standard explicit

singularly perturbed form. Note that after extraction, the elements of the system

matrix have to be multiplied with the corresponding singular perturbation parameters

accordingly to reflect the change. The standard singularly perturbed form is now as

follows. 
ε1ż1(t)

ε2ż2(t)
...

εN żN (t)

 =


Ā11 Ψ̄12 . . . Ψ̄1N

0 Ā22 . . . Ψ̄2N

...
...

. . .
...

0 0 . . . ĀNN




z1(t)

z2(t)
...

zN (t)

 (4.6)

Quantities with a bar denote the modified sub-matrices after the parameters have been

extracted.

The explicit system can now be successfully decoupled into multiple distinct time-

scale systems using the algorithm developed in [51] by utilizing the Chang transforma-

tion (2.7) and applying it sequentially. (2.7) has been used extensively to decouple two

time-scales systems but can be easily adopted to decouple multiple time-scale systems

as shown in [51].

4.4 Time-Scale Decoupling

To initiate the decoupling, we start by extracting the perturbation parameter from

the fastest time-scale and rewrite (4.3) as a standard two time-scale singularly perturbed

problem  Ż1(t)

εN Ż2(t)

 =

Ā1 Ā2

Ā3 Ā4

Z1(t)

Z2(t)

 (4.7)

In (4.7), matrices Ā3 and Ā4 represent the last row of the system’s matrix in (4.4)

with εN extracted. Ā4 represents the fastest time-scale while Ā3 contains the rest of

the matrix blocks which happen to be all zero in this case. Ā1 and Ā2 are matrices of

appropriate dimensions covering the rest of the system matrix in (4.3).

Utilizing the transformation in (2.7), the system in (4.7) is initially decoupled into

two subsystems where the fast represents the fastest time-scale available and the slow
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subsystem contains the rest of the time-scales.

ξ̇(t) = (Ā1 − Ā2LN )ξ(t) (4.8a)

εN η̇N (t) = (Ā4 + εNLNĀ2)ηN (t) (4.8b)

Matrix LN (and MN if input and output are present) satisfy matrix algebraic equations

(2.10) and the Newton’s method (2.11) can be used to obtain their solutions. The new

slow subsystem (4.8a) is partitioned again as in (4.9) where εN−1 is now extracted from

the second fastest time-scale. Ẏ1(t)

εN−1Ẏ2(t)

 =

Ḡ1 Ḡ2

Ḡ3 Ḡ4

Y1(t)
Y2(t)

 (4.9)

The algorithm is applied sequentially until all the perturbation parameters have been

extracted and the time-scales have been decoupled. A transformation matrix is obtained

that decouples the overall system into independent subsystems
η1(t)

η2(t)
...

ηN (t)

 = T


x1(t)

x2(t)
...

xN (t)

 (4.10)

where T is given as T = T′2T
′
3 · · ·T′N−1TN and T′i is defined as

T′i ,

Ti 0

0 I

 (4.11)

Matrix T and identity matrix I are of appropriate dimensions. Unlike in [51], the system

matrix in ordered Schur form simplifies the computations. For a quasi triangular system

such as (4.3), Ā3 in (4.7) is 0. Then, (2.10) for this problem simplifies to

Ā4LN − εLN (Ā1 − Ā2LN ) = 0 (4.12a)

ε(MNLNĀ2 − Ā1MN + Ā2LNMN )− Ā2 + MĀ4 = 0 (4.12b)

Upon applying the recursive algorithm (2.11), it is easy to show that matrix LN in

(4.12a) evaluates to 0 by solving the Sylvester equation for the first iteration

MNvec L
(1)
N = 0 (4.13)
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Matrix MN is defined as (In⊗Ā4−εĀT
1 ⊗In) and is full rank. Therefore, ker(MN ) = 0

which implies L
(1)
N = 0. Since L

(0)
N = 0 and L

(1)
N = 0, then for all other iterations

L(i) = 0. (4.12b) then becomes just a Sylvester equation

MNĀ4 − Ā2 − εĀ1MN = 0 (4.14)

and (2.7) simplifies to ξ(t)
η(t)

 =

I −εMN

0 I

z1(t)
z2(t)

 (4.15)

Note that this would be true for all L and M matrices after each time-scale decoupling.

After the process is repeated for all N time-scales present in the system, the indi-

vidual subsystems are then given as

η̇1(t) = Â1η1(t)

ε2η̇2(t) = Â2η2(t)

...

εN η̇N (t) = ÂNηN (t)

(4.16)

where Âi, i = 1, 2, · · · , N are the system matrices of the individual subsystems. System

(4.16) is now completely decoupled and in standard explicit singularly perturbed form.

Comments: While no input or output was considered here, the corresponding input

and output matrices of each decoupled subsystem can easily be obtained by utilizing

(2.8). As a matter of fact, an ordered Schur-decomposed system with no input or

output can also be decoupled without utilizing the invariant transformation due its

quasi-upper triangular form since matrix M is not used to obtain the system matrices

of each decoupled subsystem. Namely, Â1 → Ā11, Â2 → Ā22, · · · , ÂN → ĀNN . On

the other hand, the shortcut would not work if input and output matrices are present.

In addition, it is important to note that the transformation matrices applied to the

state matrix will also be applied to the input and output matrices as well. That is,

if A, B, and C are the control, input, and output matrices respectively and T is

an invariant transformation, the system in new coordinates becomes Ā = TAT−1,

B̄ = TB, C̄ = CT−1.
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Remark 4.1 Even though different transformations are used to evaluate the Schur

form and reorder the eigenvalues, the proposed method is not very computationally

complex. To show that this is the case, we consider the number of flops needed to

perform the necessary computations for each method. A flop is a floating point operation

i.e. addition, subtraction, multiplication, or division [53]. In [51] we have to solve a

weakly non-linear and a linear equation to obtain matrices L and M. The computational

requirements for this operation include 40n3 flops for the weakly non-linear equation and

50n3 flops for the linear equation for a total of 90n3 flops. Here, n denotes the size of

the system under consideration. In contrast, the proposed algorithms requires 27n3 flops

for the Schur transformation and eigenvalue reordering and 30n3 flops for the solution

of the Sylvester equations for a total of 57n3 flops. For additional details, the reader

can refer to [53].

The overall process discussed in this section can be summarized as follows.

Algorithm 4 Time-Scale Decoupling of Implicit Singularly Perturbed Systems

1: Input: Implicit singularly perturbed system
2: Apply ordered Schur decomposition
3: if Eigenvalues not ordered then

Apply direct swapping algorithm if eigenvalues real
otherwise apply Givens rotation n times (n is number of swappings)

G = G1G2 · · ·Gn

4: Evaluate εi for each time-scale and form explicit system
5: Decouple explicit system using Chang [52]
6: Output: Completely decoupled system

4.5 Controller Design

In this section, we study controller design of the Schur-decomposed system. Two

methods have been employed: initially, controller design based on state feedback via

eigenvalue placement and then a hybrid scheme where eigenvalue placement and LQR

have been combined. The latter method was discussed in the previous chapter. A brief

overview of controller design based on state feedback via eigenvalue placement follows.
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4.5.1 Eigenvalue Placement Method

We consider an LTI single-input single-output (SISO) system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(4.17)

The feedthrough matrix is assumed to be D = 0 and the pair (A,B) is assumed to be

controllable. To implement state feedback, we choose the following input

u(t) = r(t)− kx(t) = r(t)−
[
k1 k2 · · · kn

]
x(t) (4.18)

where r(t) represents a reference input and vector k is the gain that will be evaluated

using the eigenvalue placement method. Substituting (4.18) in (4.17) we obtain

ẋ(t) = (A−Bk)xt+ Br(t)

y(t) = Cx(t)

(4.19)

In (4.19), pair (A−Bk,B) is controllable if and only if (A,B) is also controllable [86].

At this point controller design can be implemented.

One the simplest cases to obtain the gain is when the state-space system is in the

controllable canonical form. The state feedback matrix becomes

[A−Bk] =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

(−a1 − k1) (−a2 − k2) (−a3 − k3) · · · (−an − kn)


The characteristic equation of the feedback matrix is then

det[sI− (A−Bk)] = sn + (an + kn)sn−1 + (an−1 + kn−1)s
n−2 + · · ·+ (a1 + k1)

The eigenvalues can now be placed arbitrarily in the left-half plane. If the desired

characteristic equation is given as

∆(s) = sn + αnd
sn−1 + αn−1ds

n−2 + · · ·+ α1d

Gain k is simply evaluated by matching the coefficients of the aforementioned character-

istic equations. If the state-space system under investigation is not in the controllable
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canonical form, then an invariant transformation is initially applied to the system [86],

[124].

Note that the method described above applies only to the SISO case. For multiple-

input multiple-output (MIMO) cases such as the ones considered in this dissertations

techniques such as the row-reduced echelon or singular value decomposition can be used

to obtain the gain [124].

4.5.2 State Feedback Control via Eigenvalue Placement

After the ordered Schur transformation has been applied and the small perturbation

parameters have been extracted, the system in explicit singularly perturbed form is

given by 
ε1ż1(t)

ε2ż2(t)
...

εN żN (t)

 = Ā


z1(t)

z2(t)
...

zN (t)

+ B̄u(t) (4.20)

where B̄ is the input matrix obtained after a corresponding transformation has been ap-

plied to the input matrix in original coordinates. Matrix B̄ is appropriately partitioned

as

B̄ ,


B̄1

B̄2

...

B̄N


We start the controller design process by considering new matrices Ā and B̄ obtained

from the state and input matrices in (4.20) divided by the perturbation parameters.

Unlike the classical eigenvalue placement problem where the whole state vector is

used for feedback, here, a sequential state feedback is proposed starting with u(t) =

−FNzN (t) + VN−1(t). The latter corresponds to the fastest decoupled subsystem. The

state-space model takes the form

żN (t) = ANz(t) + B̄VN−1(t) (4.21)
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where the system matrix AN is

AN =


Ā11 Ψ12 . . . Ψ1N − B̄1FN

0 Ā22 . . . Ψ2N − B̄2FN

...
...

. . .
...

0 0 . . . (ĀNN − B̄NFN )

 (4.22)

The next substitution for the new input is VN−1(t) = −FN−1zN−1(t) + VN−2(t). If we

continue sequentially in this fashion, the overall state-space equation becomes

ż(t) = A{1,2,··· ,N}z(t) + B̄V0(t) (4.23)

where the system matrix A1,2,··· ,N now becomes

A{1,2,··· ,N} =


Ā11 Ψ12 − B̄1F2 . . . Ψ1N − B̄1FN

0 Ā22 . . . Ψ2N − B̄2FN

...
...

. . .
...

0 0 . . . ĀNN

 (4.24)

and Aii = Āii−B̄iFi. The sequential feedback process in (4.21) and (4.24) is pictorially

depicted in Fig. 4.6. Under the condition stated in Assumption 2.1, the system’s

Figure 4.6: Block diagram of a system controlled via eigenvalue assignment

eigenvalues can be placed to any desired location using state feedback and the gain

can be obtained by methods introduced in [86] or [124]. The advantage of using this

scheme comes from the fact that control can be realized by using eigenvalue assignment

for certain subsystems and different control strategies for others. Next section provides

more details on creating a hybrid control architecture utilizing eigenvalue placement

and LQR.
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4.5.3 Combined Controller Architecture

Controller design for the decoupled subsystems can be attained also by combining

the eigenvalue placement method discussed in the previous section with other control

techniques such as optimal of robust control. We consider an infinite horizon optimal

control problem. Unlike feedback based on eigenvalue placement, using optimal control

we do not have the freedom to design a controller for all the subsystem due to unknown

quantities. Hence, we only consider the last term of the ordered Schur form, namely

ĀNN and its corresponding input, for optimal control and then proceed with state

feedback for the rest of the system. The reason for using an optimal controller comes

from the fact that even though the closed-loop eigenvalues might be located far to the

left half-plane, elements of the feedback gain can be large in magnitude implying a

high control cost. Using an optimal controller such as a LQR will minimize the control

cost. We start with a general LQR problem where the goal is to minimize the following

performance measure

J =
1

2

∫ ∞
0

[
zTN (t)QzN (t) + uT (t)Ru(t)

]
dt (4.25)

We assume that R > 0 and Q ≥ 0. The latter has the following structure

Q =

Q1 Q2

QT
2 Q3


The solution to this optimal control problem is a control input given by [125]

u(t) = −FNzN (t) (4.26)

where the gain is given as FN = R−1B̄T
NP and matrix P is the solution to the CARE

[125]

ĀT
NNP + PĀNN + Q−PB̄NR−1B̄T

NP = 0 (4.27)

The closed-loop matrix for the combined controller strategy is the same as in (4.24)

with the only difference that gain FN is evaluated using LQ control. The block diagram

for the hybrid controller is shown in Fig. 4.7. In both block diagrams, the area inside

the dashed rectangle denotes the state-space model under consideration.
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Figure 4.7: Block diagram of a system controlled using LQR and eigenvalue assignment

Comments: It is important to note that at the end, the controller has to be mapped

backed to the original coordinates. This is achieved by applying the inverse of the

transformations that were used in Algorithm 4.

4.6 Case Study

A multi-time-scale model of a real physical system is used in this section to demon-

strate the proposed methods in this chapter.

4.6.1 Model Description

The real physical system belongs a proton exchange membrane fuel cell (PEMFC)

initially modeled in [49]. The state-space matrices are as follows

A =



−6.3091 0 −10.954 0 83.7446 0 0 24.0587

0 −161.08 0 0 51.5292 0 −18.026 0

−18.786 0 −46.314 0 275.659 0 0 158.374

0 0 0 −17.351 193.937 0 0 0

1.2996 0 2.9693 0.3977 −38.702 0.1057 0 0

16.6424 0 38.0252 5.0666 −479.38 0 0 0

0 −450.39 0 0 142.208 0 −80.947 0

2.0226 0 4.6212 0 0 0 0 −51.211


B =

[
0 0 0 3.9467 0 0 0 0

]T
C =

 0 0 0 5.0666 116.45 0 0 0

0 0 0 0 1 0 0 0

12.9699 10.3235 0.5693 0 0 0 0 0


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Table 4.1: State variables of the PEM fuel cell

Symbol Variable
mO2 Mass flow rate of O2 [kg/sec]
mH2 Mass flow rate of H2 [kg/sec]
mN2 Mass flow rate of N2 [kg/sec]
ωcp Compressor speed [rad/sec]
psm Pressure of supply manifold [kPa]
msm Mass flow rate in the supply manifold [kg/sec]
mw,an Mass flow rate of water in the anode [kg/sec]
prm Pressure in the return manifold [kPa]

The physical meaning of each state variable is summarized in Table 4.1.

(4.28) shows the eigenvalues of the asymptotically stable model and by considering

their order of magnitude, they are clustered into three distinct groups with x1(t) ∈ R3,

x2(t) ∈ R4, and x3(t) ∈ R1.

λFC = { − 1.403,−1.647,−2.916,−18.259,−22.403,

− 46.177,−89.485,−219.624}
(4.28)

where x3(t) represents the fastest cluster, x2(t) represents the second fastest, and x1(t)

represents the slowest.

4.6.2 Simulation Results

From the information in (4.28) and using (4.5), the perturbation parameters are

obtained

ε1 = 1, ε2 = 0.160, ε3 = 0.013

The ordered Schur-decomposed system matrix for this example is

Ā =



−1.4030 −0.2086 −2.2670 −2.2491 −0.1289 210.1544 −241.6745 −126.1038

0 −1.6473 0.4183 −3.9128 −0.2 −104.2744 98.8688 55.9802

0 0 −2.9158 −15.9344 −0.8944 −178.9414 374.8447 159.2652

0 0 0 −18.2586 0.1643 −25.2903 −173.8938 −35.7495

0 0 0 0 −22.4029 −17.6161 18.0423 −455.0796

0 0 0 0 0 −46.1771 −13.9217 −45.3778

0 0 0 0 0 0 −89.4854 41.2336

0 0 0 0 0 0 0 −219.6241


The corresponding input and output matrices after the transformation become

B̄ =
[
1.2263 −0.3820 2.1793 −2.4073 1.4666 0.3248 −0.0427 −1.0601

]T
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C̄ =

−101.4725 8.5465 29.2450 −20.3329 28.1893 30.3302 1.5725 15.1932

−0.8849 0.0776 0.2271 −0.1481 0.2259 0.2569 0.0140 0.1422

−2.6876 −5.9415 −0.5864 −7.5180 −12.8880 1.4688 −1.2495 −2.4306


Using the techniques developed in this dissertation, we can easy obtain the decoupled

subsystems. First by applying the Schur decomposition, then reordering the eigenvalues

(for this particular example only one swap is necessary), extracting the perturbation

parameters, and finally decoupling the system. The final decoupled system is as follows.

ε1η̇1(t) =


−1.40 −0.21 −2.27

0 −1.65 0.42

0 0 −2.92

 η1(t)

ε2η̇2(t) =


−2.92 0.03 −4.05 −27.82

0 −3.58 −2.82 2.89

0 0 −7.39 −2.23

0 0 0 −14.32

 η2(t)

ε3η̇3(t) = −2.86 η3(t)

(4.29)

Each of the reduced-order subsystems in (4.29) can be used for controller design pro-

vided that a corresponding input is introduced. Methods developed in Section 4.4 are

applied next.

Without any specific requirement in mind, we arbitrarily select a set of desired

eigenvalues and use the controller design techniques developed in this chapter to demon-

strated the proposed methods. The desired eigenvalues are as follows.

λd = {−1± 2j,−4,−10,−25,−30,−35,−200}

Linear simulation is used to simulate the controller response using eigenvalue place-

ment and the combined scheme. The responses of both methods are shown in Fig. 4.8.

It can be observed that we have improved the response by using the combined controller

scheme. Namely, the amplitudes of the overshoot and undershoot are less compared

to the response when eigenvalue placement method is used. Fig. 4.9 and Fig. 4.10 on

the other hand show the state trajectories during the linear simulation. Likewise, we

can see improvements in the state trajectories when the combined controller method is
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used (Fig. 4.10). This is important from a physical perspective since higher overshoots

or undershoots could damage the fuel cell components. Note that some of the states in

Fig. 4.9 and Fig. 4.10 die out very rapidly. That occurs due to the initial conditions

of the simulation.
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Figure 4.8: Linear simulation response of two controller methods
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eigenvalue placement is used
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Figure 4.10: State trajectory when
combined controller scheme is used

4.7 Conclusion

This chapter primarily dealt with multi-time-scale singularly perturbed systems. By

utilizing an ordered Schur transformation which preserves the time-scales, we showed
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that we can obtain an explicit singularly perturbed system from any implicit mulit-

time-scale system. We also showed that the new system can be easily decoupled into

individual subsystems. The latter were used for controller design. Initially, we consid-

ered eigenvalue assignment sequentially for each time-scale and then used an eigenvalue

placement-LQR hybrid scheme that is more effective when different subsystems are

more efficiently controlled by different controllers. A case study illustrated the pro-

posed methods.
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Chapter 5
Conclusions and Future Work

5.1 Conclusions

In this dissertation, we investigated a model of an IM system and found an anomaly

in MOR via singular perturbations. In addition, we developed new methods for multi-

time-scale linear systems with special interest in models of power systems integrated

into the smart grid.

The dissertation started with a thorough time-scale investigation of an open-loop

IM model and we showed that unlike typical power system models where singular

perturbation methods are effectively used in model reduction, it was not the case for

this model. This occurrence was shown through simulation results where common

inputs such as step and impulse were used to obtain corresponding responses. Different

MOR methods were tested to finalize our conclusions. First, the classical singular

perturbation technique also known as the residualization method was utilized (set ε =

0). Following that, the exact time-scale separation technique based on the Chang

transformation was tested. Very poor approximation results were observed in both

cases even though the perturbation parameter was very small. Interestingly, simulations

showed that the fast subsystems provided a very good approximation of the original

model. An analytical investigation revealed that the model belong to fast and very fast

modes, namely slow modes are absent and a good approximation of the original model

is not expected from the slowest two states. MOR based on balancing also corroborated

previous results. The HSV map revealed that a minimum of four modes is needed to

approximate the original model.

Next, we studied a new class of singularly perturbed systems motivated by the model

discussed in Chapter 2 that has a specially partitioned input matrix. In this new class,
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two inputs are available to control the slow and fast subsystems independently. The

inputs can also be weakly coupled between each other. Three different input matrix

structures which frequently occur in real physical systems were considered. These cases

were as follows: the decoupled inputs case, the weakly coupled inputs case, and the

weakly controlled fast subsystem case. Optimal control problems specifically LQR and

LQG were then considered for each case where the problem was solved recursively in

terms of reduced-order problems to avoid possible ill-conditioning that is prone to oc-

cur. In all three cases we showed that only a reduced-order CARE and an algebraic

equation are needed to be solved to obtain the zero-order approximate solution (O(ε)

approximation) of the original full-order CARE. We developed algorithms based on

fixed-point iteration methods to improve on the approximation and obtain a very accu-

rate solution of the CARE as well as the optimal cost function. The LQG was studied

afterward when noise is present in the system. The Kalman filter was formulated and

appropriately decoupled into its slow and fast components. The solution of the filter-

type CARE was obtained iteratively as in the LQR case. Lastly, the complete iterative

solution of the LQG was presented. We showed via a case study that the accurate

solution is achieved in only a few iterations of the algorithm.

Finally, we investigated systems with multiple time-scale where the perturbation

parameters separating the time-scales are not explicitly known. To convert the system

from the implicit original configuration to its explicit singularly perturbed form where

the perturbation parameters are known, we employed an ordered Schur decomposition.

The latter orders the eigenvalues of the system in ascending order along the system

matrix diagonal leading to an upper-triangular matrix (only real eigenvalues) or quasi-

upper-triangular (Hessenberg matrix if only complex eigenvalues are present). The ratio

of the magnitude of the eigenvalues is used to obtain the perturbation parameters which

are then carried out of the system matrix accordingly to form the standard singularly

multi-time-scale system. An important conclusion here, which also applies to the model

discussed in Chapter 1, is that it more effective to evaluate the singular perturbation

parameter by considering the magnitude of the eigenvalues. Next, we proceeded to

decouple the standard singularly perturbed system into individual time scales via use
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of the Chang transformation and at this point considered design of controllers. Two

methods for controller design were employed. First, a method based on eigenvalue

placement was employed. Unlike the conventional way where the whole state vector

is used for feedback, we introduced feedback on each time-scale. This lead to the

next method where LQ control was used for controller design for the fastest time-scale

and eigenvalue placement was used for the rest of the time-scales. This method offer

flexibility in that different controllers can be employed on different subsystems of the

same system.

5.2 Future Work

Future research pertaining the work discussed in this dissertation remains to be

explored. Ongoing research is aimed at investigating the behavior of the IM model

discussed in Chapter 2. One aspect that was briefly mentioned earlier and that we

are currently researching is the fact that the residualized model includes an input in the

output equation. This was not the case in the original model. Future work will involve

theoretical investigation as to how this would affect the overall performance of reduced

models. Another area of work that remains to be studied in this chapter is the controller

design based on the reduced model. One interesting example would be design of an

optimal controller for the full-order orignal IM model followed by the design of sub-

optimal controllers to compare performance. As concluded, the fast subsystems gave

a great approximation of the original model. The question would be if corresponding

sub-optimal controllers will mimic the behavior of the optimal.

Future work for Chapter 3 will involve considering additional input matrix struc-

tures as well as different weight matrix Q structures not discussed here but that are

common in models of real physical systems, primarily power systems. Both the LQR

and the LQG problems will be investigated. In addition, an area of focus will be the

process of controller design. Particularly comparison between the methods on fixed-

point iterations that we employed versus other common techniques. Large or very large

scale system also remains to explored in this section using the algorithms we devel-

oped. They are good candidates where ill-conditioning can occur and computational
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considerations are essential.

The work of Chapter 3 would be interesting to investigate in the context of Chap-

ter 4. Since we are decoupling the system into individual time-scales, individual inputs

as done in Chapter 3 might be more effective. In addition to what was accomplished

in this dissertation, other controller combinations as well as comparisons between them

would a natural way to follow up.

Finally, considering all aforementioned work, future research problems in the discrete-

time domain will be interesting due to the specifics of singularly perturbed systems

evolving in discrete time.
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Appendix A

A.1 Details for Proof of Theorem 3.1

Additional details follow for the proof of Theorem 3.1. We start by further simpli-

fying the error equations.

DT
1 E1 + E1D1 + DT

2 ET
2 + E2D2 = εH1 (A.1a)

E2A4 + E1A2 + DT
2 E3 + Q2 = H2 + εH3 (A.1b)

E3A4 + AT
4 E3 + Q3 + P

(0)T
2 A2 + AT

2 P
(0)
2 = −ε(AT

2 E2 + ET
2 A2) + εH4 (A.1c)

E2 is isolated from (A.1b) and plugged in (A.1a). After the substitution is carried out,

(A.1a) becomes

E1D1 + DT
1 E1 −DT

2 A−T4 (DT
2 E3 + E1A2)

T

− (DT
2 E3 + E1A2)A

−1
4 D2 +O(I) +O(ε) = 0

(A.2)

O(I) represents known functions of P
(0)
1 and P

(0)
2 and O(ε) represents quantities mul-

tiplied by ε. (A.2) is rewritten as

E1D1 + DT
1 E1 −DT

2 A−T4 E3D2 −DT
2 A−T4 AT

2 E1

−DT
2 E3A

−1
4 D2 −E1A2A

−1
4 D2 +O(I) +O(ε) = 0

(A.3)

To eliminate dependency on E3 from (A.3), (A.1c) is further manipulated. Multiplying

(A.1c) by A−T4 on the left and A−14 on the right-hand side we obtain

A−T4 E3 + E3A
−1
4 +O(I) +O(ε) = 0 (A.4)

(A.4) is multiplied by −DT
2 on the left and D2 on the right-hand side to obtain

−DT
2 A−T4 E3D2 −DT

2 E3A
−1
4 D2 +O(I) +O(ε) = 0 (A.5)
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Substituting (A.5) in (A.3), the final form of (3.20) becomes

AT
s E1 + E1As = O(ε) +O(I) (A.6)

where As = D1 −A2A
−1
4 D2 with O(I) being constant.
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