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ABSTRACT OF THE DISSERTATION

Optimal and Learning-based Output Tracking with

Non-periodic Tracking-Transition: Application to

High-speed Probe-based Nanofabrication

by Jiangbo Liu

Dissertation Director: Qingze Zou

High-speed precision tracking is needed in a wide variety of motion control applications

ranging from high-speed AFM(Atomic Force Microscope) operation, high-throughput

manufacturing, to robotic operations. Challenges still exist in high-speed precision

control of systems such as smart actuators with coupled hysteresis and dynamics. Al-

though output tracking has been well-studied for linear systems, tracking with non-

periodic tracking-transition switching for non-minimum phase linear systems still re-

mains challenging, especially when multiple control objectives need to be achieved,

including smooth transition from one output tracking session to the next one without

inducing post-transition oscillations, input energy minimization without saturation un-

der input amplitude constraint, and furthermore, minimization of the overall transition

time. Moreover, further difficulties also arise in exploring the advantages of iterative

learning control (ILC) in achieving precision but robust output tracking at high-speed

to non-repetitive applications with online-generated desired trajectory, particularly for

systems with complicated input-output behavior such as Hammerstein systems. The

ILC framework can be extended, although for linear systems, to non-periodic output

tracking via the superposition principle (SP), where the system response (output) to a
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linear combination of inputs equals to the same linear combination of the outputs to

each individual inputs. Exploring the notion of the SP beyond linear systems is largely

limited, as the nonlinearities are difficult to be modeled effectively and accurately.

Therefore, challenges still exist in high-speed precision output tracking in emerging ap-

plications.

In this dissertation, a multi-objective optimal tracking/transition under input con-

straints for non-periodic tracking/transition switching problem, and a learning-based

approach for tracking control of Hammerstein systems are proposed. An approach to

extend the previous work on smooth output transition and smooth tracking/transition

switching to further achieve minimization of both input-energy and transition time

under input amplitude constraints is proposed. The constrained input optimization

problem is converted to an unconstrained input minimization problem, and then solved

by utilizing an improved conjugate gradient method. The total transition time is fur-

ther minimized via one dimensional search. The almost superposition of Hammerstein

systems (ASHS) is developed, and then exploited for precision control of hysteresis-

Hammerstein systems. We showed that for Hammerstein operator satisfying a Lipschitz

condition, a weak form of the ASHS—the linear combination of outputs approaches to

the response to the linear combination of the corresponding inputs with a different set

of combination coefficients—exists when there are enough output elements. The strict

form of the ASHS—the coefficients of the output and the input combination match to

each other exactly—holds for a certain choice of the inputs. The number of outputs

in the ASHS is further quantified for hysteresis-Hammerstein system. We then present

the realization of the ASHS for hysteresis-Hammerstein systems in the learning-based

output tracking applications, based on the uniform B-splines for decomposition and

the inverse Preisach modeling for superposition, where two optimizations of the ASHS

for practical implementation are proposed. Moreover, for the trajectory decomposi-

tion problem arose in the ASHS, we further develop an asymptotic online trajectory

decomposition (where the trajectory is only partially known at the decomposition in-

stants) by only using one type of basis functions without truncation. The problem

of trajectory approximation using only one basis function (along with its time-shifted

iii



copies) is addressed via a least-square minimization approach. The issue of truncating

basis function at the boundaries is resolved via a zero-period extension (i.e., adding

a zero-period to its beginning and end). It is shown that the coefficients of the basis

functions at the initial portion of the extension period approach to zero as the length

of the extension period increases. A sectional interactive decomposition algorithm is

proposed for online trajectory decomposition through a trajectory redesign scheme.

Implementation of the frequency-domain iterative learning control (FD-ILC) in real-

time for high-speed nanofabrication and AFM imaging becomes an issue as the FD-

ILC involves multiple FFT/IFFTs that demand intensive online computation. An al-

gorithm of optimal time-distributed fast Fourier transform and time-distributed inverse

fast Fourier transform (OTD-FFT/TD-IFFT) is proposed to optimally distribute the

FFT computation of a real-time sampled data sequence to minimize the per-sampling

computational complexity without increasing the total computational complexity, and

to obtain the entire Fourier transform sequence without latency. The proposed ap-

proach is extended to real-time IFFT computation, and then combined and applied

to real-time FD-ILC implementation. The computational complexity analysis shows

that the per-sampling computational complexity is substantially reduced by using the

proposed approach.

The proposed optimal and learning-based output tracking and tracking-transition tech-

niques can effectively achieve accurate high-speed nanofabrication. The effectiveness of

the proposed techniques was demonstrated by simulation and experimental examples

in accurate high-speed nanomanipulation utilizing an AFM probe driven by a piezoac-

tuator. The optimal transition design and tracking approach was demonstrated by a

simulation example in the control of the z-piezoactuator in an AFM system. It showed

that the proposed approach can achieve minimal output oscillation and minimal input

energy, and fast tracking under given input constraints. The proposed offline-learning

based control technique was implemented to compensate for both hysteresis and dynam-

ics in a piezoactuator system. It showed that high-speed, large-range precision tracking

of hysteresis-dynamics systems, and considerable accuracy improvement when com-

pared to PID control at different tracking speeds are achieved. A simulation example
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to decompose a trajectory sequentially online has demonstrated the effectiveness of the

proposed online asymptotic trajectory decomposition technique. Finally, real-time im-

plementation of FD-ILC based on an optimal time-distributed FFT was demonstrated

through high-speed trajectory tracking on a piezoelectric actuator in experiments.
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Chapter 1

Introduction

Precision and high-speed trajectory tracking is needed in many advanced applications,

such as Atomic Force Microscope(AFM) imaging [1], nanomanipulation [2], nanode-

position [3], robotic operation [4], and hard-disk control [5]. In these applications,

high-speed and precision tracking is needed, for example, in the AFM imaging pro-

cess, high-resolution and fast-speed sample topography imaging is required. In some of

the applications, such as nanofabrication and nanopatterning, there exists application-

specified trajectory to be tracked and transition between two tracking trajectory ses-

sions to be properly designed. Nonlinearities such as hysteresis, typically involved in

the piezoactuators for high-resolution control, should be well-compensated to achieve

an outstanding tracking performance. Although plenty of techniques have been pro-

posed to solve these problems, challenges still exist due to the complexity of the system

dynamics (limited bandwidth and non-minimum phase), involvement of the hysteresis

nonlinearities, and the online specified desired trajectory (resulting in complicate online

computation). The problem of optimal trajectory design and tracking with non-periodic

tracking-transition switching, when taking the input threshold constraints into consider-

ation, becomes a constrained multi-objective optimization problem, which significantly

complicates the design process, especially for non-minimum phase linear systems and

nonlinear systems; The hysteresis-nonlinearity further poses challenges in high-speed

and large-range tracking. In this dissertation, the optimal tracking/transition with

non-periodic tracking-transition switching is proposed for non-minimum phase linear

systems, and offline-learning technique based on superposition principle is developed

to extend the capability of the iterative learning control for the control of hysteresis-

Hammerstein systems.
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These problems in trajectory-tracking/transition for linear and nonlinear system, in-

cluding optimal tracking/transition for non-periodic tracking/transition switching, and

high-speed and precision output tracking of systems with complicated dynamics and

hysteresis, have attracted a great attention due to their importance in a wide range

of applications. Many techniques are proposed to resolve the multi-objective track-

ing/transition with non-periodic tracking/transition switching for non-minimum phase

systems. The optimal boundary states of the transition can be obtained through the op-

timal output transition (OOT) technique [6], which has been further extended to solve

the output tracking problem with periodic tracking-transition switching [7]. Although

the input energy is minimized in the OOT approach, the optimal transition trajectory

obtained can be highly oscillatory for systems of lightly-damped dynamics [8], and this

method is not suitable to output tracking with non-periodic tracking-transition switch-

ing. These two issues have been addressed in the recently developed inversion-based

optimal output transition technique [9, 10], all these approaches cannot guarantee that

the input amplitude is not saturated while the input energy is minimized, and the tran-

sition time is small when the above smooth-output, minimal-input requirements are

satisfied. Therefore, there exists a need to develop techniques to further account for

the input and time constraints in output tracking/transition with non-periodic tracking-

transition switching.

Simultaneous hysteresis and dynamics compensation still remains challenging in the

tracking control of hysteresis systems. Many limitations exist in the current techniques

to compensate for hysteresis. For example, it has been proposed to use the inverse

Preisach model in the controller design [11, 12], or by updating the inverse of Preisach

model through an adaptive scheme [13]. These techniques, however, are limited to

compensating for hysteresis in quasi-static case—accounting of both dynamics and hys-

teresis effects is not adequately addressed. It has been proposed to modify the inverse

Preisach model to account for the rate-dependent hysteresis effect (i.e., the combined

hysteresis and dynamics effects) [14]. However, the compensation of the dynamics effect

is rather constrained since only a handful of the excitation frequencies are considered
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in the inverse-Preisach-model based controller design [14]. To improve the dynamics

compensation, techniques based on an extension of neural network [15] [16] and the

inverse rate-dependent Prandtl-Ishlinskii (PI) model [17] have also been proposed. In

these existing approaches, however, heavy online computation and a complex mod-

eling process—prone to modeling errors—are required. The performance-robustness

trade-off involved may not be efficient in accounting for the largely quasi-static uncer-

tainty/variation usually found in hysteresis systems such as smart actuators. These

complexities (in modeling and control) and robustness related issues can be largely al-

leviated in the iterative learning control framework [18, 19]—as an example, the high

tracking performance obtained via the ILC-based techniques can be largely maintained

against model uncertainties and/or system variations through a couple of iterations.

Since iterative learning control are largely limited to the repetitive operations. There-

fore, there is still a need to develop an offline learning-based technique to compensate

for the hysteresis and dynamics online simultaneously.

Online trajectory decomposition problem arises in the offline learning-based technique

developed for the hysteresis systems. However, limitations exist in current techniques

developed for online trajectory decomposition. For example, basis functions constructed

by biarc-spline functions are employed to decompose the trajectory in curve machining

[20]. Since only smoothness is considered for the boundary condition, the basis functions

are not compactly supported to begin and end at a constant, thereby, not suitable for

control applications. The limitation can be alleviated by using uniform B-splines as the

basis functions in the decomposition [21, 22]. These general decomposition frameworks

do not account for the objectives such as tracking precision, and high-order smoothness

as needed in control applications. These control-related objectives can be mostly taken

into account by extending the decomposition technique to ILCs. For example, a task-

based basis function method is employed to extend ILC to micro-robotic deposition

[3]. This technique is limited to specific trajectories with a small amount of repeated

patterns. Rational basis functions are introduced to approximate the system trans-

fer function and the system input so that the ILC can have the extrapolation ability

[23]. Multiple basis functions are identified through ILC from different basic states of
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a linear time variant system with slow changes, and the interpolation of these basic

inputs are used to generate inputs for other states [24]. However, considerable different

basis functions are needed in the decomposition, resulting in numerous learning and

computation. A decomposition technique with only a few simple decomposition basis

functions is utilized to decompose the input and output trajectories in ILC, and the de-

composition coefficients are updated online to accommodate for the possible change of

the desired trajectory [25], and an overlapped B-splines based trajectory decomposition

method is proposed to extend the implementation of ILC to more general applications

[26]. However, this overlapped decomposition technique suffers from element trunca-

tion and involves multiple basis elements, which increases the complexity for control

applications. Therefore, there is still a need to develop a decomposition method with

minimal untruncated basis elements for online control applications.

As implementation of the frequency-domain iterative learning control (FD-ILC) in real-

time for high-speed nanofabrication and AFM imaging involves multiple FFT/IFFTs,

the intensive online computation complexity becomes another important issue. Limi-

tations exist in current techniques developed for online implementation of FFT/IFFT.

For example, a pipeline processor based on very large scale integration (VLSI) technol-

ogy has been proposed for computing FFT of fixed-length [27] [28]. The limitations in

FFT computation for fixed data lengths might be addressed through hardware devel-

opment based on field-programmable gate array (FPGA) and digital signal processor

(DSP) technologies, such as a radix-2 single-path delay feedback pipelined FFT/IFFT

processor based on FPGA [29], and a compact online FFT algorithm based on DSP

[30]. Although these FPGA/DSP-based techniques improved the flexibility in online

FFT computation, specially-designed hardware is needed. Alternatively, algorithms

have been proposed to improve online computation of FFT on general purpose micro-

processors (e.g., Intel’s x86 microprocessors), including a distributed FFT algorithm

to process a large block of incoming data [31] that spreads the computation across

smaller blocks of the incoming data, and a multi-rate controller based on a new dis-

crete lifted system model to save computation by reducing the length of input data

[32]. In these efforts, however, the per-sampling-period complexity is still significant,
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and latency is induced when the transformed (output) sequence is obtained. Therefore,

there are needs to develop techniques to further improve the real time implementation

of FFT/IFFT, particularly, on general-purpose microprocessors.

The dissertation is organized as follows,

In Chapter 2, an approach that achieves multi-objective optimal output tracking/transition

under the input and time constraints with non-periodic tracking/transition switching for

non-minimum phase linear systems is developed. The proposed approach extends the

technique developed in [9] that attains an optimal smooth output tracking/transition in

non-periodic tracking/transition switching. Particularly, the input-energy minimization

under amplitude constraint is further obtained by optimizing a solution set obtained

by the previous method [9]. We first show that such a constrained minimization can

be converted into an unconstrained minimization problem. Then, the optimal solution

are obtained based on an improved conjugate gradient technique [33] that guarantees

the global optimization without convexity requirement for the underlined cost function

(instead, a mild Lipschitz condition is needed). Then, the transition time is further min-

imized for the obtained optimal output transition trajectory. The proposed approach

is illustrated by a simulation example of nanomanipulation utilizing a piezoactuator.

In Chapter 3, an offline-learning technique based on an almost superposition of Ham-

merstein systems (ASHS) is proposed for the tracking control of hysteresis systems. We

show that for a Hammerstein operator satisfying the Lipschitz condition, a weak form

of the ASHS exists, where the linear combination of outputs matches the response to

that of the corresponding inputs with a different set of combination coefficients, pro-

vided that the outputs are Lipschitz continuous and the number of outputs are large

enough. Furthermore, the strict form of the ASHS—the output and the input combi-

nation coefficients in the linear combinations match to each other exactly—holds for

a certain choice of the inputs. For hysteresis-Hammerstein systems, the number of

outputs needed in the ASHS can be quantified. We further present the realization of

the ASHS for hysteresis-Hammerstein systems in the previewed output tracking based

on the uniform B-splines for output decomposition and the inverse Preisach modeling
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for input synthesis, where an optimization of the outputs selection and an online opti-

mization of the combination coefficients of ASHS for practical implementation are also

proposed. This ASHS not only is a powerful tool for Hammerstein system analysis, but

can also be explored for control of these systems. As an example, we illustrate its ap-

plication to simultaneous hysteresis-dynamics compensation in preview-based precision

output tracking, by integrating the B-spline-based trajectory-decomposition technique

for linear systems [26, 34] with the inverse Preisach model for superposition. The effi-

cacy of the proposed approach is demonstrated by an experimental implementation on

a piezoelectric actuator.

In Chapter 4, a single-basis online asymptotic trajectory approximation is further de-

veloped to resolve the remaining trajectory decomposition issue that arose in Chapter

3. The problem of trajectory approximation using only one type of basis function is

addressed via a least-square minimization approach, and it is shown that arbitrary de-

composition precision can be achieved through increasing the number of basis functions

involved. The truncation issue of basis function in approximation is resolved via a

zero-period extension (i.e., adding a zero-period to its beginning). It is shown that the

coefficients of the basis functions at the initial portion of the extension period approach

to zero as the length of the extension period increases. We proposed also a sectional

interactive decomposition algorithm for online trajectory decomposition (where the

trajectory is only partially known) through a trajectory redesign scheme. Simulation

examples by using B-splines as the basis functions are employed to demonstrate the

proposed decomposition method.

In Chapter 5, an OTD-FFT/TD-IFFT technique with direct application to online FD-

ILC is developed. Without increasing the total computational complexity, the proposed

OTD-FFT/TD-IFFT algorithm exploits the butterfly structure of FFT/IFFT to op-

timally distribute the FFT computation of an online sampled data sequence to each

of the sampling period, such that the per-sampling-period computational complexity

is minimized, and the entire Fourier transform sequence is obtained without latency.
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Specifically, through the proposed OTD-FFT, the maximal per-sampling-period com-

putational complexity for a data sequence of length 2N is reduced from 2N log 2N mul-

tiplications and 2N log 2N additions to 2N+1 − 2 multiplications and 2N+1 − 2 addi-

tions, respectively. Similar idea is extended to the IFFT computation in the proposed

TD-IFFT algorithm, where, with the frequency domain data of length 2N already

known, the butterfly computation of IFFT is sequentially distributed to the first 2N

sampling periods. The proposed OTD-FFT/TD-IFFT algorithm is applied to online

implementation of FD-ILC, and the computational complexity of the proposed OTD-

FFT/TD-IFFT and the FD-ILC is analyzed. The efficacy of the proposed approach in

online control applications is demonstrated through experimental implementation of a

recently-developed FD-ILC technique [35] to high-speed precision trajectory tracking

on a nanopositioning system.

In Chapter 6, this dissertation is concluded.
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Chapter 2

Multi-Objective Optimal Trajectory Design and Tracking

with Non-periodic Tracking-Transition Switching for

Non-minimum Phase Linear Systems

Abstract

In this chapter, the problem of trajectory design and tracking of non-periodic tracking-

transition switching for non-minimum phase linear systems is considered. Such a prob-

lem exists in various applications where the output trajectory consists of application-

dependent tracking sessions and to-be-designed transition sessions. The challenge arises

when multiple control objectives are considered, including the smooth transition from

one output tracking session to the next one without large oscillations during the transi-

tion, smooth tracking-transition switching without inducing pre- and/or post- switching

oscillations, input energy minimization without saturation under amplitude constraint,

and furthermore, minimization of the overall transition time. The proposed approach

extends the previous work that attained smooth output transition and smooth tracking-

transition switching to further achieve amplitude-constrained input-energy minimiza-

tion and transition time minimization. The constrained input optimization problem is

converted to an unconstrained input minimization problem. The optimal output and

input are obtained by using an improved conjugate gradient method. The total transi-

tion time is further minimized via one dimensional search. The proposed approach is

illustrated through a simulation example in probe-based nanomanipulation utilizing a

piezoelectric actuator.
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2.1 Introduction

The problem of optimal trajectory design and tracking with non-periodic tracking-

transition switching under input and transition-time constraints is considered for non-

minimum phase linear systems. Such a trajectory design and tracking problem arise in

applications such as nanomanipulation [2], robotic operation [4] and hard-disk control

[5], where the entire trajectory consists of the tracking portions and the to-be-designed

transition portions. The output-transition related control problem has attracted a great

attention due to its importance in a wide range of applications. For example, conven-

tionally the optimal state transition (OST) method (e.g., [36] has been applied. The

solution, however, not only tends to be non-optimal (for output tracking), but also

fails to account for post-transition needs such as maintaining the output at a con-

stant, or tracking a desired trajectory. Although maintaining a constant output can

be achieved via the input shaping technique [37], the choice of boundary condition

is ad hoc and tends to be non-optimal, and the issue of multiple transitions and/or

post-transition tracking are still not considered. The optimal boundary states of the

transition can be obtained through the optimal output transition (OOT) technique [6],

which has been further extended to solve the output tracking problem with periodic

tracking-transition switching [7]. Although the input energy is minimized in the OOT

approach, the optimal transition trajectory obtained can be highly oscillatory for sys-

tems of lightly-damped dynamics [8], and this method is not suitable to output tracking

with non-periodic tracking-transition switching. Although these two issues have been

addressed in the recently developed inversion-based optimal output transition technique

[9, 10], all these approaches cannot guarantee that the input amplitude is not saturated

while the input energy is minimized, and the transition time is small when the above

smooth-output, minimal-input requirements are satisfied. Therefore, there exists a need

to develop techniques to further account for the input and time constraints in output

tracking with non-periodic tracking-transition switching.
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Challenge exists in accounting for the input and transition time constraints in non-

periodic tracking-transition switching for non-minimum phase systems. These two ob-

jectives, transition output and switching smoothness, and input energy minimization

under amplitude constraints being coupled together—particularly for non-minimum

phase systems [38, 39], impose a constrained multi-objective optimization problem

challenging to solve directly due to the strong coupling and non-guaranteed convexity.

Minimizing the input energy under amplitude constraint is crucial as input saturation

leads to not only tracking performance deterioration, but also slowed response and poor

robustness [40]. Moreover, it is highly desirable that the transition time can be further

minimized when the above output and input requirements are satisfied.

The main contribution of this chapter is the development of an approach that achieves

the optimal transition output trajectory design and tracking under the input and time

constraints in the non-periodic tracking-transition switching with preview for non-

minimum phase linear systems. The proposed approach extends the technique devel-

oped in [9] that attains an optimal smooth output tracking in non-periodic transition

switching. Particularly, the input-energy minimization under amplitude constraint is

obtained by optimizing the design variables on which the optimal output transition

trajectory depends. We first show that such a constrained minimization can be con-

verted into an unconstrained minimization problem. Then, the optimal design variables

are obtained based on an improved conjugate gradient technique [33] that guarantees

the global optimization without convexity requirement for the underline cost function

(instead, a mild Lipschitz condition is needed). Then, the transition time is further

minimized for the obtained optimal output transition trajectory. The proposed ap-

proach is illustrated by a simulation example of nanomanipulation using a piezoelectric

actuator.
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Figure 2.1: The desired output trajectory including tracking and transition sections,
where Tp is the total preview time, and Tep is the effective preview time.

2.2 Problem Formulation

Consider the following square linear time invariant system:

ẋ = Ax+Bu, y = Cx, (2.1)

where x(·) ∈ <n and u(·), y(·) ∈ <p. The square system is considered below for ease of

presentation–the proposed approach below can be extended to right invertible systems

[41, 42] with minor changes.

Assumption 1. System (2.1) is controllable, observable, and hyperbolic, with a well

defined relative degree r = [r1, r2, . . . , rp]
T.

The above hyperbolic assumption (no zeros on the imaginary axis) of the system,

although might be alleviated, for example, via minor perturbation to the internal dy-

namics [43], or equivalently, the desired trajectory [10], is employed here for ease of

presentation. We consider output tracking with a finite preview involving non-periodic

tracking-transition switching, where the tracking portions of the output trajectory are

given, while the transition portions of the trajectory are not specified and need to be
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designed. As shown in Fig. 1, the entire desired trajectory can be partitioned as

yd(·) = (∪qyq,dtr(·)) ∪ (∪mym,dtn(·)) , m, q ∈ N (2.2)

where yq,dtr(·) is the desired output trajectory in the qth tracking session, ym,dtn(·) is

the to-be-designed output trajectory in the mth transition session, and ∪ denotes union.

We define the time interval for the qth tracking trajectory, Iq, and the time interval for

the mth transition trajectory, Sm, to be open and closed, respectively, i.e.,

Iq = (tq,f , tq+1,i), Sm = [tm,i, tm,f ]. (2.3)

Correspondingly, the control input could be given as

uinv(·) = (∪quq,tr(·)) ∪ (∪mum,tn(·)) , (2.4)

where uq,tr(·) and um,tn(·) are, respectively, the control inputs for the tracking and

transition intervals.

Assumption 2. During any given qth tracking session, the desired tracking trajectories

yq,dtr(·) of the kth output channel are differentiable at least to the rthk order for all t ∈ Iq,

and can be described by a finite-order polynomial of time t.

The finite-order polynomial description of the desired output in Assumption 2, from

practical viewpoint, does not further constraint the output. By the development of the

preview-based stable-inversion [39, 44], we define the effective preview time Tep utilized

to calculate the inverse input for tracking as the part of preview time Tp so that the

tracking error is negligible for the given tracking precision. Moreover, we assume that

Assumption 3. At any given time instant tc, the available preview time Tp is at least

twice of the effective preview time Tep, i.e., Tp ≥ 2Tep.

The above assumption is reasonable as the amount of preview time can be adjusted,

for example, through choosing the time scale of the desired trajectory and the transition

time. Moreover, a long enough preview time also ensures that the minimization of the

input energy under amplitude constraint (the Objective O3 below) is well-defined as

the inputs for the tracking section and the transition section, due to the pre-actuation



13

and post-actuation time [43], are coupled together. We realize that the preview time,

although might be substantially reduced and/or avoided through the design of the

desired trajectory in set-point regulation [45], is needed in general output tracking

where the desired trajectory is given.

Under the above Assumptions 1-3, we set out to design the optimal transition output

trajectory and obtain the corresponding input such that:

O1: The entire output desired trajectory yd(·) is smooth up to rth (the relative degree

of the system) order derivative, i.e., the rth order derivative of the desired output

trajectory is continuous during the entire tracking course.

O2: During each transition session within the previewed time, the energy of the desired

output along with its derivatives is minimized,

min
ydtn(·)

(Eo,m) = min
ydtn(·)

∫ tm,f

tm,i

(HYYdtn(τ))TRγ(HYYdtn(τ))dτ (2.5)

where Rγ ∈ <p×p is a positive semidefinite matrix, tm,i, tm,f are the beginning and end

time of the mth transition, respectively, Ydtn(·) is the vector of designed desired output

transition trajectory and its derivatives in that transition, i.e.,

Ydtn(t) = [ξ1,dtn(t)T, y
(r1)
1,dtn(t), ξ2,dtn(t)T, y

(r2)
2,dtn(t), . . . , ξp,dtn(t)T, y

(rp)
p,dtn(t)] (2.6)

with

ξk,dtn(t) =

[
yk,dtn(t), ẏk,dtn(t), . . . ,

drk−1yk,dtn(t)

dtrk−1

]T
, (2.7)

and HY is a given block diagonal matrix,

HY = diag([HY,1, HY,2, . . . , HY,p]), (2.8)

with HY,k ∈ <rk+1 vectors comprised of the coefficients of a monic Hurwitz polynomial

in increasing order.

Under the condition that Objectives O1 and O2 are satisfied, achieve the following

Objectives O3 and O4:

O3: At any given time instant tc ∈ Iq, the energy of the preview-based inverse input

(specified later in Sec. 3) within the effective preview time, uinv(t) for t ∈ [tc, tc+Tep], is

minimized under the condition that the input amplitude is within the given threshold,
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i.e.,

min

p∑
j=1

∫ tc+Tep

tc

u2
j,inv(t)dt, (2.9)

subject to

‖uj,inv(·)‖p,∞ ≤Mj,u, for j = 1, 2, . . . , p, (2.10)

where ‖uj,inv(·)‖p,∞ , sup |uj,inv(·)|, and Mj,u is the given threshold for the jth input-

output channel.

O4: Furthermore, the total transition period in the previewed time is minimized,

min

s∑
m=1

Tm, (2.11)

where Tm = tm,f−tm,i is the transition time duration for the mth transition section, and

s is the total number of transitions in the effective preview time interval [tc, tc + Tep].

Objective O1 ensures that the corresponding input–by the stable-inversion theory [38]–

is continuous, which is preferred over inputs with “jumps” and/or “spikes” in practice.

Moreover, as revealed later (Sec. 3) the weight matrix HY specified in Objective O2

serves as the design parameters to achieve Objective O3.

2.3 Optimal Output Transition with Non-periodic Tracking-Transition

Switching

The proposed approach comprises two parts. First, the candidates of the transition

trajectories and the corresponding inputs are designed to meet Objectives O1 and O2.

Second, the optimal desired transition trajectory is sought from these candidates to

meet Objectives O3 and O4.

2.3.1 Design of Candidate Desired Transition Trajectories for Objec-

tives O1 and O2

The candidate desired trajectories that meet Objectives O1 and O2 can be readily

obtained through the optimal transition trajectory design and tracking (OTTDT) ap-

proach proposed in [9], summarized below. Under Assumptions 1 and 2, system (2.1)



15

can be transformed into the following output tracking form,
ξ̇(t) = Iupξ(t) +Bξy

(r)(t),

η̇s(t) = As1ηs(t) +As2ξ(t) +Bsy
(r)(t),

η̇u(t) = Au1ηu(t) +Au2ξ(t) +Buy
(r)(t),

(2.12)

where

y(r)(t) = [y
(r)
1 (t), y

(r)
2 (t), . . . , y(r)

p (t)]T, (2.13)

ξ(t) = [ξ1(t)T, ξ2(t)T, . . . , ξp(t)
T]T, (2.14)

with ξk(t) given by (2.7), and

Iup = diag([Iup,1, Iup,2, . . . , Iup,rp ]), (2.15)

with Iup,k = [0, Ik; 0, 0]rk×rk and Ik a (rk − 1) × (rk − 1) identity matrix, such that

for any given desired trajectory yd(·), exact output tracking can be obtained by using

the following inverse input

uinv(t) = Mξξ(t) +Msηs(t) +Muηu(t) +Mry
(r)(t). (2.16)

In (2.12), ηs and ηu are the stable and unstable subspaces of the internal dynamics

with eigenvalues of As1 and Au1 all in the open left and open right half plane, respec-

tively. Readers are referred to [39, 44] for details (e.g., the expressions for matrices

Mξ, Ms, Mu, Mr, Bs, Bu).

By using a state feedback controller Hξ,

y(r)(t) = Hξξ(t) + γ(t), with (2.17)

Hξ = diag([Hξ,1, Hξ,2, . . . , Hξ,p]), and (2.18)

Hξ,k = [−hk,1,−hk,2, . . . ,−hk,rk ], (2.19)

the output subdynamics in (2.12) is stabilized as

ξ̇(t) = Âξξ(t) +Bξγ(t), where, (2.20)

Âξ = diag([Âξ,1, Âξ,2, . . . , Âξ,p]), and (2.21)

Bξ = diag([Bξ,1, Bξ,2, . . . , Bξ,p]), (2.22)
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Âξ,k =

 0 Ik

Hξ,k


rk×rk

,

Bξ,k =

 0

1


rk×1

.

(2.23)

Objectives O1 and O2 are satisfied by solving the following optimal state transition

problem [36] for the stabilized output subdynamics (2.20), which, by (2.6, 2.17), can

be rewritten in the form of (2.5) in Objective O2,

min
γ(·)

∫ tm,f

tm,i

γT(t)Rγγ(t)dt

= min
γ(·)

∫ tm,f

tm,i

(−Hξξ(t) + y(r)(t))TRγ(−Hξξ(t) + y(r)(t))dt

= min
γ(·)

∫ tm,f

tm,i

(HYYdtn(t))TRγ(HYYdtn(t))dt,

(2.24)

with HY,k = [−Hξ, 1]. The solution to (2.24) is given as

γ∗(t) = R−1
γ B>ξ e

ÂT
ξ (tm,f−t)G−1(Tm)L(tm,i, tm,f ), (2.25)

where

G(Tm) =

∫ Tm

0
eÂξ(Tm−τ)BξR

−1
γ BT

ξ e
ÂT
ξ (Tm−τ)dτ,

L(tm,i, tm,f ) = ξdtn(tm,f )− eÂξ(tm,f−tm,i)ξdtn(tm,i).

(2.26)

With (2.25), the desired output is given by,

y
(r)
dtn(t) = Hξξdtn(t) + γ∗(t), for t ∈ <+, (2.27)

where y
(r)
dtn(·) and ξdtn(·) are as defined in (2.13, 2.14) corresponding to the desired

output, respectively.

Note that the solution γ∗(t) to the optimization problem of (2.24) becomes trivial, i.e.,

γ∗(·) = 0, only when L(tm,i, tm,f ) in (2.25) is zero, i.e., only when the final output state

(the desired output value at the end of the transition) falls on the initial-condition state

curve. Such a case virtually does not exist in practices or can be easily avoided via the

design of the stabilized feedback gain Hξ and a small perturbation to the transition

time Tm otherwise. Thus, without loss of generality, we assume
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Assumption 4. The state transition L(tm,i, tm,f ) in (2.25) is non-zero, and the optimal

solution γ∗(t) to the optimization problem in (2.24) is non-zero.

For the given transition boundary condition and the transition time, the only de-

sign variable of the optimal transition input-output is the weighting matrix HY (see

(2.12, 2.16, 2.25-2.27)). Next, we achieve Objective O3 through the design of the

weighting matrix HY.

2.3.2 Objective O3: Optimal Transition Trajectory with Minimal In-

put Energy under Amplitude Constraint

The optimal transition trajectory that meets Objective O3 is obtained in two steps:

First, the constrained optimization problem of O3 is transformed to an unconstrained

optimization for ease of solving. Second, the solution is obtained through an improved

conjugate gradient method.

An Equivalent Unconstrained Input Optimization Problem

To convert the amplitude-constrained input energy minimization problem (2.9, 2.10)

to a practically equivalent unconstrained minimization problem, we note that for the

kth output with k = 1, 2, · · · , p, the state-feedback gain Hξ,k is nothing but the coef-

ficients of the characteristic polynomial of the stabilized output subsystem subsystem

(see (2.19)), i.e.,

Pk(s) = srk + hk,rks
rk−1 + hk,rk−1s

rk−2 + · · ·+ hk,1

= (s− λk,1)(s− λk,2) . . . (s− λk,rk)

(2.28)

where λk,1, λk,2, . . . , λk,rk are the eigenvalues of Âξ,k. Thus, the design of the state-

feedback gain Hξ,k for the kth output (k = 1, 2, · · · , p) is equivalent to designing the

eigenvalues of the stabilized output subsystem state matrix Âξ,k, λk,1, λk,2, . . . , λk,rk .

Since oscillations of the desired output can be completely eliminated when all the eigen-

values λk,1, λk,2, . . . , λk,rk have negative real, we consider, without loss of generality,

the eigenvalues in designing the output trajectory for the mth transition section from
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a set of negative real finite numbers,

Vλ,m , [λm1,1, λ
m
1,2, . . . , λ

m
1,r1 , λ

m
2,1, . . . , λ

m
p,1, . . . , λ

m
p,rp ], m = 1, 2, · · · , s, and (2.29)

Vλ,m ∈ Dm , {(S1, S2, . . . , SNλ) : Sv ∈ < and Sv < 0, for all v = 1, 2, . . . , Nλ},

(2.30)

where Nλ =
∑p

k=1 rk. It is challenging, however, to directly solve the amplitude-

constrained input energy minimization problem in Objective O3, as the given threshold

must be satisfied at every time instant over the entire transition period. Thus, the

following unconstrained optimization problem is solved instead:

min
Vλ
J (Vλ) = min

Vλ

p∑
j=1

∫ tc+Tep

tc

u2
j,inv(t) + M2

j,u exp

(
c(u2

j,inv(t)−M2
j,u)

M2
j,u

)
dt, (2.31)

where c > 0 is a large enough constant (specified later), and

Vλ = [Vλ,1, Vλ,2, . . . , Vλ,s] ∈ D , D1 ×D2 . . .×Ds (2.32)

is the vector of eigenvalues used in designing the output trajectories of all the transition

sections during the entire effective preview time at time instant tc, [tc, tc + Tep], and

D is the the corresponding set of eigenvalue vectors, Vλ, with Di ×Dj = {(x, y) : x ∈

Di, y ∈ Dj}, and D1 ×D2 · · · ×Ds defined similarly.

We next show that in practice, the constrained minimization problem O3 is virtually

equivalent to the above unconstrained minimization problem, provided that the inverse

input does not contain any flat period at the threshold (i.e., the corresponding input

is not stationary at the threshold in any finite-length time interval). The following

Lemma 5 shows that such a condition on the inverse input does hold.

Lemma 5. Let Assumptions 1 to 4 be satisfied, and let the desired output trajectory

within the effective preview time, yd(t) for t ∈ [tc, tc + Tep], be given by (2.2), with the

portions in the transition periods satisfying Objectives O1 and O2, then for any positive

finite M < ∞ the inverse input uinv(t) in (2.16) is not stationary during any finite

time interval, i.e., m({t : |uj,inv(Vλ, t)| = M, ∀Vλ ∈ D}) = 0 (m(A) is the Lebesgue

measure of set A).
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Proof. We proceed by contradiction. First we show the inverse input (2.16) can be

represented as a finite summation of exponents and polynomials of time t. Consider

the case that the system does not have repeated zeros. By Assumption 2, y(t) =∑l
i=0 ait

i, t ∈ <+, l ∈ N, where ai ∈ < and ais are not all zero, thus the jth component

of the stable state ηs(t), ηs,j(t), can be represented as

ηs,j(t) = eλjtηs,j(t0) +

∫ t

t0

eλj(t−τ)

 r∑
p=1

As2, jpy
(p)(τ) +Bs,jy

(r+1)(τ)

 dτ

= eλjtηs,j(t0) +

∫ t

t0

eλj(t−τ)

 r∑
p=1

As2, jp

(
l∑

i=0

aiτ
i

)(p)

+Bs,j

(
l∑

i=0

aiτ
i

)(r+1)
 dτ

= eλjtηs,j(t0) +

l∑
i=0

∫ t

t0

eλj(t−τ)a′iτ
idτ,

= eλjt(ηs,j(t0) + bj) +
l∑

i=0

Fjit
i,

(2.33)

where i ∈ N, j ∈ N, p ∈ N, λj ∈ C are the minimum-phase zeros of the system, bj ∈ <

and F = (Fji) ∈ <ns×(l+1) is a coefficient matrix with the jth row and ith column

element Fji depend on ai and λj , with ns the number of stable states.

Similarly, when there are no repeated non-minimum phase zeros, the unstable dynamics

ηu(t) can also be represented as a summation of exponents and polynomials as in (2.33).

Thus by (2.16),

uk,inv(t) =

n−r∑
j=1

ckje
λjt +

l∑
i=0

dkit
i, (2.34)

where

ckj = Gkj(ηj(t0) + bj) (2.35)

with η = [ηTs η
T
u ]T, and G = [Ms, Mu] of full row rank, and dki depend on Mξ, Mr, As,

Au, y(t). As the set Ωf = {fi(t) = tkieλit : ki ∈ Z+, λi ∈ C, i = 1, 2, · · · , Ni, Ni ∈

N, and Ni < ∞} is linearly independent for distinct kis or distinct λis in any finite-

length time interval [46], uk,inv(t) equaling to a constant in a finite time interval implies

that ckj = 0 for each j = 1, 2, . . . , n − r and dki = 0 for each i = 1, 2, . . . , l, which

by (2.35), in turn, forces Gkj = 0 for each j = 1, 2, . . . , n − r—as ηj(t0) + bj , being

initial condition dependent, cannot be always zero. As a result, G does not have a full
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row rank—a contradiction.

For the case where the system has repeated zeros, there are repeated poles in the inverse

system (2.12), and the term eAu1t in computing ηu(t) or the term eAs1t in computing

ηs(t) generates extraneous terms tkeλt in addition to terms eλt. By replacing those

terms of eλt in (2.34) with the terms of tkeλt, for finite k ∈ Z+, the same argument

above can be applied to show that the same conclusion holds.

During the transition sections, γ(t) in (2.25), thereby ξ(t), y(r)(t) in (2.20, 2.27), can

be expressed as a summation of finite elements in the set Ωf = {tkieλit}, then the same

procedure can be applied to represent the inverse input as a finite sum of exponents and

polynomials of t. Although the expressions of ξ(t), y(r)(t) involve exponents of t, rather

than only polynomial as for the tracking trajectory, the set of exponents corresponding

to each internal state, i.e., each component of ηs(t) and ηu(t), are still distinct to each

other, thereby the same argument above applies. This completes the proof.

Lemma 6. Let the finite constant M > 0 be given, and the function f(x, t) ∈ L∞:

f : D × [a, b] → <, with 0 ≤ a < b < ∞, be continuous in x and piecewise continuous

in t, and the Lebesgue measure of the set V = {t : |f(x, ·)| = M,∀x ∈ D}, m(V ) = 0,

then for any given ε > 0, there exists a finite constant c > 0, such that the solution x∗

that minimizes the cost function,

J(x) =

∫ b

a
f2(x, t) + M2 exp

(
c

(
f2(x, t)

M2
− 1

))
dt

has the following properties:

• ‖f(x∗, ·)‖∞ ≤M , where ‖f(x, ·)‖∞ is the infinity norm w.r.t time t.

• For any x satisfying ‖f(x, ·)‖∞ ≤M,

J(x∗) ≤
∫ b

a
f2(x, t)dt+ ε.

Proof. Let B1 = {t : |f(x, t)| < M}∩ [a, b], B2 = {t : |f(x, t)| = M}∩ [a, b], and B3 =

{t : |f(x, t)| > M} ∩ [a, b]. Since m(B2) = 0, then the cost function in the Lebesgue
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integral form can be represented as

J(x) =

∫
[a,b]

f2 + M2

(∫
B1

h+

∫
B2

h+

∫
B3

h

)
=

∫
[a,b]

f2 + M2

(∫
B1

h+

∫
B3

h

)
,

where h(x, t) , exp(c(f
2(x,t)
M2 − 1)).

Let D1 = {x : ‖f(x, ·)‖∞ ≤ M} ∩ D and D2 = {x : ‖f(x, ·)‖∞ > M} ∩ D. Then for

any x ∈ D1, m(B1) = b− a, m(B3) = 0, and

J(x ∈ D1) =

∫
[a,b]

f2 + M2

∫
B1

h,

As for all x ∈ D1, h(·, ·) → 0 when c → ∞, there exists a finite C1 such that h(·, ·) ≤
ε

M2(b−a)
for any given ε > 0, and any c > C1. Hence for any x ∈ D1,

J(x ∈ D1) ≤
∫

[a,b]
f2 + ε ≤M2(b− a) + ε.

Similarly, for any x ∈ D2, m(B1) > 0, m(B3) > 0, and h(·, ·)→∞ when c→∞, there

exists a finite C2 such that h(·, ·) > (b− a)/m(B3) + ε for all c > C2. Thereby for any

x ∈ D2,

J(x ∈ D2) >

∫
[a,b]

f2 + M2(b− a) + ε.

By setting c = max(C1, C2), we have J(x ∈ D1) < J(x ∈ D2), and the two claimed

properties follow. This completes the proof.

The above Lemmas 5 and Lemma 6 imply that the original optimization problem

in (2.9, 2.10) can be solved with arbitrary precision as the unconstrained optimization

problem (2.31). The constant c can be chosen a priori as both the threshold value

Mj,u and the transition time period are known. Moreover, note that the threshold

value needs to be appropriately chosen: for the jth input, the threshold value Mj,u ≥∑p
i=1 ‖G

−1
ji (·)‖∞‖yi,tr(t)‖∞, with Gji the linear operator from the jth input to the ith

output, and yi,tr(t) the ith channel output trajectory. Such a condition generally holds

and can be checked in practice.
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Optimal Solution based on the Improved Conjugate Gradient Method

We propose an approach based on the improved conjugated gradient method [33] to

obtain the optimal input that meets Objective O3 through minimization of the cost

function in (2.31). As the inverse input uinv(·, ·) implicitly depends on the eigenvalues

of Âξ, we utilize the concept of variation calculus to obtain the gradient of uinv(·, ·)

w.r.t. a given eigenvalue λmk,l. The gradient of the cost function (2.31) with respect to

eigenvalue λmk,l is

∂J (Vλ)

∂λmk,l
= 2

p∑
j=1

∫ tc+Tep

tc

(
c exp

(
c(u2

j,inv −M2
j,u)

M2
j,u

)
+ 1

)
uj,inv

∂uj,inv
∂λmk,l

dt. (2.36)

To calculate the derivative of uj,inv with respect to λmk,l, consider the perturbed dynamics

due to the variation of the eigenvalues of Âξ, δHξ, during the mth transition section.

By (2.12, 2.16),

δξ̇(t) = Âξδξ(t) +BξδHξξ(t) +Bξδγ(t). (2.37)

Similarly, the corresponding perturbed dynamics of the internal dynamics can be ob-

tained as 
δη̇s(t) = As1δηs(t) +As2δξ(t) +Bsδy

(r)(t),

δη̇u(t) = Au1δηu(t) +Au2δξ(t) +Buδy
(r)(t),

(2.38)

and the corresponding variation of the inverse input becomes

δuinv(t) = Mξδξ(t) +Msδηs(t) +Muδηu(t) +Mrδy
(r)(t). (2.39)

The initial conditions for the above variational dynamics (2.37, 2.38) are zero, then

the variation of the inverse input can be readily represented as a linear function of

the variation of the output dynamics, δHξ, and that of the external input, δγ(t) (both

caused by the eigenvalue variation). The variation of the output dynamics during the

transition period can be obtained as

δξ(t) =

∫ t

tc

eÂξ(t−τ)Bξ(δHξξ(τ) + δγ(τ))dτ,

δy(r)(t) = δHξξ(t) +Hξδξ(t) +Bξδγ(t),

(2.40)
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and δξ(t) = 0, δy(r)(t) = 0 during the tracking sections. The variation of the internal

dynamics can be readily obtained as

δηs(t) =

∫ t

tc

eAs1(t−τ)[As2δξ(τ) +Bsδy
(r)(τ)]dτ,

δηu(t) = e−Au1(tc+Tep)δηu(Tep)−
∫ tc+Tep

t
e−Au1(τ−t)[Au2δξ(τ) +Buδy

(r)(τ)]dτ.

(2.41)

The variation of the internal dynamics contains a stable and an unstable portion, where

the variation of the portion δηu(t) is calculated with the effective preview time Tep. The

unknown future boundary condition, δηu(Tep), is set to zero with negligible truncation-

caused error (see Assumption 4).

Since

δuinv(t) =

p∑
k=1

rk∑
l=1

∂uinv
∂λmk,l

δλmk,l, (2.42)

δHξ(t) =

p∑
k=1

rk∑
l=1

∂Hξ

∂λmk,l
δλmk,l, (2.43)

δγ(t)(t) =

p∑
k=1

rk∑
l=1

∂γ

∂λmk,l
δλmk,l, (2.44)

the gradient of the inverse input w.r.t. any given eigenvalue λmk,l, ∂uinv/∂λ
m
k,l, could be

obtained by combining (2.39-2.41) with (2.42-2.44),

∂uinv(t)

∂λmk,l
= Mξ

∂ξ(t)

∂λmk,l
+Ms

∂ηs(t)

∂λmk,l
+Mu

∂ηu(t)

∂λmk,l
+Mr

∂y(r)(t)

∂λmk,l
, (2.45)

where

∂ξ(t)

∂λmk,l
=


∫ t

tm,i

eÂξ(t−τ)Bξ

[
∂Hξ

∂λmk,l
ξ(τ) +

∂γ(τ)

∂λmk,l

]
dτ, for t ∈ Sm = [tm,i, tm,f ],

0, otherwise,

(2.46)

∂y(r)(t)

∂λmk,l
=


∂Hξ

∂λmk,l
ξ(t) +Hξ

∂ξ(t)

∂λmk,l
+Bξ

∂γ(t)

∂λmk,l
, for t ∈ Sm = [tm,i, tm,f ],

0, otherwise,

(2.47)
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∂ηs(t)

∂λmk,l
=

∫ t

tc

eAs1(t−τ)

[
As2

∂ξ(τ)

∂λmk,l
+Bs

∂y(r)(τ)

∂λmk,l

]
dτ,

∂ηu(t)

∂λmk,l
= −

∫ tc+Tep

t
e−Au1(τ−t)

[
Au2

∂ξ(τ)

∂λmk,l
+Bu

∂y(r)(τ)

∂λmk,l

]
dτ, with

∂Hξ

∂λmk,l
= diag

([
0, 0, . . . ,

∂Hξ,k

∂λmk,l
, 0, . . . , 0

])
,

∂Hξ,k

∂λmk,l
=

[
−
∂hk,1
∂λmk,l

,−
∂hk,2
∂λmk,l

, . . . ,−
∂hk,rk
∂λmk,l

]
,

(2.48)

Eqs. (2.45-2.48) show that to compute the derivative of the inverse input w.r.t. a given

eigenvalue, the only unknown term is the derivative of the inverse input to the given

eigenvalue, ∂γ(t)/∂λmk,l. By Eq. (2.25), ∂γ(t)/∂λmk,l is given by

∂γ(t)

∂λmk,l
= R−1

γ BT
ξ

[
∂eÂ

T
ξ (tm,f−t)

∂λmk,l
G−1(Tm) + eÂ

T
ξ (tm,f−t)∂G

−1(Tm)

∂λmk,l

]
L(tm,i, tm,f )

+R−1
γ BT

ξ e
ÂT
ξ (tm,f−t)G−1(Tm)×

[
−∂e

Âξ(tm,f−tm,i)

∂λmk,l
ξdtr(tm,i)

]
,

with

∂G−1(Tm)

∂λmk,l
= −G−1(Tm)

∂G(Tm)

∂λmk,l
G−1(Tm),

∂G(Tm)

∂λmk,l
=

∫ Tm

0

∂eÂξ(Tm−τ)

∂λmk,l
BξR

−1
γ BT

ξ e
ÂT
ξ (Tm−τ)dτ

+

∫ Tm

0
eÂξ(Tm−τ)BξR

−1
γ BT

ξ

∂eÂ
T
ξ (Tm−τ)

∂λmk,l
dτ.

(2.49)

Examining the above (2.49) reveals that finding ∂uinv/λ
m
k,l amounts to computing the

derivative of eÂξ,kt w.r.t. λmk,l. To that end, we consider the similarity transform Âξ,k =

PkΛkP
−1
k , and hence,

∂eÂξ,kt

∂λmk,l
=

∂Pk
∂λmk,l

eΛktP−1
k + Pk

∂eΛkt

∂λmk,l
P−1
k + Pke

Λkt
∂P−1

k

∂λmk,l
. (2.50)

Once the gradient of the inverse input w.r.t. the eigenvalues is obtained, we pro-

pose to obtain the optimal vector of eigenvalues that meet Objective O3 by using the

improved conjugate gradient method in [33]: for a given cost function J (Vλ) and its

gradient g(Vλ), i.e.,

g(Vλ) ,
[
∂J (Vλ)

∂Vλ,1
,
∂J (Vλ)

∂Vλ,2
, . . . ,

∂J (Vλ)

∂Vλ,s

]T
,
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with

∂J (Vλ)

∂Vλ,m
=

[
∂J (Vλ)

∂Vλ,m(1)
,
∂J (Vλ)

∂Vλ,m(2)
, . . . ,

∂J (Vλ)

∂Vλ,m(N)

]T
.

The optimal eigenvalue vector, V∗λ, is obtained via the following iterative process,

Vk+1
λ = Vkλ + αkdk, (2.51)

with

dk =


− gk for k = 1,

− gk + βkdk−1 for k ≥ 2,

(2.52)

where gk , g(Vkλ), αk is the step length, obtained by one dimensional search such that

the following Condition 2 (specified immediately below) is satisfied, and βk is a scaler

chosen as

βk =


−βFRk if βPRk < −βFRk ,

βPRk if |βPRk | < βFRk ,

βFRk if βPRk > βFRk ,

(2.53)

where

βFRk = ‖gk‖2/‖gk−1‖2, and (2.54)

βPRk = 〈gk, gk − gk−1〉/‖gk−1‖2, (2.55)

with 〈gk, gj〉 = gT
k · gj the inner product of gk and gj .

It has been shown in [33] that the vector of the optimal eigenvalues that reaches the

global minimal of J ∗(Vλ), can be obtained via the above iteration process provided

that the following two conditions are satisfied:

Condition 1: For any given two sets of eigenvalues, Vλι , Vλκ ∈ D (given by (2.29, 2.32)),

there exists a positive constant L > 0, such that the gradient of the cost function J (Vλ)

in (2.31) satisfies the following Lipschitz condition,

‖g(Vλι)− g(Vλκ)‖ ≤ L‖Vλι − Vλκ‖, (2.56)

for any Vλι , Vλκ ∈ D.

Condition 2: At each iteration step k, the steplength αk can be chosen such that
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either one of the following two conditions is satisfied: (1) the Wolfe condition,

J (Vkλ + αkdk) ≤ J (Vkλ) + σ1αk〈gk,dk〉, (2.57)

〈g(Vkλ + αkdk),dk〉 ≥ σ2〈gk,dk〉, (2.58)

for any 0 < σ1 < σ2 < 0.5;

or (2) the ideal line search condition,

J (Vkλ + αkdk) ≤ J (Vkλ + α̂kdk), (2.59)

where α̂k is the smallest positive stationary point of the function φk(α) , J (Vkλ +αdk),

i.e., the smallest positive α satisfying dφk(α)/dα = 0.

Note that the improved conjugate gradient method does not require that the cost func-

tion to be convex, [33], as usually needed in other optimization methods. Next, we show

that the cost function J (Vλ) satisfies the above two conditions. First, the existence of

αk that satisfies the Wolfe Condition in (2.57, 2.58) or the ideal line search condition in

(2.59), by [33, 47], is guaranteed by the continuously differentiability and boundedness

of the cost function J (Vλ), and the existence of the local and global minima of the

cost function J (Vλ), respectively–Condition 2–can always hold by adjusting the step

length αk during the search process. As αk is the only parameter to be determined

in Condition 2, one dimensional search method, such as the bi-section method or the

golden-section method [48], can be utilized to find such an αk. The following Lemma

shows that Condition 1 also holds.

Lemma 7. For the inverse input uinv(t) given by (2.16) and the the desired transition

trajectory given by (2.27), the gradient of the cost function J (Vλ) w.r.t Vλ satisfies

Condition 1 for any Vλ ∈ D.

Proof. The proof amounts to showing that the partial derivative of J (Vλ), ∂J (Vλ)/∂Vλ,m(v)

(as in (2.36)), is continuous and bounded w.r.t. any given eigenvalue Vλ,m(v). First,

by (2.36), the continuity of ∂J (Vλ)/∂Vλ,m(v) follows by the continuity of uinv(t) and

∂uinv(t)/∂Vλ,m(v) in Vλ,m(v).

Next, we show that ∂J (Vλ)/∂Vλ,m(v) is bounded. Note that the inverse input uinv(t)
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is bounded. As −C ≤ Vλ,m(v) for some finite C > 0, and the transition time Tm is

limited, thereby eÂξt is bounded and γ(t), ξ(t), yr(t), are all bounded (by Eqs. (2.25),

(2.20) and (2.27), respectively). Thus, it remains to show that ∂uinv(t)/∂Vλ,m(v) is

bounded. Since∥∥∥∥∥ ∂Ânξ /n!

∂Vλ,m(v)

∥∥∥∥∥
σ

=

∥∥∥∑n
i=1 Â

n−i
ξ

∂Âξ
∂Vλ,m(v)Â

i−1
ξ

∥∥∥
σ

n!
≤ σn−1

1 σ2

(n− 1)!
,

where σ1 = ‖Âξ‖σ, σ2 = ‖∂Âξ/∂Vλ,m(v)‖σ, and ‖A‖σ denotes the maximal singular

value of A,∥∥∥∂eÂξt/∂Vλ,m(v)
∥∥∥
σ

=

∥∥∥∥∥∂(I + Âξt+ Â2
ξt

2/2 + · · ·+ Ânξ t
n/n! + . . . )

∂Vλ,m(v)

∥∥∥∥∥
σ

=

∥∥∥∥∥ ∂Âξt

∂Vλ,m(v)
+

∂Â2
ξt

2

∂Vλ,m(v)
+ · · ·+

∂Ânξ t
n/n!

∂Vλ,m(v)
+ . . .

∥∥∥∥∥
σ

≤ σ2t+ σ1σ2t
2 +

σ2
1σ2t

3

2
+ · · ·+ σn−1

1 σ2t
n

(n− 1)!
+ . . .

= eσ1tσ2t,

is bounded at any finite t and thereby, by (2.49), ∂γ(t)/∂Vλ,m(v) is bounded also. Thus,

the boundedness of the derivative ∂J (Vλ)/∂Vλ,m(v) follows by that of ∂uj,inv(t)/∂Vλ,m(v)

(by (2.45, 2.48)). This completes the proof.

We summarize below the algorithm [33, 49] to obtain the optimal desired output

that meets Objective O3:

Algorithm 1 Input-output Engery Minimization

For the given cost function J (Vλ) in Eq. (31). The conjugate gradient method is
presented as following.
Step 1. Initialization: At k = 1, choose an initial point V1

λ, so that g1 6= 0, then set
d1 = −g1;
Step 2. Compute an αk > 0 that satisfies Condition 2 utilizing bi-section method;
Step 3. Let Vk+1

λ = Vkλ+αkdk. If |gk+1| > εt (the chosen computation error threshold),
compute βk by Eq. (58) and then update dk by dk+1 = βkdk − gk. Let k := k + 1, go
to Step 2. If |gk+1| ≤ εt, stop.
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2.3.3 Objective O4: Optimal Transition Trajectory with Minimization

of Transition Time

Once Objective O3 is satisfied, we further minimize the transition time for a given

weighting matrix HY, under the condition that the obtained inverse input amplitude

stays within the given threshold value. Such a time minimization for each transition

can be obtained by one dimensional search method, for example, the multi-dimensional

bi-section method, the golden-section method, or the Fibonacci method [48].

We realize that in the proposed approach, Objective O3 is achieved with the transition

time Tm fixed, thereby, might be compromised by the above time optimization process.

Such an issue can be alleviated through an iteration process, by repeating the above two

optimization steps, until the transition time cannot be reduced further (i.e., the change

of the transition time is small enough). This iteration process leads to a sub-optimal

minimal time solution that is optimal in the sense of Objectives O1-O3.

2.4 Simulation Example

We demonstrate the proposed approach through a simulation example of non-periodic

tracking-transition in nanomanipulation applications. As the design of the optimal

transition trajectory that achieves Objectives O1 and O2 and its tracking have been

demonstrated in [9], central to the simulation is to illustrate that in addition to Ob-

jectives O1 and O2. Objectives O3 and O4 can also be achieved by using the proposed

approach.

2.4.1 Simulation Model

Probe-based nanomanipulation (PBM) [9] provides an ideal scenario for applying the

proposed approach where non-periodic tracking-transition switching is involved in the

operation with one complete operation consisting of precision tracking of a given desired

trajectory to perform trajectory dependent tasks (e.g., to push a nanotube to a specific

location)–the tracking section, and swift repositioning the probe to the desired locations
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(e.g., to relocate the probe close to the nanotube where the next operation takes place)–

the transition section. In the simulation, the following piezoelectric actuator model for

nanomanipulation operation as in [9] was considered:

G(s) = Kx

4∏
q=1

(s− zq)

/
6∏
r=1

(s− pr), (2.60)

with the Laplace transform variable s in rad/ms, and

Kx = 29.28,

zq = 9.274± 41.659i,−2.484± 30.434i,

pr = −0.188± 31.326i,−0.857± 24.570i,−20.263,−15.198.

2.4.2 Implementation of the Proposed Approach

Without loss of generality, we consider that the entire operation consists of three track-

ing sessions and four transition sessions in alternation (see Fig. 1). First, the candidate

transition trajectories that meet Objectives O1 and O2 were obtained by using the

OTTDT technique [9], as summarized in Sec. 2.3.1. Then the optimal desired trajec-

tory that meets Objectives O1–O3 was obtained by following the steps described in

Sec. 3.2. Finally, the transition time was further minimized for the obtained optimal

transition trajectory (Objective O4), with comparison to the solution obtained by using

the OTTDT technique. When converting the constrained minimization problem (see

(2.9)) to the unconstrained one (see (2.31)), the coefficient c = 100 in the cost function

J (Vλ) was chosen through a few tests so that it is sufficiently large to guarantee the

equivalence of the unconstrained cost function in Lemma 5.

Next, the set of optimal eigenvalues for each transition session in the effective preview

time was obtained. For the relative degree of two in system (2.60), a total of 8 eigen-

values were to be determined. The threshold of the input was set at Mu = 5, and

the length of the transition sessions, S1, S2, S3, S4 (see Fig. 2(a)), were initially set

at {Tm} = {1.20, 1.20, 1.20, 0.60} ms according to the average speed of the adjacent

desired trajectories. To determine the domain D over which the optimal eigenval-

ues to be searched, we noted that as the optimal solution for Objectives O1 and O2,
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Figure 2.2: The comparison of the proposed multi-objective optimal method and the
OTTDT method before the minimization of the time intervals.

γ∗(t), was symmetrical w.r.t each eigenvalue of the stabilized state matrix of the out-

put subdynamics Âξ, so were uinv(t) and J (Vλ), the range of the eigenvalues could be

determined by one dimensional search method by choosing a large enough upper bound

for the input amplitude during the search. The search range of the eigenvalues for each

transition S1, S2, S3, S4 were chosen as, respectively, D1 = [−19, 0]× [−19, 0], D2 =

[−18, 0]× [−18, 0], D3 = [−15, 0]× [−15, 0], D4 = [−42, 0]× [−42, 0].

2.4.3 Simulation Results and Discussion

The optimal set of eigenvalues and the corresponding minimal transition time intervals

were at:

S1 : Vλ,1 = [−8.17, − 8.19], S2 : Vλ,2 = [−7.65, − 7.56],

S3 : Vλ,3 = [−7.04, − 6.94], S4 : Vλ,4 = [−6.30, − 6.69],

{T ∗m} = {0.22, 0.30, 0.25, 0.14}.

The transition trajectories and the corresponding inputs obtained by using the pro-

posed method are compared with those obtained by using the OTTDT technique (with

Hξ,k = [31.62 32.61] for each transition session) in Fig. 2 for the initial choice of tran-

sition times (i.e., without minimizing the transition time). The minimized transition

time intervals obtained above were employed in the OTTDT technique [9], and the

obtained entire output trajectory and the corresponding input are compared to those
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Figure 2.3: The comparison of the proposed multi-objective optimal method and the
OTTDT method after the minimization of the time intervals.

obtained by using the proposed method in Fig. 3, and the input differences between

these two methods are compared in Fig. 3(e).

The simulation results with the fixed (not minimized) transition periods clearly showed

the improvements of the proposed approach over the OTTDT technique in minimizing

the input-energy under amplitude constraint. As shown in Fig. 2, although smooth

transition output trajectories were obtained by using both methods, the input ob-

tained by using the OTTDT method exceeded the threshold value of 5, with the in-

put energy over 53.3% larger than that by using the proposed approach (Compared

Fig. 2(b) to Fig. 2(d)). We note that the output obtained by the proposed approach

varied in transition periods S2 and S3 (Compared Fig. 2(a) to Fig. 2(c)), however,

no large input oscillations occurred and the output was still smooth. Such an out-

put energy and input energy minimization trade-off can be easily achieved by using

the proposed approach. Therefore, the proposed approach provided an effective mean

to the amplitude-constrained input-energy minimization in optimal output design and

tracking in non-periodic tracking-transition switching.
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The advantage of the proposed approach are further demonstrated via additional tran-

sition time minimization. With the minimized transition periods, the control input

obtained by using the proposed approach still stayed within the threshold value at 5

(see Fig. 3(b)), whereas the input obtained by using the OTTDT technique violated the

amplitude constraint at even more places, with larger oscillations (Compared Fig. 3(b)

to Fig. 3(d)), and thereby, larger energy (15.9% higher) than that by the proposed ap-

proach. We further note that the similarity of the output in contrast to the significant

input difference (see Fig. 3 (d)) manifested the efficacy of the proposed approach in

achieving multi-objective input-output optimization for non-periodic tracking transi-

tion switching. The proposed approach can be further enhanced for robustness in the

presence of system dynamics variation and disturbances and online numerical compu-

tation efficiency. These robustness and computation related issues will be addressed in

future work.

2.5 Conclusion

In this chapter, a multi-objective optimization technique to trajectory design and track-

ing with non-periodic tracking-transition switching is proposed for non-minimum phase

systems. The proposed approach extended the previous work on trajectory design

and tracking of non-periodic tracking-transition switching to further minimize the in-

put energy under amplitude constraint and then the transition time. It is shown that

the amplitude-constrained input-energy minimization problem can be converted to an

unconstrained one. Then the optimal parameters in designing the transition output tra-

jectory were sought through an improved conjugate gradient method, and the minimal

transition time was further obtained via one dimensional search.
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Chapter 3

On Superposition of Hammerstein Systems: Application

to Simultaneous Hysteresis-Dynamics

Compensation—Piezoelectric Actuator Experiment

Abstract

Superposition principle (SP)—the response (output) of a linear system to a weighted

combination of inputs equals to the same weighted combination of the outputs each

corresponding to the individual inputs, respectively—is one of the most fundamental

properties of linear systems, and has been exploited for controls, for example, in the

development of model predictive control. Extension of the SP beyond linear systems,

however, is largely limited. In this chapter, the almost superposition of Hammerstein

systems (ASHS) and its application to precision control of hysteresis-Hammerstein sys-

tems is studied. We first show, under some minor conditions, the existence of a non-

strict form ASHS, and under one further condition, the strict-form ASHS. We then

present one application of the ASHS—simultaneous hysteresis and dynamics compen-

sation in output-tracking of hysteresis-Hammerstein systems, where offline tracking of

output elements based on iterative learning control is integrated with online input syn-

thesis based on an inverse Preisach modeling. The proposed ASHS-based technique is

further enhanced through two online optimization schemes. The proposed technique is

demonstrated through experiments on a piezoelectric actuator.

3.1 Introduction

Superposition principle (SP), where the response (output) of a system to a linear com-

bination of inputs equals to the same linear combination of the responses (outputs)
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each corresponding to the individual inputs, respectively, is one of the most funda-

mental properties of linear systems (e.g., [50]). The superposition principle not only

significantly simplifies the analysis of linear systems, but also finds important applica-

tions in control areas [51, 3, 26]. Extending the SP beyond linear systems, however,

is rather limited, and nonlinear superposition principle (NSP) has only been shown

for specific types of nonlinear systems [52]. Contrary to its importance in physics to

study, for example, the supersymmetric quantum mechanics [53], NSP has rather lim-

ited implementation in controls. However, SP provides a natural and conceptually

straightforward avenue to exploit a priori offline learning for online tracking. These

challenges and needs motivate this work to study the almost superposition of hysteresis

systems (ASHS) and its application to the control of smart actuators.

SP plays an important role in controls in both theoretical and applicational perspectives.

For example, the superposition principle is central to modeling multi-input-multi-output

systems when implementing the model predictive control (MPC) in industries such as

petroleum factories and chemical plants [54, 51], where system modeling constitutes

the major cost of the MPC implementation [54, 51]. Beyond modeling, recently, the

superposition principle has also been explored for precision tracking/regulation in ad-

vanced manufacturing applications beyond repetitive tasks [3, 55]. The idea of exploit-

ing the advantages of iterative learning control (e.g., high performance, good robustness

against system variations, and ease of implementation) beyond repetitive operations has

been extended to general output-tracking of online-specified, partially-known (i.e., pre-

viewed) desired trajectory for linear systems [26, 34]. Nonlinear superposition principle,

however, is only known for the so called Lie dynamic systems [52], where the general

response of the system can be given by a known function (e.g., a rational function) of

a few specific responses. Contrary to its impact on the analysis of these systems (e.g.,

stability) [56, 57], the NSP has limited use in tracking/regulation of nonlinear systems.

Particularly, the input-output behavior of hysteresis systems does not admit the form

of Lie dynamic systems, but that of Hammerstein systems instead—a static nonlinear

operator followed by a linear dynamics [19]. Thus, study of the superposition principle

of Hammerstein systems is needed to, for example, compensate for both hysteresis and
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dynamics in the control of these systems.

Currently, simultaneous hysteresis and dynamics compensation still remains challenging

in the control of hysteresis systems. For example, the Preisach model has been explored

in a feedforward-feedback control manner [58]. The Preisach-based feedforward con-

troller, however, is complicated to implement. Instead of finding the Preisach model

then inverting it, it has been proposed to directly use the inverse Preisach model in

the controller design [11, 12], or update the inverse of Preisach model adaptively [13].

These techniques, however, are limited to compensating for hysteresis in the quasi-

static case—accounting for both dynamics and hysteresis effects was not adequately

addressed. Alternatively, it has been proposed to modify the inverse Preisach model

to account for the rate-dependent hysteresis effect (i.e., the combined hysteresis and

dynamics effects) [14]. However, the compensation of the dynamics effect is rather

constrained as only a few excitation frequencies are considered [14]. To improve the dy-

namics compensation, techniques based on an extension of neural network [15, 16] and

the inverse rate-dependent Prandtl-Ishlinskii (PI) model [17] have also been proposed.

These existing approaches, however, require a complicated modeling process—which

is prone to modeling errors and heavy online computations. Also, the performance-

robustness trade-off involved in these approaches may not be efficient in accounting

for the usually quasi-static uncertainty/variation in hysteresis systems such as smart

actuators. These robustness and complexity (in both modeling and control) related

issues can be largely alleviated through the iterative learning control (ILC) framework

[18, 19], as the high tracking performance obtained via the ILC-based techniques can

be maintained against model uncertainties and/or system variations through a couple

of iterations. Therefore, the superposition principle of hysteresis systems can serve as

a bridge to extend ILC techniques for more general non-repetitive tracking/regulation.

The main contribution of this work is the development of the ASHS. First, we show that

for Hammerstein operators satisfying a Lipschitz condition, a non-strict form ASHS ex-

ists, where the difference between a linear combination of outputs and the output to

the linear combination of the corresponding inputs can be rendered arbitrarily small,

provided that there are sufficiently large number of inputs (or outputs) satisfying some



36

minor conditions, and the coefficients of the output combination and the input com-

bination are allowed to be different. Under one further nonlinearity condition of the

Hammerstein operator, the strict-form ASHS also holds, where the coefficients of the

input combination and the output combination are the same. The ASHS can not only

be a powerful tool for the analysis of Hammerstein systems, but also be exploited for

control of these systems. As an example, we present, in this work, its use in simul-

taneous hysteresis-dynamics compensation in preview-based precision output tracking,

where online output decomposition (via uniform B-splines) and input synthesis (via an

inverse Preisach modeling) is integrated with a priori off-line ILC-based learning of the

input-output elements mapping. In this approach, the ASHS provides the foundation

to exploit offline, a priori learning for online tracking/regulation, thereby, decoupling

“training” from “execution” in output tracking. Such a decoupling might be an effective

avenue to alleviate complexities and challenges in modeling and control of Hammerstein

systems [26, 34]. The efficacy of the proposed approach is demonstrated through ex-

periments on a piezoelectric actuator.

3.2 Superposition Principle of Hammerstein Systems

3.2.1 Problem Formulation

We consider a Hammerstein system consisting of a rate-independent Hammerstein op-

erator H[·] followed by a linear dynamics, where the static Hammerstein operator,

H[·] : < → <, given by

v(t) = H[u(t)], (3.1)

satisfies the following assumption:

Assumption 8. The Hammerstein operator H[·] is bounded input, bounded output(BIBO)

stable and bi-Lipschitz, i.e, for any given continuous input u(t), there exists a constant

Lh ∈ <+ such that for any given two time instants t1, t2,

1

Lh
|u(t1)− u(t2)| ≤ |v(t1)− v(t2)| ≤ Lh|u(t1)− u(t2)|. (3.2)



37

Without much restriction, we further assume that the output trajectories are all

Lipschitz continuous:

Assumption 9. The output trajectories vd(·)s to be tracked by system (3.1) are com-

pactly supported, and belong to the set of Lipschitz continuous functions, V, i.e, for any

vd(·) ∈ V, there exists a Lipschitz constant Lv ∈ <+ such that for any given two time

instants t1, t2,

|vd(t1)− vd(t2)| ≤ Lv|t1 − t2|. (3.3)

The above two assumptions imply that the input of system (3.1) is also Lipschitz:

Lemma 10. For any given Hammerstein system (3.1), let Assumption 8 hold, then

for any given output v(t) satisfying Assumption 9, the corresponding input u(t) is also

Lipschitz, and the Lipschitz constant Lu equals to LhLv.

Towards the superposition of Hammerstein systems, we consider the input elements

ui(t)s corresponding to those outputs in set V, i.e., H[ui(t)] ∈ V, are from a set UM ,

UM = {ui(t)| H[ui(t)] ∈ V, i = 0, 1, . . . , M,

M ∈ N (N : Set of natural numbers)},
(3.4)

and satisfies the following assumption:

Assumption 11. The input elements ui(t)s ∈ UM are smooth and compactly supported.

Moreover, for any given M ≥ 2, M ∈ N and any 2 ≤ N ≤ M, N ∈ N, the following

set of distinct time instants

ST ,N ,{tj | (j − 1)T /N ≤ tj < jT /N,

j = 1 , 2, . . . , N},
(3.5)

T ∈ <, satisfies the condition that for any two different time instants tm, tn ∈ ST ,N ,

m 6= n, the set of input elements that are non-zero at tm is different from that at tn,

i.e., for any two time instants tm, tn ∈ ST ,N , Θm ∩ Θcn 6= ∅ and Θcm ∩ Θn 6= ∅, where

set Θi is defined as Θi , {uj(t)| uj(ti) 6= 0, uj(t) ∈ UM}, and Θc is the complement

set of set Θ.
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The set of output elements each corresponding to those inputs in UM , respectively,

is denoted as VM .

In control applications, Assumption 11 can be satisfied through the design of the inputs

set UM , for example, by constructing UM as a set of compact-supported spline function

(e.g. B-splines) and its time-shifting copies.

3.2.2 Non-strict Almost Superposition of Hammerstein Systems

Definition 12. Non-strict Almost Superposition of Hammerstein Systems

(Non-strict ASHS) Let Assumptions 8, 9, and 11 be satisfied, then the Non-strict

ASHS is to, for any given ε > 0 and any given finite summation of M distinct number

of output elements from set VM , vd(t), defined in a compact domain [0, T ], T ∈ <,

vd(t) ,
M∑
k=1

gkvk(t), t ∈ [0, T ], vk(t) ∈ VM , (3.6)

obtain a finite number M∗ ∈ N and a sequence of coefficients pM = [p1, p2, . . . , pM ]>,

such that for the following finite summation of the corresponding input elements uk(·)s ∈

UM , u(t),

u(t) =
M∑
k=1

pkuk(t), t ∈ [0, T ], pk ∈ <, (3.7)

almost superposition (AS) holds for any M ≥M∗ in the sense that

‖eu(t)‖L∞,T = ‖ud(t)− u(t)‖L∞,T ≤ ε (3.8)

holds, where in Eqs. (3.6-3.8), gks, pks ∈ < are constants, ud(·) is the exact-tracking

input for the summed output vd(·), i.e., ‖vd(t) − H[ud(t)]‖L∞,T = 0, and ‖f(·)‖L∞,T

denotes the L∞ norm of f(·) restricted to a finite time interval [0, T ], T <∞.

Lemma 13. Let the conditions given in Definition 12 be satisfied, then

• For any given M ≥ N and time T ∈ <, there exists a set of time instants ST,N ,
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such that rank(Ue) = N , where

Ue =



u1(t1) u2(t1) . . . uM (t1)

u1(t2) u2(t2) . . . uM (t2)

...
...

...
...

u1(tN ) u2(tN ) . . . uM (tN )


N×M

; (3.9)

• For any given ε > 0, the constant M∗ for which the Non-strict ASHS holds is

given by

M∗ , d2TLhLv/εe , (3.10)

where dxe denotes the ceiling function (i.e., the smallest integer larger than x),

and Lh and Lv are as given in Eq. (3.2, 3.3), respectively;

• And the corresponding vector of coefficients pM is given by an equivalent class

defined as

{Uge ud + p| p ∈ Null(Ue)}, (3.11)

where ud = [ud(t1), ud(t2), . . . , ud(tN )]>, Xg denotes the Moore-Penrose pseu-

doinverse of matrix X, and Null(Ue) denotes the null space of the matrix Ue.

Proof. First, we show that rank(Ue) = N . Assumption 11 implies there exists a finite

set of N ≤ M number of time instants in ST,N , such that the matrix Ue has full row

rank, i.e., rank(Ue) = N .

To show the second and third statements, matching the linear combination of the input

elements and the desired input ud(t) at the time instants ST,N yields

u(tj) =

M∑
k=1

pkuk(tj) = ud(tj), (3.12)

which can be rewritten in matrix form as

UepM = ud, (3.13)

where Ue is given by Eq. (3.9). The above Eq. (3.13) implies that the non-trivial solution

of pM falls into an equivalent class determined by the null space of Ue and a special

solution depending on ud.
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As the maximal time interval between two successive time instants in set ST,N is given

by δtmax , maxj=1,2,...,N−1(tj+1− tj) < 2T/N , and the input and the summation of the

input elements are all Lipschitz with Lipschitz constant LhLv, for any given ε > 0, the

superposition error can be rendered to be below ε by selecting N ≥ N∗ , d2TLhLv/εe,

and thereby, M ≥M∗, such that

δt < ε/(LhLv).

As N ≤ M , M∗ = N∗, and the corresponding vector of coefficients pM is as given by

Eq. (3.11). This completes the proof.

3.2.3 Strict Almost Superposition of Hammerstein Systems

As clearly the strict almost superposition of Hammerstein systems holds when the

Hammerstein operator H[·] is linear, it is further assumed that

Assumption 14. The Hammerstein operator H[·] is nonlinear almost everywhere, i.e.,

m(H[x] = rx) = 0 for any given x ∈ <, and any r ∈ < (m(Z): the Lebesgue measure

of any measurable set Z ⊂ <). Moreover, v(t) = H[u(t)] = 0 if and only if u(t) = 0 for

any t ∈ <.

With this Assumption, the Lemma below can be easily verified.

Lemma 15. Let Assumptions 8, 11, and 14 hold, then the properties of the inputs as

stated in Assumption 11 also hold for the corresponding output elements.

Definition 16. Strict Almost Superposition of Hammerstein Systems (Strict-

ASHS) Let Assumptions 8, 9, 11, and 14 be satisfied, then the Strict-ASHS is to, for

any given ε > 0, and any given set of distinct output elements from VM with M ≥M∗,

obtain a finite M∗ ∈ N and a sequence of coefficients gM = [g1, g2, . . . , gM ]>, such

that the linear superposition holds in the above AS sense for any M ≥ M∗ between

the following finite summation of output elements, vd(t), defined in a compact domain

[0, T ], T ∈ <,

vd(t) ,
M∑
k=1

gkvk(t), t ∈ [0, T ], vk(t) ∈ VM , (3.14)
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and the corresponding summation of the respective input elements uk(·)s ∈ UM , u(t),

u(t) =

M∑
k=1

gkuk(t), t ∈ [0, T ]. (3.15)

Lemma 17. Let the conditions in Definition 16 hold, then

• For any given M ∈ N, there exists a finite set of N number of time instants ST,N ,

such that rank(We) = 2N for 2N ≤M , where

We = [V >e U>e ]>, with (3.16)

Ve =



v1(t1) v2(t1) . . . vM (t1)

v1(t2) v2(t2) . . . vM (t2)

...
...

...
...

v1(tN ) v2(tN ) . . . vM (tN )


N×M

, (3.17)

and

Ue =



u1(t1) u2(t1) . . . uM (t1)

u1(t2) u2(t2) . . . uM (t2)

...
...

...
...

u1(tN ) u2(tN ) . . . uM (tN )


N×M

; (3.18)

• For any given ε > 0, the constant M∗ for which the Strict-ASHS holds is given by

M∗ , d4TLhLv/εe , (3.19)

where Lh and Lv are given in Eq. (3.2, 3.3), respectively;

• The corresponding vector of coefficients gM is given by an equivalent class defined

as

{W g
e [v>d u>d ]> + g| g ∈ Null(We)}, (3.20)

where vd = [vd(t1), vd(t2), . . . , vd(tN )]>, and ud = [ud(t1), ud(t2), . . . , ud(tN )]>.

Proof. First, we show that there exists a finite set of N number of time instants ST,N ,

such that rank(W>e ) = 2N for any given 2N ≤ M . Assumption 11 implies that the

matrix Ue has full row rank, i.e., rank(Ue) = N , and, consequently, by Lemma 15,

rank(Ve) = N . Moreover, by Assumption 14, any row in matrix Ve, Ve,j , for j =
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1, 2, . . . , N , is linearly independent with the corresponding row in matrix Ue, Ue,j , and

linearly independent with all other rows of matrix Ue, as each row in matrix Ve, Ve,j ,

for j = 1, 2, . . . , N , has zero elements at locations where any other row of matrix Ue,

Ue,i for i 6= j is not zero. Therefore, rank(We) = 2N .

To show the second and third statements, matching the linear combination of the input

elements and the desired input v(t) at the time instants ST,N gives

vd(tj) =
M∑
k=1

gkvk(tj), (3.21)

and the matching of corresponding outputs yields,

u(tj) =

M∑
k=1

gkuk(tj) = ud(tj). (3.22)

Representing the above Eqs. (3.21, 3.22) in a matrix form yields

W>e gM = [v>d u>d ]>, (3.23)

where We is given in Eq. (3.16). The above Eq. (3.23) implies that the non-trivial

solution of gM falls into an equivalent class determined by the null space of We and a

special solution depending on [v>d u>d ]>.

The rest of the proof is similar to the counterpart in Lemma 13, and thereby omitted

to save the space. This completes the proof.

3.3 A Realization of ASHS to Hysteresis Systems

Next, we present a realization and implementation of the ASHS for hysteresis systems—

one type of Hammerstein systems with wide applications, where the input-output map-

ping of the hysteresis operator H[·] in

v(t) = H[u(t)], (3.24)

satisfies Assumptions 8, 14, and furthermore, can be described by a Preisach model

[59]. Particularly, the proposed approach below exploits uniform B-splines for output

decomposition and an inverse Preisach modeling for input synthesis. With output

tracking in mind, we assume that
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Assumption 18. The output trajectory vd(t) is smooth enough, and at any given time

instant tc, the future desired trajectory is known (i.e. previewed) for a finite amount of

preview time Tp <∞.

The previewed desired output trajectory is then decomposed/approximated as

vd(t) ≈
M∑
k=1

gkvk(t), (3.25)

with the approximation error small enough (with respect to the desired tracking pre-

cision). Provided that the conditions in the Non-strict ASHS are satisfied, the corre-

sponding control input can then be synthesized as

ud(t) ≈
M∑
k=1

pkuk(t) =
M∑
k=1

hkgkuk(t), (3.26)

when the number of input elements uk(t)s are large enough, and furthermore, provided

Assumption 14 is satisfied, pk = gk, i.e., hk = 1. We seek to obtain hks analytically

based on an inverse Preisach model. We start with the construction of the library of

input-output elements, LH , based on uniform B-splines.

3.3.1 Uniform B-spline-based Library for Trajectory Decomposition

The main advantage of using uniform B-splines for trajectory decomposition is that

only a few types of output elements are needed for the decomposition [26]—in offline

learning, tracking of only a few different output elements needs to be obtained. As

hysteresis effect is range-dependent, it is beneficial to employ output elements of differ-

ent amplitudes in the decomposition–to exploit the input-output mapping for hysteresis

compensation. Thus, we propose a library of nestle structure where the main library LH

consists of sub-libraries LH,i each containing output elements of the same amplitude:

LH = {LH,1, LH,2, . . . , LH,NH}, with (3.27)

LH,i = {(ve,k(·, τi), ue,k(·, τi))| k = 1, 2, . . . , Ne}, (3.28)

where ve,k(·, τi)s are output elements of amplitude τi ∈ [τmin, τmax], and NH , Ne are the

number of total sub-libraries (i.e., number of output amplitude levels) and the number
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of total elements in each sub-library, respectively. Without loss of generality, the output

range of τis, [τmin, τmax], are uniformly discretized into NH levels, with the step length

∆τ given as

∆τ = (τmax − τmin)/(NH − 1). (3.29)

The output elements ve,k(·, τi)s satisfying Assumption 9 are homogeneous with respect

to τi, i.e.,

ve,k(t, τi) = τiv̂e,k(t), for k = 1, 2, . . . , Ne, (3.30)

where v̂e,k(t)s, with no loss of generality, are the output elements at a pre-chosen ampli-

tude (called the base output elements below), and ue,k(t, τi)s ∈ < are the exact-tracking

input elements corresponding to ve,k(t, τi)s.

B-spline-based Library Construction Without loss of generality, we present

the construction of the base output element v̂e,k(t) via B-splines only (the output ele-

ments of any given sub-library LH,i are specified via Eq. (3.30) accordingly),

v̂e,k(t) = Bk,s(t), (3.31)

where Bk,s(t) is one of the sth-degree B-spline basic functions obtained recursively via

Bk,s(t) =
t− tk

tk+s − tk
Bk,s−1(t)

+
tk+s+1 − t

tk+s+1 − tk+1
Bk+1,s−1(t),

(3.32)

where

tk = k∆T (3.33)

is the decomposition knots, with ∆T = Tp/m the knot period. Initially,

Bk,0 =


1, tk ≤ t < tk+1;

0, otherwise,

for k = −s+ 1, −s+ 2, . . . , m+s−1, and m is the total number of the decomposition

intervals in [tc, tc + Tp]. The decomposition coefficients gks can be obtained through a

linear quadratic programming scheme [22] [60]. Moreover, the uniform B-splines and

the corresponding inputs satisfy Assumptions 9, 11.
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Note that usually in the decomposition, truncation of the B-splines are usually needed

to match the beginning and the end portions of the trajectory to be decomposed, i.e.,

the output elements in sub-library LH,i in Eq. (3.28) consists of one uniform B-spline

and other truncated ones that are extended and smoothly transited to zero (so that

exact tracking of the truncated ones exists and can be obtained a priori via ILC) [26].

However, as shown in [61], such a truncation can be avoided by shifting the decomposi-

tion instants and redefining the decomposition coefficients gks. Thus, each sub-library

LH,i consists of only one element (Ne = 1 in Eq. (3.28)). This is attractive in practices

when output elements of different amplitudes are used.

As there is only one element in each sub-library, we simplify, in the rest of the chap-

ter, the notation of input-output element, ve,k(t, τi) and ue,k(t, τi), as ve(t, τi) and

ue(t, τi), respectively.

3.3.2 Superposition of Hysteresis Systems via an Inverse Preisach

Model

Preisach Model and Its Inverse[59] [12]

Next, we propose an inverse hysteresis model based on the Preisach modeling approach.

The output of the Preisach model is represented by the integral of the hysteresis operator

over the interesting range, i.e.,

v(t) =

∫∫
S
µ(α, β)γ̂αβ[u(t)]dαdβ, (3.34)

where µ(α, β) is the weighting function of the Preisach model, which could be deter-

mined experimentally, γαβ[u(t)] is the Preisach hysteresis operator shown in Fig. (3.1a)

and the region S is defined by

S , {(α, β) : α ≥ β, α ∈ [−α0, α0],

β ∈ [β0, − β0], for α0 ∈ <+, β0 ∈ <−},
(3.35)
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Figure 3.1: a. The hysteresis operator; b The hysteresis curve.

Observing from the Preisach plane shown in Fig. (3.1b), the above Eq. (3.34) can be

transformed as

v(t) = 2

∫∫
S+

µ(α, β)dαdβ − C, (3.36)

where S+ denotes the region upon which the values of hysteresis operator γ̂αβ is 1, C =∫∫
S µ(α, β)dαdβ is a constant. Note that S+ =

∑o−1
i=0 (−1)iSpi , where Spi represents

the region encircled by the vertical and horizontal line pass the vertex pi, pid, pif , and

the straight line ac defined by α = β. Thus, the output of the hysteresis operator can

be written as

v(t) =

o−1∑
i=0

(−1)if(αpi , βpi)− C, (3.37)

where pi, i = 0, 1, . . . , o − 1 are the vertexes corresponding to the remaining past

local maxima and minima, po is the vertex corresponding to the current input with

αpo = u(t) when o is even and βpo = u(t) when o is odd, and the function f(·, ·) is

defined as

f(αpi , βpi) ,
∫∫

Spi

2µ(α, β)dαdβ, (3.38)

where [αpi , βpi ] are the coordinates of any point pi ∈ S in the Preisach plane.

Next, the inverse Preisach model is established under the following assumption,

Assumption 19. The weighting function µ(α, β) of the Preisach model is positive, i.e.,

µ(α, β) > 0.
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This assumption only requires the branch of any given hysteresis loop to be com-

posed by a monotone increasing or decreasing curve, which is satisfied in most applica-

tions. Under Assumption 1, the existence of the inverse of f(·, ·) in both directions is

guaranteed. The inverse functions with respect to α and β are defined, respectively, as

G1(α, y) , f−1(α, ·)[y], G2(y, β) , f−1(·, β)[y]. (3.39)

Then the inverse Preisach model is represented below,

ur(t) =


G1(αpo , v(t)−

o−1∑
i=0

(−1)if(αpi , βpi) + C), when o is even;

G2(v(t)−
o−1∑
i=0

(−1)if(αpi , βpi) + C, βpo), when o is odd.

(3.40)

The output of the above inverse Preisach model (3.40) serves as the reference input,

ud(t), in the proposed B-spline based decomposition process below—to be matched by

the synthesized input u(t) (see Eq. (3.7)).

Inverse-Preisach-Model-based Decomposition via Uniform B-splines

We use the 3rd-order B-splines as an example to present the proposed realization–

the same approach can be easily extended to other orders B-splines. To simplify the

implementation, we consider that, at any given decomposition instant, only one sub-

library is used,

u(t) =
M∑
k=0

pkue(t− td,k, τ) =

M∑
k=0

hkgkue(t− td,k, τ). (3.41)

Note that for the 3rd-order uniform B-splines,

ue[k − j] = 0, k − j 6= −1, 0, 1, (3.42)

where ue[k] , ue(k∆T, τ). Thus, at any given decomposition knot td,k = tc + k∆T ,

k = 0, 1, . . . , M , only three output elements are involved (see Fig. 3.2). Then, in the

interval Tk , [td,k, td,k + l∆T ], matching the summed (synthesized) input in Eq. (3.41)

with the inverse Preisach model based input ud(t) in Eq. (3.40) at the decomposition

knots k, k + 1, . . . , k + l − 1, for k ≥ 1, l ≥ 2, k + l ≤M , and k ∈ N, l ∈ N, yields

AlHl = Ud,l, (3.43)
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Figure 3.2: The B-spline decomposition and input synthesis process.

where

Al =



gk cqgk+1

cpgk gk+1 cqgk+2

. . .
. . .

. . .

cpgk+l−3 gk+l−2 cqgk+l−1

cpgk+l−2 gk+l−1


, (3.44)

Hl =
(
hk hk+1 . . . hk+l−2 hk+l−1

)>
, (3.45)

and

Ud,l =



ūd[k]− hk−1gk−1cp

ūd[k + 1]

...

ūd[k + l − 2]

ūd[k + l − 1]− hk+lgk+lcq


, (3.46)
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with ūd[k] = ud[k]/ue[0], ud[k] , ud(td,k), cp , ue[−1]/ue[0] and cq , ue[1]/ue[0]. Note

in Eqs. (3.44, 3.46), 0 < cp < 1, 0 < cq < 1 (as ue[0] is the maxima of the input

element).

By Lemma 13, the coefficient vector Hl exists as the copies of time-shifting B-splines

satisfy Assumption 11, and the inverse Preisach model, the desired output vd(t), and

thereby, the inverse input ud(t) and the synthesized input u(t), by Assumptions 8 and

9, are all Lipschitz. However, as the first and the last elements in Ud,l depend on the de-

composition coefficients hk−1 and hk+l that are both outside the decomposition period,

the exact solution of Hl requires the entire desired trajectory to be known a priori—not

feasible in preview-based tracking. Thus, we propose to obtain the compensation fac-

tors hks successively via a moving horizon, and show that the truncation-caused error

can be rendered arbitrarily small by choosing a small enough knot period ∆T .

As det Al =
∏l
i=1Gigk+i+1 with Gi = 1− cpcq/Gi−1 when i = 2, 3, . . . , l and G1 = 1,

gks and Gis are all non-zero, det Al 6= 0, Al is invertible, the solution for the compen-

sation factor vector is readily given by

Hl = A−1
l Ud,l. (3.47)

In the proposed approach, only the first element of the matrix Hl, hk, is computed, the

rest of the compensation factors, hk, for k = k+ 1, k+ 2, . . . , k+ l−1 are computed in

a moving horizon manner, i.e., hk+1 is obtained by moving the truncation horizon one

step forward (the horizon can always be moved in the preview window as 2l∆T � Tp

in practice). To find hk, obtain the first row of A−1
l as

(A−1
l )1,s = (−1)1+scs−1

p

s−1∏
i=1

gk+i
detφi+1

detAl
, (3.48)

where φi+1 = Al(i+ 1 : l, i+ 1 : l), and

detφi+1 =
l−1∏
j=i+1

Gj−igk+j . (3.49)

and the first element in the matrix Hl as

hk =
1

gkGl
(ūd[k]− hk−1gk−1cp) +

l−1∑
i=2

(−1)(1+i)ci−1
p

gk
∏l
k=l−i+1Gk

ūd[k + i− 1]

+
(−1)(1+l)cl−1

p

gk
∏l
k=1Gk

(ūd[k + l − 1]− hk+lgk+lcq).

(3.50)
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The above Eq. (3.50) implies that the influence of the input element decays exponen-

tially as the coefficient cp ∈ (0, 1), and thereby, can be truncated to l step with arbitrary

precision by having a small enough knot period ∆T ,

hk =
1

gkGl
(ūd[k]− hk−1gk−1cp) +

l∑
i=2

(−1)(1+i)ci−1
p

gk
∏l
k=l−i+1Gk

ūd[k + i− 1]. (3.51)

Lemma 20. Let Assumption 18 hold, and at the kth decomposition knot, let the com-

pensation factor hk be obtained with l step-truncation given by Eq. (3.51), then there

exists a l0 ∈ N such that for any given ε > 0, the truncation-caused error |ek| ≤ ε for

any given l > l0.

The proof is omitted to save space.

Lemma 21. Let Assumption 18 hold, the decomposition knot period ∆T be given by

Eq. (3.33), and the element amplitude be discretized as in Eq. (3.29), then the input

superposition error eu(t) can be bounded as

|eu(t)| ≤ LhLv∆T, t ∈ [tc, tc + Tp]. (3.52)

Based on the congruency property of the Preisach model [59], the number of output

elements in the decomposition-synthesis process (i.e., M∗ in Eq. (3.8)) for the Non-strict

ASHS to hold can be further quantified. The Lipschitz constants in Assumption 8 for

hysteresis system is range-dependent, i.e.,

Lh = Lh(χ), (3.53)

where χ is the displacement range of a hysteresis loop, i.e, χ is the difference between

two consecutive local extremas of the output v(t).

Lemma 22. Let Assumptions 8, 9, 11 hold, for any given ε > 0, and output trajectory

with finite number of local extremas at the time instants tc = t∗1 < t∗2 < . . . < t∗N =

tc + Tp, then there exists M ≥ M∗ output elements v1(t), v2(t), . . . , vM (t) and its

corresponding input elements uk(t)s, such that the Non-strict ASHS holds for system

(3.24) for any M ≥M∗, where

M∗ , 2
N−1∑
i=1

⌈
Lh(χi)Lv(t

∗
i+1 − t∗i )/ε

⌉
.
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Proof. The Lemma can be shown by applying Lemma 13 to each monotonic session

of the input ud(t), and finding the corresponding M∗i for any given ε > 0 as given in

Eq. (3.10), and finally, adding the needed number of elements in each session together.

3.3.3 Optimization for Implementation

Two optimizations are proposed to enhance practical implementations of the proposed

ASHS for output tracking.

Optimization of the Compensation Factors

We first optimize the selection of the input-output elements to maximize the hysteresis

compensation at the element mapping level, i.e., we aim to select the input-output

element of optimal amplitude at which the compensation factor hk → 1 in Eq. (3.26).

Specifically, the optimal input/output amplitude factor, τ∗, is obtained by minimizing

the superposition-caused input error with respect to τ at the decomposition knots for

hk = 1 with k = −1, 0, . . . , m+ 1, i.e.,

min
τ
J (τ) = min

τ

m∑
k=0

m+1∑
j=−1

ĝj/τue((k − j)∆T, τ)− ud(k∆T )

2

,

= min
τ

[GUe(τ)−Ud]
>[GUe(τ)−Ud],

(3.54)

where ĝjs are the decomposition coefficients when the base output elements v̂e(t)s in

Eq. (3.30) are utilized in the output decomposition,

G =



ĝ−1 ĝ0 ĝ1

ĝ0 ĝ1 ĝ2

...
...

...

ĝm−1 ĝm ĝm+1


, and (3.55)

Ue(τ) = [ue(∆T, τ) ue(0, τ) ue(−∆T, τ)]>/τ, (3.56)

and

Ud = [ud(0) ud(∆T ) . . . ud(m∆T )]>. (3.57)
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Note that in the above Eq. (3.54), we employed the fact that ue((k − j)∆T, τ) = 0 if

|k − j| ≥ 2. The solution to Eq. (3.54) can be obtained by setting

∂J (τ)

∂τ
= [GU∗e(τ)−Ud]

>G
∂Ue(τ)

∂τ
= 0, (3.58)

Solution to Eq. (3.58) depends on the expression of Ue(τ) that can be established

experimentally. In practice, we can assume that the input elements with different

amplitude are linearly dependent to each other, i.e.,

Ue(τ) =
ϕ(τ)

τϕ(1)
Ûe, (3.59)

with Ûe = [ûe(∆T ) ûe(0) ûe(−∆T )]> and

ϕ(τ) = sup
t
|ue(t, τ)|. (3.60)

Then the solution is obtained as

ϕ(τ∗1 )

τ∗1
= ϕ′(τ∗1 ), (3.61)

or

ϕ(τ∗2 )

τ∗2
= −ϕ(1)U>d GÛe

Û
>
e G>GÛe

. (3.62)

and the optimal value of τ∗ is given as

τ∗ = arg min
τ∈Θ

J (τ), with Θ = {τmin, τ
∗
1 , τ

∗
2 , τmax}.

Online Adjustment of the Decomposition Coefficients

We present the online optimization of the compensation factors hks to account for

uncertainties and disturbances by using the 3rd-order uniform B-splines as an exam-

ple. For 3rd-order uniform B-splines, at any given time instant, there are four output

elements involved in the decomposition at any time instant, i.e.,

vd(t) =
k+2∑
j=k−1

ĝjve(t, τ)/τ, t ∈ Ik, (3.63)

with Ik = [k∆T, (k+ 1)∆T ], and the corresponding synthesized input is then updated

online by using correction factors λj for j = k − 1, k, k + 1, k + 2 as

u(t) =

k+2∑
j=k−1

(hj ĝj + αλj)ue(t, τ)/τ, t ∈ Ik, (3.64)
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where α ∈ < is the DC-gain of the system (can be easily determined through experi-

ment). The optimal sequence of adjusting factors,

Λ∗ = [λk−1 λk λk+1 λk+2]T ,

can be obtained by minimizing the L2 norm of the predicted tracking error,

min
Λ
‖Y(t)TΛ− Ω(t, e(t))‖L2 , t ∈ Ik, (3.65)

where ‖f(·)‖L2 is the L2 norm restricted on Ik, Y(t) = [ve(t − td,k−1, τ) ve(t −

td,k, τ) ve(t− td,k+1, τ) ve(t− td,k+2, τ)]T , e(t) is the tracking error, and Ω(t, e(t)) is

an innovation function to predict the tracking error e(t) for t ∈ Ik,

Ω(t, e(t)) = e(t−∆T ) + κΩ(t−∆T, e(t−∆T )),

where κ < 1 is the forgetting factor and Ω(t, e(t)) = 0, for t ∈ [0, ∆T ].

The solution to the above least-mean square minimization problem (3.65) can be readily

obtained as

Λ∗ =

(∫
Ik

Y(t)Y(t)Tdt

)−1 ∫
Ik

Ω(t, e(t))Y(t)dt. (3.66)

As each element in Y(t), corresponding to the value of output elements, is always

selected to be positive, the first term in Eq. (3.66) is guaranteed to be positive definite,

thereby, invertible.

3.4 Application: Decomposition-Learning based Simultaneous Hysteresis-

Dynamics Compensation

We demonstrate one application of the proposed ASHS: Simultaneous hysteresis and

dynamics compensation in preview-based output tracking for smart actuators such as

the piezoelectric actuator. The corresponding input-output mapping of the system,

u(t)→ v(t) is given as

y(t) = G[v(t)], with v(t) = H[u(t)], (3.67)

and we assume that



54

Assumption 23. The linear operator G[·] is stabilizable, detectable, and hyperbolic

with a well-defined relative degree r.

The above assumption is utilized to facilitate practical implementation of the ASHS.

Specifically, the stability condition is needed for practical implementations of ILC. The

hyperbolic condition, i.e., the linear dynamics part of the system has no pure imaginary

zeros, and the detectability condition are needed, based on the stable inversion theory

[38, 44], to guarantee that the pre- and post- actuation time for exact tracking of a

given trajectory exponentially decays to zero, and can be truncated to a finite time

[26]. All these conditions in Assumption 23 can be verified via experiments.

The output tracking problem now is to find a synthesized input u(t) in the form of

Eq. (3.6) to track the desired output of the whole system (3.67), yd(t). We propose

a two-step scheme: First, the superposition principle is employed to account for the

dynamics part of system (3.67) by finding the intermediate output vd(t) as [26]

vd(t) =
n∑
k=0

gkv̄e,ik(t− td,k, s), (3.68)

with the decomposition coefficients gks given by the decomposition of the desired tra-

jectory yd(t), i.e.,

yd(t) =

n∑
k=0

gkȳe,ik(t− td,k, s), (3.69)

where (ȳe,ik(t, s), v̄e,ik(t, s)) are the input-output pairs selected from the library con-

structed for dynamics compensation,

LD = {(ȳe,i(·, s), v̄e,i(·, s)) : i = 1, 2, . . . , ND, s ∈ <+}, (3.70)

with ȳe,i(t, s) = ŷe(t/s), where ŷe(t)s are output elements at a pre-chosen speed, i.e.,

s is the speed factor of the element, and ND is the number of elements at the same

speed. Thus, tracking of the intermediate input vd(·) leads to the tracking of the desired

output yd(·).

Then secondly, the Non-strict ASHS proposed in Sec. 3.3 is employed to account for

the hysteresis part of system (3.67) by finding the synthesized input ud(t), such that

the required tracking precision of the desired intermediate output vd(t) is achieved.

The first step–finding the intermediate output vd(·) via the superposition principle in
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Eqs. (3.68, 3.69)–has been addressed recently [26]. Particularly, note that finite pre-

and post- actuation (i.e., truncation) is needed when applying the synthesized input,

i.e., when using the synthesized intermediate output vd(·) in Eq. (3.68) as the desired

output in the second step. The needed finite pre- and post- actuation time for achieving

the desired tracking precision has been quantified– readers are referred to Ref. [26] for

the details.

Note that the output elements ve,i(·, τ)s in (3.28) can be chosen differently from those

v̄e,i(·, s)s in (3.70) to facilitate the decomposition, i.e., the original basis v̄e,i(·, s)s in

Eq.(3.70) have been convoluted with the dynamics of system (3.67) (in order to com-

pensate for the dynamics of system (3.67)), thereby may not have the desired properties

for hysteresis compensation in the second step.

Implementation of the above two-step approach requires decoupling dynamics and hys-

teresis compensation in both offline library construction and online decomposition-

synthesis process. We propose a temporal and spatial scale scheme based on, respec-

tively, the range-dependence of the hysteresis and the rate-dependence of the dynamics

effects. Specifically, during offline library construction, the dynamics-compensation li-

brary LD can be obtained by keeping the amplitude of output elements ȳe,i(·, s)s small

enough, and the hysteresis-compensation libraries LH,is can be obtained by keeping the

speed of the intermediate output elements ve,i(·, τ)s slow enough. Moreover, different

speeds can be applied to the output elements ȳe,i(·, s)s and different amplitude to the

intermediate output elements ve,i(·, τ)s, respectively, such that in online tracking, the

elements with different speed factors sjs in library LD can be utilized to compensate

for the dynamics in different frequency ranges, and elements of different amplitude co-

efficients τjs in sub-library LH,is can be utilized to compensate for the hysteresis in

different amplitude ranges, respectively.

During online implementation, the previewed part of the desired output yd(t) is spatially

scaled down first as:

yd(t) −→ σyd(t), for t ∈ [tc, tc + Tp], (3.71)

such that for a pre-chosen amplitude threshold valueMH(i.e., below which the hysteresis
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effect is negligible for the desired tracking precision),

σ sup
t∈[tc,tc+Tp]

|yd(t)| ≤MH , (3.72)

where σ ∈ (0, 1) is a pre-chosen constant, and both σ and MH can be easily determined

in practices. Then the scaled-down previewed desired output σyd(t) is taken as the

desired output to obtain the desired pre-intermediate output v̄d(t) and the correspond-

ing decomposition coefficients ḡks, i.e., replace yd, vd and gk in Eqs. (3.68, 3.69) with

ȳd, v̄d and ḡk, respectively, and the real desired intermediate output and corresponding

decomposition coefficients gks are obtained as

vd(t) = v̄d(t)/σ, and gk = ḡk/σ. (3.73)

Then secondly, the above desired intermediate output vd(t) is temporally scaled (slowed)

down by using a time-scale factor η,

vd(t) −→ vd(t/η), for t ∈ [tc, tc + Tp], (3.74)

such that the dynamics effect of the system can be ignored. The corresponding input

ud(t/η) as in

vd(t/η) = H[ud(t/η)] (3.75)

is obtained by using the proposed hysteresis-compensation decomposition approach in

Sec. 3.3.2, and Sec. 3.3.2. Finally, the obtained input ud(t/η) is scaled back in time

domain to obtain the control input u(t) for implementation.

Library Construction To construct the libraries LH,is and LD a priori, the

inversion-based iterative learning control (IIC) technique [19] is used to obtain the

corresponding input elements. As an example, we present below the inversion-based

iterative learning control (IIC) [34],

Ûk(jω) = Ûk−1(jω) + ρ(jω)G−1(jω)(Ŷd(jω)− Ŷk−1(jω)), (3.76)

where for k ∈ N+, Ûk(jω) and Ŷk(jω) are the Fourier transform of the kth iteration

input and output, respectively, with Û0(jω) = 0 and Ŷ0(jω) = 0 initially, ρ(jω) is
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the weighting coefficient, Ŷd(jω) is the Fourier transform of the desired trajectory, and

G(jω) is the transfer function model of the system.

It has been shown and demonstrated in experiments that the IIC techniques can account

for both hysteresis and dynamics in piezoelectric actuators [34], achieving high-precision

tracking. Moreover, the effect of model uncertainties and/or system variations can be

largely removed by simply updating the decomposition library via IIC.

3.5 Experimental Implementation

3.5.1 Experiment Setup

We demonstrate the proposed ASHS approach for output tracking by implementing

it to the trajectory tracking of a piezoactuator for lateral scanning (x,y direction) on

an atomic force microscope (Dimension-ICON, Bruker Nano. Inc.). The first resonant

frequency and the bandwidth of the piezoactuator were at ∼ 650 Hz and ∼ 450 Hz,

respectively, with full displacement range around 72 µm. The control algorithm was

designed and implemented in the MATLAB-xPC-target (MathWorks, Inc.) via a data

acquisition system (PCI-6259, National Instrument Inc.).

3.5.2 Implementation of the Proposed ASHS Approach

Library Construction

The 3rd-order uniform B-spline of 20 different amplitudes were used to construct the

hysteresis-compensation library LH of 20 sub-libraries, LH,i with i = 1, 2, · · · , 20. With

a time duration of over 30 seconds–compared to the time constant of the piezoactuator

at 0.5 second, the B-splines were slow enough to avoid exciting the dynamics of the

piezoactuators, and the IIC technique above was utilized to obtain the corresponding

input elements, as shown in Fig. 3.3(a). The function ϕ(τ) (see Eq. (3.60)) for optimiz-

ing the output element amplitude in Sec. 3.3.3 was obtained experimentally as shown

in Fig. 3.3(b).

For dynamics compensation in different frequency ranges, a library LD consisting of 3
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Figure 3.3: (a) The input elements for the uniform B-spline based outputs at 20 different
amplitudes; (b) The ϕ(τ) function, and (c) The input elements for the uniform B-spline
based outputs at 3 different speeds.

different speeds (ND = 3) was constructed in the similar way, as shown in Fig. 3.3(c),

where the amplitude was kept at 2µm (2.8% of the total displacement range), so that

the hysteresis effect can be ignored.

Inverse Preisach Modeling of the Hysteresis

The weighting-integration function f(·, ·) of the inverse Preisach model, as shown in

Fig. 3.4 was identified by using a sinusoidal wave with decaying amplitude as an exci-

tation signal, after the local memory effect had been removed by driving the piezoac-

tuator to the full range. The model was validated by using a sinusoidal wave of vary-

ing amplitude as the input, and comparing the experimentally measured output to

the model-predicted one, as shown in Fig. 3.5(a). The major hysteresis loop pre-

sented in Fig. 3.5(b) demonstrates that the hysteresis effect was, indeed, significant

in this piezoactuator system. Monotonic in both directions, the identified weighting-

integration function f(·, ·) was then employed online at each decomposition instant tc to
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Figure 3.4: The weighting-integration function f(·, ·) of the Preisach model identified
through experiment.

obtain the values of the reference input ud(t) at the decomposition knots in the interval

[tc, tc + Tp].

Online Output Decomposition, Input Synthesis and Optimization

To demonstrate the proposed approach for simultaneous hysteresis-dynamics compen-

sation, a trajectory with peak-to-peak amplitude of 67.6µm (94% of the total displace-

ment range) at three different speeds were chosen as the desired trajectory. Only a

finite preview of the desired trajectory with preview time of Tp = 500, 40 and 20 ms,

respectively, was used in the tracking at the low, medium, and high speeds, respec-

tively.

In online implementation, first, during each decomposition period, the correspond-

ing portion of the previewed desired trajectory yd(t) was spatially scaled down by 20

times and then decomposed by using the dynamics-compensation library LD via lin-

ear superposition to obtain the intermediate output decomposition coefficients ḡks (see

Eqs. (3.68, 3.69)) and the intermediate input vd(t) (after scaling the signal back); Sec-

ondly, the intermediate output vd(t) was slowed down by 210, 2625, and 5250 times
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Figure 3.5: (a)Validation of the inverse Preisach model ; (b) The major hysteresis loop
of x-axis piezoactuator.

for the low, medium, and high speed, respectively, and then decomposed by using the

hysteresis-compensation library LH . Finally, the compensation factors hks was ob-

tained by Eq. (3.51), and then online updated via Eq. (3.66), and then combined with

the intermediate decomposition coefficients gks to obtain the control input.

3.5.3 Tracking Results and Discussion

For comparison, tracking by using a well-tuned PI controller and the DC-gain method

(where the control input was obtained by simply scaling the desired output by the DC-

gain of the system) were also conducted in the experiment, as shown in Figs. 3.6-3.8

for the low, medium and high speed, respectively. The comparison of the open-loop to

the closed-loop frequency response in Fig. 3.9 showed that with the PI-controller, the

bandwidth of the system was well maintained while the resonant peak was removed.

The corresponding relative RMS tracking errors were compared in Table. 5.1.

The experimental results clearly demonstrated the performance of the proposed method

in compensating for both the dynamics and the hysteresis effectively in achieving accu-

rate tracking, particularly, during high-speed, large-amplitude tracking. At low speed

(where the hysteresis effect was pronounced, see Fig. 3.6, in which the tracking error

of the DC-gain clearly showed the hysteresis effect), the hysteresis effect was almost



61

0 200 400 600 800 1000
−40

−20

0

20

40

Time (ms)

O
u

tp
u

t 
(u

 m
)

Low speed tracking

 

 
a

Desired trajectory ASHS PID DC−gain

0 200 400 600 800 1000

−5

0

5

Time (ms)

E
rr

o
r 

(u
 m

)

 

 
b

+

Figure 3.6: Comparison of (a) the tracking results by using the proposed ASHS ap-
proach to those obtained by using a well-tuned PI controller and the DC-gain method,
and (b) the corresponding tracking error for low-speed tracking.

completely removed by both the proposed method and the PI feedback. However, in

medium and high speed tracking, where both the hysteresis and the vibrational dynam-

ics effects were pronounced, the tracking error of the DC-gain method clearly showed

the combined hysteresis-dynamics effects (see Fig. 3.7 and Fig. 3.8). The tracking of the

PI-feedback control degraded as the spectrum of the desired output approached to the

bandwidth of the closed-loop system, whereas with the proposed technique, precision

tracking of only 3∼4% RMS tracking error was still maintained (see Table 5.1).

Table 3.1: The relative RMS tracking error of the three methods
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Figure 3.7: Comparison of (a) the tracking results by using the proposed ASHS ap-
proach to those obtained by using a well-tuned PI controller and the DC-gain method,
and (b) the corresponding tracking error for medium-speed tracking.

Low (%) Medium (%) High (%)

ASHS 1.84 3.35 3.96

PI 2.12 10.34 22.79

DC-gain 18.32 17.28 26.59

The experimental results also demonstrated the efficacy of the proposed approach in

exploiting the benefits of offline learning to avoid the complexity in modeling, controller

design and implementation in output tracking of hysteresis-Hammerstein systems. For

example, in the high-speed tracking with preview time Tp = 20 ms (half of the total

time duration), only 20 input-output elements were used in the decomposition-synthesis

process, and the online computation was distributed to ∼100 sampling periods. In each

sampling period, the input synthesis process only amounted to a couple of simple multi-

plications and additions. Moreover, quasi-static uncertainties in day-to-day operation,
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Figure 3.8: Comparison of (a) the tracking results by using the proposed ASHS ap-
proach to those obtained by using a well-tuned PI controller and the DC-gain method,
and (b) the corresponding tracking error for high-speed tracking.

such as day to day variation of the piezoactuator, can be accounted for with minor to

no loss of tracking performance by updating the input-output libraries LH , LD and a

simple weighting-integration function f(·, ·) of the Preisach model regularly through a

straightforward offline process.

3.6 Conclusion

In this chapter, the superposition of Hammerstein systems has been studied through

the development of the almost superposition principle of Hammerstein systems. It

has been shown that the superposition error can be rendered arbitrarily small, i.e.,
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Figure 3.9: (a) The Bode plot of the x-axis open-loop response; (b) The Bode plot of
the x-axis PI feedback close-loop response.

the almost superposition holds for Hammerstein systems, provided that the number of

output elements is large enough. A realization of the ASHS for output tracking has been

proposed by combining uniform B-splines for trajectory decomposition with an inverse

Preisach model for input synthesis. Two optimization schemes are further proposed to

enhance the implementation of the ASHS in practice. Moreover, the proposed ASHS

has been implemented for simultaneous compensation of hysteresis and dynamics in

precision output tracking. Experiments were performed to control the piezoactuator on

an AFM system in different frequency range, and the results demonstrated the efficacy

of the proposed method.
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Chapter 4

On Single-basis Online Trajectory Decomposition for

Control Applications

Abstract

In this chapter, the problem of decomposing a trajectory online by using single basis

function (and its time-shifted copies) is considered for control applications. Trajectory

decomposition has been explored in control areas including fuzzy and neural-network

control, system identification, and learning control, where a given trajectory is decom-

posed (approximated) by using a set of basis functions. The existing decomposition

methods, however, are limited to special applications (e.g., contour tracking in ma-

chining), and/or requires truncation of the basis functions. Although these limitations

might be alleviated by, for example, using additional basis functions, the complexity in

implementations is inevitably increased. This work aims to achieve online asymptotic

decomposition of a partially-known trajectory by using only one basis function and its

time-shifted copies without truncation. First, we consider the problem as a least-square

minimization problem, then truncation of the basis functions in the decomposition is

resolved through a zero-period extension of the trajectory (i.e., extending the beginning

of the trajectory at its initial value for a finite period). It is shown that as the length of

the extended period increases, the decomposition coefficients at the beginning portion

of the extended period approach to zero. Finally, a sectional interactive decomposition

algorithm is proposed for online trajectory decomposition. Numerical example by using

B-spline as the basis function is presented to demonstrate the proposed decomposition

approach.
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4.1 Introduction

In this chapter, the problem of decomposing a trajectory using only single basis func-

tion and its time-shifted copies is considered for control applications. Trajectory de-

composition has been explored in areas including data regression [62, 63], signal anal-

ysis [64], and dynamics and control [65, 26, 66]. Particularly, in control areas, tra-

jectory decomposition has been utilized in fuzzy-neural network control to approxi-

mate/interpolate the input-output mapping [66], in system identification to approxi-

mate the linear parameter-varying systems [65], and in iterative learning control (ILC)

to extend ILC to non-repetitive operations [26]. In these areas, it is very much desired

to achieve accurate decomposition by using only few types of basis functions (as few

as, possibly, only one type), and without intensive computation. The existing methods,

however, not only involve truncations of the basis functions and extraneous steps to

address truncation-caused issues, but also demand heavy computations, thereby, not

suitable for online implementations. These needs in trajectory decomposition and the

challenges involved motivate this work.

Limitations exist in current techniques for online trajectory decomposition. For exam-

ple, although precision trajectory decomposition can be obtained by using B-splines as

the basis functions [21, 22], these methods do not account for control objectives such as

high-order smoothness of the trajectory and ease of obtaining the control input for pre-

cision output tracking. These control-oriented objectives can be taken into account by

integrating the decomposition technique with iterative learning control (ILC). For ex-

ample, a task-based basis function method is employed to extend ILC to micro-robotic

deposition [3]. However, this technique is limited to specific types of trajectories with

limited variations (e.g., sinusoidal and/or triangle waves, and concatenations of these

trajectories). To broaden the applications of ILCs, model-based rational basis func-

tions have been proposed for tracking more general trajectories through extrapolation

[23, 25]. Alternatively, multiple basis functions each corresponding to a different basic

state of a linear time variant system can be identified through ILC, and inputs for other

states of the system can then be obtained via interpolation [24]. However, the number
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of the types of basis functions used are increased significantly, rendering the learning

processing time consuming and the computation complicated. The complexity caused

by the large number of basis function types (used in the input-output decomposition)

can be alleviated by using uniform B-splines based basis functions [26]. All these meth-

ods, however, require multiple types basis functions and, when the trajectory is only

partially known, truncation of the basis functions at the boundary of the decomposition

period [26], thereby, increasing the complexities in the applications.

In existing trajectory decomposition methods, truncation of the basis functions in the

decomposition has resulted in extraneous difficulties and complexities. For example,

to exploit the advantage of iterative learning control (ILC) in attaining both high-

performance and robustness (against quasi-static and slow system dynamics variations)

in high-speed tracking, it has been proposed to combine online decomposition of the

partially known (i.e., finite previewed) desired trajectory via B-spline-based basis func-

tions with ILC based offline tracking of the basis functions via ILC for general output

tracking of linear dynamic systems [26]. Such an idea of offline-learning, and online-

decomposition-synthesis has also been extended to Hammerstein systems [67]. Trun-

cation of basis functions is needed to decompose partially-known (finite-previewed) of

desired trajectory that, in general, does not start and/or end at zero. However, it is

rather difficult (if not completely impossible) to track such truncated basis functions

without inducing pronounced transient tracking error [68]. Although the discontinuous-

beginning-end-caused tracking error can be addressed by smoothly extending and tran-

siting the truncated basis functions to zero, extra basis functions are induced, resulting

in not only extra work (in redesigning the new basis function), but also additional types

of basis functions and possibly, extraneous tracking error, complicating the decompo-

sition procedure. Therefore, there are needs to study online trajectory decomposition

by using minimal types of basis functions without truncation.

The main contribution of this work is the development of an asymptotic trajectory de-

composition technique by only using single type of basis functions without truncation.

First, the problem of trajectory decomposition using single basis function (and its time-

shifted copies) is considered via least-square minimization. It is shown that arbitrary
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decomposition precision can be attained by using enough number of single-type basis

functions. Then the issue of truncating basis functions in the decomposition is resolved

via a zero-period extension of the trajectory (i.e., by extending the beginning of the

trajectory at its initial value for a finite period). The decomposition coefficients in

the beginning portion approach to zero as the length of the extended period increases.

Finally, we proposed a sectional interactive decomposition algorithm for online trajec-

tory decomposition (where the trajectory to be decomposed is partially known). The

proposed decomposition method is illustrated through a numerical example by using B-

spline as the basis function. Although the basic idea of the proposed approach has been

explored in our recent publication [61], the development in [61] is rather preliminary.

In this chapter, much more rigorous theoretical treatment, including the proof of the

asymptotic decomposition, the completeness of the sectional interactive decomposition

scheme, and a numerical technique to further reduce the online computation complexity

are presented, along with more simulation results and discussions that demonstrate the

proposed approach more clearly.

4.2 Problem Formulation: Single-basis Trajectory Decomposition

We assume, without loss of much generality, that

Assumption 24. The trajectory yd(t) : < → < is smooth and compactly supported in

a given period [0, T ].

Assumption 25. The basis function B(t) : < → < is positive, smooth, compactly

supported in [−τ1, τ2] with τ1, τ2 > 0, and τ1, τ2 � T , and Lipschitz, i.e.,

|B(t1)− B(t2)| ≤ Lb|t1 − t2|, (4.1)

for any t1, t2 ∈ [−τ1, τ2], with Lb ∈ < a positive constant. Moreover, the global maxima

of B(t) occurs at t = 0, i.e., sup
t
B(t) = B(0).

The requirement of sup
t
B(t) = B(0) in Assumption 2 is employed to aid the presen-

tation later, and can be easily satisfied via time-shifting.
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To facilitate the implementation, we consider the decomposition of the trajectory in

discrete domain, i.e.,

yd ,
[
yd[0], yd[1], . . . , yd[Nb]

]
(4.2)

with

yd[i] = yd(iTs), i = 0, 1, . . . , Nb, and Nb = bT/Tsc ,

where Ts ∈ < is the sampling time, and b·c is the floor function (i.e., bxc is the biggest

integer smaller than x ∈ <). Thus, the trajectory to be decomposed and the corre-

sponding basis functions are the discretized counterparts of those satisfying Assump-

tions 24, 25, respectively.

Definition 26. (Decomposition Library) The library of decomposition basis, Le, is

an equivalent class of the basis function B[·] generated via time-shifting,

Le = {Bk[·] : Bk[i] = B(iTs − kΨ), k ∈ N, i ∈ Z}, (4.3)

where N and Z denotes the set of natural and integer numbers, respectively, and Ψ ∈ <+

with

Ψ � T (4.4)

is the decomposition knot period, i.e., the time shift between two successive basis func-

tions, which determines the density of the basis functions in the decomposition.

It can be easily verified that the decomposition library Le defined above is indeed

an equivalent class [69].

Single-basis Asymptotic Trajectory Decomposition (SBATD) The SBATD

problem is to, under the above Assumptions 24, 25, achieve the following three objec-

tives:

O1: For any given trajectory yd in Eq. (4.2), find a set of decomposition coefficients

gks such that for

ys[i] ,
Nd+q∑
k=−p

gkBk[i], with i = 0, 1, · · · , Nb, (4.5)
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asymptotic decomposition is achieved in `2-norm, i.e.,

lim
Ψ→0
J (yd, Ψ) = lim

Ψ→0
‖yd − ys‖2 = 0, (4.6)

where

ys ,
[
ys[0], ys[1], . . . , ys[Nb]

]
, (4.7)

p = bτ2/Ψc , q = bτ1/Ψc , (4.8)

and Nd ∈ N is the total number of knot periods within the decomposition period T ,

and ‖y‖2 denotes the `2 norm of a discrete sequence y = [y[0], y[1], · · · , y[N ]].

O2: For a given decomposition knot period Ψ , and any ε > 0, find the length of

zero-extension period Tet,h = Tet,t = (ls + lm)Ψ (ls, lm ∈ N) to extend the trajectory

at its beginning and its end (called the head extension and the tail extension below),

respectively, such that for the zero-extended trajectory ŷd defined as

ŷd[i] =


0, for i = −Ko,−Ko + 1, . . . , − 1,

yd[i], i = 0, 1, . . . , Nb,

0, for Nb + 1, Nb + 2, . . . , Nb +Ko,

(4.9)

the decomposition coefficients at the beginning of the head-extension period and the

end of the tail-extension period are smaller than ε for any ls ≥ l∗s and any lm ≥ l∗m,

|gk| < ε, for k = −p− lm,−p− lm + 1, . . . , q − lm,

and Nd − p+ ls, Nd − p+ ls + 1, . . . , Nd + q + ls,

(4.10)

where in Eq. (4.9), Ko = bTex,h/Tsc.

O3: For any given finite partition of the trajectory yd,

yd =

v⋃
s=1

yd,s, (4.11)

with

yd,s , [yd[Ks−1 + 1], yd[Ks−1 + 2], . . . , yd[Ks]] , (4.12)

for s = 1, 2, . . . , v, redesign each section of the trajectory yd,s as ŷd,s with an extension

and smooth transition to zero of period length K̂o, such that the decomposition coeffi-

cients of ŷd,s, ĝks, approach to those obtained by decomposing the entire trajectory as
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a whole, i.e.,

lim
Ks−1−K̂o→0

|ĝk − gk| = 0, (4.13)

for each s = 1, 2, . . . , v and each k = ms−1, ms−1 + 1, . . . , ms − 1, where Ks−1, Ks

are the first and the last original index of the sth section, respectively, and ms ∈ N is

the index of the last decomposition coefficients in the sth section (globally indexed from

the first section).

Note that Objective O1 addressed the basic question of decomposing a trajectory

using only one type of basis functions. However, the solution obtained requires, in

general, truncation of the basis functions, as the domain of the basis functions (involved

in the decomposition) is larger than that of the trajectory yd itself. Thus, Objective

O2 is proposed to avoid the truncation of the basis functions via a zero-extension of

the trajectory. Finally, Objective O3 is to address two needs in online decomposition

where the trajectory is not completely known and heavy online computation needs to

be avoided.

4.3 Objective O1: Trajectory Decomposition based on Least Square

Minimization

In this section, we first present the decomposition solution, then show that the solution

is asymptotic.

By minimizing the `2-norm of the decomposition error J (yd, Ψ) in (4.6), the optimal

decomposition coefficients

G = [g−p, g−p+1, . . . , gNd+q]
> (4.14)

can be readily obtained via the least-square-minimization [22, 60],

G∗ = (M>M)−1M>yd, (4.15)
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where yd is given by (4.2), and

M =



B−p(0) B−p+1(0) . . . BNd+q(0)

B−p(1) B−p+1(1) . . . BNd+q(1)

...
...

...
...

B−p(Nb) B−p+1(Nb) . . . BNd+q(Nb)


N ′b×N ′d

, (4.16)

with N ′b = Nb + 1 and N ′d = Nd + p + q + 1. Typically, N ′b ≥ N ′d, as in practices

the number of elements employed in the decomposition shall be smaller than the total

number of sampled points. By Assumption 25,

Bk[i] = 0, for i ≤ b(k − q − 1)Ψ/Tsc , or i ≥ d(k + p+ 1)Ψ/Tse ,

and each k = −p, − p + 1, . . . , Nd + q. This implies that at each time instant, only

p+ q number of basis functions are involved in the decomposition, and M is a banded

matrix [70], i.e., for all i = 1, 2, . . . , N ′b,

Mi,j = 0, for 1 ≤ j ≤ max{1, i− p+ 1}

or min{i+ q − 1, N ′d} ≤ j ≤ N ′d.
(4.17)

where Ai,j denotes the element of any matrix A ∈ <n×m at the ith row and jth column

for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. The approximation error is given by [22]

‖e(yd, N ′b)‖2 = (y>d
(
I −M(M>M)−1M>

)
yd)

1/2. (4.18)

Next, we show that the decomposition error approaches to zero as the knot period Ψ

decreases to zero, or equivalently, as the number of the basis functions used in the

decomposition increases.

Lemma 27. Let Assumptions 24 and 25 be satisfied, and let the decomposition coeffi-

cients and the corresponding decomposition error be given by Eqs. (4.15, 4.18), respec-

tively. Then, for any given ε > 0, there exists a decomposition knot period Ψ satisfying

0 < Ψ ≤ T/
(
N ′b − ( ε

N ′b‖yd‖1
)2
)

, such that the approximation error ‖e(yd, N ′b)‖2 ≤ ε.

Proof. proof We proceed by noting that M ∈ <N ′b×N ′d has full column rank, thereby, in

the decomposition error e(yd, N
′
b) in Eq. (4.18), the matrix multiplicationM(M>M)−1M>
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can be rewritten via the singular value decomposition of M ,

M = UΣV > (4.19)

as

M(M>M)−1M> = UΣV >(V Σ>U>UΣV >)−1V ΣU> = UIsubU
> (4.20)

where

Isub =

 IN ′d×N ′d 0

0 0


N ′b×N ′b

, (4.21)

U ∈ <N ′b×N ′b and V ∈ <N ′d×N ′d are both unitary matrix, and Σ ∈ <N ′b×N ′d is a diagonal

matrix. Thus by Eq. (4.20), the decomposition error e(yd, N
′
b) can be quantified as

‖e(yd, N ′b)‖2 =
(
y>d U(I − Isub)U>yd

)1/2

=

 N ′b∑
i=N ′d+1

(y>d ui)
2

1/2

≤
√
N ′b −N ′dN

′
b‖yd‖1

, (4.22)

where ui is the ith column vector of U . The proof is completed by choosing N ′d ≥

N ′b − ( ε
N ′b‖yd‖1

)2, i.e., Ψ ≤ T/
(
N ′b − ( ε

N ′b‖yd‖1
)2
)

.

4.4 Objective O2: Trajectory Decomposition without Basis Function

Truncation

Next, we show that the truncation of the basis functions can be avoided by adding a

zero-extension period at the beginning and the end of the trajectory to be decomposed.

As the matrix

M ,MM> (4.23)

is a banded matrix (for M itself is a banded matrix), the decomposition coefficient gk

for k = −p,−p+ 1, . . . , Nd + q can be obtained from Eq. (4.15) as

gk =

N ′b∑
j=1

(M−1)k,j%yd,j , (4.24)
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where

%yd,j =

N ′d∑
i=1

Mj,iyd[i]. (4.25)

Thus, central to show that gk → 0 as k → ±∞ is to quantify (M−1)i,j for any given

i and j. Such a quantification is given by the Theorem below [70].

Theorem 28. [70] Let S = {1, 2, · · · , N}, `2(S) = {{xn}Nn=1 :
∑N

n=1 x
2
n < ∞} be a

Hilbert space ( `2(S): Set of all square summable sequences {xn}Nn=1) [71], and B(`2(S))

be a Banach space on the Hilbert space `2(S), then for any A and A−1 in B(l2(S)),

|(A−1)i,j | ≤ C(A)λ(A)|i−j|. (4.26)

where

1. If A is positive definite and m-banded,

λ(A) = f2(
√
cond(A)) (4.27)

with

f(x) ,
(
x− 1

x+ 1

)1/m

, (4.28)

cond(A) , ‖A‖‖A−1‖, ‖A‖ = max{s : s ∈ σ(A)},

and σ(A) the singular value of matrix A,

C(A) = ‖A−1‖g(
√
cond(A)), (4.29)

where g(x) , max{1, (1 + x)2/(2x2)}.

2. If A is non-positive definite but still m-banded, quasi-centered, bounded and in-

vertible,

λ(A) = f(cond(A)) (4.30)

and

C(A) = (m+ 1)λ−m(A)‖A−1‖cond(A)g(cond(A)). (4.31)

The matrixM∈ <N ′b×N ′b in (4.23) satisfies the conditions in the above Theorem as

M is invertible by design (through the adjustment of the sampling instants).
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Lemma 29. Let Assumptions 24, 25 be satisfied, and for any given kth decomposition

knot, let yd[i] be zero for i = χ(k − ls), χ(k − ls) + 1, . . . , χ(k + lm), where

χ(k) = dkΨ/Tse , (4.32)

and the decomposition coefficients be given in Eq. (4.15), then for any given ε > 0,

there exist ls and lm ∈ N with

ls ≥
⌈

ln
ε(1− λ(M))

C(M)‖yd‖1
/ lnλ(M) + p

⌉
, (4.33)

and

lm ≥
⌈

ln
ε(1− λ(M))

C(M)‖yd‖1
/ lnλ(M) + q

⌉
, (4.34)

such that the decomposition coefficients of the ith decomposition element gi, satisfying

|gi| ≤ ε, where λ(M) and C(M) are given in Theorem 28 (with A replaced by M), re-

spectively, and d·e and ‖y[·]‖1 denote the ceiling function (i.e., for any x ∈ <, dxe is the

smallest integer bigger than x) and the `1-norm of a discrete sequence y[·], respectively.

Proof. proof As matrix M is a banded matrix, by Eq. (4.26),

(M−1)i,j ≤ C(M)λ(M)|i−j|. (4.35)

Thus, by Eq. (4.24),

gi =

N ′b∑
j=1

(M−1)i,j%yd,j ≤
N ′b∑
j=1

C(M)λ(M)|i−j|%yd,j . (4.36)

It can be verified that by choosing ls and lm as in (4.33) and (4.34), respectively, we

have

%yd,j = 0 for i− p+ 1 ≤ j ≤ i+ q − 1, (4.37)

and

gi ≤
i−ls∑
j=1

C(M)λ(M)|i−j|%yd,j +

N ′b∑
j=i+lm

C(M)λ(M)|i−j|%yd,j ≤ ε. (4.38)

This completes the proof.

The following corollary follows directly.
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Corollary 30. Let Assumptions 24, 25 be satisfied, then for any given ε > 0, and any

given zero period length

Ko = b(ls + lm)Ψ/Tsc (4.39)

with ls and lm given by (4.33), (4.34), respectively, the decomposition coefficients gis

in Eq. (4.15) satisfy |gi| ≤ ε for i = −p − lm, − p − lm + 1, . . . , q − lm and i =

Nd − p+ ls, Nd − p+ ls + 1, . . . , Nd + q + ls.

The above corollary implies that by having a long enough zero extension at the

beginning and the end of the trajectory, the elements involved in the decomposition

vanish as those elements are farther away from the “original” beginning and end points

of the trajectory, respectively, and hence, truncation of the basis functions can be

avoided.

4.5 Objective O3: Sectional Interactive Trajectory Decomposition

Under the following Assumption:

Assumption 31. The domain of each section is much large than the knot period, i.e.,

(Ks −Ks−1)Ts � Ψ for any given s = 1, 2, . . . , v.

We aim to further achieve Objective O3 by utilizing a sectional interactive decom-

position (SID) algorithm without truncation of basis functions, where each section of

the trajectory, in general, does not start and/or end at zero. Note that the above As-

sumption 31 can be always satisfied by selecting a sufficiently small knot period Ψ .

More concretely, when decomposing any sth partition of the trajectory yd,s (given

by Eq. (4.12)), the basis functions Bk[·] for k = ms − p, ms − p + 1, . . . , ms + q

(ms: the index of the last decomposition knot in the sth section), are used (the green

splines in Fig. 4.1(a)), where a subset of these basis functions, Bk[i] with i > Ks, for

k = ms − p, ms − p + 1, . . . , ms + q, falls outside the domain of the sth section tra-

jectory (the shadowed part in Fig. 4.1(a)), resulting in the truncation of these basis

functions. Thus, we propose to redesign the beginning portion of the current section of

the trajectory by deducting from it the weighted summation of those B-splines involved
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in the decomposition of the preceding section (that falls into the current section), such

that the redesigned current section starts from zero and smoothly transits to the next

section. As such, truncation of the elements in the decomposition is avoided. Specif-

ically, for the sth section, the weighted summation of the B-splines that fall outside

the sth section domain and into the s + 1th section domain (the red dashed curve in

Fig. 4.1(a)), ye,s, is given by

ye,s[i] =


ms+q∑

k=ms−p
gkBk[i], i = Ks + 1,Ks + 2, . . . ,Ks + χ(p);

0, otherwise,

(4.40)

then, the s + 1th section trajectory is redesigned as (see Fig. 4.1(b) for the redesigned

trajectory)

ŷd,s+1 = yd,s+1 − ye,s. (4.41)

Then the decomposition coefficients of the redesigned s+ 1th section trajectory ĝi, i =

ms − lm + q, ms − lm + q + 1, . . . , ms+1 + q are used to update the decomposition

coefficients for the original s+ 1th section.

We summarize this decomposition scheme in Algorithm 1 below. As shown in

: Sectional Interactive Decomposition (SID)
Step 1. For any given s+ 1th section of the trajectory, let

K ′s = Ks − χ(ls + lm),

where ls, lm are given by Eq. (4.33, 4.34), respectively. Then we redefine the modified
trajectory ŷd,s+1 as

ŷd,s+1[i] =


0, i = K ′s, K

′
s + 1, . . . , Ks;

yd,s+1[i]− ye,s[i], i = Ks + 1, Ks + 2, . . . , Ks + χ(p+ q);

yd,s+1[i], i = Ks + χ(p+ q) + 1, . . . ,Ks+1.

(4.42)

Step 2. Update the decomposition coefficients as

gi =

{
gi + ĝi, i = ms − lm + q, ms − lm + q + 1, . . . , ms + q;

ĝi, i = ms + q + 1, ms + q + 2, . . . , ms+1 + q.
(4.43)

Fig. 4.1(b), the redesigned s + 1th section of the trajectory ŷd,s+1 starts with zero.
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Figure 4.1: Sectional decomposition process.

Moreover, by extending the beginning of each redesigned section sufficiently long, the

basis functions for the decomposition of the extended beginning portion can be ignored

(by Corollary 30). Thus, the truncation issue in online trajectory decomposition is

avoided. The following lemma shows that with a long enough zero-extension period,

the decomposition coefficients of the above SID and those obtained when decomposing

the entire trajectory as a whole are equivalent to each other.

Lemma 32. Let Assumptions 24, 25 and 31 be satisfied, and let gis and g◦i s be the

coefficients for decomposing the trajectory yd using the above SID technique and as a

whole via Eq. (4.15), respectively. Then, limK′s→0|gi − g◦i | = 0.

Proof. proof We first show that the coefficients obtained for the redesigned sth section



79

is equivalent to the decomposition of the trajectory ỹd,s defined as

ỹd,s[i] =


ŷd,s[i], i = K ′s−1, K

′
s−1 + 1, . . . , Ks;

ye,s[i], i = Ks + 1, ,Ks + 2, . . . , Nb.

(4.44)

By the definition of ye,s in Eq. (4.40), we can find that the decomposition coefficients

of ỹd,s obtained through the least square minimization process equal to those of ŷd,s,

and other decomposition coefficients beyond the domain of ŷd,s are all zeros.

Then, if we let K ′s = 0 for each s = 1, 2, . . . , v, the summation of these trajectory ỹd,s

for s = 1, 2, . . . , v is equivalent to the whole trajectory yd, i.e., yd =
∑v

s=1 ỹd,s, thereby,

it can be simply implied that the vector summation of the decomposition coefficient

vectors corresponding to each trajectory ỹd,s, for s = 1, 2, . . . , v, is equivalent to the

decomposition coefficient vector obtained when decomposing the trajectory as a whole.

This completes the proof.

Note that in online implementation, the computation can be substantially reduced

by evenly partitioning the trajectory, so that the matrix M = MM> in Eq. (4.15),

which can be computed offline a priori, is the same for the decomposition of all sections.

Also, we can further reduce the computation in computing each gi by exploiting the

decaying property of matrixM in Eq. (4.15), i.e., the coefficient gi can be computed as

gi =

lb∑
j=lu

(M−1)i,j%yd,j , (4.45)

where lu = max{1, i− ls}, lb = min{Nd, i+ lm}, and %yd is given in (4.25). As the term

(M−1)i,j can be computed offline a priori, the computation involved in Eq. (4.45) is

substantially reduced and thereby, more suitable than Eq. (4.15) in online implemen-

tation.

4.6 Numerical Example: B-spline-based Trajectory Decomposition

We next use B-spline as an example of basis functions to demonstrate the proposed

online trajectory decomposition method, i.e., the three Objectives O1 to O3.
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Figure 4.2: Comparison of the decomposition results when the knot period Ψ = 10 (a)
and Ψ = 640 (b).

4.6.1 B-spline

Satisfying all the conditions required in Assumption 25, the sth-degree B-spline basis

functions can be obtained recursively via

Bi,s(t) =
t− td,i

td,i+s − td,i
Bi,s−1(t) +

td,i+s+1 − t
td,i+s+1 − td,i+1

Bi+1,s−1(t), (4.46)

where

Bi,0 =


1, i∆t ≤ t < (i+ 1)∆t;

0, otherwise.

(4.47)

The basis element B(t) in Eq. (4.3) can be constructed by shifting anyBi,s(·) to centering

at zero. Note that ∆t in Eq. (4.47) corresponds to the knot period Ψ in continuous time

domain. The 3rd degree (s = 3 in (4.46)) B-splines are utilized in the decomposition,

where p = q = 1 (See Eq. (4.8)), i.e., at any given time instant, at most 4 B-splines

(same type) are involved in the decomposition.
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Figure 4.3: The `2-norm and `∞-norm of the decomposition error vs. the knot period
Ψ .

4.6.2 Simulation Results

To simplify the presentation, the sampling time was normalized in the simulation, i.e.,

one unit of the time axis represents one sampling period.

First, we show the simulation results to illustrate Objective O1. A triangle wave signal

with varying amplitude (see Fig. 4.2) was employed as the trajectory to be decomposed.

The approximated trajectories by using knot period Ψ = 10 (i.e., 10 sampling periods)

and Ψ = 640, respectively, are compared with the original trajectory in Fig. 4.2, where

a total of 1004 (for Ψ = 10) and 20 (for Ψ = 640) uniform B-splines were used for

Ψ = 10 and Ψ = 640, respectively. The `2-norm and `∞-norm of the decomposition

errors as the knot period decreased from 640 to 10 are shown in Fig. 4.3, respectively.

It can be seen from Fig. 4.2 that the decomposition error occurred around the vertex of

the triangle wave. However, by using enough number of decomposition knots, precision

decomposition can be achieved, even around the vertexes. As shown in Fig. 4.3, both the

`2-norm and `∞-norm of the decomposition error monotonically and rapidly decreased

to 9.5×10−4 and 2.1×10−3, respectively, as the knot period decreased to Ψ = 10. Thus,

arbitrary decomposition precision and asymptotic decomposition can be achieved.

Secondly, we show the results to illustrate Objective O2 by using a triangle wave (see
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Fig. 4.4), where the knot period was chosen at Ψ = 40 so that the decomposition error

became negligible and truncation of the basis function was allowed.

To examine the effect of the length of the zero-extension period on the values of the

decomposition coefficients, the approximated/decomposed trajectories for two different

lengths of the zero-extension period at Ko = 0 and Ko = 12Ψ = 480, respectively, are

compared with the original trajectory in Fig. 4.4, where the approximated trajectory

was obtained by neglecting those B-splines that fell outside the corresponding zero-

extension period (a total of 3 B-splines). Thus, by Lemma 29 and Corollary 30, as the

length of the zero-extension period increased, the coefficients of those three B-splines at

the beginning of the head extension and the end of the tail extension approached to zero,

respectively, so did the approximation error caused by ignoring/removing those three

B-splines. Thus, we defined the head-coefficient cutoff indicator and the tail-coefficient
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cutoff indicator, Ωp,h and Ωp,t, respectively, as

Ωp,h =

ls+q∑
k=ls−p

|pk|, and Ωp,t =

Nd+lm+q∑
k=Nd+lm−p

|pk|. (4.48)

The variations of the head and the tail coefficient-cutoff indicators as the length of the

zero-extension period increased from Ko = 0 to Ko = 12Ψ = 480 are shown in Fig. 4.5,

respectively.

The simulation results demonstrated that truncation of the basis elements can be

avoided in the decomposition by having a long enough zero-extension period. The

approximation error was pronounced when there was no zero-extension and the three

B-splines beyond the domain of the trajectory were ignored, particularly, at the begin-

ning and the end of the trajectory (see Fig. 4.4(a)). However, by having a zero-extension

of 12 knot periods, such an approximation caused by ignoring the three outside-domain

B-splines were dramatically reduced (see Fig. 4.4(b)). Particularly, as shown in Fig. 4.5,

the amplitude of the decomposition coefficients in both the beginning and the end of

the head and the tail extension period decreased exponentially and rapidly towards zero

as the length of zero-extension period increased.

Last, we show the simulation results to demonstrate Objective O3. A long triangle

wave with large amplitude variations was employed in the decomposition (see Fig. 4.7).
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Figure 4.6: Sectional decomposition for a long trajectory: section 1 (a); section 2 (b).

The trajectory was partitioned into two sections at the middle point of the entire tra-

jectory (marked by the vertical dashed line in Fig. 4.7). The SID algorithm proposed

in Sec. 4.5 was utilized to decompose the trajectory sectionally. The trajectory to be

decomposed was partitioned into two sections (shown in Fig. 4.6), and each section was

decomposed sequentially. The knot period Ψ = 100 was chosen, and the zero-extension

period for each section was chosen to be long enough at 6Ψ . The decomposed trajectory

obtained via the SID algorithm is compared to the original trajectory in Fig. 4.7, and

the comparison for each section (the synthesized vs. the section or redesigned section

to be decomposed) with the SID algorithm is presented in Fig. 4.6. Moreover, the

decomposition coefficients obtained by using the SID algorithm are compared to those

obtained by decomposing the entire trajectory as a whole (called total decomposition)

in Fig. 4.8, where the difference between these two sets of coefficients is also shown.

In Fig. 4.6, no tail-extension was applied to the first section as those three B-splines
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exceeding the end of the first section were accounted for in the decomposition of the

second section, and both sections achieved high precision decomposition. Fig. 4.7 fur-

ther demonstrated that when combined together, the proposed SID method achieved

high precision, with the `2-norm and `∞-norm of the decomposition error at 2.6× 10−3

and 3.0× 10−2, respectively, and the difference was negligible when compared with the

decomposition error with the method proposed in Sec. 4.3. Moreover, Fig. 4.8 shows

that the coefficients obtained by both methods almost coincided with each other with

negligible difference. Therefore, the simulation results show that the proposed SID can

achieve same precision decomposition with less computation complexity.

4.7 Conclusion

In this chapter, a trajectory decomposition method using single basis were proposed for

the applications in control. First, a trajectory decomposition method based on a least

square minimization process was proposed and the decomposition error was proved to

be arbitrarily small as the decomposition knot period goes to zero. Then, we showed

that by adding a zero period at the beginning and the end of the trajectory, the first few

coefficients can be ignored, thus, the truncation of the basis elements can be avoided.
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Furthermore, we proposed a sectional interactive decomposition algorithm (SID) to

decompose a previewed trajectory with only one basis function. The numerical results

demonstrated the efficacy of the proposed method.
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Chapter 5

Optimal Time-Distributed Fast Fourier Transform:

Application to Online Iterative Learning

Control—Experimental High-Speed Nanopositioning

Example

Abstract

In this chapter, an optimal time-distributed fast Fourier transform algorithm and a

time-distributed inverse fast Fourier transform (OTD-FFT/TD-IFFT) algorithm are

proposed. This work is motivated by the need to implement FFT/IFFT online on

general microprocessors (e.g., Intel’s x86 microprocessors) in control applications and

signal processing, for example, the online implementation of frequency domain iterative

learning control (FD-ILC) techniques. In these applications, the conventional FFT algo-

rithm executes all the calculations within one single sampling period, thereby, becoming

the bottleneck in online implementations of signal processing and control algorithms.

In the proposed OTD-FFT technique, the FFT computation of an online sampled data

sequence is optimally distributed among all the sampling periods without increasing

the total computational complexity, arriving at the minimal per-sampling-period com-

putational complexity. As a result, the entire Fourier transformed sequence is obtained

without latency. The proposed approach is extended to online IFFT computation, and

then applied to online FD-ILC implementation. The computational complexity analy-

sis shows that by using the proposed approach, the per-sampling-period computational

complexity is substantially reduced. The efficacy of the proposed OTD-FFT/TD-FFT

for online implementation of FD-ILC technique is demonstrated through experiments

of high-speed trajectory tracking on a piezoelectric actuator.
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5.1 Introduction

In this chapter, an optimal time-distributed fast Fourier transform algorithm and a

time-distributed inverse fast Fourier transform algorithm (OTD-FFT/TD-IFFT) are

developed for online implementation of FFT/IFFT in applications including frequency

domain iterative learning control (FD-ILC) [72, 1, 34], digital audio signal processing

[73], and online signal detection [74, 75]. In these applications, online FFT/IFFT is

central in the corresponding signal processing and control algorithm execution, and de-

mands the most intensive computation. The intensive online FFT/IFFT computation,

however, can be challenging for the hardware used, and becomes the bottleneck in these

implementations. Although special hardware and/or software have been proposed for

online FFT/IFFT [76, 28, 75], these existing approaches are not suitable for applica-

tions such as the online implementation of FD-ILC on general-purpose microprocessors

of Von-Neumann architecture (e.g., Intel’s x86 microprocessors), where the FFT/IFFT

computation needs to be executed in one single sampling period. Through the proposed

OTD-FFT/TD-IFFT, we aim to address such challenges and substantially reduce the

per-sampling-period computation in online control and signal processing applications.

Limitations exist in current techniques developed for online implementation of FFT/IFFT.

For example, a pipeline processor based on very large scale integration (VLSI) tech-

nology has been proposed for computing FFT of fixed-length (e.g., 256 points) [27],

and extended to process data sequences of longer but still fixed lengths [28], by us-

ing a modified representation of the FFT algorithm. These methods, however, require

specially designed VLSI, and hence, are not flexible for processing data sequences of

various lengths. These limitations in FFT computation for different data lengths might

be addressed through hardware development based on field-programmable gate array

(FPGA) and digital signal processor (DSP) technologies, such as a radix-2 single-path

delay feedback pipelined FFT/IFFT processor based on FPGA [29], and a compact on-

line FFT algorithm based on DSP [30]. Although these FPGA/DSP-based techniques

improved the flexibility in online FFT computation, specially-designed hardware is

needed. Alternatively, algorithms have been proposed to improve online computation
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of FFT on general purpose microprocessors (e.g., Intel’s x86 microprocessors), including

a distributed FFT algorithm to process a large block of incoming data [31] that spreads

the computation across smaller blocks of the incoming data, and a multi-rate controller

based on a new discrete lifted system model to save computation by reducing the length

of input data [32]. In these efforts, however, the per-sampling-period complexity is still

significant, and latency is induced when the transformed (output) sequence is obtained.

Therefore, there are needs to develop techniques to further improve the real time im-

plementation of FFT/IFFT, particularly, on general-purpose microprocessors.

High-speed online implementation of FFT/IFFT is needed in applications such as online

application of control techniques like FD-ILC [1] and audio signal processing [73]. For

example, FD-ILC techniques have been developed and integrated with feedback con-

trol in the feedforward-feedback two-degree-of-freedom (2DOF) control configuration,

and applied in applications such as tracking of the sample topography in high-speed

atomic force microscope (AFM) imaging [1, 77, 78]. It is demonstrated that by using

this FD-ILC-based 2DOF control approach, the imaging speed can be significantly in-

creased [1, 78]. Further increase of the imaging speed, however, has been limited by

the hardware incapability to online execute the FFT/IFFT computation fast enough

[1, 78]. Although such a hardware limitation might be alleviated by converting and rep-

resenting the FD-ILC algorithms [79, 35, 78, 80] in time domain via, for example, the

corresponding finite impulse response [81], a lifted model [25] and a transfer function

model, approximation is induced in the system identification process, and high-order

approximation is needed for tracking at high speeds. Moreover, in application such as

fast audio signal processing, FFT is linked to operations such as visualization, signal

mixture, and watermarking on output devices such as monitors and speakers [82, 83],

requiring the microprocessor to be flexible and possess various peripheral interfaces.

Such a combined requirement—heavy computation coupled with versatile peripheral

interactions—renders general purpose microprocessors a more suitable choice. Thus,

highly-efficient FFT/IFFT implementation is essential in these microprocessor-based

real-time control and mechatronics applications.
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The main contribution of this work is the development of an OTD-FFT/TD-IFFT tech-

nique with direct application to online FD-ILC. Without increasing the total computa-

tional complexity, the proposed OTD-FFT/TD-IFFT algorithm exploits the butterfly

structure of FFT/IFFT to optimally distribute the FFT computation of an online sam-

pled data sequence to each of the sampling period, such that the per-sampling-period

computational complexity is minimized, and the entire Fourier transform sequence is

obtained without latency. Specifically, through the proposed OTD-FFT, the maxi-

mal per-sampling-period computational complexity for a data sequence of length 2N

is reduced from 2N log 2N multiplications and 2N log 2N additions to 2N+1 − 2 multi-

plications and 2N+1 − 2 additions, respectively. Similar idea is extended to the IFFT

computation in the proposed TD-IFFT algorithm, where, with the frequency domain

data of length 2N already known, the butterfly computation of IFFT is sequentially

distributed to the first 2N sampling periods. The proposed OTD-FFT/TD-IFFT algo-

rithm is applied to online implementation of FD-ILC, and the computational complexity

of the proposed OTD-FFT/TD-IFFT and the FD-ILC is analyzed. The efficacy of the

proposed approach in online control applications is demonstrated through experimental

implementation of a recently-developed FD-ILC technique [35] to high-speed precision

trajectory tracking on a nanopositioning system.

5.2 Optimal Time-Distributed FFT/IFFT with Minimal Per-Sampling-

Period Computational Complexity

In this section, we present, first, the FD-ILC algorithm as a motivational example, and

then the proposed optimal time-distributed FFT and time-distributed IFFT (OTD-

FFT/TD-IFFT) algorithms.
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5.2.1 Motivational Example: Frequency-Domain Iterative Learning

Control

Consider a general form of the FD-ILC algorithm given in the discrete-frequency domain

[79]

Ui[jωk] = Q[jωk](Ui−1[jωk] + L[jωk]ei−1[jωk]), (5.1)

where ωk = 2kπ/T , k = 0, 1, . . . , Ns, Ns = bT/(2Ts)c, T and Ts are the period of the

iteration and the sampling period, respectively, ei−1[jωk] is the tracking error of the

(i−1)th iteration output, Yi−1[jωk], with respect to the desired trajectory, Yd[jωk], i.e.,

ei−1[jωk] = Yd[jωk]− Yi−1[jωk], i ∈ N+, (5.2)

Yi[jωk] and Ui[jωk] are, respectively, the discrete Fourier transform of the input and

output in the ith iteration, and Q[jωk] and L[jωk] are the“Q filter” and “L filter” in

the ILC to be designed, respectively [79].

When implementing the above FD-ILC directly in frequency domain, Q[jωk], L[jωk],

and Yd[jωk] can be determined a priori (i.e., the frequency responses corresponding to

Q[jωk] and L[jωk], respectively), and the discrete Fourier transform, Yd[jωk], can be

obtained in advance. Thus, the implementation amounts to, after the (i − 1)th itera-

tion, obtaining the discrete Fourier transform (DFT) of the output trajectory via FFT,

Yi−1[jωk], then the frequency domain input Ui[jωk] via Eq. (5.1), and finally, the time

domain input ui[n] for the ith iteration via the inverse DFT.

In offline implementation, the FFT/IFFT computation required in the above frequency

domain ILC algorithm (5.1) usually will not pose computational challenge, i.e., after

obtaining the (i−1)th iteration output yi−1[n], the control operation is paused, and the

ith iteration input ui[n] is computed offline and then, after the operation is resumed,

applied in the ith iteration. Implementing the ILC (5.1) online on a general-purpose

microprocessor, however, can be challenging—At the beginning of each iteration, the

iterative control input must be obtained and available to be applied. Thus, in such an

online implementation via classical FFT/IFFT, both the FFT and the IFFT must be

computed (along with other additional computations) all within one sampling period–

the sampling period right before the first sampled point of the next iteration trial. Such
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heavy computations become the bottleneck in online implementation of FD-ILC.

5.2.2 Optimal Time-Distributed Real-time FFT/IFFT

Through the proposed optimal time-distributed FFT/IFFT (OTD-FFT/TD-IFFT), we

aim to minimize the per-sampling-period computational complexity without increasing

the total computational complexity. First, the classic radix-2 FFT/IFFT is briefly

reviewed.

Review: Radix-2 FFT and IFFT [84, 85]

FFT/IFFT exploits the periodicity and symmetricity existing in discrete-Fourier trans-

form (DFT) to dramatically reduce the computational complexity and increase the

execution efficiency. Particularly, for a real sequence of length of power of 2, {x[n] ∈

<| n = 0, 1, . . . , M − 1, M = 2N , N ∈ N}, N: the set of natural numbers, its DFT,

X[k], can be obtained via [84]:

X[k] =
2N−1∑
n=0

x[n]wknM ,

=
2(N−1)−1∑

r=0

x[2r]w2rk
M + wkM

2(N−1)−1∑
r=0

x[2r + 1]w2rk
M ,

, EN [k] + wkMON [k].

(5.3)

where

wM = e−j(2π/M), and wkM = e−j(2kπ/M), (5.4)

and EN [·] and ON [·] are the even and odd subsequence of x[·], respectively. EN [·] and

ON [·] are recursively decomposed in the same manner until the subsequences E0[·] and

O0[·] each contain only one element from x[·].

In practices, the above calculation of FFT induces N + 1 number of intermediate se-

quences successively,

X0[·], X1[·], . . . , XN [·] with XN [·] = X[·]
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and each intermediate sequence Xp[·] ∈ C1×M (C: the set of complex numbers), for

p = 0, 1, . . . , N , is obtained via an induction process,

Xp[Ii : If ] = [Pp−1(Ii), Pp−1(Ii)] + w2p ◦ [Sp−1(If ), Sp−1(If )]

, Φ(Xp−1[Ii : If ],w2p),

(5.5)

where Xp[Ii : If ] , [Xp[Ii], Xp[Ii+1], . . . , Xp[If−1], Xp[If ]], “◦” denotes the Hadamard

product of two vectors of the same size (i.e., element-wise product), e.g., for any given

two vectors [a1, b1, c1] and [a2, b2, c2], [a1, b1, c1] ◦ [a2, b2, c2] = [a1a2, b1b2, c1c2],

and for i = 1, 2, · · · , 2N−p,

Ii =2p(i− 1), If = 2pi− 1,

Pp−1(Ii) = Xp−1[Ii : Ii + 2p−1 − 1],

Sp−1(If ) = Xp−1[If − 2p−1 + 1 : If ],

(5.6)

with

w2p = [w0
2p , w

1
2p , . . . , w

2p−1
2p ]. (5.7)

Initially,

X0[I(n)] = x[n], with I(n) = dec(rev(bin(n))), (5.8)

where bin(n) denotes the binary representation of an integer n, rev(n) denotes the re-

verse of n, e.g., rev(1011) = 1101, and dec(b) denotes the decimal representation of

a binary number b, e.g., dec(1101) = 13. Thus, the function I(n) is identical to its

inverse, i.e., for any given n, I(n) = I−1(n).

Similarly, IFFT is computed in the same manner. Conventionally, the computation

of FFT/IFFT requires the whole sequence x[·] or X[·] to be known a priori, and

the computation—on general purpose microprocessors of Von-Neumann architecture—

needs to be completed in one single sampling period, thus, not suitable for online

implementation.

5.2.3 Optimal Time-Distributed FFT and IFFT

Time-Distributed FFT

The proposed algorithm is for computing FFT concurrently when the sampled data

sequence is acquired, and obtaining the FFT result without latency.
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Figure 5.1: The schematic chart of Radix-2 FFT, where the pink and purple dashed-
line boxes indicate the computation sequences enabled by the newly-sampled data x[12]
(pink) and x[14] (purple) at the 13th and the 15th sampling period, respectively.

Optimal Time-Distributed FFT (OTD-FFT): Let {x[n] ∈ <| n = 0, 1, · · · , M−

1} with M = 2N , and N ∈ N+ be a sampled input sequence acquired in real time, i.e.,

at any sampling time instant p ∈ [0,M − 1], x[n] is known ∀n ≤ p, then the OTD-FFT

problem is to obtain the DFT sequence of x[·], X[·], such that

• The total computational complexity is the same as that of FFT;

• The maximal per-sampling-period computational complexity is minimized; and

• The entire DFT sequence, X[·], is obtained without latency.

To solve the above OTD-FFT problem, we observe that during the intermediate steps of

the Fourier transform computation, not the entire but part of the input data sequence

is used. For example, as depicted in Fig. (5.1), when N = 4, during the 13th sampling

period, the newly-sampled data x[I(3)] = x[12] allows the computation of the interme-

diate sequence X1[k] for k = 2, 3, and thereby, X2[k] for k = 0, 1, 2, 3 (see the pink
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Figure 5.2: Computation stages of the proposed OTD-FFT scheme.

dashed box in Fig. (5.1)), and during the 15th sampling period, the newly-sampled data

x[I(4)] = x[14] allows the computation of X3[k] for k = 0, 1, . . . , 7 (see the purple

dashed box in Fig. (5.1)). Similar pattern can be carried out until the last sampling

period of the sequence. This observation implies that the FFT computation can be

distributed across the sampling periods when the sequence of x[·] is acquired.

Specifically, the computation of the Fourier transform of the time sequence {x[n] ∈

<| n = 0, 1, . . . , M − 1} with M = 2N can be split into N + 1 stages, S0, S1, . . . , SN

, where the range of the sampling instants of stage Sp is given by (see Fig. (5.2)),

Sp =


[mp : mp+1 − 1] for p = 0, 1, . . . , N − 1,

M for p = N,

(5.9)

where the index mp is given by

mp = 2N−p(2p − 1) for p = 0, 1, . . . , N. (5.10)

In each stage Sp, p = 0, 1, · · · , N , only a portion of the intermediate sequences, Xi[·],

for i = 0, 1, · · · , p − 1, are computed by using the already known part of the input

sequence, denoted as vector Vp and given by:

Vp =


{x[mp : mp+1 − 1]} for p = 0, 1, . . . , N − 1,

{x[M ]}, for p = N.

(5.11)

In each stage, the computation in each sampling period to obtain the corresponding

part of the intermediate sequence, Xp[·], is similar. Considering the input sequence

with length no less than 2N = 24 = 16 (In almost all practices, the length of the

sampled sequence N � 4), then in stage S0, the operation in each sampling period of

stage S0 only amounts to putting the newly sampled input data sequentially into the
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corresponding location of the intermediate sequence X0[·] (see Eq. (5.8)), i.e., during

the nth sampling period for any n in m0 ≤ n ≤ m1 − 1,

X0[I(n)] = x[n], (5.12)

and at the last sampling period of stage S0, the following part of X0[·] have already

been obtained,

X0[I(m0 : m1 − 1)] = V0,

The calculation procedure in stage S1 to SN is described below.

In stage S1, the newly-sampled elements in V1 = {x[m1 : m2 − 1]} will be put in

sequence X0[·] sequentially in the same manner as in stage S0. Then during the nth

sampling period of stage S1 for n = m1, m1 + 1, . . . , m2 − 1, the following part of the

sequence X1[·], X1[I(n)− 1 I(n)], is obtained via one step calculation as follows,
X1[I(n)− 1] = X0[I(n)− 1] + w0

2X0[I(n)],

X1[I(n)] = X0[I(n)− 1] + w1
2X0[I(n)],

(5.13)

where ωj2 for j = 0, 1 is as defined in Eq. (5.4). Thus, in stage S2, the known part

of X1[·] from the above computation can be used to compute the following part of

sequence X2[·], X2[I(n) − 3 : I(n)], for n = m2, m2 + 1, . . . , m3 − 1, and recursively,

by stage Sp (p = 2, 3, . . . , N − 1), the following part of the intermediate sequences

Xk[·], k = 1, 2, · · · , p− 1, are obtained,

Xk[Ii : If ], for

Ii = I(n)− 2k + 1, If = I(n), and

n = mk, mk + 1, . . . , mk+1 − 1.

(5.14)

Thus, in general, during the nth sampling period in stage Sp for n = mp, mp +

1, . . . , mp+1− 1 and 1 ≤ p ≤ N − 1, the newly sampled input data x[n] are passed into

X0[I(n)] as in Eq. (5.12), and the following part of the sequence Xp[·], Xp[I(n)−2p+1 :

I(n)], is obtained via p-step calculations below,

Xk[I(n)− 2k + 1 : I(n)] = Φ(Xk−1[I(n)− 2k + 1 : I(n)], w2k),

for k = 1, 2, . . . , p,

(5.15)
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where the function Φ(·, ·) is defined in Eq. (5.5), and X0[I(n)] for n = mp, mp +

1, . . . , mp+1 − 1 are obtained the same manner as in Eq. (5.13).

In stage SN , i.e., n = 2N , p = N steps calculation is completed—by letting p = N in

Eq. (5.15), and the entire sequence XN [·] is obtained as the FFT of the whole sequence

x[·], i.e., X[·] = XN [·].

Next, we show that the above time-distributed computation scheme is optimal in min-

imizing the maximal per-sampling-period computational complexity without latency

(The computational complexity is discussed later in Sec. 5.2.4).

Lemma 33. For any given sampled input sequence {x[n] ∈ <| n = 0, 1, . . . , M −

1, M = 2N , N ∈ N}, the proposed OTD-FFT algorithm minimizes the maximal per-

sampling-period computational complexity without latency.

Proof. Examining the per-sampling-period computational complexity in the above OTD-

FFT algorithm shows that the maximal per-sampling-period computational complexity

occurs at the last sampling period–the (M−1)th sampling period, and equals to 2N+1−2

multiplications and 2N+1−2 additions. Such a computation cannot be further reduced

without latency as at any kth sampling period for 0 ≤ k ≤ M − 1, the computa-

tion using the already available sampled input sequence x[n] for n = 0, 1, . . . , k has

been completed, i.e., any further computation would require future input data x[n]

for n > k that are not yet available. Moreover, all the calculations conducted in the

(M − 1)th sampling period require the newly-sampled data x[M − 1] (see Eq. (5.15)).

Thus, the maximal per-sampling-period computational complexity cannot be further

reduced. This completes the proof.

Time-Distributed IFFT

It can be seen—from the above description—that the TD-IFFT can be computed in the

same manner by splitting the computation into N + 1 stage across the entire sampling

sequence. Alternatively, as usually the entire Fourier transformed sequence X[·] is

already known a priori, computation of the inverse Fourier transform can be distributed

across any K ≤ M(M = 2N ) number of sampling periods. Such a time-distributed
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computation of IFFT is needed in applications such as real-time FD-ILC, where the

output of the IFFT—the corresponding time domain control input sequence x[·]—is

needed not at the last sampling instant of each iteration period, but much earlier.

Thus, it is proposed next to compute the TD-IFFT in the first 2N sampling periods

(for sequence length of 2N length). The 2N periods of computation window is chosen as

such a choice not only allows the calculation to be distributed in a pattern corresponding

to the butterfly structure of IFFT, but also guarantees that in online applications such

as FD-ILC, the per-sampling-period computational complexity in the first 2N sampling

instants does not exceed the maximal per-sampling period complexity in the OTD-FFT,

occurring at the last M th sampling period (see Sec. 5.2.4), even when the OTD-FFT,

TD-IFFT, and part of IDFT are concurrently computed (as needed in real-time FD-

ILC, see Sec. 5.2.4 later).

Similar as in the OTD-FFT, the computation of TD-IFFT induces N + 1 number of

intermediate sequences successively,

x0[·], x1[·], . . . , xN [·] with xN [·] = x[·]

and the intermediate sequence xq[·] ∈ C1×M , for q = 1, 2, . . . , N , is obtained recursively

by

xq[Ii : If ] = Φ(xq−1[Ii : If ], w̄2q), (5.16)

for i = 1, 2, . . . , 2N−p, where Ii and If are given as in Eq. (5.15), respectively, function

Φ(·, ·) is defined in Eq. (5.5), and w̄2q is the complex conjugate of vector w2q defined

in Eq. (5.7). Initially,

x0[I(k)] = X[k]. (5.17)

The recursive process above shows that we can obtain x1[·], x2[·], . . . , xq[·] sequentially.

Thus, the IFFT computation of X[k] can be distributed into the first 2N sampling

periods, denoted as stage N0 in Fig. (5.3). At any nth sampling period of stage N0 for

n = 0, 1, . . . , 2N −1, the following part of the intermediate sequence xq[·] is obtained,

xq[2
N−1s : 2N−1(s+ 1)− 1], (5.18)
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Figure 5.3: Computation stages of the proposed TD-IFFT scheme.

where

q = dn/2e , s = mod (n, 2)

and d·e and mod (n,m) denotes the ceiling function and the modulo function, respec-

tively. Thus, the first half of the sequence xq[·] is obtained via Eq. (5.16) when n is

even, while the second half is obtained via the same equation in the next sampling

period. Therefore, at the last sampling period of stage N0, the whole corresponding

time domain sequence x[·] is obtained.

5.2.4 Application: Real-time Iterative Learning Control

In this section, first, an online implementation of the FD-ILC algorithm (5.1) is devel-

oped based on the proposed OTD-FFT/TD-IFFT, then the computational complexity

of the proposed OTD-FFT/TD-IFFT and FD-ILC algorithms are analyzed.

OTD-FFT/TD-IFFT based Online ILC Implementation

To implement the FD-ILC (5.1) online, we propose to split the required FFT/IFFT

computation of each iteration into two parts: First, during the ith iteration, the OTD-

FFT is applied to obtain the Fourier transform of the output measured in the ith

iteration, Yk[·], and then at the last sampling period of the ith iteration, the frequency

domain input Uk+1[·] for the (i + 1)th iteration is obtained via Eq. (5.1); Secondly,

during the first 2N sampling periods of the (i+ 1)th iteration, the proposed TD-IFFT

is applied to obtain the time domain input sequence for the (i+ 1)th iteration, uk+1[·],

and at the (2N − 1)th sampling period, the entire input sequence {uk+1[n] ∈ <| n =

0, 1, . . . , M − 1} is obtained. To obtain the iterative control input ui+1[n] for the first
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Figure 5.4: Illustration of the proposed FD-ILC computation scheme based on the
proposed OTD-FFT/TD-IFFT algorithms.

2N − 1 sampling period, the following direct IDFT is applied

ui+1[n] =
2N−1∑
k=0

Ui+1[k]w−knM , for n = 0, 1, . . . , 2N − 1. (5.19)

Note that although this portion of the input, ui+1[n], n = 0, 1, . . . , 2N − 1, are com-

puted twice, the total per-sampling-period computational complexity of the FD-ILC is

still much lower than that when using the conventional FFT/IFFT (see the complexity

analysis below). We also note that the computation of the IFFT might be distributed

into the first K < 2N sampling periods so that less number of input values need to be

computed via IDFT (5.19) directly. As a result, the total computational complexity of

the entire iteration trial might be reduced. Such an approach, however, will complicate

the computation scheduling, and can increase the per-sampling-period complexity.

To continuously implement this scheme online, in each iteration, the computation in

stage S0 of the OTD-FFT computation is partially overlapped with that of the TD-

IFFT in stage N0 (see Fig. (5.4)). Specifically, the steps to implement the proposed

computation algorithm of FD-ILC are given as follows (see Fig. (5.5)):

Step 1 (Initialization): Set the number of sampling periods to 2N ; Compute and store

the data that can be computed offline (e.g. w2N , I[k]); And choose the initial input for
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Figure 5.5: Flowchart of the proposed FD-ILC algorithm via OTD-FFT/TD-IFFT.

the first iteration trial, e.g., set u1[·] = cyd[·], where yd[·] is the desired trajectory to be

tracked, and c is the DC-gain of the system.

Step 2 (First iteration): During each 1 ≤ n < N sampling period of the first iteration,

apply the corresponding input u1[n], then execute the sequential computation of the

OTD-FFT from stage S1 to SN to obtain the corresponding Fourier transform of the

output, Y1[·]; Then, at stage SN , i.e., the last sampling period, the ILC formula in

Eq. (5.1) is executed to obtain the FFT of the input sequence for the next iteration,

U2[·]. Go to Step 4.
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Step 3 (The ith iteration): In each ith (i ≥ 2) iteration, during each nth sampling

period of stage N0 for n = 0, 1, . . . , 2N − 1, obtain the time domain input ui[n] via

inverse DFT and apply it to the system, and apply the TD-IFFT algorithm until the

whole input sequence ui[·] is obtained at the last sampling period of stage N0. Then the

OTD-FFT is utilized from stage S1 to SN to obtain the frequency domain data Yi[·];

during the state SN , the ILC formula in Eq. (5.1) is executed to obtain the Fourier

transformed sequence of the input for the next iteration, Ui+1[·].

Step 4 (Stop condition): If the iteration counts i ≥ i∗ (i∗: the pre-chosen number

of iterations), or the tracking error e[k] = yd[k] − yi[k] satisfying ‖e[·]‖2 ≤ ε (the pre-

chosen desired tracking precision), then stop; otherwise, i = i+1, and go back to Step 3.

Computational Complexity Analysis

The analysis next is focused on the per-sampling-period computational complexity of

the above algorithms.

The per-sampling-period computational complexity (only consider the complex multi-

plication and addition in the computation) of the classical radix-2 FFT and IFFT algo-

rithms are, respectively, 2N log 2N multiplications and 2N log 2N additions [85]. With

the proposed OTD-FFT, the per-sampling-period computational complexity in stage

Si, for i = 0, 1, . . . , N , is reduced to 2i+1 − 2 multiplications and 2i+1 − 2 additions.

Therefore, the maximal per-sampling-period computational complexity is at 2N+1 − 2

multiplications and 2N+1 − 2 additions, occurring at the last sampling period of stage

SN . With the TD-IFFT, the computation of IFFT is completed in stage N0, and the

complexity in each sampling period is the same during stage N0, and equals at 2N−1

multiplications and 2N−1 additions.

Finally, comparison of the proposed OTD-FFT/TD-FFT with the conventional FFT/IFFT

shows that except being distributed across the sampling periods, the computations ex-

ecuted in the OTD-FFT and TD-FFT are, in fact, exactly the same as those in the

conventional FFT/IFFT. Thus, the proposed OTD-FFT/TD-FFT does not increase

but maintain the total computational complexity.
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Table 5.1: Comparison of the maximal per-sampling-period computational complexity.

Algorithm Multiplications Additions

FFT/IFFT 2N log 2N 2N log 2N

OTD-FFT 2N+1 − 2 2N+1 − 2

TD-IFFT 2N−1 2N−1

FD-ILC
(FFT+IFFT)

2× 2N log 2N + 2N 2× 2N log 2N + 2N+1

FD-ILC
(OTD-FFT+TD-IFFT+IDFT)

3× 2N+1 − 2 2N+2 − 2
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Figure 5.6: Comparison of the maximal per-sampling-period computational complexity
for N = 9, 10, 11, 12, 13.

To quantify the computational complexity of the proposed FD-ILC algorithm, we note

that IDFT is also used to obtain part of the input, ui[n] for n = 0, 1, . . . , 2N − 1,

for immediate implementation, adding another 2N multiplications and 2N − 1 addi-

tions in each sampling period of stage N0. As a result, the total computation in the

implementation of the FD-ILC in each iteration trail should account for the compu-

tation of the OTD-FFT, TD-IFFT, and the IDFT computation (for those sampling

periods in stage N0), and the frequency domain ILC computation (for stage SN ) all

combined. The maximal per-sampling-period computational complexity occurs at the

last sampling period of each iteration, and for Q[jωk] = 1 in the ILC algorithm (5.1),

equals to 3 × 2N − 2 multiplications and 2N+2 − 2 additions—a dramatic reduction
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from 2× 2N log 2N + 2N multiplications and 2× 2N log 2N + 2N+1 additions when using

the classic radix-2 FFT and IFFT in the FD-ILC implementation. The comparison of

the maximal per-sampling-period computational complexity is shown in Table. 5.1 and

Fig. (5.6).

Complexity comparison in Fig. (5.6) clearly reveals the efficacy of the proposed OTD-

FFT/TD-FFT for online applications. Particularly, as the data length increases, the

maximal per-sampling-period computational complexity increases linearly and thereby,

relatively very slow for the proposed OTD-FFT/TD-FFT, whereas increases exponen-

tially, and thereby, much faster for the conventional FFT/IFFT. For example, at the

data length of 213 (213 = 8192), the maximal per-sampling-period complexity of the

OTD-FFT is 5.5 times lower than (i.e., 15.4 % of) that of the conventional FFT. As

shown in Fig. (5.6), the maximal per-sampling-period computational complexity of the

proposed FD-ILC–with both the OTD-FFT, TD-FFT, and partial IDFT computed

simultaneously–is still lower than that of the conventional FFT/IFFT alone—1.2 times

lower than that of the conventional FFT/IFFT alone at the data length of 213 (8192).

Such a dramatic reduction in the maximal per-sampling-period computational com-

plexity is very much needed in online control applications and other signal processing

applications on general-purpose microprocessors.

5.3 Experimental Implementation

The experimental implementation consisted of two parts: We first demonstrated the

proposed OTD-FFT/TD-FFT technique in real-time signal processing, then further

illustrated the implementation of the proposed real-time FD-ILC technique in output

tracking control on a piezoactuator of an AFM system.

All the programs employed in the experiments were designed in Matlab/Simulink, and

then downloaded and executed online on a PC system (CPU: Intel Xeon @2.4GHz)

under the Matlab-xPC-target real-time operation system environment through a data

acquisition system (PCI 6259, National Instrument Inc.).
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Figure 5.7: (a) Comparison of the upper bound of the sampling frequency (Fs) of the
proposed OTD-FFT vs. the conventional FFT measured in the experiment using the
white-noise data sequence of different lengths (Dl); and (b) the ratio of upper bound
of the sampling frequency (Fs) of the proposed OTD-FFT to that of the conventional
FFT.

5.3.1 Implementation of OTD-FFT/TD-IFFT, Results & Discussion

First, we tested and evaluated the online computational efficiency of the proposed OTD-

FFT: An a priori generated white-noise of given length, {wo[n]|n = 0, 1, · · · , M − 1}

with M = 2N , was sent out and directly acquired back via the D/A and A/D conver-

sion of the DAQ system, respectively. During these M sampling periods, the proposed

OTD-FFT was employed to obtain the Fourier transform of the acquired input signal,

Wi[k], k = 0, 1, . . . , M − 1. For comparison, the classical FFT was also implemented,

i.e., the FFT was computed within the sampling period right after the entire discretized

sequence of the white-noise signal was sent out and acquired back completely. The

upper bounds of the sampling frequency–by keeping the length of the sampled white-

noise sequence fixed–were experimentally tested as the supremium at which the CPU

was overloaded and the program was halted. The tested upper bounds of the sampling

frequency for these two cases are compared in Fig. (5.7) for different lengths of sampled

sequence.

The experimental results showed that by using the proposed OTD-FFT technique,

the computational efficiency in online signal processing was significantly improved—by
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using the proposed OTD-FFT algorithm, the upper bounds of the sampling frequen-

cies were substantially higher than those when using the classical FFT. Also, from

Fig. (5.7b), we can see that the computational efficiency improvement, measured by

the ratio of the sampling frequency upper bound of the proposed OTD-FFT to that of

the conventional FFT, became more significant as the length of the data increased—by

using the proposed OTD-FFT method, the upper bound of the sampling frequency was

increased over 3.3 times when using the proposed OTD-FFT method at the data length

of 213 (8192). Such an trend of increase well agreed with the theoretical prediction.

Secondly, we further evaluated the online computational efficiency when implementing

the proposed OTD-FFT and TD-IFFT together: First, the OTD-FFT was applied to

obtain the Fourier transform of the white-noise signal {wo[n]| n = 0, 1, . . . , M − 1},

Wi[·] in the same way as in the first experiment. Then in the following 2N sampling

periods, the proposed TD-IFFT was applied to the obtained Fourier transform sequence

Wi[·] to obtain the “converted” time sequence {wi[n]| n = 0, 1, . . . , M−1}. The upper

bounds of the sampling frequency for different lengths of the sampled white-noise were

experimentally tested as the supremium at which the CPU was overloaded and the pro-

gram was halted. For comparison, the classical FFT+IFFT was also implemented, i.e.,

the FFT+IFFT was computed within the sampling period right after the white-noise

signal was sent out and acquired back completely. The tested upper bounds of the

sampling frequency for these two cases are compared in Fig. (5.8) for different lengths

of the sampled sequence. Similarly, the upper bounds of the data length–for fixed sam-

pling frequency–were also experimentally tested, and the tested upper bounds of the

data length are compared in Fig. (5.9).

The experimental results showed that by using the proposed OTD-FFT+TD-IFFT

algorithms, the computational efficiency in online signal processing was significantly im-

proved. By using the proposed OTD-FFT+TD-IFFT algorithms, the upper bounds of

the sampling frequencies were substantially higher than those of the classical FFT+IFFT.

For example, the upper bound of the sampling frequency was increased over 3.1 times

when using the proposed OTD-FFT+TD-IFFT method for the sampled data of length

of 1024 (improved from 7.1kHz to 29kHz, see Fig. (5.8)). Such an improvement can
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Figure 5.8: (a) Comparison of the upper bound of the sampling frequency (Fs) of the
proposed OTD-FFT+TD-IFFT vs. the conventional FFT+IFFT measured in the ex-
periment using the white-noise data sequence of different lengths (Dl); and (b) the ratio
of the upper bound of the sampling frequency (Fs) of the proposed OTD-FFT+TD-
IFFT to that of the conventional FFT+IFFT.

also be seen from the increase of the upper bounds of the achievable data length for

fixed sampling frequency. For example, at the sampling frequency of 16kHz, by using

the proposed OTD-FFT+TD-IFFT method, the upper bound of the data length was

increased over 3 times (improved from 256 to 1024, see Fig. (5.9)) at the sampling

frequency of 16 kHz.

We note that the improvement reduced when the data length was further increased

to 2048 (211), 4096 (212), and 8192 (213) (see Fig. (5.8)) or when the sampling fre-

quency was further decreased (see Fig. (5.9)), which was lower than those theoretical

predictions (see Fig. (5.6)). Such a difference–between the experimentally-achieved and

the theoretically-predicted improvements–might be caused by two factors: First, the

theoretical prediction does not take into account the time consumed by other oper-

ations involved, including the A/D and D/A conversion and the memory read/write

time. The portion of the time spent on these operations can increase significantly as

the length of the sampled sequence increased. Secondly, the OTD-FFT+TD-IFFT

algorithm was programed and executed via the Simulink environment whereas the

FFT+IFFT functions were executed via the built-in program of Matlab–much more
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Figure 5.9: (a) Comparison of the upper bound of the data length (Dl) of the proposed
OTD-FFT+TD-IFFT vs. the conventional FFT+IFFT measured in the experiment
using the white-noise data sequence of different sampling frequency (Fs); and (b) the
ratio of the upper bound of the data length (Dl) of the proposed OTD-FFT+TD-IFFT
to that of the conventional FFT+IFFT.

efficient than Simulink programs of user-defined script functions. Therefore, the effi-

cacy of the proposed OTD-FFT+TD-IFFT technique is very promising for high-speed

online signal-processing applications.

5.3.2 Implementation of Real-time FD-ILC, Results & Discussion

Next, to demonstrate the proposed technique to real-time FD-ILC, the following inversion-

based ILC algorithm [78]

Ui[jωk] = Ui−1[jωk] +G[jωk]
−1ei−1[jωk], (5.20)

was implemented in high-speed online trajectory tracking on a piezoelectric actuator

of an AFM system (Dimension ICON, Bruker-Nano Inc.). The first resonant frequency

and the bandwidth of the piezoelectric actuator were at ∼5.0kHz and ∼3.0kHz, re-

spectively, as can be seen from the frequency response of the system measured through

experiment, shown in Fig. (5.10). Note that the general ILC in (5.1) is reduced to

the above inversion-based iterative learning control (IIC) by choosing Q[jωk] = 1 and

replacing L[jωk] with the inverse of the frequency response G[jωk].
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Figure 5.10: The frequency response of the piezoelectric actuator measured through
experiment.

The proposed real-time FD-ILC technique as detailed in Sec. 5.2.4 was implemented

to track a two-period triangle signal of different triangle rates (500 Hz, 650 Hz, and 800

Hz), where the experimentally measured frequency response (as a sequence of complex

numbers) was used in the FD-ILC law (5.20) directly, and the effects of the system vari-

ation and disturbances were accounted for by setting Ui[jωk] = Ui−1[jωk] at frequencies

where the iterative input updated term, G[jωk]ei−1[jωk], was less than the threshold

value (which was determined based on the noise/disturbance level). The sequence of

the input/output data was kept at the same length of 1024(210) for the three triangle

rates, and the iterative control input obtained was immediately applied one iteration

after the other. The same initial condition for each iteration was maintained by having

a long enough zero-extension at both the beginning and the end of the trajectory in

all three speeds of the desired trajectories (see Fig. (5.11a), (5.12b), and (5.13a)). The

upper-bound of the sampling frequency was measured by keeping on increasing the sam-

pling frequency (until the CPU overload occurred). The iteration was stopped when the

tracking error (measured in RMS sense) cannot be further reduced. Then the practi-

cally converged tracking results were acquired by using the highest-achievable sampling

frequency for the above three triangle rates. For comparison, the upper-bounds of the
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Figure 5.11: Comparison of (a) the tracking results and (b) the tracking error by using
the proposed FD-ILC (via OTD-FFT+TD-IFFT) with those by using the FD-ILC (via
FFT+IFFT) for the trajectory of triangle rate at 500 Hz.

sampling frequency when using the FD-ILC via the conventional FFT+IFFT to track

the above three triangle trajectories were also tested in the experiment, and the con-

verged tracking results under the highest-achievable sampling frequency were acquired.

In each cases (the proposed FD-ILC and the conventional FD-ILC), the frequency re-

sponse measured at the corresponding sampling frequency was used in the computation

of the iterative control input via Eq. (5.20).

Table 5.2: Comparison of the relative RMS tracking error by using the two FD-ILC

schemes for different triangle rates.

Triangle rate (Hz) 500 650 800

FD-ILC (%)

(via OTD-FFT+TD-IFFT)
3.25 5.36 5.44

FD-ILC (%)

(via FFT+IFFT)
7.34 24.00 29.62
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Figure 5.12: Comparison of (a) the tracking results and (b) the tracking error by using
the proposed FD-ILC (via OTD-FFT+TD-IFFT) with those by using the FD-ILC (via
FFT+IFFT) for the trajectory of triangle rate at 650 Hz.

The experimentally-measured upper bound of the sampling frequency was at 22 kHz

and 6.8 kHz for the proposed FD-ILC and the FD-ILC via conventional FFT+IFFT,

respectively. The converged tracking results obtained by these two implementation

schemes are compared in Fig. (5.11), Fig. (5.12), and Fig. (5.13) for the triangle tra-

jectory at rate of 500 Hz, 650 Hz, and 800 Hz, respectively. The relative RMS tracking

errors of the above three triangle trajectories obtained by using these two methods are

also compared in Table 5.2.

The experimental tracking results showed that high-speed precision trajectory track-

ing can be achieved by using the proposed method. As shown in Table 5.2, the tracking

performance of the FD-ILC was significantly improved when using the proposed OTD-

FFT+TD-IFFT over the conventional FFT+IFFT algorithms. For example, even for

the high-speed trajectory of triangle rate at 800Hz, the relative RMS error was only
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Figure 5.13: Comparison of (a) the tracking results and (b) the tracking error by using
the proposed FD-ILC (via OTD-FFT+TD-IFFT) with those by using the FD-ILC (via
FFT+IFFT) for the trajectory of triangle rate at 800 Hz.

5.44%, over 4 times lower than that when using the conventional FFT+IFFT. Such

an increase of tracking performance was mainly benefited from the higher sampling

frequency enabled by using the proposed OTD-FFT+TD-FFT technique, as by us-

ing the proposed FD-ILC scheme, the achievable sampling frequency was over 3 times

higher than that by using the conventional FFT+IFFT based FD-ILC scheme (22 kHz

vs. 6.8 kHz). The higher sampling frequency allowed not only more higher-order har-

monic frequencies of the tracking trajectory to be acquired into the DAQ system, but

also better (i.e., more accurate) representation of the system dynamics (i.e., the fre-

quency response) in the FD-ILC algorithm (5.20), resulting in better compensation for

the tracking error by the proposed FD-ILC. For example, as shown in Fig. (5.14), at

the sampling frequency of 22 kHz, or equivalently, the Nyquist frequency of 11 kHz,

most of the spectrum of the 800 Hz two-period triangle trajectory can be acquired

without aliasing. Whereas at the sampling frequency of 6.8 kHz, a significant part of
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Figure 5.14: The spectrum of the 800 Hz triangle trajectory with respect to the sampling
frequency achieved by using the proposed approach (Fs1: 22 kHz) and the conventional
FFT/IFFT-based approach (Fs2: 6.8 kHz), and the corresponding Nyquist frequencies
(Fs1/2 and Fs2/2), respectively.

the frequency components of the trajectory exceeded the corresponding Nyquist fre-

quency of 3.4 kHz, resulting in aliasing issue in both the tracking results acquired.

Similarly, such a decrease of Nyquist frequency (from 11 kHz to 3.4 kHz) also led to

frequency aliasing in the system frequency response G[jωk] that can be utilized by the

FD-ILC algorithm for output tracking. Such an aliasing-caused tracking error (due to

the limited sampling frequency achieved) became more pronounced as the triangle rate

increased, as shown in Table 5.2. Finally, for trajectories such as triangle trajectory of

relatively narrow frequency spectrum, the online computation efficiency can be further

improved by combining the Goertzel algorithm [86] with the proposed technique (by

distributing the computation for a specific range of frequencies in a similar pattern as

the proposed OTD-FFT/TD-IFFT). However, the proposed approach is equally effec-

tively for tracking more general trajectories with relatively broad spectrum. Therefore,

the experimental results clearly illustrated the superior performance of the proposed

OTD-FFT+TD-FFT over the conventional FFT+IFFT in real-time implementation of

the FD-ILC techniques and other real-time signal processing applications.



114

5.4 Conclusion

The OTD-FFT/TD-IFFT technique was developed to minimize the per-sampling-period

computational complexity in online FFT implementation. The proposed OTD-FFT ap-

proach distributed the computation load by exploiting the butterfly structure in com-

puting FFT/IFFT to each single sampling period, and minimized the per-sampling-

period computational complexity without latency while maintaining the total compu-

tational complexity. The proposed OTD-FFT/TD-IFFT algorithm was utilized in on-

line FD-ILC implementation. Moreover, the computational complexity of the proposed

OTD-FFT/TD-IFFT and the FD-ILC was analyzed. Experimental implementation of

the proposed OTD-FFT/TD-IFFT and its application to the FD-ILC technique demon-

strated that the proposed approach was effective in online control applications.
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Chapter 6

Conclusion

In this dissertation, optimal and learning-based output tracking and tracking-transition

techniques were proposed for applications in high-speed probe-based nanofabrication.

Particularly, we proposed an approach to extend the previous work that attains smooth

output transition and smooth tracking/transition switching to further achieve amplitude-

constrained input-energy minimization and transition time minimization. Then, an

offline learning based control technique was developed to compensate for both hys-

teresis and dynamics in hysteresis-Hammerstein systems. Moreover, for the trajectory

decomposition problem arose in the offline learning based control technique, we further

developed an asymptotic online trajectory decomposition by only using one type of

basis function without truncation. For the computation issue occurred in the real-time

implementation of frequency-domain iterative learning control (FD-ILC) in high-speed

nanofabrication, a real-time FD-ILC based on an optimal time-distributed FFT/IFFT

was developed. The main contributions of this dissertation include:

1. A multi-objective optimization technique to trajectory design and tracking with

non-periodic tracking-transition switching was proposed for non-minimum phase

systems. The proposed approach extended the previous work on trajectory design

and tracking of non-periodic tracking-transition switching to further minimize the

input energy under amplitude constraint and then the transition time. It was

shown that the amplitude-constrained input-energy minimization problem can be

converted to an unconstrained one. Then the optimal parameters in designing the

transition output trajectory were sought through an improved conjugate gradient

method, and the minimal transition time was further obtained via one dimensional

search.
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2. The superposition of Hammerstein systems has been studied through the develop-

ment of the almost superposition principle of Hammerstein systems. It has been

shown that the superposition error can be rendered arbitrarily small, i.e., the

almost superposition holds for Hammerstein systems, provided that the number

of output elements is large enough. A realization of the ASHS for output track-

ing was proposed by combining uniform B-splines for trajectory decomposition

with an inverse Preisach model for input synthesis. Two optimization schemes

were further proposed to enhance the implementation of the ASHS in practice.

Moreover, the proposed ASHS was implemented for simultaneous compensation

of hysteresis and dynamics in precision output tracking. Experiments were per-

formed to control the piezoactuator on an AFM system in different frequency

range, and the results demonstrated the efficacy of the proposed method.

3. A trajectory decomposition method using single basis was proposed for the ap-

plications in control. First, a trajectory decomposition method based on a least

square minimization process was proposed and the decomposition error was proved

to be arbitrarily small as the decomposition knot period goes to zero. Then, we

showed that by adding a zero period at the beginning and the end of the trajec-

tory, the first few coefficients can be ignored, thus, the truncation of the basis

elements can be avoided. Furthermore, we proposed a sectional interactive de-

composition algorithm (SID) to decompose a previewed trajectory with only one

basis function. The numerical results demonstrated the efficacy of the proposed

method.

4. The OTD-FFT/TD-IFFT technique was developed to minimize the per-sampling-

period computational complexity in online FFT implementation. The proposed

OTD-FFT approach distributed the computation load by exploiting the butterfly

structure in computing FFT/IFFT to each single sampling period, and minimized

the per-sampling-period computational complexity without latency while main-

taining the total computational complexity. The proposed OTD-FFT/TD-IFFT
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algorithm was utilized in online FD-ILC implementation. Moreover, the compu-

tational complexity of the proposed OTD-FFT/TD-IFFT and the FD-ILC was

analyzed. Experimental implementation of the proposed OTD-FFT/TD-IFFT

and its application to the FD-ILC technique demonstrated that the proposed

approach was effective in online control applications.
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