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ABSTRACT OF THE DISSERTATION

Supporting Route Choices via Real-time Visual Traffic Information

and Counterfactual Arrival Times

by Daehan Kwak

Dissertation Director: Badri Nath

Mobility plays an integral role in modern lives, yet with the ever-expanding number of cars,

traffic congestion poses various negative effects, causing vast economic loss, air pollution, and

commuter stress. As live traffic information is becoming ubiquitous, route guidance systems

are used to inform drivers of route capacities to avoid traffic congestion. Navigation systems

compare several different routes and provide the user with options to choose from, from a list

of best possible route recommendations. Drivers’ route choice decisions are typically based

on the route that minimizes their travel cost (e.g. travel time). However, there are three main

limitations for route guidance and information systems. First, as travel time reliability plays

an influential role in the driver’s route choice decision-making, the difference in the travel

time estimations and/or recommended routes may vary across navigation systems, which can

contribute to the uncertainty in the route choice. Second, as the estimated travel time is the

dominant deciding factor in route choice, the impact of uncertain, inaccurate, and variable

travel time estimations can render it useless, negatively influencing the drivers’ compliance to
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the information system’s recommended route. Third, as drivers cannot assess and compare their

actual route choice to the non-chosen foregone alternatives, they face frequent dilemmas over

their route-choice decisions, especially when route alternatives recommended by navigation

systems are not consistent with their own previous driving experiences.

In this dissertation, our focus is to explore these three limitations. First, we present a com-

parative analysis on the route recommendations given from four popular online map providers:

Google Maps, HERE, MapQuest and Bing Maps. We analyze traffic data collected from all

four of the different map providers for 71 days for two cities, each with two origin-destination

pairs. Statistical analysis show that the estimated travel times on identical routes are signifi-

cantly different among the map providers. This in itself has the potential to create uncertainty

in route choices and travel time variability, in addition to a decrease in the credibility and com-

pliance with the map provider’s route choice. Second, to complement the deciding factors

(e.g., Estimated Time of Arrival (ETA)) in route decisions, we propose a system called So-

cial Vehicle Navigation. This system incorporates a secondary level of detail into the vehicle

navigation system by providing other semantically rich information that drivers can share with

one another. This user-shared visual traffic information assists in the decision-making process

and also improves the efficacy in route determinations. Third, we introduce a rationale for

counterfactual thinking in route choice, where drivers receive feedback information about the

actual travel times on forgone alternatives (i.e. non-chosen routes), so that at the end of the

day, drivers have the ability to exercise reinforced learning and self-assessments of their route

choices. We propose DoppelDriver, a system that offers a direct, actual travel time compari-

son among chosen and non-chosen routes, which determines the actual travel times from probe

participatory vehicles on the non-chosen routes.

iii



The main conclusion of this dissertation is that existing navigation systems have limita-

tions and can potentially introduce uncertainty in route choice. To support and improve the

driving experience, we address the use of visual traffic information for pre-trip route choice

and the use of counterfactual travel times as post-choice feedback information on the forgone

alternatives.
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Chapter 1

Introduction

Ever since the invention of the first automobile, the power of mobility has improved the fre-

quency at which people meet to maintain social relations over even greater distances. However,

with the ever-expanding number of automobiles throughout the world, traffic congestion is a

pervasive problem that exacts severe economic cost and negatively impacts on an individual’s

well-being. Countless countermeasure solutions exist to alleviate traffic congestion, for ex-

ample, the infrastructure-based Intelligent Transportation System (ITS) such as, on-ramp flow

meters, cameras that detect traffic flows, optimized traffic signals, number plate recognition

systems, road pricing (e.g. road tolls), electronic informational displays (e.g. Variable Mes-

sage Sign (VMS) [100]) along the roadways. Today, the most widely used ITS solutions are

infrastructure-less, named so because they use floating car data to determine traffic speed and

to identify traffic congestion. As ubiquitous computing and real-time traffic flow data becomes

pervasive in cars, they are integrated with navigation systems which has become the promi-

nent solution to avoid traffic congestion. Apart from traditional navigation systems, users have

gravitated toward smartphone navigation services, such as Google Maps [6]. A J.D. Power and

Associates study reported that 47% of 20,704 car owners polled had downloaded a navigation

application to supplement their car-based navigation system in 2012 [77]. Most drivers rely on

GPS navigation, be it through their cars or their smartphones where a rapidly growing market

far from its ceiling is speaking volumes to the ubiquitous presence of navigation services.



2

1.1 Travel Information

Traffic information can influence drivers’ route choice behavior, and consequently, guide them

to less congested routes. Traditionally, traffic reporting has been done primarily by the police,

state departments of transportation, drivers reporting by phone, and also by traffic reporting

companies. Such information is aggregated and then either resold or redistributed directly to

the public, broadcast on-air by radio and TV stations, or used as traffic data for in-car navigation

systems. Live traffic status reports are becoming more common and easily accessible, with

traffic congestion maps available via online maps, mobile phones, and GPS devices. Nowadays,

participation by the public in providing traffic reports is becoming popular, because it is easy

for users to report and share traffic information with one another via smartphones.

1.1.1 State-of-the-art on Travel Information

Traffic Information via Social Networking Services

Due to the increased usage of social networking services (SNS) like Facebook [5] or Twit-

ter [16], users post events to inform or share information with one another. Researches into

extracting useful information from SNS, especially traffic information, have been conducted

[87, 19, 85, 106, 81]. In [106], the authors proposed extracting traffic events from Twitter and,

using natural language techniques, and classified them by the location mentioned and the type

of traffic event. Similarly, Sakaki et al. [85] extracted traffic-related Tweets along with loca-

tion information based on keywords. Schulz et al. [87] suggested detecting small incidents,

such as car accidents from microblogs by utilizing machine learning and semantic web page

techniques, and localizing the microblogs by location and time to provide real-time detection
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of incidents. Ribeiro et al. [81] investigated the relationship between Foursquare and Insta-

gram check-ins to detect traffic movement and built a more efficient traffic condition predictor.

Andrea et al. [19] proposed a real-time system to detect from Twitter events relevant to traffic

and to classify them by event type, such as traffic congestion, crash, or heavy traffic due to an

external event like a football game.

Traffic Information via Participatory Crowdsensing

Crowd-sourced participatory sensing applications are becoming popular because users can eas-

ily use the sensors that are built in smartphones (e.g. cameras, GPS, accelerometer and motion

sensors) to collect data which is then aggregated and interpreted for a common purpose. Micro-

blog [41], an early work in participatory sensing, provides a system that connects sharing users

and querying users to generate and share geo-tagged multimedia called micro-blogs. Authors

in [40] proposed a navigation service called GreenGPS that uses participatory sensing data

from on-board diagnostics (OBD) systems to compute fuel-efficient routes, which may differ

from the shortest and fastest routes. Smartphone navigation apps such as Waze [17], differ

from traditional navigation systems in that crowdsourcing via users provides traffic reports to a

central server, where such information is used to provide real-time routing and traffic reports.

Here, push buttons are used to share road reports like the degree of traffic, police speed traps or

accidents. More recently, apps such as Inrix Traffic [8] have started to incorporate user-based

crowdsourced traffic reports, and after Google’s recent acquisition of Waze, it started to add

social traffic reports into its mapping business. Trapster [15] is also a community-based crowd-

sourcing app that improves the commute when users report and share the location of speed

traps, red light cameras and speed radar, etc. Without the complex infrastructure to predict bus
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arrival time, the authors in [111] proposed a bus arrival time prediction system based on par-

ticipatory contribution of users with commodity mobile phones. In addition, recent researches

[38, 92, 89, 45] also talk about the potential from users sharing information regarding traffic,

and we are starting to witness widespread use of these techniques.

1.2 Route Choice

In the transportation field, route choice is concerned with the decision-making process of route

selection from origin to destination. The driver route-choice model is one of the most influ-

ential and challenging topics, because the decision by a user makes affects traffic. We can

already witness the pervasiveness of navigation systems, which mainly use the Estimated Time

of Arrival (ETA) . These systems take into account real-time traffic flow and provide estimated

travel time route comparisons to generate a set of route choices to support the driver in the

decision-making.

A myriad of research has been conducted on route choice behavior and the effect of real-

time information on route choice [96, 64, 51, 107, 34, 91, 55, 39, 101, 90]. [91] conducted stud-

ies to understand the traveler’s route choice behavior under uncertainty, and [39, 101] looked

into the impact of real-time information that influences influence drivers’ route choice. In [90],

the authors analyzed drivers’ route-choice behavior with pre-trip information. Main findings

were that drivers found to be more reluctant to be influenced by the information provided if

they had more experience with the routes, and when exploring alternatives increases, individu-

als tend to prefer a route characterized by lower average but greater variance of travel time.
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1.2.1 Limitations in Route Choice

The pervasiveness, efficiency, and market potential of ITS and map service providers strictly

depend on users’ compliance with the systems and the information they offer. Despite efforts

to support decision-making, travelers tend to disregard the suggestions these types of systems

offer [27, 28]. In fact, based on their findings, Zhu and Levinson [112] investigated the basic

question: “Do people take the fastest route?” In this empirical study, GPS devices were installed

in the vehicles of 190 participants for a 13-week period, where no particular instructions were

given; they were free to make their own route decisions. They compared the travel time from

routes that participants actually chose against the fastest route, which was calculated from other

probe vehicles. Their results show that only about 13.5% of commuting trips match the fastest

route. Also, in [79], the authors investigated the relationship between driver’s behavior and

information provision via real-time traffic information from GPS manufacturer TomTom. With

32 participants, 897 trips were analyzed based on GPS traces. They conclude that the driver’s

perception of the route choice is biased in favor of the chosen route, where the participants

consider their chosen route to be reliable when, in reality, they are among the most unreliable.

There are several explanations for user compliance with real-time information (i.e. the

decision to follow the recommended route supplied through real-time information). From the

transportation literature, we list a few limitations in current route recommendation systems as

a means to alter drivers’ route choice behavior to make smarter decisions, which mainly rely

on real-time ETA information.

Reliability

The quality of real-time information influences the users’ compliance with route choice, and

as ETA is used as a decision-making tool for route choice, the impact of uncertain, inaccurate,
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and variable travel times can render it useless [79]. Similarly, differences in ETA and/or best

routes offered by various map providers can also contribute to the uncertainty in route choice,

and this uncertainty can make it challenging for users to choose the true optimal route.

Rationality

In situations of uncertainty, most people may simply decide on routes they have experienced

previously because they have no time or method for rational assessment [28]. We observe

this quite often as commuters routinely take the same route to and from work [64]. To some

extent, this may be seen as rational; however, in the long run, the decision may cost the driver

a significant amount of travel time, thus resulting in irrational decision-making [63].

Perception

Arguably, people may think they are on the fastest route, even when their decision is wrong and

do not follow the system’s recommended route [112, 79]. People often experience these events

in their ordinary commute, where they think they are better route planners than their navigation

system, and persist in using “their” route [79, 63]. Consequently, their false beliefs result in

poor decision-making if it turns out they were wrong. One behavioral factor that explains this

is habit, which appears to have a strong influence on drivers’ behavior. Even when real-time

traffic information is provided, and even after experiencing long delays, drivers are still willing

to adhere to “their” route [79].

Experience

In many situations, drivers face dilemmas over their route-choice decision, especially when

real-time information regarding the recommended alternatives does not coincide with previous
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driving experience [79, 24, 22]. In addition, repeated cycles of accumulated experience on

continuous commutes can be a better decision-making factor than route-choice systems [22]

because real-time information cannot foretell whether traffic will get better or worse.

Information

Real-time traffic information is becoming more ubiquitous and is used in many systems and

services. It is also used in route choice systems to provide better recommendations so that the

user can make better decisions. However, such information cannot foretell you that traffic will

get better or worse.

Though route choice is a very important aspect, drivers tend to spend less time on thinking,

assessing and learning from their route decisions and they eventually wind up spending more

time in traffic. People are not willing to spend time comparing travel times for alternative routes.

Most do not believe it would be a rational use of their time to explore multiple alternatives

which may turn out to only save a few minutes. However, rationally, it might be worth trying

as it pays off in the long run [63].

1.3 Thesis

This dissertation states that:

Existing route recommendation systems have the potential to introduce uncertainty in

route choice. Real-time visual traffic information can support the user’s pre-trip route-

choice decision making and, with counterfactual travel time feedback on forgone alterna-

tive routes, users are capable to make strategic decisions on, and self-assessments of, their

route choices.
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1.4 Summary of Dissertation Contributions

This dissertation presents three main contributions in exploring and identifying the research

challenges to support route choices in route recommendation systems, which were published

as follows:

• Social Vehicle Navigation: Integrating Shared Driving Experience into Vehicle Naviga-

tion, in Proceedings of the 14th Workshop on Mobile Computing Systems and Applica-

tions, (HotMobile 2013), pp. 16:1–16:6. [89];

• Tweeting Traffic Image Reports on the Road, in Proceedings of the 6th International

Conference on Mobile Computing, Applications and Services, (MobiCase 2014), pp.

40–48. [59];

• DoppelDriver: Counterfactual Actual Travel Time for Alternative Routes, in the Pro-

ceedings of the 2015 IEEE International Conference on Pervasive Computing and Com-

munications, (PerCom 2015), pp. 178–185. [60];

• Seeing Is Believing: Sharing Real-Time Visual Traffic Information via Vehicular Clouds,

in IEEE Access, vol. 4, pp. 3617-3631, 2016. [61];

• A Comparative Analysis of Real-time Travel Information from Online Map Services,

[submitted for peer review].

First, we identify the potential of uncertainty in route choice in existing popular online

map recommendation systems: Google Maps, HERE, MapQuest and Bing Maps. We analyze

analyzed traffic data collected from all four of the different map providers for 71 days for two

cities, each with two origin-destination pairs. An extensive comparison analyses are conducted

on several aspects, including the difference in estimated travel times across map providers on
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identical routes, and the number of recommend routes introduced and their differences across

map providers for a given origin and destination. Statistical analysis shows that the estimated

travel times on identical routes are significantly different among all the map providers (p <

0.001). This in itself has the potential to create uncertainty in route choices and travel time

variability, in addition to a decrease in the credibility and compliance with the map provider’s

route choice.

Second, we present a system called Social Vehicular Navigation that integrates user-shared

visual traffic reports called NaviTweets into a vehicle navigation system in order to provide

a secondary level of detail to identify traffic congestion. The users’ shared traffic reports are

geo-tagged onto a map, called Social Traffic Map (a map representation). Based on these traffic

reports, Traffic Digests (concise snapshot summaries on the route of interest) are delivered to

drivers to provide rich and reliable information supporting the route choice. These digests will

complement factors such as the estimated travel time and assist the driver on their route choice

decision making. Once the Traffic Digest is received, the information is displayed in a user-

friendly way to the drivers to assist them with route selection. We explain the functions of the

proposed SVN model in abstraction layers and present the architecture along with a prototype

implementation. Also, we have conducted a questionnaire survey to evaluate the usage of traffic

images in route choice and as well a user study to investigate the real behavior of traffic image

information sharing.

Third, we propose a system called DoppelDriver, a system that answers these users’ route

choice uncertainties. Through the provision of instantaneous position relative to participatory

users on alternative routes as well as actual travel time (ATA) for any alternative routes to a

given destination, DoppelDriver offers a direct comparison on chosen and non-chosen routes.

We show the potential use of post-trip feedback information on chosen and non-chosen routes
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based on insights through a literature review in the transportation domain. We design an algo-

rithm to obtain actual travel times on non-chosen routes that combines segments of the actual

travel times on the alternative routes crowdsourced by other participating users. We present

results from a feasibility study based on GPS traces from a taxi data set. The hypothesis is

that the total travel time along a route, as experienced by a single driver, can be accurately

approximated by adding the travel times along successive portions of the route as experienced

by multiple drivers traversing those route portions at approximately the same time as the single

driver. We design and implement a prototype DoppelDriver on the Android platform. When an

origin and destination are inputted, a recommended choice list of alternative routes is shown

corresponding with ETAs based on current traffic. Users can select which route to take and

which route they are interested in receiving feedback from, based on actual travel time. Also,

users can save their trip travel times, along with the non-chosen route’s travel times, in the trip

log. Finally, based on the trip log, the average of, and deviation in, the trip’s actual travel times

are shown in the trip diary.

1.5 Contributors to the Dissertation

The following is a list of contributors by chapters who co-authored papers from which material

was used in this dissertation. Chapter 2 of this dissertation are the result of a collaboration with

my colleagues, Yu Yang, Ruilin Liu, and my advisors Prof. Badri Nath and Prof. James Abello.

Yu Yang contributed to cleansing the traffic data, Ruilin Liu and both Prof. Badri Nath and Prof.

James Abello provided many essential insights. For Chapter 3, Wenjie Sha and Daeyoung Kim

contributed in the design and implementation to the prototype, Ruilin Liu contributed in the

evaluation analysis, and both my advisors Prof. Badri Nath and Prof. Liviu Iftode contributed

to the motivation and design of Social Vehicular Navigation. For Chapter 4, Daeyoung Kim
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contributed in the implementation to the prototype, Ruilin Liu contributed to provide the taxi

data, and both my advisors Prof. Badri Nath and Prof. Liviu Iftode contributed in many ways

to the idea and motivation.

1.6 Organization of the Dissertation

The outline of this dissertation is as follows. Chapter 2 presents the potential of route-choice

uncertainty through a comparative analysis on the route recommendations and estimated travel

times given from four popular online map providers: Google Maps, HERE, MapQuest and

Bing Maps. Chapter 3 and 4 describe the use of two systems to support route choice, So-

cial Vehicular Navigation and DoppelDriver, respectively. Chapter 3 presents Social Vehicular

Navigation, a system that crowdsources geo-tagged visual traffic information to support drivers

in the selection of routes. Chapter 4 presents DoppelDriver, a system that answers route-choice

uncertainty through post-travel feedback information. Finally, Chapter 5 presents the conclu-

sion along with future work to this dissertation.
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Chapter 2

Comparative Analysis on Online Maps

One of the most essential services in transportation systems is a route recommendation system,

which provides optimal origin/destination (OD) route alternatives based on real-time estimation

and prediction of travel times. Online maps, such as Google Maps, Bing Maps, MapQuest,

HERE, Apple Maps, and Waze, are the de facto standards for this type of transportation service.

Such online map providers use historic traffic information and/or live traffic information to

construct the fastest route based on the expected time of arrival (ETA). Given the variety and

diversity of travel time estimations and route recommendations, it is important to understand

and gain insight into a routing service’s quality. In this paper, we study four popular online

maps (Google Maps, Bing Maps, Here, and MapQuest) for two cities (Los Angeles and New

York) selected from cities with the worst traffic, requesting routes for two OD pairs in each city.

Online map data for the recommended routes were collected for 71 days for each online map.

A comparison analysis was conducted on these online maps based on the recommended routes

and the ETAs.

2.1 Introduction

Navigation systems are mostly used to make better use of the transportation network, and en-

able users to be better informed about route capacities in order to avoid traffic congestion.
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Navigation system manufacturers are integrating traffic-related, specialized functions into on-

board vehicle navigation systems. The number of in-vehicle navigation systems is predicted

to quadruple in North America by 2019, growing to about 13 million [36]. Apart from the

traditional navigation manufacturers, such as TomTom or Garmin, drivers are moving to less

expensive smartphone navigation apps, such as Google Maps and Apple Maps [35]. Vehicles

equipped with these types of devices are expected to be an integral part of the Internet in the

near future [45].

Today, most navigation systems and apps can calculate the best route, taking into account

real-time travel data, as well as historic data, to predict traffic flow. Travel time information has

been the subject of considerable research because, from the traveler’s perspective, it supports

better route decision making, better scheduling of departure times, reduces vehicle operating

costs, and improves the overall experience. With respect to transportation agencies, this infor-

mation provides criteria to optimally manage and control traffic to reduce congestion, and thus,

provide a more sustainable environment.

In particular, real-time travel information provided by online (or mobile) maps, such as

Google Maps, Bing Maps, HERE (Nokia), MapQuest, and Waze, are services that are getting

better every day, making it more and more possible to avoid heavy traffic and to know when

you will arrive at a certain destination. However, to use and comply with recommendations

provided by online maps, it is essential that travel time estimations be reliable, as travel time

reliability is a major factor in route choice [97, 48]. Also, it is important to understand the travel

time variations (the differences in travel time estimations provided by one recommendation

system compared to another), since users do not precisely know when they will arrive at a

destination [73]. Thus, both travel time reliability and travel time variability are related to, and

can introduce uncertainty associated with, route choice [48, 21].
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To understand the characteristics of online map services, the objective of this study is to

explore and gain insight into travel time variations and route recommendations by conducting a

comparative analysis among state-of-the-art online maps. For example, what is the ETA differ-

ence among the map providers for a particular fixed route? Are different routes recommended

among the map providers for a given origin and destination? To the best of our knowledge, we

are the first to conduct a comparison study of online maps.

This chapter is organized as follows. Background and related work are presented in Section

2.2. Then, we explain the setup of our experiment in Section 2.3, followed by a description of

the data that was collected during the experiment in Section 2.4. Section 2.5 presents a descrip-

tive study on our collected data set. In Section 2.6, we shows the results from a comparative

study on the online maps. Finally, the study summary is presented in Section 2.7.

2.2 Background and Related Work

In the transportation field, route choice behavior is connected to the decision-making process in

route selection, and research has been conducted to understand this complex behavior [79, 99].

Many factors influence the decision process. For example, there are observable attributes, such

as travel time, cost, distance, fewest turns, trip purpose, and traffic information availability;

and there are unobservable characteristics, such as age, gender, income, attitude, perception,

personality, spatial abilities, and road network familiarity [47, 53].

Since travel time estimation is the key indicator in the user’s route choice, inaccurate travel

times can render recommendation systems useless. Drivers may find it difficult to determine

if the route chosen was the most expedient upon arrival, making it important to assess the

quality of travel time estimations in general. As a matter of fact, it is becoming common

to witness drivers using both in-vehicle navigation systems and smartphone navigations apps
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at the same time. Wang and Ju [105] investigated this behavior in order to understand the

reasons for using two navigation systems at the same time. One of their findings was that,

during traffic congestion, participants found that it was necessary to use both navigation systems

to decide what the best route is. Also, when both navigation systems recommend different

routes, participants tend to rely more on the smartphone navigation app, compared to in-vehicle

navigation. Although the objective of the study was to understand the various reasons why

drivers use two navigation systems, we can see that this is an example of route uncertainty.

Several studies have been conducted to assess travel time by comparing the ground truth

travel time collected from static traffic sensors or probe vehicles, compared to the estimated

travel time provided by online maps [97, 56, 71, 98, 103, 29]. However, such studies are

constrained to freeways and arterials due to limitations in field data collected by static sensors

[49, 82].

In addition, a study of 10,156 emergency ambulance journeys in England determined that

discrepancies between actual and estimated travel times from commercially available naviga-

tion systems across hospital emergency departments were an under-prediction of 1.6 minutes

and a standard deviation of 4.9 minutes [70]. Given the small radius of service that a hospital is

responsible for, and given that ambulances can exceed general traffic speed, an under-prediction

of 1.6 minutes and a rather large standard deviation of 4.9 minutes raises the question of accu-

racy in estimated travel times.

An early work to compare estimations of travel times among different mapping systems

was conducted [104]. A comparison was done between Google Maps and the ArcGIS Network

Analyst Module [3], where a set of origins and a set of destinations, varying by distance, were

input to both mapping systems, and the resulting travel times were compared. The authors

identified several advantages with Google Maps in frequent updated road networks, and travel
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time estimations took congestion into account. However, the limitation of this work was that the

authors compared the travel times reported from Google Maps, which accesses updated traffic

information, versus ArcGIS, which relies on static data extracted from the software DVD.

Travel time can easily be under- or overestimated due to dynamic changes in traffic volume

or by simple and faulty algorithms. Additionally, there is a lack of clarity in the algorithms in

estimating travel times across routing services. The fact is that data on current traffic conditions

come from a wide variety of sources, ranging from government departments of transportation,

to users who anonymously contribute speed and traffic information through crowdsourcing, to

private data providers, or even traffic data companies. So, a wide discrepancy in sources of data

for each travel time prediction may surely be the case across different online map providers.

Each of these sources of variability in travel time across route recommendation systems may

make it challenging for the user to choose the best route, potentially introducing uncertainty in

route choice.

2.3 Experiment Setup

Selection of Online Maps and Cities

Popular de facto online maps in the U.S. are Google Maps [6], Bing Maps [4], MapQuest [10],

OpenStreetMap (OSM) [11], HERE [7], Waze [17], and Apple Maps [2]. Out of these online

maps, we selected the ones that are supported by both web browsers and mobile devices and

that use real-time traffic information. OSM does not use real-time traffic data, Apple Maps

is not supported by web browsers, and Waze map’s web browser functions were not stable to

properly collect data at the time of the experiment. Thus, we conducted a comparative study

based on the other four online maps (Google Maps, Bing Maps, HERE, and MapQuest) for the

two cities which were selected from cities with the worst traffic, Los Angeles and New York
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LA1 Origin

LA1 Destination

LA2 Origin

LA2 Destination

NY2 Origin

NY2 Destination

NY1 Origin

NY1 Destination

LA NY

Figure 2.1: Map location of origins and destinations for LA and NY.

[52, 80].

Selection of Location and Distance for Origin/Destination Pairs

We carefully selected the location of, and the distance between, the origins and destinations

in the two cities studied. The selections of the two OD pairs for each city (a total of four OD

pairs) were based on the following criteria. a) Destination: The destination was selected from

among the most popular areas in each city: Downtown LA and Orange County for LA [58],

and Midtown Manhattan and Lower Manhattan for NY. b) Distance: Since the average one-

way commute time is 26 minutes (over an average distance of 16 miles) [62, 76], we selected

approximately 16 miles for the distance between origin and destination. c) Origin: For the

origins in LA, we selected two locations that were east and south of downtown LA, because

there are mountains north of LA and the Pacific Ocean is west of LA, as shown in Figure 2.1
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Table 2.1: Coordinates and descriptions for origins and destinations.

City Origin Description Destination Description

LA1 33.992548, -118.067819 East of LA 34.052482, -118.263706 Downtown LA

LA2 33.818773, -118.195800 Long Beach 33.945049, -118.343907 Orange County

NY1 40.586315, -73.948369 Brooklyn 40.727958, -73.990979 Mid Manhattan

NY2 40.859623, -73.851198 Bronx 40.702850, -74.012957 Lower Manhattan

(left). For the origins in NY, as shown in Figure 2.1 (right), we selected two locations that

are northeast and southeast of Manhattan, because the Hudson River is west of Manhattan. d)

Route: From the recommended route options, we checked to see if at least one route is the same

for all four maps. Details of the OD pair coordinates and their descriptions are shown in Table

2.1. Figure 2.1 depicts the map location of the OD pair coordinates.

2.4 Data Description

A server was set up to query route recommendations from four online maps: Google Maps,

HERE, MapQuest, and Bing Maps. Route requests were queried with the coordinates of the

OD pairs as input (Table 2.1). Each online map was queried for 71 days at five-minute intervals,

starting from 11/29/2014 (01:20) to 02/07/2015 (15:20). The total data set size is 804,568,

where Table 2.2 shows the breakdown according to city and online map provider.

The result of each query is a list of recommended routes, generally one to three routes

for Google Maps, HERE, and MapQuest. However, for Bing Maps, only a single route was

recommended for every query. Thus, although each map service was equally queried, the data

sizes are different among the map providers shown in Table 2.2. This is due to the fact that

sometimes the total number of routes that were reported differed among online maps, or there

were query failures.

Data cleansing was conducted on the data sets. The MapQuest data had approximately 2.4%

abnormal data for a total of 5,958 (LA1: 5454, LA2:304, NY1:66, NY2:134) where ETAs had
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Table 2.2: Dataset size (Total: 804,568).

City Google HERE MapQuest Bing Maps

LA1 60,056 61,028 61,066 20,350

LA2 61,013 61,037 61,109 20,372

NY1 52,850 61,002 60,996 20,332

NY2 61,001 61,014 60,998 20,344

Table 2.3: Sample dataset.

ID Date/Time Idx Dist Tm s Cur tm s Rid Map Location

53348 11/29/13 15:30 0 18.3 1260 1560 G3 google I-5 N

53349 11/29/13 15:30 1 19.9 1260 1320 G4 google CA-60 W

53350 11/29/13 15:30 2 20.9 1320 1320 G5 google I-605 N and CA-60 W

53351 11/29/13 15:25 0 18.3 1260 1680 G3 google I-5 N

53352 11/29/13 15:25 1 19.9 1260 1320 G4 google CA-60 W

53353 11/29/13 15:25 2 20.9 1320 1380 G5 google I-605 N and CA-60 W

extremely high values, and thus, were excluded from the analysis. In addition, missing data

from query failures were negligible, and thus, ignored.

The response to each query was recommended routes along with their corresponding ETAs.

A sample of the dataset for a query response is shown in Table 2.3, which consists of nine at-

tributes. ID is the record number; Date/Time is the response date and time of the route query; for

each Date/Time, online maps may recommend more than one route, so we assigned a different

index, Idx, to distinguish them; Dist is the distance of the recommended route in miles; Tm s

is the static travel time in seconds; Cur tm s is the estimated travel time taking into account

live traffic information in seconds; for each distinct route, Rid is assigned; Location is the main

description of the route.

Generally, a total of three route options were recommended per route query for Google

Maps, HERE, and MapQuest, whereas Bing Maps provided a single best recommended route

per route query. Table 2.4 shows the total number of distinct routes that were recommended

throughout the 71 days, along with the corresponding range for Rids in parentheses.

Each distinct route may have identical routes that match a route given by other online maps.
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Google Maps MapQuestHERE Bing Maps

Figure 2.2: Example of identical routes in NY1 (G11=H5=M5=B242).

Google Maps MapQuestHERE

Figure 2.3: Example of similar, but not identical, routes in NY1 (G6≈H3=M3).

Google Maps MapQuestHERE

Figure 2.4: Example of a route in NY2 with no identical routes from other services.
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Table 2.4: Total number of distinct routes.

City Google HERE MapQuest Bing Maps

LA1 7 (G1 – G7) 4 (H1 – H4) 3 (M1 – M3) 208 (B1 – B208)

LA2 5 (G1 – G5) 3 (H1 – H3) 3 (M1 – M3) 38 (B1 – B38)

NY1 15 (G1 – G15) 5 (H1 – H5) 6 (M1 - M6) 305 (B1 – B305)

NY2 9 (G1 – G9) 4 (H1 – H4) 3 (M1 – M3) 282 (B1 – B282)

Figure 2.5: Example of micro-changes in routes for Bing Maps in LA1.

Figure 2.2 is a visual example of identical routes from each online map provider for NY1, where

G11=H5=M5=B242 indicates that route IDs, G11, H5, M5, and B242 are identical. Figure 2.3

is an example where one route is similar, but not identical, to routes from other online map

providers. We can see that the route near the origin from Google Maps is slightly different

from the identical routes presented by HERE and MapQuest. In this study, when comparing

routes, if one leg of a route is different from another, then that route is considered not identical.

Figure 2.4 is an example of a route that has no identical routes from the other online maps.

As mentioned, when a user requests a route, online maps (except for Bing Maps) generally

recommend options (more than one route). Bing Maps recommends only a single route per

route request. When route options are recommended, we logically inferred that online maps
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Figure 2.6: Percent of the recommended routes that appear for LA.

other than Bing Maps provide the top three fastest route options from a set of fixed routes,

whereas Bing Maps provides the best route that is distinguished by micro-changes. Figure 2.5

gives an example of such micro-changes. The top-right route and the bottom-right route differ

in that the top-right route continues on the highway, whereas the bottom-right route exits to

local roads and then re-enters the highway. Although Bing Maps, recommends a single best

route per query, such micro-changes makes Bing Maps have a large amount of distinct routes.

2.5 Descriptive Study

In this section, descriptive study is conducted to study the ETA average, ETA variability, num-

ber of distinct routes, route changes, and number of identical routes. Each aspect is covered in

the subsections below.

2.5.1 Recommended Route Options

In this subsection, we first show the total number of routes each online map recommended and

the details for each OD pair in LA and NY.
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Los Angeles

Throughout the data collection for 71 days, we show the total number of distinct routes that

appeared for LA1 and LA2. For LA1, a total of 7, 4, 3, and 208 distinct routes were rec-

ommended by Google Maps, HERE, MapQuest, and Bing Maps, respectively. The majority of

routes that appeared are G2, G3, and G4 from Google Maps, which account for 96.1%; H1, H2,

and H3 for HERE, which account for 88.5%; M1, M2, and M3 for MapQuest, which account

for 100%; and B65 and B116 for Bing Maps, which account for 75.5%. Detailed information

of the distinct routes that appeared for LA1 is shown in Appendix A Table A.1.

For LA2, a total of 5, 3, 3, and 38 distinct routes were recommended by Google Maps,

HERE, MapQuest, and Bing Maps, respectively. The majority of routes that appeared are G1,

G2, and G4 from Google Maps, which account for 99.2%; H1, H2, and H3 from HERE, which

account for 100%; M1, M2, and M3 from MapQuest, which account for 100%; and B11 and

B16 from Bing Maps, which account for 92.4%. Detailed information of the distinct routes that

appeared for LA2 is shown in Appendix A Table A.2.

A descriptive summary of the percentage of distinct recommended routes for LA1 and

LA2 based on Appendix A Table A.1 and Appendix A Table A.2 is shown in Figure 2.6. We

can imply that for LA1, a greater variety of routes appeared, compared to LA2. Routes for

MapQuest were the only ones that appeared evenly for LA1. For LA2, three routes for Google,

HERE, and MapQuest appeared evenly, whereas one route (B16) was mainly recommended by

Bing Maps.

New York

We show the total number of distinct routes that appeared for NY1 and NY2. For NY1, a total

of 15, 5, 6, and 305 distinct routes were recommended by Google Maps, HERE, MapQuest,
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Figure 2.7: Percent of the recommended routes that appear for NY.

and Bing Maps, respectively. The majority of routes that appeared from Google Maps were

G1, G5, and G11, which account for 73.3%; H2, H3, and H5 from HERE, which account for

77.1%; M2, M3, and M5 from MapQuest, which account for 82.8%; and B234 and B242 from

Bing Maps, which account for 79.8%. Detailed information on the distinct routes that appeared

for NY1 is shown in Appendix A Table A.3.

For NY2, a total of 9, 4, 3, and 282 distinct routes were recommended by Google Maps,

HERE, MapQuest, and Bing Maps, respectively. The majority of routes that appeared are G2,

G4, and G7 from Google Maps, which account for 81.7%; H1, H2, and H4 from HERE, which

account for 88.5%; M1, M2, and M3 from MapQuest, which account for 100%; and B59 and

B89 from Bing Maps, which account for 80.1%. Detailed information on the distinct routes

that appeared for NY2 is shown in Appendix A Table A.4.

Compared to LA, we can see that NY has many more distinct routes. This can be inferred

owing to the fact that Manhattan is a grid type of street map, where streets run at right angles

to each other, leading to a greater variety of possible routes.

A descriptive summary of the percentage of distinct recommended routes for NY1 and NY2

based on Appendix A Table A.3 and Appendix A Table A.4 is shown in Figure 2.7. We can see

for NY1 that a greater variety of routes appeared, compared to NY2. This is because, for NY2,
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Figure 2.8: Routes viewed by date for NY1.

the OD routes consist mainly of highways. For NY2, routes from MapQuest were the only ones

that appeared evenly, whereas one route (B53) was mainly recommended by Bing Maps.

2.5.2 Routes Viewed by Date

Not all the routes appeared every day, with some routes only showing up during a short period

of time. Therefore, we show which routes appeared by date. The routes viewed in Google

Maps throughout the 71-day period for NY1 is shown in Figure 2.8. All the other online maps

and for both LA and NY are shown in Appendix A Figure A.1 to A.4. The x-axis is time slots

by date for the 71-day period, and the y-axis is the percentage of routes viewed.

For MapQuest and HERE in all of LA and NY, the routes that appeared were evenly dis-

tributed throughout the experiment. For Bing Maps, although there were many distinct routes,

only one or two appeared throughout the experiment. Google Maps for NY had the most dy-

namic route usage, compared to all other maps. However, it is interesting to see that some

routes appeared for a short period of time and never appeared again throughout the experiment.

To sum up, it can be inferred that routes for MapQuest and HERE are nearly constant, and

are the most static. Although Bing Maps has the most distinct routes, apparently only one or

two representative routes are used. Google Maps tended to be the most dynamic, compared to

other online maps, but that depends on the road network.
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Figure 2.9: Frequency of best-route changes for LA1 and NY2.

2.5.3 Route Changes

In this subsection, we focus on understanding how frequently the best recommended routes

change over time. Figures 2.9 shows the frequencies of change for the best routes in LA1

and NY2. The frequency change regarding the other OD pairs are in Appendix A Figure A.5.

We used a twelve-period moving average, which is the average in the frequency change every

hour, to smooth out the fluctuations. The x-axis is the time of day, and the y-axis is the total

number of changes. The findings here also show that the best recommended routes change

more frequently during the peak morning and evening hours.

2.6 Comparative Study

2.6.1 Case of Best Routes

In our dataset, Google Maps, HERE, and MapQuest recommended two to three routes whereas

Bing Maps recommended a single route for every five-minute interval. We define the best

route as the route that has the shortest ETA for the given interval. Thus, for every five-minute

interval there would be four best routes from each online map. Note that there may or may not

be identical routes that were selected as the four best routes. In this subsection, we present a
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Figure 2.10: Weekday and weekend average ETAs for LA1 and NY1.

descriptive analysis on the best ETA’s average and variability along with a statistical analysis

for each pair of online map’s best ETA.

ETA Average for Best Routes

We plot the average of the best routes’ ETAs for each online map. The average of the travel

times for each OD pair queried from the online maps for LA1 and NY1 are shown in Figure

2.10. For each query, the shortest ETA was selected to be included in calculating the average,

despite the fact that the routes may differ between the online maps. Here, the average ETAs

are shown with a five-minute interval, and we separated the data into weekdays and weekends.

In each figure, the x-axis is the time of day, and the y-axis is the average of the best ETA

for each time each day. Figure 2.10 (top) illustrate the weekday average ETAs for LA1 and

NY1. It is noticeable that both figures have the rush hour peak trend (peak in the morning and
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Figure 2.11: Absolute difference for best ETAs on weekdays for LA1 and NY1.

another in the evening), yet the peaks are much higher for NY1. For the weekends, as shown in

Figure 2.10 (bottom), we can see that peaks start in the afternoon and are much higher for NY1

compared to LA1. Information regarding the ETA average plots for the reaming OD pairs are

shown in Appendix A Figure A.6.

ETA Variability for Best Routes

We show the travel time variability for the recommended routes provided by the online maps. In

order to do so, we first show the absolute differences in the best ETAs given for each online map

pair. This is the average of the absolute differences for Google versus HERE (G-H), Google

versus MapQuest (G-M), Google versus Bing Maps (G-B), HERE versus MapQuest (H-M),
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Figure 2.12: Heat map on the difference on best ETAs for all online map pairs (LA1 and NY1).
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HERE versus Bing Maps (H-B), and MapQuest versus Bing Maps (M-B). Note that since we

are looking at the route that has the minimum ETA from each map provider, routes may or may

not be identical. Only LA1 weekday and NY1 weekday are shown in Figure 2.11, and the rest

of the other plots for the remaining OD pairs are shown in Appendix A Figure A.7. We used

a twelve-period moving average, which is the average in the frequency change every hour, to

smooth out the fluctuations We can visually see that G-H has the highest difference, and the

differences for each online map pair increase during the peak morning and evening rush hours.

Details to test the statistical differences is presented in the next section.

Similarly, to visualize the differences in ETAs provided by online map providers, we plotted

the heat map shown in Figure 2.12. Different from Figure 2.11, Figure 2.12 shows the density

of differences in terms of minutes. We can see that those in the dark red area, having ETA dif-

ferences of more than five minutes, are mainly observed during the peak morning and evening

hours. The other heat map plots for the remaining OD pairs are shown in Appendix A Figure

A.8.

Statistical Analysis

To verify that the best ETA is significantly different among the maps, we first tested whether

the travel time distribution follows a normal distribution. We conclude that it does not follow

a normal distribution, and our findings are consistent with other research [73, 98] that states

travel time distribution is not normally distributed. Therefore, we used the Wilcoxon signed-

rank test, a non-parametric statistical hypothesis test, to statistically examine the paired samples

for each pair of online map providers. The null hypothesis, HO, is that two paired data sets are

equivalent. All test results showed that p-values were less than 0.05, indicating that we reject

HO, meaning that a significant difference exists. We find that the ETAs for Google Maps were
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Table 2.5: Identical routes for LA and NY.

LA1 LA2 NY1 NY2

G3=H2=M2=B65 G2=H2=M2=B16 G11=H5=M5=B242 G2=H1=M1=B53

G4=H3=M3=B116 G1=H1=M1=B11 G5=H3=M3=B84 G4=H2=M3=B149

G5=H4=B164 G4=H3=M3=B27 H1=M1

G1=H2=M2

significantly higher than HERE; those from Google Maps were significantly higher than those

from MapQuest; Google Maps ETAs were significantly higher than Bing Maps; HERE ETAs

were significantly lower than MapQuest; HERE’s were significantly lower than Bing Maps;

and MapQuest’s were significantly lower than Bing Maps. To sum up, Google Maps, Bing

Maps, MapQuest, and HERE is the order from highest to lowest in terms of ETA.

2.6.2 Case of Identical Routes

When different online maps providers recommended routes, there were instances when the

recommended route were identical to each other. In this subsection, we identify the identical

routes that were recommended by different online map providers. The objective of this is

to examine whether online maps have differences in ETA for identical routes. For example, in

LA1, route IDs, G3, H2, M2, and B65 are identical. We present all the identical routes observed

for LA and NY in Table 2.5.

First, we show when the identical routes were observed throughout the time of day for LA

in Figure 2.13 (NY plots are shown in Appendix A Figure A.9). The x-axis is the time of

day, and the y-axis is the percentage of identical routes appearing. Note that if the percentage

is 100%, it means identical routes were observed for all 71 days. For LA1, we can see that

identical routes G3=H2=M2=B65 appear mostly during the night. This means that all four map

providers recommended the same route, mostly during the night hours when traffic volumes

are low. As the time of day approaches morning rush hour, the appearance of identical routes
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Figure 2.13: Percentage of identical routes that appeared simultaneously for LA.

G3=H2=M2=B65 was reduced. On the other hand, identical routes G4=H3=M3=B116 appear

more frequently during the daytime.

Statistical Analysis

In order to test whether different online map providers show similar ETAs for identical routes,

we conducted a statistical analysis to compare the ETAs. To get a microscopic view of whether

ETAs provided by different online map providers for identical routes were equivalent, we first

grouped times of day into five categories, just like Wallace et al. [103]. The categories are:

• rush morning (6:00 AM to 10:00AM)

• non rush midday (10:05AM to 2:55PM)

• rush afternoon (3:00PM to 8:00PM)

• non rush night (8:05PM to 5:55AM)

• weekend (all day)

Like the test procedure mentioned in Section 2.6.1, we first conducted a normality distri-

bution test on the travel time distribution for identical routes, and concluded that it does not
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Table 2.6: Wilcoxon signed-rank test on identical routes.

City Route pair Wkdy

rush

morning

Wkdy

rush

afternoon

Wkdy

nonrush

midday

Wkdy

nonrush

night

Wknd Overall

N 1,782 647 613 3,939 3,182 10,163

G3-H2 < .001 < .001 < .001 < .001 < .001 G > H

G3-M2 < .001 < .001 < .001 < .001 < .001 G <M

LA1 G3-B65 < .001 < .001 < .001 < .001 < .001 G > B

H2-M2 < .001 < .001 < .001 < .001 < .001 H <M

H2-B65 < .001 .683 < .001 < .001 < .001 H < B

M2-B65 < .001 < .001 < .001 < .001 < .001 M > B

N 2,036 2,242 1,371 4,950 5,321 15,920

G2-H2 < .001 < .001 < .001 < .001 < .001 G > H

G2-M2 < .001 < .001 < .001 < .001 < .001 G <M

LA2 G2-B16 .040 < .001 .202 < .001 < .001 G < B

H2-M2 < .001 < .001 < .001 < .001 < .001 H <M

H2-B16 < .001 < .001 < .001 < .001 < .001 H < B

M2-B16 < .001 < .001 < .001 < .001 < .001 M > B

N 615 936 813 1,467 1,826 5,657

G11-H5 < .001 < .001 < .001 < .001 < .001 G > H

G11-M5 < .001 < .001 < .001 < .001 < .001 G >M

NY1 G11-B242 < .001 < .001 < .001 < .001 < .001 G > B

H5-M5 < .001 < .001 < .001 < .001 < .001 H <M

H5-B242 < .001 < .001 < .001 < .001 < .001 H < B

M1-B242 < .001 < .001 < .001 < .001 < .001 M < B

N 1068 1,067 1,155 4,350 3,902 11,542

G2-H1 < .001 < .001 < .001 < .001 < .001 G > H

G2-M1 < .001 < .001 < .001 < .001 < .001 G >M

NY2 G2-B53 < .001 < .001 .006 < .001 < .001 G < B

H1-M1 < .001 < .001 < .001 < .001 < .001 H <M

H1-B53 < .001 < .001 < .001 < .001 < .001 H < B

M1-B53 < .001 < .001 < .001 < .001 < .001 M < B
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the follow normal distribution. Thus, we used the Wilcoxon signed-rank test to examine if the

paired ETAs for each pair of online map providers were equivalent. Again, the null hypothe-

sis, HO, is that two paired data sets are equivalent. Table 2.6 shows that the p-values are less

than 0.05 for all categories, except for two slots, meaning that we reject HO. We conclude also

that the ETAs for identical routes given by different online map providers were significantly

different.

The common feature we found in both LA and NY is that the ETA for Google Maps was

significantly higher than HERE; HERE was significantly lower than MapQuest; and HERE was

significantly lower than Bing Maps. We summarize the significant differences for LA and NY

as follows:

• LA1: H < B < G <M

• LA2: H < G < B <M

• NY1: H <M < B < G

• NY2: H <M < G < B

The Wilcoxon signed-rank test results conclude that ETAs for identical routes are signifi-

cantly different and are even in a different order for each OD pair.

2.7 Summary

In this study, we conduct an analysis of the recommended routes provided by four popular on-

line maps. A server was set up to query the online maps for four OD pairs every five minutes for

71 days. First, throughout the experiment period, we observed the number of routes that were

recommended, when they appeared, and the percentage of the appearance for each one. Second,
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we averaged the best routes’ ETAs provided by each online map, looked at the ETA variability

among them, and concluded that each map provider’s ETA was significantly different from the

others. Third, we viewed how frequently the best route changed over time. Finally, we looked

into the ETAs for identical routes provided by different online map providers and also con-

cluded that even the ETAs for identical routes were significantly different. Thus, for example,

when a user has a global view of all the routes recommended from different online maps for a

single OD pair, we can see that each online map’s ETA and recommended routes significantly

differ from the others, making it hard for the user to decide which route to take. To that end,

route recommendation systems have room to introduce uncertainty in route choice, and thus, it

is important to evaluate the accuracy of the data and to improve travel time reliability.
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Chapter 3

Real-Time Visual Traffic Information for Pre-trip Route Choice

From today’s conventional cars to tomorrow’s self-driving cars, advances in technology will

enable vehicles to be equipped with more and more-sophisticated sensing devices, such as

cameras. As vehicles gain the ability to act as mobile sensors that carry useful traffic infor-

mation, people and vehicles are sharing sensing data to enhance the driving experience. This

chapter describes a vehicular cloud service for route planning, where users collaborate to share

traffic images by using their vehicles’ on-board cameras. We present the architecture of a col-

laborative traffic image-sharing system called Social Vehicle Navigation (SVN), which allows

drivers in the vehicular cloud to report and share visual traffic information called NaviTweets.

A set of NaviTweets is then filtered, refined, and condensed into a concise, user-friendly snap-

shot summary of the route of interest, called a Traffic Digest. These digests can provide more

pertinent and reliable information about the road situation and can complement predictions like

estimated time of arrival, thereby supporting users’ route decision making. As proof of con-

cept, this research presents the system design and a prototype implementation running on the

Android smartphone platform, along with its evaluation.
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3.1 Introduction

Advancements in technology are making vehicles smarter as manufacturers continually equip

them with on-board computers, global positioning systems (GPSs), collision avoidance sys-

tems, and dashboard cameras. Ongoing attempts to alleviate traffic congestion via smart cars

use crowdsourced traffic data collected from GPS-equipped devices to determine traffic speed

and identify traffic conditions. When provided to navigation systems, this information is used

to generate and present a list of recommended routes for trip planning. Such crowdsourcing (or

infrastructure-less) services can be classified into two types: push-based and pull-based. The

majority of today’s systems anonymously pull GPS location information from mobile phone

users or navigation systems to generate a live traffic map. The push-based approach depends

on social participation, where drivers purposely report traffic information in a richer context

(e.g. the location of speed trap cameras, the degree of traffic congestion, and the types of traffic

incidents) onto a dedicated server to be redistributed and shared with other drivers. Waze [17]

is an example of a navigation app that functions by anonymously pulling GPS data and, at the

same time, providing an interface for drivers to push detailed traffic reports.

Conventional ways of reporting traffic conditions have mainly been through the police,

transportation officials, drivers on phones, and traffic reporting companies. Nowadays, real-

time traffic updates on traffic congestion are becoming widely available and easily accessible

via online maps, mobile phones, and GPS-equipped devices. Drivers’ route planning can be

heavily influenced by such traffic information, which consequently leads them to less congested

routes. Such planning is done by selecting a route from a recommended list of alternative routes

calculated based on factors like shortest distance or estimated time of arrival (ETA), taking real-

time traffic data into account.
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ETA is the main deciding factor in route decisions, and this subsequently does not allow the

design of vehicle navigation systems to consider other semantically rich information to guide

in the decision making and improve satisfaction in the route decisions. For example, if a driver

has information that an accident on a certain road will be cleared soon, the driver may choose to

stay on the road. But the driver would certainly take a different route if the traffic jam is due to a

long-term lane closure. Having this type of traffic information about the road ahead in a timely

fashion will alleviate stress and significantly improve the quality of the driving experience.

This chapter highlights the use of geo-tagged traffic images, called NaviTweets, provided

by the vehicular cloud to assist drivers in route planning and route decisions. We introduce a

vehicular cloud service called Social Vehicular Navigation (SVN), which exploits the mobility

of vehicles to expand coverage beyond the limited scope of static sensors, such as traffic cam-

eras. Drivers who are planning a route can opt into the service and request images showing the

traffic conditions on the alternative routes ahead. Other drivers whose vehicles are subscribed to

the same service collaborate and share their sensing data by uploading NaviTweets concerning

the current traffic conditions or any unexpected events. The Internet (central) cloud computes a

Traffic Digest that organizes the traffic reports into a user-friendly format to show to the driver

and aid the individual in route choice decision-making.

In the near future, rapid development in autonomous or semi-autonomous cars [14, 33]

mounted with wide-angle cameras will make such information sharing more pervasive and

desirable at the same time. Moreover, hands-free driving experiences will allow drivers to have

the time to leisurely participate in sharing traffic information and to engage in more careful

route planning.

This chapter is organized as follows. Section 3.2 provides background by presenting related

work. Section 3.3 illustrates an example scenario, along with the functions of the proposed
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SVN model. Section 3.4 discusses the SVN system design considerations in vehicular clouds,

and the prototype implementation is described in Section 3.5. Evaluations on the Traffic Di-

gest and system performance are presented in Section 3.6. Discussed in Section 3.7 and 3.8

are results based on a questionnaire survey and a user study conducted to investigate the real

behavior of traffic information sharing, respectively. Future work is discussed in Section 3.9,

followed by summary remarks in Section 3.10.

3.2 Related Work

3.2.1 Collaborative Sharing

Drivers can specify their interest in a service, in which other drivers subscribed to the same

service can collaborate by sharing necessary information with regard to the request [81, 108].

Gerla et al. [44] described Pics-on-wheels, where images taken from on-board car cameras in

the vehicular cloud are delivered to the customer on request. Pics-on-wheels is a surveillance

service in which several vehicles are selected to take photo images of an urban landscape within

a given deadline, as requested by the customer. For example, an insurance company investi-

gating a car accident can request pictures that were taken at a particular location at the time

of the incident. Similarly, Hussain et al. [55] introduced a service called Vehicle Witnesses as

a Service (VWaaS), which utilizes mounted in-car cameras where vehicles act as witnesses to

events and provide pictures to law enforcement agencies for forensic purposes. However, the

authors mainly focused on the security and privacy of the data exchange between entities [55].

Unlike traditional navigation systems, Waze [17] is a navigation app that collects traffic data

from users to provide traffic reports to a central server, where such information is shared with

other drivers to provide real-time traffic and road information, such as the volume of traffic,

any road hazards, or accidents affecting traffic. Other navigation apps, such as Inrix Traffic [8],
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have included user-generated traffic reports, and after Google’s acquisition of Waze, Google

Maps added similar features in its mapping business. Moreover, recent research [38, 92, 89,

60, 67, 66] discussed the potential for traffic information sharing, and we are starting to see

greater integration of these techniques.

3.2.2 Route Planning via Traffic Cameras

In the field of transportation, route choice behavior is associated with the decision-making

process of route selection, and much research has been conducted to understand this complex

behavior [79, 99]. Studies previously did not consider traffic images as part of the criteria

for route selection; thus, there has been limited work on their role in route selection behavior.

However, there are patent proposals [18, 50] and studies in the literature [75, 94] that apply

or identify the usage of traffic photos in route planning. Hanchett [50] proposed a method

to install infrastructure that includes a series of camera sensors spaced along major roads to

provide traffic images, which are sent to a central station and then distributed to users. Users

have a receiver that displays the images so they can preview the route ahead and make route

choices. Adam et al. [18] proposed a navigation device that displays a route on a road map

along with locations where visual traffic information exists. Visual traffic information comes

from fixed traffic cameras, and viewing the video feed or still images allows the driver to as-

sess traffic conditions. The Highways Agency in the United Kingdom is making images from

traffic cameras available to licensed organizations to provide traffic information to the public to

enable better route planning [75, 54]. Speirs and Whitehead [94] presented a research survey to

evaluate the influence of providing public access to traffic camera images. Their results showed

that combined with other sources of traffic information (e.g. speed/delay information or radio

traffic news), traffic images provided an additional secondary level of detail, and they support
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drivers in making better decisions on their route choice. Real-time traffic camera images are

also available to the public in the United States and can be accessed from the corresponding

state’s 511 website [1].

3.3 Social Vehicle Navigation

3.3.1 Example Scenario

The proposed SVN architecture is hierarchical, which includes three interacting components:

(a) the vehicular cloud (VC), where a mobile cloud is formed from a group of participating ve-

hicles that collaborate to share its resources, i.e. sensed data from the local environment; each

vehicle can opt into the VC and utilize its services; (b) a roadside unit (RSU), where the VC

establishes wireless connections to the RSU using a vehicle-to-infrastructure (V2I) communi-

cations technology, such as cellular, Wi-Fi, or dedicated short range communication (DSRC);

and (c) the Internet cloud (IC), where the central cloud consists of a group of aggregated servers

on the Internet that is responsible for managing the VC’s resources; the VC communicates with

the IC via the RSU.

Figure 3.1 depicts an example scenario to illustrate the SVN architecture. John commutes

to work and prefers to consider safety first when deciding between Route 66 and Route 22.

However, information to assess the safety of the roads is not available in current navigators.

Therefore, John registers with a vehicular cloud service that allows him to benefit from social

feedback shared by other drivers in the VC ahead. John’s social navigator accesses traffic

updates that are along Route 66 and Route 22 to his destination. Lucy, driving on Route 66,

experiences traffic congestion due to an accident ahead and shares this information by posting

an image tweet (T1) to the IC via the vehicular cloud service. Similarly, Sam posts a voice

tweet (T2) noting that the bridge on Route 22 is slippery, but luckily, there is little traffic. Other
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Figure 3.1: Example scenario.

drivers in the vehicular cloud along Route 66 have previously posted tweets (T3-T5) concerning

the traffic accident at the same location in front of Lucy. The IC recognizes that T1 and T3 to

T5 refer to the same traffic accident, so it discards the older tweets while retaining T1, which is

the most up-to-date. The IC then aggregates T1 and T2 into a Traffic Digest and sends it to the

querying navigator. John acknowledges both routes’ conditions based on the Traffic Digest and

plans his route accordingly, where he decides to take Route 66, despite the slow traffic because

he prefers a safe, albeit slow journey. Had John’s navigation system computed the route based

solely on the fastest route, he would have likely taken Route 22.

By using vehicular cloud services, shared real-time sensed data about the environment be-

comes a possibility. Users can either post or receive other users’ real-time sensed data about the

traffic in more detail. Then, based on the user’s perception of the traffic situation, the navigator

can include the driver’s preference in the route planning.
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Figure 3.2: Social Vehicular Navigation model.

3.3.2 Layered Architecture Model

Figure 3.2 depicts detailed functions of the proposed SVN model, partitioned into abstraction

layers. This is similar to the Open Systems Interconnection (OSI) networking model, where

each layer has independent functionalities and passes information to the layer above it.

Traffic Layer

The Traffic Layer consists of real-time GPS data from mobile sensors, and traffic data from

static road sensors, which are used to update speed or delay information on road segments.

Given the origin and destination, the routing algorithm is executed, and ETA is calculated to
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find a list of alternative routes based on the fastest route or shortest distance. Information

regarding route plans and traffic volume for the routes flows to the upper layer.

Social Traffic Layer

The Social Traffic Layer consists of social traffic data, i.e. traffic reports in media files, such as

text, voice, or images, which are tagged by location and placed on the road network map. Such

traffic information is shared by participating drivers in the vehicular cloud who subscribed to it.

After the Traffic Layer recommends alternative routes, all corresponding social traffic reports

that coincide with the routes are selected and passed to the Presentation Layer. The reason for

this is to filter out social traffic reports that are irrelevant to the route the driver is interested in.

Presentation Layer

The role of the Presentation Layer is to summarize the information passed from the lower

layers. In route selection, users generally seek only information pertinent to their routes of

interest. People who receive too much information can easily become overwhelmed and may

have difficulty processing the information [79, 88]. It would also be redundant to view similar

traffic reports on the route, so the Traffic Digest summarizes the social traffic data set based on

geo-tagged locations. For example, in the Social Traffic Layer in Figure 3.2, the blue, square-

dot route consists of a set of NaviTweets {A, B,C,D, E}. The digest summarizes the set, and

{A,C, E} is displayed, as shown in the Presentation Layer. Details on the mechanism of the

Traffic Digest are presented in Section 3.4.3. Also, in the user interface, drivers do not have the

luxury of clicking on each geo-tagged image. Thus, to reduce the cognitive load, it is important

to provide a user-friendly interface so drivers can sequentially view the information as a virtual

tour of the routes, as shown in the Presentation Layer of Figure 3.2.
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3.4 System Design

3.4.1 Design Consideration

There are several unique characteristics in a vehicular environment, and we designed the SVN

system accordingly, as explained below. The problem domain includes unique features, such as

short-time events, increases in traffic communications in congested areas, and data annotation,

etc., which provide challenges as well as advantages.

Network Performance

Network performance varies according to the commuting traffic volume, and it is expected that

the aggregated network data traffic for uploading and downloading data is associated with peak

rush hours. This is under the assumption that higher rates of traffic reporting will occur when

roads are congested or during peak rush hours (also shown in the user study results). Thus,

communications with the IC should be kept minimal.

Data Annotation

Traffic reports, i.e. NaviTweets can be composed of any type of media file, such as voice

messages, photos, or short videos. The size of such data is in the order of kilobytes or, at most,

megabytes. Social networking services such as Instagram [9] have shown that uploading and

downloading photos via mobile devices can be handled by contemporary network architectures.

Photos or videos are taken as raw byte streams and contain little cues to imply the content.

Identifying and recognizing the content of the data, e.g. determining whether an image is of

an accident or of a moderate to heavy traffic jam, is essential in order to present only pertinent,

concise information.
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Utilizing recognition techniques, object detection, or user-generated or machine-generated

tagging can annotate the data more effectively. Recognition techniques can be used to de-

termine the level of traffic congestion [68, 26] in order to automatically annotate traffic data.

Detecting and identifying objects in images or video sequences and annotating events, such as

car accidents or the type of road incident, can be accomplished by applying current object de-

tection and identification algorithms [42, 57]. Also, machine-generated annotation can be used

to describe the traffic situation in natural language [43]. In our implementation, we provide a

platform for users to easily annotate the traffic data they share, i.e. user-generated tagging.

Time-driven Events

A typical traffic event has a time-to-live (TTL) that can last anywhere from several minutes to

several days. For example, traffic jams rarely last for more than a few hours, but construction

can last for several days or weeks. A TTL feature based on the type of traffic event is incor-

porated into the design, where data can be safely deleted from the storage/cache system after

the TTL expires. Such a feature reduces the requirement to sustain data durability, and means

the system needs less storage space. As the average commute time in urban cities is about 30

min [32], we set the TTL to 15 min in our prototype implementation, which is half the average

commute time. Further study as to the optimal TTL is left to future work.

Scalability

SVN is designed as a scalable online service for commuters to share traffic information. The

architecture should accommodate a large number of users uploading or downloading data si-

multaneously. A distributed architecture of the ICs (for example, cloudlets [86]) can provide

a natural solution to achieve scalability. Moreover, a distributed architecture is favored due
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to the fact that most commutes occur between home and work within a reasonably stable and

small geographic region, where a local IC or cloudlet can handle the majority of requests in its

locality.

Consistency vs. Availability

In a distributed system architecture, it is essential to ensure distribution transparency and data

consistency. In our SVN system, data consistency can be tolerated for two reasons: drivers

generally prefer to obtain up-to-date traffic information, and user-generated shared information

can be inaccurate, leading to false negatives or false positives, e.g. false traffic alerts. Hence,

emphasizing data consistency among the distributed storage servers is not necessary, and there-

fore, it is more desirable to provide drivers with timely and inconsistent traffic data rather than

outdated and consistent data.

Low Cognitive Load

In order to provide a user-friendly system, it is important to minimize the driver’s cognitive load

when the driver orders the application to share traffic data, and when the driver needs to com-

prehend traffic information. The SVN utilizes voice commands or gestures for easy interaction

with the application, and the digest of traffic information aids in easier comprehension.

3.4.2 Vehicular Cloud Client

1) Posting NaviTweets

When a user posts a NaviTweet, it is important to gather as much information as possible,

while also being able to reduce the cognitive burden on the user. We propose two models for

posting: active mode and passive mode. To minimize the cognitive load, the entire procedure is
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completed within three commands, where each command is executed by either voice or gesture.

Active mode is for users who are actively willing to post NaviTweets. A variable, f , is defined

as a threshold where the client device detects potential traffic congestion and takes a picture

when f is larger than a predefined value. This value is set by using parameters, such as the

current speed, acceleration and deceleration rates, and position. Several car-following models

for traffic in stop-and-go conditions [25, 109] can be used to determine a suitable threshold

value. Then, the user is prompted to share the image. If agreeing to post the NaviTweet, the

user is prompted to annotate it. If agreed to again, a list of recommended tags (e.g. congestion,

accident, hazard, construction, and others) is presented for selection via voice command. On

the other hand, passive mode is designed for users to post NaviTweets whenever they choose to.

The only difference from active mode is that whenever the user wants to share a traffic image,

the user can voice-activate the camera. Once the picture is taken, the annotating process is the

same as active mode.

The most favorable placements, so the camera can take suitable pictures, is any areas above

the vehicle’s dashboard. However, the middle area in the front windshield provides the most

optimal view.

2) Requesting Traffic Digest

The Traffic Map Layer carries out the route calculation, and based on the routing algorithm,

several recommended routes are provided. Users who opt in can ask the VC for the traffic

digest on routes of interest. The client device will send to the server the corresponding road

segments, and the user will be able to view the digest in a sequential series of events along the

route to the destination.
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Figure 3.3: System architecture.

3.4.3 Internet Cloud Design

Figure 3.3 presents the design of the system. The application server (AS) sits on top of the

storage server (SS) in the Internet cloud, where it receives posts from (or sends digests to)

the mobile client subscribed to the VC. The connection manager (ConnManager) authenticates

each user and dispatches the job to the handler. Depending on the type of request, the handler

updates or retrieves data from the SS. We propose a simple API for communication between

the AS and the SS. The SS provides two basic methods to the AS: put() and get(). The AS

is designed to handle two types of request: post() and download(). Upon receiving post

request T, the AS simply calls put(T). On the other hand, when a client asks to download a
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Traffic Digest, it sends the route of interest to the AS. Upon receiving the digest download re-

quest, the AS performs a process of selection, digestion, and composition to satisfy the request.

Details are covered in the next following.

1) Cloud Application Server

Receiving NaviTweets

Once the AS receives a tweet, the AS forwards the tweet to the underlying SS via the Tweet

Feeder. When a user requests a digest from its associated cloud, the local AS will handle

the request by fetching and aggregating the relevant tweets, and finally by responding with a

digest containing a series of organized tweets. Since each NaviTweet contains a user-generated

or context-inferred tag, the server can index and aggregate the photos based on the tags. We

define five tags that can be associated with an image: traffic, accident, hazard, construction,

and other. Moreover, a causal order is defined between images using the tags. A causal order is

a happen-before relationship between events x and y. It indicates whether event y is caused or

influenced by an earlier event, x. Therefore, it is a semantic causal order relationship. It is safe

to assume that drivers prefer to know the reason for a traffic jam. For instance, a lane closed for

the remainder of the day leads to a completely different logical predictability of future traffic

than from a malfunctioning car. Hence, causal order can also indicate which tweet is more

valuable to drivers and should be included in the digest. This is also explained in [93], where

knowledge of the causal relationship between a traffic event and slow traffic can be derived. We

define the following simple causal relationship between traffic events:

x→ y (x is a cause of y):

Accident → Tra f f ic ; Construction→ Tra f f ic ; Hazard → Tra f f ic
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Figure 3.4: Traffic digest. Clustering NaviTweets by location and time. Traffic Digest is based

on the casual order of the tag type. T7, T2 and T6 form the Traffic Digest and is sent to Car1.

Traffic Digest

When a user requests a digest, the server will handle the request and respond with a series of

NaviTweet results, each of which is a well-formed data structure, containing the location, time,

and media content. The Traffic Digest consists of three processes: selection, digestion, and

composition. Each process is examined in detail below.

• Selection. The Request Handler instructs the Tweet Fetcher to retrieve all the tweets

that are posted on the requested road segment within the last TTL. This operation is a

simple iterative get() call on the SS, with each road segment and the current time as the

parameters.

• Digestion. The AS then summarizes the potentially large return set from the tweet selec-

tions into a readable set of tweets. The resulting set is the Traffic Digest. The motivation
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for digestion is twofold. First, sending all the relevant tweets to a driver is not feasi-

ble, since browsing through them will consume too much time. Secondly, by helping

to eliminate redundancy in the tweets, digestion can present drivers with a concise and

up-to-date view of the traffic.

The digestion algorithm first assigns each tweet to its corresponding road segment. As-

sume the length of each road segment has an upper bound. Those road segments that

exceed the bound are divided into shorter ones. The algorithm then clusters all the tweets

on each road segment using dbscan in a two-dimensional space, i.e. distance and time,

to identify possible traffic events that trigger the tweeting. In our prototype, we set the

minimum tweets per cluster at two to filter out noise and un-noteworthy events. Another

important property of traffic events is that they are transient. As the situation evolves,

older tweets reflecting past stages of the event will become less relevant. The latest state

of the event is likely to be the most relevant for drivers. Therefore, the digestion first in-

cludes tweets with the most recent timestamp in each cluster in the corresponding Tweet

Digest. For example, in Figure 3.4, tweets T1, T2, and T6 are the most up-to-date tweets

for their respective clusters.

The algorithm then iterates through each road segment to extract and return the selected

tweets in each tag category. Moreover, a tweet with the tag “traffic jam” will only be

included in the resulting set when there is no tweet tagged accident, construction, or

hazard. This rule is used to enforce causal order between the tweets. In other words, if

tweet x represents a traffic accident, and tweet y represents a traffic jam on the same road

segment, then tweet x is returned while tweet y is not - the reason being that “accident”

is more informative than the consequence (traffic jam). Digestion is performed and sub-

sequently produces a concise final set of tweets for the composition stage. Thus, in the
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first cluster in Figure 3.4, although T1 is more recent than T7, the casual order T7→ T1

results in T7 being included in the Traffic Digest rather than T1.

• Composition. The Tweet Digest produced by the Tweet Aggregator is not ordered by ei-

ther location or time. It is the role of Response Assembler to sort the tweets in increasing

distance order and annotate each tweet with location and time. This provides a natural

view for drivers as to the reasons for the traffic conditions ahead. The resulting ordered

list of NaviTweets is then sent to the client in the VC. Thus, referring to Figure 3.4, Car 1

is shown T7, T2, and T6, whereas Car 2 is shown T2 and T6. In addition, a noise tweet,

which is a singular tweet that has no neighbor, will not be selected for a digest.

2) Cloud Storage Server

The SS is the foundation of the Internet cloud, where it is dedicated to provide high-speed, lazy-

consistent, and highly available storage services to small media files as well as their metadata.

The tweets posted by the clients in the VC will be ultimately stored in the database in the

SS. Also, both the metadata used by the Digestion process and the media files used in the

Composition process are located in the Database subsystem. We discuss the design of each

component in the SS below.

• Database Separation. The database in the SS is divided into two components: a meta-

data database and a file system database. The metadata include the client ID, tag, time,

and locations of the media files. The media files corresponding to the metadata are sep-

arately located in the file system database. The metadata are used by both Digestion and

Composition processes, whereas the media files are only needed for Composition. Thus,

the metadata and media files are stored separately. Such separation of databases allows
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the metadata database to meet the requirements of high-speed search and random access,

since the actual media files are not required during the Digestion process.

• Connections. Considering the scalability of the SVN system, as well as the locality fea-

ture of the request, the SS is designed as a distributed cloud architecture, which means

the SS can provide data for the local AS, the remote AS, and the remote SS. The lo-

cal/remote ASs can access the data in the SS via the Connector shown in Figure 3.3. For

each digest request, the AS provides the road segment set and fetches the metadata of

the tweet that corresponds to the road segment set. Upon a Composition request, the AS

retrieves the media file content that corresponds to the metadata after the digest.

In cases where the local SS does not have the corresponding media file content of the

metadata, but is located in a neighboring cloud SS, we use another connection between

these storage servers. The Proxy component is used to enable data sharing between

neighboring cloud storage servers. Both metadata and media file content can be sent

and received via the Proxy, so that cross-cloud requests can also be handled by the local

cloud.

• Cache Subsystem. An SS that consists only of databases and connection modules can

work alone without a cache subsystem. However, we include the cache subsystem in our

design for two reasons. First, the last fetched tweets are usually the most recent ones,

and thus, have a higher possibility of being accessed again in the near future. Second,

when the required storage space goes beyond a certain threshold, the SS must evolve to

a distributed schema, which undoubtedly will increase the response time to fetch data

from a neighboring cloud’s SS. Therefore, the cache subsystem is deployed between the

databases and connection modules, as shown in Figure 3.4. For either metadata access or
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Figure 3.5: SVN prototype system design.

media file access, neither Connector nor Proxy can link to the databases without going

through the cache subsystem. Such a design promotes cache hits and reduces the fetch

cost from the AS and to the remote SS. In addition, the cache subsystem holds both the

metadata and media file contents that are likely to be used in the near future.

3.5 Prototype

3.5.1 Implementation

The prototype SVN system is based on many of the available online services. The SVN client

runs on the Andriod 4.1+ mobile platform and uses the Google Places API, the Google Direc-

tions API, and the Google Maps API to compute and list the alternative routes, given the origin

and destination.
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Figure 3.6: Mobile client prototype and SVN web version.

The SVN server engine is currently set up on Ubuntu 12.04 LTS, and the server was con-

figured with Apache 2.2 and PHP 5.3 to process web requests from the client application. In

addition, MySQL 5.5 was deployed on the server to store the tweets as well as metadata, such

as the timestamp, location, and label categories. The Google Directions API obtains the routes

between origin and destination. A set of NaviTweet APIs was developed to provide function-

alities for the client. The PostTweet API and the GetDigest API work as mentioned in Section

3.4.3. In addition, the GetTweet API was implemented to support the client in fetching the

image itself by using image tags.
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3.5.2 System Usage Scenario

In this subsection, a usage scenario for the SVN prototype system is presented to explain the

workflow (shown in Figure 3.5) and the user interface (shown in Figure 3.6).

When the user first launches the client application, the origin/destination input screen is

shown, seen in Figure 3.6 (a). After inputting the origin and destination, location information

for both is transmitted to the SVN engine (Figure 3.5 #1). The SVN engine passes the origin

and destination to the Google Maps API and receives the calculated recommended route infor-

mation (Figure 3.5 #2 and #3). Route information is then returned to the client (Figure 3.5 #4),

and thus, the user can see the alternative route list and the corresponding ETAs, seen in Figure

3.6 (b).

Upon selecting a route, users may want to check what traffic events are occurring along

the route. In this case, the user presses the “View” button in Figure 3.6 (b), and the request is

passed to the SVN engine (Figure 3.5 #5). Based on the route information and the metadata

of tweets (Figure 3.5 #6 and #7), the SVN engine computes the digest and returns it to the

client (Figure 3.5 #8), which triggers the application to jump to the screen shown in Figure 3.6

(c). The traffic events are geo-tagged on the map, and the image of the first event is shown

in the bottom half of the screen. The user can slide the screen to the left or right to navigate

through images one by one, and such actions will trigger the client to fetch the next image from

the server database (Figure 3.5 #9 and #10). The color of the geo-tag changes from green to

cyan as the corresponding image is viewed. (A purple tag is the current location, a red tag

is the destination, green tags are the traffic reports, and a cyan tag is the traffic report being

viewed.) Finally, after deciding which route to take, the user presses the “Go” button to start

the navigation, as shown in Figure 3.6 (d). Also, as shown in Figure 3.6 (e), a desktop web

version of the SVN was developed to view the Social Traffic media data shared and geo-tagged
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Table 3.1: Input values.

Parameter Value Description

λ 28.3 influx rate (1,700 cars/lane/hour)

μ 6 exit rate

p 0.01 prob. of posting a tweet on traffic jam

q 0.1 prob. of posting a tweet on traffic accident

TT L (mins) 15 TT L for all tweets

L (# of cars) 100 length of road segment

N (# of cars) 5,000 total number of cars simulated

V (# of cars) 5 max distance to acknowledge and post a tweet

by users in the VC. As shown in the upper right corner check box, both the traffic congestion

data and social media data are viewable.

3.6 Evaluation

3.6.1 Digest Performance

We evaluated the reduction rate in terms of tweet numbers using digestion. Reduction rate is

defined as the ratio of tweet numbers with digestion to the number without digestion. In the

simulation, we assumed cars move in one direction and on a one-lane highway. In addition,

no detour path is assumed to be available, such that the buffer length in this queue is infinite,

starting from the location of the traffic accident (i.e. the driver needs to wait until the car can

pass through the position where the accident occurred). As a result, the traffic can be modeled

as standard M/M/1 queuing system. We further assumed that each car that entered the traffic

jam has either a possibility of p (posting a tweet on the traffic jam if the car is at least V cars

away from the accident) or a possibility of q (posting a tweet on the traffic accident if the car

is at most V cars away from the accident). Table 3.1 lists the values of the parameters in the

evaluation. We set an average volume per lane of 1,700 cars/lane/hour [27] as the influx rate.

Figure 3.7 illustrates the change in the reduction rate as the traffic jam progresses, when the
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Figure 3.7: Reduction rate varies with time and converges to approximately 6%.

Figure 3.8: Comparison of tweet numbers with and without digestion.
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digest algorithm is used. Note that a lower reduction rate actually means better performance,

because fewer tweets are contained in the final digest. Figure 3.8 shows that tweet numbers

grow to a very large amount if tweets are returned to clients without digestion. For example,

after one hour, a driver might need to browse through over 500 images for a big traffic jam.

On the other hand, the digest contains only around 40 images, which are equally spread along

the jammed road. The resulting savings in reading time and network bandwidth is over a

magnitude. There are also two key observations from Figure 3.7. One is that the reduction rate

generally decreases over time. The other is that the reduction rate converges at some point. We

can show that the converging rate is inversely proportional to road segment length, TT L, and p

(under some assumptions) with the following:

E
(

lim
N→∞ #digest

)
=

N
L
× min

(
L × TT L × p, 1

)
+ ε1

E
(

lim
N→∞ #pre−digest

)
= N × TT L × p + ε2

and by definition,

rrc = lim
N→∞ E

(
#digest

#pre−digest

)

=

E
(

lim
N→∞ #digest

)

E
(

lim
N→∞ #pre−digest

) +Cov + ε3 ≈ 1

L × TT L × p

under the assumption that,

L × TT L × p � 1

The assumption above can typically be met by properly setting the road segment length and

TT L for a given p. We simulated the impact of two deciding factors on the number of tweets.
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Figure 3.9: Tweet number varies with changing road segment length.

Figure 3.10: Tweet number varies with changing TTL.
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Under the default setting, the assumption above is met; therefore, we show that road segment

length and TT L are the only deciding factors for the reduction rate, given that p is fixed. Figure

3.9 shows that L only affects the tweet number with digestion. This is intuitively true because

with fewer road segments and one tweet for each segment, there is a decreasing number of

tweets using digestion. Figure 3.10 illustrates that increasing TT L can significantly increase

tweet number without digestion while not affecting tweet number with digestion much at all.

Therefore, a good reduction in the tweet number using a digest can be achieved by properly

setting road segment length and TT L.

3.6.2 System Performance

In order to explore the feasibility of NaviTweets, we tested our prototype system using simula-

tion experiments. First, the setup of our experimental test bed is presented. With those steps,

we tested three main functions (Tweet Post, Tweet Fetch, and Tweet Search) and present the

performance evaluations.

Based on the implementation of the prototype SVN system, we used another machine to

create multiple test instances emulating smartphone client applications. Each test instance was

implemented as a thread that uses the same APIs as those implemented in the SVN application.

The client setup was on a Dell machine equipped with an Intel Core i7-3520 CPU @ 2.90 GHz,

8 GB DDR RAM, and a 1TB hard disk. The server side setup was as mentioned in Section

3.5.1. The client/server network connection was over a private 100 Mbps LAN.

By checking the functionality of the SVN system, we can divide the prototype system into

three separate functional parts: Tweet Posting, Tweet Searching, and Tweet Fetching. Tweet

Posting is the function used when the client application wants to report an event, e.g. post a

photo, while Tweet Searching and Tweet Fetching together fulfill the digest task, i.e. when
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Figure 3.11: Tweet posting response time.

an application user requests a Traffic Digest by providing the origin/destination pair as input.

Tweet searching finds the alternative routes and searches the tweets that are relevant to all the

road segments contained in the route candidates. If a user wants to check the tweets for details,

the client application fetches the corresponding tweets for the user by using the metadata, which

is abstracted as a Tweet Fetching function. In the following subsections, performance analysis

is conducted individually for these three parts.

1) Experiment Setup

2) Tweet Posting

To test the Tweet Posting function, several experiments were conducted, emulating different

workload levels by managing the number of instances of tweet post threads. Every thread

had the same image file prepared in memory and posted the image ten times to the server.

In addition, each thread inserts a random waiting period of up to 100ms. We measured the

response time on the client from posting the request until getting the confirmation from the

server. The results under different workloads (i.e. number of concurrent threads) were recorded
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Figure 3.12: Tweet fetching.

and plotted in Figure 3.11.

In Figure 3.11, a linear relationship between the workload and corresponding response time

can be observed. In particular, the results show that the prototype system can finish posting ten

tweets in one second for each client when the total number of clients is less than 30. Although

the response time increases with the number of users, there is no noticeable sign that the system

will crash when the number of posting requests reaches some threshold.

3) Tweet Fetching

Similar setups were deployed to evaluate the performance of Tweet Fetching: different work-

loads were emulated by establishing various numbers of threads in the client desktop. Addi-

tionally, each thread was assigned to fetch ten image tweets of the same size from the server,

with a random delay of up to 100ms between two consecutive requests.

Compared to Tweet Posting, we face a new question as to whether fetching the same tweet

by multiple clients affects response time due to potential access contention or caching in the

database. Hence, in this evaluation, we added a new parameter: the range of tweet candidates.
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Figure 3.13: Tweet searching response time.

When the number of requests is fixed, random access to a smaller range of tweet candidates

means higher probability to access the same tweet.

The results of the experiments are shown in Figure 3.12. The relation between the number

of requests and the response time is also linear in general. However, fluctuations in this rela-

tionship are more significant than with Tweet Posting. In addition, a different range of settings

does not incur meaningful variation. This implies that concurrently reading the same content

in the database does not noticeably influence the cost of Tweet Fetching.

4) Tweet Searching

The previous two evaluations tested the two functional modules that mainly deal with the stor-

age systems. However, Tweet Searching is different. Upon receiving the origin/destination pair,

the application server fetches the routing information by calling the Google Maps API. Then,

for each road segment, the server searches the corresponding tweets in the database and returns

the metadata to the client. The cost of this process not only depends on the cost of calling the

Google Maps API, but also on the set of road segments as well as the corresponding tweets.
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Table 3.2: Tweet searching time corresponding to different origin/destination pairs.

Destination Distance (miles) Travel time (mins) Response time (ms)

Piscataway, NJ 2.9 7 212

Edison, NJ 4.2 11 241

New Brunswick, NJ 4.2 12 180

New York, NY 38.8 48 181

New Haven, CT 119 126 190

Boston, MA 253 251 194

In the first part of this test, we evaluated variation in the response time when given a dif-

ferent number of road segments. We fixed the origin location as the Busch Campus, Rutgers

University, and varied the destinations. As a result, both the route segments as well as the cor-

responding tweet set were changed. For each origin/destination pair, we established a thread

that calls the Tweet Searching API ten times and then recorded the average response time of

the ten requests.

The destinations’ setup and corresponding results are shown in Table 3.2, from which we

see that the response time is kept relatively stable, even though the variation in destinations

greatly changed the total distance of the road segment and travel time. A possible explanation

for this observation is that the tweets are locally distributed in our prototype system: even

though a longer route may incur extra search time in the extended area, the vacuity of the tweet

set in this area made the cost of additional searches negligible.

According to the results in the first part, there were no noticeable variations in the response

times for different origin/destination pairs. Also, the previous subsection shows that potential

access contentions have added negligible cost. Thus, when we studied system performance

under different workload levels, we chose one of the origin/destination pairs (Busch Campus,

Rutgers University to New Brunswick, NJ) as representative. Other origin/destination pairs

would show similar results. The simulation setups are similar to those in the evaluations of

the first two functions. Similar to previous setups, various numbers of threads were created to
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emulate the different workload levels; each thread executed ten tweet searches with randomized

intervals occurring between two consecutive requests.

In Figure 3.13, the relationship between the response time and the number of threads is

shown. Although there is also a linear trend in relations, the fluctuations in response times are

even higher than those of the Tweet Fetching function. The reason is that for Tweet Searching,

the number of factors that influence the cost is more than for either Tweet Posting or Tweet

Fetching, i.e., variations in the costs of calling the Google Map API and the costs for database

access resulted in a larger fluctuation. Another finding is that the increasing rate of the response

time is smaller compared to Tweet Posting and Tweet Fetching, which implies that when the

workload goes beyond a certain threshold, the cost of Tweet Searching will not be the dominant

factor for the total cost.

3.7 Questionnaire Study

The motivation for implementing SVN was to develop a crowdsourced application and provide

additional detailed information using images to support the driver as to route choice. A user

study was designed to answer the following main objectives:

• factors that influence drivers when making initial decisions on route choice.

• whether the use of traffic images influences drivers in route choice.

• occasions that prompt willingness to use traffic images in route choice.

3.7.1 Design and Outline

An online web-based questionnaire using Qualtrics software [12] was developed with guide-

lines from previous survey questionnaires. Questions were either selected and modified to fit



67

Table 3.3: Survey questionnaire outline.

Section Questions

Participant profile Q1. Gender

Q2. Age range

Q3. Years of driving

Traffic information source Q4. Traffic information source preference

Q5. Route choice preference

Q6. Navigation system preference

Q7. Criteria considered in route choice

Q8. Occasions for the use of navigation

Q9. Accuracy of ETA

Q10. Other effective criteria in route choice

Route choice behavior (w/o image) Q11. Route selection

Q12. Rate criteria based on decision in #11

Route choice behavior (w/ image) Q13. Route selection

Q14. Rate criteria based on decision in #13

Q15. Rate how image would support route choice

Influence of traffic images Q16. Uses of traffic images

Q17. Influence of traffic images

the study or inferred from results in previous literature based on 1) a study of the decision-

making process of drivers considering alternative routes [53], 2) a study on the impact of traffic

image camera usage on route choice [94], and 3) a study defining the criteria used in route

selection [47].

The survey was divided into four sections: participant profile, preference as to source of

traffic information, route choice behavior (with and without traffic images), and finally, the

influence of traffic images. Table 3.3 illustrates the outline of the survey sections and the

questions. The complete survey questionnaire is shown in Appendix B.

The survey questionnaire consisted of 17 questions, where five had additional sub-question.

Questions 1 through 3 collected basic profile information about the participant: gender, age

range and years of driving. Questions 4 through 10 asked the participants about their prefer-

ences as to the various types of traffic information sources or media, what they rely on when

choosing a route (e.g. experience or navigation system), type of navigation system they use,
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what criteria they currently use when selecting a route (e.g. distance, ETA, name of road or

highway, turn-by-turn directions), in what instance they consider using a navigation system,

how accurate they thought ETA was, and what other secondary criteria they thought was useful

to support them in route selection.

For questions 11 and 12, the participants were shown a map with two routes. The source

of the map image was an actual screen shot from the mobile version of Google Maps on a

weekday at the 5 pm rush hour, where the origin was the university campus and the destination

was a grocery store. Both routes had the same ETA (25 mins), where route 1 was on a highway

with a distance of 7.2 miles and route 2 was on a local road at 7.8 miles. Participants were then

asked to choose the route they would travel, assuming that the area was unfamiliar. Then, they

were asked to rate the criteria they used to make their decision. The criteria Google Maps of-

fered was road or highway name, distance, estimated travel time (ETA), and color-coding roads

(green, yellow, red) to indicate the severity of traffic congestion. Questions 13 and 14 asked

the same questions as questions 11 and 12, respectively, but images were added to the route.

The images were real images taken by the app, where both routes were driven simultaneously

by two vehicles at the time when the screen shots were taken, as mentioned above. Participants

were then asked to select a route with the additional traffic image information and rate the crite-

ria they used to make their decision. Finally, for questions 15 through 17, the participants were

asked about the usefulness of the traffic images and, if the participant was provided with such

an app, on what occasions they would use the traffic images, and what influence traffic images

would have on their trip.

To measure the participant’s preferences, multiple choice questions with single/multiple an-

swers and a Likert-type scale of five points (Strongly Don’t Consider; Don’t Consider; Neutral;

Consider; Strongly Consider) were used for the questions. No information on the NaviTweet
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Table 3.4: Participant profile (N = 73)

Question Response Count (%)

Gender Male 42 (58%)

Female 31 (42%)

Age range 18 - 30 years 56 (77%)

31 - 40 years 13 (18%)

41 - 50 years 3 (4%)

51 - 60 years 1 (1%)

Years of driving Less than 1 year 10 (14%)

1 - 3 years 23 (32%)

4 - 5 years 15 (21%)

5 - 10 years 17 (23%)

More than 10 years 8 (11%)

app (usage of traffic images) was mentioned to participants until Question 13. The time to

complete the survey was estimated at about 20 mins.

3.7.2 Results

Participant Profile

The web-based questionnaire was distributed to university students and colleagues, and was

advertised on social networks. The user study involved a total of 98 respondents, where 73

completed the survey and 25 did not. Survey data from respondents who did not finish the

survey were excluded. All respondents resided in the United States and had a driver’s license.

Table 3.4 summarizes the results for participant profiles.

Traffic Information Source

Participants were asked to indicate the information sources used when they searched for travel

information (Q4). Figure 3.14 (a) compares the average rankings of all seven types of in-

formation source. Overall, the traffic sources ranked as most considerable were online maps,

smartphone apps, and GPS navigation. Also, the participants were asked what they mostly
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Figure 3.14: Survey questionnaire results (Q4, Q7, Q8, Q10).

relied on when choosing a route in terms of percentages (Q5). Approximately 47% were based

on past experience, and 52% on recommendations from a navigation system. Only 1% of re-

spondents based reliance on the “others” category (where text entry was allowed), and notable

written replies were “directions given by parents/friends/others” or “suggestions from others.”

The responses for Q6 on the type of navigation the participant used were 55% in-car naviga-

tion systems, such as TomTom or Garmin, and it was notable to see that 90% used smartphone

navigation apps, such as Google Maps, Map Quest, Waze, etc. In Q7, the participants were

asked to rate the criteria when making a route choice. Estimated travel time (ETA) was ranked

the highest (4.53) followed by distance (3.82), as shown in Figure 3.14 (b). Q9 asked how

likely the participants considered using a navigation system for eight possible instances, and

long-distance trips and unfamiliar routes were the top two rankings, as shown in Figure 3.14

(c). This study looked at the impact of traffic images and how they can be used to confirm
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Figure 3.15: Survey questionnaire results (Q11 – Q14).

the traffic conditions when there is doubt as to the reliability of ETA, and it ranks what par-

ticipants thought about the accuracy of ETA. A Likert-type scale of seven points was used for

this question, and the results shown are 5%, very accurate; 27%, accurate; and 33%, somewhat

accurate. Details are shown in Figure 3.16 (a). Before being provided with any information on

the application, the participants were asked what criteria other than the traditional (e.g. ETA,

distance) they thought was useful in decisions about route choice (Q10). About 67% answered

that traffic images showing the current traffic helped when selecting a route, as seen in Figure

3.14 (d).

Route Choice Behavior

The purpose of Q11 to Q14 was to observe the route choice behavior in a real scenario when

users selected a route by using current, traditional route selection criteria versus when users

were provided with real traffic images. When users were asked to select either route 1 or route
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Figure 3.16: Survey questionnaire results (Q9, Q15, Q16, Q17).

2 by using traditional methods (without traffic images), 79% selected route 1, and 21% selected

route 2. Then, participants rated the criteria their decision was based on, and ETA was ranked

at 4.32, followed by distance at 3.88. Afterwards, participants were shown the same map and

routes along with real traffic images and were asked to select a route. This time, 49% selected

route 1 and 51% selected route 2. There was a preference change, with a 30% decrease in

selection of route 1 and a 30% increase in selection of route 2 after viewing images. After

viewing traffic images and selecting a route, participants were again asked to rate what their

decision was based on. The rank for using traffic images was 3.9, and ETA was 3.97 (a 0.35

decrease compared to not using traffic images). Details are shown in Figure 3.15.
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Influence of Traffic Images

For Q15, the participants rated how supportive and important traffic images were, with 25%

rating them essential and 58% rating them important, as shown in Figure 3.16 (b). Also, to

recognize why users would look at real-time traffic images, participants were asked to rate nine

items (Q16). The top three items were “To see traffic conditions for myself”; “To get an extra

level of detail”; and “To confirm the traffic condition when there is doubt about the reliability of

other criteria such as ETA,” as shown in Figure 3.16 (c). Finally, participants were asked what

influence real-time traffic images would have; 71% responded that images helped to determine

route choice, and 62% responded that images prepared them for traffic conditions ahead, as

seen in Figure 3.16 (d).

3.8 User Study

The motivation for implementing SVN was to develop a platform where users can easily share

traffic data that provides detailed information using images to support drivers for route plan-

ning. The best user study approach is to deploy our application to study the real behavior of

tweet posting and the efficiency of the Tweet Digest. However, there are several limitations to

such a user study. There is the lack of a decent number of traffic images that can be crowd-

sourced. Also, even if there were to be enough images, there needs to be drivers who take the

corresponding route to make use of the images taken.

Therefore, we designed an alternative approach for the field experiment to study users’

behavior in tweet posting and using a Tweet Digest. A video was recorded for each of two

different routes (the same origin and destination) with a smartphone camera mounted on the

windshield of a car when both routes are simultaneously driven by two vehicles beginning at

the same start time, as shown in Figure 3.17. Participants were then recruited and instructed to
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Figure 3.17: Two routes for the user study.

view the two videos (route 1 and route 2) as if they are driving. They recorded the times they

felt they would take a photo of the traffic environment to share with other drivers.

3.8.1 Setup and Design

A summary of the details of the user study setup is shown in Table 3.5. The starting location

was the university, and the destination was a local grocery store, where route 1 was via the

highway and route 2 was via local roads. Both cars set out at 5 p.m., when high-volume traffic

was expected due to rush hour. The ETA given with live traffic information was 16 min and 17

min for route 1 and route 2, respectively. However, the actual duration of the travel time was 33

min for route 1 and 18 min for route 2. Route 2’s ETA was quite accurate, yet route 1’s actual

travel time was nearly twice the ETA due to congestion. Also, there were no construction sites

or accidents along either route at the time of the experiment (or video recording).

A total of 14 participants (university students with a driver’s license) were recruited, and
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Table 3.5: Summary details of the user study.

Category Route 1 Route 2

Distance 8.2 mi 5.9 mi

Estimated travel time (ETA) 16 mins 17 mins

Actual travel time 34 mins 19 mins

Road type Highway Local

# of road segments 11 15

Total # of tweets 115 38

Ave # of tweets per participant 8.2 2.7

Min # of tweets per participant 3 0

Max # of tweets per participant 16 6

# of clusters 10 4

# of tweets in the Traffic Digest 9 3

each was instructed in how to use the SVN application. Each participant viewed both videos of

the routes and recorded the times they decided to take a photo of the road environment to share

with others. Route 2 had a total of 38 tweets, but route 1 had a total of 115 tweets due to traffic

congestion. On average, approximately eight tweets and three tweets per person occurred for

route 1 and route 2, respectively.

3.8.2 Results

Figure 3.18 (a) shows the results of route 1’s tweet count, and the corresponding tweet moments

shown (by time) for all of the 14 participants are represented with different markers. After com-

piling the Traffic Digest, 10 clusters were produced, and the final digest included nine tweets

(see Table 3.5). The first cluster containing one tweet was regarded as noise and was omitted

from the final digest. Thus, a total of 115 tweets on route 1 was reduced and summarized into

nine tweets, a reduction to about one-twelfth of the original number.

An example from the time span between 5 min and 7 min is enlarged in the lower graph of

Figure 3.18 (a). This illustrates how the digestion process clusters the tweets, and how tweets

are selected from that cluster to be included in the final traffic digest. In this setup, since both
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Figure 3.18: Tweet count, tweet cluster and tweet digest.
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routes did not have any unexpected incidents, such as an accident or construction, the tweet

with the most updated timestamp was selected in the Tweet Digest because the tag category for

all tweets was the same (i.e. traffic jam).

Due to the fact that route 2 did not have much traffic congestion, the total tweets (38) was

much less, compared to route 1 (115 tweets). However, as shown in Figure 3.18 (b), route 2’s

tweets were highly concentrated in two clusters, whereas route 1’s tweets were more distributed

throughout the route. Route 2’s digestion produced a total of four clusters, and the final traffic

digest included three tweets (reduced from 38), for a reduction ratio similar to that of route 1

(one-twelfth).

In summary, the user study implies that when drivers are willing to share traffic informa-

tion (tweet posting), the majority would be sharing road information on the same or a similar

event. In our user study setup, for an ordinary travel time of about 20-30 min where about a

dozen people share traffic information (from a moderately congested road and a highly con-

gested road), the digest algorithm showed a reduction of about one-twelfth in both cases. Thus,

reducing and summarizing this information into a digest will effectively reduce both the shared

traffic information and the communication load between the vehicular cloud and the Internet

cloud.

3.9 Discussion

Like any other crowdsourcing system, a suitable number of users is necessary for the system to

work. Incentives for tweeters, such as “likes” or points, are used in existing apps like Waze [17]

so that many users will contribute data, and the system will work. Such mechanisms can also be

integrated in our implementation to properly incentivize drivers. For instance, acquired points

(or a reputation) for drivers can be used to give priority to their social tweets in the selection
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for Tweet Digests.

Although digestion can effectively eliminate redundancy, there is no guarantee on the qual-

ity of images the digestion algorithm produces. It is quite normal for photos taken from differ-

ent angles and locations to cause a difference in perceived quality. Therefore, computer vision

techniques can be explored to provide a mechanism to select photos with the best quality to

represent a traffic event. Also, computer vision algorithms can be tuned to automatically anno-

tate an image as a traffic jam, an accident, etc. Finally, security, privacy, malicious users, and

last but not least, passenger safety [65] must also be considered.

3.10 Summary

Advancements in technology have contributed to making cars smarter by equipping them with

sophisticated devices, such as cameras and communications devices. Also, significant advances

in the production of autonomous cars mounted with wide-angle cameras give most vehicles the

potential to gather a significant amount of useful traffic information.

This chapter described a vehicular cloud service for route planning, where cars obtain local

traffic information from nearby cars in real time in contexts like text, images, and short videos.

However, too much information can make route planning even more difficult when processing

it all. As current navigation systems mainly rely on estimated time of arrival, there are limita-

tions to taking other semantically rich information into account to support decision making and

improve satisfaction in route selection.

This chapter introduced the use of traffic images provided through the vehicular cloud to

assist drivers in route planning and route decisions. We proposed a Social Vehicular Naviga-

tion system where driver-generated geo-tagged traffic reports can assist other drivers in route

planning. The traffic reports are called NaviTweets, and summaries are called Traffic Digests,
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which are composed and sent to drivers upon request. The chapter presents the system design

and the SVN prototype, along with performance and user-study evaluations.
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Chapter 4

Counterfactual Travel Time Information for Post-trip Feedback

“What would have happened, had I taken the alternative route?” This is a question that many

drivers often ponder, hoping that their chosen route is the best. This chapter proposes Dop-

pelDriver, a system that attempts to answer such questions on non-chosen alternative routes to

a given destination by determining actual times of arrival (ATAs) from participatory users on

the non-chosen routes. DoppelDriver offers a direct, actual travel time comparison among route

choices. With DoppelDriver’s collection of actual travel time comparisons, users will be able

to make strategic decisions on, and self-assessments of, their route choices. Also, we describe

the potential usage and benefits of post feedback (i.e. travel time on non-chosen routes) and

how snapshots of travel time comparisons can be used to support strategic decision making on

the choice of a route. Using real taxi GPS data, we investigate whether aggregating ATAs for

road segments from other users mimics the ATA for the intended origin-to-destination route.

Finally, we present our system design for a prototype implemented on the Android platform.

4.1 Introduction

One of the most empowering aspects of advanced navigation systems is their ability to predict

the estimated time of arrival (ETA) [74, 37] taking real-time traffic flow into account and to

provide estimated travel time route comparisons to generate a set of route choices to support

the driver in the decision-making. However, when compared to the actual time of arrival (ATA),
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the ETA can easily be under- or overestimated due to, for example, dynamic traffic conditions

or the use of simple and/or faulty algorithms. For instance, at the end of or during a trip a

curious driver can discover that the ETA given by the online navigator, which he based his

initial route selection on, can be far off from the ATA and wonder what would have happened

on the other recommend routes that were not taken [46].

This provision of ATA is not unlike what occurs daily in the grocery store. Stuck between

choosing two lines in a grocery store, the average customer may choose the line with the shorter

number of individuals. Later, as he looks over to the other line, he sees that an individual

who stepped in line after him has his goods bagged and walks away. Such a scenario can be

replicated across numerous situations, from comparing the time spent in a drive-thru relative to

walking inside of a fast-food restaurant, or in choosing the stairs over a slow, crowded elevator

to save time.

To the best of our knowledge, up till now, research into predicting accurate ETA based on

historic GPS traces or real-time speed and location information from individual drivers have

focused only on pre-trip and en route information, while overlooking post information about

foregone route alternatives (i.e. actual travel times concerning non-chosen routes). The dif-

ference between pre-trip/en route and post information is that the former uses estimated travel

times while the latter utilizes actual travel times. Enlightened by the studies in the transporta-

tion route-choice behavioral literature [28, 31, 95, 30, 20, 69] that highlight the potential use of

post information, this neglect is surprising.

The plausible solution to overcome the limitations of route-choice systems mentioned in

Section 1.2.1, and to acquire a higher rate of user compliance, is to address the misperception,

motivate drivers to think rationally, and combine “experience” with “real-time information”.

In particular, ETA information alone as given by the online navigators may not be sufficient
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for drivers to make the optimal decision. In addition, this chapter proposes the use of post

feedback on the actual travel times for the chosen (i.e. from their own experience) and non-

chosen alternative routes (i.e. foregone experience). In fact, the findings in [30] emphasize

the importance of post-trip feedback in attaining high compliance rates. They concluded that

providing feedback built up the credibility of the information system and achieved high levels

of compliance with the system.

Up till now, there has been no systematic way to compare and assess post route choices

and to learn from them in order to make more efficient and strategic decisions in the future.

Hence, this chapter proposes DoppelDriver, a system that provides comparisons of ATAs for

alternative non-chosen routes. The system makes use of other participating users, who act

as doppelgängers to provide ATAs for alternative routes of interest to the user. With such

feedback, users will have the ability to assess their route choices and log them in a trip diary

that can be used in the future for strategic decision-making when selecting a route. To the best

of our knowledge, this is the first work that 1) exploits the use of actual travel times from other

vehicles on non-chosen routes to be compared to that of the chosen route and 2) provides the

ability to assess the route choice and use it as reference for future decision-making.

The outline of this chapter is as follows: Section 4.2 provides the background to post feed-

back and its potential usage. Section 4.3 presents an intuitive example scenario on how to

calculate actual travel time from origin to destination on non-chosen routes. An overview of

the DoppelDriver concept, along with its algorithm, is explained in Section 4.4. A feasibility

study is conducted in Section 4.5, and the system design and implementation details are pre-

sented in Sections 4.6 and 4.7, respectively. Section 4.8 shows the results of a field experiment.

Section 4.9 presents a discussion and suggests future work, with the conclusion to this chapter

presented Section 4.10.
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4.2 Preliminaries and Motivation

As the proposed solution is novel, we particularly emphasize on the potential for post feedback

to assess non-chosen routes, which motivates our system’s practical usage.

4.2.1 Why Current Information Systems Neglect Post Feedback

Various research has been done on providing quality information to influence drivers’ behav-

ior, to guide them to less congested routes, and consequently, to alleviate traffic congestion.

However, studies concerning travel time have so far focused only on pre-trip and en-route in-

formation, while overlooking post information on forgone payoffs (i.e. travel times concerning

non-chosen routes). We argue two key points for the reasons such post feedback is not used in

current systems or by service providers such as Google or Waze.

Estimation errors

The estimated error is the measure of information accuracy, defined as the difference between

the actual travel time and the estimated travel time. Chen et al. [30] studied compliance be-

havior under real-time traffic information, and their results show that both over- and underes-

timation errors significantly reduced the likelihood of compliance, although underestimation

errors had a greater negative impact than overestimation errors. Therefore, there is no incentive

for service providers to incorporate post feedback. However, other studies [112, 28, 30, 69]

revealed that post feedback information allows users to compare their actual decisions to the

optimal route choices and to assess the quality of their decisions, and emphasizing that evalua-

tion feedback attains high compliance rates.
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Regret

Because the recommended route from any information system can turn out not to be the optimal

route, post feedback can trigger regret over not choosing the foregone alternative [31, 23]. To

avoid regret, people often avoid information about the outcomes of non-chosen alternatives

which can be a reason why post feedback is disregarded in current systems. However, very

recently, route-choice behavioral studies have started to incorporate regret theory into the travel

behavior models. Chorus [31] shows that in repeated choice situations (such as most travel

situations), the desire to avoid regret over forgone alternatives means passing up an opportunity

to learn. Learning, in turn, implies the opportunity to make better decisions, and hence, lower

the levels of regret for subsequent choices. In line with those findings in [31], Ben-Elia et al.

[23] also indicate the importance of feedback on the perception of regret.

4.2.2 Potential of Post Feedback for Chosen/Non-chosen Routes

Almost all studies in the information technology domain have focused on pre-trip and en route

trip information, and because the proposed approach incorporates post feedback on forgone

alternatives, we stretched out to find related work in the transportation route-choice behavioral

literature. Below, we summarize the findings that emphasize the potential use of post feedback.

In light of the previous studies that highlight the potential use of post feedback, Chen et

al. [30] developed a model based on empirical studies to capture the effects of commuters’

compliance with real-time information by varying the information quality and providing post-

trip feedback on actual foregone alternatives. In their experiment, they provided three levels

of post-trip feedback: the chosen route (the driver’s own experience), the recommended route

provided by the system, and the actual best route. They emphasized the importance of post-trip

evaluation, where users can compare actual choices to the optimal route choice and assess the
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quality of their decisions. Their findings show that feedback builds credibility and higher com-

pliance rates with the information system, and thus, they suggest that ITS systems provide such

information to users. One of the interesting findings in [95] regarding the effects of feedback

was that since users were able to compare their chosen routes with the true optimal choice they

were encouraged to select more efficient routes.

Based on the joint relationships among real-time information, post-trip information, learn-

ing, and habit, Bogers et al. [28] experimented on three scenarios. For all three scenarios,

drivers were given real-time traffic information. In scenario 1, post information was based on

only the chosen route; scenario 2 provided post information for both chosen and best routes

for the latest period; and scenario 3 provided post information for both chosen and best routes

for all past periods. Because travelers who receive information on foregone alternatives can

also learn about the characteristics of the non-chosen routes, Bogers et al. drew the following

conclusions. Drivers react primarily to the route queue length information, yet post information

helped them learn and improve performance. Also, under the scenario that provided all past

travel times for both the chosen and best routes, travelers had significantly better scores versus

the other scenarios.

In a recent behavioral model study, Chorus [31] explains that the importance of the acqui-

sition of post information, and the behavioral decision to acquire it, is fundamentally different

to the traditional acquisition of pre-trip or en route travel information. Based on psychologi-

cal theories, when a traveler decides whether to acquire post information concerning repeated

route choice, the traveler has to accept a tradeoff between wanting to ignore the potential regret

associated with the already executed choice, and wanting to learn in order to minimize poten-

tial regret from future decisions. When travelers value the post information it implies that the

learning benefits that will reduce levels of regret for the next trip are likely to outweigh any
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regret associated with the current trip.

4.2.3 Usage of Post Feedback for Chosen/Non-chosen routes

Because ETA serves to determine the travel time based on current traffic conditions, below is

an explanation of the usage of post information and how the proposed system provides it.

Counterfactual Thinking

After a decision has been made, the tendency people have is to think about how things would

have turned out differently. The “What if?” thoughts that poke at a user given multiple choices is

known in psychology parlance as Counterfactual Thinking [84, 83, 46]. The concept’s premise

is that any individual naturally dynamically considers alternatives based on how events, such

as the time taken for a certain route to a certain destination, transpire. An example of coun-

terfactual thinking applied to route choice is, “What would have happened on the alternative

non-chosen route?” which is the motivation for this work. Counterfactual thinking is antici-

pated with either regret or rejoice (i.e. the opposite of regret). For instance, drivers may be

stuck in traffic and wonder where they would be, had they been travelling another route. In

fact, prior psychology research has asserted that counterfactual thinking is especially activated

in the case of negative outcomes. Post information can inform drivers that the other route was

even more congested, confirming that the chosen route was actually better, causing rejoice.

But regret theory suggests that when provided with post information, drivers may want to ig-

nore the information to avoid regret. In addition to Chorus [31] and Ben-Elia [23], concerning

the tradeoffs of balancing regret versus learning, Van Djik and Zeelenberg [102] investigated

whether curiosity about an unchosen alternative could overcome potential regret from learning

about the unchosen outcome. Their findings show that when information was readily available,
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curiosity found to overcome regret aversion.

Curiosity and Assessment

In this sense, there is active curiosity and a need for individual assessment on travel-time com-

parisons with secondary and tertiary routes, which presently remain unfulfilled and unavailable

within any web-based or smartphone-based navigation applications or services. Providing real-

time travel comparisons with actual travel times for both chosen and non-chosen routes via

mobile participatory sensing addresses the inherent user concern activated by counterfactual

thinking. Psychology research has shown that humans are predisposed to viewing situations

and results from a conditional perspective—that is, to wonder what might have been, if a dif-

ferent choice had been made. Offering all users the chance to answer a nagging curiosity that

is innately present, this research has relevance to almost any navigation system user. Dop-

pelDriver allows the user to definitively conclude which route was best, firmly answering the

natural human tendency to constantly consider the merits of alternative routes that one could

have chosen. Offering all users the chance to answer a nagging curiosity that is innately present,

this research has relevance to almost any navigation system user.

Learning

Selecting a route can be considered as a Route Choice Game [96, 51, 107] especially on a day-

to-day scenario. In [96, 51], the authors conduct laboratory experiments on humans playing a

route choice game. They find that at the beginning individuals tend towards user equilibrium.

However, after iterations of repeated games, users often established a coherent behavior.

Iterations of a repeated route choice can be viewed as a learning process. Due to cognitive

limitations, people require numerous iterations to detect a pattern, and cannot remember all
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their choices and what the optimal choice was [28]. Thus, DoppelDriver provides a Trip Diary

that logs user selected routes and the true best route, based on the alternative routes’ actual

travel times. Also, since the trip diary logs all previous commutes that were of interest, this can

expedite the learning rate, as shown in an experiment in [69].

DoppelDriver will prove especially useful to commuters or individuals who travel to the

same destination more than once. Armed with the ability to see the actual travel times for both

the chosen and non-chosen routes, the user is now empowered—he or she can legitimately

identify the optimal route, especially when there are similar times for the ETA in the route

choice set. For the next commute or trip, the user can make a smarter decision, and confirm

that the selected route is truly the fastest each time he or she travels [64].

Personalized Route Choice

In [90], Shiftan et al. analyzed drivers’ route-choice behavior with real-time pre-trip and post

information. Main findings were that risk-seeking individuals tend to prefer a route character-

ized by a lower average, but greater variance, in travel time. On the other hand, risk-averse

individuals preferred lower variance, but better averages. Depending on the route-choice be-

havior, drivers’ preferences can be roughly classified into risk-averse travelers, indecisive trav-

elers, and expected-time minimizers [20]. ETA alone cannot provide users with a personalized

choice. Thus, DoppelDriver provides a trip diary that gradually collects personal history of

post information with actual travel times on alternative routes from an origin to a destination of

particular interest. The trip diary shows the average of, and variance in, the actual travel times,

depending on departure time. Drivers can select routes based on their preferences through the

actual average travel time and travel time variability for alternative routes.
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Figure 4.1: Example scenario 1.

4.3 Determining Counterfactual Travel Time

Our algorithm is based on how ordinary people obtain actual travel times on a non-chosen

route. If a driver travels from an origin to a destination (O → D) and would like to compare

one’s travel time to that of the non-chosen route in order to assess the route choice, the ordinary

way would be to ask someone who started at the same time and origin how long it took to travel

to their mutual destination. For example, as shown in Figure 4.1, John normally commutes

from O to D at 9 am and has two alternative routes, r1 and r2. Routes r1 and r2 are represented

as A → C → E → F and A → B → D → F, respectively. John cannot simultaneously

travel both routes at the same time, so he would not be able to compare and assess his choice.

However, if Mary, John’s neighbor, traveled on route r2 while John traveled on route r1 to the

same destination, they would be able to collaborate to figure out what the best route turned out

to be by alternatively driving each route in their daily commute.

Realistically, people would not be willing to go through such a hassle, and it is nearly
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Figure 4.2: Example scenario 2.

impossible to find someone who has the same start time along with the same origin-destination

pair. This research provides a solution to this problem by combining portions of three trips:

Mr. Red, who passes through road segments A → B from 9 to 9:05 am; Mr. Blue who passes

through road segments B → D at 9:04 to 9:10 am, and Mr. Green who passes through road

segments D → F from 9:12 to 9:18 am. The aggregation of the actual travel time of Mr. Red,

Blue and Green can represent Mary’s route r2. Thus, it is possible to use the aggregation times

of road segments traveled by different users to calculate the actual trip time for the alternative

route. John can eventually compare the route he took to the alternative route he is interested

in. However, selecting the best-fitted participants to provide the actual travel times and whether

combining those travel times to represent the actual end-to-end trip is not obvious and thus, this

research explores further into the feasibility of the proposed solution.
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Figure 4.3: Algorithm.

4.4 DoppelDriver Overview

4.4.1 Preliminary

We call our system DoppelDriver, because other participating users act as doppelgängers who

are simultaneously “driving” on alternative routes that you are not traveling on. Also, we denote

the alternative routes that are of interest (but not taken) as counterfactual route(s). Using Figure

4.2 as an example, below are some preliminaries introducing terms that are used throughout the

chapter.

Definition 1: A waypoint is a latitude and longitude coordinate set denoted as wp =

(lat, long). A GPS point is denoted as p = (u,wp, ts, o) where u is user u ∈ U, wp is the

waypoint, ts is the timestamp and o ∈ {1, 0} is the state of passenger occupancy.

Definition 2: A road segment is the edge of a road network that does not share a junction.

Terminal waypoints, defined as either the start or end of each road segment, are denoted as rsi.

Traversing two terminal waypoints of a road segment is denoted rsi, j : rsi → rs j. Dot notation

is used to refer to an element. So, the travel time for rsi, j is t.rsi, j, and the start time and end

time when traversing from waypoint rsi to rs j are st.rsi, j and et.rsi, j, respectively. Also, note

that et.rsi, j = st.rs j,k.

Definition 3: A route r is a set of consecutive road segments, r : rs1 → rs2 → · · · → rsn.
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The origin and destination point of the route can be represented as rO and rD, respectively.

Definition 4: A trip tr is the trajectory of a sequence of GPS points, i.e. tr : p1 → p2 →

· · · → pn.

4.4.2 Concept

We call our system DoppelDriver, because other participating users act doppelgängers who are

simultaneously “driving” to a destination on alternative routes that you are not traveling on

(because individuals cannot traverse more than one route at a time). The definition of coun-

terfactual is “expressing what has not happened but could, would, or might under differing

conditions,” so we denote the alternative routes that are of interest (but not taken) as counter-

factual route(s).

Once an origin and destination are put into a navigation system, a list of routes is provided

to the user, usually ordered incrementally by ETA. Figure 4.3 illustrates two alternative routes

from the origin (rsO), to the destination (rsD). The user will designate a selected route that he

intends to take, and the followed route(s), are the alternative routes to the same destination for

comparison of actual travel times. For example, followed route f r consists of four waypoints

rsO, rs1, rs2, rsD and the three road segments make up route rsO,1, rs1,2, rs2,D.

4.4.3 Algorithm

This subsection explains the DoppleDriver algorithm in detail, along with an example to illus-

trate it. Figure 4.3 is a simplified form of the counterfactual route cr : rsO → rs1 → rs2 → rsD,

to explain the algorithm. First is an explanation of how to elect the best-fitting sharing user for

each road segment, and how the end-to-end route travel time is calculated.

Selection Algorithm. Referring to Figure 4.3, the algorithm first checks the initial start
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time of the querying user at origin rsO. A sharing user is in the candidate user CU ⊆ U

if
{
um ∈ U | | st (um′) .rsO,i − st (um) .rsO,i| < τ}. This is interpreted as finding all sharing users

who are in the corresponding road segment and nominating those to candidate users if the dif-

ference in the initial start time of the querying user and the sharing user falls within a given win-

dow time frame, τ. Then, among the candidate users, one is selected as the elected user whose

difference between the initial start time of the querying user and the start time of candidate

user is at a minimum, which can be expressed as
{
cum ∈ U | min

(|st.rsO,i − st (cum) .rsO,i|)}. To

summarize, the selection algorithm can be explained such that it is seeking to elect one sharing

user out of many to represent the travel time on the corresponding road segment. The selection

algorithm is reiterated until all road segments are covered.

An example is illustrated in Figure 4.3, where if we assume the initial elected user at the

origin is u1, we now find the next elected user at location rs1. Users u2 and u3 fall within the

window time frame, and thus, are nominated as candidate users. Among the candidate users,

the difference between u2’s start time and u1’s end time is minimal, and thus, u2 becomes the

elected user whose travel time on road segment, t.rs1,2 is used. The end-to-end travel time for

the entire counterfactual route can be computed as
∑

eu∈U et (eu) .rsi,i+1 − st (eu) .rsi,i+1 which

can be explained as the sum of each elected user’s road segment traverse times.

4.5 Feasibility Study

This section presents a feasibility study on real taxi GPS data to study whether the aggregated

travel times of road segments can be represented as the total travel time of a complete trip. The

methodology, test data settings, and results are described in the subsections below.
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Figure 4.4: Comparison of travel times (Black vs.
∑

(Blue, Red, Green)).

4.5.1 Methodology

A simple illustration of the methodology for the feasibility study is shown in Figure 4.4, which

compares the travel time of a complete taxi trip as shown with the black solid line, to the sum

of the travel times of the other taxi trips shown in solid blue, red, and green lines in each

corresponding road segment. The travel time of a taxi corresponding to a road segment is

estimated as the portion of the road segment that the taxi traversed. Also, note that GPS trace

intervals that exceed 5 mins were filtered out to reduce noise.

The actual trip (AT) travel time is defined as the travel time for a complete trip, shown as

the black solid line in Figure 4.4. The AT time from its origin and destination for taxi user

u ∈ U is calculated as t.atr (u) =
∑D−1

i=O (ts.pi+1 − ts.pi). The counterpart trip (CT) travel time

is defined as the travel times for all road segments that correspond to the actual trip (i.e. the

solid portion of the blue, red, and green lines in Figure 4.4), which is calculated as t.ctr (u) =

∑D−1
i=O

(
t.rsi

i+1
. (¬u)

)
, ¬u ∈ U, i.e. the traverse time for all the road segments from taxi users

who are not the corresponding taxi user from the AT. An example of the counterpart trip ctr is
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Table 4.1: Taxi data set.

Dataset Non-rush Rush

# of taxis (u) 7,288 8,093

# of trips 2,049 2,797

# of road segments traversed 60,551 71,209

# of GPS points 128,826 147,008

mean road segments traversed 29.55 25.46

standard deviation of road segments traversed 15.30 15.47

illustrated as the aggregated travel time for road segments of the solid blue, red, and green lines

shown in Figure 4.4.

4.5.2 Test Data

An empirical feasibility study was carried out using large-scale taxi GPS point sets from Beijing

on January 6, 2009, from 1 pm to 2 pm and 5 pm to 6 pm, which are denoted as non-rush hour

and rush hour, respectively. We employ a set of methods to preprocess the GPS data set, such as

data cleansing, map matching, identifying trajectory and travel time estimations [78, 72, 110].

Preprocessing the taxi data requires a great extent of work before using it for the analysis,

however, this topic is beyond the scope of this research, thus the details of the preprocessing

techniques are omitted. A summary of the taxi data set and the descriptive statistics for both

rush hour and non-rush hour periods are shown in Table 4.1.

4.5.3 Analysis

Comparison of the aggregated road segment travel times was analyzed with respect to the actual

trip time, i.e. counterpart trip travel time versus the actual trip travel time. We first determined

the distribution, if any, of the travel times and then based on the distribution, we decided what

statistical inference to apply.

For each AT time, we obtained the corresponding CT time. If there were at least a single
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Figure 4.5: Acquiring CT success rate.

road segment that could not be acquired for the complete CT, it was acknowledged as failure

to get a CT time. When there is no defined window size (wnd), the success rate was 90.8%

and 90.3% for non-rush and rush hour traffic, respectively. For a window size set at 600 sec,

the success rate was 77.9% and 77.4%, and for a window size set at 300 sec, the success rate

was 63.7% and 63.5% for non-rush and rush hour traffic, respectively. As seen in Figure 4.5,

as the window size decreases, the success rate also decreases. The taxi data set accounts for

approximately 7% of the total traffic. Even with such a low volume of taxis, the results are

somewhat satisfying, and the success rate will probably increase dramatically as more users

participate.

With no defined window size, we first determined the distribution of window sizes. Figure

4.6 shows that the majority, i.e. approximately 97%, fall within a window size of 300 sec for

both non-rush and rush periods. This plot shows the distribution of window size for non-rush
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Figure 4.6: Distribution of window size.

and rush hour periods for periods where acquiring the travel times for the CT road segments

was successful with respect to the AT. For the non-rush periods, the cumulative percentage for

wnd ≤ 300 was 97.9%, and for wnd ≤ 600, it was 99.2%. For rush periods, the cumulative

percentage for wnd ≤ 300 was 97.4% and for wnd ≤ 600, it was 99%. This shows that for both

non-rush and rush periods, the majority of the window sizes fall under 300 sec.

For each trip where acquiring a CT failed, the number of road segments that were affected

by the failure was determined. The distribution is shown in Figure 4.7. For non-rush periods

with wnd = 300, 46% of the total trips that failed to acquire a CT were due to a failure to obtain

just one road segment, and a cumulative 90% were due to a failure to acquire up to five road

segments. For wnd = 600 in non-rush periods, 50% were due to failure to acquire one road

segment’s travel time. For rush periods with wnd = 300, 42.16% of CT failures were due to

lack of one road segment, and similar with non-rush; a cumulative 90% were from failing to
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Figure 4.7: Distributions of the road segments affected by CT failures.

acquire up to five road segments. For rush periods with wnd = 600, 50.24% of CT failures

were due to lack of one road segment, and 93.5% were due to a failure to acquire up to five

road segments. Recall from Table 4.1 that the mean number of road segments traversed was

29.55 and 25.46 for non-rush and rush periods, respectively. This can be interpreted as for an

average of 30 road segments traversed, 50% of the CT failures were due to missing one road

segment and 90% of CT failures were due to missing up to five road segments.

The data set was retrieved for AT times and CT times for those trips that successfully

acquired a CT time. Then, kernel smoothing was applied to the distributions of both AT and

CT times to visually inspect the distributions, which are shown in Figure 4.8. To determine if

the AT and CT data sets were normally distributed, a few normality tests were conducted, such

as the Kolmogorov-Smirnov test using R statistical programming [13]. The p-value for all tests

on the data sets was < 0.02, and thus, the result was that the distribution is not normal. Also
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Figure 4.8: Distribution of AT time and CT time.

conducted were a log-normal test and a chi-squared test, and the results showed that the data

set distributions did not fit (p-value<0.001). Such results are not unusual. Equivalent results

are also shown in other previous work [98].

A paired equivalence test was applied, which was used to test whether two paired samples

are nearly equivalent as to some outcome, such that any difference is insignificant. The paired

difference of AT and CT time was computed, and distributions are shown in Figure 4.9. All

figures, i.e. non-rush and rush periods, show that the paired differences of ATs and CTs are

concentrated near 0, meaning that the differences are trivial. Thus, also conducted were a
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Figure 4.9: Distributions of the differences between AT time and CT time.

non-parametric statistical hypothesis test and a Wilcoxon signed rank test, which assumed as

the null hypothesis that the difference between AT and CT is within δ sec, and the alternative

hypothesis is where the difference is greater than δ sec, as shown below.

H0 : |μAT − μCP| ≤ δ, HA : |μAT − μCP| > δ

Confidence interval (CI), α was set to 95%, and δ was set to 30 sec, such that 30 sec

represents a reasonable figure when saying AT and CT times are equivalent. The results are

shown in Table 4.2. It is clear that for non-rush periods, the median difference between AT and

CT for the same trip is -4 sec, where differences range between -10.5 and 2.5 sec. For rush

periods, the median difference was 16.5 sec for intervals between 8.0 and 25.0 sec. For the

equivalence test, all accepted the null hypothesis, meaning that the differences between AT and

CT are within 30 sec.

The 95% CI for the Wilcoxon signed rank test was tested for both window sizes on non-rush
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Table 4.2: Summary results.

Non-rush Rush

wnd size wnd=300 wnd=600 wnd=300 wnd=600

N 1306 1597 1777 2166

est. median -4.0 -10.0 16.5 9.5

CI 95.0 95.0 95.0 95.0

CI lower -10.5 -16.0 8.0 1.5

CI upper 2.5 -4.0 25.0 17.0

equivalence Yes Yes

p-value ≈ 1 ≈ 1

and rush periods. The CIs all fall within the equivalence interval of (-30, 30) accepting the null

hypothesis with p ≈ 1, and thus, it can be concluded that the actual trip times and counterpart

trip times are equivalent.

Based on the taxi data, the feasibility study showed that depending on the window size,

the success rates to acquire a CT were approximately 80% and 65% for window sizes of 600

sec and 300 sec, respectively, whether they were non-rush or rush periods. Also, for trips that

failed to acquire a CT time, approximately 40 to 50% were due to a failure to obtain just one

road segment. The distributions of the differences between AT and CT were concentrated near

0 and, based on hypothesis testing, the difference was trivial. Therefore, we conclude that it is

possible to aggregate travel time for a route by using segment travel times, and the aggregated

travel time of road segments can be represented as the total travel time of a complete trip.

4.6 DoppelDriver System

Figure 4.10illustrates the client/server architecture of the DoppelDriver system. The client-side

interface interacts with the Maps API for route recommendations and information, which are

passed to the server via the client, along with its location, as sensor data. Location and times-

tamp data are then used to calculate the travel time for each road segment on the counterfactual
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Figure 4.10: DoppelDriver system.

route. The following subsections discuss in detail the primary role of each entity.

4.6.1 Client

As shown in Figure 4.10, a client user can be a sharing client, a querying client, or both.

The client first inputs the desired destination, and the mobile device will send the origin and

destination to the Maps API. The Maps API will then compute the route and recommend a list

of route options to the client. Once the user chooses the selected and counterfactual route, route

directions (i.e. waypoint and road segment information) for the routes are passed to the server.

Querying Client

A querying client requests from the server the ATA information from sharing clients who are

travelling on the followed route. The followed route’s origin and destination, route directions

and start time at the origin are sent to the server. After arrival at the destination, the system

displays to the querying client the requested counterfactual route’s total ATA.
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Sharing Client

The sharing client acts as a participatory sensor, and once a sharing client selects a route to

travel on, the corresponding route directions are sent to the server. The route directions are used

so the server can distinguish which sharing users are traveling which road segments. As the

sharing client’s location is updated at regular intervals, for each road segment that is travelled,

the corresponding start and end locations along with the start and end times are sent to the

server.

4.6.2 Maps API

The Maps API consists of three main functions. The first function is to provide map images

and add overlays, such as markers or polylines to the map. The second is to provide geocoding

to find the corresponding geographic coordinates from an inputted textual geographic location.

Finally, the last function is to calculate and recommend a list of alternative routes for a given

origin and destination, along with additional information such as ETA or distance. Driving

directions for each road segment of the route are also provided.

4.6.3 Server

Three processes are involved in the application server component. One is to handle follow

requests by searching and logging the sharing clients’ locations and travel times. Second, the

follow module’s role is to elect users from among shared users to follow for each road seg-

ment along the selected route. Finally, the ATA calculation module’s role is to record the ATA

when a sharing user traverses waypoints, to search for road segment ATAs, and to calculate the

corresponding end-to-end selected route’s ATA. Details of each process are explained below.
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Request Handler

The request handler’s role is to store the road segments of the selected routes of sharing users

that were calculated from the Maps API and the ATA in the form of start and end times for each

traveled road segment. Then, the follow module is called in order to elect users to follow.

Follow Module

This process basically selects the best set of sharing users’ travel times for the followed route.

Per request of the ATA of the followed route, the follow module runs its algorithm to sort

candidate users based on those who fit in the window time frame. Based on the candidate users,

the algorithm will select the sharing user’s ATA that best fits the querying user’s time frame.

The selection of sharing users is repeated for each road segment until all the road segments

within the route are covered.

ATA Calculation

Upon arrival at the destination, the arrival times for each road segment along the followed

route are calculated based on the profile from the follow module and from the storage server

component. These values are added up to provide the final ATA for the entire journey.

4.7 Implementation

The DoppelDriver prototype system was implemented where the client runs on an Android

4.1+ mobile platform. The Google Maps API, the Places API, and the Directions API were

utilized for the Maps API. The Google Maps API is used for the base map, the Places API is

used for specifying locations as latitude/longitude coordinates, and the Directions API is used

to calculate and recommend a list of alternative routes, along with step information. The server
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Figure 4.11: DoppelDriver client prototype.

side is a Dell Optiplex 780 machine equipped with a 3.16 GHz Intel Core2 Duo CPU, 4GB

DDR3 1066 MHz RAM, and a WD 320GB 7200 RPM SATA II disk. Moreover, we have set

up server-side scripts developed by PHP5 running on Apache 2 on Ubuntu 12.04.4 LTS, and

the data on ATA is stored in a MySQL database. The field experiments were carried out on the

aforementioned platform.

Figure 4.11 illustrates the implementation of the client prototype. When an origin and

destination are introduced, a recommended list of alternatives is shown and sorted by shortest

ETA. The user will then select which route to take and which counterfactual route to follow,

as shown in Figure 4.11 (b). Then, the overall view of the selected route and counterfactual

route is shown, as in Figure 4.11 (c). Upon arrival, when the selected route arrival time is more

than the counterfactual arrival time, then both routes’ ATAs are shown, as seen in Figure 4.11

(d). On the other hand, if the selected route arrival time is shorter, the counterfactual route will

show “Has not arrived” and a popup alert message will be shown upon arrival, notifying the

ATA.

The Trip Log is shown in Figure 4.12 (a). Every trip can be saved so that users can utilize
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Figure 4.12: DoppelDriver Trip Log and Trip Diary.

their previous experiences. The first column states the date and time of the trip. The second

column shows the navigation system’s recommended best route (the recommended route that

has the minimum ETA). The third column shows the route that turned out to have the minimum

ATA (when counterfactual comparisons are available). The fourth column shows the route the

user chose to drive. Finally, the last column represents whether the selected route was the true

fastest route. The design of the trip log is modeled after the travel behavioral experiment with

real-time traffic and post information in [28]. The Trip Diary is shown in Figure 4.12 (b).

Depending on one’s departure time, the Trip Diary uses the Trip Log data and past number of

trips to calculate the averages and standard deviations of the actual travel times for that 15 min.

time slot the departure time falls in (personalized route choice).
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4.8 Field Experiment

A field study was carried out to validate the prototype by testing whether the ATAs on the

counterfactual road segments were correctly shared and retrieved from the database, and to

evaluate the search cost on different table sizes. Two drivers, one sharing and one querying

client, simultaneously drove on two routes for the same origin and destination. The two routes

were recommended from Google Maps where one route was via the highway with an average

ETA of 15 mins (9.3 mi) consisting of 7 road segments while the other route was via local

roads with an average ETA of 16 mins (7.3 mi) consisting of 13 road segments. A total of

ten trips were carried out. Five trips were conducted, where at the origin, the querying client

took the local route and requested the ATA on the highway route, i.e. the counterfactual route,

where the sharing client was traveling on. The remaining five trips were conducted in reverse

where the querying client took the highway route and the sharing client on the local road route.

The database of our table that records the ATA was injected with random start and end travel

times on random geo-points for start and end road segments. This process mimics how other

drivers share their ATA. At the end of the trip, the retrieved ATA on the counterfactual route

was compared to the sharing client’s travel time to validate that the sharing client’s travel time
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was correctly sent and retrieved from the database table. Also, the search time for the ATA

on the counterfactual route was recorded on table sizes of 50K, 100K, 300K, 500K, 700K and

1,000K. Note that the taxi data set mentioned in the previous section was approximately 7% of

the total traffic and covered the Beijing area where the table sizes were 309K for non-rush hour

and 407K for rush hour.

For all the ten trips, the retrieved counterfactual route’s ATAs coincided with the travel

times of the sharing client. This shows that the sharing client’s travel times for all the road

segments within the counterfactual route were correctly updated for each road segment that

was traveled and the ATA values were properly calculated to provide the final ATA for the

entire journey. Also, Figure 4.13 shows the average search time and the standard deviation in

seconds per table size when the local road (7 road seg.) and the highway road (13 road seg.)

were the counterfactual route. We can observe that the table size does not affect the search time

whereas the number of road segments searched mainly affected the search time.

4.9 Discussion

A problem may arise if the system cannot find a driver on a certain road segment of the non-

chosen route within a certain time interval in order to compute the actual travel time. Our

current solution is to query the start point of such road segments and use the ETA (provided

by online map providers) instead to contribute to the calculation of the entire counterfactual

route travel time. Such information can be used where there is no actual arrival-time data so as

to provide the entire counterfactual route travel time. The same approach can be taken during

the initial deployment of DoppelDriver where there may not be enough users to collect actual

travel times. The system could be bootstrapped by taking advantage of most recent ETAs for

immediate next road segments.
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Furthermore, perhaps this system’s counterfactual thinking approach to navigation routing

could be extended to public transportation. By additionally considering public transportation

options and their respective ATAs, alongside alternative routing, the user can be better informed

of all that is available and what might be optimal. If public transportation is found to be timelier,

demand for and interest in public transportation could increase. This idea is also discussed by

Chorus [31], where such a strategy might be effective in light of the well-known misperceptions

among travelers concerning the performance of, for example, public transport options with

which they have less experience.

Also, when choosing participating users along alternative routes, more factors can be con-

sidered. DoppelDriver could additionally be personalized to the characteristics of the user and

his or her driving habits and preferences. One aspect of this personality coefficient could in-

clude a user-optional survey based on the Likert scale (1-5), in which the user could indicate

driving preferences (such as tendency to drive over the speed limit) or (routing preferences such

as avoiding tollbooths or local roads). A second facet of the coefficient could include more ob-

jective details, such as vehicle attributes (weight or size, car make, model or miles per gallon)

where similar attributes of cars are chosen for comparison. This similarity coefficient could be

used to find better fits for participating users along the alternative routes when ATAs are pro-

vided, in order to maximize ATA accuracy for each user. Such coefficients could be considered

when selecting a user for comparison.

4.10 Summary

This chapter presents a rationale and a system for counterfactual thinking in route selection.

We presented a method by which ATAs for alternative routes can be calculated by combining

other travelers’ ATAs for segments that constitute the complete alternative route. A study based
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on taxi data shows that by selecting a suitable time window, it is possible to aggregate travel

times for a route by using segment travel times.

This work presents the first crowd-participatory sharing service that collects data on actual

arrival times. DoppelDriver empowers users with the ability to exercise strategic decision mak-

ing and self-assessments of their route choices. Using data collected from participating users,

DoppelDriver offers real-time comparison of alternative routes via real-time instantaneous po-

sition comparisons, as well as provision of ATAs in order to inform users in a novel way on how

to better make routing decisions. We presented a design for, and prototype of, DoppelDriver

where other user’s locations and arrival times were used to compare against the time of the

selected route.
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Chapter 5

Conclusion

Current recommendations systems provide the fastest alternative routes to the destination based

on various sources of traffic data. The fastest route which solely depends on the Estimated Time

of Arrival (ETA) to a given destination is used as a decision-making tool where users can select

from alternative options of routes.

In this dissertation, we have explored the limitations in route recommendation systems as

we compared the recommended route options from popular online maps. As we have looked

into the recommend routes given by four online map providers, we have identified that travel

time variability exists among the maps. Such variability in travel times introduces uncertainty

in route choice.

In many situations, users may not have the choice of the route and may prefer to access

more information to complement route-deciding factors such as ETA. Such information can be

the road condition, or the actual reason and status causing traffic jams. In many cases, such

information cannot be determined automatically, while such information can be provided by

other drivers driving ahead. We make use of such information by presenting a system called

Social Vehicle Navigation, which utilizes visual traffic information provided by other users.

Just seeing what is happening on the road ahead in a timely fashion can often alleviate stress

and significantly improve the driving experience.

At the end of a trip, it is easy for drivers to receive feedback on their chosen route. However,
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receiving feedback on the travel times on non-chosen routes has not been available. We have

introduced a system called DoppelDriver, which actively utilizes the actual travel time from

participant users to calculate and provide the actual travel times on the non-chosen routes. Such

experiential feedback on the chosen and non-chosen route feedback effects the experience and

learning which play an important role in the decision making process.

The main conclusion of this dissertation is that current recommendation systems have lim-

itations and can potentially introduce uncertainty in route choice. To support the decision-

making in route choice, we address the use of visual traffic information for pre-trip route choice

and the use of counterfactual travel times as post-choice feedback information on the forgone

alternatives.

5.1 Future Work

Comparative Analysis on Online Maps

We have collected traffic data from four different map providers, Google Maps, Map Quest,

HERE, and Bing Maps, to conduct a comparative analysis on their recommended routes. We

plan our future work to expand our comparative study on online maps. Further data collection

will be done on more origin destination pairs all varying by distance. One example might have

the origin set to the median of each county and the destination set to a popular landmark.

Also, future work is to study the behavior of real users’ route choice. In other words,

we plan to compare personal route choices to the recommended routes from online maps to

study the driver’s compliance and route choice behavior. Comparison of actual travel times and

estimated travel times will be compared to understand more on the variability and the accuracy

of travel time.
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Social Vehicle Navigation

Several issues require further research. Building an optimized user interface to enable drivers

to interact with the navigation system while driving is essential. Issues such as passenger safety

and reducing cognitive load must be further examined through an analytical user study.

Selecting the most relevant tweets to be included in the Tweet Digest and to effectively

capture the semantic meaning of events on the route is a non-trivial task. Other approaches can

be explored to improve tweet selection by using other criteria, such as user reputation, or by

crowdsourcing this task to people willing to help in real time. Driver feedback on tweets can

also help to eliminate improper or malicious tweets.

DoppelDriver

The choice of the threshold for the window size is of great importance as it reflects the compu-

tation of the actual travel time. As this research worked on the hypothesis of window size of

300 and 600 sec, future work is left to study with varying window sizes on different GPS data

sets in order to maximize ATA accuracy for each user.

The main focus of this research in DoppelDriver is to present the potential usage of post-

trip feedback and to analyze the feasibility of the proposed algorithm on obtaining ATAs on the

non-chosen routes. Although there has been literature on transportation behavior that discuss

in-lab experiments on route choice behavior when provided with post feedback, further work

remains to study its impact of the proposed systems in real-world scenarios.
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Appendix A

Appendix for Chapter 2

This appendix contains supplement Figures and Tables from Chapter 2.

Table A.1: Recommended routes throughout the data collection period for LA1.

Map (LA1) Route ID Distance Count Percentage

Google (Count: 60,056)

G1 15.1 mi 132 0.22 %

G2 17.2 mi 17,139 28.54 %

G3 18.3 mi 20,215 33.66 %

G4 19.9 mi 20,336 33.86 %

G5 20.9 mi 1,175 1.96 %

G6 23.2 mi 939 1.56 %

G7 23.2 mi 120 0.20 %

HERE (Count: 61,028)

H1 16.2 mi 13,355 21.88 %

H2 18.3 mi 20,342 33.33 %

H3 19.9 mi 20,343 33.33 %

H4 20.9 mi 6,988 11.45 %

MapQuest (Count: 61,066)

M1 15.6 mi 20,357 33.34 %

M2 18.3 mi 20,359 33.34 %

M3 19.9 mi 20,350 33.32 %

Bing Maps (Count: 20,350)

B65 18.3 mi 10,237 50.30 %

B116 19.9 mi 5,132 25.22 %

B121 20.0 mi 432 2.12 %

B137 20.5 mi 1,288 6.33 %

B173 21.1 mi 449 2.21 %

Bothers 2,812 13.82 %
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Table A.2: Recommended routes throughout the data collection period for LA2.

Map (LA2) Route ID Distance Count Percentage

Google (Count: 61,013)

G1 16.6 mi 20,179 33.07 %

G2 16.7 mi 20,337 33.33 %

G3 16.9 mi 324 0.53 %

G4 18.2 mi 20,014 32.80 %

G5 18.2 mi 159 0.26 %

HERE (Count: 61,037)

H1 16.6 mi 20,346 33.33 %

H2 16.7 mi 20,345 33.33 %

H3 18.2 mi 20,346 33.33 %

MapQuest (Count: 61,109)

M1 16.6 mi 20,371 33.34 %

M2 16.7 mi 20,374 33.34 %

M3 18.2 mi 20,364 33.32 %

Bing Maps (Count: 20,372)

B10 16.6 mi 492 2.42 %

B11 16.6 mi 2,868 14.08 %

B16 16.7 mi 15,951 78.30 %

Bother 1,061 5.21 %
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Table A.3: Recommended routes throughout the data collection period for NY1.

Map (NY1) Route ID Distance Count Percentage

Google (Count: 52,850)

G1 10.4 mi 9,723 18.40 %

G2 11.2 mi 536 1.01 %

G3 11.4 mi 48 0.09 %

G4 11.8 mi 2,140 4.05 %

G5 12.4 mi 13,164 24.91 %

G6 12.6 mi 24 0.05 %

G7 13.0 mi 576 1.09 %

G8 13.3 mi 1,848 3.50 %

G9 16.0 mi 2,621 4.96 %

G10 16.1 mi 1,966 3.72 %

G11 16.1 mi 15,866 30.02 %

G12 16.8 mi 1,848 3.50 %

G13 16.9 mi 18 0.03 %

G14 18.0 mi 2,448 4.63 %

G15 18.1 mi 24 0.05 %

HERE (Count: 61,002)

H1 10.3 mi 6,979 11.44 %

H2 10.4 mi 13,355 21.89 %

H3 12.4 mi 20,334 33.33 %

H4 16.0 mi 6,979 11.44 %

H5 16.1 mi 13,355 21.89 %

MapQuest (Count: 60,996)

M1 10.3 mi 5,227 8.57 %

M2 10.4 mi 15,105 24.76 %

M3 12.4 mi 20,327 33.33 %

M4 15.9 mi 3 0.00 %

M5 16.1 mi 15,107 24.77 %

M6 16.06 mi 5,227 8.57 %

Bing Maps (Count: 20,332)

B141 12.7 mi 569 2.80 %

B233 16.1 mi 693 3.41 %

B234 16.1 mi 2,561 12.60 %

B242 16.1 mi 13,675 67.26 %

B250 16.3 mi 337 1.66 %

Bother 2,497 12.28 %
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Table A.4: Recommended routes throughout the data collection period for NY2.

Map (NY2) Route ID Distance Count Percentage

Google (Count: 61,001)
G1 16.7 mi 1,871 3.07 %

G2 16.8 mi 18,462 30.27 %

G3 17.7 mi 2,534 4.15 %

G4 18.1 mi 14,049 23.03 %

G5 18.6 mi 2,809 4.60 %

G6 20.8 mi 1,338 2.19 %

G7 22.4 mi 17,358 28.46 %

G8 22.5 mi 1,872 3.07 %

G9 22.7 mi 708 1.16 %

HERE (Count: 61,014)
H1 16.8 mi 20,338 33.33 %

H2 18.1 mi 20,338 33.33 %

H3 19.4 mi 6,982 11.44 %

H4 19.4 mi 13,356 21.89 %

MapQuest (Count: 60,998)
M1 16.8 mi 20,339 33.34 %

M2 17.3 mi 20,332 33.33 %

M3 18.1 mi 20,327 33.32 %

Bing Maps (Count: 20,344)
B53 16.8 mi 12,780 62.82 %

B89 16.9 mi 3,508 17.24 %

B149 18.1 mi 652 3.20 %

Bother 3,404 16.73 %
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Figure A.1: Routes viewed by date for Google Maps.
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Figure A.2: Routes viewed by date for HERE.
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Figure A.3: Routes viewed by date for MapQuest.
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Figure A.4: Routes viewed by date for Bing Maps.
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Figure A.5: Frequency of best-route changes for LA2 and NY1.
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Figure A.6: Weekday and weekend average ETAs for LA2 and NY2.
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Figure A.8: Heat map on the difference on best ETAs for all online map pairs (remaining

figures).
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Figure A.9: Percentage of identical routes that appeared simultaneously for NY.
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Appendix B

Appendix for Questionnaire Survey

This appendix contains the Survey Questionnaire for Chapter 3.
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In general, what do you mostly rely on when choosing a route to a destination in terms of percentage? (Total must sum to 100)
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What type of navigation system or app do you use? (you may select multiple answers)

Rate the criteria you consider when making your decision to plan for a route using a navigation system/app or online maps.

How likely do you consider to use a navigation system/app for the following instances?

In general, how accurate do you think the Estimated Time of Arrival (ETA) is calculated by your navigation/app?
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What other secondary level of detailed traffic information may be useful in your decision to select a route?  (select all that apply)

Imagine you are unfamiliar with the area you are traveling to and you need to choose from 2 recommended routes. Which route would you consider to 
take? (Note: From below, time in "min" represent the estimated travel time based on current traffic flow)

Rate the criteria that you used to make your decision.
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With the same recommended 2 routes in the previous question, now imagine you were given additional information (real-time image traffic reports) as
shown in the figures below. Which route would you consider to take: Route 1 or Route 2? (Note that the images were taken from real trips)
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Rate the criteria that you used to make your decision.

If you were provided with an application that provided real-time image traffic reports on relevant locations, how important would the images be in the 
decision of route choice?

If you were provided with such app, why would you look at real-time traffic images before you set out on a trip? (select all that apply)

What influence would real-time traffic images have on your trip? (select all that apply)
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