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ABSTRACT OF THE DISSERTATION
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By LIMING SUN
Dissertation Director:

YanYan Li

We proved the existence of conformal metric with nonzero constant scalar curvature and
nonzero constant boundary mean curvature under some natural conditions. We also
solved some remaining cases left open by J. Escobar [40]. Furthermore, we establish
the compactness of minimizers which led to a partial affirmative answer to the Han-Li
conjecture [50]. We also studied one types of Yamabe flow on compact manifolds with
boundary, which has mean curvature equals to zero on the boundary. Convergence of
flow is established under some conditions. In another work, We studied the classifi-
cation of nonnegative solutions to polyharmonic functions with conformally invariant
boundary conditions. We proved that nonnegative solutions of that elliptic equations
have to be of the “polynomials plus bubbles” form. The presence of a polynomial part

is a new phenomenon.
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Chapter 1

Introduction

1.1 Conformal metrics with constant scalar curvature and constant

boundary mean curvature

It is well known that the Yamabe problem is to find a metric conformal to the back-
ground one on a closed compact manifold such that its scalar curvature is constant.
This problem was solved by Yamabe, Trudinger, Aubin and Schoen. Analogous ques-
tions on manifolds with boundary are raised by many other researchers. Let us fix
some notations before stating the questions. Suppose (M,g) is a compact manifold
with boundary. R, is the scalar curvature of M under metric g and h, the mean cur-
vature of the boundary OM. Let [¢g] be the set of Riemannian metrics conformal to
g. J. Escobar extended the Yamabe problem to manifolds with boundary in [38], [37]
and [40]:

(a) Find g € [go] such that Ry is constant and hy, = 0 on the boundary. We call this

minimal boundary case.

b) Find g € |go]| such that R, = 0 and h, is constant on the boundary. We call this
( g g

scalar-flat case.

(c) Find g € [go] such that R, is nonzero constant and hy is nonzero constant on the

boundary.

Case (a) and (b) are studied by many papers, for instance, in [4, 15,26, 30, 38] for the
minimal boundary case, in [2,23, 37,65, 66] for scalar flat case. Case (c) is a mixed
version of the two previous cases, and therefore, shares the difficulties coming from

both cases.



The problem is equivalent to finding a positive solution to the following PDE:

4(n—1 nt2
—MAQOU + Ryou = cluntg, in M,
2n _82u n (1.1)
—— + hgot = coun—2 on OM
n—20v, % ' ’

where c1,co € R, Ry, is the scalar curvature, hy, is the mean curvature and vy, is
the outward unit normal on OM. Escobar initiated the investigation of this problem
in [36,40]. In the subsequent papers [49,50], Z. C. Han and Y. Y. Li proposed the

following (weak version) conjecture:

Conjecture 1.1.1 (Han-Li). If Y(M,0M) > 0, given any positive constant ¢1 and

any co € R, problem (1.1) is solvable.

They proved that the conjecture is true when one of the following assumptions is

fulfilled:
(a) n>5 and OM admits at least one non-umbilic point (cf. [50]);
(b) m >3 and (M, go) is locally conformally flat with umbilic boundary OM (cf. [49]).

Let us introduce some natural conformal invariants. The (generalized) Yamabe

constant Y (M,9M) is defined as

o Jy Redpg +2(n—1) [, hedo
Y(M,0M) := inf =M 975 oM 99

9€lgo] (fM dpig) n

Similarly, we define (cf. [37])

R,d 2n — 1 h.d
Q(M,0M) := inf S Rodpig +2(n n)72faM 9999
9€lgo] (faM dog)nt

It was first pointed out by Zhiren Jin (cf. [39]) that Q(M, M) could be —oo, meanwhile

Y(M,0M) > —oco. fY(M,0M) > (=)0, then there exists a conformal metric of gy with
zero scalar curvature in M and positive (zero) mean curvature on dM.! Furthermore,

Y (M,dM) > 0 if and only if Q(M, M) > 0.

'From [38, Lemma 1.1], there exists g1 € [go] such that Ry, > (=)0 and hy, = 0. Let ¢ be a

positive smooth minimizer of {fM(4(::21) IVl5, + Ry v*)dug, ;1 € H' (M, g1), [,,, ¥*dog, =1}, then

@4/("_2>

g1 is the desired conformal metric.



We remark that problem (1.1) is variational. The total scalar curvature plus total

mean curvature functional is given by

Elu] = /M(‘*g?—;)w@o + Rgyu?)dpgy +2(n — 1) /aM hgou?dog,. (1.3)

Given any a, b > 0, we define a conformal invariant on compact manifolds with boundary

by
Rydu, +2(n — 1 h.d
Yop(M,0M) = inf Jur gnlngr (n—1) [oas hodoyg _
90 0 ([ dptg) T+ 20— 1) (fyyy doy)
- lnf Qa,b[uL

O?éueHl(M,go)

where
Elu]
Q(z,b[u] = n—2 P o

2(n—1)

o (Jur ) ™ 200 = 10 (g 5, )

For n >3, let R? = {y = (y', -+ ,y") € R";y" > 0} denote the half space. The next
theorem gives a criterion for the existence of a minimizer for Y, ,(M,0M), which is

attained by subcritical approximations.

Theorem 1.1.2 ( [28]). Suppose Y, ,(M,0M) < Y, ,(R" ,R"™1) for some given a,b >

0, then Y, y(M,0M) can be achieved by a positive smooth minimizer.

In [6,7] Araujo also gave some characterization of critical points (including mini-
mizers) of E[u] under Escobar’s non-homogeneous constraint (cf. [40]).

In order to apply Theorem 1.1.2 in the case of Y (M, 9M) > 0, we need to construct
a global test function U(zo,e) as a small perturbation of a bubble function W, with
zo € OM and small € > 0, such that Qup[U(y0] < Yap(RE,R"). We would like
to mention some developments on the technique of constructing test functions in very
closely related works. In dimension n > 6, Brendle [14] initiated this technique of
constructing test functions through his study of the Yamabe flow. Subsequently Brendle
and S. Chen [15] developed it to study the Yamabe problem with umbilic minimal
boundary (i.e. ¢; € R,co = 0). Not long after that S. Chen [23] adapted the same

technique to scalar-flat and constant mean curvature problem with umbilic boundary



(i.e. ¢1 = 0,c2 € R). One of the key ingredients in Almaraz [2] and Almaraz-L. Sun [4]
is to extend such a technique to both the boundary dM has one non-umbilic point and
the case of lower dimensions 3 < n < 5. The correction term % in our test function (cf.
(2.50)) origins from the linearization of scalar curvature and mean curvature at a round
metric on a spherical cap, which has constant sectional curvature 4 (cf. Proposition

2.4.1).

We will use a notion of a mass associated to manifolds with boundary.

Definition 1.1.3. Let (XN, g) be a Riemannian manifold with a boundary ON. We say
that N is asymptotically flat with order p > 0, if there exist a compact set Ng C N and

a diffeomorphism F : N\Ny — R7\B; (0) such that, in the coordinate chart defined

by F (called asymptotic coordinates of N), there holds

1955 () — 6551 + |Wl10kgi; W] + |WI*1079:5 ()| = Oy ™P), as |y| — oo,
where i, j,k,l = 1,--- ,n, B (0) = B1(0) NR".

Provided that the following limit

n

; n—1

. y' Y

m(g) = lim / > (95— gjj,i)m do + / > Ina T do
{yeR"; ly|=R} =1 {yern=1; |y|=R} *=

exists, we call it the mass of (N,g). Moreover, m(g) is a geometric invariant in the
sense that it is independent of asymptotic coordinates. The definition of the mass m(g)

was first proposed by Marques. The following positive mass type conjecture was given

in [2,3].

Conjecture 1.1.4 (Positive mass with a non-compact boundary). If Ry, hy > 0,

n

then we have m(g) > 0 and the equality holds if and only if IV is isometric to R’}.
For n > 3, let d = [(n — 2)/2]. As in [2], we define

Z = {20 € OM;limsup dy, (z, 20)* W, (2)|4 = 0 and

Tr—T0

lim sup dg, (z, 70)" ~|7g, (2)]g, = 0},
Tr—T0



where Wy, denotes the Weyl tensor in M, 7y, the second fundamental form and 7,4, the
trace-free second fundamental form on M. Then Z only depends on the conformal
structure of gg, since W, and 7y, are both pointwise conformal invariants. In particular,
Z = OM when n = 3. Moreover, if the scalar curvature and the mean curvature are
integrable on M and M respectively and the decay order is p > (n — 2)/2, the mass
m(go) is well-defined. This is the case for g,, when zp € Z.

For zo € OM, let gz, € [go] be the metric induced by the conformal Fermi coordi-
nates around z¢ (cf. [65]). Denote by G, the Green’s function of conformal Laplacian

Gy = 0

of g5, with pole at xg, satisfying the boundary condition 8%0 Gao — ”T_zhgxo

on OM \ {zo} (cf. (2.51)). Let gy, = G%(nd)gl‘o. Now we are ready to state our main

result.

Theorem 1.1.5. Let (M, gg) be a smooth compact Riemannian manifold of dimen-
ston n > 3 with boundary. Suppose that M is not conformally equivalent to R’} . If

Y (M,0M) > 0, assume either OM\Z # 0 or m(gy,) > 0 for some xg € Z, then
Yau(M,0M) < Y, ,(R?, R™1).

We should point out that such assumptions on compact manifolds in Theorem 1.1.5
(or with some minor modifications) have been used in some closely related problems, for
instance, Brendle [14] for the Yamabe flow in dimension n > 6, S. Chen [23] and Almaraz
[2] for ¢; = 0,c2 € R, Brendle-Chen [15] and Almaraz-L. Sun [4] for ¢; € R,co = 0.

Recent advances in the above positive mass type theorem have played an important
role in such conformal curvature problems (cf. [2,3,71] etc.). As a direct consequence

of Theorem 1.1.5 and the positive mass type theorem proved in [3], we obtain

Theorem 1.1.6. Let (M, go) be a smooth compact Riemannian manifold of dimen-
sion n > 3 with boudary. Suppose that M is not conformally equivalent to R} and

Y(M,0M) > 0. Assume that one of the following assumptions is satisfied:
(i) OM \ Z # 0;

(i) 3<n <7 orM is spin;



(iii) n > 8 and (M, go) is locally conformally flat with umbilic boundary OM .

Then given any a,b > 0, there exists at least one positive smooth minimizer uqy for
You(M,0M). Moreover, the conformal metric ui/b(nﬂ)go, modulo a positive constant

multiple, has scalar curvature 1 and some positive constant boundary mean curvature.

When Y (M,0M) > 0, Escobar proved in [40, Theorem 4.2] the existence of such

conformal metrics in Theorem 1.1.6 under one of the following hypotheses:
(1) 3<n <5
(2) OM has at least a nonumbilic point;

(3) OM is umbilic and either M is locally conformally flat or the Weyl tensor does

not identically vanish on OM.

Then we generalize the existence results to the cases including n = 6,7 or M is spin.
The remaining cases left by Escobar are the manifolds that are not locally conformally
flat and OM is umbilic, and Weyl tensor vanishes identically on OM and n > 6. Thus
our Theorem 1.1.6 also generalizes to this type of manifolds under the assumption
OM\Z # (). We next prove the compactness of the minimizers for Y; (M, 9M) when
(a,b) varies in a compact set K of {(a,b);a > 0,b > 0} \ {(0,0)}. We denote by M,

the set of positive smooth minimizers of Y, (M, M) with the normalization (2.15).

Theorem 1.1.7. Let K and M, as defined above. Suppose Y, y(M,0M) < Y, (R, R 1)
for all (a,b) € K, then there exists C = C(K, go) such that

C™' < uap <O, Nugpllezany S C, Y tap € Ugpyex Map-

It follows from Theorem 1.1.7 that in terms of normalized conformal metrics having
scalar curvature 1, there exits a sequence of such conformal metrics such that their
constant boundary mean curvatures go to +00. We refer the details to the end of Section
2.3. In contrast with our result, the constant mean curvature of such a conformal metric
in [40, Theorem 4.2] only admits a small real number. Indeed, the smallness of b € R in

a conformal invariant G, (M) (see also Section 2.1) is very crucial in the proof of [40].



Remark 1.1.8. When Y (M,0M) < 0, as a direct consequence of [27, Theorem 1.1],
there exists a conformal metric such that its scalar curvature equals —1 and its boundary

mean curvature equals any negative real number.

1.2 Yamabe flow on compact manifolds with boundary

Let M™ be a closed manifold with dimension n > 3. In order to solve the Yamabe
problem (see [85]), R. Hamilton introduced the Yamabe flow, which evolves Riemannian
metrics on M according to the equation

9 _
ag(t) = —(Ryt) — Rgr))9(t),

where R4 denotes the scalar curvature of the metric g and Rg stands for the average

< /M dvg> B /M Rydv,.

Here, dv, is the volume form of (M, g). Although the Yamabe problem was solved using
a different approach in [8,74,81], the Yamabe flow is a natural geometric deformation
to metrics of constant scalar curvature. The convergence of the Yamabe flow on closed
manifolds was studied in [31,77,87]. This question was solved in [13, 14] under the
hypotheses of the positive mass theorem.

In this work, we study the convergence of the Yamabe flow on compact n-dimensional
manifolds with boundary, when n > 3. For those manifolds, J. Escobar raised the ques-
tion of existence of conformal metrics with constant scalar curvature which have the
boundary as a minimal hypersurface. This problem was studied in [15, 39, 67]; see
also [5,49,50].

We are interested in a formulation of the Yamabe flow for compact manifolds with
minimal boundary proposed by S. Brendle in [12]. This flow evolves a conformal family

of metrics g(t), t > 0, according to the equations

0 _
6tg( ) (Rgt) — Rgr))g(t), inM, L4
Hy) =0, on oM .

S. Brendle proved that



Theorem 1.2.1 ( [12]). Suppose that:
(i) Y(M,0M) <0, or
(ii) Y (M,0M) > 0 and M is locally conformally flat with umbilic boundary.

where Y (M,0M) is defined in (1.2). Then, for every initial metric g(0) on M with
minimal boundary, the flow (1.4) exists for all time t > 0 and converges to a constant

scalar curvature metric with minimal boundary.

Inspired by the ideas in [13, 14], we handle the remaining cases of this problem.

Define
Zy = {xo € M\OM ; limsup dgo(ac,aco)Q_d\Wgo(x)\ =0},
T—T0
Zon = {xo € OM ; limsupdy, (x,xo)Q*d]Wgo (x)| = limsup dg, (x,a:o)lfdﬁrgo ()] =0},
T—T0 T—T0o

and Z = ZyUZsy,
Our first result is the following:

Theorem 1.2.2. Suppose that (M™, g) is not conformally diffeomorphic to the hemi-
sphere ST and satisfies Y (M,0M) > 0. If

(a) Z=10, or

(b)n <7, or

(c) M is spin,
then, for any initial metric g(0) on M with minimal boundary, the flow (1.4) exists for
all time t > 0 and converges to a metric with constant scalar curvature and minimal

boundary.

Since the round sphere S™ minus a point is diffeomorphic to R™, which is spin, the

following is an immediate consequence of Theorems 1.2.1 and 1.2.2:

Corollary 1.2.3. If M C S™ is a compact domain with smooth boundary, then the
flow (1.4), starting with any metric with minimal boundary, exists for all time t > 0

and converges to a metric with constant scalar curvature and minimal boundary.



Condition (a) in Theorem 1.2.2 is particularly satisfied if the Weyl tensor and the
trace-free second fundamental form are nonzero everywhere on M\OM and OM re-
spectively. Conditions (b) and (c) allow us to make use of the positive mass theorem
in [73,75,83] and its corresponding version for manifolds with a non-compact boundary
in [3].

Before stating our main result, from which Theorem 1.2.2 follows, we need the Pos-
tive mass theorem on manifolds with boundary, see definition 1.1.3 and the theorem
in [3]. The asymptotically flat manifolds used in this work are obtained as the gen-
eralized stereographic projections of the compact Riemannian manifold (M, gg) with
nonempty boundary. Those stereographic projections are performed around points
xo € M by means of Green functions G, with singularity at z¢. After choosing a new

background metric g, € [go] with better coordinates expansion around z (see Section
4

3.2), we consider the asymptotically flat manifold (M\{zo}, u,), where Gzy = Gy > gup
satisfies Rg, =0 and Hs, =0. If zg € Zyps, according to Proposition 2.4.14 below,
this manifold has asymptotic order p > "7_2, so Conjecture 1.1.4 claims that m(gy,) > 0
unless M is conformally equivalent to the unit hemisphere. If ¢y € Zj;, this manifold
has asymptotic order p > ”T_Q (see [14, Proposition 19]), so the positive mass theorem
prove by Schoen and Yau claims that mapas(gz,) > 0.

Our main result, which implies Theorem 1.2.2, is the following:

Theorem 1.2.4. Suppose that (M™, go) is not conformally diffeomorphic to the unit
hemisphere S* and satisfies Y (M,0M) > 0. Assume that mapn(ge,) > 0 for all
xo € Zp and m(Gy,) > 0 for all xg € Zypr. Then, for any initial metric g(0) with
minimal boundary, the flow (1.4) exists for allt > 0 and converges to a constant scalar

curvature metric with minimal boundary.

The proof of Theorem 1.2.4 follows the arguments in [13]; see also [2]. An essential
step is the construction of a family of test functions around each point x¢g € M, whose
energies are uniformly bounded by the Yamabe quotient Y (S™) if 9 € M\OM, and
by Q(S%) if xg € OM. If xy € M\OM, the test functions used are essentially the ones

introduced by S. Brendle in [14] for the case of closed manifolds. If zy € OM, the
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functions used here were obtained in [15] in the case of umbilic boundary, where the
authors address the existence of solutions to the Yamabe problem for manifolds with
boundary. In this work, however, we estimate their energies without any assumption
on the boundary.

An additional difficulty in controlling the energy of interior test functions by Y (S™)
arises when their centers get close to the boundary (see Subsection 3.2.3). In this case,
the techniques in [14] cannot be directly adapted because the standard (and symmetric)
bubble in R", which represents the sphere metric and is essential in the construction
of the test functions, does not satisfy the Neumann boundary condition unless it is
centered on JR’”. However, here we are able to exploit the sign of this Neumann

derivative, when centered in R’'\OR"}, to obtain the necessary estimates.

1.3 Classification theorems for the polyharmonic equation

In the classical paper [16], Caffarelli-Gidas-Spruck established the asymptotic behavior
n+2

for local positive solutions of the elliptic equation —Au = n(n — 2)un=2, n > 3, near

an isolated singularity. Consequently, they proved that any positive entire solution of

the equation has to be the form

n-2
<1+/\2|)\3:—a:02> ’ for some A > 0, xg € R™.

Particular interests of the above equation lie in its relation to the Yamabe problem (see

Lee-Park [56]). Such Liouville type theorem has been extended to general conformally

invariant nonlinear equations; see Lin [63] and Wei-Xu [82] for higher order semi-linear

equations, Chen-Li-Ou [25], Li [58] and many others for integral equation, as well as

Li-Li [57] for fully nonlinear second order elliptic equations.

Li-Zhu [62] and Ou [69] independently proved that any positive solution of
—Au(z,t) =0 in RT™ :=R" x (0, 00), (1.5)
—Ou(z,0) = (n — 1)u%} on ORH, (1.6)

where n > 2, has to be the form

n—1

)\ 2
A R". 1.
<A2yx—xo\2+(ms+1)2> » A>0.20€ (1.7)
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Throughout the thesis OR’™" does not contain the infinity. See also Beckner [9] and
Escobar [35] if u is an extremal of the sharp Sobolev trace inequality, and Li-Zhang [61],
Jin-Li-Xiong [53] and references therein for related results. The isolated singularity
problem has been studied recently by Caffarelli-Jin-Sire-Xiong [17], DelaTorre-Gonzélez
[33] and DelaTorre-del Pino-Gonzalez-Wei [32] as a special case. The nonlinear problem
(1.5)-(1.6) arises from a boundary Yamabe problem or Riemann mapping problem of
Escobar [37], sharp trace inequalities, nonlinear Neumann problems (see Cherrier [30]),
and etc.

By the work Feffermann-Graham [41], Graham-Jenne-Mason-Sparling [47], and
Graham-Zworski [48], there defines a class of conformally invariant operators on the con-
formal infinity of Poincaré-Einstein manifolds via scattering matrices. Such conformally
invariant operators define fractional Q-curvatures. By the work Caffarelli-Silvestre [18],
Chang-Gonzélez [21], Yang [86] and Case-Chang [20], the boundary Yamabe problem
mentioned above is the constant first order @-curvature problem. If one considers the
constant odd order @QQ-curvature problem on the conformal infinity of Poincaré ball or
hyperbolic upper half space, it will lead to study positive solutions of nonlinear bound-
ary value problem of polyharmonic equations

A™y(z,t) =0 in R, (1.8)

n+(2m—1)

O A*u(z,0) =0, (=1)"9A™ u(z,0) = ur—Cn=1  on IR, (1.9)

where 2 < 2m < n + 1 is an integer, k = 0,1,...,m — 2. One may view (—1)"9;A™ !

as (—0)(—A)m 1t~ (—A)%(—A)mfl. Hence, the above problem connects to

2m—1 n+(2m—1)

(=A) 2 u=un-Cm-0) in R". (1.10)

However, we will see that (1.8)-(1.9) admits more solutions. Since we do not assume u
to be a minimizer or belong to some Sobolev space of ]RT};H, there is no information of
u near the infinity.

We are able to classify solutions of problem (1.8)-(1.9) and the subcritical cases.
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Consider
. 1
A"z, t) =0 in R
O AFu(z,0) =0 on 8R7}r+1, k=0,1,...,m— 2, (1.11)
(=)™, A™ tu(z,0) = uP on IR,

where 2 < 2m < n + 1 is an integer and 1 < p < % We will show the

nonnegative solutions of this problem are the composition of the following ”bubbles”

and some polynomials

n—2m+41
2

tQm—l A
Ugo N(X) = c(n,m — ( > dy 1.12
MO =) [ (T, e (112)

where xo € R™ and A > 0 and ¢(n,m) > 0 is some normalizing constant. The presence

of polynomial part is a new phenomenon. More precisely

Theorem 1.3.1. Let u > 0 be a C?™(R U 9RM) solution of (1.11). In case of that
m is even, we additionally suppose that u(z,t) = o((|z|* + t2)2m2_1) as 2 + 2 — oo.

Then

(i) Ifp= %, we have

m—1
u(w,t) = Uy (x,t) + Y 2" Poy(a),
k=1

where Uy, » is defined in (1.12) for some z¢p € R™ and A > 0, and Py(z) is a

polynomial of degree < 2m — 2 — 2k satisfying liminf, _, Pyr(x) > 0.

n+(2m—1)

n—(zm—1)’ We have

(i) fl<p<

-1
u(z,t) = tQkng(m),
1

3

e
Il

where Pyop(z) > 0 is a polynomial of degree < 2m — 2 — 2k.

Remark 1.3.2. For m = 1, Uy, » defined (1.12) equals (1.7) up to a constant. For m = 2,

we have

n—3 n—1

A = A N
Peodl ) =) ((1 AT+ N — xoP) Hetmn = ((1 M)+ X mlz)

with C(n) = [2(n — 3)(n% — 1)]"5".
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Remark 1.3.3. If m is even and the growth condition is removed, there is another class

of solutions

a

1
@ pmely gy >0, 1.1
2m —1)! tar, a0 (1.13)

Hy(x,t) =

We conjecture that for even m, all solutions have to be

m—1 m—1
t?* Py () + Hy(x,t)  or t2F Py () + Ugo 2 (2, 1)
k=1 k=1
if p= ngzj, while only the former expression can happen if 1 < p < Zt%%j

By conformally transforming the upper half space to the unit ball, Theorem 1.3.1
implies that in the conformal class of the unit Euclidean ball there exist metrics with a
single singular boundary point which have flat Q)-curvature and constant boundary -
curvature. See Section 4.5 of the paper for more details. When m = 1, there is no such
metric which is singular on single boundary point because the polynomial part vanishes
and the bubble is smooth at the infinity. Hence, boundary singular metrics have at
least two singular points which is similar to the singular metrics on the unit sphere
of constant scalar curvature; see Caffarelli-Gidas-Spruck [16] and Schoen [76]. Other
possible applications of Theorem 1.3.1 would be seen in Jin-Li-Xiong [52], Li-Xiong [60]
and references therein.

The proofs of Theorem 1.3.1 for m = 1 by Li-Zhu [62] or Ou [69] rely on the
maximum principle in order to use the moving spheres/planes method. In contrast, for
m > 2 the elliptic operators have nontrivial kernels and thus solutions of (1.11) could
lose the maximum principle. To extract the kernels, we need to analyze the behavior
of u near the infinity. Due to the conformal invariance of equations, the m-Kelvin

transform u* of u with respect to the unit sphere satisfies (1.8) and
O AFu* (2,0) =0, (=1)"HA™  u*(2,0) = || Tu(x,0) in IR {0},

where £ = 0,1,....m —2, and 7 = [n+ (2m — )] — p[n — 2m — 1)] > 0. As
Caffarelli-Gidas-Spruck [16], Lin [63] and Wei-Xu [82] did, one may wish to show
|z|~"u*(z,0)? € L' near 0. However, since the linear equation itself would gener-

ate higher order singularities than the nonlinear term does, the methods of [16], [63]
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and [82] seem not to be applicable to m > 2. Even worse, this is wrong when m is
even; see for instance the m-Kelvin transform of H,, a > 0, in Remark 1.3.3. In fact,
the method of [16] is by constructing test function which is of second order equation
nature. And it is unclear how to adapt the ODE analysis procedure of [63] and [82]
to our setting without information about the possible kernels. As the initial step, we
prove that u*(x,0) belongs to L! (see Lemma 4.3.2), and then by a Poisson extension
we are able to capture the singularity generated by the linear equation. A Liouville
type theorem (see Proposition 4.2.1 and Theorem 4.2.2) for polyharmonic functions
with a homogeneous boundary data plays an important role. Our method of proof
of Theorem 4.2.2 is very flexible and can be easily adapted to polyharmonic functions
with other homogeneous boundary data. Next, by subtracting the linear effect we prove
|z|~"u*(x,0)P € L', where the growth condition is assumed if m is even. In this step a
new method is developed. In particular, if p is less than the Serrin’s exponent n_+m+1
we have to spend extra efforts. By a Neumann extension of |z|™7u*(z,0)? and making
use of a boundary Bocher theorem (see Corollary 4.2.4), we prove a crucial splitting
result for u; see Proposition 4.4.1. It captures the polynomials Zzl;f t2kP2k(f1:) and im-
plies the maximum principle for v(z,t) := u(z,t) — 2“;11 t2k Py, () which is completely
controlled by the nonlinear effect. Since v(x,0) = u(z,0), v satisfies a nonlinear integral
equation. By Chen-Li-Ou [25], Li [58], or Dou-Zhu [34], v(x,t) is then classified.

Our method of proof of Theorem 1.3.1 can be applied to constant fractional Q-
curvature equation on the conformal infinity of hyperbolic upper half space, and can
be applied to multiple nonlinear boundary conditions; see Chang-Qing [22], Branson-
Gover [11] and Case [19] for the discussions of other conformally invariant boundary

operators.

If 2m =n+1, (1.9) will be replaced by
A u(z,0) =0, (—1)mJA™ u(z,0) = M=Vt on GRU (1.14)

and u is not necessarily positive. When m > 2, in order to have a classification theorem
one has to assume that (i) [p, eCm=Du(z.0) < oo (i) |u(z,0)] = of|z|?) near the

infinity, (iii) certain growth conditions on wu(z,t) near the infinity. See, for instance,
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Jin-Maalaoui-Martinazzi-Xiong [54] and references therein on why (i) and (ii) can not
be dropped. Given (i), (ii) and (iii), one can prove a splitting theorem like Theorem
1.3.1 easily by the Bocher theorem (see Corollary 4.2.4) and Xu [84]. We decide not to
pursue it in this thesis.

Finally, we remark that there have been many papers devoted to Liouville theorems
for nonnegative solutions of nonlinear polyharmonic equations with the homogeneous
Dirichlet boundary condition or homogeneous Navier boundary condition; see Reichel-
Weth [72], Lu-Wang-Zhu [64], Chen-Fang-Li [24] and references therein, where they
proved that O is the unique solution.

Now, we describe briefly the content of each chapter: In Chapter 2, we will discuss
the existence of conformal metrics with constant scalar curvature and constant mean
curvature, which is a part of the paper [28]. In Chapter 3, we will discuss the Yam-
abe flow with minimal boundary condition in [4]. In Chapter 4, the classification of
polyharmonic equation with conformally invariant boundary condition is considered as

in [80].
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Chapter 2

Conformal metrics with constant scalar curvature and

constant mean curvature

In this chapter, we will explain the work included in [28].

2.1 Preliminaries

Let Tt be a negative real number, it follows from the classification theorem in [62] that

all nonnegative solutions to the following PDE
(2.1)

must be either v = 0 or v(y) = W(y) (up to dilations and translations in variables

1 n—l)

Y, LY , where

W 1T
) = (1 + |y — Tcen!2>

and e, is the unit direction vector in n-th coordinate. In particular, we set

n—2

2—n € 2
Wely)=ez W(ely) = ,Ve>0, 2.2
=W = (o) Ve (22)

which satisfy (2.1) and are also the extremal functions of the associated Sobolev in-
equality induced by Y, (R, R" ") (cf. [36, Theorem 3.3] or Lemma 2.2.5 below).

For each fixed a,b > 0, any positive minimizers of Yy (M, 0M) satisfy

2
4 -1 2n_ T on42 .
_(T?_Q)Agou + Rgou = p(M)a (/M u"_zdﬂgo> unr=2 in M,
2.3
2 ou 2(n—1) Tn=1  _n_ ( )
n—2%+hg°u:M(M)b aMu =% dog, un—2 on OM,
0

where (M) =Yy (M, 0M).
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When (M, go) = (R}, grn ), problem (2.3) is equivalent to the solvability of positive

solutions to

_2
4(n—1 n "on
R

n—2 n
+

1
2 0 2(n—1) Thn-1 n
— T b / u 2 do w2 on R" 1,
n — 2 0y" Rn—1

where = p(R%) = Yo ,(R%,R™1). A simple but vital observation is that if u is a

(2.4)

smooth positive solution to problem (2.4), so is c.u for all ¢, € R;. Hence all positive

solutions to problem (2.4) are in the form of, up to dilations and translations in variables

n—2
1 5
ey | —————
(1 + |y — TcenP)
for all ¢, > 0 and some T, < 0 depending on n, a,b. We choose ¢, = 1 hereafter, namely,

for this fixed T, < 0, the associated function

1 52
W = <1 +ly - Tcenlz)
is a positive solution to both problems (2.1) and (2.4).
Denote by a mapping 7 : S"(T.e,) \ {Tee, + €1} — {€ + Tee, € RPTL L =
0} ~ R" the stereographic projection from the unit sphere S(T.e,) in R"*! centered

at Tce,. Then for y € R'}, we set { = 77 (y) € 8™, namely (see also [50, (3.1) on page

831])
2%
fa:Tnysen\Q’ for 1<a<n-—1,
2T
1+|y_Tcen|27
€n+1 — ‘y - TCen|2 —1
1+|y_Tcen|2‘

Let X be a spherical cap (cf. Figure 2.1) equipped with a round metric igsn, where ggn

is the standard metric of the unit sphere S™(T.e;,). Then a direct computation shows

1

HE s = (17

1+ |y — T.e,|?

4

2
) grr = W (y)"=2grn.
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Denote by w,_1 the volume of the standard unit sphere in R™. Define

n (n—1)
A= W(y)%dy and B = I/V(y)znf21 do.
A Rn—1
Notice that A, B only depend on n,T,. Using (2.1) we get
/ VW (y)|2dy = n(n — 2)A — (n — 2)T.B. (2.5)
R%

Recall that, from [36, Theorem 3.3] that Y, (R, R"™!) can be achieved by W with
some T, (up to dilations and translations in variables y',--- ,%"!) modulo a positive

constant multiple. Comparing (2.4) and (2.1), as well as the above comments, we have

n—2
4(n—1)

n —

2. 1
5 bB™ 71 = —(n —2)T¢,

aA"n = nn—2), p

I

whence
—aA T, = 2n(n — 1)bB_ﬁ.

Indeed we will establish that each pair of a,b > 0 corresponds to a unique 7T, satisfying

the above identity.
Lemma 2.1.1. Given any a,b > 0, there ezists a unique T, € (—00,0) such that
—aATRT, = 2n(n — 1)bB w1, (2.6)

In particular, T, is a continuous function of (a,b) € Ry x Ry. Moreover, for such a W

satisfying (2.4) with the above unique T, , there holds

Y p(RY, R = dn(n — 1)atAn = 9T b 1B,
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. —T. s
Proof. Let cosr = \/@,T‘ € (0,%), then A and B turn to
A(r) = wnl/ (sinT)"Ydr, B(r) = wy_1(sinr)"" L (2.7)
0

Then equation (2.6) is equivalent to finding some 7 € (0, §) such that
flr):=2n(n— 1)bA%B_ﬁ —acotr =0.
First it is easy to verify that
lim f(r) = —oco and lim f(r) = constant > 0.

\0 r/5

Next we claim that f(r) is increasing in (0, 5). To see this, we have

d 12 2 A 1 B
—log(B nTAn) =2 _ —
dr o8 ) nA n-1B
! 2(sin7")" cosr/r(sin )" td
= — - T T|.
sinr [ (sin7)"~1dr |n 0

Observe that

‘s a
1
COST/ (sinT)”_ldT < / (silaT)”_1 cosTdT = —(sinr)".
0 0 n

This implies (B_ﬁA%)(r) is increasing in (0, 5 ), as well as is f(r). Hence we conclude

that there exists a unique r € (0, §) such that f(r) = 0, namely there exists a unique
T. < 0 satisfying (2.6).

By [36, Theorem 3.3], (2.5) and (2.6), we get

4(:—_21) fm VW [*dy

Yo p(RY, R =

aA"T 4 2(n — 1)bBA=t
_4n—1)n(n—-2)A—(n—-2)T.B
n=2 A" 4 2n— 1B

2 1 _1 1
=4dn(n —1)Ana™ " = —2B»1T,b . (2.8)

In terms of the variable T¢, from (2.7) that A(T.) is increasing in (—o0,0). One may
regard T, as a function of (a,b). Indeed one can show that Y, ,(R", R""1) is continuous
in (a,b) € Ry x Ry (see e.g. Proposition 2.3.1 below). From this and the third identity
in (2.8), we get A is a continuous function of (a,b). Hence we conclude that T, is a

continuous function in (a, b). O
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From now on, we fix 7, < 0 as the unique one in Lemma 2.1.1 without otherwise
stated. In [40], Escobar introduced a conformal invariant by G, = inf{E[u];u € Cy 4},

where a > 0,b € R and

2(n—1)
Cos={ue €000 [ uPFdug, +0 [ u oy, =1}

He established that G, (M) < Gap(R’) holds for any compact Riemannian manifold

with boundary. By similarly constructing a local test function as a perturbation of
W, under the Fermi coordinates around a boundary point, one can mimick the proof
of [40, Proposition 3.1] to show Y 5(M,dM) < Y 5(R,R"1). Since it is more or less

standard to the experts in this field, we omit the details here.

2.2 Existence of minimizers

The purpose of this section is to establish the following Theorem.

Theorem 2.2.1. Suppose Yo ,(M,0M) < Ymb(Rff_,R”_l) for some given a,b > 0, then

Yo5(M,0M) can be achieved by a positive smooth minimizer.

We adopt the method of subcritical approximations to realize it. For 1 < ¢ < %a
we define
Eful
a (Jar lul*dugy) Ty 2(n—1)b (faM IU|qzﬁngo> =

for any u € H'(M, go). Notice that Qg »[u] always has a lower bound when Y (M, 9M) >

0, we set
= inf ¢ ().
Ha Oiue}{nl( M,go) me[U]
For brevity, we use ji(ny2)/(n—2) = Ya,p(M,0M) and Q (n+2)/(n= 2)[ ] = Quplul.
Lemma 2.2.2. Given a,b > 0, there holds lim SUP, snt2 flg <Y, p(M,0M). Moreover,

if Y(M,0M) = 0, there holds lim sns2 p1g = Yo 5(M,0M).

n—2
Proof. For any € > 0, there exists @ > 0 such that Qg [u] <Y, ,(M,0M) + €. For each
u, there holds lim, ni Qu ylu] = Qqplu]. Then we have

lim sup pg < hmsup Qaplt] < Yop(M,0M) + €
0/ /75
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which gives the first assertion. If Y/ (M, M) > 0, then E[u] > 0 for any u € H' (M, go).

Notice that

2 4
Q+2 q+1 3
. (fM|u] dugo) 4 2(n—1) (faM\u| dago)q+
Qa,b[u] = a,b[u] ne2 n-2"
2n_ e 2(n—1) n—1
a (fM |ufn=2 dﬂyo) +2(n—1)b (faM | =2 dUgo)
Hence the second assertion follows by Holder’s inequality and letting ¢ Z—fg O

Remark 2.2.3. We point out that there also holds lim 2 pg = Yo5(M,0M) when

n—2

Q(M,0M) is a negative real number (cf. [27, Remark 7.1]).
Again thanks to [27], it is enough to prove Theorem 2.2.1 when Y (M,0M) > 0

Lemma 2.2.4. Let (M, go) be a smooth compact Riemannian manifold of dimension

n>3. Let2<p< ( ) , then given any € > 0, there exists C = C(n, M, go) > 0 such

2
b C
(/ \@!pdago> Se/ \Wf,odugﬁ/ @ dpig,
OM M € Jm

for any ¢ € H'(M, go).

that

Proof. By negation, there exist some ey > 0 and {¢;;j € N} C H'(M, go) such that

2
1= </8 |‘:0J| dggo> > 60/ |VSDJ d:ugo / d#go

From this, {¢;} is uniformly bounded in H'(M, go) and [}, gp?d,ugo — 0 as j — oo.
Then up to a subsequence, p; — ¢ weakly in H!(M, go), p; — ¢ strongly in L?(M, go)
and LP(OM, go) as j — oo. Notice that ¢; — 0 in L?(M, go) as j — oo. Thus we obtain

¢ =0 a.e. in M, which contradicts [y, [¢[Pdog, = limj ;00 [, [@jPdog, = 1. O

Lemma 2.2.5. Let (M, go) be a smooth compact Riemannian manifold of dimension

n > 3 with boundary. Given a,b > 0, then

(i) Let ¢ € C°(R7T), there holds

n—2 n—2

2n " 2(n—1) n—1
a / lp|»—2dy +2(n—1)b (/ || =2 da)
R‘i Rn— 1

1 4(n—1) 9
< Vol*d
~Y, (R R) 2 /Rn| #l dy,

+




22

equality holds if and only if ¢(y) = W(y) up to dilations and translations in

variables y',--- ,y" L.

(7i) Suppose ¢ is a smooth function with compact support in a coordinate neighborhood

B,(z0) N M, then ¥ € > 0 there exists po such that p € (0, po),

_2n_ n;2 2(n—1) Zj
a </ Ison—Qdug()) +2(n—1)b (/ lp| =2 dago>
M oM

l+e  4(n—1) / )
< d
o a,b(RtLHRn_l) -2 M ’v30|go Hao:

n

where pg is independent of xq.
(i4i) Given € > 0, there exists C(€) such that for every ¢ € H' (M, go)

2n_ n;Q 2(n—1) Zj
a (/ |p| =2 d,ugo> +2(n—1)b (/ lp| =2 dago)
M oM

Lo w0 oo [
< .
—Ya,b(Rﬁ, R'fl—l) n—2 /M |v80|god,ugo + C(E) . © diu“go

Proof. Assertion (i) is a direct consequence of [36, Theorem 3.3] and [62, Theorem 1.2].

Indeed (ii) and (iii) can be proved by a cut-and-paste argument.

(ii) Note that go is Euclidean in B,(zo)NM up to order two under normal coordinates
around xg € M or order one under the Fermi coordinates around xy € OM. Then the
inequality follows from (i) for every ¢ compactly supported in this coordinate chart.

(iii) Choose a finite covering of M by local coordinate charts, each of which satisfies

the condition of part (ii). Through an argument of a partition of unity subordinate to

this covering, the desired Sobolev inequality follows (e.g. [8]). O
Lemma 2.2.6. Forany 1 < q < Z—f%, there exists a positive smooth minimizer u, for
Hq-

Proof. Let {u;} C HY(M, go) be a minimizing sequence of nonnegative functions for s,

with the normalization:

q+1 q% =B ﬁ ;
a </ u; d,ugo> +2(n—1)b </ u; dago> =1vVieN
M oM

It is routine to show wu; is uniformly bounded in H'(M,gg). Up to a subsequence,

u; — uy in H' (M, go) and u; — u, in LY (M, go) and LUT3)/2(OM, go) as i — oc.
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Thus we obtain

a / ugd " dpg, +2(n—1)b / ug? dog, =1 (2.9)
M oM

Then it follows from Lemma 2.2.4 and (2.9) that

/M ul™dpg, > Co > 0. (2.10)

(q+3)/2d

Next we claim that faM Ug 04, > 0. By contradiction, if u, = 0 a.e. on OM,

namely u, € H} (M, go), then it yields

. Elv
pg = Elug] = qu J P
0FveHy (M.g0) g (J"M |U|q+1dugo) g+l

Thus the nonnegative minimizer u, € H(M, go) weakly solves

4(n—1
—(n2)Ag0v + Ry,v = ,uqa%lvq in M,
n—
v =0 on OM.
vy,

Hence a contradiction is reached by using Hopf boundary point lemma and (2.10).
Consequently u, is a nonzero, nonnegative minimizer with normalization (2.9) for

pq- Then u, € HY(M, go) weakly solves

1—gq
4n—1 1tq )
_(71_2)Agouq + Ryyug = pga </ ug‘f'ld'ugo) ug in M,
9 M —y (2.11)
2 Ou L ¥ gt
n—2 ani + hgotlq = pigb (/aM uZ* d090> Ug? on OM.

Then the strong maximum principle gives u, > 0 in M. Furthermore, a regularity

theorem in [29] shows u, is smooth in M. O

Proof of Theorem 2.2.1. From Lemma 2.2.6 that for each 1 < g < 2+2 | there exists

n—27
a positive minimizer u, € H'(M, go) with the normalization (2.9), which solves (2.11),
namely for all v € H'(M, go),

A(n —
/ <(nl)<vuq’ v¢>go + Rgouqﬂ)) dprgy + 2(n — 1)/ hgougibdog,
M oM

n—2

g+1
Sy [aaq / ultpdpig, + 2(n — 1)b, / g wdago] =0, (2.12)
M oM
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. It follows

1— 1+
where o = ( [y ud! dug())( 9)/(1+q)

3)/2 (1-q)/(a+3)
; Bg = (faM o / Ugo)

from Lemma 2.2.2 and (2.9) that wu, is uniformly bounded in H'(M,gp). Up to a
subsequence, u, weakly converges to some nonnegative function v in H WM, go) as g

Z%, and v weakly solves (2.3). Meanwhile, by Lemma 2.2.2 we get p1g — Y (M, 0M)

as q/l n+2

From Lemma 2.2.5, for any € > 0 there exists C'(¢) > 0 such that

an e 2(1-1) n
a (/ u;_Zd,ugO> +2(n—1)b </ ug"? dago>
M oM

4
/ IVl it +C(6) [ i,

“1y—1
< (Yo p(RY,R™) +€)ﬁ

By Holder’s inequality, we have

2 n—2

n—2 2
T gfl q+1 2n_ n
</ ngg) (/ ugﬂdﬂgO) < (/ ug > d,ugo> ,
M M M
Ziﬁ_(;ﬁ q+3 ﬁ 2(n—1) Z—l
</ do'g0> (/ Ug? dago) < </ ug"? do'go> :
oM oM oM

By choosing ¢ sufficiently close to ”—"'2 and using the normalization (2.9), we get

1—c¢

<@ R 4 0 ) g+ [ i

—(Y, (R, R~ 4 <uq — /M Rgouldpig, —2(n — 1) /W hgo qdag0>
+0(0) [ uiduy

<R 4 200 (M0M) + € [ i,

where the last inequality follows from Lemmas 2.2.5 and 2.2.4. By choosing ¢ small

enough and the assumption Yy 5(M,dM) < Y 5(R%,R™™1), we get

/ ugdugo >C7 >0,
M

where (1 is independent of ¢q. So g is uniformly bounded, then after passing to a
subsequence we let @ = lim g mt2 O > 0. Meanwhile using u, — u in L*(M, go) as

q %’ we obtain

/ u?dpg, > 0. (2.13)
M
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Next we claim that with a constant C independent of g, there holds

2(n—1)
/ uq""? dog, > Cy > 0.
oM

By negation, there exists a sequence {u4} such that

qt3
lim Uq® dog, =0
¢~ A0go = U,
/22 Jom
. 2 . 2 _ . . . _
then we obtain [, u’dog, = lim, ns Jons tzdog, = 0, which implies u = 0 a. e. on

OM. On the other hand, for any v € H' (M, go), we get

R | uia =l
U Ogn | < U o +3 =0
o 9 o % L5 (Mg0) ’

as ¢ — oco. By letting ¢ Z—J_r% in equation (2.12), u weakly solves

Pa

An—1 .
—(n2)Agou + Ryt = aGY,,(M,0M)u—> in M,
—
B —2
8Vu + nTthu =0 on OM.
90

From (2.13), Hopf boundary point lemma gives u > 0 on OM. Hence we reach a
contradiction.
Consequently, after passing to a further subsequence, we let 0 < 3 = hmq ni2 By-
n—2

Furthermore, Fatou’s lemma gives

1

2n _% _ 2(n—1) T n—1
a < / un=2dpg, , B< / u =2 doy, .
M oM

Letting g Z—fg in (2.12), we obtain

/ <4(n—1)<v% V), + Rgo“w> dpgy +2(n — 1)/ hgoutpdoyg,
M\ n—2 oM

— Yo (M,0M) {aa/ u%gwdugo +2(n—1)bp u7£21/Jd0'g0:| =0, (2.14)
M

oM

for all » € H'(M, go). The strong maximum principle gives v > 0 in M. Test (2.14)

with u, it yields

Yo (M, 0M)

n _ 2(n—1)
Yo (M,0M) [a@ I u%d,ugo +2(n —1)bB [, u 2 dago]
n—2

2(n—1) n—1
+2(n—1)b (faM u 2 dago>

< Qa,b [U] = s

2n_ n
a (fM un=2 dﬂgo)

SYa,b(Mv aM)
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From this, we conclude that

1

2n_ _% _ 2(n—1) -1
a = / un—2 dlugo , ﬁ = / u n—2 do‘go
M oM

and Yy p(M,0M) = Qup[u] = E[u]. Then uy, — u in HY(M, go) as ¢ Z—fg and wu is

a positive minimizer for Y, ;(M, M) and weakly solves (2.3). The regularity of u can

follow from a theorem by Cherrier [29]. O

2.3 Compactness of minimizers for various (a,b)

For brevity, we denote by ugy the positive smooth minimizer of Y (M, 0M) with the

normalization
n—2 n—2
2n e 2(n—1) n—1
a </ ul'y? d,ugo> +2(n—1)b (/ u, b ? dago> =1 (2.15)
M oM
Under the conformal change of g = ui’/ b(n72) go, we have
) _z2
Ry = aY,,(M,0M) (/ U:,EQ d,ugo>
M
and

1

2(n—1) T hn—1
hg = meb(M, 6M) </ uaZ_Q dUgo) .
oM

Modulo a positive constant multiple, we get R, =1 and

b 2n_ = 2(n—1) -1
hy = NG Yoo (M,0M) </M uyy” d,ugo> </<9M U,y dago> . (2.16)

Let K be a compact set of {(a,b);a > 0,b >0} \ {(0,0)}.

Proposition 2.3.1. Assume Y (M,0M) > 0 and let (a,b) € K, then Yq,(M,0M) is
non-increasing in a for any fixed b, as well as in b for any fixed a, and is continuous in

K.

Proof. The proof is in the spirit of that of [40, Proposition 3.2]. For simplicity, we only
prove the assertions for a with fixed b, the others are similar. Notice that Y (M,0M) >
0, then Efu] > 0 for any u € H'(M, go). For 0 < a1 < ag, Ya, (M, 0M) > Yo, y(M,0M)

follows from

Qay plt] = Qayp[u] for any u € H'(M, go).
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Next we prove the continuity of Y, ,(M,0M) in K. Since Y (M,0M) > 0 we may
assume the background metric gg satisfies Ry, = 0 in M and hg, > 0 on M. Suppose
{(@m,bm);m € N} C K and (ap, bp,) — (a,b) € K as m — oo. We assume a > 0,b > 0
for simplicity. On one hand, given any € > 0, there exists a u € H'(M, go) \ {0} such
that Qg plu] < Yo, (M,0M)+e. For this fixed w, Qq,, b, [u] = Qqplu] as m — co. Then

lim Yg 4, (M,0M) < lim Q, . [u] = Qqplu] < Y,p(M,0M) + €.
m—o0 m—0o0

On the other hand, given any e > 0, for each (a,, by,) there exists u,, € H'(M, go)

BN 2n1) =
am (/ Uy ° dﬂg()) +2(n—1)by, (/ U~ dago> =1
M oM

such that Elun]| < Y, b,.(M,0M) + €.

with

Let 0 < aq¢ = inf,,, a;, and 0 < bg = inf,, b,;,. Then it follows from the monotonicity

of Y, (M, M) that

Yo b (M, OM) < Yy 4o (M, OM) < Yoy 4, (M, OM).

m,bm

From the above normalization of u,,, we get
4

(n—1)
n_2 |Vum’§od:“go = Elup] —2(n —1) hgo“?ndago
M oM

Yoo (M,0M) + €+ C / uZ,do gy < Yoo p0(M,0M) + C.
oM

This yields {uy,} is uniformly bounded in H'(M, go). Thus for all sufficiently large m,

an = 2(n-1) =
a </ Uy ° d,ugo> +2(n—1)b </ U d090> >1—e.
M oM

Consequently, we obtain

we have

amybm (M7 aM) + €
1—¢ 1—e¢

Yoy (M, OM) < Qupfum] < 2Ll Yo

for all sufficiently large m. ]

Lemma 2.3.2. Suppose Yo ,(M,0M) < Y, ,(R",R"™) for all (a,b) € K. Let uqy
be any positive smooth minimizer for Y, ,(M,0M) satisfying the normalization (2.15),

then there exists C = C(K, gg) > 0 such that

2(n—1)
/ g ypgy = C, / u,y? dog, > C, V(a,b) € K.
M oM



28

Proof. For a = 0, the desired assertions are guaranteed by [37, Proposition 2.1]. So in

the following we assume a > 0. Given any € > 0, by Lemma 2.2.5 it yields

Yo 5(M,0M) ™ Elug )

2n nT72 2(n—1) 27:%
=q </ un—2 dugo> +2(n—1)b </ U n—2 dago>
M oM

1 4(n —1
S(Ya,b(R17Rn 1) 1 —+ 6)5{]1_2) /M |Vua7b godﬂgo + C(E) /M uczz,bd,“gv

Since Y (M, 0M) > 0, we choose an initial metric such that Ry, > 0 and hg, > 0. From
Proposition 2.3.1 that Y, ;(M,0M) is continuous in K, then there exists ky > 0 such
that

m}%n{ya,b(Ria Rn_l) - Ya,b(Mv 6M))} 2 k‘(].

By choosing e sufficiently small, with a constant C' = C(kg) > 0 we obtain

/ ’vua,blgod:ugo < C/ U?L,bdﬂgo- (2.17)
M M

First we claim that V(a,b) € K, [, uibdugo > C1(K,go) > 0. Otherwise there exists
a sequence of minimizers w,, := uq,, p,, With (am,bn) € K such that f M u%d,ugo — 0,
then (2.17) gives ||um| g1 (ar,g) — 0 as m — oo, which contradicts the normalization
(2.15) of wp,.

Next we assert that V(a,b) € K, [, ui%fl)/(nd)dogo > C(K,gg) > 0. By nega-
tion, there exists a sequence of minimizers u,, = uq,,p, With (am,bn) € K such
that faM u%n_l)/(n_mdago — 0 as m — oo . Since K is compact, we may assume
(am,bm) = (a,b) € K and Eluy] = Y,, 5, (M,0M) — Y, ,(M,0M) by Proposition
2.3.1 as m — oo. Notice that Eluy| = Y, ,.(M,0M), it follows from Proposition
2.3.1 that wu,, is uniformly bounded in H'(M,go). Up to a subsequence, there hold

Um — u weakly in H'(M, gg) and

/M u?dpg, = lim u?, dpg, > Cy,

m—o0

2 . 2
u“do,, = lim uz dog, = 0.
90 m 90
/8M m=oo Jon
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This means v Z 0 and u = 0 a. e. on M. On the other hand, u,, satisfies

/ (MWum, Vh)go + Rgoum¢> dpg, +2(n — 1)/ hgoumipdog,
m\ n—2 oM

2(n—1) = n
= [2(n —1)b (/ U2 dago> / ugm 21pdog,
oM oM
2n_ _% n+2
+a (/ uﬁ@‘zdag(J) / um 2pdog,
M M

for all ¢p € H'(M, go). By Holder’s inequality and the normalization (2.15) for u,,, we

2(n—1) *ﬁ _n_
(/ U 2 dogo> / um 2pdog, — 0
oM oM

2n
b—1 _n_
/ gy Cdpg, — a?-7, as m — 00.
M

Yo, 0, (M, M) (2.18)

have

and

By letting m — oo in (2.18), u weakly solves

4n—1 n n
—(nz)AgOu + Rgou = an=2Yq (M, 8]\4)11"7tg in M,
n —_—
2 0
—u+h90u:0 on OM.
n — 20y,

Then Hopf boundary point lemma gives v > 0 on M. This yields a contradiction. [

Based on these preparations, we are now in a position to establish the following

compactness theorem

Theorem 2.3.3. Let K and My, as defined above. Suppose Yo p(M,0M) < Y, (R, R™1)
for all (a,b) € K, then there exists C = C(K,go) such that

C_l < Uq,b < 07 ||ua,b||C’2(M) < C, v Ug,b € U(a,b)eKMa,b

Proof. We only need proof the assertion for Y (M,0M) > 0 due to the same reason
of [27].

First we claim that there exits C' = C(K, go) such that u,, < C for any (a,b) € K.
By contradiction, suppose there exist sequences {(am, b );m € N} C K and {p,;m €

N} C M such that

T'm 1= Ugy, by (Pm) = MaxX Uq,, p,, () = 00 as m — 0.
xeM
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For brevity, we set w,, = uq,, p,,- Since M is compact, we may assume p,, — po € M
as m — 00.

2
If limyy, o0 dist gy (Pm, OM )72 = 0o, under normal coordinates around pg, near pg

there holds
(90)ij(x) = 655 + O(|z]?).
Observe that

4n—-1) 1 iy o
w3 s O/ Aet gog Ojtum) = Ryt + i = 0

in €2,, where

2
2n_ “n
G = Qm </ Uy ° d,ugo> Yo, b (M, OM).
M

2
Define p,, = pry, > and

2
vm(y) = r,_nlum(exppm (yrm"?)) for y € B, (0) C R™.

_ 2
Then v,,(0) = 1 and 0 < v,(y) < 1in B, (0). Let gm(y) = go(exp,,, (yrm"™?)),
4 2

Jm(y) = 1"~ Ryq (exp,, | (yrm"~2)). Then v, satisfies

n+2

dn—-1 1 8 .y _
; \/dt mr =—=Vm) = fmUm m#l_zzo
n—2 \/detgmayz( 9 gmﬁyﬂv ) = fmtm & A

in B, (0). As m — oo, there hold

(gm)ij = 0ij fm — 0in C1(K) for any compact set K C R™.

Since K is compact and from Lemma 2.3.2 that a,, is uniformly bounded, up to a

subsequence we get
(am,bm) — (a,b), @y — a, as m — oo.

From the W2P-estimate, [vm A (s, is uniformly bounded for any A € (0,1). Applying
Schauder interior estimates and the diagonal method to extract a subsequence from
{vm}, still denote as {v,,}, we obtain v,, — v in C**(K), as m — oo. Moreover v

satisfies

4(n—1)

Av—%fw%rg =0 in R".
n—2
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Notice that v(0) = 1 and 0 < v < 1, the strong maximum principle gives v > 0. From

Fatou’s lemma, we have

m—00

n 2n_ 2n
/ U%dz < lim inf/ v 2/ det gpdr < lim inf/ um 2 dtgy- (2.19)
" Bpm (0) m—roo M

Recall that

S

m— 00

2n -
a=aY,p(M,0M) lim </ u{;LQd,ugO)
M

It is not hard to show that if Y (M,0M) = 0, then Y, ,(M,0M) = 0 for any (a,b) € K.
If either a = 0 or Y/(M,0M) = 0, then a = 0. Then the strong maximum principle gives
v = 1. Using similar arguments in Lemma 2.3.2, one can show that wu,, is uniformly

bounded in H'(M, go). From this and (2.19), we have
2n
/ vr-2dx < C,

which contradicts v =1 in R". If Y(M,0M) > 0 and a > 0, then @ > 0. Observe that

n—2
n An —1 n e
EL/ vz dz :(n)/ |Vo|2dx = 2%aYa’0(R1,Rn_l) (/ vn22dx> . (2.20)

n—2

Together with Proposition 2.3.1, (2.19) and (2.20) give
Yoo(RE, R > Y, (M, M) >Y, ,(M,8M) > 22 Y,, (R%, R"),

which obviously yields a contradiction.

If limy,—so0 distgo(pm,aM)r#% < 0. Let X = (z},---,2"71) be the normal co-
ordinates of z € OM around py and v(X) := vy (X) be the unit outward normal at
x € OM. For small t > 0, expx(—tv(X)) : B (0) = Q, C M is a diffeomorphism, then
(x',--- 2"~ 1 t) are called the Fermi coordinates around pg. Without loss of generality,
we assume p;, € {2, and denote by p,, = expy, (—tmv(Xm)).

Under these coordinates, we have

4n—-1) 1 ’ . a2 .
p— \/m&'(\/det 9096 Ojum) — Rgoum + amuyy, > =0 in €,

2 Ou -
n_28T;Z+thum:bmum2 on 09, NIM,
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where

2
</ m 2d“90> Yamgbm (M7 aM)7

1

2(n—1) Th—1
( / o dago> Yo, b, (M, M)

2

Define p,, = pri 2 and
1 2 2
vm(X,t) = 1 um(expy, (— tonTm (er ~?))) in B;‘m(O).
Then vy, (0) = 1 and 0 < vy, (X, 1) < 1in B} (0). We set

2 _2

gm (X, 1) ZQO(QXPX (— tmTm" (er ))):

fm(X,t) :r;ﬁRgo(epr (—tmTm"™™ = (X2 ))),

2 2

B (X) =1, 2 hgo (Xrm"™2).

Thus v,, satisfies

4(n —1 nt2 .
(n = ) \/m i (v/det gmgm8 Um) — fnUm 4+ @mu 2 =0 in B;rm,
— 28tvm + AU — bmvﬁ =0 on D, .

Since r;, — 0o as m — 0o, we have
(gm)ij — (51']', fm, hm — 0 in Cl(f{)

for any compact set K C M Since K is compact and from Lemma 2.3.2 that a,,, b

are bounded, up to a subsequence we have
(am,bm) = (a,b), Gm — @, by — b as m — .

From W?P-estimate, ||v,,|| is uniformly bounded for any A € (0,1). Applying

CX(B},)
Schauder estimates and the diagonal method to extract a subsequence from {v,,}, still

denote as {vy,}, we obtain v,, — v in C>*(K), as m — co. Moreover v satisfies

A(n—1 e

(”Q)Awrawnﬁ —0 in R?,

n-2 (2.21)
—7—61}” 2 =0 on Rn—l.

ot
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Notice that v(0) =1 and 0 < v < 1, the strong maximum principle gives v > 0. Recall

that

m—o0

~ 2(n—1) Th—1
b=bY,,(M,0M) lim (/ m dag0> .

m—o0

2
2n_ n
@ =aY, (M, 0M) lim ( / ul dugo) ,

Fatou’s lemma gives

2n 2n_ 2n
/ vr—2dx < lim inf/ v 2/ det gpdr < lim inf/ w2 dpig,,
1 B+ m—00

m—00

2(n—1) 2(n=1)
/ v n—2 do < liminf \/det gmdo < liminf um 2 doyg,.
R" 1

m—0o0 D m—0o0
Pm

If Y(M,0M) = 0, then a = b = 0. Then the strong maximum principle gives v = 1
in R”. As above, we also get v € L?/("=2)(R"). Thus we reach a contradiction. If

Y (M,0M) > 0, testing with v in problem (2.21), we get

_ 2n ~ 2(n—1)
a/ vr-2dz + 2(n — 1)b/ v "2 do
i Rn—1

:4(”_1)/ |Vo|2dz
R%

n—2

n—2

2n_ " 2(n—1) Zj 1
=la / vr-2dx +2(n—1)b </ v 2 da) Y, s (R}, R"™7).
n Rn—1
+

Since a? +b% > 0 and Y/(M,0M) > 0 imply a* + b2 > 0, we have

You(M,0M) = lim Yy, 4, (M,0M) > You(RY, R,

which contradicts the assumption Y, (M, 0M) < Y, (R, R"1), V (a,b) € K
Finally based on the above upper bound, it follows from Lemma 2.3.2 and [2, Propo-
sition A-4] that V (a,b) € K, u,y has a positive uniform lower bound. Then Schauder

estimates give the C?-estimate of Ugp in K. O
As a byproduct of Proposition 2.3.1, there hold

lim Y, y(M,0M) =Yy, (M,0M), for any fixed b > 0,

a—0t

bh%l+ Yoo(M,0M) =Y, 0(M,0M), for any fixed a > 0.
—>
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From these together with Theorem 2.3.3, when Y (M, 0M) > 0 expression (2.16) shows
that the normalized conformal metric of scalar curvature 1 has positive constant mean

curvature, which runs in a large set of R.

2.4 Construction of test functions

In this section, we use the following notation: given any p > 0, let
BF(0) = B,(0)NRY;  d"Bf(0) = dBF(0) NRY;
D,(0) = 0B, (0)\0" B (0).

From now on, we assume Y (M,0M) > 0. Recall that d = [(n — 2)/2] when n > 3.
By the result of Marques [65], for each 9 € OM there exists a conformal metric
Gzy = ;1({(71—2)90 with fz,(x0) = 1. Suppose ¥, : B;p(()) — M is the gg,-Fermi
coordinates around xg, set z = U, (y) for y € B;;(O). Under these coordinates, there
hold det g,y = 1+ O(|y|?¥*2), (guy)ij(0) = 8;j and (gug )ni(y) = Oni, for any y € BQLP(O)

and 7,7 = 1,...,n. Let gz, = exp(h), where exp denotes the matrix exponential, then

the symmetric 2-tensor h has the following properties:
(

trh(y) = O(|y[***?), fory € B3,(0),

ha(0) =0, fori,j=1,...,n,
hin(y) =0, fory € B;rp(O), i=1,...,n, (2.22)
Oahpe(0) =0, fora,b,c=1,...n—1,

\22;11 yhap(y) =0, fory € D9y(0),a=1,..,n—1.

The last two properties follow from the fact that Fermi coordinates are normal on M.
Convention. In the following, we let a, b, c, - - - range from 1 ton—1and ¢, 7, k- - - range
from 1 to n. We adopt Einstein summation convention and simplify B, (0),0% B/ (0),
D,(0) by B}, 0" B, D, without otherwise stated.

Under these conformal Fermi coordinates, the mean curvature satisfies

1

hga, (z) =— mgabangab(x)

= 2(n1_1)<9n(10g det(gs,))(z) = O(|Jy[** ). (2.23)
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Let H;; be the Taylor expansion of h;; up to order d, namely

d
Hij =Y 0%hijy®,

|a|=1
where « is a multi-index and 0“h;; = 0“h;;(0). Then H satisfies (2.22) except the first

property replaced by trH = 0.

2.4.1 Linearization of scalar curvature and mean curvature

From (2.2) and (2.1), we get

n
n—2

1
W.0:0;W, — %aiweajwe == <W6AW€ - |vw6|2) 5 in R™.  (2.24)
Proposition 2.4.1. Let V' be a smooth vector field in M satisfying V,, = 0= 0,V, on

R where 1 <a<n-—1. Let
n—2 .
Y = VipOpWe + —— WedivV
2n
and
2 .

Sz'j = 8,V] + (%Vz — ﬁdIVV(Sij

be a conformal killing operator. Then we have

4 )
A +nln+ W) =

-1 We0;0;Sij + 0;(0;WeSy;) in RY (2.25)

and

n—2

Ot = 4(n—1)

1
Wlo,Wap = 5 OnWeSn + WedpSpn on RL (2.26)

n
n—2
Proof. The linearized equations (2.25) and (2.26) for scalar curvature and mean curva-
ture can be verified by direct computations in [14, Proposition 5] and [23, Proposition
5], respectively. Somewhat inspired by Brendle [14], we adopt a geometric proof of
these linearized equations. It involves the first variation formulae for scalar curvature
and mean curvature at a round metric of the spherical cap X.

Wj/(”—Q)

Let gx = grr be the standard spherical metric on ¥ of constant sectional

curvature 4, see also Section 2.1. We now consider a family of perturbed metrics of gs:

iz 4
W26t = ¢f (W, — th) "2 gmn), tER, (2.27)
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where ¢, is one-parameter family of diffeomorphisms on S™ generated by V. Differen-

tiating of (2.27) with respect to ¢ and evaluating at ¢t = 0, we get
4 4 .
Wen72S = EV(gE) — md}l/l/;_ ax. (228)

We remark that such a decomposition of symmetric 2-tensor is guaranteed by [10,
Lemma 4.57]. Recall that the first variation of scalar curvature (cf. [10, Theorem 1.174
(e)]) is given by:
R)(h) = —h*" Ry, + V'V¥hy, — Agtrg(h) (2.29)
for any symmetric 2-tensor h, where V indicates the covariant derivative of g.
On one hand, set g = €', there holds
nt2

—nte 4(n—1
R 4 =W, "? (—(n)AgEWG + RgEW€> .

WG n—2

Notice that det gg = 1 due to trS = 0, then

@ t:OAgEVVE - dt‘t:oal(e ]8JW€) - 81(57,]8]W€)

and (2.29) gives

d
a‘tZORgE = 8,0;8;;.

Thus we obtain

_4
R, (W/28) :i‘ R
t t=0 Weng
—nt2 f4(n —1
=W, "2 (E?_;@(Sijajwe) + OiajSijW6> . (2.30)

On the other hand, using (2.28) and (2.29), we have
R (Wi?S)=R (L R yw 2.31
gg( € ) - gz( V(gZ)) - gg(md} € 92)7 ( : )

where Ly (gy) denotes the Lie derivative of metric gy, along the vector field V. In

particular, it is routine to verify that

Ry (Lv(gs)) = 0. (2.32)
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It also follows from (2.29) that

Ry (0 )
= f 5 [—dn(n — W + (1 — n)Agy (W 1)

__dnzl) [4nW;1¢ +n(n—2)W Y+ We_zfgmp}

n—2
4(n—1) —nt2 4

i n-2 [n(n + 2)W 20 + Au}} . (2.33)

Putting (2.30)-(2.33) together, we obtain equation (2.25).

Next we need to show (2.26). Let v, be the unit outward normal on R" !, then

and
1 ab 1 ab _ni/ nny—1 J
hg == =797 e Vo Oh) = S99 (9™) 2 95Ty
1

=" Th(g") 2. (2:34)

From conformal change formula of mean curvatures, we get

d 2 —ﬁi’ oW, n-—2
¢ dt lt=0

— —hz . We ). 2.35
dt lt=0 WsﬁéE n—2 W, Ty e ) (2:35)

Observe that

oW, _ ~nn\—1/2~niq.
8V§E - (gE ) 9E 8ZW€’
then
d oW, 1 1
— = SniOiWe — =S 0nWe = =S5p,0, W, (2.36)
dt lt=00vg, 2 2

where the last identity follows from S,, = 0 on R" ! due to the assumption that

Vi, =0 = 0,V, on R"!. Recall that the Christoffel symbols of g are given by

a 1 ~ni ~ ~ ~
Loy = 595 [0(9E)ai + 0a(GE)ib — 0i(TE) ab)

then

di =, 1
A L

due to Sgn, = 0 on R™!. From this and (2.34), we get

1 1
ip = — 57— OnSaa = m

d
20 n O S 2.37
dt‘t:o e 2(n—1) (2:37)
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where the last identity follows from —S,,, = Sg, due to trS = 0. Plugging (2.36) and

(2.37) into (2.35), we obtain

d 2 - /1 n—2
— = We "2 20,WeSnn + ——WeDnSnn | - 2.38
dt lt=0 WeﬁgE n—2 (2 * 4(n—1) > (2:38)

On the other hand, using (2.28) we have
/ ﬁ / / 4 -1 n—1
hoe (W 2S) = by (Lv(93)) — hgz(m@uwe gs) on R" %, (2.39)
First we assert that

hys (Lv(gs)) =0 on R" L (2.40)

Next we compute

d 9 d L
a‘t:() (Ws_tw)ﬁgE B _m@‘tzo |:(W€ - tT/’) " 2877,(W€ - t¢)
2 o N
- O e e ) 2.41

Therefore from (2.38)-(2.41), equation (2.26) follows.
It remains to show assertion (2.40). Define

~

_4 _4
Sij = ﬁv(gz)ij = (Vkakwen_Q)éij + W2 ((%VJ + 6JVZ)

For brevity, we abuse g = gs, for a while. Since V,, = 0 = 0,V on R}, then Sun =0 on
R’ . Observe that
ny _ L onico a - . 1 -4 X )
( ab) = 59 (vbsia + vaSib - v’isab) = §W€ (vbSna + vasnb - vnsab)a
then

=AY 1 .
gab( gb>/ :WE n? [gabsna,b - iantrg(s)

_ 4 4 1 —-4_
:We no? |:We no Sna,a - §an(We no? Saa):| .
We compute
S’na,a :aagna - ijgia - Fgagm
= F?Las’ba - Fga‘gnn

A

_2 N
= — 2T W2 [Saa — (0 — 1)Shal,



where the last identity follows from

1 1 -4 4 2
F?La :Egbcangca = §WE n? 8nW€n72 5ab = 2TcW€n72 5ab7
n 1 nn 1 _ﬁ ﬁ %
Faa = - 59 ndaa = _§W5 O W 2040 = —2(n — 1)T¢:We

in view of (2.1). From (2.34), we have

n— 18" T

2 gnn

(n —1)(hg)' () = =5%ma +

From (2.24) we get

whence

4 4
an 8@ W€7L72 = |:

6 — 4.2
W0, W0, W, + 0,0, W.
n—2|n-—2
4 6 49 2 4
- W2 0, W.0,W. = 6T, W20, W2,

n—2n-2 ¢

~ _4 _4
OnSaa = Op [(n — 1) (VROpW2) + 2W. 2 8aVa]
4 4 _4
=(n — 1)(Va0n0 W™ + 0, Vi 0, W 2) + 20, W29, V,

2 4 4 6

=(n — DTWI 2 (6V,0,W 2 + 40, Vu, W ™2) 4+ 8T.W. 20, V.

Then we have

__4 __4 R __4
8n(We no? Saa) - WE ne2 anSa,a + 8TZW6 n? Saa
4

2 _4
=(n — D)T.We "2 (6V,0,W 2 + 40, V, W ?)

2 2,
+ 8T W 20, Vy — AT We ™% Sga.

Consequently, we obtain

_6_
_ TC—IWEn—2 gab(rnb)/

a
4 4

ZQ[Saa —(n— 1)§nn] +(n — 1)(3Va8aWem + 2anVnW€m)
_4_ N
+ AW 204V — 2844

~ _4_ _4 _4
= 92— 1)Spn + AW 20,V + (1 — 1) (3VaBa W2 + 20,V W),
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Putting these facts together and using 7., = —27.g45, we conclude that

_4 ~
(n— DT WS (hg)'(5)
N ~ _6
ZQSaa - (n - 1>S7m + Tcilwen_Q gab( Zb)/

4

N ~ _4 _4
=280 + (n— 1)Spn — (0 — 1)(3Va0a W2 + 20, V, Wi 2) — AW 28,V

_4 _4
—2 [(n ) (VaBW2) 2W€”*28ava}
_4 _4
Y (n—1) [(VaaaWE"-Q) n QWJ-QanVn}
_4 _4 _4
~ (1 — 1)(3VaBa W E 4 20, Vua W 2) — AW 28,V

=0,

which implies the desired assertion. ]

2.4.2 Test functions and their energy estimates

Let x(y) = x(ly|) be a smooth cut-off function in R? with y = 1 in B and x = 0 in
R7%\By . For any p > 0, set x,(y) = x(|y|/p) for y € R%. As in [15] and [23], given H;;

there exists a smooth vector field V in @ such that

n 2n_
>0 |: 2 (XpHij —0;V; —0;V; + Z(diVV)(Sij)] =0, inRY,
i=1

(2.42)
8nVa = Vn = 0, on Rn_la
where 1 <14,7 <n,1 <a<n-—1. Moreover, there holds
n—1 d
V() < Cn, B) D D 10%hap| (e + [y])a+1=1AL, (2.43)

ab=1|a|=1
We only sketch the proof of the construction of vector field V. Consider the spherical

cap (X, gs) as in Proposition 2.4.1 with e = 1. Define
X ={V € HY(Z, g5); (V,Vgs)gs = 0 for a vector field V on 9%}

and .7 the space of all trace-free symmetric two-tensors on ¥ of class L?. A conformal
killing operator D : Z" — J# on X defined as

2, .
(divg, V)gs.

n

Dggv = ﬁV(gE) -
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Similarly as in the appendix of [15], we know that kerDg,, is finite dimensional. We
define
2o ={V € 25V, Z) 12(s 45) = 0,V Z € kerDy }.

Using a similar argument in [15, Proposition A.3], we assert that for any symmetric
two-tensor h with compact support in R , there exists a unique vector field V' € 2y
such that

<Wﬁﬁ — Dy, V, DgzZ>L2(E,gz) =0 forall Ze€ Z.

Furthermore, with a dimensional constant C' there holds

IVIZ250m) + 19V 1255 < CIW TRl

792

Based on this estimate and using our W instead, we can construct the vector field
V satisfying (2.42) and estimate (2.43) by mimicking the proofs of [23, Propositions
12-13].

As in Proposition 2.4.1, we define symmetric trace-free 2-tensors S and 7' in @ by
2
Sl'j = OZVJ + 8j‘/z — *diVV(SZ'j and T=H-S5. (2.44)
n
It follows from (2.42) that T" satisfies

We0;T;; + 8 iWT;; =0, in Ber. (2.45)

For n > 3, we define an auxiliary function ¢ = v, , g by
v = o;W.V; —|— W divV. (2.46)

When n = 3, then d = 0 and we choose ¥ = 0. Using (2.43) and (2.2) of W, in B;rp we

have

l(y)| < Cn, Tz Z Z 0% hap| (€ + |y|) I F2, (2.47)

a,b=1|a|=1

By the above construction of V' and H;, = 0 in B;p, we know

Wasm+ aWSm_om B;p
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and S, = 0 on Dy,. Thus we get

8nSnn = _aaSna -

2 2
DWW S = —

— W0 WeSun on Dy

Combining this and (2.26), we conclude that

1

Ot = 2(n—1)

W lo,Wep = — OWeSpn  on Do,

n
n—2
For future citation, we collect the linearized equations for scalar curvature and mean

curvature in the following

Lemma 2.4.2. The function v satisfies

n% n—2 . +
A+ n(n + Q)We 2¢ = mweaiajsij + 82(8]W€SU) m B2p,
" et __
Ot = WO We = =5 s 0 WS on Ds,.

Similar to [23, Proposition 5|, we collect and derive some properties associated to S

and T'.
Lemma 2.4.3. (1) S4, =0=T,,,0<a<n-—1.

(2) On Dy, there hold

2n
n—2

anSnn = - Wg_lanWeSnna

1
anSab = - 7877,571716&177
n—1
where 1 < a,b<n-—1.
Based on Lemma 2.4.2, we rearrange [14, Propositions 5-6] as follows.

Proposition 2.4.4. There holds

2n

1 1
EQik,jQik,j - §Qki,lei,l + 2W X Ty Tig

1 2(n—1
:ZWEaIHikaZHik - MakwealWeHikHil — 2We O W H;, 0 Hy

MﬁiW58k¢Hik _
n—2

4(n—1) 9
— 5 IV¥I

1
- §W628kHikalHil +
4(n —1
LA

4
— n(n + 2)Wo 2 ? — 2We1p0; 0 Hy, + dive,
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where

2
Qijr = Weor T + ﬁ(azWeTz‘z(Sjk + O WT16i — W T — O;WeTiy)

n —
and the vector field & is given by
1
& =2WpOp Hyp, — 2W O Hyy, — 20, Wep Hyy, — §W€2aiSIkHlk
+ W20, Sk Hip, + 2W O WSk Hig — WerhOx Sire + WeOkt) Si

1 1
+ O Wp Sy, + ZWEQ‘SMSM — §W€2315k15ik: — WO, WSk Sik

4(n—1 4(n—1 2
A g wsy + " Vo - 2 wawn. (2.48)
—2 n—2 n—2
In particular, it yields
n+2 9 Ann-1)_ 9
n = Ws nVVelnn 7We nWe 2.4
13 20n —2) o WeS;,, + (n—2) O Wetp (2.49)

on R 1,

Proposition 2.4.5. There exists \* = \*(n,T,) > 0 such that

n d
N ST N oy / (e + [yl +2-2n g,

+
ij=1|a|=1 55 (0)

n2

1 / )
<< QuiQindy - / W W.S2 do
4 Jpro) " Rk 2(n—1)(n —2) Jp,(0)

for all 2e < p.

Proof. Since only the unchanged sign condition of 9, W, on B; and Lemma 2.4.3 were
required in [2, Lemma 3.4], we refer to similar arguments in [2, Proposition 3.5] for the

details. O

Our test function is

_ 2

U(a:o,e) = [XP(We + ¢)] © \11;01 + (1 - Xp) o \III_OIEH%G7 (250)

where G' = G, is the Green’s function of the conformal Laplacian with pole at zg € OM,

coupled with a boundary condition, namely

4(n—1 )
_(7,l_2)Agw0 G.Z‘O + Rgxo Gxo = 0, 1n M\{(]}'O} s (2 51)
2 8G$0 + hg;co G.To - 0, on 8M\{a:0} .

n—20dv,,,
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We assume that G is normalized such that lim,_o G(V,,(y))|y[* 2 = 1. Then G satis-

fies the following estimates near xo, namely for sufficiently small |y| (cf. [4, Proposition

B-2]):

G(Wa (y) — [y[*™

n—1 d C|y’d+3—n’ if n > 57
<C Z Z |8ahab”y‘\a|+2fn+
a,b=1|a|=1 C(1+|loglyl]), if n=3,4,
n—1 d
IV(G(Tao () = 9P < C Y Y [0%haplly[ "+ Cly #2770 (2.52)
a,b=1|a|=1

Moreover, there holds

n—2 n—

C(Te,n) €7 (e + [y)> ™" < Wely) < C(Ten)e™ s (e + |y[)> "

We consider the flux integral as in [15, P.1006]

om oyt
I(xo,p) = — /a+B+ ly[*~2 (|y\28jhij - 2nyjhz‘j)md0'
P
[ oG - GayP ) Lo
o+ BF [yl

4(n—1)
T

for zgp € OM and all sufficiently small p > 0.
The following estimates on the expansion of scalar curvature can be found in [2, P.

2645], which follows from [14, Proposition 11] and [23, Proposition 3|. Keep in mind

that the boundary is not necessarily umbilic here.

Proposition 2.4.6. The scalar curvature Ry, = satisfies

n—1 d
|Ry,y = 0i0kHitl <C Y > [0%hallyl*! + Cly ",
a,b:l ‘O(|:1
1 1
Ry, — 0iOphin + Op(HinOyHit) — 50 HinOyHi + 7 0 Hin0y Hir

n—1 d n—-1 d
<C Y D 0GPyt C Y Y 10%hallyl T 4 Clyl

a,b=1 |a|=1 a,b=1|a|=1

for |y| sufficiently small.



45

In order to prove this theorem, we need to estimate the energy F [U(ZO’E)]. Notice

that

3 dn—1) o= 2 72
E[U(a:o,E)] :/M <n_2|VU(1’076) gz + Rgzo U(IO,E) dﬂgzo
772
+ 2(7’L — 1) /8M thO U(x0,€)do-gzo'
We will estimate E[U(y, )] in Wa,(B)) and M\ W, (B;) respectively.

Proposition 2.4.7. With some sufficiently small pg > 0, there holds
4(n—1) 9 )
/B; [“W(We + )5,y + Rooy We +9)7 | dy

+2(n—1)/ hg,,(We +1)?do
D

P

<dn(n—1) / Wi (WZ nE 2w2>

4
+/ Maww y da+/ (W20;hs; —ajwfhij)y do
o+BY o+BY

n—2 “Iy] ||
2
—A(n—1)T, 2 24 oW, n 2 N 262 \ 1y
(n—1) /DPW (W2 42w+ "oy 8(n_1>ws)
-0 S S e [ ey

a,b= 1|a\ 1

+ C Z Z ‘aahab‘en*2p|a‘+27n 4 C€n72p2d+47n

a,b=1|a|=1

for 0 < 2¢ < p < po < 1, where pg and C are some constants depending only on

n, T, go.
Proof. Notice that Uy, ) = We+1 in Bf. First it follows from (2.23) and (2.46) that
/ hg,,(We +1)?do < C /D Y|P (W, + )%do < Cer2p?dt2, (2.53)
3 3
Next we decompose

4(n—1
(”_Q)rwwe + wrfho 4 Ry, (Wt 0)?

_4(n— 1)

n —

4
4
n— 2
— n(n+ 2)Wo29* + 21 Ji, (2.54)
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where

8(n—1 4(n—1
Ji :Maiwgaiw - (:_2)32‘W58kWehik + WZ20;0khi,

— W20 (Hix 0, Hy) — 2W O W H;1.0,Hy,

1 2(n—1
Jo=— ZWEaZHikalHik + MakWGaZWEHikHil + 2WeOpWeH ;0 Hyy

1 —1
+ §W628kHikalHil + 2Wep0; 0 Hi, — 8(:_2)01‘W53k¢H¢k

4(n —1) 2 4n—1) =
+ IVl ﬁ”("‘FQ)We (U
4n—1), . 1
J3 Z(n_Q)(g?c]f) — ik + hig — iHilHkl>aiWeakWe
1 1
+ [Rgzo — 0iOkhir, + O (Hix O Hyp) — iaszikalHil + ZalHikalHik] w2,
8(n—1) i
Ji =579z, — i + Hix)OiWeO) + 2(Ry,,, — 0i0c Hip)Wetp
4n—1) .
+ Ry, ¥° + g(gﬁ — 0ik) 053 O

n—2
We start with J;. Rearrange J; as

J1 28(:__21)31(31‘/‘/4#)

+2 (Wﬁaiakwe - n"28iweakwe> hit, — O (W2 Hy,0,Hy).

8(n—1
- (71_2)¢AWE + 0;(W20,hir,) — Ok (0;W2hy)

Notice that W, satisfies

—92)2 2n_
(n 2) ai(WEn—Q ‘/;)

¢AWE = -

Thus using V;, = 0 on Dy, Hiy = hin = 0,trh = O(|y[**™2) in B and (2.24), we have

/ Jidy
B}

-1 -1 '
= — M OpWehdo + M / ¢3iW€y7dJ
n—2 Jp, n—2 Jorpt [yl
+4(n—1)(n—2) w2V, Ldo + / (W20ghiy — O, W2hiy) e do
o+BF Yl o+ B} [yl

2 k
+ / Z(WAW, — — VW2 trh dy — / W2 H. 0y Hy Y~ do.
B N n—2 o+ Bf |



Using (2.43) and the expression (2.2) of W, we estimate

n—1 d
WahL- da<CnT O%hgp|e 2 plalH2—n,
[ ) 2 2 10l
y n—1
W" 2y, Y 4o < C(n, T) |8% hap|€™pl® ™,
foas 70 P MZI
/+(WAW —\VW| )trhdy < C(n, T.)e" 2 p?dti-n
B,
and use |0H;;| < C to show
k n—1 d
W2Hp O Hyodo < C(n,T2) Y 3 0% haple™2plol 377,
o+ Bf | Byt

Hence combining the above estimates together, we obtain

8 7
/ Jidy < —/ Ma Wepdo +/ (W28yhi, — W 2hip,) L~ do
B} p, T —2 o+ B Y

n— d
+C Z Z |8ochab|6n—2p|a\+2—n + Op2d+4_n6n_2.
a,b=1|a|=1

For Jo, by Proposition 2.4.4 and (2.45) we have

2n

1 s .
Joy = —ZQik,lQik,l — 2W 2 T Ty + div €.

By (2.48) a direct computation yields

/ +§Zy do < C Z Z 0% by 2p2lo 2 en =2,
o+ B}

a,b= 1‘a| 1

From this and Proposition 2.4.5 we estimate

/ J2 dy
Bf

1 2n i
——1 [ Qs [ 2w mumiay+ [ aldo— [ o
By Bf ot Bf | D,

P
2

n
Endo — oW W.S2, do
D, 2(" —1)(n—2) D,
_ 7/\* Z Z ‘8(1 ab’2 n— 2/ <€+‘y’)2|o¢|+2 Qndy
a,b=1 |a\ 1

+C i Z ‘8ahab‘2p2\a|+27n€nf2'

a,b=1|a|=1

47

(2.55)

(2.56)



Observe that when |y| is sufficiently small, there hold |h| < Cly| and

g% — 5| <C|hl,

|92 — ik + Hik| <C|AI* + O(ly|™") < Clhllyl + O(Iy|™*),

A 1
|92 — Bir, + Dk — 5 Hatyl <C|h[* + O(|y|™*?) < C|h[?|y| + O(|y|*).

By Proposition 2.4.6 and Young’s inequality, we can bound J3 and J4 by
J3+ Jy

n—1 d
SCn, T >0 Y 7 [0%hap|* (e + [y])?1oIH32n
a,b=1|a|=1
n—1 d

F O T 30 > [0 hasl (e + [y) 4872
a,b=1 ‘al:l

+ C(n, TC)Gn_2(€ + |y‘)2d+4—2n

n—1 d

1 * n—2 2 2| H—2—2 —2 2d+4—2
<IN ST S 0% e+ [yl P2 4 G e [y

a,b=1|a|=1

48

(2.57)

(2.58)

Consequently, combining the above (2.53), (2.55)-(2.58) and using the decomposi-

tion (2.54), we conclude that

/B+ [%!v(m +9)[g,, + Ryuo (We + w)z] dy +2(n — 1)/ hgs, (We + 0)2do

P 4
4(n—1 4
SM / [\VWEF + n(n + 2)W€"‘2¢2] dy
n — 2 B;r

8(n—1
+ / (W20;hij — 0;W2hi;) Ldo — / 80 = 1)y Wodo
o+ B Yl p, "—2

n2
— | &ndo — / O W W.S2, do
D, 2(n = 1)(n=2) Jp,
1 n—1 d
B 5)\* Z Z laahab|2€n2/ (€—|- ’y|)2\a|+272ndy
a,b=1|a|=1 By

n—1 d
+C Z Z |aahab|6n—2p\a|+2—n + Cen—2p2d+4—n.
a,b=1|a|=1

(2.59)

Testing problem (2.1) with W, and integrating over B}, via integration by parts we

p )
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obtain

4(n—1 4
(n )/ |:VW€|2+71(71+2)W5”27/12:| d
n—2 B;ﬁ

4 2
=dn(n — 1)/+ W (Wf s ¢2>
B,
’ 2(n—1)

A(n —1
An-1) w.ow. Y do — 4 An - DT, [ W." 2 do.
n—2 Jorpr “Jy D,

_l’_

Therefore, plugging this and (2.49) into (2.59) as well as again using (2.1), we obtain

the desired assertion. O

Proposition 2.4.8. There exists some sufficiently small pg such that

_4 2
dn(n — 1)/ W (Wf + izﬁ?)dy
B;r n—2

<aY,,(R%,R* ) ( /
B+

P
oSS [ e ety
a,b=1 |a|=1

for all 0 < 2e < p < po.

n—2

Y n—1 d
<We+w>f"2dy> +C DTN 0%l p "

a,b=1|a|=1

Proof. Notice that (2.47) gives [¢| < C(e + |y|)We in B;;. By Lemma 2.1.1, we get
2n_ n
aY, (R, R"™1) = dn(n - 1) S dr
Rn
Together with the fact that V,, = 0 on Dy, the desired estimate can follow the same

lines in [14, Propositions 14-15]. O

Proposition 2.4.9. There exists some sufficiently small pg such that

9 n—
v _S(n—l)

n—2

(n— et
<2(n — 1)bY, ,(R, R* ) (/ (W, + ) 52 da>
Dy

n—1 d
+C Z Z |aahab‘p|a\+1—n€n—1

ap=1 |o¢\*1

+C Z Z ‘aa ab‘Q n—1 / (€+’y‘)2|a\+2—2nd0

a,b=1|a|=1

W2s2 )d

_2
4 - 1T, / W (W2 4+ 2Wep +
Dp n—2

for all 0 < 2e < p < po.
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Proof. Since (2.47) and (2.43) give || < C(e+ |y[)We and |Spn| < C(e + [y]) in By,

this assertion can follow the same lines in [23, Proposition 8] (see also [2, (3.23)]) by

using

2(n—1) n—1
—2T, ( / Wen? da> = bY, (R, R* 1)
Rn—1

in Lemma 2.1.1. O]

For simplicity, we denote by Q, := \IJQ;O(B;“) the coordinate ball of radius p under

the Fermi coordinates around z.

Lemma 2.4.10. If0 < € < p < pg for some sufficiently small py, in M\, there holds
‘U(xo,e) - 6nT72G|

n—1 d
<O 7 N 10%haplp P £ OptI T log ple™T + Cpt e
a,b=1|a|=1

Proof. For z € M\Q,, let y = ¥, !(z) € R} \ Bf. In M \ Q,, we have

_ n—2

Utag () — €7 G () = xp(y) [Welly) + () — €2 G (W ()] (2:60)

Notice that

o {(1 N (14 T2)e? B 2y"Tce)22” B 1]
lyl? lyl?

=(n — 2)y"|y| "Tued + O™ |y ™),
then it yields

We — "2 [y>"| < Ce3p'™" in Bj,\B;. (2.61)

From this, (2.52) and (2.47), in M\2, we obtain

- n=2
‘U(xo,e) —€ 2 G|

n—2 _ n—2 _
<We—€2 |y* " +€ 2 |G =y + ¥

n—1 d
<O Y Y 10 halp T 4 Cpt P log ple™T 4 Cpt e,
a,b=1 |a|=1
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lwhen € < p < po. O

Lemma 2.4.11. If0 < e < p < pg for some sufficiently small py, in M\, there holds

4(n—1) —
=2 B U = Booy Utao
1

2

2
n— d
<C Z 10%h, b‘p|a\+2 ne +de+3 ne +Cp ney
a,b=1|a|=1

Proof. Since C_/(xo’e) = ¢"7°G in M\Qy,, the estimate is trivial by the definition of G.
Then it suffices to estimate the above inequality in Q2,\Q,. To see this, by (2.60) we
have

_ n—2

Ag:co U(xo,e) - ngmo U(:co,e)

n—2 n—2
=D Xp) W+ — € 2 [yP") + 2(Vxp, VIWe + 00 — € 2 [y*™™))

n—2 o n—2 o
_(Aga:OXp>6 2 (G—|x!2 ) =262 (Vx,, V(G - ’w‘Q ))gmo

(We + U)) - 4(12”__21)Rgz0 (We + @Z))

Gz

+x, |A

Gz

:Il + I2 + 137

where I;(i = 1,2,3) denotes the quantity in each corresponding line. By using (2.61)

and ’P2A9onp’ + 10V Xplgs, < C, we get

n—1
PLEC ), Z 0% haplploI T2 T 4 Cpl e

a,b=1|a|=1
Similarly (2.52) implies
n—1 d
2I2<CZ Z|aah b|p|a\+2 ne 5 _|_de+3 nE 2 —|—Cp E%.
a,b=1 |a|=1

For I3, applying the property (2.47) of 1) and Proposition 2.4.6, we get

n—1
Ry, (We+ )| <C > Z 0%y |p e T 4 CptHIme

a,b= lla‘ 1

'n view of (2.52), the underlined term can be precisely estimated by Cp?™3~"¢ *3* when n > 5 and

C|log p| when n = 3,4. Since this rough estimate goes through in the later part, we adopt it just for
simplicity.
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and
|Ag,, (We + )]
n—1
<|(Ag,y — Arn)(We + )|+ Ce 2 T2 L 0T y Z 1% hap| "
ab 1 ‘oé| 1
<C S N 10%halpll e T £ Optti e T 4 Cp RS
a,b:l |a|:]_
Therefore
d
p213 <C Z Z |0%hgp| ‘0‘|+2 Ne +de+3 n, +C,p
a,b:l ‘a|:1
Collecting all the above estimates on I1-I3, we get the desired assertion. O

We now arrive at the key Proposition 2.4.12.

Proposition 2.4.12. If 0 < € < p < pg for some sufficiently small pg, there holds

4(n—1) 7 2
/M [ﬂWU (20.) gy T Roug Ui, e)] dpg,, +2(n —1) /8 y g Uy, 02
n—2

2n =
s
¢ </M U(QEOvE)d'ugzO)

_2(n—1) n=2
n—2
+2(n —1)b </8M Ulrne) dagzo)

n— 1 * _N— —<n
= a0 p) = Gz e\ [ Wl e+ )2y
P

<Y, (R, R"1)

1 _ . _ _ _
~ gnzelaN e [ g (et ) do + CpH M log e

P

wo(5) e ()

where nze is the characteristic function of Z2¢ = OM \ Z defined on OM and C,C*

depend on n, gg, Te, po-
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Proof. Observe that

4(n—1) 7 2 72 o 72
/M\Qp |: n—2 IVU($0,6)|gIO + Rgzo U(:to,e)] dugzo + 2(” 1) /QM\QP hgzo U(xo,e)dagzo

4(7’L — ].) — 9 — n—2
:/M\Qp (_HAQ‘ZO U(CEO,G) + Rgaco U(x0’€)> ( (CCO,E) — € 2 G>dug$0

4(n — 1) GU(xO €) n—2 [ — oG 8[7(960 €)
N 7 b _ b d
T2 /8(M\Qp) @wo) T €7 (Uaoag, — —C 79v0

aygzo 9o
+2(n—1)/ hg, U2 doy,
AM\Q, 90~ (w0,6) ™ 0

=1 + 1l + 113,

where I1;(i = 1,2, 3) denotes the quantity in each corresponding line on the right hand

|

n—1 d
<O ST 0%halp T 4 CpT N log ple T + Cpl el
a,b=1|a|=1

side of the first identity. By Lemmas 2.4.10 and 2.4.11, we get

7 n-2 2 [4(n —1) 3 7
_ AT A _
J\fll\lgp [|U(m0’ﬁ) ez Gl+p n—2 9% Utzo.e) = 920 Ulzo )

From this, one can estimate I1; as

4(n—1 _ n_2
III :/ _ (_ S’L—Q)Agaco U(l‘o,e) + Rgxo (xo,e)) (U(xo,e) — € 2 G)dlulgaco
QZp\QP

n—1 d
<C Z Z 0% hap|?p21H27men =2 1 Cp2aHA=7 og p|2€" 2 4+ Cp ™. (2.62)
ab=1|a|=1

For I15, we divide the integral into two parts [ I, = II§1)+II§2) according to d(M\Q,) =
(OM\Q,) U (092,\0OM). Namely I[él) is the integral over OM\2, while II;Z) is over
0Q,\0M. Let us deal with I7{" first. In OM\Q,, by Lemma 2.4.2, (2.1), (2.51) and
(2.23), we have

U,y
Sup i a( 0, )
AMN(Q2,\2p) Vga,
< sup |0 We + Opt| + e oG ‘
OMN(Q,\02,) Ivg,,

n—1 d
n n n—2
<Cezp "+ Cez E g 0%hap|plo1T" + Ce™ 7 p2dH3—n,
a,b=1|a|=1
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Using (2.51), Lemma 2.4.10, (2.23) and Uy, o) = T Gin M \ Q2,, we have

1Y + 114

_4(n—1)/
n—2 JamQ,

OU(z.0) ~ n-2 OU(zy
) € 22(U< > -6 (0’))] dog,,

vy, 20,€) g, vy,
+ 113
4(n—1 oU, e
:L) / (z0,€) (U(wo o~ eTZG)dg‘gzo
n—2 OMN(Q2,\Q)) aygro

_ _ n—2

+ 2(” - 1)/ _ hgz:() U(zo,e)( (zo,e) — ETG)dUS]zO
OMN(Q2p\2p)

1 d
<O S |0 hapf2pH e L |90 | ploli-nen=1

a,b=1|a|=1

+CpttEnen Tl 4 Cp et 4+ CpP T log plen 2. (2.63)

Next we start to estimate [ I2(2) whose integral domain is 0€2,\0M. It is not hard to
verify that the outward unit normal v, ~on 9Q,\0M := W, (0" B}) is given by

g?p’Zy’“

1%
oo = Tyl

i for y € 8+B;r,

where ||y[|? := gkly*y! = p?(1+ C|h|) on 9t By . Note that Uy, ) = We +¢ on 9B,

by (2.57) we estimate

/ 8[7(%’6)(] do
oo \oM g, (70,6) 20

:_/ 0 00 00y Dyl + O 2)
o+ B} H I

— — y —
= —8¢Ux€+8-Ux6hi4 Z(1+Clh Uzed(f
/a+B;( (zo.€) 7Y (z0,€) J) |y|( WD U (z0,¢)

n— d
+C Z Z |aahab|2p2|a|+2—n€n—2 + O(p2d+4—n€n—2)

a,b=1|a|=1
n—-1 d
g/ (=0, We + 0;Wehij) 2 Wda+C’ > 10 haplpl e
ot By vl =1 |a|=1
+C Z Z ‘aahab’2p2\a|+2—n€n—2 _'_Cp2d+4—n€n—2' (264)

a,b=1 |a‘:1
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Similarly we have

6n22/ 7(%76) oG e oG dog,,
0Q,\OM Ovg,, Vg,

n—2 — — yl
<— U 006G — GO0, o) (1 +C|h|)d
S —€ 2 8+B;" ( (zo,€) (zo, )) |y|( + ’ |) o

(1 + C|h’) (U(wo,e)ajG - GajU(a:o,e)) do

n—2 yl
+e€ 2 hijf
o+ Bf ||

n—1 d
O S S |0 g 2l . g2

a,b=1|a|=1
n—2 yZ
<—€2 (WgaiG — GaiWE) “—do
o+ B} lyl
te'T hij L (W.0,G — GO;W.) do
d+Bf Y

n—1 d n—1 d
+C Z Z |aahab|p|a\+2—n€n—2 +C Z Z |aahab|2p2|a\+2—n€n—2

a,b=1|a|=1 a,b=1 |a|=1

+ O p?dtanen=2, (2.65)

From (2.52) and (2.61), on 0% B} we get
"2 |0, W.G — 0;GW,|

<|BW (T G — Wo)| + [Wedi(e"2 G — W,)|

n—1 d
SCEn_Q Z Z ’aahab|p|a|+3—2n + Cen—2pd+4—2n’ logp] + Cen—po—Qn
a,b=1|a|=1

and then

n—2 yl

€ 2 h

ii— (W.0;G — GO;W,) do
orBr |yl

n—1 d
SCEan Z Z ‘aahab’2p2\a|+27n + Cp2d+4fn| logp|en72 + Cen71p2fn' (266)
a,b=1|a|=1

Hence plugging (2.66) into (2.65), we obtain

n—2 - oG oG
€ 2 (U(Z‘(),G) 6 - Ga )dagzo
8Qp\aM l/g.ro l/g.ro
i n—-1 d
< / (WdhG = GOW) Ldo +C 5 57 0% haplplol 2 men=2
ot B; vl ab=1|a]=1

n—1 d
+C Z Z |8ahab‘2p2\a|+2fn6nf2 + Cp2d+4fn| logp]e"ﬂ + Cen71p27n‘ (267)
a,b=1|a|=1
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Consequently combining (2.64) and (2.67), we can get

iy
d+Bf

n—2
2

W= W Wby + €5 (W0,G — GoW)| Ldo

|y

n—1 d n—1 d
+C Z Z |ao¢hab‘p|a\+2—n€n—2 +C Z Z |aahab|2p2|a\+2—n€n—2

a,b=1|a|=1 a,b=1|a|=1

+ Cp2d+4—n| 1ng|€n_2 + Cen—po—n. (2.68)

Therefore collecting the estimates (2.62) for 11y, (2.63) for 11'2(1) + I3 and (2.68) for

112(2) together, when € < p < pg we obtain

4(n—1) = 2 72 72
/M\Q (M 0, 0, + By Uy ] b +2(n— 1) / hay U2, ooy,
P

OM\Q,
A(n—1) n=2 y'
L=l [~OWW + QW Wby — €5 (WDG — GOW)| Lodo
n—2 8+B;r ’y|
n—1 d n—1 d
+C Z Z |aahab|p\a|+2—n€n—2 +C Z Z ‘aahab‘2p2\a|+2—n€n—2
a,b=1 |a|=1 a,b=1|a|=1
+ Cp2d+4—n| 10gp|26"_2 + C,OQ_nen_l. (269)

Finally since dug, = (14 O(|y[***?))dy and dog, = (14 O(|y[***?))do under the
Fermi coordinates around zp € dM, noticing that Propositions 2.4.7-2.4.9 and (2.69)

give the estimates of energy E[U(xo,e)] in the interior of B,‘f = U_1(Q,) and in the

zo



exterior of {2, respectively, we conclude that

4(n—1) 7 2
/M [ﬁIVU(mo,éﬂgzo + Rgzo U(:EO E)] dugzo + 2(” - 1)/ hgzo U(:Eo, )d

oM
n=2

2 n
o[, o)

_ 2(n—1) 72:%
n—2
+2(n—1)b (/8M U(:J:O,e) dagm)

+/ (W20jhij + ——0;W? Z])y do
o+ B} lyl

<Y, (R, R"1)

_4(”_1)6"52/ (W.0,G — Gow,) L

n—2 o+Bf !y|
1 n—=1 d

SN Y e [ (e ey
s |a|—1 By

+C Z Z |8a |2 n—1 / (€+ ‘y|)2\a|+272nd0_
a,b=1|a|=1 Dp

+C Z Z |aahab|p|a|+2—n€n—2 + Cp2d+4—n| 10gp|2e”_2
a,b=1 |a|=1

+ Cen—lp2—n
where we have used the following estimate:

€n/ (e + lypert=2rdy
+

By

A*
SCen_l/ (€+ ’y‘)2|a|+2 any < 2 4 e 2/ (€+ ’y‘)2|a\+2—2ndy
Bf By

P

by choosing € < p < po. By (2.52) and the expression (2.2) of W, we get

/ L (WE0jhij + — 8WEUH
0T B,

4n—1) n=
—m)ef/ (WG — GaW)ydo
n—2 o+ B} |y
n—1
& 21-(3:0’ +C Z Z |8ah b‘p|a\+1 nen— 1+C«n lpl—n'
a,b= 1|o¢‘ 1

Notice that

4
[Wo(2)lgo = a%_2|ngo (x)‘gmo < C|82h| + |Oh| in M

57

Gz

(2.70)

(2.71)
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and

2
|70 (%)|g0 = zo |VVgI0 ($)|gz0 < C|0h| on OM.

By choosing pg small enough with all p < pg, it is not hard to show that

*

A
C’en_lp/ (e + ‘y|)2\oc|—&-2—2ndJ < §6n—2 /B+(€+ |y’)2|a\+2—2ndy_
P

Dy

Recall that we define by Z the set of all points g € OM satisfying

lim sup dgo (xva)Q_d|Wgo (x)|go = lim sup dgo (%xo)l_dﬁgo (1’)’90 =0.
Tr—x0 T—TQ

From these estimates, (2.70) and (2.71), a similar argument in [2, Corollary 3.10] yields

4(n—1) = 2 72 72
/jvw |: n—2 |VU(1‘0,€) Jxq + Rgzo U(xo,e)] dugzo + 2(’[’L - 1) /8M hglo U($076)d0-910
n—2
2n =
rrn—2
o(f, o)
_2(n—1) n=2
n—2
2(n—1)b (/aM U, dagm)

n— 1 * _n— —2n
= a0 p) = Gz laN' € [ W @l e+ )2y
P

<Y, p(R™",R"1)

~ e [ e+ )+ O oy e
e\" 2 1 e\" !
e (p) log(pfa) T € (p) ’
by recalling that nze is the characteristic function of Z¢=0M \ Z. O

Next we describe the continuity of Z(zg,p) over Z as in [2, Proposition 3.11] and
some characterization of its limit as p — 0 (cf. [15, Proposition 4.3]). We restate them

here for convenience.

Proposition 2.4.13. The functions Z(xo, p) converge to a continuous function Z(x) :

Z — R uniformly for all xg € Z, as p — 0.

Proposition 2.4.14. Let o € Z and consider inverted coordinates ® : y € M\ {xg}

z:=y/|y|?, where y = (y',--- ,y") are Fermi coordinates centered at xo. If we define
the metric gz, = @*(G%(n_mgm) on M\{xo}, then the following statements hold:

(i) (M\{zo},Gu,) is an asymptotically flat manifold with order d+1 > 52 (in the

sense of Definition 1.1.3), and satisfies Rg,, =0 and hg

e

=0.
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(ii) We have

T(xo) = lim [ /a Z 8,350y (01,0, )do — / 2 0,550y (0,5, 0,5)do

Roo | Jor gt 2] o+ B;; ||
In particular, Z(xq) is the mass m(gz,) of (M\{x0}, Gz, )-
Proof of Theorem 1.1.5. (i) When M \ Z # (), we choose xg € OM \ Z. Then the

desired assertion follows from Proposition 2.4.13.

(ii) Assume that Z(z¢) > 0 for some z¢ € Z, it follows from Proposition 2.4.13 that
Z(xo, p) > C*p** | log p|?

for all 0 < p < pg, where po, C* are the positive constants in Proposition 2.4.13.
Based on the key estimate in Proposition 2.4.13, Theorem 1.1.5 follows the same lines

of [2, Proposition 3.7]. O
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Chapter 3

Convergence of Yamabe flow on manifolds with minimal

boundary

In this chapter, we are elaborating the work in [4].

3.1 Preliminary results and long-time existence

Notation. In this chapter, M"™ will denote a compact manifold of dimension n > 3
with boundary OM, and gy will denote a background Riemannian metric on M. We
will denote by B, (x) the metric ball in M of radius r with center = € M.

For any Riemannian metric g on M, 7y will denote the inward unit normal vector

to OM with respect to g and A, the Laplace-Beltrami operator.

If zp € RY, we set B (20) = {z € R} ; |z — 29| < r},
D,(20) = B} (20) NORY, and 07 B, (20) = 0B, (2) "R} .

Finally, for any z = (21, ..., 2z,) € R" we set zZ = (21, ..., 2p,—1,0) € OR"} = R?L,
Convention. We assume that (M, go) satisfies Y (M,0M) > 0. According to [39,
Lemma 1.1}, we can also assume that Ry, > 0 and Hy, = 0, after a conformal change

of the metric. Multiplying gy by a positive constant, we can suppose that [ v Augy = 1.

We will adopt the summation convention whenever confusion is not possible, and use
indices a,b,c,d=1,...,n, and i,j,k,l=1,...,n — 1.

4
If g = un—2gg for some positive smooth function v on M, we know that

nt2 4n—1
R, = u <—(n)Agou + Rgou> , inM,

n—2

__n_ 2(n—1) 0
Hy=u 2 <_n28ngou+Hgou> , ondM ,
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and the operators L, = An—1) Ay — Ry and By = 2An-1) 0 _ H, satisfy

n—2 n—2 0Ong
L 4 (') =u "2Ly( (3.2)
w2 gg B 905 '
1 o 7%
B a, (070 =u T8, (33)

for any smooth function (.

If u(t) = u(-,t) is a l-parameter family of positive smooth functions on M and

4

g(t) = u(t)"—2go with Hyy = 0, then (1.4) can be written as

0 n—2 — )
au(t) = (Rgty — Rgry) u(t), in M,
A (3.4)
u(t) =0, on M,
87790

The first equation of (3.4) can also be written as

& . oni2 n+2(4(n—1) m)
-2 .

a“(t)" = n—9 Agou — Ryyu +Rg(t)um

Short-time existence of solutions to the equations (3.4) can be obtained by standard
theory for quasilinear parabolic equations. Hence, the equations (3.4) have a solution
u(t) defined for all ¢ in the maximal interval [0, Thnaz)-

Taking 0/0n4, on both sides of the first equation of (3.4) and using the second one,

one gets dRy(;)/0ng, = 0 on OM. Hence the scalar curvature has evolution equations

0 - |
i fow = (0= DAg Rowy + (R = By() Ry, in M, 55)
5 .
R,y =0, on OM ,
8779@) g(t)

where the first equation comes from the well known first variation formula of scalar
scalar curvature.

Observe that for all ¢ > 0 we have

0 n —
gdvg(t) = _§(Rg(t) — Ry()) dvg(ey (3.6)
and
0 — n—2

sl =~ /M(Rg<t>—Rg<t))2dvg<t>~ (3-7)
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In particular, Eg(t) is decreasing and one can easily derive that (1.4) preserves the

volume which we can normalize to

/ dvgy =1, for all t € [0, Thaz)-
M
So, Rg(t) >Y(M,0M) >0 for all t > 0.

Proposition 3.1.1. We have Ry > min {infys Ry, 0}, for all t € [0, Trnaa)-
Proof. Following (3.5), this is an application of maximum principle. O

Proposition 3.1.2. For each T € (0, Tinag), there exist C(T'),c(T) > 0 such that

supu(t) < C(T) and infu(t) > c(T), for allt €[0,T]. (3.8)
M M

In particular, Ty = 00.

Proof. Set o = 1—min {inf s R,(g),0} = max{sup,,(1—Rg)), 1}. Then, by Proposition
3.1.1, Ry + o > 1 for all t € [0, Tnaz). It follows from (3.4) and (3.7) that

n—2 — n—2 _

0
élog u(t) = T(Rg(t) — Ry)) < T(Rg(ﬁ) +0)
Then there exists C'(T") > 0 such that sup,, u(t) < C(T) for all ¢t € [0,T].

4
Defining P = Ry, + o (Supg<;<7 Supys u(t)) "> we obtain

4(n —1)
-2

4(n - 1) n+2 n+2

Agou(t) + Pu(t) > — Agou(t) + Rgou(t) + ou(t)»—2 = (Rg(t) +o)u(t)n—2 >0

n—2

for all 0 < ¢ < T'. Then it follows from Proposition 3.A.4 in the Appendix that

n+2
2n

inf u(t) <sup u(t)> s o) /M w(t) 2 dvg, = (T),

M

by our normalization. This proves the second equation of (3.8).
Now we can follow [13, Proposition 2.6] to prove that if 0 < o < min{4/n,1} then

there is C(T') such that
w1, t1) = ulwa, ta)] < C(T)((t1 — t2)*/* + dgy (w1, 72)%)

for all 1,29 € M and t1,ts € [0,T] satisfying 0 < t; —t2 < 1. Then standard regularity
theory for parabolic equations can be used to prove that all higher order derivatives
of u are uniformly bounded on every fixed interval [0,7]. This implies the long-time

existence of u. O
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Set

Ry = lim Ry > 0. (3.9)

t—o0
Because ORy(;)/0ny) = 0 holds on M, we can follow the proof of Corollary 3.2
in [13] line by line, making use of (3.5), (3.6) and (3.7), to obtain

Corollary 3.1.3. For any 1 <p <n/2+ 1 we have

t—o00

lim / ’Rg(t) - Eoo|pd’ug(t) =0.
M
3.2 The test functions

In this section, we construct the test functions to be used in the blow-up analysis of
Section 3.3. Those functions are perturbations of the symmetric functions U, (see (3.10)
below), which represent the spherical metric on R™ and have maximum at the origin.

We will make use of the following coordinate systems:

Definition 3.2.1. Fix zg € M and geodesic normal coordinates for OM centered at
xo. Let (y1,...,yn—1) be the coordinates of x € M and n(x) be the inward unit vector
normal to OM at z. For small y, > 0, the point exp,(y,n(x)) € M is said to have

Fermi coordinates (y1, ..., yn) (centered at xg).

Definition 3.2.2. Let g be any (smooth) Riemannian metric on M. Consider M the
double of M along its boundary and extend g to a (smooth) Riemannian metric g on
M. Fix 9 € M and let 9, : B-(0) C R® — M be normal coordinates (with respect
to ) centered at xg. If By, = Vol (Ve (Br(0)) N M), we define the extended normal

coordinates (centered at xp)

Yot Baor CR" = M
as the restriction of 1, to wa.

Observe that this definition depends on the metric g chosen, but this is not a
problem for our arguments in this section because we can fix the extension to M of the

background metric gg.
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Convention. We will refer to extended normal coordinates as normal coordinates for

short.

Notation. We set Dy, = Bay N5t (Vg (Bag,r)NOM) and 0% By = 0By \Dagr C
OB, (0).

Set My = {x € M; dg,(x,0M) < t}, which is defined for small ¢ > 0. Let o > 0 be
a small constant to be chosen later. In the next subsections we will define three types

of test functions:

e Type A test functions (4,4, ): defined in Subsection 3.2.2 using Fermi coor-

dinates centered at any xo € OM and with energy to be controlled by Q(S%).

e Type B test functions (u Bi( ): defined in Subsection 3.2.3 using normal co-

x0,€)

ordinates centered at any zg € Mas,\OM and with energy to be controlled by
Y (S™).

e Type C test functions (tc;(y,,e)): defined in Subsection 3.2.4 using normal coor-

dinates centered at any x¢ € M\Mj;, and with energy to be controlled by Y (S™).

We fix Py = Py(M, go) > 0 small such that (extended) normal coordinates with center
xo are defined in meg p, for all xg € M\OM, and Fermi coordinates with center at

are defined in B;PO(O) for all zg € OM.

Convention. In what follows, we will use the normalization R, = 4n(n — 1), without

loss of generality.

3.2.1 The auxiliary function and some algebraic preliminaries

Firstly we fix some notations. If € > 0, we define

n—2

€ 2 n

It is well known that W, satisfies

n+2

AWe+n(n—2)W? =0, inR%,
(3.11)

OnWe =0, on OR"} |
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and
dn(n — 1) ( 5 W6<y>f"2dy> Qs (3.12)

In this subsection, # will denote a symmetric trace-free 2-tensor on R’} with com-

ponents Hqp, a,b = 1,...,n, satisfying

Hap(0) =0, fora,b=1,...,n,
Han(z) =0, forx e R, a=1,...,n,
(3.13)
OxHM;j(0) =0, fore,7,k=1,...n—1,
Z?:_%ZL‘]’HU(%’) =0, fOT:L’EaRT_f_, 1=1,...n—1.
We will also assume that those components are of the form
Hap(z) = Z hap,ax®  forz € RY (3.14)

1<]a|<d
where d = [”7_2] and each « stands for a multi-index. Obviously, the constants hqp o €
R satisfy hgn,o = 0 for any «, and hgp o = 0 for any o # (0,...,0,1) with |a| = 1, where
a,b=1,....n.
Let x : R — R be a non-negative smooth function such that X‘[0,4/3} = 1 and

Xli5/3,00) = 0. If p > 0, we define

Xp(2) = X <|xp’) forz € R". (3.15)

Notice that d,x, = 0 on OR"}.
Let V =V (e, p,H) be the smooth vector field on R"} obtained in [15, Theorem A.4],

which satisfies

2n
22:1 O {Wen2 (XpHab — 0,V — OV + 2(divv)5ab)} =0, in Ri )

(3.16)
oV;i=V,=0, on OR" ,
fora=1,...,n,and i =1,....,.n—1, and
n—1 d
07V (@) < C(n, 181) D Y Nhijal(e + )17 (3.17)

i,j=1|a|=1

for any multi-index 8. Here d4 = 1 if a = b and 64, = 0 if a # b.
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We define symmetric trace-free 2-tensors S and T on R} by
2
Sap = 0oV + WV, — Eﬁchéab and T=H-S. (3.18)

(Recall that we are adopting the summation convention.) Observe that T;, = Si, = 0

on OR"} fori=1,...,n — 1. It follows from (3.16) that T satisfies

2
W0 Ty + "2awuﬂ;b:(n in BF(0), fora=1,..n. (3.19)
n_

In particular,

n —

mw 8 8bTab + a (6[)W Tab) 0, in B;_(O) 5 (320)

where we have used W.0,0yWe — 250, WO, W, = %(VVEAVVE — %ldWEF)(Sab in R} for
alla,b=1,...,n
Next we define the auxiliary function ¢ = ¢, ,3 by

—9
¢:@mn+@%4m@n. (3.21)

By a direct computation, we have

Agb—l—TL(TL—F 2) W™ 2¢ (n— 1)Waba Hab +ab(a WHab) in B/—)’_(O)a

(3.22)
O = 0, on IR} .
By the estimate (3.17), ¢ satisfies
6(z)| < Ce'z Z Z |hijal(e + |z))lel2 (3.23)
and
Ad(z) + n(n + 2)W~ 2¢ <Cez Z Z |hijal(e + |zl (3.24)

4,j=1 |a|=1
for all x € R"}.

Observe that if n = 3 then d = 0, in which case H =0 and ¢ = 0.

Convention. In the rest of Subsection 3.2.1 we will assume that n > 4.
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We define algebraic Schouten tensor and algebraic Weyl tensor by
1
Aac = 8086Hae + aaae’Hce - aeaeHac - maeaf}[ef(;ac
and

Zabcd :abadHac - 8bac/Had + 8aacfHdb - aaad/Hbc (325)
1

+n—2

(AgcObd — Aaddbe + Apdbac — Apcdap) -

We also set

2 2
8bVVejjac + 6dvvejﬂad&)c +
n—2 n—2 n—2

2
Qab,c = WeacTab - maaWeTbc - 8alI/Vejﬂbdéch .
(3.26)

Lemma 3.2.3. If the tensor H satisfies

Zabcd = 07 m Ri )
OnHij =0, ondRY,
then H =0 wn R’}

Proof. Observe that the hypothesis d,H;; = 0 on OR'! implies that h;;, = 0 for

a=(0,...,0,1). In this case, the expression (3.14) can be written as
d
Hap(x) = Z hap,ax® .
|a|=2

Now the result is just Proposition 2.3 in [15]. O

Proposition 3.2.4. Set U, = B, 4(0, ..., 0, 3) C R%. Then there exists C = C(n) >0

such that

n—1 d
SN il < C'/ Zabchabcd+CT1/ OnHijOnHij ,
Uy Dsr (0\D4r (0)

ij=1|a|=1

for all r > 0.

Proof. If r = 1, observe that the square roots of both sides of the inequality are norms

in ‘H, due to Lemma 3.2.3. The general case follows by scaling. O
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Lemma 3.2.5. There ezists C = C(n) > 0 such that

-1 d
c n
o —2 2.2 29—
N4y ”/U ZabedZabed < g )Qab,cQab,c-f-een Z Z ‘hij7a| , la]+2-n

B.(0\B}(0 ij=1|a|=1

for all0 <0 <1 and all r > €.

Proof. This follows from the third formula in the proof of Proposition 2.5 in [15], by
means of Young’s inequality. Observe that, in our calculations, we are using the range

1 < |a| < din the summation formulas, instead of the range 2 < |a| < d used in [15]. O

Lemma 3.2.6. There exists C = C(n) > 0 such that

n—1 d
n—2,.5-2n B B n—2 o 12..2lal+2—n
e OnHiiOnHii <Cle g g |hijal™r (3.27)
/D53T(O)\D43r(0) ! ! !

ij=1 |a|=1
C

+
0 JB5 (0)\B:t (0

Qij,nQij,n
)
for all0 <0 <1 and allr > €.

Proof. Let x : R — R be a non-negative smooth function such that x(¢) = 1 for
t € [4/3,5/3] and x(t) = 0 for t ¢ [1,2]. For r > 0 and = € R} we define x,(z) =
x(|z|/r). Observe that 0,5;; = —ﬁ@n&m&j on OR’}. On the other hand, (3.20)
gives 0p,Spn = —0, Ty, = 0. Thus, 9,5;; = 0 and 0, H;; = 0,13 = We_lQijvn on OR' .

Integration by parts gives

2(n=1) 2 2

/ We "% 0 HijOnHijxr = / W2 QijnQijnXxr = —/ O (W2 QijnQijmxr)
OR™ OR™ R?

(3.28)

2 2

= - 8n(Wen72 Qij,an)Qij,n - / W€n72 anQij,nQij,an .
R" R”
By using Young’s inequality, the result now follows from the inequalities

2(n—1)

We "2 8nHijanHinr > Cilenflr272nan7{ijan7'lijxr

and

n—1

d
2 _2_ n _9_
100 (W2 Qijmxr)| + W2 0nQijinxe| < Ce2 > D |hyjalr®=27,

5,j=1 |a|=1
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Proposition 3.2.7. There exists A = A(n) > 0 such that
1
2 )2lal+2-2
e Zl |Zl ‘hzj a’ / 6 + ’JZ“ e+ "dx < - 1 /B;(O) Qab,cQab,cdw
2¥) [e3

for all p > 2e.

Proof. This follows from Proposition 3.2.4, Lemma 3.2.5, and Lemma 3.2.6. O

3.2.2 Type A test functions (Ua;,e))

In this subsection we use the same test functions as in [15] but we need to do some
changes when estimating their energy by Q(S) because the boundary does not need
to be umbilical in our case.

For p € (0, Py/2], the Fermi coordinates centered at xy € OM define a smooth map
Yuy + BF(0) C R — M. We will sometimes omit the symbols 9/, in order to simplify
our notations, identifying ¢, (z) € M with x € B;(O). In those coordinates, we have
the properties g.,(0) = dqp and gnp(x) = dpp, for any = € B;L(O) and a,b=1,...,n. If
we write g = exp(h), where exp denotes the matrix exponential, then the symmetric

2-tensor h satisfies the following properties:

(

hay(0) =0, fora,b=1,....,n

han(z) =0, forz € By (0), a=1,..,n,
8khi]’(0):0, fori,j,k‘zl,...,n—l,

S0l @jhij(x) =0, forz e Dy(0),i=1,...,n—1.

The last two properties follow from the fact that Fermi coordinates are normal on the
boundary.

According to [65, Proposition 3.1], for each g € OM we can find a conformal
4
metric g, = fau ° go, with fy,(z0) = 1, and Fermi coordinates centered at o such that

det(gz,)(z) = 1+0(|z|?¢2), where d = [252]. In particular, if we write gz, = exp(hay),

we have tr(hg, )(x) = O(|z|?>?*2). Moreover, Hyg, , the trace of the second fundamental

form of OM, satisfies

Hy,, (2) = — 56" 0ngis () = — 50n(log det(guy))(x) = O(Ja™). (3.29)

2
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Since M is compact, we can assume that 1/2 < f,, < 3/2 for any z¢ € M, choosing

Py smaller if necessary.

Notation. In order to simplify our notations, in the coordinates above, we will write

ab

gap and g? instead of (guy)ap and (gu, ) respectively, and hyp instead of (hyg)ap-

In this subsection, we denote by

,Hab(x) = Z hab,axa

1<[o|<d
the Taylor expansion of order d associated with the function hgp(z). Thus, we have
hap(x) = Hap(z) + O(Jz|T1). Observe that H is a symmetric trace-free 2-tensor on
R, which satisfies the properties (3.13) and has the form (3.14). Then we can use the
function ¢ = ¢, ,3 (see formula (3.21)) and the results obtained in Subsection 3.2.1.

Recall the definitions of W, in (3.10), x, in (3.15), and Ru in (3.9). Define

@ = (M5 ) T R ) Wtz @) 4ol @) (30)

+(“%;”>4qu—mw£mme@a

ifr e @on(B;;(O)), and U, ¢ (2) = Gy, (2) otherwise. Here, Gy, is the Green’s function

of the conformal Laplacian Ly, = A ”7_2}3910, with pole at zg € OM, satisfying

9zg ~ 4(n—1)

the boundary condition

0 n—2
— Gy — ——H,, G, =0 3.31
I,y 0 A1) e (331
and the normalization limy, o |[y|" Gy (¢sy(y)) = 1. This function, obtained in

Proposition 3.B.2, satisfies

ot d+3—n >
G — P <c R |a|+2-n C|y| , ifn >5,
Gaa (s () = WP S C DS Ihijal 2 +

i,j=1|al=1 C(1+1logly|), ifn = 3,4,
(3.32)
9 n—1 d
By Gro W (v)) = WP < C D0 D hiallyl T 4 Oy,
3,j=1 |a|=1

forallb=1,...,n.
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We define the test function

ﬂA;(woﬁ) = fwo U(:Jco,e) . (3.33)

Observe that this function also depends on the radius p above, which will be fixed later
in Section 3.3. Such constant will also be referred to as p4 in order to avoid confusion
with test functions of the other subsections.

Our main result in this subsection is the following estimate for the energy of % . (5 ¢):

Proposition 3.2.8. Under the hypotheses of Theorem 1.2.4, there exists Py = P1(M, go) >
0 such that

fM { n— ’duA (z0,€) |go + RgouA ;(wo, 6)} gy

n—2
2n_ n
—n—2
<IM uA;(xo,e)dvg())

4(n— 1
fM { tnl) |dU (zo, 6)| + Rgzo U(gjo 5)} dvgzo + faM 2ngo U(xo, )d 9zq

n—2

2n n
<fM (z0,€) dvgz())

<Q(S})
for all xg € OM and 0 < 2¢ < py < Py.
Let A be the constant obtained in Proposition 3.2.7.

Proposition 3.2.9. There ezxist C, Py > 0, depending only on (M, go), such that

/ (0) {4(n_21)‘d(W5 + ¢)|§zo + RgZ() (We + ¢)2} du - / 2ng0 (WE + gb)QdO’
0 —

BY n Dy (0)
n-+2

<4n(n—1) eﬁ(wf ¢2) (3.34)

A(n—1
n / Mweaawe+wfabhab aW: hab}
8+ B (0) 2

n— i
A n—1 d
530 D Ml [ (et e s (3.35)
2 ij=1|a|=1 BF(0)
d
+ C Z Z ’hwa‘en 2 |a\+2 n Cen—2p2d+4—n
3,j=1|a|=1

for all0 <2e < p < Py
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Proof. Following the steps in [15, Proposition 3.6] we obtain
4(n —1) 2 2}
d(We + ¢ + Ry, Wet0o d:r—i—/ o (We+ ¢
/Bm{ 2= D1d(W + $)2,, + Rouy (We +9) P UAE

— _4
g/ An 1) )]dW\ da +/ A=), 4 )W
Bio) =2 i) n=2

1
+/ (Wgabhab abI/V hab) / Qab,cQab,cdw
a+B+() [ | 4550
Py 3 higal?er / (e + Jal)2e1+2 -2
i,j= 1\a| 1 (0)
+C Z Z ‘hij7a’€n—2p\a|+2—n + Cen—2p2d+4—n ]
ij=1|a]=1

The result follows by making use of Proposition 3.2.7 and

2n
1AW |? = 0,(WeDuWe) — W AW, = 0y( W0, We) + n(n — 2)W 2 .

O
As in [15, p. 1006], we define the flux integral
4 n—1 —n n
Toop) = T [ (P0G — e ) 2 (3.36)
n—2 8+B;,"(0) ’ |

[P Pobhe — 2naha) T
ot B €T

do,,
+B(0) ||

for p > 0 sufficiently small.

Proposition 3.2.10. There exists Py = Py(M, go) > 0 such that

An—1) 2 72
/M {|dU w002y + Rarg Ul o 1 ge + /a 2H,, U2, odog,,

n —
n—2

_ 2n =
= Q) {/M Ot | Tl
4 Z Z |hijal?€"™ 2/ (e + |a])2o1+2-2n gy
(0)

3,7=1]al=1
n—=1 d

+CZ Z |h1ja|€n 2 \a|+2 n O 2 2d+4 n+cen -n
i,j=1|a|=1

forall0 <2e < p < Py.
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Proof. Once we have proved Proposition 3.2.9, our proof is analogous to the one in [15,

Proposition 4.1]. A necessary step is the estimate

S 2
dn(n — 1) W <W3 o ¢2> dw (3.37)
B (0) n—2
o n772 n—1 d
<Q(Sm) ( / (W, + ¢)n—2dx> + ) Jhijalp e (3.38)
B; (0) ij=1]al=1

n—1 d
O S fhygalte! / (e + o) 2ol2-2n gy

inj=1 |af=1 B (0)
for all 0 < 2¢ < p < P; and P; sufficiently small; see the proof of Proposition 3.2.24

below. O

Corollary 3.2.11. There exist Pi, 0, Cy > 0, depending only on (M, go), such that
4n—1), - 9 Y L,
/M {H|dU(w0’€)|gIO + Rgzo U(xo,e) d’l}gmo + /8M 2ng() U($0,€)d0910

n—2
_ 2n_ no
S Q(S'T;:) {/ U(Z;,Qe)dvgro} - en_QI(x()v P) - HEH_Q / n ‘Wgo (37)‘2(6 + ‘-’E’)G_Qndx
M BJ(0)

n—2
1
_96712/ g () (e + )72 do + Coe™2p?HH " 4 C <6> —
Dp(O)‘ 90( )‘ ( ‘ ’) 0 p 0 D log(p/e)

for all 0 < 2e < p < Py. Here, we denote by Wy, the Weyl tensor of (M, go) and by mg,
the trace-free 2nd fundamental form of OM.

Proof. Similar to [2, Corollary 3.10]. O
Recall that we denote by Zgus the set of all points g € OM such that

lim sup dy, (2, 20)? W, ()| = limsup dy, (z, 20)' "7y, ()| = 0.
T—T0 T—T0

Proposition 3.2.12. The functions Z(xo, p) converge uniformly to a continuous func-

tion I: Zypr — R as p — 0.
Proof. As in [2, Proposition 3.11] we can prove that

Cp2d+4—n ifn > 5,
sup |I(CL'0,[)) 7Z($05ﬁ)| <

z0E€EZaM

Cp*+i—n(logp) ifn = 3,4,

for all 0 < p < p. The result follows. O
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The following proposition, which is [2, Proposition 3.12] !, relates Z(x() with the

mass,

Proposition 3.2.13. Let 9 € Zsy and consider inverted coordinates y = x/|x|?,
where © = (x1,...,x,) are Fermi coordinates centered at xo. If we define the metric
g= Gg%ggc0 on M\{zo}, then the following statements hold:

(i) (M\{z0},9) is an asymptotically flat manifold with order p > "“52 (in the sense
of Definition 1.1.3), and satisfies Rg =0 and Hg = 0.

(ii) We have

rom g [ (0 0y, w0 0y, ]
R—oo | Jo+BE(0) [y Oyp \Oya” Oyp o+B5(0) [y 0Ya \ Oy Oys

In particular, (xo) is the mass m(g) of (M\{zo},g).

Proof of Proposition 3.2.8. Once we have proved Corollary 3.2.11, and Propositions

3.2.12 an 3.2.13, this proof follows the same lines as [2, Proposition 3.7]. O
We now prove some further results for later use.

Proposition 3.2.14. 2 For x € M and € < p,

4(n—1) = 7 B
ﬁAgzo U(xo,e) - Rgzo U(CB(),E) + RooU(in) (:E)

n—2 n+2
€

€ 29 -1 oz

nt2 —-n n—2 —-n
+Ce s p™* " ez p' " (log )L (057 (0) (%)-

! In [2, Propositions 3.11 and 3.12] a log p must be included in the arguments for dimensions 3 and
4, when the Green function has log in its expansion; see (3.32).

2 The (2 + |x|2)_% term in this proposition is necessary only in dimension 3, when d = 0 and so
H = 0. On the other hand, the log p term is necessary only in dimensions 3 and 4, because of (3.32).
The same terms are also necessary in the first inequality of [2, Proposition 3.13], but this does not
affect any other results in that paper because weaker estimates similar to the ones obtained in Subsection
3.2.5 are also enough to [2].
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Proof. Note that after scaling, we are assuming Ro, = 4n(n — 1). Then

nf27 _nt2

n—2

_ n—2
4(n — 1)R°°U(107€)

Agzo U(xo,e) - ngzo

U(xo’e) +

n—2 n—2
= (B Xp) We + & — € 2 [a]*™") + 2{dxp, d(We + ¢ — € 7 [27"))g,,

n—2 -n n—2 —n
~ (Do xp)e 7 (Gog — [a]*7") = 2672 (dxp, d(Gay — |2[*7))

gz

n

X (Agxo (We+9) - 4(71__21)}3910 (We + ¢) +n(n —2)(We + ¢)Z+§>

n-2 w2 nt2
+n(n —2) ((Xp(l/VE +¢) + (1 —xp)e 2 GQ;O) - Xp(We + ¢)”2>
=h+L+I3+1,

where I;, i=1,2,3,4, denote the corresponding row.

To estimate I, notice that for |z| > p > € we have
(€ + [2%)F" = |o27"| < Ol (3.39)
and, equivalently, |W, — 6%2|xl2_”| < CenTHm_”. Then I can be estimated as
] < O 072" 5 0 ) g 0y o)

Recall the properties (3.32) of Gy,. Then |I3] < Ce%pk"(log p)lB;;(O)\B:(O). Using

(3.22) we calculate

n—2
€ 2 2)-14

(" + |x]7) B, (0):

L <C|———
512 (a7

Some elementary calculation reveals

n+2

2

€
Ll <C (62 n \1"2) Lans; 0y

Combining all the estimates above, we get the conclusion. O

Proposition 3.2.15. For x € OM,

2(n—1)

n—2 Oy, @)~ HoaUiwoo

T
(x) < Cp (62+|x\2> 1p,,(0) ().

Proof. Observe that

0 - n—2 _ 0 n—2

0 g "=y =Xp7— (W =1
By 09 5 — 1 oo Ulave) Xogy, —(Wert 0) 5075

9z

n=2 0 n—2
T Xp)e <angzo G0 = 30 = 1)ngoGwo) :
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Recall that we were using Fermi coordinates, thus ng, = Oy. The first and third terms

are zero by the equations (3.11) and (3.22) while the middle one can be bounded as

n—2

2

€
o, V40 < 00 (=) oo

3.2.3 Type B test functions (up;.))

In this case the test functions we use are essentially the same as in [14]. However,
when trying to control their energy by Y (S™), due to the proximity to the boundary,
the argument in that paper cannot be directly applied. We are able to overcome this
difficulty by exploiting the sign of 9,,W,(0) (see the definition in (3.10)). Since all the
argument is local, we do not make use of the positive mass theorem in this subsection.

Fix xg € Mas,\OM and let 1), : ongp C R™ — M be normal coordinates centered
at xg, where 0 < p < Fy. We will sometimes omit the symbols 1), in order to simplify
our notations, identifying 1y, () € M with © € By, 2,. In those coordinates, we have
the properties gq,(0) = dqp and 0.gqp(0) = 0, for a,b,c = 1, ..., n. If we write g = exp(h),
where exp denotes the matrix exponential, then the symmetric 2-tensor h satisfies the

following properties:

(

hay(0) =0, fora,b=1,...,n,

Ochap(0) =0, fora,b,c=1,...,n,

S aphap(z) =0, fora € Byyp, a=1,..,n.

_a_
According to [55], we can find a conformal metric g, = fzy > go, with fu,(x0) = 1,

such that det(g.,)(z) = 1 + O(]2[>***2) in normal coordinates centered at xo, again

written 1y, : By, 2, — M for simplicity. We can suppose that 1/2 < f,; <3/2 .

Notation. In order to simplify our notations, in the coordinates above, we will write

@ yespectively, hqp instead of (g )ap, and n®

gap and g instead of (guy)ap and (gu)
instead of (7)y,)®. We denote by v = vy, the unit normal vector to D$0,p with respect
to the Euclidean metric, pointing the same way as 17,, and 7y, and write v = v®9,

and n = n%0,.
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Set § = dg, (z0,0M). If g € OM is chosen such that dg, (z0,%o) = ¢ then we
can assume ¥y, (Zo) = (—6,0). Thus, ng, (—0,0) = v(=4,0) = I, and there exists
Co = Co(M, go) > 2 such that

In®(z) — dan| < Colz|, and (3.40)
V() — dan| < Colz|, for allz € Dxmgp, (3.41)
where © = (x1, -+ ,2p) = (%,7,) € R”. We will also assume that D,, o, is the graph

of a smooth function y = 7y, so that
Dy p = {x = (2.7(2)) | 2] < 2p}.
We can write v(Z) = —§ + O(|Z|?) and choose Cj larger if necessary such that
|7(Z) 4 3| < Co|z|?, for allz € Dyy o). (3.42)

See Figure 1.

R™ T »

ngxo oM

In this subsection, we denote by

/Hab(q:) = Z hab,axa

2<a|<d
the Taylor expansion of order d = [%;2] associated with the function hgp(z). Thus,
hap(2) = Hap(x) + O(|z|9F). We define ¢, S, T and Qup. as in Subsection 3.2.1 (see
(3.21), (3.18) and (3.26)), except for the fact that, as in [14], the whole construction is
done in R" instead of R’}. Then the first equation of (3.22) and the estimates (3.23)

and (3.24) also hold, with 2 < |a| < d replacing 1 < |a| < d.



Lemma 3.2.16. There exists A = A(n) > 0 such that

n d
1
A2 Rab 2/ €+ |z )2|a‘+2_2nd$ < / Qab,cQab,c
> 2 hasal BP(O)( | 4B,

a,b=1|a|=2

for all p > 2e.
Proof. See [14, Corollary 10].

Recall the definitions of W, in (3.10), x, in (3.15), and Ru in (3.9). Set

»

@) = (B ) @) (W 0) + 000, ()

n—2

+ <4”(”‘1>) SR (1 s (@) G (@),

R
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if & € 1y (Buy2p), and Ulzo,e) () = Gg, () otherwise. Here, G, is the Green’s function

of the conformal Laplacian Ly, ~with pole at z9 € M \OM, satisfying the boundary

condition (3.31) and the normalization limy,|_,o |y|" ?Ga, (e, (y)) = 1/2. This function

is obtained in Proposition 3.B.3 and satisfies, for some C = C(M, gp),

. Clyl>~" + Cé|y|*— ifn > 4,
|Gy (Y (y) — [y]77"] <
C(1 +logly|) + Coly|t™™ ifn =3,

0

5 (Gao (¥ (9)) = 2" < Cly>" + Cély| ™,
Yb

for all b =1,...,n and v, (y) € M; for some small 6= S(M,go).
Define the test function

UB;(z0,e) — ffﬂo U(xo,e)'

(3.43)

(3.44)

Observe that this function also depends on the radius p above, which will be fixed later

in Section 3.3. Such constant will also be referred to as pp in order to avoid confusion

with test functions of the other subsections.

The main result of this subsection is the following:

Proposition 3.2.17. Under the hypothesis of Theorem 1.2.4, there exist positive Po and

Cp, depending only on (M, go), such that for any pp < Py one can choose §y < C’Bp2B
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satisfying

4(n—1 — _
fM { S’L—Q ) ’duB;(ﬁo,G) ’30 + RgOu2B;(m07e)} d'l)go

n—2
2n_ n
—n—2
(fM uB;(:co,e)dvgo)

4(n— 1 J
J‘M { ( ) |dU mo,ﬁ)‘gzo + RQIO U(LL‘O 6)} dvgz + faM 9z U(2x075)do-gzo

n—2

<IM (xo e dvgz())

Y (S™)
for all g € Mas,\OM and 0 < ¢ < Cg'dg, (0, 0M).

We will prove several lemmas before proceeding to the proof of Proposition 3.2.17.

Lemma 3.2.18. If |z| < 1/(2Cy), then for e >0 and 0 < § < 1 we have

T (2 + 7> +0°%) < & + |z + ()% < 2( + |7)? + 6?). (3.45)

Proof. First assume § > Co|Z|%. Since |v(Z)| > § — Cp|z|*> > 0, Cauchy’s inequality

implies

1&)? > (6 — Colz[?)? > 6% — 2Cy0|z)* > — 202z

l\')\»—\

So,
1
&+ |71° +(2)" 2 ¢ + (1= 205137 + 507,
and our assumption |Z|? < 1/(4C3) gives

1 1 1
E 4z + (@) >+ 5]:2\2 + 562 > —(e? +|7|* + 6%).

2
If 6 < Co|z|> we have
|Z|? + v(2)* + € >5—+@+ >i(62+y§;\2+62)
20, 2 200 '

so the left part of (3.45) is proved.

As for the right part, notice that

1(@)? < (0 + Colz[*)? < 262 + 205z *.
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Consequently,
1z + (7)) < 2+ (14 2C3z°) |z + 26% < 2( + |7)? + 62),
because our assumption on |Z| implies 1 + 2C3|z|? < 2. O
Lemma 3.2.19. If0< p < 1/Cy and 0 < § < p/4 then
|72 +7(2))? < p, for all|z] < p/2.
Proof. From our assumption it is easy to get §/p + Cop/4 < 1/2. Since
V(@)] < 6+ Colz|* < 6+ Cop? /4,

we have

o+ < 2+ (54 Q) < 2y (2)' -2

Lemma 3.2.20. If0 < p<1/Cp and 0 <6 < 1 then
VIzl2 +1@)? > 6/v/Co,  for all |z] < p.

Proof. First assume § > Co|Z|2. Then |y(Z)| > § — Co|z|> > 0, which yields
v(®)? > (6 — Colz|*)? = 6% — 20Co|z|* + C§|z|*

52 52

> 6% — 5 - 203 |z|* + C3|z|* = 5 -

CBlal*.
Therefore, by the assumption |z| < p < 1/Cp, we have
jZ|* +7(2)* > (1 - Clz]*)|z* + 6%/2 > 6% /2 > 6/ C,

because Cy > 2.

If 6 < Co|z|?, since 0 < § < 1, we have §2 < § < Cp|z|?>. Obviously
|z|* +~(2)* > 6%/ Co,

proving the result. O



Lemma 3.2.21. There exists C = C(n) such that
/ (2 +|Z|* + 6% "dz < Cpd*™™,  for0 <3 <p.
{zeR™ 1| |z|<p}
Proof. Just observe that

/ (€2 + |z> + 6%)?dz < / (|z? + 6%)* "dz
|Z|<p |z|<p

S\@p/

Rn—1 Rn—1

Lemma 3.2.22. There exist ¢, K, P» > 0, depending only on (M, go), such that

4(n—1)

W.0,W.do > ¢ 262"
n—2 Dag.p

when 0 < e < d < Kp and p < Ps.

Proof. Observe that W0, W, = —(n — 2)e"2(€? + |z|?)' "z, and, on Dy, ,,
WO, We = W0, We = W0, We + We (v — dn) 0g We.

Using (3.41) and Lemma 3.2.18, we have

‘We(’/a — 6an)0aWe|(x) < (0 — Q)Cen_Q(EQ + ’3_3‘2 + 7(52')2)2_71

< (2C0)" %(n — 2)Ce" (% + |z* + 62)*

(of? +8)* 2 ds = VEps* ™ [ (g +1)
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3—2n

2" dy.

O]

when @ = (Z,7(Z)) € Dy, , with |z < (2Cp)~!. Hence if p < (2C5)~" and 0 < § < p,

then
e\ n—2
W.0,W.do > W,.0,W.do — Cp (g) ,

Dz,p Dzg,p

where we used Lemma 3.2.21.
In order to estimate from below the r.h.s. of this last inequality, we see that
Wb We(x) = —(n = 2)" (¢ + |z* +v(2)*)' " "(2)

> (n—2)e" (e + |z]* + 7(2)*)' (6 — Colz?)

> (n = 2)e"25(e* + [z +9(2)*) 7" = (n = 2)Coe" (€ + |z +4(2)?)* "

> (n —2)2' 7" 25( 4 af? + 601 — C A + |zl + 82)2 T
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for x = (&,7()) € Dy, with |z < (2C)~", where we used Lemma 3.2.18 in the last
step.

Assume 0 < p < (2C) ! and 0 < 6 < p/4. According to Lemma 3.2.19,

{(@7(®)) | |2 < p/2} C Dagp-
Then

W0 Wedo > (n—2)21 % (e + |z|* + 6%)' "dz
Dag,p |z[<p/2

—OEn_Z/ (€2+ |i’|2 +52)2—nd£,
|z|<p

=J]-—1I.
Notice that

5 (€ + 2]+ 62) "dz — 5”/
|1Z|<p/2 |y

P~ 72 )111 -
) +lgPe1) d
1<p/26 <(5> i ’
Z 21—n52—n/ (‘?j|2 + 1)1—ndg
19|<p/28

for 0 < € < 8, because (¢/8)? + |72 +1 < 2(|g|* + 1).

Set a(n) = [gn-1(|7[* + 1) 7"dy and observe that

e - s 5 n—1
/ (l9° + 1) "dy = a(n) — / (1g]* + 1) "dj > a(n) — C <> .
[91<p/26 |g]>p/26 P

Hence,
n—2 ) n—1 e\n—2
S (5 — 9)92—2n € _ 9 € .
1> (n—2)222a(n) (5) c(p) (5)
On the other hand, IT < Cp(e/6)" %, by Lemma 3.2.21.

Putting things together, we obtain

W.0,Wedo > (n — 2)2272" (a(n) — C(3/p)" "' — Cp) (¢/8)" 2,

Dz,p

from which the result follows. O



Proposition 3.2.23. There ezists Py = Py(M, go) > 0 such that if 0 <6 < p < Py

[ AR P+ o + 1, 7+ 02 o

4(n—1 4(n—1 e
<Azl / AW, 2 dz + / A=)y Wi e
B

n—2 n—2
zQ,p zQ,p

A n d
+§Z Z|hab,oc €

a,b=1 |a|=2

1 € n—2 € n—2
1 / Qab,cQab,c dx + Cp (5) +Cp ()
Bzg,p P

for all e € (0,p/2]. Here, X is the constant obtained in Lemma 3.2.16.

/ (E—I— |l,‘)2|oz\—|-2—2ndaj

0:P

Proof. As in [15, Proposition 3.6], we can choose 0 < P» < 1 such that

n—2

4(n — 1 4(n —1 e
A=) / AW, |?dx +/ =) 4 )W P
n—2 Jp, : n—2

/E?xo,p {M| (We + &) + Ry, (We + ¢)2} de

0p Bazg,p

+ (W26bhab 6;,W hab)

S—

“do / Qus Qi

+Bwo7
n d
Z Z aba‘z n— 2/ (6+|$|)2|a|+2_2nd£€

Bzg,p

w\y

M“‘ H

+C ‘hab7a|6n—2p\oc|+2—n + Cen_2p2d+4_n + / Vdo
D,
2 z0,p

RS

f=n
I

L

P
[

holds for all 0 < 2¢ < p < Py, where

8(n—1 —2)2
V= (7:7_2) (8aWE¢ + u 2 Va) v — Wzabhabya

2
+ QWE(abWe)habVa + Wg%abac/Habe - Vaga

comes from integration by parts. Here, £, is a 1-tensor controlled by
n d
[€a Z Z [Bab,al*€" 2 (e + || 21 =2r,

It is easy to estimate the following term on Emo,p

83

2n
W Vol(2) < (@ + |2 +4(2))' 7 < Ce (e + |2’ +7(2)°)* ", (3.46)

and all the other terms in ¥ can also be estimated by the r.h.s. of (3.46).
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Choosing P» possibly smaller, from Lemmas 3.2.18 and 3.2.21 we get

/f) Vdo < C (E)H o, (3.47)

0,0

for 0 < § < p, from which the result follows. O

Proposition 3.2.24. There exist P,,C > 0, depending only on (M, go), such that

/ {‘““‘”\dwve L O+ Ry, (W, +¢>2} dn
Bzo,p n—2 0

<y (s") ( /B

Ty Z Z |hab.o| 2™ 2/ (e + |a]) 2122 g

ab 1]o|=2 Bazg.p

n

(We+ ¢>f”2dx) —(E=Cp=C6/p" ) (5)

n—2

forall0 < p < Py and 0 < e < § < Kp, where K and ¢ are the constants obtained in

Lemma 3.2.22.

Proof. This result is a consequence of Proposition 3.2.23 and Lemma 3.2.16. Observe

that
4(n —1 Aln —1 4
dn=1) / [dW|*da + / Mn(n+2)VVE”*2¢%13; (3.48)
n—2 Bug.p Bug, ™ 2
4(n—1 2n_ 4
:/ M <n(n—2)W€"_2 +n(n+2)WE”_2¢2> dx
Buy .o n—2
4 4
—/ A=V o Wedo +/ A =Dy 5w, L
Dagp T2 0+ By, N2 “Ja |
£ 2
S/ dn(n — )W 2 (W2 + nt (;52)
Bag,p
4 n—2
N wwaWda+c( )
Dagp M2 p

We shall handle the first two terms of the r.h.s. of (3.48) separately. As in [14

)

Proposition 14], we have

n nt2 n d .
WEZH<C Y 3 hapal?e (e + [a]) 222

a,b=1|a|=2

(w2 + 2E25) 7w+ gy

and

nt2 2n_ 2n
/ W" *¢dx >/ Oa (WG"QVa)dm:/ W” 2V do*—/ WVt do
Buy,p M T B O+ Bag.p o | D

0P (P 0P
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Here, in the last step we estimated the integral on ﬁxmp by (3.46) and Lemmas 3.2.18

and 3.2.21. So,
n—2
. 2 2 n "
/ dn(n — YW 2 (W2 + 2 + ¢2) dz <Y (S™) / (W2 + i<z>2)mdgc
Bug.p n — Bug.p n—2
(3.49)
n—2
2n_ " e\" €\ "2
Y (S™) / (W, + ¢)izdz |  +Cp () +Cp (7)
BI0 o p 4
e Z Z Il / (c + [z])2e 220 g
a,b=1 |a|=2 zQ,P
Recall that Lemma 3.2.22 says
4 n—2
—/ =Dy ) Wda<—c( ) (3.50)
Dop, T —2 )
z0,p
if0<e<d< Kpand 0 < p < Py, for P, small enough.
Now it follows from Lemma 3.2.16 that
1
€' 2 Z Z |hab a‘ / 6+ |$| 2|a|+2 2ndx < - 4 B,(0) Qab,cQab,c dzx.
a,b=1|a|=2 4
We claim that we can choose P, > 0 possibly smaller such that
5 (€ n—2
5 Qab,cQab,c dx < Cp (5)
By (0\Bzg,p
for all p < P5. In fact, from Lemma 3.2.20 we can choose P> small such that
By(0)\Bao,p C Bp(0)\Bs, /5 (0)
for any p < Ps. Then using QupQapec < Ce"2(e + |z[)472" we get
/ 5 Qab,cQab,c dx S Cﬁn_g/ N (6 + ‘l‘|)4_2nd$
(0\Bzg,p By (0)\Bzg,p
< CGn_2p2/ (6 + ’$|)2_2nd$ < Cen—2p252—n‘
R

"\35/1/00

In particular,

- Z Z |haba| / e+\:n| 2‘0‘|+2 2nd$< / QabCQabchE+Cp (5)7172.

a,b=1|a|=2

(3.51)
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Now the result follows from Proposition 3.2.23 and estimates (3.48), (3.49), (3.50)
and (3.51). O

Proposition 3.2.25. There exist Py and K such that
=Y g P Ry, 02 Vv, + [ 2H, 02 a
Y n—2 | ($07€) |gz0 9z (:Eo,e) Ugavo oM 9z (xo,e) ngo

n—2 n d ~
_ 2n_ n A
=Y(5") ( /, U<’;Oi>dvgzo) S P [ (et falett s

a,b=1|a|=2 Bzg.p

forall0<e<d< Kpand 0 < p< Ps.

Proof. We have

4(n—1) — 2 —9 } / — (€)n2
——\|dU g, « + Ry, Ul o ¢ dvg, + 2H,, U, . dog, <(C| - .
/M\Bzoqp{ n—2 ’ (o, )’910 Gz~ (zo,€) Jxg OM\Dsy 9ao ~ (x0,€) " Gzg P

As in the proof of Proposition 3.2.23,

=9 e\n—2

/; 2ng0 U(xo,e)dagxo S Cp (5) .
Dag.p

The result now follows from Proposition 3.2.24 and the fact that det(gy,)(xz) = 1 +

O(|z|?+2). O

Proof of Proposition 3.2.17. Let P, and K be as in Proposition 3.2.25. Choose P,
maybe smaller such that P, < K. Given pp < P, choose K’ < pp and ¢, € (0, K'pp).
Observe that, in particular, one has &) < p% and &) < Kpp. By Proposition 3.2.25, the
inequality we want to prove holds for all 0 < € < § < ¢ and 0 < p = pp < P, where
6 = dg,, (w0, OM).

Now choose Cp = Cp(M, go) such that C5'6 < dy, (20, 0M) < Cpd, and take any

80 < Cpdj. Then, because &) < p%, we have
do < CBP2B-

For any e < Cgtdy, (v, 0M) we have e < C5ldy, (v, 0M) < & < §) and the inequality
in Proposition 3.2.17 holds. O

We finally prove some results for later use.
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Proposition 3.2.26. Forz € M , ¢ < p and 6 < Cp?,

-1, .
‘ S AQZOU($07€)_RgIOU($O>5)+ROOU(IO72€) (x)
n—2 n+2
2 ) 7, cl—) 1,05 (@
= \arme) BT Caiee)  hne, @

n+2

—|—C(€ 2 P n+€ 2 P n(logp)>1ézoyzp\éx0,p(m)'

Proof. The proof goes like that of Proposition 3.2.14 with I, I, I3, I4 being the same.

Observing that we are using normal coordinates, we have

n—2

2

€
< 2 —— 5 .
|13‘ <Cp (62 T ‘$|2> 1310,2,3

. . n—2 1— B 5 n—2 —1— 5 5
Using (3.43) we obtain |Io| < Ce 2z p~"(log p)leo,Zp\Bzo,p—i_Ce z 0p "IBZOV%\BEM,
the log p being necessary only in dimension n = 3.

With the same estimate for I; and I as in Proposition 3.2.14, we get the result. [

Proposition 3.2.27. Forz € OM, e < p and 6 < Cp?,

Gn—1) & - _
n_2 angzo (zo,e) — ngo U(xo,e) (33)
n n—2
0 € 2 € 2
< Cg <€2 + ’l‘|2> 1Dm0,2p($) +C <€2 + |33|2> 1D.7:0,2p(x)

nt2 4 n—2 o_
+C(€ > p 1 ny e ,02 n(IOgp))lbmogp\bzo,p(x)‘

Proof. Observe that, on OM,

U (40,6) n—2 _ 195% n=2 5 OXp n=2, o_
= — Hy Uy ==L (Wetd—€2 |z )+ =Le2 (2> -G,
a779050 2(n —1) 90~ (20,6) 8779950( | ‘ ) 877ng (le] O)
0 n—2
a_ € T a7/ 4N H €
n—2 8Gx0 n—2
A =Xp)e (angzo - 2(n—1)Hg”°G$°)’

where the last term is zero by the definition of G,. Set

8X n—2 _ 8X n—2 _
J = P (Wet+¢—e 2z |z, Jo = P e s (|z)>" = Gy ),
1= f>~") = T (e~ G
oW, 0¢ n—2
_ = — H, (W, .
JS Xpangz()? J4 Xp (angzo 2(7-1/ . 1) g:co( + d’))



88

Recall (3.39) to bound

0 n— n n—
uﬂs\&fﬂMme—eﬁﬂﬂ*ﬂwww)sc&f?ﬁ+%+«7¥ﬁﬂwl

onﬂp\Dzom ’
gz

For Jo, we can use the properties (3.43) of the Green function and the hypothesis

§ < Cp? to obtain

n—2

’J2| SE 2

930,2P\D107.0.

0 —
A)Hfﬁl%” — G| < CET p? " (logp)15
877910

In order to estimate J3, let us calculate OWe/0ny, . Suppose z = (Z,7(Z)) € Dayy,p,

then

OW, /O, () = —(n —2)e"7 (2 + |2]*) " 2z ()

n—2 _ Do .
=—(n=2)e > (€ + 2] +4(2)") 2 (4(2) + (F (@) = §jn);).
Recall the properties (3.42) and (3.40) of v and 7. So,

n—2 _n —
|OWe/Ong, |(x) < Cez (€ + 2>+ 7(2)*) "2 (6 + C|z]*)

n n—2
1) € 2 € 2
<OZ | - -
—Ceﬂluaﬁ *C<@+mw>

for x € lN)xoyp. Consequently,

n n—2

5 € B € 2
< e - ~ R = .
=0 (7578) e+ (355)  100n

Easily we can get

n—2

0¢ € 2
J<C ’ W, <c(——) 15 ..
= Ol 1w o) < (a5) " 100
Combining all the results, we get the conclusion. O

Proposition 3.2.28. Forz € OM, € < p and § < Cp?,

<2(n -1) 0

"2 o, Utwoe) = H, U(mg,e)) ()

n—2

€ 2 nt2 _q_. n=2 o_
—-C (> 1,0 (@) = Clez p7 i ez p? " (logp))1p, 1\, (%)-

€2+ |z|?
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Proof. Observe that

)
Xpg—

9z

We = xp(n = 2T (2 + 22 +9(2)2)F(—(2) + (Jjn — 7))

> xp(n —2)e 7 (& + |22 +7(2)?) 73 (5 - C|z[?)
n—2 2—

> —Ce 7 (E+ 277 1,

zo,2l37

because § > 0. Now the result follows as in Proposition 3.2.27. O

3.2.4 Type C test functions (tc;(z,))

Our test functions in this case are the ones in [14], which are controlled by Y (S™) the
same way as in that paper.

Recall that we assume that the background metric gg on M satisfies Hy, = 0 on OM.
Fix xg € M\M;, and let 5, : B2,(0) C R™ — By,(xg) C M be normal coordinates

centered at xg, where p is small such that 0 < p < dp/4. As in Subsection 3.2.3,
4
we choose a conformal metric g,, = fay >go such that det(g,)(x) = 1+ O(|z|*¢+2)

in normal coordinates centered at xg, still denoted by v,,. We assume f,, = 1 in

M\ By,(x0), which implies Hy, =0 on 0M.

9z

Define ¢ as in Subsection 3.2.3 and set

n—2

@ = ("5 ) T R )W) 4ol @) (52)

i (T) T (1 (05 @) G )

if 2 € Bap(x0), and Uy, o) () = Gay () otherwise. Here, Gy, is the Green’s function of

the conformal Laplacian Ly, = Ag, =~ — 4&7__21)}29 ,» With pole at zgp € JM, boundary

condition (3.31) and the normalization lim, g [y[" 2Gz, (ths,(y)) = 1. This function,
obtained in Proposition 3.B.2, satisfies

SN Cly|*3—n, iftn > 5,
|Gy (Y () — > < C Z Z il ly|lo 2 +

i.j=1|a|=1 C(1+loglyl), ifn=3,4,
(3.53)
a n—1 d
Fgy oo (VW) = WP < C D0 D Thially T+ Cly

ij=1|a|=1
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for some C' = C(M, go,dp) for all b=1,...,n and zo € M\Ms;,.

We define the test function

U Ci(xo,e) — f-'L'O (zo0,€)* (354)

Observe that this function also depends on the radius p above, which will be fixed later
in Section 3.3. Such constant will also be referred to as p¢ in order to avoid confusion

with test functions of the other subsections.

2(n—1 = _ =
For later use we observe that (:72 ) %U(xme) = Bgouc;(me = ngo U(I(LE) =0 on

oM.

Our main result in this subsection is the following:

Proposition 3.2.29. Under the hypothesis of Theorem 1.2.4, there exists P3 = P3(M, go, o)

such that

4(n—1 — -
fM { (71,2 ) ’duC’;(zo,e) |52]0 + Rgou%;(w(),é)} d’UgO

n—2

(fM Uc, (i«o e) dvgo>

fM {4(n ) ‘dU (zo,€) ‘!21950 + Rgaco U(xo e)} dvgw + faM EN) U(onﬁe)dagxo

n—2

<fM UZ:o 26 dngo )

Y (S™)
for all zg € M\ M5, and 0 < 2¢ < pc < Ps.

Proof. Choose P3 small such that for any zg € M\Mjs, we have dg, (vo,0M) > 2P5.
Choosing P3 smaller if necessary (also depending on dy because of the above estimates
for G,) the result is Corollary 3 and Proposition 19 in [14] with some obvious modifi-

cations, by making use of Theorem ?7. O
For later use we state the following result, which is proved as Proposition 3.2.26:

Proposition 3.2.30. We can choose P3 = P3(M, go,d0) maybe smaller such that there
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is C = C(M, go) such that

4(n—1) = B
‘HAQIU U(CBO: ) Rgzo U(IO’G) + R U(zo e)

) ¢ =N ¢ =N
=Cp (62+,x‘2> 1sz<o>+0<62+,x‘z> Lans, )

n+2 n
+O(ET p 2+ "7 pP " (log )1, 00\ B,(0)

for all zog € M\ M5, and e < p < Ps.

Proof. As in Proposition 3.2.26, the proof follows the lines of Proposition 3.2.14, but
the term o is estimated by |I| < Ce%pk"(log p), where C' depends on dy. Choose
P < Cc—4. L]

3.2.5 Further estimates

The results of this subsection are consequences of what was proved in Subsections 3.2.2,
3.2.3 and 3.2.4.

In this subsection, unless otherwise stated, if g € OM, xy € M;,\OM or zy €
M\Mazsy, U(gye) Will stand for s,z ) UBi(zg,c) OF Uci(zg,e), Tespectively. If zo €
Mas, \Msy, TUzy,e) Will stand for tp,(z, ) and Uc;(g.e), the results below holding for

either. By the "radius” p of Uy, we mean pa, pp or pco, if U e = Uai(zg.e)

U(zg,e) = UB;(zo,e) OF U(zg,e) = UCs(xo,e)s TESPECtively.
We observe that whenever U, ) = Ug;(zg,c) We have dgo(z0,0M) < dp < Cp?,
according to Proposition 3.2.17, because zg € Ms,\OM in this case. Hence, we can

make use of Propositions 3.2.26, 3.2.27 and 3.2.28.

Corollary 3.2.31. There exists C = C(M, go) such that, for e < p,

4n—1) , _ 3
=2 Bl ~ Rl T Roollyyr)
n—2
—-1/2 ¢ ? 2 2)-3
=Cptl <e2 +dg, (:U,xo)2> (€7 4 dgo (,20)7) "2 1, (wo)

nt2
€ 2
+C <e2 + dg, (z, x0)2> LA\, aa0):

Proof. 1t is a consequence of Propositions 3.2.14, 3.2.26 and 3.2.30. 0
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Corollary 3.2.32. 2 There exists C = C(M, go) such that, if p is the radius of Uy, ez)

and €z < p, we have

/ ﬂ(l'lvel)
M

An—-1) o _ _ & 5
Agol(as,ez) = RgoU(za,en) T Roou(x;ez)

n—2

n—2

2 =
<c(p?+2 c1ez .
B (p * p?) \ € + dgy (21, 72)?

Proof. As in [13, Lemma B.5] we get

n—2 n+2 n—2

S ISR —t - dvg, < C— .
/{dgo (y,x2)=p/2} <6% + dgy (1, y)2> €5 + dgy (2, 9)* % p? \ €3 + dg, (z1, 2)?

(3.55)

We claim that

n—2 n—2

/ < x >2< X )2@+dmyﬁ%m
5 7 7/ N9 2y
{dgq (y,m2)<4p} 6% + dyg, (z1,7)? 6% + dyg, (w2, y)? 2 7 %

(3.56)

n—2

€163 5
€3 + dgy (21, 22)?

Set

A ={2dgo(21,y) < €2+ diz} N {dy,(y, z2) < 4p}

and
B = {2dy,(71,y) > e2 + dia} N {dy, (y, v2) < 4p}

where dia = dgy(x1,x2). Observe that on A we have

(€2 4+ d12) > dg,(y, 1)

N

€2 + dg, (y, x2) > €2 + dia — dgy (y, 1) >

1
and  dg,(y,21) < 5 (€2 + di2) < €2+ dgy (y, 22) < 5p.

Then

n—2 n—2

/ x T () T @) Ry, (357
AN+ dgo (@, 9)?) &+ dgy(22,9)? 0 (22, i

n—2

€1€2 2 9 9\ 2=n _1
§C(> / €1+ dg(r1,y)°) 2 dg,(z1,y) "dv
65 + d%g {dgo(y,azl)SBp}( 1 go( ) go( ) g0

n—2

€1€2 2 1—
<C () / dgo (1, )" dv
€+ d, (dog (y.01)<5p} 9

3For types A and B test functions in dimensions n > 5, the coefficient p1/2 in this inequality can be
improved to p. Indeed, p was worsen to p*/? due to the log p terms in Propositions 3.2.14 and 3.2.26,
which are necessary only for n =3 or 4, as observed in the footnote in Proposition 3.2.14.




93

On the other hand,

n—2 n—2

/ y U () T @y y)?) e, (359)
B 6% + dgo (.1‘1,:1/)2 6% + dgo (an y)2 9 9

n—2

€162\ 2 -
(=) [ i
€ + di (dyy (ys22)<dp} go

The estimate (3.56) follows from (3.57) and (3.57) observing that the integrals on the
right sides of those inequalities are bounded by Cp.

The result now follows from (3.55), (3.56) and Corollary 3.2.31. O

Corollary 3.2.33. 4 There exists C = C(M, go) such that, if p is the radius of U(zg,e9)

and €z < p,

n—2
- o €9 €1€2 o
U(gq,e 7ul‘ed >—C 1/2+>< > .
/8M (z1, 1)81790 (2,62)@0 gy = <IO P 6% +dg0(.%'1,x2)2

Proof. Observe that the above integral vanishes when (,, .,) is a type C test function.

For types A and B test functions we estimate
n—2

i TP RICY . —
U(zg,e0) = — LP 6% + dgy (22, y)? 1{dgo(y7w2)§4p}ﬁ3M

0
Mgy
_ C <62> 2 1
6% + dgo (x2’ y)2 {dgq (y,22)>p/2}NOM 5

according to Propositions 3.2.15 and 3.2.28 and equation (3.3). As in [13, p.274-275]

we can prove

n—2 n—2

J (Fraer)  Grame)  =olgaty)
{dgy (y,22)<4p}NOM 6% + dgo ($1v y)2 6% + dgo (an y)2 %= 6% + dgo (xlv 1‘2)2

and

n—2 n

J (Famr)  (@amr) = (Gt
{dgo (y,2)>p/2}NOM 6% + dgo (xh y)2 6% + dgo (5527 y)2 %= p 6% + dgo (xlv :C2)2

The result now follows. O

4 Similarly to the footnote in Corollary 3.2.32, for types A and B test functions the coefficient p*/?

can be improved to p if n > 5.
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Corollary 3.2.34. For e < p we have

n+2
n — 1 _Z+2 anQ “on
(/ ‘ n—2 90 (CEO,E) Rgou(mo e) T R (z 26) d'UgO
(
ep /2 n>5,
n+2
€ 2
SC(/)) +C Gp_l/zlog(p/e) n:4’
el/? n = 3.
Proof. The result follows easily from Corollary 3.2.31. O

Corollary 3.2.35. If U(y, ) = UB;(zg,c) we have

2(n—1) 0 _ B 2n=1) 2Ty
2(n—1) oy ‘ i
(/(9]\4 n—2 0ng, U(wose) 90 U(zo,€) Tg0
n—2
€\ 2 €
< - >
C<5> logp+ n>5,
< C<E>10gp+ilog8 n =4,
5 p € /
1/2 € 1/2
\C<(5> logp+(]<p> n =3,

for e < p, where § = dg,(xo,0M).

Proof. From Proposition 3.2.27, on M we have

n

< C’é € 2 1
= e \e 4+ dgo ({L‘, 5130)2 {dgo (z,20)<4p}

n=2
+Cp!t € 2 )
€? + dgq (, 70)? {dgy (z,20)<4p}"

Using § < Cp?, which in particular implies § < Cp, the first term on the right side

2(n—1) 0
n—2 0ngy,

U(mo,e)

- Hgoﬂ(:co,E)

above is estimated by C(6/€)"=2/2(e + d,, (;U,xo))_”/Ql{dgo(xm)gp}, and the result

follows easily. O

3.3 Blow-up analysis

In this section, we carry out the blow-up analysis for sequences of solutions to the
equations (3.4) that will be necessary for the proof of Theorem 1.2.4. Although the

analysis goes along the lines of [13, Sections 4, 5 and 6], here we have to consider
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the possibility of both interior and boundary blow-up points, thus differing from the
situation in [2, Section 4]. As we will see in Proposition 3.3.2 below, type A test
functions are used to approximate solutions near boundary blow-up points. As for
interior blow-up points, we make use of type B test functions if those points accumulate

on the boundary, and type C ones otherwise.

Remark 3.3.1. Before proceeding to the blow-up analysis, we observe that one can
choose p4, pp and pc in Propositions 3.2.8, 3.2.17 and 3.2.29 in such a way that
the inequalities of those propositions hold the three at the same time. To that end,
choose §y according to a small pp in Proposition 3.2.17 and then pc according to §g in
Proposition 3.2.29. Moreover, observe that given C' = C(M, gg) one can always assume
oA, pB, pc < C. This last remark will be used in the proofs of Propositions 3.3.10 and
3.3.22 below.

Let u(t), t > 0, be the solution of (3.4) obtained in Section 3.1, and let {¢,}>2; be
1
any sequence satisfying lim, o t, = co. We set u, = u(t,) and g, = g(t,) = u, " go.

Then

2n_
/ uy 2 dug, —/ dvg, =1, forallv.
M M
It follows from Corollary 3.1.3 that

n+2

4(n—1 — 2 n42 — | 2n
/ ‘(n)AQOUV — Rgoty + Roouyy ™ dvg, = / | Ry, — Rw‘fﬁdvgu =0
M|l n=2 M

as v — 00.
The next proposition is an application of the decomposition result in [70], which

plays the same role here as [79] did in [13, Proposition 4.1].

Proposition 3.3.2. After passing to a subsequence, there exist an integer m > 0, a
smooth function us > 0, and a sequence of m-tuplets {(x} ,, €} ) i<k<m}peq, such that:
(i) The function us satisfies

n+2

4(n_1)Agouoo — Ryytoo + Roouls? = 0, inM,

n—2

Qoo /Ongy =0, onOM .
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(ii) For all i # j,

v—oo | €* * €er €*
IRAIRY

* * * * \2
€ € dgo (x5, 2% )
. 0 )
li { 1,V + I,V + g1 1,V g,V _ )
€

IV i,V
(iii) There are integers my,ma, with 0 < my < mg < m, such that x}, € OM
for 1 < k < mq, m’,;V € M350/2\8M formi +1 < k < mg, x,’;l, € M\M350/2 for

mo+1<k<m, and
. * o . >
Vhﬁnolo dgo (T, OM)/€p,, =00 if k>mq + 1.

(iv) If
ﬂA§(IZ,wEZ,u) ka < mi,

a(zz,wfz,y) = ﬂB9(zZ,wEZ,u) ifmi+1 < k < mao, (3'59)

Ucs(ay ) Wk 2ma+1,

(see equations (3.33), (3.44) and (3.54)) then

lim Hu — Uoo — E U
Brel a4 00 (xz,we}t,u)
k=1

=0.

H (M)

Proof. By modifying the arguments in [70, Section 3] to the case of Riemannian mani-
folds, we can prove the existence of uog and U(,: - ) satisfying (i) and (iv) except for,

instead of using equations (3.59), the U(z; e ) are defined by

n—2
_ 4TL(TL — 1) i £ \—n=2 — * \—1,—
u(x]*;’yvs;;’y)(x) = <R> (Gk,l/) 2 XP (wﬁzly (ZL')) u((ﬁkj,IJ) 1¢x;;11/ (x))
o : :
Here, ¢,x = are coordinates centered at zj , and u satisfies
Au+n(n—2uis =0 nR" (3.60)

if limy 00 dgy (27, ,, M) /€, = 00, and

n+2 .
AU—{—TL(TL—2)U"*2 :O m {y: (yl;;yn)|yn Zt}a
(3.61)

%UZO On{y: (yla"wyn—lvt)}7
for some t € R if dg, (zj, ,, OM)/€}, , is bounded.

Rearrange the indices and choose m; such that & > m; + 1 should (3.60) holds and

k < mj should (3.61) holds.
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As in [68, Lemma 3.3], we can prove that v > 0 and also that (ii) holds. The
classification results in [16,62] (regularity was established in [29]) imply that u(y) =
We(y — z) (see (3.10)), for some z = (z1, ..., 2,) € R™ (with z, =t if K < my).

The points zj, , are now redefined as w,tz,y(z:).5 This establishes (iii).

For each pair (xzyy, e;;y), one can check that the difference between each function
obtained above and the corresponding one defined by (3.59) converges to zero in H'(M).

This proves (iv). O
Proposition 3.3.3. If usx(x) =0 for some x € M, then usx = 0.
Proof. This is just a consequence of the maximum principle. O

Define the functionals

2 dvg. + R, u2dv
E(u) — - go f]& go 9o
(fM yn—2 dvgo)
and sn1)
Flu) = = fM ‘du|5270dvgo + fM Rgou2dvgo '

2n
Jar w2 dvg,

Observe that Ro, = F(us). Hence,

2n
1= Vli_{glo M 2dvgo = Vlggo {/ 2dvg0 + Z/ ﬁ’;,; s dvgo}.
The right side of this equation is (F(ucc)/Roo)™ 24+m1(Q(ST) /Roo)™ 2 +(m—m1 ) (Y (S™) /Roo)™/?
if Uoe > 0 and m1(Q(S7)/Reo)™? + (m — m1) (Y (S™)/Reo)™? if tiee = 0. Thus,

_ 2/n
Roo = (E(uoo)”/2 +miQ(ST)™? + (m — ml)Y(S”)”/2) / ifuse >0,  (3.62)

_ 2/n
and R = (le(Si)"/z + (m — ml)Y(S”)"/Q) if use = 0.

5To see that changing the centers x}, as above does not change the limit in (ii), we consider, for
fixed j, new centers z} , satisfying dy, (z},,,Z;,)/€j,, < C (the term €], in the quotient comes from the
rescaling). If the limit in (ii) holds with €}, /€], — oo, that relation does not change after replacing
the centers. So, let us assume €; , /¢;, < C without loss of generality. The triangle inequality gives

_ _ 21 _
dgo (‘T:,va;,u)Q 2 (dgo (x:,uv'r;,u) - dgo (z;,uv x;,u)) Z §d90 (Iz,uvx;,u)Q - Cdgo (‘T;f,u: x;,u)2~

Hence,
* = 2 * * 2 * * =% 2 * 2
dgo (xi,uzxj,u) ldgo(xi,u,xj,u) _ Cej,u (dgo (a:j,uij,u)) > ld‘]O ('ri,wxj u) C
* * - * * * * = * * ?
6i,uej,u 2 Ei,uej,l/ Ei,l/ ej,l/ 2 Ei,uej,u

so that (ii) still holds with Z}, replacing z} ,
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3.3.1 The case u, =0

We set

A, = {(xk, €k 0 )het....m € (M x Ry x Ry)™, such that (3.63)

azkeaMifkgml,xkeM\ﬁMifk2m1+1,
1

2 eky

dgo(xkvxz,y) < GZW, 2, ;<o < 2} .

| =

For each v, we can choose a triplet (v ., €k, kv )k=1,..m € Ay, such that

4 m
/M (n —5 Z ke Uy, e V))‘ dvg, + /M Ry, (ul, — Z akﬂja(xk’m%’y))?dvgo

k=1

4(n — " ond 2
= /M ﬁ Z aku(:}ck €k) vaO /M RgO (u” - Z O[ku(xk’ek)) dvgo

k=1

for all (‘rk’ €k ak)k:lv"'vm € A,. Here, ﬂ(mk,uuek,u) = aA%(ﬂﬁk,mEk,u) and ’a(zkﬁk) = ﬂA;(zmek)

itk <m, Ulayenn) = UBi(ancn,) D Uayer) = UBj(ap,er) if mi+1 <k < mo, and
Ulayen,) = UCi(appmery) A Uay,e) = UCi(aper) if k > mg +1; see (3.33), (3.44) and
(3.54).

Proposition 3.3.4. If k > mi + 1, then lim, o0 dg, (2, OM) /€, = 00.

Proof. 1t follows from the triangle inequality and (3.63) that

dgo (xk,, OM) S dgo (@), OM) - dgo(a:’,;w@M) 1
€k - 2¢; - 2¢; 2
Now the right side goes to infinity as v — oo by (iii) of Proposition 3.3.2. O

Proposition 3.3.5. We have:

(i) For all i # j,

lim {6“’ 4 Sw ng(xi’V’xj’V)Z} =00.

v—00 | €5 v €iv €iv€jv

(ii) We have

m
Jim [|o - kzakv“(zky,em iy = 0
1

Proof. This is a simple consequence of Proposition 3.3.2 and the definition of (xy ., €k, @k 0 );

see [13, Propostion 5.1] for details. O
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Proposition 3.3.6. We have

dgo (Th. 7},,) < 0(1)er, » ELV =1+4o0(1), and aj, =1+o(1),
k,v

for allk =1,...,m. In particular, (Tky, €y, kv )k=1,..m S an interior point of A, for

v sufficiently large.

Proof. 1t follows from Propositions 3.3.2 and 3.3.5 that

Hzak Vu xk vy €k u) Z (:Bk vak 1,)

HY (M)
m m
S ‘ Uy — Za(xz vk u) HI(M) + ’ Uy — Z ak”/a(xk,qu,u) Hl(M) - 0(1)
k=1 k=1
Now the result follows. O
Notation. We write u,, = v, + w,, where
m
vy, = Z U2y o) and w, = u, — Z U Uy, ern) - (3.64)
k=1 k=1
Observe that by Proposition 3.3.5 we have
4(n
/ guwyygodvgo / Ryywdu,, = of1). (3.65)
M T M

Set

—2

LS C—y on S
C, = / 65 o, n / ]2 dug,
oM M

Proposition 3.3.7. Fiz p < Py. Let ¢p, : Q. = BS(0) C RY — M be Fermi

coordinates centered at xy, if 1 < k < mq, and let Yy, @ Qp, = By, p C R = M
be normal coordinates centered at xy, if m; +1 < k <m (see Definitions 3.2.1 and

3.2.2). We have:
n+2
(1) ‘/ fzsuekl/)djdvgo‘ <o(1)C,.

n+2 |¢k;y(x)|2
o U’ dvg, | < o(1)C, .
( ) ‘/ (mku)eku +|wku(l‘)|2w 90‘ — ( )
7:i+2 kvak,V(x) .
(1) ‘/ (Ik v€k,v) ,V + |¢k—y(x)|2 l/Jdng‘ <o(1)Cy, ifmi+1<k<m,
_% kak:u( )

and ‘

Uiy, ¢ ¢dU = CV7 ka§m17
oy, Mook T ¥ ol <

where we are denoting § = (Y1, ..., Yyn—1) for any y = (y1,...,yn) € R™.
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Proof. 1t follows from the definition of (z,, €., o) that

4n—-1), _
/M < n—2 <du(x’“‘”€k’l’)’dw”>90 + RgOu(Ik,wek,u)wy> dvg, = 0.

Integrating by parts, we obtain

4n—-1) , - 4n—1) 0 _
/M < n— 2 Agou(mk,uvfk,u) - RQDU(CEk,vak,V)> w,/d'l)go + /(;M n — 2 a’r/go u(wk,uvek,u)wy dagﬂ = 0

We claim that

(n—1), n+2
H Agou(wk,wEk,U) Rgou(xk v €k, 1/) + ROOU( -2

Tk,vs€k, v)

and

ne =o(1).
L2< 1)(8M) o(1)

H Mgo Uy, en,0)
The first statement follows from Corollary 3.2.34. As for the second one, observe first
that

aa(wk,uzek,u)/ango = 0

on IM if Uy ) = UCi(apenn) L Wapien,) = UAs(wy,er,) this statement follows

easily from Proposition 3.2.15 and (3.1), and if Uy, , ¢, ) = UBi(zy ¢, this is Corollary

3.2.35, also making use of Proposition 3.3.4.

This proves (i). The remaining statements follow similarly. O

Proposition 3.3.8. There exists ¢ > 0 such that

n+2 2 A(n—1) 2 2
n — 2 / Z Ik Vo€l u)¢ dug, < (1~ c) {/M ﬁ|d¢|godv90 + /M Rgo¥” dug,

for all v sufficiently large.

Proof. Once we have proved Proposition 3.3.7, this proof is a contradiction argument
similar to [13, Propostion 5.4] and [2, Proposition 4.6] and we will omit the details.

Assume by contradiction that there is a sequence {w, } satisfying

4(n—1
/ (n )‘dwvg()dvgo +/ Rgow?f dvgo =1
M M

n—2

and

. n+2
11151010 — Uiy o )w?,dngZI.
n 2 M k,viCk,v
k=1
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After rescaling around xy,,, the new sequence obtained converges (weakly in H} (R")
if £k <mq and in Hlloc(]R") if Kk > my + 1) to a certain w. It turns out that one can

choose k € {1,...,m} in such way that w satisfies

1 \? ,
——— | w(y)dy >0
/IR{1<1+|9|2) 2

1
L+ [yl?

and

/R >2u?2(y) dy

if kK < mjy, or the same two inequalities with R’} replaced by R™ if k > m + 1.

\da(y)|2dy < n(n + 2) /Rn (

n
+

On the other hand, if £ < m, due to Proposition 3.3.7, w satisfies

n+2
o () wtorto=c
T2 w\y)ay =Y,
rr \1+ [y[?
n+2
1 >21—\yI2A
ER w(y)dy =0,
/Ri (1 + ly[? 1+ [yl
+2

() s
— ) 50 dy =0,
Ry \1+ [yl 1+ [y|?

where y = (y1,...,yn), and j = 1,...,n — 1. By considering the corresponding equations
on the round hemisphere we obtain a contradiction as in [2, Proposition 4.6]. If k& >
mq + 1, W satisfies the same last three equations (with j = 1,...,n for the last), but with
R replaced by R", and the same contradiction is reached by considering corresponding

equations on the round sphere instead of the hemisphere. ]

Corollary 3.3.9. There exists ¢ > 0 such that

9_ a4 A(n -1
nt Roo/ v 2w dug, < (1 c) / A0 =) 2 g, +/ Ry t)? dvg,
n—2 M M —92 go M

n

for all v sufficiently large.
Proof. By the definition of v, (equation (3.64)), we have
, R Ty
Jim [ o - 2 | o0 =0
Hence, the assertion follows from Proposition 3.3.8. O

.y . _ 2
Proposition 3.3.10. For all v sufficiently large, we have E(v,) < (Z}Ll E(u(xkyek))"ﬂ) /m
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Proof. Choose a permutation o : {1,...,m} such that €,;), < €5(;), for all i < j.
During this proof we will omit the symbol o, writing €;, instead of €,(;),, so that
€ < €, for all i < j. After calculations similar to the ones in [13, Proposition 5.6]

we obtain

n—2

on =
E(v,) </M vy 2 dvgo)

m = on n=2 6 e 2
< E(u vy 2 dv —c WYY
< (kz_l ( (zk,u,Ek,u)) ) </M v 90> Z (6?1/ + dyg, (551',1/71'3‘,1/)2

1<)
4n—-1) , nt?
/M Z Qg Va] Vu(l'z v,€q, 1/) < -9 Agou(xj,'hejyl/) Rgou(mj vy€j, l/) + ROOU(IJQI/?eJ V)) dvgo

NE

1<J
TL— 1 du U(zj0.6, V)d
Q; Va] Vu Iz v,€q, 1/) 8
z<] "lgo
. n+2
— —n—2
-2 : :al Va] V :E] v€j3, u)) - ROO) u(xi,uyei,u)u(x- €5 )dvgo'
M NELS NS
1<J

It is not difficult to see that F(ﬂ(:cj,,,,ej,l,ﬂ = Rs +0(1). This is more subtle in the case
Uz ;) = UBi(zje;,), When we make use of Proposition 3.3.4 and Lemma 3.2.20.

Then, because of [13, Lemma B.4], we have

n—2

nt2 €iv€jv ?
— 7'n 2
_ < I I
|F(u(xj’wej ) Oo‘ / Y veiv) % V’ij)dvgo - 0(1) Egu + dgo (331 vy Lj V)Q
) b b

Then, using Corollaries 3.2.32 and 3.2.33,

2n_ "772 m % . "7’2
s ([ ) () ()
k=1

2
€v€j v
—Z<c—0max{pA,pB,pc}”2—o(l))(2_ 2> .

i<j EJ,V + dQO (xiﬂh xjvl’)

Hence, the assertion follows by choosing p 4, pp and pc smaller if necessary (see Remark

3.3.1).

Corollary 3.3.11. Under the hypothesis of Theorem 1.2.4, we have

E(v,) < Reo, for all v sufficiently large.
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Proof. Using Propositions 3.2.8, 3.2.17 and 3.2.29, we obtain E(t, ,.¢.,)) < Q(S%)

for k < my, and E(tg, ) < Y(S™) for k > my + 1. Then the result follows from

,Uvek,V)

Proposition 3.3.10 and (3.62). O

3.3.2 The case uys, >0

Proposition 3.3.12. There exist sequences {1 }aen C C°(M) and {Ag}laeny C R,
with Aq > 0, satisfying:

(i) For all a € N,

4
=D A gotha — Rgota + Aqtido *t0a = 0, in M,

n

iwaZO, ondM .
0

(ii) For all a,b € N,

a4 1, ifa=0,
/ ¢a¢bu&_2 dvgo ==
M 0, ifa#b.

(iii) The span of {1 }aen is dense in L*(M).

(iv) We have limg_so00 Aqg = 00.

Proof. Since we are assuming Ry, > 0, for each f € L?(M) we can define T(f) = u,

where u € H'(M) is the unique solution of

4
4(n—1) w3 -
s Dgou — Rgou = fuss™, inM,

o) _
angou—O, on oM .

Since H'(M) is compactly embedded in L?(M), the operator T : L*(M) — L*(M)

is compact. Integrating by parts, we see that T is symmetric with respect to the
4

inner product (i1, 12) — | o U12uls? dvug,. Then the result follows from the spectral

theorem for compact operators. O

Let A C N be a finite set such that A\, > Z—fgﬁw for all a ¢ A, and define the

projection

F(f) = (%;4 (/M ¢afdvgo> T Z (/M wafdvgo> YaUds ~ .

a€A
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Lemma 3.3.13. There exists ( > 0 with the following significance: for all z =

(21, ..., 20) € RA with |z| < ¢, there exists a smooth function i, satisfying 0, /0ng, =0

on OM,
4
/ ul oy} (s Uoo)wadvgo =2z, foralla€e A, (3.66)
M
and
An -1 5 on
F <(7:Ln_2)Ag0az - Rgol_tz + Rooﬂ;2> = O . (367)

Moreover, the mapping z — u, is real analytic.
Proof. This is just an application of the implicit function theorem. O

Lemma 3.3.14. There exists 0 < v < 1 such that

A(n—1 ES
/ (" MA%UZ Ryy iy + Roo 272 ) dug,
M n—2

1+

E(u,) — E(ux) < C’sgg

if |z] is sufficiently small.

Proof. Observe that the function z — E(u,) is real analytic. According to results of
Lojasiewicz (see equation (2.4) in [78, p.538]), there exists 0 < v < 1 such that

1+~

O Ba,)

|E(uy) — E(ux)| < sup o

acA

if |z| is sufficiently small. Now we can follow the lines in [13, Lemma 6.5] to obtain the

result. O
We set

A, = {(z, (@b €y O )bet..m) €RA x (M x Ry x Ry)™, such that

xp € OM itk <my, x € M\OM ifk > my + 1,

S%SQ}-

DO | =

1 €k
|Z’ <G, dgo(xkaxz,u) < 6;:2,1/7 9 < c

vV

<2,

For each v, we can choose a pair (zu, (T, €k v, Ok p)k=1,...m) € Ay, such that

4(n — i
/M n—2 ‘d — Uy, — kzl Qg Vu(ilfk vr€k,v) gOd’Ugo /M Rgo — Uz, — ; Q l,u(xk vk, V)) d’ugo
4(n — 1) % 2
= /M ﬁ —Us Z kU ) dvgo /M Ry, (uy — s — Z Ukl 1)) Dgo

k=1
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for all (2, (g, €k, ag)r=1,..m) € Ay. Here, U, o ) = Upy(agern) A0 gy ) =
Upy(ap,er) K S M1 Uy e,) = UBi(agnen,) A0 Uayen) = UBj(ap,e) H 1 +1 <k <
ma, and e, e, ) = UCi(apern) 0D Ugye) = UCy(ap.e) I K > ma + 1; see (3.33),
(3.44) and (3.54).

The proofs of the next three propositions are similar to Propositions 3.3.4, 3.3.5 and

3.3.6.
Proposition 3.3.15. If k > my + 1, then lim, o0 dg, (2, OM) /€, = 00.

Proposition 3.3.16. We have:

(i) For all i # 7,

lim {6“’ 4 Sw ng(xi’”’xj’”)Z} =00.

V=00 | €5 v € v €iv€jv

)

(ii) We have

m
Vll)n;o HuV - az, - kzak>l/u(xk,uvek,u) Hl(M) =0.
=1
Proposition 3.3.17. We have |z,| = o(1), and
€k,
dgo (Trwrxy,,) < o(1) €, efv =1+4o0(1), and ar, =1+o0(1),
kv

for all k = 1,...,m. In particular, (2y, (Tky, €k v, Ok p)k=1,..m) S an interior point of

A, for v sufficiently large.

Notation. We write u,, = v, + w,,, where

m

m
vy = Uy, + Z WUy ep,) DA Wy = Uy — Uy, — Z W U(zy, en) - (3.68)
k=1 k=1

Observe that by Proposition 3.3.16 we have

4n—1
/M (R_Q)le/’g?]odvgo + /M Rgowgdvgo = 0(1) . (3.69)

2(n—1) 2(7:17:21) 2n n?;?
C, = / 165" dog, + / 2 dugy )
oM M

Set
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Proposition 3.3.18. Fiz p < Py. Let vy, : Qk, = B;(O) C RY — M be Fermi
coordinates centered at xy, if 1 < k < mq, and let ¢y, : Q, = B%Vp CR"—> M
be normal coordinates centered at xy, if mi +1 <k <m (see Definitions 3.2.1 and
3.2.2). We have:

(i) ‘/ 2wawdvg0‘ <o / \wy|dvg,, fora e A.

(i1) ‘/ ”;;yﬁku Y dug,| <0(1)C, .

ni2 e — [ (o))

— k kv

(iii) / (T : . Ydvug,| <o(l)C, .
‘ (Tk,vs€k,0) z +|¢k,}( )|2 go‘

n+2 ekﬂjwky( )
20 ar2 ) dv <o1)C,, ifmi+1<k<m,
01 o i el S oG

_Lt2 €k uw ,,( ) )
(md} T k Pwdvgo}_ YOy, ifk < my,

Qe (Tk,v-€k,0) 2 % + ‘wk,y( )
where we are denoting § = (Y1, ..., Yn—1) for any y = (y1,...,yn) € R™.

Proof. (i) Set 9q. = 0Ui,/dz,. It follows from the identities (3.66) and (3.67) that

&a,o =1, for all a € A. By the definition of (z,, (¥, €kv, Ok p)1<k<m), We have

4(n —1 ~ -
/ ( ) (d%,zw w,j)godvgo + / Rg()%,%wy dUgo =0.
M M

n—2

Hence,

Aa / r Paw, dug, (3.70)

4(n—1
o /M (”Agﬁba - Rgod’a) wy, dvg,

4n—1 ~ = aTyz;a,zl,
=/<(_2MM%@—%%RM%@—%O%mmﬁ/ o wydog,
M n oM Mgo

However, we know that 9, ., /014 = 0 on M. Then, since A\, > 0 and |z,| — 0 as
v — 00, we conclude that the assertion (i) follows.

The proofs of (ii), (iii), and (iv) are similar to Proposition 3.3.7. O

Proposition 3.3.19. There exists ¢ > 0 such that
n+2— _n% 4(n—1)
R / (m:l,,ﬁk,y)>w2 dvgo < (1 — C) /M (ﬁ‘dwfm + RngQ) d’UgO

for all v sufficiently large.
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Proof. As in Proposition 3.3.8, once Proposition 3.3.18 is established, this proof is a

contradiction argument similar to [13, Proposition 6.8] and [2, Proposition 4.18]. O

Corollary 3.3.20. There exists ¢ > 0 such that

n+2— A 4(n—1)
— 5 ftoo /M vl wy dug, < (1-¢) /M (ﬁ!dwlﬁo + Rgo¢2) dvgq
for all v sufficiently large.

Proof. By the definition of v, (see (3.68)), we have

m

_a_ _a_ 4 n
. n—2 n—2 —n—2 9 —
Vlgrolo /M !vy —usk - — Zu(xk’m%’y) 2dvg, = 0.
k=1
Hence, the assertion follows from Proposition 3.3.19. O

The next two propositions are similar to Propositions 6.14 and 6.15 of [13] and we

will just outline their proofs.

Proposition 3.3.21. There exist C > 0 and 0 < v < 1 such that

B2 (149)

2n

2n_ J— 2n
Bla.) - Blux) £ O{ [ uf 1y, Bl e} 403 a7
M K
if v is sufficiently large.

Proof. As in [13, Lemmas 6.11 and 6.12], because du, /0ng, = du,,/0ng, = 0 on OM,

we can show that there exists C' > 0 such that

n+2 n+2 n+2 n_2
luy =, "2 < Clluy ™ (Ry, = Reo)|" 2 +C Y2 (3.71)
Ln=2(M) Ln+2 (M) i
and
n42 _ M. on—2
[, — 'azy”Ll(M) < CHU;FQ (ng - ROO)HL%(M) + CZ Ekjj ) (3.72)
k=1

for v sufficiently large.

We will prove the estimate

sup (3.73)

acA n

4(n—1 _ n2
/M Ya <(n_2)Agouzu — Ry, + Roou;;2> dvg,

n+2 m

2n_ . on_ 2n n—2
SC{/ Uﬁ2|Rgu_ROO|"+2dvgo} +C’Zeki
M b
k=1
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for v is sufficiently large.

Integrating by parts, we obtain

4(n—1 —  ni2
/ Ve !Agoﬂzu — Rgy iz, + RootiZ,? ) dug,
M n — 2

4(n—1 nt?
= / Pa MAQOU,, Ry, uy, + Roou 2 dvg,
M n—2

n+2

_4 n+2
+ )\a/ uss 2 Yo (uy — Us,) dug, — / Y (u — a2 ?) dvg, .
M

_ n+2
Using the fact that ( )Agou,, Ry, + Rooul, = —(Ry, — Roo)uy~? and the
pointwise estimate
n42 n+2 _4 +
lup =2 —a | < Cul % uy — s, | + Cluy, — g, |72,
we obtain
4(n —1 . nd2
sup / Va (()Agouzu — Ry, + Roou,?y_2> dvg,
acA|JM n—2
nt2 — nt2
n—2 — — n—2
< Clluy (Rgu - ROO)HLn?—fZ(M) + Clluy — uzuHLl(M) + Clluy — sz, | L%(M)
Then it follows from (3.71) and (3.72) that
4(n—1 N
sup / Va (HAQOEZV — Ry, + Rooﬂ,;lyQ) dvg, (3.74)
ac€A|J M n—2
n+2 _ n42 nt2 _ M on—2
n—2 n—2 n—2 2
< Ol (R = Fooll gy, O™ o, =Rl gy + O D el
On the other hand, by Corollary 3.1.3 we can assume
n+2
= oo\
0 R = Bl gy = ([ o~ RelP2,) <1 7

The estimate (3.73) now follows using the inequality (3.75) in (3.74). Proposition

3.3.21 is a consequence of Lemma 3.3.14 and the estimate (3.73). O

Proposition 3.3.22. There exists ¢ > 0 such that

M\:

2
m n m
ﬂ 3
+§ :Euxkﬁku 2) _C§ :ek,zx
k=1

=1

E(v,) < (

if v is sufficiently large.
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Proof. Choose a permutation o : {1,...,m} such that €,;), < €5(;), for all i < j.
During this proof we will omit the symbol o, writing €;, instead of €,(;),, so that
€ < €, for all ¢ < j. After calculations similar to the ones in [13, Proposition 6.15],

we obtain

2n “n
E(v,) (/M e 2dvgo>
2 n—2
m " 2n_ =
< (E(u2u)2 + ZE<u(xk,V,ek,V))2> (/ v’;l_g dvgo)
k=1 M

m
4(n —1 N A
- Z 2ak,V /M ((Q)Agouzu Rgouzu + F(uzu)uzu ) u($k vy€k z/)dvgo
=1

n —

4 n— 1 8ﬂ j,vi€iv) —
— 22041 ,,04]1// : ) Moty )u(xi,wei,u)dvgo

n—2 0
1<J ngo
4(n—1) nt2
_ — — —n—2 —
- Z 2005, l’/ ( n—2 Rgoli(a; ) ~ ool e;n) T F(u(xj,wej,v))u(xj,y,Ej,y)) Ui i) Wao
1<j
n—=2
m 2
ST ey (e
a kv 2 . 2 :
k=1 i<j 6j,l/ + dQO (J"lv'/’x]ﬂ/)

Since F(i,,) — F(tuso) = Roo as v — oo, we have the estimate

n—2
11 2
u(xk,uvek,u)dvgo S 0(1)6]{;’1/

4(n—1) _ _ B
n — 2 Agou% - Rgouzu + F(uzu)uzu

Now the assertion follows as in the proof of Proposition 3.3.10. O

Corollary 3.3.23. Under the hypothesis of Theorem 1.2.4, there exist C' > 0 and

0 <~y <1 such that
. 2n — on %(H—“{)
E(v,) < Ryo +C </ u) | Ry, — Roo|n+2dvgo> ,
M
if v is sufficiently large.

Proof. Using Propositions 3.2.8, 3.2.17 and 3.2.29, we obtain E(u, , . ,)) < Q(ST)
for all k = 1,...,m1 and E(U, ,q.,)) < Y(S") for all k = my +1,...,m. Then the
result follows from Propositions 3.3.21 and 3.3.22 and (3.62). O
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3.4 Proof of the main theorem

As in Sections 3 and 7 of [13], the proof of Theorem 1.2.4 is carried out in several
propositions, whose proofs will be only sketched in what follows.
Let u(t), t > 0, be the solution of (3.4) obtained in Section 3.1. The next proposition,

which is analogous to [13, Proposition 3.3], is a crucial step in the argument.

Proposition 3.4.1. Let {t,}>2, be a sequence such that lim, o t, = co. Then we can

choose 0 < v <1 and C' > 0 such that, after passing to a subsequence, we have

=Y = 2n 2n ’ﬂ+2 (1+'Y)
Ry(t,) = Boo = C { /M u(ty) 2 [ Ry,) — ooywdvgo}

for all v.

Proof. 1t is a long computation using Corollaries 3.3.9, 3.3.11, 3.3.20 and 3.3.23; see [13,
Section 7]. O

Proposition 3.4.2. There exists C > 0 such that
1
o) on o 5
/ {/ U(t) n—2 (Rg(t) — Rg(t))degO} dt < C
0 M
for allt > 0.

Proof. A simple contradiction argument using Corollary 3.1.3 and Proposition 3.4.1

(see [13, Proposition 3.4]) shows that there exist 0 < v < 1 and tp > 0 such that

— — 2n 2n n+2 (1+’Y)
Rg(t) — Ry < {/M u(t) n—2 ’Rg(t) — OO|"+2 dvgo}

for all ¢ > tg. Then it follows that
o o 2 (147) o o
By = oo <C {/M ()2 [Ry() — Rg(t>|"+2d“go} + C(Ryg() — Boo)™7
hence

2 (14)
} (3.76)

_ _ o o
Ryt) = Roo < C {/M u(t) =2 | Ryy — Ry "2 duyg,
for ¢t > 0 sufficiently large. By (3.7) and (3.76), there exists ¢ > 0 such that

d — — n—2 — 2n_
G R =T = =57 [ Ryt = Ry )y

n+2
n 2

{/ | Ry R(t\n2+2u(t)f—’3dvgo} < —c(Ry4) — Boo) ™
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1—
for t > 0 sufficiently large. Hence, %(Rg(t) — Roo)_ﬁ > ¢, which implies
— — _liy
Ry — Ro < Ct 1=7, fort > O sufficiently large.

Then using Holder’s inequality and the equation (3.7) we obtain

o1 Y 1 o N3 / 2T o, 3
/ (/ (Rg(t) — g(t)) u(t)n—2 dvgo> dt < (/ dt) (/ / (Rg(t) - Rg(t)) u(t)"—2dvy, dt>
T M T T M
1
2

2 n o) .
= V5T (Byry = Roeer)) ¢ < CT 7

=

for T sufficiently large. This implies

[e'e) o on B)
/0 < /M(Rg(t> — Ry u(t) =2 dvg0> dt
2k+1

1 ) 3 o _ ) 3
= / (/ (Rg(t) — Rg(t))Qu(t)"?dUgo> dt + Z/ </ (Rg(t) — Rg(t))Zu(t)n?dng> dt
0o \Jm = Jor M

o0
<cyrTit<c,
k=0

which concludes the proof. ]
Proposition 3.4.3. There exist C,c > 0 such that

supu(t) < C and i]r\l/[f u(t) >c, forallt>0. (3.77)
M

Proof. We first claim that, given vg > 0, there exists r > 0 such that
/ u(t)%dvgo <7, forallt>0,zeM. (3.78)
By ()

Indeed, we can make use of Proposition 3.4.2 as in [13, Proposition 3.6] to obtain the
above inequality.

Fix n/2 < ¢ < p < (n+ 2)/2. According to Corollary 3.1.3 there is Cy > 0 such
that

/M ’Rg(t)|pdvg(t) < 02 5 for all ¢ > 0.

_p  __9
Set y9 =y *Cy """, where 71 is the constant obtained in Proposition 3.A.3. By (3.78),

there is 7 > 0 such that

/ dvgp) <o, forallt>0,z€ M.
B, (z)
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Then

p—gq q

p P
/ [ Ryt dvg(r) < / dvgs) / [ Ry [Pdvgy o <1
B (z) B (x) B (x)

Hence, the first assertion of (3.77) follows from Proposition 3.A.3. The second one

follows exactly as in the proof of the second estimate of (3.8). O]

Proof of Theorem 1.2.4. Once we have proved Proposition 3.4.3, it follows as in [13,
p.229] that all higher order derivatives of u are uniformly bounded. The uniqueness of

the asymptotic limit of Ry ;) follows from Proposition 3.4.2. O

Appendix 3.A Some elliptic estimates

Let (M, g) be a complete Riemannian manifold with boundary 0M and let n, be its

unit normal vector pointing inwards.

Definition 3.A.1. We say that u € H'(M) is a subsolution (resp. supersolution) of

Aju+Pu=f, in M,
(A-79)
ou/Ony +Pu=f, on oM.

if, for all 0 < v € C!(M), the following quantity is nonpositive (resp. nonnegative)
/ (< du,dv >4 —Puv + fuv)dv, +/ (—Puv + fv)do,.
M oM
The next proposition is similar to [45, Theorems 8.17 and 8.18]; see also [49, Lemma
A1l
Proposition 3.A.2. Let ¢ > n, s > n—1 and P € LY?*(M), P € L*(dM) with
1P| a2 (M) + || P||1+(0M) < A.

(a) For any p > 1, there exists C = C(n,p,q,s,9,A) and ro = ro(M, g) such that

_n _2n _n—1,, =
SBP u<Crv ||U‘|Lp(3;r(m)) +Cr* ||f||Lq/2(B;;(;p)) +Cr' s 1] Ls (Dar ()
By (x)

for any x € OM, r < 1o and 0 < u € H*(M) subsolution of (A-79).

(b) If 1 < p < M5, there exists C = C(n,p,q,s,9,\) and ro = ro(M, g) such that

_n . 9_2n _n—1 =
ror HUHLP(B;T(QC)) < CBlf(fx)U +Crt HfHLqN(BL(x)) +Crtm s f 1| zs (Dar ()

for any x € OM, r <o and 0 < u € H*(M) supersolution of (A-79).
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Proof. After rescaling we can assume r = 1. Let 8 # 0, k = ||f”Lq/2(B;f) + 1f1]Ls(Da)
and 0 < x € CY(By). We will assume that k& > 0. The general case will follow by
tending k to zero. Set u = u + k.

If w is a subsolution, by definition we have

/ < du, d(x*a”) >4 dvg < / (Pu — f)XQTLBdUg +/ (Pu — f)x2ﬂﬂdag,
M M oM

and we have the opposite inequality in case u is a supersolution. Choosing > 0 should

u be a subsolution and 8 < 0 should u be a supersolution, in both cases we obtain

[ dafdu, <1517 [ 2xalldlylday| do, (A-80)
M M
18 / (P + kY )@ dvg + |7 / (1P| + kY f)aP+do,
M oM
by means of < du, d(x*a”) >g= 2xi? < dy,du >4 +szﬂ’8_1|dﬂ|3. Applying Young’s
inequality to the last term of (A-80) we arrive at
[ it < ia [ g o, (A-s1)
M
el / (1P| + kY f)a+ dvg + C| | / (1P| + kY f)aP+ do,.
M oM

Set h = |P| -{-k;_1|f|, h = |]5| +l<:_1\f| and

B+1

a B £ -1,
loga if = —1.

Then (A-81) can be rewritten as

2012
x“|dw|;dv §C’ / dx|*w? dv A-82
[ Wlautin, < LR [ azet v, (A-52)
1 1)2 _
+C(B+)/ X2hw2dvg+0(ﬁ+)/ thU)Qdag
8l Jm 1Bl Jom
if 8# —1 and

/ ledwlzdvg < C’/ \dx|3 dvg—l—C’/ Xthvg—i—C/ x*hdoy, (A-83)

M M M oM

if 8 = —1. It follows from x?|dw|? > $|d(xw)|> —w?|dy|? and Sobolev inequalities that

/ (yw) "2 dv, — C / |dx|*w?dv, < C / X2|dw|2dv, (A-84)
M M M
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In order to handle the right hand side of (A-82) we use Holder’s and interpolation
inequalities to get
[ et < Wl ol oo (A-85)
< ||h||Lq/2(BI)(61/2HXWHL2n/(n—2)(BI) + 6_M/Z||Xw||L2(B‘;L))2
2 - 2
< 20l a0 o gy + € 0l 25
where 1 =n/(qg —n), and
[ e, < bl Pl o, (A-86)
< 1l ooy (€2 Il p2tn-1 /=21 (pyy + € 22 Ixw ] L2(Ds))°
< QHBHLS(D@(EHXU)H%zm—l)/(n—z)(m) + 6_”2||Xw||2L2(D4))

where p9 = (n—1)/(s+ 1 —n). It follows from the Sobolev embedding theorems that

6“2/ (xw)?do, < e/ \d(xw)\deg—i—eQ“?l/ (xw)?dv,
Dy Bf B

+
4 4

and

n—2

2(n—1) =1 2
( (xw) =2 dog) <C |d(xw)|“dvy.
Dy Bf

Then the inequality (A-86) becomes

[ ehutdo, < Cellliwy [ ldta)Pdu, + Ol wy [ Gaw)du,
oM Bf Bf

(A-87)
Choosing € = ¢|B|(8+1)72I'"! with ¢ > 0 small, we can make use of the inequalities

(A-84), (A-85), (A-86) and (A-87) in (A-82) to obtain
([ )™ <oashh [ (ag+ 2w, (A5

B} B}
Here, v = 4+ 1, p = max{p + 1,2u9 + 2}, and C depends on I' and is bounded when
|3] is bounded away from zero.

For any 1 < r, < 1, < 3 we choose x as a cut-off function satisfying 0 < y < 1,

|dx| < 2/(ry — 74) and
x=1 inBT

Ta?

x=0 inBf\B}.
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Using this in (A-88) we obtain

n n=2 1 2p
( = dvg) < ca+hh™ udvyg. (A-89)
B, B,

s —Ta

1/e
If we set ®(e,r) = (fB,T ﬂedvg> and 6 = n/(n — 2), the estimate (A-89) becomes

2
C(1+ ]|

D(d7,74) < < )u) . O(y,rp) if ¥ >0,

e (A-90)
P(vy,mp) < (W> " O(dy,7ry) if v <O.

It is well known that lime—,oc ®(e,7) = supg+ 4 and lime—, oo ®(e,r) = infyz+ u. The

rest of the proof follows as in [45, p.197-198] by iterating the first inequality in (A-90)

to prove (a), and by using (A-83) and iterating the second inequality in (A-90) to prove

(b). O

Once we have established Proposition 3.A.2(a), the proof of the next proposition is

similar to [2, Proposition A.3].

Proposition 3.A.3. Let (M", go) be a compact Riemannian manifold with boundary
OM and with dimension n > 3. For each ¢ > n/2 we can find positive constants
v =v(M, g0,q) and C = C(M, go,q) with the following significance: if g = uﬁgo is

a conformal metric satisfying

/ dvy <1 and / |Ry|? dvg < v
M By (z)

for x € M, then we have

n—2

T
u(z) < cr 'z (/ dvg> .
By (z)

Using Proposition 3.A.2(b) and interior Harnack estimates for elliptic linear equa-
tions (see [45, Theorem 8.18]), one can prove the next proposition by adapting the

arguments in [13, Proposition A.2].

Proposition 3.A.4. Let (M, go) be a Riemannian manifold with boundary OM, P a

smooth function on M, and suppose u that satisfies
—Agu(t) + Pu>0, inM,

9 u=0, on oM .
Mgy
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Then there exists C = C(P, go) such that

C i]I\l4f u > /M udvg,.

In particular,
n+2

2n_ . n—2
/ un—2dvg, < Cinfu <sup u> .
M M M

Appendix 3.B Construction of the Green function on manifolds with

boundary

In this section, we prove the existence of the Green function used in this thesis and some
of its properties. The construction performed here extends the one in [2, Proposition

B-2]; see also [68, p.201] and [8, p.106].

Lemma 3.B.1. Let (M, g) be a connected Riemannian manifold of dimension n > 2

and fiz x € M and o € R. Let u: M\{z} — R be a function satisfying
u(y)] < Codg(z, ) and |Vgu(y)ly < Codyg(z,y)* ",

for any y € M, with x #y. Then, for any 0 < 0 < 1, there exists C1 = C1(M, g, Cp, @)
such that
u(y) — u(2)] < Cudy(y, 2)° (dg(, )" + dy(x,2)*7%)

for any y,z € M, with y # x # z.
This is [2, Lemma B.1]. For the reader’s convenience, we provide the proof here.

Proof. Let y # x and z # .

1st case: dy(y, z) < 3dg(z,y). Let v : [0,1] — M be a smooth curve such that v(0) = y,
1
v(1) =z, and [; |/(t)]gdt < 5dy(y, 2).

Claim. We have 1dy(z,y) < dg(v(t), z)

IN
IN{[JURNEN|
o
<
“&
Y

Indeed, since dg(y,y(t)) < 3dy(y,z) <

dy(.1(1)) 2 dy(a,0) — dy(1(8),) > dy(i,) — Sdy,9) = Sdy(a.0).
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Moreover,

3 7
dy(7(t),x) < dg(y(t),y) + dy(y, @) < 7dg(,y) +dg(z,y) = 7dg(z,y) .-
This proves the claim.

Observe that u(z) — u(y) = [i ¢(Vau(y(t)),7(t))dt. Thus,

! 13

[u(y) —u(2)] < sup [Vou(v(t)lg | 17 ()]gdt < C sup dg(y(t), 2)* " S dy(y, 2)

2
t€[0,1] 0 t€[0,1]

< Cla)dy(w,y)* " dy(y, 2) < Cla)dg(w,y)*dy(y, 2)".
2nd case: dy(y, z) > %dg(x, y). In this case, we have
ju(y) — u(2)] < lu(y)| + ()] < Cdy(y, )" + Cdy (2, )°
< Cdy(y, 1) dy(2,9)° + Cdy(2, )~ (dy 2, ) + dyy, )’
< Cdy(y, ) (dy(, )"~ + dy (2, 2)°°).

O]

Let (M, g) be a compact Riemannian manifold with boundary OM, dimension n > 3,
and positive Sobolev quotient Q(M).
n—2

Notation. We denote by L, the conformal Laplacian A, — mRQ, and by B, the

n—2

boundary conformal operator 6%[] T 3n=1)

H,, where 7,4 is the inward unit normal vector

to OM.

Set d(x) = dy(x,0M) for x € M, and M, = {z € M ; d(z) < p} for p > 0. Choose
po = po(M, g) > 0 small such that the function

MQﬁO — OM
=T
is well defined and smooth, where z is defined by dy(z,z) = dg(x,0M), and po/4 is
smaller than the injectivity radius of M. Then, for any 0 < ¢t < 2pg, the set ;M =
{r € M ; d(xz) =t} is a smooth embedded (n — 1)-submanifold of M. For each x € Mj,,
define the function
Mgﬁo — 8d(x)M

Y=Yz,



118

where y,. is defined by dy(y, yz) = dg(y, Ogx) M ).

For any « € M, and pg € (0, po), we define the local coordinates 15 (y) = (Y1, ..., Yn)
on Ms,,, where y,, = d(y), and (y1, ..., yn—1) are normal coordinates of y,, centered at
x, with respect to the submanifold 9y,)M . Then (z,y) = 9. (y) is locally defined
and smooth. Observe that 1,(z) = (0,...,0,d(x)) for any € Mj,, and that 1, are
Fermi coordinates for any x € M. Moreover, in those coordinates we have gqn = dan
and gup(z) = O, for a,b = 1,...,n, and the inward normal unit vector to M is
dip;1(0/9yy). Choosing po possibly smaller, we can assume that, for any z € M,

Y2 (y) = (Y1, .y Yn) is defined for 0 < y,, < 2pg and |[(y1, ..., Yn—1)| < Po-

Proposition 3.B.2. Let py € (0, p0), xo € M and d = [”T_Q] Suppose that one of the
following conditions holds:

(a) xo € OM and there exist C = C(M,g) and N sufficiently large such that
Hy(y) < Cdg(zo, YN, for ally € OM ; (B-91)

(b) zo € My, 5 and Hy =0 on OM;
(C) xo € M\Mgpo.

Then there exists a positive Gy, € C*(M\{xo}) satisfying

L,Gyy =0, inM\{xo}, (B-92)

ByGyo =0, onoM\{zo},

(n —2)on-19(x0) / Gy (y) Lg@(y)dvg(y / G, (y)Byd(y)dog(y)  (B-93)

for any ¢ € C*(M). Moreover, the following properties hold:

(P1) There ezists C = C(M, g) such that, for any y € M with y # xo,
|G (y)] < Cdg($0,y)2_n and  |VyGay(y)| < Cdg(fUO»y)l_n-

(P2) If x9 € OM consider Fermi coordinates y = (y1,...,yn) centered at that point. In

those coordinates, write gqp = exp(hap), a,b =1,...,n, where

d
hav(y) = Y hanay®| < COM, g)lyl ™, (B-94)
la|=1
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where hqgp o € R and each o stands for a multi-index. Then there exists C = C(M, g, po)

such that ©
ISR Cdg(zo,y) T3 ifn > 5,
|G ) = 9P <C S0 S Jhapaldg (o, 9) 2" +
b=l af=1 C(1+ |logdg(zo,y)|) ifn =34,
(B-95)
n—1 d
Vo (Gao(®) = [P < C D7 Y lhabaldg(w0,9)* 17" + Cd (0, )27
a,b:l |a|:1

(P3) If zo € M, /5 consider the coordinate system 1y, defined above. Then there exists
C =C(M,g,po) such that

‘Gxo(y) - |(y17 oy Yn—1Yn — d(aj))|2_n - |(yla oy Yn—1yYn + d(x))|2_n‘ S Cdg(an ?/)3_”7
|vg(GIO(y)_|(y17 "'7yn*layn_d(aj)))ﬁ_n_‘(yl’ "'7yn717yn+d(l‘))|2_n)‘ < Cdg(x07y)2_n7
if n>4 and

|Gm0 (y)_|(y17 < Yn—1, yn_d(w))‘Q_n_Kylv <o Yn—1, yn+d(w))‘2_n‘ < C(I—H lOg dg(330a y)|) )
|Vg (GIEO (y)_|(y17 < Yn—1, yn—d(l‘))|2_n—|(y1, < Yn—1, yn+d(x))|2_n)| < Cdg(x()a y)_l )
if n=3.

(P4) If v € M\Ms,, consider normal coordinates y = (yi,...,yn) centered at that
point. As in (P2), write gqa, = exp(hqp) where hgy satisfies (B-94). Then there exists
C = C(M,g,po) such that the estimates (B-95) hold. (Observe that in this case the

sums range from |a| =2 to d instead of from o =1 to d.)

Proof. Let x : Ry — [0, 1] be a smooth cutoff function satisfying x(¢t) = 1 for t < py/2,

and x(t) = 0 for t > po. For each x € M, set

Ki(@,y) = X@n/2)X( W1, o yu-1)]) - {11, s 1,90 — @) P + 11, oo Yn—1, Y + d(2)) 7"}

5 The log term in dimensions 3 and 4 should also be included in [2, Proposition B-1]. However, that
term does not affect the results in that paper as observed in the footnote in Proposition 3.2.14 above.



120

where we are using the coordinates 1, (y) = (y1, ..., yn). Observe that
Z @Kl(w?y) =0, for |(y17 "'aynfl)’ < p0/27 0<yn<po, and = 7é Y.

a=1 a

Moreover, K1 /0y (z,y) =0 if y € OM with = # y.

For each x € M\ M, /5, set

Ka(z,y) = x(4dg(y, x))dg(y, )*7", if 0 < dy(y, =) < po/4,

and 0 otherwise. If we express y — Ks(z,y) in normal coordinates (yi, ..., y,) centered

at , we have Ka(z,) = x(41(31, s yn))|(91s o ) 2, and thus
Z 5 sHKa(z,y) =0, for 0 <dy(y,x) < po/8.

a=1 a

Define K : M x M\Djy; — R by the expression

K(z,y) = x(d(z))K1(z,y) + (1 — x(d(z)))K2(z,9) ,

where Dy = {(z,r) € M x M ; x € M}. Thus, K(z,y) = Ki(x,y) if z € M, )5, and
K(z,y) = Ka(z,y) if © € M\M,,. Observe that 0K/0ng,(x,y) = 0 if y € M with
y # .

Expressing y — Kj(x,y) and y — Ks(x,y) in their respective coordinate systems

(as described above) one can check that there exists C' = C(M, g, po) such that
‘Lg,yK(xa y)| S Cdg(.’l?, y)l—n .

For any ¢ € C?(M) and x € M, we have

(0~ 2)016(2) (B-96)
= [ (@Ko - Kooy~ | Kz -otin ).
(B-97)

Indeed, this expression holds with Ki(z,y) replacing K(z,y) when z € M,,, and
with K(z,y) replacing K(z,y) when x € M\M,, /5. In particular, Ag;s K (z,y) =
AgyK(z,y) — (n—2)on-10,.

We define I'y, : M x M\Dj; — R inductively by setting

I't (fﬁa ZJ) = Lg,yK(ZEa y)
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and

Lii1(z,y) = /M Li(x, 2)'1(2z,y)dvg(2) .

According to [8, Proposition 4.12], which is a result due to Giraud ( [46, p.50]), we have

Cdy(z,y)k, ifk <n,

Te(z,9)| < § C(1 4 |logdy(z,y)]), ifk=n, (B-98)
C, itk >n,
\

for some C' = C(M, g, pg). Moreover, 'y, is continuous on M x M for k > n, and on
M x M\Dj; for k < n.

If (a) or (b) holds we can refine the estimate (B-98) around the point zg, using
the expansion gap = exp(hqp). Since K(z,y) = Ki(z,y) for x € M, ;o and K(z,y) =

Ks(x,y) for x € M\M,,, one can see that

n d
’LgvyK(x():y)’ <C Z Z ’hab,a’dg(xo,y)la‘_n + Cdg<l‘07y)d+1_n7

a,b=1|a|=1
for some C' = C(M, g, po), if (a) or (b) holds. Then Giraud’s result implies
n d
ICr(zo, )| < C D > |hapaldg(@o, y) 1" dg (o, y) 7" ik < n—d. (B-99)
a,b:l |()4‘:1

Claim 1. Given 0 < 6 < 1, there exists C' = C(M, g, po,0) such that

Crt1(2,y) — Tnga (2, 9)| < Cdy(y,y)?, foranyy#az#y'. (B-100)

In particular, Ty, y1(z0,-) € CO9(M).

Indeed, observe that [Ty (z,y)—T1(x, )| < Cdy(y, ')’ (dg(x, y) =0 +d, (z, ') 0™,
according to Lemma 3.B.1. So, Claim 1 follows from the estimates (B-98) and Giraud’s
result.

Set

k
Pule) = K@)+ Y [ Tyl K ooy <),
j=1
Claim 2. For any ¢ € C%(M) and x € M, and for all k = 1,2, ..., we have

b(z) = - / Fi(2, y) Lo (y)dvg () — / (2, 9) By (y)dory(y) (B-101)
M oM

+ [ Tea@aonw) - | A H W) R o), 0).
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Claim 2 can be proved by induction on k.

Claim 3. For any € M and 0 < # < 1, the function y — Fy,(x,y) is in C¢(M\{z})

and satisfies
[Fn(z,y)| < Cdy(x, v, VgyFn(z,y)lg < Cdg(%y)lina (B-102)

and

‘Vg,yFn(xa ?J) - Vg,y’Fn($a y/)
dy(y,y')?

for some C = C(M, g, po). In particular, for any = € OM, y — OF,/0ng(x,y) defines

b Cdy(x,y)' """ + Cdy(x,y/) ", (B-103)

a continuous function on oM \{z}.

As a consequence of Claim 3, if xg € OM we can choose N large enough in the

hypothesis (a) such that y — Hy(y) F(z0,y) is in CHY(0M) for 0 < § < 1 and satisfies
[1Hy () En(o, )llcroanny < C(M, g, p0,0) - (B-104)

It is clear that (B-104) also holds if xy € M\ M, with no assumptions on Hy, and that
its left side vanishes under the hypothesis (b). In particular (B-104) holds should (a),
(b) or (c) holds.

Let us prove Claim 3. Choose y # x and a smooth curve y; such that yo = y. Then,

for any r > 0,
d d
7 Lz, 2)K(z,y)dvg(2) = I'(z, z)d—K(z, Yi)dvg(2)
t Jan\B,(y) M\B,(y) ¢

For any r > 0 such that 2r < d,(z,y) and t small, we have

/ Tz, z)‘K(Z’ ve) ;K(Z’ y) ‘dvg(z) (B-105)
r(Y)

< C/ dg(,2) 7 (dg (2, 41) ' " + dy(2, ) ") dug(2)
Br(y)
55(72”1d9(x’y)1"}/; (ol ety (2
rY

and the right-hand side goes to 0 as » — 0. Here, B,(y) stands for the geodesic ball

centered at y. Hence,

d d
G [ DK = [ T G R G () (B-106)
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and the estimates in (B-102) follow from Giraud’s result.

Now,
1‘/ T, 2) -2 K (2, y)do (z)—/ T, )= K (2, ), (2)
dg(yyy')e M T 0y; Y% M I 0y; Y g
2K (z,y) — 2 K(2,9)
Jy; ’ 9y; ’
< T'i(z, 2z Vg (2
~Ju i )’ dg(y,y')? ‘ o(2)
<C dg(z, z)l_"(dg(z, y)l_e_n +dy(z, y’)l_e_”)dvg(z)
M
< Cldg(w,y)* 7" + dy(2,y)*07),

where we used Lemma 3.B.1 in the second inequality, and Giraud’s result in the last
one.
This proves Claim 3.

Using the hypothesis Q(M) > 0, we define u,, € C??(M) as the unique solution of

Lgua,’() (y) = _Pn-i-l(x[)a ?J) ) in M7
(B-107)
By (y) = ofn—a3Hy(y) Fu(zo.y), ondM.
It satisfies
[z llc2.oary < Clluz, looary + CliTnt1(zos ) lcosary + CllHg () Fn(zo, )l creon)
(B-108)
where C = C(M, g, po,0) (see [45, Theorems 6.30 and 6.31].
Claim 4. There exists C = C(M, g, po,0) such that |lug,[|c2en) < C.
Indeed, using (B-101) with & = n and any ¢ € C?(M), one can see that

sup [¢| < C'sup|Lyg| + Csup |Byo| + Cl|6l| 2ary + Clidll L2om) -
M M oM
Since Q(M) > 0, there exists C = C(M, g) such that
/ P*dv, +/ ¢*doy < C/ |Lg(¢)d|dvg + C’/ |By(¢)¢|doy .
M oM M oM
Thus, the Young’s inequality implies

/M ¢2dvg+/8M ¢*do, < C’/M Lg(¢)2dvg+0/ By(¢)?day, .

oM
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Hence, [[¢[lcoary < CllLgdllcoary + CllBgollcoanr) - Setting ¢ = ug, and using the

equations (B-107), we see that

[tzo llcoary < ClTnv1(zo, )llcoary + CllHg () Fulwo, )l coonr) - (B-109)

Claim 4 follows from the estimates (B-98), (B-100), (B-104), (B-108), and (B-109).
We define the function G, € C1¢(M\{zo}) by

Gy (y) = K (20,9 +§j/ (20,2 (2,5)duy (2) + (1)
One can check that the formula (B-93) holds.

Claim 5. We have G5, € C*°(M\{zo}) and (B-92).

In order to prove Claim 5, we rewrite (B-96) as

| KL / K (2. 9) By (y)doy(y) (B-110)

n—2
- /M LgyK(x,y)0(y)dvg(y) — d(x) — /{aM 2(n —1)

Hy(y) K (z,y)d(y)dog(y) -

Thus,

t@{@n@wK@wmwﬁ%mwm@+L%{@n@wwammﬁBw@wm»

= [ rie{ [ KCutswn + [ KB ) )

=/n@@/meMw@mmmwa
M M

_/Mrj(x’z) {/8M 2(772—_21) Hy(y)K (2, y)0(y)dog(y) + o(z )}dvg(z)
= [ ] rie Lo o) - T f ot

_AM{Afw%@K@ym%<ﬁ2( zﬂawm>wa>

where we used (B-110) in the second equality. Hence, we proved that the equations

Loy [y Ui, 2)K (2, y)dvg(2) = Tjsa (2, y) — Tj(x,y), in M,
By [y (@, 2) K (2,y)dvg(2) = ~5n=1) 21 Hy(y) [, T K(z,y)dvg(z), onoM,
hold in the sense of distributions. Then it is easy to check that the equations (B-92) hold

in the sense of distributions. Since Gy, € C1?(M\{zo}), elliptic regularity arguments

imply that Gy, € C*>°(M\{zo}). This proves Claim 5.
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The property (P1) follows from (B-102) and Claim 4. In order to prove (P2),(P3)
and (P4), we use (B-98), (B-99), (B-106) and Claim 4.

Claim 6. The function G, is positive on M\{zo}.

Let us prove Claim 6. Let

R e

z0

0, if Gy > 0.
Since G has support in M\{zo}, one has
0= / Gy LgGaodvg — / Gy BgGrodoy
M oM
_ _ 2 n—2 _\2 n—2 _\92
= /M <|ngxo‘g + ng(Gxo) > dvg + /C{)M mHQ(Gxo) dO'g .
By the hypothesis Q(M) > 0, we have G = 0 which implies G, > 0.

We now change the metric by a conformal positive factor u € C°°(M) such that
g= un? g satisfies Rz > 0in M and Hgz = 0 on OM (see [40]). Observing the conformal
properties (3.2) and (3.3), we see that G = u~'G,, > 0 satisfies LzG = 0 in M\ {zo}
and Bg@ = 0 on OM\{zp}. Then the strong maximum principle implies G > 0, proving

Claim 6.

This finishes the proof of Proposition 3.B.2. O

Let (M, go) be a Riemannian manifold with Q(M) > 0 and Hyg, = 0. Let g,, =
4
20 2 go be a conformal metric satisfying

’fcco(x> - 1‘ < C(M7 gO)dgo(xaxO)'

Notation. For a Riemannian metric g we set My, = {x € M : dy(z,0M) < t} and

OpgM ={x € M :dy(x,0M) = t}.

Proposition 3.B.3. If py is sufficiently small and xo € My, g, \OM, then there exists

a positive Gy, € C°(M\{z0}) satisfying

L, Gu, =0, inM\{zo},

9z

(B-111)
By, G, =0, ondM,

Gz
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and there exists C = C(M, go, po) such that

c 3=n Cd oM 1-n > 4
o) — o] < o CIPOWITT o Oy (20, BM) IS0 (0] >4,
C(l + ‘ 10g(|¢0(y)|)|) + Cdgzo (l‘o, 8M)|¢)O(y)’1—n n = 37

(B-112)

Vg2 (Gao () = |90 () ™) < Cleo(y)|' ™" + Cdg,, (x0,0M)]|o(y)| ™", (B-113)

where ¢o(y) = (Y1, ..., Yn) are gz,- normal coordinates centered at x(.

Proof. We will use the notation d(z) = dg,(z,0M). Let us define the coordinate system
Yo(y) = (Y1,...,Yn) on My, oo where (y1,--- ,yn—1) are normal coordinates of y,, on
Od(xo),g0M centered at ys,, with respect to the metric induced by go, and y,, = d(x) —
d(wo). Here, Yz, € Oy(zg),goM 1is such that dy, (¥, yzy) = dgo (Y, O(a),goM). This differs
from 1, defined above by a translation in the last coordinate.

According to Proposition 3.B.2 one can construct a function Gy, satisfying

LyGo=0, inM\{zo},

By,Go =0, ondM,

(115 s yn) P 115 s Y1, Y+ 2d(20))*77)

N | —

Go(y)—
Cdg, (y, 20)>™" n >4,
C(1+ |logdg,(y,z0)|) n=3,

and

1 -n —n —n
‘Vgo(GO@)_5(’<y17---7yn)’2 + ’(y17"'7y7‘b—17yn+2d(x0))’2 ))‘ SCdQO(yﬂxO)Q .

for some C = C(M, go, po). USIng |(y1, - 41, 4o +2d(z0))| > |(y1, ., )| and Lemma
3.B.1 we have

@1, ey ) P77 = (W1, ey Y1, + 2d(20)) 7] < Cd(o)| (Yoo )|,

IV W1y oo ) P = V(Y14 ooy Yn1, Y + 2d(20)) > | < Cd(20)| (1, s yn)| ™
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Then

(B-114)

Vg0 (Goly) = [1o(y) )| < Clgy (y, 0)* ™" + Cel(wo)dgy (y, 0) ™" (B-115)

Now we change this to the conformal metric gz,. Let ¢o(y) = (Y1, .-, Yn) be gzo-
conformal normal coordinates centered at zy. By the definition of ¢y and 1y one can
check that £ = ¢g o wo_l satisfies £(0) = 0 and d¢(0) = idgn. Since M is compact, one

can find C' = C(M, go) uniform in z¢ such that

|€(y17 7yn) - (ylu ayn)| S C|(y17 ayn)|2 (B_116)

The function Ga, = f;,'Go satisfies (B-111), so we shall prove (B-112) and (B-113).

Observe that
(G (y) = Go(y)] < Clgy (y,20)|Gay ()] < Cdlgy (y, 20)° . (B-117)
Combining (B-114), (B-116) and (B-117), one gets (B-112) from the following steps:

G (y) — |0 (y) [P
<|Gao(y) — GoW)| + |Go(y) — [Lo(w) " + [[Lo(y)|*~" — |€ 0 o (y)|* |
SCdgo (y’ xo)?;—n + Cd(mo)dgo (ya IU)I_n =+ C|¢0(y)|3_n

<Cdgy (y,20)° " + Cdy,, (x0, 0M)(w0)dgy (y, z0)' "

for n > 4 and with obvious modifications for n = 3. Similarly, using (B-115), (B-116)

and (B-117), one gets (B-113). O
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Chapter 4

Classification theorems for solutions of higher order

boundary conformally invariant problems

For all the work in this chapter, we will use the following notations as in [80].

Notations:
X (z,t) = (x1,... 2" t) C R*!

B.(X) ball with radial » centered at X in R"*! and B, = B,(0)

B B, NR}H

o*Bf 9BfNRYH!

D, ball centered at the origin in R”, identifying D, = 0B, \0+B;"
[flr fa p, Jdo, the integral average of f over 0D,

XA the characteristic function of the measurable set A in the Euclidean spaces

We will always assume 2m < n + 1 if it is not specified. We will use the Green

identity and its variants repeatedly:

m m _ S i—1 a(Am_Z¢) m—i a(Az—lu)
/BT(UA 6 — 6A u)dx_z/aﬂg+ [(A 280 amig A8

_Z/D All Am 1¢) (Am z¢) (All )}dl’

where v is the outer unit normal of 8+Bf' .

4.1 Preliminary

Let us recall that A™ is invariant under the m-Kelvin transformations

)\ n—2m+1 )\2(X o XO)
uxo M) = (\X - Xo|> u (XO X XP ) ’

where 2m < n + 1, Xg € R"! and X > 0. Namely, if u € C?™(R"*!) then there holds

A n+2m—1 )\2 X _ X,
AmuXo,)\(X) = <|)<_)(0|> Ay (XO + p((—)(o|(2))> for X 7é Xo. (41)
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There are various of boundary conditions for the polyharmonic equation, see Agmon-
Douglis-Nirenberg [1] or Gazzola-Grunau-Sweers [43]. For the later use, we only con-
sider two of them. One is like the Dirichlet condition and the other is a Neumann
condition. We will be concerned with bounds of singular integrals involving the Pois-
son kernel and Neumann function, respectively. These bounds will play important roles

in the proof of the main theorem.
4.1.1 Poisson kernel for a Dirichlet problem
Let us consider the boundary value problem

A™y(z,t) =0 in Ri“,

v(z,0) = f(z) on IR}, (4.2)

O AFv(z,0) =0 on IR,
(

where f is a smooth bounded function in R", and £k =0,...,m — 2 (if m = 1, then we

do not have this boundary condition). Let

t2m71

Pm ,t) = ) n+2m—1
(©.0) = Bl m) ey

where B(n,m) = W_%F(%)/F(m — 1) is the normalizing constant such that

Pm(z,1)dx = 1.
R

Note that P; is the standard upper space Poisson kernel for Laplace equation. Define

2m—1
o) =P S) = Bl [ ey

Lemma 4.1.1. If f € LY(R™) for some 1 < g < oo, then v belongs to Weak—LnTH(RﬁH)

(n+1)q

if ¢ =1 and belongs to L™ = (RT‘I) if ¢ > 1. Moreover,

n+1 n+l

(X < [P F(X)] > MY < clnym, DA [l ignys VA >0,

and

1P * £l g < c(n,m, Q)| fll oy, for ¢ > 1,

n (R

where ¢(n,m,q) > 0 is constants depending only n,m and q.
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Proof. The proof by now is standard. When m = 1, see Hang-Wang-Yan [51]. When
q = 00, it is easy to show. By the Marcinkiewicz interpolation theorem, it thus suffices
to show the ¢ = 1 case. Without loss of generality, we may assume that || f||;1(gzn) = 1.

First, note that for any ¢ > 0 there holds
[P, * f(z,t)] < B(n,m)t™".

In addition, for any number a > 0,

/ [P * f(x,t)| dedt
R n{o<t<a}

/ y)ldy // mE st =
n |x_y‘2+t2)n+2m 1 xr = Q.

It follows that for any A > 0

{(2,) : [P+ f(,1)] > A}

=[{(@,1): 0 < t < Bln, M)A, [Py f(a, )] > A}
1

</ -
A R N{0<t<B(n,m)n A"}

1 n+1

<B(n,m)m A~

[P * f|dadt

Therefore, we complete the proof. O

Lemma 4.1.2. Suppose that f is a smooth function in L¢(R"™) for some ¢ > 1. Then v

defined by (4.3) is smooth and satisfies (4.2).

Proof. The smoothness of v(x,t) is easy and we omit the details. Note that Py, (z—y,t)
is the Kelvin transform of 8(n, m)t>™~! with respect to Xo = (y,0) and A = 1. It follows
that A7 P (z — y,t) = B(n,m)| X — Xo|~(+2m=UAm £2m=1 — 0 for any 2 € R" and
t > 0. Therefore, v satisfies the first equation of (4.2).

Next, let 7 > 0 be a cutoff function satisfying n =1 in D; /5 and n = 0 in R" \ Dy,
and denote 71z, (x) = n(z — zo) for any g € R™. Let vy = P * (f1a,) and vy =
P % (f(1 —nz,)), then v = vy + vo. Clearly,

lim  wvy(z,t) — 0.
(z,t)—(z0,0)
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By the change of variables x — y = ¢z, we see that

(fnxo)(x_tz)
U1($at) = ,B(TL, m) /R" (‘Z|2 o+ 1)n+2§nfl dz

Sending ¢t — 0, by Lebesgue dominated convergence theorem we obtain
vi(z,t) = f(zo) when (x,t) = (z0,0).

Hence, by the arbitrary choice of x¢, we verified the second line of (4.2).
Finally, for any 0 < k < m — 2, note that AF?™~1 = (2m —1) - - - (2m — 2k)t?m—1=2F

with 2m — 1 — 2k > 2. It follows that

lim  8;AFuvy(z,t) = 0.
(.T,t)—)(xm())

Making use of k£ < m — 2 and Lebesgue dominated convergence theorem, we see that

ast — 0,

atAkvl(.’L‘,t)
k . k—7j 42j B
= B(n,m) /n -0 CH)AZ0 (fnme)(x — t2) )

n+2m— z
(212 + 1) =5
= B(n,m) >0 CUNAT Yjajzajn C(@)DS (fnm) (@ — t2)241 - - 20 ,
’ Rn (|Z|2 + 1)71‘%2;7171
— —B(n,m) Z?:o C(J) 2jal=2j+1 C(a) AT DO ( gy ) () 250 - - 20m L
’ Rn (|Z’2 + 1)n+2;n71

where C(j) and C(«) are some binomial constants and we used the oddness of the
integrand in the last equality.

Therefore, we complete the proof. O

Remark 4.1.3. If f € L'(R") is smooth in an open set Q € R™ for instance. From
the proof of Lemma 4.1.2, we see that v will satisfy boundary conditions of (4.2) on Q
pointwisely.

Next lemma shows the convolution with P, commutes with m—Kelvin transforma-

tion.

Lemma 4.1.4. Suppose fy, \(z) := |:1:|2m_1_”f($0+k($_$0)) € LY(R") for some zg € R"

|[z—z0]2

and A > 0. Let Xo = (20,0). Then vx, x = Pm * fzy.2-
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Proof. We only verify the case zg = 0 and A = 1, because the other situations are

similar. Since fo1 € L'(R™), Py, x fo1 is well-defined. By direct computations,

t
UO,l(X) — |X|2m—1—n73m % f ( T >

X127 | X2
N H/1X )2 f ()

— Bn, m)| X P ( Ly

/Rn (21X 2 — y? + (1/|X[2)2) 5

o 2m=1 £ (y)
= B(n, m)| X[ ! e dy
/Rn (2/IX 2 — g2 + (t/1X[2)2) 3

/ 2y (y)
Rn» (

= B(n,m

n+2m—1 y

2+ ly/ly? —x?) 2

t2m71‘z‘2m717nf(ﬁ)
- ,3(77,, m) nt2m—1 dz = Ppy, * fO,l(X)v
n (-2 2
where in the fourth step we used the elementary equality
2)
x
Remark 4.1.5. Actually the proof holds whenever Py, * fy, » is well defined, for example

xp Y

2 2
X () + — (2 |y o
] i

O]

frox € L}, (R™) and bounded at infinity.

Lemma 4.1.6. Let v € C?™(R7T UOR™) be a solution of (4.2). Then for any X, =
(x0,0) and A > 0, vx, ) satisfies (4.2) with f replaced by fy, x, except the the boundary

point Xj.

Proof. 1t follows from direct computations. O

4.1.2 Neumann function for a Neumann problem

Now, we consider
A"My(z,t) =0 in R,
O AFv(x,0) =0 on OR" (4.4)

(1), A" Lu(z,0) = f(x) on IR,

\

where f is a smooth function belonging to L4(R™) for some ¢ > 1, and k =0,...,m—2.

Let
Non (2, ) = 7(n,m) !
x, - ’Y n,m n—2m 9
m (|x‘2+t2) 22 +1
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n+1

where y(n,m) = 72 ['(2=2241)/D'(m). Define

v(x,t) := Ny x f(z,t) = vy(n,m) /Rn o i(;)g)n%”“ dy. (4.5)

Lemma 4.1.7. If f € L*(R"), then v(x,t) belongs to weak— L =2m+1 (]R:‘_'H). Moreover,

n+1

z,t): |v(z,t) > A < C(n,m A" AT fllF2mat for every A > 0,
LT(R™)

where C(n,m) > 0 is a constant depending only n and m.

Proof. The lemma was proved by Dou-Zhu [34] and we include a proof below for com-
pleteness and convenience of the readers.

After scaling, assume [, f(y)dy = 1. Split v as

oz 1) = A(n,m) < / v/ ) 1 —
RO {je—yl<ry IR {a—yl>ry ) (82 + |z —yl?) " 2

=:vy(z,t) + va(z, 1),

where r will be fixed later. By direct computations, we have

|f(y)]
loallgsageny =26 [ [ ey dX
| ‘Ll(]R+ ) R JRone—ylisr) (2 4 |7 — y]2) ETES]

1
g'yn,m/ fly dy/ o dX < Cyr?™,
o) [ I [ et

and
va| < Cor®™ 71,
where C1, Cy are constants depending only n and m. Observing the inequality
{(z,8) : [o] = 20} < [{(2,0) <[] 2 A} 4+ [{(2,1) : [o2] = A},
one can choose r as Cor?™~"~1 = X, then |{(x,t) : |va] > A\}| = 0. Thus

1
[{(z,8) + Jo] 2 22} < [{(2,8) « Jor] 2 A} < O floall g gy

2m

T n+1
< _— )\_n—2m+1 .
<C 3 C

By scaling, we complete the proof of the lemma. O
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We refer to Dou-Zhu [34] for strong type bounds for the convolution operator in-

volving the Neumann function.

Lemma 4.1.8. Suppose that f is a smooth function belonging to L4(R™) for some ¢ > 1.

Then v defined by (4.5) is smooth and satisfies (4.4).

Proof. The smoothness and the first two lines of (4.4) are easy to show. For the last

boundary condition, observe that
AFIXPnl = 2m—n— 1) (2m —n+1-2k)(2m —2)--- (2m — 2k)| X |12k

for any k > 1. It follows that

t
O™ u(a,0) =(2m — = 1)+ (1= )2 —2) -2y () | A —
e (o — 2+ )73
mao2m F(LH) tf Yy
=(—1)m2? ﬁr(m)v(n, m)/ ) Ay
F==) " (lz - yl? 4+ 12)"
therefore
AT y(x,0) = (=) f(z).

This verifies the last boundary condition.

Therefore, we complete the proof. O

Lemma 4.1.9. Suppose fgz, A(z) := |ﬂ:|2m_1_"f(:c0+/\($_x°)) € L'(R") for some ¢ € R™

|z—wo[?

and A > 0. Let X = (20,0). Then vx, r = N * (]x\*z(mel)fxoy)\).

Proof. 1t is similar to the proof of Lemma 4.1.4, thus we omit the details. Same as the

remark 4.1.5, the proof holds whenever A,  (|z|722™=1 £, ) is well defined. O

Lemma 4.1.10. Let v € C?™(R U ORTM!) be a solution of (4.4). Then for any
Xo = (0,0) and X > 0, vx,  satisfies (4.4) with f(z) replaced by |z|2Cm=D £, (=),

except the the boundary point Xj.

Proof. Tt follows from direct computations. O
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4.2 Polyharmonic functions with homogeneous boundary data

4.2.1 Extensions of Liouville theorem

It is well-known that every nonnegative solution of

Au(z,t)=0  in R
— +1
u=20 on 8R:L_ s

has to equal at for some a > 0. A simple proof of this result is based on the boundary
Harnack inequality. In this subsection, we extend this result to polyharmonic functions
with homogeneous boundary conditions, for which we don’t have a boundary Harnack

inequality.

Proposition 4.2.1. Let u € C*™(R U OR"™) be a solution of
— : +1

AMy(z,t) =0 in R,

u(xz,0) =0 on OR"T (4.6)

Ot AFu(z,0) =0 on BR’}FH, k=0,1,--- ,m—2.

Suppose that u*(X) € L'(B;"), where u* := ug is the m—Kelvin transform of u with

respect to Xg =0 and A = 1. Then

m—1
% Py () + cot®™ 1, (4.7)
k=1

where Py (x) are polynomials w.r.t. x of degree < 2m — 1 — 2k.
In addition if we assume u*(X) > g(X) for some g € LHTH(BT), then ¢ > 0, and

deg Po, < 2m — 2 — 2k. In particular Py(,,_1) must be a constant.

Proof. For any r > 0, let v(X) = u*(rX). Then v(X) satisfies (4.6) pointwisely except

the origin. By the standard estimates for solutions of linear elliptic PDEs, we have

H'UHLOO(B+ \Bj,) = < C(m, n)HUHLl B, \B (4.8)

32\B1)o)"

See [1] or Theorem 2.20 of [43] precisely. Notice that

1
* rm ) as = 0.

HU||L1(B+ B = m”u HLI(B 2\B, )_0(
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Together with (4.8), the above inequality yields
[u*(X)] = o(|X]7" ) as | X| = 0.
Since u(X) = [X ™17y (X/|X|?), we obtain
lu(X)| = o(|X[*™) as |X]| — occ. (4.9)
For every R > 0, by the standard estimates for solutions of linear elliptic PDEs we

obtain

||V2muHLoo(B§) < CR_QmHuHLoo(B;rR)v
where C' > 0 is independent of R. Sending R — oo and making use of (4.9) we have
2m, 1
V¥u=0 in R}

It follows that u is a polynomial of degree at most 2m — 1. Sorting u by the degree of
t, one can have
2m—2
= ) t'P(x) + cot®!
where Pj(z) is a polynomial of x with degree < 2m — 1 —[. The boundary conditions

of v imply P, = 0 when [ < 2m — 2 and is odd. Indeed, suppose the contrary and let
Py, # 0 of the least odd order ly. Set kg = (lp —1)/2 < m — 2 which is an integer. Then

ko 2m—2
= t*Py(z) +t°Py(z) + Y t'P(a
k=1 I=lg

Applying 9;A%0 to u, then 9;AF (t2% Py (x))(2,0) = 0 and 9 A% (¢! Py(z))(x,0) = 0 for

any [ > lg. Since 9;A*ou(x,0) =0,
0 = 9, Ak (tlo Py (x))(x,0) = Io! Py ().

Hence, we proved the claim. It follows that

m—1
k=1

If u* > g for some ¢ as stated in the theorem. For any polynomial P with deg P <

2m — 1 — 2k, we have

2k
(1% P(2))* = | X[2m-1-n (|XtQ> P <|X°””|2> = O(IX|*™) as |X| >0 (4.10)



137

which means (t2*P(z))* € LnTH(Bf) Absorbing all these lower order terms of Py to

g and collecting all the leading terms of each Py to be 4, we have

m—1 ¢ 2k x t 2m—1
- X 2m—1—n P X 2m—1—n >
T CORACIR xp) 2

where Py, are homogeneous polynomial in z with degree equals to 2m — 1 — 2k or

N}

]52k = 0. By the homogeneity,

@+ =| X |l 2mny2m= (Z Py (t) +Co>

k=1
Note that Py is a homogeneous polynomial of odd degree and thus pgk(—y) =
—ng(y). Therefore if some Py is not zero, then ZZL:_ll ng(y) + ¢p will be negative
on some open set A C R"™ with measure |A| = oo. This leads to @* < 0 on set
A* = {(x,t) € Bf'|z/t € A} with |A*| > 0. While on this set, @* ¢ L™+, which will
violate the fact @ > g with g € LnTH(Bf') Indeed, take a bounded subset E of A with

|E| > 0, notice when ¢y > 0 small enough, we have {(tz,t):x € E,0 <t < ty} C AT,

// \aﬁldxdtz/ / |@*| "% dedt
At 0 tE

then

n+1
to m B n
:/ / [|X]1_2m_”t2m_1 Zng(:c/t)—i—co dadt
0o Jie prt
. n+1
/ t_l/ (P + 1757 3 Puly) +co dydt
k=1

>c/ t~tdt = oo for some ¢ > 0,
0

where we have changed variable © = ty. Therefore, Py, = 0 for 1 < k < m — 1 and
Co 2 0.

We complete the proof of the proposition. O

Theorem 4.2.2. Let 0 < u € C?™(R U ORI ) be a solution of (4.6). Then

m—1
1% Pop () + cot®™ 1, (4.11)
k=1

where Py (x) are polynomials w.r.t. x of degree < 2m — 2 — 2k, and ¢g > 0.
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Proof. By Proposition 4.2.1, it suffices to show u* € L'(B;"). Note that u* satisfies

(4.6) except the origin. Define

L3 —g)2m for t > e,
0 for t <e.

Since u* is smooth in on 9% B and n(t) € C*"~L! multiplying both sides of the

polyharmonic equation of v* and using Green’s identity we have

/ u(X)dX <C,
Bfrﬁ{t>€}

where C' is independent of €. Sending € — 0 and using u* > 0, by Lebesgue’s monotone
convergence theorem we have u* € L1(B}").

Therefore, we complete the proof. O

4.2.2 Extensions of Bocher theorem

In this subsection, we will give some extensions of the classical Bocher theorem which
says that every nonnegative harmonic function in the punctured unit ball is decomposed
to the fundamental solution multiplied by a constant plus a harmonic function cross
the origin. Let

| X 2=l i 2m o<+ 1,
O(X) =c(m,n)

In | X]| it 2m =n+1,
be the fundamental solution of (—A)™, where ¢(m,n) is a normalization constant such
that (—A)"™®(X) = do.
Theorem 4.2.3. Let u € C*™(B;1\{0}) be a solution of (—A)?™u = 0in B;\ {0} ¢ R+
Suppose u € L'(By), then

u(X)=h(X)+ > cD®X) in By,

la<2m—1
where a = (a1, ...,an11) € N1 is multi-index, c, are constants, and h is a smooth
solution of (—A)?™h = 0 in B;. If in addition assume u > g for some g belonging to

Weak—L%(Bl), then ¢q = 0 for |a| = 2m — 1.
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Proof. The first part of theorem was proved by Futamura-Kishi-Mizuta [42]. For the
second part, noticing when |a| = 2m — 1, D*®(X) is homogeneous and has negative
part comparable to |X|~", which does not belong to Weak—L%(Bl). So ¢o = 0 for
such a. O

We refer to Futamura-Kishi-Mizuta [42], Ghergu-Moradifam-Taliaferro [44] and ref-

erences therein for related works on Bocher’s theorem of higher order equations.

Corollary 4.2.4. Let u € C?™(B{ \ {0}) be a solution of

(=A)"u =0 in Bf,
! (4.12)
ou=0Au=---=0A"1tu=0  on Dp\{0}.

Suppose that u € Ll(Bfr) and u > g for some g belonging to Weak-L%(Bf), then

WX)=h(X)+ S caDB(X),

|a|<2m—2
where a = (a1, ..., an, any1) € N with ay, 11 being even, and h(X) satisfies
(-A)"h =0 in By,
(4.13)
Gth:atAh:---:GtAmflh:O on D;.

Proof. Let u(z,t) = u(z,—t) and g(z,t) = g(x, —t) for t < 0. We abuse the notation to
denote these two new functions still as u and g, respectively. From the boundary condi-
tion and regularity theory for Poisson equation, we have (—A)" lu, (=A)"2u, ..., u
are smooth in Bj \ {0}. Consequently, Theorem 4.2.3 implies the decomposition of u.
The boundary condition actually implies we can only have D*® in the decomposition
with ap41 of @ = (aq,...,ap,ant1) is even, see the proof of the last statement of
Proposition 4.2.1.

Therefore, we complete the proof. O

Bocher theorem for positive harmonic functions can be viewed as a stronger version

of Liouville theorem. Indeed,
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Corollary 4.2.5. Let u € C?™(RTT U {ORTT!\ {0}}) be a solution of

(—A)™u =0 in R",
+ (4.14)
O = Au=- =A™y =0  on IR"\ {0}.

Suppose that u € L'(B;) and u > g for some g belonging to Weak-L%(Bf), and
lim w«(X)=0. Then

| X |—o0
uwX)= Y cD®X) VXeRP
|a|<2m—2
where a = (a1, . .., p, apr1) € N1 with oy, 41 being even.

Proof. Applying Corollary 4.2.4 with Bf' replaced by consecutively large half balls, we
have

wX)=hX)+ >  caD*®X) VXeRT,

|a]<2m—2

with each a’s 41 even. Since |a| < 2m — 2,

lim [h(X)| < lim [u(X)[+ lim | Y ¢D®(X)|=0.

| X |—o00 | X |00 | X |—o00
|a| <2m—2

By the (4.13), extending h to lower half plane one can get a smooth polyharmonic
function on R™*! which is bounded and converges to 0 as |X| — oo. By the inte-
rior estimates for solutions of linear elliptic PDEs, one can easily obtain that h = 0.

Therefore, we complete the proof. O

The method of proof of Proposition 4.2.1 can give a direct proof of Corollary 4.2.5.
Corollary 4.2.4 is of independent interest and will be useful in study of local analysis

of solutions of the nonlinear problem.

4.3 Isolated singularity for nonlinear boundary data

Now let us go back to the nonlinear boundary problems we want to study. Suppose

0 <u e C?™(REH UART™Y) be a solution of (1.11) with 1 < p < "EE"= Then, by
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Lemma 4.1.10, u* = ug,1 satisfies

AMy*(z,t) =0 in R
Opu' = gAu’ = -+ =A™ 2u'(x,0) = 0, on ORY\ {0}, (4.15)
(~)"aA™ (2, 0) = |2 Tu*? on R\ {0},

\

where 7 = [n+ (2m — 1)] — p[n — (2m — 1)] > 0. The goal of this section is to show:
Proposition 4.3.1. Let u* be as above. If either one of the two items holds

(1) m is odd;

(2) m is even and u(X) = o(|X|?*™1) as | X| — oo,
then

/ |z| " u* (z,0)Pde < oo. (4.16)
Dy

Let us start from basic properties of u*.

Lemma 4.3.2. Let u* be a nonnegative solution of (4.15). Then
() u e LB,
(i) [p, [2P" T (2, 0)Pdx < oo,

(ili) If p > 1, then [, u*(x,0)°dx < oo for some s > 1.

Proof. (i) u* € L*(B]") was shown in the proof of Theorem 4.2.2.

(ii) Let » = |X|, and construct a smooth radial function & such that A™E (r) =
X{r>ey(r) for given € > 0, and {. = 0 in B, /5. It is easy to show . — Wf’zm in C°,
where C'(m,n) = A™r?™ > 0. Since £, is radially symmetric, then 8;A*¢,(z,0) = 0 for
any k > 0. Noticing that 9,A¥u* vanishes for k = 0,...,m — 2 and using & as a test
function in Green’s identity, we obtain

. &l u" (2, 0)" do < (=1)™ /]31+ uH (X)X gr>ep (X)X + C.

By item (i) and sending € — 0, then |x|*™"u*(z,0)P € L*(Dy).
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(iii) By the definition of 7, it is easy to check

2m —T1

p > + 1.

n

Choosing b such that

I —
max{m T—|—1,1}<b<p,
n

then from Hoélder’s inequality

* 2 om—T % b _2m—71 =5
[ waotars ([ pprreeoras) ([ a
Dy Dy D1

Noticing (2m — 7)/(b— 1) < n, it yields u*(z,0) € L*(D;) for s = p/b > 1.

Therefore, the lemma is proved. O
Since u*(z,0) € L'(D;) and u*(x,0) € L¥(R™ \ D;), then
v = Pk u” (4.17)

is well-defined.

(n+1)

Proposition 4.3.3. Let v* be in (4.17). Then we have v* € L™ » (Bj") and

* _ . +1
A"v*(z,t) =0 in R,

O = BAv* = - - = AT 20*(z,0) = 0 on 8R1+1 \ {0},

(=)Mo, A™ Lo (2,0) = |x| "0 — co(—l)m|x\*(2m*1+”) on 8R7fr+1 \ {0},
(4.18)

where ¢y > 0 is a constant.

Proof. Decompose u*(z,0) = uj(x,0)+uj(z,0) for x € R™, where uj(z,0) = u*(z,0)xp, (x)
and xp, is the characteristic function of D;. Then v* = v] + v5 with v] and v5 are
given by the corresponding Poisson type convolutions of uj(z,0) and u}(z,0) as in
(4.17), respectively.

(n+1)s

Since u* € L*(Dy) for some s > 1 by Lemma 4.3.2, we have vf € L™= (R}™)

by Lemma 4.1.1. On the other hand, since u*(z,0) = O(|z[*™~1=") as 2 — oo, then
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uy(z,0) € LY(R™) for any ¢ > Using Lemma 4.1.1 again yields v; € LI(R"")

_n
n+1-2m"

for any g > - +"1J:12m Restricting v} and v3 in Bfr and notice that
. [(n+1)s n+1 n+1
min , )
n n+1—-2m n
n+1

we proved v* € L » (BY).

By Lemma 4.1.6, v* satisfies the first two lines of (4.18). Let v = (v*)g,1. By Lemma
4.1.4 and the remark after it, v(z,0) = u(z,0) on R™. Define w = u — v, which satisfies
(4.6) in Proposition 4.2.1. w* > —v* will satisfy the assumption of Proposition 4.2.1,

therefore we conclude

m—1
w(z,t) = t2F Py () + cot®™ 1, (4.19)
k=1

where ¢y > 0, Pyi(z) are polynomials w.r.t. z of degree < 2m — 2 — 2k. Therefore,
atAmil’U* = &gAm*lu* - 8tAm*1w*,
Since

RA™ Lw* (2,0) = ced A™H(| X P22 (2, 0)

= ¢o(2m — 1)!|z|~@Fm=1+n),
the proposition follows immediately. ]

Naively one may wish ¢y = 0, then u* and v* share the same equations. However,
as we said in the introduction, there are special cases, for example when m is even, u*
will be the m—Kelvin transformation of Hy(z,t) in (1.13), but v* = a'/?| X [?"~1-" 5o
co # 0. On the other hand, we will prove that under the assumptions in Proposition
4.3.1, we have ¢g = 0. To that end, we need to analyze the symmetrization of the
solutions. When applied to radially symmetric functions in R"*! the Laplace operator

A is expressed as
d? n d

L=—4+——.
dr?  rdr
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Lemma 4.3.4. Suppose that w € C?™(R"™ U {oR!\ {0}}) satisfies

;

A™p(z,t) =0 in R,
dw = -+ =A™ 2w(z,0)=0  on ORI\ {0},
(=)0, A™ Lw(z,0) = f(z) on OR {0}.
Then
L7 a(r) = ()" ), (4.20)

where @(r) = £, g+ w(z,t) dSe and [f], = f,p f(z)do and ¥, 1,1 are the volume

constants.

Proof. By the definition of w, taking derivatives leads to

1 ow 1 1 ow
rw’ (r :/ dS:—/ Ade+/ —ds,
(r) Un Jot+pr OV Un JBH\B} Un Jo+pt OV

where r € (0, 1), v is the outer unit normal of the boundary and we used dyw(x,0) = 0.

It follows that

Lw= ][ AwdS.
ot B

Using 0;AFw(x,0) = 0 for k = 1,...,m — 2 and repeating this process, we have
L™l = ][ A" 1y dS. (4.21)
o+ B

By Green’s identity, we have for any 0 < r < 1

m—1 m—1
/ aAwdS—/ 0A™ W g —/ 8 A™ 1w dz
o+Bf  Ov o+Bf  Ov Di\D

:/ Aw = 0.
BB}

Taking derivative in r, we have

d OA™ Ly

__(_1\m n—1
&r Jorne 0w dS = (=1)"n-1r" "] (4.22)

Since

m—1
d A"y dS = OA™ w

— ds 4.23
dr o+ Bi 5+B;L ov ’ ( )
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then (4.21) implies

1 d d 1 d OA™ 1w
Lm — - n Amfl d - - n = 74
w(r) T dr (T dr ]([9+BT+ v S> r™ dr (r ]£+BT+ ov S>

1 d OA™ Ly Wy _1
= — 4SS = (-1 =11,
u)nr" dr 8+B;‘F ay ( ) wn r [f]T
Therefore, we complete the proof. O

Notice that u* satisfies (4.15) and v* satisfies (4.18). It follows from the above

lemma that:

Corollary 4.3.5.

L™u*(r) = (—1)771%7«”@*?]“ (4.24)
L (r) = (—1)m%{r71[v*p]r — cp(—1ymnEmy, (4.25)

Lemma 4.3.6. Under the assumptions in Proposition 4.3.1, we have ¢y = 0.
Proof. By the ODE of u*, one can integrate 2m times to get

u*(r) =a®(r) + Z {bkrz(m_k)_”H + ckr2(m_k)} + (_1):;1%_1F(7“), (4.26)
k=2 n

where a, by, ¢, are constants depending only on C?™ norm of u* near % By, and

1 1 1 1 1
—-n n n —-n n, —7—1[, %
F(r) :/ sz—l/ r2m2/--~/ r3/ Ty / Ty [u*(x,0)P],, dry - - droy,—1dr.
r T2m—1 T4 T3 T2

If m is odd, (4.26) gives u*(r) < Cby,r~"! for small r. Similarly, v*(r) < Cby,r~ "1
for small r. Since u* and v* are positive, u*, v* and w* := u* — v* must belong
to weak- L%(Bfr) By (4.19), ¢o|X|~(t2m=D¢2m—1 hag to belong Weak-L%(Bf),
which forces ¢y = 0.

On the other hand, if m is even and u(X) = o(|X|*™~1), by (4.19) and the fact that
w=u — v < u we immediately have ¢y = 0.

In conclusion, we complete the proof. O

Next two lemmas can boost the regularity of u* by iteration.
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Lemma 4.3.7. Under the assumptions of Proposition 4.3.1. If u*(z,0) € L*(D;) for

some s > 1, then
/ |z|T"Tu" (z, 0)Pde < 0o
Dy

for any ¢ > 2m —n -1+ =.

Proof. By the proof of Proposition 4.3.3, v* € L3(By ), where

gzmm{(TH—l)s n+1 }

n  n—2m+1
Fix any ¢ > 2m —n — 1+ 2. Choose 0 < n(r) € C°°(0,00) such that n(r) = 0 when

r <1/2 and n(r) =1 when r > 1 and define
X
6.0) =n (1) pxp.

3

Multiplying v* by ¢. and using Green’s identity over B, we have

/ v AMp.dX :/ n <|x|> |z|TTu*(x,0)P dz + C.
Bl Dl €

Sending ¢ — 0, the first term of RHS will converge to the integral we want to bound,
while the LHS will be uniformly bounded. Indeed, by Hélder’s inequality and the radial

symmetry of ¢,

2m
Ao |dX < C x| x|k
/B;'“ 6.]dX < ,;O/B;“'

< C/ v*|X|q_2de+qu_2m/ v*dX
By B

+
€

d2mfk r
ar2m—k'1 (

)‘dX

e

< C(n, Q)HU*HLg(Bj) + C(n, q)||v*||Lg(BT)Eqﬂer(nH)(lfl/g)

<,

where we used the assumption on ¢ to give g—2m+(n+1)(1-1/8) > n/s—(n+1)/5 > 0.

Therefore, we complete the proof. O

Lemma 4.3.8. Assume the assumptions in Proposition 4.3.1. Then for any 1 < p <

n+2m—1

a1 e have

/ |z|T Tu*(x,0)Pde < o0 and  u*(x,0) € LP(Dy)
Dy

where ¢ > 2m —n — 1+ %. In particular, if p > ~—t—, ¢ can achieve 0 thus (4.16)

holds.
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Proof. Let us call u*(z,0) has (g, s)—property if
/ 2|7 Tu* (2,0)Pdz < 00 V¢ > qand u*(z,0) € L¥(Dy) Vs <s.
Dq

From Lemma 4.3.2 item (ii), u*(x,0) has (qo, So)—property with qo = 2m, sp =

n+(27;rf77)+ = an’Z’iT)Jr > 1, where a™ = max{a,0} for any constant a. From Lemma
4.3.7, we have

/ |z|9"Tu" (2, 0)P do < oo Vq>q1:2m_n_1+ﬁ_
Dy So

From this, one can repeat the proof of Lemma 4.3.2 item (ii) to see

np
u*(z,0) € L*(D1) Vs<s1=—r———r.
(2,0) (D1) Ty (1 —71)F

Therefore u*(x,0) has (q1, s1)—property. Moreover, it is easy to see g1 < go and s1 > sg.

By iterating all the above steps, we have u*(x,0) has (g, Sx) —property,

n a d np
nd s=—-—"——/—/.
Sk—1 n+ (g —7)"

g =2m—n—1+ (4.27)

Moreover gg > q1 > -+ > qx and sg < s1 < -+ - < Sp.
Claim: There exist some k finite such that ¢ < 7 and s = p.
Suppose not, then we will have an infinite many ¢; > 7 which are non-increasing.

Suppose limy_, o g = a > 7, consequently (4.27) implies

a—T4+n a 1-—-2m
a=2m-n—-1+————=—+ < a,
p p p

which is a contradiction. The claim is proved.

Thus after some finite steps, we will have s, = p and ¢ = 2m —n — 1 + % =

% < 7 for some k finite. Namely, u*(z,0) € LP(D;) and

/ |z| %~ Tu* (x,0)P dx < oo.
D,

In particular if p > then ¢ =2m —n—1+ % < 0 and

n
n—2m+1’
/ |z|""u* (z,0)P dz < oo.
Dy

We complete the proof. O
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In order to prove Proposition 4.3.1 in the remaining range 1 < p < we

_n
n—2m+1’

need to investigate the singularity of u* near origin more precisely. The following three
lemmas are devoted to that. Let us build a bridge between the boundary integral and

inner integral of v*.

Lemma 4.3.9. Let v* be defined by (4.17) and ¢ € [0,1). Then for any ro > 0
there exists a constant C' > 0, depending only on m,n, e, rg, Hu*(-,O)HLoo(Rn\DQm) and

[w*(+,0)[|1(D,,), such that
2r _ v
/ prvlp)dp < Crl_n_a/ u*(y, 0) dy + C/ p ], dp+ Crlme (4.28)
" Dy.j2 /2
for any r € (0,79/4).

Proof. For any r < ro/4, suppose p € [r, 1|, then we have

][ v*(z,t)dS —][ / Pz —y, t)u*(y,0)dydsS
o+ BF o+ B Jo<|y|<r/2
wf Pon( — y,t)u" (3,0) dyd
ot Bf Jr/2<|y|l<2ro

+][ / Ponl — g, t)u* (y,0) dydsS
a"’B;F 27‘0<‘y|

=1 + I, + Is.
By direct computations,

L= / U*(y,O)dyf Pm(z —y,t)dS
0<ly|<r/2 a+Bf

<Cp™" / u*(y,0) dy
D’I‘/2
I </ “( 0)][ L 4sd
p < u*(y, 7, 49dy
r/2<|y|<2ro 8*32’ ‘X _Y‘
I; < C.

where X = (z,t), Y = (y,0), and C > 0 depends only on m, n, rg, HU/*(‘,O)HLOO(RW,\D2TO)

and [[u*(+,0)[[21(p,,)- It follows that

][ v*(x,t)dS
o+ Bf

1
Dy /s r/2<|y|<2rg o+ Bf | - |
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Multiplying both sides of the above inequality by p~¢ and integrating from r to 2r, we

obtain

2r
/ p“v*(p)dp

§C’r1_”_5/ u*(y,0)dy + C/ u*(y, 0)|y|1_”_6 dy +Cri=¢
Dy /o r/2<|y|<2ro

2ro

—crte [ woydy e [ e dp s ot
DT/2 ’I"/2

where we used the inequality

1
/]Rn-i,—l m‘)(w*nfs D¢ < C(n,a)]YP*"*E

with taking Y = (y,0). O

Lemma 4.3.10. Assume the assumptions of Proposition 4.3.1, then

/ u*(z,0)dz < C(p)rP.

T

where p > 2m — 1+ (n —n/p)/p.
Proof. From Lemma 4.3.8 we have

/ |z|T T u* (2, 0)Pdz = C(q) < oo, (4.29)

T

where ¢ > ¢ =2m —n—1+ %. From Holder’s inequality, we have

/Tu*(x,O)dx < (/ ]:):\q_Tu*(:r,O)pdx>; </D ]x\_ﬂdx>l_;. (4.30)

By the definition of 7, one can verify

q—T 1 qg - 1 n—n/p
n— 1--)<(n-— 1——-)=2m -1+ .
- D0- D <o- LD -1 )
It follows that
_9-7 1_% _q—T) 1—1
(/ 2] “C“”) < C(qyrt U P) (4.31)
D,

Combining (4.29), (4.30) and (4.31) together, the lemma follows immediately. O
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Lemma 4.3.11. Under the assumptions of Proposition 4.3.1 and 1 <p < -—L—=. It is
impossible to find small constants 7y > 0 and ag > 0 such that
v*(r) > apr®™ " Vo € (0, 7). (4.32)

Proof. Suppose the contrary that there exist 79 > 0 and ap > 0 such that (4.32) holds.
Clearly, we can take rg being sufficiently small. By Lemma 4.3.9 and Lemma 4.3.10, if

ro is sufficiently small, we have for r € (0,r¢)
p2m—n—e < C(g)TmenJr(nfn/p)/pf%E LC /TO p,g[u*]pdp + Orl—e
r/2

where € € (0,1). Taking ¢ sufficiently small and fix it, it follows that for ry sufficiently

small and r € (0,79) there holds

70 1
/ p flu*],dp > 67"27”_"_5. (4.33)

) 1/p
e ([ o=ty )
1/p _(q77+n71+5p)+

so [ i) e

-<(/,

_ (q—-r-—‘—n—l+spﬁL
<Cr ? ;

By Holder’s inequality,

70
/ p[u]pdp

IN

1
o /e _(g=rHn—14ep)t
|z|9" " u* (x, 0)P dx r P

0

where we used Lemma 4.3.8 in the last inequality. Together with (4.33), the above

inequality yields

T*M > éqﬁm*"*s vV re(0,r). (4.34)
Since 1 < p < —5-—, we have
q_7—+n_1:%—i—p(n—Qm—l—l)—n—lSn—Qma
and thus

_ -1 +
_(q Thn +ep) >2m —n — ¢,
D

which makes (4.34) impossible.

Therefore, we complete the proof. O
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Lemma 4.3.12 (Dichotomy lemma). Suppose &(r) € C*™(0, o0), if there exists ¢y, &1, 71,71 >

0

L™ Y(r) > eyrt™" for any 7 € (0,r1) or L™ 1E(r) < —&r'™" for any r € (0,7)
then there exists ¢, ¢, Tm, Tm > 0 such that either

E(r) > epr®™ 17 for any r € (0,7,)  or  E(r) < =™ for any r € (0,7,).

Proof. We will prove it by induction. Define &, = L*¢, for k=0,1,--- ,m — 1.

(i) Suppose & —1(r) = r~(r™¢!,_5) < —&r'™", which implies 7¢/,_, is decreasing.

There are two cases:

Case 1: lim iglf "¢l _5 < 0. Then we have
r—

¢ _
el o(r) < —517“2, O<r<m

which yields
_ 1 E T1 B é L
Em—2(T1) — Em—2(r) :/ En_odp < —21/ PP dp = 271p3 L (4.35)
' T n )
Therefore, there exist co, 72 > 0 such that
Em—2(r) > cor®™ for 0 < r <1y < 7. (4.36)
Case 2: There exists 7 > 0 and ¢ > 0 such that
el o(r)>¢é, for 0 <r <P <.

Arguing as (4.35), there exist é, 72 > 0 such that

bm_o(r) < —Grl™ < —&rd™™, for 0 <1 < 7y < 7. (4.37)

(ii) Suppose &1 > c17' " happens, which implies "¢/, is increasing as r goes
large. There are two cases:

Case 1: lim i(I)lf r"E o >0, then we have
7

rel (r)>5r, 0<r<m
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which yields
1 o [T,
En-alr) = 6nalr) = [ sl o= G [T
Therefore, there exist ¢ég, 79 > 0,
Em—a(r) < —Gr3T for 0 < 1 < T < T (4.38)
Case 2: There exist ¢,7 > 0 such that
el o(r) < —¢ for 0 <r <P <71y
Arguing as before there exist ¢y, 79 > 0 such that
Em—o > ot > eor® T for 0 <1 < 1o < P
For both (i) and (ii), we reached the same conclusion
Em_o > cor3 ™™ for r € (0,72) or &moa< —Gor3 ™ for r € (0,72).
Repeating this procedure, we obtain
& > Con o 2M=R) == g e o (0,7,) or & < Rl Gt et (0,7%),
when 0 < k < m — 1. Taking k£ = 0, we complete the proof the lemma. O

Proof of Proposition 4.3.1. Since p > —5--= was proved in Lemma 4.3.8, now we

assume 1 < p < n_+m+1 Suppose contrary that (4.16) is not true, then it necessarily
has
/ |z| " "u* (2, 0)P do = / |z|""v*(z,0)P dz — 00 asr — 0. (4.39)
D1\D. D1\D-

Make use of the equation of v* and Green’s identity, we have

m—1,,* m—1, %
/ aA’UdS_/ 8Avd‘g:\/ atAm_l'U*<l',0) dx
o+Bf  Ov o+t O Di\D,
_ / (= 1)z ~"v* (2, 0)dx.
Di\D,

If m is odd, by (4.39) there exists ro > 0 such that for all 0 < r < o,

m—1,,% -n
][ Mds > T/ || Tv* (2, 0)F dz.
ot B v 2 Dy/2\Dr
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It follows that

1 [™
][ A" y*ds — A" y*ds > / )\”/ || Tv* (2, 0)P dzd,
o+ B, o+ Bt 2 Jy Dy 5\D

which together with (4.39) yield
][ AT prdS < —plm (4.40)
a+BY
for all 0 < r < r; < rg, where 71 is some fixed constant. Since (4.21) is also true for v*,

then we have melv_*(r) < —pl-n,

If m is even, by (4.39) there exists ro > 0 such that for all 0 < r < ro,

m—1,,% -n
][ aA7vd5 < |z| " Tv* (2, 0)P dz.
o+  Ov 2 Jpy\D,

It follows that

1 [0
][ A" y*ds — AT p*ds < —/ )\_”/ |z|"Tv* (z,0) dzdA,
o+ By o+ Bt 2/ Dy 5\Dx

which together with (4.39) yield
][ A" y*ds > (4.41)
o+ B
for all 0 < r < r; < rg, where 7y is some fixed constant. For the same reason above, we
have L™ tv*(r) > ri=n,
For each case, from Lemma 4.3.12 we obtain

v*(r) > cor®™ I or (1) < —cpr?mTITR (4.42)

provided r is sufficiently small. The later case can not happen because of the positivity
of v*. The former case can not happen either because of Lemma 4.3.11.

Therefore, we complete the proof of Proposition 4.3.1.

O
4.4 Proof of main theorem
Proposition 4.4.1. Under the assumptions in Proposition 4.3.1, we have
e = St () () ot

where Py is a polynomial of x with degree < 2m — 2 — 2k.
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Proof. Define
|y~ (y, 0)
n—2m-+1

R (82 + |z —y[?) 2
In view of (4.16) and |y| "u*(y,0)? = O(Jy|~"*t2™=D) as y — oo, V is well defined.

Vx,t) :=~y(n,m)

(4.43)

Set W :=u* — V. By Lemma 4.1.8, W satisfies
A™W =0 in R
W = QAW = - =A™ W =0 on G]R’}FH\{O}.

Since u* > 0, then W > —V. By Lemma 4.1.7 we obtain V' is in Weak—L#m(RﬁH).
It follows from Corollary 4.2.5 that
W(X)= Y  cD"®(X), (4.44)
|a|<2m—2
where ¢, are constants and the (n+1)-th component of each « is even. By the definition
of ®(X) and 2m < n + 1, D*® can be rewritten as

x \?
D®(X) = Z CBX5|X|2m—n—1—2|B| = Z cs ( 2) | X |2mn-t,
Bl B<a ‘X|

where 8 < a means 5; < «; for all 1 < ¢ < n. Grouping and reordering the terms
according to the degree of ¢ in (4.44) yield

m—1 " 2k r
W = xpPrrl ) Py —— ). 4.45
2 1 <|X|2> 2’“<\X\2> (4.45)

where Py is a polynomial on x with degree < 2m —2—2k. Then the proposition follows
from:

Claim: Py(z) =0.

Let lp = deg Py > 0. Collect all the terms of degree [y in Py to be a homogeneous
polynomial F,.

If there is a nonempty open cone & C R™ with 0 as the vertex such that Po(ﬁ) >

¢ > 0on SN D,, for some constant ¢, then we can find ro > 0 small enough such that
- 1~ )
|P0(l‘/|l“2) - Po(:p/|a:|2)| < §P0(£C/|$|2) in SN D,,. (4.46)
Therefore

1 -
u*(z,0) = W(z,0) + V(z,0) > W(x,0) > 5|ac\2m*"*1Po (;) in &0 Dy.
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It leads to

P
/ ly| U (y, 0 dy > / [y Cemen) (y) dy
D1 SﬁDro ‘y’

ch |y|—n—2m+1 — 00
SNDr

which contradicts to Proposition 4.3.1. By the homogeneity of Py, we conclude ]50(%‘2) <
0.

Suppose that PO(#) < 0 but not identical to 0. Without loss of generality, one
may assume inf|,_; Py(z) = —1 and denote cone E := {z € R" : F’O(ﬁ) < — 3|z}

For the same fake, we can find ry > 0 small enough such that
. 1 )
(Po(a/laf?) — Pofer/|)| < 5 Po(a/laf?) 0 B Dy, (4.47)
Moreover, there exists €9 > 0 such that
H{D,NE} >eor™ VO<r<L.
For some A > 0 to be chosen later, let p = (4\)~1/(+lo+1=2m) " On D, N E, there holds
|$’2m—n—lpo i < 1|x|2m—n—1f)0 i < _1|x‘2m—n—1—l0 < =)
=?) ~ 2 [z*) = 4 '
Therefore by noticing W (z,0) = |z|*™ "1 Py(x/|z|?), we have
Hz e R" : W(z,0) < =A} > {D,NE}| > 50(4)\)_”*%11“0. (4.48)

Decompose V(z,0) as

V($’O):/ ly|""u*(y, 0) dy+/ Iy, 0P Vi(z) + Va(a),

ly|<s |1’ _ y|n 2m—+1 ly[>5 ‘ZL‘ _ y‘n 2m+1

where 0 > 0 to be fixed. For any ¢ > 0, choose § > 0 such that fDa ly|""u*(y,0)P < e.

From the weak type estimate of Riesz potential,

{2 : Vi(z,0) > ;)\}' < C(m,n)(eA™1)m2mi, (4.49)

where C(m,n) > 0 depends only on m and n. Since |y|~"u*(y,0)P is smooth and

bounded outside Dy, V2 is bounded. It follows that for A > 100||Va||p + 1,

1 n
{z: Va(z,0) > 2/\}’ < C(e™Hm2m1, (4.50)
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where C' is independent of . Combining (4.49) and (4.50), we can choose € even small
such that

1 - n_ __ n
{w:V(@,0) > JA}| < egl0” 72770 A~ (4:51)

for all A > 100||V2||z + 1. Note that
{z: W(z,0) < =\, |V (2,0)] < A\/2} C {z: u*(z,0) <0} = 0.
It follows from (4.48) and (4.51) that for sufficiently large A,

0=Haz: W(z,0) <=A[V(z,0)] < A/2}]
> [ : W(z,0) < =AY = [{z: [V(z,0)] > A/2}|
> £o(4)) IR _ g(10 PRI A~ gt

> 0.

We obtain a contradiction again. Hence, 150(#) = 0 and thus the claim is proved.

Therefore, we complete the proof of Proposition 4.4.1.

O]

Proof of Theorem 1.3.1. Let V be defined in (4.43). By Proposition 4.4.1, V(z,0) =
u*(z,0) and V*(z,0) := Vp1(x,0) is smooth in R™. It follows from (4.43) that

lyl|~"V (y,0)"
n—2m-+1 Y

V(z,t) =v(n,m) R (2 + |z —y|?) 2

from lemma 4.1.9, it is equivalent to

« V*(y,0)P
V*(x,t) = v(n, m)/ ( )n72m+1 dy. (4.52)
R (12 + |z —y[?) 2

on the condition that the right hand side integral converges. This is justified through

% y,O p —(n—2m
/ WO ay<c u(y, 0)Ply| =2+ dy
R\Dy (82 4 |z —y|?) 2 R™\ Dy

=C |z| 7" u* (z,0)P dr < oco.
Dy

Sending ¢ — 0 in (4.52), we see that

. V*(y,0)?
V*(z,0) = BRI A )
(z,0) = y(n,m) /Rn PR
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Since V*(z,0) is smooth in R™, it follows from Chen-Li-Ou [25] and Li [58] that

n+2m—1
V¥ (z,0)=0 ifp< ——-——,
(2,0) np n—2m+1
and
n—2m-+1
V*(2,0) = co(n, m) A o A >0,z € R
z,0) =co(n,m) | ———— or some x
) O ) 1 + )\2|x _ x0|2 — ) 0 b
where co(n,m) > 0 is a constant depending only on n,m, if p = ngz:& One may also

apply the moving planes or spheres method to (4.52) directly to prove the classification

result; see Dou-Zhu [34]. By Proposition 4.4.1, Theorem 1.3.1 follows immediately.

4.5 An application to conformal geometry

Given Theorem 1.3.1, we construct metrics which is singular on single boundary point

of the unit ball below. Define the map F' : RT‘l — B1 by

22 X2 -1
F(z,t) = :
0= (e e e )

Observe that F'(z,0) — S”,

F(z,0) = ( 21 |;cy2—1)

|22 4+17 |22+ 1

is the inverse of the stereographic projection. Let

wherer |Jp| is the Jacobian determinant of F.

Proposition 4.5.1. Assume the assumptions in Theorem 1.3.1. Suppose that v > 0 in
4

R’}fl U E?]R’}fl and p = % Let v be defined as above and ¢ = v" @71 dX? in

B be a conformal metric of the flat metric. Then the 2m-th order -curvature of ¢ in

B is zero and the boundary (2m—1)-th order Q-curvature is constant on 9B\ {(0,1)}.

If the polynomial part of in the conclusion of the Theorem 1.3.1 is nontrivial, then

v blows up near the boundary point (0, 1).
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Proof. By the conformal invariance, it is easy to check that A™wv = 0, see Li-Mastrolia-
Monticelli [59]. It follows that the 2m-th order @-curvature of g in B is zero.

By the proof of Proposition 4.4.1 we see that

n+2m—1
u(y’ O) n—(2m—1)

0) = 7 dy.
e, 0) = 5nm) [ Ay
It follows that nt2m—1
v(Y,0)n-0Cm-1)
X) = ds
’U( ) 7(”7 m) /8B1 |X _ Y’n—(Qm—l) Y

and thus the (2m —1)-th order Q-curvature is a constant, see Jin-Li-Xiong [52] for more
details.
If the polynomial part of in the conclusion of the Theorem 1.3.1 is nontrivial, by

the definition of v it is easy to see v blows up near the boundary point (0, 1). O

Remark 4.5.2. Note that the scalar curvature metric g in Proposition 4.5.1 could be

negative.

If m = 2, we have explicit equations of v, see Chang-Qing [22], Branson-Gover [11]

and Case [19]:
A%v =0 in B1(0,1),
Biv =0 on B1(0,1)\ {(0,1)}, (4.53)
3 n+3
B3v = vn-3 on 0B1(0,1)\ {(0,1)},
where
ov n-—3
Sy =
Biv= v + 2
OAv n—-30% 3n-5 3 —m+60w n?-n+2n-3
B3v=-—""_ " "> "7 “Acn -
3Y v 2 o2 2 v+ 4 ov 4 2

Therefore, the metric g has flat 4-th order Q-curvature, flat mean curvature and con-
stant 3-th order @-curvature on the boundary. By Theorem 1.3.1, solutions of (4.53)
satisfying

v(F(X)) = o(|X]")

are classified. If m > 3, the analogues of (4.53) can be found in Branson-Gover [11]

but are more complicated. Similarly, Theorem 1.3.1 can be applied to them.
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