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ABSTRACT OF THE THESIS

RAS: AN END TO END SUITE FOR SINGLE-CELL AND

STANDARD RNA-SEQ DATA ANALYSIS

by NIKHIL KUMAR

Thesis Director:

Dr. Li Cai

As RNA sequencing (RNA-Seq) becomes more affordable to process, the number of se-

quencing data has increased at a rapid rate. A major challenge in RNA-Seq experiments

is the analysis of large amount of data generated by next-generation sequencing. RNA-Seq

data analysis usually requires advanced Linux/Unix experience for software installation and

tedious commands. This required skill set hinders scientists who are interested in analyzing

RNA-Seq data but do not have Linux/Unix experience. Here, we describe an end to end

pipeline for RNA-Seq Data Analysis Suite (RAS), which streamlines and speeds up analysis

time for both standard and single-cell and standard RNA-Seq data. In addition, RAS is a

standalone web application and contains an interface where Linux/Unix skills are not re-

quired for the data analysis. RAS creates a web server, where the user can interact with the

pipeline on a browser. In addition, Since since RAS utilizes distributed computing, it uses

computational resources efficiently. RAS The pipeline was validated on single-cell RNA-Seq

datasets publicly available at the Gene Expression Omnibus (GEO) from the NCBI.
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Chapter 1

Introduction

Transcriptome analysis allows us to analyze and quantity RNA species in a biological sam-

ple at a specific moment in time. RNA-Seq has revolutionized such analysis. Standard

RNA-seq analysis measures the mean value from thousands to millions of cells, thus, the

signal of individual cells was ignored. However, most of the biological systems contain

heterogeneity of cell population, transcriptome profiling from individual cells is crucial for

the identification and characterization of different cell types. Recently, a new technique

known as single-cell RNA-Seq has been developed to provide a higher resolution of cel-

lular differences and a better understanding of the function of an individual cell. In the

recent years, a wealth of bioinformatics tools have been developed to tackle the informatics

challenges for mapping and analysis of both standard and single-cell RNA-Seq data. The

adaption of these tools often requires Linux/Unix and programming skills. With the steep

learning curve for Linux/Unix, this required skill set hinders scientists who are interested

in analyzing RNA-Seq data but do not have Linux/Unix experience [1]. In addition, many

bioinformatic tools do not have a graphical user interface and requires tedious usage of the

Linux/Unix command line.

RNA-seq data analysis suite (RAS) is a pipeline aimed at providing an end to end data

analysis of single-cell and standard RNA-Seq experiments by utilizing powerful openly-

available bioinformatic tools. RAS is a standalone web application and contains an interface

where Linux/Unix skills are not required for the data analysis. RAS creates a web server,

where the user can interact with the pipeline on a browser. The pipeline is computationally

efficient and powerful using concepts from distributed computing and artificial intelligence

while at the same being user-friendly and requiring no Linux/Unix or programming expe-

rience.
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To validate the effectiveness and accuracy of RAS, we ran several studies on neural stem

cells (NSCs) using single-cell sequencing data openly available from the Gene Expression

Omnibus (GEO) at the national center for biotechnology and information (NCBI). It was

believed that the brain’s poor regenerative abilities can be attributed to its lack of neural

stem cells. However, the discovery of stem cells in the adult brain has created a new

area of research on regenerative treatment for brain disorders [2]. This combined with the

new single-cell RNA-Seq technology has allowed scientists to isolate and analyze dynamic

changes in the NSC state. Studies have demonstrated that NSCs exist in mainly two brain

areas, the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ)

of the forebrain. NSCs can be classified into two main sub-groups: quiescent (qNSCs)

and active (aNSCs) [3][4]. In this work, we develop RAS and analyze single-cell RNA-seq

datasets of NSCs from the SVZ and SGZ. The results from RAS validate the usefulness

of RAS and provide new insights into the molecular mechanisms of transition between

quiescent to active states and determine the molecular differences of NSCs in the SVZ and

the SGZ.
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Chapter 2

Methods

The pipeline is constructed primarily using the programming language Python [5]. A module

known as Flask [6] is used to create a server, in which the user can interact with the program

using a web browser. Single-cell RNA-Seq data of NSCs from the SVZ (NCBI GEO accession

#GSE67833) [5] and SGZ (NCBI GEO accession #GSE71485) [6] were used for validation

and further studies.

For an RNA-Seq experiment a dynamic form was created in Javascript [7] for the user

to input his/her files or url links of sra files for RNA-Seq analysis. This allowed user to

add or delete conditions (e.g., cells from the SVZ or cells from the SGZ) and add or delete

replicates for each condition with ease. In addition, regular expressions are used to ensure

the user is giving the appropriate information. The data from the form is then downloaded

(e.g., from GEO)/uploaded (user’s own data) into a folder named with a unique experiment

id and a well-organized directory.

RAS maintains a specific directory structure for each experiment. This is shown in

Figure 2.1. Each replicate has its own folder to store the log files from data preparation

programs. The users name and email is also stored in each of his or her experiment folders.

This gives the administrator a person to contact when he or she needs to delete experiments

to free up disk space.

A quality check function for the sequencing data has been implemented for the pipeline

with the intuition to easily interact with data sources at the GEO. The user can supply

an accession number (e.g., GSE67833 and GSE71485) and the pipeline will retrieve all the

sra files from the GEO database. The pipeline will then decompress the files using Fastq-

dump and analyze them using the program FastQC [8][9]. The quality check of data is

all aggregated into a tab delimited file and emailed back to the user. RAS also allows the
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Figure 2.1: Directory structure of RAS. Each replicate of RNA-Seq samples has its own
folder to store logs. Each experiment folder contains the users information which is valuable
to administrators.

user to visualize the results through a scatter plot. The scatter plot is run on javascript

using the ChartJS [10] package. The charts are responsive and whenever a user hovers over

a data point a tooltip will show the cell label. The scatter plots of the two acession ids

(#GSE67833 and #GSE71485) are shown in Figure 3.9a and 3.9b respectively.

Special care has been made to make sure that the pipeline does not overload the GEO

server at NCBI. This includes havening a mandatory wait time after each request. In

addition, the pipeline recognizes that the quality check thread and the experiment download

thread are running independently. This runs the risk of having two threads downloading

from the GEO server at the same time. In order to prevent this, the parallel computing

concept of mutual exclusion is used to address this issue. Whenever a thread is downloading

data from the GEO it holds a lock that prevents other threads from accessing the GEO.

After it is done downloading, it releases the lock, allowing other threads to download.

The architecture diagram of experiment jobs in RAS is shown in Figure 2.2. The ex-

periment queue is held in a MongoDB database to organize multiple experiment jobs. The

database allows independent scripts and programs to coordinate together. A python dae-

mon is periodically checking the queue for new jobs. Once a job is found, it gets processed

through the pipeline. Once a job is finished, the next job is started automatically without

any need for user input.
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Figure 2.2: Architecture Diagram and Work Flow of RAS. A MongoDB server is used to
implement a queue for job handling. The server has many independent components such
as the webserver and experiment deamon

Figure 2.3: RAS Pipeline structure using the MapReduce Model. Multiple threads can be
used to process the jobs in parallel.
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The experiment is first processed through quality check. Each sequence file is processed

through FastQC and the results are stored on the server. Once all the files are finished

with the analysis, RAS sends the user an email with links to all the FastQC quality check

reports relevant to this experiment. A MapReduce model is then used in the processing

of the experiments. The model is shown in Figure 2.3. Each experiment gets divided into

numerous blocks where each block is a sequence file. Each block then gets mapped to a pool

of user specified threads. This allows sequences to be aligned in parallel running threads.

The program TopHat is used for the alignment of the data and further prepared using

the cufflinks package [11][12]. The blocks are then combined using cuffnorm (for single-

cell RNA-Seq data) or cuffdiff (for standard RNA-Seq data) from the cufflinks package

[13]. RAS automatically adjusts for paired-end and single ended sequence data. Once the

experiment is finished, the output folder is compressed, stored in the server and a link to

the compressed folder is then emailed to the user. Email communication is an important

aspect of the pipeline. It allows user to be notified instantly and keeps the user organized.

Each email has the unique id on its subject line to prevent confusion.

The pipeline also includes the functionality to aid users in post-alignment analysis.

Given two groups/conditions, the pipeline is able to visualize the genes with the largest

difference in mean expression using ChartJS (Figure 3.8a and 3.8b). RAS also monitors the

status of the server and allows the user to visualize it through responsive graphs. The server

status daemon is running in python and checks the server status every minute. It then stores

the data on the MongoDB server. The types of information collected are Temperature, Cpu

frequency, Network, Disk, Memory, and System Load in Figures 3.9c, 3.9d, 3.9e, 3.9f, 3.9g,

and 3.9h respectively. RAS also offers a page where the user see what experiments are on

the queue for normalization, differentiation, and quality check analysis.

RAS allows users to use R [14] RNA-Seq analysis packages such as Monocle [15] (for

cuffnorm data) and CummeRbund [16] (for cuffidff data) without having any programming

or Linux/Unix experience. The user would enter the valid parameters for the particular

method he or she wants to be executed. RAS runs an R script with those values by calling

the Linux/UNIX system directly. In some cases, the R script is dynamically generated.

If the user needs a high resolution figure, a tiff or png format image with 600 dpi can be
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downloaded. A webpage is returned to the user with the links to the figure. The server

disables caching by the browser so that old figures can be removed properly when new ones

are generated. This interface greatly simplifies the analysis for the user.

2.1 Single-cell RNA-Seq Analysis

For single-cell RNA-Seq data, RAS has monocle integrated as well as custom methods for

analysis. After processing the data the user needs to filter out poor quality cells. A custom

script was created where the user can specify a lower bound and an upper bound for the

mRNA counts. This allows the user to remove poorly expressed cells or doublet cells,

respectively. In addition, RAS can eliminate genes that are not significantly expressed in a

certain number of cells where the user can specify the number and significance threshold.

After quality control, the user can manually trim out cells. This is ideal for dividing the

sample set. To simplify the input, a method is designed to take in an inclusive range

designated by a ’-’ and separate numbers by ’,’. For example 1,2,4-7 will include cells

1,2,4,5,6, and 7. After quality control, the user can perform a clustering analysis and/or

classify the cells using the Monocle package. The classify script works by representing class

labels with logical gene value conditions. A special dynamic form is created where the

user can create any number of logical statements (<,≤,>,≥) as well as specify any logical

condition across statements (AND, OR). The user can also manually classify the sample

using ranges of cell numbers labels. After classification, the user has the options to analyze

the data through pseudo-time analysis, trajectory, or differential expression for a specified

gene through Monocle.

2.2 Decision Tree

RAS includes a novel application of decisions trees for the differential analysis of single-cells

across known groups. The decision tree is an artificial intelligence concept for classification

learning [17]. The decision tree finds the best way to organize the cells into their correct

groups using their gene expression values. The output is a flowchart where each node

represents a gene logic statements (Figure 2.7). The decision tree chooses the genes and
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cutoff values which will represent the dataset with the fewest number of logic statements.

After fitting, the genes in each node represent the significant genes within the dataset.

These genes are the best at dividing the data into the specified subgroups. In the Figure

2.8, we see how the decision tree in Figure 2.7 divides SVZ Quiescent and SVZ Active cells.

In the first node, the two groups are divided almost entirely with the exception of one cell.

In the sample, decision tree we can see that the gene in the first node is much more critical

than the node where one SVZ Quiescent cells is separated from the SVZ Active cells. The

decision tree is implemented in Python using the Scikit-learn package [18]. This method

was extended to perform a more comprehensive analysis.

2.3 Differential Analysis

RAS also includes a differential analysis algorithm which uses the decision tree to obtain

significant genes. The decision tree first isolates a specific group from the rest of the cells.

The gene in the first node (most significant) is stored and removed from the training gene

dataset. The decision tree is then retrained and run again. The process repeats for all the

groups until all the groups have a list of significant genes at the user specified length. This

isolates clusters of genes which represent the different groups of cells. Using this information

and the class of cells in the experiment a heatmap is created where the columns represent

each cell and rows represent each gene. The cells are grouped by its cell type and the genes

are grouped based on which class of cells they represent. The heatmaps were created in the

R package pheatmap [19]. The user has the option to group the data from classification or

specify one manually.

2.4 Standard RNA-Seq

For standard RNA-Seq Analysis data, RAS is integrated with the cummeRbund workflow

[16]. The first method creates the CuffSet Database and prepares the data for cummeRbund

analysis. After that, the user can perform quality control from the FPKM values and/or

create a dendogram and analyze the clustered cells. RAS can also generate bar plots for

gene expression as well as find similar genes using CummeRbund. After this step, the
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Figure 2.4: Workflow for single-cell RNA-Seq experiments.

Figure 2.5: Workflow for standard RNA-Seq experiments

user needs to create a significant gene set. RAS allows the user to get significant genes

across 2 or all the classes using the appropriate cummeRbund functions. The user can then

generate heatmaps and/or k-means clusters of gene expression patterns. For the k-means

clustering component, a table is also dynamically created and shown of gene names and its

corresponding cluster.
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Figure 2.6: Architecture diagram of data analysis in RAS using Python and R
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Figure 2.7: Sample Decision Tree of SVZ Quiescent and SVZ Active cells
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Figure 2.8: Gene Classification in the Sample Decision Tree
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Chapter 3

Results/Discussion

3.1 Clustering of SVZ RNA-Seq Data Validates RAS

RAS was first tested on the SVZ data from Liorens-Bobadilla et al. [3]. The quality check

analysis filtered out any genes which were not significantly expressed at a FPKM greater

than 5 in more than 5 cells. The post quality check dataset contains 12103 genes. The

clustering analysis of the sample cells shows the sample can be divided well into 3 groups.

Further classification of the sample show that each cluster represents a different cell type:

Neuroblasts (NB), Oligodendrocytes (Oligo.), and Neural Stem Cells (NSCs). This is shown

in Figure 3.1. The cells were classified using the same gene markers (such as Sox9, Sox10,

and Dcx) used in the Liorens-Bobadilla et al study [3]. This shows the results from the

pipeline is consistent with the results shown in the original paper [3] and confirm the validity

of the pipeline.

3.2 Single-Cell Analysis of NSCs in RAS reveals differences between SGZ

and SVZ cells

The SVZ data was then trimmed and the NSCs were isolated. A clustering analysis shows

that NSCs from the SVZ further divide into two clusters. Classification analysis using the

gene markers specified in Liorens-Bobadilla et al showed that NSCs from the SVZ classify

into subgroups of active and quiescent cell types as shown in Figure 3.2a. RAS was then

used to process the cells in a trajectory analysis which shows the cells are ordered properly

in pseudotime, showing a clear transition from the quiescent to the active cell states (Figure

3.2b). A similar processed was carried out on the SGZ data from the Shin et al. study

[4]. In this study NSCs were isolated using the Nestin− CFPnuc genetic labeling system.
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Figure 3.1: RAS identifies subpopulations of NSCs within the SVZ sample. The SVZ
samples from Liorens-Bobadilla et al. were clearly classified into 3 clusters: neuroblast (NB
in red), neural stem cells (NSCs in green), and oligodendrocytes (Oligo in blue), validating
RAS.

Quality check similar to that for SVZ data resulted in cells with 13088 genes. A clustering

and subsequent classification analysis showed that the SGZ data also breaks up into active

and quiescent cells (Figure 3.2c and Figure 3.2d). RAS was then used to combine the two

studies into one experiment. Quality check of this dataset gave us cells with 11154 genes.

Clustering analysis showed that the combined dataset divides into 2 clusters (Figure 3.5a).

Using our classification knowledge from previous work on SGZ and SVZ cells, RAS manually

classified cells into two main groups of quiescent and active based on subtypes (3.3). Each

group further divides into two subgroups of SGZ and SVZ cells. This shows that a biological

difference exists between SGZ and SVZ cells. A cell trajectory analysis, shows interesting

pseudotime ordering between the quiescent and active cells (Figure 3.4). The active cells

of both SGZ and SVZ follow the same pathway, while SGZ and SVZ are shown to follow

different pathways. This indicates that active NSCs have a more similar expression pattern

than quiescent cells. For further analysis, a heatmap of 150 critical genes was created using

RAS. This is shown in Figure 3.7.
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(a) (b)

(c) (d)

Figure 3.2: PCA analysis of clustered and pseudotime analysis of NSCs in the SGZ and
SVZ. (a) NSCs in the SVZ were further clustered and classified into active and quiescent
subgroups. (b) Pseudotime ordering in NSCs of the SVZ shows a clear path of transition
from quiescent to activate cells. (c) NSCs of the SGZ were clustered and classified into active
and quiescent subgroups. (d) Pseudotime ordering in SGZ shows 2 paths of transition form
quiescent to active cells.
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Figure 3.3: PCA analysis of combined SGZ and SVZ NSCs shows 2 main and 2 sub clusters.
Quiescent and Active represent the former while SGZ and SVZ represent the latter.

Figure 3.4: Pseudotime analysis of combined NSCs in the SGZ and SVZ shows a clear
transition from quiescent to active state. Active NSCs from both SGZ and SVZ follow the
same path while quiescent cells follow different paths.
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3.3 Standard RNA-Seq Analysis in RAS confirms the existence of sub-

clusters between SGZ and SVZ cells

Four cells from each of the four groups of NSCs (SVZ Active, SVZ Quiescent, SGZ Active,

SGZ Quiescent) were selected and analyzed through standard RNA-Seq. In Figure 3.5b,

RAS shows that cells from the Liorens-Bobadilla et al. study [4] have a slightly lower

quality score. A dendogram analysis shown in Figure 3.5c, confirms the previous results

that active and quiescent cells cluster together, with quiescent cells being less similar across

SGZ and SVZ. We then performed a decision tree analysis using RAS and found that the

most significant gene for partitioning the cells into 4 groups was Apoe. The whole decision

tree can be seen in Figure 3.6. We then performed differential RNA-Seq analysis on the

gene Apoe. The plot in Figure 3.5d shows that SVZ quiescent cells expression of Apoe is

three-fold higher than Apoe expression in the SGZ quiescent cells.

3.4 Future Work

The sequencing data will be further analyzed with the pipeline to find critical genes using

the combined SVZ and SGZ data. The pipeline is currently under development in a Github

repository [https://github.com/nikhil/RAS] which will be made public upon completion. It

contains installation instructions where the user can download and set up the program on

his or her own server.

3.5 Conclusion

RAS has shown to be a useful tool for both single-cell and standard RNA-Seq data analysis.

It was both efficient and user friendly. RAS can work with RNA-Seq data with a variable

number of samples and conditions as long as the correct genome files are supplied.
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(a) (b)

(c) (d)

Figure 3.5: Clustering and CummeRbund analysis in RAS of the combined SGZ and SVZ
NSCs. (a) PCA analysis of clustered SGZ and SVZ NSCs shows that they classify well
into two groups. (b) Quality control analysis using the squared coefficient of variation. (c)
Dendogram shows active and quiescent cells were classified together across SGZ and SVZ
samples, with more variability in quiescent cells. (d) Bar plots of the gene Apoe gene which
is expressed 3 fold more in SVZ quiescent than SGZ quiescent cells
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Figure 3.6: Decision tree analysis of the combined SGZ and SVZ data. Gini scores indicates
how well a gene divides the samples where higher values partition better. Class indicates
what cell type the gene is best at isolating. The cut-off value and gene are chosen by the
decision using artificial intelligence. The value array shows the number of SGZ Quiescent,
SGZ Active, SVZ Active, and SVZ Quiescent cells in the set respectively
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Figure 3.7: A heatmap
of log transformed
values for 150 genes
in SGZ and SVZ cells.
Critical genes were
picked by the deci-
sion tree which best
isolates the specific
cell group. Each row
is a gene which are
grouped by gene class.
The gene class indi-
cates which group the
gene is able to isolate.
Some genes are able to
characterize multiple
cell types and are
designated as ”multi”
with the correspond-
ing group numbers. In
non-multi gene classes,
the genes are ordered
in decreasing mean
expression difference
between the indicated
group and the rest of
the cells.
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(a) Top 25 genes expressed in SVZ quiescent over SGZ quiescent

(b) Top 25 genes expressed in SGZ quiescent over SVZ quiescent

Figure 3.8: Comparison of mean gene expression values for SVZ and SVZ quiescent cells
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(a) Quality check scatter plot analysis of
GSE67833 comparing average base score and
deduplication percentage

(b) Quality check scatter plot analysis of
GSE71485 comparing average base score and
deduplication percentage

(c) Temperature readings from the last 23 minutes
on all cpus with a critical temp level.

(d) CPU frequency usage of each cpu from the last
23 minutes

(e) Network usage from the last 23 minutes (f) Disk usage from the last 23 minutes

(g) Memory usage from the last 23 minutes (h) System load form the last 23 minutes

Figure 3.9: Visualization of quality control data as well as server sensor data on RAS
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Appendix A

Installation

This server has been developed and shown to work on Ubuntu. The distribution used in

this paper is shown in Figure A.1 User with any other distribution will need to modify parts

of the installation.

A.1 Requirements

The server needs internet access to download data from the GEO. It is recommended to use

a server with ample disk space and a large amount of cores. The server used in this paper

has 8 cores and 2 TB of disk space.

Figure A.1: Ubuntu version used in this paper

A.2 Software packages

You will need to install these packages on your distro:

• python 2.7

• R

• fastq-dump

• fastQC

• TopHat
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• Cufflinks

• graphviz

A.2.1 Installing MongoDB

You will first need to know the code name of your Ubuntu version. You can get this with

the command shown in Figure A.2. Now you need to add MongoDB to your repository.

Figure A.2: Command to view the code name of your ubuntu version

Change ’xenial’ into your appropriate Ubuntu codename.

Figure A.3: Command to add MongoDB to repository

You can find more up to date instructions on:

https://docs.mongodb.com/v3.2/tutorial/install-mongodb-on-ubuntu/

Now you can install MongoDB.

(a) Command to install MongoDB

(b) Command to start MongoDB

(c) Command to stop MongoDB

Figure A.4: Commands to install and start/stop MongoDB

After MongoDB is installed, you would need to start it with the command in Figure

A.4b. Remember to run this command each time after the server is restarted.

A.2.2 Installing R

You can follow the instructions from Figure A.5. Remember to replace ’xenial’ with the

appropriate codename. Now you can install RAS
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Figure A.5: Command to install the latest version of R

Figure A.6: Set of commands to install RAS

A.3 Python packages

Here is the list of Python packages that you have installed with their corresponding version

numbers. They are required for RAS to work.

• beautifulsoup4==4.5.1

• bx-python==0.7.3

• click==6.7

• cycler==0.10.0

• Cython==0.25.1

• enum-compat==0.0.2

• enum34==1.1.6

• filelock==2.0.7

• Flask==0.12

• greenlet==0.4.12

• itsdangerous==0.24

• Jinja2==2.9.4
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• MarkupSafe==0.23

• matplotlib==1.5.3

• numpy==1.11.2

• psutil==5.1.3

• pydotplus==2.0.2

• pymongo==3.4.0

• pyparsing==2.1.10

• pysam==0.9.1.4

• python-dateutil==2.5.3

• python-engineio==1.2.3

• python-http-client==2.2.1

• pytz==2016.7

• PyYAML==3.12

• randomcolor==0.4.4.4

• requests==2.11.1

• RSeQC==2.6.4

• scikit-learn==0.18.1

• scipy==0.18.1

• sendgrid==3.6.3

• six==1.10.0

• sklearn==0.0

• Werkzeug==0.11.15
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A.4 R packages

You will also need to install some R packages for RAS to work. You need to enter the R

scripting environment by typing in ”R” on the terminal.

Figure A.7: Commands to install the required R packages

Now you need to edit the server configuration file. The file is located in config.yaml.

You will need to edit this with a text editor. A sample file is shown in Figure A.8.

Figure A.8: YAML file to configure the RAS program

sendgrid api key This is the api key for a sever that is used to send emails. This

is a demo key and it may be deactivated later, you should request your own at

https://sendgrid.com/.

ip This is the public ip of the server. Make sure to include the port ’:5000’ afterwards.

num threads This is the number of threads to process alignment jobs in parallel

top hat threads This is the number of threads used in each instance of Tophat

no-coverage-search A boolean to indicate if Tophat should use no-coverage-search
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mongo url This is the url where the mongodb server can be found. The default should be

fine unless you are running it on a different server

library-type The options of library type the user can choose when they assign a RNA job

genome files A list of dictionaries with the keys name, gtf and genome. The names define

the genomes that appear on them selection bar for the user the choose. The gtf and

genome paths indicate the path for the genome listed. The format should be precisely

followed including spacing.

Now you need to exit R and start the daemon scripts. Make sure you are in the venv,

this ensures the python packages are loaded. Now you can start the scripts by following

Figure A.9a

(a) Set of commands for starting daemon scripts
and server

(b) Set of commands for stopping daemon scripts
and server

Figure A.9: Commands to start/stop daemon scripts and server

Remember to re-start the scripts after the server is restarted.
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Appendix B

Instructions

You can access the pipeline by opening your browser and typing in [your sever ip]:5000

where your server ip is the ip you specified in the configuration file. In this page you can

choose between going to the standard, single-cell, or GEO quality check workflows, viewing

the status of the server or job queues.

B.1 Single-Cell RNA-Seq

You can see the workflow page on Figure C.1c

B.1.1 Align Data

The workflow lists the available functions in order. They must be followed in that order. You

can’t run a classification function such as differential gene analysis without first classification

the data. the first step is to align and prepare the data. Here you can either assign a job

or combine experiments which have already been aligned on RAS. In the assign job page,

you will notice that it has two dynamic forms. You can add or remove conditions and

you can add or remove samples. It is worth noting the difference between ’condition’ and

’sample’. These two terms get used interchangeably between software which could be a

source of confusion. In RAS, ’sample’ stands for 1 sequence or 1 replicate. In other words

one sequence is once file. ’Condition’ stands for a collection of samples which indicate a

certain state such as quiescent. For each sample you can upload a ’.sra’ file from your local

computer. You can also paste links for a url upload. The url upload must be from the GEO

and include the ’ftp://’ protocol in the link. You need to link the file not the folder.
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B.1.2 Analyze significant genes

For getting significant genes, you need to create two groups by indicating the cell number to

be included in each group. A range of numbers can be entered in a certain format. You can

use ’-’ (e.g. 2-10) for an inclusive range and commas to add numbers. For example 1,2,4-7

will include [1,2,4,5,6,7] for one group. A samples table is provided for your reference.

B.1.3 Quality Control

You will notice that in many of the function you need to enter the experiment id before

seeing the input form. This is needed to appropriately show the samples table. For the

input form, you need to enter the range of mRNA to use. All cells outside the range will

be removed. To pass all cells use: ’inf’ for the upper bound, ’0’ for the lower bound and

’0’ for minimum expression and ’0’ for minimum expression. Quality control also works by

eliminating genes that are not significantly expressed in a certain number of cells. The gene

expression and number of cells correspond to the significance and number accordingly. For

example, a minimum gene expression value of 2 and minimum cells value of 4 will remove

all genes that are not expressed at a FPKM value over 2 in over 4 cells. A samples table is

provided for your reference.

B.1.4 Post-quality control Analysis

After quality control you can Trim, cluster the data or process it through a heatmap or

decision tree. For trim, the range format can be used. All of the cells outside the range

will be excluded. After trim, the only way to get the data back is to run through quality

control again. For a decision tree, you have a dynamic form where you can enter each

groups range and corresponding label. The manual heatmap is called ”manual” because it

allows the users to manually specify groups for cells. The number of genes indicates how

many significant genes to use. The gini value is a measure of information gain for each

gene that divides the dataset at a determined point. The value depends on the dynamics

of the dataset. A sample with a large number of one group can bias the dataset to choose

more genes that isolate that group. A lower gini value allows the program to look genes
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for other groups at the expense of gene significance. Make sure the gene number is in

a feasible range. For clustering analysis, simply enter the number of samples to analyze.

Unfortunatly, monocle uses an iterative program. THis leads to cases where different runs

can generate different results due to different steady states. This could be fixed by running

better quality control.

B.1.5 Classification

You can classify the cells by gene expression or by manual selection. In the way of gene

expression, the form allows you to specify conditions for each group. In this context, the

conditions are logical statements which can be combined by an AND or an OR. The label

name is what the condition will be called. The manual selection method uses the similar

dynamic form where groups can be created using the label and range format. After each

classification analysis method, the function shows a pca plot of the cells where each condition

is represented by a different color.

B.1.6 Post-classification analysis

Get classified heatmeap is similar to get manual heatmap, the only difference is that the

groups are automatically picked out based on the classification of the dataset. Get gene

pseudotime performs a pseudotime analysis of the genes and cells. The user needs to specify

the number of dimensions and a list of genes. Differnetial gene analysis simply shows the

gene value of each cell where the class of the cell is indicated. Multiple genes can be listed.

Cell trajectory orders the cells in pseudotime. You will need to specify the dimensions for

this step as well.

B.2 Standard RNA-Seq

The standard RNA-Seq work flow is roughly similar to the single-cell workflow. The first

step will assign a standard RNA-Seq workflow. The second step will create the cuffset

Datanase for further analysis. The third step will show the quality control plots of the cells.

This will not alter the dataset, it just shows the quality. In post quality control analysis,
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the user can get a dendogram or get a comparison of a certain gene expression. The fifth

step, gets significant genes either by expression or differential comparison. For differential

analysis you need to indicate the names of 2 samples, while by expression will look at all

the samples. Both methods need an alpha value. This controls the significance of of the

genes. Alpha must be less than 1 and greater than 0. If you set alpha too low, you will get

an error because you will not get any genes. After a significant gene dataset is generated

the number of genes chosen is returned. You can do further analysis with the significant

genes such as generate a heatmap, get similar genes, and get a k means gene cluster. It is

recommended to have a small gene subset for the heatmap labels to legible.

B.3 Check GEO Quality

In this function you can run or analyze the results of previous runs. It is recommended

not to have too many of these jobs. Each job downloads all the data from the GEO server

which is often large in magnitude. This can overload the server and make it possible for

GEO to block your server’s access to their server. The function waits 1.5 seconds after each

download. When entering the GEO number remember to include the letters before it as

well.
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Appendix C

Screenshots of RAS

(a) (b)

(c) (d)

Figure C.1: RAS main webpages. (a) Main webpage with buttons to workflows and mon-
itoring pages (b) Standard RNA-Seq workflow webpage (c) Single-Cell workflow webpage
(d) Webpage for quality check analysis of GEO experiments.
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(a) (b)

(c) (d)

(e) (f)

Figure C.2: First set of RAS assorted screenshots.(a) Dynamic form used to input data for
either single-cell or standard RNA-Seq analysis (b) Input form for significant genes between
any two groups of cells (c) A sample error page when the user puts the wrong input (d)
Input form for quality control of single-cell data (e) Input form for manual classification
with a dynamic form from group labels and names (f) Dynamic form for classification based
on gene conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: Second set of RAS assorted screenshots.(a) Dynamic input form for creating a
decision tree between a set of groups (b) A sample response page with a .png figure and a
.tiff image download link (c) Scatter plot analysis of GEO quality check data (d) A figure
response page from the standard RNA-Seq workflow (e) Input form for a quality check job
on a GEO number (f) Input form for retrieving significant genes from a standard RNA-Seq
dataset
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(a)

(b) (c)

(d) (e)

Figure C.4: Third set of RAS assorted screenshots.(a) Custom genomes added to RNA-Seq
job input form (b) The samples table which appears is many of the input forms (c) Dynamic
form for group labels and ranges used to generate a differential heatmap.(d) A sample
success response (e) Webpage showing the status of Normilization (single-cell), differential
(standard), and quality check job queues
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Appendix D

Code Snippets

The project is over 2 thousand lines of code. If you would like to see the scripts in more

detail you can do so at: https://github.com/nikhil/RAS. In this chapter, I will highlight

select sections of the program.

D.1 Heatmap function

D.1.1 Python

The heatmap function would take in the experiment id and the number of genes by the

user. It would then process the cell ranges and their corresponding labels. The program

returns an error if there was a mistake found in the format of the ranges. The post-quality

control expression and sample table are loaded. A matrix of x values is created where the

rows are each cell and the columns are the expression of each gene. The y values are the

corresponding group labels of all the cells. For each cell class, the current class and the

other classes are separated into two groups. The function is then run through a loop of n

times where n is the number of significant genes specified by the user divided by the number

of groups. At each iteration:

1. The decision tree is trained

2. The custom method parse graph data is called

3. The tree data is parsed using string manipulation

4. The gene is the top node is returned

5. The gene is stored and removed from the training set.
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The appropriate R script is called. The figure is moved into the static folder to be accessible

by the user. A figure link is generated and returned to the user.

Figure D.1: Python code for heatmap generation

D.1.2 R

In the R script The significant genes, gene classes, cells, and cell class lists are loaded. Gene

classes indicate what cell group the decision tree was able to isolate the best. The cells

list indicate all the cells to be processed, and the cell class list indicates the group for each

cell. The monocle dataset for classified cells is loaded and all the cells in the cells list are

extracted from the dataset. In addition, all the genes indicated in the gene list are extracted
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from the expression matrix. The data is the annotated with gene class and cell type and

sorted for both rows and cols. The matrix is then log transformed. One was added to each

value to prevent negative value appearing for expression values less then 1. A heatmap is

created from the data using pheatmap. The png is dynamically sized based on the size of

the dataset and set to a resolution of 600 dpi. The png is then saved

Figure D.2: R code for heatmap generation

D.2 Decision Tree

The decision tree is used internally in the heatmap function. This function allows the users

to visualize a decision tree generated from a given dataset. An external program is used to

generate a 600 dpi png image of the tree. The image is then transfered into a folder where

the user can access this image and a link is generated. The response is an html page with

a image link to the figure.

D.3 Dynamic Form

D.3.1 Html

The html page for data input must contain dynamic elements in order to handle the vari-

ability in samples and conditions. The form starts with two conditions with two samples

each. Under the two conditions, there are two buttons that allow the users to add or
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Figure D.3: Python code for decision tree generation

remove conditions. In each sample, there are buttons linking to the javascript functions

add file field and add url field. These javascript functions change the input type to a file

or url respectively. The parameters represent the condition and sample number respec-

tively. Underneath the two samples there are buttons linking to the javascript functions

add sample and remove sample. These functions add and remove samples accordingly with

the parameter scheme previously mentioned. There is another set of javascript functions

add condition and remove condition which are located at the bottom of the form. These

functions add and remove conditions from the form.

D.3.2 Javascript

The javascript functions are used to control the html form. The buttons call these functions

and the javascript changes the html in the form and makes it dynamic. Only one javascript

function is shown below, the add sample function. The function works by taking the

parameters and finding the span with the appropriate id. New html is generated for the

additional sample as well as a new button where the parameter is changed. The new html

is added to the main html document after a timeout with the fadeIn className for visual

effects.



41

Figure D.4: HTML colde for a dynamic form

Figure D.5: Javascript code for a dynamic form
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