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ABSTRACT OF THE DISSERTATION

Incidences and extremal problems on finite point sets

by Benjamin Lund

Dissertation Director: Shubhangi Saraf

This thesis consists of three chapters, each addressing a different collection of problems

on the extremal combinatorics of finite point sets.

The first collection of results is on the number of flats of each dimensions spanned

by a set of points in Rd. These results generalize a theorem of Beck [7] from 1983, and

answer a question of Purdy [28] from 1995. We also apply the ideas behind the main

results of the chapter to generalize an incidence bound between points and planes proved

by Elekes and Tóth [23] to all dimensions. With the exception of the generalization

of the Elekes-Tóth incidence bound, all of the material in this chapter has previously

appeared as [43].

The second collection of results is on the set of perpendicular bisectors determined

by a set of points in the plane. We show that if P is a set of points in R2 such

that no line or circle contains more than a large constant fraction of the points of P ,

the the pairs of points of P determine a substantially superlinear number of distinct

perpendicular bisectors. This is the first substantial progress toward a conjecture of

the author, Sheffer, and de Zeeuw [46] that such a set of points must determine Ω(n2)

distinct perpendicular bisectors. This chapter also includes a new proof of a known

result on an old question Erdős [25] on the distances between pairs of points in the

plane. This chapter is [44].
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The third collection of results concerns the set of flats spanned by a set of points in

Fdq . For a set of points P in F2
q , this result implies that, for any ε > 0, if |P | > (1 + ε)q,

then Ω(q2) lines each contain at least two points of P . We obtain a tight generalization

of this statement to all dimensions, as well as a more general result for block designs.

We use this theorem to improve a result of Iosevich, Rudnev, and Zhai [39] on the

distinct areas of triangles determined by points in F2
q . This chapter is joint work with

Shubhangi Saraf, and has been published as [45].
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Chapter 1

Introduction

This thesis is about the extremal combinatorics of finite point sets. Two classical

examples of questions of this type are: How few lines can pass through pairs of points

in a set of n points in the real affine plane, no more than k of which are collinear? How

few distances can occur between pairs of points in a set of n points in the Euclidean

plane?

The first of these questions was asked by Erdős [26], who conjectured that such a set

of n points in R2, no more than k of which lie on any single line, must span Ω(n(n−k))

lines in total. This conjecture was proved by Beck in 1982 [7].

The second question is the celebrated distinct distance problem of Erdős [25]. It is

a classical result in number theory that the count of natural numbers less than n that

are the sum of squares is Θ(n/
√

log n); hence, a
√
n×
√
n section of the integer lattice

determines Θ(n/
√

log n) distinct distances. In 1946, Erdős conjectured that any set of

n points in R2 must determine Ω(n/
√

log n) distinct distances. This distinct distances

problem remained wide open until 2010, when Guth and Katz [35] showed that a set

of n points in R2 must determine Ω(n/ log n) distinct distances.

A key notion for these problems is that of incidence: we say that a point p is incident

to a geometric object Λ if p ∈ Λ, and we are frequently interested in placing an upper

bound on the number of incidences that can occur between a set of points and a set of

geometric objects from some fixed family. In the simplest case, we consider incidences

between points and lines. The breakthroughs of Beck and of Guth and Katz both relied

on progress on point-line incidence bounds.

Beck’s theorem can be proved using the Szemerédi-Trotter theorem [59].1 Let P be

1In fact, Beck proved a similar, but weaker, incidence bound to prove his theorem. The papers of
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a set of n points in R2; we say that a line ` is r-rich if it contains at least r points of

P . The Szemerédi-Trotter theorem states that the number of r rich lines is bounded

above by O(n2/r3 + n/r); dually, this implies the same bound for a set of r-rich points

determined by a set of lines. It is possible to see that this theorem cannot be improved,

by taking the point set to be a
√
n×
√
n section of the integer lattice. The Szemerédi-

Trotter theorem has been very useful in combinatorial geometry, additive combinatorics,

and computational geometry; for examples, see [50, section 4].

In their approach to the distinct distances problem, Guth and Katz proved a stronger

bound than the Szemerédi-Trotter theorem, under the additional assumption that not

too many lines lie in any single plane or other doubly ruled surface. In particular,

they showed that, if L is a set of n lines in R3 of which no more than
√
n lie in any

single plane or regulus, then the number of points that lie in at least r <
√
n lines is

bounded above by O(n3/2/r2). In proving this theorem, Guth and Katz introduced a

new partitioning technique for real space based on polynomials, which has had a huge

recent impact on the field – for example, polynomial partitioning is essential to the

results in Chapter 3 of this thesis.

This thesis is organized into three main chapters, each dealing with a different

collection of questions about points. Chapter 2 solves long standing problems relating

to higher dimensional versions of Beck’s theorem. Chapter 3 investigates point sets

that determine few perpendicular bisectors, and relates this to a question of Erdős on

the distances determined by a point set. Chapter 4 considers finite field variants of

Beck’s theorem, which follows the pioneering work of Bourgain, Katz, and Tao [11] in

considering finite field analogues to classical problems in combinatorial geometry. The

remainder of the introduction gives additional background for each of these Chapters.

1.1 The flats spanned by a set of points in real space

Let P be an arbitrary set of n points in Rd.

In 1982, Beck [7] proved the following theorem, first conjectured by Erdős [26].

Szemerédi and Trotter and of Beck appeared in the same issue of Combinatorica.
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Theorem 1 (Beck-Erdős). If no line contains more than k points of P , then the number

of lines that each contain at least two points of P is Ω(n(n− k)).

Here, the condition that a line ` contains at least two points of P is equivalent to

the condition that ` is spanned by two points of P ; that is, there are points x, y ∈ P

such that each point z ∈ ` is an affine combination of x, y. We may also consider the

set of higher-dimensional flats spanned by P ; we say that a k-flat Γ is spanned by P if

it contains k + 1 affinely independent points of P . For example, a plane is spanned by

P if it contains 3 non-collinear points of P .

One important implication of Theorem 1 is that, if no line contains more than

any fixed, constant fraction of the points of P , then P spans Ω(n2) lines; that is, a

positive fraction of the maximum possible. To obtain a similar result for planes, it is

not sufficient to suppose that no more than an arbitrary constant fraction of the points

are contained in any plane, as shown by the following example. Suppose that P is

contained in the union of two skew (non-intersecting) lines in R3. Since any plane that

contains two points on one of the lines must contain the entire line, it is not hard to see

that the number of planes spanned by P is n. On the other hand, no plane contains

more than n/2 + 1 points of P .

One unusual characteristic of a set of points contained in the union of two skew

lines is that it spans many more lines than planes. For each 1 ≤ k ≤ d − 1, denote

by fk the number of k-flats spanned by P . In 1986, Purdy [52] proved that either P

is contained in a plane, or the union of two lines, or f2 = Ω(f1). He also conjectured

specific conditions under which the exact inequality f2 ≥ f1 should hold, and more

generally asked for conditions under which fk ≥ fk−1. A survey article by Erdős and

Purdy [28] contains some additional details of Purdy’s conjectures and results on the

problem.

The main result of Chapter 2 is a nearly complete answer to Purdy’s question. For a

finite set of points Q, denote by K(Q) the least t such that Q is contained in the union

of a set of flats, each of dimension at least 1, whose dimensions add up to t. Denote by

gi the size of the largest subset Q ⊆ P such that K(Q) ≤ i, for each 0 ≤ i ≤ d− 1.
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Theorem 2. For each k ≥ K(P ) such that fk−1 > 0, we have fk−1 > fk. For each

2 ≤ k < K(P ), there is a constant ck depending only on k such that either gk−1 > n−ck,

or fk−1 > fk.

For example, either all but c2 points of P are contained in a plane, all but c2 points

of P are contained in the union of two lines, or P spans more planes than lines. Note

that this is stronger than the conclusion of Purdy’s theorem mentioned above.

Theorem 2 answers Purdy’s question, except in the case in which all but fewer than

ck points of P are contained in a union of flats whose dimensions sum to k. Chapter

2 includes examples showing that it is not possible to get a more precise answer using

only the hypotheses of Theorem 2. These examples give lower bounds on the values of

ck for which Theorem 6 can hold; in particular, we show that ck must depend at least

linearly on k, and conjecture that ck must have an exponential dependence on k.

Key to proving Theorem 2 are the following matching upper and lower bounds on

the number of k-flats spanned by P .

Theorem 3. For k < K(P ),

fk = Θ

(
k∏
i=0

(n− gi)

)
.

The case k = 1 of Theorem 3 is exactly Theorem 1, and hence Theorem 3 is a very

strong generalization of Theorem 1.

As a further application of the idea of essential dimension, Chapter 2 generalizes a

bound on the number of incidences between 2-flats and points proved by Elekes and

Tóth [23] to bound incidences between k-flats and points.

The proofs in Chapter 2 rely on elementary projective geometry, combinatorics, and

the Szemerédi-Trotter bound on the number of incidences between points and lines in

the real plane.
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1.2 Perpendicular bisectors and distinct distances

While Chapter 2 deals with affine properties of point sets, Chapter 3 considers properties

induced by the Euclidean distance, here denoted ‖ · ‖.

A pair of distinct points a, b ∈ R2 determines the perpendicular bisector

B(a, b) = {x ∈ R2 : ‖x− a‖ = ‖x− b‖}.

In Chapter 3, we give bounds on the number of perpendicular bisectors determined by

an arbitrary set of points in the Euclidean plane, together with an application to an

old problem of Erdős on distances determined by a set of points in the plane.

Let P be a set of n points in R2. Denote by

B(P ) = {B(a, b) : a, b ∈ P, a 6= b}

the set of bisectors determined by P . In the spirit of the Erdős distinct distances

problem, it is natural to ask how few lines can occur as the perpendicular bisectors of

a set of n points in the plane. Since the vertices of a regular n-gon determine exactly

n bisectors, and each point determines n− 1 bisectors with the remaining points, it is

easy to give a nearly complete answer to the naive version of this question.

However, it seems that the only way to have o(n2) bisectors is by placing nearly all

of the points on a single line or circle, and the purpose of Chapter 3 is to make progress

on the following conjecture.

Conjecture 4. Either n/2 points of P lie on a single line or circle, or |B(P )| = Ω(n2).

There is nothing special about the constant 1/2 in this conjecture; it may be replaced

by anything less than 1. This conjecture is reminiscent of the situation for lines spanned

by a point set; just as Beck proved that either nearly all of the points of P are collinear,

or the number of lines spanned is quadratic, we hope to prove the same for perpendicular

bisectors.

We approach the problem of finding an upper bound on the number of bisectors
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determined by a point set by placing a lower bound on the bisector energy, defined by

|Q| = {(a, b, c, d) ∈ P 4 : a 6= b, c 6= d,B(a, b) = B(c, d)}.

This is analogous to the additive energy, which is of great importance in additive

combinatorics. Given an upper bound on |Q|, a standard argument using the Cauchy-

Schwarz inequality implies a corresponding lower bound on |B(P )|.

As with |B(P )|, the easy bound of O(n3) on |Q| is met when P is the set of vertices

of a regular n-gon. Hence, rather than bounding the full energy |Q|, we bound the

energy

|Q∗| = {((a, b), (c, d)) ∈ Π×Π : B(a, b) = B(c, d)}

of a carefully chosen subset Π ⊆ P × P of the pairs of points of P .

Using this refined energy bound, we make some progress toward Conjecture 4.

Theorem 5. For any δ, ε > 0, either a single circle or line contains (1− δ)n points of

P , or

|B(P )| = Ω(n52/35−ε).

Chapter 3 also includes applications of ideas used in the proof of Theorem 5 to a

classical question posed by Erdős on the distances determined by a set of points in the

plane.

The famous distinct distances conjecture of Erdős that P determines at least Ω(n/
√

log n)

distinct distances. He also made the stronger pinned distances conjecture that there is

always a point x ∈ P such that the points of P \ {x} determine at least Ω(n/
√

log n)

distinct distances from x. While Guth and Katz [35] closed the gap for the distinct

distances problem to
√

log n, the best result on the pinned distances problem is by Katz

and Tardos [41], who proved that there is always a point from which there are at least

Ω(n0.864) distinct distances. Chapter 3 contains a completely new proof of a slightly

weaker result on the pinned distance problem.

The proofs Chapter 3 rely on a new upper bound on the number of incidences

between points and certain bounded degree real algebraic varieties. The proof of these
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incidence bounds rely on the polynomial partitioning technique developed by Guth and

Katz [35] in their result on the Erdős distinct distance problem, along with further

development of this approach by Fox et. al. [29].

1.3 Flats spanned by a set of points in finite space

In Chapter 4, we prove incidence bounds and Beck-type theorems for point sets in vector

spaces over finite fields of odd characteristic. We will work in Fdq , the d dimensional

vector space over the field with q elements, for an arbitrary prime power q.

It is easy to see that the Szemerédi-Trotter theorem and Beck’s theorems do not hold

in this setting. Suppose that P consists of all of the points in F2
q . Certainly, |P | = q2.

On the other hand, the total number of lines spanned by P is q2 + q, and each of these

lines contains q points of P . Beck’s theorem, if it applied in this setting, would imply

that the number of lines spanned by P should be Ω(q4), and the Szemerédi-Trotter

theorem would imply that the number of q-rich lines cannot be more than O(q).

In fact, the number of q-rich lines spanned by F2
q matches an easy combinatorial

upper bound that can be proved by using only the facts that each pair of points spans

a unique line, and each pair of lines intersect in at most one point. Hence, it is not

possible to prove incidence bounds for points and lines in F2
q that beat the general

combinatorial bounds, unless your proof is sensitive to the size of |P | relative to the

order or characteristic of F2
q .

The first non-trivial Szemerédi-Trotter and Beck’s analogs over finite fields were

proved by Bourgain, Katz, and Tao [11]. Suppose that p is an odd prime congruent to

3 mod 4, P is a set of n points in F2
p, and L is a set of n lines in F2

p, with n < p2−α

for some α > 0. One result of [11] is that the number of incidences between P and

L is bounded above by n3/2−ε, for some ε > 0 depending on α. In this setting, the

trivial combinatorial bound is O(n3/2), and a true Szemerédi-Trotter analog would

give O(n4/3). There have been improvements to the bound of [11], most recently and

dramatically by de Zeeuw and Stevens [57], but the best bounds in this setting remain

far from O(n4/3).
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For large point sets (|P | ⊆ F2
q , |P | > q), more is known. Vinh proved that, for P a

set of n points and L a set of n lines in F2
q , for an arbitrary prime power q, the number

of incidences between P and L is bounded above by n2q−1 + nq1/2. When n = q,

this matches the trivial bound of O(n3/2), which is the best possible in this range of

parameters. To see this, supppose that Fq has a subfield of size q1/2, and take P and

L to be the sets of all points and all lines defined over this subfield. When n = q3/2,

Vinh’s bound is O(q4/3). This also cannot be improved, which can be seen by taking

P as an arbitrary Cartesian product of the appropriate size.

Chapter 4 contains a far-reaching generalization of Vinh’s result. Instead of consid-

ering points and lines in F2
q , we show that a more general bound holds for balanced block

designs. A special case of this bound is a generalization of Vinh’s bound to incidences

between points and k-flats in Fdq , for any 1 ≤ k ≤ d.

We also give a stronger Beck’s-type theorem than had been known previously, also

in the setting of block designs. A special case of this bound is that a set of (1+ε)q points

in F2
q spans O(q2) lines, for any fixed ε > 0 (the constant in the asymptotic notation

depends on ε). We apply this Beck-type bound to improve a result of Iosevich, Rudnev,

and Zhai on distinct triangle areas in the finite plane [39].
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Chapter 2

Essential dimension and the number of flats spanned by a

set of points



10

2.1 Introduction

Let P be a set of n points in a real or complex, finite-dimensional, affine space. We say

that P spans a k-flat1 Γ if Γ contains k + 1 affinely independent points of P . Denote

the number of k-flats spanned by P by fk; in particular, f−1 = 1 and f0 = n.

Our question is:

When does P span more k-flats than (k − 1)-flats?

For k = 1, a complete answer to this question is given by a classic theorem of de

Bruijn and Erdős [18]. This theorem is that either the number of lines spanned by P

is at least n, or P is contained in a line; furthermore, equality is achieved only if n− 1

points of P are collinear.

It might be tempting to conjecture that fk ≥ fk−1 unless P is contained in a k-flat.

This is easily seen to be false for k = 2, by considering a set of n points in R3, of which

n/2 are incident to each of a pair of skew lines; in this case, f2 = n and f1 = (n/2)2 +2.

In 1986, Purdy [52] showed that either n− 1 points of P lie on a plane or the union of

a pair of skew lines, or f2 = Ω(f1).

To answer our question in higher dimensions, we introduce a new measure of the de-

generacy of a point set with respect to affine subspaces. We say the essential dimension

of a point set P is the minimum t such that there exists a set G of flats such that

1. P is contained in the union of the flats of G,

2. each flat Γ ∈ G has dimension dim(Γ) ≥ 1, and

3.
∑

Γ∈G dim(Γ) = t.

For example, a point set that lies in the union of two skew lines has essential dimension

2. For any set of points P , we denote the essential dimension of P by K(P ), and we

omit the argument if it is obvious from the context.

We additionally denote by gi the maximum cardinality of a subset P ′ ⊆ P such that

the essential dimension of P ′ is at most i; i.e., K(P ′) ≤ i.

We prove

1We refer to affine or projective subspaces as “flats”.
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Theorem 6. For each k, there is a constant ck such that the following holds. Let P be

a set of n points in a finite dimensional real or complex affine geometry.

1. If n = gk (i.e., K(P ) ≤ k), then either fk−1 > fk, or fk−1 = fk = 0.

2. If n− gk > ck, then fk > fk−1.

This theorem is a modification of a conjecture of Purdy [28]. A counterexample

to Purdy’s original conjecture for k ≥ 3 was given by the author, Purdy, and Smith

[47]; however, this counterexample left open the possibility that some variation on the

conjecture (such as Theorem 6) could be true.

The case k = 2 of Purdy’s conjecture was: if P is a set of sufficiently many points,

then either P can be covered by two lines, or by a plane and a point, or P spans at

least as many planes as lines (i.e., f2 ≥ f1). This case of the conjecture appears in

well-known collections of open problems in combinatorial geometry [12, 16], and has

remained open until now. We give counterexamples to this conjecture in section 2.7,

even showing that there are arbitrarily large point sets that cannot be covered by a

plane and a point or by two lines such that f2 < (5/6)f1 +O(1).

Also in Section 2.7, we investigate lower bounds on the values that may be taken

by ck in Theorem 6. In particular, we show that, even if we restrict our attention to

arbitrarily large point sets, Theorem 6 does not hold for values of c2 less than 4 or

c3 less than 11, and for larger k we show that ck grows at least linearly with k. We

further give a construction that we conjecture would show that ck must grow at least

exponentially with k, if we could properly analyze the construction in high dimensions.

Unlike the theorem of de Bruijn and Erdős mentioned above, Theorem 6 depends

crucially on the underlying field. For example, consider the set P of all points in Fdq ,

where Fq is the finite field with q elements. The number of (d − 1)-flats spanned by

P is Θ(qd), while the number of (d− 2)-flats is Θ(q2(d−1)); however, no set of essential

dimension d− 1 contains more than qd−1 points.

Other than the result of Purdy for the case k = 2 mentioned above, the most relevant

prior work on this question is a result of Beck [7], who proved that there is a constant
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c′k depending on k such that, either fk = Ω(nk+1),2 or a single hyperplane contains c′kn

points. Hence, if P is a set of sufficiently many points, and no hyperplane contains

more than a small, constant fraction of the points of P , then fk ≥ fk−1. Considering

the example of a set P of n points, n/k of which lie on each of k skew lines spanning

R2k−1, shows that c′k must be a decreasing function of k in this theorem.

The second claim (for n− gk ≥ ck) of Theorem 6 is a consequence of the following

asymptotic expression for the number of k-flats spanned by P .

Theorem 7. Let P be a set of n points in a finite dimensional real or complex affine

geometry.

For k < K = K(P ),

fk = Θ

(
k∏
i=0

(n− gi)

)
, (2.1)

provided that n− gk ≥ ck, for a constant ck depending only on k.

For k ≥ K,

fk = O

2(K−1)−k∏
i=0

(n− gi)

 . (2.2)

Claim 2 of Theorem 6 is an immediate consequence of expression (2.1) in Theorem

7. Theorem 7 is also a substantial generalization of a conjecture made by the author,

Purdy, and Smith [47].

Recently, Do [19] independently found a different proof a special case of (2.1). In

particular, Do shows that if n − gk = Ω(n) then fk = Ω(nk+1), for suitable choices of

the implied constants.

Theorem 7 additionally implies an asymptotic version of a special case of a long-

standing conjecture in matroid theory. Rota [30] conjectured that the sequence of the

number of flats of each rank in any geometric lattice is unimodal, and Mason [48]

proposed the stronger conjecture that the sequence is log-concave. We have

Corollary 8. For k < K such that n− gk ≥ ck,

f2
k = Ω(fk−1fk+1).

2Here, and throughout the chapter, the constants hidden by asymptotic notation depend on k.
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This follows immediately from Theorem 7 and the easy observation that n − gi ≤

n−gi−1 for any i. Note that Corollary 8 applies only to real or complex affine geometries,

and is also weaker than Rota’s conjecture due the additional assumptions on P and the

implied constant in the asymptotic notation.

We remark that the assumption that the underlying field is either the real or complex

numbers is only used for the lower bound of Theorem 7; the proofs of claim 1 of Theorem

6 and the upper bound of Theorem 7 are independent of this assumption. Claim 2 of

Theorem 6 and Corollary 8 both rely on the lower bound of Theorem 7, and hence are

proved only for real and complex geometry.

2.1.1 A generalization of the Elekes-Tóth incidence bound

We also apply the idea of the essential dimension to generalize an incidence bound of

Elekes and Tóth.

Incidence bounds are one of the most important tools in combinatorial geometry.

The most famous such bound is the Szmerédi-Trotter theorem, stated below. We say

that a k-flat is r-rich if it contains r or more points of P .

Theorem 9 (Szemerédi-Trotter). The number of r-rich lines spanned by a set of n

points in the plane is bounded above by O(n2/r3 + n/r).

In order to generalize the Szemerédi-Trotter theorem to bound the number of r-rich

k-flats for k > 1, we need to use some non-degeneracy assumption. Indeed, consider a

set of r collinear points in R3; the number of r-rich planes is unbounded.

Elekes and Tóth [23] introduced one such degeneracy condition, and used it to obtain

a strong bound on the number of incidences between points and planes. We say that a

k-flat Λ is α-degenerate if at most α|P ∩Λ| points of P are contained in any (k−1)-flat

contained in Λ.

Theorem 10 (Elekes, Tóth). For any α < 1, the number of r-rich, α-degenerate 2-flats

is bounded above by O(n3r−4 + n2r−2).

Elekes and Tóth also obtained a higher dimensional generalization of this bound,

although in a weaker form.
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Theorem 11 (Elekes, Tóth). For each k > 2, there is a constant βk such that, for any

α ≤ βk, the number of r-rich, α-degenerate k-flats is bounded above by O(nk+1r−k−2 +

nkr−k).

Recently, Do [19] used the idea of essential dimension to obtain an alternate gen-

eralization of Theorem 10. We say that a k-flat Λ is essentially-α-degenerate if largest

subset of P ′ ⊆ P ∩Λ with essential dimension K(P ′) < k has at most α|P ∩Λ| points.

Note that a set of points can be α-degenerate without being essentially-α-degenerate,

but not visa-versa.

Theorem 12 (Do). For any k and any α < 1, the number of essentially-α-degenerate,

r-rich k-flats is bounded above by O(nk+1r−k−2 + nkr−k).

Notice that Theorems 11 and 12 are incomparable; Theorem 12 removes the constant

βk, but only bounds essentially-α-degenerate k-flats, rather than all α-degenerate k-

flats.

In Section 2.8, we obtain the following proper generalization of Theorem 10.

Theorem 13. For any k and any α < 1, the number of α-degenerate, r-rich k-flats is

bounded above by O(nk+1r−k−2 + nkr−k).

2.1.2 Organization of the chapter

Section 2.2 reviews basic facts of projective geometry and defines notation. Section 2.3

gives the proof of claim 1 of Theorem 6. Section 2.4 gives the proof of the upper bound

of Theorem 7. Section 2.5 reviews some well-known consequences of the Szemerédi-

Trotter theorem. Section 2.6 gives the proof of the lower bound of Theorem 7. Section

2.7 describes several new infinite families of point sets, that disprove Purdy’s conjecture

for R3, and establish lower bounds on the values that could be assumed by the constant

ck in Theorem 6. Section 2.8 contains the application of the idea of essential dimension

to the incidence bound of Elekes and Tóth.
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2.2 Preliminaries

In section 2.2.1, we review some basic facts of projective geometry, and fix the relevant

notation. In section 2.2.2, we define some basic constructions, and list consisely the

notation used for these constructions.

2.2.1 Projection

It suffices to prove Theorems 6 and 7 for sets of points in a finite dimensional projective

geometry. Indeed, given a set of points in an affine geometry, we can add an empty

hyperplane at infinity to obtain points in a projective geometry that determine the

same lattice of flats.

In this section, we fix notation and review basic facts about projective geometry

that we rely on in the proofs.

We denote by Pd the d-dimensional projective geometry over either R or C. We

refer to projective subspaces of Pd as flats.

The span of a set X ⊂ Pd is the smallest flat that contains X, and is denoted X. Let

Λ,Γ be flats of Pd. We denote by Λ,Γ the span of Λ∪Γ. It is a basic fact of projective

geometry that

dim(Λ,Γ) + dim(Λ ∩ Γ) = dim(Λ) + dim(Γ). (2.3)

Recall that dim(∅) = −1.

For a k-flat Λ, we define the projection from Λ to be the map

πΛ : Pd \ Λ→ Pd−k−1
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that sends a point p to the intersection of the (k+1)-flat p,Λ with an arbitrary (d−k−1)-

flat disjoint from Λ. With a slight abuse of notation, for any set X ⊆ Pd, we define

πΛ(X) to be the image of X \ Λ under projection from Λ.

For example, let Λ,Γ be flats in Pd of dimensions k and k′, respectively. Then, πΛ(Γ)

is defined to be the intersection of Γ,Λ with a (d− k − 1)-flat Σ such that Λ ∩ Σ = ∅.

Together with equation (2.3), this implies that dim(Σ,Λ) = d, and, since we are in Pd,

we have also that dim(Σ,Λ,Γ) = d. Applying (2.3) two more times, we have

dim(Σ ∩ Λ,Γ) = dim(Σ) + dim(Λ,Γ)− dim(Λ,Γ,Σ),

= dim(Σ) + dim(Λ) + dim(Γ)− dim(Λ ∩ Γ)− dim(Λ,Γ,Σ),

= k′ − 1− dim(Λ ∩ Γ).

In other words, the projection of a k′-flat through a k-flat in Pd is a (k′−1−dim(Λ∩Γ))-

flat in Pd−k−1, and so

dim(πΛ(Γ)) = dim(Γ)− 1− dim(Γ ∩ Λ). (2.4)

2.2.2 Context and notation

For the remainder of the chapter, we fix a point set P of size |P | = n in a finite

dimensional real or complex projective space.

Recall that the essential dimension K(Q) of a set Q of points is the minimum t

such that there exists a set of flats, each of dimension 1 or more, the union of which

contains Q, and whose dimensions sum to t. The proofs in sections 2.4 and 2.6 proceed

primarily by isolating maximum size subsets of P having specified essential dimension.

We define gk(Q) to be the maximum size of a subset Q′ ⊆ Q such that K(Q′) ≤ k.

We define Gk(Q) as a set of flats that satisfies the following conditions:

1. each flat in Gk has dimension at least 1,

2.
∑

Γ∈Gk dim(Γ) ≤ k,

3. | ∪Γ∈Gk Γ ∩Q| = gk,

4. |Gk| ≤ |G′k| for any set G′k that satisfies conditions 1,2, and 3.
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In other words, Gk(Q) is a set of flats of minimum cardinality that contains a maximum

cardinality set Q′ ⊂ Q with essential dimension K(Q′) ≤ k.

We further define the following functions on any point set Q:

fk(Q) the number of k-flats spanned by Q,

Fk(Q) the set of k-flats spanned by Q,

fσck (Q) for σ ∈ {≤,=,≥}; the number of k-flats spanned by Q that each contain

at most / exactly / at least c points of Q,

Fσck (Q) the set of flats counted by fσck (Q),

G(Q) GK(Q)(Q).

The argument to any one of these functions will be omitted when it is clear from

the context, in which case the argument will most often be P . This also applies to

the projection operations described in section 2.2.1; for example, πΓ is shorthand for

πΓ(P ), and denotes the projection of P from Γ.

Given a point set Q and a set of flats F , we define the number of incidences between

Q and F as

I(Q,F) = |{(p,Γ) ∈ Q×F | p ∈ Γ}|.

2.3 Claim 1 of Theorem 6

In this section, we establish claim 1 of Theorem 6.

The results in this section are for weighted points. In particular, we assume the

existence of a function W : P → R such that W (p) ≥ 1 for all p ∈ P .

Given such a weight function on the points of P , we extend it to flats and define

related weight functions for projections of P as follows. The weight of a flat Λ is

W (Λ) =
∑

p∈P∩Λ

W (p).

The weight of a point q ∈ πΓ is

WΓ(q) =
∑
p∈P |

πΓ(p)=q

W (p).
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Note that, for any flat Γ, we have

∑
q∈πΓ

WΓ(q) +W (Γ) =
∑
p∈P

W (p).

The following simple lemma shows how to rewrite the sum of a function of the

weights of the flats spanned by P in terms of the flats projected from each point p ∈ P .

Lemma 14. For any function F and k ≥ 1,

∑
Λ∈Fk

F (W (Λ)) =
∑
p∈P

∑
Λ∈Fk−1(πp)

W (p) · F (Wp(Λ) +W (p))

Wp(Λ) +W (p)
.

Proof.

∑
Λ∈Fk

F (W (Λ)) =
∑

Λ∈Fk

F (W (Λ))
∑

p∈P∩Λ

W (p)

W (Λ)
,

=
∑
p∈P

∑
Λ|p∈Λ

W (p)F (W (Λ))

W (Λ)
,

=
∑
p∈P

∑
Λ∈Fk−1(πp)

W (p) · F (W (Λ) +W (p))

W (Λ) +W (p)
.

The last line uses the observation that the k-flats spanned by P and incident to p are

in bijection with the (k − 1)-flats spanned by πp.

The following lemma is the main claim of the section, from which claim 1 of Theorem

6 follows easily. We write R+ for the set of strictly positive real numbers.

Lemma 15. Let F : R+ → R+ be a non-increasing function. Let k ≥ K, with fk ≥ 1.

Then, ∑
Λ∈Fk

F (W (Λ)) <
∑

Λ∈Fk−1

F (W (Λ)).

Note that the conclusion fk < fk−1 follows by taking F to be the function that

takes constant value 1.

Proof. We proceed by induction on K. In the base case, P is a collinear set of at least
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2 points. Hence, for an arbitrary p ∈ P , we have

∑
Λ∈F1

F (W (Λ)) = F (W (P )) ≤ F (W (p)) <
∑
q∈P

F (W (q)),

which establishes the claim.

Now, assume that the lemma holds for K ′ < K and arbitrary k. By Lemma 14, we

have ∑
Λ∈Fj

F (W (Λ)) =
∑
p∈P

∑
Λ∈Fj−1(πp)

W (p) · F (Wp(Λ) +W (p))

Wp(Λ) +W (p)
, (2.5)

for each of j = k and j = k − 1.

Clearly, K(πp) ≤ K−1. Indeed, let p ∈ Γ ∈ G. Then πp is contained in the union of

πp(Γ) and πp(Γ
′) for Γ′ ∈ G \Γ. Since dim(πp(Γ)) = dim(Γ)− 1, this provides a witness

that K(πp) ≤ K − 1.

Fix p ∈ P , and let

Fp(w) =
W (p)F (w +W (p))

w +W (p)
,

defined for positive w. Since F is positive valued and nonincreasing, and W (p) ≥ 1,

we have that Fp is positive valued and nonincreasing. Hence, the induction hypothesis

implies that ∑
Λ∈Fk−1(πp)

Fp(Wp(Λ)) <
∑

Λ∈Fk−2(πp)

Fp(Wp(Λ)). (2.6)

Together, (2.5) and (2.6) imply the conclusion of the lemma.

2.4 Upper bound of Theorem 7

The main result of this section is Theorem 18, which is the upper bound of Theorem 7.

Before proving the main result, we establish two lemmas on the set of k-flats spanned

by P , for k ≥ K.

Lemma 16. Let k ≥ K, and let Γ ∈ Fk. Then, there is a set A ⊆ G of |A| = k+1−K

flats such that Λ ⊆ Γ for each Λ ∈ A.
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Proof. We first show that

dim(A) ≤ −1 +
∑
Λ∈A

(dim(Λ) + 1). (2.7)

We proceed by induction on |A|. In the base case, |A| = 1 and the claim holds. Suppose

that |A| > 1, and choose Λ ∈ A arbitrarily. By equation (2.3),

dim(A) = dim(Λ) + dim(A \ Λ)− dim(Λ ∩ A \ Λ),

≤ dim(Λ) + dim(A \ Λ) + 1.

The claim follows by the inductive hypothesis.

Let A ⊆ G be the set of flats in G that are contained by Γ. We will show that

|A| ≥ k + 1−K.

Denote

GΓ = {Λ ∩ Γ | Λ ∈ G}.

Since each point of P is contained in some flat of G, we have Γ = GΓ. By (2.7),

k = dim(GΓ) ≤ −1 +
∑

∆∈GΓ

(dim(∆) + 1). (2.8)

If ∆ is a flat contained in a flat Λ, then dim(∆) + 1− dim(Λ) ≤ 1, and if ∆ is properly

contained in Λ, then dim(∆) + 1 − dim(Λ) ≤ 0. If ∆ ∈ GΓ and ∆ ∈ G, then ∆ ∈ A.

Hence, ∑
∆∈GΓ

(dim(∆) + 1)−
∑
Λ∈G

dim(Λ) ≤ |A|. (2.9)

Since
∑

Λ∈G dim(Λ) = K by definition, the conclusion of the lemma follows from in-

equalities (2.8) and (2.9).

Lemma 17. Suppose k ≥ K. Let A ⊆ G such that |A| = k+1−K and fk−dimA−1(πA)

is maximized. Let k′ = k − dimA− 1. Then,

fk = Θ(fk′(πA)).
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Proof. Note that there is a natural bijection between flats of Fk′(πA) and flats of Fk

that contain A. In particular, if Γ ∈ Fk, then, by (2.4), we have

dim(πA(Γ)) = k − 1− dim(Γ ∩ A) = k′.

In addition, πA(Γ),A = Γ, so the map that sends each flat in Fk to its projection from

A is invertible. Since the fk is at least the number of flats in Fk that contain A, we

have

fk ≥ fk′(πA).

On the other hand, by Lemma 16, for each k-flat Γ ∈ Fk, there is at least one set

B ⊂ G with |B| = k + 1−K such that Λ ⊂ Γ for each Λ ∈ B. Hence, we can define an

injective function that maps each Γ ∈ Fk to an arbitrary pair (B,Λ) where B is a set as

guaranteed by Lemma 16 and Λ ∈ Fk−dimA−1(πB) so that Γ = Λ,B. Since there are at

most
(

K
k+1−K

)
< 2K ≤ 2k choices for B, and fk′(πA) ≥ fk−dimB−1(πB) by assumption,

this shows that

fk ≤ 2kfk′(πA),

which completes the proof of the lemma.

Next is the the main result of the section.

Theorem 18. For 0 ≤ k ≤ K − 1,

fk = O

(
k∏
i=0

(n− gi)

)
. (2.10)

For k ≥ K,

fk = O

2(K−1)−k∏
i=0

(n− gi)

 . (2.11)

Proof. The proof is structured as follows. There is an outer induction on K. For a fixed

K, we first prove inequality (2.11), and then use an induction on k to prove inequality

(2.10).

The base case k = 0 and K ≥ 1 is immediate, since f0 = n = n− g0 by definition.
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Assume that inequalities (2.10) and (2.11) hold for all k when K ′ < K.

Suppose that k ≥ K. By Lemma 16, either |G| ≥ k + 1 −K, or fk = 0. If fk = 0,

then we’re done, so suppose that |G| ≥ k + 1−K.

By Lemma 17, there is a set A ⊆ G with |A| = k+1−K such that fk = Θ(fk′(πA)),

for k′ = k − dimA− 1.

Before bounding fk′(πA), we first make some simple observations about πA. By

definition, each point of πA is the image of one or more points that lie on flats of G \A.

Since dim(Λ) ≥ dim(πA(Λ)) for any flat Λ, the fact that the preimage of πA is contained

the flats of G \ A implies that

K(πA) ≤
∑

Λ∈G\A

dim(Λ) = K −
∑
Λ∈A

dim(Λ).

Since
∑

Λ∈A dim(Λ) ≥ |A| = k + 1−K, we have

K(πA) ≤ 2K − 1− k.

In particular, K(πA) < K, so we will be able to use the inductive hypothesis to bound

fk′ .

Observe that the right sides of (2.10) and (2.11) are both bounded above byO(ΠK−1
i=0 (n−

gi)). Hence, by the inductive hypothesis, we have that

fk′(πA) = O
(

Π
K(πA)−1
i=0 (|πA| − gi(πA))

)
,

= O
(

Π2K−2−k
i=0 (|πA| − gi(πA))

)
. (2.12)

Note that |πA|−gi(πA) ≤ n−gi for each i. Indeed, the preimage of πA∩Gi(πA) has

essential dimension at least i, so the preimage of πA \ (πA ∩Gi(πA)) provides a witness

that n− gi ≥ |πA| − gi(πA).

Together with (2.12), this completes the proof of (2.11).

Suppose now that k ≤ K − 1, and assume that inequality (2.10) holds for K and

k′ < k.
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We claim that if P1, P2 is a partition of P , then

fk ≤
k∑

i=−1

fi(P1)fk−i−1(P2). (2.13)

To show this, we map Fk into
⋃
i(Fi(P1)× Fk−i−1(P2)). Let Γ ∈ Fk, let Γ1 = P1 ∩ Γ,

and let Γ2 = P2 ∩ Γ. Using equation (2.3) and the fact that dim(Γ1 ∩ Γ2) ≥ −1, we

have

dim(Γ2) ≥ k − dim(Γ1)− 1.

Let Γ′2 ⊆ Γ2 be a (k − dim(Γ1) − 1)-flat disjoint from Γ1. Note that Γ1,Γ′2 = Γ. Also

note that, if Γ1 = Γ, then Γ′2 = ∅. Map Γ to the pair (Γ1,Γ
′
2). Since Γ is the unique

k-flat spanned by Γ1 and Γ′2, the map is injective, and so inequality (2.13) is established.

Let P1 = ∪Γ∈Gk(P ∩ Γ), and let P2 = P \ P1. By inequality (2.13),

fk ≤
k∑

i=−1

fi(P1)fk−i−1(P2),

≤ (k + 2) max
−1≤i≤k

fi(P1)fk−i−1(P2). (2.14)

Since |P2| = n− gk, we have

fk−i−1(P2) ≤ (n− gk)k−i ≤
k−i−1∏
j=0

(n− gk−j). (2.15)

For i < k, the inductive hypothesis implies

fi(P1) = O

 i∏
j=0

(|P1| − gj(P1))

 = O

 i∏
j=0

(n− gj)

 . (2.16)

For i = k, inequality (2.11) implies

fk(P1) = O

k−2∏
j=0

(|P1| − gj(P1))

 = O

 k∏
j=0

(n− gj)

 . (2.17)

With an appropriate choice of the constants hidden in the asymptotic notation, this
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completes the proof of inequality (2.10).

2.5 Known results in the plane

In order to prove the lower bounds of Theorem 7, we will use two known consequences

of the Szemerédi-Trotter theorem.

The Szemerédi-Trotter theorem was proved for real geometry by Szemerédi and

Trotter [59], and proved for complex geometry by Tóth [62], and, using a different

method, by Zahl [67].

Theorem 19. [Szemerédi-Trotter] For any t,

f≥t1 = O(n2/t3 + n/t).

Theorem 20 was proved by Beck [7] when the underlying field is the real numbers,

and the idea of Beck’s proof is easily adapted to use Theorem 19.

Theorem 20 (Beck). There is a constant cb such that

f≤cb1 = Ω(n(n− g1)).

Proof. Let 0 < c1 < 1 be a constant to fix later. Counting pairs of points of P that are

on lines that contain between cb and c1n points of P , we have

c1n∑
t=cb

f=t
1 t2 =

c1n∑
t=cb

t2(f≥t1 − f
≥t+1
1 ),

=

c1n∑
t=cb

t2f≥t1 −
c1n+1∑
t=cb+1

(t− 1)2f≥t1 ,

= O

(
c1n∑
t=cb

tf≥t1

)
.

Applying Theorem 19, for appropriate choices of cb and c1 we have

O

 √n∑
t=cb

tf≥t1

 = O

 √n∑
t=cb

n2/t2

 ≤ n2/10,



25

and

O

 c1n∑
t=
√
n

tf≥t1

 = O

 c1n∑
t=
√
n

n

 ≤ n2/10.

Hence, either at least n2/4 pairs of points are on lines that each contain at most

cb points, or at least n2/4 pairs of points are on lines that contain at least c1n points.

In the first case, f≤cb1 ≥ n2/(4c2
b), and the theorem is proved. Hence, we suppose that

g1 > c1n.

Let ` be a line incident to g1 points of P , and let P ′ be a set of min(g1, n−g1) points

that are not incident to `. Let L be the set of lines that contain one point of P ∩ ` and

at least one point of P ′. Since each point of P ′ is incident to g1 lines of L, we have

∑
l∈L
|P ′ ∩ l| = |P ′|g1.

Since each ordered pair of distinct points in P ′ is incident to at most one line of L, we

have ∑
l∈L

(|P ′ ∩ l|2 − |P ′ ∩ l|) ≤ |P ′|2 − |P ′|.

By Cauchy-Schwarz,

∑
l∈L
|P ′ ∩ l|2 ≥

(∑
`∈L |P ′ ∩ `|

)2
|L|

=
|P ′|2g2

1

|L|
.

Combining these and rearranging, we have

|L| ≥ min(|P ′|g1, g
2
1) = Ω(n(n− g1)).

It remains to show that a constant portion of the lines of L each contain at most cb

points of P . Let P ′′ be the set of n − g1 points of P that are not incident to `. Each

pair of points of P ′′ is incident to at most 1 line of L, hence the expected number of

pairs of points of P ′′ on a randomly chosen line of L is at most
(

(n−g1)
2

)
|L|−1 = O(1).

Markov’s inequality implies that at least half of the lines of L are each incident to at

most twice the expected number of points of P ′′, and the conclusion of the theorem
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follows.

Theorem 21 is a variant of the “weak Dirac” theorem, proved independently by Beck

[7], and by Szemerédi and Trotter [59].

Theorem 21 (Weak Dirac). There is a constant cd such that, if P does not include

cdn collinear points, then there is a subset B ⊆ P with |B| = Ω(|P |) such that each

point in B is incident to at least Ω(n) lines spanned by P .

Proof. By Theorem 20, if no line contains cdn points of P , then P spans Ω(n2) lines.

Since no point is incident to more than n such lines, there must be Ω(n) points each

incident to Ω(n) of these lines.

2.6 Lower bound of Theorem 7

In this section, we prove Theorem 24, which gives the lower bound of Theorem 7.

We will need the following consequence of the minimality of Gk.

Lemma 22. For arbitrary k, let A ⊆ Gk, with |A| ≥ 2, and let Λ be an arbitrary flat.

Then ∑
Γ∈A

dim(Γ ∩ Λ) < dim(Λ).

Proof. Label the flats in A as Γ1, . . . ,Γ|A|. Let Λi = Γ1, . . . ,Γi,Λ, with Λ0 = Λ.

We claim that

dim(Λi) ≤ dim(Λ)−
i∑

j=1

dim(Γj ∩ Λ) +
i∑

j=1

dim(Γj). (2.18)

The proof of (2.18) is by induction on i. In the base case, i = 0 and the claim is trivial.

Suppose (2.18) holds for i′ < i. Then, applying equation (2.3),

dim(Γi,Λi−1) + dim(Γi ∩ Λi−1) = dim(Γi) + dim(Λi−1), so

dim(Λi) + dim(Γi ∩ Λ) ≤ dim(Γi) + dim(Λi−1).

Inequality (2.18) follows by the inductive hypothesis.
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Hence,

dim(A) ≤ dim(Λ|A|) ≤ dim(Λ) +
∑
Γ∈A

dim(Γ)−
∑
Γ∈A

dim(Γ ∩ Λ). (2.19)

If we suppose that dim(Λ) ≤
∑

Γ∈A dim(Γ ∩ Λ), then (2.19) implies that dim(A) ≤∑
Γ∈A dim(Γ). Hence, we can reduce the size of Gk by replacing A by A, which contra-

dicts the minimality of Gk.

We use Lemma 22 to control the projection of the points contained in flats of Gk

from a point in P that is not contained in a flat of Gk.

Lemma 23. Let k < K, let A = ∪Γ∈GkΓ∩P , and let p ∈ P \A. Then, for 0 ≤ i ≤ k−1,

gi(πp(A)) ≤ gi(A) + k2, (2.20)

|πp(A)| ≥ |A| − k2. (2.21)

Proof. We first prove (2.20). Let Λ ∈ Gi(πp(A)), and let Λ′ be the preimage of Λ under

πp; note that dim(Λ′) = dim(Λ) + 1.

Let

L(Λ) = {Γ ∩ Λ′ | Γ ∈ Gk, dim(Γ ∩ Λ′) ≥ 1}.

Note that, since p /∈ A, no flat in L(Λ) can contain p. Hence, if L(Λ) contains a single

flat Γ, then dim(Γ) < dim(Λ′) = dim(Λ) + 1. On the other hand, if |L(Λ)| ≥ 2, then

Lemma 22 implies that
∑

Γ∈L(Λ) dim(Γ) < dim(Λ′) = dim(Λ) + 1. In either case, the

flats of L(Λ) contain at most gdim(Λ)(A) points of A. Since Λ is the projection of the

points on flats of L(Λ) together with at most one point on each flat in Gk that does

not intersect Λ′ in at least a line, we have that |Λ∩ πp(A)| ≤ gdim Λ(A) + k. Note that,

since K((Gi ∪ Gj) ∩ P ) ≤ i+ j, we have that gi + gj ≤ gi+j for any i, j. In particular,

∑
Λ∈Gi(πp(A))

gdim Λ(A) ≤ gi(A).
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Hence, we have

gi(πp(A)) =
∑

Λ∈Gi(πp(A))

|Λ ∩ πp(A)| ≤ gi(A) + ik,

which completes the proof of (2.20).

It remains to prove (2.21). Let Γ,Γ′ ∈ Gk. Since Γ∩Γ′ = ∅, we have dim(Γ′∩Γ, p) ≤

0. Hence, for each such pair of flats Γ,Γ′ ∈ Gk, there is at most one pair q ∈ Γ, q′ ∈ Γ′ of

points such that πp(q) = πp(q
′). In addition, each line incident to p intersects each flat

of Gk in at most one point, since otherwise p would be contained in that flat. Hence,

the number of pairs of points q, q′ ∈ A such that πp(q) = πp(q
′) is at most the number

of pairs of flats in Gk, which proves (2.21).

We now proceed to the main result of the section. Theorem 24 is slightly stronger

than the lower bound of Theorem 7, to facilitate its inductive proof.

Theorem 24. For 0 ≤ k < K, there are constants cl, ck such that

f≤clk = Ω

(
k∏
i=0

(n− gi)

)
,

provided that n− gk ≥ ck.

Proof. The proof is by induction on k. The case k = 1 is Theorem 20.

Let

A =
⋃

Γ∈Gk

Γ ∩ P,

B = P \A.

Note that |A| = gk and |B| = n− gk ≥ ck.

Let c1 < 1 be a strictly positive constant to fix later. Let k′ be the least integer

such that |A| − gk′(A) < c1|B| = c1(n− gk).

If k′ < k, then no line contains c1|B| points of B. Indeed, if ` is such a line, then

Gk′ ∪ ` contains gk′ + c1|B| > gk points of P , which is a contradiction, since the sum of
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the dimensions of the flats of Gk′ ∪ ` is k′ + 1 ≤ k.

If k′ = k, let B′ = B. Otherwise, by Theorem 21 (assuming c1 < cd), there is a

set B′ ⊆ B with |B′| = Ω(|B|) such that each point of B′ is incident to Ω(|B|) lines

spanned by B.

Fix p ∈ B′ arbitrarily.

We claim that, for 0 ≤ i ≤ k − 1,

|πp| − gi(πp) = Ω(n− gi). (2.22)

Recall that 0 ≤ i ≤ k− 1, and k′ ≤ k, and hence, it will suffice to consider the cases

that i < k′ and k′ ≤ i ≤ k − 1.

First, suppose that i < k′. Since k′ is the least integer such that |A| − gk′(A) <

c1(n− gk), we have that |A| − gi(A) ≥ c1(n− gk). Using this fact, together Lemma 23,

we have

n− gi = n− gk + gk − gi,

≤ (c−1
1 + 1)(|A| − gi(A)),

≤ (c−1
1 + 1)(|πp(A)| − gi(πp(A)) + 2k2),

= O(|πp(A)| − gi(πp(A))). (2.23)

In the last line of the above derivation, we require |πp(A)| − gi(πp(A)) > 0. This

holds if |A| − gi(A) > 2k2, which holds if c1ck > 2k2. Hence, we require c1ck > 2k2.

Since πp(A) is a subset of πp, we have

|πp| − gi(πp) ≥ |πp(A)| − gi(πp(A)).

Combined with (2.23), this is inequality (2.22).

Now, suppose that k′ ≤ i ≤ k − 1.

Let Γ ∈ Gk′(A). Note that |p,Γ ∩ B| < c1|B|. If this were not the case, then

p,Γ ∪ Gk′ \ Γ would have total dimension k′ + 1 ≤ k, and would contain at least
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gk′(A) + c1|B| > |A| = gk points. Since Gk′ contains at most k′ ≤ k − 1 distinct

flats, and the remaining points of A contribute at most |A| − gk′(A) < c1|B| points to

|πp(A) ∩ πp(B)|, we have that |πp(A) ∩ πp(B)| ≤ kc1|B|. Hence,

|πp| ≥ |πp(A)|+ |πp(B)| − kc1|B|. (2.24)

Note that gi(πp) ≤ gi+1 ≤ gk. Hence, by inequality (2.21) of Lemma 23, we have

that |πp(A)| − gi(πp) ≥ |πp(A)| − gk ≥ −O(1). Combining this with inequality (2.24)

and the assumption that |B| > ck, we have

|πp| − gi(πp) ≥ |πp(A)|+ |πp(B)| − kc1|B| − gi(πp),

≥ cd|B| −O(1)− kc1|B|,

= Ω(|B|),

for appropriate choices of c1, ck. Since i ≥ k′, we have that |B| = Ω(n− gi), and hence,

this finishes the proof of inequality (2.22).

The inductive hypothesis applied to πp, along with (2.22), implies that

f
≤O(1)
k−1 (πp) = Ω

(
k−1∏
i=0

(n− gi)

)
. (2.25)

Hence, each point in B′ is incident to Ω
(∏k−1

i=0 (n− gi)
)

flats of dimension k that are

spanned by P . Since the preimage of a point q ∈ πp may include many points of P ,

it remains to show that a substantial portion of these flats each contain at most cl(k)

points of P .

Let c2 be a large constant, to be fixed later. Let C ⊂ πp be the set of points in πp

such that each point in C is the image of at least c2 points in P under projection from

p. Since each line incident to p is incident to at most one point on each flat Γ ∈ Gk,

each point of πp(A) has multiplicity at most k < c2. Hence, |C| ≤ c−1
2 |B| = c−1

2 (n−gk).
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Let q ∈ C. By Theorem 18,

fk−2(πq,p) = O

(
k−2∏
i=0

(n− gi)

)
, (2.26)

and this is an upper bound on the number of incidences between q and (k − 1)-flats

spanned by πp.

The total number of (k − 1)-flats spanned by πp that are incident to some point

in C is bounded above by the number of incidences between points in C and flats in

Fk−1(πp). Summing expression (2.26) over the points of C, and using the fact that

n− gk < n− gk−1, the number of these incidences is

I(C,Fk−1(πp)) = O

(
c−1

2

k−1∏
i=0

(n− gi)

)
. (2.27)

By setting c2 to be sufficiently large, we can ensure that the right side of (2.27) is

smaller than the right side of (2.25). Hence, we can subtract from the right side of

(2.25) the number of k − 1 flats spanned by πp that contain a point of C to obtain

I(p,F≤c2cl(k−1)
k ) = Ω

(
k−1∏
i=0

(n− gi)

)
. (2.28)

This bound applies for each of the Ω(n − gk) points in B′, and hence (setting cl(k) =

c2cl(k − 1))

I(B′,F≤clk ) = Ω

(
k∏
i=0

(n− gi)

)
. (2.29)

Since each of the flats of F≤clk accounts for at most cl of these incidences, dividing the

right side by cl immediately gives the claimed lower bound on f≤clk .

2.7 Constructions

In this section, we give several constructions that give lower bounds on the possible

values that could be taken by ck in Theorem 6. We are in fact interested primarily in

infinite families of examples for each k. Hence, for this section, we define ck to be a
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function of k as follows.

Definition 25. The constant ck is the minimum t such that the following holds for all

sufficiently large n. If P is a set of n points in Rd or Cd, then either

1. n− gk ≤ t, or

2. fk > fk−1.

Note that this definition includes the hypothesis that n is sufficiently large, which

is absent in Theorem 6. Because of this aditional hypothesis, in order to show lower

bounds of the form ck ≥ t, we find infinite families of point sets Sn, such that for each

Sn we have |Sn| = n, fk(Sn) ≤ fk−1(Sn), and n− gk(Sn) = t.

To summarize the results on ck in this section, we show that ck increases monoton-

ically (subsection 2.7.1), that ck ≥ k − O(1) (subsection 2.7.2), and that c2 ≥ 4 and

c3 ≥ 11 (subsection 2.7.3). Also in subsection 2.7.3, we give strong counterexamples to

the conjecture of Purdy mentioned in the introduction.

In subsection 2.7.2, we present a construction that we conjecture would show that

ck ≥ 2k−1 if it were successfully analyzed, but are unable to fully analyze the construc-

tion in higher dimensions.

All of the constructions in this section are based on the same basic idea, presented

in subsection 2.7.1.

2.7.1 Basic construction, and monotonicity

All of the constructions described in this section follow the same basic plan. We start

with a finite set S of points having some known properties, then carefully select an origin

point, and place a line L, containing a large number of points of P , perpendicular to the

hyperplane containing S and incident to the selected origin point. This construction,

along with its key properties, is described in Lemma 26.

Lemma 26. Let S be a set of n points in Rd, all contained in the hyperplane H0 defined

by x1 = 0. Denote by fok (S) the number of k-flats spanned by S that are incident to the

origin, and by fok (S) the number of k-flats spanned by S that are not incident to the

origin; we define fo0 = 0. Let L be a set of m ≥ 2 collinear points contained in the line
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`0 defined by the equations xi = 0 for i 6= 1, and stipulate that the origin is not included

in L. Let P = S ∪ L. Then, for each 0 < k < d,

fk(P ) = mfok−1(S) + fok−1(S) + fk(S) + fk(L). (2.30)

Proof. Let Γ ∈ Gk(P ). If Γ contains the origin and another point in `0, then Γ contains

`0 and hence contains each point of L. In this case, dim(Γ∩H0) = k− 1, and there are

fok−1(S) such flats spanned by S. If Γ contains exactly one point of L, then Γ does not

contain the origin, and dim(Γ∩H0) = k− 1. Since there are m choices for the point in

L, the number of such flats is mfok−1(S). We also have those k-flats that are spanned

individually by S or L.

Given an example that shows that ck ≥ t for some t, Lemma 26 can be used to

create an equally strong example for ck+1, which implies that the sequence c2, c3, . . . is

monotonic.

Corollary 27. The sequence c2, c3, . . . increases monotonically.

Proof. Let 1 < k < d and c ≥ 1, and let S be a set of points in Rd, such that

fk(S) < fk−1(S), and such that |S| − gk(S) = ck. Embed S in the hyperplane defined

by x1 = 0 in Rd+1, so that no flat spanned by S is incident to the origin. Let L be a set

of m points contained in the line xi = 0 for i 6= 1, and not including the origin. Then,

by Lemma 26, we have

fk+1(P ) = mfk(S) + fk+1(S) < mfk−1(S) + fk(S) = fk(P ),

for m sufficiently large.

In addition, since |L| is much larger than |S|, we may assume that Gk+1(P ) contains

L. Since the origin is generic relative to the flats spanned by S, the number of points

of S in a j + 1 flat that contains the origin is bounded by the number of points in a

j flat. Hence, Gk+1(P ) is the union of the line that contains L and Gk(S), and hence

|P | − gk+1(P ) = |S| − gk(S) = ck ≤ ck+1.
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2.7.2 Constructions for arbitrary dimensions

We describe two constructions that work for any sufficiently large k. The first uses a

hypercube as the set S in the construction of Lemma 26, and the second uses a cross-

polytope as S. We are unable to fully analyze the hypercube example in arbitrary

dimensions, but conjecture that a complete analysis would show that ck ≥ 2k−1. The

cross-polytope example shows that ck ≥ k −O(1).

Hypercube construction. We use Lemma 26 to describe an infinite family of sets

of points, with an infinite number of members for each k ≥ 2. In particular, Skn, for

n ≥ 2k+1, is a set of n points in Rk+1 such that n − gk(Skn) = 2k−1. We conjecture

that fk(S
k
n) < fk−1(Skn) for all k. Proving this conjecture would show that ck ≥ 2k−1.

Analyzing the construction for large k is related to (though possibly easier than) the

open problem of characterizing the set of flats spanned by the vertices of the hypercube

[−1,+1]d in Rd (see [1]). It is easy, though tedious, to analyze the construction in low

dimensions; however, different, specific constructions for k = 2, 3 give better bounds on

ck for k ≤ 4.

Let Skn = Ck∪L, where Ck = (0,±1, . . . ,±1) is the set of vertices of a k-dimensional

hypercube, and L is the set of m = n− 2k collinear points with coordinates (i, 0, . . . , 0)

for i ∈ [1, n− 2k].

We claim that gk(S
k
n) = m+ 2k−1. That gk ≥ m+ 2k−1 follows by considering the

union of L and a (k− 1)-dimensional face of Ck. To show that gk ≤ m+ 2k−1, we show

that gk−1(Ck) = 2k−1; the claim on gk(Sk) follows as an immediate consequence, since

Gk must contain L.

We show by induction that the intersection of a j-flat with Ck contains at most 2j

points, for any j ≤ k. Note that Ck = Ck−1
−1 ∪ C

k−1
1 , where Ck−1

i (for i ∈ {−1, 1})

is the set of vertices of a (k − 1)-dimensional hypercube in the (d − 2)-flat Hi defined

by x0 = i. Let Γ be a flat of dimension dim(Γ) = j. Either Γ is contained in H−1,

or is contained in H1, or intersects each of H−1 and H1 in a (j − 1)-flat. Assuming

the inductive hypothesis that the intersection of a j′-flat with Ck−1 contains at most

2j
′

points, it follows that Γ contains at most 2j points of Ck. Since the sum of the
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dimensions of flats in Gk−1(Ck) is k, it follows that gk−1(Ck) ≤ 2k−1.

For k = 2 and k = 3, an exhaustive enumeration of the flats spanned by Ck is easy

to perform by hand, and, for k = 3, yields

fo1 (C3) = 4,

fo1 (C3) = 24,

fo2 (C3) = 6,

fo2 (C3) = 14.

Together with a similar count for k = 2, and an application of Lemma 26, we have

f1(S2) = 4m+ 7,

f2(S2) = 4m+ 3,

f2(S3) = 24m+ 24,

f3(S3) = 14m+ 7.

Hence, our conjecture holds for these cases.

Cross-polytope construction. We describe a family of sets T jn of points for j ≥ 2 and

n sufficiently large. The set T jn is a set of n = m+6j points in R3j+1 such that, assuming

m is sufficiently large, then f2j+2 < f2j+1 < f2j . Furthermore, n− g2j+2 = 2j − 2 and

n− g2j+1 = 2j. Taking k = 2j + 2 in this construction shows that ck ≥ k − 4 for even

k ≥ 6, and taking k = 2j + 1 shows that ck ≥ k − 1 for odd k ≥ 5.

Let D = D3j be the vertices of a 3j-dimensional cross-polytope in R3j+1, centered

at the origin, contained in the hyperplane x1 = 0. In particular, the 6j vertices of D

are of the form (0, . . . , 0,±1, 0, . . . , 0), where the nonzero entries occur for some vertex

in all but the first coordinate. We use D as the set S in the construction of Lemma 26,

so T jn = D∪L, where L is a set of m points in the line xi = 0 for i 6= 1. We will assume

that m is large relative to 6j.

We first show that f2j+2 < f2j+1 < f2j . Let v ∈ D. If a flat Γ contains v and
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−v, then Γ contains the origin. Hence, the i-flats spanned by D that don’t contain

the origin each contain at most one of v,−v. Since the non-opposite vertices of D are

linearly independent, an i-flat contains at most i+ 1 of them, and so foi (D) is equal to

the number of ways to choose i + 1 non-opposite vertices from D, which is 2i+1
(

3j
i+1

)
.

Hence, we have

foi (D) = 2i+1

(
3j

i+ 1

)
= 2i

(
3j

i

)
· 23j − i

i+ 1
= foi−1(D) · 23j − i

i+ 1
.

Hence, if (3j − i)/(i+ 1) < 1/2, then foi (D) < foi−1(D). This holds if i ≥ 2j. Applying

Lemma 26, and using the assumption that m is sufficiently large, we have

f2j+2 = fo2j+1(D)m+O(1) < fo2j(D)m+O(1) = f2j+1,

f2j+1 = fo2j(D)m+O(1) < fo2j−1(D)m+O(1) = f2j .

Now we show that n−g2j+2 = 2j−2 and n−g2j+1 = 2j. In particular, we show that

gi(D) = 2i; since m is large, gi+1 = m+ gi(D), and so n− gi+1 = 6j − gi(D) = 6j − 2i,

from which the claims easily follow.

Let Γ be an i-flat, for i ≥ 1. If Γ contains the origin, then it is a linear subspace and

hence contains at most i linearly independent vectors, and hence at most 2i vertices of

D. If Γ does not contain the origin, then it contains at most i+ 1 linearly independent

vectors, and does not contain any pair v,−v ∈ D; in this case, Γ contains at most i+ 1

vertices. In either case, Γ contains at most 2i vertices. Since the sum of the dimensions

of the flats in Gi(D) is i, it’s clear from this that gi(D) = 2i.

2.7.3 Stronger constructions for k = 2, 3

Grünbaum and Shephard found and catalogued simplicial arrangements of planes in

real projective 3-space [33]. Among these are several examples that (after taking the

dual arrangement of points) give sets of points that span more lines than planes, and

that are not contained in a pair of lines, or in a plane and a point. In particular, the

arrangement A3
1(18) gives a set of 18 points, spanning 60 planes and 74 lines, such that
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no plane or pair of lines contains more than 9 of the points. Later, Alexanderson and

Wetzel [2] found an additional simplicial arrangement of planes. In the projective dual,

this arrangement gives a set of 21 points, spanning 90 planes and 98 lines, such that no

plane or pair of lines contains more than 10 of the points.

We can apply Lemma 26 with Alexanderson and Wetzel’s construction. By taking

a generic point as the origin, and |L| sufficiently large, this construction gives c3 ≥ 11.

For k = 2, the hypercube example in section 2.7.2 gives the lower bound c2 ≥ 2. We

now show a slightly more sophisticated construction that achieves the bound c2 ≥ 4.

Grünbaum has produced a lovely and useful catalog of the known simplicial line

arrangements in the real projective plane [32]. We use one of the arrangements he

describes as the foundation for the construction. In particular, the point set shown in

figure 2.1 is dual to the arrangmement A(8, 1) in Grünbaum’s catalog.

Figure 2.1: Base for construction showing ck ≥ 4

o

We apply Lemma 26 with the point set appearing in figure 2.1 as S, using the point

marked “o” as the origin; i.e., let P = S ∪L, where S is the point set in figure 2.1, and

L is a set of m collinear points contained in a line perpendicular to the plane spanned

by S and incident to the point marked “o”. By taking m to be sufficiently large, we

can ensure that the points of L must be included in G2, and hence inspection of figure

2.1 shows that n − g2 is 4. Further, we have fo1 (S) = 7, fo1 (S) = 4, and fo0 (S) = 7.
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Hence, Lemma 26 gives

f2(P ) = 7m+ 4 + 1 + 0 < 7m+ 1 + 11 = f1(P ),

and so this construction shows that c2 ≥ 4.

Figure 2.2: Base for counterexample to ratio version of Purdy’s conjecture

o

In light of the preceeding examples, it might be tempting to conjecture that, under

the hypothesis of Purdy’s conjecture (i.e., P is a set of points that are not contained

in the union of two lines or the union of a plane and a point), we at least have that

f2 ≥ f1 − c for some universal constant c. However, even this weaker conjecture is too

optimistic. To show this, we apply Lemma 26 with the point set appearing in figure

2.2 as S, using the point marked “o” as the origin. A brief examination of the figure

reveals that fo1 (S) = 5 and fo0 (S) = 6, and that n− g2 = 3. Hence, if we take m to be

large, it follows from Lemma 26 that f2 < (5/6)f1 +O(1).

2.8 A generalization of the Elekes-Tóth incidence bound

This section contains the proof of Theorem 13.

We first give a proof of the case k = 3. While this proof does not generalize to

higher dimensions, it is very simple, and contains the germ of the idea of the full proof.
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2.8.1 Proof of Theorem 13

2.8.2 A simple proof for the case k = 3

The case k = 3 admits a simpler proof than the general theorem.

Theorem 28. For any α < 1, the number of α-degenerate, r-rich 3-flats is bounded

above by O(n4r−5 + n3r−3).

Proof. By Theorem 12, the number of essentially-α1/2-degenerate r-rich 3-flats is bounded

above by O(n4r−5 + n3r−3). If an r-rich 3-flat Λ is α-degenerate but not essentially-

α1/2-degenerate, then at least α1/2|P∩Λ| ≥ α1/2r points of P are contained in the union

of two skew lines, neither of which contains more than α|P ∩ Λ| points of P ; hence,

each of these lines contains at least (α1/2 − α)r points. By the Szemerédi-Trotter the-

orem, the maximum number of pairs of ((α1/2 − α)r)-rich lines is bounded above by

O(n4r−6 + n2r−2), which implies the conclusion of the theorem.

2.8.3 Proof of the general case

The proof of Theorem 28 given above does not generalize to higher dimensions, but the

basic approach of bounding the number of r-rich α-degenerate flats that are not also

essentially-α′-degenerate does still work in higher dimensions. This idea is captured by

the following lemma.

Lemma 29. Let F = Fα,r be the set of k-flats satisfying the following property. If

Λ ∈ F , then Λ contains a set G of flats so that

1.
∑

Γ∈G dim(Γ) < k,

2. G = Λ,

3. each flat of G is r-rich and α-degenerate.

Then, |F| = O(nk+1r−k−2 + nkr−k).

We remark that Lemma 29 is not tight, in general; for example, a stronger bound

of O(n4r−6 + n2r−2) was given for the case k = 3 in the proof of Theorem 28, above.

Before proving Lemma 29, we show that it implies Theorem 13.
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Proof of Theorem 13. Let α′ < 1 be a constant to fix later. The required bound on

the number of r-rich, essentially-α′-degenerate k-flats is given by Theorem 12, so it

only remains to bound the number of r-rich, α-degenerate k-flats that are not also

essentially-α′-degenerate.

If Λ is an r-rich, α-degenerate k-flat that is not essentially-α′-degenerate, then there

is a collection G′ of flats with
∑

Γ∈G′ dim(Γ) < k such that |
⋃

Γ∈G′ Γ ∩ P | > α′|P ∩ Λ|.

We obtain a set G satisfying the conditions of Lemma 29 from G′ as follows. If

Γ ∈ G′ is not α′-degenerate, then replace Γ with the smallest subspace Γ′ ⊂ Γ that

contains at least (α′)dim(Γ)−dim(Γ′)|P ∩ Γ| points; note that Γ′ is α′-degenerate, and we

have removed fewer than (dim(Γ)− dim(Γ′))(1− α′)|P ∩ Λ| points.

Next, remove from G′ any flat that contains fewer than (1 − α′)|P ∩ Λ| points to

obtain the final set G. Each remaining flat in G is α′-degenerate and (1−α′)|P ∩Λ|-rich,

and we have removed in all fewer than
∑

Γ∈G′ dim(Γ)(1− α′)|P ∩ Λ| < (α′ − α)|P ∩ Λ|

points, for a sufficiently large choice of α′ < 1. If dim(G) < k, then Λ is α-degenerate,

contrary to our assumption. Hence, dim(G) = k, and hence Λ belongs to the set F of

Lemma 29. The conclusion of Lemma 29 implies the required bound, which completes

the proof.

Here comes the proof of Lemma 29.

Proof of Lemma 29. We proceed by induction on k and
∑

Γ∈G dim(Γ). The case k = 2

is trivial, and the case k = 3,
∑

Γ∈G dim(Γ) = 2 is Theorem 28.

We partition F into subsets Fb, for 1 ≤ b ≤ k, and separately bound the size of

each Fb.

Let Λ ∈ F , and let GΛ be the set of flats given by the hypothesis of Lemma 29. Let

ΓΛ ∈ GΛ, and let bΛ = dim(GΛ \ ΓΛ). Assign Λ to FbΛ .

With this assignment, the bound on |Fk| follows directly by the inductive hypothesis

on
∑

Γ∈G dim(Γ) by ignoring the flats ΓΛ for Λ ∈ Fk. For b < k, the inductive hypothesis

implies that

|{GΛ : Λ ∈ Fb}| = O(nb+1r−b−2 + nbr−b).
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Hence, it will suffice to show that each GΛ in this set is associated to at mostO(nk−br−k+b)

different flats Λ ∈ Fb.

Let R ∈ {GΛ : Λ ∈ Fb}. Let πR be the projection of P \ (P ∩ R) from R; this

is a multiset of points in Rd−1−b, and if Λ is a flat such that dim(Λ,R) = k, then

dim(πR)(Λ) = k − 1 − b. Furthermore, if πR(Λ) is α-degenerate, then so is Λ. To

complete the proof, we will use the following lemma, proved below.

Lemma 30. Let M be a multiset of points with total multiplicity n. The number of

r-rich, α-degenerate k-flats spanned by M is bounded above by (1− α)−knk+1r−k−1.

From Lemma 30, we get the required bound of O(nk−brb−k) on the number of r-rich,

α-degenerate flats that can span a k-flat together with R, and this completes the proof

of Lemma 29.

Proof of Lemma 30. There are nk+1 ordered lists of k+1 points in M (with repetitions

allowed). We show below that for any r-rich, α-degenerate k-flat Λ, the are at least

(1 − α)krk+1 distinct lists of k + 1 points such that all of the points are contained in

Λ, and the points are affinely independent. Since k + 1 affinely independent points are

contained in exactly one k-flat, an averaging argument completes the proof.

Let Λ be an r-rich, α-degenerate k-flat. We will show, by induction, that, for each

0 ≤ k′ ≤ k, Λ contains (1−α)k
′
rk
′+1 distinct ordered lists of k′+1 affinely independent

points. The base case of k′ = 0 is immediate from the fact that Λ is r-rich.

Choose uniformly at random a pair (v, p), where v is an ordered list of k′ affinely

independent points contained in Λ, and p is a point of P contained in Λ. By the

inductive hypothesis, we know that there are (1 − α)k
′−1rk

′
choices for v, and there

are clearly |P ∩ Λ| ≥ r choices for p. If the probability that p is affinely dependent on

the points of v is more than α, then there is some v for which the number of points in

P ∩Λ that are affinely dependent on v is more than α|P ∩Λ|. Since these points must

all be contained in the k′ − 1-dimensional span of v, this contradicts the hypothesis

that Λ is α-degenerate. Hence, the number of choices of (v, p) such that p is affinely

independent of v is at least (1− α)k
′
rk
′+1, which is what was to be proved.
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Chapter 3

Distinct perpendicular bisectors and distances
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3.1 Introduction

Many classic problems in discrete geometry ask for the minimum number of distinct

equivalence classes of subsets of a fixed set of points under some geometrically defined

equivalence relation. The seminal example is the Erdős distinct distance problem [25]:

How few distinct distances can be determined by a set of n points in the Euclidean

plane? Guth and Katz have nearly resolved the Erdős distinct distance question [35],

but there are numerous other examples of questions of this type, many of which remain

wide open.

One natural question that has not received much attention is: How few distinct

perpendicular bisectors can be determined by a set of n points in the Euclidean plane?

Distinct perpendicular bisectors were previously investigated by the author, Sheffer,

and de Zeeuw [46], and a finite field analog was studied by Hanson, the author, and

Roche-Newton [36].

Without any additional assumption, it is not too hard to give a complete answer

to this question. The vertices of a regular n-gon determine n distinct perpendicular

bisectors. Each point of an arbitrary point set P determines n − 1 distinct bisectors

with the remaining points of P, and this is tight when n = 2. In subsection 3.1.2, we

give a simple geometric argument showing that the number of distinct bisectors is at

least n, when n > 2.

Suppose we assume that no circle or line contains more than K points of P. In

this case, the author, Sheffer, and de Zeeuw give the following lower bound on |B|, the

number of distinct bisectors determined by P, a fixed set of n points in the Euclidean

plane [46]:

|B| = Ω
(

min
{
K−

2
5n

8
5
−ε,K−1n2

})
. (3.1)

We further proposed the following conjecture.

Conjecture 31. For any ε > 0, there is a constant cε > 0 such that either a single

line or circle contains (1− ε)n points of P , or |B| ≥ cεn2.

In this chapter, we take a significant qualitatitive step toward Conjecture 31.
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Theorem 32. For any δ, ε > 0, either a single circle or line contains (1 − δ)n points

of P, or

|B| = Ω(n52/35−ε),

where the constants hidden in the Ω-notation depend on δ, ε.

This improves on the earlier result (3.1) of the author, Sheffer, and de Zeeuw for

K = Ω(n2/7+ε), and gives the first non-trivial result on Conjecture 31 for K = Ω(n).

The proof (in [46]) of inequality (3.1) uses the, now standard, method of bounding

the “energy”1 of the quantity in question. In particular, we write B(a, b) for the per-

pendicular bisector of distinct points a, b, and define the bisector energy to be the size

of the set

Q = {(a, b, c, d) ∈ P4 : a 6= b, c 6= d,B(a, b) = B(c, d)}.

It is easy to see that |Q| ≤ n2(n− 1), since each element of Q is determined by (a, b, c);

taking P to be the vertices of a regular n-gon shows that this bound is tight. In [46],

we show

|Q| ≤ O
(
K

2
5n

12
5

+ε +Kn2
)
, (3.2)

and conjecture that the strongest possible bound is |Q| ≤ O(Kn2). A standard appli-

cation of Cauchy-Schwarz (see, for example, the proof of Lemma 39, below) gives

|B| ≥ n2(n− 1)2/|Q|.

Using this inequality, it is a straightforward calculation to obtain (3.1) from (3.2).

Observe that even a tight bound of |Q| ≤ O(Kn2) would give |B| ≥ Ω(n2K−1).

This only meets the bound of Conjecture 31 when K is a constant not depending on

n, and does not give any non-trivial bound for K = Ω(n). Hence, it initially seems

hopeless to use an energy bound to make substantial progress toward Conjecture 31 for

1The term additive energy, referring to the number of quadruples (a, b, c, d) in some underlying set of
numbers such that a+b = c+d, was coined by Tao and Vu [37]. Starting with the work of Sharir, Elekes
[22] and Guth, Katz [35] on the distinct distance problem, the strategy of using geometric incidence
bounds to obtain upper bounds on analogously defined energies has become indispensable in the study
of questions about the number of distinct equivalent subsets.
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large K.

The main new idea in this chapter is to apply an energy bound to a refined subset

of the pairs of points of P. We show that there is a large set Π ⊂ P × P of pairs of

points, such that

Q∗ = {(a, b, c, d) ∈ P4 : (a, b), (c, d) ∈ Π,B(a, b) = B(c, d)}

is small. In particular, we define Π to be the set of pairs of points of P that are not

contained in any circle or line that contains too many points of P. We use a point-circle

incidence bound, proved in [5], to show that Π must be large, and use an argument

similar to that bounding Q in [46] to show that Q∗ must be small.

The proof of Theorem 32 is in Section 3.2.

3.1.1 Application to pinned distances

In Section 3.3, we give an application of the methods and results of this chapter to a

problem of Erdős on the set of distances determined by a set of points in the plane. In

particular, we give an alternate proof of a known bound.

Let P be a set of n points in the Euclidean plane. We denote

δ(p) = {‖x− p‖ : x ∈ P}

δ∗ = max
p∈P
|δ(p)|

Erdős conjectured that δ∗ = Ω(n/ log(n)) for all point sets. The best current result

on this problem is by Katz and Tardos [41], who built on the work of Solymosi and

Tóth [56]; Katz and Tardos showed that δ∗ = Ω(n0.864).

We give an alternate proof of the following, weaker, result.

Theorem 33. For any ε > 0,

δ∗ = Ω(n87/105−ε).
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In the proof of Theorem 33, we use a new weighted Szemerédi-Trotter bound. This

gives an upper bound on the number of incidences between weighted points and lines,

when we have a bound on the sum of squares of the weights. Researchers working on

similar problems in incidence geometry may find this a convenient tool. The statement

and proof of the result are in Section 3.5.

3.1.2 There are at least n bisectors

We give the best possible general lower bound on |B|.

Proposition 34. If n > 2, then |B| ≥ n.

Proof. Since any point a ∈ P determines n − 1 distinct bisectors with the remaining

points P \ {a}, it is sufficient to show that there are three points a, b, c such that

B(b, c) is distinct from B(a, x) for any x ∈ P. If there are three collinear points, this is

immediate, so we assume that no three points are collinear.

Let a, b ∈ P so that |ab| is minimal, and let c ∈ P so that the angle ∠abc is minimal.

If a is on the same side of B(b, c) as c, then |ac| ≤ |ab|, which is a contradiction. If a

is on the line B(b, c), then there is no point x such that B(a, x) = B(b, c), and we have

accomplished our goal. Hence, we may suppose that a and b are on the same side of

B(b, c). Let x be the reflection of a over B(b, c). The line ax is parallel to the line bc,

and x and c are on the same side of ab. Hence, x is in the interior of the cone defined

by ∠abc, and hence ∠abx is less than ∠abc. Since c was chosen so that ∠abc is minimal,

x /∈ P, which completes the proof.

3.1.3 Acknowledgements
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3.2 Proof of Theorem 32

In this section, we prove Theorem 32.

Handling heavy circles.

We first apply a separate, elementary argument to handle the case that a single circle

contains a substantial portion of the points of P.

Lemma 35. If a single line or circle contains exactly εn points of P, then

|B| ≥ min(ε, 1− ε) · εn2/4.

We rely on the following geometric lemma.

Lemma 36. Let C be a circle or a line, and let p, q /∈ C with p 6= q. Then,

#{(r, s) ∈ C × C : B(p, r) = B(q, s)} ≤ 2.

Proof. Fix p, q /∈ C. For r ∈ C, let Cr be the reflection of C over B(p, r); note that

Cr = Cr′ implies r = r′. If s ∈ C such that B(p, r) = B(q, s), then q ∈ Cr. Since there

are two circles that are the same size as C and that contain p and q, there are at most

two pairs (r, s) ∈ C × C such that B(p, r) = B(q, s).

Proof of Lemma 35. Let C be a circle that contains εn points of P. Let P ′ ⊂ P be

a set of k = min(ε, 1 − ε)n points that are not in C. Let p1, p2, . . . pk be an arbitrary

ordering of the points of P ′. Then, by Lemma 36, pi determines a set B(pi) of at least

εn− 2(i− 1) distinct perpendicular bisectors with the points of P that lie on C, such

that no element of B(pi) is an element of B(pj) for any j < i. Summing over i, we have

∑
i≤k
|B(pi)| ≥ εnk/4,

which proves the lemma.
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Lemma 35 implies that, if the maximum number of points of P that are contained

in any circle is at least cn (for a constant c to be determined later) and at most

(1− O(n−18/35+ε)n = (1− δ)n points, then |B| = Ω(n52/35−ε). Hence, we may assume

from now on that no circle contains more than cn points.

Refining the pairs of points.

Now we handle the case that no circle contains more than some small, constant fraction

of the points of P.

Denote by sk the number of lines and circles that contain at least k points of P,

denote by s=k the number of lines and circles that contain exactly k points of P.

The following incidence bound combines the result of Szemerédi and Trotter [58] on

point-line incidences with the result of Aronov and Sharir [5] on point-circle incidences.

Lemma 37 (Combined point-line and point-circle incidence bound). For any ε > 0,

sk = O(n3+εk−11/2 + n2k−3 + nk−1),

where the hidden constants depend on ε.

We apply Lemma 37 to show that either a single circle contains a constant fraction

of the points of P, or a constant fraction of the pairs of points in P×P are not contained

in any line or circle that contains too many points of P.

Lemma 38. For any ε > 0, there are constants c1, c2 > 0 such that the following holds.

Let P be a set of n points. Let Π ⊂ P × P be the set of pairs of distinct points of P

such that no pair in Π is contained in a line or a circle that contains M = c1n
2/7+ε

points of P. Then, either there is a single line or circle that contains c2n points of P,

or |Π| = Ω(n2).

Proof. By Lemma 37, the number of triples (p, q, C) of two points p, q and a line or a

circle C such that p, q ∈ C and such that C contains at least M and at most U = c2n
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points is bounded above by

U∑
k=M

k2s=k =
U∑

k=M

k2(sk − sk+1)

≤
U∑

k=M

2ksk

≤ O

∑
k≥M

n3+εk−9/2 +
∑
k≥M

n2k−2 +
∑
k≤U

n


≤ O

(
n2
)
.

With appropriate choices of c1, c2, we can ensure that the constant hidden in the O-

notation on the final line is less than 1.

Let Π ⊆ P × P be the set of pairs of distinct points of P that do not lie on any

circle that contains more than M = c1n
2/7+ε points of P. We have already handled the

case that a single line or circle contains c2n points of P, and so we assume that this

does not occur, and consequently (by Lemma 38) that |Π| = Ω(n2).

Let

B∗ = {B(a, b) : (a, b) ∈ Π}, and

Q∗ = {(a, b, c, d) : (a, b), (c, d) ∈ Π,B(a, b) = B(c, d)}.

An application of Cauchy-Schwarz produces a lower bound on |B∗| (and hence, on

|B|) from an upper bound on |Q∗|.

Lemma 39.

|B| = Ω
(
n4|Q∗|−1

)
.

Proof. For a line `, denote by w(`) the number of pairs (p, q) ∈ Π such that B(p, q) = `.
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By Cauchy-Schwarz,

|Q∗| =
∑
`∈B∗

w(`)2,

≥

(∑
`∈B∗

w(`)

)2

|B∗|−1,

= |Π|2|B∗|−1.

Hence,

|B| ≥ |B∗|,

≥ |Π|2|Q∗|−1,

= Ω
(
n4|Q∗|−1

)
.

Bounding the energy.

We will use another incidence geometry argument to bound |Q∗|; this part of the

analysis has substantial overlap with the proof of Theorem 2.1 in [46].

For each pair (a, b) ∈ P 2, let C(a, b) be the maximum number of points on any circle

that contains a, b. Let

ΠK = {(a, b) ∈ P 2 : a 6= b, C(a, b) ≤ K},

QK = {(a, b, c, d) ∈ P 4 : (a, b), (c, d) ∈ ΠK ,B(a, b) = B(c, d)}.

We prove

Lemma 40. For any 2 ≤ K ≤ n,

|QK | = O
(
K

2
5n

12
5

+ε +Kn2
)
.
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Proof. For each pair (a, c) of distinct points in P, we define the bisector surface to be

Sac = {(b, d) ∈ R2 × R2 : B(a, b) = B(c, d)},

and we define

S = {Sac : a, c ∈ P, a 6= c}.

The following is [46, Lemma 3.1].

Lemma 41. For distinct a, c ∈ P, there exists a two-dimensional constant-degree alge-

braic variety Sac such that Sac ⊂ Sac. Moreover, if (b, d) ∈ (Sac\Sac) with b 6= d, then

either a = b or c = d.

We denote

S = {Sac : a, c ∈ P, a 6= c}.

Let G ⊂ S × P2 be the incidence graph between pairs of distinct points of P and

varieties in S. Let H ⊂ S ×P2 be the incidence graph between pairs of distinct points

of P and surfaces in S. Let G′ ⊂ S × P2 such that (Sac, (b, d)) ∈ G′ if and only if

(b, d) ∈ Sac and (a, b), (c, d) ∈ ΠK . By identifying the vertices corresponding to Sac and

Sac for each a, c, we have G′ ⊆ H ⊆ G.

Note that

G′ = {(Sac, (b, d)) ∈ S × P2 : (a, b), (c, d) ∈ ΠK , B(a, c) = B(b, d)},

and hence

|G′| = |Q∗|.

Observe that if B(a, b) = B(c, d), then the reflection of the pair (a, c) over the line

B(a, b) is the pair (b, d). Hence, |ac| = |bd|. It follows that, if |ac| = δ, then the surface

Sac is contained in the hypersurface

Hδ = {(b, d) ∈ R2 × R2 : |bd| = δ}.
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The following is [46, Lemma 3.2].

Lemma 42. Let a, c ∈ R2, (a, c) 6= (a′, c′) and |ac| = |a′c′| = δ 6= 0. Then there exist

curves C1, C2 ⊂ R2, which are either two concentric circles or two parallel lines, such

that a, a′ ∈ C1, c, c′ ∈ C2, and Sac ∩ Sa′c′ is contained in the set

Hδ ∩ (C1 × C2) = {(b, d) ∈ R2 × R2 : b ∈ C1, d ∈ C2, |bd| = δ}.

We use Lemmas 41 and 42 to prove

Lemma 43. If Sac, Sa′c′ have K + 4 or more common neighbors in G, then Sac, Sa′c′

have no common neighbors in G′.

Proof. We claim that, if Sab and Sa′b′ share K or more common neighbors in H, then

they have no common neighbors in G′. Suppose that Sac and Sa′c′ share K common

neighbors in H; denote this set of pairs of points (b, d) ∈ Sac ∩ Sa′c′ by Γ. Lemma 42

implies that there exist two lines or circles C1, C2 with a, a′ ∈ C1 and c, c′ ∈ C2 such that

(b, d) ∈ Γ only if b ∈ C1 and d ∈ C2, and |bd| = δ. Note that (b, d), (b, d′) ∈ Sac implies

that B(c, d) = B(a, b) = B(c, d′), and hence d = d′. Hence, there are at least K distinct

points in each of C1 and C2, and so, if (b, d) ∈ Γ, then (a, b), (a′, b), (c, d), (c′, d) /∈ ΠK .

Hence, if (b, d) ∈ Γ, then (Sac, (b, d)) and (Sa′c′ , (b, d)) are not in G′.

Suppose that a 6= a′ and c 6= c′. By Lemma 41, each neighbor of Sac in G \ H is

either of the form (a, d) or (b, c). Hence, a vertex (b, d) can be a common neighbor of

Sac and Sa′c′ in G but not in H only if b = a or b = a′ or d = c or d = c′. Since Sac

is incident to at most one point (b, x) for any fixed b, this implies that Sac, Sa′c′ have

at most 4 common neighbors in G that are not common neighbors in H. Hence, if Sac

and Sa′c′ have K + 4 or more common neighbors in G, then Sac and Sa′c′ have K or

more common neighbors in H, and by the previous claim have no common neighbors

in G′.

Now, suppose that a = a′ (the case c = c′ is symmetric). Since (b, d) ∈ Sac ∩ Sac′

implies that c = c′, we have that Sac and Sac′ have no common neighbors in H. Hence,

they have no common neighbors in G′.
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Let δ1, . . . , δD denote the distinct non-zero distances determined by pairs of distinct

points in P. Let

P2
i = {(b, d) ∈ P × P : |ab| = δi},

Si = {Sac ∈ S : |ac| = δi},

G′i = {(Sac, (b, d)) ∈ G′ : |pq| = δi}.

Let

mi = |P2
i | = |Si|.

As observed above, each quadruple (a, b, c, d) ∈ Q satisfies |ac| = |bd|. Hence, it

suffices to study each G′i separately. That is, we have

|QK | = |G′| =
D∑
i=1

|G′i|.

We will use the following incidence bound to control the size of each |G′i|. This

bound is a slight generalization of a bound in [46], which is in turn a generalization of

a bound in [29]. See [29] for definitions of the algebraic terms used.

Theorem 44. Let S be a set of n constant-degree varieties, and let P be a set of m

points, both in Rd. Let s ≥ 2 be a constant, and t ≥ 2 be a function of m,n. Let G

be the incidence graph of P × S. Let G′ ⊆ G such that, if a set L of s left vertices

has a common neighborhood of size t or more in G, then no pair of vertices in L has

a common neighbor in G′. Moreover, suppose that P ⊂ V , where V is an irreducible

constant-degree variety of dimension e. Then

|G′| = O

(
m

s(e−1)
es−1

+εn
e(s−1)
es−1 t

e−1
es−1 + tm+ n

)
.

The proof of Theorem 44 is nearly identical to the proof of Theorem 2.5 in [46],

requiring only one small, technical change. For the sake of completeness, the proof of
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Theorem 44 is included in Appendix 3.6.

We apply Theorem 44 to the set of varieties Si = {Sac : Sac ∈ Si}, the set of

points P2
i , and G and G′ as the corresponding incidence graphs. The hypersurface

Hδi is irreducible, three-dimensional, and of constant degree, since it is defined by the

irreducible polynomial (x1 − x3)2 + (x2 − x4)2 − δi. Thus, we can apply Theorem 44

with m = n = mi, V = Hδi , d = 4, e = 3, s = 2, and t = K. Hence,

|G′i| = O(K2/5m
7/5+ε
i +Kmi). (3.3)

Let J be the set of indexes 1 ≤ j ≤ D for which the bound in (3.3) is dominated by

the term K
2
5m

7
5

+ε

j . By recalling that
∑D

j=1mj = n(n− 1), we get

∑
j 6∈J
|G′j | = O

(
Kn2

)
.

Next we consider
∑

j∈J |G′j | = O(
∑

j∈J K
2/5m

7/5+ε
j ). By [35, Proposition 2.2], we have

∑
m2
j = O(n3 log n).

This implies that the number of mj for which mj ≥ x is O(n3 log n/x2). Using a dyadic

decomposition, we obtain

K−2/5n−ε
∑
j∈J
|G′j | = O

 ∑
mj≤∆

m
7/5
j +

∑
k≥1

∑
2k−1∆<mj≤2k∆

m
7/5
j


= O

∆7/5 · n
2

∆
+
∑
k≥1

(2k∆)
7
5 · n

3 log n

(2k−1∆)2


= O

(
∆2/5n2 +

n3 log n

∆3/5

)
.

By setting ∆ = n log n, we have

∑
j∈J
|G′j | = O

(
K

2
5n

12
5

+ε log
2
5 n
)

= O
(
K

2
5n

12
5

+ε′
)
.
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Combining the bounds, we have

|Q∗| = |G′| =
D∑
i=1

|G′i| = O
(
K

2
5n

12
5

+ε′ +Kn2
)
,

which completes the proof of Lemma 40.

Finishing the proof. Taking K = M = c1n
2/7+ε in Lemma 40, we have

|Q∗| = O(n88/35+ε).

Combining this with Lemma 39, we have

|B| = Ω(n52/35−ε),

which is Theorem 32.

3.3 Proof of Theorem 33

We prove Theorem 33 by double counting the set

∆ = {(a, b, c) ∈ P 3 : |ab| = |ac|, b 6= c},

which is the set of oriented, non-degenerate isoceles triangles determined by P .

The lower bound on ∆ proceeds by a standard application of the Cauchy-Schwarz

inequality. We denote by n(p, δ) the number of points of P at distance δ from p.

|∆| =
∑
p∈P

∑
δ∈δ(p)

(n(p, δ)− 1)2,

≥
∑
p∈P

(n− |δ(p)|)2|δ(p)|−1,

≥
∑
p∈P

(n− δ∗)2(δ∗)−1,

= n(n− δ∗)2(δ∗)−1.
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For the upper bound, we apply the observation that the number of isosceles triangles

is equal to the number of incidences between the points of P and bisectors of P , counted

with multiplicity. We denote the multiplicity of a bisector ` ∈ B by

w(`) = |{(a, b) ∈ P 2 : B(a, b) = `}|.

It is easy to see that

|∆| = I(P,B) =
∑
p∈P

∑
`∈B

[p ∈ `]w(`).

The notation [p ∈ `] denotes the indicator function that takes value 1 if p ∈ ` and 0

otherwise.

Recall that, for each pair (a, b) ∈ P 2, we denote by C(a, b) the maximum number

of points of P on any circle that contains both a and b. Let

Πk,K = {(a, b) ∈ P 2 : a 6= b, k ≤ C(a, b) < K},

Bk,K = {B(a, b) : (a, b) ∈ Πk,K},

wk,K(`) = |{(a, b) ∈ Πk,K : B(a, b) = `}|.

We decompose the incidences as follows:

I(P,B) = I(P,B2,M ) +
∑

logM≤i<logn

I(P,B2i,2i+1), (3.4)

in which incidences between P and Bk,K are weighted by wk,K , and, as in Section 3.2,

M = c1n
2/7+ε.

We will use Theorem 48, proved in Section 3.5, to bound the size of those sets of

incidences in (3.4) involving bisector mulitiplicities at most n1/2. Applying Theorem

37, we have

∑
`∈Bk,K

w(`) = |Πk,K | = min(n2, O(k2(n3+εk−11/2 + n2k−3 + nk−1))). (3.5)
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Applying Lemma 40, we have

∑
`∈Bk,K

w(`)2 = |Qk,K | = O(K2/5n12/5+ε +Kn2). (3.6)

It is clear that no line can be the bisector of more than n pairs of points.

Recall that Q∗ = Q2,M and Π = Π2,M . Applying Theorem 48 together with (3.5)

and (3.6), we have

I(P,B2,M ) = O(n2/3|Q∗|1/3|Π|1/3 + n2) = O(n228/105+ε). (3.7)

Dividing the remaining range for 2i < n1/2 depending on which terms in (3.5) and (3.6)

are dominant, straightforward calculations show that

I(P,Bk,2k) = O(n37/15+ε′k−31/30), M ≤ k < can
2/5+ε, (3.8)

I(P,Bk,2k) = O(n32/15+ε′k−1/5), can
2/5+ε ≤ k < cbn

1/2. (3.9)

For k ≥ cbn
1/2, note that Theorem 37 implies that there are O(nk−1) circles that

each contain at least k points. Let C be the set of circles that contain between k and

2k points, for some cbn
1/2 < k < n. Let p be an arbitrary point of P , and let C be an

arbitrary circle in C. If p is the center of C, then p is incident to all bisectors determined

by pairs of points on C, which have total multiplicity O(k2). Since |C| = O(nk−1), there

are at most so many centers of circles in C, so the total number of such incidences is

O(nk) = O(n2). Otherwise, p is incident to at most one bisector determined by pairs

of points on C, which has total multiplicity O(k). Since |C| = O(nk−1), there are O(n)

such incidences between p and circles of C, and so the total number of such incidences

is O(n2).

Hence, for cbn
1/2 ≤ k ≤ n/2, we have

I(P,Bk,2k) = O(n2). (3.10)

Note that the right sides of (3.8), (3.9), and (3.10) are all bounded above by
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O(n228/105+ε). Hence, substituting into (3.4), we have

I(P,B) = O(n228/105+ε log(n)).

Absorbing the log(n) into nε, this gives us the upper bound

|∆| = O(n228/105+ε).

Combining the upper and lower bounds, we have

n(n− δ∗)2(δ∗)−1 ≤ |∆| = O(n228/105+ε),

which implies

δ∗ = Ω(n87/105−ε).

3.4 Discussion

The proofs of Theorems 32 and 33 both depend on Theorem 37 and Lemma 40, and

neither of these are tight. Any improvement in the bounds for Theorem 37 or Lemma

40 will immediately translate to corresponding improvements to Theorems 32 and 33.

Indeed, if the following conjectured bounds are proved for Theorem 37 and Lemma 40,

we will immediately have a nearly tight bound for perpendicular bisectors in place of

Theorem 32.

A tight bound on the number of incidences between points and circles would imply

a nearly tight bound for Theorem 33 with no need for an improvement to Lemma 40;

simply place a circle around each point p ∈ P for each distance from p, and then directly

bound the number of point-circle incidences. Note that a tight bound for refined bisector

energy together with Theorem 37 would not immediately imply a tight bound for the

Erdős pinned distance problem, but would improve the bound of Katz and Tardos [41].

Let P be a set of n points in the Euclidean plane. Recall that ck denotes the

maximum number of circles that contain at least k points of P .
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Conjecture 45. For any ε > 0 and k > nε,

ck = O(n2k−3 + nk−1).

Recall that C(a, b) denotes the maximum number of points on any circle that con-

tains a, b ∈ P 2, and

ΠK = {(a, b) ∈ P 2 : a 6= b, C(a, b) ≤ K},

QK = {(a, b, c, d) ∈ P 4 : (a, b), (c, d) ∈ ΠK ,B(a, b) = B(c, d)}.

Conjecture 46.

|QK | = O(Kn2).

The proofs of Theorems 32 and 33 in Sections 3.2 and 3.3 can easily be adapted to

use Conjectures 45 and 46. If Conjectures 45 and 46 were proved, we would immediately

have (for any ε > 0) the bound

|B| = Ω(n2−ε), (3.11)

assuming that no more than cn points lie on any circle, for some c < 1. Both of these

bounds would be tight up to the nε factors.

3.5 Weighted Szemerédi-Trotter

In this section, we prove a generalized Szemerédi-Trotter theorem for weighted points

and lines, which is useful when we have control over the sum-of-squares of the weights.

This strengthens an earlier weighted Szemerédi-Trotter from [38], in the case that the

weights of lines or points differ substantially.
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For a set A with a weight function w : A→ Z+, let

|A|1 =
∑
a∈A

w(a),

|A|22 =
∑
a∈A

w(a)2,

|A|∞ = max
a∈A

w(a).

For a weighted set P of points and a weighted set L of lines, define

I(P,L) =
∑
p∈P

∑
`∈L

[p ∈ `]w(p)w(l)

to be the number of weighted incidences between P and L.

We need the standard Szemerédi-Trotter theorem for unweighted points and lines.

Theorem 47 (Szemerédi-Trotter). Let P be a set of points, and L a set of lines, in

R2. Then,

I(P,L) = O(|P |2/3|L|2/3 + |P |+ |L|).

Theorem 48 (Weighted Szemerédi-Trotter). Let P be a set of weighted points, and L

a set of weighted lines, in R2. Then,

I(P,L) = O
(

(|P |22|P |1|L|22|L|1)1/3 + |L|∞|P |1 + |P |∞|L|1
)
.

Proof. Let

Li = {` ∈ L : 2i ≤ w(`) < 2i+1},

Pi = {p ∈ P : 2i ≤ w(p) < 2i+1}.
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Then, applying a dyadic decomposition and Theorem 47, we have

I(P,L) =
∑
`∈L

∑
p∈P

[p ∈ `]w(p)w(`),

�
∑

1≤2i<|L|∞

∑
1≤2j<|P |∞

2i+12j+1(|Li|2/3|Pj |2/3 + |Li|+ |Pj |), (3.12)

Since

|L|1 =
∑
`∈L

w(`) ≥
∑

1≤2i<|L|∞

2i|Li|,

we have ∑
1≤2i<|L|∞

∑
1≤2j<|P |∞

2i2j |Li| ≤ |L|1
∑

1≤2j<|P |∞

2j � |L|1|P |∞. (3.13)

Similarly, ∑
1≤2i<|L|∞

∑
1≤2j<|P |∞

2i2j |Pi| � |P |1|L|∞. (3.14)

Next, we bound the term
∑

1≤2i<|L|∞ 2i|Li|2/3 in (3.12). We split the sum as

∑
1≤2i<|L|∞

2i|Li|2/3 =
∑

1≤2i<|L|22|L|
−1
1

2i|Li|2/3 +
∑

|L|22|L|
−1
1 ≤2i<|L|∞

2i|Li|2/3.

Note that
∑

i 2i|Li| ≤ |L|1, and hence 2i|Li| ≤ |L|1 for any particular i. Also

note that
∑

1≤2i<|L|22|L|
−1
1

2i/3 is only a constant factor larger than its largest term,

|L|2/32 |L|
−1/3
1 .

∑
1≤2i<|L|22|L|

−1
1

2i|Li|2/3 ≤
∑

1≤2i<|L|22|L|
−1
1

2i(|L|12−1)2/3,

= |L|2/31

∑
1≤2i<|L|22|L|

−1
1

2i/3,

� |L|1/31 |L|
2/3
2 .
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Note that
∑

i 22i|Li| ≤ |L|22, and hence 22i|Li| ≤ |L|22 for any particular i.

∑
|L|22|L|

−1
1 ≤2i<|L|∞

2i|Li|2/3 ≤
∑

|L|22|L|
−1
1 ≤2i<|L|∞

2i(|L|222−2i)2/3,

= |L|4/32

∑
|L|22|L|

−1
1 ≤2i<|L|∞

2−i/3,

� |L|1/31 |L|
2/3
2 .

Hence, ∑
1≤2i<|L|∞

|Li|2/3 � |L|1/31 |L|
2/3
2 , (3.15)

and similarly, ∑
1≤2j<|P |∞

|Pj |2/3 � |P |1/31 |L|
2/3
2 . (3.16)

Combining (3.13), (3.14), (3.15), and (3.16) with (3.12) completes the proof.

3.6 Proof of Theorem 44

The proof of Theorem 44 is nearly identical to the proof of Theorem 2.5 in [46]. The

main difference occurs in bounding the quantity |I1| (defined below).

The proof uses the Kővári-Sós-Turán theorem (see for example [9, Theorem IV.9]).

Lemma 49 (Kővári-Sós-Turán). Let G be a bipartite graph with vertex set A∪B. Let

s ≤ t. Suppose that G contains no Ks,t; that is, for any s vertices in A, at most t− 1

vertices in B are connected to each of the s vertices. Then

|G| = O(t
1
s |A||B|

s−1
s + |B|).

We amplify the weak bound of Lemma 49 by using polynomial partitioning. Given

a polynomial f ∈ R[x1, . . . , xd], we write Z(f) = {p ∈ Rd : f(p) = 0}. We say that

f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for a finite set P ⊂ Rd if no connected

component of Rd\Z(f) contains more than |P|/r points of P (notice that there is

no restriction on the number of points of P that are in Z(f)). Guth and Katz [35]
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introduced this notion and proved that for every P ⊂ Rd and 1 ≤ r ≤ |P|, there exists

an r-partitioning polynomial of degree O(r1/d). In [29], the following generalization

was proved.

Theorem 50 (Partitioning on a variety). Let V be an irreducible variety in Rd of

dimension e and degree D. Then for every finite P ⊂ V there exists an r-partitioning

polynomial f of degree O(r1/e) such that V 6⊂ Z(f). The implicit constant depends only

on d and D.

We are now ready to prove the incidence bound.

Proof of Theorem 44. Note that we may assume that no variety in S contains V . We

can assume that V contains at least s points (otherwise the bound in the theorem is

trivial). If there are at most t − 1 varieties in S that contain V , then these varieties

altogether give less than tm incidences, which is accounted for in the bound. If there

are t or more varieties in S that countain V , then Lemma 43 implies that no pair of

vertices in G′ corresponding to a pair of points contained in V shares any neighbor

among the vertices corresponding to the varieties that contain V . These are at most m

incidences, which is accounted for in the bound.

We use induction on e and m, with the induction claim being that for P,S, V,G′ as

in the theorem, with the added condition that no variety in S contains V , we have

|G′| ≤ α1,em
s(e−1)
es−1

+εn
e(s−1)
es−1 t

e−1
es−1 + α2,e(tm+ n), (3.17)

for constants α1,e, α2,e depending only on d, e, s, ε, the degree of V , and the degrees of

the varieties in S. The base cases for the induction are simple. If m is sufficiently small,

then (3.17) follows immediately by choosing sufficiently large values for α1,e and α2,e.

Similarly, when e = 0, we again obtain (3.17) when α1,e and α2,e are sufficiently large

(as a function of d and the degree of V ).

The constants d, e, s, ε are given and thus fixed, as are the degree of V and the

degrees of the varieties in S. The other constants are to be chosen, and the dependencies
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between them are

Cweak, Cpart, Cinter � Ccells � CHöld � r � Ccomps � α2,e � α1,e,

where C � C ′ means that C ′ is to be chosen sufficiently large compared to C; in

particular, C should be chosen before C ′. Furthermore, the constants α1,e, α2,e depend

on α1,e−1, α2,e−1.

Note that G′ is Ks,t-free. Hence, by Lemma 49, there exists a constant Cweak

depending on d, s such that

|G′| ≤ Cweak

(
mn1− 1

s t
1
s + n

)
.

When m ≤ (n/t)1/s, and α2,e is sufficiently large, we have |G′| ≤ α2,en. Therefore, in

the remainder of the proof we can assume that n < mst, which implies

n = n
e−1
es−1n

e(s−1)
es−1 ≤ m

s(e−1)
es−1 n

e(s−1)
es−1 t

(e−1)
es−1 . (3.18)

Partitioning.

By Theorem 50, there exists an r-partitioning polynomial f with respect to V of degree

at most Cpart · r1/e, for a constant Cpart. Denote the cells of V \Z(f) as Ω1, . . . ,ΩN .

Since we are working over the reals, there exists a constant-degree polynomial g such

that Z(g) = V . Then, by [55, Theorem A.2], the number of cells is bounded by

C · deg(f)dimV = Ccells · r, for some constant Ccells depending on Cpart.

We partition G′ into the following three subsets:

– I1 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩ Z(f), and some

irreducible component of V ∩ Z(f) contains p and is fully contained in S.

– I2 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩ Z(f), and no

irreducible component of V ∩ Z(f) that contains p is contained in S.

– I3 = G′\(I1∪ I2), the set of incidences (p, S) ∈ P ×S such that p is not contained

in V ∩ Z(f).
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Note that we indeed have G′ = I1 ∪ I2 ∪ I3, excluding any edges corresponding to

varieties in S that fully contain V .

Bounding |I1|.

The points of P ⊂ Rd that participate in incidences of I1 are all contained in the variety

V0 = V ∩ Z(f). Set P0 = P ∩ V0 and m0 = |P0|. Since V is an irreducible variety and

V 6⊂ Z(f), V0 is a variety of dimension at most e− 1 and of degree that depends on r.

By [55, Lemma 4.3], the intersection V0 is a union of Ccomps irreducible components,

where Ccomps is a constant depending on r and d.2 The degrees of these components also

depend only on these values (for a proper definition of degrees and further discussion,

see for instance [29]).

Consider an irreducible component W of V0. If W contains at most s− 1 points of

P0, it yields at most (s− 1)n incidences. Otherwise, if there are at most t− 1 varieties

of S that fully contain W , then these yield at most (t− 1)m0 incidences. Otherwise, if

there are at least t varieties of S that fully contain W , then by Lemma 43, no pair of

vertices corresponding to points contained in W has a common neighbor in G′ among

the varieties that contain W . In this case, at most m0 incidences must be counted.

By summing up, choosing sufficiently large α1,e, α2,e, and applying (3.18), we have

|I1| ≤ Ccomps (sn+ tm0) <
α2,e

2
(n+tm0) <

α1,e

4
m

s(e−1)
es−1 n

e(s−1)
es−1 t

(e−1)
es−1 +

α2,e

2
tm0. (3.19)

Bounding |I2|.

The points that participate in I2 lie in V0 = V ∩Z(f), and the varieties that participate

do not contain any component of V0. Because V0 has dimension at most e − 1, we

can apply the induction claim on each irreducible component W of V0, for the point

set P ∩W and the set of varieties in S that do not contain W . Since V0 has Ccomps

2This lemma only applies to complex varieties. However, we can take the complexification of the
real variety and apply the lemma to it (for the definition of a complexification, see for example [66,
Section 10]). The number of irreducible components of the complexification cannot be smaller than
number of irreducible components of the real variety (see for instance [66, Lemma 7]).
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irreducible components, we get

|I2| ≤ Ccompsα1,e−1m
s(e−2)

(e−1)s−1
+ε

0 n
(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 + α2,e−1(tm0 + n),

with α1,e−1 and α2,e−1 depending on the degree of the irreducible component of V0,

which in turn depends on r. Recalling that we may assume n < mst, we obtain

m
s(e−2)

(e−1)s−1
+ε
n

(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 = m

s(e−2)
(e−1)s−1

+ε
n

e(s−1)
es−1 n

s−1
(es−s−1)(es−1) t

e−2
(e−1)s−1

< m
s(e−1)
es−1

+εn
e(s−1)
es−1 t

e−1
es−1 .

By applying (3.18) to remove the term α2,e−1n, and by choosing α1,e and α2,e sufficiently

large as a function of Ccomps, α1,e−1, α2,e−1, we obtain

|I2| ≤
α1,e

4
m

s(e−1)
es−1

+εn
e(s−1)
es−1 t

e−1
es−1 +

α2,e

2
tm0. (3.20)

Bounding |I3|.

For every 1 ≤ i ≤ N , we set Pi = P ∩Ωi and denote by Si the set of varieties of S that

intersect the cell Ωi. Let G′i ⊆ G′ be (Pi×Si)∩G′. We also set mi = |Pi| and ni = |Si|.

Then we have mi ≤ m/r and
∑N

i=1mi = m−m0.

Let S ∈ S. By the assumption made at the beginning of the proof, S does not

contain V , so S ∩ V is a subvariety of V of dimension at most e− 1. By [55, Theorem

A.2], there exists a constant Cinter such that the number of cells intersected by S ∩ V

is at most C · deg(f)dim(S∩V ) = Cinter · r(e−1)/e. This implies that

N∑
i=1

ni ≤ Cinter · r
e−1
e · n.
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By Hölder’s inequality we have

N∑
i=1

n
e(s−1)
es−1

i ≤

(
N∑
i=1

ni

) e(s−1)
es−1

(
N∑
i=1

1

) e−1
es−1

≤
(
Cinterr

(e−1)/en
) e(s−1)

es−1
(Ccellsr)

e−1
es−1

≤ CHöldr
(e−1)s
es−1 n

e(s−1)
es−1 ,

where CHöld depends on Cinter, Ccells. Using the induction claim for each i with the

point set Pi, the set of varieties Si, and the same variety V , we obtain

N∑
i=1

|G′i| ≤
N∑
i=1

(
α1,em

(e−1)s
es−1

+ε

i n
e(s−1)
es−1

i t
(e−1)
es−1 + α2,e(tmi + ni)

)

≤ α1,e
m

(e−1)s
es−1

+εt
(e−1)
es−1

r
(e−1)s
es−1

+ε

N∑
i=1

n
e(s−1)
es−1

i +
N∑
i=1

α2,e(tmi + ni)

≤ α1,eCHöld
m

(e−1)s
es−1

+εn
e(s−1)
es−1 t

(e−1)
es−1

rε
+ α2,e

(
t(m−m0) + Cinterr

e−1
e n
)
.

By choosing α1,e sufficiently large with respect to Cinter, r, α2,e, and using (3.18), we get

N∑
i=1

|G′i| ≤ 2α1,eCHöld
m

(e−1)s
es−1

+εn
e(s−1)
es−1 s

(e−1)
es−1

rε
+ α2,et(m−m0).

Finally, choosing r sufficiently large with respect to CHöld gives

|I3| =
N∑
i=1

I(Pi,Si) ≤
α1,e

2
m

(e−1)s
es−1

+εn
e(s−1)
es−1 t

(e−1)
es−1 + α2,et(m−m0). (3.21)

Summing up.

By combining |G′| = |I1|+ |I2|+ |I3| with (3.19), (3.20), and (3.21), we obtain

|G′| ≤ α1,em
s(e−1)
es−1

+εn
e(s−1)
es−1 t

(e−1)
es−1 + α2,e(tm+ n),

which completes the induction step and the proof of the theorem.
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Chapter 4

Incidence bounds for block designs
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4.1 Introduction

The structure of incidences between points and various geometric objects is of central

importance in discrete geometry, and theorems that elucidate this structure have had

applications to, for example, problems from discrete and computational geometry [35,

49], additive combinatorics [13, 21], harmonic analysis [34, 42], and computer science

[20]. The study of incidence theorems for finite geometry is an active area of research

- e.g. [64, 11, 15, 39, 40, 60, 24].

The classical Szemerédi-Trotter theorem [59] bounds the maximum number of in-

cidences between points and lines in 2-dimensional Euclidean space. Let P be a set

of points in R2 and L be a set of lines in R2. Let I(P,L) denote the number of in-

cidences between points in P and lines in L. The Szemerédi-Trotter Theorem shows

that I(P,L) = O(|P |2/3|L|2/3 + |P |+ |L|). Ever since the original result, variations and

generalizations of such incidence bounds have been intensively studied.

Incidence theorems for points and flats1 in finite geometries is one instance of such

incidence theorems that have received much attention, but in general we still do not

fully understand the behavior of the bounds in this setting. These bounds have different

characteristics depending on the number of points and flats. For example, consider the

following question of proving an analog to the Szemerédi-Trotter theorem for points

and lines in a plane over a finite field. Let q = pn for prime p. Let P be a set of points

and L a set of lines in F2
q , with |P | = |L| = N . What is the maximum possible value of

I(P,L) over all point sets of size N and sets of lines of size N?

If N ≤ O(log log log(p)), then a result of Grosu [31] implies that we can embed P and

L in C2 without changing the underlying incidence structure. Then we apply the result

from the complex plane, proved by Tóth [61] and Zahl [67], that I(P,L) ≤ O(N4/3).

This matches the bound of Szemerédi and Trotter, and a well-known construction based

on a grid of points in R2 shows that the exponent of 4/3 is tight.

The intermediate case of N < p is rather poorly understood. A result of Bourgain,

Katz, and Tao [11], later improved by Jones [40], shows that I(P,L) ≤ O(N3/2−ε) for

1We refer to m-dimensional affine subspaces of a vector space as m-flats.
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ε = 1/662 − op(1). This result relies on methods from additive combinatorics, and is

far from tight; in fact, we are not currently aware of any construction with N < p3/2

that achieves I(P,L) > ω(N4/3).

For N ≥ q, we know tight bounds on I(P,L). Using an argument based on spectral

graph theory, Vinh [64] proved that |I(P,L)−N2/q| ≤ q1/2N , which gives both upper

and lower bounds on I(P,L). The upper bound meets the Szemerédi-Trotter bound of

O(N4/3) when N = q3/2, which is tight by the same construction used in the real plane.

The lower bound becomes trivial for N ≤ q3/2, and Vinh showed [65] that there are

sets of q3/2 points and q3/2 lines such that there are no incidences between the points

and lines. When N = q, we have I(P,L) = O(N3/2), which is tight when q = p2 for a

prime power p (consider incidences between all points and lines in F2
p).

In this chapter we generalize Vinh’s argument to the purely combinatorial setting

of balanced incomplete block designs (BIBDs). This shows that his argument depends

only on the combinatorial structure induced by flats in the finite vector space. We apply

methods from spectral graph theory. We both generalize known incidence bounds for

points and flats in finite geometries, and prove results for BIBDs that are new even in

the special case of points and flats in finite geometries. Finally, we apply one of these

incidence bounds to improve a result of Iosevich, Rudnev, and Zhai [39] on the number

of triangles with distinct areas determined by a set of points in F2
q .

4.1.1 Outline

In Section 4.2.1, we state definitions of and basic facts about BIBDs and finite geome-

tries. In Section 4.2.2, we discuss our results on the incidence structure of designs. In

Section 4.2.3, we discuss our result on distinct triangle areas in F2
q . In Section 4.3, we

introduce the tools from spectral graph theory that are used to prove our incidence

results. In Section 4.4, we prove the results stated in Section 4.2.2. In Section 4.5, we

prove the result stated in Section 4.2.3.
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4.2 Results

4.2.1 Definitions and Background

Let X be a finite set (which we call the points), and let B be a set of subsets of X

(which we call the blocks). We say that (X,B) is an (r, k, λ)-BIBD if

– each point is in r blocks,

– each block contains k points,

– each pair of points is contained in λ blocks, and

– no single block contains all of the points.

It is easy to see that the following relations among the parameters |X|, |B|, r, k, λ of

a BIBD hold:

r|X| = k|B|, (4.1)

λ(|X| − 1) = r(k − 1). (4.2)

The first of these follows from double counting the pairs (x, b) ∈ X × B such that

x ∈ b. The second follows from fixing an element x ∈ X, and double counting the pairs

(x′, b) ∈ (X \ {x})×B such that x′, x ∈ b.

In the case where X is the set of all points in Fnq , and B is the set of m-flats in Fnq ,

we obtain a design with the following parameters [6]:

– |X| = qn,

– |B| =
(
n+1
m+1

)
q
−
(

n
m+1

)
q
,

– r =
(
n
m

)
q
,

– k = qm, and

– λ =
(
n−1
m−1

)
q
.

The notation
(
n
m

)
q

refers to the q-binomial coefficient, defined for integers m ≤ n by

(
n

m

)
q

=
(qn − 1)(qn − q) . . . (qn − qm−1)

(qm − 1)(qm − q) . . . (qm − qm−1)
.

We will only use the fact that
(
n
m

)
q

= (1 + oq(1))qm(n−m).
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Given a design (X,B), we say that a point x ∈ X is incident to a block b ∈ B if

x ∈ b. For subsets P ⊆ X and L ⊆ B, we define I(P,L) to be the number of incidences

between P and L; in other words,

I(P,L) = |{(x, b) ∈ P × L : x ∈ b}|.

Given a subset L ⊆ B, we say that a point x is t-rich if it is contained in at least t

blocks of L, and we define Γt(L) to be the number of t-rich points in X; in other words,

Γt(L) = |{x ∈ X : |{b ∈ L : x ∈ b}| ≥ t}|.

Given a subset P ⊆ X, we say that a block b is t-rich if it contains at least t points

of P , and we define Γt(P ) to be the number of t-rich blocks in B; in other words,

Γt(P ) = |{b ∈ B : |{x ∈ P : x ∈ b}| ≥ t}|.

4.2.2 Incidence Theorems

The first result on the incidence structure of designs is a generalization of the finite

field analog to the Szemerédi-Trotter theorem proved by Vinh [64].

Theorem 51. Let (X,B) be an (r, k, λ)-BIBD. The number of incidences between

P ⊆ X and L ⊆ B satisfies

∣∣ I(P,L)− |P ||L|r/|B|
∣∣ ≤√(r − λ)|P ||L|.

Theorem 51 gives both upper and lower bounds on the number of incidences between

arbitrary sets of points and blocks. The term |P ||L|r/|B| corresponds to the number of

incidences that we would expect to see between P and L if they were chosen uniformly at

random. If |P ||L| is much larger than |B|2(r−λ)/r2 > |B|2/r, then |P ||L|r/|B| is much

larger than
√

(r − λ)|P ||L|. Thus the theorem says that every set of points and blocks

determines approximately the “expected” number of incidences. When |P ||L| < |B|2/r,

the term on the right is larger, and Theorem 51 gives only an upper bound on the
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number of incidences. The Cauchy-Schwartz inequality combined with the fact that

each pair of points is in at most λ blocks easily implies that I(P,L) ≤ λ1/2|P ||L|1/2+|L|.

Hence, the upper bound in Theorem 51 is only interesting when |P | > (r − λ)/λ.

In the case of incidences between points and m-flats in Fnq , we get the following

result as a special case of Theorem 51.

Corollary 52. Let P be a set of points and let L be a set of m-flats in Fnq . Then

∣∣I(P,L)− |P | |L|qm−n
∣∣ ≤ (1 + oq(1))

√
qm(n−m)|P | |L|.

Vinh [64] proved Corollary 52 in the case m = n − 1, and Bennett, Iosevich, and

Pakianathan [8] derived the bounds for the remaining values of m from Vinh’s bound,

using elementary combinatorial arguments. Vinh’s proof is based on spectral graph

theory, analogous to the proof of Theorem 51 that we present in Section 4.4. Cilleruelo

proved a result similar to Vinh’s using Sidon sets [14].

We also show lower bounds on the number of t-rich blocks determined by a set of

points, and on the number of t-rich points determined by a set of blocks.

While reading the statements of these theorems, it is helpful to recall from equation

(1) that |X|/k = |B|/r.

Theorem 53. Let (X,B) be an (r, k, λ)-BIBD. Let ε ∈ R>0 and t ∈ Z≥2. Let P ⊆ X

with

|P | ≥ (1 + ε)(t− 1)|X|/k.

Then, the number of t-rich blocks is at least

Γt(P ) ≥ aε,t,D|B|,

where

aε,t,D =
ε2(t− 1)

ε2(t− 1) + (1− λ
r )(1 + ε)

.

Theorem 54. Let (X,B) be an (r, k, λ)-BIBD. Let ε ∈ R>0 and t ∈ Z≥2. Let L ⊆ B,
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with

|L| ≥ (1 + ε)(t− 1)|X|/k.

Then, the number of t-rich points is at least

Γt(L) ≥ bε,t,D|X|,

where

bε,t,D =
ε2(t− 1)

ε2(t− 1) + r−λ
k (1 + ε)

.

Theorem 53 is analogous to Beck’s theorem [7], which states that, if P is a set of

points in R2, then either c1|P | points lie on a single line, or there are c2|P |2 lines each

contain at least 2 points of P , where c1 and c2 are fixed positive constants.

Both the t = 2 case of Theorem 53 and Beck’s theorem are closely related to the de

Bruijn-Erdős theorem [17, 54], which states that, if P is a set, and L is a set of subsets

of P such that each pair of elements in P is contained in exactly λ members of L, then

either a single member of L contains all elements of P , or |L| ≥ |P |. Each of Theorem

53 and Beck’s theorem has an additional hypothesis on the de Bruijn-Erdős theorem,

and a stronger conclusion. Beck’s theorem improves the de Bruijn-Erdős theorem when

P is a set of points in R2 and L is the set of lines that each contain 2 points of P .

Theorem 53 improves the de Bruijn-Erdős theorem when P is a sufficiently large subset

of the points of a BIBD, and L is the set of blocks that each contain at least 2 points

of P .

As special cases of Theorems 53 and 54, we get the following results on the number

of t-rich points determined by a set of m-flats in Fnq , and on the number of t-rich m-flats

determined by a set of points in F2
q .

Corollary 55. Let ε ∈ R≥0 and t ∈ Z≥2. Let P ⊆ Fnq with

|P | ≥ (1 + ε)(t− 1)qn−m.



75

Then the number of t-rich m-flats is at least

Γt(L) ≥ aε,tq(m+1)(n−m),

where

aε,t =
ε2(t− 1)

ε2(t− 1) + (1 + ε)
.

Corollary 56. Let ε ∈ R≥0 and t ∈ Z≥2. Let L be a subset of the m-flats in Fnq with

|L| ≥ (1 + ε)(t− 1)qn−m.

Then, the number of t-rich points is at least

Γt(L) ≥ bε,t,qqn,

where

bε,t,q =
ε2(t− 1)

ε2(t− 1) + qm(n−m−1)(1 + ε)
.

The case n = 2,m = 1, t = 2 of Corollary 55 was proved (for a slightly smaller value

of aε,t) by Alon [3]. Alon’s proof is also based on spectral graph theory.

When m = n − 1, Corollaries 55 and 56 are dual (in the projective sense) to each

other; slight differences in the parameters arise since we’re working in affine (as opposed

to projective) geometry.

For the case m < n − 1, the value of bε,t,q in Corollary 56 depends strongly on q

when ε(t − 1) < qm(n−m−1). This dependence is necessary. For example, consider the

case n = 3,m = 1, i.e. lines in F3
q . Corollary 56 implies that a set of 2q2 lines in F3

q

determines Ω(q2) 2-rich points, which is asymptotically fewer (with regard to q) than

the total number of points in F3
q . This is tight, since the lines may lie in the union of

two planes. By contrast, Corollary 55 implies that a set of 2q2 points in F3
q determines

Ω(q4) 2-rich lines, which is a constant proportion of all lines in the space.
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4.2.3 Distinct Triangle Areas

Iosevich, Rudnev, and Zhai [39] studied a problem on distinct triangle areas in F2
q . This

is a finite field analog to a question that is well-studied in discrete geometry over the

reals. Erdős, Purdy, and Strauss [27] conjectured that a set of n points in the real plane

determines at least bn−1
2 c distinct triangle areas. Pinchasi [51] proved that this is the

case.

In F2
q , we define the area of a triangle in terms of the determinant of a matrix.

Suppose a triangle has vertices a, b, and c, and let zx and zy denote the x and y

coordinates of a point z. Then, we define the area associated to the ordered triple

(a, b, c) to be the determinant of the following matrix:


1 1 1

ax bx cx

ay by cy


Iosevich, Rudnev, and Zhai [39] showed that a set of at least 64q log2 q points includes

a point that is a common vertex of triangles having at least q/2 distinct areas. They

first prove a finite field analog of Beck’s theorem, and then obtain their result on

distinct triangle areas using this analog to Beck’s theorem along with some Fourier

analytic and combinatorial techniques. Corollary 55 (in the case n = 2,m = 1, t = 2)

strengthens their analog to Beck’s theorem, and thus we are able to obtain the following

strengthening of their result on distinct triangle areas.

Theorem 57. Let ε ∈ R>0. Let P be a set of at least (1 + ε)q points in F2
q. Let T

be the set of triangles determined by P . Then there is a point z ∈ P such that z is a

common vertex of triangles in T with at least cεq distinct areas, where cε is a positive

constant depending only on ε, such that cε → 1 as ε→∞.

Notice that Theorem 57 is tight in the sense that fewer than q points might determine

only triangles with area zero (if all points are collinear). It is a very interesting open

question to determine the minimum number of points Kq, such that any set of points

of size Kq determines all triangle areas. In fact, we are not currently aware of any set
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of more than q + 1 points that does not determine all triangle areas.

4.3 Tools from Spectral Graph Theory

4.3.1 Context and Notation

Let G = (L,R,E) be a (∆L,∆R)-biregular bipartite graph; in other words, G is a

bipartite graph with left vertices L, right vertices R, and edge set E, such that each left

vertex has degree ∆L, and each right vertex has degree ∆R. Let A be the |L∪R|×|L∪R|

adjacency matrix of G, and let µ1 ≥ µ2 ≥ . . . ≥ µ|L|+|R| be the eigenvalues of A. Let

µ = µ2/µ1 be the normalized second eigenvalue of G.

Let e(G) = ∆L|L| = ∆R|R| be the number of edges in G. For any two subsets of

vertices A and B, denote by e(A,B) the number of edges between A and B. For a

subset of vertices A ⊆ L∪R, denote by Γt(A) the set of vertices in G that have at least

t neighbors in A.

4.3.2 Lemmas

We will use two lemmas relating the normalized second eigenvalue of G to its combina-

torial properties. The first of these is the expander mixing lemma [4].

Lemma 58 (Expander Mixing Lemma). Let S ⊆ L with |S| = α|L| and let T ⊆ R

with |T | = β|R|. Then,

∣∣∣∣e(S, T )

e(G)
− αβ

∣∣∣∣ ≤ µ√αβ(1− α)(1− β).

Several variants of this result appear in the literature, most frequently without the√
(1− α)(1− β) terms. For a proof that includes these terms, see [63], Lemma 4.15.

Although the statement in [63] is not specialized for bipartite graphs, it is easy to

modify it to obtain Lemma 58. For completeness, we include a proof in the appendix.

Theorems 54 and 53 follow from the following corollary to the expander mixing

lemma, which may be of independent interest.
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Lemma 59. Let ε ∈ R>0, and let t ∈ Z≥2. If S ⊆ L such that

|S| ≥ (1 + ε)(t− 1)|L|/∆R,

then

|Γt(S)| ≥ cε,t,G|R|,

where

cε,t,G =
ε2(t− 1)

ε2(t− 1) + µ2∆R(1 + ε)
.

Proof. Let T = R \ Γt(S). Let α = |S|/|L|, and let β = |T |/|R|. We will calculate a

lower bound on 1 − β = |Γt(S)|/|R|, from which we will immediately obtain a lower

bound on |Γt(S)|.

Since each vertex in T has at most t − 1 edges to vertices in S, we have e(S, T ) ≤

(t− 1)|T |. Along with the fact that |T | = β|R|, this gives

αβ − e(S,T )
|R|∆R

≥ αβ − (t− 1)β/∆R,

= β(α− (t− 1)/∆R).

Lemma 58 implies that αβ−e(S, T )/|R|∆R ≤ µ
√
αβ(1− α)(1− β). Since we expect

α to be small, we will drop the (1− α) term, and we have

µ
√
αβ(1− β) ≥ β(α− (t− 1)/∆R),

µ2αβ(1− β) ≥ β2(α− (t− 1)/∆R)2,

µ2(1− β)/β ≥ α− 2(t− 1)/∆R + (t− 1)2/(∆2
Rα).

By hypothesis, α ≥ (1 + ε)(t− 1)/∆R. Let c ≥ 1 such that α = c(1 + ε)(t− 1)/∆R.

Then,

µ2(1− β)/β ≥ c(1 + ε)(t− 1)/∆R − 2(t− 1)/∆R + (t− 1)/(∆R(1 + ε)c)

=
(
c(1 + ε)− 2 + 1

c(1+ε)

)
t−1
∆R

.
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Define f(x) = x(1 + ε) + x−1(1 + ε)−1 − 2 for x ≥ 1. The derivative of f(x) is

f ′(x) = 1 + ε− (1 + ε)−1x−2.

Since 1 + ε > 1, for any x ≥ 1, we have f ′(x) > 0. Hence, f(c) ≥ f(1), and

µ2(1− β)/β ≥ (1 + ε− 2 + (1 + ε)−1) t−1
∆R

,

= ((ε−1)(1+ε)+1)(t−1)
(1+ε)∆R

,

= ε2(t−1)
(1+ε)∆R

,

1/β − 1 ≥ ε2(t−1)
(1+ε)µ2∆R

,

β ≤ (1+ε)µ2∆R

ε2(t−1)+(1+ε)µ2∆R
,

1− β ≥ ε2(t−1)
ε2(t−1)+(1+ε)µ2∆R

.

Recall that 1− β = |Γt(S)|/|R|, so this completes the proof.

4.4 Proof of Incidence Bounds

In this section, we prove Theorems 51, 53, and 54. We first prove results on the

spectrum of the bipartite graph associated to a BIBD. We then use Lemmas 58 and 59

to complete the proofs.

Lemma 60. Let (X,B) be an (r, k, λ)-BIBD. Let G = (X,B,E) be a bipartite graph

with left vertices X, right vertices B, and (x, b) ∈ E if x ∈ b. Let A be the (|X| +

|B|)× (|X|+ |B|) adjacency matrix of G. Then, the normalized second eigenvalue of A

is
√

(r − λ)/rk.

Proof. Let N be the |X|×|B| incidence matrix of D; that is, N is a (0, 1)-valued matrix

such that Ni,j = 1 iff point i is in block j. We can write

A =

 0 N

NT 0

 .
Instead of analyzing the eigenvalues of A directly, we’ll first consider the eigenvalues
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of A2. Since

A2 =

 NNT 0

0 NTN


is a block diagonal matrix, the eigenvalues of A2 (counted with multiplicity) are the

union of the eigenvalues of NNT and the eigenvalues of NTN . We will start by calcu-

lating the eigenvalues of NNT .

The following observation about NNT was noted by Bose [10].

Proposition 61.

NNT = (r − λ)I + λJ,

where I is the |X| × |X| identity matrix and J is the |X| × |X| all-1s matrix.

Proof. The entry (NNT )i,j corresponds to the number of blocks that contain both point

i and point j. From the definition of an (r, k, λ)-BIBD, it follows that (NNT )i,i = r

and (NNT )i,j = λ if i 6= j, and the conclusion of the proposition follows.

We use the above decomposition to calculate the eigenvalues of NNT .

Proposition 62. The eigenvalues of NNT are rk with multiplicity 1 and r − λ with

multiplicity |X| − 1.

Proof. The eigenvalues of I are all 1. The eigenvalues of J are |X| with multiplicity

1 and 0 with multiplicity |X| − 1. The eigenvector of J corresponding to eigenvalue

|X| is the all-ones vector, and the orthogonal eigenspace has eigenvalue 0. Since I and

J share a basis of eigenvectors, the eigenvalues of NNT are simply the sums of the

corresponding eigenvalues of (r− λ)I and λJ . Hence, the largest eigenvalue of NNT is

r − λ + |X|λ, corresponding to the all-ones vector, and the remaining eigenvalues are

r − λ, corresponding to vectors whose entries sum to 0. From equation (2), we have

λ(|X| − 1) = r(k − 1), and so we can write the largest eigenvalue as rk.

Next, we use the existence of a singular value decomposition of N to show that the

nonzero eigenvalues of NTN have the same values and occur with the same multiplicity

as the eigenvalues of NNT .
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The following is a standard theorem from linear algebra; see e.g. [53, p. 429].

Theorem 63 (Singular value decomposition.). Let M be a m × n real-valued matrix

with rank r. Then,

M = PΣQT ,

where P is an m ×m orthogonal matrix, Q is an n × n orthogonal matrix, and Σ is

a diagonal matrix. In addition, if the diagonal entries of Σ are s1, s2, . . . , sr, 0, . . . , 0,

then the nonzero eigenvalues of MMT and MTM are s2
1, s

2
2, . . . , s

2
r.

It is immediate from this theorem that the nonzero eigenvalues of NTN , counted

with multiplicity, are identical with those of NNT . Hence, the nonzero eigenvalues of

A2 are rk with multiplicity 2 and r − λ with multiplicity 2(|X| − 1).

Clearly, the eigenvalues of A2 are the squares of the eigenvalues of A; indeed, if

x is an eigenvector of A with eigenvalue µ, then A2x = µAx = µ2x. Hence, the

conclusion of the lemma will follow from the following proposition that the eigenvalues

of A are symmetric about 0. Although it is a well-known fact that the eigenvalues of

the adjacency matrix of a bipartite graph are symmetric about 0, we include a simple

proof here for completeness.

Proposition 64. If µ is an eigenvalue of A with multiplicity w, then −µ is an eigen-

value of A with multiplicity w.

Proof. Let x1 ∈ R|X| and x2 ∈ R|B| so that (x1, x2)T is an eigenvector of A with

corresponding nonzero eigenvalue µ.

Then,

A

 x1

x2

 =

 Nx2

NTx1

 = µ

 x1

x2

 .
Note that, since Nx2 = µx1 and NTx1 = µx2 and µ 6= 0, we have that that x1 6= 0

and x2 6= 0.

In addition,

A

 −x1

x2

 =

 Nx2

−NTx1

 = −µ

 −x1

x2


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Hence, if µ is an eigenvalue of A with eigenvector (x1, x2)T , then −µ is an eigenvalue

of A with eigenvector (−x1, x2)T . Since A is a real symmetric matrix, it follows from the

spectral theorem (e.g. [53, p. 227]) that A has an orthogonal eigenvector basis; hence,

we can match the eigenvectors of A with eigenvalue µ with those having eigenvalue −µ

to show that the multiplicity of µ is equal to the multiplicity of −µ.

Now we can calculate that the nonzero eigenvalues of A are
√
rk and −

√
rk, each

with multiplicity 1, and
√
r − λ and −

√
r − λ, each with multiplicity |X| − 1. Hence,

the normalized second eigenvalue of A is
√

(r − λ)/rk, and the proof of Lemma 60 is

complete.

Proof of Theorem 51. Lemma 58 implies that given a sets P ⊆ X and L ⊆ B, the

number of edges in G between P and L is bounded by

∣∣∣∣e(P,L)

r|X|
− |P | |L|
|X| |B|

∣∣∣∣ ≤√(r − λ)|P | |L|/rk|X| |B|.

From equation (1), we know that r|X| = k|B|, so multiplying through by r|X| gives

∣∣e(P,L)− |P | |L|r/|B|
∣∣ ≤√(r − λ)|P | |L|.

From the construction of G, we see that e(P,L) is exactly the term I(P,L) bounded in

Theorem 51, so this completes the proof of Theorem 51.

Proof of Theorem 53. Lemma 59 implies that, for any ε ∈ R>0 and t ∈ Z≥1, given a

set P ⊆ X such that

|P | ≥ (1 + ε)(t− 1)|X|/k,

there are at least

Γk(P ) ≥ ε2(t− 1)|B|
ε2(t− 1) + (r − λ)k(1 + ε)/rk

vertices in B that each have at least t edges to vertices in P . Rearranging slightly

and again using the fact that edges in G correspond to incidences in D gives Theorem

53.
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Proof of Theorem 54. Lemma 59 also implies that, for any ε ∈ R>0 and t ∈ Z≥1, given

a set L ⊆ B such that

|L| ≥ (1 + ε)(t− 1)|B|/r = (1 + ε)(t− 1)|X|/k,

we have

Γk(L) ≥ ε2(t− 1)|X|
ε2(t− 1) + (r − λ)r(1 + ε)/rk

.

Simplifying this expression gives Theorem 54.

4.5 Application to Distinct Triangle Areas

In this section, we will prove Theorem 57. We will need the following theorem, which

was proved by Iosevich, Rudnev, and Zhai [39] as a key ingredient of their lower bound

on distinct triangle areas.

Theorem 65 ([39]). Let F,G ⊂ F2
q. Suppose 0 /∈ F . Let, for d ∈ Fq,

ν(d) = |{(a, b) ∈ F ×G : a · b = d}|,

where a · b = axbx + ayby. Then

∑
d

ν2(d) ≤ |F |2|G|2q−1 + q|F ||G| max
x∈F2

q\{0}
|F ∩ lx|,

where

lx = {sx : s ∈ Fq}.

We will also need the following consequence of Corollary 55.

Lemma 66. Let ε ∈ R>0 and t ∈ Z≥2. There exists a constant c′ε > 0, depending only

on ε, such that the following holds.

Let P be a set of (1 + ε)(t − 1)q points in F2
q. Then there is a point z ∈ P such

that c′εq or more t-rich lines are incident to z. Moreover, if ε ≥ 1, then we can take

c′ε = 1/3.
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Proof. By Corollary 55,

|Γt(P )| ≥ aε,tq2,

where

aε,t =
ε2(t− 1)

ε2(t− 1) + 1 + ε
.

Denote by I(P,Γt(P )) the number of incidences between points of P and lines of Γt(P ).

Since each line of Γt(P ) is incident to at least t points of P , the average number of

incidences with lines of Γt(P ) that each point of P participates in is at least

I(P,Γt(P ))/|P | ≥ t|Γt(P )|/|P |,

≥ taε,tq
2/|P |,

= taε,tq/((1 + ε)(t− 1)),

= c′ε,tq,

where

c′ε,t = taε,t/((1 + ε)(t− 1)),

= tε2/((1 + ε)(ε2(t− 1) + 1 + ε)).

The derivative of c′ε,t with respect to t is

δc′ε,t
δt

=
ε2(−ε2 + ε+ 1)

(ε+ 1)((t− 1)ε2 + ε+ 1)2
.

Since this derivative is positive for 0 < ε < (1 +
√

5)/2 and t > 0, we have that c′ε,t

is a monotonically increasing function of t for any fixed 0 < ε < (1 +
√

5)/2. Hence, for

ε ≤ 1,

I(P,Γt(P ))/|P | ≥ c′ε,2q.

For ε ≤ 1, let c′ε = c′ε,2 = 2ε2/((1 + ε)(ε2 + ε+ 1)). Since the expected number of t-rich

lines incident to a point p ∈ P chosen uniformly at random is at least c′εq, there must

be a point incident to so many t-rich lines.

If ε > 1, choose an arbitrary set P ′ ⊂ P of size |P ′| = 2(t − 1)q. By the preceding

argument, there must be a point z ∈ P ′ incident to at least c′1q = 1/3q lines that are

t-rich in P ′. Hence, z is also incident to at least so many lines that are t-rich in P .
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Proof of Theorem 57. Let δ = (1 + ε)/(t − 1) − 1, so that |P | = (1 + δ)(t − 1)q. Let

c′δ be as in Lemma 66. By Lemma 66, there is a point z in P incident to c′δq or more

t-rich lines. Let P ′ ⊆ P −{z} be a set of points such that there are exactly t− 1 points

of P ′ on exactly dc′δqe lines incident to z. Clearly,

|P ′| = (t− 1)dc′δqe ≥ (t− 1)c′δq.

Let P ′z be P ′ translated so that z is at the origin.

Each ordered pair (a, b) ∈ P ′z×P ′z corresponds to a triangle having z as a vertex. By

the definition of area, given in Section 4.2.3, the area of the triangle corresponding to

(a, b) is axby−bxay. For any point x ∈ F2
q , let x⊥ = (−xy, xx); let P ′z

⊥ = {x⊥ : x ∈ P ′z}.

The area corresponding to (a, b) is axby − bxay = a⊥ · b.

Hence, the number of distinct areas spanned by triangles with z as a vertex is at

least the number of distinct dot products |{a⊥ · b : a⊥ ∈ P ′z
⊥, b ∈ P ′z}|. To write this in

another way, let ν(d) be as defined in Theorem 65 with F = P ′z and G = P ′z
⊥. Then, the

number of distinct areas spanned by triangles containing z is at least |{d : ν(d) 6= 0}|.

Since no line through the origin contains more than t− 1 points of P ′z, Theorem 65

implies that ∑
d

ν2(d) ≤ |P ′|4q−1 + q(t− 1)|P ′|2.

By Cauchy-Schwarz, the number of distinct triangle areas is at least

|{d : ν(d) 6= 0}| ≥ |
∑

d ν(d)|2
(∑

d ν
2(d)

)−1

= |{(x, y) ∈ F ×G}|2
(∑

d ν
2(d)

)−1

≥ |P ′|4
(
|P ′|4q−1 + q|P ′|2(t− 1)

)−1

= q
(
1 + q2(t− 1)|P ′|−2

)−1

≥ q
(

1 + (t− 1)−1c′−2
δ

)−1

=
(

(t− 1)c′δ
2/((t− 1)c′δ

2 + 1)
)
q.
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Hence, P includes a point z that is a vertex of triangles with at least

cεq = max
t

(
((t− 1)c′δ

2
)/((t− 1)c′

2
δ + 1)

)
q

distinct areas. To complete the proof, check that cε has the claimed properties that

cε > 0 for any ε, and that cε → 1 as ε→∞.

4.6 Proof of Lemma 58

The proof here follows closely the proof of Lemma 4.15 in [63].

Proof. Let χS be the characteristic row vector of S in L; in other words, χS is a vector

of length |L| with entries in {0, 1} such that (χS)i = 1 iff vertex i is in S. Similarly, let

χT be the characteristic vector of T in R. Note that

e(S, T ) = χSAχ
t
T , (4.3)

where χtT is the transpose of χT .

Let UL = (|L|−1, |L|−1, . . . , |L|−1) be the uniform distribution on L, and let UR =

(|R|−1, |R|−1, . . . , |R|−1) be the uniform distribution on R. We can express χS as the

sum of a component parallel to UL and χ⊥S orthogonal to UL.

χS = (〈χS , UL〉/〈UL, UL〉)UL + χ⊥S

=
∑

i(χS)iUL + χ⊥S

= α|L|UL + χ⊥S .

Similarly, let χ⊥T be a vector orthogonal to UR so that

χT = β|R|UR + χ⊥T .



87

From equation 4.3, we have

e(S, T ) = χSAχ
t
T ,

=
(
α|L|UL + χ⊥S

)
A
(
β|R|UR + χ⊥T

)t
,

= αβ|L||R|ULAU tR + χ⊥SAU
t
R + ULA(χ⊥T )t + χ⊥SA(χ⊥T )t.

From the definitions, we can calculate that

ULA = |L|−1∆R|R|UR = ∆LUR,

AU tR = |R|−1∆L|L|U tL = ∆RU
t
L,

ULU
t
L = |L|−1,

URU
t
R = |R|−1.

Combined with the orthogonality of χ⊥S with UL and of χ⊥T with UR, we have

e(S, T ) = αβ|L|∆L + χ⊥SA(χ⊥T )t,

= αβ · e(G) + χ⊥SA(χ⊥T )t.

Hence, ∣∣∣ e(S,T )
e(G) − αβ

∣∣∣ =
∣∣(χ⊥SA)(χ⊥T )t/(|L|∆L)

∣∣
≤ ‖χ⊥SA‖‖χ⊥T ‖/(|L|∆L)

≤ µ2‖χ⊥S ‖‖χ⊥T ‖/(|L|∆L)

The trivial eigenvalue of a (∆L,∆R) biregular, bipartite graph is
√

∆L∆R; hence,

µ = µ2/
√

∆L,∆R, and so

∣∣∣∣e(S, T )

e(G)
− αβ

∣∣∣∣ ≤ µ
√

∆R

|L|2∆L
‖χ⊥S ‖‖χ⊥T ‖ = µ

√
1

|L||R|
‖χ⊥S ‖‖χ⊥T ‖. (4.4)

Note that

α|L| = ‖χS‖2 = ‖α|L|UL‖2 + ‖χ⊥S ‖2 = α2|L|+ ‖χ⊥S ‖2,

so

‖χ⊥S ‖ =
√
α(1− α)|L|.
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Similarly,

‖χ⊥T ‖ =
√
β(1− β)|R|.

Substituting these equalities into expression (4.4) completes the proof.
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