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ABSTRACT OF THE DISSERTATION

Optimal Learning via Dynamic Risk

by Curtis McGinity

Dissertation Director: Andrzej Ruszczyński

We consider the dilemma of taking sequential action within a nebulous and costly

stochastic system. In such problems, the decision–maker sequentially takes an action

from a given set, then incurs a cost and observes a response depending stochastically

on the action. Confronted with an unknown system, the decision–maker must learn

about the system by experimenting with risky actions, thus enabling better decisions

over time.

We thus consider the risk–averse optimal learning problem to dynamically choose

actions to minimize the risk of the cumulative costs of learning. Motivated by problems

in clinical trial design for novel pharmaceutical agents, we formulate the problem of

Bayesian statistical inference under binary response as a Markov decision process with

belief states. We formulate a certain class of standardized logistic models with quantile

parameterizations and offer some general conditions under which belief states satisfy

stochastic order and log–concavity under Bayesian dynamics. We also establish some

stronger results under assumptions on the policy class.

We then introduce dynamic Markov risk measures, formulate dynamic programming

equations, and discuss the challenges of their solution. We then offer an approximate

DP (ADP) schema based on a coarse grid approximation within a parameterized distri-

bution family utilizing log–concavity constraints. We also study risk–averse lookahead
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policies, introducing a robust–response policy and a heuristic policy.

We compare the performance of the above policy classes to the state–of–the–art,

and demonstrate its performance in computational experiments, including the design

of dose–escalation policies for three chemotherapeutic agents (bleomycin, etoposide, 5–

fluorouracil). The robust–response policy exhibits strong performance in the problem

class, clarifying the role of risk measures under Bayesian belief dynamics and suggesting

avenues of future research.
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Chapter 1

Introduction and Preliminaries

“ It is worth noting that the notation facilitates discovery. This, in a

most wonderful way, reduces the mind’s labor.

”
Gottfried Wilhelm Leibniz, 1646–1716

“ The impediment to action advances action. What stands in the way

becomes the way.

”
Marcus Aurelius, 121–180

1.1 Introduction and Overview

1.1.1 Background and Motivations

Self–similarity is a fundamental concept observed in nature. The notion has been

studied in a myriad of disciplines and depicted perhaps most famously in the uniquely

exquisite imagery of fractals. Broadly speaking, its essence unites much of what is

understood about such fundamental concepts as complexity, randomness, recursion,

pattern, symmetry, coherence, meaning, beauty, harmony, emergence, equilibrium, and

consciousness.

Learning, at essence, constitutes a recursion whereby one compares one’s under-

standing (or belief) about how a system would have worked with how one observes the

system did work, and in view of the differences, updates one’s understanding with a

new, similar understanding in more harmonious accord with the observed reality.



2

Table 1.1: Antithetical aphorisms intimate the depths of wisdom across all of life.

Seize the day. Patience is a virtue.

He who hesitates is lost. Look before you leap.

Don’t sweat the small stuff. The devil is in the details.

Actions speak louder than words. The pen is mightier than the sword.

Idle hands are the devil’s workshop. All work and no play makes Jack a dull boy.

Where there’s smoke, there’s fire. You can’t judge a book by its cover.

Nothing ventured, nothing gained. Better safe than sorry.

On the one hand... On the other hand...

What is most fascinating about this framing of the intuitive phenomenon of learning

is revealed when one poses the question: How to learn best? The more one ponders this,

the ostensibly pedestrian notion of “best” becomes yet more subtle. What does best

mean when I know that I do not yet know? As foreign or abstract as this may seem, we

all negotiate this problem every day of our lives. Indeed, so it is that we find ourselves

confronted by a mute and often perilous nature, desperately trying to ascertain what

is going on, yet all the while needing to quest ever onward.

In Table 1.1 we have collected a sample of some collective wisdom expressed through-

out the ages. Having survived the test of time, each colloquialism expresses a fundamen-

tal truth experienced in a myriad of disparate circumstances, and yet their contradictory

sentiments cannot be denied. Rather than undermining their validity, however, their

antithetical nature reveals a depth intrinsic to the complexity of life. Indeed, in any

given scenario all of these are simultaneously valid, casting us into and out of various

courses of action in a cognitive tempest. Choosing well, amid such waves of insight

and squalls of the spurious, is verily the art of the wise. In this dissertation, we term

this problem the optimal learning problem, and endeavor to make scientific progress on

negotiating it. In this sense, we take up the quest for the mathematical and algorithmic

abstraction of wisdom.

We begin by motivating our considerations with a panoply of examples. The general
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problem is extremely broad, with potential applications in most corners of reality. In

the next section we shall selfishly focus our motivations on health optimization, broadly

defined, and later focus our investigations so as to make strides both theoretical and

practical.
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1.1.2 Survey of Applications

We focus on those of personal interest, particularly in medicine, nutrition, sport, and

health optimization generally. See [106] for an extensive survey of practical applications.

Medicine and pharmaceuticals

Example 1 (Distributed Clinical Trials). Clinical trials (CTs) are an essential

means by which we control the quality of treatment protocols and drugs reaching human

application and constitute a multi–billion USD industry—in operational overhead alone.

In a broader sense, one would be hard pressed to argue that CTs operate on an efficient

risk–reward frontier.

This is, however, rightfully so in the face of important ethical standards and the ap-

parent requirements of statistical inference. Indeed, the state–of–the–art double–blind,

randomized, controlled trials (DBRCTs) seek statistical power and unbiasedness. Yet

this comes both at a direct cost of structuring DBRCTs, and at an increasingly alarming

cost of applicability or scope. The latter has perhaps manifest in part with recent con-

cerns on reproducibility in the medical literature. This particular problem is egregious

in the dietary supplement industry, where compounds are consumed widely with little

or no effect, ostensibly in refute of published studies. Perhaps the quotidian lifestyles

of many functionally attenuate some significant fraction of published results valid in

the context of a DBRCT. This would be entirely of a piece with observations of simple,

low-dimensional behavior in complex systems. The emerging notion of personalized

medicine is also pertinent in this context, although current methodologies have yet

to lend themselves to this end. However, what is much less widely identified are the

indirect costs of structuring DBRCTs, which is to say, the opportunity costs.

The optimal learning models below engender a vision of medicine wherein treatment

is synonymous with trial. That is, CTs as currently formalized become a rarity and not

distinguished from clinical treatment in general. Granted, we lose significant confidence

in the empirical data, which becomes fraught by parts with uncertainty and confounding

factors (to a greater degree than at present), but we gain a tremendous amount of data
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with which to develop more sophisticated perspectives. Indeed, not unrealistic gains in

the quantity of data could be as much as 3-5 orders of magnitude. Thus, we make a

trade for robust and comprehensive knowledge laden with uncertainty over fragile and

narrow knowledge with a high degree of confidence, as it were.

However, as a final point that we discuss in detail below, our exploration of the

unknown possibilities is intrinsically characterized by the actions we take. It is for this

reason that widely distributed, adaptive treatment–trials constitute a paradigm shift

with exponential potential.

Example 2 (Pharmacodynamic Tolerance (Intermittent Dosing)). The em-

pirical phenomenon of drug tolerance, whereby physiological response to a given drug

monotonically depends on its recent dosage history, is enough to conjecture the general

suboptimality of the following class of dosage policies: Take x [quantity] every t [period

of time], for constants x, t ∈ R≥0. This class of static dosage policies is nearly ubiq-

uitous among prescription and over–the–counter pharmaceuticals, as well as dietary

supplements, thus constituting a potentially massive collective loss.

The adaptive optimal learning models introduced below implicitly incorporate toler-

ance via empirical data. Moreover, insofar as tolerance may be cast in terms of coupled

oscillators, tolerance models may be inferred in real time from the optimal dosage

policies rather than explicitly (i.e., separately) studied by way of, e.g., formal clinical

trials. This has recently emerged as of particular applicability, e.g., among celebrated

inhibitors of PI3K, mTOR, etc., pathways; cf. [119, 113, 112, 138, 137].

Example 3 (Hormone Replacement Therapy). It is well known that human hor-

mone levels vary cyclically throughout the day, as well as various other timescales (e.g.

weekly, monthly, etc.). These hormonal oscillations are often commonly referred to as

Circadian rhythms. Perhaps surprisingly, however, virtually all hormone replacement

therapy protocols neglect these phenomena in their dosage policies. Concerns about

the risks of testosterone replacement therapy recently prompted updates to federal pol-

icy and a flurry of research, albeit without consideration of more sophisticated dosage

recommendations; cf. [70, 96, 92, 49, 80].
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Health and nutrition

Example 4 (Dynamic Diet Problem & the Health Model Problem). Consider

the problem of determining what to eat in order to not only survive, but to thrive, and

to do so economically. The diet problem of determining what foods and/or supplements

to eat in order to maximize a combination healthiness (by way of nutrition) and deli-

ciousness, all while subject to budgetary constraints, is a concern familiar to most, in

uncertain terms if not explicitly. Unfortunately, the link between health and nutrition

is perhaps the most controversial and inflammatory health–related topic in public dis-

course, as evidenced by the “Diet & Nutrition” aisle at one’s local bookstore, or worse

still the “health segment” on one’s local morning news. This is in no small part due

to the widespread dogmatism plaguing nutrition science, engendering guru after guru

and, ultimately, as a corrective reaction, independent non–profit organizations such as,

e.g., the Nutrition Science Initiative (NuSI). Yet with each touted diet at odds with

the next, and nutrition research delivering dubious, contradictory research, many have

concluded that a healthy diet is largely a matter of personal preference, if not merely

myth.

What is too often overlooked, perhaps as it lies in plain view, is that, as a matter

of fact, no functional model of health exists. This is perhaps jarring at first brush, but

observe that the only method currently in use is the disease model; that is, “unhealthy”

is defined as “sufficiently correlated with disease”, and “healthy” is implicitly defined as

“not unhealthy”.1 However, identifying that which is unhealthy is not constructive in

determining what is healthy. As an example, pointing out that consuming large amounts

of sugar is unhealthy, because it is correlated with disease (e.g., Type II diabetes), says

virtually nothing of what quantity of sugar one should consume to be healthy. At this

point, one is tempted to invoke the aphorism “all things in moderation”. Indeed, this is

the very line taken by the Office of Disease Prevention and Health Promotion (ODPHP)

in the only prescriptive healthy eating guideline of the 2015–2020 Dietary Guidelines

1 Fully substantiating this claim is beyond the scope of this dissertation, but it is perhaps telling that
health.gov is the URL of the Office of Disease Prevention and Health Promotion (ODPHP). Moreover,
about the 2015-2020 Dietary Guidelines, ODPHP states that “its recommendations are ultimately
intended to help individuals improve and maintain overall health...its focus is disease prevention.”
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for Americans [48]. However, this aphorism is often mistaken to mean that one should

do all things, and do them in moderation. Rather, this pithy wisdom states that all

things one should do should be done in moderation. What things one should be doing

in the first place is thus revealed as the tacit premise, and on this point the wisdom is

necessarily mute! This casts into sharp relief the widely held truism that a balanced

diet is healthy. Sure, a certain balanced diet is healthy—but which one?

The void of a functional health model, once identified, is thus a keyhole through

which to observe that nutrition science has suffered frequent encounter with Hume’s

guillotine,2 which is to say the science has attempted to draw prescriptive conclusions

from limited descriptive data.3 This observation is pivotal: Lacking a workable defini-

tion of health and a viable model of functional nutrition in principle, it may come as

no surprise that as a population we have defaulted to the natural dogmatic, anecdote–

fueled paradigm, which we refer to as the guru model. Thus, any proposed definition

of health stands to upset substantial portions of the relevant industries, and moreover

cannot find any unassailable premise from which to gain purchase and dispense new

ideas. The stakes are thus set for perfect inertia, and one cannot expect transformative

progress in this area by the traditional model of (nutrition) science.

Perhaps surprisingly, however, general dynamic diets have not been considered in the

literature, and only a few special cases have recently been proposed. It is not inconceiv-

able that realizing sought–after health benefits would necessitate undulations between

and among efficient points within several different, even antithetical dieting paradigms.

A dynamic diet, which is to say a diet adaptively changing based on one’s current physi-

cal state in order to improve the most informed, comprehensive measures of one’s overall

health as needs change, would naturally move into and out of otherwise disparate diet-

ing paradigms. Presumably, prominent dieting paradigms would frequently arise within

the methodology as real–time optimal solutions to improve health—or perhaps not, in

which case one might rethink said prominence. Clearly, this process involves significant

2 Hume’s guillotine refers to what is also known as Hume’s is–ought problem. Articulated first by
the philosopher David Hume, the problem states that one cannot simply derive an ought from an is,
i.e., it is not obvious how to derive normative from positive statements.

3Note that this logical fallacy is precisely that which the scientific endeavor aims to remedy.
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uncertainties, e.g. the realized nutritional content of foods, one’s unique, fluctuating

nutritional needs, one’s taste preferences, and the very definition of health, to name

just a few.

From this vantage, we would therefore propose the alternative of a data–driven4

paradigm of health and nutrition, to emerge organically from a distributed, robust,

adaptive optimal learning methodology. Crucially, such a methodology allows for the

simultaneous, systematic, scientific comparison of all proposed definitions of health by

putting said definitions on equal footing. In particular, the methods entirely obviate

any requirement for expert (at best, guru at worst) intervention. However, any exper-

tise may of course be incorporated into the methodology, which is self–correcting and

would serve only to substantiate truly expert proposals. The robust optimal learning

framework proposed below is a technologically viable methodology for delivering real–

time optimal solutions to the dynamic diet problem as a matter of course en route to

learning a functional picture of health and nutrition from data.

Example 5 (Intermittent Fasting). Apparent themes have emerged in research on

intermittent fasting, i.e., oscillations between nutrient scarcity and surfeit. This is of

a piece with several other branches of research in the life sciences, perhaps indicating

that undulation between competing biochemical (sub–)processes is intrinsically healthy.

Determining how long to fast, how much to consume when refeeding, etc., is a problem

that may be effectively modeled squarely within the paradigm introduced below; cf.

[72, 95, 33].

Training and sport

Example 6 (Adaptive Protocol Design & Dynamic Workouts). Fitness regi-

mens often suffer from a plateau of improvement, owing largely to their fundamentally

static nature. More advanced strength and conditioning protocols, usually for serious

and/or professional athletes, have long utilized some form of quasiperiodicity, colloqui-

ally known as cycling, that depends on the adaptation response of the athlete. However,

4Or, evidence–based, as coined by the NIH, ODPHP, etc.
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similar to the scenario in Example 4, owing largely to the inability of exercise science

to describe the subtle and sophisticated aspects of empirically successful training pro-

tocols, engineering an optimal training regimen has evolved in large part to the guru

paradigm. In what is now our recurring theme, exercise science proceeds almost entirely

by evaluating a set of protocols, which are provided externally, stemming from their

prominence in practice, and thus driven by the guru model.

As before, we would propose an agnostic methodological framework for engender-

ing an optimal training protocol. Just as in the case of health and nutrition, such

a methodology would provide a scientifically optimal protocol which is, rather than

constrained by expert preconceptions, instead fueled by their expertise. Indeed, expert

ideas may be incorporated directly into the optimal learning methodology, which would

self–correct and identify the best (combination of) protocols scientifically. Moreover,

the optimal training protocol would be optimal for each athlete (i.e., personalized), and

would be adaptive in the sense of dynamically constructing training, mobility, rehab,

and recovery based on the athlete’s performance. Importantly, the robust methodol-

ogy introduced below is suited to the task of implementing such a distributed training

protocol while maximally avoiding the potential issue of sacrificing some athletes short–

term performance, or worse injuring an athlete, while experimenting with sub–optimal

training protocols.

Example 7 (Dynamic HRV Training). As an interesting example of the above,

heart rate variability (HRV) training has been the foremost dynamic training protocol

to emerge. This owes largely to the widespread availability of heart rate monitors,

which has furthered research in the area. The concept behind using HRV as a guide to

training is that HRV is a measure of the readiness of the nervous system, which in turn

is related to an athlete’s physical stress level, and ultimately, potential for adaptation

and injury.

In HRV training, an athlete undulates between high-intensity and lower-intensity

periods of work, as measured by predefined target HR. We propose dynamic HRV

training, whereby the target HR levels would adapt in real time to the athlete’s cur-

rent performance and HRV, optimally leading the athlete along an adaptive, efficient
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frontier. Moreover, the inherent stochastic element of the optimal learning algorithm

could also offer an interesting training element, which may be of independent interest.

1.1.3 Organization of Dissertation

In Sections 1.2 to 1.4 we provide an overview of the preliminary and background material

on which this dissertation builds.

Chapter 2 investigates the methodology of Bayesian inference in a general sense. We

begin with an overview of logistic models, and in Section 2.1.2 we collect fundamental

facts on logistic models relevant for future investigations. In Section 2.2 we introduce

notions of stochastic order, and derive several results related to the structure of Bayesian

belief dynamics for logistic models. Section 2.3 continues in this vein, deriving some

conditions on the first integral arising in the dynamic setting. In Section 2.4 we turn

to consider the generalized concavity of logistic models. We conclude with results on

the log–concavity of Bayesian belief orbits in the case of quantile parameterizations.

Chapter 3 turns to the dynamic optimization problem, formulating the risk–aware

optimal learning problem. In Section 3.1 we formulate active Bayesian sequential infer-

ence as a Markov decision process (MDP) with belief states. We then introduce risk,

formulate the risk–aware MDP, and introduce a class of composite risk measures we call

robust response. Finally, we formulate risk–neutral and risk–aware dynamic program-

ming equations. In Section 3.2.4 we discuss the challenges associated with dynamic

programming in the optimal learning setting.

In Section 3.3 we introduce the class of lookahead policies and study several promi-

nent policy classes. Section 3.4 presents a discussion of some preliminary considerations

material in future methods for augmenting Bayesian inference in this model class.

In Chapter 4 we introduce an approximate dynamic programming schema, namely

approximation within the log-logistic distribution family. In Section 4.6 we present the

associated ADP equations and discuss the difficulties surrounding their use.

In Chapter 5 we conduct a series of computational experiments to garner a sense

of the effects of risk-aware optimal learning in practice. In Section 5.1 we present

the results of a simulation study comparing three lookahead policies. In particular,
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we demonstrate the robustness of risk-aware policies to spurious data in the optimal

learning setting. Section 5.2 constitutes a corpus of case studies demonstrating the

performance of the policies introduced above. In particular, we consider the design

of dose-escalation policies in Phase I clinical trials for three chemotherapeutic agents:

5-fluorouracil (Section 5.2.1), bleomycin (Section 5.2.2), and etoposide (Section 5.2.3).

Finally, in Chapter 6 we elucidate several conclusions from our investigations on

the role of dynamic risk in optimal learning. We conclude with a brief discussion of

potential future directions.

1.2 Markov Decision Processes

Markov decision processes (MDPs) offer a general-purpose infrastructure for the mod-

eling of sequential decision-making under uncertainty. Their straightforward premise,

simple structure, and broad applicability have led both to their thorough study and

practical application. Specifically, MDPs readily admit satisfactory modeling of stochas-

tic elements and nonlinear dynamics, remarkably with a unified solution technique: dy-

namic programming. This is undoubtedly their principal strength and the source of

their widespread application in practice.

In accord with the no free lunch principle, the amazing generality of optimization

via dynamic programming (DP) is infamously foiled by the curse of dimensionality.

That is, the generality of DP techniques comes part in parcel with a certain neglect

of the particular problem structure, and therefore the computational complexity grows

exponentially with the size of the problem. In this respect, proper DP solutions are

largely precluded for all but the most simple problem instances, either of very small

dimension or of very specific structure.

This fact has led to the development of approximate dynamic programming (ADP)

solutions techniques, of which a myriad have been introduced in the literature. Broadly

speaking, ADP techniques attempt to transform the problem via some approximation

schema, so rendering the modified problem tractable by DP techniques. We discuss

ADP in more detail in Chapter 4, but the standard reference would be [23].
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Puterman has given a comprehensive treatment of discrete-time MDPs [109], and

Bertsekas has also treated the topic authoritatively [24, 23, 25]. A generalization of

the MDP framework is known as the adaptive MDP (AMDP), or in some disciplines

as a hidden Markov model (HMM), which has been treated by Hernandez-Lerma [73].

Yet more generally, partially-observable MDPs (POMDPs) allow for uncertainty in the

underlying state. The two models share some overlap, but the general POMDP model

allows for observations to be uncertain as well (which translates to further uncertainty

in the controlled transition kernel).

In the next Section, we formalize introduce the model by rigorously defining the

controlled Markov process. Moreover, with a view to our purpose of studying optimal

learning, for brevity we will develop the formal model sufficient also for an adaptive

controlled Markov process. As we shall see, form the modeling perspective, this is simply

a collection of classical models, although we defer the treatment of the optimization

problem until Chapter 3. That is, the existence of the parameter space below is merely

formal, and may be ignored at this moment.

1.2.1 Controlled Markov Model

The formalism of MDPs could perhaps be daunting for the uninitiated, although the

essence of the methodology is rather intuitive. As such, we would take the opportunity

to state the model plainly and give a sense of its character before introducing the

mathematical elements. Put simply, an MDP describes the dynamic over time between

a system and a decision-maker (DM). The system consists of a set of possible states,

and at each point in time, the DM selects from a set of possible actions, and then

the system moves stochastically from its current state to its next state. Given the

current state, the transition to the next state occurs according to a given probability

distribution that could depend on the current state, the action taken by the (DM), or

both. In tandem to the system transitions, at each point in time, the DM collects a

reward (or pays a cost) that depends on the current state and the selected action. The

goal, then, is to maximize (minimize) the cumulative reward (cost) over the problem

horizon, which may be finite or infinite.
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As one can readily see, the MDP framework is exceedingly natural, and rather

general, insofar as it imposes almost no restrictions on the kinds of system states, DM

actions, the rewards (costs), or the nature of the transitions. We now introduce the

formal elements of this powerful framework, in both the finite- and infinite-horizon cases,

although we will focus on only the finite-horizon problem below. Our presentation will

most closely follow that of [73].

The adaptive MDP framework consists of a tuple(
S,U ,Θ, Qt(·|s, u), ct(s, u, θ)

)
,

where S is the system state space, U is the control (or action) space, Θ is the unknown-

parameter space, Qt is the controlled transition kernel at time t, and ct is the one-step

cost function of the controlled process, as described above. We now introduce several

formal definitions:

Definition 1. Adaptive Controlled Markov Model

1. The state space S is a Borel space (i.e. Polish space), a Borel subset of a complete

separable metric space.

2. The control space U is also a Borel space. Introducing the measurable multifunc-

tion U : S ⇒ U , for each state s ∈ S, we denote the admissible controls by the

non–empty, measurable set U(s) ⊆ U . It is convenient to denote the graph of U

by Ug := {(s, u) : s ∈ S, u ∈ U(s)}.

3. The parameter space Θ is a Borel space. We assume there exists a unique “true”

value denoted θ∗ ∈ Θ, however this value is unknown.

4. The controlled transition kernel is a measurable mapping Q : Ug × Θ → P(S),

where for q ∈ Q and S ∈ B(S), q
(
S | (s, u) ∈ Ug, θ ∈ Θ

)
= Pr{s′ ∈ S | (s, u) ∈

S ×U(s), θ ∈ Θ}. Moreover,
∫
S v(s′, θ) q(ds′ | s, u, θ) is a continuous function of

u ∈ U(s) for all s ∈ S, θ ∈ Θ, and all v ∈ B(S ×Θ).

5. The one-step loss function is a measurable function c : Ug × Θ → R such that

|c(st, ut, θ)| ≤ X < ∞, for all (st, ut, θ) ∈ Ug × Θ, and c(s, u, θ) is a continuous

function of u ∈ U(s) for all s ∈ S, θ ∈ Θ, and all v ∈ B(S ×Θ).
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1.2.2 Admissible Policies

For each t = 1, 2, · · · , we denote the space of (admissible) state and control histories

up to time t by Ht := U tg × S, so that an element ht ∈ Ht is given by the sequence

ht = (s1, u1, s2, u2, · · · , st−1, ut−1, st). We can now introduce the set of (admissible)

policies.

Definition 2. History-dependent Policies

1. A randomized policy is a sequence π = {πt, t = 1, 2, · · · }, of measurable functions

πt : Ht → P(U), such that each stochastic kernel πt(· | ht) is supported on the set

of admissible controls; formally, we require πt(U(st) | ht) = 1, for all ht ∈ Ht and

t = 1, 2, · · · . We denote the set of all history-dependent, randomized policies by

ΠHR.

2. A deterministic policy is a sequence f = {ft, t = 1, 2, · · · }, of measurable func-

tions ft : Ht → U , such that ft(ht) ∈ U(st), for all ht ∈ Ht and t = 1, 2, · · · .

Deterministic policies are clearly included in randomized policies, where for each

ht ∈ Ht and B ∈ B(U), πt(B | ht) = 1B
(
ft(ht)

)
. We denote the set of all history-

dependent, deterministic policies by ΠHD.

Intuitively, a Markov policy is simply a (randomized) policy depending only on the

current state. The formal definitions are as follows.

Definition 3. Markov Policies

1. We call the measurable function πt : S → P(U) a Markov decision rule (or se-

lector) at time t if πt(s) ∈ P(U(s)) for all s ∈ S, and denote the set of all such

decision rules by ΠM
t .

2. A (randomized) Markov policy is a sequence π = {πt, t = 1, 2, · · · } of measurable

functions πt ∈ Πt. We call a Markov policy deterministic if for all s ∈ S and

t = 1, 2, · · · , the support of the measure πt(· | s) is the singleton {ft(s)} ⊂ U(s).

We denote the set of all Markov randomized and deterministic policies by ΠMR

and ΠMD, respectively.
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3. We call a Markov policy {πt} stationary if there exists π ∈ Π such that πt(s) =

π(s), for all t = 1, 2, · · · , and all s ∈ S.

Note that these policy classes satisfy ΠMD ⊂ ΠMR ⊂ ΠHR, and ΠMD ⊂ ΠHD ⊂

ΠHR.

1.2.3 Induced Markov Process

We now introduce the adaptive controlled Markov process (ACMP). We will not require

the full generality of the model presented. For practical purposes, it is often sufficient

to consider finite S and U , in which case the below presentation proceeds analogously

with some simplifications. See [109] for a presentation of the finite case, or [26] for a

more rigorous presentation of the following.

Let Ω be the product space defined in a finite horizon model as

Ω := S × U × S × U · · · × S =
(
S × U

)T−1 × S,

and in an infinite horizon model as

Ω := S × U × S × U · · · =
(
S × U

)∞
,

and denote the corresponding product σ-algebra by F . When necessary, we will denote

the corresponding σ-subalgebras by Ft. Elements of Ω are (infinite) sequences of the

form

ω = (s1, u1, s2, u2, · · · ), st ∈ S, ut ∈ U for all t = 1, 2, · · · ,

and st, ut are given by measurable coordinate mappings from Ω to S and U , respectively.

The Ionescu-Tulcea theorem states that, for any given Markov policy {πt, t =

1, 2, · · · } = π ∈ Π, initial state s1 = s ∈ S, and θ ∈ Θ, there exists a unique probability

measure Pπ,θ
s on (Ω,F) given by

Pπ,θ
s (dω) = ps(ds1)π1(du1 | s1)

∞∏
t=2

q(dst | st−1, ut−1, θ)πt(dut | st−1, ut−1, st), (1.1)
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and satisfying

Pπ,θ
s (H∞) = 1, (1.2)

Pπ,θ
s (s1 = s) = 1, (1.3)

Pπ,θ
s (ut ∈ B | ht) = πt(B | ht), for all B ∈ B(U), ht ∈ Ht, t = 1, 2, · · · , (1.4)

Pπ,θ
s (st ∈ C | ht, ut) = q(C | st, ut, θ), for all C ∈ B(S), ht ∈ Ht, t = 1, 2, · · · . (1.5)

In the case of Markov policies π ∈ ΠMR and hence (1.4) becomes

Pπ,θ
s (ut ∈ B | ht) = πt(B | st), for all B ∈ B(U), ht ∈ Ht, t = 1, 2, · · · . (1.6)

Therefore, for each θ ∈ Θ, the induced stochastic process
(
Ω,F , Pπ,θ

s , {st}
)

is a sta-

tionary controlled Markov process.

1.2.4 Performance Criteria

Suppose we have a fixed initial state s1 = s ∈ S and θ ∈ Θ. Each policy π ∈ ΠMR

generates the Markov loss process written as
(
Ω,F , Pπ,θ

s , {(st, c(st, ut, θ) )}
)
. We will

denote by Zt the space of Ft-measurable random variables on Ω. We now turn turn to

the issue of evaluating the random loss (or cost) sequence given by

{Zθt = c(st, ut, θ) : Zθt ∈ Zt, t = 1, 2, · · · }. (1.7)

For all integrable functions Z : Ω→ R, the expectation operator Eπ,θ
s with respect

to the probability measure Pπ,θ
s is given by

Eπ,θ
s

[
Z
]

=

∫
Ω
Z(ω) Pπ,θ

s (dω). (1.8)

1.2.5 Optimization Problems

According to the classical theory, one considers the expected total discounted reward

performance criteria, given by

V (π, s, θ) := Eπ,θ
s

[ ∞∑
t=1

γt c(st, ut, θ)
]
,
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where γt are discount factors, scalars between zero and one. In the finite horizon case,

for some time horizon T ∈ N, we have the analogous performance criteria:

V (π, s, θ) := Eπ,θ
s

[ T∑
t=1

γt c(st, ut, θ)
]
. (1.9)

In either case, the optimal value function v in this setting is therefore defined as

v(s, θ) := inf
π∈ΠMR

V (π, s, θ). (1.10)

As one can readily see, in this definition v depends on the unknown parameter θ ∈ Θ.

Assuming the true parameter value θ∗ ∈ Θ, the optimal learning problem is therefore

to find an optimal learning policy π∗θ. However, stated in this way the task may appear

pedestrian, but as we will see in Chapter 3 significant considerations will need to be

addressed.

Now, we continue to review the classical theory, focusing on the finite-horizon MDP.

We will thus drop the dependence on the unknown parameter θ, to resume this line

again below. We owe our presentation to lecture notes from a course on dynamic

programming with Ruszczyński; any errors or lapses in rigor are surely our own.

Policy valuation

Suppose we are given a policy π = {π1, π2, · · · , πT−1}, and we allow π ∈ ΠHR. Define

the value functions

vπt (hτ ) , E

[
T−1∑
τ=t

cτ (sτ , uτ ) + cT (sT )
∣∣∣ hτ] , t = 1, · · · , T.

By the tower property of iterated conditional expectations,

vπt (hτ ) = E

[
E

{
T−1∑
τ=t

cτ (sτ , uτ ) + cT (sT )
∣∣∣ ht+1

} ∣∣∣ ht]

= E

[
E

{
ct(st, ut) +

T−1∑
τ=t+1

cτ (sτ , uτ ) + cT (sT )
∣∣∣ ht+1

} ∣∣∣ ht]

= E

[
ct(st, ut) + E

{
T−1∑
τ=t+1

cτ (sτ , uτ ) + cT (sT )
∣∣∣ ht+1

} ∣∣∣ ht]

= E
[
ct(st, ut) + vπt+1(ht+1)

∣∣∣ ht] ,
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for all t = 1, 2, · · · , T−1. Note that our policy π was arbitrary, and thus this derivation

allows for the evaluation of any policy. Moreover, the value vπ1 coincides with the

performance criterion (1.9).

Value functions

Given the policy π, denote the partial policy by πt = (πt, πt+1, · · · , πT−1). Define now

the optimal value functions

v∗t (ht) , inf
πt

vπt (ht), t = 1, 2, · · · , T. (1.11)

Substituting in the recursion above, we obtain

v∗t (ht) = inf
πt

E
[
ct(st, ut) + vπt+1(ht+1)

∣∣∣ ht]
= inf

πt
E
[
ct(st, ut) + inf

πt+1

vπt+1(ht+1)
∣∣∣ ht] .

Just as before, we conclude the follow recursive system of equations is satisfied

v∗t (ht) = inf
πt

E
[
ct(st, ut) + v∗t+1(ht+1)

∣∣∣ ht] , t = 1, 2, · · · , T − 1, (1.12)

together with the final stage v∗
T

(hT ) = cT (sT ).

Deterministic Markov policies

Throughout the above, we have allowed the policy to depend on the entire history and

to be randomized, i.e., π ∈ ΠHR. We now show that deterministic policies suffice.

Rewriting (1.12) explicitly in in terms of the policy and again applying the tower

property of conditional expectation, we observe that

v∗t (ht) = inf
πt

E
[
E
{
ct(st, ut) + v∗t+1(ht+1)

∣∣∣ ht, ut} ∣∣∣ ht]
= inf

πt
E
[
ct(st, ut) + E

{
v∗t+1(ht+1)

∣∣∣ ht, ut} ∣∣∣ ht]
= inf

πt

∫
Ut(st)

ct(st, ut) + E
{
v∗t+1(ht+1)

∣∣∣ ht, u} πt(du|ht)
= inf

u∈Ut(st)
ct(st, ut) + E

{
v∗t+1(ht, u, st+1)

∣∣∣ ht, u},
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where the final equality stems from the fact that, under ht, the integrand in the penul-

timate equality is a function of u only. Thus, insofar as πt is a probability measure

over the control set, it is optimal to concentrate mass on the value(s) of u yielding

the smallest integrand, which is to say that deterministic policies are no worse than

randomized policies.

Dynamic programming

Finally, we now show that only the current state, out of the entire history, is material

in the computation of the optimal value functions. We proceed by backward induction,

an argument attributed to Bellman [20].

Suppose for t + 1 ≤ T , we have v∗t+1(ht+1) = v∗t+1(st+1). Proceeding from the last

displayed equality, we therefore have

v∗t (ht) = inf
u∈Ut(st)

ct(st, ut) + E
{
v∗t+1(st+1)

∣∣∣ ht, u}.
For a fixed ht and u, the conditional expectation coincides with the integral with respect

to the distribution of the next state. That is,

E
{
v∗t+1(st+1)

∣∣∣ ht, u} =

∫
S
v∗t+1(y)Qt(dy|st, u)

= E
{
v∗t+1(st+1)

∣∣∣ st, u}.
This follows essentially from the fact that the controlled transition kernel Qt is Markov.

We therefore conclude that

v∗t (ht) = inf
u∈Ut(st)

ct(st, u) + E
{
v∗t+1(st+1)

∣∣∣ st, u}.
But the RHS is a function of st only, and thus v∗t (ht) = v∗t (st), completing the inductive

step. Given the fact that v∗
T

(hT ) = cT (sT ), we obtain by (backward) induction that the

following dynamic programming equations must hold for the optimal value functions:

For every state s ∈ S,

v∗
T

(s) = cT (s), (1.13)

v∗t (s) = inf
u∈Ut(s)

ct(s, u) + E
{
v∗t+1(st+1)

∣∣∣ st = s, ut = u
}
, t = T − 1, · · · , 2, 1. (1.14)
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The DP equations may be solved backward in time for v∗1(·), the solution of which

coincides with the solution of the expected cost problem (1.9).

1.3 Dynamic Risk

Consider the probability space (Ω,F ,P), where Ω is a separable metric space, F = B(Ω)

is the canonical Borel σ-algebra induced on Ω, and P is a probability measure on F .

Let the p-normed space Z = Lp(Ω,F ,P), 1 ≤ p < ∞, denote the space of random

variables with bounded moments with respect to P . We interpret each Z ∈ Z as a cost

random variable, so that greater values are understood as unfavorable. In this context,

we call any functional ρ : Z → R a risk measure.

1.3.1 Coherent and Convex Risk Measures

In order to standardize the measurement of risk, an axiomatic approach has been taken

in the literature. In particular, the class of coherent risk measures introduced in [11]

has been widely accepted and studied extensively in the finance, economics, and among

others, operations research literature. Broadly speaking, coherent risk measures are

characterized by four intuitive axioms that any sensible risk measure should satisfy:

Definition 4 (Coherent risk measure). A coherent risk measure is a functional ρ :

Z → R, satisfying for all Z, Z̃ ∈ Z,

Monotonicity: if Z ≥ Z̃, then ρ(Z) ≥ ρ(Z̃); (1.15)

Subadditivity: ρ(Z + Z̃) ≤ ρ(Z) + ρ(Z̃); (1.16)

Translation Equivariance: ρ(a+ Z) = a+ ρ(Z); (1.17)

Positive Homogeneity: ρ(αZ) = αρ(Z), ∀α > 0. (1.18)

In some cases it may be desirable to consider a relaxation to the class of convex

risk measures. It can be shown that (1.16) and (1.18) together imply convexity of

coherent risk measures. However, convex risk measures generally do not satisfy positive

homogeneity (1.18). Thus, coherent risk measures are often equivalently defined by
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replacing (1.16) with the condition

Convexity: ρ(αZ + (1− α)Z̃) ≤ αρ(Z) + (1− α)ρ(Z̃), (1.19)

for all α ∈ [0, 1]. The class of convex risk measures is defined by replacing both (1.16)

and (1.18) by (1.19). In what follows, we will often refer to coherent and/or convex risk

measures simply as “risk measures,” although no confusion should arise. Additionally,

we call a risk measure law invariant if ρ(Z) depends only on the distribution of Z. For

further details, see, e.g., [129, 125] and the references therein.

More than a few risk measures have been proposed in the literature. We present

several prevailing examples now and discuss some of their properties below.

Example 8 (VaRα). The value at risk at level α ∈ (0, 1) is denoted VaRα and given

by

VaRα(Z) = F−1
Z (1− α), (1.20)

where F−1
Z is the quantile function of Z. Note that VaRα is not generally a coherent risk

measure, as it violates (1.16). If the distribution function FZ is log-concave, however,

then VaRα becomes coherent. Thus, e.g., VaRα is coherent for exponential families of

distributions.

Example 9 (AVaRα). The average value at risk at level α ∈ (0, 1) is denoted AVaRα

and given by

AVaRα(Z) =
1

α

∫ α

0
F−1
Z (1− ξ) dξ, (1.21)

where F−1
Z is the quantile function of Z. This coherent risk measure is also often

called the conditional value at risk (CV aRα), as is emphasized by writing (1.21) in the

alternative form

AVaRα(Z) = E[Z | Z ≥ VaRα(Z)]. (1.22)
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Example 10 (MSDκ). The mean upper-semideviation of order q ∈ [1, p] at level κ ∈

[0, 1] is denoted MSDκ and given by

MSDκ(Z) = E[Z] + κE
[
(Z − E[Z])q+

]1/q
, (1.23)

where ( · )+ ≡ max{·, 0} is the positive part function. One can readily verify that this is

a coherent risk measure. Below we will always consider MSDκ of order q = 1, in which

case the risk measure is notably (piecewise) linear.

Example 11 (Entropic risk measure). The entropic risk measure at level θ > 0 is

denoted ρθ and given by

ρθ(Z) =
1

θ
logE

[
eθZ
]
. (1.24)

The entropic risk measure is the prototypical example of a convex risk measure that is

not generally coherent.

Example 12 (EVaRf,β). The f -entropic value at risk at level β ≥ 0 is denoted EVaRf,β

and given by

EVaRf,β(Z) = max
Q∈A

EQ[Z], (1.25)

where A =
{
Q ∈ P(Ω,F)

∣∣∣ Df (Q,P ) ≤ β
}

, and Df (·, P ) is the Csiszàr f -divergence

defined in (1.38). This coherent risk measure was introduced in [2, 3] for the Kullback-

Leibler divergence (f(x) ≡ x log x). It shares connections with several important quan-

tities germane to our theme and will be discussed further below.

1.3.2 Representations of Risk Measures

We present the following consequence of Fenchel duality as a theorem without proof;

the classical reference would be [116], and for further details, we refer the reader to

Theorem 2.2 in [125].
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Theorem 1 (Dual representation). Any coherent risk measure ρ(Z) on the space Z =

Lp(Ω,F ,P), 1 ≤ p <∞, may be written as

ρ(Z) = max
µ∈A(ρ)

Eµ[Z], (1.26)

where A ⊂ P(Ω,F) is a closed, convex set of probability measures given by A(ρ) =

∂ρ(0), the subdifferential of the risk measure evaluated at zero.

Theorem 2 (Kusuoka representation [88]). Any law invariant, coherent risk measure

ρ(Z) on the space Z = Lp(Ω,F ,P), 1 ≤ p <∞, may be written as

ρ(Z) = max
µ∈M

∫ 1

0
AVaRα(Z) dµ(α), (1.27)

where M is a set of probability measures on the interval (0, 1].

1.3.3 Dynamic Risk Measures

Let T ∈ N be fixed, FT the canonical product σ-algebra with natural filtration {Ft}Tt=1,

and Zt the space of bounded Ft-measurable random variables for all t = 1, 2, · · · , T .

Denote the natural product space by Zt,T = Zt × · · · × ZT , for all t = 1, 2, · · · , T .

Definition 5 (Conditional risk measure). By a conditional risk measure we understand

a functional ρt,T : Zt,T → R satisfying the monotonicity property

ρt,T (Zt,T ) ≤ ρt,T (Z̃t,T ), (1.28)

for all Zt,T , Z̃t,T ∈ Zt,T such that Zs ≤ Z̃s, for all s = t, t+ 1, · · · , T .

Definition 6 (Dynamic risk measure). By a dynamic risk measure we understand a

collection ρ = {ρt,T }Tt=1 of conditional risk measures.

Notably, Ruszczyński has shown in [122] that from the notion of time consistency

of dynamic risk measures one may construct an analogue to the tower property of

conditional expectation. When such a dynamic risk measure ρ = {ρt,T }Tt=1 may be rep-

resented in terms of the Markov transition kernel via transition risk mappings {σt,T }Tt=1,

we call it a dynamic Markov risk measure. We now develop this construction by intro-

ducing the requisite formal definitions:
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Definition 7 (Time consistency). We call a dynamic risk measure {ρt,T }Tt=1 time-

consistent, if for all 1 ≤ i ≤ k ≤ T and all cost sequences Z, Z̃ ∈ Zi,T , the conditions
Zj = Z̃j , j = i, · · · , k − 1,

ρk,T (Zk, · · · , ZT ) ≤ ρk,T (Z̃k, · · · , Z̃T ),

imply that

ρi,T (Zi, · · · , ZT ) ≤ ρi,T (Z̃i, · · · , Z̃T ).

Stated plainly, if at some time in the future we evaluate Z as less risky than Z̃, yet

between now and then the two are identical, then we should not now evaluate Z as any

riskier than Z̃.

As mentioned above, Ruszczyński has shown in [122] that the translation property

ρt,T (Zt, Zt+1, · · · , ZT ) = Zt + ρt,T (0, Zt+1, · · · , ZT ),

and the normalization property,

ρt,T (0, · · · , 0) = 0,

then it admits of a recursive structure reminiscent of the tower property of conditional

expectation. Namely, the cumulative risk thus admits the form

ρt,T (Zt, Zt+1, · · · , ZT ) = Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−1(ZT ) · · ·

))
, (1.29)

Thus, a given time–consistent dynamic risk measure is completely characterized by a

certain sequence of one–step conditional risk measures. Clearly, the form of (1.29) is

tremendously more tractable than the generic expression with which we opened, yet

still it may be further refined in the context of a controlled Markov process.

1.3.4 Risk–aware Optimization

Equipped with an understanding of dynamic risk preferences, we now consider the risk–

averse control of MDPs. Specifically, consider a Markov loss process {(st, c(ut; st) )},
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with associated transition kernel Qt. In particular, the finite–horizon problem has the

goal of minimizing the cumulative risk:

v(π; s1) , ρ

(
T−1∑
t=1

c(ut; st) + cT (uT )

)
,

where we understand ρ is a time–consistent dynamic risk measure. Therefore, we know

that the cumulative risk may be written as

v(π; s1) = c(u1; s1) + ρ1

(
c(u2; s2) + ρ2

(
c(u3; s3) + · · ·

· · ·+ ρT−1

(
c(uT ; sT )

)
+ ρT

(
c(uT+1 ; sT+1)

)
· · ·
))

. (1.30)

Moreover, if each of the conditional risk measures ρt, t = 1, 2, · · · , T −1, T , in (1.29)

admits the form

ρt(v(st+1)) = σt(st, Qt(πt(st), v(st))), (1.31)

then we call conditional risk mappings ρt a Markov risk measure, and ρ = {ρt}Tt=1

a dynamic Markov risk measure. The mapping σt, t = 1, 2 · · · , T − 1, T , is called

a transition risk mapping associated with the controlled transition kernel Qt, and it

satisfies certain regularity conditions material in a general setting. (See [122] for a

rigorous and general treatment.)

The relation in (1.31) crucially recasts the dynamic risk preferences in terms of the

state space and the Markov transition kernel. This enables formulation of the risk–

averse dynamic programming equations, of the familiar form:

vT+1(s) = inf
u∈U

c(u; s), (1.32)

vt(s) = inf
u∈U

{
c(u; s) + σt

(
s, Qt(·|s, u), vt+1(·)

)}
, t = 1, 2, · · · , T. (1.33)

1.4 Elements of Statistical Inference

Our goal will be to formulate the optimal learning problem in the framework of Markov

decision processes, and thus we defer a discussion of the rich statistics literature until

Chapter 3. Here we merely introduce some basic notation and collect fundamental

results, and refer the reader to the burgeoning literature for a rigorous and complete

treatment.
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1.4.1 Statistical Manifolds

Let S be a statistical manifold, that is, a smooth, n–dimensional manifold where every

point p ∈ S is a probability distribution over an underlying space X . We will be content

to assume X is a finite set or finite-dimensional X ⊆ Rn. Let ξ be a coordinate system

for S; that is, we have a coordinate mapping φξ so that for any p ∈ S, ξ = φξ(p) ∈

Ξ ⊂ Rn. The space Ξ is induced by φξ according to Ξ = φξ(S) = {φξ(p) | p ∈ S}.

We shall often express coordinates as a vector with components ξi, written as ξ = [ξi],

i = 1, 2, · · · , n.

We take standard assumptions on the continuity and differentiability of coordinate

mappings. In particular, we assume that for any two distinct coordinate mappings

φξ, φζ , the coordinate transformation ξ 7→ ζ given by ζ = φζ ◦ φ−1
ξ (ξ) is well-defined.

Let pξ := p(x; ξ) denote a probability distribution on X corresponding to φ−1
ξ (ξ) ∈ S.

Thus, viewing ξ as a parameter, we can express S as a family of distributions written

as S = {pξ = p(x; ξ) | ξ ∈ Ξ ⊂ Rn}. In this context, we call S a statistical model. We

formalize this in the following definition.

Definition 8 (Statistical model). By a statistical model S, given by

S = {pξ = p(x; ξ) | ξ ∈ Ξ ⊂ Rn}, (1.34)

we understand a statistical manifold and a C∞ coordinate mapping φξ such that φξ(Ξ) =

S.

Example 13 (Arbitrary finite density). Let X = {x1, x2, · · · , xn}, and ξ be a vector of

probabilities. Then S =
{
pξ : p(xi; ξ) = ξi, ξ ∈ Ξ

}
, where

Ξ =

{
ξ :

n∑
i=1

ξi = 1, ξi ≥ 0, ∀ i = 1, 2, · · · , n

}
.

Example 14 (Poisson Distribution). Let X = {0, 1, 2, · · · }, n = 1, and ξ ∈ R>0. Then

S =

{
p(x; ξ) =

ξx

x!
e−ξ
}
.
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Example 15 (Normal Distribution). Let X = R, n = 2, and ξ = (µ, σ) ∈ R× R>0.

S =

{
p(x;µ, σ) =

1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]}
.

Example 16 (Log-normal Distribution). Let X = R>0, n = 2, and ξ = (µ, σ) ∈

R× R>0.

S =

{
p(x;µ, σ) =

1

xσ
√

2π
exp

[
−(log x− µ)2

2σ2

]}
.

Example 17 (Logistic Distribution). Let X = R, n = 2, and ξ = (µ, γ) ∈ R× R>0.

S =

p(x;µ, σ) =
exp

[
−x−µ

γ

]
γ
(

1 + exp
[
−x−µ

γ

])2

 .

Example 18 (Log-logistic Distribution). Let X = R>0, n = 2, and ξ = (µ̂, γ) ∈

R× R>0.

S =

{
p(x; µ̂, γ) =

γµ̂−γxγ−1

(1 + (x/µ̂)γ)2

}
.

1.4.2 Divergence

Let (Rn,Ω, µ) be a measure space, Lw(µ) a normed space, where 1 ≤ w ≤ ∞ and µ is

a Borel measure. Let p, q be two probability distributions absolutely continuous with

respect to µ on Ω. Finally, let a statistical model S together with a coordinate system

ξ be given.

Definition 9 (General divergence functions). By a divergence on a statistical model

S, we understand a smooth function D : S × S → R satisfying

D(p, q) ≥ 0, ∀ (p, q) ∈ S × S, (1.35)

D(p, q) = 0, iff p = s, (1.36)

and where the matrix given by

g
(D)
ij = −D(∂i, ∂j) (1.37)

is strictly positive definite on T (S)× T (S).



28

For any divergence D, one can associate a unique Riemannian metric g(D) = 〈·, ·〉(D)

given by (1.37). We summarize the fundamental results in the following theorem, given

without proof.

Theorem 3. Any divergence D induces a torsion-free dualistic structure (g,∇(D),∇(D∗)),

and conversely, any given dualistic structure (g,∇,∇∗) is induced by some divergence

D.

Several important divergence classes have been introduced in the literature. In par-

ticular, the class of Csiszàr f -divergence and Bregman divergence have proven relevant

for practical problems of interest. Both of these classes induce a dualistic structure with

respect to the Fisher metric. Most notably, the class of α-divergence has been shown

in [5] to be precisely the intersection of both classes on the space of positive measures.

We first introduce these important examples, and then focus on the α-divergence class

below.

Definition 10 (Csiszàr f -divergence). Let f : R+ → R+ be a convex function vanishing

at unity.

Df (p, q) =

∫
Ω
f

(
p(x)

q(x)

)
dµ(x). (1.38)

Another fundamental divergence class is that of the Bregman divergence [29]. The

Bregman divergence is exceedingly natural, being derived from any smooth, convex

function and a Legendre transformation. Perhaps unsurprisingly, any Bregman diver-

gence introduces a dually flat structure.

Definition 11 (Bregman divergence). Let φ : Lw(µ) → R be a smooth, convex func-

tional. The Bregman divergence Dφ is given by

Dφ(p, q) = φ(p)− φ(q) +
(
θi(q)− θi(p)

)
∂iφ(q), (1.39)

where θ denotes the affine coordinate system with respect to the dual potential of φ.

We now introduce the important class of α-divergences.
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Definition 12 (α-divergence). For α ∈ R, the α-divergence D(α) is the Csiszàr f (α)-

divergence Df (α) =: D(α), where

f (α)(z) =


z log z, if α = 1,

− log z, if α = −1,

4

1− α2

(
1− z(1+α)/2

)
, otherwise.

(1.40)

The class of α-divergences is in fact special, in that it uniquely belongs to both

the Csiszàr f -divergence and Bregman divergence classes over the space of positive

measures. Moreover, the α-divergences are precisely the canonical divergences corre-

sponding to a dually flat geometrical structure on the space of positive measures. In

particular, it can be shown that the Kullback-Leibler divergence is the unique mem-

ber of all classes over the space of probability distributions [5], perhaps clarifying its

persistence in the literature.

Example 19 (Hellinger distance). The α = 0 divergence D(0) given by

D(0)(p, q) = 2

∫
X

(√
p(x)−

√
q(x)

)2
dx (1.41)

is called the Hellinger distance. Note that D(0) satisfies the axioms of distance, uniquely

among all α-divergences.

Example 20 (Kullback-Leibler divergence). The α = ±1 divergence D(±1) given by

D(1)(p, q) = D(−1)(p, q) =

∫
X
p(x) log

[
p(x)

q(x)

]
dx (1.42)

is called the Kullback-Leibler (KL)divergence. This widely studied divergence is uniquely

important in several ways. Namely, it uniquely satisfies a certain chain rule and addi-

tivity properties.

We now collect the most fundamental properties of the divergence classes introduced

above, with proof omitted.

Theorem 4. Df (p, q) ≥ f
(∫
X p(x) q(x)

p(x)

)
≡ 1.
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Theorem 5. Df is invariant under the affine transformation f(z) 7→ f(z) + c(z − 1),

c ∈ R.

Theorem 6 (Monotonicity). Let K(y|x) be an arbitrary transition kernel on y ∈ Y for

all x ∈ X , and let pK(y) =
∫
K(y|x)p(x)dx. Then

Df (p, q) ≥ Df (pK , qK). (1.43)

Corollary 7. Df is invariant with respect to sufficient statistics y = F (x).

Corollary 8. Df satisfies joint convexity:

Df

(
λp1 + (1− λ)p2, λq1 + (1− λ)q2

)
≤ λDf (p1, q1) + (1− λ)Df (p2, q2).
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Chapter 2

Bayesian Learning Paradigm

“ What is not surrounded by uncertainty cannot be the truth.

”
Richard Feynman, 1976

“ Intelligence consists of this: that we recognize the similarity of differ-

ent things and the difference between similar ones.

”
Montesquieu, 1689–1755

2.1 Overview of Logistic Models

Statistical inference is a central data analysis technique. However, before any techniques

may be applied, a model of the problem at hand must be accepted, and on this point

there is much debate in the literature. Arguably one of the most widely used models

for statistical inference are logistic models [148, 19, 16, 90]. These include, for example,

logistic regression and conditional random fields [89], among others. We would like

to discuss the issues underlying the broad popularity of such models, particularly in

classification and prediction problem settings, based on a survey of the literature.

First, we note that the popularity of logistic models as led to their relatively exten-

sive study (see, e.g., [79]), which naturally begets their popularity. Logistic models do

have some uniquely beneficial properties, as it happens. For one, the logistic function

maps the extended real line into the unit interval, which allows for a probabilistic inter-

pretation, where desired. For another, the fundamental assumption of logistic models
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yields a certain computational efficiency through the employ of kernel methods, which

is to say necessary quantities can be expressed as inner products between (canonical)

parameters and data. Finally, logistic models also enjoy straightforward extensions of

most theoretical results to more general (e.g., higher-dimensional) modeling architec-

tures, owing largely to the linearity intimated above.

The history of the logistic function also partially explains its wide use. It played a

pivotal role in the statistical literature on classification, as we will see below. It is the

solution of a certain differential equation that arises naturally in applications, and this

was one argument for its use. Within the domain of statistical inference and machine

learning, in particular within the subfield of neural networks, employ of the logistic

function met with improvements in learning performance. This was often attributed to

the logistic distribution possessing “heavier tails” relative to the Normal distribution,

affording a certain robustness in the task of learning. Even with the recently deified deep

belief neural networks1 and the more recent, and remarkably more interesting, dense

nets2 persist in utilizing logistic functions as activation potentials [74, 77]. Logistic

models are thus the industry standard.

There is, in fact, a deeper reason why we observe empirical robustness in many

practical cases with logistic models: The family of logistic models will be shown below

to be precisely the family of mixtures of any exponential family of distributions. As

many commonly observed distribution families are exponential families (e.g., Normal,

Exponential, Gamma, Beta, Chi-squared, Poisson, etc.), logistic models find frequent

applicability, and their representation as mixtures provides a richer family than any

particular exponential family.

The richness of logistic models over exponential families naturally comes at a cost.

In particular, certain theoretical results for exponential models do not hold for logistic

models, and establishing others requires more sophisticated analysis. To glimpse this

most fundamentally at a glance, note that logistic manifolds do not admit dually flat

1The term deep belief neural network simply indicates the usual neural network with more layers
(deep) and Bayesian posterior densities (belief) between layers.

2Dense nets are the usual layered neural networks, but where each layer links also to the data of
every preceding layer.
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connections. Additionally, for practical problems wherein relevant or measurable con-

trol parameters do not coincide with canonical parameters, the computational demands

increase significantly. To see this, one need look no further than to observe that the

natural quantile parameterization has the form 1/(1+exp[±1/x]), which admits no an-

tiderivative in terms of elementary functions or known special functions. Thus, in such

practical applications approximation is inherently more challenging for logistic relative

to exponential models.

2.1.1 Origin of Logistic Models

For simplicity in the below discussion, but without loss of generality, consider the

simple binary classification problem in which a given vector x (e.g., a vector of metrics,

a feature vector of measurements, etc.) is labeled by observation of a random variable

r ∈ R = {0, 1}. A natural question to as is, given x what is the probability that r = 1?

Bayes’ Theorem tells us the probability we seek may be written as

P (1|x) =
p(x|1)P (1)

P (x)

=
p(x|1)P (1)

p(x|1)P (1) + p(x|0)P (0)

=
1

1 + e
− log

p(x|1)
p(x|0)

−log
P (1)
P (0)

, (2.1)

where the final equality is obtained by elementary machinations.

First, we note that (2.1) has the form of a logistic function, and the complementary

probability P (0|x) admits an analogous representation. Second, we emphasize that

nothing special has been obtained by this manipulation, unless there were some simpli-

fying or useful form of the marginal ratios. Indeed, logistic models, including logistic

regression and conditional random fields, make the fundamental assumption that the

exponent in (2.1) is affine in x. This is a defining characteristic of logistic models, and

also the source of a wealth of theoretical results and a certain computational clemency.

It is important to ascertain the nature of this logistic assumption that the log-

odds ratio of posterior distributions be affine. What is its significance? It is clear

that (2.1) formally holds for any conditional density p(x|r), and thus the question
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becomes: Under what conditions on p(x|r) do the assumption hold? In particular, one

may inquire about the form of (2.1) for the important cases where p(x|r) is Normal,

Gamma, Beta, Dirichlet, Poisson, and so on. As it turns out, if p(x|r) belongs to any

single exponential family of distributions for all r ∈ R, then it can be shown that

log p(x|0)
p(x|1) is an affine function of x. At a glance this arises from the fundamental group

homomorphism between multiplication and addition via the logarithm, and we examine

this fundamental theme in detail in Section 2.4.1 in the context of generalized concavity.

Moreover, it can be shown that this correspondence is one-to-one [16]. That is, if the

log-odds ratio is affine in x, then p(x|r) belongs to an exponential family for all r ∈ R.

This fundamental fact could have important applications for ADP via approximation

in policy space, although we will not consider such applications here. We first turn to

elucidate the fundamental properties and challenges in this problem setting.

2.1.2 Fundamental Properties

Definition 13 (Logistic function). We define the logistic function f : R→ [0, 1] as

f(ϕ) =
1

1 + e−ϕ
. (2.2)

The logistic function possesses several fundamental (anti-)symmetries, verifiable by

straightforward computation:

Lemma 9. The logistic function (2.2) satisfies

i. 0 < ‖f‖ < 1, (2.3)

ii. 1 = f(ϕ) + f(−ϕ), (2.4)

iii.
∂

∂ϕ
f(ϕ) = f(ϕ)f(−ϕ), (2.5)

iv. ϕ = log f(ϕ)− log f(−ϕ). (2.6)

Remark 1. To ease the notation in what follows, we shall adopt the subscript con-

vention to denote partial derivatives when convenient. Thus, ∂
∂xf = ∂xf = fx. For

higher-order derivatives, we may write fxx = ∂2
xf , fxy = ∂xyf , etc. No confusion

should arise.
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Definition 14 (Logistic model). By a logistic model, we understand a statistical model

SL on R, together with a mixed coordinate system (u, η) ∈ (U ×N ) ⊂ Rl×Rk, l, k ∈ N,

SL ,

{
p(r;u, η) =

1

1 + exp
[〈
α(r; η), u

〉
+ β(r; η)

]} .
For all distinct r, r̃ ∈ R, u ∈ U and η ∈ N , we have

log

[
Φ(r;u, η)

Φ(r̃;u, η)

]
=
〈
a(η; r), u

〉
+ b(η; r), (2.7)

where a(η; r) ∈ Rl, β(η; r) ∈ R for all (η, r) ∈ N × R. That is, the log-odds ratio of

any two points in SL is an affine function on U .

Example 21 (Binary classification). Let R = {0, 1} and consider the logistic model

SL({0, 1}). Then immediately from (2.6), we can see that each point in SL is a logistic

function with ϕ identically the RHS of (2.7).

Explicitly, we write the following: Without loss of generality, the condition (2.7)

becomes

log

[
Φ(1;u, η)

Φ(0;u, η)

]
=
〈
a(η; 1), u

〉
+ b(η; 1).

As SL is a statistical model, Φ(·;u, η) is a probability distribution, implying 1 = Φ(0;u, η)+

Φ(1;u, η) = Φ(0;u, η) + Φ(0;u, η)e〈a(η;1),u〉+b(η;1). Therefore, we see that

Φ(0;u, η) =
1

1 + e〈a(η;1),u〉+b(η;1)
,

and analogously for r = 1. Hence, the rth component of all Φ ∈ SL has the form of a

logistic function (2.2) with ϕ(r;u, η) = e〈a(η;r̆),u〉+b(η;r̆).

In anticipation of our principal application to clinical trials below, and to engen-

der clarity in our investigations, we will devote special attention to the case of logistic

regression with binary observations (i.e., binary classification). In particular, we in-

troduce now what we call a Type I model. The motivations for this model class are

elucidated in detail in Chapter 5, but at this moment we simply introduce the model

without derivation to fix ideas for our subsequent investigations.
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Definition 15 (Type I logistic model). By a Type I (logistic) model we understand a

logistic model of Example 21, where in particular the parameter η ∈ N ⊂ R>0 is defined

as the ν–quantile parameter, ν ∈ (0, 1/2). That is,

Φ(1; η, η) ≡ ν, ∀ η ∈ N .

Further, we may standardize the model to the unit interval, so that U , [0, 1], and

N , [ε, 1], 0 < ε� 1. Finally, it is assumed that the probability of r = 1 is identically

pε for u = 0, where 0 < pε < ν. That is,

Φ(1; 0, η) ≡ pε, ∀ η ∈ N .

In this case, the statistical model {Φ(r;u, η), ∀ (u, η) ∈ U ×N} thus takes the form

Φ(r;u, η) :=


1

1 + e−ϕ(u,η)
, r = 1,

1

1 + eϕ(u,η)
, r = 0,

(2.8)

where the discriminant ϕ is given by

ϕ(u, η) := log

[
pε

1− pε

]
+
u

η
log

[
ν (1− pε)
pε(1− ν)

]
. (2.9)

The standardized model thus admits the explicit form

1

1 + 1−pε
pε

(
(1−pε)ν
pε(1−ν)

)−u/η . (2.10)

For this case, we occasionally employ a simplified notation; specifically, we write

Φ(u, η) , Φ(1;u, η), (2.11)

ϕ(u, η) , ϕ(1;u, η). (2.12)

Additionally, we will maintain the convention of understanding r as an indicator of

toxicity, whereby r = 1 means toxic, r = 0 means nontoxic. Thus, u 7→ Φ(0;u, η)

is a survival function, and its complement is a toxicity function. Formally, this is

tantamount to the assumption

∂uϕ(1;u, η) = ϕu = α(η) > 0. (2.13)
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We have the following relations on the discriminant mapping ϕ(u, η) of Type I

models.

Assumption 1 (Type I Discriminant Assumptions).

Dose-response model: 0 < ϕu = α ,

Clinical application: 0 < pε < ν < 1/2 .

Additionally, we introduce the following definitions, to more concisely represent

certain quantities that feature frequently in calculations:

Definition 16 (Logarithmic quantities).

`ν := log

(
ν

1− ν

)
,

`pε := log

(
pε

1− pε

)
,

ψ := `ν − `pε = log

(
ν

1− ν

)
− log

(
pε

1− pε

)
,

ψ̃ := `ν + `pε = log

(
ν

1− ν

)
+ log

(
pε

1− pε

)
.

Finally, we collect some fundamental quantities for Type I models. We omit the

proof, as all are verifiable by straightforward computation. Note that in a standardized

model, a = 0.

Lemma 10 (Discriminant Relations).

(Logarithmic relations) `pε < `ν < 0 ,

ψ̃ < 0 < ψ ;

(Derivative relations) ϕu =: α = ψ(η − a)−1 > 0,

ϕη = αηu+ βη = αη(u− a) = ϕuη(u− a) < 0 ,

ϕuη =: αη = −ψ(η − a)−2 < −α < 0 ,

ϕuηη =: αηη = 2ψ2(η − a)−3 > α > 0 ,

β = (1/2)
(
ψ̃ − α(η + a)

)
< 0 ,

βη = −aαη > 0 ,

2α2
η = ααηη .
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2.2 Stochastic Order

We begin by introducing the central actor in this inference framework, the Bayes op-

erator. Indeed, the Bayes operator may be viewed as the engine for updating belief in

view of new information.

Definition 17 (Bayes operator). Let s ∈ P(N ) be an arbitrary probability density on

N . By the Bayes operator we understand the operator Ψ : R × U × P(N ) → P(N )

given by

Ψ(r; s, u)(·) ≡ Φ(r;u, ·)s(·)∫
N Φ(r;u, η)s(η)

≡ Φ(r;u, ·)s〈
Φ(r;u, ·), s

〉 . (2.14)

Definition 18 (Normalization operator). By the normalization operator we understand

the operator Z : R×P(N )× U → (0, 1] given by

Z(r; s, u) =

∫
N

Φ(r;u, η)s(η) =
〈
Φ(r;u, ·), s

〉
. (2.15)

The reason behind the nomenclature of Z is clear: It features as the denominator

in the Bayes operator to ensure a probability distribution. However, this ostensibly

pedestrian purpose obscures its pivotal role in the mechanics below.

Remark 2. We note that oftentimes the explicit notation may be cumbersome. When

a static setting is under consideration, which is to say the identity of s is contextually

clear, we may write

Zru = Z(r;u) = Z(r; s, u), and similarly, Ψr
u = Ψ(r; ·, u) = Ψ(r; s, u).

Additionally, in the binary case R = {0, 1}, the form of Z simplifies so that Z(0; , s, u) =

1− Z(1; s, u). When convenient, we shall therefore write

z(u) = Z(1; s, u), whence, 1− z(u) = Z(0; s, u).

Theorem 11 (Monotonicity Properties). Let R = {0, 1}. For all ui, uj ∈ U , where

ui < uj, and all η ∈ N , s ∈ P(N ), the operators Φ and Z satisfy the following
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monotonicity properties pointwise:∏
r∈R

(
Φ(r;ui, η)− Φ(r;uj , η)

)
< 0,

∏
r∈R

(
Z(r;ui)− Z(r;uj)

)
< 0.

In the shorthand notation, we have explicitly

Φ(ui, η) < Φ(uj , η),

z(ui) < z(uj).

Proof. Let s be a given probability density on N . Recall from (2.5) that for all η ∈ N ,

∂

∂u
Φ = ϕuΦ(1− Φ) > 0, (2.16)

where the final inequality follows from (2.3) and assumption (2.13). It follows that

(uj − ui) > 0 =⇒ (Φ(uj , η)− Φ(uj , η)) > 0, for all η ∈ N . That is,

〈
uj − ui,Φ(uj , η)− Φ(ui, η)

〉
= (uj − ui)(Φ(uj , η)− Φ(ui, η)) > 0, (2.17)

and we see that Φ : U → F (N ) is a monotonic operator in its first argument. The

opposite result for 1− Φ follows similarly.

We can establish the claims on the normalization operator Z by a similar compu-

tation.

∂

∂u
Z(1;u) := ∂u

∫
N

Φ(u, η)s(η) dη

=

∫
N
∂uΦ(u, η)s(η) dη

=

∫
N
ϕuΦ(u, η)

(
1− Φ(u, η)

)
s(η) dη

> 0.

As before, the final inequality follows from (2.3), the assumption (2.13), and the fact

that s is a probability density. Therefore,

(uj − ui)(Z(1;uj)− Z(1;ui)) > 0, (2.18)

and we see that Z is a monotonic operator. The result for Z(0; ·) = 1− Z(1; ·) follows

similarly.
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Theorem 12 establishes the respective monotonic movements of posterior distribu-

tion for each response. With respect to any prior (i.e., marginal) density s ∈ P(N ),

toxic response r = 1 shifts the posterior toward the origin, whereas a non–toxic response

r = 0 shifts the posterior away from the origin, for any any dose.

Theorem 12 (Response dominance). Let the prior density s ∈ P(N ) be given, and

denote the random variable distributed according to s by η. For each response r ∈ R =

{0, 1} and u ∈ U , denote the random variable distributed according to the the posterior

density Ψr
u := Ψ(r; s, u) by ηru. Then for all u ∈ U ,

η1
u �D η �D η0

u, (2.19)

where �D denotes the increasing convex order; that is,

E
Ψ1
u

[
g(η1

u)
]
≤ Es[g(η)] ≤ E

Ψ0
u

[
g(η0

u)
]
,

for all increasing, convex functions g : R→ R such that the expectations exist.

Proof. This follows as a direct consequence of the monotonicity established in The-

orem 11. We proceed to establish the assertion by way of an equivalent expression,

namely

E
Ψ1
u

[ (
η1
u − x

)
+

]
≤ Es

[
(η − x)+

]
≤ E

Ψ0
u

[ (
η0
u − x

)
+

]
, (2.20)

for all x ∈ N . This is valid, since any increasing, convex function g(η) may be arbitrarily

closely approximated by a positive combination of functions gk(η) = ak + (η − xk)+,

and therefore (2.20) holding for all x ∈ N implies the statement. (See [129] for a more

general discussion of this technique.)

Without loss of generality, let N = [0, 1] and F (x, φ) :=
∫ 1
x (ξ−x)φ(ξ) dξ. Note that

F (x, φ) = Eφ[(ξ − x)+] ≥ 0 by construction. Fix u ∈ U . To begin, first observe that by
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virtue of the natural complementarity, we have

F (x,Ψ0
u) =

∫ 1

x
(ξ − x)Ψ0

u(ξ) dξ

=
1

1− z(u)

∫ 1

x
(ξ − x)

(
1− Φ(u, ξ)

)
s(ξ) dξ

=
1

1− z(u)

(∫ 1

x
(ξ − x)s(ξ)dξ −

∫ 1

x
(ξ − x)Φ(u, ξ)s(ξ) dξ

)
=

1

1− z(u)

(
F (x, s)− z(u)F (x,Ψ1

u)
)
.

Therefore, we arrive at a familiar identity:

F (x, s) = z(u)F (x,Ψ1
u) +

(
1− z(u)

)
F (x,Ψ0

u), ∀x ∈ N , (2.21)

demonstrating F (x, s) is a convex combination of the others.

We need now only to establish that F (x,Ψ1
u) ≤ F (x,Ψ0

u). Consider

F (x,Ψ0
u)− F (x,Ψ1

u) =
1

1− z(u)
F (x, s)− z(u)

1− z(u)
F (x,Ψ1

u)

≤ 1

z(u)(1− z(u))
F (x, s)− 1

1− z(u)
F (x,Ψ1

u)

≤
(

1

z(u)(1− z(u))
− 1

1− z(u)

)
F (x, s)

=
1− z(u)

z(u)(1− z(u))
F (x, s)

=
1

z(u)
F (x, s)

< 0,

where the inequalities follow by the monotonicity of Theorem 11 and the fact that

z(u) ∈ (0, 1].

Note that all of the above holds pointwise for all x ∈ N . Moreover, note that in all

the above considerations, u ∈ U is arbitrary, and thus (2.20) holds for all x ∈ N and

u ∈ U , establishing the claim in (2.19).

Remark 3. In the medical statistics literature, a coherent dosage policy is defined by

the following property: If the previous patient was toxic, the next dose does not increase,

whereas if the previous patient was non–toxic, the next dose does not decrease. Thus,

this property is satisfied in particular whenever (2.19) holds.
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It is perhaps intuitive that posterior distributions shift in direct correspondence to

the magnitude of the dose administered, preserving stochastic order relations. This

property is generally not true, however, and in what follows we focus efforts on charac-

terizing when this does hold. Perhaps interestingly, even through extensive empirical

study, one is hard pressed to construct an instance where this property does not hold

true. For example, in all but the most pathological states shown in Figure 3.4, the or-

dering holds. Yet proving this can be surprisingly be elusive, owing largely to diabolical

normalization operators in the denominator.

We shall endeavor to make progress along these lines in the particular case of Type

I logistic models, and defer general considerations to future work. We will first collect

some facts about the relevant quantities and structure the analysis. We begin by

recapitulating the setting:

Without loss of generality, let N = [0, 1], and ui, uj ∈ U be such that ui < uj . As

before, for any φ : N → [0, 1], we define

F (x, φ) ,
∫ 1

x
(ξ − x)φ(ξ) dξ, (2.22)

G(x, φ) ,
∫ x

0
(x− ξ)φ(ξ) dξ. (2.23)

Just as before, note that F (x, φ) = Eφ[(ξ − x)+] ≥ 0, and thatG(x, φ) = Eφ[(x− ξ)+] ≥

0, by construction.

We focus on the case of r = 1, so that the relevant posteriors are Ψ1
i , and Ψ1

j . We

employ the usual shorthand when needed as follows: Let F 1
i (x) be given by F 1

i (x) ,

F (x,Ψ1
i ) = F (x,Φ(ui)s/z(ui)), and similarly for G1

i (x); explicitly,

F (x,Ψ1
u) =

1

z(u)

∫ 1

x
(ξ − x)Φ(u, ξ)s(ξ) dξ,

G(x,Ψ1
u) =

1

z(u)

∫ x

0
(x− ξ)Φ(u, ξ)s(ξ) dξ.

For r = 1 the condition that the ui– and uj–posterior distributed random variables

η1
i ∼ Ψ1

i , η
1
j ∼ Ψ1

j satisfy the increasing convex order η1
i �D η1

j is equivalent to

F 1
i (x) ≤ F 1

j (x), ∀x ∈ N . (2.24)
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An equivalent form of this condition can be made in terms of G1. For any r ∈ {0, 1}

and uk ∈ U , define the quantity

M r
k (x) , F rk (x) +Grk(x), x ∈ N . (2.25)

Thus, (2.24) is equivalent to

G1
j (x)−G1

i (x) ≤M1
j (x)−M1

i (x). ∀x ∈ N . (2.26)

Our goal is to establish (2.24), (2.26), and it is clear that the conditions are dynamic,

in the sense that they are focused on the change with respect to u and with x. Given

our focus on Type I logistic models, which is to say we have some knowledge of the

form of the general expressions, it is natural to use the calculus. Differentiating under

the integral reveals that

∂xG
1
i (x) = ∂x

[
1

zi

∫ x

0
(x− ξ)Φi(ξ)s(ξ) dξ

]
=

1

zi

∫ x

0
Φi(ξ)s(ξ) dξ

=:
1

zi
g1
i (x). (2.27)

The complimentary result holds for ∂xF
1
i (x), namely

∂xF
1
i (x) =: − 1

zi
f1
i (x). (2.28)

The form of the expressions (2.27), (2.28) intimates a simplectic structure rem-

iniscent of a Hamiltonian system. Observe that the (r, uk)–posterior mean median

deviation MMDr
k satisfies MMDr

k = M r
k (µ̂rk), where µ̂rk denotes the (r, uk)–posterior

median. Specifically, the median is the minimizer of (2.25), so that we may define

MMDr
k , min

x∈N
M r
k (x), (2.29)

µ̂rk , argmin
x∈N

M r
k (x). (2.30)

More to the point, the MMDr
k is a first integral in the sense that it is constant along

orbits of M r
k (x), which is to say it is independent of x. One can ask if there exist other
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such constants. The relevant condition would be ∂xM
1
i ≡ 0, which by way of (2.27)

and (2.28) implies

g1
i (x) = f1

i (x)

⇐⇒
∫ x

0
Φi(ξ)s(ξ) dξ =

∫ 1

x
Φi(ξ)s(ξ) dξ.

This is precisely the defining characteristic of the median µ̂ri . Thus, we obtain the

generalized coordinates (MMD1
i , µ̂

1
i ), which is to say that their knowledge is tantamount

to knowledge of our system dynamics.

Let us now introduce a certain quantity, which we denote by Φ(δ) and define as

Φ(δ) = Φ(δ)(ui, uj ; η) , Φ(uj , η)− Φ(ui, η), ∀ η ∈ N . (2.31)

First, observe that by the linearity of the integral, for any density s we have∫
N

Φ(δ)s =

∫
N

Φjs−
∫
N

Φis = zj − zi , z(δ). (2.32)

Pursuant to these definitions, we similarly define

G1
(δ)(x) , G(x,Φ(δ)s) = G

(
x,

Φj − Φi

zj − zi
s

)
=

(
zj

zj − zi

)(
G1
j −G1

i

)
, (2.33)

F 1
(δ) ,

(
zj

zj − zi

)(
F 1
j − F 1

i

)
, (2.34)

and finally, with M1
(δ) , F

1
(δ) +G1

(δ), it follows that

M1
(δ) =

(
zj

zj − zi

)(
M1
j −M1

i

)
. (2.35)

As before, because of sufficient continuity and differentiability properties for the logistic

model and the form of (2.36), M1
(δ) inherits a unique first integral, denoted µ̂1

(δ). In

particular, we again have that this is the minimizer of M1
(δ), so that

MMD1
(δ) , min

x∈N
M1

(δ)(x) = M1
(δ)(µ̂

1
(δ)). (2.36)

In view of (2.26), we may yet again recast the condition for η1
i �D η1

j as

G1
(δ)(x) ≤M1

(δ)(x), x ∈ N . (2.37)
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This form simplifies harmoniously owing to the linearity of the normalization operator,

but is not necessarily immediately more useful, as the first integral µ̂1
(δ) is a somewhat

subtle quantity. We suspect that it, and its dual counterpart MMD1
(δ), can be connected

to the mutual information between η1
i and η1

j (and, in turn, the relative entropy between

Ψ1
i and Ψ1

j , expressible in terms of divergences, etc.) in a very straightforward way. We

leave these promising avenues for future work, and are content for our part to proceed

to study this in our current context.

Let X(δ) ⊂ N be defined by X(δ) , {x ∈ N |G
1
(δ)(x) ≤ MMD1

(δ)}. Then it is clear

from (2.36) that (2.37) is satisfied for all x ∈ X(δ). This more stringent condition

offers a stronger version of the second-order dominance, insofar as it is restricted to the

subspace X(δ), without diluting its guarantee. In the next Section 2.3, we consider the

functional form of Type I models and show that X(δ) does, at least, admit a convex

representation in terms of ui, uj . Along the way, we establish some relations on µ̂1
(δ) in

terms of µ̂1
i , µ̂

1
j that lend themselves to an interesting heuristic. First, we summarize

the salient features of the above discussion in the following theorem.

Theorem 13 (Restricted dose dominance). Let the prior density s ∈ P(N ) be fixed,

denote the random variable distributed according to s by η, and let r ∈ R be given as

r = 1. Let X(δ) ⊂ N be given by

X(δ) =
{
x ∈ N

∣∣∣G1
j (x)−G1

i (x) ≤M1
j (µ̂1

(δ))−M
1
i (µ̂1

(δ))
}
, (2.38)

where µ̂1
(δ) is defined by (2.36).

Then for all ui, uj ∈ X(δ) such that ui < uj, the Ψ1(ui) and Ψ1(uj) posterior–

distributed random variables η1
i and η1

j satisfy the increasing convex order:

η1
i �D η1

j . (2.39)

Proof. The claim follows from the above discussion by the unique invariance of the

median as a first integral of the partial integral functional. Beginning from (2.32), we

immediately have (2.36), which is equivalent to the condition for the increasing convex

order by construction.
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2.3 On the Monotonicity of the Median

We yet again begin by recapitulating the setting: Consider a standardized model, so

that N = [0, 1], fix a state s ∈ P(N ), and let distinct points ui, uj ∈ U be given, such

that

ui < uj . (2.40)

For any response r, let µ̂r denote the posterior median operator, such that for any

control u, µ̂r(u) denotes the median of the posterior distribution under control u and

realized response r; see (2.30). Yet again, we employ the shorthand notation introduced

above, so that µ̂r(u) = µ̂ru = µ̂(Ψr
u), etc.

We recall the following functions:

F 1
u (x) = F (x,Ψ1

u) =
1

z(u)

∫ 1

x
(ξ − x)Φ(u, ξ)s(ξ) dξ,

G1
u(x) = G(x,Ψ1

u) =
1

z(u)

∫ x

0
(x− ξ)Φ(u, ξ)s(ξ) dξ,

f1
u(x) = f(x,Ψ1

u) =

∫ 1

x
Φ(u, ξ)s(ξ) dξ,

g1
u(x) = g(x,Ψ1

u) =

∫ x

0
Φ(u, ξ)s(ξ) dξ.

The functions are related according to (2.27) and (2.28), namely

∂xF
1
u (x) = − 1

z(u)
f1
u(x),

∂xG
1
u(x) =

1

z(u)
g1
u(x).

Our point of departure is the consideration of two distinct points ui, uj ∈ U , together

with the assumption in (2.40). Our goal will be to ascertain the form of the space X(δ),

and to clarify the role of the differenced quantities introduced in the previous section.

First, recall that by the definition of Φ(δ) in (2.31) the normalization function z(δ) in

(2.32), we have the pair of identities

g1
(δ)(µ̂

1
(δ)) = g1

i (µ̂
1
i )− g1

j (µ̂
1
j ), (2.41)

f1
(δ)(µ̂

1
(δ)) = f1

i (µ̂1
i )− f1

j (µ̂1
j ). (2.42)
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Note also that by linearity of these functions in the first argument, which is to say the

linearity of the integral operator, (2.41) readily implies

g1
i (µ̂

1
(δ))− g

1
j (µ̂

1
(δ)) = g1

i (µ̂
1
i )− g1

j (µ̂
1
j )

⇐⇒ g1
i (µ̂

1
(δ))− g

1
i (µ̂

1
i ) = g1

j (µ̂
1
(δ))− g

1
j (µ̂

1
j ).

That is, writing the last displayed equation explicitly and combining the integrals, we

see more clearly that ∫ µ̂1
(δ)

µ̂1
i

Φis =

∫ µ̂1
(δ)

µ̂1
j

Φjs. (2.43)

From (2.43) we may conclude the following: The positivity of the integrand immedi-

ately implies that if µ̂1
(δ) > µ̂1

i , then the LHS is necessarily positive and thus µ̂1
(δ) > µ̂1

j .

By the same reasoning, µ̂1
(δ) < µ̂1

i would imply the LHS is negative, and thus µ̂1
(δ) < µ̂1

j .

The converse clearly holds in both cases, too. We summarize this result in the following

Theorem 14.

Theorem 14. For all ui, uj ∈ U , ui < uj, the first integral µ̂1
(δ) satisfies the following

ordering 
µ̂1

(δ) > µ̂1
i ⇐⇒ µ̂1

(δ) > µ̂1
j ,

µ̂1
(δ) < µ̂1

i ⇐⇒ µ̂1
(δ) < µ̂1

j ,

or, equivalently but more succinctly,(
µ̂1

(δ) − µ̂
1
i

)(
µ̂1

(δ) − µ̂
1
j

)
> 0. (2.44)

Proof. This follows immediately from (2.43) and the positivity of the integrand Φus > 0

for all u ∈ U , as described in the prior discussion.

Corollary 15. For any ui, uj ∈ U , ui < uj, the following ordering holds:(
µ̂1
j − µ̂1

i

)(
µ̂1

(δ) − µ̂
1
i

)(
µ̂1

(δ) − µ̂
1
j

)
> 0. (2.45)

Proof. Suppose µ̂1
i < µ̂1

j . Then (2.44) implies

µ̂1
i < µ̂1

j < µ̂1
(δ).
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Conversely, suppose µ̂1
j > µ̂1

i . Then (2.44) implies

µ̂1
(δ) < µ̂1

j < µ̂1
i .

The result (2.45) follows.

Unfortunately, further assertions cannot be made from these elementary methods

without further conditions on the functions involved. Employing our knowledge of the

particular form of the logistic function in the case of Type I models, we can derive

explicit functional forms characterizing when (2.45) holds with µ̂1(ui) ≤ µ̂1(uj). By

implicit differentiation, we obtain

∂2g1
j (x)

(∂g1
i (x))2

=
Φjs

(Φis)2

(
ϕ′j(1− Φj)− ϕ′i(1− Φi)

)
. (2.46)

Hence, in the case of a one-parameter model, we have

ϕ′j = −ψ(η − a)−2(uj − a)

ϕ′i = −ψ(η − a)−2(ui − a),

from which we have

ϕ′j − ϕ′i = −ψ(η − a)−2(uj − ui). (2.47)

Note that (2.47) offers an alternative demonstration of the strong convexity of ϕ. Ad-

ditionally, we have

ϕ′iΦi − ϕ′jΦj = −ψ(η − a)−2
(

(ui − a)Φi − (uj − a)Φj

)
. (2.48)

Considering the form of (2.46), the condition for our mapping x 7→
(
g1
i (x), g1

j (x)
)

to be convex in fluid space (i.e., g1
i -g

1
j space) is that 0 ≤ ϕ′j(1 − Φj) − ϕ′i(1 − Φi).

Expanding this expression, we have

ϕ′j(1− Φj)− ϕ′i(1− Φi) = ϕ′j − ϕ′i + ϕ′iΦi − ϕ′jΦj

= −ψ(η − a)−2
(

(uj − ui) + (ui − a)Φi − (uj − a)Φj

)
,

and therefore our condition amounts to requiring that 0 < (uj−ui)+(ui−a)Φi− (uj−

a)Φj . Observing that the constant coefficients satisfy uj − a = (uj − ui) + (ui − a), we
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Figure 2.1: Visualizing the conditions (2.44), (2.45) for monotonicity of the myopic

minimizer. Monotonicity requires that the dark blue line be below the green.

equivalently write this as

0 < (uj − ui) + (ui − a)Φi − (uj − a)Φj

⇐⇒ 0 < (uj − ui) + (ui − a)Φi − (uj − ui)Φj − (ui − a)Φj

⇐⇒ 0 < (uj − ui)(1− Φj)− (ui − a)Φδ

⇐⇒ 0 < (1− Φj)− γΦδ,

where in the last expression we have let γ := (ui − a)/(uj − ui). Thus, we obtain the

condition

γΦδ < 1− Φj . (2.49)

It is perhaps more instructive to view this as

(ui − a)

(uj − ui)
<

1− Φj

Φj − Φi
, (2.50)

where given the bounds a < ui < uj , Φi < Φj < 1 we recognize this geometrically as

the comparison in the following figure.

It can be shown that equality in (2.49) can occur at most once on the interior of N ,

and thus it suffices to determine the point obtaining this equality. Enforcing equality

(2.49) and expanding via the definition of Φ for a Type I model, we obtain the two
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x

Φ(·)(x)

a ui uj

Φj(x)

Φi(x)

1

Figure 2.2: A visualization of the conditions for dose dominance in (2.50).

equivalent relations

(1 + γ)e−ϕ(i) = (2 + γ)e−ϕ(j) + e−(ϕi+ϕj) (2.51)

(1 + γ)eϕ(j) = (2 + γ)eϕ(i) + 1. (2.52)

From these relations, we can extract simple relations on ϕ leading to the above convex-

ity. The form of the relations proves interesting in view of our log-concavity consider-

ations.

As it turns out, two results may be obtained from this analysis, although via slightly

different methods. One approach is much simpler but yields only one of the results to

be had, whereas the other requires more lengthy calculations but yields both results.

We proceed first with the former, as the form of the analysis will be demonstrated yet

the calculations may be done on fingers.

For simplicity, we make the following notational substitutions: Let m = 1 + γ, and

n = 2 + γ. Beginning from (2.52), we solve for unity and multiply by eϕi+ϕj to obtain

meϕi+2ϕj − ne2ϕi+ϕj = eϕi+ϕj .
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Figure 2.3: Visualizing the conditions (2.44), (2.45) for monotonicity of the myopic

minimizer, for a spectrum of dosages ui, uj . Monotonicity requires that the dark blue

line be below the green.

Comparing this to (2.51), we observe that

(
meϕi+2ϕj − ne2ϕi+ϕj

)(
me−ϕ(i) − ne−ϕ(j)

)
= 1. (2.53)

After expanding and combining terms, (2.53) is equivalent to
(
meϕ(j) − neϕ(i)

)2
= 1,

from which we conclude

meϕ(j) − neϕ(i) = ±1. (2.54)

This expression is affine in exponentials, and shares connections to the conditions

of log-concavity. Additionally, we write the relation in (2.54), which we will see below

is equal to +1, in the illustrative form

ϕj = log

[
1 +m

m
eϕ(i) +

1

m

]
, (2.55)

and also m(eϕ(j) − eϕ(i)) = 1 − eϕ(i). Finally, note that as ui → uj , the quantity

m := 1 + γ →∞, and therefore ϕj → ϕi.



52

Figure 2.4: Interestingly, very similar graphs have been constructed by Gibbs in 1873

regarding thermodynamic properties of substances [65].

We now proceed with an alternative analysis along the same lines of inquiry. Be-

ginning with (2.52), we take products with e−ϕ(i) and e−ϕ(j), respectively, to obtain

(1 + γ)e−ϕi+ϕj − e−ϕ(i) = (2 + γ),

(1 + γ) = (2 + γ)eϕi−ϕj + e−ϕ(j).

Comparing these relations, we obtain

(1 + γ)e−ϕi+ϕj − e−ϕ(i) = (2 + γ)eϕi−ϕj + e−ϕ(j) + 1. (2.56)

As before, we take the product of this expression with eϕi+ϕj , yielding the relation

(
me2ϕ(j) − eϕ(j) − ne2ϕ(i) − eϕ(i)

)(
me−ϕ(i) − ne−ϕ(j)

)
= 1. (2.57)

To ease the calculation, we let x := e−ϕ(i) and y := e−ϕ(j). Expanding (2.57) with

these substitutions, we obtain

m2 x

y2
−mx

y
−mn1

x
−m−mn1

y
+ n+ n2 y

x2
+ n

y

x
− 1 = 0

⇐⇒ m2x3 −mx2y + n2y3 + nxy3 −mnx2y −mnxy2 = 0. (2.58)
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(a) Visualizing equality in (2.49). ϕj (red)

crosses (2.60b) (blue) and (2.60a) (purple)

out of the plot range.

(b) Depicting the same scenario, displaying

the difference ϕj−(2.60b) (blue), and the

same difference with (2.60a) (purple).

There exist two formal solutions to (2.58), given by


y = ±

√
m

n
x

y =
mx

n+ x
.

We therefore obtain conditions for equality to be achieved in (2.49)
ϕj = ϕi +

1

2
log

[
1 +m

m

]
(2.60a)

ϕj = log

[
1 +m

m
eϕ(i) +

1

m

]
. (2.60b)

It is straightforward to observe that (2.60a) is strictly less than (2.60b), and thus

the relevant condition for monotonicity of the operator µ̂1 is that

ϕj(µ̂
1
i ) < log

[
1 +m

m
eϕi(µ̂

1
i ) +

1

m

]
,

where m = 1 + γ = 1 + (ui − a)/(uj − ui).

2.4 On the Log-concavity of Belief in Logistic Models

Of central importance to the task of optimal learning in logistic models is the structure

of belief states (i.e., posterior distributions) under Bayesian dynamics. Although a body

of literature exists studying the asymptotic behavior of Bayesian orbits (i.e., sequences

of Bayesian posterior distributions) under maximum likelihood control, considerably
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less attention has been given to intermediate, non–equilibrium orbits and orbits gener-

ated by other control policies. In general, such orbits are complex, in the sense that their

mathematical descriptions admit simplification only to a point; that is, the submani-

fold of Bayesian orbits under general control policies cannot be described more simply

than by its outright computation. Contrast this circumstance for logistic models with

that of a (Bayesian) conjugate model, wherein parameters of posterior distributions

may be computed directly from known closed form expressions, opening the door to

the operational calculus. The non–conjugacy of logistic models notwithstanding, the

submanifold of Bayesian orbits is curved, its dynamics (in coordinates) thus generally

nonlinear and non–convex, which is to say unwieldy.

In the face of these difficulties precluding a general characterization of Bayesian

orbits for logistic models, one may grasp the issue from the other end by positing

particular, desirable properties of the orbits and inquiring as to the form of logistic

models exhibiting the properties. For example, in the application of clinical trial design

considered in Chapter 5, it is natural to seek belief states that are unimodal. In a general

sense, unimodality is desirable also because it guarantees global maximum likelihood

estimators aiding convergent solution of the optimal learning problem, or at least its

proof.

Establishing unimodality is generally challenging. The concepts of generalized con-

cavity specifically quasiconcavity, extend the notion of unimodality to higher-dimensional

spaces. Although characterization may still be difficult in many cases, we can more

easily seek the more stringent requirement of a strong unimodality by establishing log-

concavity. In a general sense, the concavity properties of a probability distribution

materially describe the behavior of processes generated from it. This intuitive fact is

doubly relevant when the process of interest is a controlled Markov process arising in

an optimal learning context: The system costs recursively relate back to the underlying

generator of the process, as we shall discuss in detail below. We first introduce the

rudiments of the generalized concavity theory in the next Section 2.4.1.
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2.4.1 Preliminaries

The generalized concavity theory is a generally useful basis from which to wield elements

of convex analysis in probabilistic optimization. The theory is fundamentally built upon

the weighted means of order α, authoritatively studied by Hardy, Littlewood, and Pólya

in [71]:

mα(a, λ) =

(
n∑
i=1

λia
α
i

)1/α

,

where λ ∈ {λ ∈ Rn|λ ≥ 0,
∑

i λi = 1} may be viewed as a vector of probabilities. For

our purpose of developing generalized concavity of functions, we shall simply proceed

with the case n = 2. In this case, the weighted mean of order α, or simply the α-mean

mα, is defined as follows.

Definition 19 (α-mean). For all α ∈ R, λ ∈ [0, 1], and a, b > 0, as

mα(a, b, λ) =



aλb1−λ, if α = 0,

max{a, b}, if α =∞,

min{a, b}, if α = −∞,

(λaα + (1− λ)bα)1/α, otherwise.

(2.61)

Note that the familiar arithmetic, geometric, and harmonic means correspond to

α = 1, 0, and −1, respectively. As is well known, these means are fundamentally related

via natural inequalities, establishing a natural hierarchy. The proverbial example in this

hierarchy is perhaps the inequality of arithmetic and geometric means, better known

simply as the AM-GM inequality.

One may build, in a rather straightforward way, a theory of concave functions on

these means that inherits their natural hierarchy.

Definition 20 (α–concave function). A nonnegative function f(x) defined on a convex

set Ω ⊂ Rn is α-concave, where α ∈ [−∞,∞], if for all x, y ∈ Ω and all λ ∈ [0, 1] we

have

f
(
λx+ (1− λ)y

)
≥ mα

(
f(x), f(y), λ

)
. (2.62)
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Note that the familiar notions of concavity, log-concavity, and quasi–concavity cor-

respond to α = 1, 0, and −∞, respectively. See [129] for a thorough treatment; cf.

[107].

The role of the logarithm in the distinctive term for 0–concave functions is illustra-

tive of the nature of the hierarchy alluded to above, and also deeply related to logistic

models. Consider the AM-GM inequality, written in the vernacular of α–means (2.61)

as m1(x, y, λ) ≥ m0(x, y, λ), or explicitly

λx+ (1− λ)y ≥ xλy(1−λ). (2.63)

Recalling that the logarithm x 7→ log(x) is monotonic for x > 0, its application will

preserve the inequality. Observing also that log(xλy(1−λ)) = λ log(x) + (1 − λ) log(y),

we obtain that (2.63) is equivalent to

log(λx+ (1− λ)y) ≥ λ log(x) + (1− λ) log(y). (2.64)

Moreover, in view of definition (2.62), we recognize (2.64) as a statement of the 1–

concavity of the logarithm.

That is, the AM-GM inequality is equivalent to the concavity of the logarithm. By

the same analysis, we see an arbitrary nonnegative function f(·) is 0–concave if and

only if log f(·) is a concave function. This is the origin of the term “log–concave”

for 0–concave functions, but the implication here is also essential: Observe that if f(·)

were 1–concave, then the 1–concavity of the logarithm implies log f(·) is also 1–concave,

and therefore f(·) is 0–concave. That is, the 1–concavity of a function implies its 0–

concavity, or concavity of a function implies its log–concavity.

We have established this particular result because of its illustrative connections to

the AM-GM inequality and the origin of the distinctive nomenclature “log–concave”,

but it can be shown that this hierarchy of α–concavity is a general property stemming

from the natural ordering of α–means. We formalize this below without rigor, instead

referring the reader to [129], p. 95, for a detailed proof.

Lemma 16 (Monotonicity of weighted means of order α). The mapping α 7→ mα(a, b, λ)

is nondecreasing and continuous.
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Proof. (See [129], p. 95.)

Corollary 17 (Hierarchy of α-concave functions). Any α-concave function is also β-

concave for all β ≤ α. In particular, α-concavity implies (−∞)-concavity (quasicon-

cavity), for any α.

Definition 21 (α-concavity of probability measures). A probability measure P defined

on the Lebesgue measurable subsets of a convex set Ω ⊂ Rn is α-concave, if for any

Borel measurable sets A,B ⊂ Ω and for all λ ∈ [0, 1], we have

P (λA+ (1− λ)B) ≥ mα(P (A), P (B), λ), (2.65)

where the sum is understood as the Minkowski sum.

Given a real-valued random vector Z, we say that Z has an α-concave distribution

if the measure PZ induced by Z is α-concave. We formalize this in the following lemma.

Lemma 18. If a random vector Z induces an α-concave probability measure PZ on

Rn, then the corresponding distribution function FZ is an α-concave function.

Proof. This follows directly from the definitions of FZ and α-concavity of probability

measures. Let a, b ∈ Rn be given. For any λ ∈ [0, 1], define A := {z ∈ Rn : z ≤ a}

and similarly B := {z ∈ Rn : z ≤ b}. Note that for all z in the set λA + (1 − λ)B =

{z′ ∈ Rn : z′ = λa′ + (1 − λ)b′, a′ ∈ A, b′ ∈ B}, it follows that z ≤ λa + (1 − λ)b.

Directly applying (2.65) and the definition of FZ , we obtain FZ(λa + (1 − λ)b) ≥

ma(FZ(a), FZ(b), λ), thus satisfying definition 20.

Definition 22 (α-concavity of discrete distributions). A distribution function F is

called α-concave on the set A ⊂ Rn, with α ∈ [−∞,∞], if

F (z) = mα (F (x), F (y), λ)

for all z, x, y ∈ A, λ ∈ (0, 1) such that z ≥ λx+ (1− λ)y.

For a given random vector Z, there naturally exist relations among the α–concavity

of its induced probability measure, density, and distribution function. We refer the

reader to [129, 107] for further details.
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Figure 2.6: Example of a typical Type I model, {Φ0
η(u) (left),Φ1

η(u) (right)}, defined

by: Φ1
η(0) = pε, Φ1

η(η) = ν. The domain U ; color spectrum denotes η ∈ N .
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Figure 2.7: The obvious nonlinearity throughout belies a linear relation between the

dose u and ν-quantile parameter η, as revealed by the contour plots.
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Figure 2.8: The same Type I model, over η ∈ N . Color spectrum denotes u ∈ U .
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2.4.2 General Log-concavity

We emphasize a proof of the following result utilizing the log-concavity of the induced

probability measure.

Theorem 19. If for each η ∈ N the toxicity random variable τ ∈ U has a log-

concave density function φ of the form φ(τ ; η) = φ(τ − η), then the sequence
{
s =

Ψ(st, ut, rt)
}T
t=1

of Bayesian posterior density functions is log-concave.

Proof. For each η ∈ N , let φ(τ ; η) be a log-concave probability density function of the

toxicity random variable τ ∈ U , and let φ be given by

φ(τ ; η) = φ(τ − η) (2.66)

for all η ∈ N , τ ∈ U . Therefore, for each η ∈ N , φ induces a log-concave probability

measure Pη on the Lebesgue measurable subsets of U , and we have

Pη{τ ≤ u} =

∫ u

−∞
φ(τ − η) dτ.

We denote the distribution function Φ(u; η) := Pη{τ ≤ u}, for all η ∈ N and τ ∈ U .

On the other hand, applying the change of variables ξ = u+ η − τ , we see∫ u

−∞
φ(τ − η) dτ =

∫ ∞
η

φ(u− ξ) dξ, (2.67)

for all η ∈ N and u ∈ U .

Fixing u ∈ U , we see that φ also induces a probability measure Pu on the Lebesgue

measurable subsets of N that similarly inherits log-concavity. Indeed, defining the sets

Aη = [η,∞],

Bη = [−∞, η],

for all η ∈ N , we obtain directly from (2.65) that for all fixed u ∈ U

Φ(u; η) = Pu
(
Aη
)

(2.68)

1− Φ(u; η) = Pu
(
Bη
)

(2.69)

are each a log-concave function of η.
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We now establish log-concavity of the belief states defined as posterior probability

density functions under a Bayesian update. Let t ∈ {1, 2, · · · , T} be fixed, and suppose

the probability density function st(η) is log-concave. After applying dose ut ∈ U and

observing response rt ∈ {0, 1}, we obtain the posterior density st+1 = Ψ(st, ut, rt).

Explicitly, we have

st+1(η) =


st(η)

(
1− Φ(ut, η)

)
/Z0(ut; st), rt = 0,

st(η)Φ(ut, η)/Z1(ut; st), rt = 1,

(2.70)

where Z0, Z1 ∈ R are normalizing operators.

By (2.68) and (2.69), we see that in either case st+1 is proportional to the product

of two log-concave functions, and is therefore log-concave. Indeed, without loss of

generality let rt = 1 and observe that

log st+1 = log[st(η)Φ(ut, η)/Z1(ut; st)]

= Z1(ut; st)
−1
(

log st(η) + log Φ(ut, η)
)

is a concave function of η by the log-concavity of st and Φ(ut, ·). Thus, st+1 is a

log-concave function of η.

By supposition, the a priori density s1 is log-concave, and thus by induction we

obtain that the sequence

{
s = Ψ(st, ut, rt)

}T
t=1

is log-concave.

2.4.3 Log-concavity of Logistic Quantile Parameterizations

Theorem 20. Let S be a Type I logistic model over R = {0, 1}, given by

SL =

{
Φ(r;u, η) =

1

1 + e−ϕ(r;u,n)
, (u, η) ∈ U ×N

}
, (2.71)

where the parameter η is defined by the ν-quantile relation Φ(1; η, η) ≡ ν, ν ∈ (0, 1).

Suppose the discriminant ϕr := ϕ(r; ·, ·) is a bilinear mapping for each r ∈ R.
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Then S is necessarily a translation family of models; that is, we have the form

ϕ1(u, η) = α(u− η) + β, (2.72)

together with ϕ0(u, η) = −ϕ1(u, η), for constants α, β ∈ R>0.

Proof. Beginning with the fact that ϕr is bilinear for all r ∈ R, for some real scalars

α, β, γ, δ, we can write ϕ1 in the form

ϕ1(u, η) = αu+ γuη + δη + β. (2.73)

Enforcing the fact that Φ(1; η, η) = ν, for all η ∈ N , we see that there exists a constant

ν̃ such that ϕ1(η, η) = ν̃. That is,

αη + γη2 + δη + β = ν̃, for all η ∈ N ,

and differentiating immediately yields δ = −α, γ = 0. Hence ϕ1 has the form

ϕ1(u, η) = αu− αη + β

= α(u− η) + β,

as claimed. Moreover, S is a statistical model over R, and so 1 = Φ(1;u, η)+Φ(0;u, η).

Together with the form of the logistic model shown in (2.71), this implies ϕ0 = −ϕ1,

which is to say α, β are constants not depending on r. Thus, S is a translation family.

The log-concavity of this class of models leads to corresponding result for Bayesian

posterior sequences.

Theorem 21. Let s1 be any log-concave prior density and consider the logistic model

SL given in (2.71). Then for any dose-response sequences (u, r) ∈ (U × R)T and any

T > 0, the sequence

{
s = Ψ(rt; st, ut)

}T
t=1

of posterior densities is log-concave.
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Proof. Recalling the the simplified notation from (2.11), (2.12) on page 36, we proceed

without the explicit notation of r. We shall use the form (2.73) of the discriminant

ϕ(u, η) to establish the log-concavity. Specifically, we have that ϕ(u, η) = α(u− η) +β,

for some constants α, β ∈ R>0.

Writing log Φ(u, η) = − log[1 + e−(α(u−η)+β)], we see that a sufficient condition for

Φ to be log-concave is that the map η 7→ 1 + e−(α(u−η)+β) be log-convex for all u ∈ U .

We now move to employ the fact that the sum of (sufficiently regular) log-convex

functions is itself a log-convex function. Formally, let ξ(η) denote the map η 7→ 1 +

e−(α(u−η)+β), and observe that may be decomposed as ξ(η) = f(η)+g(η), where f(η) ≡

1, and g(η) = e−(α(u−η)+β). It is straightforward to see that both f and g are log-convex.

Indeed,

log f(η) ≡ log[1] = 0,

log g(η) = −(α(u− η) + β), ∀ u ∈ U ,

and we see that both functions are continuous and linear in η and therefore convex. If

we apply Hölder’s inequality to Definition 20, we can show that the sum f̃ + g̃ remains

log–convex. To this end, letting ηλ = λη1 + (1 − λ)η2 for arbitrary points η1, η2 ∈ N

and λ ∈ (0, 1), we have

f(ηλ) + g(ηλ) ≤ fλ(η1)f1−λ(η2) + gλ(η1)g1−λ(η2)

≤
(
f(η1) + g(η1)

)λ (
f(η2) + g(η2)

)1−λ
,

where, again, the final inequality follows by Hölder’s inequality. Thus, ξ = f + g is

log-convex. Therefore, η 7→ Φ(u, η) is log-concave for all u ∈ U .

The same result can be shown analogously for the complementary map η 7→ 1 −

Φ(u, η). First, observe that the following representation holds:

log[1− Φ(u, η)] = log

[
e−(α(u−η)+β)

1 + e−(α(u−η)+β)

]

= log

[
1

1 + eα(u−η)+β

]
.

Therefore, we require only the modified decomposition ξ(η) = f(η) + 1/g(η). Since

log[1/g(η)] = − log g(η) is linear, it remains convex, and we can see that the argument
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proceeds exactly as before. It therefore follows that η 7→ 1− Φ(u, η) is log-concave for

all u ∈ U .

Finally, consider the Bayesian orbits beginning at s1(η). We proceed by induction.

Let the stage t be given, and assume a log-concave density st is given. Then, for any

(ut, rt) ∈ U × {0, 1}, we have the posterior density st+1 := Ψ(rt; st, ut) given explicitly

by

st+1(η) =


st(η)

(
1− Φ(ut, η)

)
/Z(0; st, ut), rt = 0,

st(η)Φ(ut, η)/Z(1; st, ut), rt = 1,

(2.74)

where Z is the normalization operator, to be defined formally in (2.15) below.

By assumption st is log-concave, and by the preceding arguments both Φ(ut, η) and

1 − Φ(ut, η) are log-concave functions of η, for all ut ∈ U . Thus, for any (ut, rt) ∈

U × {0, 1}, st+1 is proportional to the product of log-concave functions and therefore

itself log-concave.

By supposition, the a priori density s1 is log-concave, and thus by induction we

obtain that the sequence

{
s = Ψ(rt;ut, st)

}T
t=1

is log-concave.

We conclude with a simple alternative proof of the special case via differentiation:

Theorem 22. The logistic function and its complement in (2.4) are simultaneously

log-concave in η if and only if for all u ∈ U and η ∈ N , the discriminant function

ϕ(u, η) satisfies

Φ− 1 <
ϕηη
ϕ2
η

< Φ, ϕη 6= 0. (2.75)

Proof. Differentiating twice with respect to η, we obtain

∂2
η log f(ϕ) = ϕηηf(−ϕ)− ϕ2

ηf(ϕ)f(−ϕ),

∂2
η log f(−ϕ) = −ϕηηf(ϕ)− ϕ2

ηf(ϕ)f(−ϕ).
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Imposing the condition of log-concavity, the system becomes

ϕηηf(−ϕ)− ϕ2
ηf(ϕ)f(−ϕ) < 0,

ϕηηf(ϕ) + ϕ2
ηf(ϕ)f(−ϕ) > 0,

implying ϕηη − f(ϕ)ϕ2
η < 0 < ϕηη + f(−ϕ)ϕ2

η. Provided ϕη 6= 0, we have

−f(−ϕ) <
ϕηη
ϕ2
η

< f(ϕ),

and the more intelligible form in (2.75) follows by (2.4).

Corollary 23 (Linear Discriminant). For all u ∈ U , let ϕ(u, η) be affine in η. Then

both Φ(u, · ) and 1− Φ(u, · ) are log-concave.

Proof. The fact that ϕ is affine in η implies ϕηη ≡ 0, and (2.75) becomes

Φ(u, η)− 1 < 0 < Φ(u, η), (2.76)

which clearly holds for all (u, η) ∈ U × (−∞,∞).
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Chapter 3

Dynamic Risk and Sequential Inference

“ We know what we are, but know not what we may be.

”
William Shakespeare, 1603

“ Man cannot remake himself without suffering, for he is both the marble

and the sculptor.

”
Alexis Carrel, Man, the unknown, 1935

“ The understanding which we want is an understanding of an insistent

present. The only use of a knowledge of the past is to equip us for the

present... The present contains all that there is. It is holy ground; for

it is the past, and it is the future.

”
Albert North Whitehead, 1916

As discussed above, the crux of the optimal learning problem is the fundamental

self–reference resulting in a certain analytical recursion. To put it most simply, our

belief is determined by our observations, which themselves are determined in part by

our actions, yet which in turn are chosen according to our belief. The issues engendered

by this recursion are intuitively familiar. Indeed, the colloquial notions of self–fulfilling

prophecy, confirmation bias, sunk-cost fallacy, and Russell conjugation, among others,

are rooted in this recursion. Against this backdrop, the particular optimal learning
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problem we consider below amounts to optimally balancing the simultaneous (risk–

adjusted) costs and benefits of learning, not unlike masterfully navigating stormy waters

fraught with perilous waves—waves of information amid storms of the spurious.

Another central issue related to this fundamental recursion is well–known in the

machine learning and multi–armed bandit (MAB) literature as the exploration vs. ex-

ploitation (EE) tradeoff, or yet more plainly as learn vs. earn. This tradeoff describes

the simple phenomenon that the action which maximizes the profitable information

we learn from its corresponding observation is generally different from the action with

minimal (risk–adjusted) cost. To grasp this at a glance, observe simply that one cannot

learn that which one believes. More generally, the EE tradeoff intimates the decom-

position of the tradespace into the explicit cost and the implicit reward of learning, as

extruded through action. Put simply, the EE tradeoff names the investment in learning

vs. its opportunity cost.

The MAB boasts a rich literature, perhaps owing to the broad applicability of the

problem class. The basic results surrounding the existence and form of dynamic allo-

cation indices (DAI) is famously due to Gittins [66]. These so–called Gittins indices

are notoriously difficult to compute in many settings. As Whittle humorously put it,

the MAB problem “was formulated during the war, and efforts to solve it so sapped

the energies and minds of Allied analysts that the suggestion was made that the prob-

lem be dropped over Germany, as the ultimate instrument of intellectual sabotage”

[147]. Various reformulations of the indices have been made to render said indices more

tractable, a seminal such decomposition method due to Katehakis and Veinott [84]

has been studied in the literature. Other MAB formulations in terms of minimizing

a measure of cumulative regret have seen extensive study, cf. [31], [83]. Recently, an

information theoretic perspective was studied by Russo [120]. For a comprehensive

treatment of MAB problems, see [67], and the references therein. Much of the MAB

literature is concerned with aspects of the asymptotic optimality in problems with gen-

eral information structures, whereas in our setting, we will be focused on relatively

short time horizons and a particular information structure.

One fundamental issue emerging as most critical in our endeavor is quantifying the
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value of learning, which is intrinsically a dynamic property. Foundational work in this

vein is the subject of information theory, and the seminal notion of entropy was famously

introduced in this context by Shannon in [127]. The dynamic counterpart to entropy is

relative entropy, which has emerged as a popular method to quantify learning. Relative

entropy is built upon the divergence functional, introduced in step by Csiszàr [38] and

Bregman [29]; see also [63].

Recently, the fundamental duality running as a thread between and among rela-

tively siloed branches of knowledge have been pointed out and observed more widely.

For example, the branches of competitive games (i.e., game theory), Bayesian infer-

ence, machine learning, information theory, differential geometry, quantum mechanics,

stochastic optimization, dynamic risk, etc., all share connections along these lines, as

is perhaps well-known to the expert—and maddening to the student. For some recent

work explicitly elucidating the duality connections among competitive games, the maxi-

mum entropy principle, and Bayesian inference, see [69]; for similar considerations with

an emphasis on (Bayesian) machine learning, see the work by Reid and Williamson

[111, 56], and the references therein. The dualistic connections between divergences as

informations measures and stochastic optimization problems were studied extensively

by Ben-Tal et al.; see [21], inter alia.

By way of, at bottom, the natural homomorphism between multiplication and ad-

dition, exponential distribution families have proved both interesting and tractable,

and thus served as an indispensable bridge connecting the probability theory and its

many subsidiaries to disciplines relatively more developed with respect to dynamics,

the canonical examples of which being classical and quantum mechanics. Exponential

families were studied authoritatively by Barndorff–Neilsen in the context of statisti-

cal inference, and paved the way for geometric considerations with the notion of the

statistical manifold. This led to the introduction of dual connections and the general

clarification of the role of divergences within the emerging subdiscipline of information

geometry, largely due to Amari; see [6, 5] and the references therein.



68

3.1 Risk–sensitive MDP Belief Dynamics

The Markov property is perhaps the most fundamental premise underlying the theory

of MDPs, and in Section 1.2 we recalled the classical theory. In Section 1.3 we intro-

duced the fundamentals of dynamic risk, and in Section 1.3.4 we introduced risk–aware

optimization. In this section, we formulate belief dynamics, i.e., learning, as a Markov

process, whereby the optimal learning problem becomes an MDP. In particular, we

introduce belief states and establish the existence of a stochastic kernel coinciding with

the conditional state transition probability, thus demonstrating the essential Markov

belief dynamics. The operator responsible for these Markov transitions may be for-

mally constructed as a consequence of Bayes’ Theorem, and hence we arrive at the

term Bayesian belief dynamics. Additionally, we introduce dynamic risk in the optimal

learning problem and investigate the prospects of the class of conditional risk measures

that are composite in stochasticity and uncertainty.

For the purpose of balancing clear exposition and relevance to applications, we focus

on a prototypical problem of logistic regression or, complementarily, classification. In

particular, we shall study this problem in the context of optimal clinical trial design

(CTD), which is an important motivation of our work. Specifically, we study the logistic

regression problem of determining the optimal dosage policy for patients in a clinical

trial of a novel pharmaceutical agent; equivalently, this may be viewed as a binary clas-

sification problem of dosage as either clinically toxic or non–toxic. Note that we study

the formal problem in this context to facilitate acquisition for the uninitiated clinician

and to foster intuition with respect to the general analysis. Thus, in what follows

we introduce a notation with only mild limitations, although in examples and further

discussion we shall focus on the case of binary classification with logistic regression.
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3.1.1 Problem Formulation

We consider the challenge faced by a decision–maker1 to choose actions ut from the

set U at sequential times2 t ∈ {1, 2, · · · , T − 1, T} over the finite time horizon T ∈ N.

At each time t, after taking action ut ∈ U , the decision–maker observes the response

rt ∈ R. We call R the response space, and in general we assume only that R is a subset

of a finite–dimensional Euclidean space; in what follows, we shall be content to further

assume it to be a finite set, and we study in particular the case R = {0, 1}.

For each action u, the response r occurs randomly according to the conditional

probability distribution Φ∗ = Φ∗(r;u) on R. However, this true (or underlying) con-

trolled response distribution is itself unknown, but is assumed to reside in a statistical

manifold S with mixed coordinate system ξ := (u, η) ∈ Ξ = U×N ⊂ Rn, for some finite

n ∈ N. We view ξ as a parameter, and the parameter space N ⊂ Rk, k ∈ N, for k ≤ 2.

Moreover, we view u as the control parameter, whereas η is an unknown parameter. In

this context, we thus consider the statistical model S = {Φξ(r) = Φ(r;u, η) | (u, η) ∈

(U ×N ) ⊂ Rn}, with Φ∗u(r) = Φ(r;u, η∗) ∈ S for unknown, unique η∗ ∈ N .

We consider the regular probability space (Ω,F ,P), together with the filtration

{∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT−1 ⊂ FT = F . For each t, Ft denotes the canonical

σ–algebra generated by the observed control–response sequence

(ui, ri)
t = (u1, r1, u2, r2, · · · , ut−1, rt−1).

3.1.2 Markovian Dynamics and the Bayes Operator

The formulation of a Markovian system via the introduction of belief states together

with learning dynamics is an intuitively appealing approach, and now a classical tech-

nique. In order to develop a tenable framework, “belief” and “learning” need to be

rigorously defined. The preeminent approach is to understand belief probabilistically,

that is, where one’s current state of belief about a given system (or proposition) is

understood as a probability distribution over an appropriate space. Viewing this as a

1or agent, clinician, etc.

2or, equivalently, epochs, stages, etc.
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single entity, we call this characterization one’s belief state. In this context, learning3 is

revealed as the dynamics of belief, the mechanism of mapping one’s current belief state

to a new belief state via new information.

Undoubtedly, the prime benefit of this framework is its inheritance of the rich,

well–established probability theory. In the context of learning, as defined above, the

definition of the conditional probability distribution is the principal actor. The central

identity is essentially the result in Bayes’ Theorem, which is the origin of the widely

used term Bayesian inference (learning). The general theory of conditional probability

distributions, under the mild condition of regularity, establishes that joint distributions

may be resolved into the product of a transition kernel over the product space and

marginal distribution. Bayes theorem then provides a method for obtaining a new,

posterior marginal distribution given a prior marginal and a conditional observation.

Thus, given any a priori knowledge of the system, one may begin by positing a cer-

tain marginal distribution over the unknown parameter space. Even without a priori

knowledge, one may still simply posit the existence of a non–vanishing marginal distri-

bution, e.g., Jeffrey’s prior, uniform distribution, etc., over the parameter space N and

define the state space P(N ) to be probability distributions on N , from which an MDP

may be formulated. Generally the latter construction impacts only the rate of, rather

than the fact of, convergence in probability. However, we must mention that this degree

of freedom has historically been a point of contention in the literature, the alternative

to this “Bayesian” approach being the so–called “frequentist” approach. We refer the

reader to the statistics literature for details on this debate.

We begin with the fundamentals central to clarifying these concepts. First, we recall

the underlying statistical model S(U) = {P (τ ; ξ)|ξ ∈ Ξ} for the unobserved random

variable τ ∈ U . For all ξ ∈ Ξ and all Borel sets A ∈ B(U), we have P(τ ∈ A|ξ) =∫
A P (τ ; ξ)dτ .4 In our problem setting, the decision–maker is forced to operate within

the observed model S(R), whereby the observation mapping Hξ : τ 7→ r transforms

3One might equivalently use the term inference, as in statistics vis–à–vis “statistical inference.” The
term learning aligns more with computer science vis–à–vis “machine learning.”

4Assume henceforth that all equalities hold identically for all ξ ∈ Ξ, unless specified otherwise.
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the underlying random variable τ ∈ U into the observed random variable r ∈ R. The

distribution density P (τ ; ξ) thus naturally induces the distribution Q(r; ξ) of r on B(R),

the Borel sets of (the image of Hξ over U in) R.

We assume below that Hξ is surjective, so that for all r ∈ R, H−1
ξ (r) ⊂ U and

well–defined, where in particular Hξ(U) ∩ R = Hξ(U) = R. Moreover, note that Hξ

is generally not one–to–one, however, we will be content to assume it is deterministic.

That is, for any τ, τ ′ ∈ U , τ = τ ′ implies Hξ(τ) = Hξ(τ ′). More formally, if we let

K(r|τ ; ξ) denote the regular conditional probability distribution (i.e., transition kernel)

of r given τ , then we consider the case K(r|τ ; ξ) = δHξ(τ)(r), the Dirac delta.5 centered

at Hξ(τ)

In deriving the observed model we shall preview the central techniques used below.

We proceed by computing the induced distribution Q(r; ξ) = P(r|ξ). By definition, we

have

Q(r; ξ) =

∫
U
P
(
τ, r|ξ

)
dτ

=

∫
U
K(r|τ ; ξ)P (τ ; ξ) dτ

=

∫
U
δ
(
r −Hξ(τ)

)
P (τ ; ξ) dτ

=

∫
Aξ(r)

P (τ ; ξ) dτ,

where the last equality follows by the surjectivity of Hξ and the properties of the Dirac

δ distribution. Note that we introduce the set Aξ(r) = H−1
ξ (r) ⊂ U .

This general technique is thematic and will feature again below, but a few points

need to be clarified for our problem setting. In particular, we consider a mixed coordi-

nate system, in that ξ = (u, η) ∈ U ×N , and moreover

H(τ ; ξ) ≡ H(τ ;u),

and P (τ ; ξ) ≡ P (τ ; η).

Thus, letting Aξ(r) = Au(r), we can more explicitly write Q(r; ξ) ≡ Φ(r;u, η) as

Φ(r;u, η) =

∫
Au(r)

P (τ ; η) dτ. (3.1)

5When R is discrete, this is understood as the Kronecker delta.



72

We now demonstrate the central role of conditional probability in this context.

Applying the disintegration theorem to the joint probability P(r, η|u) in each of the

first two arguments, respectively, we obtain the identity

P(η|r, u)P(r|u) = P(r|u, η)P(η|u). (3.2)

Immediately, we make the following observations about the RHS, P(r|u, η)P(η|u). First,

P(r|u, η) = Φ(r;u, η). Second, the mixed coordinates are independent, and therefore

P(η|u) = P(η). Let s(η) , P(η).

Turning now to the LHS, P(η|r, u)P(r|u), we observe, by the same technique, that

P(r|u) =
∫
N P(r|u, η)P(η|u) dη = Es[Φ(r;u, η)]. Letting Z(r;u) ≡ P(r|u), we have

Z(r;u) =

∫
N

Φ(r;u, η)s(η) dη. (3.3)

Finally, letting s+(η; r, u) ≡ P(η|r, u) and rearranging (3.2), we arrive at the conclusion

of Bayes’ theorem:

s+(r;u, η) =
Φ(r;u, η)s(η)

Z(r;u)
. (3.4)

In light of the form of (3.3), the significance of (3.4) should be understood with

respect to a fixed statistical model {Φ(r;u, η)}, as follows: Given a belief state s(η) and

a control-response observation (u, r), the quantity in (3.4) characterizes a new belief

state s+(η) incorporating the new information. Within a fixed model, it is essential

that the belief state s+ be determined only from the previous belief state s and the new

observation (u, r). The initial belief state s is called the prior (or, a priori) distribution,

and a realization of s+ is called the posterior. This fact is paramount, and we reiterate

it in remark 4.

Remark 4. Sequential Bayesian inference is Markovian.

The MDP framework is, obviously, built upon the Markov property; that is, the

dynamics depend only on the current state and control. In order to recast the above

precisely in this formalism, we recall the definition of the Bayes operator.
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Figure 3.1: Visualizing Bayesian dynamics. Starting from the current belief state s =

s(η) (center, dark blue), all posterior states {s+} from (3.4) are shown, for each response

r = 0 (moved right), r = 1 (moved left), and control u (spectrum). Also shown is the

unknown optimal parameter η∗ (,), with its corresponding posteriors (bright green).

Definition 17 (Bayes operator). Let s ∈ P(N ) be an arbitrary probability density on

N . By the Bayes operator we understand the operator Ψ : R × U × P(N ) → P(N )

given by

Ψ(r; s, u)(·) ≡ Φ(r;u, ·)s(·)∫
N Φ(r;u, η)s(η)

≡ Φ(r;u, ·)s〈
Φ(r;u, ·), s

〉 . (2.14)

The Bayes operator Ψ should be understood with respect to a fixed response rt, as

follows. Given the current state st and control ut, the system transitions to the next

state st+1 according to

st+1 = Ψ(rt; st, ut), (3.5)

as given in definition 17 above and again in (3.4). We call Ψrt the state transition

mapping. Note that it is notationally convenient to write Ψt(rt) , Ψ(rt; st, ut), and we

use this shorthand below.

Together with the state transition mapping, the MDP framework is centered around

the Markov transition kernel, which is defined for all C ∈ B(S) as P(st+1 ∈ C|st, ut).
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(a) Toxic response (r = 1)
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(b) Non-toxic response (r = 0)

Figure 3.2: All denormalized posteriors Φ(u; η)s(η). Spectrum denotes u ∈ U .

By again employing the now familiar disintegration technique, we can write down the

transition kernel explicitly. Formally, we have

P(st+1 ∈ C|st, ut) =
∑
r∈R

1C
[
P(st+1|rt, st, ut)

]
P(rt|st, ut),

where 1C [·] denotes the set indicator function of C. We recognize that the state tran-

sition mapping (3.5) together with the observation kernel Z(rt; st, ut) , P(rt|st, ut) is

equivalent to (3.3), therefore define the state transition kernel Q(C|st, ut) , P(st+1 ∈

C|st, ut) by

Q(C|st, ut) =
∑
r∈R

1C
[
Ψ(rt; st, ut)

]
Z(rt; st, ut). (3.6)

Note that Q depends only on the current state-control pair (st, ut), and is therefore

Markov. Moreover, it is also stationary, that is, Q is the same at each stage t.

It is convenient to identify for each stage t the σ-algebra Ft generated by the infor-

mation sequences

(s1, u1, s2, · · · , ut, st+1) = (s1, u1,Ψ1(r1), · · · , ut,Ψt(rt+1)).

Finally, we note that for any state control pair (st, ut), the Bayes operator Ψt(rt)

is injective, and clearly not surjective. Any injective mapping of a random variable

trivially defines a sufficient statistic, and therefore it is formally correct to regard st+1 =

Ψt(rt) as a sufficient statistic for the statistical model S over R, given Ft. Of course,

in our problem setting with finite response space R, it is decidedly more profitable
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to utilize this sufficiency in the converse. We shall take this route below to avoid the

formality of writing such integrals as
∫
S Q(s′|st, ut)ds′ over the infinite space S = P(N ),

so that the equivalent expression
∑

r∈R Z(rt; st, ut) is primarily preferred. Thus, we

prefer expressing the expected value of an Ft-measurable random variable f : S → R

as E[f(s′)|Ft] =
∑

rt∈R f(Ψt(rt))Z(rt; st, ut).

3.1.3 Modified Cost Functional

Thus formally clad in an MDP modeling framework, we are now able to properly

evaluate costs in this model. With each coordinate (u, η) ∈ U ×R, the decision-maker

associates a cost c(u; η), where the cost function c : Ξ→ R is known and fixed in time.

Uncertainty in the random variable η propagates into uncertainty about the incurred

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Example of a cost model for c(u; η) = |u− η|. Spectrum denotes N .

cost of action ut at any time t. This statement means that formally the cost of action

at time t depends only on the current belief state st and the action ut, in keeping with

the theory of MDPs. For all times t, we therefore define the expected cost function

c̄(ut; st), given by

c̄(ut; st) := Et
[
c(ut; η)

]
=

∫
N
c(ut; η)st(η) dη, (3.7)
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where the expectation operator Et[·] :=
∫
N · st(η) dη. To ease notation, we will often

write ct(ut) , c̄(ut; st). Note that, in Chapters 4 and 5 below, we will focus on the cost

function c(u; η) := |u− η|.

3.2 Dynamic Programming

3.2.1 Risk–neutral Dynamic Programming

The definition of the cost functional completes the formalization of our problem as a

Markov Decision Problem. According to the classical theory, we would be concerned

with the expected system cost

Ct,T (s;π) := E
[ T∑
t=1

c̄(ut; st)
]
,

where s1 = s and, at each stage t, the control ut = πt(s1, . . . , st). Comprehensive

literature is available on this topic. (See, among others, [109, 24, 23] and the references

therein.) We briefly summarize the fundamental results.

Among all possible policies, including randomized and history-dependent, a Markov

policy of the form ut = πt(st) is best. It can be found by evaluating the optimal value

functions v∗t at stages t = 1, . . . , T , which are defined as follows:

v∗t (s) := inf
π∈Π

Ct,T (s;π). (3.8)

where Π is the set of Markov policies, adapted mappings from ST into U ; specifically,

Π := {π = (πt) |πt(s1, · · · , st) = πt(st) ∈ U , t = 1, 2, · · · , T}. This can be accom-

plished by solving the dynamic programming equations through backward induction.

The following theorem can be formulated under rather general and abstract condi-

tions, involving lower semicontinuity and weak continuity of the mappings involved [73].

We state it in the special case, which will play a major role in further considerations.

Theorem 24 (Risk–neutral dynamic programming equations). Suppose the sets U and

R are finite. Then the optimal value function v∗1 satisfies the dynamic programming
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equations for all s ∈ S:

vT+1(s) = min
u∈U

c̄(u; s), (3.9)

vt(s) = min
u∈U

{
c̄(u; s) +

∫
S
vt+1(y) Q(dy|s, u)

}
, t = 1, 2, · · · , T. (3.10)

Furthermore, the minimizers on the right-hand sides of the above equations define the

optimal Markov policy π∗ = (π∗1, . . . , π
∗
t ).

The integration with respect to the transition kernel in (3.10) can be made more

explicit by using (3.6), to obtain

vt(s) = min
u∈U

{
c̄(u; s) +

∑
r∈R

vt+1

(
Ψ(r; s, u)

)
Z(r; s, u)

}
, (3.11)

∀ t = 1, 2, · · · , T.

3.2.2 Risk–averse Dynamic Programming

In our Markov belief setting, we now consider a time-consistent dynamic Markov risk

measure ρT := {ρt,T }Tt=1. We define the problem of choosing a policy π = {πt}Tt=1 to

minimize the accumulated risk over T stages:

Definition 23 (System Risk). For a dynamic risk measure ρT := {ρt,T }Tt=1, we define

the system risk under Markov policy π from time t to T as follows

Rt,T (s;π) := ρt,T

({
c̄(ui; si)

}T
i=t

)
, (3.12)

where st = s and, at each stage i, the control ui = πi(si).

The optimal value function v∗t at stage t in this setting is therefore defined as

v∗t (s) := inf
π∈Π

Rt,T (s;π), (3.13)

where Π is the set of Markov policies. Our goal is to specify an appropriate risk measure

ρT and solve the problem (3.13) at t = 1. As in classical dynamic programming, this

can be accomplished by finding all functions v∗t (·) for t = T, T − 1, · · · , 1. We briefly

outline this construction.
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Let Z1, Z2, · · · , ZT be a sequence of random variables (understood as costs) adapted

to the filtration F1,F2, · · · ,FT . According to the theory introduced in [122], a time-

consistent dynamic risk measure satisfying the translation property :

ρt,T (Zt, Zt+1, · · · , ZT ) = Zt + ρt,T (0, Zt+1, · · · , ZT ),

and the normalization property,

ρt,T (0, · · · , 0) = 0,

necessarily has the following structure:

ρt,T (Zt, Zt+1, · · · , ZT ) = Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−1(ZT ) · · ·

))
, (3.14)

where ρt(Zt+1) = ρt,T (0, Zt+1, 0, · · · , 0) are one-step conditional risk measures (Defini-

tion 5 on 23). Moreover, for the class of Markov risk measures, transition risk map-

pings6 σt exist, such that for any Markov policy π the following equation is true for all

t = 1, · · · , T − 1, and all s ∈ S:

Rt,T (s;π) = c̄
(
πt(st); st

)
+ σt

(
st, Q(·|st, πt(st)), Rt+1,T (·;π)

)
. (3.15)

This form allows for the development of risk–averse dynamic programming equations

for our problem.

Theorem 25 (Risk–averse dynamic programming equations). The optimal value func-

tion v∗1 satisfies the dynamic programming equations for all s ∈ S:

vT+1(s) = min
u∈U

c̄(u; s), (3.16)

vt(s) = min
u∈U

{
c̄(u; s) + σt

(
s, Q(·|s, u), vt+1(·)

)}
, t = 1, 2, · · · , T. (3.17)

Proof. See Theorem 2, [122].

Transition risk mappings σt can be derived from law invariant measures of risk, by

making their dependence on the probability measure explicit.

6We note that in the seminal literature [122], the term “risk transition mapping” was coined and
quickly picked up. Shortly thereafter, it was changed to the more apt “transition risk mapping” [32, 58].
In our view, this simple transposition materially changes the literal interpretation. In non–technical
language one might write “transition-risk mapping” (roughly, the risk in transitioning), more clearly
conveying the interpretation of risk preferences as ambiguity in the transition kernel.



79

Example 22. The mean–semideviation risk measure [99] has the following transition

risk mapping counterpart:

σ(s, q, v) =

∫
S
v(s′) q(ds′) + κ

∫
S

max

(
0, v(s′)−

∫
S
v(z) q(dz)

)
q(ds′), (3.18)

where κ ∈ [0, 1] is the risk–aversion parameter. In (3.17), we substitute q = Q(s, u).

Then, similar to (3.11), we can use the specific structure of the kernel Q to write:

σ(s,Q(s, u), v) = v̄(s, u, v) + κ
∑
r∈R

max
(

0, v(Ψ(r; s, u))− v̄(s, u, v)
)
Z(r; s, u),

where the mean v̄(·, ·, ·) has the form:

v̄(s, u, v) =
∑
r∈R

v
(
Ψ(r; s, u)

)
Z(r; s, u).

Example 23. The Average Value at Risk at level α ∈ (0, 1], AVaRα defined in (1.21)

on page 21, has the following transition risk mapping counterpart:

σα(s, q, v) = min
ζ∈R

{
ζ +

1

α

∫
S

max
(
0, v(s′)− ζ

)
q(ds′)

}
, (3.19)

After substituting q = Q(s, u), we can use the specific structure of the kernel Q to write:

σα(s,Q(s, u), v) = min
ζ∈R

{
ζ +

1

α

∑
r∈R

max
(
0, v(Ψ(r; s, u))− ζ

)
Z(r; s, u)

}
.

In particular, observe that for α = 1, the risk transition mapping σ1(s, q, v) =

Eq[v|s]. Similarly, as α ↓ 0, we obtain σα → maxr v(Ψ(r; s, u)). In this problem

setting, the efficacy of the Kusuoka representation, Equation (1.27), thus becomes clear:

It is particularly efficient to represent any coherent, law invariant risk measure via

combinations of AV aRα in this one-dimensional setting.

3.2.3 Response-based Transition Risk Mappings

The examples discussed in the previous subsection suggest that we can model risk

aversion in a compact form, by considering functions v
(
Ψ(· ; s, u)

)
on the space of

observations r ∈ R, with probability measures Z(· ; s, u). We thus focus on the following

structure of the transition risk mapping:

σt(s,Q(s, u), v) = σrt
(
s, Z(· ; s, u), v

(
Ψ(· ; s, u)

))
,
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where σrt : S ×P(R)×V(R)→ R. This simplification is of great practical importance,

because it reduces the risk model to considering finite distributions of possible responses.

The dynamic programming equations (3.16) simplify significantly:

vT (s) = min
u∈U

c̄(u; s), (3.20)

vt(s) = min
u∈U

{
c̄(u; s) + σrt

(
s, Z(· ; s, u), vt+1

(
Ψ(· ; s, u)

))}
, t = 1, 2, · · · , T. (3.21)

The examples of the previous section are fully consistent with this setting.

In our application, we have only 2 possible response values: “toxic” and “nontoxic”.

In this case, it appears reasonable to consider two extreme cases of the response-based

transition risk mapping: the expected value, and the worst case:

σrt
(
s, Z(· ; s, u), v

(
Ψ(· ; s, u)

))
= max

r∈R
vt+1

(
Ψ(r; s, u). (3.22)

It completely eliminates the probability distribution Z(· ; s, u) from the risk calculation:

we treat the toxic and non–toxic case equally. We call this transition risk mapping

robust.

Example 24 (MSDκ DP equations). The MSDκ is introduced in (1.23) admits analytic

dual representation (1.26), given by

σ
(
rt, Zt(rt;πt), vt+1

)
= max

µ∈A(σ)
Eµ[vt+1],

where the subdifferential A := ∂(σ)|0 is given by

A =
{
µ ∈ Ψ(R) :

µ(r)

Z(r; s, u)
= 1 + h(r)−

∑
r∈R

h(r)Z(r; s, u), h(r) ∈ [0, κ], ∀ r ∈ R
}
.

This formulation is linear, and thus for all r ∈ R and u ∈ U this may be solved by linear

programming. For our purposes in (3.17), however, is unfortunately not linear, or

convex in the control. When log-concavity is satisfied, however, we may obtain a convex

formulation in the second-stage. Unfortunately, dependence on the control renders the

problem disjunctive, so that min and max operators may not be interchanged (see [122]

p. 259).



81

3.2.4 Challenges of Dynamic Programming

Dynamic programming (DP) is a powerful technique for obtaining solutions to problems

that would otherwise be impossible. At its core, DP is built around the notion of the

fixed point of an iterated mapping, which so long as the mapping is a contraction

mapping in the underlying topology is guaranteed to exist and be unique. Indeed,

this is the essence of the value iteration method of obtaining optimal solutions in the

infinite–horizon problem. In finite horizon problems, one must instead solve a system

of equations over the state space backward in time, known as backward induction.

These techniques are guaranteed to lead to solutions under very general and abstract

conditions.

Unfortunately, the techniques have computational complexity exponential in the

state and control spaces. In many practical cases lacking an exploitable structure, the

size of the state space and/or control spaces can render the approach utterly impossible.

Bayesian inference with non–conjugate belief states constitutes such a case.

Rather than belabor this well–known phenomenon, we discuss the issues in our

context by appeal to visual representation, which will be worth at least one thousand

words indeed. Consider Figure 3.4, depicting all of the possible states arising from a

very particular slice of the full optimal learning problem. Several observations may be

made, but we first state some details about the image.

In Figure 3.4, we have begun from a fixed initial prior belief state s1 to be uniform

over N . Note that this represents but one of very many candidate initial prior states.

Second, we have begun with an initial starting dose fixed at the minimum feasible dose.

That is, u1 ≡ 0 for each orbit in the picture. Note that we have also discretized the

dosage space to |U| = 100 possible dosages, and so with this fixed choice of u1 the

picture represents roughly one part in one hundred of the “full picture”. Finally, and

certainly the most constraining, we have restricted to a one-step lookahead policy, in

particular the vanilla expected value policy π , πEV . The reduction in complexity

from this restriction is hard to overstate.

With all of these restrictions, in Figure 3.4 we observe 2T−1 = 29 = 512 belief orbits,
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yielding 2T = 210 = 1024 individual belief states. Supposing we still allow the initial

prior and initial starting dose to be fixed, proper dynamic programming would require

that we consider (2 · 100)10 = 1024 · 1020 states! Thus, the picture depicts one part

in 1020 of what is required, which is clearly computationally infeasible. Moreover, the

significant overlap with respect to the densities suggests that there is little to be gained

by forecasting too far into the future, and this naturally motivates consideration of

lookahead policies. However, to investigate the prospects of forecasting, which is to say

the prospects of backward induction, we shall investigate approximate DP techniques.

0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

Figure 3.4: All 2T−1 possible states Ψπ(s1) = {Ψ(rt;πt, st)} after time T = 10, starting

from s1 (uniform), u1 ≡ umin, and further restricted to myopic expected control π; dis-

cretized to |U| = 100 feasible controls. Note: Precisely T states are realized; moreover,

proper DP would require backward induction on (2 · 100)T = 20010 states!

3.3 The Class of Lookahead Policies

Arguably the simplest approach falling under the umbrella term approximate dynamic

programming (ADP) is that of lookahead policies. The technique is straightforward:
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Figure 3.5: The same scenario shown in Figure 3.4, to give a sense of the thick fog

inherent to dynamic programming with belief states.

Instead of solving the DP recursion (Bellman’s equation), or in the finite-horizon case

the system of DP equations, lookahead policies generally solve a truncated version

of the problem. The k-step lookahead policy is to take the action at each time that

appears optimal considering the next k time periods. Because uncertainty cascades sys-

temically, 1-step lookahead (or myopic) policies are an attractive choice for balancing

the improvements afforded by future considerations with their exponential computa-

tional demands. Owing to their simplicity, many classes of such problems have been

studied, most notably in the online learning and multi-armed bandit (MAB) literature.

Moreover, the employ of coherent risk measures is an intuitively appealing approach for

controlling future risk without explicitly formulating the entire system of equations. Be-

low, we present several of the foremost formulations and introduce the robust-response

formulation.

3.3.1 Selected Prominent Policies

We first introduce some common notation used below. In what follows, we generally

denote the myopic minimizer of the cost functional c with respect to a generic state s
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by µ̂ and the associated value by ĉ. Formally, we write

µ̂ , argmin
u

E[c(u; η)] = argmin
u

c̄(u; s),

ĉ , min
u

E[c(u; η)] = c̄(µ̂; s).

In the lookahead context one frequently needs to consider the myopic minimizer of the

next stage, which is, of course, stochastic with respect to the controlled response transi-

tion kernel. In the one-step lookahead setting, subscripting by time is unnecessary and

becomes cumbersome. We thus continue our convention of overloading the operators to

indicate the quantities one-step forward in time, as we have above. Specifically, given

the generic state s, we write

ĉ(r; s, u) , min
x∈U

c̄(x; Ψ(r; s, u))

(shorthand) ĉru = min
x∈U

c̄(x; Ψr
u),

and similarly for the minimizer7

µ̂(r; s, u) , argmin
x∈U

c̄(x; Ψ(r; s, u))

(shorthand) µ̂ru = argmin
x∈U

c̄(x; Ψr
u).

Example 25 (Knowledge gradient). For any time t, denote by vKGt the optimal KG

value function, given by

vKGt (u) , EZru
[
ĉ(r; st, u)

]
(3.23)

=
∑
r∈R

ĉ(r; st, ut)Z(r; st, u)

The KG policy is then to choose a dose x at time t by solving

πKGt , argmin
u∈U

c̄t(u) + (T − t)vKGt (u). (3.24)

7The intuition behind the notation is the following: Recall that we focus attention on the one-step
cost function c(u; η) = |u− η|, and thus the minimizer is the posterior median.
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Example 26 (Information-directed sampling). Let the information gain of dose u ∈ U

be denoted gt(u), and given by

gt(ut) := It(r, η) = Df0

(
Φ(rt;ut, η)st(η), Zt(rt;ut)

)
,

which is more concisely expressed in the entropy-reduction form as

gt(ut) = E[H0(st)−H0(Ψ(rt; st, ut))], (3.25)

where H0 is the Shannon entropy.

Letting ∆IDS
t (ut) = E[c(ut; η)−c(µ̂t; η)], at time t the information-directed sampling

(IDS) policy πIDSt is then to choose dose ut according to

πIDSt = argmin
ut

(∆IDS
t (ut))

2

gt(ut)
=

E[c(ut; η)− c(µ̂t; η)]2

E[H0(st)−H0(Ψ(rt; st, ut))]
. (3.26)

Several remarks may be made about the information ratio in (3.26). Note that the

expectation in the numerator is with respect to η ∼ st, whereas the expectation in

the denominator is with respect to rt ∼ Z(rt;ut) for all ut ∈ U . Thus, this quantity

decouples, in a certain sense, expectations over the product space Ω = N × R, and

it compares them numerically by the operation of division. The authors are able to

provide theoretical bounds on the expected cost under this policy by way of entropic

inequalities. However, they express ambiguity that it is “unclear if or when this is the

right measure” [120].

3.3.2 Robust Response Policy

Given that the uncertainty in the model is compounded in the second stage by uncer-

tainty both in the transition kernel and the resulting loss distribution, we posit risk

measures with a composition structure. Specifically, for all t, we thus consider risk

measures ρt of the form

ρt
(
c(ut; st) + c(ut+1, st+1)

)
= %t,s ◦ %t,z

(
c(ut; st) + c(ut+1, st+1)

)
(3.27)

= %t,s

(
c(ut; st) + %t,z

(
c(ut+1, st+1)

))
. (3.28)
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Because in the case of a one-dimensional, compact control space, all measures of risk

will necessarily be combinations of the expectation and the worst-case, it is intuitive to

consider the robust approach wherein

%t,z ≡ max
r∈R

c(ηt+1(r), ut+1).

We thus formulate the robust lookahead policy.

Example 27 (Robust response). Let the time t be fixed, and denote by vRRt the optimal

robust-response value function, given by

vRRt (ut) := max
r
{ĉt+1(r;ut)}.

The robust response policy πRRt is to choose ut according to

πRRt = argmin
ut

E[c(ut; η)] + γtv
RR
t (ut), (3.29)

where γt is a constant factor.

This policy has the unique benefit of decoupling the uncertainty in the optimal

parameter η and the optimal transition kernel. Note that, in contrast to upper confi-

dence bounding (UCB) or other robust approaches, the RR policy considers the average

cost of worst-case response. Contrast this with, for example, the worst-case (over an

uncertainty set) average of the average (over response) cost.

In the empirical study of Sections 5.1 and 5.2 below, we will observe that the RR

policy exhibits strong performance in applications with relatively short horizon T , both

in terms of statistical accuracy, precision, and accumulated cost. What is especially

interesting about these, granted empirical, results is that this performance is achieved

despite effectively disregarding the central conditional probability relation (3.2). Of

course, this is a consequence of the fact that the controlled stochastic process is non-

linear, whereas the conditional probability at any given time bears analogy to a local

linearization. Indeed, the prefatory study in Section 5.1 illustrates the role of response

risk measures as a local correction to this linearization, effectively tempering inference

in a way analogous to inertial mass tempering acceleration. Indeed, we propose viewing
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law-invariant response risk measures as inertial belief, an intrinsic property of a belief

state. This motivates a more general investigation of the role of risk measures with

respect to conditional probability in an adapted inference framework.

3.4 Augmenting Bayesian Inference

3.4.1 Information Loss and Monotone Insufficient Statistics

Statistical manifolds are classically studied under the assumption of a sufficient statis-

tic, a collection of observable features that forms a basis for the underlying statistical

manifold. Often times, however, in practice one is forced to work with an insufficient

statistic. In this section, we offer some budding thoughts for augmenting Bayesian in-

ference in the case of insufficient statistics satisfying stochastic ordering in the model

class.

We focus on the case of binary observation as proxy to observation of a continuous

random variable. For example, in the clinical trial design problem, instead of observing

each patient’s toxicity random variable τ , we instead observe the binary response r ∈

{0, 1} to dose u ∈ U . Intuitively, it is easy to see that a certain loss in information

arises from the description of the real number τ by one of the statements “τ is greater

than (less than) u.”

Given that we know a priori the nature of information loss in this model, the idea

is to account for the loss by augmenting our inference methods. Clearly, there exists a

continuum of techniques for such an augmentation. We present three approaches.

Suppose we have the prior distribution s(η), and consider applying dose u and

observing response r = 1. Then by Bayes’ theorem, we obtain that the posterior

s+(η) is proportional to Φ(u; η)s(η) dη. Suppose the realization τ is fixed. Then,

in particular, for all x ∈ [τ, u] the same response r = 1 would be observed. By the

monotonicity of x 7→ Φ(x; η), there exists a natural stochastic ordering of posterior

distributions depending on x. The value x = τ results in a posterior minimal with

respect to this ordering. However, x < τ yields observation r = 0. Hence, the posterior

distribution is proportional to (1 − Φ(u; η))s(η), which is larger with respect to the
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ordering for all x ∈ [τ, u].

The above discussion develops the intuition that, ceteris paribus, those u near τ

yield more information than those u far from τ .8 However, it also illustrates a certain

sensitivity, in that there exists a jump discontinuity in posterior distributions about the

realization τ . Indeed, this may be formalized with an appropriate information metric

in terms of divergences. Thus, for a fixed realization τ and dose u with corresponding

response r, the posterior distributions corresponding to a notional dose û ∈ [τ, u) (if

r = 1), or û ∈ (u, τ) (if r = 0), would result in greater shift of posterior from the

prior in the same direction. If in the inference experiment observation r = 1 is assumed

with û < τ , then large errors arise relative to what would be observed empirically, and

analogously for r = 0 with û ≥ τ . Thus, we observe a familiar risk–reward tradeoff in

the inference tradespace: information recapture versus assumed observational error.

From this perspective, the maximally risk–averse approach would be to proceed with

û = u, which has vanishing probability of observational error. One alternative approach

would be to employ a threshold probability level. Letting α ∈ [0, 1] be given, choose

û to be the α-quantile of conditional distribution of τ , which we recognize as AVaRα.

Formally, û is the smallest dose satisfying Es(η)[Φ(û; η)/Φ(u, η)] ≥ α. More generally,

risk in the model uncertainty may be further controlled by employing other risk mea-

sures, all of which may be written as convex combinations of AVaRα via the Kusuoka

representation (1.27). Thus, the inference experiment would produce a notional dose

û, in the case r = 1, given by

argmin
x∈U ,x≤u

x

subject to ρ
(
Φ(x; η)/Φ(u, η)

)
≥ α.

A Bayesian update would then result in the posterior

s+(η) = Φ(û; η)s(η)/Z(û; s, r).

We note that a more sophisticated version in the spirit of this approach would ac-

count for the differential information gain, movement of the posterior. The general

8Naturally, the information gain depends on the prior belief state.
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idea is to balance the monotonic decrease in probability with the monotonic increase in

information gain, although this is a well-known dilemma without established method-

ology. In fact, this dilemma is precisely that which we face in determining the dose

u originally, although with respect to an objective and probability distribution with

entirely different functional forms. As an example, suppose the value of information re-

capture and cost of error are quantified, respectively, with respect to a given divergence

Df as

ι(û) = Df

(
Ψ(r; s, u),Ψ(r; û, s)

)
, (3.30)

`(û) = Df

(
Ψ(1; û, s),Ψ(0; û, s)

)
. (3.31)

In this case, letting the conditional distribution function for τ be denoted p(x; η) =

Φ(x; η)/Φ(u, η), we have the corresponding expectation of total value of using x in

place of u in this inference experiment:

I(x; η) = ι(x)p(x; η)− `(x)
(
1− p(x; η)

)
. (3.32)

The classical step would then be to choose x to maximize the expectation (or more

generally the risk) with respect to uncertainty in the model: maxx ρ(I(x; η)). We then

propose proceeding with the Bayesian update using this maximizer.

Furthermore, we highlight the fact that this inference experiment occurs after ob-

servation. Therefore, the appropriate belief state with which to measure risk is the

empirical posterior distribution Ψ(r; s, u) obtained from the applied dose u. That is, in

case particular case of expectation, i.e., ρ ≡ E, we have

û = argmax
x∈U ,x≤u

∫
N
I(x; η)Ψ(r; s, u) dη (3.33)

= argmax
x∈U ,x≤u

∫
N
I(x; η)Φ(u, η)s(η) dη, (3.34)

and the ultimate posterior becomes s+(η) = Ψ(r; s, û).

As a derivative approach, again in this same spirit, we take inspiration from the

evaluation of the cost of learning in IDS. Consider the following modification of the

cost ` in (3.31). Given the notional response r is fixed, for any dose û, we have the

posterior Ψ(r; s, û) =: Ψ̂r(û). Again, the relevant cost is one of inferential error, wherein
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û would in fact lead to r̃ 6= r, with corresponding posterior Ψ(r̃; s, û) =: Ψ̂r̃(û). Suppose

we evaluate this cost as

EΨ̂r(û)[c(µ̂
r̃; η)− c(µ̂r; η)]2 =

(∫ (
c(µ̂r̃; η)− c(µ̂r; η)

)
Ψ(r; û, s) dη

)2

,

where we let µ̂r and µ̂r̃ denote the myopic minimizer with respect to posterior Ψ̂r(û)

and Ψ̂r̃(û), respectively.

By writing the f−information gain in the entropy reduction form, we then obtain

the modified quantities

ι(û) = Hf
(
Ψ(r; s, u)

)
−Hf

(
Ψ(r; s, û)

)
, (3.35)

`(û) = EΨ̂r(û)[c(µ̂
r̃; η)− c(µ̂r; η)]2. (3.36)

Again, we have the conditional distribution function p(û; η) := Φ(û; η)/Φ(u, η), and

the corresponding inference value function I(û; η) is formally identical to (3.32) with û

obtained as in (3.33) for some ρ.
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Chapter 4

Approximate Dynamic Programming

“ Under the comb, the tangle and the straight path are the same.

”
Heraclitus, 535–475 BC

“ Change your opinions, keep your principles; change your leaves, keep

your roots.

”
Victor Hugo, 1907

4.1 Overview

In the face of overwhelming complexity it is generally only possible to extract some

approximation to the system as a proxy for analysis. In the throes of a complex system,

one favors heuristic approaches, particularly simple, easy–to–recall calculations that

give a sense of the magnitude and direction of a first–order correction—a rule of thumb.

For example, when catching a flying object, say, a baseball, rather than attempt the

slightest consideration of any equations of motion, instead one instinctively endeavors

to maintain a constant viewing angle with the ball, moving forward or backward as

necessary—simple, and effective. In a more considered setting, for example chess, often

one relies on an ingenuity born of the quintessentially human capacity for creativity to

distill complexity into its essence and extract the pertinent elements of the dynamic.

Such heuristic approaches are surprisingly powerful, often mysteriously so.
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Unfortunately, successful heuristics in one domain are generally not transferable, in

an obvious or straightforward way, to problems in a different domain.1 Moreover, and

of increasing significance, the natural human bias toward simple heuristics squanders

the prospects of machine learning and of delegating computational demands in general.

Approximate dynamic programming (ADP) endeavors to combine the most effective

aspects of the heuristics and of dynamic programming. In the previous Section 3.3 we

investigated lookahead policies, which might be said to prioritize simplicity, insofar as

the computational demands are relatively minor.

In this section, we introduce a more sophisticated approximation schema, which

might be said to prioritize the use of computational resources to conduct the backward

induction algorithm underlying dynamic programming. Specifically, we will investigate

approximation in value space, and in this vein there exist many potential avenues.

See [23] for a comprehensive treatment of various techniques. Inspired by a myriad

of empirical observations indicating that complex, even chaotic, systems often exhibit

low–dimensional behavior, we focus below on an approach essentially based on reducing

the dimensionality by extracting the salient features of the problem.

4.2 Feature Selection

In view of our intended applications to clinical trial design (CTD) below, wherein the

optimal control is given by a certain quantile of the toxicity distribution, we investigate

structural feature sets arising naturally in this setting, in the following sense.

Definition 24 (Feature Vector and Extraction Mappings). Define the feature extrac-

tion mapping f : P(N ) → F ⊆ Rm, and denote its component mappings fi : P(N ) →

Fi ⊆ R, i = 1, 2, · · · ,m. For all states s ∈ S ⊆ P(N ), we associate the feature vector

φ = f(s). We often write φ = (φi), i = 1, 2, · · · ,m, and refer to its ith component

φi = fi(s) as the ith feature of s. In the following we study the CTD problem in the

1However, we must note that doing so, cultivating such a thematic interconnectedness, might be
regarded as the art of learning. Indeed, Waitzkin makes a strong case, as beautiful as it is compelling.
See [145].
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case of m = 4 features, with extraction mappings of the form

fi := argmin
u∈U

ρi
(
c(u; η)

)
, i = 1, 2, 3, (4.1)

f4 := min
u∈U

ρ2
(
c(u; η)

)
, (4.2)

where each ρis is a one-step conditional risk measures.

It is perhaps natural, or at least efficient, to engineer features explicit in the dynamic

programming equations (3.20)–(3.21). To this end, we proceed to investigate the case

of ρ2 ≡ E. Moreover, in view of our efforts in the Chapter 5, we focus on cost functions

of the form c(u; η) = |η − u|. In this case, recalling the expected cost functional c̄(u, s)

defined in (3.7) on page 75, for all s ∈ S we set φ4 , min
u∈U

c̄(u; s). It is well known that

the minimizer of expected loss with respect to the L1−norm is the median µ̂. Choosing

φ2 , µ̂ to be this myopic minimizer, we obtain

φ2 = argmin
u∈U

c̄(u; s) = µ̂(s) (4.3)

φ4 = min
u∈U

c̄(u; s) = c̄(µ̂(s); s)

= c̄(φ2; s). (4.4)

Figure 4.1: Sequence of logistic distribution functions tending (black to red) to a Heav-

iside function.

To motivate our choice of the remaining features φ1, φ3, consider the following ide-

alized scenario. Fix the stage t and a state st, and consider the likelihood family given
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by Heaviside functions {H(η, ·)}η∈N , so that rt = 0, if ut < η, and rt = 1, if ut ≥ η. Let

ut be the myopic minimizer, i.e., the median, φ2(st) = µ̂(st). As the posterior is given

for rt = {1, 0}, respectively, by st+1 = {Z−1
t stH(·, φ2(st)), Z̃

−1
t st(1−H(·, φ2(st)))}, one

can see from the properties of the Heaviside function that posteriors consist of normal-

ized “halves” of the prior. Considering now φ2(st+1) := µ̂(st+1), it is clear that in this

idealized scenario, the posterior median may be easily written in terms of quantiles of

the prior:

φ2(st+1) =


q.25(st), if rt = 1,

q.75(st), if rt = 0.

Moreover, it can be shown that the family of Heaviside functions above can be expressed

as limits of the logistic family, in the obvious way (see Figure 4.1). Therefore, for any

family of logistic models, the .25- and .75-quantiles of any state st respectively serve as

upper and lower bounds on φ2(st+1) conditioned on a myopic policy, in an almost-sure

sense.

Motivated in this way, we define the remaining features as these quantile functions,

and arrive at the feature set of feature extraction mappings:

f1 := q.25(·),

f2 := q.50(·),

f3 := q.75(·),

f4 := c̄(µ̂(·), ·).

(4.5)

4.3 Feature Space Characterization

Construction of the feature space is central to the efficacy of ADP. On the one hand,

minimal characterization fosters computational efficiency, while on the other hand com-

pleteness is required to accurately represent system dynamics.

We have natural relations on the components of the feature vector φ determined

by (4.5). First and foremost, directly from the definition of the quantile function, φi,
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i = 1, 2, 3, satisfy

η ≤ φ1 ≤ φ2 ≤ φ3 ≤ η. (4.6)

Second, φi, i = 1, 2, 3, induce bounds on φ4. An upper bound on φ4 may be established

by considering unimodality, and results in an elegant system of linear inequalities. The

corresponding lower bound, however, requires additional considerations. In the case

that log-concavity of states is relaxed, the lower bound may be obtained as the solution

of a linear programming problem. The corresponding lower bound is universal but

decidedly not sharp.

Sharp lower bounds may be obtained by employing shape constraints, for example,

log-concavity, on the distribution s. A sharp bound, may be obtained by nonlinear

optimization of the problem

min
s
φ4

st

∫
N (φ1)

ds = .25∫
N (φ2)

ds = .5∫
N (φ3)

ds = .75∫
N
ds = 1

log sηη − 2 log sη + 2 log s ≥ 0

s ≥ 0.

The penultimate inequality enforces the log-concavity of the state s. When the problem

is discretized, so that the states are probability vectors, Definition 22 may be profitably

used. For any (agreeable) feature set, bounds obtained from general shape-constraints

are necessarily valid for all distributions in the class and therefore offer a modicum of

portability to alternative likelihood models. This fact perhaps justifies the additional

efforts required to solve the nonlinear control problem.
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4.4 Feature Disaggregation

When using projected or aggregation methods in ADP, the issue of determining feature

transitions is problematic when the state transition kernel cannot be easily projected.

In the CTD problem, and in the belief space of POMDPs generally, states transition

according to a Bayes operator Ψ. Although the form of Ψ depends on the particu-

lar conditional likelihood model, for an arbitrary transition mapping st 7→ st+1(u, r),

there exists a measurable kernel (family of joint conditional distributions) such that

st+1(·, ·) = Ψ(·, ·, st) is a Bayesian posterior of st with respect to the kernel. However,

we cannot project the Bayes operator onto the features in an obvious way.

One approach for addressing this issue is mapping the feature space onto a set of

probability distributions, from which the Bayes operator may be applied, and then

projecting the posterior states back to feature space. That is, for any feature vector

φt 7→ s̃t ∈ Γ, whence s̃t+1(·, ·) = Ψ(·, ·, s̃t) and φt+1(·, ·) = φ(s̃t+1(·, ·))

(φt, u, r) 7→ φ ◦Ψ(u, r, ·) ◦ΠΓ(φt)

φt+1(u, r) = φ
(

Ψ
(
u, r,ΠΓ(φt)

) )
.

The situation will be elucidated much more clearly in Figures 4.3a and 4.3b below.

The central issue in the efficacy of such an approach is the ability for the set of

distributions Γ to well approximate the original state space S. There exist several chal-

lenges to this end. Note that S is in fact the space of all possible Bayesian sequences

{ΨT
s1(uT , rT )}, the elements of which are generally not in any well-known distribution

family. For any given likelihood family, assumed not to be part of a conjugate pair, it is

conceivable to construct a simplified family (or families), tailored to the likelihood fam-

ily via some approximation schema. For example, one attractive approximation schema

is defining families Γt, t = 1, · · · , T , in terms of parameterized mixture distributions.

As it happens, for the case of logistic likelihood models with uniform prior s1,

elements of S find a close approximation in the 2-parameter family of log-logistic dis-

tributions.
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Example 28 (Log-logistic Family of Distributions). We denote the (restricted) family

of log-logistic distributions by ΓL, given by

ΓL =

{
s = g(γ, σ)

∣∣∣ g(γ, σ)(x) =
γσ−γxγ−1

(1 + (x/σ)γ)2
, γ > 0, σ ∈ N

}
, (4.7)

with support on x ∈ [0,∞). Below, we shall denote this parameter space by R2
L :=

{(γ, σ) ∈ (0,∞)×N}.

We note that the support of this family is particularly appropriate in the case where

the parameter η is a physical quantity, such as the MTD. The family ΓL offers additional

efficiencies in our setting. First, the scale parameter σ > 0 is, in fact, identically equal

to the median on ΓL, and therefore σ ∈ N . In order to ease notation below, please

note that we have enforced this condition in the definition (4.7). Additionally, for all

s = g(γ, σ) ∈ ΓL we have

φ2 = σ. (4.8)

Remark 5. When there can be no confusion, we may employ a slight abuse of notation

for the sake of clarity. For example, strictly speaking we have f2(s) = σ(s), for all

s ∈ ΓL, but writing σ = σ(s), we formally obtain φ2 = f2(s) = σ(s) = σ. Indeed, (4.8)

suffers no loss in meaning.
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σ=��

σ=��
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Second, elements of ΓL possess an agreeable quantile function Q, given by

Q(p, s) = σ
(1− p

p

)− 1
γ
,
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p ∈ [0, 1], (γ, σ) ∈ R2
L. Thus, we obtain the remaining quantile features

φ1 = σ3
− 1
γ

φ3 = σ3
1
γ .

(4.9)

Finally, φ4 becomes

φ4(sγ,σ) =

∫
N

∣∣η − σ∣∣ γσ−γηγ−1

(1 + (η/σ)γ)2
dη (4.10)

= σ

(
1−

ηγ

σγ + ηγ
− ηγ

σγ + ηγ

)
−
∫ σ

η

γ(η/σ)γ

(1 + (η/σ)γ)2
dη +

∫ η

σ

γ(η/σ)γ

(1 + (η/σ)γ)2
dη.

The expression in (4.10) involves elliptic integrals and admits a closed form solution in

terms of special functions, namely Gauss’s hypergeometric function 2F1, as shown in

Figure 4.2. This computational clemency enables an efficient disaggregation schema.

Figure 4.2: The mean median-deviation φ4(sγ,σ), given in (4.10), over a subset of the

log-logistic family given by
{
sγ,σ ∈ ΓL | (γ, σ) ∈ (0, 10]× [1, 5]

}
.

Definition 25 (Feature Disaggregation Mapping). Given any (feature extraction) map-

ping f̃ : X → FX ⊆ F define the feature disaggregation mapping D(f̃ , ·) : FX →

f̃−1(FX) ⊆ X, where f̃−1(FX) denotes the preimage of FX under f̃ . For any feature

vector φ ∈ F, D(f̃ , φ) is given by the preimage of the least-squares projection of φ onto
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the image of f̃ . That is,

D(f̃ , φ) := argmin

x ∈ f̃−1(FX)

∥∥∥φ− f̃(x)
∥∥∥2

2
. (4.11)

Example 29 (Disaggregation into Distribution Family). Suppose f̃L = f |Γ, the restric-

tion of f to an arbitrary family of distributions Γ. Then X = Γ, FX = F, and for any

φ ∈ F, we have the disaggregate state

s̃ = D(f |Γ, φ).

Example 30 (Parameterized Log-logistic Disaggregation). Let f̃ = f ◦ g. Then X =

R2
L, FX = F, and for any φ ∈ F, we have the log-logistic disaggregate state s̃ = g(γ∗, σ∗),

where (γ∗, σ∗) are given by

(γ∗, σ∗) = D(f ◦ g, φ). (4.12)

Example 31 (Disaggregation with Higher-Order Aggregation). Consider the case of

higher-order aggregation on features by, e.g., a course grid approximation. Letting the

projection onto the grid be denoted by h : F→ F∆ ⊆ F, we have f̃ = h ◦ f ◦ g, X = R2
L,

and FX = F∆. Proceeding just as before, we now obtain the log-logistic disaggregate

state s̃ = g(γ∗, σ∗), where (γ∗, σ∗) are given by

(γ∗, σ∗) = D(h ◦ f ◦ g, φ). (4.13)

Alternatively, consider two stages:

1. f̃ = f ◦ g, X = R2
L, and FX = F

2. f̃ = h, X = F, and FX = F∆

(γ∗, σ∗) = D(f ◦ g, φ); (4.14)

φ∗ = D(h, φδ). (4.15)

Explicitly, except for φ4 given in (4.10), the error sum of squares in (4.12) has the

form (
δ1 − σ3

− 1
γ

)2
+
(
δ2 − σ

)2
+
(
δ3 − σ

(1

3

)− 1
γ
)2

+
(
δ4 − f4 ◦ g(γ, σ)

)2
. (4.16)
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4.5 Feature Aggregation Mappings

To this point, we have used projection methods to recast the original MDP involving

an infinite-dimensional state space of probability distributions to an MDP involving a

finite-dimensional vector space. However, in order to conduct the backward induction

algorithm in this problem, we require a finite feature space. To this end, we take

the standard approach of coarse grid approximation over the feature space. Again,

we implement both projection and coarse grid approaches, rather than simply a coarse

grid over S, because efficient characterization of Bayesian orbits for logistic models, and

non–conjugate likelihood models generally, is exceedingly challenging. Moreover, the

observed orbits in any particular problem instance constitute an indefinitely minuscule

subset of all possible orbits.

To formalize the coarse grid, let ∆ denote discretization of feature space F, with

generic element δ ∈ ∆. We make the following definitions.

R2
L ΓL P(N )

F F

F∆ F∆

g

f

Ψ(u,r,·)

f

h h

D(f̃ ,·)

(a) Feature transitions via Log-logistic disag-

gregation D(h ◦ f ◦ g, ·).

(γ∗, σ∗) s̃t s̃rt+1

φt φrt+1

δt, φ
δ
t φδ,rt+1

g

f

Ψ(u,r,·)

f

h h

D(f̃ ,·)

(b) The same feature transitions, illustrating

mappings among elements.

Definition 26 (Feature Space Discretization). For a choice of M feature vectors φk ∈

F, k = 1, 2, · · · ,M , define ∆ ⊂ F as the set of these vectors. That is,

∆ :=
{
δ = φk, k = 1, 2, · · · ,M

}
. (4.17)

The {φk} constituting the coarse grid may be chosen in various ways, e.g. with even

spacing between adjacent elements, or a rescaled variant thereof. Denote by F∆ the
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Table 4.1: Collection of the meaning and notation for each of the central mappings in

the proposed ADP schema.

Mapping Notation Usage Ref.

Feature extraction f : P(N )→ F φ = f(s) (4.5)

Coarse grid projection h : F→ F∆ ⊂ F φδ = h(φ) (4.19)

Feature disaggregation D(f̃ ,·) : F→ R2
L (γ∗, σ∗) = D(f̃ , φ) (4.16)

Log-logistic param’zn g : R2
L → ΓL s̃ = g(γ, σ) (4.7)

inclusion ∆ ↪→ F, so that

F∆ :=
{
φδ = ι(δ) ∈ F

∣∣∣ δ ∈ ∆
}
. (4.18)

Note that this is merely a formal refinement between elements δ of the coarse grid ∆,

and the corresponding feature vectors φδ in feature vector space F.

Definition 27 (Feature Aggregation Mapping). Let h : F→ F∆ denote projection onto

the coarse grid embedding. That is, for all φ ∈ F,

h(φ) := argmin

φδ ∈ F∆

∥∥∥φδ − φ∥∥∥2

2
. (4.19)

4.6 Approximate Dynamic Programming Equations

Thus armed with the above approximation schema, we can now formulate ADP equa-

tions, analogous to the risk–neutral DP equations (3.9)–(3.10) and the risk–averse DP

equations (3.16)–(3.17), or in the special case of binary response (3.20)–(3.21). One

need not look long at the schema diagrams in Figures 4.3a and 4.3b to imagine that the

formal ADP equations would appear rather complicated. We therefore state them here

in their simplest, most intelligible form first and subsequently state the explicit form.

For all φδ ∈ F∆, and all t = 1, 2, · · · , T − 1, T ,

vT (φδ) = φδ4, (4.20)

vt(φ
δ) = min

u∈U

{
c̄(u; s̃(φδ)) + σrt

(
s̃(φδ), Z(· ; s̃(φδ), u), vt+1

(
Ψ(· ; s̃(φδ), u)

))}
. (4.21)
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Explicitly, the equations become, for all φδ ∈ F∆, and all t = 1, 2, · · · , T − 1, T ,

vT (φδ) = φδ4, (4.22)

vt(φ
δ) = min

u∈U

{
c̄
(
u; g◦D(h◦f ◦g, φδ)

)
+

+ σrt

(
g◦D(h◦f ◦g, φδ), Z

(
· ; g◦D(h◦f ◦g, φδ), u

)
, . . .

. . . vt+1

(
h◦f ◦Ψ(· ; g◦D(h◦f ◦g, φδ), u)

))}
. (4.23)

Solving these ADP equations via backward induction provides an optimal policy

π∗ = (π∗1, π
∗
2, · · · , π∗T−1

, π∗
T

), where each π∗t may be viewed as a lookup table of optimal

controls with the same dimensions as F∆. We note, however, that in the optimal learning

setting, the optimal policy π∗ is excessive, in the sense that very few approximate states

are revisited over time, until convergence begins to occur. At the point of convergence,

however, the optimal policy correspondingly converges to a stationary policy. Moreover,

given initial conditions (s1, u1), only a very small number of states may be visited in

the early stages. On the other hand, we cannot dispense with the non–stationarity of

the policy, as this is the only way in which the optimal policy may treat the collisions

that occur in the middle stages.

Thus, we see that in the optimal learning setting, any approximation schema will

be excessive, in the above sense. This discussion motivates, in part, consideration of

more simple approximation schema, especially those that are adaptive, in some sense.

This naturally engenders lookahead policies (which we considered in the previous sec-

tion) and methods of approximation in policy space (which we do not consider in this

dissertation).
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Chapter 5

Applications and Computational Experiments

“ As long as a branch of knowledge offers an abundance of problems, it

is full of vitality.

”
David Hilbert, 1862–1943

5.1 An Initial Comparative Study

In this section, we aim to provide a taste of the effect of risk measures in the optimal

learning context. Specifically, we try to give a sense for the robustness engendered by

risk measures, in the sense that they determine belief orbits that are less swayed by

random perturbations. To this end, we conduct a simple simulation described in detail

below. Before wading into the details, the essence of the experiment may be character-

ized thus: Suppose various lookahead policies all observe the exact same response data.

How would each policy react to the same perturbation of one random response datum

in each sample?

5.1.1 Simulation setup

Consider the finite-horizon problem introduced above, beginning from a uniform prior

s1 and initial control π1 ≡ u1 = 0, with horizon T = 30, and the three lookahead policy

policies: vanilla expected-value (EV) policy, the knowledge gradient (KG) policy (3.24),

and the robust-response (RR) policy (3.29).

Over N = 100 simulations, we generate a collection of random response orbits

{ri = (ri1, r
i
2, · · · , riT−1

, ri
T

)}Ni=1, rt ∈ {0, 1}, ∀ t, by inverse transform sampling of the
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true underlying logistic model of a greedy Bayesian policy with respect to a uniform

distribution on the unit interval. That is, we set rt = 1 when x ≥ Φ∗(µ̂1(st)), and

rt = 0 otherwise, where x is sampled uniformly on [0, 1] and µ̂1(st) is the median of the

usual belief state st.

For each simulate we compute the belief orbit under policy π = (u1, π2, π3, · · · , πT ),

where letting sit := Ψ(rit−1; st−1, πt−1), t = 2, 3, · · · , T , we denote the belief orbit by{
Ψπ(ri) = (s1, s

i
2, · · · , siT−1

, si
T

)
}N
i=1
.

For each policy π ∈ {πEV ,πKG,πRR}, we thus obtain the N belief orbits{
ΨEV (ri),ΨKG(ri),ΨRR(ri)

}N
i=1
,

each generated from the same response sequence.

5.1.2 Perturbation Procedure

Then, for each simulate i = 1, · · · , N , we pseudorandomly select τ(i) ∈ {1, 2, · · · , T −

1, T} and perturb response riτ(i) by setting it to its complement in {0, 1}. Formally,

denoting the complement of riτ(i) by r̆iτ(i), we set

riτ(i) 7→ r̆iτ(i).

For each policy and simulate i, the perturbed response generates a new orbit begin-

ning from time τ(i). For each policy π we denote the perturbed orbit by{
Ψπ(r̆i) = (s1, s

i
2, · · · , s̆iτ(i), · · · , s̆

i
T−1

, s̆i
T

)
}N
i=1
.

For each policy π ∈ {πEV ,πKG,πRR}, we thus obtain the N perturbed belief orbits{
ΨEV (r̆i),ΨKG(r̆i),ΨRR(r̆i)

}N
i=1
,

each generated from the same perturbed response sequence.

5.1.3 Comparison Metric

Finally, we measure the extent to which each policy is perturbed by computing the

stagewise total variation norm. Specifically, for each policy π and simulate i, we com-

pute the total variation norm δπ,i of each belief state in the orbit. Specifically, we
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compute δπ,i =
{
δπ,it

}T
t=1

, where

{
δπ,it

}T
t=1
,

{
max
η∈N

∣∣∣Ψπ
t (ri)−Ψπ

t (r̆i)
∣∣∣}T

t=1

=

{
0, 0, · · · ,max

η∈N

∣∣∣siτ(i) − s̆
i
τ(i)

∣∣∣, · · · ,max
η∈N

∣∣∣si
T−1
− s̆i

T−1

∣∣∣,max
η∈N

∣∣∣si
T
− s̆i

T

∣∣∣}T
t=1

.

We may therefore more succinctly write this as

δπ,i =
{

0, 0, · · · , δπ,iτ(i), · · · , δ
π,i
T−1

, δπ,i
T

}
. (5.1)

For each policy π ∈ {πEV ,πKG,πRR}, we thus obtain the N series of T total

variation norms: {
δEV,i, δKG,i, δRR,i

}N
i=1
. (5.2)

The results of this simple simulation study already indicate the effect of the robust-

response policy in this setting. In particular, Section 5.1.3 demonstrates that the RR

lookahead policy is more stable in view of potentially spurious information. As we will

see in significantly more detail in Chapter 5, this hallmark property of risk aversion plays

an even more profitable role in the optimal learning setting, owing to the fundamentally

self-referential nature of the problem. In this sense, risk–averse policies, surprisingly, do

not shoulder the burden of the proverbial risk–reward tradeoff. Rather, it would appear

that over short time horizons risk–averse policies get to garner knowledge without the

usual regret.

Optimal learning as a tool is applicable in a large and diverse collection of problem

classes. In this Section, we focus on three case studies in the design of clinical trials.

We conclude with a discussion of future applications in this domain.

Arguably, the usual perverse incentives exist in medicine as a discipline, granted as

in most professional industries, for treatments to gravitate naturally toward symbiotic

agency from relatively passive fiduciary auspices.1 As a discipline, medicine has moved,

1As an example from the financial industry, stock brokers are notoriously paid by commission on
transaction, rather than on profits; the perverse incentives are now widely infamous. Consider, then, the
medical insurance model that divulges capitation payments when medical treatment is not required, in
stark contrast to the usual medical insurance model. The incentive structures are clearly dichotomous,
although whether or not this would materially impact medical decisions is destined for debate—and far
afield of the scope of this dissertation.
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(a) Expected Value {δEV,i}Ni=1
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(b) Knowledge Gradient {δKG,i}Ni=1
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(c) Robust Response {δRR,i}Ni=1
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Figure 5.1: Stage-wise total variation norm {δπ,i}Ni=1 (5.1) of response-perturbed

Bayesian orbits for the (a) expected-value, (b) knowledge gradient, and (c) robust-

response policies (5.2). Note that the robust-response policy exhibits systemically

smaller deviation over time.
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Figure 5.2: Mean total variation 1
N

∑N
i=1 δ

π,i of Bayesian orbits as a function of time.

likely by a natural industrial inertia, to prioritize quantity over quality, insofar as its

operations may be better characterized as maximizing the number of patients routed to

therapeutic endpoints subject to logistic, clinical and ethical constraints, rather than

otherwise. Perhaps the most glaring example of which is the deficiency in iatrogenic

considerations, which are inherently introspective. This is exacerbated to calamitous

effect in cases of a nebulous or unavailable contrapositive, owing to the fallacy of conflat-

ing absence of evidence with evidence of absence. Such self–critical introspections are,

at best, underappreciated and largely outside the paradigm of the trained physician.2

These empirical observations belie the ostensibly scientific underpinnings of the disci-

pline, wherein assumptions are continuously tested by failing to exclude them through

experimentation.

This general discussion motivates a sound, practical methodology for iterating to-

ward treatments of better and better quality while systematically tempering the ex-

perimentation in full view of iatrogenesis. To ground this abstract discussion, we focus

on the case of cancer treatments. Cancer treatment, primarily chemotherapy and/or

2One need look no further than the recent alarm surrounding over-prescription (by 1-2 orders of
magnitude!) of opiate pharmaceuticals in the United States.
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radiation at the time of this writing, is perhaps the canonical instance of a fraught

treatment regimen, wherein the overt toxic effects are justified only in the face of a

prognosis beyond par. The legitimately grievous nature of cancer is only exacerbated

by its colloquial perception, arguably leading to a “no holds barred” mentality and

acceptance of adverse side effects, by way of a Hobson’s choice if not otherwise. In this

respect, it may be instructive to consider the extreme instance of childhood cancer,

which has been proposed in this very context by Smith et al. [134] and recently seen a

flurry of research in the literature cf. [10, 40, 153, 110].

Childhood cancer is universally held as tragic. It constitutes the case of maximal risk

in all outcomes, which is to say the stakes could not be greater, forgoing the most life, in

the worst case, or enduring the most time with long–term, generally accumulative side

effects in the best case. By appeal to these sentiments, admittedly via some modicum of

lurid Russell conjugation, the phenomenon of childhood cancer thus offers a uniquely

potent vantage from which to motivate the general adoption of optimal learning in

medicine. Along these lines, we offer some considerations as yet undetected in the

medical literature.

Given the substantial development in cancer treatments since the 1970s, childhood

cancer survivors constitute a novel, emerging cohort. That is, longitudinal observation

of childhood cancer survivors is just beginning to emerge as a viable prospect. Com-

pounding the paucity of feasible data, children are not “recruited” to trials, despite

some evidence that “the practice is detrimental to their outcomes” [59, 108].

Moreover, and remarkably, childhood cancer survivors offer unparalleled compari-

son to the proper contrapositives of long–term iatrogenesis, which reasonably manifest

as secondary and tertiary complications. That is, the peer (i.e., control) group to the

cohort of childhood cancer survivors exhibits categorically lower all–cause morbidity,

amounting to less statistical noise in the clinical study setting. Contrast this to adult

cancer survivors, whose peer group exhibits statistically greater all–cause morbidity

and mortality as a matter of course, by dint of natural aging if not otherwise. This

obfuscates statistical analyses for the adult survivor cohort under general study settings

and suggests childhood survivors offer the clearest picture of the long–term effects of
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treatment. Of course, long–term effects are beyond the scope of the models presented

in this dissertation; however, our intent with these considerations is merely to motivate

endeavors to optimize the process, the prospects of long– and infinite–horizon opti-

mization models notwithstanding. Against this backdrop, we therefore begin with a

thorough study of the simplest conceivable problem along these lines.

5.2 Dose-finding in Clinical Trial Design

Phase I clinial trials are a crucial step in the development of treatment protocols utilizing

novel pharmaceutical agents. Clinical research on human subjects is notoriously fraught

with ethical concern, the prototypical example of which being early-stage trials for

cytotoxic drugs. Generally, the goal of a Phase I trial is to determine a safe dosage of

a pharmaceutical agent for subsequent use in a Phase II trial determining therapeutic

dosage. However, in light of the very nature of cancer pathology, chemotherapy as a

treatment has long been synonymous with cytotoxicity. Phase I cancer trials present a

fundamentally more complicated scenario, embodying the quintessential safety versus

treatment dilemma.

In this dissertation, we are motivated by the problem of optimal design of Phase

I clinical trials for novel, cytotoxic pharmaceutical agents. The canonical example for

such trials is a Phase I cancer trial of a novel chemotherapy drug. The primary goal

of any Phase I trial is to assess the candidate drug with respect to safety by eliciting

its toxicity as a function of dose. Toxicity is a binary classification (i.e., toxic, non–

toxic), usually defined in terms of an ordinal toxicity grade, which is in turn defined

with respect to a (set of) biomarker(s) related to undesirable side effects; the particular

definitions and clinical implications of toxicity vary in relation to the drug under study.

Various organizations, e.g. the National Cancer Institute and World Health Organi-

zation, disseminate clinical guidelines specifying toxicity grades for common toxicities

[9, 142]. Prevalent dose-limiting toxicities in cancer trials include myelosuppression,

neutropenia, anemia, nephrotoxicity, and hematologic toxicity.3 We note, however,

3That is, toxicity of the bone marrow, white blood cells, red blood cells, and kidneys, respectively.
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that reported toxicities are not fully standardized in the literature, and it is imperative

that both the definition and interpretation of toxicities be scrupulously defined in each

clinical application [30, 105]. Each trial participant generally tolerates a different dose

level, and thus for an arbitrary participant drawn from the population the probability

of toxicity as a function of dose is termed the toxic response curve4.

For a general drug, the basic approach is to recruit volunteers for participation in

the trial and then sequentially administer increasing dose levels until toxic or therapeu-

tic response is observed. However, when a cytotoxic agent is under study, the setting

materially changes for two important reasons, and this approach is rendered invalid.

First, a cytotoxic agent increases the severity of toxic response, thus significantly in-

creasing the risks to trial participants and engendering stringent ethical constraints on

the eligibility of volunteers. Second, the mere candidacy of a potentially severely toxic

drug in a human Phase I trial implies the relatively grievous prognosis of the disease(s)

for which it is intended as treatment. Although perhaps more subtle, this is a pivotal

point, revealing by mere participation in the trial, patients and their physicians implic-

itly evaluate the risks of the opportunity cost of treatment, as it were, as greater still.

Hence, trial participants are in fact patients in need of treatment, rather than arbitrary,

eligible volunteers, and we must hold their superlative treatment as a competing goal

of the trial.

Thus, on the one hand, in its role as a scientific experiment, Phase I clinical trials for

cytotoxic agents have the goal of eliciting the toxic dose-response curve to the benefit

of potential future patients. Whereas, on the other hand, the trials must attain the

best possible treatment for participating patients, in particular mitigating undue harm.

Current trial designs attempt to balance these competing objectives by determining the

maximum tolerable dose (MTD), the largest dose whose probability of toxicity within

the patient population is a specified limit. Undoubtedly, the ethical considerations

inherent in this dilemma run deep, however, equally clear is the fact that appropriately

evaluating, balancing, and mitigating the inherent risks is of exceptional importance in

4The toxic response curve is interchangeably known as the tolerance distribution, toxicity distribu-
tion, dose-toxicity curve, and related variants.
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such trials. Modern risk models described in Section 1.3 are particularly suited for this

purpose, yet to our knowledge have largely not been used in the medical literature, or

when used, employed only ad hoc rather than in the principled framework discussed

above.

A notable body of literature exists in more technical disciplines, most notably statis-

tics and operations research, of which medicine is a client. Seminal work on optimal

sequential designs, including the original formulation of the MAB problem in the de-

sign of clinical trials, is largely due to Robbins [114]; see also Keifer and Wolfowitz

[85], DeGroot [41] and Lai and Robbins [91]. Early work on this very topic5 dates back

also to Katehakis and Derman in [82], who formulated the problem as a multi-armed

bandit (MAB) and showcased their methods in [84] for the efficient computation of

optimal dosage policies within a conjugate Beta-Bernoulli model. The problem broad

methodology of identifying the objective as the MTD and its association with the 1/3-

quantile are due to Storer in [136], where in particular a non–parametric, heuristic

approach is favored. Specifically, Storer demonstrated two-stage designs are more ro-

bust in small-sample settings, in that the maximum-likelihood estimation of the MTD

has less overdose bias. Remarkably, it would appear that this result engendered the

widespread adoption of the 3+3 deigns and their variants, despite subsequent literature

demonstrating benefits of more sophisticated statistical inference methods against the

3 + 3. For example, the introduction of Bayesian sequential inference in the medical

statistics literature was introduced the following year by O’Quigley et al. [103], and is

known as the continual reassessment method (CRM). More recently, a body of work

has emerged around demonstrating variants of the CRM approach and its application

in particular settings; see, e.g., [93, 90] and the references therein.

We follow most closely the clinical modeling methodology presented in [14] and

subsequently in [18]. We begin with a range [umin, umax] of feasible dosages for the

trial, as determined by clinicians from previous animal studies and clinical expertise.6

5In fact, the problem is cast in the converse: A treatment is either effective or not effective, rather
than toxic or non–toxic. Clearly, the two are in tandem.

6We attempt to clarify this determination to some small measure below. In the process, we hope
also to rectify, which is to say sidestep, a formal issue of singularity not explicitly treated in [14, 18].
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It is understood that umin is a conservative starting dose for the trial, and umax is

such that umin ≤ MTD ≤ umax with a high degree of confidence. Thus, in a trial

with T participants, the tth participant, t = 1, 2, · · · , T , would receive dose ut ∈ U ,

and by convention u1 , umin. Pursuant to administration of dose ut, we observe the

participant’s response rt as either toxic (rt = 1) or non–toxic (rt = 0).

We proceed with the “usual logistic model” [18] of toxic response as a function of

dose, so that for all t = 1, · · · , T ,

P(rt = 1 | ut) =
1

1 + e−(α+βut)
, (5.3)

for canonical parameters (α, β) ∈ R2. Recall from (2.13) that we assume α > 0, so that

(5.3) is monotonic increasing in dose ut. A typical scenario is illustrated in Section 5.2.
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Figure 5.3: Probability of toxicity vs. dose, demonstrating the modeling methodology

Remark 6. Although mathematically convenient, in that the discriminant in (5.3) is

affine in (α, β), these parameters lack an apparent clinical interpretation. In turn this

obfuscates determination of a satisfactory prior distribution with sufficient confidence,

especially for the uninitiated clinician. Indeed, clinical adoption of any such methodol-

ogy depends critically on resolution this interpretability issue. We therefore seek a more

interpretable (which is to say feasible, in this scenario) parameterization, albeit at the

cost of some computational efficiency.
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We introduce the MTD as the principal model parameter, denoted by η ∈ N ,

[umin, umax]. Formally, the MTD parameter is defined as the ν-quantile of the toxic

response distribution; that is, the MTD is the dose for which the probability of toxic

response is equal to a given probability ν. In practice, the choice of ν depends on

the nature of toxicity in the trial, tending toward unity when toxicity is relatively

mild and toward zero when relatively grievous. Originating in [136], the literature

almost ubiquitously studies the case of ν = 1/3, although one might argue that such an

heuristic is widespread in practice [18]. In order to facilitate comparison, we continue

this practice in our first case study below. Additionally, we conduct two experiments

respectively prompting relatively small and large values of ν.

Additionally, we identify the second model parameter pε, defined as the probabil-

ity of toxic response at the largest tolerable dose uε determined by previous clinical

experience with the agent. Indeed, we assume the minimum feasible dose for the trial

is chosen such that umin differs from uε by some small quantity ε > 0, understood to

be on the order of one part in one hundred with respect to the length of the feasible

dosage interval. That is, umin = uε + ε, for some ε ≈ (umax − umin)/100.

However, in the experiments below, we simplify the two-parameter model in [14] by

fixing pε ∈ [0, ν) to a prescribed value, yielding a statistical model in terms of η alone.

We find several reasons to implement this simplification: First, diligent examination of

(5.5) reveals that relatively substantial simplification may be achieved by regarding pε

as constant, as compared to other parameter η. Mitigation of the nonlinearity in (5.5)

thus yields a significant reduction in computational complexity. Second, in an attempt

to mitigate any undue advantage to Bayesian parametric methods when compared to

the widely used non–parametric (which is to say heuristic) methods proposed by [136],

it was pointed out in [14] that the proportion of patients overdosed in a Bayesian

framework is maximized when pε is assumed known. Thus, such a scenario enables

study of the worst-case performance, with respect to proportion of patients overdosed,
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for Bayesian methods. From the two-parameter model (5.3), we therefore have


pε =

1

1 + e−(α+βuε)
,

ν =
1

1 + e−(α+βη)
,

=⇒


α =

η log
[

pε
1−pε

]
− uε log

[
ν

1−ν

]
η − uε

,

β =
log
[

ν
1−ν

]
− log

[
pε

1−pε

]
η − uε

.

(5.4)

Thus, the discriminant, ϕ of Section 3.1, in (5.3) is given by

ϕ(u, η) :=

(
u− uε
η − uε

)
log

[
ν

1− ν

]
−
(
u− η
η − uε

)
log

[
pε

1− pε

]
, (5.5)

where we reiterate that pε is viewed as a constant.

Finally, we note that without loss of generality, we may standardize the problem onto

the unit interval via location-scale transformation. Specifically, we transform all dose

variables via the mapping x 7→ (x− uε)/(umax − uε). This yields a nice simplification,

wherein (5.5) simply becomes7

ϕ(u, η) := log

[
pε

1− pε

]
+
u

η
log

[
ν (1− pε)
pε(1− ν)

]
, (5.6)

the feasible dosage space N = [ε, 1], and ε ≈ 1/100.

For each r ∈ R = {0, 1} we thus consider the statistical model {Φ(r;u, η), ∀ (u, η) ∈ U ×N},

where

Φ(r;u, η) :=


1

1 + e−ϕ(u,η)
, r = 1,

1

1 + eϕ(u,η)
, r = 0.

(5.7)

The standardized problem has the form

1

1 + 1−pε
pε

(
(1−pε)ν
pε(1−ν)

)−u/η . (5.8)

We conduct several computational experiments to comprehensively evaluate perfor-

mance for all methodologies under consideration. In the sequel, we consider several

instances of the CTD optimal learning problem. Section 5.2.1 models a Phase I trial of

7For the sake of brevity, we make an innocuous abuse of notation by persisting with the nomenclature
for all transformee variables.
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5-fluorouracil, as previously studied in [14]. In Section 5.2.2, we consider a case of a very

toxic drug, bleomycin, for treatment of germ cell tumors. In such cases, we additionally

encounter a natural tendency toward clinical misspecification, in that the true MTD

may tend to lie near the end of the feasible dosage range. Finally, in Section 5.2.3, we

consider a case of high risk tolerance, insofar as the MTD quantile is chosen relatively

large. This arises, in particular, in the face of dire prognosis, and we study the case of

tandem dose escalation of etoposide and cyclophosphamide in a Phase II trial of the

BEACOPP regimen for treatment of Hodgkin’s lymphoma reported in [141, 55].

In all cases, we evaluate the prominent policies introduced above. Rather than

evaluating policies in expectation, as is common in the optimal learning corpus8, we

evaluate policy performance in distribution. In particular, we evaluate distributions of

the total regret, total cost, and the final recommendation η̂T , and compare policies in

terms of common metrics, as well as dominance with respect to stochastic order on

these distributions.

Moreover, in order to scrupulously evaluate policies for this problem, we compute

the exact distributions for each policy, rather than approximations to these distribu-

tions via, for example, Markov Chain Monte Carlo (MCMC) methods. We shoulder

this computational burden for the purpose of rigorously analyzing this initial work and

guiding the future use of particular performance metrics, such as expected values, or

more generally, (sets of) coherent risk measures. When focused on a particular metric,

MCMC methods may then, of course, be used to more efficiently estimate the quantities

of interest. However, the exact distributions are universal for the controlled Markov

process, model class, and standardized problem instance, thus offering tremendous po-

tential toward accelerating other numerical analyses.

5.2.1 5-Fluorouracil

We consider the design of a Phase I oncology trial to determine the MTD, with ν = 1/3,

of the antimetabolite 5-fluorouracil (5-FU) for the treatment of solid tumors in the colon

8We here use “optimal learning” broadly, to include reinforcement learning, sequential design theory,
bandit problems, and the subset of MDPs concerned with HMM and POMDP modeling, etc.
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via combination therapy with fixed levels of the agents leucovorin (20 mg/m2) and

topotecan (0.5 mg/m2). Throughout the trial, toxic response constitutes observation of

Grade IV hematologic or Grade III or IV nonhematologic toxicity within two weeks, as

clinically defined by the National Cancer Institute Common Toxicity Criteria (CTC)

[9].

Following the methodology of [14, 18], we first identify a domain [umin, umax] of

feasible dosages almost surely containing the MTD. Previous clinical studies of com-

bination 5-FU and topotecan suggested a dose of umin = 140 mg/m2 of 5-FU to be

tolerable at a topotecan dosage of 0.5 mg/m2. Similarly, a previous trial of solely 5-FU

concluded the MTD was 425mg/m2, and therefore umax was taken to be 425mg/m2 for

the combination trial since 5-FU has been empirically observed to be more toxic with

topotecan. We consider |U| = 100 dose levels, over the range indicated in Table 5.1.

We formulate the logistic model (5.7) and together with a uniform prior distribution

over [umin, umax] for the MTD parameter η.

Table 5.1: Phase I dose escalation schema for antimetabolite 5-fluorouracil (5-FU) in

combination therapy for treatment of solid tumors of the colon, adapted from [14].

Note: We consider |U| = 100 dose levels, over the range 1–6 shown below.

5-FU Dose Escalation (mg/m2)

Baseline Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Leucovorin 20

Topotecan 0.5 Feasible Dosage Space

5-Fluorouracil 125 140 150 175 200 225 425
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Figure 5.4: Probability of toxicity vs. dose in the 5-FU trial.
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Figure 5.5: Distribution of cumulative cost
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t=1 c(πt, η
∗).
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Figure 5.6: Distribution of final recommendation η̂T+1 .
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5.2.2 Bleomycin

As another example, we consider the design of a Phase I oncology trial to determine

the MTD, of the polypeptide antibiotic antineoplastic agent bleomycin (B) for the

treatment of germ-cell tumors (GCTs) via BEP combination therapy with fixed levels

of the agents etoposide (100 mg/m2) and cisplatin (20 mg/m2). Throughout the trial,

toxic response (clinically termed bleomycin pulmonary toxicity, or BPT) constitutes

observation via thoracic computed tomography (CT) of any pulmonary fibroic changes,

significant changes in pulmonary function test, and/or dyspnea commensurate with

Grade III or IV pulmonary toxicity within two weeks, as clinically defined by the

National Cancer Institute Common Toxicity Criteria (CTC) [9]; cf. [35, 133, 37, 10, 40,

153, 110, 54, 51, 52, 53].

The Phase I trial consists of T = 13 patients. We allow |U| = 100 dose levels, with

a minimum dose umin = 5 mg/m2 and a maximum dose umax = 35 mg/m2. Based on

prior animal studies, it is estimated that pε = 1/100 patients exhibit dose-limiting BPT

at 5 mg/m2. Bleomycin is known to be especially toxic, and so the MTD quantile is set

to ν = 1/5. The true, unknown MTD for the case study is η∗ = 14 mg/m2. These trial

data are summarized in Table 5.2 and Figure 5.7.

Table 5.2: Phase II dose escalation schema of BEP combination therapy for treatment

of advanced stage GCT in the Southeastern Cancer Study Group protocol, adapted

from [54]. Note: We consider |U| = 100 dose levels, over the range 1–6 shown below.

BEP Dose Escalation (mg/m2)

Baseline Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Etoposide 35

Cisplatin 40 Feasible Dosage Space

Bleomycin 5 10 15 20 25 30 35



119

���

���

���

���

���

���

pε

ν

umin η∗ umax

Figure 5.7: Probability of bleomycin pulmonary toxicity vs. dose in the BEP trial.
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Figure 5.8: Distribution of cumulative cost
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t=1 c(πt, η
∗).
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Figure 5.9: Distribution of trial MTD recommendation η̂T+1 .
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Figure 5.10: Stage-wise cumulative cost distributions in the BEP trial for (a) expected-

value, (b) knowledge gradient, and (c) robust-response policies. Median of final-stage

cost is shown dotted. Spectrum denotes stage t = 1, 2, · · · , T ; only 10 stages shown.



121

Table 5.3: Descriptive statistics for the stagewise distribution of cumulative cost∑t
τ=1 c(πτ , η

∗) in the BEP trial. We report the mean median deviation (MMD), root

mean squared deviation (RMSD), median absolute deviation (MAD), and quantiles.

Patient t π MMDπ
t

RMSDπ
t

MADπ
t

q.25 q.5 q.75

RR 0.001 0.559 0.000 0.560 0.560 0.560

2 EV 0.002 0.509 0.000 0.510 0.510 0.510

KG 0.002 0.548 0.000 0.550 0.550 0.550

RR 0.062 0.704 0.000 0.630 0.630 0.630

3 EV 0.094 0.690 0.000 0.580 0.580 0.920

KG 0.102 0.683 0.000 0.550 0.550 0.550

RR 0.118 0.797 0.000 0.650 0.650 0.840

4 EV 0.163 0.809 0.000 0.610 0.610 1.140

KG 0.146 0.945 0.000 0.790 0.790 0.790

RR 0.143 0.908 0.000 0.730 0.730 1.020

5 EV 0.184 0.928 0.020 0.710 0.710 1.230

KG 0.230 1.100 0.080 0.840 0.840 1.180

RR 0.170 1.010 0.050 0.810 0.860 1.180

6 EV 0.212 1.030 0.150 0.750 0.880 1.250

KG 0.281 1.210 0.050 0.870 0.920 1.360

RR 0.222 1.100 0.110 0.860 0.880 1.320

7 EV 0.258 1.120 0.180 0.790 0.910 1.280

KG 0.317 1.300 0.140 0.890 1.030 1.570

RR 0.261 1.180 0.150 0.890 0.930 1.370

8 EV 0.291 1.190 0.220 0.810 0.960 1.330

KG 0.352 1.380 0.130 0.940 1.050 1.670

RR 0.290 1.240 0.170 0.910 1.030 1.450

9 EV 0.314 1.250 0.260 0.820 1.030 1.390

KG 0.378 1.450 0.200 0.980 1.130 1.720

RR 0.315 1.310 0.210 0.920 1.090 1.540

10 EV 0.331 1.320 0.290 0.880 1.120 1.460

KG 0.400 1.520 0.270 1.010 1.230 1.780

RR 0.333 1.370 0.240 0.940 1.170 1.620

11 EV 0.345 1.370 0.300 0.930 1.230 1.550

KG 0.418 1.580 0.300 1.060 1.310 1.850
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Figure 5.11: Stage-wise cost distributions in the BEP trial for (a) expected-value, (b)

knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Color spectrum denotes stage t = 1, 2, · · · , 10.
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Figure 5.12: Stage-wise cost distributions in the BEP trial for (a) expected-value, (b)

knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Spectrum denotes stage t = 1, 2, · · · , T ; only 10 stages shown.
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Table 5.4: Descriptive statistics for the stagewise distribution of cost c(πt, η
∗) in the

BEP trial. We report the mean median deviation (MMD), root mean squared deviation

(RMSD), median absolute deviation (MAD), and quantiles.

Patient t π MMDπ
t

RMSDπ
t

MADπ
t

q.25 q.5 q.75

RR 0.001 0.269 0.000 0.270 0.270 0.270

2 EV 0.002 0.219 0.000 0.220 0.220 0.220

KG 0.002 0.259 0.000 0.260 0.260 0.260

RR 0.064 0.188 0.000 0.070 0.070 0.070

3 EV 0.095 0.225 0.000 0.070 0.070 0.410

KG 0.104 0.229 0.000 0.000 0.000 0.000

RR 0.056 0.121 0.000 0.020 0.020 0.210

4 EV 0.069 0.139 0.000 0.030 0.030 0.220

KG 0.044 0.264 0.000 0.240 0.240 0.240

RR 0.025 0.118 0.000 0.080 0.080 0.100

5 EV 0.026 0.128 0.010 0.090 0.100 0.100

KG 0.090 0.191 0.010 0.050 0.060 0.210

RR 0.043 0.113 0.030 0.030 0.130 0.130

6 EV 0.059 0.124 0.060 0.020 0.110 0.170

KG 0.053 0.127 0.050 0.030 0.080 0.110

RR 0.058 0.108 0.040 0.020 0.050 0.140

7 EV 0.055 0.107 0.040 0.030 0.040 0.120

KG 0.050 0.105 0.040 0.040 0.070 0.110

RR 0.044 0.095 0.030 0.030 0.060 0.100

8 EV 0.041 0.090 0.040 0.020 0.050 0.090

KG 0.049 0.097 0.050 0.020 0.070 0.110

RR 0.037 0.080 0.030 0.020 0.050 0.090

9 EV 0.037 0.078 0.030 0.030 0.050 0.080

KG 0.043 0.088 0.030 0.020 0.050 0.100

RR 0.036 0.074 0.030 0.030 0.040 0.080

10 EV 0.034 0.072 0.030 0.020 0.050 0.080

KG 0.036 0.080 0.030 0.030 0.050 0.080

RR 0.032 0.070 0.030 0.020 0.050 0.080

11 EV 0.033 0.069 0.020 0.020 0.040 0.070

KG 0.030 0.070 0.020 0.030 0.040 0.070
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Figure 5.13: Stage-wise dosage distributions in the BEP trial for (a) expected-value,

(b) knowledge gradient, and (c) robust-response policies. Final-stage median µ̂
T

and

actual MTD η∗ are shown dotted. Color spectrum denotes stage t = 1, 2, · · · , 10.
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Figure 5.14: Stage-wise cost distributions in the BEP trial for (a) expected-value, (b)

knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Spectrum denotes stage t = 1, 2, · · · , T ; only 10 stages shown.



127

Table 5.5: Descriptive statistics for the stagewise distribution of dosage c(πt, η
∗) in the

BEP trial. We report the mean median deviation (MMD), root mean squared deviation

(RMSD), median absolute deviation (MAD), and quantiles.

Patient t π MMDπ
t

RMSDπ
t

MADπ
t

q.25 q.5 q.75

RR 0.001 0.569 0.000 0.570 0.570 0.570

2 EV 0.002 0.519 0.000 0.520 0.520 0.520

KG 0.002 0.558 0.000 0.560 0.560 0.560

RR 0.090 0.369 0.000 0.230 0.230 0.230

3 EV 0.134 0.422 0.000 0.230 0.230 0.710

KG 0.104 0.452 0.000 0.300 0.300 0.300

RR 0.060 0.357 0.000 0.320 0.320 0.320

4 EV 0.074 0.387 0.000 0.330 0.330 0.520

KG 0.091 0.532 0.000 0.540 0.540 0.540

RR 0.067 0.359 0.000 0.210 0.380 0.380

5 EV 0.068 0.380 0.010 0.390 0.400 0.400

KG 0.106 0.444 0.110 0.350 0.350 0.510

RR 0.098 0.350 0.100 0.230 0.330 0.430

6 EV 0.101 0.370 0.090 0.280 0.320 0.470

KG 0.069 0.393 0.090 0.290 0.380 0.410

RR 0.081 0.343 0.070 0.250 0.320 0.390

7 EV 0.074 0.349 0.070 0.260 0.330 0.380

KG 0.067 0.371 0.050 0.290 0.370 0.410

RR 0.069 0.333 0.050 0.270 0.310 0.370

8 EV 0.064 0.336 0.040 0.280 0.310 0.360

KG 0.069 0.361 0.050 0.290 0.360 0.410

RR 0.060 0.321 0.050 0.260 0.320 0.360

9 EV 0.059 0.328 0.040 0.260 0.330 0.370

KG 0.061 0.349 0.050 0.280 0.330 0.390

RR 0.057 0.320 0.040 0.260 0.300 0.360

10 EV 0.054 0.325 0.040 0.270 0.310 0.360

KG 0.055 0.340 0.040 0.290 0.330 0.360

RR 0.055 0.319 0.050 0.260 0.310 0.360

11 EV 0.052 0.324 0.040 0.280 0.320 0.370

KG 0.049 0.332 0.040 0.280 0.330 0.360
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5.2.3 Etoposide

As another case study, we consider the design of a Phase II oncology trial to assess intro-

duction of the antineoplastic agent etoposide and tandem dose escalation of etoposide

and cyclophasphamide (CP) for treatment of advanced-stage and/or persistent Hodgkin

lymphoma (HL) via BEACOPP combination therapy, together with fixed levels of the

agents bleomycin (10. mg/m2), adriamycin (35. mg/m2), vincristine (1.4 mg/m2), pro-

carbazine (100. mg/m2), and prednisone (40. mg/m2). Throughout the trial, toxic re-

sponse constitutes white blood count (WBC) less than 10.00e2/µL for more than 4 days,

and/or platelet (PLT) count less than 2.500 00× 105/µL commensurate with grade III

or IV pulmonary toxicity within two weeks, as clinically defined by the World Health

Organization (WHO) [9].

The Phase II trial consists of T = 13 patients. We allow |U| = 100 dose levels,

with a minimum dose umin = 100 mg/m2 and a maximum dose umax = 250 mg/m2.

Based on prior experience with the agents including analysis of the data in [141], it

is estimated that pε = 1/50 patients exhibit dose-limiting toxicity below 100 mg/m2.

The MTD quantile is set to ν = 1/3. The true, unknown MTD for the case study is

η∗ = 175 mg/m2. These trial data are summarized in Table 5.6 and Figure 5.15.
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Table 5.6: Phase II dose escalation schema of BEACOPP combination therapy for

treatment of advanced Hodgkin lymphoma at the German Hodgkin’s Lymphoma Study

Group (GHSG), adapted from [141]. Note: We consider |U| = 100 dose levels, over the

range 1–6 shown below.

BEACOPP Dose Escalation (mg/m2)

Baseline Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Bleomycin 10

Adriamycin 35

Vincristine 1.4

Procarbazine 100

Prednisone 40 Feasible Dosage Space

Cyclophos. 650 800 950 1100 1250 1400 1550

Etoposide 100 125 150 175 200 225 250
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Figure 5.15: Probability of pulmonary toxicity vs. dose in the BEACOPP trial.
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Figure 5.17: Distribution of trial MTD recommendation η̂T+1 .
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Figure 5.18: Stage-wise cost distributions in the BEACOPP trial for (a) expected-value,

(b) knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Color spectrum denotes stage t = 1, 2, · · · , 10.
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Figure 5.19: Stage-wise cost distributions in the BEACOPP trial for (a) expected-value,

(b) knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Color spectrum denotes stage t = 1, 2, · · · , 10.
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Figure 5.20: Stage-wise cost distributions in the BEACOPP trial for (a) expected-value,

(b) knowledge gradient, and (c) robust-response policies. Median of final-stage cost is

shown dotted. Color spectrum denotes stage t = 1, 2, · · · , 10.
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Chapter 6

Conclusions

“ Choose well. Your choice is brief, and yet endless.

”
Goethe, 1749–1832

“ We are what we repeatedly do. Excellence, then, is not an act, but a

habit.

”
Will Durant, 1926

“ For these masters of living, presence to the day–to–day learning pro-

cess is akin to that purity of focus others dream of achieving in rare

climactic moments when everything is on the line...

The secret is that everything is always on the line.

”
Josh Waitzkin, 2008

6.1 Optimal Learning and Dynamic Risk

The continuous– and discrete–time controlled Markov systems have been the tremen-

dously successful in modeling the dynamics of stochastic processes. By appeal to notions

of classical mechanics, a stochastic process exhibiting the Markov property bears a cer-

tain analogy to a conservative field exhibiting path–independence of integrals. Given
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that (stationary) Markov processes are recursive, in that the same underlying process

repeatedly acts on the outcome of the previous action, the techniques of (approximate)

dynamic programming (DP), in particular, are at once extremely natural and have

proven powerfully effective in obtaining optimal solutions in this context under very

general conditions. That is, again by appeal to classical notions, DP methods have

been successful in obtaining optimal solutions without conditions, or constructs, invok-

ing the differential and thus the methods of differential calculus. By way of analogy,

this perhaps suggests that some analogue to the notion of differential is implicit in the

process. Indeed, the concept of the fixed point of an iterated process is, in the deepest

sense, the quintessence of knowledge, for what is a theorem if not a fixed point under

iterated reasoning?

As alluded to above, optimal learning, which is to say controlled statistical inference

or, plainly, intelligent experimentation, is intrinsically dynamic. Cast in the framework

of a collection, or space, of Markov processes, optimal learning folds this paradigm back

onto itself, inducing a non–stationarity in the realized process as one moves through the

space of processes. This non–stationarity, this dynamic is of a fundamentally different

nature than that of the stochastic process, one which is not unlike walking on a windy

day or docking a ship in rough waters. The difference is characterized by agency, which

is to say some measure of approximate control, in contrast to the external dynamic of

stochastic process.

With respect to this active, controlled dynamic—learning—notions of the differential

may again be useful. In this sense, the frameworks used in information geometry connect

directly to those mathematical elements foundational in the classical mechanics, opening

the door to a host of formal techniques developed through the study of the dynamics of

more simple systems admitting description by, e.g., fiber bundles, and the differential

calculus in a broad sense. However, initial pursuits in this direction indicate that the

interpretations of statistical inference in terms of the differential geometry of statistical

manifolds necessitate computation of fiendish quantities (such as, e.g., the deficiency

of an efficient test, etc.) that have proven tremendously challenging, owing to the

complicated geometry.
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On the other hand, in a certain sense, risk measures capture the salient aspects of

the convexity and nonlinearity of inference lurking in the current distribution itself,

without recourse to parallel transport and computation of covariant derivatives. Put

differently, each belief state constitutes a trove of information, not only about the

history of the process, but also about the prospects of its future. In this intrinsically

recursive setting, dynamic Markov risk measures thus offer one single lens through

which both the stochastic dynamic and the learning dynamic may be coherently viewed,

but which also lends itself directly to the recursive dynamic programming techniques

inherent to the process. Thus, in a broad sense, the construction of dynamic Markov risk

measures marks a momentous development in the advancement of controlled Markov

processes generally, but especially to the theory (and practice) of optimal learning.

Indeed, there exist many prospects for future developments, both theoretical and by

way of applications.
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