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ABSTRACT OF THE DISSERTATION

Fusion Learning of Dependent Studies by

Confidence Distribution (CD): Theory and

Applications

by CHENGRUI LI

Dissertation Director: Minge Xie

This dissertation focuses on developing efficient Fusion Learning

methodologies for combining information from non-independent sources

using confidence distribution (CD). The sources hereby are broadly construed as

different pieces of information extracted from possibly correlated datasets. This

situation typically arises when multiple inferences are performed over different

times, locations or experiment settings due to computational and statistical

considerations, which encompasses a wide range of scientific and engineering

applications (e.g. seismic monitoring and detection, computer experiments). In

this dissertation, we develop a general framework to effectively and efficiently

combine these correlated information using CD, and furthermore, explore the

advantages of this framework in different problems that are of theoretical and

practical interests.

The first problem we address is related to analysis of big spatial data. We

ii



propose a sequential split-and-conquer method based on CD to deal with the

long-standing issues on computational scalability and predictive uncertainty in

Gaussian process (GP) models when the sample size is large. The CD-based

combining approach we propose in this work aims to intelligently divide the

large-scale problem into smaller sub-problems, and combine the result of each

sub-problem strategically without the loss of statistical efficiency under mild

conditions. The other problem we visit is the derivation of a general CD-based

framework for combining non-independent inference results under a partial linear

model scenario, where the inference result is in the form of local estimates from

partial linear regression models.

The results discussed in this dissertation further shed light on the potential

applications of our CD-based combining framework in the high-level fusion of

statistical inference results as a powerful meta-analysis method, or more generally

speaking, Fusion Learning.
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Chapter 1

Introduction

There have been rapid developments in statistical methodologies on combining

information from multiple sources, such as Fusion Learning, Meta-analysis,

Divide-and-Conquer algorithm etc, during the past few decades. In particular,

the method of confidence distribution (CD) has gained tremendous popularity in

fusing inference results from different studies, where the goal is to estimate the

common parameters of interest across these studies by combining various CDs

constructed individually. However, the majority of prior work heavily relies on

the assumption that individual studies are independent, which may not be valid

under many circumstances (e.g. spatial-temporal data). More specifically, in this

dissertation, we will discuss the following two problems.

• Problem 1 (Analysis of Big Spatial Data) The task of analyzing

massive spatial data is extremely challenging because of the correlation

among the observations. Among the techniques developed for analyzing

spatial data, Gaussian process model is one of the most widely used

approaches in the literature, see Sacks et al. (1989), Santner et al. (2003) etc.

However, two critical issues remain unresolved. One is the computational

issue in GP estimation and prediction where intensive manipulations of an

n×n correlation matrix are required and become infeasible for large sample

size n. The other is how to improve the naive plug-in predictive distribution

which is known to underestimate the uncertainty.
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• Problem 2 (Combining Dependent Studies) Conventional combining

methodologies focus on integrating information without considering the

dependency among the individual studies. One specific example is that,

when combining log-likelihood functions, usually we take the summation

of individual ones. However, this approach will fail if those log-likelihood

functions are dependent Fraser and Reid (2015). Another scenario relates

to combining the local estimates of parametric components in the partial

linear models. The local estimators are derived based on the non-parametric

components and local likelihood functions and therefore there will be

dependency among those local results. Traditional combining approaches

will not be feasible in this case.

To address the two challenging problems above, we adopt the concept of CD to

develop innovative approaches to combining information without the assumption

of independence. CD is defined as sample-dependent distribution function that

can represent the confidence regions of all levels of parameter of interest (Singh

et al., 2007). One of the attractive features of CD is that it contains wealth

information for making Frequentist inference. Due to this advantage of CD,

the CD-based combining approaches are widely employed and adopted in the

literature (Claggett et al., 2014; Yang et al., 2014; Liu et al., 2015). In this

dissertation, we expand the combining recipe to those dependent studies.

• For Problem 1, we propose a Sequential Split-Conquer-Combine (SSCC)

approach to analyze the big spatial data under a GP model setting.

The SSCC approach that can tackle the two issues discussed above

simultaneously by providing estimators and predictors that maintain the

same asymptotic efficiency as the conventional method but reduce the

computation dramatically. Moreover, the CD-based predictive distribution

contains comprehensive information for statistical inference and provides a
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better quantification of predictive uncertainty comparing with the plug-

in approach. Simulations are conducted to evaluate the accuracy and

computational gains. The proposed framework is demonstrated by a

data center example based on tens of thousands of computer experiments

generated from a computational fluid dynamic simulator.

• For Problem 2, we propose a general combining approach by using CDs to

integrate information from non-independent studies. The idea is inspired

by the methodology suggested by Singh et al. (2005) applying to the

independent case. We first illustrate the proposed approach on a simple

example that combining dependent log-likelihood functions. We also

focus on combining the parametric components from partial linear models.

The theoretical derivation and numerical validation demonstrate that our

general framework can effectively combine non-independent studies and lead

to results as if they were derived over the entire raw dataset.
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Chapter 2

A Sequential Split-Conquer-Combine Approach

for Gaussian Process Modeling in Computer

Experiments

2.1 Introduction

Gaussian process (GP) models, also known as kriging, are commonly used

in many applications including geostatistics and machine learning. In recent

years there has been a growing interest in GP models for the analysis of

computer experiments, which is important in science, engineering and medicine

(Sacks et al., 1989). Computer experiments refer to the study of real systems

using mathematical models. They have been widely used as alternatives to

physical experiments, especially for studying complex systems. The reason is,

in many situations, a physical experiment is infeasible because it is unethical,

impossible, inconvenient or too expensive. Typically, computer experiments are

computationally demanding and their outputs are deterministic in the sense that

running the code twice with the same set of input values will produce the same

output. Therefore, it is desirable to build an interpolator for the computer

experiment outputs and use it as an emulator for the actual computer experiment.

In the literature, GP models are extensively used as an interpolator in the

analysis of computer experiments. Comparing with conventional applications

in geostatistics, computer experiments often involve more variables in their GP

models. More discussions of computer experiments can be found in Sacks et al.

(1989), Fang et al. (2006), and Santner et al. (2003).
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There are two critical issues that have not been solved satisfactorily in GP

modeling in the field. The first one is the computational issue. This is because

estimation and prediction of GP heavily involve manipulations of the n-by-n

correlation matrix, where n is the sample size, that require O(n3) computations

and often result in singularity. This issue has been well recognized in the

literature, and the proposed approaches can be characterized broadly as either

changing the model to one that is computationally convenient or approximating

the likelihood for the original data. Examples of the former includes Rue

and Tjelmeland (2002), Rue and Held (2005), Cressie and Johannesson (2008),

Banerjee et al. (2008), Gramacy and Lee (2008), Wikle (2010), Chang et al.

(2014); while approximation approaches includes Nychka (2000), Smola et al.

(2001), Nychka et al. (2002), Stein et al. (2004), Snelson and Ghahramani (2005),

Furrer et al. (2006),Fuentes (2007), Kaufman et al. (2008), Liang et al. (2013),

Gramacy and Apley (2015), and Nychka et al. (2015). Recent studies address

the issues by imposing a sparsity constraint on the correlation matrix. Examples

including correlation tapering (Kaufman et al., 2008; Stein, 2013) and compact

support correlation (Gneiting, 2002; Stein, 2008; Kaufman et al., 2011). However,

it has been shown that these methods can display sizable bias in parameter

estimation unless the taper/band range is large and, when the taper/band range

is large, although the bias is reduced, their computational complexity and burden

will be significantly increased (Kaufman et al., 2008; Stein, 2013; Liang et al.,

2013). In addition, the connection between the degree of sparsity and computation

time is nontrivial.

The second issue is how to accurately quantify the uncertainty in GP modeling.

It is well-known that the predictive distributions constructed by substituting

the true parameters by estimators, often called plug-in predictive distributions,

underestimate the uncertainty (Santner et al., p.98). However, they are still

widely used due to the lack of computationally efficient alternatives. Alternative
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approaches, for examples, predictive distributions constructed by bootstrap

(Sjöstedt-de Luna, 2003; Santner et al., 2003) or Bayesian procedure (Kennedy

and O’Hagan, 2001; Schmidt and O’Hagan, 2003) provide better quantification

of uncertainty but they require even more intensive computation because more

manipulations of the correlation matrix are involved.

Although numerous methods have been proposed to address these issues, to

the best of our knowledge, they are developed typically for solving one of the issues

leaving the other questionable. So our goal is to introduce an unified framework

for GP models that can address both issues simultaneously. This framework is

called a sequential-split-conquer-combine (SSCC) approach, which consists of a

sequential split-conquer procedure and an information combining technique using

confidence distributions (CDs) and a CD-based predictive distribution (Singh

et al., 2005; Yang et al., 2014; Liu et al., 2015). The sequential split-conquer

procedure reduces the computational complexity by splitting the data into smaller

subsets and allowing estimation to be performed on the subsets individually.

Although similar ideas of data splitting are discussed in the literature (Stein,

2013; Chen and Xie, 2014a; Mackey et al., 2015), information from individual

subsets are often assumed to be independent which is violated in GP modeling.

In contrast, the proposed sequential split-conquer procedure takes into account

the data dependency by updating information sequentially from neighborhood

subsets so that the estimation efficiency can be enhanced. After splitting the

data into subsets, individual information from each subset is combined using

a CD technique which provides not only an efficient combined estimate but

also a flexible tool for inference. Last, an easy-to-compute GP predictor is

introduced and a CD-based predictive distribution is constructed. Apart from the

computational reduction, the proposed framework provides combined estimates

and predictions that is asymptotically equivalent to the conventional ones under

very mild conditions. Furthermore, it provides comprehensive information
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for statistical inference and a better quantification of predictive uncertainty

comparing with the plug-in approach.

The remainder of this section is organized as follows. In Section 2.2, the

standard procedure of estimation and prediction are reviewed for GP models. The

unified framework is introduced in Section 2.3. In Section 2.4, simulations are

presented to demonstrate the performance of the proposed framework. In Section

2.5, the proposed approach is applied to a data center thermal management study.

Summary and concluding remarks are given in Section 2.6.

2.2 Gaussian Process Models

A Gaussian process model can be written as

y(x) = µ(x) + Z(x), (2.1)

where y ∈ R is the output, x ∈ Rp is the input, µ(x) is the mean function

assumed to be a function of x with unknown parameters β ∈ Rp, say, µ(x) =

x>β. In addition, Z(x) is a Gaussian process with mean 0 and Cov(xi,xj) =

σ2φ(xi,xj;θ), where φ(xi,xj;θ) is the correlation function and θ is a vector

of unknown correlation parameters. There are various correlation functions

discussed in the literature. Here we focus on a popular choice in computer

experiments, a product form of power exponential functions (Sacks et al., 1989;

Gramacy and Apley, 2015; Kaufman et al., 2011):

φ(xi,xj;θ) =

p∏
k=1

Rk(|xik − xjk|) =

p∏
k=1

exp(−θk|xik − xjk|α), (2.2)

where 0 < α ≤ 2 is a tuning parameter and θ = (θ1, ..., θp) with θk ≥ 0 for

all k. Since the correlation parameters θk’s are not constrained to be equal, the

model can handle different signals in each input dimension which makes (2.2)

particularly attractive to the analysis of computer experiments. Note that in

(2.2), as long as |xik − xjk| → ∞ for a single k with θk > 0, Cov(xi,xj)→ 0.
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Given n realizations y = (y1, ..., yn)> and the corresponding inputs X =

(x>1 , ...,x
>
n )>, the joint log-likelihood function for (2.1) can be written as

l(β,θ, σ) = − 1

2σ2
(y −Xβ)>Σ−1(θ)(y −Xβ)− 1

2
log |Σ(θ)| − n

2
log(σ2), (2.3)

where Σ(θ) is the n × n correlation matrix with the ijth element equals to

φ(xi,xj;θ). The maximum likelihood estimates (MLEs) of β and σ can be

obtained by

β̂ = (X>Σ−1(θ)X)−1X>Σ−1(θ)y, (2.4)

σ̂2 = (y −Xβ̂)>Σ−1(θ)(y −Xβ̂)/n. (2.5)

By maximizing the logarithm of the profile likelihood, the MLE of θ can be

obtained by

θ̂ = arg max
θ
{n log(σ̂2) + log |Σ−1(θ)|}. (2.6)

For the estimation of correlation parameters θ, there are some likelihood-based

alternatives, including the restricted maximum likelihood (REML) (Irvine et al.,

2007) and penalized likelihood approaches (Li and Sudjianto, 2005). In this paper,

we focus on the study of MLEs but the results can be further extended to the

likelihood-based alternatives.

When the parameters are known, the conditional distribution of y0 at a new

input x0, given the observations y, is normal with mean p0(β,θ) and variance

m0(β,θ), where

p0(β,θ) = x>0 β + γ(θ)>Σ−1(θ)(y −Xβ), (2.7)

m0(β,θ) = σ2(1− γ(θ)>Σ−1(θ)γ(θ)), (2.8)

and γ(θ) is a n×1 vector with ith element equals to φ(xi,xj;θ). In practice, when

the parameters are unknown, the conventional plug-in approach constructs an

predictive distribution by replacing the true parameters by their MLEs. Therefore
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the (estimated) plug-in predictive distribution is normally distributed with mean

p0(β̂, θ̂) and variance m0(β̂, θ̂).

Calculating MLEs (2.4)-(2.5) and GP predictors (2.7)-(2.8) is computationally

intensive because the calculation requires manipulations of a n × n correlation

matrix Σ, such as Σ−1 and |Σ|, which are intractable for moderate sample sizes

and infeasible for large sample sizes. On the other hand, ignoring the parameter

uncertainty in the construction of plug-in predictive distribution clearly leads to

an underestimation of predictive uncertainty.

A commonly used approach to reduce complexity of GP estimation

and prediction is to introduce zeros into the correlation matrix and thus

computationally efficient sparse matrix techniques (Pissanetzky, 1984; Barry and

Pace, 1999) can be used. Methods along this line, such as compactly supported

correlation functions and covariance tapering, have received increasing attention

in the literature (Gneiting, 2002; Furrer et al., 2006; Kaufman et al., 2008, 2011;

Bickel and Levina, 2008; Stein, 2008, 2013; Chu et al., 2011). The compactly

supported correlation function introduce zeros into the correlation matrix by

assuming

Rk(|xik − xjk|) = 0, if |xik − xjk| ≥ τk, (2.9)

for τk ≥ 0 and k = 1, ..., p. The tuning parameters τk is called the range

parameters. Another commonly used approach is covariance tapering in which

the covariance matrix is multiplied by a tapering function defined by a single

range parameter. For these tapering-type of methods, the resulting estimates

can display sizable bias when the range parameter is small relative to the true

correlation range of the process (Kaufman et al., 2011). Therefore, larger τk

is preferred for estimation purpose but it leads to a significant increase of

computational complexity.
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2.3 A Unified Framework by Sequential-Split-Conquer-

Combine

2.3.1 Estimation of the mean function coefficient β

We begin by illustrating the SSCC framework using a simple case where θ and σ

are known. There are two steps: first is to split and sequentially update the data

and the second step is information combining using confidence distributions.

Step 1: Sequentially split and conquer

To reduce computation, a key idea of the unified framework is to splitting the

data into smaller subsets and allow the estimation to be done individually within

each subset. This concept is attractive and is discussed under various settings,

including spatial-temporal models (Stein, 2013), matrix factorization in machine

learning (Mackey et al., 2015), linear models, and penalized regressions (Chen and

Xie, 2014a). However, most of the existing methods cannot take into account the

dependency between subsets, which is crucial in the setting of GP models, and

thus leads to a significant loss of efficiency in estimation. Therefore, a careful

sequential information update is introduced in our procedure to incorporate the

dependency between subsets and improve the estimation efficiency.

First, the full data y is split into m disjoint subsets, (y1, ...,ym), according

to the values of one of the input variables, denoted by the first one X1 without

loss of generality. More specifically, m is defined by m = bM1/τc, where M1 =

max (X1)−min (X1) is the range of the first variable and τ is a tuning parameter

that is closely connected to the range parameter in tapering. The size of each

subset ya is then denoted by na and therefore
∑m

a=1 na = n. Theoretically, the

procedure and asymptotic results developed in this paper are valid regardless of

the choice of the first variable. Some suggestions and discussions regarding how
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to choose the first variable in practice and the impacts are given in Section 4.

After splitting, the covariance matrix Σ can be decomposed into blocks

indicating the within subset correlations and between subset correlations. A

block-wise tapering/thresholding is applied to approximate the correlation

matrix. That is, after rearranging the data by the first variable, the correlation

matrix Σ is approximated by Σt as follows:

Σt =


Σ11 Σ12 O · · · O

Σ21 Σ22 Σ23 · · · O

. . . . . . . . .

O O · · · Σm(m−1) Σmm


n×n

, (2.10)

where Σii, i = 1, ...m, captures the correlation within subset yi, Σij is a block

matrix capturing the correlations between subsets yi and yi, and O’s are matrices

with all 0 elements. By replacing Σ by Σt in the log-likelihood function (2.3), we

have the approximated log-likelihood function denoted by lt.

Remark 1. The correlation matrix Σt brings in sparsity by introducing zeros

to the correlation matrix if the data are neither within the same subset nor in

the neighborhood subsets. Such an assumption is relatively mild and desirable

comparing with the existing tapering-type of methods because of three reasons.

First, the assumption is applied to only one variable while the typical compactly

supported correlation and tapering method require the sparsity assumption on all

the variables as defined in (2.9). Second, Σt maintains the correlation between

neighborhood subsets to be estimable while only partial information is estimable

in the tapering-type of correlation function. For example, further assuming the

off-diagonal matrices Σaa+1 and Σa+1a to be lower and upper triangles leads

to a tapering assumption on the first variable with range parameter τ , i.e.,

R1(|xi1 − xj1|) = 0, if |xi1 − xj1| > τ . Another example is the tapering approach

discussed by Stein (2013) where none of the correlations between neighborhood

subsets are estimable, i.e, the off-diagonal matrices Σaa+1 and Σa+1a are assumed
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to be zeros. Third, it is computationally affordable for the proposed framework

to have a larger τ compared with the tapering-type of methods and thus higher

estimation accuracy and efficiency can be achieved. Note that, (2.10) is positive

definite with high probability, but it is not guaranteed to be positive definite. In

practice, the technique suggested by Cai and Zhou (2012) can be modified and

applied here to ensure a positive semi-definite correlation matrix.

Next, we transform y to y∗ = (y∗1, ...,y
∗
m) by sequentially updating each

subsets as follows so that the correlation between subsets can be incorporated:

y∗a = ya − La(a−1)y
∗
a−1, (2.11)

where L(a+1)a = Σt(a+1)aD
−1
a , Da = Σaa − La(a−1)D(a−1)L

>
a(a−1), L(a+1)a and Da’s

are solved iteratively by initialing Da = Σ11. The update of y∗a only depends

on the ya and y∗a−1, which are all small subsets therefore it is easy to computer.

This transformation is in fact a block LDL-decomposition (Fang, 2011) creates

independency to the new subsets by carefully removing information sequentially.

Based on the following Lemma, the transformed data y∗ has an important

property that the subsets y∗a are mutually independent.

Lemma 1. After transformation, the covariance within each subset y∗a is Da

and any two subsets are mutually independent. That is, y∗ = (y∗1, ...,y
∗
m) has

covariance matrix D, where

D =


D1 ... O

. . .

O ... Dm

 , L =


I

L21 I

...
...

. . .

Lm1 Lm2 · · · I


,

and LDL> = Σt.

For individual subsets y∗a, where a = 1, ...,m, the log-likelihood function of y∗a

can be written as

l
(a)
t (β) = −1

2
log |Da| −

1

2
(Caβ − y∗a)>D−1

a (Caβ − y∗a),
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where na × p matrix Ca = Xa +
∑a−1

b=1 BabXb, na × nb matrix Bab =∏a
k=b+1(−Lk(k−1)), and na × p matrix Xa is the design matrix corresponding to

y(a). By maximizing l
(a)
t (β), we have the MLE of β estimated from the ath subset

as

β̂a = arg max
β

l
(a)
t (β) = (C>a D

−1
a Ca)

−1C>a D
−1
a y

∗
a. (2.12)

Under Gaussian process model (2.1) and by a direct calculation, we have

S
−1/2
a (β̂a − β) ∼ N (0, I), where Sa = Cov(β̂a) = (C>a D

−1
a Ca)

−1. This could

be easily verified by Lemma 1.

Step 2: Information combining via confidence distributions

Confidence distribution (CD) refers to any sample-dependent distribution

function that can represent confidence intervals/regions of all levels for a

parameter of interest (cf., e.g., Xie and Singh (2013)). Conceptually, a CD

is not different from a point estimator or a confidence interval, but it uses a

sample-dependent distribution function on the parameter space to estimate the

parameter of interest. A CD is to “provide simple and interpretable summaries

of what can reasonably be learned from data (and an assumed model)” (Cox,

2013). It can provide meaningful answers for all questions related to statistical

inferences and an approach that combines CDs preserves more information than

a traditional approach that combines just point estimators (Xie and Singh, 2013;

Schweder and Hjort, 2016). Singh et al. (2005) and Xie et al. (2011) described a

general framework to combining information based on CDs, which can subsume

almost all information combination methods used in the current practice. In

this subsection and following Liu et al. (2015); Yang et al. (2014), we provide

a combined estimation for the unknown regression parameters based on a set of

CDs obtained from the individual subsets.

Specifically, from (2.12), a resulting CD for β in the ath subset, expressed in
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its density form, is

hn(β) ∝ exp

[
− 1

2σ2
(β̂a − β)TS−1

a (β̂a − β)

]
That is, N (β̂a, Sa) is a multivariate normal CD for β; cf., Singh et al. (2007)

and Liu et al. (2015) for the formal definition of multivariate normal CD. Then,

following Liu et al. (2015) and Section 4 of Singh et al. (2005), a combined point

estimator of β can be obtained by

β̂c = arg max
β

m∏
a=1

hn(β). (2.13)

By a direct calculation, we have an explicit expression that β̂c =

(
∑
Wa)

−1(
∑
Waβ̂a), whereWa = C>a D

−1
a Ca is the weight matrices. Furthermore,

the variance of β̂c is Sc = Cov(β̂c) = (
∑
Wa)

−1(
∑
WaSaWa)(

∑
Wa)

−1 =

(
∑
Wa)

−1 = (X>Σ−1
t X)−1 and S

−1/2
c (β̂c−β) ∼ N (0, I). Again, by the definition

of Singh et al. (2007) and Liu et al. (2015), N (β̂c, Sc) is a multivariate normal

CD for β. The function N (β̂c, Sc) is on the space of β and it depends data in all

subsets. We call it a combined CD. The combined estimator β̂c and the combined

CDN (β̂c, Sc) enjoy computational efficiency because they can be calculated based

on small subsets and by summations. Following Singh et al. (2005), statistical

inference, such as constructing confidence intervals/regions of β or calculating

p-values, can be easily obtained from the combined CD.

The following theorem states that β̂c is asymptotically equivalent to β̂, the

original MLE obtained based on (2.4) without splitting the data. A proof of the

theorem can be found in Appendix.

Theorem 1. Under the regularity conditions in Appendix B and τ > Op(log n),

the combined estimator β̂c is a consistent estimator of β and has the following

asymptotic distribution:

√
n(β̂c − β)

D→ N (0, S),

where S = nCov(β̂mle) = n(X>Σ−1X)−1.
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2.3.2 Estimation when both β and θ are unknown

We illustrate the unified SSCC framework in a general setting where both β

and θ are unknown. In this case, the computation is more demanding compared

with the estimation of β because MLE can be obtained only by maximizing the

likelihood (2.6) without closed form expression and the maximization involves

intensive operations of large correlation matrix. Therefore, a computationally

efficient estimation procedure is even more critical. We extend the procedure of

Section 3.1 to the situation where θ is also unknown. The idea is to obtain the

estimation of β and θ by updating β|θ and θ|β iteratively. Here we describe one

of the iteration with details and the completed algorithm is given in the Appendix.

This framework can be easily extended to estimate σ. The full expression is rather

lengthy but straightforward. So to simplify the notation, we assume σ is known.

Start from an estimation of θ, denoted by θ(t−1), β(t) can be estimated by the

combined estimator β̂c given in (2.13) with θ = θ(t−1). Given β(t), a two-step

procedure that is analogue to the one in Section 3.1 is implemented to obtain θ(t).

In Step 1, based on the same splitting (y1, ...ym), the sequential updating (2.11)

is modified by

y∗a(θ) = ya − La(a−1)(θ)y∗a−1(θ),

where La(a−1)(θ) = Σta(a−1)(θ)D−1
a−1(θ) and Da(θ) = Σtaa(θ) −

La(a−1)(θ)Da−1(θ)L>a(a−1)(θ). In step 2, the close form expression of MLE

in (2.12) is replaced by maximizing the likelihood

l
(a)
t (θ|β(t)) = −1

2
log |Da(θ)| − 1

2
(y∗a(θ)−Ca(θ)β(t))>D−1

a (θ)(y∗a(θ)−Ca(θ)β(t)),

(2.14)

where Ca(θ) = Xa +
∑a−1

b=1 Bab(θ)Xb, Bab(θ) =
∏a

k=b+1(−Lk(k−1)(θ)), and Xa is

the design matrix for ya. Note that, the calculation of log-likelihood l
(a)
t depends

only on the current subset y∗a, previous subset y∗a−1, and the correlation between

these two subsets and thus it is still easy to compute. It is also clear that lt =
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∑m
a=1 l

(a)
t .

The estimate of θ from individual subset y∗a is denoted by

θ̂
(t)

a = arg max
θ

l
(a)
t (θ|β(t))

and the combined estimate for θ can be calculated by

θ̂
(t)

c = (
m∑
a=1

S−1
a )−1(

m∑
a=1

S−1
a θ̂

(t)

a ), (2.15)

where Sa = −H−1
a (θ̂

(t)

a ) and Ha(·) is the ath Hessian matrix derived from

l
(a)
t (θ|β(t)). Therefore, given β(t), θ(t) is updated by the combined estimator,

i.e., θ(t) = θ̂
(t)

c . Following Singh et al. (2007) and Liu et al. (2015) and similar to

Section 2.3.1, an individual CD from the ath block isN (θ̂
(t)

a , Sa) and the combined

CD is N (θ̂
(t)

c , S
(t)
c ), where S

(t)
c = (

∑m
a=1 S

−1
a )−1. When iteration converges (i.e.

||θ(t)−θ(t−1)|| and ||β(t)−β(t−1)|| are both very small), we stop the iteration and

denote the combined results (β(t),θ(t)) as (β̂c, θ̂c).

This framework provides significant computational reduction in comparing

with the original MLE in (2.4) and (2.6). The combined estimators also maintain

desirable asymptotic properties as the original MLE, which is shown in the

following theorem.

Theorem 2. Under the assumptions of Theorem 1 and when τ > Op(n
1/2) as

n → ∞, the combined estimator λ̂c = (β̂c, θ̂c) is asymptotically as efficient as

MLE λ̂ = (β̂, θ̂) obtained from (2.4) and (2.6).

Kaufman et al. (2008) points out that estimation based on tapering can be

biased. In fact, this can be an issue in most of the tapering-type of methods

including the compactly supported correlations and the current method. This is
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because, for example when β = 0, we have

E{∂{−lt(θ)}
∂θ

} = E{1

2
tr(Σ−1

t Σ′t) +
1

2
y′Σ1

ty}

=
1

2
tr(Σ−1

t Σ′t)− tr(Σ−1
t Σ′tΣ

−1
t Σ)

=
1

2
tr(Σ1

t (Σ− Σt)) 6= 0,

where lt(·) denotes the log-likelihood function by compactly supported correlation,

∂Σt/∂θ = Σ′t, ∂Σ−1
t /∂θ = Σ1

t = −Σ−1
t Σ′tΣ

−1
t . This issue can be solved under

certain conditions as described in the following corollary.

Corollary 1. Suppose that τ > Op(log n) as n→∞. Under the assumptions of

Theorem 1, the combined estimator is unbiased.

2.3.3 Prediction and uncertainty quantification

A CD-based predictive distribution is introduced in this section. It has two

advantages. First, it consists a GP predictor that overcomes the computational

difficulty in the conventional predictor (2.7) and meanwhile maintains the

same asymptotic efficiency. Second, it provides comprehensive information

for statistical inference and a better quantification of prediction uncertainty

comparing with the plug-in approach.

Based on the sequential split-conquer procedure and the combined estimates

obtained from Section 3.2, we approximate the GP predictive mean (2.7) and

variance (2.8) by p1(β,θ) and m1(β,θ) as follows:

p1(β,θ) = x>0 β +
m∑
a=1

γ∗a(θ)>D−1
a (θ)y∗a +

m∑
a=1

γ∗a(θ)>D−1
a (θ)Ca(θ)β, (2.16)

m1(β,θ) = σ2(1−
m∑
a=1

γ∗a(θ)>D−1
a (θ)γ∗a(θ)), (2.17)

where γ∗a(θ) = γa(θ) + La(a−1)(θ)γ∗a−1(θ), γa(θ) is the na × 1 vector with ith

element equal to φ(||xi − x0||;θ) where i =
∑a−1

b=1 nb + 1, ...,
∑a

b=1 nb. These two
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estimates enjoy the computational efficiency because their calculation involves

only small correlation matrix with size na × na, a = 1, ...m. Given the

computational reduction, the new predictive mean (2.16) and variance (2.17) is

shown to be asymptotically equivalent to the conventional ones according to the

following theorem.

Theorem 3. Suppose that τ > Op(n
1/2) as n → ∞. Under the assumptions of

Theorem 1, we have

p1(β,θ)→ p0(β,θ)and m1(β,θ)→ m0(β,θ). (2.18)

To provide a better alternative to the plug-in predictive distribution, we

construct a CD-based predictive distribution that captures the parameter

uncertainty using the combined confidence distributions. The CD-based

predictive distribution is first introduced by Shen et al. (2016) under a general

setting. Here we extend the idea to GP models and construct a CD-based

predictive distribution which is not only more accurate but also easy to compute.

A CD-based predictive distribution is defined by:

Q(y0;y) =

∫
λ∈Θ

Gλ(y0)dFc(λ;y), (2.19)

where Gλ(y0) is the cumulative density function (CDF) of the predictive

distribution, i.e., a normal distribution with mean p1 and variance m1 given

in (2.16) and (2.17). The confidence distribution (CD) of (β,θ) is N (λ̂c, S
λ
c )

where λ = (β,θ), λ̂c = (β̂c, θ̂c) is the combined estimator of λ, variance

matrix Sλc = Var(λ̂c) equals to the corresponding Hessian matrix calculated

from log-likelihood function. CD-based predictive distribution is closely related

to the Bayesian predictive distribution and bootstrap predictive distribution as

discussed by Singh et al. (2005). By direct application of Theorem 4 in Shen et al.

(2016), it can be shown that the CD-based predictive distribution outperforms

the plug-in approach, measured by the average Kullback-Leibler distance to the

true predictive distribution.
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To implement the predictive distribution formulated in (2.19), we proposed

the following Monte-Carlo algorithm which is simple yet broadly applicable.

Monte-Carlo Algorithm: Obtain T simulated copy of y0 from Q(·;y), denoted by

y
(t)
0 and t = 1, ...T , by iteratively perform the following two steps.

1. Simulate a random variable λ(t)|y ∼ N (λ̂c, S
λ
c ).

2. Obtain y
(t)
0 |λ(t) ∼ N (p1(λ(t)),m1(λ(t))).

These T copies of y0 can be used to approximate the predictive distribution in

(2.19).

2.4 Simulation

Simulation studies are conducted to examine the performance, including

estimation and prediction, of the proposed framework. All simulations are carried

out by a machine with a quad-core CPU @ 3.50GHz, 12GB RAM under R 3.3.1

in Windows 10.

To demonstrate the estimation performance, we compare the proposed

combined estimator with the regular MLE and the estimator based on the

compactly supported correlation (Kaufman et al., 2011), denoted by “Compact”.

We consider a problem in a four-dimensional input space, x ∈ [0, 1]4, with three

different sample sizes, n = 1000,1500, and 2000, in which β and θ are unknown.

The inputs are generated from a regular grid on [0, 1]4 and the responses are

simulated from a Gaussian process model with the mean function coefficient

β = (2, 3, 1, 2, 1.5) and the correlation function

φ(xi,xj;θ) =
4∏

k=1

exp(−θk|xik − xjk|), (2.20)

where θ = (15, 1.5, 2, 3) and σ2 = 1 is assumed to be known. To implement the

SSCC framework, we assume τ = 0.2, so the number of blocks is m = bM1/τc =
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b1/0.2c = 5. To emphasize the estimation performance of the parameters, we

specify α = 1 for the three methods without further tuning. To further increase

the flexibility of the GP models, standard tuning methods can be applied. For

each sample size, we repeat the simulation 100 times and report the mean,

standard deviation, and the computing times, denoted by CT, in Table 2.1. For

the cases of n = 1000, 1500, 2000, the performance of the three methods are also

illustrated by box plots in Figure 2.1, 2.2, 2.3.
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Table 2.1: Mean, standard deviation and computing time of estimations by
MLE, compact and SSCC methods with simulation studies’ sample size n =
1000, 1500, 2000.
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Figure 2.1: Boxplots of estimators by MLE, compact and SSCC methods when
sample size n = 1000

Based on the results in Table 2.1, the estimation performance of the proposed

estimator is compatible with the other two estimators which is consistent with the

theoretical results. In terms of the computing time, the proposed method provides

a significant reduction comparing with the other two methods, especially when

the sample size is large. Specifically, comparing with the original MLE and the

compactly supported correlation approach, the computing time is reduced more

than 86% by the proposed combined estimator for all the three different sample

sizes and this reduction increases with sample sizes.
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Figure 2.2: Boxplots of estimators by MLE, compact and SSCC methods when
sample size n = 1500

To illustrate the performance of the proposed predictive distribution, we

implement the Monte-Carlo Algorithm (Section 3.3) to construct predictive

distributions for several untried points following the previous settings with sample

size n = 2000. We focus on examining the predictive performance by changing

the setting of the most important variable, because this is of interest in many

applications including the real data analysis in Section 5. Four untried settings

are assumed by varying the settings of the most active variables, i.e., changing the

setting of the first variable to be 0.2, 0.4, 0.6, and 0.8 respectively. The setting of

the other three variables are fixed to be (0.43, 0.5, 1). Based on the estimator in

Table 2.1, we have λ̂c = (2.08, 2.90, 1.04, 1.98, 1.49, 14.79, 1.49, 2.00, 3.00). Here,

we construct the CD-based confidence distribution (2.19) according to 1000 copies

of y0 generated by the Monte-Carlo algorithm, denoted by y
(1)
0 , · · · , y(1000)

0 . Figure

2.4 shows the corresponding histograms of y0 for the four untried settings. The
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Figure 2.3: Boxplots of estimators by MLE, compact and SSCC methods when
sample size n = 2000

red dashed lines are the mean function calculated by the true parameters. For

example, the first one is calculated by 2 + 3× 0.2 + 1× 0.43 + 2× 0.5 + 1.5× 1 =

5.53. The CD-based predictive distribution not only contain information of the

predictive mean but also provides a flexible way to construct predictive intervals

with any level of frequentist coverage probability. Furthermore, it provides rich

information for statistical inference in practice which is further illustrated by the

real example in Section 5.

Note that an efficient setting of the initial mean function coefficients, θ(0),

can significantly reduce the computing time. We suggest to use the coefficients

estimated by linear regression models as the initials because they tend to be close

to those obtained by GP models. Another important question is how to determine

the first variable in practice to implement the splitting procedure. Although

any variable can be used theoretically, there are some choices that we found
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Figure 2.4: Predictive distributions for 4 untried points

empirically more efficient. Ideally, a variable that follows the tapering assumption

is a desirable choice. That is, for this particular variable, the correlations between

pairs of responses with larger distance are nearly zero, therefore little information

is lost in assuming them to be conditionally independent given other variables

as described by (2.10). Therefore, a useful way in practice is to empirically

examine this assumption by checking the correlation plots for each variable. In

our experience, the most active variable often be a reasonable choice, such as the

first variable in the simulation study.
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2.5 Data Center Thermal Management

A data center is a computing infrastructure facility that houses large amounts

of information technology equipment used to process, store, and transmit digital

information. Data center facilities constantly generate large amounts of heat to

the room, which must be maintained at an acceptable temperature for reliable

operation of the equipment. A significant fraction of the total power consumption

in a data center is for heat removal; therefore, determining the most efficient

cooling mechanism has become a major challenge. The objective of a thermal

management study is to model the thermal distribution in a data center and the

final goal is to design a data center with an efficient heat-removal mechanism.

For a data center thermal study, physical experiments are not always feasible

because some settings are highly dangerous and expensive to perform. Therefore,

computer experiments based on computational fluid dynamics (CFD) are widely

used. In this example, CFD simulations are conducted at IBM T. J. Watson

Research Center based on a real data center layout. Detailed discussions about

the CFD simulations can be found in Lopez and Hamann (2011). There are 26820

temperature outputs generated from the CFD simulator based on an irregular grid

over an 9-dimensional space. The nine variables are listed in Table 2.2. The first

six variables control the cooling mechanism, including four computer room air

conditioning (CRAC) units with different flow rates (x1, ..., x4), the overall room

temperature setting (x5), and the perforated floor tiles with different percentage

of open areas (x6). The last three variables are the spatial location, x-axis, y-axis,

and height, in the data center (x7 to x9).

Gaussian process model is desirable for the analysis of this problem because

it provides a flexible interpolator for the deterministic CFD simulation outputs

(Santner et al., 2003). However, it is computationally prohibitive to build a GP

model following the standard procedure. Thus, we implemented the proposed
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method to this data and for the purpose of comparison, we also performed

the original MLE and the compact correlation function in two smaller subsets,

n = 1800 and n = 3600. Estimation results are summarized in Table 2.2,

where “-” indicates no result available. For n = 1800, we are able to calculate

the estimators for the three approaches. The results show that, with a similar

estimation performance, the proposed combined estimator reduces the computing

time by more than 98% comparing with the other two methods. For n = 3600

and the full data, n = 26860, the original MLE and the compactly supported

correlation approach cannot be carried out due to computational and/or memory

limitation.

n = 1800 n = 3600 n = 26820
Variable MLE Compact SSCC MLE Compact SSCC MLE Compact SSCC

x1 β̂1 -8.28(0.10) -8.29(0.10) -8.29(0.10) - - -8.05(0.09) - - -7.39(0.08)

θ̂1 0.84(0.01) 0.84(0.01) 0.86(0.01) - - 0.85(0.01) - - 0.86(0.01)

x2 β̂2 -9.00(0.10) -8.99(0.10) -8.99(0.10) - - -10.14(0.09) - - -9.09(0.08)

θ̂2 0.76(0.01) 0.76(0.01) 0.79(0.01) - - 0.77(0.01) - - 0.76(0.01)

x3 β̂3 -6.44(0.10) -6.45(0.10) -6.45(0.10) - - -7.08(0.09) - - -6.59(0.09)

θ̂3 1.20(0.01) 1.20(0.01) 1.19(0.01) - - 1.14(0.01) - - 1.13(0.01)

x4 β̂4 -5.42(0.11) -5.41(0.11) -5.41(0.11) - - -6.52(0.10) - - -5.86(0.10)

θ̂4 1.90(0.01) 1.90(0.01) 1.80(0.01) - - 1.70(0.01) - - 1.83(0.01)

x5 β̂5 -0.08(0.13) -0.07(0.13) -0.07(0.13) - - -0.68(0.13) - - 0.29(0.13)

θ̂5 3.50(0.01) 3.50(0.01) 3.40(0.01) - - 3.39(0.01) - - 3.50(0.01)

x6 β̂6 -1.98(0.10) -1.97(0.10) -1.97(0.10) - - -2.12(0.10) - - -1.79(0.09)

θ̂6 1.29(0.01) 1.29(0.01) 1.20(0.01) - - 1.24(0.01) - - 1.28(0.01)

x7 β̂7 -3.39(0.06) -3.41(0.06) -3.41(0.06) - - -4.04(0.04) - - -2.99(0.03)

θ̂7 0.20(0.01) 0.20(0.01) 0.17(0.01) - - 0.14(0.01) - - 0.15(0.01)

x8 β̂8 2.80(0.08) 2.80(0.08) 2.80(0.08) - - 1.72(0.07) - - 0.04(0.06)

θ̂8 0.60(0.01) 0.60(0.01) 0.50(0.01) - - 0.62(0.01) - - 0.50(0.01)

x9 β̂9 22.33(0.18) 22.35(0.18) 22.35(0.18) - - 24.75(0.18) - - 23.90(0.18)

θ̂9 21.90(0.03) 21.90(0.03) 21.45(0.03) - - 21.61(0.03) - - 21.10(0.03)
CT (seconds) 2768.70 2753.91 55.07 - - 372.67 - - 26257.2

Table 2.2: Mean, standard deviation and computing time of estimations by MLE,
compact and SSCC methods with subsample size n = 1800, 3600 and the entire
CFD data

Based on the estimation results in Table 2.2, we can construct the CD-based

predictive distribution for some untried settings, which is a crucial step in finding

an efficient cooling mechanism in a data center. The prediction performance is
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first illustrated by predicting the heat map in the data center by varying the most

active variable, height, with the control variables assumed to be: CRAC unit flow

rate 6500, unit 2 flow rate 6500, unit 3 flow rate 2750, unit 4 flow rate 2750, room

temperature 71◦ F and tile percentage 75%. Figure 2.5 presents the CD-based

predictive heat map at four different heights, i.e., 0, 2.25, 4.25, 6.75. From the

heat maps, it is shown that on average, temperature increases with height which

agrees with the thermal dynamics in general. Apart from predictive heat map,

the CD-based predictive distribution can be used to construct confidence intervals

with any level of frequentist coverage probability. It also provides valuable insights

of the thermal distribution in the data center. For example, Figure 2.6 shows the

predictive distributions for four randomly selected untried settings at location

x-axis = 23.5, y-axis = 14.5, with four different heights. At height = 2.25 given

other settings, the confidence that the temperature will below 66◦ F is 99.4%; at

height = 6.75, the confidence that the temperatures fall into the interval (74, 77)

is 84.2%.

We further compare the CD-based predictive distribution with the plug-in

approach in the case when MLE is available, i.e., n = 1800. In Figure 2.7, the

empirical CD-based predictive density for the first untried setting in Figure 2.5

is given as the black curve and the corresponding plug-in predictive density is

given as the red dotted curve. It appears that the plug-in approach slightly

underestimate the predictive uncertainty and this underestimation is expected to

be larger when the sample size gets smaller. So the empirical result shows that,

apart from computational reduction, the CD-based predictive distribution provide

a better quantification of predictive uncertainty comparing with the traditional

plug-in approach.
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Figure 2.5: Heatmaps: mean of predictive distribution at height 0, 2.25, 4.25 and
6.75 feet

2.6 Summary and Concluding Remarks

In this chapter, we propose a unified sequential split-conquer-combine framework,

called SSCC, to tackle two open problems in Gaussian process modeling, the

computational difficulty and the underestimation of prediction uncertainty. The

proposed method relies on two schemes: tapering (with large tuning parameter

τ) and sequential updating. Note that, in most spatial and temporal data, the

dependence between data points gets weaker when they are far away. This

observation allows us to use the tapering technique with relatively large τ to

ignore weak dependence among far away points. However, by tempering alone

is not enough since its computation can be still quite complex. We also need

to reduce the computing time and account for the strong dependence between
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Figure 2.6: Predictive distribution for 4 untried points at different levels of height

neighboring subsets. This is achieved by sequentially updating the subset block

using the previous and current blocks and performing analysis on the updated

subset one at a time. In a nutshell, we sequentially analyze neighboring blocks

and combined all the K estimates obtained to get a combine estimate, say λ̂sscc.

If we can show λ̂sscc = λ̂taper, then, by the fact that λ̂taper ≈ λ̂mle, we have

λ̂sscc ≈ λ̂mle.

This framework is based on the idea of confidence distribution (CD) and

consists of a sequential split-conquer procedure, information combining technique
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using CDs, and a CD-based predictive distribution. A computationally efficient

estimation and prediction procedure is introduced. Under mild conditions, the

new estimators and predictors are shown to be asymptotically equivalent to

the conventional ones using full data, while the computing time is significantly

reduced. A Monte-Carlo algorithm is introduced to construct the CD-based

predictive distribution which provides rich information for statistical inference

and a better quantification of prediction uncertainty comparing with the plug-in

approach. The advantages of the proposed method are clearly demonstrated by

simulations as well as a data center thermal management problem.
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2.7 Appendix A: Proofs

2.7.1 A.1 Proof of Lemma 1

Proof: we first show that Σt = LDL>,

LDL> =


I

L21 I

...
. . . . . .

O · · · Lm(m−1) I




D1 ... O

. . .

O ... Dm




I L>21 · · · O

I
. . .

...

. . . L>m(m−1)

I



=


D1

L21D1 D2

...
. . . . . .

O · · · Lm(m−1)Dm(m−1) Dm




I L>21 · · · O

I
. . .

...

. . . L>m(m−1)

I



=


D1 D1L

>
21 · · · O

L21D1 D2 + L21D1L
>
21 · · · O

...
. . . . . .

...

O · · · Lm(m−1)Dm(m−1) Dm + Lm(m−1)Dm(m−1)L
>
m(m−1)


.

Let B = L−1, it is clear that the diagonal block matrices of B are all identity and

the lower off diagonal block matrices can be written as

Bab =
a∏

k=b+1

−Lk(k−1),

where Bab is the abth block matrix. By expanding the updating formula, we have

y∗a = ya − La(a−1)y
∗
a−1 = ya − La(a−1)(ya−1 − L(a−1)(a−2)y

∗
a−2)

= · · · = ya +Ba(a−1)ya−1 + · · ·+Ba1y1

Therefore, By = y∗ and Cov(y∗) = Cov(By) = BLΣtL
>B> = D. �

2.7.2 A.2 Proof of Theorem 1

The proof consists of two lemmas that culminate in the final proof.
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Lemma (A1). Under the regularity conditions in Appendix B and τ > O(log n),

the combined estimator β̂c is equivalent to β̂t = (X>Σ−1
t X)−1X>Σ−1

t y.

Proof of Lemma (A1): From Lemma 1, we have Σt = LDL>. So Σ−1
t can be

written as (L>)−1D−1L−1 = B>D−1B and,

X>Σ−1
t X = X>B>D−1BX

=


X>1

...

X>m−1

X>m



>
I B>21 · · · B>m1

. . . . . .
...

I B>m(m−1)

I




D−1

1

D−1
2

. . .

D−1
m




I

B21 I

...
. . . . . .

Bm1 . . . Bm(m−1) I




X1

...

Xm−1

Xm



=
(
X>1 · · · X>m +

∑m−1
j=1 X>j B

>
mj

)
D−1

1

. . .

D−1
m




X1

...

Xm +
∑m−1

j=1 BmjXj


=

m∑
i=1

C>i D
−1
i Ci.

Similarly, we have X>Σ−1
t y =

∑m
i=1C

>
i D

−1
i y

(i)
new. Therefore,

β̂t = (X>Σ−1
t X)−1X>Σ−1

t y = (
m∑
a=1

C>a D
−1
a Ca)

−1

m∑
a=1

C>a D
−1
a y

∗
a

= (
m∑
a=1

C>a D
−1
a Ca)

−1

m∑
a=1

(C>a D
−1
a Ci)

−1β̂a = β̂c

�

Lemma (A2). Under the regularity conditions in Appendix B, β̂t is consistent

and asymptotically normal distributed:

√
n(β̂t − β)

D→ N (0, S),
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where S = nCov(β̂mle) = n(X>Σ−1X)−1 and l > Op(log n).

Proof of Lemma (A2): We first focus on the relation between the true correlation

matrix Σ and sparse version Σt. According to Golub and Van Loan (1983)

and under the regularity conditions in Appendix B, the spectral norm could be

bounded by the matrix L1 norm for any n× n symmetric matrix A, i.e.

‖A‖2 ≤ ‖A‖1 = max
i=1,...,n

n∑
j=1

|aij| (2.21)

where ‖·‖2 denotes the spectral norm of a matrix and ‖·‖1 denotes the L1 norm.

we then have

‖Σ− Σt‖2 ≤ ‖Σ− Σt‖1 = max
i

∑
j:|xi1−xj1|>τ

|σij| ≤ ne−τη, (2.22)

where ‖·‖2 denotes the spectral norm of a matrix and ‖·‖1 denotes the L1 norm.

For any two square matrices A and B, we have ‖AB‖2 ≤ ‖A‖2 ‖B‖2. Thus,

∥∥Σ−1 − Σ−1
t

∥∥
2

=
∥∥Σ−1

t (Σ− Σt)Σ
−1
∥∥

2
≤
∥∥Σ−1

t

∥∥
2
‖Σ− Σt‖2

∥∥Σ−1
∥∥

2
≤ ne−τη/c1c

∗
1,

(2.23)

where η, c1, c
∗
1 are all positive constants based on the regularity conditions.

Assume that the design matrix X = Op(1). We have X>X = Op(n) and

based on (2.22) and (2.23), it follows

∥∥X>Σ−1
t X −X>Σ−1X

∥∥
2
≤Mn2e−τη,∥∥(X>Σ−1

t X)−1 − (X>Σ−1X)−1
∥∥

2
≤Mn2e−τη/c1c

∗
1,

where M, c1, c
∗
2 are all constants. It is also clear that E(β̂t−β) = 0 Next, we show

that the covariance matrix of
√
n(β̂t−β) converges to S, where S = nCov(β̂mle).

First, decompose the covariance matrix by Cov(
√
n(β̂t − β)) = nCov(β̂t) =

nCov(β̂t) − S + S and therefore we only need to show the spectral norm of
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nCov(β̂t)− S converges to 0 as the following:∥∥∥nCov(β̂t)− S
∥∥∥

2
= n

∥∥∥Cov(β̂t)− Cov(β̂mle)
∥∥∥

2

= n
∥∥(X>Σ−1

t X)−1X>Σ−1
t ΣΣ−1

t X(X>Σ−1
t X)−1 − (X>Σ−1X)−1

∥∥
2

≤ n
∥∥(X>Σ−1

t X)−1X>Σ−1
t (Σ− Σt)Σ

−1
t X(X>Σ−1

t X)−1
∥∥

2

+ n
∥∥(X>Σ−1

t X)−1 − (X>Σ−1X)−1
∥∥

2

≤ n ‖Σ− Σt‖2

∥∥Σ−1
t

∥∥
2

∥∥(X>Σ−1
t X)−1

∥∥
2

+Mn2e−τη/c1c
∗
11

= ne−τθ1/Mc∗1 +Mn3e−τη/c1c
∗
1.

When n → ∞, in order to guarantee that both terms in the last equation go to

0, τ has to be larger than 3 log (n)/η. Since η is a constant, it is clear that the

covariance matrix of β̂t converges to S when τ > Op(log (n)). Thus, β̂t has the

same asymptotic properties as β̂mle. �

Proof of Theorem 1: Based on Lemma (A1), we know that the combined

estimated β̂c is equivalent to β̂t. In Lemma (A2), it is shown that β̂t is

asymptotically equivalent to β̂mle. Combining the two results, it is clear that

β̂c is asymptotically equivalent to β̂mle under the regularity conditions and when

τ > Op(log(n)). �

2.7.3 A.3 Proof of Theorem 2

Proof: The proof consists of three parts: i) In each iteration, β̂c and β̂t are shown

to be asymptotically equivalent given θ, and similarly θ̂c and θ̂t are asymptotically

equivalent given β. ii) Iterative updates of βt and θt converge to which is solved

jointly by maximizing lt(β,θ). iii) We show that (β̂t, θ̂t) has asymptotically the

same distribution as the original MLE.

For notational simplicity, we illustrate the proof only for p = 1 but it

can be easily extended to a general case. Denote ∇βl(β, θ) = ∂l(β, θ)/∂β,

∇θl(β, θ) = ∂l(β, θ)/∂θ, ∇ββl(β, θ) = ∂2l(β, θ)/∂β2, ∇θθl(β, θ) = ∂2l(β, θ)/∂θ2,
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and ∇βθl(β, θ) = ∂2l(β, θ)/∂β∂θ.

For Part i), Theorem 1 shows that β̂c is equivalent to β̂t given θ. It suffices to

show the same result for θ. Assuming that β is fixed, we apply Taylor expansion

to lt(θ|β) at θ = θ̂t,

∇θlt(θ̂t|β) = ∇θlt(θ0|β) +∇θθlt(θ0|β)(θ̂t − θ0) +Op(1).

Since ∇θlt(θ̂t|β) = 0, θ̂t can be written as

θ̂t = θ0 −∇−1
θθ lt(θ0|β)∇θlt(θ0|β) +Op(1/n).

Similarly, under the regularity conditions in Appendix B, we have:

θ̂c = (
m∑
a=1

S−1
a )−1(

m∑
a=1

S−1
a θ̂a)

= (
m∑
a=1

−∇θθl
(a)
t (θ0|β))−1(

m∑
a=1

−∇θθl
(a)
t (θ0|β)(θ0 −∇−1

θθ l
(a)
t (θ0|β)∇θl

(a)
t (θ0|β) +Op(1/na)))

= θ0 −∇−1
θθ lt(θ0|β)∇θlt(θ0|β) + op(1/

√
n) +Op(1/τ).

Because τ > Op(
√
n), it holds that (1/τ)/(1/

√
n)→ 0 when n→∞. Therefore,

given β, θ̂c is asymptotically equivalent to θ̂t.

To prove Part ii), we first perform Taylor expansion at the tth iteration:

0 = ∇βlt(β
(t), θ(t−1)) = ∇βlt(β0, θ0) +∇βθlt(β0, θ0)(θ(t−1) − θ0) +∇ββlt(β0, θ0)(β(t) − β0) +R1,

(2.24)

0 = ∇θlt(β
(t), θ(t)) = ∇θlt(β0, θ0) +∇θβlt(β0, θ0)(β(t) − β0) +∇θθlt(β0, θ0)(θ(t) − θ0) +R2,

(2.25)

where lt(·) is the approximated log-likelihood, R1 and R2 are the remainders of

the expansion. Therefore, after solving the last two equations, the tth updates of

β and θ can be written asβ(t) − β0

θ(t) − θ0

 = a+ b

β(t−1) − β0

θ(t−1) − θ0

 ,
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where a = ((R2 + ∇θlt(β0, θ0))/(∇ββlt(β0, θ0)∇θθlt(β0, θ0)) − (R1 +

∇βlt(β0, θ0))/∇ββlt(β0, θ0), (R1 + ∇βlt(β0, θ0))/(∇ββlt(β0, θ0)∇θθlt(β0, θ0)) −

(R2 + ∇θlt(β0, θ0))/∇θθlt(β0, θ0))>, b = ∇2
βθlt(β0, θ0)/(∇ββlt(β0, θ0)∇θθlt(β0, θ0)).

Therefore we haveβ(t) − β(t−1)

θ(t) − θ(t−1)

 = b

β(t−1) − β(t−2)

θ(t−1) − β(t−2)

 = · · · = bt−1

β(1) − β(0)

θ(1) − θ(0)

 (2.26)

Because Hessian matrix H(β0, θ0) should be positive definite i.e. |H| > 0, we

have ∇ββlt(β0, θ0)∇θθlt(β0, θ0) > ∇2
βθlt(β0, θ0), indicating that b < 1. Thus, when

the iteration step t is large, the updates will converge based on (2.26). Assume

that after T steps, (β(T ), θ(T )) converge and from (2.24) and (2.25), we haveβ(T )

θ(T )

 =

β0

θ0

−
∇ββlt(β0, θ0) ∇βθlt(β0, θ0)

∇θβlt(β0, θ0) ∇θθlt(β0, θ0)

−1∇βlt(β0, θ0)

∇θlt(β0, θ0)

+op(1/
√
n).

(2.27)

Denote (β̂t, θ̂t) as the estimator that maximizing lt(β, θ). Taylor expansion of

lt(β̂t, θ̂t) leads to the same results for (β̂t, θ̂t) asymptotically as described in (2.27).

Therefore, the result follows.

To prove Part iii), we first show that lt(β, θ) converges to l(β, θ) as follows:

|l(β, θ)− lt(β, θ)| =
∣∣∣∣− 1

2σ2
(y − xβ)>(Σ−1(θ)− Σ−1

t (θ))(y − xβ)− 1

2
log
∣∣Σ(θ)Σ−1

t (θ)
∣∣∣∣∣∣

≤ M

2σ2
n2e−τθ1 +

1

2

∣∣log |I − (Σt(θ)− Σ(θ))Σ−1
t (θ)|

∣∣
=

M

2σ2
n2e−τθ1 +

1

2
tr((Σt(θ)− Σ(θ))Σ−1

t (θ)) + o(tr((Σt(θ)− Σ(θ))Σ−1
t (θ)))

≤ M

2σ2
n2e−τθ1 +

n

2

∥∥(Σt(θ)− Σ(θ))Σ−1
t (θ)

∥∥
1

+ o(tr((Σt(θ)− Σ(θ))Σ−1
t (θ)))

≤
(
M

2σ2
+

1

2

)
n2e−τθ1 + o(n2e−τθ1),

where τ > Op(log n). Therefore, |l(β, θ)− lt(β, θ)| → 0 when n→∞. Since both

l(β, θ) and lt(β, θ) are continuous in β, θ, we have their first and second derivatives

converge as well. Therefore, the joint distribution of (β̂t, θ̂t) is asymptotically

equivalent to the the joint distribution of MLE. �
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2.7.4 A.4 Proof of Corollary 1

Proof: To show that the combined estimator is unbiased, we first prove that

tr(Σ1
t (Σ− Σt))→ 0 a.s.,

where Σ is the true correlation matrix, Σ1
t = −Σ−1

t Σ′tΣ
−1
t , and Σ′t = ∂Σt/∂θ.

From Golub and Van Loan (1983), it is known that,

tr(A) ≤
√
rank(A)||A||F ≤ n||A||2 ≤ n||A||1

where A is a full rank positive definite matrix. Therefore,

tr(Σ1
t (Σ− Σt)) ≤ n||Σ1

t (Σ− Σt)||1 ≤ n(n− l)e−τη, (2.28)

where η is a constant. Because τ > Op(log n), the right-hand side of (2.28) goes

to 0. Therefore, we have E(l′t(θ)) = 0. By Taylor expansion, we have

l′t(θ̂t) = l′t(θ) + l′′t (θ)(θ̂t − θ) +Op(1).

Since l′t(θ̂t) = 0, we have

θ̂t = θ − l′t(θ)/l′′t (θ) +Op(1/n). (2.29)

By taking expectation on both sides of (2.29), θ̂t is shown to be unbiased, i.e.

E(θ̂t) = θ. From the result of Theorem 2, we know that the combined estimator is

asymptotically equivalent to θ̂t. Therefore, the result for the combined estimator

follows. �
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2.7.5 A.5 Proof of Theorem 3

Proof: Similarly to Theorem 2, the proof is illustrated by p = 1 for notational

simplicity. We have

p1(β, θ) = x0β +
m∑
a=1

γ∗a(θ)
>D−1

a (θ)y∗a −
m∑
a=1

γ∗a(θ)
>D−1

a (θ)ca(θ)β

= x0β +
m∑
a=1

γ∗a(θ)
>D−1

a (y∗a − ca(θ)β)

= x0β + γ(θ)>B>(θ)D−1(θ)B(θ)(y − xβ)

= x0β + γ(θ)>Σ−1
t (θ)(y − xβ),

where ca(θ) is a vector version of Ca(θ). The difference between p1(β, θ) and

p0(β, θ) can be written as

|p1(β, θ)− p0(β, θ)| = |γ(θ)>(Σ−1
t (θ)− Σ−1(θ))(y − xβ)| ≤Mn2e−τθ.

When τ > Op(log n) and n → ∞, it holds that p1(β, θ) → p0(β, θ). Similarly,

we can prove that m1(β, θ) → m0(β, θ) under the assumptions and regularity

conditions. �

2.8 Appendix B: Regularity Conditions

B1). The theoretical properties are developed under increasing-domain

asymptotics and additionally we assume that

(a) Block size na goes to infinity in same rate for a = 1, ...,m; Range on each

dimension Mk goes to infinity in same rate for k = 1, ..., p.

(b) Tuning parameter τ goes to infinity at the same rate as na’s, i.e.

na = Op(τ) for a = 1, ..,m

(c) Range on each dimension Mk goes to infinity as the same rate as sample

size n, i.e.

Mk = Op(n) for k = 1, ..., p
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B2). Assume that Σ is a symmetric positive definite matrix and it follows the

following regularity conditions:

(a) Σ−1 is also a symmetric positive definite matrix;

(b) all λ(Σ)′s > 0;

(c) 0 < c1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2;

(d) 0 < 1/c2 ≤ λmin(Σ−1) ≤ λmax(Σ
−1) ≤ 1/c1.

where λ(·) is the eigenvalue of Σ, λ(·)max, λ(·)min represent the maximum and

minimum eigenvalue respectively, c1, c2 are two positive constants.
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2.9 Appendix C: Algorithm

Algorithm 1 SSCC estimation of (β,θ)

1: SPLIT: y into (y1, ...,ym) m blocks based on the choice of τ

2: Initialization: (β,θ) = (β(0),θ(0)), t = 1

3: CONQUER β(t)|θ(t−1): y∗1 = y1, C1 = X1,Σt = Σt(θ
(t−1)), D1 = Σt11, L21 =

Σt21Σ−1
t11

4: for a = 2, ...,m do

5: for b = 1, ..., a− 1 do

6: Bab =
∏a

k=b+1(−Lk(k−1))

7: end for

8: y∗a = ya − La(a−1)y
∗
a−1, Ca = Xa +

∑a−1
b=1 BabXb . sequentially update

9: Da = Σtaa − La(a−1)D(a−1)L
>
a(a−1), L(a+1)a = Σt(a+1)aD

−1
a

10: Conquer on the current updated block:

β̂a = (C>a D
−1
a Ca)

−1C>a D
−1
a y

∗
a, Wa = C>a D

−1
a Ca

11: end for

12: COMBINE: Update β(t)|θ(t−1) = (
∑m

a=1Wa)
−1(
∑m

a=1Waβ̂a)

13: CONQUER θ(t)|β(t): y∗1(θ) = y1, C1(θ) = X1, D1(θ) = Σt11(θ), L21(θ) =

Σt21(θ)Σ−1
t11(θ)

14: for a = 2, ...,m do

15: for b = 1, ..., a− 1 do

16: Bab(θ) =
∏a

k=b+1(−Lk(k−1)(θ))

17: end for

18: y∗a(θ) = ya − La(a−1)(θ)y∗a−1(θ), Ca(θ) = Xa +
∑a−1

b=1 Bab(θ)Xb

19: Da(θ) = Σtaa(θ) − La(a−1)(θ)D(a−1)(θ)L>a(a−1)(θ), L(a+1)a(θ) =

Σt(a+1)a(θ)D−1
a (θ)

20: Conquer on the current updated block:

θ̂a = arg max
θ
{−1

2
log |Da(θ)| − 1

2
(y∗a(θ)− Ca(θ)β(t))>D−1

a (θ)(y∗a(θ)− Ca(θ)β(t))}

Wa = Ŝ−1
a = −Ha(θ̂a)
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Algorithm 1 SSCC estimation of (β,θ) continued

21: end for

22: COMBINE: Update θ(t)|β(t) = (
∑m

a=1 Wa)
−1(
∑m

a=1 Waθ̂a)

23: if |β(t) − β(t−1)| > ε or |θ(t) − θ(t−1)| > ε then

24: t = t+ 1

25: Repeat Line 3 to 21

26: else

27: (β̂c, θ̂c) = (β(t),θ(t))

28: end if
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Chapter 3

Combining Information from Non-independent

Studies by Confidence Distribution (CD)

3.1 Introduction

It is important to integrate information efficiently and effectively from multiple

sources, especially in the era of data deluge nowadays. During the past decades,

there have been rapid developments in statistical methodologies on combining

information from multiple sources, such as Meta-analysis (Hedges and Olkin,

1985; Stangl and Berry, 2000; Schulze, 2004), Divide-and-Conquer methodologies

from a statistical perspective (Chen and Xie, 2014b; Zhang et al., 2015; Battey

et al., 2015) etc. Among most of the previous literatures, the individual

studies are assumed to be independent. However, in reality the dependency

can not be neglected under some circumstances. In this paper, we propose a

combining methodology through a confidence distribution framework without the

assumption of independence.

Confidence distribution (CD) refers to any sample-dependent distribution

function that can represent confidence intervals/regions of all levels for a

parameter of interest (cf., e.g., Xie and Singh (2013)). Conceptually, a CD is

not different from a point estimator or a confidence interval, but it uses a sample-

dependent distribution function on the parameter space to estimate the parameter

of interest. A CD is to “provide simple and interpretable summaries of what can

reasonably be learned from data (and an assumed model)” (Cox, 2013). It can

provide meaningful answers for all questions related to statistical inferences and
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an approach that combines CDs preserves more information than a traditional

approach that combines just point estimators (Xie and Singh, 2013; Schweder

and Hjort, 2016). Singh et al. (2005) and Xie et al. (2011) described a general

framework to combining information based on CDs, which can subsume almost

all information combination methods used in the current practice. Recently, this

approach is widely employed and adopted in the literatures (Liu et al., 2015; Yang

et al., 2014; Claggett et al., 2014). However, these applications highly rely on the

assumption that the underlying studies are independent. In this paper, we extend

the combining recipe to studies without the assumption of independence.

The remainder of this paper is organized as follows. In Section 3.2, the

proposed methodology is introduced along with a copula representation for

combining non-independent studies. We also provide the framework through an

example on combining dependent likelihood functions. In Section 3.3 we illustrate

the framework under the scenario that the individual CD’s are constructed based

on the local parametric estimators from a partial linear model. Simulation studies

and a real data example are included in this section. Summary and concluding

remarks are given in Section 3.4.

3.2 Methodology

Suppose that there are K non-independent studies sharing the same underlying

parameter of interest θ and its true value is θ0. We also have the confidence

distribution (CD) of θ constructed from each study, Hi(θ) = Hi(θ,Xi), i = 1, ..K,

where Xi is the ith sample with size ni. Please note that Xi’s are not assumed

to be mutually independent. By definition, at the true value θ = θ0, Hi(θ0)

is U [0, 1] distributed. Furthermore, we assume that the joint distribution of

(H1(θ0), ..., HK(θ0)) is known, say

H1(θ0), ..., HK(θ0) ∼ F (z1, ..., zK) = Pr(H1(θ0) ≤ z1, ..., HK(θ0) ≤ zK). (3.1)
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Our question is how to combine these CD functions from K non-independent

studies. We propose the following combining recipe which is similar to the

approach suggested by Singh et al. (2005) assuming independence among studies,

H∗c (θ) = G∗c{g∗c (H1(θ), ..., HK(θ))}, (3.2)

where Hi(θ) is the CD for the ith study. The function g∗c (z1, ..., zK) is any

continuous function from the K-dimensional hypercube [0, 1]K to the real line

R = (−∞,+∞) which is monotonic on each coordinate. Finally, the function

G∗c(·) is the cumulative distribution function for g∗c (U1, ..., UK) i.e.

G∗c(z) = Pr(g∗c (U1, ..., UK) ≤ z) =

∫
g∗c (z1,...,zK)≤t

dF (z1, ..., zK), (3.3)

where Ui’s are marginally U [0, 1] distributed and jointly follow the distribution

whose CDF is F (·). Since F (·) is assumed to be known, G∗c(·) is well defined.

Firstly, we demonstrate that H∗c (θ) from (3.2) is a valid CD by the following

theorem,

Theorem 4. Under the settings of (3.1) and (3.2), the proposed function H∗c (θ)

is a CD for θ.

Proof of Theorem 1 is provided in Appendix A. From Theorem 1, we then

can make valid inferences of θ through the combined CD H∗c (θ). Moreover,

in Singh et al. (2005), the proposed combined CD H(c)(θ) from independent

studies is demonstrated to be the most efficient in terms of the Bahadur slope by

choosing gc(z1, ..., zK) = DE−1(z1)+· · ·+DE−1(zK), where DE(·) is the cumulative

distribution function of the standard double exponential distribution and K is

bounded asymptotically. However, in this paper, we are not focusing on the

Bahadur slope because of some technical problems when dealing with nonexact

inferences. Instead of talking about the most efficient of the Bahadur slope, in

this paper, we view the combined CD H∗c (θ) from a more practical perspective, i.e.

with certain choices of g∗c (·), we would be able to make inferences on θ that contain
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all the information from K studies without the assumption of independence.

Regarding the choice of function g∗c (·), Xie et al. (2011) studied the following

form,

g∗c (z1, ..., zK) = w1F
−1
0 (z1) + · · ·+ wKF

−1
0 (zK), (3.4)

where F0(·) is a given cumulative distribution function and wi > 0, with at least

one wi 6= 0. The details about choices of weights will be elaborated in the case

study section under different settings.

3.2.1 Copula Representation

To derive the form of combined CD H∗c (θ), we need to know the function

G∗c(·) which is determined by g∗c (·). Because often times the joint distributions

of multiple random variables do not have explicit forms and the marginal

distribution of each component in g∗c (·) is U [0, 1] distributed, we then can employ

copula to represent the joint distribution F (·). The joint distribution function

F (·) can be represented by copula according to Sklar’s theory,

Lemma 2. (Sklar, 1973) Suppose that F (·) is a distribution function on RK with

marginal distribution functions F1(·), ..., FK(·) on each direction. Then there is a

copula C(·) such that:

C(F1(x1), ..., FK(xK)) = F (x1, ..., xK). (3.5)

If F (·) is continuous, then the copula C(·) satisfies:

C(z1, ..., zK) = F (F−1
1 (z1), ..., F−1

K (zK)), (3.6)

where 0 < zi < 1, for i = 1, ..., K.

Since we are focusing on the joint distribution of CD functions which follow

marginal U [0, 1] distributions, the following corollary is useful.
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Corollary 2. If a joint distribution F (z1, . . . , zK) is marginally U [0, 1] distributed

on each direction, the following holds:

C(z1, ..., zK) = F (z1, . . . , zK), (3.7)

where C(·) is a copula.

Based on Corollary 2, the problem of joint distribution function of CD

functions can be equivalently substituted by a valid copula. Given the copula

C(z1, ..., zK), the function G∗c(·) can be represented as follows,

G∗c(z) = Pr(g∗c (U1, ..., UK) ≤ z) =

∫
g∗c (z1,...,zK)≤z

dC(z1, ..., zK). (3.8)

For different choices of g∗c (·)’s, there may not be explicit formula for the

corresponding G∗c(·). Assuming that we know how to generate random samples

from copula C(z1, ..., zK), we may use Monte Carlo integration method to get

G∗c(·). We propose the following algorithm to approximate G∗c(·) in practice:

1. For j = 1, .., N , simulate a random sample (zj1, ..., z
j
K) from copula

C(z1, ..., zK);

2. Then G∗c(z) can be approximated by the empirical CDF as following:

G̃∗c(z) =
1

N

N∑
j=1

1{g∗c (zj1,...,z
j
K)≤z} (3.9)

where 1{·} is indicator function.

Obviously, it is not desirable to resort to numerical approximations of G∗c(·)

due to considerations on statistical and computational efficiency. Fortunately,

there exist some convenient and valid choices of copulas that can bypass the

above numerical procedures to obtain a closed-form expression of G∗c(·). In this

paper, we adopt the Gaussian copula which is one of the most commonly used

copulas in practice. For the Gaussian copula, the individual functions Fi(·)’s are

CDFs of standard normal variables while F (·) is therefore a multivariate normal
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CDF. According to Lemma 4 and Corollary 2, this is equivalent to using a copula

of the following form,

C(z1, ..., zK) = ΦR(Φ−1(z1), ...,Φ−1(zK)), (3.10)

where ΦR(·) is CDF of a K-dimensional multivariate normal distribution with

mean 0 and covariance matrix R which is assumed known in this paper.

3.2.2 Example: Combining Dependent Likelihood by CD-

based Approach

In this sub-section, we are going to illustrate the proposed CD based combining

approach through the likelihood context. Fraser and Reid (2015) proposed a

method of combining likelihood functions through score functions in composite

likelihood context. Inspired by the importance of score function in likelihood

inferences, our combining framework also uses score functions to construct

individual CDs. In the following, we present how our combining recipe subsumes

the approach proposed by Fraser and Reid (2015) (See Appendix B).

Suppose that `1(θ), ..., `K(θ) are K dependent log-likelihood functions and the

score function is si(θ) = `′i(θ) for the ith study. Based on the Taylor expansion

of the score function around the true value θ = θ0, we have

s(θ) ≈ s(θ0) + s′(θ0)(θ − θ0). (3.11)

The expectation of the score function can be easily derived as

E(s(θ)) = E(s′(θ0))θ − E(s′(θ0))θ0. (3.12)

Let s0 = s(0), where s(θ) = (s1(θ), ..., sK(θ))> and E(s0
i ) = −E(s′(θ0))θ0. The

score function vector s0 then follows an K-dimensional asymptotic multivariate

normal distribution,

s0 ∼ NK(V θ,W ), (3.13)
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where W ’s ith element of vi = −E(s′i(θ0)) = Vii, the covariance matrix V ’s ijth

element is assumed to be known as Vij = Cov(si(θ0), sj(θ0)). By assumption, each

element of s0 follows an asymptotic normal distribution,

s0
i ∼ N (Viiθ, Vii), (3.14)

where s0
i is the ith element of s0, Vii is the Fisher’s information for ith study.

Then for i = 1, . . . , K, we construct a CD function for parameter θ as follows,

Hi(θ) = Φ

(
Viiθ − s0

i√
Vii

)
= Φ

(√
Vii(θ − s0

i /Vii)
)
, (3.15)

where Φ(·) is standard normal CDF. Given the choice of g∗c (·) in (3.4) from Xie

et al. (2011) and F0(·) = Φ(·), g∗c (·) is written as:

g∗c (z1, ..., zK) = w1Φ−1(z1) + · · ·+ wKΦ−1(zK), (3.16)

where wi’s are the weights. To derive the cumulative distribution function G∗c(·)

for g∗c (·), we represent the joint distribution of (Φ−1(U1), ...,Φ−1(UK)) by the

Gaussian copula (3.10) introduced previously, where Ui’s are U [0, 1] distributed

random variables. The distribution of g∗c (·) can be easily derived as,

g∗c (U1, ..., UK) ∼ N(0,w>Rw), (3.17)

where R = S−1WS−1 and S = diag(
√
V11, . . . ,

√
VKK). Therefore, the CDF

G∗c(z) = Φ(z/
√
w>Rw). After plugging in the individual CD functions Hi(θ)’s,

g∗c (·) and G∗c(·) into the proposed combining recipe (3.2), the combined CD is

given by,

H∗c (θ) = Φ

(
1√

w>Rw

K∑
i=1

wi
√
Vii(θ − s0

i /Vii)

)
= Φ

(
w>S−1V√
w>Rw

(θ − θ̂c)
)
,

(3.18)

where θ̂c = (w>S−1V )−1w>S−1s0, Var(θ̂c) =

(w>S−1V )−1w>S−1WS−1w(w>S−1V )−1. If we choose w = SW−1V , then
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the combined estimator becomes θ̂c = (V >W−1V )−1V >W−1s0, which is identical

to the result from Fraser and Reid (2015). The new combined likelihood function

`new(θ) in (3.63) could be obtained accordingly.

Remark 2. In this section, we only provide one way to construct individual

CD function Hi(θ) by employing the corresponding score function. For likelihood

function, Singh et al. (2005) proved that normalized likelihood function is a valid

CD function as well. Therefore, the combined CD function H∗c (θ) can also be

obtained through this definition. The details will not be discussed in this paper

but the results are identical which could be easily proved.

3.3 Combining Parametric Components from Partial

Linear Models

In this section, we illustrate the proposed methodology through a partial

linear model framework along with numerical studies. A partial linear model

or semi-parametric model is described by two sets of parameters, where one

is parametric (finite-dimensional) and the other is non-parametric (infinite-

dimensional). Partial linear models have various applications in many fields such

as economics, medicine, biology, etc. Examples of former studies include Green

and Yandell (1985), Dinse and Lagakos (1983), Green and Silverman (1994),

Schmalensee and Stoker (1999), Speckman (1988), Engle et al. (1986) etc. Before

we proceed with the specifics of our approach, we first provide some preliminaries

of partial linear models and related work.

3.3.1 Partial Linear Models and Estimation

Assume that we have the following partial linear model,

yi = xiβ + z>i γ + η(ti) + εi, i = 1, ..., n, (3.19)
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where y is the dependent variable, (x, z, t) are explanatory variables and εi’s are

i.i.d random variables following N (0, σ2). In model (3.19), we assume that β is a

scalar and γ is a p× 1 vector. The parametric component of this model therefore

is (β,γ) and the non-parametric component is the unknown function η(·). In this

article, we only focus making inference on β and treat z as ’nuisance’ variable.

Model (3.19) is a simple version of the generalized partially linear single-index

model (Carroll et al., 1997) that can be solved by the quasi-likelihood method

(Severini and Staniswalis, 1994). A standard approach to estimate (β,γ) under

partial linear models consists of two steps. First, we estimate the non-parametric

part as a function of (β,γ) by maximizing the likelihood function weighted by a

kernel function. Then, we plug in the non-parametric estimator in terms of (β,γ)

into the full likelihood function. Mathematically, this two-step procedure can be

described as follows.

Step 1 Denote the weighted log-likelihood function by

`w(a, t) = − 1

2nσ2

n∑
i=1

Kh(ti − t)(yi − xiβ − z>i γ − a)2, (3.20)

where a = η(t) and Kh(·) is a kernel function with bandwidth h.

Therefore, the non-parametric part η(t, β) is estimated by solving the

equation ∂`w(a, t)/∂a = 0, i.e.

η̂(t, β,γ) = arg max
a

`w(a, t) = v(t)>(y − xβ − Zγ), (3.21)

where v(t) = (v1(t), . . . , vn(t))>, vi(t) = Kh(ti − t)/
∑n

i=1Kh(ti − t), y =

(y1, . . . , yn)>, x = (x1, . . . , xn)>, Z = (z>1 , . . . ,z
>
n )>.

Step 2 Denote the global likelihood function for β,γ by

`global(β,γ) = − 1

2nσ2

n∑
i=1

(yi − xiβ − z>i γ − η̂(ti, β,γ))2, (3.22)

where η̂(ti, β,γ), the non-parametric estimate in (3.21), takes the place of

η(ti) in the full log-likelihood function. Then (β,γ) can be estimated globally
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by solving the equation ∂`global(β,γ)/∂(β,γ) = 0, which leads toβ̂global

γ̂global

 =

x̃>x̃ x̃>Z̃

x̃>Z̃ Z̃>Z̃

−1

X̃>ỹ, (3.23)

where x̃ = (I − U)x, Z̃ = (I − U)Z, X̃ = (x̃, Z̃), ỹ = (I − U)y, U =

(v(t1)>, . . . ,v(tn)>)>.

This global estimator (β̂global, γ̂global) is shown to be consistent and asymptotically

normal (Carroll et al., 1997), which is also equivalent to the least squares estimate

in Härdle et al. (2012). Finally, with the estimate of the paramatric part, the

nonparametric part can be estimated by

η̂(t) =

∑n
i=1Kh(ti − t)(yi − xiβ̂global − z>i γ̂global)∑n

i=1 Kh(ti − t)
. (3.24)

A similar estimation procedure can be found in Boente et al. (2006) by changing

their loss functions into the above likelihood functions (i.e., `w(a, β, t) in (3.20)

and `global(β,γ) in (3.22)).

The global estimation procedure for the parametric component can be

regarded as estimating the linear regression model as follows,

ỹ = x̃β + Z̃γ + ε. (3.25)

In this study, since only the scalar β is parameter of interest, we employ the

canonical form (Rao, 2009) of model (3.25) by transforming the column spaces of

x̃ an Z̃ into two orthogonal subspaces as follows,

ỹ = x̃∗β + Z̃γ∗ + ε, (3.26)

where x̃∗ = x̃− Z̃(Z̃>Z̃)−1Z̃>x̃ = (I − PZ̃)x̃, PZ̃ = Z̃(Z̃>Z̃)−1Z̃> and γ∗ is the

corresponding parameter of Z̃, and therefore, Z̃>x̃∗ = (0, . . . , 0)>. Following the

two-step conventional estimation procedure illustrated above, we can obtain the

global estimator of (β,γ∗),β̂global

γ̂∗global

 =

x̃∗>x̃∗ x̃∗>Z̃

x̃∗>Z̃ Z̃>Z̃

−1

(x̃∗>, Z̃>)ỹ =

(x̃∗>x̃∗)−1x̃∗>ỹ

(Z̃>Z̃)−1Z̃>ỹ

 . (3.27)
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Hence, the global estimator of β is β̂global = (x̃∗>x̃∗)−1x̃∗>ỹ. It is easily to prove

that β̂global is equivalent to the one derived from (3.23).

3.3.2 The CD-based Combining Approach

In our framework, the goal is to obtain a combined estimator which is equivalent

to β̂global from local estimates. Briefly speaking, the difference between global

and local estimation is to employ different likelihood functions which are built

on either the entire or partial dataset. More specifically, we first obtain local

estimates derived in individual studies, and then combine the local results using

our framework. Similar to the structure we laid out earlier for the global estimator

β̂global, we first derive the local maximum likelihood estimator for β based on local

likelihood function through the two-step procedure. Next, we construct individual

CDs based on local estimators. Finally, we illustrate how to achieve the global

estimator by combining individual CDs using our recipe. The numerical results

based on real datasets also corroborate that the combined result achieves the

same performance vis-a-vis global estimator.

Now we elaborate on the two-step procedure for estimating β̂ locally in each

study. Our approach is motivated by the technique proposed by Tibshirani and

Hastie (1987), called local likelihood estimation. This technique was initially

applied to generalized linear models and the proportional hazards model. A similar

method that hinges on local likelihood estimation can also be found in Fan et al.

(1997), which formulates the local log-likelihood (with kernel smoothing) as

`(β, θ) = n−1

n∑
i=1

li(β, θ)Kh(Xi − x), (3.28)

where li(β, θ) in the summand is the ith log-likelihood function, β and θ are the

parameters of proportional hazards model and Kh(t) = h−1K(t/h) is some chosen

kernel function with bandwidth h. For other applications of the local likelihood

estimation approach, see Staniswalis (1989), Hjort and Glad (1995), Hjort and
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Jones (1996), Loader et al. (1996) and Fan et al. (1998).

In this work, we make a first attempt in incorporating this line of approaches

in our CD-based framework by extending its application in partial linear models.

Note that due to the kernel smoothing imposed in the local likelihood function

(3.28), there are dependencies among those local estimators. Denote the local

estimator at t for (β,γ) as (β̂(t), γ̂(t)), the local estimation procedure is described

as follows,

Step 1 For each (β,γ, t), the nonparametric part can be estimated in the same

way by solving ∂`profile(a, t)/∂a = 0,

η̂(t, β,γ) = arg max
a

`profile(a, t) = v(t)>(y − xβ − Zγ). (3.29)

Step 2 Then the local log-likelihood function for β is constructed as

`local(β,γ, t) = − 1

2nσ2

n∑
i=1

(yi − xiβ − z>i γ − η̂(ti, β))2Kb(ti − t) (3.30)

= − 1

2nσ2
(ỹ − x̃β − Z̃γ)>K(t)(ỹ − x̃β − Z̃γ), (3.31)

where K(t) = diag(Kb(t1− t), . . . , Kb(tn− t)), Kb(·) is kernel function with

bandwidth equals to b. Please note that the kernel function in `local doesn’t

have to be the same as the one for estimating the non-parametric part. Then

local estimators of (β,γ) can be solved simultaneously by maximizing (3.31)

which leads the results,β̂(t)

γ̂(t)

 =

x̃>K(t)x̃ x̃>K(t)Z̃

Z̃>K(t)x̃ Z̃>K(t)Z̃

−1

X̃>K(t)ỹ. (3.32)

Similar to the global estimation procedure, the local procedure can also be seen

as estimating the linear regression model in (3.25). However, the error term ε

is assumed to follow a multivariate normal distribution with covariance matrix

K(t)−1σ2. We then consider the linear regression model as follows,

ỹt = x̃tβ + Z̃tγ + ε, (3.33)
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where ỹt = K(t)1/2ỹ, x̃t = K(t)1/2x̃, Z̃t = K(t)1/2Z̃, K(t)1/2K(t)1/2 = K(t), ε

is then can be assumed to be i.i.d N (0, σ2). We then assume the canonical form

for the local model as follows,

ỹt = x̃∗tβ + Z̃tγ
∗∗ + ε (3.34)

where x̃∗t = x̃t − Z̃t(Z̃>t Z̃t)−1Z̃>t x̃t = (I − PZ̃t
)x̃t, PZ̃t

= Z̃t(Z̃
>
t Z̃t)

−1Z̃>t and γ∗∗

is the corresponding parameter of Z̃t, and therefore, Z̃>t x̃
∗
t = (0, . . . , 0)>. Also,

following the local estimation procedure , we can obtain the local estimator of

(β,γ∗∗), β̂(t)

γ̂∗∗(t)

 =

x̃∗>t x̃∗t x̃∗>t Z̃t

x̃∗>t Z̃t Z̃>t Z̃t

−1

(x̃∗>t , Z̃>t )ỹt =

(x̃∗>t x̃
∗
t )
−1x̃∗>t ỹt

(Z̃>t Z̃t)
−1Z̃>t ỹt

 . (3.35)

Therefore, the local estimator of β is β̂(t) = (x̃∗>t x̃
∗
t )
−1x̃∗>t ỹt =

(x̃∗>t x̃
∗
t )
−1x̃∗>t K(t)1/2(I − U)y. From Fan et al. (1997), it is proved that the

estimators of β and θ derived from (3.28) achieve a convergence rate of (nh)−1/2,

and that (nh)−1/2(β̂(t) − β0) follows an asymptotic normal distribution with

mean 0 and a constant variance, where β0 is the true value of β. Therefore,

for i = 1, ..., n, the individual CDs could be constructed as following,

Hi(β) = Φ

(
β − β̂i
σ̂i

)
, (3.36)

where β̂i = β̂(ti) and σ̂i is the standard deviation of β̂i. Before proceeding to

the combining part, we study the variance and dependency among β̂i’s. Define

β̂local = (β̂1, . . . , β̂n)>, and β̂local can be represented in terms of x,y, K(·) and U

as follows,

β̂local =


(x̃∗>t1 x̃

∗
t1

)−1x̃∗>t1 K(t1)1/2

· · ·

(x̃∗>tn x̃
∗
tn)−1x̃∗>tn K(tn)1/2

 (I − U)y. (3.37)

Denote V as the covariance matrix for β̂local, therefore, the ijth element of V is

Vij = Cov(β̂i, β̂j) = (x̃∗>ti x̃
∗
ti

)−1x̃∗>ti K(ti)
1/2(I − U)(I − U)>K(tj)

1/2x̃∗tj(x̃
∗>
tj
x̃∗tj)

−1σ2,

(3.38)
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then σ̂i =
√
Vii, where σ is assumed known in this context but can be estimated

through the mean squared error of the estimator. Let w be the weight vector for

g∗c (·), F0(·) = Φ(·), g∗c (z1, ..., zn) =
∑n

i=1wiΦ
−1(zi), and similar to the example we

illustrated previously, we apply Gaussian copula. Hence the CDF of g∗c (U1, ..., Un)

can be easily derived as,

G∗c(z) = Φ(z/
√
w>Rw), (3.39)

where R = S−1V S−1 and S = diag (σ̂1, ..., σ̂n). Then the combined CD can be

obtained as

H∗c (β) = Φ

(
1√

w>Rw

n∑
i=1

wi
β − β̂i
σ̂i

)
= Φ

(
w>S−11√
w>Rw

(β − β̂c)
)
, (3.40)

where 1 = (1, ..., 1)>, the combined estimator derived from the combined CD

β̂c = (w>S−11)−1w>S−1β̂local. (3.41)

Among different choices of w, we then have the following theorem,

Theorem 5. If the weight vector w> = c>B−1S, the combined estimator β̂c is

equivalent to β̂global, where S = diag (σ̂1, ..., σ̂n), and

B =


(x̃∗>t1 x̃

∗
t1

)−1x̃∗>t1 K(t1)1/2

· · ·

(x̃∗>tn x̃
∗
tn)−1x̃∗>tn K(tn)1/2

 , c = x̃∗(x̃∗>x̃∗)−1 (3.42)

Detailed proof is provided in the appendix. In Theorem 5, though the

calculation of the optimal weight vector can be computationally inefficient because

of the inversion of the n × n matrix B, we can apply the kernel with bounded

domain on Kb(·), e.g. the triangular kernel and then B becomes a banded matrix.

The computing complexity of inversion of a banded matrix is O(ln2), where l is

the width of band (Kavcic and Moura, 2000). Theorem 5 demonstrates that

through the local estimators and our CD-based combining recipe, we can easily

obtain the exact same result as the global estimator. We describe β̂c as follows:

β̂c = c>B−1β̂local = w∗>β̂local, (3.43)
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where w∗i =
∑n

j=1 cjb
ji with cj being the jth element of c and bji being the

jith element of B−1. The combined estimator is a linear combination of local

estimators and Var(β̂c) = c>B−1V (B−1)>c.

3.3.3 Numerical Studies

In this section, we illustrate the performance of our framework under partial

linear regression models using a simulation study and a real data example.

Both examples indicate that the proposed methodology can achieve the same

performance as that of the global estimator.

Simulation Study

Firstly, we assume that the data is generated from the following partial linear

regression model

yi = 3xi + z1i − 2z2i + sin(ti) + εi, i = 1, ..., n, (3.44)

where xi = 0 if i is odd, and xi = 1 if i is even, ti = 5(i− 1)/99, z1i and z2i’s are

independently generated from N (0, 1) distribution, the standard deviation σ =

0.1, therefore εi’s are i.i.d. random variables following N (0, 0.01). We define the

kernel functions have the following forms, the Gaussian kernel Kh(t) = h−1φ(t/h)

where h = 0.5 and the rectangular kernel Kb(t) = (2b)−1It∈[−b,b] where b = 0.5

and I is an indicator function.

In this simulation study, we perform 100 replications and estimate both the

global the local estimators for different sample sizes, n = 100, 200, 500.. In

Table 3.1, we compare global and combined estimators by taking mean and

standard deviation of the absolute difference. The results indicate that, those

two estimators are equivalent given the minimal difference. To be more concise,

Figure 3.1 shows the one specific simulation’s local estimators β̂(t)’s along with

the global estimator marked by the red dotted line and true value as dashed line,
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where β̂global = 3.003 and β̂c = 3.003. Figure 3.2 gives the boxplots for both global

and combined estimators of 100 replications under different sample size settings.

n=100 n=200 n=500

|β̂global − β̂c| 3.81e-14(1.03e-15) 7.86e-15(1.26e-15) 1.86e-14(2.08e-15)

|β0 − β̂c| 3.61e-3(1.84e-3) 1.33e-3(8.85e-4) 9.47e-4(7.62e-4)

Table 3.1: Mean and standard deviations of the mean absolute difference of global
and combined estimators of β with different sample size, true value and combined
estimators n = 100, 200, 500
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Figure 3.1: One single run of simulation’s local estimators versus ti with n = 100.
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Figure 3.2: Boxplots for global and combined estimators of β based on 100 runs
under the sample size settings n = 100, 200, 500.

Real Data Example

We now apply the proposed methodology to a real data example. The dataset

is called onions data originally taken from Ratkowsky (1983). This dataset has

been used in a multitude of previous studies, see Young and Bowman (1995),

Bowman and Azzalini (1997) and Ruppert et al. (2003) etc. The onions dataset

contains 84 observations from an experiment involving the production of white

Spanish onions in two South Australian locations: Purnong Landing and Virginia,

South Australia. The objective of this experiment is to establish the relationship

between the yield of onions (g/plant) and the areal density (plants/m2) and

location. The partial linear model is built as follows,

yi = βxi + η(ti) + εi, (3.45)

where yi is equal to log(yieldi); xi = 1, if the ith observation is from Virginia,

xi = 0, if the ith observation is from Purnong Landing; ti is the ith observation’s

areal density. Similar to the simulation study, we apply the Gaussian kernel for

both non-parametric part and local estimates such that, Kh(t) = h−1φ(t/h) with

bandwidth h = 4.5 and Kb(t) = b−1φ(t/b) with bandwidth b = 4.5. Therefore,
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the global estimator of β̂global = −0.3286346 and Var(β̂global) = 0.011. Figure

3.3 presents the observations and fitted line based on the model setting. Figure

3.4 gives the local estimators and the corresponding 95% confidence interval.

The combined estimator can be easily derived from the combined CD such that

β̂c = −0.3286332.
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Figure 3.3: Onion dataset with fitted lines generated by global estimator
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3.4 Concluding Remarks

In this paper, we proposed a CD-based combining approach to effectively integrate

information from multiple studies without assuming their independence. The

underpinning to our general framework is the construction of the combined CD

function from individual CDs that fully exploit the merits of copulas based on

the Sklar’s theorem. The copula method is widely used to model dependencies

when the marginal distributions of a joint distribution are known. Although only

Gaussian copula is considered in this work, there are many other copulas that

can be applied in our general framework, for instance, the t-copula (Embrechts

et al., 2001; Fang et al., 2002; Demarta and McNeil, 2005) and empirical copulas

(Bouyé et al., 2000). As shown previously, with different choices of g∗c (·)

functions, there always exists a combined CD to fuse local estimates. Therefore,

if the local/individual studies and their dependency information is given, the

combined results can be obtained through the combining recipe. This enables the
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flexibility of fusing local inference results by abstracting their dependencies onto

the covariate structure imposed in various copulas, and hence circumvents the

necessity of dealing with dependencies during local estimation. Most importantly,

it is shown that the combined result from our framework is also globally optimal

under various scenarios.

In this work, we first illustrated an example on combining dependent likelihood

functions. There were more than one way to combine dependent log-likelihood

functions by specifying g∗c (·) with different weights. Second, we applied the

proposed framework on combining the parametric components of partial linear

models. Instead of performing inferences over the entire dataset, the global

estimator could be also obtained by local estimators based on local pieces of

information. Last but not least, this modular breakdown of inferences and fusion

under our framework also potentially provides an elegant solution to decompose

large-scale problems into small ones that can be later combined without loss of

optimality.

3.5 Appendix A: Proofs

3.5.1 A.1 Proof of Theorem 4

Proof: For each set of fixed samples across K studies, since g∗c (·) is

monotonic (say increasing) on each coordinate, H∗c (·) = G∗c(·) is always a

cumulative distribution function. At the true value θ = θ0, H∗c (θ0) =

G∗c{g∗c (H1(θ0), ..., HK(θ0))}. By the definition of G∗c(t), we have

Pr(H∗c (θ0) ≤ t) = Pr(G∗c{g∗c (H1(θ0), ..., HK(θ0))} ≤ t)

= Pr(g∗c (H1(θ0), ..., HK(θ0)) ≤ (G∗c)
−1(z))

= G∗c((G
∗
c)
−1(z)) = z

Therefore, H∗c (θ0) is also U[0,1] distributed and H∗c (θ) is a CD for θ. �
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3.5.2 A.2 Proof of Corollary 2

Proof: In our case, we have the marginal U[0,1] distribution functions Fi(z) =

1{z∈[0,1]}t+ 1{z∈(1,∞)}. Then we can get the following result from Lemma 1:

C(z1, ..., zK) = F (F−1
1 (z1), ..., F−1

K (zK)) = F (z1, ..., zK), for 0 < zi < 1, i = 1, ..., K

(3.46)

�

3.5.3 A.3 Proof of Theorem 5

Proof: Firstly, we write the global estimator β̂globl in terms of x,y, K(·) and U

as follows,

β̂global = (x̃∗>x̃∗)−1x̃∗>ỹ (3.47)

= (x(I − U)>(I − PZ)>(I − PZ)(I − U)x)−1x(I − U)>(I − PZ)>(I − U)y

(3.48)

= (x(I − U)>(I − PZ)(I − U)x)−1x(I − U)>(I − PZ)(I − U)y (3.49)

= c>(I − U)y (3.50)

When w = c>B−1S, the combined estimator equals to

β̂c = (w>S−11)−1w>S−1β̂local (3.51)

= (c>B−11)−1c>B−1β̂local (3.52)

= (c>B−11)−1c>B−1B(I − U)y (3.53)

= (c>B−11)−1c>(I − U)y (3.54)



63

Since we have

Bx̃ =


(x̃∗>t1 x̃

∗
t1

)−1x̃∗>t1 K(t1)1/2

...

(x̃∗>tn x̃
∗
tn)−1x̃∗>tn K(tn)1/2

 x̃ (3.55)

=


(x̃K(t1)1/2(I − PZt1

)>(I − PZt1
)K(t1)1/2x̃)−1x̃K(t1)1/2(I − PZt1

)>K(t1)1/2

...

(x̃K(tn)1/2(I − PZtn
)>(I − PZtn

)K(tn)1/2x̃)−1x̃K(tn)1/2(I − PZtn
)>K(tn)1/2

 x̃
(3.56)

=


(x̃K(t1)1/2(I − PZt1

)K(t1)1/2x̃)−1x̃K(t1)1/2(I − PZt1
)K(t1)1/2

...

(x̃K(tn)1/2(I − PZtn
)K(tn)1/2x̃)−1x̃K(tn)1/2(I − PZtn

)K(tn)1/2

 x̃ =


1

...

1

 ,

(3.57)

c>x̃ = (x(I − U)>(I − PZ)(I − U)x)−1x(I − U)>(I − PZ)x̃ (3.58)

= (x(I − U)>(I − PZ)(I − U)x)−1x(I − U)>(I − PZ)(I − U)x = 1 (3.59)

Therefore, c>B−11 = c>B−1Bx̃ = c>x̃ = 1, which indicates that β̂c =

(c>B−11)−1c>(I − U)y = c>(I − U)y = β̂global. �

3.6 Appendix B: Combining Dependent Likelihood in

Composite Likelihood Context

Suppose that `1(θ), ..., `K(θ) are K dependent log-likelihood functions, where the

parameters of interests {θ ∈ Θ ⊂ Rp }. The score function for the ith log-

likelihood function is given as si(θ) = ∂`i(θ)/∂θ. Based on the Taylor expansion

of the score function around the true value θ = θ0, we have

s(θ) ≈ s(θ0) + s′(θ0)(θ − θ0) = s(θ0) +
∂2`(θ)

∂θ∂θ>

∣∣∣∣
θ=θ0

(θ − θ0). (3.60)

The expectation of the score function can be easily derived as

E(s(θ)) = E(s′(θ0))θ − E(s′(θ0))θ0. (3.61)
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Let s0 = s(0), where s(θ) = (s>1 (θ), . . . , s>K(θ))> and E(si(0)) = −E(s′(θ0))θ0.

The score function vector s0 then follows an pK-dimensional asymptotic

multivariate normal distribution,

s0 ∼ NpK(V θ,W ), (3.62)

where V = (V >11 , . . . , V
>
KK)> is a pK × p dimensional matrix stacked by K

matrices of dimension p × p, such that Vii = −E(s′i(θ0)), the covariance matrix

W is a pK × pK matrix with the ith block diagonal matrix equals to Vii and

the ijth block matrix is assumed to be known as Vij = Cov(si(θ0), sj(θ0)).

Give the joint distribution (3.62), the new MLE of θ is derived by θ̂
0

=

(V >W−1V )−1V >W−1s0 and V ar(θ̂
0
) = (V >W−1V )−1. Finally, the new log-

likelihood function constructed by Fraser and Reid (2015) is written as in the

equivalent form,

`new(θ) = −1

2
(θ − θ̂

0
)>(V >W−1V )(θ − θ̂

0
). (3.63)

More specifically, when p = 1, i.e. the parameter of interest is a scalar, say θ,

the new log-likelihood function can be rewritten as a linear combination of the K

individual ones,

`new(θ) = V >W−1s0θ = V >W−1(`1(θ), . . . , `K(θ))>. (3.64)
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Chapter 4

Concluding Remarks

In this dissertation, we focus on developing methodologies for combining

information from dependent studies. The developments are both based on

combination of CDs, which gains popularity in fusing inferences form different

studies. We have shown that the proposed framework has desirable properties in

both making statistical inferences and solving computing issues.

More concretely, in Chapter 2, we propose a sequential split-conquer-

combine (SSCC) approach to analyze big spatial data under a Gaussian

process model setting. The unified framework consists of a sequential split-

conquer procedure, information combining technique using CDs, and a CD-

based predictive distribution. Under mild assumptions, the combined estimators

and predictors are shown to be asymptotically equivalent to the ones derived

by using the entire dataset, while the computing time is significantly reduced.

As a byproduct, we also introduced a Monte-Carlo algorithm to construct the

CD-based predictive distribution which provides rich information for statistical

inference and a better quantification of prediction uncertainty comparing with

the plug-in approach. In Chapter 3, we propose a general combining approach

based on individual univariate CDs to integrate information from multiple studies

without assuming their independence. The combined results can be obtained

through the combining recipe, if the individual studies and their dependency

information is known. This enables the flexibility of fusing local inference results

by abstracting their dependencies onto the covariate structure imposed in various

copulas, and hence circumvents the necessity of dealing with dependencies during
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local estimation. Most importantly, it is shown that the combined result from

our framework is also globally optimal under various scenarios. We illustrated

an example on combining the parametric components of partial linear models.

Instead of performing inferences over the entire dataset, the combined estimator,

which is shown to be equivalent to the global one, could be obtained by local

estimators based on local pieces of information. Last but not least, this modular

breakdown of inferences and fusion under our framework also potentially provides

an elegant solution to decompose large-scale problems into small ones that can

be later combined without loss of optimality.
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