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ABSTRACT OF THE DISSERTATION

Controlling Acoustic and Elastic Waves with Metamaterials:

Design Elements and Their Applications

By XIAOSHI SU

Dissertation Director:

Professor Andrew N. Norris

The purpose of this dissertation is to model, simulate and design metamaterials for under-

water sound and elastic wave control. Water-based acoustic metamaterials usually suffer

from low transmission due to the impedance mismatch with water; elastic metamaterials

also suffer from this issue not only because of the impedance mismatch to the host medium,

but also due to the multiple wave types existing simultaneously at the interface between the

inclusions and the background matrix. This dissertation focuses on the theoretical modeling

and computational design of broadband high transmission metamaterial devices.

Several related topics are discussed. (1) A semi-analytical method for band diagram

computation of three dimensional (3D) lattices is developed in this dissertation. It has

significant applications in 3D pentamode metamaterial design. (2) Acoustic transmission

through gratings of parallel plates displaying anisotropic inertia is also investigated. It is

found that broadband impedance matching and total acoustic transmission can be achieved

if the plane wave is incident at the so-called intromission angle ±θi. (3) Elastic wave

transmission through aligned parallel plates are studied theoretically by considering the

coupling between different types of waves in elastic half-spaces and in the plates. The results

are applied in the design and optimization of elastic metamaterials. (4) Elastic waves in
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fluid-saturated anisotropic double porosity medium of cubic symmetry is also investigated

as an extension to Biot’s theory of poroelasticity. A third dilatational wave is predicted in

a double porosity fluid-saturated gyroid structure and demonstrated using finite element

(FEM) simulations.

The second part of the dissertation focuses on several novel devices for manipulating

acoustic and elastic waves. Metallic metamaterial unit cells of the hexagonal lattice type

are employed to mimic the quasi-static acoustic properties of water, and to provide a certain

range of index for gradient index (GRIN) metamaterial design. The advantage of such a

metamaterial element is that it has in-plane isotropy and only allows one propagating mode

within the frequency range of interest. (5) A flat GRIN lens is designed by tuning the

unit cells to obey a modified hyperbolic secant index profile, such that a normally incident

plane wave transmits through the lens efficiently and focuses at a single point. The side

lobe suppression and aberration reduction abilities of the GRIN lens are demonstrated in

both simulations and in underwater experiments (carried out by colleagues at the Univer-

sity of Texas at Austin). (6) An elastic shell based metamaterial element, which provides

a wider range of index at the quasi-static regime, is adopted in the design of a conformal

lens for converting a monopole source to highly directional plane wave beams. The required

bulk modulus and density distributions are derived using conformal transformation acous-

tics mapping from a unit circle to a triangle. The mapping function is adjustable which

allows energy radiating preferentially into different directions. Two collimation devices are

designed using fluid-saturated shells and demonstrated using full wave FEM simulations.

(7) A novel class of elastic metamaterial composed of ”effective plates” are introduced to

design high transmission devices for elastic waves. Several devices for focusing SV-wave,

splitting P- and SV-waves, and asymmetric transmission are designed and demonstrated

using full wave FEM simulations.
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Chapter 1

Introduction

1.1 Brief introduction to metamaterials

The term metamaterial (from the Greek prefix meta, meaning beyond) has been in use for

nearly two decades, first introduced by Walser in 2000 [4]. Although there is no official

definition for metamaterials, it is widely known that they are artificial macroscopic com-

posites comprised of tuned periodic microstructures that exhibit peculiar properties absent

in nature. The first metamaterial related work dates back to 1968 [5]. Veselago described

the physics for materials exhibit simultaneously negative permeability and permittivity,

but it did not receive much attention probably because these properties were not found

in natural materials. In 2000, Smith et al. [6] proposed a composite material with double

negative parameters and demonstrated experimentally [7]. Meanwhile, Pendry [8] theoret-

ically demonstrated that negative refractive index could make a perfect lens because the

imaginary component can be reconstructed in the near field. Since then, numerous articles

report super resolution imaging or super lensing in the context of electromagnetics and

acoustics.

Many other novel phenomena are found in man-made structures. For instance, Sánchez-

Pérez et al. [9] found full acoustic band gaps in two dimensional (2D) periodic array of rigid

cylinders; Liu et al. [10] proposed and fabricated a locally resonant sonic material with

negative dynamic mass density. Later on, various sonic and phononic crystals for sound

manipulation [11, 12, 13, 14, 15, 16] and acoustic metamaterial with negative dynamic pa-

rameters are demonstrated [17, 18, 19, 20, 21]. Transformation optics and transformation

acoustics are of particular interest to many researchers. In 2006, Pendry et al. [22] derived

the transformation for the first cloak for electromagnetic waves. Numerous other regu-

lar spatial transformations which also leave the wave equation invariant are proposed to
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manipulate electromagnetic wave propagation in many other different ways, such as direc-

tional antennas [23], field rotators [24], concentrators [25], beam shifters and splitters [26],

just to name a few. Naturally, the transformation based acoustic metamaterials has been

proposed starting with cloaking. Cummer et al. [27] theoretically analyzed 2D acoustic

cloaking with anisotropic mass density, which is then extended to 3D by Chen et al. [28].

Then Norris [29] published a theory on acoustic cloaking with anisotropic bulk modulus

and suggested to design using pentamode material (PM) proposed by Milton et al. [30].

Other transformation based acoustic metamaterials include ground carpet cloaks [31, 32]

and cylindrical-to-plane wave lenses [33, 34]. Recent advances in acoustic metamaterials

involve unidirectional transmission or sometimes referred as acoustic diode [15, 35, 36, 37],

non-reciprocal acoustics [38, 39, 40], topological acoustics [41, 42, 43, 44] and acoustic ab-

sorbers [45, 46, 47].

The aim of this dissertation is to design metamaterials for both acoustic and elastic

wave control. More specifically, several metamaterial devices are proposed to achieve full

control of the transmitted wave for different applications, such as focusing, collimation,

beam splitting and asymmetric transmission.

1.2 Motivation and current objectives

1.2.1 Acoustic metamaterials

The gradient index (GRIN) phononic crystal satisfying a hyperbolic secant profile has been

demonstrated to be capable of focusing sound inside the lens [14]. Climente et al. [48] em-

ployed this index gradient to design a sonic crystal and demonstrated the focusing effect

outside the lens with low aberration experimentally. Later on, a few researchers claim that

their GRIN lens can focus sound outside the lens without aberration. However, this is not

true since the ray trajectories are changed outside the lens which yields a cylindrical aber-

ration. The index gradient is derived simply using ray theory with the assumption that the

horizontal slowness component between layers is constant. A one dimensional (1D) coordi-

nate stretch is introduced in this dissertation to modify the index gradient for aberration
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reduction. To achieve high transmission, it is essential to match the impedance of the meta-

material to the acoustic medium. The main objective here is to design a transparent lens

for focusing sound with reduced aberration. Another purpose of the dissertation is to design

metamaterial devices for converting monopole to plane wave beams. A conformal trans-

formation acoustics mapping is thus derived for allowing energy radiation preferentially in

different directions. The metamaterial devices developed in this dissertation have potential

applications in ultrasound medical imaging, energy harvesting and acoustic collimation.

1.2.2 Elastic metamaterials

Elastic metamaterials and phononic crystals are mostly designed for surface waves and plate

waves. For instance, cloaking of elastic waves on thin plates was demonstrated by Farhat et

al. [49] and Stenger et al. [50], respectively. The focusing effect of elastic waves has also been

achieved by researchers [51, 52, 53]. However, there are few articles report metamaterial

control of bulk elastic waves. Another topic of this dissertation is to introduce a new

type of metamaterial element for controlling transmitted elastic wave-fronts. The proposed

metamaterials include a GRIN lens for focusing SV-wave, a elastic prism for splitting P-

and SV-waves, as well as a device for asymmetric transmission. Several metasurface devices

are also designed for similar purposes. The design approach in this dissertation provides

a novel way to manipulate the propagation of bulk elastic waves, and may have potential

applications in structural health monitoring, energy harvesting and seismic wave control.

1.3 Outline of the Dissertation accomplishments

The dissertation is outlined as follows. Wave propagation and homogenization in 3D lat-

tices are studied in Chapter 2. A semi-analytical method for band structure computation

is developed using thin beam theory by imposing Bloch-Floquet periodic condition. The

acoustic transmission through slanted gratings of anisotropic inertia is investigated in Chap-

ter 3. The main result is that if the plane wave is incident from the so-called intromission

angle, the acoustic energy can totally transmit through the gratings. In Chapter 4, a broad-

band transparent GRIN lens for focusing underwater sound is designed and demonstrated
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experimentally. The refractive indices obeys a modified hyperbolic secant index profile such

that the cylindrical aberration is minimized. In Chapter 5, two GRIN lenses for convert-

ing monopole source to plane wave beams are designed and demonstrated using full wave

FEM simulations. The index and material property distributions are derived using a con-

formal transformation acoustics mapping which takes a unit circle to a triangle. Elastic

metamaterials for controlling the transmitted bulk waves are presented in Chapter 6. An

analytical model is established to study the transmission and reflection of P- and SV-waves

through aligned parallel plates. Metamaterial devices are designed to focus SV-wave, split

P- and SV-waves, and achieve asymmetric transmission. In Chapter 7, we further apply

this idea into metasurface designs. A novel device for asymmetric transmission of SV-wave

is proposed. Finally, the elastic waves in fluid-saturated cubic double porosity medium is

investigated in Chapter 8. It is notable that a second slow wave is predicted in the theory

developed in this chapter. The conclusions on the accomplished work and an outlook on

the future research are presented in Chapter 9.
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Chapter 2

Wave propagation and homogenization in 3D lattices

Elastic networks of connected beams, i.e. lattices, exhibit the rich phenomena that are found

in periodic elastic structures. The multiple wave types yield complex dispersion properties,

described by Bloch-Floquet band diagrams, such as band gaps [54, 55] and anisotropic

propagation [56]. At the low frequency homogenization limit, the acoustic properties of

the lattice structures can be designed to match the properties of water, while at the high

frequency range they may exhibit peculiar properties such as negative refractive index.

For instance, Hladky-Hennion et al. [16] used a metallic foam-like metal lens to achieve

negative refraction and demonstrated experimentally. The properties of the lens is studied

by computing the band diagram, thus it is essential to develop a highly efficient method to

plot the dispersion curves.

Regarding several methods for solving wave propagation problems in lattices, we note

that finite elements methods (FEM) have been specifically designed to treat lattice struc-

tures by many researchers [55, 56, 57]. An alternative wave-based approach for determining

the Bloch waves in 2D periodic structures was proposed by Leamy [58]. The analytical

method considers the explicit waves propagating back and forth on each member, coupled

by reflection and transmission matrices at joints. However, FEM based computation usu-

ally requires at least six mesh grids per wavelength, while the reflection and transmission

matrices require large matrix systems in the latter approach. They all involve large systems

to be solved, thus are expensive in computational time. The present method is similar

to that of Ref. [58] in that both approaches yield exact dispersion relations within the

context of the beam theories employed (Timoshenko beam theory was used in Ref. [58]).

However, the present approach is simpler in that it does not require propagation and re-

flection/transmission matrices for the multiple wave types. Instead, in the present method
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the dynamic stiffness matrix relates forces at the two ends of a beam member to the dis-

placements at either end. It is notable that our analysis do not include torsional effects

in each beam members. Here we consider beams with large length to thickness ratio so

that bending is the dominant effect for producing torsion on the lattice structure. Another

reason for neglecting torsional modes is that their micro-effects do not contribute to the

static effective medium. This assumption is later confirmed in our examples.

At the quasi-static or homogenization limit, a few static homogenization theory for

general lattice structures has been developed by several authors, e.g. [59, 60]. Nevertheless,

static models ignoring flexural effects do not properly account for the distributed mass

on the wave-bearing properties of the structure, and cannot yield the correct quasi-static

results [61]. We develop further the dynamic stiffness matrix approach, which combines

longitudinal and flexural forces, proposed by Martinsson et al. [54] and Colquitt et al. [61,

62]. In this chapter, we mainly focus on the 3D cubic and tetrahedral unit cell lattices. The

formulation is semi-analytical to the extent that all matrix elements are explicit, numerical

computation is required only at the final stage. The semi-analytical nature of the solution

allows us to extract the low frequency asymptotics, and to find closed-form expressions for

the quasi-static Christoffel matrix, as demonstrated for cubic lattice.

This chapter is organized as follows. In Sec. 2.1, we describe the structures considered in

this chapter, and introduce the parameters as well as the coordinate systems. The solutions

to the wave equations on the rods and the dynamic stiffness matrices are presented in Sec.

2.2. We then formulate the dispersion relations in Sec. 2.3. The explicit form of dispersion

relations for cubic lattice are derived in Sec. 2.4. The dispersion curves of diamond lattice

are computed using a semi-analytical approach in Sec. 2.5. The quasi-static effective moduli

of cubic lattice is derived in Sec. 2.6. Discussions are presented in Sec. 2.7.

2.1 Description of the problem

2.1.1 Description of the structures and parameters

Two typical examples of the lattice structures ℘ considered in this chapter are shown in Fig.

2.1. Every point ai is connected with adjacent points aj by beams/rods. Each beam/rod
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has length lij , uniform Young’s modulus µij , density ρij , lineal density dij and bending

coefficient λij . The mass at each node point is mi and moment of inertia is Ii. All the

properties in any translated cell ℘+ l1d1 + l2d2 + l3d3 coincide with those in ℘.

(a) (b)

Figure 2.1: Geometry of lattices structures. (a) Cubic lattice and (b) diamond lattice.

2.1.2 Definition of the coordinate system

When considering the force on each rod in a cartesian coordinate system (x−y−z), we use

e1, e2 and e3 to denote each direction of displacement, and eb1, eb2 and eb3 to denote each

angle of bending. Here we introduce a set of vectors to represent these directions as shown

in Fig. 2.2. The vectors are defined as 6-dimensional

e1 =



1

0

0

0

0

0


, e2 =



0

1

0

0

0

0


, e3 =



0

0

1

0

0

0


, eb1 =



0

0

0

1

0

0


, eb2 =



0

0

0

0

1

0


, eb3 =



0

0

0

0

0

1


. (2.1)

The effective force on each beam/rod can be expressed in terms of the vectors defined on

its local coordinate system. By applying the Euler angle coordinate system transformation,



8

Figure 2.2: Coordinate system transformation

we can relate the effective force on each beam/rod to the inertial coordinate system. Note

that the x-axis should be along the beam/rod after the transformation. For example, we

take a rotation of angle θ around y-axis as shown in Fig. 2.2, then the local coordinate

system can be related to the inertial coordinate system by
i′

j′

k′

 = R(θ)


i

j

k

 , (2.2)

where R(θ) is the matrix representation of rotation operator, and (i, j, k)T and (i′, j′, k′)T

denote the component of e in the coordinate system before and after transformation. See

Appendix.A for detailed discussion of coordinate transformation for cubic lattice.

2.2 Dynamic stiffness matrices

2.2.1 Solution of the longitudinal wave equation

We first consider logitudinal force on the rod ai − aj . Assume that the displacements at ai

and aj are ui and uj , respectively. Let x be the 1D coordinate on the rod. The displacement

uij(x) satisfies the wave equation and boundary conditions:

µij
∂2

∂x2
uij = −ω2dijuij , uij(0) = e1 · ui, uij(lij) = e1 · uj . (2.3)



9

The displacement uij(x) is the solution of Eq. (2.3). Plugging in the boundary conditions,

we obtain

uij(x) =
e1 · ui sin(sijω(lij − x)) + e1 · uj sin(sijωx)

sin(sijωlij)
, sij =

√
ρij
µij

. (2.4)

Then the longitudinal force fij acting on the point ai is simply related to the strain via

Hooke’s law. Using Eq. (2.4), we have

f
(1)
ij =µij

∂uij
∂x

(0)e1 =
µijsijω

sin(sijωlij)
e1e

T
1

(
uj − ui cos(sijωlij)

)
, (2.5)

where the displacements at both ends of the beam/rod are involved.

2.2.2 Solution to the flexural wave equation

The flexural wave on the beam/rod also contribute to the effective total force. Now we

consider flexural wave equation on the beam/rod

∂4w

∂x4
− γ4w = 0, x ∈ [0, l]. (2.6)

The solutions to the flexural wave equation are related to the displacements (wij(0), wij(l))

and rotations (w′ij(0), w′ij(l)) at both ends as

w(x) =
1

2(1− cch)

{[
(c− ch)(cos γx− cosh γx) + (s+ sh)(sin γx− sinh γx)

]
w(l)

+
1

γ

[
(sh − s)(cos γx− cosh γx) + (c− ch)(sin γx− sinh γx)

]
w′(l)

+
[
(1− cch + ssh) cos γx+ (1− cch − ssh) cosh γx+ (csh + sch)(sinh γx− sin γx)

]
w(0)

+
1

γ

[
(sch − csh)(cos γx− cosh γx) + (1− cch − ssh) sin γx+ (1− cch + ssh) sinh γx

]
w′(0)

}
,

(2.7)

where c = cos γl, s = sin γl, ch = cosh γl, sh = sinh γl. Hence,

w′′′(0)

−w′′(0)

−w′′′(l)

w′′(l)


= K(ω)



w(0)

w′(0)

w(l)

w′(l)


, (2.8)
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where

K(ω) =
1

1− cch



γ3(csh + sch) γ2ssh −γ3(s+ sh) γ2(ch − c)

γ2ssh γ(sch − csh) γ2(c− ch) γ(sh − s)

−γ3(s+ sh) γ2(c− ch) γ3(csh + sch) −γ2ssh

γ2(ch − c) γ(sh − s) −γ3ssh γ(sch − csh)


. (2.9)

We may rewrite K(ω) as

K =

K1 K2

KT
2 K3

 , (2.10)

where K is the ”traditional” form of the Euler-Bernoulli dynamic stiffness matrix. In

particular

K1 =

12 6

6 4

+
γ4

35

−13 −11
6

−11
6 −1

3

+ O(γ8) (l = 1),

K2 =

−12 6

−6 2

+
γ4

70

 −9 13
6

−13
6

1
2

+ O(γ8) (l = 1). (2.11)

2.2.3 The flexural wave equation and BCs on the rod.

Different from the 2D lattices, the 3D model has two bending components in the direction

of y and z as shown in Fig. 2.3. They represent the shear effect with different polarizations

at the quasi-static regime, so that they both need to be considered in the model. We will

treat these two bending components separately in the following.

Bending in y-direction

The flexural wave equation and boundary conditions in y-directions are:

− λij
∂4wy
∂x4

= −ω2dijwy, (2.12)

wy(0) = e2 · ui, wy(l) = e2 · uj , w′y(0) = eb3 · ui, w′y(l) = eb3 · uj .

We define all the displacements in right-handed coordinate system, and define the positive

direction by the right hand rule. Note that w′y(0) and w′y(l) both have positive sign. The
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(a)

(b)

Figure 2.3: Bending components one each beam/rod. (a) Deflection in y−direction and (b)
deflection in z−direction.

force at point ai due to bending is related to the shear force and bending moment on the

beam/rod through the stiffness matrices as defined in Eq. (2.11), we have

f
(2)
ij = −λij

∂3wy
∂x3

e2 + λij
∂2wy
∂x2

eb3 =− λij
(
e2, eb3

)
K1

(
e2, eb3

)T · ui (2.13)

− λij
(
e2, eb3

)
K2

(
e2, eb3

)T · uj .
The component in e2 direction in Eq. (2.13) is shear force and has a negative sign, and the

eb3 component is bending moment.

Bending in z-direction

Similarly, the flexural wave equation and boundary conditions in z-directions are:

− λij
∂4wz
∂x4

= −ω2dijwz, (2.14)

wz(0) = e3 · ui, wz(l) = e3 · uj , w′z(0) = −eb2 · ui, w′z(l) = −eb2 · uj ,

Since we define all displacements in positive direction, w′z(0) and w′z(l) both have neg-

ative sign by the right hand rule. The force at point ai due to bending is related to the
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shear force and bending moment on the beam/rod through the stiffness matrices as defined

in Eq. (2.11), we have

f
(3)
ij = −λij

∂3wz
∂x3

e3 − λij
∂2wz
∂x2

eb2 =− λij
(
e3, −eb2

)
K1

(
e3, −eb2

)T · ui (2.15)

− λij
(
e3, −eb2

)
K2

(
e3, −eb2

)T · uj .
The component in e3 direction is shear force and has a negative sign. The eb2 component is

bending moment, and has a negative sign by the right hand rule.

2.2.4 Total force and dynamic stiffness

The total force at point ai is the superposition of longitudinal force at x = 0 and effective

force due to bending components in y− and z− directions at x = 0

fij = f
(1)
ij (0) + f

(2)
ij (0) + f

(3)
ij (0). (2.16)

Now we introduce some new parameters to simplify the notations

s̃ij = ωsijlij , µ̃ij = µij/lij ,

γij =
(
ω2dij/lij

)1/4
(≡ γ), γ̃ij = γijlij , (2.17)

⇒ c = cos γ̃ij , s = sin γ̃ij , ch = cosh γ̃ij , sh = sinh γ̃ij ,

and define the frequency dependent effective force matrices

P
(1)
ij = µ̃ij s̃ij cot s̃ije1e

T
1 + λij

(
e2, eb3

)
K1

(
e2, eb3

)T
+ λij

(
e3, −eb2

)
K1

(
e3, −eb2

)T
,

P
(2)
ij = µ̃ij s̃ij csc s̃ije1e

T
1 − λij

(
e2, eb3

)
K2

(
e2, eb3

)T − λij(e3, −eb2
)
K2

(
e3, −eb2

)T
, (2.18)

P
(3)
ij = µ̃ij s̃ij cot s̃ije1e

T
1 + λij

(
e2, eb3

)
K4

(
e2, eb3

)T
+ λij

(
e3, −eb2

)
K4

(
e3, −eb2

)T
.

The force at point ai can be rewritten as

fij = P
(2)
ij uj −P

(1)
ij ui, (2.19)

which relates the displacements at ui and uj , i.e. the displacements at both ends of the

beam/rod.
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2.3 Analytical dispersion relations

2.3.1 Total force and Bloch-Floquet periodic conditions

The equilibrium equation at point ai is formulated by adding the effective forces in each

beam/rod connected to ai, and relate to the mass and acceleration at ai, we have∑
j∈Ni

fij = −ω2Miui, Mi = diag(mi,mi,mi, Ii, Ii, Ii), (2.20)

where Ni is the set of points connected with ai.

In the general 3D case, there are two points a1 and a2 inside unite cell ℘ spanned on

vectors d1, d2 and d3, and four links from each of them. Applying the Floquet periodicy

conditions

uj = exp(ik · gj)u1, gj = aj − a1, j ∈ N2

uj = exp(ik · gj)u2, gj = aj − a2, j ∈ N1

(2.21)

into Eqs. (2.19) and (2.20) leads to∑
j∈N1

(
P

(2)
1j exp(ik · gj) u2 −P

(1)
1j u1

)
= −ω2M1u1,

∑
j∈N2

(
P

(2)
2j exp(ik · gj) u1 −P

(1)
2j u2

)
= −ω2M2u2.

(2.22)

Note that we have shown how to calculate Pij for each of the rod, then we can express each

of them in the inertial coordinate by substituting the old e by the new one, shown in Sec.

2.1.2, and finally compute the summation.

2.3.2 Dispersion relations

It is possible to express the second equation of Eq. (2.22) in terms of a sum over neighboring

links of a1. Introducing matrices

H1 =
∑
j∈N1

P
(1)
1j , H2 = −

∑
j∈N1

P
(2)
1j exp(ik · gj), H3 =

∑
j∈N1

P
(3)
1j (2.23)

and using the identities KT
2 = JK2J, K3 = JK1J where J =

1 0

0 −1

, which imply

∑
j∈N2

P
(1)
2j =

∑
j∈N1

P
(3)
1j ,

∑
j∈N2

P
(2)
2j e

ik·gj =
( ∑
j∈N1

P
(2)
1j e

ik·gj
)+
, (2.24)
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where + denotes the Hermitian conjugation. Equation (2.22) can be rewritten in the form

Hu = ω2Mu (2.25)

with

u =

u1

u2

 , M = diag(M1,M2), H ≡ H(ω,k) =

H1 H2

H+
2 H3

 . (2.26)

Then dispersion curves ωn(k) can be found from the equation

det(H(ω,k)− ω2M) = 0. (2.27)

Note that the matrices H1 and H3 are real symmetric, so that the matrix H is Hermitian,

in turn guaranteeing that the dispersion relation Eq. (2.27) is real valued for real ω, k. It is

also notable that the theory captures the low frequency properties accurately, although the

torsional effect is not considered in theory. We will see in the following that the torsional

modes do not exist in the quasi-static regime.

2.4 Cubic lattice

2.4.1 Dispersion relations

Consider the cubic lattice in Fig. 2.4 in which there is only one center mass point, then the

Floquet periodicity condition reduce to

uj = exp(ik · gj)u0, gj = aj − a0, (2.28)

which relates each joint to the center mass. The equations of motion of a0 is also reduced

to the equilibrium of one mass point and written as∑
j=1,2,3,4,5,6

(
P

(1)
0j −P

(2)
0j eik·gj

)
u0 = ω2M0u0. (2.29)

In the theory we derived above, the cubic lattice under consideration is allowed to have

beams/rods of different properties. We have with obvious notation K0j
11 , etc., and noting

that K0j
12 = K0j

21 , K0j
23 = −K0j

14 . The effective force on each beam/rod are expressed as

P
(1)
0j = µ̃0j s̃0j cot s̃0jJj + λ0j

[
K0j

11L1 +K0j
22L2 +K0j

12L3

]
,

P
(2)
0j = µ̃0j s̃0j cot s̃0jJj − λ0j

[
K0j

13L1 +K0j
24L2 +K0j

14L4

]
.

(2.30)
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(a) (b)

Figure 2.4: Cubic lattice. (a) The unit cell of a cubic lattice which has six mass points
connected to the center mass through beam/rod members. (b) The Irreducible Brillouin
Zone.

See Appendix. A for explicit details of coordinate transformation and matrix separations

of J.. and L...

By definition of lattice periodicity, we have

µ̃01 = µ̃02 = µ̃1, µ̃03 = µ̃04 = µ̃2, µ̃05 = µ̃06 = µ̃3,

s̃01 = s̃02 = s̃1, s̃03 = s̃04 = s̃2, s̃05 = s̃06 = s̃3,

λ̃01 = λ̃02 = λ̃1, λ̃03 = λ̃04 = λ̃2, λ̃05 = λ̃06 = λ̃3,

and the same for K0j
.. . Equation (2.29) becomes,

ω
2
M0u0 =





µ̃1s̃1(cot s̃1 − csc s̃1 cos k̃x) 0 0 0 0 0

0 µ̃2s̃2(cot s̃2 − csc s̃2 cos k̃y) 0 0 0 0

0 0 µ̃3s̃3(cot s̃3 − csc s̃3 cos k̃z) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


+



A1 0 0 0 iλ3K
(3)
14 sin k̃z −iλ2K

(2)
14 sin k̃y

0 A2 0 −iλ3K
(3)
14 sin k̃z 0 iλ1K

(1)
14 sin k̃x

0 0 A3 iλ2K
(2)
14 sin k̃y −iλ1K

(1)
14 sin k̃x 0

0 iλ3K
(3)
14 sin k̃z −iλ2K

(2)
14 sin k̃y A4 0 0

−iλ3K
(3)
14 sin k̃z 0 iλ1K

(1)
14 sin k̃x 0 A5 0

iλ2K
(2)
14 sin k̃y −iλ1K

(1)
14 sin k̃x 0 0 0 A6




2u0,

(2.31)

where

k̃x = l1kx, k̃y = l2ky, k̃z = l2kz. (2.32)
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A1 = λ2(K
(2)
11 +K

(2)
13 cos k̃y) + λ3(K

(3)
11 +K

(3)
13 cos k̃z),

A2 = λ3(K
(3)
11 +K

(3)
13 cos k̃z) + λ1(K

(1)
11 +K

(1)
13 cos k̃x),

A3 = λ1(K
(1)
11 +K

(1)
13 cos k̃x) + λ2(K

(2)
11 +K

(2)
13 cos k̃y),

A4 = λ2(K
(2)
22 +K

(2)
24 cos k̃y) + λ3(K

(3)
22 +K

(3)
24 cos k̃z),

A5 = λ3(K
(3)
22 +K

(3)
24 cos k̃z) + λ1(K

(1)
22 +K

(1)
24 cos k̃x),

A6 = λ1(K
(1)
22 +K

(1)
24 cos k̃x) + λ2(K

(2)
22 +K

(2)
24 cos k̃y).

(2.33)

Equation (2.31) is the equation of motion of a general cubic lattice, the full band diagram

can be computed numerically by considering a eigenvalue problem of this equation. How-

ever, it is possible to compute the dispersion relations analytically when the structure is

comprised of beams/rods of the same length and properties. This can be done by splitting

the dispersion relations into pure longitudinal and flexural ones.

Assuming uniform properties for simplicity, we take all members to have the same prop-

erties µ̃ij = µ̃, s̃ij = s̃, λij = λ, and K
(1,2,3)
ij = Kij . Assuming a plane wave traveling in

the direction of k̃x which coincide with the symmetry line Γ−X of the Irreducible Brillouin

Zone as shown in Fig. 2.4(b). Let k̃y = k̃z = 0, and consider the first pure-longitudinal

solution u0 = (1, 0, 0, 0, 0, 0)T of (2.31), we have k̃x in terms of ω as

cos k̃x = cos s̃+
sin s̃

s̃

(
2
λ

µ̃
(K11 +K13)− m0ω

2

2µ̃

)
. (2.34)

Similarly, the flexural solution u0 = (0, 1, l, 0, α, β)T reduce the 6 × 6 equation of motion

matrix to a 4× 4 one:

ω2



m0 0 0 0

0 m0 0 0

0 0 I0 0

0 0 0 I0


v0 =



B 0 0 D

0 B −D 0

0 D C 0

−D 0 0 C


2v0, v0 =



1

l

α

β


, (2.35)

where

B = µ̃s̃(cot s̃− csc s̃) + λ[2K11 +K13(cos k̃x + 1)],

C = λ[2K22 +K24(cos k̃x + 1)],

D = iλK14 sin k̃x.

(2.36)
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Then the dispersion relation is reduced to the determinant of a 4× 4 matrix, we have∣∣∣∣∣∣∣∣∣∣∣∣∣

B − 1
2m0ω

2 0 0 D

0 B − 1
2m0ω

2 −D 0

0 D C − 1
2I0ω

2 0

−D 0 0 C − 1
2I0ω

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.37)

The explicit form of the flexural dispersion relation is(
λ
(
2K11 +K13(cos k̃x + 1)

)
+ µ̃s̃(cot s̃− csc s̃)− 1

2
m0ω

2
)

×
(
λ
(
2K22 +K24(cos k̃x + 1)

)
− 1

2
I0ω

2
)
−
(
λK14 sin k̃x

)2
= 0.

(2.38)

In addition, this model also exhibits pure flexural resonances. These modes are indepen-

dent of kx and thus non-propagating (i.e. their group velocities are equal to zero). In this

case, they correspond to the generalized displacement u0 = (0, 0, 0, 1, 0, 0)T which repre-

sents flexural resonances of the beams oriented in the y− and z−directions (deflection in

x−direction). The mode is a solution of Eq. (2.31) at resonance frequencies that satisfy

2λ(K22 +K24)− ω2I0 = 0, (2.39)

In our case with I0 = 0, Eq. (2.39) reduces to(
sin

γl

2
cosh

γl

2
+ cos

γl

2
sinh

γl

2

)
sin

γl

2
= 0, (2.40)

where γ is the flexural wavenumber of Euler beam theory. The first two lowest solutions of

Eq. (2.40) are γl = 1.5000π and 2π.

2.4.2 Numerical Example

Consider a cubic lattice of 12.5 mm ×12.5 mm cross-section, and the length of each beam

is 250 mm. The material has density ρ = 2.7 × 103 kg/m3, Poisson’s ratio ν = 0.33 and

Young’s modulus E = 70 GPa. The beams are simply connected to each other without

any thickness variations or additional mass at the joints. We neglect the additional mass

terms m0 and I0 so that the model can be easily compared with numerical simulations.

The FEM simulation was done in COMSOL Multiphysics with Floquet periodic conditions

imposed on the boundaries. The dispersion curves are computed by ranging kx from 0 to
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(b)

(a)

Figure 2.5: Dispersion curves of a cubic lattice comprised of square beams (t = 12.5 mm).
(a) Computed using the semi-analytical method developed in this chapter; (b) computed
using COMSOL Multiphysics. The blue lines in (a) are dispersion curves of longitudial
wave, the black and red lines are dispersion curves of shear wave, and the green lines
indicate represent the flexural resonances of the beams oriented in y− and z−directions
(deflection in x−direction).
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π/l to calculate the eigenfrequencies, where π/l is half the side length of the first Irreducible

Brillouin Zone. The dispersion curves are shown in Fig. 2.5. For comparison, we consider

another example which changes the beam to a rod of radius r = 6 mm. The center mass is

also assumed to be zero for simplicity. The dispersion curves are shown in Fig. 2.6.

The analytical results in Figs. 2.5 and 2.6 match well simulation results. This simplified

model predicts all the eigenmodes to a remarkable degree of approximation. This agrees

with our assumption that neglecting torsional modes do not affect the low frequency effective

properties.

2.5 Tetrahedral Lattice

2.5.1 Dispersion relations

In this section, we consider an example of tetrahedral lattice (or diamond lattice). The

unit cell of the diamond lattice is shown in Fig. 2.7a, and the Irreducible Brillouin Zone is

shown in Fig. 2.7b. The dispersion relation Eq. (2.27) can be established by constructing

the matrix H about two joints a1 and a2, which yields a 12 by 12 matrix system. Since

k = k1 + k2 + k3 = k1d1 + k2d2 + k3d3, we can pick different combinations of k1, k2 and

k3 and vary the values of wave numbers to compute the dispersion curves for the diamond

lattice. The system contains large matrix and various unknowns, we will need a highly

efficient numerical method instead of extracting the explicit form of dispersion relations

using symbolic computations.

2.5.2 Numerical Example

We consider an example for which all members are rods of radius t and have the same

uniform properties. The numerical computations are based on assuming an incident wave

traveling in the direction along the symmetry line of the Irreducible Brillouin Zone Γ− L.

In this case, we have k1 = k2 = k3 which restricts the path of the wave vectors. The

system is solved by finding the smallest eigenvalue of a positive definite matrix, and plotting

the corresponding wave number and frequency of the discretized grid where the smallest

eigenvalue is smaller than ε (a small value).
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(b)

(a)

Figure 2.6: Dispersion curve of a cubic lattice comprised of circular rods (r = 6 mm). (a)
Computed using the semi-analytical method developed in this chapter; (b) computed using
COMSOL Multiphysics. The blue lines in (a) are dispersion curves of longitudial wave,
the black and red lines are dispersion curves of shear wave, and the green lines indicate
represent the flexural resonances of the beams oriented in y− and z−directions (deflection
in x−direction).
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(a)

kx

Γ ky

kz

L

K W
X

U

(b)

Figure 2.7: Tetrahedral (diamond) lattice. (a) The unit cell of a diamond lattice which
has six mass points connected to two center masses through beam/rod members. (b) The
Irreducible Brillouin Zone.

The three-dimensional diamond lattice under consideration is composed of rods with

r = 0.5 mm circular cross-section. The length of each rod is 10 mm. The material has

density ρ = 2.7× 103 kg/m3, and Young’s modulus E = 70 GPa. The center mass is taken

as zero since the junction is small compared to the rods in our numerical example. For

comparison, numerical simulations were done in COMSOL by imposing Floquet periodicity

condition on the cross-sections of the rods and ranging the wave vector k along the sym-

metry line Γ − L. The dispersion curves are shown in Fig. 2.8. The theoretical dispersion

curves were obtained by finding the smallest eigenvalue of a positive definite matrix, and

plotting the corresponding wave number and frequency of the discretized grid where the

smallest eigenvalue is smaller than ε (a small value). Figure 2.8 shows that the dispersion

curves computed by the present simplified theory agree well with those found using FEM.

In this example, the tetrahedral lattice displays a broad frequency range with one-wave

behavior: 5 to 20 kHz. The compressional wave is nearly non-dispersive, and isotropic in

the homogenization regime on account of the symmetry of the lattice. This type of lattice

network has potential applications in 3D acoustic metamaterial design.
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(b)

(a)

Figure 2.8: Dispersion curves of a diamond lattice comprised of circular rods (r = 0.5 mm).
(a) Computed using the semi-analytical method developed in this chapter; (b) computed
using COMSOL Multiphysics.
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2.6 Dynamic homogenization of cubic lattice

2.6.1 Wave speeds in anisotropic medium of cubic symmetry

The dynamic homogenization is done by taking low frequency asymptotics of the dispersion

relations and comparing with the Christoffel wave speeds in terms of the elastic moduli.

Before calculating the effective moduli of cubic lattice structure, we first review wave prop-

agation in anisotropic media. Since the cubic lattice is a cubic material, we only cover the

case of cubic symmetry. The elastic constants of a cubic material in matrix form is

C =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C66 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66


, (2.41)

where C11, C12, and C66 are independent of each other.

Using index notation, the well-known Christoffel equation of motion is given by Eq.

(7.1.3b) in Ref. [63] as (
Cijklnjnl − ρc2δik

)
pk = 0, (2.42)

where δik is kronecker delta, c is the wave speed, and pk are the eigenvectors (displacements)

corresponding to the eigenvalues which are roots of

det
(
Cijklnjnl − ρc2δik

)
= 0. (2.43)

Specifically, for elastic medium of cubic symmetry Eq. 2.43 has the form∣∣∣∣∣∣∣∣∣∣
Γ11 − ρc2 Γ12 Γ13

Γ12 Γ22 − ρc2 Γ23

Γ13 Γ23 Γ33 − ρc2

∣∣∣∣∣∣∣∣∣∣
= 0, (2.44)
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where

Γ11 = n2
1C11 + n2

2C66 + n2
3C66,

Γ22 = n2
1C66 + n2

2C11 + n2
3C66,

Γ33 = n2
1C66 + n2

2C66 + n2
3C11,

Γ12 = n1n2(C12 + C66).

(2.45)

The combinations of the parameters n1, n2 and n3 are used to indicate the direction of wave

propagation. For evaluating the three elastic constants of a cubic material, it is sufficient

to consider only two directions ((100) and (110)) as we explain in the following.

Wave propagation in (100) direction.

We now derive the wave speeds along one of the three principal axes of the cubic material.

In this case, we have n1 = 1 and n2 = n3 = 0. Plugging these values into Eq. (2.45) then

into Eq. (2.44), we have ∣∣∣∣∣∣∣∣∣∣
C11 − ρc2 0 0

0 C66 − ρc2 0

0 0 C66 − ρc2

∣∣∣∣∣∣∣∣∣∣
= 0, (2.46)

which can be simplified as

(C11 − ρc2)(C66 − ρc2)2 = 0, (2.47)

then the eigenvalues, i.e. wave speeds, are

c1 =

√
C11

ρ
,

c2 = c3 =

√
C66

ρ
,

(2.48)

where c1 is the pure longitudinal wave speed in (100) direction; c2 and c3 are speeds of pure

shear wave with different polarizations.

Wave propagation in (110) direction.

Next, we derive the wave speeds along the in-plane diagonal direction. Similarly, we have

n1 = n2 = 1/
√

2 and n3 = 0. Plugging these values into Eq. (2.45) then into Eq. (2.44),
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we have ∣∣∣∣∣∣∣∣∣∣
1
2(C11 + C66)− ρc2 1

2(C12 + C66) 0

1
2(C12 + C66) 1

2(C11 + C66)− ρc2 0

0 0 C66 − ρc2

∣∣∣∣∣∣∣∣∣∣
= 0, (2.49)

this equation can be rewritten as

[(C11 + C66 − 2ρc2)2 − (C12 + C66)2](C66 − ρc2) = 0, (2.50)

then the eigenvalues are

c′1 =

√
C11 + C12 + 2C66

2ρ
,

c′2 =

√
C11 − C12

2ρ
,

c′3 =

√
C66

ρ
,

(2.51)

where c′1 is pure longitudinal wave speed in (110) direction, while c′2 and c′3 are speeds

of pure shear wave in (11̄0) and (001) direction, respectively. This is more complicated

than the (100) case since there are different shear wave speeds corresponding to different

polarizations involved.

2.6.2 Dynamic derivation of effective moduli of cubic lattice

The wave speeds in solids are expressed in terms of the elastic moduli as we discussed above.

Then we can relate the low frequency asymptotics of the dispersion relations of the cubic

lattice to the wave speeds. The dispersion relations are frequency ω as a function of wave

number k, therefore the low frequency asymptotics have the form

c(d) = lim
k→0

ω(k)

k
, k = kd, |d| = 1. (2.52)

Then the elastic moduli can be retrieved by relating the wave speeds derived using these

two methods. The calculation of the low frequency asymptotics are simply the Taylor series

expansion of the dispersion relations at k = 0. By canceling the high order terms of k,

we can obtain explicit forms of wave speeds in terms of the solid material properties and

geometric parameters.
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Wave propagation in (100) direction.

The equations of motion of cubic lattice are derived in Sec. 2.4, as well as the dispersion

relations for (100) case. Here we use Eqs. (2.34) and (2.38) to derive the low frequency wave

speeds. Using Eq. (2.11) and neglecting high order derivatives, the Taylor series expansion

of the longitudinal mode Eq. (2.34) is

(1− k̃2

2
+ · · · ) = (1− s̃2

2
+ · · · ) + (1− s̃2

6
+ · · · ) 1

2µ̃

(
4λ(−γ

4l

2
− · · · )−m0ω

2

)
. (2.53)

Since k̃ = k̃x, we can expand this equation and substitute ω by c1k. Then rearrange the

equation and write the longitudinal wave speed in (100) direction as

c1 =

√
EAl

3ρAl +m0
. (2.54)

As a check of this expression, we use the same geometry and material properties used in the

example in Sec. 2.4. The wave speed calculated using Eq. (2.54) is c1 = 2915.53 m/s. For

comparison, we pick a point at low frequency range, e.g., (0.004068, 11.86), the wave speed

calculated from the band structure is c1 = 2915.44 m/s. It is clear that these two results

match very well.

Now we consider the flexural mode in (100) direction. Following similar procedure, the

Taylor series expansion of Eq. (2.38) is[
λ
(
2(

12

l3
− 13l

35
γ4 − · · · ) + (−12

l3
− 9l

70
γ4 − · · · )(2− k̃2

2
+ · · · )

)
+ µ̃(− s̃

2

2
+ · · · )

− 1

2
m0ω

2

](
2λ(

4

l
− · · ·+ 2

l
+ · · · )− 0

)
−
(
λ(

6

l2
+ · · · )(k̃ − · · · )

)2
= 0.

(2.55)

We expand this equation and substitute ω by c2k. Then rearrange the equation and write

the shear wave speed in (100) direction as

c2 =

√
6EI

3ρAl2 +m0l
. (2.56)

The shear wave speed calculated using Eq. (2.56) is c2 = 103.08 m/s. Taking the point

(0.01437, 1.481) on the dispersion curve, the shear wave speed evaluated at this point is

c2 = 103.06 m/s which agrees to our prediction.
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Comparing Eqs. (2.54) and (2.56) with Eq. (2.48), we have the effective moduli

C11 =
EAlρeff

3ρAl +m0
,

C66 =
6EIρeff

3ρAl2 +m0l
,

(2.57)

where E and ρ are the Young’s modulus and density of the material respectively, ρeff is the

effective density of the lattice structure, m0 is the center mass, A, r and l are the cross-

section area, radius and full length of the beam/rod, respectively. The moment of inertia I

depends on the shape of beam/rod.

Wave propagation in (110) direction.

The elastic constants C11 and C66 are derived in last section. There is only one more

elastic constant to be investigated, therefore we only need to consider the longitudinal mode

propagating in (110) direction since C12 appears in the expression for c′1 in Eq. (2.51). In

this case, we have k̃ = k̃xd1 + k̃yd2 and k̃z = 0. Setting k̃x = k̃y = 1√
2
k̃ and considering the

pure-longitudinal solution u0 = (1, 1, 0, 0, 0, 0)T to Eq. (2.31), we have∣∣∣∣∣∣µ̃s̃(cot s̃− csc s̃ cos k̃x) +A1 − 1
2m0ω

2 0

0 µ̃s̃(cot s̃− csc s̃ cos k̃y) +A2 − 1
2m0ω

2

∣∣∣∣∣∣ = 0,

(2.58)

which yields two identical solutions. Substituting k̃x and k̃y by 1√
2
k̃, the longitudinal

dispersion relation can be written as

µ̃s̃
(

cot s̃− csc s̃ cos(
1√
2
k̃)
)

+λ(K11 +K13) +λ
(
K11 +K13 cos(

1√
2
k̃)
)
− 1

2
m0ω

2 = 0. (2.59)

The Taylor series expansion of this equation at k = 0 is

µ̃
[
(1− s̃

2

2
+ · · · )− (1− k̃2

4
+ · · · )

]
+ λ

[
(
12

l3
− 13l

35
γ4 − · · · ) + (−12

l3
− 9l

70
γ4 − · · · )

]
+ λ
[
(
12

l3
− 13l

35
γ4 − · · · ) + (−12

l3
− 9l

70
γ4 − · · · )(1− k̃2

4
+ · · · )

]
− 1

2
m0ω

2 = 0.

(2.60)

Expanding this equation and substituting ω by c′1k, we can rearrange each term and write

the longitudinal wave speed in (110) direction as

c′1 =

√
EAl2 + 12EI

6ρAl2 + 2m0l
, (2.61)
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which corresponds to the c′1 in Eq. (2.51). Using Eq. (2.57), we have

C12 = 0. (2.62)

C12 = 0 indicates that Poisson’s ratio ν12 = 0 which can be interpreted as applying a

displacement in (100) direction does not cause deformation in (010) direction.

Effective bulk modulus

Since we have obtained all the three elastic constants, there is no need to consider wave

propagation in (111) direction. In anisotropic media of cubic symmetry, the effective bulk

modulus is

κeff =
C11 + 2C12

3
=

EAlρeff

9ρAl + 3m0
. (2.63)

The approximate total mass of the cubic lattice is m ≈ 3ρAl + m0 (if l � r), i.e. the

center mass and the mass of rods without considering the intersection of them. Hence, the

effective density is

ρeff ≈
3ρAl +m0

l3
. (2.64)

Then the elastic constants reduce to

C11 =
EA

l2
,

C12 = 0,

C66 =
6EI

l4
,

(2.65)

the bulk modulus reduce to

κeff =
EA

3l2
, (2.66)

where I is the area moment of inertia (for a beam I = bt3/12 and for a rod I = πr4/4). In

particular, the bulk modulus of a cubic lattice comprised of rods is

κeff =
Eπr2

12R2
, (2.67)

where R is half length of the rod. The expression for the effective bulk modulus agrees to

Ref. [64]. For convenience, we introduce a new parameter α defined as the ratio of R to r,

i.e. α = R/r, to show the tendency of bulk modulus. Figure 2.9 gives prediction of effective

bulk modulus versus α. The ratio α suggests that 1080 carbon steel is a proper choice for

matching properties to water since thin beam theory is used in our model.
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Figure 2.9: Effective bulk modulus versus α. The horizontal solid line represents the bulk
modulus of water.

2.6.3 Designing metal water using cubic lattice

Our goal here is to tune the effective bulk modulus and density similar to water, so that

the sound speed and impedance are matched to water. The bulk modulus of water is

κwater = 2.2 GPa, density is ρwater = 1.0 × 103 kg/m3. Figure 2.9 shows that the ratio α

is relatively bigger when 1080 carbon steel is used as the material. For this reason, we use

1080 carbon steel with Young’s modulus E = 205 GPa, density ρ = 7.87 × 103 kg/m3 as

the material for both center mass and rods. Setting κeff = κwater and applying Eq. 2.67, we

have

α =
R

r
= 4.93912. (2.68)

The radius of the rod is chosen as r = 4 mm, then the length of the rod is l = 39.5 mm.

Equation (2.64) indicates that the additional center mass is

m0 = ρwaterl
3 − 3ρAl = 14.7525 g. (2.69)

Note that by adding more mass to the joints, the stiffness of the lattice is also increased.

The results derived in this section may help with designing the initial parameter set, then

FEM based homogenization methods can be employed to optimize the structure.
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2.7 Discussion

To the author’s knowledge, this chapter is the first theoretical work studying the band di-

agrams using beam theories for 3D lattices. Dynamic modeling of and 3D lattices can be

accurately modeled using a low order model with minimal degrees of freedom described by

thin beam members. The dispersion relations for cubic lattice has been derived analyti-

cally by imposing the Bloch-Floquet periodicity condition, yielding an Hermitian eigenvalue

problem for the unknown frequencies. Numerical methods were used to compute the band

diagrams for tetrahedral lattice. The semi-analytical approach allowed us to extract the low

frequency asymptotics. In particular, the closed-form explicit expressions for the Christoffel

matrix in the quasi-static regime for cubic lattice was presented. Numerical comparisons

of wave dispersion diagrams with FEM simulations indicate that the beam model pro-

vides good accuracy for lower modes. The semi-analytical nature of the present model

makes it the natural extension of purely static methods for periodic lattice structures, e.g.

[65]. In summary, our beam model provides a novel and fast approach to calculate the

band-diagrams for 3D lattices. This semi-analytical method may prove useful in designing

phononic crystals and pentamode structures.
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Chapter 3

Extraordinary acoustic transmission through slanted gratings

Acoustic metamaterial devices usually suffer from low transmission due to impedance mis-

match between the exterior acoustic medium and the metamaterial slab, especially the

space-coiling or labyrinthine structures [66, 67, 68]. The zigzag channels are designed

to achieve phase delay for various applications. However, the folded channel also brings

impedance mismatch which significantly affects the performance of the devices. Researchers

have been trying to improve the transmission for these devices in the past a few years

[69, 70]. It is found that the impedance of the unit cells can be matched to the exterior

medium under certain conditions [71]. In this chapter, we will focus on the acoustic trans-

mission through slanted gratings, as well as zigzag structures, and provide a prediction of

the so-called intromission angle ±θi for total acoustic transmission.

Total transmission through 1D grating with narrow apertures can be achieved by taking

advantage of Fabry-Pérot resonance [72]. However, it is only a narrow band effect because

the enhancement is induced by resonance. Broadband extraordinary optical transmission

(EOT) has been recently proposed [73] and realized [74] based on a Brewster angle effect that

results from the effective low-frequency properties of the grating. Broadband extraordinary

acoustic transmission (EAT) can be achieved with similar idea. The physics behind EAT

is, as explained by D’Aguanno et al. [75], broadband impedance matching. The grating has

low frequency effective properties easily estimated for rigid grating elements, which allows

to achieve the desired intromission angle by tuning the grating porosity [75]. Maurel et al.

[76] also provide a clear analysis of this problem as impedance matching but by means of

acoustic fluids with anisotropic inertia. In this chapter, we take a step further to analyze

the obliquely oriented gratings and provide explicit formula for intromission angle. We show

that total transmission is achieved at incidence angles ±θi with a relative phase shift. This
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broadband EAT phenomenon holds for any slab thickness as long as the slab unit structure

is subwavelength. The results derived in this chapter not only work for slanted gratings,

but also work for the zigzag structure similar to that in Ref. [69], since the zigzag elements

can be considered as slanted grating elements with alternating orientations. A few new

simulation examples are presented to demonstrate the theoretical development.

This chapter is organized as follows. The governing equations of acoustic transmission

through a slab of anisotropic inertia are presented in Sec. 3.1. The solutions of transmission

and reflection coefficients are derived in Sec. 3.2. In Sec. 3.3, the results from previous

section is employed to predict the intromission angle of a slanted single-layer grating (SLG).

The results are then simplified and applied to various cases. Numerical examples are shown

in Sec. 3.4 to demonstrate the theoretical results.

3.1 Governing equations

We consider acoustic transmission through a slab with anisotropic inertia as shown in Fig.

3.1. The blue region is the equivalent uniform anisotropic layer, the surrounding acoustic

medium has density ρ and sound speed c with bulk modulus K = ρc2. The equation of

continuity and equation of motion can be written in terms of scalar pressure p and vector

velocity v as

v = (iωρ)−1∇p,

p = (iω)−1K∇ · v,
(3.1)

where the time harmonic dependence e−iωt is assumed to be understood. The acoustic

pressure in the exterior acoustic medium is

p = p0 e
ik sin θ x2 ×


(
eik cos θ x1 +Re−ik cos θ x1

)
x1 ≤ 0,

T eik cos θ(x1−b) x1 ≥ b,
(3.2)

where k = ω/c is the wavenumber, p0 is a constant. The acoustic impedance is defined as

Zθ =
ρc

cos θ
. (3.3)

The single-layer two-dimensional anisotropic slab of thickness b has bulk modulus Ks

and anisotropic density represented by a 2 × 2 symmetric tensor (ρ = ρT ) with elements
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Figure 3.1: Equivalent homogeneous slab with anisotropic density.

ρij , i, j = 1, 2. The equation of continuity and equation of motion within the slab are

v = (iωρ)−1∇p,

p = (iω)−1Ks∇ · v,
(3.4)

3.2 Solution for an anisotropic inertial slab

We first define the state vector

u =

 v1

−p

 , (3.5)

and consider solutions with constant horizontal phase such that the state vector u has the

form

u(x1, x2) = U(x1)eik sin θx2 , (3.6)

then U(x1) satisfies

dU

dx1
= iωAU , (3.7)

where

A =
sin θ

c

ρ12

ρ22
I −B, B =

 0 1
Ks
− sin2 θ

c2ρ22

detρ
ρ22

0

 , (3.8)

where I is identity. It is easy to find that the matrix A is independent of ω.
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The propagator matrix M(x) is defined for later use as the solution of the differential

equation

dM(x)

dx
= iωAM , with M(0) = I, (3.9)

where M has the property that detM = 1 [77]. The Hermitian conjugate satisfies M † =

JM−1J because of the property AT = JAJ , where the 2 × 2 matrix J has zeros on the

diagonal and unity off diagonal. Therefore we have M−1(x) = JM †(x)J = M(−x).

We assume that the anisotropic slab has uniform properties in x ∈ [0, b], so that

M(b) = eiωbA. (3.10)

Using Eqs. (3.8) and (3.10), we have the explicit propagator matrix

M(b) =
(

cos
ωb

cθ
I − i

cθ
sin

ωb

cθ
B
)ikb ρ12

ρ22
sin θ

, (3.11)

where cθ = (−detB)−1/2, c−1
θ B is a square root of the identity.

Equations. (3.2) and (3.6) give

U(0−) = p0

Z−1
θ (1−R)

−1−R

 , U(b+ 0) = p0T

Z−1
θ

−1

 . (3.12)

The boundary conditions are continuity of normal velocity v1 and pressure p at x1 = 0 and

x1 = b, i. e. U(0+) = U(0−) and U(b+ 0) = U(b− 0). Hence,

T

Z−1
θ

−1

 =

M11 M12

M21 M22

Z−1
θ (1−R)

−1−R

 . (3.13)

Then we can solve for the transmission and reflection coefficients

T = 2(M11 +M22 + ZθM12 + Z−1
θ M21)−1,

R = 1− (M22 + ZθM12)T.

(3.14)

3.2.1 Extraordinary acoustic transmission

Using explicit solution for M(b) from Eq. (3.11) yield the explicit form of transmission and

reflection coefficients

T = e
−ikb ρ12

ρ22
sin θ
(

cos
ωb

cθ
− i

2

(Zθ
Z ′θ

+
Z ′θ
Zθ

)
sin

ωb

cθ

)−1
,

R =
i

2

(Zθ
Z ′θ
−
Z ′θ
Zθ

)
sin

ωb

cθ

(
cos

ωb

cθ
− i

2

(Zθ
Z ′θ

+
Z ′θ
Zθ

)
sin

ωb

cθ

)−1
,

(3.15)
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where

cθ =
( ρ22

detρ

) 1
2
( 1

Ks
− sin2 θ

c2ρ22

)− 1
2
, Z ′θ =

(detρ

ρ22

)
cθ. (3.16)

The results discussed in this chapter differ from the results exist in the literature, e.g. Maurel

et al. [76] only considered a special case in which φ = 0. In other words, the acoustic fluid

inside the slab corresponds to ρ11 = ρ22, ρ12 = 0. It is easy to show that

|T (−θ)| = |T (θ)|, R(−θ) = R(θ). (3.17)

From Eq. (3.17), we find that the magnitude of the transmission coefficient is symmetric

about θ = 0, while both magnitude and phase of the reflection coefficient are symmetric

about θ = 0. Therefore, the asymmetry can be expressed as a function of θ as

T (−θ)
T (θ)

= e
i2kb

ρ12
ρ22

sin θ
. (3.18)

Equation (3.15) implies |T | = 1 when the impedance is matched, i.e. |T (θi)| = 1⇔ Zθ =

Z ′θ. Therefore, the condition for extraordinary acoustic transmission is

ρ2 sin2 θi + (detρ) cos2 θi =
K

Ks
ρρ22, (3.19)

where θi is the intromission angle at which transmission equals to unity. It is clear that

the intromission angle is symmetric with respect to the normal of the interface between the

exterior medium and the slab, i.e. |T (±θi)| = 1.

3.3 Single-layer gratings as anisotropic inertial slabs

The single-layer grating considered in this section is depicted in Fig. 3.2. The grating

elements have properties bulk modulus K0 and density ρ0. The volume fraction of the

grating fluid is f ∈ [0, 1]. The effective bulk modulus and density tensor are denoted by

Ks and ρ respectively. We consider first the symmetric case when φ = 0. The effective

properties of the slab are obtained using quasi-static homogenization as

1

Ks
=

f

K0
+

1− f
K

, ρ =

ρ1 0

0 ρ2

 ,

1

ρ1
=

f

ρ0
+

1− f
ρ

, ρ2 = fρ0 + (1− f)ρ.

(3.20)
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b
a

Figure 3.2: The obliquely aligned single-layer grating.

The single-layer grating rotated by an angle φ (non-zero) has the same effective bulk mod-

ulus Ks as the φ = 0 case. However, the density tensor becomes non-diagonal but still

symmetric:

ρ =

ρ11 ρ12

ρ21 ρ22

 ,

ρ11 = ρ1 cos2 φ+ ρ2 sin2 φ,

ρ22 = ρ1 sin2 φ+ ρ2 cos2 φ,

ρ12 = (ρ1 − ρ2) sinφ cosφ
(

= ρ21

)
.

(3.21)

Note that ρ11, ρ22 > 0. It is hard to tell whether ρ12 is positive or negative from Eq. (3.21),

we rewrite it as

ρ12 = −f(1− f)(ρ− ρ0)2

fρ+ (1− f)ρ0
sinφ cosφ. (3.22)

Equation (3.22) implies 
ρ12 < 0 if φ > 0,

ρ12 > 0 if φ < 0,

ρ12 = 0 if φ = 0.

(3.23)

An interesting phenomena is that detρ = ρ1ρ2 and trρ = ρ1 + ρ2 regardless of the rotation

angle φ. The relation between the transmission coefficients for incidence at ±θ becomes

T (−θ)
T (θ)

= e
−i2ka sinφ sin θ(

ρ2−ρ1
ρ2+ρ1 tan2 φ

)
. (3.24)

Using the explicit form of the density tensor, |T (θi)| = 1 leads to

cos2(θi) =

(ρ2−ρ1
ρ cos2 φ+ ρ1

ρ

)
K
Ks
− 1

ρ1ρ2
ρ2
− 1

. (3.25)
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This relation for intromission angle shows the explicit dependence on the orientation angle

φ. In particular, this implies that ∂θi/∂φ > 0 since ρ−ρ1 > 0 and ρ1ρ2 > ρ2 for ρ0 6= ρ.

Now we consider the behavior for several limiting cases, such as rigid grating elements.

The case of orientation angle φ = 0 was investigated by Maurel et al. [76], but they do not

provide a simple full-transmission condition analogous to Eq. (3.25) with φ = 0.

3.3.1 Rigid grating elements

We assume that the grating element is much stiffer than the background medium, then in

the limit K/K0 → 0 Eq. (3.25) becomes

cos2 θi =
(1− f)ρ22ρ − 1

ρ1ρ2
ρ2
− 1

. (3.26)

If the rigid grating is much denser than the fluid, i.e. ρ/ρ0 → 0, then the dual limits yield

a simple condition

cos θi = (1− f) cosφ. (3.27)

This rigid limit case is of particular interest because it can be realized if the the background

medium is air.

In this limiting case we have cθ = c cosφ, the transmission coefficient simplifies to

T (θ) = eika sinφ sin θ/
(

cos ka− i

2
(

cos θ

cos θi
+

cos θi
cos θ

) sin ka
)
. (3.28)

Therefore,

|T (θ)| = cos γ, |R(θ)| = sin γ, γ = tan−1
(1

2
(

cos θ

cos θi
− cos θi

cos θ
) sin ka

)
(3.29)

and the relative phase of the transmitted waves for ±θ is

T (−θ)
T (θ)

= e−i2ka sinφ sin θ. (3.30)

3.3.2 Transmission at normal incidence: θi = 0

Now, we consider the case of normal incidence. The total transmission condition |T (0)| = 1

requires

K

K0
=

ρ2
0 − (1− f)2(ρ0 − ρ)2 cos2 φ

ρρ0 − f(1− f)(ρ0 − ρ)2 cos2 φ
≤ ρ0

ρ
. (3.31)
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This identity indicates a particularly interesting phenomenon that the required impedance

ratio
√
Kρ/K0ρ0 depends on the density ratio and the geometric parameters f and φ, rather

than on the relative bulk moduli. If any one of the three conditions f = 1, φ = π/2 or

ρ0 = ρ holds then Eq. (3.31) reduces to the expected one-dimensional impedance matching

condition K0ρ0 = Kρ. However, when f 6= 1 and ρ 6= ρ, Eq. (3.31) indicates that the

grating material must have higher impedance than the background fluid.

If we require that the total transmission at θi = 0 corresponds to the element orientation

angle φ = 0, then Eq. (3.31) reduces to

K

K0
=

ρ2
0 − (1− f)2(ρ0 − ρ)2

ρρ0 − f(1− f)(ρ0 − ρ)2
. (3.32)

Next vary φ, with Eq. (3.32) satisfied, then Eq. (3.25) becomes

sin θi =

√
(1− f)ρ0

fρ+ (1− f)ρ0

(ρ0 − ρ
ρ0 + ρ

)
sinφ. (3.33)

This formula suggests an active model for changing the angular receptivity of the slab by

rotating the elements of the single-layer grating.

3.3.3 Zigzag structures

A more general model, as shown in Fig. 3.3, is comprised of SLGs connected to each other

in series with grating elements oriented at φ or −φ. The only difference between adjacent

(a) (b) (c)

Figure 3.3: Zigzag structures comprised of SLGs in series with alternating orientations ±φ.

layers is that the effective density ρ12 changes sign. The thicknesses of the layers with

orientation ±φ are denoted by b±, so that the total thickness is b = b+ + b−. Then the
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transmission coefficient is written as

T = e
−ik(b++b−)

ρ12
ρ22

sin θ
(

cos
ωb

cθ
− i

2

(Zθ
Z ′θ

+
Z ′θ
Zθ

)
sin

ωb

cθ

)−1
. (3.34)

It is notable that all the examples in Fig. 3.3 have b+ = b− and therefore T (−θ) = T (θ) in

each case.

3.4 Numerical examples and discussion

In this section, we show a few full wave simulation results to demonstrate the theory de-

veloped in this chapter. Different from the examples shown in Ref. [1], we will present the

steady state FEM simulation of more complicated zigzag grating elements, as well as the

transient simulation of underwater sound transmit through metallic gratings. The examples

presented here use non-dimensional parameters, in particular the frequency is defined by kd.

The grating elements has thickness a and length d, and therefore the total slab thickness

is b = a cosφ, see Fig. 3.2. The steady state simulations were conducted with COMSOL

Multiphysics using Floquet periodic boundary conditions to simulate wave transmission

through an infinitely periodic structure. The transient simulations were done by computing

at each time frame.

3.4.1 Transmission and reflection through rigid grating elements

We first consider three examples of rigid grating elments oriented at φ = 0◦, 30◦ and

60◦. The computed transmission and reflection coefficients for the three slanted gratings

are showns in Fig. 3.4. The intromission angles were all chosen to be θi = 60◦, then the

volume fraction f can be calculated using (1− f) cosφ = 1/2. It is easy to observe that the

transmission spectrum does not change much as long as the relation between θi, φ and f is

satisfied.

3.4.2 Full wave simulations of zigzag grating elements

In the previous example, the grating elements were assumed to be rigid. Now we consider

more complicated zigzag gratings. As noted above, a plane wave incident at intromission

angle θi can achieve total transmission through gratings comprised of alternating oriented
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Figure 3.4: Transmission spectrum at frequency kd = 0.25 for rigid SLGs with elements
oriented at φ = 0◦, 30◦ and 60◦. The solid and dashed curves represent |T |2 and |R|2,
respectively.

elements. The background fluid is air with ρ = 1.225 kg/m3 and c = 346 m/s, the grating

elements are acrylic with ρ0 = 1190 kg/m3, E0 = 3.2 GPa and ν0 = 0.35. The high contrast

in material properties enables us to treat the grating elements as rigid, and therefore predict

the intromission angle using Eq. (3.27). The zigzag plastic grating elements are oriented

at alternating directions φ = ±30◦. The incident angle is taken to be the intromission

angle θi = cos−1(1− f), where f = 0.5. Full wave simulations were conducted in COMSOL

Multiphysics to demonstrate our predictions. As shown in Fig. 3.5, a plane wave incident at

φ = 60◦ from the left side achieves extraordinary transmission through the zigzag gratings.

It is notable that the transmission is always close to unity as long as the wavelength is

greater than periodicity of the grating elements.
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(a) (b)

(c) (d)

Figure 3.5: Total pressure plots for zigzag plastic gratings oriented at φ = ±30◦. The
incident angle is taken to be the intromission angle θi = cos−1(1 − f), where f = 0.5.
Frequency kd = 0.5 for (a) and (c), kd = 0.25 for (b) and (d).

3.4.3 Transient simulation of steel plates as grating elements in water

In previous example, the plastic grating elements in air were assumed to be rigid. Now we

consider the scenario where background fluid is water with ρ = 1000 kg/m3 and c = 1500

m/s. We will still using Eq. (3.27) to predict the intromission angle, thus we need a rather

rigid and dense material for the grating elements. The properties of steel are ρ0 = 7800

kg/m3, E0 = 205 GPa and ν0 = 0.32. The relatively high contrast in material properties

might enable us to treat the grating elements as rigid, and therefore predict the intromission

angle using Eq. (3.27). The grating elements are oriented at φ = 30◦. The incident angle is

taken to be the intromission angle θi = cos−1(1− f), where f = 0.5. The frequency is kd =

0.25. Transient simulations were conducted in COMSOL Multiphysics to demonstrated our

predictions. As shown in Fig. 3.6, the amplitude of reflected wave is much smaller than the

transmitted wave. We can conclude that a plane wave incident at φ = 60◦ from the left side

achieves extraordinary transmission through the slanted grating comprised of steel plates.
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(a) (b)

(c) (d)

Figure 3.6: Total pressure plots for steel gratings oriented at φ = 30◦. The incident angle
is taken to be the intromission angle θi = cos−1(1 − f), where f = 0.5. The frequency is
kd = 0.25. Each plot corresponds to different time frame: (a) t = 0, (b) t = 0.288 ms, (c)
t = 0.552 ms and (d) t = 0.840 ms.
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3.5 Discussion

This chapter deals with acoustic transmission through slanted gratings. The gratings are

treated as acoustic fluids of anisotropic inertia, so that the intromission angle is derived

using a broadband impedance matching method. The main result here is Eq. (3.25) which

predicts the intromission angle of the most general case. The results in this chapter may

have significant applications in acoustic grating and Fresnel lens design. It might also help

improve the performance of acoustic metamaterials, especially the transmissive devices. The

present model might also be applied in the design of angle dependence acoustic devices, such

as directional filters.
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Chapter 4

Broadband pentamode gradient index lens for underwater

sound

The quality of focused sound through a conventional Fresnel lens is usually limited by

spherical/cylindrical aberration. Recent advances in acoustic metasurface design made it

possible to manipulate the transmitted wavefront in an arbitrary way by achieving phase

delay using space coiling structures [68, 66, 78, 79, 67]. The aberration of the focused

sound can be reduced by carefully tuning the phase of the transmitted wave and doing

a simple ray tracing. However, this diffraction based design approach usually suffers from

unbalanced impedance [80] which is crucial to the prediction of focal position and destructive

interference for canceling out side lobes, thus requires more sophisticated modeling in the

design [81]. Many efforts have been made to achieve extraordinary transmission [70, 69],

but the underlying physics is to tune the structure to achieve certain phase gradient of

the transmitted wave at a particular frequency which limits the bandwidth of operation.

Another disadvantage of the metasurface design is that the device only works at the steady

state [80]. In other words, it can not focus a pulse to the focal spot. Apart from the

aforementioned disadvantages, the space coiling structure is not applicable for underwater

devices because of the low contrast between bulk modulus of common materials and water.

Both the fluid phase and the solid phase are connected to the background fluid, the existence

of the Biot fast and slow compressional waves [82, 83] might cause strong aberration and

induce more side lobes, while the shear mode will cause undesired scattering. Thus, we

need to employee an alternative method in our design to overcome these issues.

Hyperbolic secant index profile has been widely used GRIN lens designs [84]. Lin et

al. [14] showed that the frequency independent analytical ray trajectories intersect at the

same point, and demonstrated that it can be used in phononic crystal design to focus sound
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inside the device without aberration. Climente et al. [48] adopted this approach in sonic

crystal design, and experimentally demonstrated the broadband focusing effect beyond the

lens with low aberration. Many other designs used the same index profile to focus airborne

sound [85, 86, 87] and underwater sound [88]. Most of the designs are based on variation

of the filling fraction to achieve different refractive indices which usually cause significant

impedance mismatch. Although transmission is not a big concern in many applications, it is

determinant in the focusing capability of the GRIN lens. The focal distance is derived from

ray tracing which is a transient solution. Nevertheless, the focusing effect observed in the

full wave simulations and experiments are both steady state response which can be altered

due to impedance mismatch. One exception is that Martin et al. [89] modified the index

distribution to reduce aberration and achieved high transmission by using hollow aluminum

shells in water matrix. However, the idea of adjusting filling fraction introduces anisotropy

and limits the range of effective properties which restrict the focal spot to be far from the

lens.

In this chapter, we utilize the two dimensional (2D) version of the pentamode material

(PM) [30, 90] to achieve a wide range of refractive index, and introduce a new modification

of index profile for further aberration reduction. The advantage of PMs is that they can

be designed to match acoustic impedance to water and minimize shear modulus which is

undesired in acoustic designs. They are thus are very promising in underwater applications.

For instance, Hladky-Hennion et al. [16] tuned the effective acoustic properties to water and

experimentally demonstrated negative refraction at the longitudinal compressional mode.

The structure is versatile such that it can be designed to achieve strong anisotropy [91],

therefore is also a good choice for acoustic cloaking [29, 92]. In our design, the unit cells are

transversely isotropic with index varying along the incidence plane. The modification of the

index profile is done by using a one dimensional coordinate transformation, the aberration

reduction can be clearly observed from ray trajectories. The unit cells of the GRIN lens

are designed using a static homogenization technique based on FEM [93] according to

the modified index profile with a range from 0.5 to 1. Moreover, all the unit cells are

impedance matched to water which is the key to obtain optimal focusing effect. The GRIN

lens is fabricated by cutting centimeter scale hollow microstructures on aluminum plates
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using waterjet, then stacking and sealing them together. The interior of the compact solid

matrix lens is filled with air, only the exterior faces are connected to water. The GRIN

lens is experimentally demonstrated to be capable of focusing underwater sound with high

efficiency from 25 kHz to 40 kHz. The present design has potential applications in ultrasound

imaging and underwater sensing where the water environment is important. The successful

demonstration of our GRIN lens also shed light on the realization of pentamode acoustic

cloak [29, 92].

This chapter is outlined as follows. In Sec. 4.1, we review and compare a few index

gradient profiles, and propose a modified profile to reduce aberration. Then we design the

lens using 2D pentamode unit cells following the reduced aberration profile in Sec. 4.2. The

frequency and transient domain simulations results are presented in Sec. 4.3. Section 4.4

concludes this chapter.

4.1 Index gradient

4.1.1 Focal distance

The 2D GRIN lens presented in this chapter is designed as depicted in Fig. 4.1 with index

profile symmetric with respect to the x-axis (y = 0). Assuming that the refractive index n

is a function only of y, the trajectories of a normally incident plane wave can be derived by

solving a ray equation for y = y(x) based on the fact that the component of slowness along

the interface between each layer is constant:

n
(
y(x)

)√
1 + y′2(x)

= n(y0) (4.1)

where y0 = y(0) is the incident position on the y-axis at the left side of the lens, x = 0.

The focal distance from the right hand boundary of the GRIN lens at x = t is [48, Eq. (3)]

d =
y(t)

y′(t)

√
n−2(yt) +

(
n−2(y0)− 1

)
y′2(t) (4.2)

where yt is the value of y(t) on the ray at the emergence point. The value of y′2(t) follows

from Eq. (4.1), from which we deduce the simpler expression

d = yt

√
1

n2(yt)− n2(y0)
− 1. (4.3)
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Figure 4.1: Schematic view of the GRIN lens. The left part shows that two ray paths
incident at symmetric positions intersect at the focal point beyond the lens. The right part
shows the index distribution across the lens.

4.1.2 Hyperbolic secant profile

We first consider a hyperbolic secant index profile n(y), which is often used to design for

low aberration [14]:

n(y) = n0 sech(αy), (4.4)

where α is a constant, n0 is the refractive index at y = 0. The ray trajectory can then be

expressed as

y(x) =
1

α
sinh−1[sinh(αy0) cos(αx)], (4.5)

and the focal distance for this particular index function becomes

d =
yt
n0

√
1

tanh2(αy0)− tanh2(αyt)
− n2

0. (4.6)

However, the index profile will introduce aberration if our aim is to focus sound outside the

lens. Therefore, we need to consider other possible index profiles and seek modifications to

reduce aberration.
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4.1.3 Quadratic profile

Alternatively, consider the quadratic index profile [89]

n(y) = n0

√
1− (αy)2, (4.7)

for which the rays are

y(x) = y0

√
2 sin

(π
4
− n0 αx

n(y0)

)
. (4.8)

The rays incident from different y0 do not intersect at the same point, therefore this index

profile also introduce aberration.

4.1.4 Reduced aberration profile

Martin et al. [89] noted that the above mentioned two profiles have opposite aberration

tendencies, and proposed a combination of the two profiles which shows reduced aberration.

Nevertheless, in our model we are interested in a wide range in index, from unity to about

0.5 due to the restrictions of the unit cell design employed in this chapter. This requires αy0

to exceed unity, which rules out the use of the quadratic profile. Alternatively, we propose

stretching the y−coordinate of the hyperbolic secant profile as follows:

n(y) = n0 sech
(
g(αy)

)
where

g(z) = z/
(
1 + β1z

2 + β2z
4
)
.

(4.9)

The objective is to make d of Eq. (4.3) independent of y0 as far as possible.

For small αy0 we have from both Eqs. (4.5) and (4.8) that y(x) ≈ y0 cosαx, and hence

for all three profiles

d→ d0 ≡
1

n0α
cotαt as αy0 → 0. (4.10)

Note that d0 is independent of y0 as expected. This is the value of the focal distance

that the modified profile Eq. (4.9) attempts to achieve for all values of y0 in the device by

choosing proper values of the non-dimensional parameters β1 and β2. As a demonstration,

we plot the ray trajectories using the hyperbolic secant profile and our modified secant

profile with index ranging from 0.5 to 1. As shown in Fig. 4.2, the focal points form a line

when the hyperbolic secant profile is used, while the rays intersect at the same point when
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(a) (b)

Figure 4.2: Comparison between the ray trajectories. (a) Strong aberration using the
hyperbolic secant profile, (b) Minimized aberration using the modified secant profile.

the modified profile is used. This suggests that we can design the GRIN lens according to

the modified profile.

4.2 Design of unit cells

The flat GRIN lens is designed using six types of unit cells corresponding to the discrete

values selected from the modified hyperbolic index profile. Figures 4.3(a) and 4.3(b) show

the spatial distribution of refractive indices of the lens. The unit cell structure is the regular

hexagonal lattice which has in-plane isotropy at the quasi-static regime [94]. Using Voigt

notation, the 2D pentamode elasticity requires C11C22 ≈ C2
12 and C66 ≈ 0 minimize the

shear modulus. With these requirements satisfied, then the main goal is to tune the effective

C11 and mass density at the homogenization limit to achieve the required refractive index

and match the impedance to water simultaneously. The material properties of water are

taken as bulk modulus κ0 = 2.25 GPa and density ρ0 = 1000 kg/m3. The material of

the lens slab is aluminum with Young’s modulus E = 70 GPa, density ρ = 2700 kg/m3

and Poisson’s ratio ν = 0.33. The geometric parameters of each unit cell, as shown in

Fig. 4.3(d), are predicted using foam mechanics [95] and iterated using a homogenization

technique based on FEM [93]. The geometric parameters of the six types of unit cells are

listed in Table 4.1. Note that big value of the radius r at the joints increases the effective

shear modulus, but r = 0.420 mm is the limit of the machining method we are using.
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Parameters

(d)

Figure 4.3: Layered design. (a) The top view of the lens, (b) the index distribution and
discretized indices of the lens, (c) unit cell of the lens and (d) geometric parameters of the
unit cell.

Table 4.1: Geometry of the unit cells. Each type of unit cell corresponds to different values
of effective refractive indices as shown in Fig. 4.3(b).

neff l (mm) t (mm) a (mm) q (mm) r (mm)

1.000 9.708 0.693 6.025 2.184 0.420
0.977 9.708 0.708 5.844 2.184 0.420
0.910 9.708 0.761 5.295 2.184 0.420
0.810 9.708 0.851 4.451 2.184 0.420
0.690 9.708 0.994 3.397 2.184 0.420
0.561 9.708 1.213 2.177 2.184 0.420

The GRIN lens is comprised of the six types of unit cells, the minimum cut off frequency

is limited by the thinnest unit cell, i.e. neff = 1, therefore it is essential to examine its

band structure. The band diagram as shown in Fig. 4.4 is calculated using Bloch-Floquet

analysis in COMSOL Multiphysics. The directional band gap along the incident direction

occurs near 40 kHz, this sets the upper limit of the lens. The lens is designed following a

index gradient which limits the low frequency focusing capability due to the high frequency

approximation nature of the ray theory. It is notable that although the bending modes exist

at low frequency range, they do not cause much scattering due to sufficient shear modulus

which prevents the structure from flexure [96]. We expect the lens to be capable of focusing

underwater sound over a broadband from 10 to 40 kHz.
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First Brillouin Zone

(a) (b)

(c)

Compressional modes

Flexural resonances

Shear modes

Figure 4.4: Band diagram of the unit cell at the center (neff = 1). (a) shows the band
structure along the Γ − M − K path of the first Brillouin zone, (b) shows the lattice
structure where ~a and ~b are the basis vectors in the real space, (c) shows the first Brillouin
zone of the lattice structure where ~a∗ and ~b∗ are the basis vectors in the reciprocal space.

4.3 Simulation results

The lens is formed by combining all the designed unit cells together following the reduced

aberration profile. The width of the lens is 40 cm, and the thickness is 13.7 cm. The material

of the lens is aluminum as we described in previous section. The GRIN is permeated

with air and immersed in water, so that only structural wave is allowed in the lens. Full

wave simulations were done to demonstrate the broadband focusing effect using COMSOL

Multiphysics. Figure 4.5 shows the normalized intensity magnitude plots from 10 to 35

kHz, where blue color represents small value and red color represents big value. The plane

Gaussian beam is incident from the left side, the focal point lies on the right side of the

lens. It is clear that the lens works over a broad range of frequency. There are some

discrepancies of the focal distance at low and high frequency range. The low frequency

focusing capability is limited due the high frequency approximation nature of the index

gradient, while the high frequency is limited because the longitudinal wave becomes more

dispersive. The best operation frequency of the lens is near 20 kHz, and its cutoff frequency
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is near 40 kHz as predicted from band diagram.

15 kHz

20 kHz

30 kHz 35 kHz

10 cm

10 kHz

25 kHz

(a) (b)

(c) (d)

(e) (f)

1

0

Figure 4.5: Full wave frequency domain simulation results at (a) 10 kHz, (b) 15 kHz, (c)
20 kHz, (d) 25 kHz, (e) 30 kHz and (f) 35 kHz.

This GRIN lens is aberration free because it is designed to be impedance matched to

water, so that it is back-scattering free and therefore works as predicted. It is necessary to

demonstrate the high energy transmission of the lens. Figure 4.6 shows the sound pressure

level gain (SPL) over the focal plane at 35 kHz. The results are calculated by subtracting

the simulated SPL with the lens from the simulated SPL without the lens. The maximum

gain at 35 kHz is about 10 dB, which indicates that most of the energy are focused at the

focal point, i.e. the transmission is high. We can safely conclude that this lens has minimal
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(a) (b)

Figure 4.6: Sound pressure level gain (SPL) at 35 kHz. (a) Colormap over the focal plane,
(b) SPL across the focal point along the lens face.

aberration.

The GRIN lens has minimal side lobes comparing to conventional diffractive lens. Diffrac-

tive acoustic lenses are usually designed by tuning the impedance of each channel to achieve

certain phase delay. However, the transmitted amplitudes are different so that it is hard to

cancel out the side lobes caused by aperture diffraction. The main advantage of the GRIN

lens is that it redirects the ray paths inside the lens, and reduces the diffraction aperture

to a minimal size at the exiting face of the lens. As shown in Fig. 4.7, the width of the

intensity profile at half of its maximum is only 0.6λ at 30 kHz and 0.47λ at 35 kHz. It is

(a) (b)

Figure 4.7: Normalized intensity magnitude across the focal point along the lens face at (a)
30 kHz and (b) 35 kHz.



54

clear that the intensity magnitudes of the side lobes are all below 1/10 of the maximum

value so that our GRIN lens is side lobe free.

The bulk GRIN lens not only works at the steady state, but also is capable of focusing

a pulse. Figure 4.8 shows the simulated pressure variations at each time frame. Two cycles

3

-3

(a) (b)

(c) (d)

(e) (f)

t =0 ms

t =0.24 ms

t =0.48 ms

t =0.12 ms

t =0.36 ms

t =0.60 ms

Figure 4.8: Full wave time domain simulation of normally incident plane wave at 30 kHz.
The plots show the pressure variations at each time frame: (a) 0 ms, (b) 0.12 ms, (c) 0.24
ms, (d) 0.36 ms, (e) 0.48 ms and (f) 0.60 ms.

of a plane wave pulse is incident from the left side at the central frequency of 30 kHz. The

waves focus at the right side of the lens and start to spread out when t = 0.36 ms. It is also

clear that the reflection from the water-lens interface is negligible. Based on reciprocity,
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the GRIN has anther feature that it is capable of collimating cylindrical sources, if located

at the focal point, to plane wave beams. Here we demonstrate the collimation effect using

transient domain FEM simulation as shown in Fig. 4.9. The distance from the source to the

3

-3

(a) (b)

(c) (d)

(e) (f)

t =0 ms

t =0.168 ms

t =0.336 ms

t =0.084 ms

t =0.252 ms

t =0.420 ms

Figure 4.9: Full wave time domain simulation of a cylindrical source at 30 kHz. The plots
show the pressure variations at each time frame: (a) 0 ms, (b) 0.084 ms, (c) 0.168 ms, (d)
0.252 ms, (e) 0.336 ms and (f) 0.420 ms.

lens equals to the focal distance. Two cycles of a cylindrical wave radiate from the source

and then be transformed into a plane wave beam when they exit from the right side of the

lens.
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4.4 Discussion

To summarize, we have designed and fabricated a pentamode GRIN lens according to the

modified secant index profile. The modified hyperbolic secant profile aims to reduce aberra-

tion and suppress side lobes. The gradient index (GRIN) lens is comprised of transversely

isotropic hexagonal microstructures with tunable quasi-static bulk modulus and mass den-

sity. In addition, the unit cells are impedance-matched to water and have in-plane shear

modulus negligible compared to the effective bulk modulus. Moreover, the physics be-

hind the GRIN lens makes it possible to focus sound at both steady state and transient

domain. The flat GRIN lens is fabricated by cutting rectangular centimeter scale hollow

microstructures in aluminum plates, which are then stacked and sealed from the exterior

water. Broadband focusing effects are observed within the homogenization regime of the

lattice in finite element (FEM) simulations (10− 40 kHz). Underwater measurements have

been done by our collaborators at the University of Texas at Austin, though the results

are not compared in this dissertation. There are some discrepancies between the simula-

tion and the experimental results. The mismatch of the focal distance in simulation and

experiments is due to the machining accuracy of the waterjet and the assembling method

which altered the refractive index. This issue can be resolved by using more sophisticated

fabrication method such as wire EDM or 3D metal printing. The design method can also

be easily extended to the design of anisotropic metamaterials such as directional screens

and acoustic cloaks.
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Chapter 5

Directional cylindrical-to-plane wave lens for underwater

acoustics

The first transformation based metamaterial device was proposed a decade ago when Pendry

et al. [22] derived a cloak based on the invariance of Maxwell’s equations under coordinate

change. While subsequent applications of transformation optics (TO) and transformation

acoustics (TA) have proven to be very successful in the design of cloaking devices (for

reviews see e.g. [97] and [98]) the concepts underlying TO and TA are by no means limited

to cloaking of waves, which involves a singular transformation, i.e. the mapping of a point

into a finite volume. While the singular transformation is a limiting case, there are many

regular spatial transformations of interest which also leave the wave equation invariant and

provide the ability to manipulate electromagnetic and acoustic wave motion in many other

unprecedented ways. Such transformation based applications for electromagnetic (EM)

waves include directional antennas [23], field rotators [24], concentrators [25], beam shifters

and splitters [26], just to name a few.

Along similar lines, transformation acoustics has been proposed in the design of acoustic

metamaterials, starting naturally with cloaking. Cummer et al. [27] theoretically analyzed

2D acoustic cloaking with anisotropic mass density. This concept was applied to 3D by Chen

et al. [28]. Later on, Norris [29] published a theory on acoustic cloaking with anisotropic bulk

modulus and suggested to design using pentamode material (PM), which is first proposed

by Milton et al. [30]. TA has then been extended to numerous applications, such as carpet

cloaking [31] which is later experimentally realized by Popa et al. [32]. The cylindrical-to-

plane wave lens based on conformal transformation also attracted much attention [99, 33].

Titovich et al. [100] proposed a feasible design using elastic shell metamaterial elements
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and demonstrated the collomation effect experimentally [34]. However, these cylindrical-

to-plane wave lenses all divide energy equally into four lobes. In this chapter, we map the

circular domain to a triangle to reduce the number of lobes from four to three, and introduce

an adjustable parameter in the mapping to make the lens more directional.

The strong interaction between the waves in the structures and the surrounding medium

brings more complexity to the design of metamaterial devices for underwater purposes. Nev-

ertheless, the low contrast between the acoustic properties of water and natural materials

makes it possible to manipulate the effective properties of the metamaterial. For example,

PMs can be tuned to mimic the behavior of water [90] and used for acoustic cloaking [92].

PMs have also been successfully applied in the design of an elasto-mechanical unfeelabil-

ity cloak [101] and acoustic negative refraction lens [16]. However, the required material

properties for our GRIN lenses go beyond the range we can achieve using single natural

material, which rules out the use of PMs. Using elastic shells as the design units is another

possible approach [100, 102, 34, 103, 104, 105], because they can be tuned to achieve ef-

fective acoustic properties similar to water. For instance, Martin et al. [89] designed and

tested a GRIN lens made of hollow aluminum shells to overcome the impedance mismatch

issue in their previous work [88].

The TA mapping from a circular region to a triangular shape used in our design is

conformal, which guarantees that the material properties in the transformed domain are

isotropic [106]. The approach of immersing empty elastic shells in a water matrix is adopted

in our design. The cylindrical shells are chosen for their quasi-static effective properties

(density and bulk modulus), which depend upon the shell material and the thickness to

radius ratio. By selecting a range of metals and polymers for the shell materials and variety

of tube thicknesses, a considerable range in properties is possible. We designed two GRIN

lenses by carefully choosing appropriate shells. Full wave simulations show that the first

lens radiates the energy of a source located at the lens center equally in three directions,

whereas in the second lens half of the source energy is radiated through one of the three

faces.

The outline of this chapter is as follows. The mapping and material properties in the

transformed triangular domain are discussed in Sec. 5.1. A few examples of the bulk modulus
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distribution are shown in Sec. 5.2. The collimation effect is also analyzed in Sec. 5.2 by

showing the ray trajectories and demonstrated by using effective medium simulations. The

design procedures of the GRIN lenses are described in Sec. 5.3 as well as the simulation

results. Conclusions are presented in Sec. 5.4.

5.1 Transformation acoustics mapping

The GRIN lens design is based on the transformation of a unit circle in the complex z-plane

to an equilateral triangle with vertices A and B at (1/2± i
√

3/2)a in the t-plane as shown

in Fig. 5.1. The precise form of the mapping function Eq. (B.4) is derived in the Appendix

B.

Figure 5.1: Conformal mapping from a circular domain to a triangular domain.

We consider a background acoustic medium of density ρ and bulk modulus K in which

the governing equation is

∇2p+
ω2

c2
p = 0, (5.1)

where c =
√
K/ρ is the sound speed, ω is the radial frequency with time harmonic depen-

dence e−iωt assumed. Then the TA mapping maps the acoustic equation into the trans-

formed domain and yields a new distribution of material properties. The density in the

transformed domain is denoted by ρ′, the bulk modulus is denoted by K ′. The TA mapping

that gives parameter distribution in the transformed domain has been studied thoroughly

by [106], here we directly use the results of the special case of conformal mapping. The

transformed density and bulk modulus are

ρ′ = ρ, K ′ = |dt/dz|2K, (5.2)
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which are functions of the derivative of the mapping function. The transformed wave

speed and impedance are therefore c′ = |dt/dz|c and Z ′ = |dt/dz|Z where c =
√
K/ρ and

Z =
√
Kρ are the original values. The derivative of the mapping function, i.e. Eq. (B.4), is

dt

dz
=

√
3a

2G(1)
sinφ

(
(z + 1)(z − eiφ)(z − e−iφ) sin

φ

2

)−2/3
(5.3)

where G(1) is defined in the Appendix B.

5.2 Directional collimation

5.2.1 Impedance matching condition and far-field behavior

A particularly significant value for the transformed bulk modulus is the value at z = 1,

Kmin = K ′(z = 1), which is the lowest value of K ′ in the triangle, and sets a lower limit on

the required bulk modulus,

Kmin = 3
(a cot φ2

4G(1)

)2
K. (5.4)

For instance, Kmin is 0.1271 a2K, 0.0424 a2K and 0.0141 a2K for φ = π/3, π/2 and 2π/3, re-

spectively. The mapping leads to unbounded bulk modulus at three vertices of the triangle,

however, in practice these are cutoff at finite values.

Conformal tansformation based acoustic antennas usually suffer from impedance mis-

match at the boundary which causes internal resonance and reduces the transmission. It is

obvious that the mapped bulk modulus range depends on the value of a, i.e. the distance

from the origin to the vertices of the triangle. This provides a simple way to achieve better

performance by matching the impedance at the center of AB face. Letting K ′(z = 1) = K,

we have

a =
4

3

√
3G(1) tan

φ

2
. (5.5)

The ray densities near the center of AB face tend to be uniform if Eq. (5.5) is satisfied, eg.

a = 2.8044 for φ = π/3. This impedance matching condition also provides a nice feature

that the pressure distribution along AB face is similar to a Gaussian beam. Figure 5.2

shows the comparison between two lenses with the same φ = π/3 but different values of a.

The lenses have the same dimensions, and the simulations are done at the same frequency.
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For acoustic sources of maximum dimension D � λ, the Fraunhofer near-field distance can

be approximately taken as [107, p. 165]

df =
D2

4λ
. (5.6)

It is known that sound waves start to spread out beyond this distance. However, we can

achieve better far-field behavior by matching impedance at the center of AB face. Figure

5.2 clearly shows that the spreading region is extended to d = 2.5df for the lens designed

with Eq. (5.5) satisfied due to the Gaussian-like pressure distribution.

(a)

(b)

Figure 5.2: Comparison of far-field radiation behavior for φ = π/3 and different values of a
where (a) a = 2.8044 with impedance matched at the middle of AB face, and (b) a = 1.2092
for unchanged perimeter.

It is also notable that the impedance at the source location is within a reasonable range.

We are interested in placing the monopole source in water matrix, this implies a impedance
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matching condition at the source location. Letting K ′(z = 0) = K, we have

a =

√
3G(1)

3 cos φ2 sin1/3 φ
2

. (5.7)

If both Eqs. (5.5) and (5.7) are satisfied, then we can achieve optimized values for φ and a.

However, we are interested in designing for different values of φ, there is a bit of compromise

between the boundary impedance and source location impedance. The material property

range we can achieve is limited which, in turn, affects the selection of the value of a.

5.2.2 Directional collimation using effective medium

We consider water (ρ = 1000 kg/m3, K = 2.25 GPa) as the background fluid. It is

obvious from Eqs. (5.2) and (5.3) that the value of a changes the range of bulk modulus

in the transformed domain. By choosing a =
√

4π/3
√

3 = 1.5551 for unchanged area and

setting K ′max = 3.65K, we can restrict the bulk modulus in an achievable range. When

the transformed density is unchanged, both the relative wave speed c′/c and the relative

impedance Z ′/Z are equal to
√
K ′/K. Figure 5.3 shows the color map of the bulk modulus

distribution for φ = π/3, π/2 and 2π/3, respectively. The dimensions of the transformed

(d) (e) (f)

(a) (b) (c)

0.5

2

Figure 5.3:
√
K ′/K and ray paths for unchanged area for (a) and (d) φ = π/3, (b) and (e)

φ = π/2, (c) and (f) φ = 2π/3. The origins are located at t = 0, 0.2351 and 0.4315 in the
transformed coordinates, respectively.
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domain is not important at this stage since they are scalable to fit the general size of the

GRIN lenses.

The conformal TA mapping yields a constant density distribution, the refractive index

change merely resulted from the bulk modulus change. The presence of index change bends

the directions of rays as shown in Fig. 5.3 for φ = π/3, π/2 and 2π/3 respectively. When

the three points A, B and C divide the circumference of the circle equally, the numbers of

rays exit from the three faces of the triangular domain are the same. When the arc length

between A and B is longer, more rays are bent towards the AB face of the triangle.

With these material distributions, we can design cylindrical-to-plane wave lenses and

make them directional, i.e. more energy radiate out from one of the three edges. Full

wave simulations were conducted in COMSOL Multiphysics to demonstrate the idea of

directional collimation. The background fluid outside the triangular region is water with

density ρ = 1000 kg/m3 and bulk modulus K = 2.25 GPa. The density of the effective

medium in the triangle is the same as water ρ′ = 1000 kg/m3, the bulk modulus K ′ in each

case is calculated using the distribution shown in Fig. 5.3. For convenience, the sizes of the

triangles have the same number of the dimensions shown in Fig. 5.3 but the units are in

meters. The monopole sources are placed at t = 0 m, 0.2351 m and 0.4315 m respectively.

The collimation effects using effective medium are independent of frequency, here we only

show the results at 3 kHz corresponding to different values of φ. Figure 5.4 clearly show that

more energy radiate across the right face when angle φ is larger. Note that when φ 6= π/3

(a) (b) (c) 0

1

Figure 5.4: Simulated intensity at 3 kHz where (a) φ = π/3, (b) φ = π/2 and (c) φ = 2π/3.

waves transmit through each face are still planar, but only the plane wave beam travel to

the right propagate along the normal of the face.
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5.3 Cylindrical-to-plane wave lenses using elastic shells

5.3.1 Unit cell design

In order to design a GRIN lens for φ = π/3, we discretize the triangular region into 91

hexagons as shown in Fig. 5.5. The distance between two opposite edges of each hexagon is

2.2 cm, so that the unit cell size is similar to the square lens by [34]. The material properties

(ρ′ and K ′) in each hexagon are considered to be uniform and has the value at its center.

Because of the symmetry, the unit hexagons are classified into 18 different types based on

the distance to the center. The hexagon at the center of the lens is reserved for placing the

monopole source.
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Figure 5.5: Discretization of the transformed domain (φ = π/3).

To mimic the acoustic behavior of the discretized domain, water saturated elastic shells

are introduced to match the material properties. The cylindrical shell has thickness h and

outer radius a. The density of the shell material is denoted by ρs, shear modulus by µs and

Poisson’s ratio by νs. The effective bulk modulus of the empty shell can be easily extracted

by solving the problem of uniform pressure loaded shell under plane strain condition [108],
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while the effective density is simply an average of the total mass over the circular area. The

effective properties of the shell are expressed as [34]

ρeff =
(
2h/a− (h/a)2

)
ρs,

Keff = µs/
(
2(1− νs)ρs/ρeff − 1

)
.

(5.8)

Consider the Ashby chart, see Fig. 5.6, which plots the range of effective properties for shells

of different thickness to outer radius ratio h/a and various materials. In our GRIN lens

ρ
eff

 / ρ
10-2 10-1 100 101 102

K
ef

f / 
K

10-2

10-1

100

101

102
ceff=c

Zeff=Z

PVDF
CPVC

Copper

Brick

Al Oxide

Steel

Aluminum

Tin

ρ
eff

=ρ

h/a=0.5

PTFE

Lead

PVC

h/a

Figure 5.6: Effective properties normalized to water for shells using different materials.
Each curve represents the effective properties as a function of the ratio h/a from small to
large.

design, the transformed density is constant so that we need to pick materials and choose the

ratio h/a along the vertical dotted line, which indicates ρeff = ρ. Eight different materials

and the specific values of h/a for matching density to water are selected and listed in Table.

5.1.
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Table 5.1: Selected materials for elastic shells. The values h/a are for matching effective
density to water.

Material ρs (kg/m3) Es (GPa) νs Keff (GPa) h/a

PVC 1420 3.00 0.4 1.52 0.456
PVDF 1780 1.40 0.345 0.39 0.338
CPVC 1525 2.55 0.386 1.05 0.413

Tin 7300 54 0.33 2.31 0.071
Copper 8900 128 0.34 4.44 0.058
Steel 7800 210 0.3 8.14 0.061

Aluminum 2700 70 0.33 10.05 0.207
Al Oxide 3900 300 0.222 24.22 0.138

Then we fix the ratio h/a but change the outer radius a to change the filling fraction,

so that the equivalent bulk modulus is changed and matched to the transformed material

properties. The equivalent density ρeq and bulk modulus Keq of the fluid-saturated shell

are related to the shell volume fraction f as

ρeq = (1− f)ρ+ fρeff,

Keq =
(
(1− f)K−1 + fK−1

eff

)−1
.

(5.9)

Note that the equivalent properties of the water saturated shells are the values to match the

parameter distribution in the discretized triangle, i.e. ρ′ and K ′. In this case, h/a is chosen

such that the effective and equivalent density are both the same as the density of water.

Based on the selected materials from Table. 5.1, the material and geometric parameters of

each shell corresponding to each discretized unit in Fig. 5.5 are calculated using Eq. (5.9)

and listed in Table. 5.2.

5.3.2 Cylindrical-to-plane wave lens (φ = π/3)

Here we report the full wave simulation results to demonstrate the collimation effects of the

GRIN lens. This lens is comprised of 91 polymer and metal tubes from Table. 5.2. The

shells are distributed in a hexagonal manner and form an triangular shape. The distance

between the center of two adjacent tubes is 2.2 cm. All the tubes are surrounded by water

with air filled in them. A monopole source is located at the center of the lens to radiate in

all directions. Figure 5.7 shows the simulated pressure distribution of the triangular lens at

three different frequencies within the quasi-static regime. The results clearly show that the
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Table 5.2: Selected elastic shells for the GRIN lens (φ = π/3). The labels correspond to
the numbering in Fig. 5.5.

Material h/a a (mm) f Keq (GPa) label

CPVC 0.413 6.91 0.358 1.60 1
PVDF 0.338 6.61 0.327 0.88 2
PVC 0.456 9.04 0.613 1.74 3

CPVC 0.413 8.86 0.588 1.35 4
PVC 0.456 9.04 0.613 1.74 5

PVDF 0.338 5.66 0.240 1.05 6
PVC 0.456 7.17 0.385 1.90 7
PVC 0.456 9.04 0.613 1.74 8
Tin 0.071 8.00 0.480 2.25 9

PVC 0.456 9.04 0.613 1.74 10
Copper 0.058 7.74 0.449 2.89 11
Steel 0.061 8.01 0.481 3.45 12

Aluminum 0.207 8.50 0.541 3.88 13
Aluminum 0.207 10.47 0.821 6.20 14
Al Oxide 0.138 10.33 0.800 8.20 15 -18

(a) (b) (c)

1

-1

10cm

Figure 5.7: Simulated pressure at (a) 12.5 kHz, (b) 15 kHz and (c) 17.5 kHz.

cylindrical wavefront has been collimated into three identical lobes and radiate to the far

field in the form of plane wave beams in different directions. This GRIN lens works over a

broad range of frequency (10 kHz to 20 kHz) as long as the wavelength is greater than the

unit cell size.

5.3.3 Bend more energy into one direction (φ = π/2)

In practice, we may want to send more energy into one direction. The TA mapping derived

in this chapter provides a way to manipulate the index distribution such that more energy

comes out from one of the three faces. This can be simply done by choosing a larger value of
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φ. Here we design another GRIN lens (φ = π/2) using polymer and metal shells. The unit

cell sizes are the same as the previous design, but more shells are added to provide smoother

change of the index in a small area. The position of the monopole source is calculated by

scaling the mapping to fit the new triangular region and finding the corresponding position

of t = 0.2351. The design procedure follows Sec. 5.3.1. The simulated pressure distribution,

see Fig. 5.8, confirms the idea that more energy radiates across the right side. A drawback

1

-1

10cm

Figure 5.8: Simulated pressure at 10.5 kHz.

of this kind of shell based metamaterial is that the resonances of multiple shells might affect

the performance near those frequencies. In the present case of φ = π/2, the bandwidth is

reduced because various types of shells are involved, which brings more resonances. This

issue can be resolved by introducing internal substructures to suppress the low frequency

resonances [34].

5.4 Discussion

We have introduced a new TA mapping from a circle to a triangle and designed two GRIN

lenses for directional collimation. The TA mapping considered here is conformal such that

the transformed material properties are isotropic. By choosing a for unchanged area and
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setting the upper limit of bulk modulus to 3.65K, we restricted the bulk modulus to an

achievable range which makes it possible to design the devices. Taking advantage of the

water saturated elastic tubes we designed two GRIN lenses, and demonstrated the broad-

band collimation effect using full wave simulations. The results clearly show that the first

lens equally divides energy into three lobes, whereas the second one sends half of the energy

to the AB face. In summary, the idea of leaving φ adjustable in the TA mapping provides

a novel method to make cylindrical-to-plane wave lenses more directional.
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Chapter 6

Bulk elastic wave control using metamaterials with aligned

parallel plates

This chapter focuses on the design of GRIN lens, refractive and asymmetric transmission

devices for elastic waves. The physics behind elastodynamic waves is more complicated

because of the coupling of different types of waves, but brings into play more interesting

phenomena. Climente et al. [109] designed a GRIN lens for flexural wave based on the local

variation of the plate thickness. Morvan et al. [110] experimentally demonstrated negative

refraction of transverse waves with a 2D PC of a square lattice of cylindrical cavities.

Later, Pierre et al. [111] achieved negative refraction for antisymmetric Lamb waves with

a similar design. The focusing of bending waves in perforated thin plates was realized

by Farhat et al. [51] and Dubois et al. [52], respectively. Zhu et al. [112] experimentally

demonstrated the negative refraction of longitudinal waves by an elastic metamaterial with

chiral microstructure fabricated in a steel plate. Chang et al. [113] used a soft hyperelastic

material to split longitudinal and shear waves. Zhu et al. [114] proposed a 1D PC with

anti-symmetric and symmetric unit cells that shows one-way Lamb wave transmission for

both A and S modes. Most of these articles are concerned with flexural or Lamb waves,

while only a few of them discuss bulk waves in elastic bodies, namely, P-, SV- and SH-waves.

We model a solid with aligned parallel gaps as depicted in Fig. 6.1. The effect of the

gaps is to make the solid material between them act like thin plates. Our approach to

focusing, refraction and asymmetric transmission of elastic waves is based on the wave

bearing properties of the plates. Broadband high transmission for refraction of elastic

waves and multi-band high efficiency for asymmetric transmission are achieved. Similar

to the idea of applying pre-compression differentially on granular chains to achieve phase

delay [115], we vary the thickness of the plates but keep the lengths constant to achieve a
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focusing effect. The properties of the plates also lead to the idea of splitting P-wave and

SV-wave in an elastic body by using an array of aligned parallel gaps. Our approach to

asymmetric P-wave transmission uses the combination of the free boundary of a half-space

and an array of aligned parallel gaps to achieve high and low energy transmission in opposite

propagation directions. The models are simple and can be formulated analytically using

thin plate theory. The transmission and reflection coefficients are derived in closed form,

which helps improve the performance of the metamaterial devices.

This chapter includes all of the results presented in our paper [2]. This chapter is

organized as follows. The analytical model for predicting the transmission and reflection

of normally incident P- and SV-waves are developed in Sec. 6.1. The analytical results

are compared with the simulation, and modified by introducing a empirical factor. In Sec.

6.2, we designed a metamaterial device for asymmetric transmission by employing mode

conversion at a free boundary. In Sec. 6.3, we show a GRIN device for focusing SV-wave.

The elastic prism for splitting SV- and P-waves is demonstrated in Sec. 6.4. Conclusions

are presented in Sec. 6.5.

6.1 Transmission and reflection at normal incidence

6.1.1 Governing equations

We consider the configuration of Fig. 6.1a, in which an array of plates are connected to

and separate two half-spaces. The configuration can be viewed as a homogenous solid

with aligned thin gaps or cracks. At each of the junctions, the SV-wave in the half-space

couples with the flexural wave on the plates, and the P-wave in the half-space couples with

the compressional wave. In other words, an incident SV-wave (or P-wave) from the left

side travels through the plate in the form of a flexural wave (or longitudinal wave), then

transmits into the right side as SV-wave (or P-wave). To model and calculate the SV-wave

(or P-wave) transmission and reflection coefficients, we only need to consider a single plate

element connected between two half-spaces, as shown in the boxed region in Fig. 6.1b,

because of the periodicity in the vertical direction. We model and formulate the problem

using Kirchhoff plate theory which holds for long-wavelength flexural waves on thin plates.
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In this chapter we focus on the frequency range in which the thin plate assumption is valid.

Together with the boundary conditions: displacement, (rotation angle) and force continuity

at the two ends, we can establish six (or four) equations with six (or four) unknowns to

solve for the transmission and reflection coefficients.

(a)

(b)

Figure 6.1: Two-dimensional schematic of aligned parallel gaps. (a) P- and SV-waves trans-
mit through aligned parallel plates. The black arrows represent the direction of propagation,
the red arrows represent the direction of particle motion. (b) The geometric parameters
and multiple wave types on the plates.

The density of the material is denoted by ρ, the Young’s modulus by E, the shear

modulus by µ, and the Poisson’s ratio by ν. We also define the Cartesian coordinate

system as shown in Fig. 6.1b, where x is along the lateral direction of the plate, y is into

the plane and perpendicular to x, and z is upward. The displacements in each direction
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are denoted as u, v and w, respectively. The thickness of the plate is denoted by h, the

width of the gap by a (a� h), and the thickness of the unit structure in the boxed region

in Fig. 6.1b is h′ = h + a. The bending stiffness of the plate is D = Eh3/12(1 − ν2). We

assume the incident plane wave is independent of y-direction, i.e. there is no y-dependent

term. The governing equations for flexural and longitudinal waves in the thin plate are

D
∂4w

∂x4
− ρhω2w = 0,

E

1− ν2

∂2u

∂x2
+ ρω2u = 0,

(6.1)

where ω is the radial frequency. Time harmonic dependence e−iωt is assumed. The phase

speeds of flexural and longitudinal waves (cF , cL) on the plate, and the phase speeds of SV-

and P-waves (cT , cP ) in the exterior body are

cF =

(
Eh2ω2

12ρ(1− ν2)

)1/4

,

cL =

√
E

ρ(1− ν2)
,

cT =

√
E

2ρ(1 + ν)
,

cP =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
.

(6.2)

6.1.2 Transmission and reflection of a normally incident P-wave

To calculate the transmission and reflection coefficients of P-waves, we assume the amplitude

of the displacement of the incident wave as 1, reflected wave as R, transmitted wave as T ,

and the amplitude of displacement on the plate as A and B, the displacements are expressed

as

u =


eikP x +Re−ikP x, x < 0,

AeikLx +Be−ikLx, 0 < x < L,

TeikP (x−L), x > L,

(6.3)

where kP = ω/cP and kL = ω/cL are the wavenumbers of P-wave in the exterior body

and longitudinal wave in the plate. The compressional force in the exterior body is Fx =

h′σxx = Eh′(∂u/∂x), and the compressional force in the plate is Fx = Eh(∂u/∂x). The four
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z-averaged boundary conditions are continuity of displacement and compressional force at

x = 0 and x = L, yielding the system of equations:

1 +R = A+B,

1−R =
h

h′
kL
kP

(A−B),

T = AeikLL +Be−ikLL,

T =
h

h′
kL
kP

(AeikLL −Be−ikLL).


(6.4)

The transmission and reflection coefficients for the incident P-wave are then

T =
4αkPkLe

ikLL

(kP + αkL)2 − (kP − αkL)2ei2kLL
, (6.5)

R =

(
k2
P − α2k2

L

)
(1− e2ikLL)

(kP + αkL)2 − (kP − αkL)2ei2kLL
, (6.6)

which also satisfy |T |2 + |R|2 = 1. It is easy to show that total transmission, i.e. |T | = 1,

requires either kP − αkL = 0 or ei2kLL = 1. The first occurs over all frequency range when

α = kP /kL =
√

1− 2ν/(1− ν) and the others at ωn, n = 1, 2 · · · , where

ωn =
nπ

L

√
E

ρ(1− ν2)
, n = 1, 2, 3 · · · , (6.7)

where ωn is the radial frequency corresponding to each n. However, α = kP /kL indicates

that total transmission can be achieved by choosing ν, this only works for low Poisson’s

ratio material since we are only interested in structures with small gap width.

As an example, we consider an infinite aluminum domain (E = 70 GPA, ν = 0.35, and

ρ = 2700 kg/m3) with an infinite array of aligned equidistant parallel gaps as shown in Fig.

6.1a. The thickness and length of each plate are h = 0.02 m and L = 0.2 m, respectively.

The geometric parameter h′ = 0.021 m is shown in Fig. 6.1b. From Fig. 6.2, we find that

the transmission is close to 1 over all frequencies so that P-wave transmits through these

effective plates with high efficiency.

6.1.3 Transmission and reflection of a normally incident SV-wave

To solve for the transmission and reflection coefficients of SV-wave, we assume the amplitude

of the displacement of the incident SV-wave as 1, reflected wave as R, transmitted wave as
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Figure 6.2: Transmission and reflection spectrum for a normally incident P-wave. The
blue line indicates the energy transmission coefficient, the black line indicates the energy
reflection coefficients.

T , and on the plate as A, B, U and V , see Fig. 6.1b, so that

w =



eikT x +Re−ikT x, x < 0,

AeikF x +Be−ikF x

+ UekF x + V e−kF x, 0 < x < L,

TeikT (x−L), x > L,

(6.8)

where kF = ω/cF and kT = ω/cT are the flexural and shear wavenumbers. Although

σxx and σyy exist in the plate, they do not contribute to the force on the plate since∫ h/2
−h/2 σxxdz = −

∫ h/2
−h/2Ez/(1 − ν

2)(∂2w/∂x2)dz = 0 and
∫ h/2
−h/2 σyydz = −

∫ h/2
−h/2Ezν/(1 −

ν2)(∂2w/∂x2)dz = 0. Since there is no y-dependence in the governing equation the shear

force per unit length in y-direction is Q =
∫ h/2
−h/2 σxzdz = −D(∂3w/∂x3). The shear force

in the exterior body is Q = h′σxz = µh′(∂w/∂x). The six z-averaged boundary conditions

are continuity of displacement, rotation angle and shear force at x = 0 and x = L, which
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imply the following system of equations:

1 +R =A+B + U + V,

1−R =
kF
kT

(A−B − iU + iV ),

1−R =
hkT
h′kF

(A−B + iU − iV ),

T =Azi +Bz−i + Uz + V z−1,

T =
kF
kT

(
Azi −Bz−i − iUz + iV z−1

)
,

T =
hkT
h′kF

(
Azi −Bz−i + iUz − iV z−1

)
,



(6.9)

with z = ekFL so that z±i = e±ikFL. This system gives the transmission and reflection

coefficients but the explicit expressions are long. We can split the solutions into symmetric

and anti-symmetric modes which reduces the system to two 3× 3 systems. This leads to

T =
1

2
(RS −RA)e−ikTL, (6.10)

R =
1

2
(RS +RA)e−ikTL, (6.11)

where the reflection coefficients RS and RA are

RS =

(
τ
α −

1
τ

)
1
th

+
(
τ
α + 1

τ

)
1
t + i2(

τ
α −

1
τ

)
1
th

+
(
τ
α + 1

τ

)
1
t − i2

, (6.12)

RA =

(
τ
α −

1
τ

)
th −

(
τ
α + 1

τ

)
t+ i2(

τ
α −

1
τ

)
th −

(
τ
α + 1

τ

)
t− i2

, (6.13)

with τ = kF /kT , α = h/h′, t = tan(kFL/2) and th = tanh(kFL/2). Note that RS and RA

are both of unit magnitude, which implies that the transmission and reflection coefficients

satisfy |T |2 + |R|2 = 1. Total transmission therefore occurs when RS + RA = 0. For small

gap width, i.e. α ≈ 1, |T | = 1 is obtained if kF = kT or if either of the following holds

tan(kFL/2)± tanh(kFL/2) = 0. (6.14)

However, kF = kT gives a single high frequency at which Kirchhoff plate theory does not

hold. This single frequency is not in the frequency range of interest since we only consider

long-wavelength flexural waves, i.e. λ� h. The frequencies satisfying Eq. (6.14) correspond

to the symmetric (+) and anti-symmetric (−) modal frequencies for a plate of length L fixed

at both ends, i.e. subject to the boundary conditions w = 0 and ∂w/∂x = 0.
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We use the same structure and material as the example of P-wave transmission. Fig-

ure 6.3 shows that flexural waves are quite dispersive on plates, it is also clear that the

transmission tends to unity at high frequency.

Figure 6.3: Transmission and reflection spectrum for a normally incident SV-wave. The
blue line indicates the energy transmission coefficient, the black line indicates the energy
reflection coefficients.

6.1.4 Discussion and improved solution for SV-wave

The transmission spectrum for SV- and P-waves obtained using our analytical model and

full wave FEM simulations are shown in Fig. 6.4 for comparison. For a normally incident

SV-wave, the low frequency behavior of the analytical solution match well with simulation

result, this indicates that our boundary condition assumptions are correct. The transmission

peaks (|T | = 1) shift at higher frequencies, this can be understood as the neck effect at the

junction between plate and half space changes the effective length of the plates. On the other

hand, the analytical model for P-wave is in good agreement with full FEM simulations, it

is obvious that the transmission peaks match well in frequency. The variances of the lowest

values of the transmission coefficients can be understood as resulted from the difference

between the areas at the junctions. However, this is not of significant importance in this
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(a)

(b)

Figure 6.4: Comparison of the analytical solution (solid line) and full FEM simulation
results (dashed line) for incident (a) SV-wave and (b) P-wave.
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chapter since the transmission of P-wave tends to unity at all frequencies.

Since the analytically calculated P-wave transmission coefficient matches well with sim-

ulation results and is always high as long as the gap width a is small, i.e. h/h′ ≈ 1, we only

consider an improved analytical solution for SV-wave incidence. We introduce an empirical

end-effect term β to represent the effective length of the plate L′ = (1 + β)L and replace

the L in our original model. The same geometry and the same material properties as the

previous example are used to demonstrate how the modification works. The full wave FEM

simulation is done using plate with h = 0.02 m and L = 0.2 m. Practically, L′ is the length

of the plate in the analytical model when we design a metamaterial, but L is the length

which will be used in FEM simulation. By iterating the value of β, the analytical solution

can be matched better to the full FEM solution at higher frequency range. Figure 6.5

shows good agreement by taking β = 0.07. This value of β only works for the parameters

Figure 6.5: Comparison of the improved analytical solution (solid line) and simulation
results (dashed line).

used in this example, new FEM simulations are required to find β for other parameter sets.

However, the analytical technique is still important since it helps understand the physics

behind the model and provides an initial parameter set in our design. Alternatively, we can
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seek modification in simulations by changing the length of plates using L = L′/(1 + β).

6.2 Metamaterial for asymmetric transmission of elastic waves

6.2.1 Mode conversion at free boundary

The asymmetric transmission effect of P-wave is investigated in a solid with a flat free

surface. As shown in Fig. 6.6a the energy carried by the incident P-wave from the left side

at a specific angle θP cannot transmit through the parallel gaps, and therefore will not be

detected beyond them. However, if the P-wave is incident from the right side of the white

slits at the angle θ′P as shown in Fig. 6.6b, the energy will transmit to the left side efficiently.

This transmission asymmetry can be achieved when the P-wave is incident from the left

side at a critical incident angle, at which total conversion to SV-wave occurs. An array of

parallel gaps perpendicular to the propagation direction of the reflected SV-wave can stop

the SV-wave but will let P-wave incident from the right side travel through. In this section,

we show the equations for mode conversion, and find the critical angle for total conversion

from P- to SV-wave, which will be used in the design of the asymmetric transmission device.

(a) (b)

Figure 6.6: Asymmetric transmission. The horizontal black line represents the free bound-
ary of a half-space, the rectangular white slits represent gaps, lines with arrow indicate the
propagation direction.

Assuming an incident P-wave at angle θ0 with respect to the surface normal and am-

plitude A0, the amplitudes of the reflected P- and SV-waves, A1 and A2, are given by Eqs.



81

(5.52) and (5.53) in Ref. [116] as

A1

A0
=

sin 2θ0 sin 2θ2 − κ2cos22θ2

sin 2θ0 sin 2θ2 + κ2cos22θ2
, (6.15)

A2

A0
=

2κ sin 2θ0 cos 2θ2

sin 2θ0 sin 2θ2 + κ2cos22θ2
, (6.16)

where κ = cP /cT =
√

2(1− ν)/(1− 2ν) from Eq. (6.2), and θ2 is the SV-reflection angle:

sin θ2 = κ−1 sin θ0. Figure 6.7 shows the P-wave reflection coefficient. Setting A1/A0 = 0

Figure 6.7: Amplitude ratio between incident and reflected P-wave of different materials,
from Eq. (6.15).

defines the critical incident angle θ0 = θP for total conversion from P-wave to SV-wave.

For example, in a half-space made of material with the properties of brick (E = 24 GPa,

ν = 0.12 and ρ = 2300 kg/m3), the critical angle for total P-to-SV conversion is θP = 43.5◦,

with SV reflection angle θS = 26.9◦. The energy plot from full FEM simulation is shown in

Fig. 6.8b and matches well with the theoretical prediction.

6.2.2 Simulation of the asymmetric transsmison

Figure 6.8 shows that brick-like material is very promising for the application of asymmetric

elastic transmission. The critical angle for total conversion is large, providing enough space



82

P
M
L P

M
L

(a)

P
M
L P

M
L

(b)

Figure 6.8: Mode conversion of P-wave at free boundary (bottom of the simulation domain)
in brick without slits/gaps. (a) P-wave incidence from left side at non-critical angle θ0 = 70◦.
(b) P-wave incidence from left side at critical angle θ0 = θP (= 43.5◦).

to place an array of rectangular gaps as shown in Fig. 6.6. Using brick as the material,

we design an array of plates/gaps to stop SV-wave but let P-wave transmit through. The

dimensions of each gap is 0.001 m wide and 0.5 m long, and the thickness of the plate

between gaps is 0.005 m. The gaps are aligned so that the angle between the normal of the

gap array and the normal of the free boundary is θS = 26.9◦. The horizontal line at the

bottom of the simulation domain is the free boundary of the half-space. Figure 6.9a shows

high energy reflection (|T |2 < 9%) for P-wave incidence from the left side, Fig. 6.9b shows

high energy transmission (|T |2 > 94%) for P-waves incident from the right side.

6.3 Elastic GRIN lens for focusing SV-wave

6.3.1 Diffraction and Huygens-Fresnel principle

We next design a GRIN lens, as depicted in Fig. 6.10a, to focus SV-waves. The white

strips are thin gaps, both of the ends are aligned vertically so that the effective plates

have the same length. However, the thicknesses of the plates are allowed to vary based

on the fact that flexural waves travel faster in thicker plates so that diffraction occurs

earlier in thicker plates. Assuming circular wavefront radiating from the right end of each

plate, the transmitted SV-wave intersect at the focal point according to Huygens’ principle.

The physics behind the focusing effect is based on diffraction effect similar to that in the

generation of sound bullets [115]. The GRIN lens is designed by first selecting the thickness
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Figure 6.9: Asymmetric transmission effect at f = 21.6 kHz. (a) P-wave incident from the
left side with θ0 = θP (= 43.5◦). (b) SV-wave incident from the right side with θ0 = θS
(= 26.9◦).

h1 and length L for the center plate, and choosing the distance d from the focal point to

the end of the center plate at a particular frequency f . The gap width a is fixed. The total

time for a flexural wave traveling from one end of a plate to the other end is tF = L/cF . As

shown in Fig. 6.10b, rays of the incident SV-wave from the left side travel along different

paths but arrive at the focal point simultaneously. We formulate the relations between the

thickness of the center plate and other plates as√
h2

total + d2 − d
cT

=
L

cF1

− L

cFi
, (6.17)

where cF1 is the flexural wave speed in the center plate and depends on h1, cFi is the flexural

speed in the ith plate and depends on the thickness hi, htotal is the distance from the neutral

line of the center plate to the neutral line of the ith plate which is accumulated by adding

the thickness of each plate and width of gaps. Note that this type of lens is designed at a

certain frequency for a chosen focal point, the focal distance will change if the frequency is

changed.
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(a) (b)

Figure 6.10: GRIN lens of a solid with parallel gaps. (a) Ray pathes showing the focusing
effect. (b) Relations of the geometric parameters.

6.3.2 Simulation of the focusing effect

Aluminum (E = 70 GPA, ν = 0.33, and ρ = 2700 kg/m3) is used as the background

material in our example. The width of each gap is a = 0.001 m, the length of each effective

plate between gaps is chosen as L1 = 0.2 m, the thickness of the center plate is h1 = 0.01 m.

The focal point is designed to be d = 0.2 m away from the end of the center plate at 40 kHz.

The thicknesses of other plates are calculated using Eq. (6.17). Since the plate thicknesses

are varying, the end-effect correction for the effective plate lengths are also different. We

take the same value of the modification term β for every plate for convenience, and iterate

its value to achieve optimal focusing effect. The focal point in Fig. 6.11(c) is roughly 0.25 m

away from the edge of plate array. Figure 6.11 shows that the focal point moves away from

the plate array when the frequency increases, this is due to the phase speed of the flexural

wave changing with frequency so that the phase gradient of the transmitted SV-wave also

changes.

6.4 Elastic prism for splitting SV- and P-waves

6.4.1 Wave speeds and refractive index

In this section, we design refractive devices that steer SV- and P-waves in different directions

to split them from each other. The refractive devices are based upon a solid with aligned

parallel gaps as shown in Fig. 6.12, in which the thin white strips are thin gaps with left end
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(a) (b)

(c) (d)

Figure 6.11: Focusing of SV-wave by GRIN lens with β = −0.048 at (a) 20 kHz, (b) 30
kHz, (c) 40 kHz and (b) 50 kHz.

aligned vertically and the right end aligned with a slope. The effective plates have different

lengths and thicknesses. Figure 6.12a illustrates the idea of steering SV- and P-waves in

different directions. The long arrows indicate the propagation directions, the short arrows

indicate the direction of particle motion, i.e. they are perpendicular to the propagation

direction of SV-wave and parallel to the propagation direction of P-wave. Zero-refraction of

SV-wave and positive refraction of P-wave are achieved based on the different wave speeds

of the two wave and by selecting plate members that have high transmission for both SV-

and P-waves.
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(a) (b)

Figure 6.12: Refraction of elastic waves. (a) Propagation directions of P- and SV- waves
through the prism. The black arrows indicate the propagation direction, the red arrows
indicate the direction of particle motion. (b) Incident and refracted angles.

The ratio of the length of the plate to the flexural wavelength is

L

λF
=

1

2π

(
E

12ρ(1− ν2)ω2

)− 1
4 L√

h
. (6.18)

Equation (6.18) and tF = L/cF imply that the flexural waves travel through plates of the

same L/
√
h in the same amount of time, and reach the other end with the same phase.

Note that total transmission for an incident SV-wave occurs at ω = ωn. Using tF = L/cF

and Eq. (6.18), we have tF = nπ/ωn and L/λF = n/2, where n = 1, 2, 3 · · · . With these

properties, we can select desired plate members for the solid structure, as shown in Fig.

6.12a, and achieve zero-refractive index for SV-wave, i.e. nSV = 0. As shown in Fig. 6.13a,

this zero-refractive effect is independent of frequency since diffraction occurs simultaneously

at the right ends of all the plates and forms a new wavefront which is parallel to the inclined

edge of plate array, therefore the new SV-wave will propagate in the direction perpendicular

to the edge. Notably, a normally incident SV-wave from the left side transmits to the right

side keeping its original type, the transmitted P-wave is weak because the coupling mainly

comes from the mode in the waveguide/plate. However, in the case of P-wave incidence,

the physics of the longitudinal wave on the plate is different since the phase speed does not

depend on the thickness of the plate. We consider the plate array as an effective medium

in which the longitudinal wave speed in the lateral direction is constant, so that we have

the refractive index nP = cP /cL = (1 − ν)/
√

1− 2ν, which only depends on the Poisson’s

ratio of the material. The refraction of P-wave can also be understood in terms of Huygens’



87

principle as shown in Fig. 6.13b. In summary, the refractive index for SV- and P-waves are

(a) (b)

Figure 6.13: Diffraction and refraction of (a) SV- and (b) P-waves.

nSV =
sin θr
sin θi

= 0, (6.19)

nP =
sin θr
sin θi

=
1− ν√
1− 2ν

, (6.20)

respectively.

The refractive device for SV- and P-waves is designed by choosing the thickness h1

and length L1 for the plate on the top, the thickness and length of the next plate can be

calculated using the relations

hi = ζL2
i , Li+1 = Li −

a+ hi
s

, (6.21)

where the fixed value ζ is chosen for a particular slope, Li is the length of the plate, and

Li+1 is the length of the next plate based on the chosen slope s.

We can also design negative-index metamaterial, i.e. nSV < 0, by varying the flexural

wave travel time in the plates. If the thickness of the plates are the same and we use a

similar structure as Fig. 6.12a, then the refractive index is

n′SV =

(
2E(1− ν)

ρ(1 + ν)h2ω2

) 1
4

, (6.22)

which varies with frequency.

6.4.2 Simulation of the steering effect

Using aluminum as the material, we choose the first plate with the dimensions h1 = 0.005

m, L1 = 0.1 m, and gap width a = 0.001 m. We also choose the parameters s = −3 and
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ζ = 0.5, then the length and thickness of other plates are calculated using Eq. (6.21). In

this example, we take the same modification term β for each plate for convenience, the

optimal results are obtained when β = 0.15. Figure 6.14 shows that SV-wave is steered

into the direction along the normal of the edge of plate array, i.e. nSV = 0. Figure 6.15

(a) (b)

Figure 6.14: Zero SV-wave refraction at (a) 10 kHz and (b) 20 kHz.

shows the positive refraction of P-wave. In the case of P-wave incidence, β does not play a

role but we keep using the same value for better comparison. The simulation results clearly

show that the angles of transmitted waves are independent of frequency, because the plate

array is designed so that the refractive index for both flexural wave and longitudinal wave

are independent of frequency.

6.5 Discussion

We have considered a novel configuration in solids made by parallel gaps that produce

arrays of aligned ”effective plates”. The transmission and reflection coefficients for normally

incident SV- and P-waves are calculated using thin plate theory. The GRIN lens is designed

by varying the thickness of the plates and demonstrated by full FEM simulations. The

refractive device for SV- and P-waves is designed by fixing the ratio between L and
√
h and

choosing the slope of the edge of the plate array. The one-way effect for P-wave is sensitive
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(a) (b)

Figure 6.15: Positive P-wave refraction at (a) 20 kHz and (b) 40 kHz.

to frequency and is, therefore, a multi-band effect. The applications of the aligned parallel

plates include but not limited to the designs in this chapter. For example, the plates can

be tuned to achieve phase change from 0 to 2π and applied in the metasurface design to

guide SV-wave as we discuss in the next chapter.
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Chapter 7

Anomalous refraction and asymmetric transmission of

SV-wave through elastic metasurfaces

In 2011, Yu et al. [117] proposed to engineer the phase discontinuities along the interface

according a Generalized Snell’s law to redirect light:

sin θt
λt
− sin θi

λi
=

1

2π

dφ

dy
, (7.1)

where the subscripts i and t denote the incident and transmitted waves, respectively. Equa-

tion (7.1) implies that the transmitted angle can be designed at will by choosing a proper

phase gradient dφ/dy. This idea has been introduced to acoustic metamaterial design to

mapnipulate sound fields with sub-wavelength slabs, i.e. metasurfaces. A common method

in the design is to use space coiling structures to achieve certain impedance mismatch so

that the transmitted phases through each unit cell are different [68, 66, 78, 79, 67]. Many

applications are proposed in order to control acoustic waves in an almost arbitrary way. For

instance, Xie et al. [66] demonstrated anomalous refraction using an acoustic metasurface

comprised of labyrinthine unit cells. In addition, they designed a metasurface that turns

propagating waves to surface waves. Shen et al. [118] used a combination of an gradient

index metasurface and a near-zero index metasurface to achieve asymmetric acoustic trans-

mission. However, the metasurface design for elastic waves is still relatively unexplored.

The main reason is that mode conversion usually exists at material interface, therefore the

phase modulation of a specific wave type is hard to achieve. Recently, Zhu et al. [119]

demonstrated several metasurfaces for controlling S0 and A0 modes on elastic plates by

tuning the local resonances of the embedded ”acoustic black holes”.

The main objective of this chapter is to design sub-wavelength metamaterial slabs to

control the propagation direction of SV-wave in bulk solids. The metasurface design usually

relies on the phase modulation using local resonances of the unit cell which suffers from
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low transmission. Distinguished from the conventional method, the design approach in

this chapter do not involve resonant effects. The required phase gradient is engineered by

varying plate thickness to tune the phase speed so that a wide range of phase delay can be

achieved. The design method requires accurate phase modulation in each unit cell, thus it

is essential to establish a more sophisticated model which better matches the phase speed

in the unit cells. A metasurface slab is designed according to Eq. (7.1) to split SV- and

P-waves into different directions. When paired with another uniform metasurface which

has a lower effective speed, spatial asymmetric transmission through the metasurfaces can

be achieved.

This chapter is organized as follows. In Sec. 7.1, we review the dispersion relation for the

Mindlin plate, and derive the transverse wave speed on the plate as a function of thickness for

phase modulation. The metasurface for splitting SV- and P-waves is presented in Sec. 7.2.

Section 7.3 illustrates the asymmetric transmission effect through a pair of metasurfaces.

Section 7.4 concludes this chapter.

7.1 Phase modulation by thickness variation of plates

7.1.1 Dispersion relation

The unit structure considered in this chapter is the same as the one considered in Chapter 6.

The coordinate system and the plate parameters are shown in Fig. 6.1, but the governing

equations on the plates are different. The precise phase modulation of transverse wave

requires more advanced model to describe the wave propagation on elastic plates. Here we

use the well known Mindlin plate theory which takes the shear correction and rotary inertia

into account. Neglecting the y−dependent terms, the governing equations for transverse

waves reduce to

κµ
∂

∂x

(∂w
∂x
− ϕ

)
= ρ

∂2w

∂t2
,

EI
∂2ϕ

∂x2
+ κµh

(∂w
∂x
− ϕ

)
= ρI

∂2ϕ

∂t2
,

(7.2)

where κ and ϕ are the shear correction coefficient and the cross section rotation angle,

respectively. These equations are similar to the Timoshenko beam model with cross section

area A changed to plate thickness h [120, p. 183]. The shear correction coefficient for
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Mindlin plate is usually taken as κ = π2/12 [116, p. 257].

Now we consider 1D free propagation of time harmonic waves in the infinite plate. The

solutions have the general form

w = A1e
i(kx−ωt), ϕ = A2e

i(kx−ωt), (7.3)

where k is the wavenumber and ω is the circular frequency. Substituting the solutions into

Eq. (7.2), we haveµhκk2 − ρhω2 iµhκk

iµhκk −(µhκ+ EIk2 − ρIω2)

A1

A2

 =

0

0

 . (7.4)

The non-trivial solutions require

det

µhκk2 − ρhω2 iµhκk

iµhκk −(µhκ+ EIk2 − ρIω2)

 = 0, (7.5)

which yields the dispersion relation

EI

ρh
k4 − I

h

(
1 +

E

µκ

)
c2k4 − c2k2 +

ρI

µhκ
c4k4 = 0. (7.6)

7.1.2 Phase modulation

Using the identity ω = ck in Eq. (7.6), the frequency dependent phase speed can be written

as

c2 =
ρIω2

(
E + µκ

)
±
√(

ρIω2
(
E + µκ

))2
− 4
(
ρ2I2Eµκω4 − ρhEIµ2κ2ω2

)
2
(
ρ2Iω2 − ρhµκ

) , (7.7)

where ”±” in the nominator correspond to the phase speeds of traveling and evanescent

waves. In the case considered in the following, ”−” corresponds to the traveling wave while

”+” corresponds to the evanescent wave. Our objective is to design an array of aligned

parallel plates connected to two half-spaces on both ends similar to Fig. 6.1a, the main

difference is that the plate thicknesses are not identical. The material of the plates and

the half-spaces are aluminum with Young’s modulus E = 70 GPa, Poisson ratio ν = 0.33

and density ρ = 2700 kg/m3. The plates have uniform length L = 5 cm with thickness

h varying from 0.2 cm to 1 cm. The plates are equally spacing with gap width g = 0.5
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mm. Our goal here is to tune the phase delay following Eq. (7.1) to cover a phase change

of 2π at 60 kHz, where the wavelength of the SV-wave in the half-space is λSV = 5.2 cm

(> L). The Timoshenko/Mindlin model adopted here is more accurate than the Kirchhoff

plate model (cF in Eq. (6.2)) for thick plates and at high frequency range, this can be

easily compared by considering a plate of thickness h = 1 cm. The relations between the

phase speed and frequency are plotted in Fig. 7.1. Comparing to the FEM results, it is
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Figure 7.1: Relations between the phase speed and frequency for a 1 cm thick plate. The
red curve is calculated using Kirchhoff model, the blue curve is calculated using Timo-
shenko/Mindlin model, and the black circles are extracted from FEM simulations.

clear that the Timoshenko/Mindlin plate model approximate the speeds very well at all

frequency range. The purpose of this chapter is to design metasurface slabs that work

at specific frequency, which requires several plates of different thickness. Therefore, it is

important that the model is capable of predicting phase speeds accurately for thick plates.

Consider transverse wave propagation on plate with different thicknesses from 0.1 cm to 1

cm at 60 kHz, the relations between the speed and the plate thickness are shown in Fig.

7.2. It is obvious that the FEM simulation results agree with the theoretical prediction to
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Figure 7.2: Relations between the phase speed and thickness of the plate at 60 kHz. The blue
curve is calculated using Timoshenko/Mindlin model, and the black circles are extracted
from FEM simulations.

a remarkable degree for thick plates.

Note that a full model to calculate the transmission and reflection coefficients is necessary

in order to tune the phase change accurately, this work remains to be done in the future.

Here we only consider the transmitted wave in the phase modulation process. According to

Eq. (7.1), it is essential to achieve a complete phase delay of 2π in order to design a infinite

metasurface slab for anomalous refraction. The phase change through each plate is

∆φ = ωt =
2πfL

c
, (7.8)

where c depends on the thickness of the plate. For plate thickness from 0.2 cm to 0.8 cm, we

can cover a phase change of 2.6π which is more than sufficient to our metasurface designs.

7.2 Split SV- and P-waves using an elastic metasurface

The anomalous refraction effect by a metasurface is illustrated in Fig. 7.3. The metasurface
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   Unit

Structure

Figure 7.3: Anomalous refraction by a metasurface comprised of several unit structures.
The black arrows indicate the propagation direction of the wave, the red arrow indicate the
direction of particle motion. The blue lines show the phase gradient in each unit structure.

is designed according to the Generalized Snell’s law, Eq. (7.1), with a constant phase gradi-

ent dφ/dy = 40π/
√

3 rad/m, which results in a refracted angle θr = 30◦ for a metasurface

of width L = 5 cm. The plates have equal length 5 cm and thickness varying from 2.471

mm to 6.836 mm. The plates are equally separated from each other by 0.5 mm-wide cracks.

The plates are designed to perfectly match the linear phase gradient at 60 kHz, where

λSV = 5.2 cm> L. The unit structure covering the whole 2π phase change is comprised

of a total number of 19 plates, and the metasurface slab is composed of infinite number of

the unit structures. With this metasurface, we can easily split SV- and P-waves in elastic

solids. The underlying physics here is that the longitudinal wave speed is independent of

the plate thickness such that they propagate straight through the metasurface. Full wave

FEM simulation results are shown in Fig. 7.4. It is clear that the transmitted SV- and

P-waves propagate into different directions indicated by the black arrows. It is notable that

the mode conversion induced the by the metasurface is weak, so that the transmitted wave

keeps the same type as the incident wave. The refracted angle of the transmitted wave

matches well the design to a remarkable degree.
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(a)

(b)

Figure 7.4: SV- and P-wave splitting at 60 kHz. (a) shows the curl of the displacements
to represent SV-waves, (b) shows the trace of the strain to represent P-waves. The black
arrows indicated the propagation direction of the waves.
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7.3 Asymmetric transmission of SV-wave through elastic metasurfaces

The asymmetric transmission device designed in this section is different from the one de-

signed in Sec. 6.2 where the mode conversion at free boundary is the key. Here the asym-

metric transmission is achieved by paring the gradient index metasurface with a uniform

slow medium. The main underlying physics is the total internal reflection at the uniform

metasurface for the refracted wave through the gradient index metasurface. It is known

that the critical angle for total internal reflection at material interface is

θc = θi = arcsin
(n2

n

)
, (7.9)

where n is the refractive index of the background medium, and n2 is the effective refractive

index of the uniform slab. According to Eq. (7.9), total reflection occurs when the incident

angle, i.e. the refracted angle through the gradient metasurface θr, is greater than the

critical angle θc. We now take advantage of this effect to design the asymmetric transmission

device as depicted in Fig. 7.5. When the wave is normally incident from the left side, the

gradient metasurface changes the propagation direction of the transmitted wave so that the

refracted angle is greater than the critical angle for the uniform metasurface. Then total

internal reflection occurs on the interface between the background medium and the uniform

slow medium. In this way, the waves cannot travel through the device. However, if the

wave is normally incident from the right side, nearly half of the energy carried by the waves

pass through the uniform and the gradient metasurfaces.

The asymmetric transmission device is designed by paring the metasurface designed in

Sec. 7.2 with a uniform slab. The uniform slab is comprised of equally spacing plates with

the same thickness and length. The length of the plate, i.e. the width of slab, is L = 5

cm. The constant gap width is 0.5 mm. The thickness of each plate is chosen as 5 mm

so that 60 kHz is not a resonant frequency. It is easy to calculate the effective transverse

wave speed in the slab using Eq. (7.2), we have c = 1498.81 m/s. The wave speed in the

background medium is cSV =
√
µ/ρ = 3121.95 m/s. Using Eq. (7.9), we obtain the critical

angle for total internal reflection θc = 28.69◦, which is smaller than the refracted angle

θr = 31◦ through the gradient metasurface. Full wave FEM simulations were done using

COMSOL Multiphysics to demonstrated the asymmetric transmission effect. The results
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(a)

(b)

Figure 7.5: Asymmetric elastic transmission through metasurfaces. The green slab is a
gradient metasurface for anomalous refraction, the blue slab is a uniform metasurface has
lower effective speed. The black and red arrows idicate the propagation direction where the
wave is incident from the left side in (a) and is incident from the right side in (b).

are shown in Fig. 7.6. It is easy to see that the transmission is almost zero when the wave

is incident from the left side, while a considerable amount of energy transmit through the

metasurfaces when the wave is incident from the right side.

7.4 Discussion

To summarize, we have considered the Timoshenko/Mindlin theory to improve our model

developed in Chapter 6. The improved phase speed calculation enables us to tune the

phase of the transmitted transverse wave through plates, which makes it possible to design

metasurfaces by phase modulation. A metasurface slab is designed following Eq. (7.1) with a
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(a)

(b)

Figure 7.6: Asymmetric transmission for normally incident SV-waves (a) from the left side,
(b) from the right side. The black arrows indicate the propagation direction.
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constant phase gradient dφ/dy to split SV- and P-waves. When paired with a slow medium,

the normally incident SV-wave will transmit through the structure from one direction but

can not pass through the structure from the other direction. Full wave simulation results

are presented to demonstrate the beam splitting and asymmetric transmission effects. The

present design method makes it possible to manipulate bulk elastic waves with ultra-thin

metamaterial slabs.
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Chapter 8

Elastic waves in fluid-saturated cubic double porosity

medium

The pioneering work of solid-fluid consolidation theory and elastic wave propagation in

fluid-saturated porous solids by Biot [121, 82, 122, 83] inspired much research efforts in this

field. Simultaneous existence of fast and slow compressional waves in solid-fluid aggregates is

predicted by Biot [82] in 1956. The theory not only has significant applications in petroleum

industry but also is important in the material aspects. However, the experimental detection

of the slow wave is extremely difficult because it damps out quickly. Plona first observed

the slow wave at ultrasonic frequencies [123]. Later on, Johnson et al. [124] discovered the

relations between the tortuosity and the speed of the slow wave. Many efforts have been

paid to generalize the theory to find a second slow wave [125, 126], but the existence of such

wave has not been experimentally demonstrated [126].

The porous medium considered in chapter is an anisotropic solid of cubic symmetry

with two isolated infinite pores. The pores are separated from each other so that they can

be saturated with same or different fluids, thus they need to be treated differently. This

study is similar to but different from the cases investigated in Refs. [125, 126]. Berryman

et al. [125] generalized Biot’s theory [82, 83] for application in double-porosity and dual-

permeability medium, in which the fluid in the matrix and fracture pores are the same.

Beresnev [126] developed a theory to calculate the fast wave speed in a porous medium

saturated with two immiscible fluids. Various theories predict a third dilatational wave in

fluid-saturated porous solids. Here we propose a solid frame of the gyroid minimal surface

type for manipulating a third dilatational wave. We first generalize the theory for low

frequency elastic wave propagation in cubic double porosity medium saturated with two

distinct fluids, then compare with the wave speeds calculated using FEM simulations. The
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results in this chapter may be used to tune the structure to help detect the second slow

wave experimentally.

This chapter is structured as follows. We begin with the derivation of equations of motion

as well as the wave equations and speeds in Sec. 8.1. In Sec. 8.2, we simplify the equations

for isotropic single porosity medium. Examples of fluid-saturated gyroid structures are

considered in Sec. 8.3, theoretical results are compared against the FEM simulation results.

Section 8.4 concludes this chapter.

8.1 Wave propagation in cubic double porosity media

8.1.1 Constitutive relations of the solid-fluid aggregate

We will use the original notations of Boit [82, 83] as much as possible in the development

of the theory. Similar to Beresnev’s derivation [126], using notations in Love’s book [127,

p. 160] the potential energy for the fluids saturated cubic double porosity medium is

2V =Pε2 − 2(P −A)(εxxεyy + εyyεzz + εzzεxx) +N(ε2
xy + ε2

yz + ε2
zx)

+ 2Q1εε1 + 2Q2εε2 +R1ε
2
1 +R2ε

2
2 + 2R3ε1ε2,

(8.1)

where εij , ε1ij and ε2ij are the strain tensors for the solid and two fluids, with

ε = εxx + εyy + εzz = ∇ · u,

ε1 = ε1xx + ε1yy + ε1zz = ∇ ·U1,

ε2 = ε2xx + ε2yy + ε2zz = ∇ ·U2,

(8.2)

where u(x, t), U1(x, t) and U2(x, t) are the displacements in the solid and fluids. Due to the

fact that the two fluids are filled in two isolated pores, we assume they do not interact with

each other and therefore let R3 = 0. An alternative interpretation is that one fluid interact

with the other one through the solid frame, so that the effect of R3 is already included in

Q1 and Q2. Following Eq. (8.1) with R3 terms omitted, the constitutive relations of the

aggregate are

σ = (P −A)∇uI +A∇ · uI +N [∇u+ (∇u)T ] +Q1∇ ·U1I +Q2∇ ·U2I,

s1 = Q1∇ · u+R1∇ ·U1,

s2 = Q2∇ · u+R2∇ ·U2,

(8.3)
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where σ represents the stress tensor of the solid; s is a scalar proportional to the fluid

pressure; and I is a three by three identity matrix. The constants P , A, N , Q1, Q2, R1

and R2 are unknown. Note that P = A+ 2N is only valid for the isotropic case.

8.1.2 Dynamic equations of the solid-fluid aggregate

Taking one additional fluid into account, the kinetic energy of the solid-fluid aggregate is

written as [125]

2T =ρ11
∂2u

∂t2
+ ρ22

∂2U1

∂t2
+ ρ33

∂2U2

∂t2

+ 2ρ12
∂u

∂t
· ∂U1

∂t
+ 2ρ13

∂u

∂t
· ∂U2

∂t
+ 2ρ23

∂U1

∂t
· ∂U2

∂t
,

(8.4)

where ρij are densities related to the inertia of solid and fluid phases. Then the equilibrium

equations can be derived using Lagrange’s equations. In the absence of dissipation, the

equations of motion are

ρ11
∂2u

∂t2
+ ρ12

∂2U1

∂t2
+ ρ13

∂2U2

∂t2
= ∇ · σ,

ρ12
∂2u

∂t2
+ ρ22

∂2U1

∂t2
+ ρ22

∂2U2

∂t2
= ∇s1,

ρ13
∂2u

∂t2
+ ρ23

∂2U1

∂t2
+ ρ33

∂2U2

∂t2
= ∇s2.

(8.5)

The densities are derived by considering three cases [82, 125]: (1) ∂u/∂t = ∂U1/∂t, (2)

∂u/∂t = ∂U2/∂t and (3) ∂U1/∂t = ∂U2/∂t under the assumption that the mass coupling

between different fluids are weak and therefore neglected. Then the six unknown densities

are expressed as

ρ11 = (1− φ)ρs + γφρf1(τ1 − 1) + (1− γ)φρf2(τ2 − 1),

ρ22 = γφρf1τ1,

ρ33 = (1− γ)φρf2τ2,

ρ12 = −γφρf1(τ1 − 1),

ρ13 = −(1− γ)φρf2(τ2 − 1),

ρ23 = 0,

(8.6)

where ρs is the density of the solid material, ρf1 and ρf2 are the densities of the two

fluids, τ1 and τ2 are tortuosities of the two pores, φ is the overall porosity of the solid,
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and γ is the pore volume fraction occupied by the pore denoted by subscript 1. The term

ρ23 = 0 indicate that there is no mass coupling between two fluids. As a check of the

total mass, we may consider the limiting case ∂u/∂t = ∂U1/∂t = ∂U2/∂t. This leads to

ρ11 + ρ22 + ρ33 + 2ρ12 + 2ρ13 + 2ρ23 = (1− φ)ρs + γφρf1 + (1− γ)φρf2.

8.1.3 Wave equations and speeds

The wave equations along three principal axises, i.e. (100), (010) and (001), are derived by

inserting Eq. (8.3) into the equilibrium Eq. (8.5), we have

(P −A− 2N)∇∇uI +N∇2u+∇∇ · [(A+N)u+Q1U1 +Q2U2]

=
∂2

∂t2
(ρ11u+ ρ12U1 + ρ13U2),

∇∇ · (Q1u+R1U1) =
∂2

∂t2
(ρ12u+ ρ22U1),

∇∇ · (Q2u+R2U2) =
∂2

∂t2
(ρ13u+ ρ33U2).

(8.7)

These are the governing equations of the wave propagation in the fluid-saturated porous

solid. The displacement fields u, U1 and U2 can be decomposed into dilatational and

rotational terms as

∇ · u = ε, ∇× u = ω,

∇ ·U1 = ε1, ∇×U1 = Ω1,

∇ ·U2 = ε2, ∇×U2 = Ω2.

(8.8)

Along similar lines of the development of the compressional and shear wave equations by

Biot [82], we apply curl operations to Eq. (8.7) and obtain the following equations

∂2

∂t2
(ρ11ω + ρ12Ω1 + ρ13Ω2) = N∇2ω,

∂2

∂t2
(ρ12ω + ρ22Ω1) = 0,

∂2

∂t2
(ρ13ω + ρ33Ω2) = 0.

(8.9)

These equations can be combined into one equation by eliminating Ω1 and Ω2, we have

ρ11

(
1− ρ2

12

ρ11ρ22
− ρ2

13

ρ11ρ33

)
∂2ω

∂t2
= N∇2ω. (8.10)
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It is straightforward that there is only one rotational speed in the fluid-saturated double

porosity solid. The shear wave velocity is

vs =

√√√√√ N

ρ11

(
1− ρ212

ρ11ρ22
− ρ213

ρ11ρ33

) . (8.11)

We now apply divergence operations to Eq. (8.7) and write the following system of

equations

∇2(Pε+Q1ε1 +Q2ε2) =
∂2

∂t2
(ρ11ε+ ρ12ε1 + ρ13ε2),

∇2(Q1ε+R1ε1) =
∂2

∂t2
(ρ12ε+ ρ22ε1),

∇2(Q2ε+R2ε2) =
∂2

∂t2
(ρ13ε+ ρ33ε2).

(8.12)

We first define a reference velocity as

vc =
√
H/ρ, (8.13)

where H = P + R1 + R2 + 2Q1 + 2Q2, and ρ is the total mass of the solid-fluid aggregate

per unit volume. Then we introduce the dimensionless parameters

α11 =
P

H
, α22 =

R1

H
, α33 =

R2

H
, α12 =

Q1

H
, α13 =

Q2

H
, α23 = 0,

β11 =
ρ11

ρ
, β22 =

ρ22

ρ
, β33 =

ρ33

ρ
, β12 =

ρ12

ρ
, β13 =

ρ13

ρ
, β23 = 0.

(8.14)

It is easy to write Eq. (8.12) as
α11z − β11 α12z − β12 α13z − β13

α12z − β12 α22z − β22 0

α13z − β13 0 α33z − β33



C1

C2

C3

 = 0, (8.15)

where C1, C2 and C3 are amplitudes of the waves in solid and fluids. The dilatational wave

speeds are related to the value of z, which is the solution of Eq. (8.15). To have non-trivial

solutions, the determinant of the three by three matrix in Eq. (8.15) must equal to zero.

In the most general case where the two different pores have different shapes and filled by

different fluids, this equation must have three different roots that corresponding to one fast

wave and two slow waves:

v1 = vc/
√
z1,

v2 = vc/
√
z2,

v3 = vc/
√
z3.

(8.16)
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The parameters P , Q1, Q2, R1, R2 and N are unknown, and can be determined by com-

paring Eq. (8.16) with the effective speeds extracted from FEM simulations.

Equation (8.15) also predicts a third dilatational wave if the pores have different volume

fractions or tortuosities even they are filled by the same fluid. However, there is one excep-

tional case in which the third solution is trivial. If the two pore geometries are identical and

filled by the same fluid, the third solution of Eq. (8.15) becomes z3 = β22/α22 = β33/α33

which leads to (α12z3 − β12)C1 = 0. The parameters α12, α22 and β22 are all positive,

whereas β12 is negative. As a result, this solution yields C1 = C2 = C3 = 0 which means

the aggregate is at rest.

8.2 Isotropic single porosity

8.2.1 Elastic constants and densities

As discussed in the last section, Eq. (8.15) only has two non-trivial solutions when the two

identical pores are filled with the same fluid. This indicates that we can treat this kind

of structure as single porosity material and reduce the system to a two by two one. The

simplification results in a set of equations the same as the original Biot theory [82]. The

fluid-saturated gyroid structure considered in this chapter is weakly anisotropic, therefore

we can simply apply the Biot theory in our analysis. Here we summarize the main results

and parameters for later use. The elastic constants P , Q and R can be related to porosity

φ, bulk modulus of the solid material Ks, bulk modulus of the fluid Kf , bulk modulus of

the porous ”drained” solid frame Kb and the shear modulus N of the dry solid frame via

three ”Gedanken experiments” [128]. We have the following three equations

1

Ks
=

(1− φ)R− φQ
(P − 4

3N)R−Q2
,

1

Kf
=
φ(P − 4

3N)− (1− φ)Q

(P − 4
3N)R−Q2

,

1

Kb
=

R

(P − 4
3N)R−Q2

,

(8.17)

where Ks and Kf are known; Kb and N are the properties to be measured by the ”Gedanken

experiments”; P , Q, R are the unknown parameters. Rearranging these equations, the
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unknown coefficients P , Q and R can be written as [129]

P =
(1− φ)(1− φ− Kb

Ks
)Ks + φKsKfKb

1− φ− Kb
Ks

+ φKsKf

+
4

3
N,

Q =
(1− φ− Kb

Ks
)φKs

1− φ− Kb
Ks

+ φKsKf

,

R =
φ2Ks

1− φ− Kb
Ks

+ φKsKf

.

(8.18)

The compressional and shear wave speeds (vP and vT ) of the dry sample can be easily

obtained from the dispersion curves calculated using COMSOL Multiphysics. Then we can

calculate Kb and N using the following equations

vP =

√
Kb + 4

3N

(1− φ)ρs
,

vT =

√
N

(1− φ)ρs
.

(8.19)

The densities ρij related to the inertia of the solid and fluid phases are

ρ11 = ρ1 + ρa,

ρ22 = ρ2 + ρa,

ρ12 = −ρa,

(8.20)

where

ρ1 = (1− φ)ρs,

ρ2 = φρf

(8.21)

are the mass of solid per unit volume and the mass of fluid per unit volume, respectively.

The parameter ρa represents the mass coupling between solid and fluid phases and can be

written as

ρa = φρf (τ − 1), (8.22)

where τ > 1 is the tortuosity coefficient which only depends on the pore geometry [124].

The densities satisfy the following relation

ρ = ρ11 + 2ρ12 + ρ22 = ρ1 + ρ2 = ρs + φ(ρf − ρs), (8.23)

where ρ is the total mass of the solid-fluid composite per unit volume.



108

8.2.2 Biot wave speeds

There is only one rotational wave speed in fluid-saturated isotropic single porosity solid.

The velocity of this wave is

vs =

√√√√ N

ρ11(1− ρ212
ρ11ρ22

)
. (8.24)

There are two dilatational waves in the fluid-solid aggregates. The velocities of these waves

are

v1 = vc/
√
z1,

v2 = vc/
√
z2,

(8.25)

where vc is a reference speed defined as

vc =
√
H/ρ, (8.26)

with

H = P +R+ 2Q. (8.27)

The parameters z1 > z2 are obtained by solving the following equation

(α11α22 − α2
12)z2 − (α11β22 + α22β11 − 2α12β12)z + (β11β22 − β2

12) = 0, (8.28)

where the parameters αij and βij are

α11 = P/H, α22 = R/H, α12 = Q/H,

β11 = ρ11/ρ, β22 = ρ22/ρ, β12 = ρ12/ρ.

(8.29)

The first dilatational wave v1 is the fast wave in which the amplitudes of waves are in phase,

while the second wave v2 is the slow wave in which the amplitudes are of the opposite phase.

8.3 Wave speeds in fluid-saturated gyroid structures

8.3.1 Effective properties of the empty gyroid structure

In this section, we compare the theoretical results with FEM simulations. The gyroid

structure considered here is a self-assembled minimal surface without self-intersection first

introduced by Schoen [130] in 1970. It can be trigonometrically approximated by

sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x) = 0. (8.30)
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Now we assume the porous solid has the shape of the gyroid minimal surface type but with

a certain thickness as shown in Fig. 8.1a. The wall has uniform thickness and separates the

(a) (b)

Figure 8.1: Gyroid structures. (a) A cube comprised of 6× 6 unit cells, (b) the Irreducible
Brillouin Zone of the structure.

whole space into two identical parts, such that the fluids in the two channels are isolated

from each other. This feature provides a easy way to design a porous material with double

porosity, and hence introduce a second slow wave by adding two distinct fluids into the

pores according to the findings in Sec. 8.2.

The unit cell (cube) of the gyroid structure used in our numerical example has edge

length L = 3.14 cm and porosity φ = 0.668811. The material of the solid frame is aluminum

with Young’s modulus Es = 70 GPa, Poisson’s ratio νs = 0.33 and density ρs = 2700 kg/m3.

Before calculating the wave speeds in the fluid-saturated gyroid structrue, we shall evaluate

the effective properties of the dry structure. The effective density is the average of the mass

over volume of the unit cube, we have

ρeff = ρ1 = (1− φ)ρs. (8.31)

It is easy to calculate the effective density ρeff = 894.21 kg/m3. Then the key to the

evaluation of elastic parameters is the calculation of the speeds. From Fig. 8.1a we find

that the gyroid structrue has rotational symmetry about the body diagonals by π/3 and
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2π/3, therefore it has cubic symmetry. The gyroid structure is usually assumed to be

isotropic because the anisotropy is weak when the volume fraction is low. This allows us to

evaluate the effective elastic constants of the dry sample from the compressional and shear

wave speeds using Eq. (8.19).

The wave speeds in the dry structure are calculated using COMSOL Multiphysics. By

imposing Bloch-Floquet periodic conditions on the cubic faces, we can compute eigenfre-

quencies corresponding to each wave vector along the boundary of the IBZ, as shown in

Fig. 8.1b, and evaluate the effective wave speeds at low frequency range. The dispersion

curves along the Γ − X path of the empty gyroid structure considered in this chapter is

shown in Fig. 8.2. The two curves starting from f = 0 Hz correspond to the shear mode

0

1

2

3

4

5
104

Longitudinal mode

Shear mode

Figure 8.2: Dispersion curves along the Γ − X path of the IBZ for the gyroid structure
without fluid.

(lower curve) and longitudinal mode (higher curve), respectively. Taking the slop of each

dispersion curve, the speeds of the longitudinal and transverse waves are vP = 3840 m/s

and vT = 2080 m/s, respectively. Using Eq. (8.19), we have the effective elastic constants

Kb = 8.027 GPa and N = 3.869 GPa.
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8.3.2 Wave speeds in gyroid structure filled by single fluid

Now we assume the two pores of the gyroid structure are saturated by the same fluid. The

structure separates the internal channel into two isolated ones, we can still treat them as

one because the fluids are the same. In this example, the fluid inside the pores is water

with bulk modulus Kf = 2.25 GPa and density ρf = 1000 kg/m3. Using Eq. (8.21), the

mass density of solid per unit volume and the mass of fluid per unit volume are ρ1 = 894.21

kg/m3 and ρ2 = 669.99 kg/m3, respectively. The total mass per unit volume from Eq.

(8.23) is ρ = 1564.2 kg/m3. Note that the total mass of solid per unit volume is the same

as the effective density of the empty gyroid unit structure, i.e. ρs = ρeff. For the gyroid

structure, the tortuosity has been studied for other purposes by Chen et al. [131] where the

values for different wall thicknesses are all close to 1.5. Here we directly insert τ = 1.5 into

Eq. (8.22), this leads to the mass coupling coefficient ρa = 334.41 kg/m3. Plugging ρa into

Eq. (8.20), we have ρ11 = 1228.62 kg/m3, ρ22 = 1003.22 kg/m3 and ρ12 = −334.41 kg/m3.

The shear modulus N of the dry frame and the density parameters of the composite are

already known. Inserting N and densities into Eq. (8.24), we have the rotational wave speed

vs = 1860.92 m/s. The band diagram of the fluid-saturated structure is computed using

COMSOL by applying Bloch-Floquet periodic conditions on the solid and fluid phases.

Although the relative motion between the solid and fluid phase is not incorporated into the

FEM model, we can still use it to extract the wave speeds in the structure. The dispersion

curves are shown in Fig. 8.3. An additional longitudinal mode appears in the band diagram

due to the presence of the fluid (two curves overlap together). From the mode shapes of

each mode, we find that the higher longitudinal mode correspond to the fast wave while

the lower one correspond to the slow wave. The shear wave speed extracted from the band

structure at the quasi-static regime is vs = 1871.09 m/s. The result calculated using Biot’s

theory is only 0.54% lower than the FEM result where full elastodynamic equations were

solved numerically. The dilatational wave speeds are related to the elastic constants P , Q

and R. These parameters can be achieved using Eq. (8.18) in which Ks = Es/3(1 − 2νs)

is the bulk modulus of the solid material. We have P = 13.338 GPa, Q = 0.477 GPa

and R = 1.489 GPa, respectively. Then the reference velocity defined in Eq. (8.26) is
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Figure 8.3: Dispersion curves along the Γ − X path of the IBZ for the gyroid structure
saturated by the same fluid.

vc = 3177.55 m/s. The parameters z1 and z2 are calculated by combining Eqs. (8.28) and

(8.29) which yields two positive real values, i.e. z1 = 0.811 and z2 = 7.175. Inserting z1

and z2 into Eq. (8.25), we obtain the two dilatational wave speeds: v1 = 3528.40 m/s and

v2 = 1186.30 m/s. The first one is the fast wave in which the amplitudes of waves are in

phase, whereas the second one is the slow wave in which the amplitudes are of the opposite

phase. The speeds of the fast and slow dilatational waves calculated using COMSOL are

v1 = 3452.53 m/s and v2 = 1041.25 m/s. The results generally agree with the theoretical

predictions, the discrepancies might due to the selection of the tortuosity.

8.3.3 Wave speeds in gyroid structure filled by two fluids

It is shown that when the solid frame is saturated by two distinct fluids, a second slow

wave exists in the fluid-solid aggregate. In this section, we use the same material for the

solid phase and fill one of the two pores with water, while fill the other pore with oil. The

densities of the fluid phases are ρf1 = 1000 kg/m3 for water and ρf2 = 789 kg/m3 for oil,

respectively. The porosity of the structure is φ = 0.668811 where each of the pore occupies
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half of the porosity, i.e. γ = 0.5. The tortuosity of the two different pores are the same

because they have the same shape, we have τ1 = τ2 = 1.5. Using Eq. (8.6), we have the

desities ρ11 = 1193.34 kg/m3, ρ22 = 501.61 kg/m3, ρ33 = 395.77 kg/m3, ρ12 = −167.20

kg/m3 and ρ13 = −131.92 kg/m3.

Plugging the densities and shear modulus N into Eq. (8.11), we have the shear wave

speed vs = 1880.89 m/s, which is slightly bigger than the single fluid case. The main reason

is that the second fluid has lower density so that the effective density of the aggregate is

smaller. The dispersion curves calculated using COMSOL is shown in Fig. 8.4. It clear

0

0.5

1

1.5

2

2.5

3
104

Shear mode
Longitudinal mode

Longitudinal modes

Figure 8.4: Dispersion curves along the Γ − X path of the IBZ for the gyroid structure
saturated by two distinct fluids.

that the two slow dilatational modes separate from each other due to the difference of the

fluid properties. The shear wave speed calculated using COMSOL is vs = 1894.62 m/s. The

analytical and FEM results agree very well where the speed calculated using the generalized

Biot theory is only 0.72% lower than FEM result. The dilatational wave speeds can also be

easily obtained from the band structures, we have v1 = 3444.19 m/s, v2 = 1045.80 m/s and

v3 = 833.29 m/s. However, the dilatational wave speeds can not be calculated analytically

without the values of P , Q1, Q2, R1 and R2. We leave this work for the future.
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8.4 Discussion

In this section, we generalized the Biot’s theory for elastic waves in fluid-saturated solids.

It was found that when two identical pores are saturated by different fluids there are two

slow longitudinal modes, while when they are filled by the same fluid the slow modes

become identical. It was also predicted that when the two pores have different volume

fraction or tortuosity, there exist two slow wave modes even if the fluids are the same.

Examples showing comparisons between the analytical and numerical results are presented.

However, the determination of the elastic constants P , Q1, Q2, R1 and R2 still needs further

investigation. Future work will also include damping in the model, which might be useful

in many applications such as underwater sound absorption.
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Chapter 9

Concluding remarks

The main objectives of this dissertation are to introduce several types of design elements,

and to apply them in metamaterial design. The applications developed in this work aim to

achieve full control of the propagation of waves in acoustic medium, solids and fluid-solid

aggregates. This chapter concludes the present research and points out the directions of

future work.

9.1 Conclusions on the original contributions

The original contributions in this dissertation are covered in Chapters 2 to 8. My research

begins with the theoretical derivation of the dispersion relations for 3D elastic lattice struc-

tures in Chapter 2. The analytical model embraces all the modes on each beam member,

i.e. longitudinal and flexural modes, that lead to the static effective medium. By imposing

Bloch-Floquet periodic condition on the boundaries of the unit cell, we derived the equa-

tions of motion of the infinite lattice which yield the dispersion relations. The results in

this chapter have significant applications in 3D pentamode acoustic metamaterial design

as it enables fast computation of band diagrams. To my knowledge, this is the first work

seeking analytical dispersion relations using beam theories for 3D elastic lattice networks.

In Chapter 3, we derived the acoustic impedance of slanted gratings and the transmis-

sion coefficient. It was found that for slanted gratings oriented with a certain angle, a plane

wave incident from the intromission angle ±θi can propagate through the gratings without

reflection. Several frequency domain and time domain examples are discussed in this chap-

ter. The results can be applied in acoustic grating design. Moreover, the analytical results

are readily to be used to improve the performance of acoustic Fresnel lenses.

Two metamaterial devices for underwater applications are presented in Chapters 4 and
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5. The pentamode GRIN lens reported in Chapter 4 provides a novel approach to reduce

aberration and suppress side lobes. The conformal lens designed in Chapter 5 makes it

possible to convert cylindrical sources into highly directional plane wave beams. These two

metamaterial devices take advantage of the quasi-static effective properties of the unit cells

so that they are both broadband.

The metamaterial devices for controlling bulk elastic waves are presented in Chapters 6

and 7. The underlying physics are the coupling between the waves in the elastic half-spaces

and the waves on the elastic plates. Several novel applications such as beam splitting and

focusing are proposed. The main difference between these two chapters is that Chapter 6

uses wide structures while Chapter 7 uses subwavelength slabs. It is notable that unidirec-

tional transmission for SV-wave is achieved in Chapter 7 by breaking the spatial symmetry

of the device.

Some new results on the fluid-saturated cubic double porosity medium are covered in

Chapter 8. The results derived in this chapter indicate that a second slow wave exists in

the fluid-solid aggregate if the two distinct pores have different volume fractions or are filled

with different fluids.

9.2 Current and future work

Currently, the structure of the 3D pentamode acoustic metamaterial has been designed. The

structural parameters are iterated using Bloch-Floquet analysis in COMSOL Multiphysics

to have effective speed and average density equal to water. The undergoing work is to

choose a proper thickness of plate to seal the structure so that the overall transmission is

high in the frequency range of interest. The structure will then be fabricated using 3D

metal printing and be tested in a resonance tube. The objective is to use this type of unit

cell to develop 3D metamaterial devices, e.g. GRIN lens.

The design of elastic metasurface still needs a better model to calculate the transmission

coefficient to assist with. The transmission and reflection problem will be modeled using

Timoshenko/Mindlin theory, and then be applied in the design to tune the phase change

more accurately. In the future, we will also investigate the wave radiation from each plate
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member. The full problem will be treated as multiple line sources located on a half space,

where each line source radiation can be considered as the well known Lamb’s problem [132].

The speeds of the fast and two slow waves in fluid-saturated cubic porosity medium are

derived Chapter 8 without including the relative motion between the fluid phase and solid

phase. However, loss caused by friction between fluid and solid has significant effect on the

slow waves so that they damp out quickly. Loss will be incorporated into our model in the

future. This research has potential applications in underwater sound absorption.
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Appendix A

Coordinate transformation for cubic lattice

There are six beams/rods in a unit cell of cubic lattice as shown in Fig. 2.4. Each beam/rod

is oriented in different direction, therefore the local coordinate system is different from the

inertial coordinate system. The effective forces on each beam/rod are expressed using its

local coordinate system. When formulating the equations of motion, we will need to express

all the effective forces in the same coordinate system, i.e. the inertial coordinate system.

Each beam/rod is oriented at certain angle θ with respect to the axes in the inertial

coordinate system, thus the local coordinate systems are rotated. When calculating the

effective force on each rod, one may need to express them in the inertial coordinate system

to establish the equilibrium equations. For this purpose, the local coordinate systems for

the six beams/rods are all expressed in terms of the inertial coordinate system in this

section. Note that we only need to transform the first three rows for the vectors which

denote displacements, and only transform the last three rows for the vectors which denote

bending components. The coordinate transformation are provided in detail as follows.

Fod a0−a1, its coordinate system is the same as the inertial coordinate system, we have

R(θ)[1] =


1 0 0

0 1 0

0 0 1

 , (A.1)

which lead to e1[1] = e1, e2[1] = e2, e3[1] = e3, eb1[1] = eb1, eb2[1] = eb2, eb3[1] = eb3.

For a beam/rod a0−a2, the new coordinate system x′−y′−z′ can be viewed as rotating

counterclockwise with an angle of 180◦ around z-axis, then rotating with an angle of 270◦
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around x′-axis such that

R(θ)[2] =


1 0 0

0 cos(3π
2 ) sin(3π

2 )

0 − sin(3π
2 ) cos(3π

2 )




cos(π) sin(π) 0

− sin(π) cos(π) 0

0 0 1

 =


−1 0 0

0 0 −1

0 −1 0

 . (A.2)

Applying Eq. A.2 and Eq. 2.2, we obtain e1[2] = (−1 0 0 0 0 0)T , e2[2] = (0 0 −1 0 0 0)T ,

e3[2] = (0 −1 0 0 0 0)T , eb1[2] = (0 0 0 −1 0 0)T , eb2[2] = (0 0 0 0 0 −1)T and eb3[2] =

(0 0 0 0 −1 0)T , which can be written as e1[2] = −e1, e2[2] = −e3, e3[2] = −e2, eb1[2] = −eb1,

eb2[2] = −eb3 and eb3[2] = −eb2 for convenience. Note that for beams/rods in the same

direction, the forces should be balanced.

The derivation of the remaining transformations follow similar procedures. For a beam/rod

a0 − a3, we have

R(θ)[3] =


cos(π2 ) sin(π2 ) 0

− sin(π2 ) cos(π2 ) 0

0 0 1

 =


0 1 0

−1 0 0

0 0 1

 , (A.3)

thus e1[3] = e2, e2[3] = −e1, e3[3] = e3, eb1[3] = eb2, eb2[3] = −eb1 and eb3[3] = eb3.

For rod a0 − a4, we have

R(θ)[4] =


1 0 0

0 cos(3π
2 ) sin(3π

2 )

0 − sin(3π
2 ) cos(3π

2 )




cos(3π
2 ) sin(3π

2 ) 0

− sin(3π
2 ) cos(3π

2 ) 0

0 0 1

 =


0 −1 0

0 0 −1

1 0 0

 , (A.4)

thus e1[4] = −e2, e2[4] = −e3, e3[4] = e1, eb1[4] = −eb2, eb2[4] = −eb3 and eb3[4] = eb1.

For rod a0 − a5, we have

R(θ)[5] =


cos(3π

2 ) 0 − sin(3π
2 )

0 1 0

sin(3π
2 ) 0 cos(3π

2 )

 =


0 0 1

0 1 0

−1 0 0

 , (A.5)

thus e1[5] = e3, e2[5] = e2, e3[5] = −e1, eb1[5] = eb3, eb2[5] = eb2 and eb3[5] = −eb1.

For rod a0 − a6, we have

R(θ)[6] =


1 0 0

0 cos(π2 ) sin(π2 )

0 − sin(π2 ) cos(π2 )




cos(π2 ) 0 − sin(π2 )

0 1 0

sin(π2 ) 0 cos(π2 )

 =


0 0 −1

1 0 0

0 −1 0

 , (A.6)
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thus e1[6] = −e3, e2[6] = e1, e3[6] = −e2, eb1[6] = −eb3, eb2[6] = eb1 and eb3[6] = −eb2.

These coordinate systems shall be applied in Eq. (2.30) in the derivation of effective

forces on the beams/rods. Then the equations motion can be formulated and rewrote using

matrices J and L as given below:

Jj = eke
T
k , k =


j + 1

2
if j is odd,

j

2
if j is even,

(A.7)

L1 =
∑

m=1,2,3, m6=k
emeTm, k =


j + 1

2
if j is odd,

j

2
if j is even,

(A.8)

L2 =
∑

m=4,5,6, m6=k
emeTm, k =


j + 7

2
if j is odd,

j + 6

2
if j is even.

(A.9)

Lk = (−1)j ×


−e2e

T
6 + e3e

T
5 + (−1)k+1(e5e

T
3 − e6e

T
2 ), j=1,2,

e1e
T
6 − e3e

T
4 − (−1)k+1(e4e

T
3 + e6e

T
1 ), j=3,4, k=3,4,

−e1e
T
5 + e2e

T
4 + (−1)k+1(e4e

T
2 − e5e

T
1 ), j=5,6.

(A.10)
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Appendix B

Unit circle to triangle mapping

Our objective here is to derive a transformation from the plane of a unit circle to the plane

of the mapped triangle as shown in Fig. 5.1. The conjugate points A = e−iφ and B = eiφ,

0 < φ < π, on the circle are symmetric with respect to the horizontal axis, but could be

anywhere along the circumference.

We first map the interior of the unit circle to the upper half plane of the variable γ using

a bilinear transformation

γ = i
(1− z

1 + z

)
cot

φ

2
. (B.1)

Thus, the boundary of the circle is mapped to the real axis: z = eiθ ⇒ γ = tan(θ/2) cot(φ/2),

with the conjugate points A and B mapped to −1 and +1, respectively. The conformal

mapping that takes the upper half of the γ-plane to the interior of the equilateral triangle

in the t-plane such that the points A and B, of the original unit circle are mapped onto the

vertices A and B is

t = P +Q

∫ γ

0

dx

(1− x2)2/3
= P +QG(γ) (B.2)

where

G(γ) = 2F 1

(1

2
,
2

3
;
3

2
; γ2
)
γ (B.3)

and 2F 1 is the hypergeometric function. Placing the vertices A and B of the equilateral

triangle at (1± i
√

3)a/2 yields the unknowns P and Q, so that

t =
(

1 + i
√

3
G(γ)

G(1)

)a
2
. (B.4)

Note that G(1) = 1
2

√
π Γ(1

3)/Γ(5
6) = 2.10327 . . .. The full mapping z → t(z) follows by

combining Eqs. (B.1), (B.3) and (B.4).
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