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ABSTRACT OF THE THESIS

Cube Maze

by Pritish Sahu

Thesis Director: Dr. James Abello

Conventional data visualization methods are very narrow in terms of the data types

on which they are applicable. We present a novel way of viewing multi-attributed

dataset by grouping subsets of attributes into facets. Our Cube-Maze interface visually

represents each data “entity” as a cube in three dimensional space. Similarity among

“data cubes” correspond to 0, 1, and 2 dimensional adjacencies. Our current implemen-

tation provides different modes of “EgoNet” navigation and several interaction filters.

The graph counterpart for this cube maze representation is a “Labeled Multi Digraph”.
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Chapter 1

Introduction

In many fields, visualisation has gained recognition as potential tool to explore and

understand data. Interaction with the data plays an important role in information

visualisation ( [1],[2], [3], [4], [5] ) . We develop an approach to visualise multi-attributed

data in a unified way. Various interaction mechanisms are implemented to explore this

data based on the semantic closeness between attributes of data members. We introduce

Cube Maze as the main visual representation tool to display multi-attributed data in

a consolidated manner. We view multi-attributed data as vectors of components called

data units. Grouping these k-components allows mappings of each group onto each side

of a cube’s inner wall.

Objectives of the Research

We provide a novel interface(Cube Maze), various navigation modes, and associated

interaction tools. In this section, we discuss related challenges and give an overview of

how our system tackles the aforementioned challenges. The major challenge consists of

visualising multi-attribute data sets. Current exploration systems become so complex

that a user loses track of the path used to dive deep into the represented data. For

each feature described in the system, the canvas gets redrawn without containing the

path information traversed by the user. Previous work has been published based on

multiple view approaches for a data containing vector of attributes. These works use

multiple coordinate views ([6], [7],[8]]). One major challenge in today’s world is data

analysis by exploration. For example, exploring and evaluating in a small time frame a

university data consisting of departments which consists of faculty members, students,

administrators and associated infrastructure. Similarly, data attributes for faculties
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contain biography, publications, projects, grants, awards, students advised, courses

taught. Also, consolidating data in one single visual representation and exploring the

data is a complex task, even without factoring in the labor of finding relations between

various data units such as faculty members or departments based on certain attributes.

Current systems in place don’t have a mechanism to support such endeavors, i.e., explore

data where all its facets are pooled in one view, find relationships and navigate to data

which share similar attributes. In the same view, consider the scenario for movies,

health, sports, etc. There are no systems currently available which provide all required

information in one place and also provide relationships between several of these entities

based on their attributes.

Our work focuses on overcoming the aforementioned issues in designing a novel

interface system for multi-medial data which provides global and local contextual in-

formation with easy navigation mechanisms. The basic data unit we use to visualise

data is a three dimensional cube. Various navigation mechanisms are introduced to

demonstrate hierarchy navigation from higher rank order to lower rank order units or

to navigate between cubes based on semantic relationships. These semantic relation-

ships are based on data facets similarity and the system allows to a user to teleport from

a selected cube to another cube in global space based on EgoNet similarity between the

cubes.

Our goal is to enhance a user’s experience by creating a simple novel and intu-

itive interface that helps overcome the challenges mentioned above. In summary, the

highlighting points in our design are :

• visualisation all attributes of a data unit in one local visual space.

• enhanced data exploration via novel interaction mechanisms.

• visual display of semantic relationships between data based on their attributes.

• furnishing a visual global context for local view.

In the following chapters, we present about the data model, its visual representation,

implementation specifics, summary of findings and future work.
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Chapter 2

Data Units Multi-DiGraph Model

2.1 Data Model

We view a multimedial data collection as a “labeled multi-digraph” over a finite set of

ranked “data units”[9]. Each data unit is an ordered set of data components each of

which posses an identifier, a string name, an optional type or data rank, and a collection

of links to possible components satellite data or to other data units.

As an example, a university may be viewed as a collection of data units each focused

on a particular set of fields of knowledge, sports or athletics (Rank 1). Each such data

unit in turn consists of a collection of departments (Rank 2) each of which can be also

considered a data unit with the following set of components:

Dept = < Dept id, Type = Academic, Rank = 2, Name = Computer Science, Fac =

set of faculty, Co = set of courses offered, Stu = set of registered students, Admin = set

of administrators, Digital Infrastructure = Digital equipment, Physical Infrastructure

= set of office buildings, ImageArchive = set of Images , VideoArchive= set of Videos,

AudioArchive = set of Audio Recordings, WebArchive = set of Web Sites >

A Faculty member can be considered also as a data unit of Rank = 3 with the

following components:

Fac = < Fac id, Type = Researcher, Rank = 3, Name = Pythagoras, Bio = Tex-

tual Description, Publications = set of Papers-Books, Stu = set of registered stu-

dents advised, Pro = set of projects involved with, Co = courses taught, Awards =

Honors-Distinctions, ImageArchive = set of Images , VideoArchive= set of Videos,

AudioArchive = set of Audio Recordings, WebArchive = set of Web Sites >

Two data units ( like Depts ) of the same rank can be “ semantically related” via
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some of their components. These relations among data units can be explicitly annotated

in the data or they can be used to derive or learn other implicit “latent relations.

In our running example, two departments can share Faculty members, Courses,

Students, and Physical Infrastructure. To account for this diversity of relations among

two data units we use the language of labeled multi-digraphs over a finite set of vertices.

In our case, each vertex corresponds to a data unit, and between a pair of data units

u and v we allow two types of multiple labeled edges as follows: Component wise

similarity: The label of the i-th edge (u, v)i encodes a similarity between the two i-th

components of u and v Data Unit similarity: the edge label encodes overall data unit

similarity rather than component wise similarity.

The notion of rank is intended to capture the level of hierarchical containment among

data units. As an example, a university school is composed of departments whose

basic constituents are faculty members, students, administrators, courses, projects, etc.

Whenever these hierarchical relations among data units are explicitly present in the

data we model them by an Explicit Directed Acyclic Graph that we call EDAG. The

rank of a data unit in this EDAG is the length of its longest path to the set of EDAG

source data units.

After all these preliminaries we are now ready to introduce our Data Units Multi-

Graph Model.

Concept 1. A data unit D = < C1, C2, .., Ck > is an ordered set of k components

Ci: i=1, 2, ... k. We denote by #(D) the number of components of a data unit D.

Each component Ci has a descriptor that consists of a unique id, an integer rank value,

a string name, a type, and an optional collection of links to data units of greater rank

or to a sequence of data units of the same rank. As an example: since a video is a

sequence of frames we can consider a frame a more atomic element than a video and

therefore the rank of a frame is not higher than the frame of a video. We refer to these

links as vertical data links.

Concept 2. Similarity between data units

Given two data units Di= < Di,1, Di,2, .., Di,k > and Dj = < Dj,1, Dj,2, .., Dj,l > of

the same rank, their similarity can be formulated in terms of the similarity of the EDAGs
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of Di and Dj when these EDAGs are explicitly provided with the data. When this is not

the case, we propose to treat Data Units as simplicial complexes and obtain similarity

measures among them derived from their peeling vectors([10],[11]). This approach has

been successfully applied in Ref [12] to the unraveling of the inherent structure encoded

by the peel distribution of any network. We propose to extend these mechanisms to the

case of labeled directed multigraphs since in this case the neighborhood of each vertex

can be seen as the simplicial complex formed by its colored adjacent edges. In this way,

a plethora of similarity measures between two complex data units can be derived from

the combinatorial structure of their corresponding simplicial complexes. This approach

can be readily applied at the component wise level or at the entire data unit level.

Concept 3. Universal Labeled MultiGraph MUD = ( V= {D1, D2, ..., Dn }, MS=

{( Di ∼ Dj )} )

Consider a collection of data units V = D1, D2, ..., Dn and denote by MS the block

matrix that on entry MS[i,j] contains the similarity matrix between the data components

of Di and Dj , i.e. the f,g entry of the similarity matrix is the similarity between Di,f ,

the f-th data component of Di, and Dj,g, the g-th data component of Dj . The pair (Di,

Dj) is labeled by the similarity matrix MS[i , j] . For future reference define Size(V) =

SumOf{#(Di): Di in V } and max(V) = Max{#(Di): Di in V}.

We call the multi-digraph obtained in this manner, a MUD with n data units Di

and data units pair wise similarity matrices MS[i,j]. Directed simple paths correspond

to linear story lines.

In practice, only portions of this Multi-Graph are provided as input and in this

proposals project we will build a multi-medial data exploration system that will provide

users with mechanisms to interactively explore, annotate, derive, and synthesize the

most “salient” features and directed paths that can be traced and interpreted when

querying and navigating these multifaceted data sets. In other words, we want users

to be able to “extract the stories behind the data” or “to create stories from the data

that can be traced and verified by a computer aided agent”. A natural question is then

how to define what a “data story” is. We suggest a mechanism to achieve this in the

next section.
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Concept 4. Data Stories Some of the most basic elements of a narrative are “its

characters” and their “interactions” through “time”. Since in our data model the basic

“characters” of a collection V are its “data units” and their multiple directed interac-

tions are encoded by their similarity matrix, it makes sense to conceptually dismantle

the overall Data Units MultiDigraph into its max(V) component wise digraphs. On

each such digraph we can compute its strongly connected components macro-DAG.

Linearization of each of these DAGs provides a partial order that can be interpreted

as the “event” partial ordering of the data units “story plot” when restricted to a par-

ticular data units components entry type (the story projections). The length of the

longest path on each such DAG can be interpreted as a data story completion time on

that story projection. Composition of these story projections via shared vertices will

allow us to identify overall data stories. This method can be seen as an adaptation of

an approach proposed by [12] to analyze a variety of networks by decomposing their

edge set into maximal subsets of edges that are fixed points with respect to iterative

degree driven vertex deletion. The approach has been applied to citation networks and

literature classics like “Les Miserables”[9] , and Danish Folklore [13]

In summary: any MUD = (V, S) whose edges are labeled by Max(V) labels can

be naturally decomposed into Max(V) edge disjoint DAGs. Each of these DAGs pro-

vides a partial order on the involved data units. Composition operations among these

DAGs provide mechanisms to build a variety of complementary MUD stories. A simple

mechanism to achieve this is to take the union of all source data units across the DAG

projections. Notice that since there may be connections among the sources in different

DAGs it is natural to consider the subgraph induced among the different iterative story

projection sources as important “events” in the Data story. Removing these sources

iteratively give us a natural coarse story flow of “events” derived from the MUD con-

nectivity. An appealing aspect of this multigraph -strongly connected approach is that

the strongly connected components can be updated efficiently in a streaming fashion

[14].
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2.2 Advantages of the Data Model

The data unit definition in the model can fit any multi-attribute data set by grouping

subsets of attributes into facets. This model can be used to analyse and explore compo-

nents of each data unit via similarity measures between the different data facets (cube

faces). Grouping of cubes via similarity measure can be achieved. A user can navigate

between cubes via relationship computed between cube face. These navigation can be

neighborhood navigation i.e. movement between neighboring cubes or teleport which

is bring cube not necessarily a neighbor but out in the global space to the visible screen

space.
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Chapter 3

Visual Representation

3.1 Mapping Data Units to Three Dimensional Cubes

This novel interface represents each data unit as a cube in three dimensional space. A

data unit may contain lower rank data units as component or can be an atomic data

unit. The faces of the cube correspond to particular “facets” of the data. This mapping

takes into account the number of components in the data unit and is based on grouping

semantically coherent components. One facet is reserved for EgoNet navigation and the

other facets are used to represent the remaining data components. A cube’s EgoNet

provides the user a global context for the cube’s local space.

Higher rank data units contain components which in turn can be data units. For

instance, a university department as a higher rank data unit contains faculty which

can be considered a lower rank data unit. Hierarchy based navigation allows movement

from higher ranked data units to lower ranked data units. As an example, considering

department as a data unit of rank 2, it can be viewed as

Department = < name of the department, set of faculty, set of courses offered, set

of registered students, set of administrators, digital equipment, set of office buildings,

image archive, video archive, audio archive, web archive >

Faculty data can then be mapped cube faces with components:

Faculty = < name, biography, publications, projects, awards, courses taught, stu-

dents advised >
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3.2 Visualisation

The system is designed in a layered fashion, moving from a higher rank to a lower

rank data unit. It also provides a clear analysis and mapping of the data on each layer

without losing the global context.

3.2.1 Global View

The global space contains the set of data units of a particular rank. The data units are

represented as cubes placed adjacent to each other in m rows and n columns [fig:3.1]

in the canvas area. We followed responsive design guidelines to accommodate different

screen sizes by adjusting the values of m, n and cube sizes. Each cube in the global

space displays a summary of all its components. User actions influence the flow of data

which is reflected by changes in several visual mappings. A detailed explanation of

these visualisation is included next.

Figure 3.1: Global View

On the global space, the user can rotate each cube on its local axis in the horizon-

tal and vertical directions to view all the cube face and the summarized information

mapped to them. In our example, the summarized information on each face includes fac-

ulty image, keywords describing the research area, videos from a faculty video archive,
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slide show of image, office information, hobbies etc. To address the issue of visual-

ising user data in a constrained space, we enlarge the face of the cube to cover the

entire global space, thereby providing more canvas space in order to include all user

information.

3.2.2 Local View

Clicking a cube triggers a swift transition from global space to local space depicting the

cube’s inner space. The transition involves zooming in action on the faculty’s image

until it occupies the entire screen or the entire canvas space. It splits in two halves with

each half moving horizontally outwards revealing the local space of that cube. This

gives the the user the impression that he/she has moved inside of that cube and now

all the cube walls are visible except the one behind. A light object is placed in the

center of the cube to allow the user to see all the cube faces from user’s view point.

The walls/faces of the cube are mapped to the components of the data units.

Figure 3.2: Cube Face of a Faculty

For this example, the components, < C1, C2, .., Ck > are grouped into 5 clusters

as was discussed in section [fig:3.1] and the ceiling plane contains the EgoNet. In

our example of faculty as data units, the facets display “Biography”, “Publications”,

“Projects”, “Grants/News”, “Students Advised, Courses Taught” and the ceiling face
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contains the ego-centric network of the selected data unit representing the global context

of the current local view. The standard layout of the cube is shown in [fig:3.2]

“Biography” contains textual information describing the selected faculty [fig:3.3].

It is placed by default at the center face of the cube i.e directly facing the camera’s

view. The layout of the face is divided into 3 sections. The first section on the top left

contains the image and string name to which the cube belongs to, the second section

describes the position, email address, department etc. positioned just below. These

two sections take one quarter of the face. The rest of the space is utilised to display the

faculty members biography. The information mentioned here is merely of descriptive

type and is not interactive.

Figure 3.3: Cube Face of Biography

“Publication” is the list of papers published by the faculty in various conference/journals

[fig:3.4]. For a faculty data unit all the publications are displayed as nodes and this set

of nodes are mapped on to the right face of the cube in the default orientation. Moving

the mouse over each of the dot, a small display window appears containing “Title” and

“Authors” for the corresponding paper. A User can also visit the selected paper by

clicking on the dot which brings for view the web content of the page to a window

attached to the plane.

The “Projects” face contains the collection of scholarly projects conducted by the



12

Figure 3.4: Cube Face of Publications

faculty [fig:3.5]. It is shown as an image on the left followed by a brief about the project

on the right. The projects can be browsed sideways (left, right) to reveal more. This

projects information is mapped to the left face of the cube.

Figure 3.5: Cube Face of Projects

“Grants/Events” provides information in a time line about grants, awards, news

published related to the faculty [fig:3.6]. “Grant Name”, “Research Title”, “Research

Brief”, “Grant Money”, “Time Period” are the types of information mapped to this
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face located at the bottom of the cube.

“Students Advised and Courses Taught” are visually represented as a horizontal tree

where the leaf nodes are the students and courses [fig:3.7]. The student information

mapped contains information on name, current status, degree of study, place of work

(if any). The other vertex contains courses taught containing course name, course

description and webpage link (if any). This is mapped onto the face behind the user.

Figure 3.6: Cube Face of Events

Figure 3.7: Cube Face of Students Advised and Courses Taught
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The ceiling wall contains the Ego-Centric Network ”EgoNet”[fig:3.9]. The EgoNet

contains the global context information in local space. The subgraph induced by the

neighborof a node X in a graph is known as its EgoNet [fig:3.8]. For a faculty, the

EgoNet contains all the nodes which are its direct neighbours and the connections

between them without the source node (X) and its edges connecting X to its neighbors.

The resulting graph is the ego-centric local sub graph for X. We have mapped multi-

medial data to this graph as a labeled (colored) multi-digraph. Nodes are connected

based on the what type of similarity they share. In our example, there are K=3 types

of similarities defined, which are relations based on “research area”,“publications” and

“biography”. Each is mapped to a specific color. The nodes and edges are colored

among these colors. A node can have K different colors including the color when the

outgoing/incoming edges are nil and two nodes can share at most K edges if they share

similarity on all K similarity types. The similarity weight ranges between 0 and 1, We

have calculated the mean and standard deviation for each similarity and display on the

EgoNet those edges whose similarity lies between the mean and the standard deviation.

Apart from the above components mapped on each face of the cube, icons are added

Figure 3.8: Sample EgoNet of Node Seven

at the bottom of each face to provide semantic relationships of the current selected

cube to that icon’s type. Some of this semantic information can be neighborhood

information or cubes related to the current one based on the face the icon is mapped

to in our faculty data. These icons are faculty images mapped at special locations of

each face. Clicking on these icons starts a visual transition that shows neighborhood
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Figure 3.9: Cube Face of EgoNet

navigation to the cube sharing that face to the current local cube. This pushes the

original cube out of the screen in the opposite direction. For similarity semantics,

clicking the icon brings the corresponding cube to the visible screen space. The only

difference between neighborhood semantics and similarity based on face semantics is

that the former moves only in the domain of neighboring cubes, but the latter brings

the cube positioned anywhere in the global space to the front of the camera.

3.2.3 Labeled Multi-DiGraph View

We view data units (cubes) as nodes in a multi-graph. These nodes can have k types

of edges based on k-attributed data units. An edge between two nodes represents

a relationship shared by the nodes based on that particular attribute. These edges

are color coded symbolizing the color of the wall that these attributes are mapped to

in their cubes. A node can have at-most k outgoing edges. Based on the number

of different type of outgoing edges, a node is visually represented as surrounded by

concentric colored circles, each circle associated with an edge type. This meaningful

representation provides information on the types of similarities this node shares with

its neighbors in the global space.
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Figure 3.10: Labeled Multi-DiGraph

3.3 Semantic Relationships Between Data Units

Cubes with shared faces present a higher degree of adjacency compared to vertical and

horizontal “edges”, or extreme points, all of which represent weaker forms of adjacency

among the data units. Overall, in a particular state of navigation, a data unit may

have 18 adjacent data units.

This adjacencies can be used to represent:

1. graph neighborhood relationship

2. and, similarity shared based on their endpoint components. For example, rela-

tionships between faculty members data units can be shown by computing sim-

ilarity measures on research area, publications, biography, grants, news, awards,

students advised” or courses taught.

3.3.1 Graph Neighborhood Relationships

In these semantics, the signs mapped at the bottom of each face in the cube represent

cubes that are its physical neighbors. In the global view, cubes can be grouped auto-

matically in their current global space layout according to their relationship with other

cubes based on certain selected components. Also, cubes can be manually placed as
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neighbors to each other. In the local view, each cube may have icon at the bottom of

each plane denoting its semantic relationship with the cube’s icon.

3.3.2 Facet Similarity Relationships

We calculate the similarity for all facets of the cube and map the best matched case

to each plane in the cube. For the face containing the cube’s EgoNet, the cube’s data

unit with the highest score on the aggregated similarity measures among the remaining

faces is used as the corresponding navigational sign.

Figure 3.11: Global View: Showing Similar Cubes

3.4 Interaction Mechanism

For visual data exploration, human computer interaction is a necessity. Interaction

mechanisms in well-planned modular systems help a user choose relevant data subsets

and adjust the visual mapping to suit a particular course of visual exploration. We

present a high level description of our fundamental cube maze interactions. To convey

an impression of how these basic interactions can be applied by users, they are presented

in an order that resembles a real usage scenario, rather than in an order that relates to

interaction complexity.
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Figure 3.12: Grouping of Similar Cube at the Center

3.4.1 Hover

For a user to understand and explore the system, objects should portray information

readily without the user having to perform some complex maneuvers. Hover is one

such simple tool, in which a user moves the mouse over on an object the corresponding

information is displayed. The Scenarios in our Cube Maze where hover is utilised are:

1. In the global view, hovering over a cube brings to view the data units “name”,

and its attribute links such as “similar”, “order” and “research area” [fig:3.1].

2. After a user clicks the “similar” link on a cube, the cubes which share similarity

are moved towards the user in the z-direction. Hovering on any of these cubes,

displays relationship between this cube and the cube on which the user clicked

similar [fig:3.11].

3. In the local view, the face containing the publications contains nodes which repre-

sent publications. On hovering the mouse on any node, a small window appears to

describe the “Title” and “Authors” for the corresponding research paper [fig:3.4].
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3.4.2 Click

A user can perform click operations that bring to view faculty member based on their

research interests. The system visually groups them together at the center of the global

view [fig:3.12] the user can double check and see each faculty members research area.

On double click, a scene transition action is triggered which renders the local view for

the selected cube. In the publication facet, clicking a node creates an i-frame window to

display the webpage for that publication. Clicking is used also to pan projects sideways

[fig:3.5]. On double click of any cube face, the face rotates to bring that face to the

center facing the user [fig:3.13]. In the EgoNet view and in the labeled multi-digraph

view, single clicks brings to view the neighboring nodes of the selected cube[fig:3.14].

On double clicking, the EgoNet of the selected cube is appended to the existing EgoNet.

By clicking on the teleport button, the user is moved in the global space to the selected

cube.

Figure 3.13: Cube Rotation in Local View

3.4.3 Drag and Drop

A user can drag and drop cubes. It means a user can drag a cube by clicking and

holding onto the mouse and drop it by releasing the mouse on top of another cube, the
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Figure 3.14: Showing Neighbor Nodes of a Highlighted Node in the EgoNet View

below is displaced to fit the dragged cube in the position occupied by the bottom cube.

The user is given two mechanisms to complete this action:

• Lets denote the cube being dragged as ”source cube” and the cube at the posi-

tion (index) where the source cube is dropped at, the ”destination cube”. The

destination cube moves out in the z-direction allowing for the source cube to take

its position. Afterwards, the destination cube moves to the position previously

occupied by the source cube.

• Using the same convention as above, the destination cube shifts side ways either

to the left/right based on the hole created by the source cube which in turn pushes

the rest of the cube filling the source cube’s position and the source cube taking

the position of the destination cube.

3.4.4 Similarity Sliders

In the labeled multi-digraph view, each edge contains a similarity weight. Sliders are

provided to put a threshold on the edge to be displayed[fig:3.10].
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3.4.5 Zooming, Searching and Selection Filters

Using the zooming feature, a user can focus on a particular section of the entire graph. A

pinch-to-zoom mechanism is used for this purpose.Option of finding a faculty is provided

in the global view [fig:3.1] and in the multi-digraph view [fig:3.10]. A Check box option

is provided for the EgoNet and the graph view inorder to make data exploration more

convenient.

Figure 3.15: Local cube rotation in Global View

Figure 3.16: Cube Face expansion to Entire Canvas Space
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3.4.6 Key Board Mapped Events

Key Board Mapping interactions are provided on this state of the interface. The user

can hover on any cube and press the arrows (←,→, ↑, ↓). On pressing these keys the

cube rotates on its local horizontal and vertical axes [fig3.15]. Key board mapping is

provided to expand the image/information mapped to the cube face to the entire canvas

size giving clarity on the mapped information [fig:3.16].
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Chapter 4

Design and Architecture

4.1 System Design

The above challenges are daunting in nature, so it becomes very important to carve

out a modular system design to accommodate different sections of the code without

entanglement. In this section, we present the system layout and provide an example

based on it.

We have followed a Model-View-Controller (MVC) design to implement Cube-

Mazes. The Model represents an object carrying the data. The View is focused

on the visualisation aspect on the front end using data received from the model. The

Controller is the layer in between the Model and the View. The controller controls

the flow of data into the view and updates the model whenever the data changes.

Figure 4.1: System Design based on MVC Design Pattern

4.1.1 Model

The model is designed to allow access to each attribute without having to access the

entire database. The entities in the model are “Faculty”, “Publication”, “Project”,

“Students Advised”, “Courses Taught”, “Events”. Fig:4.2 depicts the schema diagram

of the model. These entities are created to contain information pertaining to each

attribute in each data unit. Each data unit has an identifier which is a unique id. In
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our example, we can consider the “Faculty” list as nodes, each is represented as a cube

in our system and the edges among them are determined by the similarity measures

computed between their facets. These data facets can be entities themselves or entity

attributes. Entity-Relationship diagram needs to be sturdy and robust for quick access

of the data objects. This makes the visualisation and interaction both flexible and

enhanced.

Figure 4.2: Entity-Relationship Diagram

4.1.2 View

The visualisation provides a couple of dedicated views, Global and Local. Each view

is designed as a large interactive component that implements its own visual mapping

and interaction as well as a common interface to access the data and visualization

parameters. We have used two graphics engine to drive this visualisation part with

animation and interactions. We use a three dimensional graphics engines that uses

WebGL for rendering three dimensional objects and for the two dimensional graphics
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engine we use HTML and CSS for two dimensional drawing. Most of the latest browsers

support both 3D and 2D drawing. The real challenge was merging these two worlds

together as the WebGL rendering engine is loosely coupled with the DOM element

[fig:4.3]. The layout of the interface consists of two dimensional elements attached to

these three dimensional objects. This design pattern has made way for our content

to become dynamic. The three dimensional layout or two dimensional drawings can

change without affecting each other.

Figure 4.3: Bringing Three Dimensional and Two Dimensional together.

In the Global View, the data units represented as cubes are rendered as a three

dimensional object using WebGL and are placed next to each other in rows and columns.

In the Local View, each data unit is mapped to the entire screen space to give the user

a feeling that he/she is placed inside the cube and is looking at the wall present in front.

The user can see sideways and rotate the cube in the horizontal and vertical direction

to bring any plane/wall to the front. Each wall is mapped with a data facet to yield

information about the data unit.

Another module, completely based on two dimensional drawing focuses on the multi-

colored multi-digraph. In this view, we draw cubes as nodes of a graph and a node

can have k type of edges. These edges are defined for each component in the data

unit, so for a k attributed data unit, a node can have at-most k edges. These k edges

are color-coded with the color as the wall in the cube which contains its corresponding

attribute. The edge computation is based on the relationship two nodes share between

each attributes in a k attributed data unit. Similarly, nodes are filled with colors based
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on the different types of outgoing edges. Each edge has certain similarity value mapped

to it. To assist the user in interactively exploring the data and the parameter space,

we have incorporated a slider mechanism to add or remove edges based on mean and

standard deviation for the k components in the data unit.

4.1.3 Controller

This regulates the flow of data from the model to the view. Currently, we do not

update the model on request from the view. In information visualization, interaction

is modeled as adjustment of the data model, which includes the raw data and its

visualization parameters [15]. Basic checks are put in place for determining the validity

of the requested parameters, which control the movement of data to the front end. There

are two ways to adjust drawing in the front end, either by direct manipulation or via

dedicated graphical user interface. Further distinction has been made in differentiating

the global effect from the local effect mechanisms. For example, in the global view

rotating a cube is a local effect but grouping cubes based on relationship changes the

global layout. Interacting on a single cube in the global view pushes information only

about the selected cube. In case of a local view, data sent from the controller contains

information on all components of a data unit. Apart from regulating flow of raw data,

the controller contains logic to process the data to determine relationships between

cubes based on attributes of the data unit. The following subsection provides details

on the algorithm used to compute similarity measure.

4.1.4 Similarity Measures

In our running data example, the attributes of a faculty are “publication”, “biography”,

“project”, “news”, “students advised” and “courses taught”. Let us take the case of

finding relationships between two faculty members based on their publications abstract

data.

We used web harvesting to collect the list of publications[16] for each faculty in the

department. Using the publications list, we again harvest “abstracts” and add them

to our database. The next step in the pre-processing creates bag of words model. This
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means that we create a list which contains all the unique words in the entire corpus

(collections of publications) with no frequency count. We create, for each publication,

a vector of words with their count. We use “TF-IDF”[17] (Term Frequency- Inverse

Document Frequency) to compute the weight of each term in the corpus. Term Fre-

quency is a count of a term in one publication. Inverse Document Frequency of a term

is the log of the number of publications in the corpus over the count of publications

which contain the term. We smoothen the IDF by adding one. The TF-IDF value is

the product of TF and IDF. Here, the publication is a vector where each component of

a vector corresponds to the TF-IDF value of a particular term in the corpus dictionary.

Dictionary terms that do not occur in a document are weighted zero. Using this kind of

representation in a common vector space is called the vector space model [18]. Before

computing the similarity measure, we group vectors of each faculty and normalize them,

so that the value is spaced equally for faculty with more publications and faculty with

less publications.

idf(t,D) = 1 + log
N

|d ∈ D : t ∈ d|
(4.1)

with,

N : total number of documents in the corpus, N = |D|
N

|d∈D:t∈d| number of documents where the term t appears.

We have used two kinds of similarity measures, Cosine Similarity and Jacard Sim-

ilarity. We have used cosine similarity to avoid the bias caused by different document

lengths. The inner product of the two vectors (sum of the pairwise multiplied elements)

is divided by the product of their vector lengths. This has the effect that the vectors

are normalized to unit length and only the angle, more precisely the cosine of the angle,

between the vectors accounts for their similarity.

similarity(Facultyi, Facultyj) =
~V (Facultyi). ~V (Facultyj)

|| ~V (Facultyi)||.|| ~V (Facultyj)||
(4.2)

Secondly, Jacard Similarity is based on intersection over union of the set of objects
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JS(Facultyi, Facultyj) =
|Facultyi ∩ Facultyj |
|Facultyi ∪ Facultyj |

(4.3)

where, Set Faculty is the cardinality of Faculty denoted by ‖Faculty‖ counts how

many elements are in Faculty. The intersection between two sets of Facultyi and

Facultyj is denoted by Facultyi ∩ Facultyj and reveals all items which are in both

sets. The union between two sets A and B is denoted by Facultyi ∪ Facultyj and

reveals all items which are in either set.

4.1.5 Path Traversal Algorithm

Breadth First Search(BFS) is implemented on the Labeled Multi Digraph and the

EgoNet views. A node can be selected by clicking on it or by using the locate interaction

mechanism. After that BFS is computed on the entire graph using the selected vertex

as source. Breadth First Search is an algorithm for traversing or searching graph data

structures. Starting from the source vertex, it explores the neighbor nodes first, not

moving to the new next level neighbors.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main focus of the work was on portraying data in an intuitive manner. We focused

on a novel three dimensional representation enhanced by various multi-attributed in-

teraction tools. These include hover, click, drag and drop, zoom, sliders, check boxes,

key board mapped events, and search option. Cube Maze provides unified views of the

multi-attributed data at both global and local levels. The graph theoretical counter-

part of cube mazes is a labeled multi-digraph. The labeled multi-diagraph provides an

alternative view of the cube similarities based on a variety of threshold values.

5.2 Future Work

Some of the possible pathways that could be undertaken to make this work more robust

and flexible are:

I If the data is not structured as Data Units, the system needs to learn “Entity”,

“Components” and “Data Units” by adding machine learning recognition modules

and detect labeled data relationships.

II Since, the server side needs to maintain the corresponding labeled multi-digraph

among the discovered Data Units, the Scalability of this multi-digraph needs to

be addressed both when the data is at rest and when the data is being streamed.

III In this work, we have mapped Data Units into cubes in 3D. However, one could

envision other visual representations and “novel” interaction mechanisms.
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IV We did not focus in this work on visual analytics. We intend to incorporate

algorithms to:

i detect the most “influential” Data Units in terms of their facet similarity.

ii discover the most “cohesive” clusters.

iii measure Data Units World Reachability.

V We would like to extend the work to cover more general ranked data units, ant to

provide specialized ways to navigate between them. This will require us to extend

the strength of similarities to include lower dimensional similarities via edge and

vertex covering.
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