Staff View
Coupled physical and phytoplankton dynamics in coastal Antarctica

Descriptive

TitleInfo
Title
Coupled physical and phytoplankton dynamics in coastal Antarctica
Name (type = personal)
NamePart (type = family)
Miguel Carvalho
NamePart (type = given)
Ana Filipa
NamePart (type = date)
1985-
DisplayForm
Ana Filipa Miguel Carvalho
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Kohut
NamePart (type = given)
Josh
DisplayForm
Josh Kohut
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Schofield
NamePart (type = given)
Oscar
DisplayForm
Oscar Schofield
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
co-chair
Name (type = personal)
NamePart (type = family)
Gorbunov
NamePart (type = given)
Maxim
DisplayForm
Maxim Gorbunov
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Oliver
NamePart (type = given)
Matthew
DisplayForm
Matthew Oliver
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2017
DateOther (qualifier = exact); (type = degree)
2017-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2017
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
The biophysical processes regulating primary productivity and biomass of phytoplankton in Antarctic coastal seas are both highly variable in time and space. This dissertation integrates multi-platform observations to understand the physical drivers of phytoplankton in coastal waters of Antarctica, with a greater focus in the West Antarctic Peninsula (WAP). The heads of cross-shelf canyons in the WAP are considered biological “hotspots”, yet the physiology and composition of the phytoplankton blooms and the physical mechanisms driving them are not well understood. Incubation experiments were conducted at three of the WAP canyons to test the role of light availability and upwelling of mUCDW in the increased productivity observed at those locations. Results showed that light, and in particular photoadaptation mechanisms are responsible for increased phytoplankton. This work determined an ecologically relevant MLD for coastal Antarctica to further investigate the role of light in these canyon systems. The mixed layer depth (MLD) determined by the maximum of the buoyancy frequency criteria was found to correlate the best with the vertical distribution of phytoplankton estimated by chlorophyll fluorescence. This metric was then applied to a high-resolution glider dataset with the aim to characterize the dynamics of the spring phytoplankton bloom in submarine canyons in the WAP. Both stability, due to increased freshwater input, and mixed layer depth (MLD), and therefore light availability, have been linked to increased chlorophyll fluorescence. To evaluate how the photophysiology of phytoplankton respond to physical forcing, the glider was equipped with a PAR sensor and integrated with a Fluorescence Induction and Relaxation (FIRe) sensor, the first sensor of its kind to be integrated in a glider. The concurrent high-resolution, vertically-resolved and autonomous measurements of physiological variables together with physical oceanographic data allows investigations on how photosynthetic processes are affected by environmental factors, as it is highly sensitive to environmental stresses. Analyses comparing different MLD regimes have shown different photoadaptations resulting from differences in solar radiation exposure conditions (both time and intensity), reflected in the depth of the ML. Potentially different photoacclimation regimes can be evaluated by comparing light saturation parameters (Ek) determined based on the relationship between Photosynthetic Available Radiation (PAR) and photosystem II photosynthetic efficiency (Fv/Fm). With decreasing sea ice trends and increased winds reported for some Antarctic coastal regions undergoing rapid climatic changes, the increased phytoplankton exposure to highly dynamic irradiance levels, especially with deeper MLD, have significant ecological and biogeochemical implications, particularly in the carbon cycling.
Subject (authority = RUETD)
Topic
Oceanography
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7985
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxiv, 130 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Phytoplankton--Antarctica
Note (type = statement of responsibility)
by Ana Filipa Miguel Carvalho
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T30G3P1S
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Miguel Carvalho
GivenName
Ana Filipa
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-04-11 16:26:36
AssociatedEntity
Name
Ana Filipa Miguel Carvalho
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2017-11-30
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after November 30th, 2017.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2017-04-11T16:24:06
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2017-04-11T20:22:59
ApplicationName
Adobe Mac PDF Plug-in
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024