
A Framework For Replica Exchange Simulations.

By

Antons Treikalis

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dr. Shantenu Jha

And approved by

New Brunswick, New Jersey

May, 2017

ABSTRACT OF THE THESIS

A Framework For Replica Exchange Simulations

By ANTONS TREIKALIS

Thesis Director:

Shantenu Jha

Replica Exchange (RE) simulations have emerged as an important algorithmic tool for the

molecular sciences. Typically RE functionality is integrated into the molecular simulation soft-

ware package. A primary motivation for the tight integration of RE functionality with sim-

ulation codes has been performance. This is limiting at multiple levels. First, advances in

the RE methodology are tied to the molecular simulation code for which they were developed.

Second, it is difficult to extend or experiment with various RE methods, since expertise in

the molecular simulation code is required. We propose the RepEx framework which addresses

the aforementioned limitations, while striking the balance between flexibility (RE pattern) and

scalability (several thousand replicas) over a diverse range of HPC platforms. In this thesis

is introduced the RepEx framework, the primary contributions of which are: (i) its ability to

support different RE patterns independent of molecular simulation codes, (ii) the ability to

execute different exchange types and replica counts independent of the specific availability of

resources, (iii) a runtime system that has first-class support for task- level parallelism, and (iv)

provide the required scalability along multiple dimensions.

ii

Acknowledgements

I would like to thank my brother Adams for supporting me throughout my studies at Rutgers

University. I also would like to thank my mother Ludmila and my father Viktors for their effort

in raising me. I would like to thank Dr. Shantenu Jha for his advice and support. Without him

this thesis would not be possible. Next, I would like to thank Dr. Matteo Turilli and Andre

Merzky for their patience, help and feedback. Finally, I would like to thank all members for the

RADICAL Group for their help in shaping of this thesis.

iii

Table of Contents

. Abstract . ii

Acknowledgements . iii

1. Introduction . 1

2. Background . 6

3. RepEx framework . 32

4. Experiments . 50

5. Results and Analysis . 75

6. Conclusion . 77

7. Future Work . 79

Bibliography . 81

Appendix A. Appendix . 87

iv

1

Chapter 1

Introduction

Significant progress has been made, in recent years, to develop an understanding of the inner

workings of biological systems, consequently, the significance of the biomolecular simulations

increased dramatically. For the majority of proteins only amino-acid sequences are available

[1], meaning that to obtain a detailed 3D structure of a protein, a protein folding molecular

dynamics (MD) simulation must be carried out.

Hydrogen atoms in a biomolecule vibrate with a period of approximately 10 femtosecond

(fs) [1], as a result, a time-step value of approximately 1 fs is required for an accurate and

scalable integration for MD simulations. Additionally, simulation time necessary to observe the

desired changes, must be in the range of microseconds. Simply to allow a protein to relax into

the nearest low-energy state, an MD simulation must run for at hundreds nanoseconds [1]. As

a result, simulation time required for protein folding simulations is approximately in the range

from 1× 106 to 1× 109 time-steps.

To reduce the simulation time of the MD simulation, requiring millions of time-steps, one

must take advantage of the capabilities of HPC clusters. In MD simulation, typically the

problem size is fixed, creating a barrier for parallelization of the simulation.

For most proteins, obtaining samples at low temperatures using conventional MD simulations

is hard, since simulations at low temperatures often get trapped at local minimum energy states.

This sampling limitation can be mitigated by performing a random walk in temperature space,

which in turn results in a random walk in energy space. Consequently, trapping in local minima

energy states is avoided.

Replica Exchange (RE) [2] algorithm allows to perform a random walk in energy space (due

to the non-Boltzmann weight factors) and as a result to overcome energy barriers. Although

RE methods were introduced for Monte Carlo methods, their use with MD has grown rapidly.

RE [2] is a popular technique to enhance sampling in molecular simulations. This is evidenced

every year, by several hundred publications, using some variant of Replica Exchange in a range

of scientific disciplines including chemistry, physics, biology and materials science.

2

REMD simulation starts with concurrent MD simulation of N non-interacting replicas of

the original molecule (or system of the molecules). To enhance sampling, replicas are initialized

at different thermodynamic configurations. We call this part of the REMD simulation an MD

phase. After MD phase is done, replicas are attempting an exchange of their thermodynamic

configurations. Acceptance of exchanges is determined using Metropolis criterion [3]. We refer

to this part of the REMD simulation as exchange phase. After an exchange phase is done, the

process in then repeated.

Initially, REMD [4] was used to perform exchanges of temperatures, but since has been

extended to perform Hamiltonian Exchange [5], pH Exchange [6] and other exchange types.

Reinforcing the importance of REMD, many community MD engines [7, 1, 8], introduced

support for REMD. Often these solutions are integrated with MD simulation engine and are

using one of the popular parallel programming models (message passing, shared memory, etc.).

As a result, these solutions demonstrate respectable performance, but share some important

limitations. REMD functionality implemented in the same code space with MD engine, results

in a tight integration of the RE algorithm with MD algorithm.

One of the major drawbacks of the integration of REMD capability with MD simulation en-

gine is unnecessary duplication of development effort between ”competing” MD engines. Tight

integration of implementation of REMD functionality with implementation of MD functional-

ity, confines implementations of various REMD methods within a single code base, making it

difficult to propagate this capability across community codes. MD engines [7, 1, 8] are highly

optimized and specialized codes, often requiring tens of person-years of development. Domain

scientists are typically unprepared for the full complexity of these MD engines, yet they are the

ones most capable of algorithmic and methodological innovation.

To avoid the aforementioned limitations, REMD framework must decouple the RE method-

ology from the MD engine. To maximize execution flexibility, replicas should not be bounded by

the computational resources (CPUs, GPUs, etc.) available. Unfortunately, this is not the case

for many REMD frameworks. Furthermore, a REMD framework, at a minimum, should ensure

that in the presence of a failure of a single replica (or multiple replicas), the entire simulation

does not have to be stopped and then restarted.

While REMD is very well suited for parallelization and does not impose a requirement for

a global synchronization barrier between MD and exchange phase. Existence of this barrier in

most REMD software packages is an implementation decision, motivated by desire to reduce

the complexity of the code. Removal of a global synchronization barrier introduces asynchronic-

ity between MD and exchange phases. This asynchronicity can significantly improve resource

3

utilization, when wallclock time of the replicas for MD phase is highly variable. Performance

variability for replicas in REMD simulations can be caused by the heterogeneity of the computa-

tional resources or by the nature of the simulation. One such example, in quantum mechanics /

molecular mechanics (QM/MM) [9] simulations, where variability in performance of individual

replicas is caused by the nature of the QM/MM simulation.

To overcome the above limitations, we develop RepEx [10] software framework. RepEx is

designed to satisfy the range of functional, performance and usability requirements for REMD

frameworks. Conceptually, RepEx aims to decouple the implementation of the RE algorithm

from the MD simulation engine. RepEx is not limited in the number and ordering of dimensions

for multi-dimensional REMD simulations and currently supports three exchange types: salt

concentration, temperature and umbrella exchange. Despite the fact, that we mainly were

interested in Amber MD engine, to demonstrate extensibility and modularity of RepEx, we

introduced support for NAMD MD engine.

Our framework relies on RADICAL-Pilot (RP) [11] as a runtime system to perform resource

allocation, task scheduling and data movement. RADICAL-Pilot not only provides means for

resource management via its API, but also enables separation of computational requirements of

the simulation from the REMD implementation. Another distinctive feature of RepEx, partly

arising from the use of RP, is fault tolerance: RepEx can either continue a simulation in the

case of replica(s) failure or can relaunch a failed replica(s).

The functionality and flexibility come at a performance price, especially when compared

to highly-customized approaches. We characterize the performance of our framework and ar-

gue that given the range of requirements, it is satisfactory. The design of RepEx facilitates

implementation of new RE methods with a wide range of MD engines.

1.1 Aims

One of the major aims of this thesis is to develop a design of the framework for replica exchange.

Proposed design should be motivated by the set of requirements for the REMD simulation

frameworks and evaluated using a set of quantitative and qualitative metrics. Proposed design

should facilitate re-usability of the existing modules, be independent of the MD simulation

engine, and support asynchronous RE simulations.

To come up with a successful design for the REMD framework, it is necessary to under-

stand: theoretical concepts central to MD and RE, limitations of the current software packages

with integrated REMD capability and user requirements. Additionally, understanding of how

4

computational resources will evolve in the future is of a major significance.

To evaluate the proposed design, we aim to develop an implementation of the REMD frame-

work. It is essential to motivate implementation decisions, verify that software meets identified

requirements and provide scientific validation.

1.2 Structure of the dissertation

There are seven chapters in this dissertation. In first chapter we provide motivation for the

dissertation. We briefly introduce MD simulations and RE algorithm. We then highlight com-

putational and software barriers limiting scientific progress. To finalize this chapter are outlined

objectives and structure of the dissertation.

Second chapter is designed to provide background information, necessary to appreciate this

thesis. We first introduce theoretical background of the MD and REMD simulations. We

briefly discuss Quantum Mechanics / Molecular Mechanics (QM/MM) simulations, since we

use QM/MM for our experiments. Next, we motivate the need for asynchronous RE and

introduce multi-dimensional RE. Then, we provide an overview of the molecular simulation

software packages with integrated REMD capability (Amber and NAMD). We also discuss

some of the REMD software frameworks, which implement REMD algorithm outside of the MD

engine. We finalize the background chapter with discussion of pilot systems and RADICAL-

Pilot in particular.

Chapter three is dedicated to RepEx framework. We first outline requirements of the REMD

software packages and categorize them into three types: functional, performance (scalability)

and usability requirements. Next, we describe concepts, central to the design of the RepEx

framework and introduce an asynchronous RE algorithm. We also provide implementation

details of the RepEx framework and scientifically validate our implementation by performing a

series of experiments.

In chapter four we present and discuss experiments performed to optimize the performance

of the RepEx. We briefly describe performance optimization strategy utilized to reduce the

total wallclock time. Our strategy consists of five optimization steps, and mainly is focused at

minimization of file movement and minimization of the number of tasks. Next, we characterize

performance of the RepEx framework for various REMD simulations and provide experimental

evidence highlighting differences between synchronous and asynchronous RE.

In chapter five we analyze obtained results. To demonstrate how RepEx performs, in com-

parison with other software packages, we present a table in which we characterize six other

5

software packages using eight features. We select these features using out intuition and user

feedback.

We outline the key conclusions in chapter six. In this chapter we discuss the lessons learned

while working on this dissertation. We discuss how well RepEx satisfies the set of requirements

we have identified in chapter three and how well we achieved the objectives of the dissertation.

Finally we highlight the main barriers for the uptake of the RepEx framework.

In the last chapter we present possible directions for the future development of the RepEx.

6

Chapter 2

Background

In this chapter we present concepts central to this thesis. We briefly discuss theory behind

REMD simulations and discuss some of the software packages for REMD simulations. We also

introduce the concept of a Pilot system, which plays an important role in the design of our

framework.

First we introduce theoretical concepts behind MD simulations. Next we discuss REMD

simulations from both theoretical and practical point of view. At a very high level we cover

QM/MM simulations. Next we introduce the concept of asynchronous RE and explain the

logic behind multi-dimensional REMD simulations. In section 2.6, we discuss two, arguably

most popular molecular simulation software packages with integrated REMD capability, namely

Amber and NAMD. We also discuss some of the modern software frameworks, implementing

REMD functionality at a higher software layers. We finalize this chapter by discussing Pilot

systems and RADICAL Pilot, as an implementation of a Pilot system.

2.1 Molecular Dynamics

Computer simulations are aimed at understanding the properties of molecules defined by their

interactions and structure. Simulation techniques can be broadly divided into two groups: MD

simulations and Monte Carlo simulations (MC). Naturally, there are other simulation tech-

niques, but these two are the most popular ones. Unlike other simulation techniques, MD

provides an insight into dynamic properties of the system.

Unlike MC simulation, MD simulation of a molecular system acting under potential energy

U(q) involves numerical, step-by-step, solution of the Newton’s equations of motion:

pi = q̇imi ṗi = −∂U(qi)

∂qi
(2.1)

Forces pi are acting on atoms, and are derived from a potential energy U(qN), where qN =

(q1, q2, ..., qN) represents the complete set of atomic coordinates. Consequently, equation 2.1

yields trajectories in the phase space and is a Hamiltonian system.

7

2.1.1 Hamiltonian Systems

Hamiltonian systems are linear or non-linear systems with particular symmetry, what allows

the stability of equilibrium points to be found and the solution curves to be drawn even though

actual solutions are not obtained. For Hamiltonian systems the derivatives dqi
dt and dpi

dt are

partial derivatives of a Hamiltonian function H. Hamiltonian system is defined as:

dqi
dt

=
∂H

∂pi
(2.2)

dpi
dt

= −∂H
∂qi

(2.3)

Classical equations of motion form a Hamiltonian system, with Hamiltonian function defined

as:

H(q, p) = U(q) +K(p) = U(q) +
∑
i

p2
i

2mi
(2.4)

where: U(q) is potential energy K(p) is kinetic energy

We now show that equations 2.1 form a Hamiltonian system. First we note that:

pi = mivi (2.5)

dpi
dt

= mi
dvi
dt

(2.6)

Next we note that:

−∂U
∂qi

= Fi(q) (2.7)

where F is a force vector

We now take a derivative of Hamiltonian H with respect to qi:

−∂H
∂qi

= −∂U
∂qi

= Fi(q) = mai = mi
dvi
dt

=
dpi
dt

(2.8)

Next we take a derivative of Hamiltonian H with respect to pi:

−∂H
∂pi

=
∂K

∂p
=
pi
m

=
mivi
mi

= vi =
dqi
dt

(2.9)

Now we write Hamiltonian system for the classical equations of motion:

ṗi = −∂H
∂qi

= Fi(q) q̇i =
∂H

∂pi
=

pi
mi

(2.10)

8

2.1.2 Phase space

The term phase space is often mentioned when MD simulations are discussed. A phase space

is a 6N -dimensional space in which there is an axis for every coordinate qN and for every

momentum pN . If a system of Cartesian coordinates is used, then for each atom there are x, y,

z and px, py, pz axes.

Consequently we can describe system change over time as a trajectory in phase space. If

we are dealing with a classical system, the energy is conserved and the phase space trajectory

adheres to a surface of constant energy [12].

Ergodic systems, which can reach equilibrium, are capable of exploring all parts of phase

space, having the same energy. In other words, a trajectory of a system, which is ergodic, will

reach all points in phase space on the constant energy hypersurface with equal probability. If

given system is not ergodic, some of the phase space points will remain unvisited and as a

consequence the system will not be capable to examine the complete constant energy surface

[12].

A differential volume element in phase space is a very small region of 6N -dimensional

volume that spans differential elements:

dqNdpN = dx1dy1...dzNdpx,1dpy,1...dpz,N (2.11)

Configuration space is the subset of phase space corresponding to the 3N variables qN .

2.1.3 Numerical Integration

A numerical integrator calculates an approximate solution trajectory of the system of ordinary

differential equations given a time-step and initial positions and velocities of the atoms. The

most widely used numerical integrators are: the Verlet algorithm [13], the Leapfrog algorithm

[14] and the Velocity Verlet algorithm [15].

The Verlet algorithm offers better stability, time-reversibility and area preserving properties

with little additional computational cost in comparison to the Euler method. The solution of

Newton’s equations of motion using the Verlet algorithm is based on a Taylor series expansion.

The two updating steps of the Verlet method are:

qi(t+ ∆t) = 2qi(t)− qi(t−∆t) +
1

mi

∂U

∂qi
(t)∆t2 (2.12)

pi(t) = mi
(qi(t+ ∆t)− qi(t−∆t))

2∆t
(2.13)

9

The Verlet Algorithm relies on two previous time steps, t and t−∆t, to advance the solution

forward. One of the problems with the Verlet algorithm, is the fact, that due to potential loss

of accuracy when implementing equation 2.12, the final term in the equation tends to be small

and this term may be lost in the round-off error.

The Leapfrog algorithm was developed to correct some of the problems associated with the

Verlet algorithm. The name of the algorithm comes from the fact, that q and p are ”leapfrog-

ging” over each other during integration. The two updating steps of the Leapfrog algorithm

are:

qi(t+ ∆t) = qi(t) +
pi(t+ ∆t

2)

mi
∆t (2.14)

pi(t+
∆t

2
) = pi(t−

∆t

2
) +

∂U

∂qi
(t)∆t (2.15)

The two updating steps of the Velocity Verlet algorithm are:

qi(t+ ∆t) = qi(t) +
pi(t)

mi
∆t+

1

2m

∂U

∂qi
(t)∆t2 (2.16)

pi(t+ ∆t) = pi(t) +
∆t

2
(
∂U

∂qi
(t) +

∂U

∂qi
(t+ ∆t)) (2.17)

All three numerical integration algorithms produce deterministic dynamical systems, mean-

ing that there is no stochastic element. In addition, because these algorithms are solving a

Hamiltonian system, they conserve the total energy [16]. We define the total energy as:

E(q, p) = U(q) +K(p) (2.18)

Each of the three algorithms discussed in this section, when used for MD simulation, pro-

duces trajectories in a microcanonical ensemble: a set of all molecular configurations with

constant energy. Due to the rounding errors of computer hardware and the choice of the step-

size, the configurations in the trajectories do not have exactly the same energy. The advantage of

the algorithms, presented in this section, is their ability to restrain the energy from divergence.

2.2 Replica Exchange Molecular Dynamics

While undertaking simulations of complex systems such as proteins, using MD or MC methods,

it is problematic to obtain accurate canonical distributions at low temperatures [17]. Replica

Exchange Markov chain Monte Carlo (MCMC) sampling is a widely used simulation technique,

10

aimed to improve efficiency of MCMC method, while simulating physical systems. This tech-

nique was devised as early as 1986 by Swendsen and Wang [2], but MD version of the method,

which is known as REMD was first formulated by Sugita and Okamoto [4] in 1999. Today RE

is applied in many scientific fields including chemistry, physics, biology, materials science and

other.

In RE simulations N replicas of the original system are used to model phenomenon of inter-

est. Typically, each replica can be treated as an independent system and would be initialized at

a different temperature. While systems with high temperatures are very good at sampling large

portions of phase space, low temperature systems often become trapped in local energy minima

during the simulation [18]. RE method is very effective in addressing this issue and generally

demonstrates a very good sampling. In RE simulations, system replicas of both higher and lower

temperature subsets are present. During the simulation they exchange full configurations at

different temperatures, allowing lower temperature systems to sample a representative portion

of phase space.

It is obvious that running a simulation of N replicas of the system would require N times

more compute power. Despite that, RE simulations are proven to be at least 1/N times more

efficient than single temperature simulations. This is achieved by enabling replicas with lower

temperatures to sample phase space regions, not accessible for them in case of regular Monte

Carlo simulation, even if it would run N times longer than RE simulation involving N replicas.

In addition, RE method can be very efficiently mapped to distributed-memory architectures of

HPC clusters.

Implementation details of the mechanism for performing swaps of configurations between

replicas significantly influence efficiency of the method. Issues to consider are: how often should

exchanges take place, what is the optimal number of replicas, what is the range of temperatures,

how much of a compute power should be dedicated to each replica. To prevent the growth as
√
N of a system with N replicas, solutions on how to swap only a part of the system are required

[18].

RE simulations may involve exchange of parameters other than temperature. For example,

in some cases simulations where chemical potentials are swapped may demonstrate a better

efficiency. A special case of RE method is defined by configuration swaps in a multi-dimensional

space of order parameters. This is typically referred as multi-dimensional REMD. Due to better

sampling of phase space, enabled by the use of RE method, inconsistencies in some widely used

force fields were discovered [18]. Consequently, RE method now plays an important role in

testing of new force fields for atomic simulations.

11

2.2.1 Theory of Replica Exchange method

In 2.4 we have defined the Hamiltonian function. With this Hamiltonian function, each state

x ≡ (q, p) at temperature T is weighted by the Boltzmann facotor:

WB(x;T) = e−βH(q,p) (2.19)

where: β is the inverse temperature

We define the inverse temperature by:

β =
1

kBT
(2.20)

where: kB is the Boltzmann constant

We define the average kinetic energy at temperature T by:

〈K(p)〉T = 〈
N∑
k=1

p2
k

2mk
〉T =

3

2
NkBT (2.21)

where:

N is the number of atoms

mk is mass of atom (k = 1, 2, ..., N)

p is a momentum vector

In the RE method, are initialized M non-interacting replicas of the original system in the

canonical ensemble, at M different temperatures Tm (m = 1, 2, ...M). There is a one-to-one

mapping between replicas and temperatures. We can summarize this by: i = i(m) ≡ f(i),

m = m(i) ≡ f−1(i)
(2.22)

where:

i is a label for replicas i = (1, 2, ...M) and is a permutation of label m for temperatures

m is a label for temperatures m = (1, 2, ...M) and is a permutation of label i for replicas

f(m) is a permutation function of m

f−1(i) is inverse of a permutation function

We define a state of an ensemble by:

X = (x
[i(1)]
1 , ..., x

[i(M)]
M) = (x

[1]
m(1), ..., x

[M]
m(M)) (2.23)

where: superscript of x labes the replica

subscript of x labels the temperature

12

The state X is defined by the M sets of coordinates q[i] and momenta p[i] of N atoms in

replica i in temperature Tm:

x[i]
m = (q[i], p[i])m (2.24)

By definition of the method, replicas are non-interacting. Consequently, the weight factor

for the state X is given by the product of Boltzmann factors for each replica (or at each tem-

perature):

WREM (X) = exp{−
M∑
i=1

βm(i)H(q[i], p[i])} = exp{
M∑
m=1

βmH(q[i(m)], p[i(m)])} (2.25)

where: i(m) and m(i) are the permutation functions.

Lets examine an exchange between a pair of replicas i and j, which are at temperatures Tm

and Tn:

X = (..., x[i]
m, ..., x

[j]
n , ...)→ X ′ = (..., x[j]′

m , ..., x[i]′

n , ...) (2.26)

where: i, j, n and m are replated to the permutation functions in 2.22

The exchange of replicas i and j introduces a new permutation function f ′: i = f(m) → j = f ′(m),

j = f(n) → i = f ′(n)
(2.27)

We can expand an exchange of replicas as: x
[i]
m ≡ (q[i], p[i])m → x

[j]′

m ≡ (q[j], p[j]′)m,

x
[j]
n ≡ (q[j], p[j])n → x

[i]′

n ≡ (q[i], p[i]′)n
(2.28)

This is equivalent to an exchange of temperatures Tm and Tn for the corresponding replicas

i and j:

 x
[i]
m ≡ (q[i], p[i])m → x

[i]′

n ≡ (q[i], p[i]′)n,

x
[j]
n ≡ (q[j], p[j])n → x

[j]′

m ≡ (q[j], p[j]′)m
(2.29)

In 2.28 and 2.29 momenta p[i]′ and p[j]′ are defined as:

 p[i]′ ≡
√

Tn

Tm
p[i],

p[j]′ ≡
√

Tm

Tn
p[j]

(2.30)

Assignment in 2.30 means that velocities of all the atoms are rescaled uniformly by the

square root of the ratio of the two temperatures, so that condition in 2.20 may be satisfied.

13

To ensure that exchange process converges towards an equilibrium distribution, it is suffi-

cient to impose the detailed balance condition on the transition probability:

WREM (X)w(X → X ′) = WREM (X ′)w(X ′ → X) (2.31)

From 2.4, 2.20, 2.24, 2.30 and 2.31 we get:

w(X → X ′)

w(X ′ → X)
= exp{−βm[K(p[j]′ + U(q[j])]− βn[K(p[i]′ + U(q[i])]

+ βm[K(p[i] + U(q[i])] + βn[K(p[j] + U(q[j])]}

= exp{−βm
Tm
Tn

K(p[j])− βn
Tn
Tm

K(p[i]) + βmK(p[i]) + βnK(p[j])

− βm[U(q[j])− U(q[i])]− βn[U(q[i])− U(q[j])]}

= exp(−∆)

(2.32)

where:

∆ ≡ [βn − βm](U(q[i])− U(q[j])) (2.33)

i, j, m and n are related by the permutation functions 2.22:

i = f(m), j = f(n) (2.34)

This is satisfied by the Metropolis criterion:

w(X → X ′) ≡ w(x[i]
m|x[j]

n) =

 1, for∆ ≤ 0,

exp(−∆) for∆ > 0
(2.35)

Without loss of generality, we can assume β1 < β2 < ... < βM . RE simulation is then

performed by the following steps:

1. N replicas (with a fixed temperatures) are simulated simultaneously and independently

for a certain number of MD steps

2. A pair of replicas at neighboring temperatures, for example x
[i]
m and x

[j]
m+1 are exchanged

with the probability w(x
[i]
m|x[j]

m+1) as specified in 2.35.

For the second step, are exchanged only pairs of replicas with neighboring temperatures,

since the acceptance ratio of the exchange decreases exponentially with the difference of the

two βs. In addition, when an exchange is accepted, the permutation functions in 2.22 are

updated.

The main advantage of the RE method stems from the fact, that the weight factor is known

in advance. In other methods, such as simulated tempering, determination of weight factors can

14

be very time consuming. To maximize sampling quality and to minimize required computational

effort, distribution of temperatures and the number of replicas should be choosen with care. It

was demonstrated that using a geometric progression for temperatures, so that Ti

Tj
is constant, for

the systems having a constant volume heat capacity Cv (for the whole temperature range), allows

to achieve equal exchange acceptance probability for all participating replicas [18]. Various

studies [19] [20] showed that exchange acceptance probability around 20% results in best possible

performance of the RE simulation.

We calculate the canonical expectation value of a physical quantity A at a temperature Tm

(m = 1, ...,M) as:

〈A〉Tm
=

1

Nsim

Nsim∑
t=1

M∑
i=1

A
[
x

[i]
f−1(i;t)(t)

]
δf−1(i;t),m (2.36)

where:

Nsim is the total number of measurements made for each replica

f−1(i; t) is the permutation function from 2.22 at tth measurement

δk,l is Kronecker’s delta function

We can also write equation 2.36 as:

〈A〉Tm
=

1

Nsim

Nsim∑
t=1

A
(
x

[
f(m;t)

]
m

(
t
))

(2.37)

For the expectation value at any intermediate temperature, we use the multiple-histogram

reweighting technique as follows. Lets assume that we have made R-independent simulation

runs at R different temperatures. If we denote the energy histogram as Nm(E) and the total

number of samples obtaied in the mth run as nm, then nm = Nsim and the expectation vaue

of a physical quantity A at any intermediate temperature T = 1
kBβ

is given by:

〈A〉T =

∑
E A

(
E
)
P
(
E;β

)∑
E P

(
E;β

) (2.38)

where:

P
(
E;β

)
=

∑R
m=1 g

−1
m Nm

(
E
)
e−βE∑R

m=1 nmg
−1
m efm−βmE

(2.39)

and

e−fm =
∑
E

P
(
E;βm

)
(2.40)

where:

gm = 1 + 2τm is the integrated autocorrelation time at temperature Tm

15

τm is the integrated autocorrelation time at temperature Tm

2.3 Quantum Mechanics/Molecular Mechanics

In hybrid quantum mechanics / molecular mechanics (QM/MM) simulations, the system is

divided into two regions: the quantum mechanics region, in which the chemical process takes

place, is simulated using quantum chemistry theory, the molecular mechanics region, constitutes

the remainder of the system and is described by a molecular mechanics force field. QM/MM

methods was originally introduced by Warshel and Levitt [21]. QM/MM enables the study of

the chemical reactivity in large systems, such as enzymes [9]. QM/MM method is depicted in

Figure 2.1.

Figure 2.1: Illustration of the QM/MM method. A region, in which a chemical reaction occurs
(cannot be described with a force field), is described by quantum mechanical theory. The remainder of
the system is modelled using molecular mechanics [9].

In molecular mechanics we describe the potential energy of the system as:

UMM =

Nbonds∑
i

U bondi +

Nangles∑
j

Uj +

Ntorsions∑
l

U torsionl +

NMM∑
i

NMM∑
j>i

U coulij +

NMM∑
i

NMM∑
j>i

ULJij (2.41)

where:

NMM - the number of atoms in the system

U bond - bonds (modelled using harmonic functions)

Uangle - angles (modelled using harmonic functions)

U torsion - torsions (modelled using periodic functions)

U coulij - the pairwise electrostatic interaction between atoms with a partial charge (Qi)

ULJij - Lennard-Jones potential

We calculate U coulij using Coulomb’s law:

U coulij =
e2QiQj
4πε0Rij

(2.42)

16

where:

Rij - the inter-atomic distance

e - the unit charge

ε0 - the dielectric constant

The Lennard-Jones potential is given by:

ULJij =

(
Cij12

Rij

)12

−

(
Cij6
Rij

)6

(2.43)

where:

Cij12 - repulsion parameter (depends on the atom types of the atoms i and j)

Cij6 - attraction parameter (depends on the atom types of the atoms i and j)

In molecular mechanics electrons are ignored. Influence of electrons is modelled by empirical

parameters. As a consequence, processes that involve electronic rearrangements, such as chemi-

cal reactions, cannot be described in molecular mechanics. To describe these processes are used

quantum mechanics, where the electronic degrees of freedom can be defined. Evaluation of the

electronic structure, is very computationally intensive and as a result the size of the system of

interest often is restricted in size.

Many biochemical systems can’t be easily described at a single level of theory due to their

large size. In addition, molecular mechanics are lacking in flexibility when used to model

processes in which chemical bonds are broken or formed [9].

The QM/MM method stems for the nature of the most chemical reactions. Often it is

possible to make a clear distinction between a reaction region, where atoms that are directly

involved in the reaction and a remainder of the system, where direct participation of the atoms

in the chemical reaction is not observed. For most enzymes, the catalytic process is restricted to

an active part, often located inside the protein. The rest of the system provides an electrostatic

background that is not necessarily facilitating a reaction.

Potential energy in QM/MM is divided into three interaction types: interactions between

atoms in the QM region, interactions between atoms in the MM region and interactions be-

tween QM and MM atoms. Atom interactions in QM and MM regions are described by the

corresponding theories. Interactions between QM and MM atoms can’t be easily described.

To address this issue a number of approaches were proposed, which can be divided into two

categories: subtractive and additive coupling schemes.

17

2.4 Asynchronous Replica Exchange

We now discuss synchronization patterns for RE simulations from software design perspective.

A synchronization pattern specifies constraints for the order of execution of the tasks in RE.

The simplest form of constraint is a barrier, which must be reached by all currently executing

tasks, before next set of tasks can be submitted for execution. First, it is essential to justify the

importance of this discussion and to motivate the need for asynchronous RE (Figure 2.2 (b))

from scientific perspective.

RE algorithms have historically been synchronous, viz., there is a global barrier between

the simulation and exchange phases (Figure 2.2 (a)). Asynchronous RE (Figure 2.2 (b)) refers

to the scenario when replicas can be in different phases. For example, a subset of replicas

might be exchanging while some replicas might still be in simulation phase. In other words, the

global synchronization of regular RE is relaxed. Asynchronous RE has the following scientific

advantages:

Facilitates adaptive sampling. There are cases, where some replicas have already pro-

duced sufficient info and are no longer needed. For example, replicas simulating configuration

space with very low probability may not need high accuracy hence only relatively small amount

of sampling is required. Consequently these replicas should be terminated and their computa-

tional resource should be released. On the other hand, in the midst of simulations, new replicas

may need to be created to cover the regions where more sampling is necessary. Obviously

asynchronous algorithms are needed in such cases.

Enables integration of heterogeneous simulations. Nowadays multi-scale molecular

simulations may consist of very different levels of theories hence different replicas may have

significant differences in performance. For example, quantum mechanics calculations usually

are slower than classical MD simulations. As a result, it is desired to have asynchronous RE

algorithms to handle simulations with large mismatch in performance.

Handles fault-tolerance. Large-scale RE simulations, are more receptive to both hard-

ware and software failures, which result in failures of individual replicas. Hence it is necessary

to recover from such failures and continue simulation. Due to the nature of asynchronous algo-

rithms, recovery time is significantly reduced compared to a synchronous RE, where in case of

a failure all other replicas must wait at the barrier for a restarted replica.

Manages load-balance with fluctuation of available resources. Multi-dimensional

RE simulations may require very large numbers of replicas, which could be larger than the

available number of CPUs. In addition, both the number of running replicas and availability of

18

a resource could change during simulation. Traditional synchronous algorithms are not capable

to handle such cases. Asynchronous algorithms are needed to execute replicas at different time

so that simulations of all replicas can be performed.

MDMD EX

G
LO

B
A

L
B

A
R

R
IE

R

G
LO

B
A

L
B

A
R

R
IE

R

R
E

P
LI

C
A

S

G
LO

B
A

L
B

A
R

R
IE

R EX

(a)

MD EX

MD

MD EX

EX MD

R
E
P
LI
C
A
S

MD

(b)

Figure 2.2: Schematic representation of RE Patterns: (a) Synchronous (b) Asynchronous. Over x-axis
is shown wallclock time. Gray circles represent replicas, dark grey arrows MD phase propagation and
light grey arrows exchange phase propagation. For both phases (MD and exchange), in synchronous
pattern exists a global synchronization barrier. In this figure, for synchronous pattern, both MD and
exchange are propagated concurrently but this is not a requirement for this pattern. In asynchronous
pattern there is no barrier - MD and exchange can be propagated concurrently, meaning while some
replicas run MD other replicas might be running exchange.

2.5 Multi-dimensional REMD

In Figure 2.3 is depicted a parameter exchange schema for a three-dimensional REMD. For

illustration purposes we use artificial parameters A, B and C, which represent parameters in

three respective dimensions. Although not shown in Figure 2.3 before an exchange of each

parameter is performed an MD phase. In multi-dimensional REMD simulation parameters are

exchanged sequentially - first is performed an exchange in first dimension, then in second and

so on. In Figure 2.3 the total number of replicas is eight. While this simplifies the schema,

it also limits the group sizes in all dimensions to two replicas. In each dimension, replicas are

grouped based on the values of their parameters in other two dimensions. For example, replicas

0 and 4 are in the same group in dimension one (parameter A), since their parameters B and

C are equal. It is important to note that group contents are changing dynamically - exchange

19

A1 B1 C1

A1 B1 C2

A1 B2 C1

A1 B2 C2

A2 B1 C1

A2 B1 C2

A2 B2 C1

A2 B2 C2

Exchange param A Exchange param B Exchange param C

A1

A2

A1

A2

A1

A2

A1

A2

B1

B2

B1

B2

B1

B2

B1

B2

C1

C2

C1

C2

C1

C2

C1

C2

0

1

2

3

4

5

6

7

Replica
Nr.

Figure 2.3: Schematic representation of the parameter exchange schema for the three-dimensional
REMD. A, B and C are artificial parameters, which are exchanged between replicas belonging to the
same group. For the exchange in any given dimension replicas are grouped based on their parameters
in other two dimensions. To be grouped together in dimension 1, parameters of replicas in dimensions
2 and 3 must be equal. In this diagram, group sizes in all dimensions are equal to two. Generally, this
is not a requirement - group sizes can exceed this number.

of replica parameter in any given dimension determines its group partners in other dimensions.

2.6 Molecular Simulation Software Packages with Integrated REMD

Capability

2.6.1 Nanoscale Molecular Dynamics - NAMD

NAMD [1] is a parallel MD application which is aimed at simulations of biomolecular systems.

NAMD can be used on various systems, starting with regular desktops and ending with the most

powerful HPC systems available today. Often problem size of the biomolecular simulations is

fixed and systems are analyzed by performing a large number of iterations. This means that

MD applications must be highly scalable. A parallelization strategy used in NAMD is a hybrid

of force decomposition and spatial decomposition. In addition to that, NAMD uses dynamic

load-balancing capabilities of the Charm++ parallel programming system. [22]

NAMD parallelization strategy:

Parallelization in NAMD uses a hybrid strategy, consisting of spatial decomposition and

force decomposition. This is complemented by the dynamic load-balancing framework of the

Charm++ system. In MD, calculation of the non-bonded forces between all pairs of atoms is

the most computationally demanding. The algorithm for this calculation has a time complexity

20

Figure 2.4: Schematic representation of NAMD parallelization mechanism [22]

of O(n2). In order to reduce time complexity of this algorithm to O(n log n), the terms cutoff

radius rc, separation of computation of short-range forces and separation of computation of long-

range forces were introduced [22]. For the atoms within the cutoff radius rc non-bonded forces

are calculated on per atom basis. For the atoms outside the rc, long-range forces are calculated

using particle-mesh Ewald algorithm, which has a O(n log n) time complexity. Decomposition

of MD computation in this way, results in calculation of non-bonded forces for atoms within

the rc being responsible for 90% of total computational effort.

A well known problem, arising from parallelising MD simulations using as a base sequential

codes, is poor scalability. Scalability is often measured using isoefficiency, which is defined as a

rate of change of problem size required to maintain parallel efficiency of the increasingly parallel

system. Isoefficiency is defined by:

W =
1

tc

(
E

1− E

)
To (2.44)

or, if K = E/(tc(1− E)) is constant depending on efficiency:

W = KTo (2.45)

where:

W - is problem size

tc - is cost of executing each operation

21

E - is parallel efficiency; E = S
p where p is number of processors and S is speedup; S = T1

TP

where T1 is sequential runtime and TP is total parallel runtime

To - is total overhead

Small rate of change of problem size W means that in order to efficiently utilize increasing

number of processors, relatively small increments in problem size are required. This means that

parallel program is highly scalable. On the other hand, large rate of change of W , indicates

that parallel program scales poorly.

For MD simulations scalability is often limited by the rate of change of communication-to-

computation ratio, which increases too rapidly while increasing the number of processors. This

limitation leads to ”large” isoefficiency function, meaning that weak scaling is poor for the

particular code.

In order to avoid issues specified above, NAMD uses a hybrid parallelization strategy, which

is a combination of spatial decomposition and force decomposition. This strategy is aimed to

allow increase of parallelism without proportional increase of communication cost. This strategy

involves dividing a simulation space into patches - cubic boxes, size of which is calculated based

on the cutoff radius rc. The size of a patch is determined based on parameter B. The length

of a patch in each dimension is b = B
k and B = rc + rH +m, where rH is the maximum length

of a bond to a hydrogen atom times two, m is the margin equal double distance that atoms

may move without being required to migrate between the patches and k is a constant [22]. The

value of constant k is from the set {1, 2, 3}. A one-way decomposition can be observed when

k = 1, which typically results in having from 400 to 700 atoms per patch. With k = 2 number

of atoms per patch decreases to approximately 50 atoms.

With NAMD 2.0, to the spatial decomposition described above was added a force decom-

position, forming a hybrid parallelization. NAMD force decomposition can be described as

follows. A force-computation object or compute object is initialized for each pair of interacting

patches. For example, if k = 1 the number of compute objects is fourteen time greater than

the number of patches. Compute objects are mapped to processors, which in turn are managed

by the dynamic load balancer of Charm++. This strategy also exploits Newton’s third law in

order to avoid duplicate computation of forces [22]. A schematic representation of this hybrid

parallelization strategy utilizing patches and compute objects can be found in Figure 2.4.

NAMD is based on Charm++ - a parallel object-oriented programming system written in

C++. Charm++ is designed to enable decomposition of computational kernels of the program

into cooperating objects called chares. Chares communicate with each other using asynchronous

messages. The communication model of these messages is single sided - a corresponding method

22

is invoked on a compute object only then a message is received and no resources are spent on

waiting for incoming messages (e.g. posting a receive call). This programming model facilitates

latency hiding, while demonstrating good resiliency to system noise. A processor virtualization

feature of Charm++ allows the code to utilize a required number of compute objects in order

to meet it’s requirements. Typically several objects are assigned to a single processor and

execution of objects on processors is managed by the Charm++ scheduler. Scheduler performs

a variety of operations, including getting messages, finding destination chare of each message,

passing messages to appropriate chares and so on. Charm++ can be implemented on top of

MPI without using its functionality, which makes NAMD a highly portable program.

2.6.2 The Amber Molecular Dynamics Package

Computer MD simulations enable investigation of the dynamics and structure of proteins. Some

examples are enzyme reaction mechanisms, ligand binding and protein refolding. Amber is one

of the most popular MD simulations software packages. Amber is a collection of the various pro-

grams working together to setup, run and analyze MD simulations for proteins, carbohydrates

and nucleic acids. In addition Amber also is a name of a set of classical molecular mechanics

force fields, developed for the simulation of biomolecules. Interestingly, some other MD software

packages have implemented the Amber force fields and Amber itself can be used with other force

fields.

Amber is a result of a joint effort of the more than 40 researchers, who are working on

advancing MD methodology. MD simulation part of Amber package consists of the four tightly

coupled programs: sander, sander.MPI, pmemd and pmemd.cuda. Popularity of the Amber

force fields, and their adoption by other MD software packages motivated the decision to separate

Amber’s setup and analysis tools into a separate package named AmberTools.

In Figure 2.5 is provided a schematic representation of the information flow in Amber. A

typical simulation with Amber can be divided into three steps: system setup, MD simulation

and trajectory analysis. Tools at the top layer of the Figure 2.5 are responsible for the system

preparation. Middle layer of the figure represents MD simulation tools. At the bottom layer

of the Figure 2.5 are depicted trajectory analysis tools. Naturally, collaborative nature of the

development, resulted in separation of Amber into various programs. This approach enabled

the usage of different programming languages and software engineering practices by developers

of these programs. For example, LEaP is written in C using X-window libraries, MD simula-

tion programs are written in Fortran 90, but mm-pbsa is written in Perl. Historically, system

23

antechamber,
LEaP

LES
infopdb

sander,
nmode, pmemd

MMTSB
server

NMR,
XRAY
info

mm-pbsa ptraj

prmtop
prmcrd

Sy
st
em

pr
ep
ar
at
io
n

MD

si
mu
la
ti
on

Tr
aj
ec
to
ry

an
al
ys
is

Figure 2.5: Information flow in the Amber program suite

preparation and analysis programs were considered less computationally intensive in compari-

son with simulation programs. As a result, most of the performance optimization effort went

into MD simulation programs. In contrast with MD programs, which run on HPC clusters,

system preparation and analysis programs often are executed on a users workstation. Amber’s

development approach enables integration of other MD software into Amber’s software stack.

For example, Amber tools and force fields can be used by NAMD. To achieve this, NAMD must

parse and interpret information provided by .prmtop files. In addition, there is a number of

software packages, which are aimed at improving Amber’s preparation interface. Some of these

extensions use portion of LeAP’s code, others are entirely written from scratch.

As shown in Figure 2.5, in Amber there are four system preparation programs. Out of

these four programs, major programs are LEaP and antechamber. The former is responsible for

construction of biopolymers from the component residues, preparation of lists of force field terms

and solvation of the system. The latter is responsible for creation of the force fields for residues.

System preparation phase generates two files: parameter-topology files (.prmtop format) and

coordinate file (.prmcrd format). As the name suggests, the latter contains coordinates of all

atoms in the system. The former contains information required to compute forces and energies,

such as: mass of the atom, atom name, lists of bonds, force field parameters, angles, and

dihedrals. Despite being fairly basic, Graphical User Interface (GUI) of LEaP not only provides

a visual representation of the PDB files, but also allows to perform interactive altering of the

24

structure. In addition to GUI, LEaP also provides a text mode, which is the main usage mode

of this program.

Central MD program in Amber is sander. This program is written in Fortran 90. sander

reads input parameters as a label-value pairs. There are more than 150 different input para-

meters in sander, but in most simulations around 1/5 of these parameters is actually used.

A parallel version of sander is called sander.MPI. In sander.MPI to each process is

assigned a certain number of atoms, while all atoms are organized in a single data structure.

Coordinates of all atoms are available to all active processes. During the simulation, for each

simulation step processes calculate potential energy and corresponding gradients. Force vector

is calculated by gathering individually computed data by all processes, which results in each

process obtaining the full force vector for its assigned atoms. Next, processes perform a MD

simulation step and communicate updated positions of their assigned atoms to all the processes.

This enables multiple approaches for collective calculation of force fields by active processes.

Frequent all-to-all communication hinders scalability of sander.MPI. In addition, system

size has a significant effect on the size of the data structures used for the communication and on

the amount of communicated data itself. Consequently, explicit solvent MD simulations with

sander.MPI do not scale linearly when number of nodes is greater than 12. Due to a smaller

number of force fields and coordinates, implicit solvent MD simulations demonstrate a much

better scalability.

To address performance limitations of sander was developed pmemd. In this code were

made optimizations for both parallel and serial performance. While pmemd supports only the

most popular simulation types, it provides significant performance improvements in comparison

with sander.

Amber’s analysis program is called ptraj. There is a number of challenges associated with

MD trajectory analysis. First, is management of trajectory files. Files are generated at different

times and the number of files can be quite large. In addition, the size of the trajectory files can

be very large. Next, multiple types of analysis may be required as the simulation is propagated.

The ptraj is capable to process Amber and CHARMM trajectory file formats (.prmtop and .psf

respectively). The ptraj also is capable of composing trajectories from partial trajectories and

removing unnecessary parts of trajectories (solvent) if needed. The ptraj provides capability

for users to add new analysis commands. The ptraj is a cluster of programs, which perform

analysis such as energy estimation, entropies estimation, etc.

25

2.7 REMD Software Frameworks

In this section, we focus on frameworks designed to implement RE algorithm outside of the MD

engine; we defer a discussion of REMD simulations using molecular simulation software packages

with integrated RE capability till later. We start with CHARMM based implementation for

2D REMD. Then we introduce Multiple Copy Algorithm (MCA) implementation with NAMD

engine and finally we discuss implementations of asynchronous RE.

2.7.1 CHARMM

Ref. [23] presents an implementation of a 2D US/H-REMD method, implemented in REPDSTR

module of the CHARMM [24]. REPDSTR uses an MPI level parallel/parallel mode where to

each replica are assigned multiple MPI processes and dedicated I/O routines. Exchanges of

parameters between neighboring replicas in first dimension are implemented using odd-even

rule and in second dimension using even-odd rule. To improve sampling efficiency exchange

attempts are performed alternatively along the two dimensions.

Implementation was tested on IBM Blue Gene/P supercomputer using the binding of cal-

cium ions to the small protein Calbindin D9k. Obtained results show that 2D US/H-REMD

significantly improves the configurational sampling for biological potential of mean force (PMF)

calculations and as a result facilitates convergence of the simulation.

Authors presented strong scaling performance of 2D US/H-REMD, involving 4096 replicas

and utilizing up to 131072 CPUs with nearly linear scaling.

2.7.2 MCA implementation with NAMD

A Charm++ based implementation designed to run MCA was presented in [25]. It is tightly

bound to the NAMD simulation engine. Charm++ is used to run concurrently multiple NAMD

instances, which are exchanging messages via a point-to-point communication functions of Tcl

scripting interface. Tcl scripting enables users to implement REMD algorithms without modi-

fying the source code.

Authors demonstrated strong scaling behavior of the swarms-of-trajectories string method

implementation using the full-length c-Src kinase system utilizing up to 524288 cores on Blue

Gene/Q supercomputer. Results of temperature exchange REMD simulations with peptide

acetyl-(AAQAA)3-amide [26] in TIP3 solvent on Blue Gene/Q (utilizing up to 32768 cores)

were presented. Implementation of two-dimensional Hamiltonian RE with Umbrella Sampling

(US/H-REMD) on irregular-shaped distribution of umbrella windows was discussed.

26

2.7.3 ASyncRE package

Ref. [27, 28] presented ASyncRE package, developed to perform large-scale asynchronous REMD

simulations on HPC systems.

ASyncRE has an emphasis on asynchronous RE. Package supports Amber [7] and IM-

PACT [29] MD engines. It implements two REMD algorithms, namely multi-dimensional RE

umbrella sampling with Amber and BEDAM λ RE alchemical binding free energy calculations

with the IMPACT. AsyncRE uses a similar runtime system as RepEx, is capable of launching

more replicas than there are CPU cores allocated and is fault tolerant: failure of a single (or

multiple) replicas does not result in failure of a whole simulation. Upon the user request failed

replicas can be ignored or relaunched.

In ASyncRE duration of the simulation phase is defined as a real time interval. This allows to

perform synchronous RE simulations with ASyncRE, by specifying a sufficiently large duration

for the MD simulation phase and allocating enough CPU cores to run all replicas concurrently.

The major drawback of running synchronous RE simulations with ASyncRE are substantially

increased simulation’s Total Time to Completion (TTC) and significant under utilization of

allocated CPU cores on a remote system.

2.7.4 Asynchronous Replica Exchange Package for Volunteer Com-

puting Grids and HPC clusters

Ref. [30] introduced another REMD package targeted at asynchronous RE, optimized for vol-

unteer computing resources. The package can be used on HPC clusters as well. It is customized

for IMPACT and supports both 1D and 2D REMD simulations.

Distinctive features are fault tolerance, the ability to use a dynamic pool of resources and

to use fewer CPU cores than replicas. Input files are generated on a user’s workstation and

exchange phase is performed on coordination server, meaning that output data must be moved

from target resource to coordination server. Implementation specifics enforce the length of the

MD simulation phase to be greater than 1ps. Implementation was evaluated using statistical

inefficiency analysis [31] and divergence of the binding energy distribution from a target distri-

bution, using the Kullback-Leibler divergence [32] for both 1D REMD and 2D REMD BEDAM

[33] simulations using b-cyclodextrin-heptanoate model and using up to 240 replicas.

27

2.7.5 Summary

As seen, there are multiple existing packages designed to perform REMD simulations. A signif-

icant number of them however, support a single MD engine, and their design makes it difficult

to substitute simulation engines. The tight binding of RE methods to a particular engine raises

a barrier for the development of new RE algorithms.

Historically, tight integration has prevailed due to the perception that performance trumps

all other features. There are emerging examples of important biomolecular problems however,

that involve multi-state equilibria, and for which the interpretation of experiments requires scan-

ning control variables such as temperature, ionic conditions, and pH in addition to geometrical

or Hamiltonian order parameters[34]. These applications have the added challenge that sam-

pling along the space of the order parameters needs to be statistically converged at all points.

Here, the REMD method offers the added advantage that equilibrium between simulations is

enhanced through the exchanges. An illustrative example is the ”problem space” associated

with biocatalysis whereby conformational equilibria, metal ion binding and protonation events

lead to an active state that can catalyze the chemical steps of the reaction [35]. Thus, these

applications require not only the elucidation of the free energy landscape of the chemical reac-

tion itself [36, 37], but also the characterization of the probability of finding the system in the

catalytically active state as a function of system variables [38].

To address these novel applications and scenarios, a flexible and efficient multi-dimensional

REMD framework is required, that can be used for both system control variables and general-

ized coordinates. Currently, there is no REMD framework capable of providing the necessary

flexibility in composing the range of RE methods with MD engines as needed, while providing

adequate performance.

2.8 Pilot Systems

Traditionally many HPC systems are designed to support workloads consisting of a single par-

allel executable. At the same time, there are numerous use-cases in various scientific domains,

which can take advantage of the capability to run workloads of multiple heterogeneous tasks.

Often these tasks have complex dependencies, vary in computational requirements and are cre-

ated on demand. To execute these workloads, is required an API, which enables fine-grained

management of tasks and control over allocated computational resources. Currently HPC sys-

tems are lacking such interface. Pilot systems enable execution of complex, multi-task workloads

28

by decoupling of workload specification, resource selection, and task execution via job place-

holders. Pilot systems provide an interface to HPC systems, which enables a flexible usage of

the available computational resources, while complying to usage policies of these systems. To

access control over computational resources, pilot system submits job placeholders (i.e., pilots)

to the schedulers of the HPC resources. First, pilots are waiting in schedulers queue until there

are enough CPUs available. Then, pilots perform setup procedure (i.e. bootstrap) and are

ready to execute tasks. Tasks are executed within the time frame requested by the user.

There are many scientific workloads consisting of large ensembles of tasks (both single and

multi-core) which have computational requirements exceeding the size of the allocatable re-

sources. Execution of such workloads on HPC clusters, using conventional techniques is cum-

bersome or even impossible.

From a user perspective, pilot systems provide two clear advantages. First, pilot systems

allow to reduce the total time to completion (TTC) for ensemble of jobs. Two major components

of the TTC are queue waiting time and total execution time of individual jobs. Second, pilot

systems provide means to define complex workloads at application level and manage their

execution on HPC systems.

Historically most of the pilot systems were developed for a specific user communities, re-

sources or workloads. The first pilot system was developed as early as 1996, when AppLeS

[39] system introduced features such as application-level scheduling and a concept of a resource

placeholder. Later, more pilot systems, targeting various communities and resources emerged.

Some of the well known pilot systems are: DIANE [40], Falkon [41], DIRAC [42] and BigJob [43].

Two notable examples of pilot systems are HTCondor [44] and Glidein [45]. These systems

introduced concurrent execution of workloads on multiple resources and currently are amongst

the most widely used pilot systems. Another notable example is ATLAS PanDA [46], which is

used to run millions of jobs a week on a Worldwide LHC Computing Grid (WLCG). An example

of a workload specific pilot system is CRAM [47]. CRAM is designed to execute ensembles of

MPI tasks on HPC clusters and was developed specifically for the Sequoia supercomputer at

Lawrence Livermore National Laboratory (LLNL). Another examples is Pegasus-MPI-Cluster

(PMC) [48], which is an MPI-based Master/Worker framework that can be used in combination

with Pegasus workflow management system [49]. It runs large-scale workflows of small tasks

(limited to a single node) on HPC resources. An example of a pilot system for HPC resources,

which provides an API is Falcon [41]. Application developers can use Falcon’s API to develop

distributed applications for execution of their workloads. One of the Falcon’s limitations is

focus on a single-core tasks.

29

Features of pilot systems make them a good workload execution mechanism for applications

designed to perform REMD simulations. In particular, decoupling of the workload specification

and task execution. This enables application developers to significantly increase fault tolerance

of the respective applications.

Despite the fact that the notion of the pilot system is fairly established, the industry stan-

dard model for pilot systems doesn’t exist. Designs of the pilot systems often have significant

differences. This can be explained by the fact that these systems often targeting specific re-

sources, workload and user communities. As the result, portability and extensibility of these

systems is limited. Additionally, many pilot systems introduce new definitions and concepts,

making it almost impossible to compare them in a meaningful way. To address this issue,

Luckow et al. proposed a P* Model of Pilot Abstractions, aimed to be a unified standard model

suitable for various target architectures and frameworks [50]. The main goal of P* Model is to

provide a convenient means to qualitatively compare and analyze various pilot systems.

2.9 RADICAL-Pilot

Figure 2.6: RP overview. An application uses the Pilot API to describe pilots (green squares) and units
(red circles). The PilotManager instantiates (dash arrow) pilots, the Unit-Manager instantiates (solid
arrow) units. Both managers are executed on the user workstation. Pilots are launched (dashed arrows)
on resources A and B via SAGA API, an Agent is bootstrapped for each pilot, units are scheduled (solid
arrow) to the Agents via MongoDB and executed by the Agents Executer. Boxes color coding: gray for
entities external to RP, white for APIs, purple for RPs modules, green for pilots, yellow for modules
components.

RADICAL-Pilot (RP) is a portable, modular and extensible pilot system written in Python

programming language. RP is capable of spawning more than 100 tasks/second and the steady-

state execution of up to 8,000 concurrent tasks. RP can be used stand-alone, as well as integrated

with other application-level tools as a runtime system. A distinct feature of RP is its API -

”Pilot API” [51], which can be used by application developers to orchestrate execution of

their workloads on HPC systems. Pilot API is designed to enable users to describe pilots and

30

workloads (comprised of multiple tasks), which are then passed to the RPs runtime system.

RP utilizes a Simple API for Grid and Distributed Applications (RADICAL-SAGA [43], [52])

as an interface to the HPC systems. Unlike some other pilot systems, RP does not provide

workload management capabilities. RP supports execution of ensembles consisting of both

MPI (including multi-node tasks) and non-MPI tasks on various HPC resources.

In RP, pilots are represented as collections of computational resources, which are indepen-

dent from the architecture of the target resource. Workloads are represented as a collections

of units, which are executed by a pilot. Both pilots and units have a state model associated

with them. States of the pilots are managed by the PilotManager, but states of the units by

Unit Manager and Agent (Figure 2.6). To launch pilots on HPC resources, PilotManager is

using SAGA API. SAGA is providing adapters for various scheduling systems and types of

the resources, which enable management of jobs and files. As a communication channel be-

tween UnitManager and Agents RP uses a MongoDB database. UnitManager is responsible for

scheduling units for execution on available pilot instances. First, pilot is submitted to the queue

of a resource scheduler. When pilot becomes active, Agent gets bootstrapped on allocated CPU

cores. Then Agent starts pulling units from the MongoDB database and executes them on CPU

cores allocated by the pilot.

RP is a distributed system, with PilotManager and UnitManager running on a user work-

station and Agent running on a remote resource. Launcher component of the PilotManager

specifies the number, properties and placement of the Agent components (Stager, Scheduler,

and Executer) on a Pilot. To achieve this, Launcher is using resource configuration files, which

are defined for various resource types. Placement of the Agent components depends on the

resource type. On HPC clusters, Agent components can be placed on the cluster’s MOM nodes,

login nodes or compute nodes. Agent components use ZeroMQ for communication, which facil-

itates transitions of the units. After Agent becomes active, its Scheduler queries the resource

manager for the number of cores allocated by the pilot and their topology on a cluster. Scheduler

is capable to get resource info from the following resource managers: Sun Grid Engine (SGE),

PBS Professional, Simple Linux Utility for Resource Management (SLURM), TORQUE, Cray

CCM, LSF and LoadLeveler. Currently RP supports two scheduling algorithms: ”Torus” for

CPUs comprising an n-dimensional torus (such as on IBM BG/Q) and ”Continuous” for CPUs

connected continuously. Once Scheduler obtains resource information, it passes the units to

Executer components, which launch units using launching method, specified in the resource

configuration file. RP supports the following launching methods: IBRUN, ORTE, APRUN,

31

MPIRUN, MPIEXEC, CCMRUN, RUNJOB, DPLACE, RSH, SSH, POE, and FORK. Exe-

cuter uses one of the two spawning mechanisms for unit execution: Popen (Python based) and

Shell (based on /bin/sh). Executer monitors unit execution, collects exit codes and reports to

Scheduler once units finish executing.

32

Chapter 3

RepEx framework

In this chapter we present our framework for REMD simulations. We start this chapter by

specifying a set of requirements we have identified in collaboration with potential users. We

broadly categorize requirements into three categories: functional, performance (scalability) and

usability. Next, we present design of RepEx framework, which is built around the following

concepts: RE pattern, Pilot system and flexible execution mode. In this section we discuss

these three concepts in detail. Next, we introduce an asynchronous RE algorithm for multi-

dimensional REMD simulations. While this algorithm is designed for REMD simulations with

multiple dimensions, it can be used for one-dimensional simulations as well. In this chapter

we also describe implementation of RepEx framework. We introduce and describe three types

of modules used to our implementation: Execution Management Modules (EMM), Application

Management Modules (AMM) and Remote Application Modules (RAM). To aid the description

of our implementation, we provide a task execution diagram and two UML diagrams, namely

class diagram and control flow diagram. We close this chapter by scientific validation of RepEx

implementation, where we perform a number of experiments and use free energy profiles for

comparison with published results.

3.1 Requirements

In this section, we motivate and define requirements of a REMD simulations software. We

describe three types of requirements: functional, performance (scalability) and usability. We

have identified the following functional requirements:

Generality is a requirement to maximize a range of replica-exchange methodologies as well

as MD engines. A general purpose framework should support: (i) different types of exchange

parameters, (ii) multiple exchange parameters in a single REMD simulation, and (iii) multiple

MD engines. A corollary of this requirement is the decoupling of advances in replica-exchange

methodology to MD engines, and thus the potential for broader (greater number of REMD

applications) and deeper impact (enable new research opportunities).

33

Execution flexibility arises from the need to decouple the number of CPU cores from

the number of replicas. Alternatively, the ability to set-up a REMD simulation with a desired

number of replicas, independent of the number of CPU cores available at a given instance of

time. For reasons ranging from a queue waiting time to limitations in the number of allocatable

CPU cores on a given cluster, it should be possible to use as many or as few CPU cores as

needed, irrespective of the number of replicas. The same principle also applies to individual

replicas: support for both single-core and multi-core replicas should be provided. Currently, all

REMD frameworks require at least as many CPU cores as replicas; furthermore, the number of

replicas that are actively simulated is fixed and statically determined.

Synchronization. To enable a wider range of REMD simulations support for asynchronous

RE is required without loss of generality or execution flexibility.

Interoperability. Most REMD simulations are executed on supercomputers which vary in

scheduling systems, middleware and software environment. To support community production

grade science, a REMD framework should work on multiple high-end machines as well as small

HPC clusters, while retaining functionality and performance.

The above functional requirements have to be balanced with the following performance

requirements:

Scalability with the number of replicas. To obtain high sampling quality, REMD

simulations should support the ability to run a large number of replicas. Furthermore, given

that the number of replicas needed for a REMD simulation scales as ≈ Nd, where d is the

dimensionality (of exchange), the need to support a large number of replicas is greater when

applied to multi-dimensional simulations. Achieving good scalability for REMD frameworks is

a challenging task, especially when preserving the four functional requirements outlined above.

Scalability with the number of CPU cores. Whereas the primary performance metric

is the scalable execution of a large number of replicas, it is often the case that each replica

is multi-node (in Ref. [53], each replica was 768 cores); multi-node replicas are important to

simulate large physical systems. Any framework should provide scalability in the number of

replicas simulated and the number of CPU cores utilized.

Usability. Relative to the simulation phase, the exchange phase is significantly more com-

plex. Thus, not only should a framework for REMD separate the logic of the exchange mecha-

nisms from the simulation mechanisms, it should not expose the complexity of exchange mech-

anism, should be automated as much as possible and must be fully specified by configuration

files. Definition of configuration files should be intuitive and should include a minimal set of

parameters.

34

3.2 Design

To satisfy the requirements outlined in the previous sub-section, we discuss the three concepts

underpinning the unique design of RepEx:

• RE Pattern: explicit support for synchronization patterns between simulation and ex-

change phases.

• Pilot system: a multi-stage mechanism for workload execution via the use of an initial

placeholder job (the “pilot”) and thus dynamically allocating computational resources for

replicas.

• Flexible Execution Mode: The ability to execute different patterns and number of

replicas independent of the underlying resources available, i.e., flexible spatial and tem-

poral mapping of workload (tasks) to the allocated CPUs.

3.2.1 Replica Exchange patterns

The RepEx framework captures the distinction between different synchronization scenarios using

two RE patterns and exposes them to end-users, independent of MD simulation engine and the

resources available.

Synchronous RE Pattern

Synchronous RE pattern depicted in Figure 2.2 (a), corresponds to the scenario where all

replicas must finish simulation phase, before any of the replicas can transition to the exchange

phase. There is a global synchronization barrier, which forces the replicas arriving at the barrier

early to wait for the lagging replicas. Once all replicas are done in the simulation phase all of

them transition to the exchange phase. This cycle is then repeated. The synchronous pattern

is the conventional way of running REMD simulations, partly because of the implementation

simplicity.

Asynchronous RE Pattern

Asynchronous RE Pattern, shown in Figure 2.2 (b), does not have a global synchronization

barrier between simulation and exchange phase. While some replicas are in the simulation phase,

others might be in the exchange phase. Based on some criterion, a subset of replicas transition

into the exchange phase, while other replicas continue in the simulation phase. Selection of

replicas that will transition may be based on a FIFO principle, e.g. first N replicas transition

into an exchange phase. Alternatively, only replicas which have finished a predefined number of

35

simulation time-steps (2 ps) during some real time interval (1 minute) transition into exchange

phase.

3.2.2 Pilot system

We have discussed the pilot system concept in section 2.8 and RADICAL-Pilot, as an example

of a pilot system, in section 2.9. Pilot systems have been generalized [54] to provide a variety

of capabilities, but the two most important are: management of dynamically varying resources

and execution of dynamic workloads. A Pilot system supports the execution of workloads with

multiple, heterogeneous and dependent tasks[11].

To execute its workloads, RepEx relies on RADICAL-Pilot. Usage of RPs API, enables sep-

aration of computational requirements from the replica count in REMD simulation. Integration

of a pilot system in our design facilitates modularity of the framework and reusability of RE

patterns for various MD engines.

3.2.3 Flexible Execution Modes

Decoupling the workload size from the available resources requires: (i) the details of workload be

kept separate from the details of resources — type, quantity and availability, and (ii) the ability

to execute a workload of a given size (say N replicas) independent of the specific resources

available. As alluded to, Pilot-job systems enable the former; we now discuss how the pilot

abstraction allows the latter.

Depending upon the relative size of the resources available (R) to the size of simulations (S

= number of replicas x resource requirement of each replica), REMD simulations are executed

differently. Thus, there are two Execution Modes: when R > S (Execution Mode I), and when

R < S (Execution Mode II), each of which can be used with any of the two RE patterns.

Execution Mode I

In Execution Mode I the number of allocated CPU cores satisfies execution requirements of

all replicas at a given instant of time. For example, if each replica requires a single CPU core

to run, in this mode enough cores are allocated to run all replicas concurrently. Figure 3.1

illustrates capturing Execution Mode I in the context of a Synchronous RE pattern.

36

MDMD EX

G
L
O
B
A
L

B
A
R
R
I
E
R

G
L
O
B
A
L

B
A
R
R
I
E
R

R
E
P
L
I
C
A
S

G
L
O
B
A
L

B
A
R
R
I
E
R

EX

Figure 3.1: Schematic representation of Execution Mode I. On the x-axis is time. Gray squares
represent replicas, blue arrows MD phase propagation and green arrows exchange phase propagation.
Both MD and exchange phase for all replicas are performed concurrently. After MD and exchange
phase is placed a global barrier, ensuring that all replicas enter next phase simultaneously.

MDMD EX
G
L
O
B
A
L

B
A
R
R
I
E
R

G
L
O
B
A
L

B
A
R
R
I
E
R

R
E
P
L
I
C
A
S

G
L
O
B
A
L

B
A
R
R
I
E
R

EX

MD MDEX EX

Figure 3.2: Schematic representation of Execution Mode II. On the x-axis is time. Gray squares
represent replicas, blue arrows MD phase propagation and green arrows exchange phase propagation.
Replicas don’t propagate MD and exchange phase concurrently. Batch size for each phase is determined
by the number of CPU cores allocated. A global synchronization barrier is present after both MD and
exchange phase, ensuring that all replicas enter next phase simultaneously.

Execution Mode II

Execution Mode II supports the scenario when there are not enough CPU cores to run all

replicas concurrently. The ratio of cores to replicas is a user defined variable, but typically is a

term of a geometric series, e.g. 1
2 , 1

4 , 1
8 , 1

16 . As a result, only a fraction of replicas can propagate

simulation or exchange phase concurrently. A schematic representation of Execution Mode II is

illustrated in Figure 3.2; for simplicity, we depict the synchronous RE Pattern, but Execution

Mode II can be used with any of the two available RE Patterns.

While users are given the option to select an execution mode, exact execution details are

determined by execution management module of RepEx. The Execution Mode abstraction

hides the gory details of the execution, which differ based upon the relative values of R and S.

The implementation of Execution Modes vary in the spatial and temporal mapping of workload

(tasks) to the allocated CPUs. Specifically, they differ in:

• Order and level of concurrency for task execution

• Number of Pilots used for a given simulation

• Number of concurrently used target HPC resources

37

MD EXI 1 2

3

Figure 3.3: Finite state machine for asynchronous RE algorithm. Each replica can be in one
of three states: ’I’ - idle; ’MD’ - MD simulation; ’EX’ - exchange. From idle state replica can
only transition to an MD simulation state (state transition 1). From MD simulation state, the
only transition is to exchange state (state transition 2), but from exchange state replica can
transition only to idle state (state transition 3).

Execution Mode is a subset of execution options decoupling simulation requirements from

the resource availability and enabling flexible usage of allocated HPC resources. A user should

be able to switch between available Execution Modes without any refactoring. In addition to

providing conceptual simplicity by hiding details of the execution, Execution Modes provides a

significant practical functionality: it permits the study of systems not otherwise possible thanks

to the ability to launch more replicas then there are allocatable CPU cores on a target HPC

cluster. This might be particularly useful when a user has access to small HPC clusters, but

is interested in running REMD simulations involving a large number of replicas. For example,

a user can assign as many cores to each replica as needed, or if only a small HPC cluster

comprising 128 cores is available user still can perform a simulation involving 10000 replicas.

3.2.4 Asynchronous RE algorithm

In this section we present an algorithm for asynchronous REMD simulations. Algorithm can

be used for both one-dimensional and multi-dimensional simulations.

We first develop a finite state machine for replica, which is shown in Figure 3.3. Each replica

can be in one of three states: ’I’ - idle; ’MD’ - MD simulation; ’EX’ - exchange. From idle state

replica can only transition to an MD simulation state (state transition 1). From MD simulation

state, the only transition is to exchange state (state transition 2), but from exchange state

replica can transition only to idle state (state transition 3). Individual replicas can be in any

of the three states at a given moment: replicas 1..4 can be in state ’MD’, replicas 5 and 6 can

be in state ’EX’ and replicas 7 and 8 can be in state ’I’. In addition, individual replicas, can be

in different dimensions at a given moment (this applies to both MD and exchange phases).

Asynchronous RE algorithm is presented in algorithm 3.2.4. Prior to entering main simula-

tion loop we set the state of all replicas to ’I’ (lines 1-3). At line 4, is entered the main simulation

38

loop, which terminates only when loop runtime (elapsed time) exceeds, simulation time

specified by the user.

In the main simulation loop, first is performed a check, for the size of the ex repicas array.

If there are replicas in this array, these replicas enter exchange phase (lines 5-19). ex replicas

array is populated, when the number of replicas which have finished MD phase exceeds or is

equal to the wait size. Variable wait size is specified by the user as the ratio of replicas,

currently propagating an MD phase (typically, this ratio is 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , etc.). This ratio

is then converted to the number of replicas in a given simulation, which is then assigned to

the wait size variable. If ex repicas array is not empty, replicas are grouped together

into arrays, by their current dimension, since replicas in ex repicas array, can be in different

dimensions. Grouped replicas are then appended to ex dims array (2D array).

For each array in ex dims we perform the following (lines 7-15). We prepare an exchange

task(s) for replicas in array and execute this task(s). We wait for this task(s) to finish, since it

does not make sense to enter MD phase for current set of replicas before that. When exchange

task(s) is done, Fro each replicas in array, we update state to ’I’ and update current dimension.

Finally for each replica in ex replicas we update their group index. This is required, since

after an exchange of the parameters, group index of replicas in other dimensions has changed.

Next, we iterate through all the replicas and if replicas is in state ’I’ it enter an MD phase

(lines 20-26). For each replicas in state ’I’ we prepare an MD task, execute that task and update

the state of the replica to ’MD’. At this point we don’s wait for replicas to finish an MD task,

execution tall is non-blocking.

At line 27 we initialize an array md done. next we enter a while loop, which terminates

only when the size of md done is equal to or greater than the wait size (lines 28-35). In this

while loop, first each replica, which finished an MD task is appended to the md done array.

Then replicas in md done array are sorted by their group index and groups which have only a

replica are removed from the array. This is done to ensure that each replica has an opportunity

for an exchange. Next in md done array, groups having an odd number of replicas are reduced

in size by one. This step is necessary to ensure, that remaining members of the group will have

exchange partners at the next exchange attempt.

At line 36 we assign md done to ex replicas array. At this point number of replicas,

which has finished MD phase is equal to or greater than the wait size and these replicas can

enter an exchange phase. For each replica in ex replicas we change state to ’EX’ and as a

final step in main simulation loop we update the simulation time variable.

39

Algorithm 1 Asynchronous algorithm for multi-dimensional RE.

1: for all replicas do
2: replica.state = ’I’
3: end for
4: while (elapsed time < simulation time) do
5: if ex replicas is not empty then
6: group replicas in ex replicas by dimension and append resulting arrays to ex dims
7: for each array in ex dims do
8: prepare EX task
9: execute EX task

10: wait for EX task to finish
11: for replica in array do
12: replica.state = ’I’
13: update current dimension for replica
14: end for
15: end for
16: for each replica in ex replicas do
17: update group index
18: end for
19: end if
20: for all replicas do
21: if replica.state == ’I’ then
22: prepare MD task
23: execute MD task
24: replica.state = ’MD’
25: end if
26: end for
27: init. array md done
28: while (size of md done < wait size) do
29: for each finished MD task do
30: add replica to md done
31: end for
32: sort replicas in md done by group index a given dimension
33: remove single replica groups from md done
34: reduce size of groups with odd number of replicas in md done by one
35: end while
36: ex replicas = md done
37: for each replica in ex replicas do
38: replica.state = ’EX’
39: end for
40: update elapsed time
41: end while

40

3.3 Implementation

In this section we describe the implementation of our REMD framework. Due to a temporary

creative stupor we named out framework RepEx, which is an acronym for RE. We first present

different types of modules available in RepEx. Then we discuss how RepEx is interacting with

RADICAL-Pilot to execute its tasks. Next we present a hierarchy of classes and finally we walk

through a flow of control in a typical RepEx simulation.

3.3.1 RepEx Modules

At the core of RepEx are three module types: Execution Management Modules (EMM), Ap-

plication Management Modules (AMM) and Remote Application Module (RAM).

Execution Management Modules (EMM)

EMMs enable a separation of execution details, namely resource management and workload

configuration, from the simulation. Majority of the resource management calls (RP API) are

performed in EMM. EMM is responsible for launching a pilot(s) on a target resource, staging-

in files at the beginning of the simulation, submission of MD and exchange tasks to a target

resource and for the management of the workload dependencies. Due to EMM’s ability to

encapsulate synchronization routines, each of the two RE Patterns is fully specified by a single

EMM. Additionally, most of the profiling calls are inserted in EMMs. At the time of this writing

in RepEx are available four EMMs:

• ExecutionManagementModule. This module is a parent class for all other EMMs.

It define a set of attributes common to all EMMs and implements a single function

launch pilot().

• ExecutionManagementModulePatternS. This module specifies a synchronous RE

pattern. This module is used to run simulations with up to three dimensions with any

ordering of these dimensions. Module implements a single function run simulation().

• ExecutionManagementModulePatternA. As the name suggests this module specifies

an asynchronous RE pattern. Any number of dimensions is supported by the pattern as

well as an arbitrary ordering of exchange types. Module implements a single function

run simulation().

• ExecutionManagementModulePatternSgroup. This module is designed to pack

replicas belonging to the same group into a single task. Only a synchronous RE pattern

41

is supported by this module.

EMMs are running on the client-side of the RepEx.

Application Management Modules (AMM)

AMM is the most complex module of the RepEx. For each supported MD engine is defined

a single AMM. AMMs explicitly support generality requirement by performing the following

operations:

• translation of the user provided parameters to simulation setup

• instantiation of the replicas (replica objects) according to the provided parameters

• management of the simulation input/output files and file movement patterns

• preparation of the Compute Units (tasks) for both simulation phases (MD and exchange)

• exchange of the parameters between replicas

• support of the different exchange types and dimension counts

• support simulation restart from the previous checkpoint in case of failure

Similarly as EMMs, AMMs are running on the client-side of the RepEx.

Remote Application Modules (RAM)

As the name suggests modules of this type are running on the server-side (remote system).

RAMS are responsible for the following operations:

• generation of individual input files for MD simulation phase

• generation of restraint (.RST) files for MD simulation phase (umbrella exchange)

• calculation of single-point energies (salt concentration exchange)

• reading energy and temperature values from the simulation output files

• performing exchange phase calculations

Due to the differences in formats of input/output files, most of the RAMs are MD engine

specific. At the same time most of the exchange calculations are MD engine independent,

resulting in reusability of the RAMs. For example, GlobalExCaculator module is exactly

the same for all MD engines and simulation types, irrespective of the dimension count.

42

RepEx

Execution Management Module

HPC Resource

RP Client

Pilot Manager Unit Manager

Unit SchedulerPilot Launcher

MongoDB

Pilot-API

Local Resource Manager (LRMS)

RP Agent

Unit Execution

Pilot Description Unit Description

SAGA

1

2

3

4

Figure 3.4: RepEx task execution diagram. Top gray square represents RepEx package, middle
(yellow) square represents RP API and bottom square represents a target resource. The num-
bered arrows represent control flow. First in Execution Management Module is created a Pilot
description, which is then submitted to RPs Pilot Manager (step 1). Pilot Manager launches
a Pilot instance on a target resource (step 2). After a Pilot is active, RepEx workload can
be submitted for execution. From Execution Management Module to RPs Unit Manager are
submitted Compute Units (step 3), which are defined using a Compute Unit Description. Then
Unit Manager submits Compute Units for execution to RPs Agent (step 4).

3.3.2 Task Execution Diagram

In Figure 3.4 is presented a diagram showing how RepEx interacts with RADICAL-Pilot to exe-

cute its workloads. The gray square on the top of the diagram is RepEx package. Middle yellow

square represents RPs API and bottom square an HPC resource. In EMM of RepEx, according

to the user provided resource configuration file is created a Compute Pilot Description.

Then to launch a pilot is performed a call to RPs API (rp.PilotManager.submit pilots()).

This call submits a Compute Pilot Description to Pilot Manager (step 1), which in turn

launches a pilot (RP Agent) on a target resource (step 2). Once RP Agent becomes active on

a resource, it is ready to execute Compute Units (tasks) on allocated CPU cores. Next, from

EMM of RepEx for execution are submitted Compute Unit Descriptions (generated according

to the user defined simulation input file) to RPs Unit Manager (step 3). These Compute Unit

Descriptions can be of any type. Finally, Unit Manager executes these Compute Units on a

target resource.

43

3.3.3 UML Class Diagram

A simplified UML class diagram is presented in Figure 3.3.3. Execution Management Modules

are packaged together in EMMs package (Green square). Application Management Modules can

be found in AMMs package (blue square) and Remote Application Modules are organized into

two packages - NAMD RAMs and AMBER RAMs (red squares). The only class which does not

belong to any package is Replica class. These classes are instantiated by AMMs on a client-side

of RepEx and are used to record parameters and simulation files associated with a given replica.

Any type of REMD simulation requires at least two Replicas objects. As mentioned above

there are four EMMs in RepEx. The parent class ExecutionManagementModule, which

implements launch pilot() method and child classes which implement run simulation()

method. Child classes must also implement one of the two RE patterns. Between EMMs and

AMMs is a uni-directional association: EMMs know about AMMs, but AMMs are not aware

of the EMMs. Multiplicity value for this association is 1, since there is a one-to-one mapping

between EMM and AMM. Typically only a single instance of EMM and AMM is created during

the simulation. A uni-directional association is also between AMMs and RAMs: RAMs are

completely self-contained and are not aware of any other classes. All RAMs are instantiated

by AMMs. Multiplicity values for association between AMMs and RAMs depend on the class

type: RAMs responsible for generation of input files for replica or performing a part of exchange

calculations on a per replica basis have multiplicity value of two or more (we must have at least

two replicas). Other RAMs, which mainly are responsible for ”global” exchange calculations

have a multiplicity value of one or more (we have at least one simulation cycle).

3.3.4 UML Control Flow Diagram

We now discuss a control flow in a typical REMD simulation. In Figure 3.3.4 is depicted a sim-

plified UML control flow diagram for one cycle of the T-REMD simulation with AMBER MD

engine. Resource configuration file and simulation input file are passed to a command line tool

repex-amber. Next in repex-amber is created an object of the ApplicationManagementModuleAmber

class and an object of the ExecutionManagementModuleS class. The latter corresponds to

a synchronous RE pattern. Next, using an instance of the AMM class, is called a method

initialize replicas(), which returns to repex-amber a list of replica objects. After

that, to launch a pilot on a target resource, is called launch pilot() method of the EMM.

Once a pilot becomes active on a target resource, is called rum simulation() method of

the EMM. To this method is passed as an argument a list of replica objects and an instance of

44

the AMM class. Within run simulation() method, using an instance of the AMM class

is first called a prepare shared data(). This method populates two lists: shared urls

and shared files. The former contains URLs of the simulation input files and the latter the

names of these files. These two lists are used to create RPs data directives by both EMM and

AMM.

Next is called AMMs function get all groups(). This function returns a 2D list of

replicas grouped according to their group index in a given dimension. Grouping of replicas is

important, since part of the exchange phase is performed as a post processing step of the MD

phase. We might not have enough CPU cores to launch all tasks concurrently, which can result

in a ”self-locking” of the simulation. For an exchange phase, replicas depend on the output files

of the MD phase generated by the replicas belonging to the same group. If we don’t have enough

CPU cores to launch all tasks of the MD phase concurrently, we only launch concurrently a

subset of groups. Once replicas are grouped, we can prepare tasks for an MD phase.

Now we are ready to prepare Compute Units for the MD phase. Using an instance of

the AMM, from the EMM for each replica is called prepare replica for md() method,

which returns a Compute Unit Description. Once all Compute Unit Descriptions

are generated, they are submitted to RPs Unit Manager via submit units() method. Im-

mediately after submit units() in EMM is placed a blocking wait units() call, which

returns only after all Compute Units are done.

In this example, execution of each Compute Unit for MD phase has three stages: pre-

execution, execution itself and post-execution. At the pre-execution stage is executed InputFileBuilder

Remote Application Module, which as the name suggests creates AMBER simulation input file

(.mdin) for a given replica. If exchange type is Umbrella exchange, then for the first simu-

lation cycle this module also creates a restraint (.RST) file. At execution stage, is invoked

AMBER, which is used to perform a certain number of MD simulation time-steps. Finally,

at the post-execution stage is executed MatrixCalculatorTempEx RAM. To obtain energy

and temperature values for the replicas in the current group, first in this module is called

get historical data() method. This data is used to to calculate reduced energy using a

reduces energy() method call. Reduced energy values are used to populate a column of the

swap matrix for the given replica.

After all Compute Units of the MD phase are done, can be performed global calcula-

tions of the exchange phase. First is called AMMs method prepare global ex calc()

to prepare a Compute Unit for these calculations. This Compute Unit is then submitted to

45

RPs Unit Manager via submit units() call. After submit units() call is placed block-

ing wait units() call. Unit Manager executes on a target resource Remote Application

Module GlobalExCalc. This module performs exchange calculations using Gibbs sampling

method and determines pairs of replicas, which should exchange their respective parameters. In

GlobalExCalc is firsts called do exchange() method, which returns a list of pairs replicas.

In do exchange() is called gibbs exchange() method, which for each replica returns a

replica to exchange parameters with. GlobalExCalc returns pairs for exchange.dat file

in which are written indexes of replicas, which should exchange parameters.

When GlobalExCalc is done, in EMM is called do exchange() method of the AMM,

which performs an actual exchange of temperatures. At this point a full simulation cycle

involving both MD and exchange phases is done. After the whole simulation is done, is called

move output files() method, which moves all files generated in a working directory on the

client-side to a single directory called simulation output.

3.4 Validation

In this section we validate implementation of RepEx. 3D-REMD was performed using order

parameters of temperature, and umbrella sampling in the φ and ψ torsion angles (as shown in

Figure 3.7). In the temperature (T) dimension, six windows were chosen from 273K to 373K

by geometrical progression. In both umbrella (U) dimensions, eight windows were selected

uniformly between 0◦ and 360◦, where each window corresponds to a harmonic restraint centered

on it with a force constant of 0.02 kcal·mol−1·degree−2. The total number of replicas is therefore

6×8×8=384. Each replica was previously equilibrated for > 1 ns. In the production run, we

set the exchange attempt interval (cycle) to be 20000 steps (20 ps) and in a 15-hour run

with 400 cores (25 nodes) on Stampede [55], the simulation finished 90 cycles (1.8 ns). The

acceptance ratios of exchange attempts are approximately 3% for T dimension and 25% for

U dimensions. Free energy profiles were then generated from the last 1 ns of production data

using the maximum likelihood approach implemented in the vFEP package [56, 57]. Free energy

profile of the alanine dipeptide system along the φ-ψ angles has been studied extensively by

theoretical and experimental methods. Figure 3.7 demonstrates identical free energy profiles at

300K, compared with other recent computational studies [58], [59]. The enthalpy contribution

of αR/c7eq transition has not been reported in any computational studies. Nevertheless, the

temperature dependency of free energy profiles in Figure 3.7 has been utilized to estimate this

enthalpy contribution as 1.2 kcal/mole, comparable to the known experimental reported value

46

1.1 kcal/mole. [60]

47

R
e
p
l
i
c
a

E
M
M
s

E
x
e
c
u
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e

l
a
u
n
c
h
_
p
i
l
o
t
(
)

E
x
e
c
u
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e
P
a
t
t
e
r
n
S
g
r
o
u
p

r
u
n
_
s
i
m
u
l
a
t
i
o
n
(
)

E
x
e
c
u
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e
P
a
t
t
e
r
n
S

r
u
n
_
s
i
m
u
l
a
t
i
o
n
(
)

E
x
e
c
u
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e
P
a
t
t
e
r
n
A

r
u
n
_
s
i
m
u
l
a
t
i
o
n
(
)

2
.
.
*

2
.
.
*

A
p
p
l
i
c
a
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e
A
m
b
e
r

i
n
i
t
i
a
l
i
z
e
_
r
e
p
l
i
c
a
s
(
)

A
M
M
s a
s
s
i
g
n
_
g
r
o
u
p
_
i
d
x
(
)

s
a
v
e
_
r
e
p
l
i
c
a
s
(
)

r
e
c
o
v
e
r
_
r
e
p
l
i
c
a
s
(
)

p
r
e
p
a
r
e
_
s
h
a
r
e
d
_
d
a
t
a
(
)

p
r
e
p
a
r
e
_
r
e
p
l
i
c
a
_
f
o
r
_
m
d
(
)

p
r
e
p
a
r
e
_
g
r
o
u
p
_
f
o
r
_
m
d
(
)

p
r
e
p
a
r
e
_
r
e
p
l
i
c
a
_
f
o
r
_
e
x
c
h
a
n
g
e
(
)

e
x
c
h
a
n
g
e
_
p
a
r
a
m
s
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

p
r
e
p
a
r
e
_
g
l
o
b
a
l
_
e
x
_
c
a
l
c
(
)

g
e
t
_
c
u
r
r
e
n
t
_
g
r
o
u
p
_
i
d
s
(
)

g
e
t
_
a
l
l
_
g
r
o
u
p
s
(
)

1

g
e
t
_
r
e
p
l
i
c
a
_
g
r
o
u
p
(
)

1 1

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r
G
r
o
u
p

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r
T
e
x
M
p
i

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r
U
s
M
p
i

b
o
n
d
(
)

a
n
g
l
e
(
)

d
i
h
e
d
r
a
l
(
)

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r
T
e
m
p
E
x

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r
T
e
m
p
E
x
M
p
i

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r
U
s
E
x

b
o
n
d
(
)

a
n
g
l
e
(
)

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r
U
s
E
x
M
p
i

b
o
n
d
(
)

a
n
g
l
e
(
)

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

S
a
l
t
C
o
n
c
e
n
t
r
a
t
i
o
n
P
r
e
E
x
e
c

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

S
a
l
t
C
o
n
c
e
n
t
r
a
t
i
o
n
P
o
s
t
E
x
e
c

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

d
i
h
e
d
r
a
l
(
)

c
a
l
c
(
)

A
M
B
E
R

R
A
M
s

1
.
.
*

1
.
.
*

1
.
.
*

1
.
.
*

2
.
.
*

1
.
.
*

2
.
.
*

1
.
.
*

2
.
.
*

2
.
.
*

d
i
h
e
d
r
a
l
(
)

c
a
l
c
(
)

I
n
p
u
t
F
i
l
e
B
u
i
l
d
e
r

2
.
.
*

A
p
p
l
i
c
a
t
i
o
n
M
a
n
a
g
e
m
e
n
t
M
o
d
u
l
e
N
A
M
D

i
n
i
t
i
a
l
i
z
e
_
r
e
p
l
i
c
a
s
(
)

s
a
v
e
_
r
e
p
l
i
c
a
s
(
)

r
e
c
o
v
e
r
_
r
e
p
l
i
c
a
s
(
)

p
r
e
p
a
r
e
_
s
h
a
r
e
d
_
d
a
t
a
(
)

p
r
e
p
a
r
e
_
r
e
p
l
i
c
a
_
f
o
r
_
m
d
(
)

e
x
c
h
a
n
g
e
_
p
a
r
a
m
s
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

p
r
e
p
a
r
e
_
g
l
o
b
a
l
_
e
x
_
c
a
l
c
(
)

N
A
M
D

R
A
M
s

I
n
p
u
t
F
i
l
e
B
u
i
l
d
e
r

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r
T
e
m
p
E
x

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

G
l
o
b
a
l
E
x
C
a
l
c
u
l
a
t
o
r
M
p
i

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

1 1

1
.
.
*

1
.
.
*

2
.
.
*

2
.
.
*

F
ig

u
re

3.
5:

U
M

L
cl

as
s

d
ia

gr
am

.
E

x
ec

u
ti

on
M

a
n

a
g
em

en
t

M
o
d

u
le

s
a
re

in
g
re

en
b

ox
es

.
R

em
o
te

A
p

p
li

ca
ti

o
n

M
o
d

u
le

s
a
re

re
d

b
ox

es
a
n

d
A

p
p

li
ca

ti
on

M
an

ag
em

en
t

M
o
d

u
le

is
in

b
lu

e
b

ox
.

48

r
e
p
e
x
-
a
m
b
e
r

A
p
p
l
i
c
a
t
i
o
n
M
a
n
a
g
e
m
e
n
t

M
o
d
u
l
e
A
m
b
e
r

E
x
e
c
u
t
i
o
n
M
a
n
a
g
e
m
e
n
t

M
o
d
u
l
e
P
a
t
t
e
r
n
S

_
_
i
n
i
t
_
_
(
)

_
_
i
n
i
t
_
_
(
)

a
m
m
_
o
b
j
e
c
t

e
m
m
_
o
b
j
e
c
t

i
n
i
t
i
a
l
i
z
e
_
r
e
p
l
i
c
a
s
(
)

R
e
p
l
i
c
a
s

l
i
s
t

R
e
p
l
i
c
a

_
_
i
n
i
t
_
_
(
)

r
e
p
l
i
c
a
_
o
b
j
e
c
t

l
a
u
n
c
h
_
p
i
l
o
t
(
)

r
u
n
_
s
i
m
u
l
a
t
i
o
n
(
)

p
r
e
p
a
r
e
_
s
h
a
r
e
d
_
d
a
t
a
(
)

a
l
l
_
g
r
o
u
p
s

l
i
s
t

g
e
t
_
a
l
l
_
g
r
o
u
p
s
(
)

p
r
e
p
a
r
e
_
r
e
p
l
i
c
a
_
f
o
r
_
m
d
(
)

C
o
m
p
u
t
e
_
U
n
i
t

r
p
.
U
n
i
t
M
a
n
a
g
e
r
.
s
u
b
m
i
t
_
u
n
i
t
s
(
)

I
n
p
u
t
F
i
l
e
B
u
i
l
d
e
r

A
M
B
E
R

M
a
t
r
i
x
C
a
l
c
u
l
a
t
o
r

T
e
m
p
E
x

r
p
.
U
n
i
t
M
a
n
a
g
e
r

g
e
t
_
h
i
s
t
o
r
i
c
a
l
_
d
a
t
a
(
)

r
e
d
u
c
e
d
_
e
n
e
r
g
y
(
)

p
r
e
p
a
r
e
_
g
l
o
b
a
l
_
e
x
_
c
a
l
c
(
)

C
o
m
p
u
t
e
_
U
n
i
t

r
p
.
U
n
i
t
M
a
n
a
g
e
r
.
s
u
b
m
i
t
_
u
n
i
t
s
(
)

G
l
o
b
a
l
E
x

C
a
l
c
u
l
a
t
o
r d
o
_
e
x
c
h
a
n
g
e
(
)

g
i
b
b
s
_
e
x
c
h
a
n
g
e
(
)

w
e
i
g
h
t
e
d
_
c
h
o
i
c
e
_
s
u
b
(
)

r
p
.
U
n
i
t
M
a
n
a
g
e
r
.
w
a
i
t
_
u
n
i
t
s
(
)

d
o
_
e
x
c
h
a
n
g
e
(
)

r
p
.
U
n
i
t
M
a
n
a
g
e
r
.
w
a
i
t
_
u
n
i
t
s
(
)

m
o
v
e
_
o
u
t
p
u
t
_
f
i
l
e
s
(
)

F
ig

u
re

3
.6

:
U

M
L

C
o
n
tr

o
l

F
lo

w
D

ia
g
ra

m
.

49

 273 K 291 K 309 K

 329 K 350 K 373 K

Figure 3.7: Free energy profile of alanine dipeptide backbone torsion at six different tempera-
tures. In all six subplots, the x and y-axes correspond to φ and ψ torsion angles, respectively.
The range of energies is from 0 kcal/mol to 16 kcal/mol while each level in the contour corre-
sponds to a 1 kcal/mol increment.

50

Chapter 4

Experiments

Now we present a set of experiments performed to evaluate, optimize and characterize perfor-

mance of RepEx framework. We first present results of initial evaluation of our framework. We

measure average simulation cycle times for multi-dimensional TUU-REMD simulations with

various replica counts. Using these results we perform a number of optimizations, targeted at

reduction of average simulation cycle times. We perform five optimizations and present result

for four of them.

After obtaining acceptable performance (as a result of the performed optimizations), we

characterize performance of our framework. First, we present overheads associated with our

implementation. We measure file staging times for each of the available exchange types. In

addition, we measure overheads associated with RepEx implementation (for 1D and 3D simu-

lations) and overheads associated with RADICAL Pilot.

Next, we present performance results for 1D REMD simulations with both Amber and

NAMD MD kernels. We also plot parallel efficiency for all three exchange types. We characterize

performance of multi-dimensional REMD simulations by performing weak and strong scaling

experiments. In addition, we present results for simulations with multi-core replicas.

Final section of this chapter is dedicated to experiments with asynchronous RE. We fist

compare resource utilization of synchronous and asynchronous RE. Next, we quantify how

exchange phase is affected by the use of asynchronous RE.

4.1 Performance Optimization

4.1.1 Initial Evaluation

To evaluate our initial implementation we perform 3D REMD simulation runs using Amber as

MD engine on Stampede. We use TUU-REMD simulation, comprising one temperature dimen-

sion and two umbrella sampling dimensions. For all experiments, we measure and plot average

REMD simulation cycle time, which is an average of 4 simulation cycles. Experiments were

51

performed using alanine dipeptide (Ace-Ala-Nme) solvated by water molecules and comprising

2881 atoms. In all three dimensions we perform 6000 time-steps between exchanges, which

takes on average 136.64 seconds (in each dimension). Order of dimensions is fixed: umbrella

sampling exchange is followed by temperature exchange, which is followed by second umbrella

sampling exchange. For all simulation runs, we use the Synchronous RE pattern and Execution

Mode I: number of CPU cores is greater or equal to the number of replicas, meaning that all

replicas propagate both simulation end exchange phases concurrently. For initial experiments,

number of replicas in each dimension is equal, which results in the total number of replicas be-

ing a number raised to the power of three. We use RADICAL-Pilot 0.33 and sander as Amber

executable.

Input files: For our experiments parameters (file extension .prmtop) and coordinates (file

extension .inpcrd) files are shared between all replicas, meaning that only a single instance of

each file needs to be transferred from local system to Stampede. It is important to note, that

for certain simulation types, each replica may require an individual coordinates file. Amber

input files (file extension .mdin) are generated locally for each replica and then transferred to

Stampede. This is done for each MD cycle in each dimension. For alanine dipeptide these files

are 334 bytes large. For umbrella exchange, locally are generated Amber restraint files (file

extension .RST) and transferred from local system to Stampede once, at the beginning of the

simulation. Each of these files is 213 bytes in size.

Output files: During the exchange phase each of the replicas generates a matrix column d c.dat

file. Size of this file depends on the number of replicas used for a given simulation: for 64 repli-

cas run file size is 331 bytes, for 216 replicas run file size is 962 bytes, for 512 replicas run size

is 2.2 Kilobytes. After exchange is finished, these files are transferred from Stampede to laptop

for final processing. This is done for each dimension and for each simulation cycle. Pairs of

replicas for exchanges of parameters are determined locally.

For M-REMD simulations, Tc is comprised of the 1D cycle time for each dimension, since

simulations are performed only in one dimension at any given instant of time.

Initially we define a simulation cycle time as:

Tc = TMD + TEX + Tdata−init + Tdata + TRepEx−over + TRP−over (4.1)

where:

• TMD - MD simulation time, time to perform X simulation time-steps

• TEX - Exchange time. Time for calculations required to determine exchange partners

52

• Tdata - Data time. Time to perform data movement procedures, which are mostly remote-

to-remote. For example, Amber’s .mdinfo files to ”staging area” which is accessible by

subsequent tasks

• Tdata−init - Initial data transfer time (from users work station to remote system). Time

required to transfer files required to as inputs for MD phase and Exchange phase from

local system to remote system (HPC cluster). Note: initial data staging is performed once

per simulation and not for every cycle.

• TRepEx−over - RepEx overhead. Time to prepare tasks for execution and time to perform

local RepEx method calls

• TRP−over - RP overhead. Time required for task launching on a target resource and time

for internal RP communication

64, 64 216, 216 512, 512
CPU cores, Replicas

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250
5500
5750

Ti
m

e
in

 s
ec

on
ds

MD times
Exchange D1 (Umbrella)
Exchange D2 (Temperature)
Exchange D3 (Umbrella)
Data time
RepEx overhead
RP overhead
Data initial

Figure 4.1: Initial performance results: Decomposition of average simulation cycle time into contribut-
ing factors for alanine dipeptide TUU-REMD. All simulation runs are performed on Stampede.

Initial performance results are presented in Figure 4.1. For all three runs, MD times are

less than 50 % of the cycle time. For simulation run with 64 replicas, MD time comprises ∼35

% of the cycle time, for the run with 216 replicas ∼16 % and for the run with 512 replicas

∼7 %. All timings, with exception of MD simulation time demonstrate exponential growth.

As seen in Figure 4.1, for all three runs, initial data staging takes a significant amount of

time. For experiment with 512 replicas, initial data staging takes around 550 seconds, which is

sub-optimal.

53

Clearly, there is a lot of potential for performance improvement. In the next section we

outline and present our performance optimization strategy.

4.1.2 Optimization I

As a first performance optimization step, we reduce time required for data movement. We

eliminate the need to transfer from local system to remote HPC cluster, simulation input files

(.mdin) for each replica. Instead, we transferring a single, shared input file template and a script

which generates an input file for each replica according to specified simulation parameters. This

means that we need to add a pre-execution step for MD simulation tasks, which would run

the script to generate simulation input file for each replica. In input file template, parameters

specific to individual replica are substituted with placeholders. A script substitutes placeholders

in input file template with parameters corresponding to a given replica. This procedure occurs

at a pre exec (pre-execution) stage of a Compute Unit. For each cycle and in each dimension

we generate simulation input file on a remote HPC cluster (Stampede).

64, 64 216, 216 512, 512
CPU cores, Replicas

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750

Ti
m

e
in

 s
ec

on
ds

MD times
Exchange D1 (Umbrella)
Exchange D2 (Temperature)
Exchange D3 (Umbrella)
Data time
RepEx overhead
RP overhead
Data initial

Figure 4.2: Optimization I: remote generation of simulation input files. Decomposition of average
simulation cycle time into contributing factors for alanine dipeptide TUU-REMD. All simulation runs
are performed on Stampede.

Performance results of this optimization are presented in Figure 4.2. As depicted in Fig-

ure 4.2, this optimization resulted in substantial decrease in data times and RP overhead times.

All other timings remained the same. RP overhead timings were reduced, since task launching

54

delay is affected by the number and size of files which are staged-in prior to task execution.

Data time for simulation run with 64 replicas is now reduced by ∼70 seconds, but RP overhead

time by ∼190 seconds. For run with 216 replicas, performance gains are more apparent. Data

time decreased by ∼240 seconds, but RP overhead by ∼1280 seconds. Lastly, for the run with

512 replicas, data time was reduced by ∼1400 seconds and RP overhead by ∼1380 seconds.

4.1.3 Optimization II

To further reduce time for file staging, we eradicate transferring of restraint (.RST) files for

umbrella exchange dimensions. Similarly as with simulation input files, from the local system

we transfer to remote HPC cluster only a restraint file template and a script, which generates

restraint file based on provided parameters. Both, restraint file template and a script are

shared among all replicas. In restraint file template, parameters specific to individual replica

are substituted with placeholders. Before first simulation cycle, each task (RP’s Compute

Unit) runs a script, which substitutes placeholders in restraint file template with parameters

corresponding to a given replica. This procedure is performed only once and is specified as a

pre exec (pre-execution) stage of a Compute Unit. As a result, we create all restraint files on a

remote cluster and don’t need to transfer all of the from local system.

In addition, we also reduce the number of file transfers for the exchange phase. Previously,

for exchange, we transferred N (number of replicas) matrix column d c.dat (d is dimension, c is

cycle) files, from remote cluster to local system to finalize exchange phase. Now we determine

exchange partners remotely, thus eliminated the need to transfer N matrix column d c.dat

files. As a result we transfer a single file with replica ids. During the exchange phase, when

all individual exchange tasks are complete, we execute an additional task (Remote Application

Module), which reads data from individual matrix column d c.dat files and determines pairs of

replicas for exchange of parameters.

Resulting timings are provided in Figure 4.3. Intuitively, the aforementioned optimizations

allowed to reduce initial data time and data time. All other timings were not affected by this

optimization. The initial data times decreased by 71, 235 and 508 seconds for simulations

involving 64, 216 and 512 replicas respectively. Due to elimination of restraint file transfers

from local system to remote cluster, initial data times are now independent of replica counts

and take ∼12 seconds for all three runs.

Elimination of matrix column d c.dat file transfers, resulted in substantial decrease in data

times. For a simulation run with 512 replicas, data times decreased by ∼510 seconds.

55

64, 64 216, 216 512, 512
CPU cores, Replicas

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

Ti
m

e
in

 s
ec

on
ds

MD times
Exchange D1 (Umbrella)
Exchange D2 (Temperature)
Exchange D3 (Umbrella)
Data time
RepEx overhead
RP overhead
Data initial

Figure 4.3: Optimization II: remote generation of restraint files and remote determination of exchange
partners. Decomposition of average simulation cycle time into contributing factors for alanine dipeptide
TUU-REMD. All simulation runs are performed on Stampede.

4.1.4 Optimization III

Analysis of the Compute Unit execution profiles, revealed that there is a considerable delay

between execution start-up times of the Compute Units. Despite being submitted for the exe-

cution simultaneously, Compute Units will not start executing at the same time. In addition, as

the number of simultaneously submitted Compute Units increases, difference between execution

start of the first unit and execution start of the last unit, is increasing proportionally to the

number of units.

In RepEx, for both MD and exchange phases we create a separate set of Compute Units,

which is equal in size to the number of replicas. To mitigate the effect of the execution start-up

delay of RP’s Compute Units, we merge MD phase units with exchange phase units. As a

consequence, exchange phase tasks now are performed as a post-execution (post exec) step of

the MD compute units.

Average simulation cycle times after optimization III are shown in Figure 4.4. As shown in

Figure 4.4, RP overhead times decreased for all three runs. For the run with 64 replicas, RP

overhead decreased by 58 seconds. For simulation run with 216 replicas, by ∼90 seconds and

for the run with 512 replicas, by ∼270 seconds.

Execution start-up delay for Compute Units, currently is the largest contributing factor to

56

64, 64 216, 216 512, 512
CPU cores, Replicas

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

Ti
m

e
in

 s
ec

on
ds

MD times
Exchange D1 (Umbrella)
Exchange D2 (Temperature)
Exchange D3 (Umbrella)
Data time
RepEx overhead
RP overhead
Data initial

Figure 4.4: Optimization III: merging of MD simulation tasks with exchange tasks. Decomposition of
average simulation cycle time into contributing factors for alanine dipeptide TUU-REMD. All simulation
runs are performed on Stampede.

the simulation overhead. In ideal case, MD time should be responsible for the ∼90% of the

average REMD simulation cycle time. Currently, for the run with 512 replicas, MD time is

responsible for ∼47% of the total simulation cycle time, despite the fact, that we have reduced

execution start-up delay for nearly a half for all runs.

4.1.5 Optimization IV

All simulation runs for optimizations I,II and III were performed using default configuration

of RADICAL-Pilot agent. It is possible to modify this configuration by increasing a number

of execution and data staging workers, thus improving the performance of the application.

Experimentally it was determined that for the Stampede cluster the best configuration is with

8 components for each of the workers. In addition, we now are using a development branch of

the latest RADICAL-Pilot version (v0.42-143-gcefbb3b@devel).

In Figure 4.5 are presented results after making the above changes. As we can see, for all

three runs we achieved a substantial decrease in RP overhead: for simulation run involving 216

replicas, RP overhead is now reduced by ∼140 seconds, but for the run with 512 replicas by

∼290 seconds.

57

64, 64 216, 216 512, 512
CPU cores, Replicas

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

Ti
m

e
in

 s
ec

on
ds

MD times
Exchange D1 (Umbrella)
Exchange D2 (Temperature)
Exchange D3 (Umbrella)
Data time
RepEx overhead
RP overhead
Data initial

Figure 4.5: Optimization IV: Increasing the number of execution and data staging workers for RP
agent. Using a development branch of the latest RP version. Decomposition of average simulation cycle
time into contributing factors for alanine dipeptide TUU-REMD. All simulation runs are performed on
Stampede.

4.1.6 Optimization V

To further decrease RP overhead, RepEx overhead, data times and exchange times, we decided

to merge multiple MD and exchange tasks into a single Compute Unit. We merge together

only tasks which are belonging to the same group in the current exchange dimension. More

information on grouping of replicas for multi-dimensional REMD simulations can be found in

section 2.5. For a simulation involving 1000 replicas, this approach allows to reduce the number

of tasks by a factor of 10.

To merge MD and exchange tasks for multiple replicas into a single Compute Unit for

each exchange type we write a special Remote Application Module. This module is a Python

MPI script, which is responsible for creation of simulation input files, restraint files, concurrent

execution of Amber executables and exchange calculations.

This approach also substantially reduces the number of I/O operations, since for a group of

size N , N files are read now by a single script, instead of by N scripts.

One major drawback of this approach is that it only can be used for MD tasks requesting

a single CPU core. This means that if we are using Amber, we can’t use pmemd.MPI or

pmemd.cuda.

58

Unfortunately, we were not able to achieve consistent performance improvements for this

optimization. There are two reasons for that. First, performance of MPI tasks launched by

RP, when the number of requested CPU cores is less than one node is inconsistent. Second,

launching of MPI Compute Units by RP is slower than launching of single core Compute

Units. Nevertheless, we believe that when the aforementioned problems will be resolved, this

optimization might be useful.

4.1.7 Summary

In this section we outlined steps, taken to reduce the time to perform an RE simulation cycle.

To identify possibilities for performance improvement we decomposed a simulation cycle into

contributing factors: MD simulation time, Exchange time, Data time, Initial data transfer time,

RepEx overhead and RP overhead. We next performed an initial evaluation of our framework

using three-dimension REMD (TUU). In first two optimizations we reduced the amount of

file movement. This alone, allowed to significantly reduce average simulation cycle time. For

example, for 512 replicas optimizations I and II together, reduced simulation time by ∼ 4400

seconds. As next optimization step, we reduced RP overhead by merging together MD tasks with

exchange tasks, reducing a simulation cycle by ∼270 seconds (512 replicas). In optimization

IV, we increase the number of execution and data staging workers for RP, and switch to a

latest development version of RP. We achieve a decrease in simulation cycle time by ∼290

seconds. Next we attempted to further reduce simulation time, by merging MD tasks for replicas

belonging to the same group together. This approach allows to reduce the total number of tasks

and as a consequence the RP overhead. Unfortunately we were not able to achieve consistent

performance improvements using this approach. As a result of performance optimization activity

we reduced a simulation cycle time by ∼600, ∼2300 and ∼4900 seconds for 64, 216 and 512

replicas respectively.

4.2 Performance characterization

Having validated both the design and implementation of RepEx, in this section we discuss a

series of experiments used to demonstrate the unique functional capabilities and characterize

it’s performance.

For all experiments, we measure and plot the average REMD simulation cycle time, which

is an average of 4 simulation cycles. Experiments were performed using alanine dipeptide

(Ace-Ala-Nme) solvated by water molecules on Extreme Science and Engineering Discovery

59

Environment [55] (XSEDE) allocated systems: Stampede and SuperMIC. For all experiments

was used Synchronous RE pattern.

Simulation cycle time is calculated using formula defined in section 4.1.1. For M-REMD

simulations, Tc is comprised of the 1-D cycle time for each dimension, since simulations are

performed only in one dimension at any given instant of time.

We calculate weak scaling efficiency as:

Ew =
T1

TN
× 100% (4.2)

where:

• T1 - time to complete simulation cycle involving minimal number of replicas Rmin with

number of CPU cores equal to the number of replicas, e.g. 8 replicas on 8 CPUs

• TN - time to complete simulation cycle involving N replicas with N CPU cores

We calculate strong scaling efficiency as:

Es =
T1

(M/Nmin)× TN
× 100% (4.3)

where:

• T1 - time to complete simulation cycle involving N replicas with minimal number of CPU

cores Nmin, e.g. 1024 replicas on 8 CPUs

• TN - time to complete simulation cycle involving N replicas with M CPU cores, where

Nmin < M

• M - number of used CPU cores

Results obtained in Chapter 4 can be reproduced by following instructions at [61]. All

experiments (except asynchronous RE experiments) were performed with RP version 0.35. Last

version of RP is 0.40.1 and thanks to various optimizations it is capable of substantially better

performance. These optimizations, however, only alter the RP overhead timings (as well as

data timings) presented in this section and will have minimal impact on the overall performance

characterization of RepEx.

4.2.1 Characterization of Overheads

There are three factors which contribute to the Tc as a result of design decisions we have

made. These factors are data time, RepEx overhead and RP overhead. In this subsection, we

summarize how these factors influence the Tc.

Figure 4.6 presents the values of data times, RepEx overheads and RP overheads for simu-

lation runs involving 64, 216, 512, 1000 and 1728 replicas on SuperMIC. For all runs, we use a

60

single CPU core per replica and use Execution Mode I with synchronous RE pattern.

Values of data times depend on the exchange type, since data movement patterns differ

for each exchange type. As depicted in Figure 4.6, data times for temperature exchange are

shorter than for umbrella exchange and salt concentration. For all replica counts, data times

are relatively small: longest data transfer time is 6.3 seconds. This is due to the fact, that

majority of the transfers are happening within the cluster/resource. Consequently, data times

change as a function of a target system, since largest contributing factor, is the performance of

a parallel file system.

RepEx overhead depends on the total number of replicas and on simulation type. For all 1D

simulations, values of RepEx overhead are nearly identical, since the number of operations to

perform task preparation is very similar. RepEx overhead times for 3D simulations are longer,

since there are more data associated with each replica, complexity of data structures is increased

and more computations are performed during task preparation.

RP overhead depends only on the number of replicas (tasks) launched concurrently. As we

can see in Figure 4.6, RP overhead is proportional to the number of replicas.

64 216 512 1000 1728
REPLICAS (LOG SCALE)

10

20

30

40

50

60

70

80

TI
M

E
IN

 S
EC

ON
DS

T data times
U data times
S data times
RepEx overhead (1D)
RepEx overhead (3D)
RP overhead

Figure 4.6: Characterization of overheads: Data times, RepEx overhead and RP overhead.

4.2.2 Performance Characterization of 1D-REMD

In this subsection, we characterize performance of 1D REMD simulations with RepEx. For

each of the three available 1D-REMD simulations: temperature exchange (T-REMD), umbrella

exchange (U-REMD) and salt concentration exchange (S-REMD) we measure average cycle

61

times. We perform simulation runs involving 64, 216, 512, 1000 and 1728 replicas in Execution

Mode I. All runs are conducted with a single CPU core per replica and sander as the Amber

executable. We use alanine dipeptide solvated by water molecules comprising a total of 2881

atoms and perform 6000 simulation time-steps between exchanges. We perform all runs on

SuperMIC supercomputer [55]. Results of these experiments are presented in Figure 4.7.

0
25
50
75

100
125
150
175
200
225

se
cs

Bars left to right: U-REMD, S-REMD, T-REMD
MD-times

64, 64
216, 216

512, 512
1000, 1000

1728, 1728

Cores, Replicas

0
25
50
75

100
125
150
175
200
225
250

se
cs

T exchange
S exchange
U exchange

Figure 4.7: 1D REMD experiments with RepEx: weak scaling. Decomposition of average simulation
cycle times Tc (in seconds) into MD simulation time and exchange time for umbrella sampling, salt
concentration and temperature exchange. For all simulation runs the number of replicas is equal to the
number of CPU cores (e.g. 1 core per replica) and both vary from 64 to 1728. All simulation runs are
performed on SuperMIC supercomputer.

As we can see, for all three exchange types, the time to perform 6000 time-steps is nearly

identical, as evidenced by the almost similar average heights of dark green bars in Figure 4.7

(139.6 seconds).

Next we discuss exchange timings for different exchange parameters, as seen in the lower

panel of Figure 4.7. Timings for temperature and umbrella exchange are similar and have a

nearly linear growth rate. For both exchange types, we use a single MPI task to perform an

exchange. In case of U-REMD we have implemented a single point energy calculation internally.

Despite the fact that U-REMD exchange is more involved, we don’t see a significant difference

in exchange timings between U-REMD and T-REMD.

Due to the mathematical complexity, the single point energy calculation for S-REMD is

calculated using Amber for each replica in each state. This implies that for each replica, an

62

additional task is required. Since we are using Amber’s group files, this task requires at least

as many CPU cores as there are potential exchange partners for each replica. Consequently,

the exchange times for S-REMD are substantially longer, but nonetheless have a nearly linear

growth rate.

32 64 216 512 1000 17282744
Number of cores (log scale)

30
40
50
60
70
80
90

100
110
120

Pa
ra

lle
l E

ffi
ci

en
cy

 (%
 o

f l
in

ea
r s

ca
lin

g)

T-REMD
S-REMD
U-REMD
No exchange

Figure 4.8: Parallel Efficiency (% of linear scaling) for Temperature Exchange REMD (1D), Salt
Concentration REMD (1D) and Umbrella Sampling REMD (1D) using Amber MD engine on SuperMIC
supercomputer.

The parallel efficiency results for the 1D-REMD simulations are presented in Figure 4.8.

We calculate parallel efficiency for the weak scaling scenario and use average cycle time for

simulation with 64 cores as starting point, e.g. 100% efficiency. We also present efficiency

results for simulations without an exchange phase (black line). This quantifies the influence of

exchanges on the efficiency of 1D simulations. Since all tasks have overheads associated with

them, we observe a decrease in efficiency even if there is no exchange. For all three exchange

types we observe decrease in efficiency while increasing the number of cores. Efficiency values for

T-REMD and U-REMD are similar and demonstrate linear behavior. Efficiency for S-REMD

is lower. This is caused by specifics of exchange phase, discussed earlier.

4.2.3 T-REMD with NAMD engine

To demonstrate RepEx’s ability to use different MD engines for REMD simulations we perform

weak scaling experiments using T-REMD with NAMD engine. We run our experiments on

63

SuperMIC, use NAMD-2.10 and perform a total of 4000 time-steps between exchanges. We

perform runs with 64, 216, 512, 1000 and 1728 replicas. For each replica we use a single CPU

core and we allocate enough cores to run all replicas concurrently (Execution Mode I). Results

of these experiments are provided in Figure 4.9.

0

50

100

150

200

250
se

cs

MD times

64, 64
216, 216

512, 512
1000, 1000

1728, 1728

Cores, Replicas

0
5

10
15
20
25
30
35

se
cs

Exchange times

Figure 4.9: Experiments with NAMD engine. Decomposition of average simulation cycle times Tc

(in seconds) into MD simulation time and Exchange time for weak scaling scenario. Experiments
are performed on SuperMIC supercomputer, using T-REMD. For MD simulation are used single-core
replicas.

As expected, MD times for all cores/replicas pairs are nearly equal. The growth rate for

exchange times can’t be characterized as monomial.

4.2.4 M-REMD performance characterization

Similar to 1D-REMD experiments, we use alanine dipeptide to characterize M-REMD perfor-

mance and 6000 simulation time-steps between exchanges. We perform weak and strong scaling

experiments for TSU-REMD on Stampede.

Weak Scaling: To characterize the weak scaling performance of M-REMD simulations,

the number of replicas in each dimension is kept equal, thus, as the number of replicas in one

dimension varies from 4, 6, 8, 10 and 12, it results in the total number of replicas equal to 64,

216, 512, 1000 and 1728 respectively. We use Amber 12.0, and sander as Amber executable, as

for each replica we use a single CPU core. The experiments are performed in Execution mode

I, i.e., with enough cores to run all replicas concurrently. Results of experiments are provided

64

in Figure 4.10.

0
100
200
300
400
500
600
700
800

Ti
m

e
in

 s
ec

on
ds MD-times

64, 64
216, 216

512, 512
1000, 1000

1728, 1728

Cores, Replicas

0

50

100

150

200

250

Ti
m

e
in

 s
ec

on
ds T exchange (D1)

S exchange (D2)
U exchange (D3)

Figure 4.10: Multi-dimensional REMD experiments with RepEx - weak scaling. TSU-REMD on
Stampede using Amber MD engine. For all simulation runs the number of replicas is equal to the
number of CPU cores and both vary from 64 to 1728. For all simulation runs are used single-core
replicas. In figure is shown decomposition of average simulation cycle times Tc (in seconds) into MD
and exchange times.

For all simulation runs MD times are nearly identical: ∼ 495.0 seconds. It is expected, since

variation in the number of replicas should not affect MD time.

We observe a nearly linear scaling for exchange timings in all three dimensions. While

temperature and umbrella exchange timings are very similar, salt concentration exchange takes

substantially more time. As mentioned in Subsection 4.2.2, for salt concentration exchange we

use Amber to perform a single point energy calculations, which results in doubling of tasks and

higher computational requirements for this exchange type.

Parallel Efficiency results are presented in Figure 4.12(a). We observe a rapid decrease

in efficiency with increase in the number of cores. This can be explained by the influence of

performance for salt concentration exchange. Despite that, for all core counts, efficiency is

above 50 %.

Strong Scaling: To characterize the strong scaling performance of M-REMD RepEx, the

number of replicas is fixed at 1728 with 12 replicas in each dimension, but the number of cores

is varied: 112, 224, 432, 864 and 1728. Again, we use Amber 12.0, and sander as Amber

executable, since for each replica a single CPU core is used. The experiments are performed

65

using Execution Mode II, as we have fewer cores than replicas for all cores/replicas pairs, except

the last one. Results of these experiments are provided in Figure 4.11.

0
2000
4000
6000
8000

10000

Ti
m

e
in

 s
ec

on
ds MD-times

112, 1728
224, 1728

432, 1728
864, 1728

1728, 1728

Cores, Replicas

0

500

1000

1500

2000

2500

Ti
m

e
in

 s
ec

on
ds T exchange (D1)

S exchange (D2)
U exchange (D3)

Figure 4.11: Multi-dimensional REMD experiments with RepEx: strong scaling. TSU-REMD on
Stampede using Amber MD engine. Number of replicas is fixed at 1728, but the number of CPU
cores is increased from 112 to 1728. For all runs are used single-core replicas. In figure are shown
MD simulation and exchange times. RepEx enables users to vary the size of computational resources
independently of the simulation size. Allocating more CPUs reduces the Tc.

As illustrated in Figure 4.11, decrease in MD time is proportional to the number of cores:

the doubling of the number of CPU cores, results in decrease of MD time by nearly a half.

Exchange time in temperature exchange and umbrella exchange dimensions is almost equal

for all numbers of CPU cores. This highlights the fact, that implementation of temperature

exchange and umbrella exchange are very similar. Due to task launching delay and grouping

of replicas by parameter values in each dimension, the exchanges largely overlap with MD.

As a result, tasks which have finished simulation phase sooner can perform certain exchange

procedures, before an exchange is finalized. Compared to temperature exchange and umbrella

exchange, salt concentration exchange times are significantly higher: at 112 cores, salt exchange

time takes nearly 1800 seconds.

Parallel Efficiency results are presented in Figure 4.12(b). As we can see, efficiency graph is

non-linear. We observe a decrease in efficiency up to the last data point where number of CPUs

is equal to the number of replicas. For the last data point, efficiency increases. This behavior

is caused by the MPI task scheduling issue of RP. In the next release of RepEx this issue will

66

64 216 512 1000 1728
Number of cores (log scale)

50
60
70
80
90

100
105

Pa
ra

lle
l E

ffi
ci

en
cy

 (%
 o

f
lin

ea
r s

ca
lin

g)

(a)

112 224 432 864 1728
Number of cores (log scale)

50

60

70

80

90

100
105

Pa
ra

lle
l E

ffi
ci

en
cy

 (%
 o

f
lin

ea
r s

ca
lin

g)

(b)

Figure 4.12: Parallel Efficiency (% of linear scaling) for TSU-REMD on Stampede using Amber MD
engine - (a) weak scaling, (b) strong scaling.

be addressed.

4.2.5 REMD with Multi-core Replicas

To demonstrate RepEx’s capability to execute replicas using multiple CPU cores we use solvated

alanine dipeptide with 64366 atoms. We perform a total of 20000 time-steps between each

exchange. Experiments are performed on Stampede using Amber 12.0 and pmemd.MPI as

Amber executable for multi-core replicas and sander for single-core replicas. We use different

executables, since pmemd.MPI can’t be run on a single CPU core.

We perform weak scaling experiments using multi-core replicas and multi-dimensional TUU-

REMD with one temperature dimension and two umbrella dimensions. We perform simulation

runs with fixed number of replicas and change number of CPU cores per replica. For all runs,

we use 216 replicas, but the number of cores per replica varies from 1 to 64. Results of these

experiments are provided in Figure 4.13.

We observe a substantial drop in MD times when we use multiple cores per replica. We

attribute this drop due to RepEx’s ability to support replicas running over multi-core/multi-

nodes, as well as using a highly efficient pmemd.MPI code. Further increase of CPU cores per

replica doesn’t demonstrate a linear behavior. This is not a limitation of the RepEx framework

but attributable to the size of the alanine dipeptide, which although relatively larger than the

earlier physical system, is small in absolute terms and thus makes it difficult to gain significant

performance improvements by using more CPUs.

67

216, 216
3456, 216

6912, 216
10368, 216

13824, 216

Cores, Replicas

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
in

 s
ec

on
ds

* MD times for single core replicas are reduced to
1/10 of original measurement

MD-times

Figure 4.13: Multi-core replica experiments using TUU-REMD with Amber engine. MD times for
weak scaling scenario. Experiments are performed on Stampede supercomputer. Number of replicas is
fixed at 216, but the number of CPUs per replicas is increased from 1 to 64.

4.2.6 Asynchronous REMD

This section is aimed at identification and quantification of advantages and disadvantages as-

sociated with the use of asynchronous RE pattern.

First, we compare and contrast synchronous and asynchronous RE patterns in terms of

resource utilization. We define resource utilization as a percentage of ideal resource utilization,

which is obtained by measuring total simulation time, while running MD simulation on a target

resource 100% of the time. Next, we quantify the differences in exchange metrics, such as

crosswalks, accepted exchanges and attempted exchanges between the two patterns.

We define a crosswalk as a transition of a single replica into all possible thermodynamic

states. For example, if we are performing a temperature exchange REMD, a crosswalk is

obtained, if a given replica received all initial temperature values after a number of exchanges.

At a very minimum a crosswalk requires N accepted exchanges, where N is the number of

replicas (and the number of initial temperatures). Normally to obtain a crosswalk a number of

accepted exchanges is greater than N .

We record an exchange as accepted, if after an exchange phase, current thermodynamic state

of the replica was changed. There are cases, in which despite multiple exchanges replica ends

up with its initial thermodynamic state. For example, the following pairs of replicas perform

an exchange: (2,3), (3,4), (4,2) and (3,4). As a result of this sequence of exchanges all of

the replicas remain with their initial temperatures and none of the exchanges are counted as

accepted.

68

Finally we record an exchange attempt if during the exchange phase, every time a replica

exchanges its temperature with another replica, regardless of the final temperature value replica

receives at the end. For example the following pairs of replicas perform an exchange: (2,3) and

(3,2). After two exchanges temperatures of replicas remain unchanged, but for each replica we

record two exchange attempts.

Resource Utilization

First, we compare resource utilization for synchronous and asynchronous RE pattern. For

both patterns we use TUU-REMD with Amber MD engine. We run a Quantum Mechanics

/ Molecular Mechanics (QM/MM) simulation with a truncated dinucleotide molecule. We

simulate a non-enzymatic transesterification reaction, which is a model reaction for the RNA

cleavage reaction. The QM method we are using is called AM1/d-PhoT which is a semi-empirical

method that is specially parameterized for this type of reaction.

We calculate resource utilization as:

U =
Upattern
Umax

× 100% (4.4)

where:

• Upattern - utilization using (async/sync) RE pattern. Total simulation time obtained on

N CPU cores.

• Umax - maximal (ideal) utilization, when we run MD on all allocated CPU cores 100% of

the time.

For asynchronous RE, we denote the ratio of replicas which have finished MD phase (before

entering an exchange phase) to the total number of replicas as Wr.

In RepEx interaction with Amber MD engine (or any other MD engine) is done through

Amber input/output files. Thus, it is imperative to understand by how much a shared file

system of a given HPC cluster affects performance of RepEx and how the role of a file system

changes at scale.

We perform all simulation runs on Stampede HPC cluster. For all runs we use a single

CPU core per replica and each run is 240 minute long. To demonstrate fluctuation in execution

times of MD tasks, we perform weak scaling runs with 216, 512, 1000 and 1728 replicas while

simulating 2000 time-steps in between exchanges. Obtained results are presented in Figure

4.14.

In Figure 4.14 (a) are depicted execution times for MD Compute Units, as they are measured

69

0 1000 2000 3000 4000 5000
CU number

450

500

550

600

650

700

750

Ti
m

e
in

 s
ec

s

CU exec and data stage-in/out times
MD times

(a)

0 2000 4000 6000 8000 10000 12000
CU number

450

500

550

600

650

700

750

Ti
m

e
in

 s
ec

s

CU exec and data stage-in/out times
MD times

(b)

0 5000 10000 15000 20000 25000
CU number

450

500

550

600

650

700

750

Ti
m

e
in

 s
ec

s

CU exec and data stage-in/out times
MD times

(c)

0 5000 10000 15000 20000 25000 30000 35000
CU number

450

500

550

600

650

700

750

Ti
m

e
in

 s
ec

s

CU exec and data stage-in/out times
MD times

(d)

Figure 4.14: Execution times for MD tasks when running QM/MM REMD with synchronous RE
pattern and using 216 (a), 512 (b), 1000 (c) and 1728 (d) replicas: times to run Amber (sander)
executable (blue bars); times to run Amber executable plus times for file staging (red bars). For all
simulation runs all replicas are running concurrently. All runs are performed on Stampede HPC cluster.

internally by Amber and execution times together with file staging times as they are measured

by RP profiler. For the first 216 Compute Units timings with file staging (red line) are much

higher, then for the rest of the units. This can be explained by the setup of the shared file

system on Stampede. For the rest of the units file staging times on average are ∼6 seconds.

As we can see, difference in execution times between MD Compute Units can be up to 100

seconds. Another observation is increase in execution times for units 3000-3216. This can only

be explained by the system noise at the time of the measurement.

Similar results were obtained for simulation run with 512 replicas (Figure 4.14 (b)). For the

first 512 Compute Units file staging times are longer, than for the rest of the units. On average

file staging times are still relatively short, but difference in execution times does not exceed 100

seconds.

Results of the simulation run with 1000 replicas are depicted in Figure 4.14 (c). In contrast

70

to two previous runs, file staging times are now much larger (red bars). For some units file

staging times can be as long as 50 seconds. At the same time, fluctuation in execution time is

very similar to what we have previously observed.

Finally we present execution times for simulation run with 1728 replicas. As shown in

Figure 4.14 (d), for the first 1728 Compute Units file staging times are substantially longer. In

some cases, file staging takes more than 100 seconds. The main reason for this behavior is the

setup of the shared file system on Stampede. For the rest of the Compute Units, file staging

times are larger than before, but not by a significant amount. In addition, in this simulation

run, there is a single Compute Unit (nr. 10003), for which execution time, is much larger than

for all other units. This is not uncommon for QM/MM simulations, where some replicas might

not even finish the certain number of simulation time-steps within simulation time limits.

We have quantified and measured fluctuation in execution times for REMD QM/MM sim-

ulations with various replica counts. Our experiments demonstrate, that for these simulations

there is scope for improvement in resource utilization. We have also investigated how file staging

times are varying as the simulation progresses and the number of replicas is increased. For all

runs, file staging times for the first set of units are substantially longer than for the rest of the

units. This is caused by the creation and staging of restraint files during the first simulation

cycle and setup of the shared file system on Stampede. For subsequent simulation cycles, the

longest file staging times were observed for the run with 1000 replicas (up to 40 seconds).

Now we compare resource utilization of synchronous and asynchronous RE patterns. We

perform simulation runs with 215, 512, 1000 and 1728 replicas, while varying the number

of simulation time-steps from 500 to 2000. In case of asynchronous RE, for all runs we set

Wr = 0.125. Results of these runs are presented in Figure 4.15.

As shown in Figure 4.15, for both RE patterns, increase in the number of replicas results

in decrease in resource utilization. This can be explained by the increase of the overheads

and data times while increasing the number of replicas. In addition, for both RE patterns,

highest utilization values are demonstrated while performing 2000 simulation time-steps between

exchanges. Larger number of simulation time-steps results in longer MD times and a higher

ratio of MD time to overheads. Consequently, resource utilization is higher.

From Figure 4.15 we can see that utilization numbers for both RE patterns are very similar.

In addition, our results show that in terms of resource utilization neither of the two patterns is

superior to another one. It was exected, that asynchronous RE pattern would demonstrate sub-

stantially better utilization numbers. There are multiple factors which can hinder the expected

results. First, is the implementation of the asynchronous RE pattern. Current implementation

71

0 216 512 1000 1728
Replicas

30

40

50

60

70

80

90

100

Ut
ili

za
tio

n
(%

 o
f i

de
al

 s
im

ul
at

io
n

tim
e)

Figure 4.15: Resource utilization using synchronous and asynchronous RE patterns. Utilization is
defined as a percentage of maximal (ideal) simulation time, which is obtained by running MD 100 %
of the time. We use a single-core replicas for all runs and we always allocate enough CPU cores to
run all the replicas concurrently. We vary the total number of replicas from 216 to 1728. Utilization
for synchronous RE pattern is shown using solid lines, but for asynchronous RE pattern using dashed
lines. We use black color for Runs with 2000 simulation time-steps between exchanges are shown in
black color, runs with 1000 steps using green color and runs with 500 steps using blue.

must be revised and optimized for performance. Second, is insufficient mismatch in performance

between individual replicas. Altering the simulation setup might result in substantially better

utilization numbers for asynchronous RE pattern. Finally, for all asynchronous runs Wr was

fixed at 0.125. It is possible that fine-tuning the value of Wr would allow to achieve a better

resource utilization.

Sampling efficiency

To understand how sampling efficiency is affected by the choice of RE pattern (synchronous

or asynchronous) we examine the number of accepted exchanges, the number of attempted

exchanges and the ratio of accepted exchanges to the number of attempted exchanges for 1D

temperature exchange REMD.

Here crosswalk is calculated for each replica and is defined as a transition from the current

state to every other available state. In other words, a given replica has to exchange temperature

with every other replica. A crosswalk takes at least N (number of replicas) exchanges.

As before, we use alanine dipeptide and for all runs we perform 6000 time-steps between

exchanges. All runs are performed on SuperMIC HPC cluster. For all runs we set the range of

temperatures from 300 to 460 degrees. We perform weak scaling runs, where each replica is run

on a single CPU core and we use 40, 80 and 160 replicas. Each run takes 480 minutes of wall

72

clock time. For each number of replicas we perform runs with Wr equal to 0.5, 0.25 and 0.125.

In this experiment, there is no fluctuation in execution times for MD tasks and asynchronous

RE pattern doesn’t have any advantage in terms of performed simulation time. Nethertheless,

this simple simulation setup enables us to investigate how the choice of synchronization mech-

anism affects exchange metrics.

We first show crosswalk values both RE patterns (Figure 4.16). For synchronous pattern,

for all simulation runs, increase in the number of replicas results in increase in the number of

obtained crosswalks. This is expected, since the range of temperatures is the same (from 300

K to 460 K) for all runs, meaning that for runs with larger number of replicas difference in

temperatures between neighboring replicas is smaller. As a result more exchanges are accepted

and probability of obtaining a crosswalk is higher. Each time temperature difference between

neighboring replicas is reduced by 50 % and we observe similar increase in the number of

crosswalks.

As we can see from Figure 4.16, for asynchronous RE pattern change in the number of

crosswalks largely depends on the value of Wr. While increasing the number of replicas we

don’t observe increase in the number of crosswalks. For all simulation runs with Wr = 0.5

number of crosswalks does not exceed seven.

For simulaion runs with Wr = 0.25 we observe increase in the number of crosswalks, similar

to the synchronous RE pattern. Increase in the number of replicas, results in doubling in the

number of crosswalks. Despite that, for all three runs, obtained number of crosswalks is less

than for synchronous RE pattern. This can be explained by shorter total simulation time in

comparison with synchronous RE pattern.

For simulation runs with Wr = 0.125 we first observe a substantial increase in the number

of crosswalks, but further increase in the number of replicas results in decrease in the number of

crosswalks. For the run with 80 replicas, number of crosswalks is larger than for a synchronous

RE pattern. This is the only asynchronous run, for which was obtained larger the number of

crosswalks, than for synchronous pattern.

Obtained results show, that asynchronous RE pattern is very sensitive to the value of Wr.

For this experiment we recommend Wr = 0.25, since rate of change of the number of crosswalks

with increase in replica count is very similar to synchronous RE pattern.

Next, we demonstrate the number of accepted exchanges for the same set of simulation runs

(Figure 4.16 b). Fro synchronous RE pattern, doubling of the number of replicas results in the

doubling in the number of accepted exchanges. For asynchronous RE pattern and Wr = 0.5

73

doubling the number of replicas results only in marginal increase in the number of accepted

exchanges. This explains why the number of crosswalks is not increasing when we use Wr = 0.5.

For simulation runs with Wr = 0.25, doubling the number of replicas results in the doubling in

the number of accepted exchanges. Finaly, for simulation runs with Wr = 0.125, we observe an

increase in the number of accepted exchanges, but this increase is not linear. It is worth pointing

out that for the run with 80 replicas, the number of accepted exchanges for asynchronous pattern

is smaller than for synchronous pattern by ∼ 2600. At the same time, for this run number of

crosswalks for asynchronous pattern is 40, which is greater than for synchronous pattern.

In Figure 4.16 (f) is shown the ratio of the number of crosswalks to the number of attempted

exchanges. For synchronous RE pattern this ratio does not increase linearly and is in the

range from 0.0025 to 0.0036. For asynchronous RE pattern this ration varies with Wr, but in

most cases is higher than for synchronous RE pattern. From this we can conclude that using

asynchronous RE pattern for M accepted exchanges number of crosswalks will be higher than

for synchronous RE pattern.

74

40, 40 80, 80 160, 160
Cores, Replicas

0

10

20

30

40

50

60

70

80

90

Nr
. o

f c
ro

ss
w

al
ks

sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(a)

40, 40 80, 80 160, 160
Cores, Replicas

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

Nr
. o

f a
cc

ep
te

d
ex

ch
an

ge
s

sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(b)

40, 40 80, 80 160, 160
Cores, Replicas

0

25

50

75

100

125

150

175

200

225

Ra
tio

: a
cc

ep
te

d
ex

ch
an

ge
s

/ n
r.

re
pl

ic
as sync

async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(c)

40, 40 80, 80 160, 160
Cores, Replicas

0
250000
500000
750000

1000000
1250000
1500000
1750000
2000000
2250000
2500000
2750000
3000000
3250000

Nr
. o

f a
tte

m
pt

ed
 e

xc
ha

ng
es

sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(d)

40, 40 80, 80 160, 160
Cores, Replicas

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

Ra
tio

: a
tte

m
pt

ed
 e

xc
ha

ng
es

 /
re

pl
ic

as sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(e)

40, 40 80, 80 160, 160
Cores, Replicas

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

0.000225

Ra
tio

: c
ro

ss
w

al
ks

 /
at

te
m

pt
ed

 e
xc

ha
ng

es sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(f)

40, 40 80, 80 160, 160
Cores, Replicas

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070

Ra
tio

: c
ro

ss
w

al
ks

 /
ac

ce
pt

ed
 e

xc
ha

ng
es sync

async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(g)

40, 40 80, 80 160, 160
Cores, Replicas

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070

Ra
tio

: a
cc

ep
te

d
ex

ch
an

ge
s

/ a
tte

m
pt

ed
 e

xc
ha

ng
es

sync
async (Wr=0.5)
async (Wr=0.25)
async (Wr=0.125)

(h)

Figure 4.16: 1D T-REMD with synchronous and asynchronous RE patterns. All runs performed on
SuperMIC cluster. Runs with synchronous RE pattern (black bars), asynchronous RE pattern with
Wr = 0.5 (dark grey bars), Wr = 0.25 (light grey bars) and Wr = 0.125 (extra light gray bars)
(a) Number of crosswalks. (b) Number of accepted exchanges. (c) Ratio of accepted exchanges to
the number of replicas (d) Number of attempted exchanges. (e) Ratio of attempted exchanges to
the number of replicas. (f) Ratio of crosswalks to attempted exchanges. (g) Ratio of crosswalks to
accepted exchanges. (h) Ratio of accepted exchanges to attempted exchanges.

75

Chapter 5

Results and Analysis

RepEx is designed to address functional, performance and usability requirements outlined in

Chapter 3. We have demonstrated capabilities of RepEx and characterized its performance for

1D and 3D REMD simulations. We saw the range of exchange parameters that it supports and

the flexibility in their ordering (e.g., TUU versus TSU). Furthermore we demonstrated support

for Amber and NAMD MD engines with minimal conceptual or implementation changes.

We saw the ability to utilize different RE patterns and Execution Modes, which is made

available by decoupling exchange parameters (T/U/S), dimensionality and algorithm (sync. vs.

async.) from the resource management and execution details. As such, it is accurate to say

that RepEx satisfies the functional and usability requirements.

Most of the recent developments of molecular simulation software packages for RE, are

developed with aim to demonstrate ability to efficiently utilize computational resources at large

scales and/or using large number of replicas. While these developments provide new scientific

insights and are advancing the field of molecular simulation software, they often are tightly

coupled with a particular setup.

First, software is developed for a particular HPC cluster and is targeting a specific hard-

ware configuration. Often, this means that the code is not portable and it is unlikely that

demonstrated results will be achieved on another cluster. While this is not a trivial endeavor,

usefulness of this approach is limited. Our aim was to develop a software package which is

capable of demonstrating high scalability and performance on variety of HPC clusters.

Second, development can be done with a particular RE algorithm in mind. Performance

results in this case can be attributed to infrequent communication pattern or small amount of

data, which is sent during the exchange. It is important to ensure, that REMD software not

only supports different RE methods, but also demonstrates good scalability and performance

results for these methods.

In Table 5.1, we have summarized the most important features of seven existing packages

used for REMD, some of which are used by communities of hundreds, if not thousands of users.

76

Amber Gromacs LAMMPS VCG
async

CHARMM Charm++/
NAMD
MCA

RepEx

Max repli-
cas

∼2750 ∼900 100 240 4096 2048 3584

Max CPU
cores

∼5490 ∼150000 76800 1920 131072 524288 13824

Fault tol-
erance

n/a n/a n/a basic n/a n/a basic

MD en-
gines

Amber Gromacs LAMMPS IMPACT CHARMM NAMD Amber,
NAMD

RE pat-
terns

sync sync sync sync,
async

sync sync sync,
async

Nr. Exec.
Modes

1 1 1 2 1 1 2

Nr. dims 2 2 2 2 2 2 3
Exchange
params

3 2 2 2 2 2 3

Table 5.1: Comparison of molecular simulation software packages with integrated REMD ca-
pability. We characterize each of the seven packages based on 8 features. For each feature we
provide a numerical value or a name corresponding to that feature.

In this table, we have included three popular MD simulation engines, namely Amber, LAMMPS

and Gromacs that have been extended to provide RE capabilities and four REMD packages that

have been designed to be external to MD engines.

For each feature (except ”Fault tolerance”, ”MD engines” and ”RE patterns”) we have

provided a numerical value of that feature. For ”MD engines” we provide actual engine name,

for ”RE patterns” we specify supported patterns and for ”Fault tolerance” we indicate if there

are existing mechanisms enabling graceful handling of failures.

As can be seen from Table 5.1, a majority of the packages are designed to address a sub-

set of features we identified as necessary to be flexible and general purpose. Many packages

have eschewed generality for performance. For example, Charm++/NAMD MCA package can

utilize O(100,000) cores but does not provide flexible resource utilization nor asynchronous RE

capabilities. On the other hand, VCG RE package is one of the few packages, which sup-

ports asynchronous RE but it has limited scalability (both in the number of replicas and CPU

cores) and is tightly coupled to IMPACT which is not an open source MD engine. Similar to

most other existing solutions, both VCG and Charm++/NAMD are limited in the number of

exchange parameters as well as in flexibility in the ordering of exchange parameters.

Clearly a balance between performance and functional requirements needs to be maintained.

On the evidence of Table 5.1 we believe that RepEx provides an optimal balance.

77

Chapter 6

Conclusion

We have designed and implemented a framework for REMD simulations. To overcome limi-

tations of software packages with integrated REMD functionality, we base our design on the

following concepts: RE pattern, which enables explicit selection of different synchronization

options independently of the MD engine; flexible execution mode, which decouples the num-

ber of replicas from the number of computational resources (CPUs, GPUs, etc.); pilot system,

simplifying management and execution of REMD simulation workflows on HPC clusters.

Separation of MD simulation engine from the implementation of RE algorithm simplifies

integration of new MD simulation engines and facilitates reuse of RE patterns and Execution

Modes.

RE patterns available in our framework, can be used interchangeably with any of the two MD

engines. To the best of our knowledge none of the currently available REMD implementations

have this capability.

Use of a pilot system as a runtime, not only enables separation of the algorithm and workload

management from the resource management and runtime complexity, but also significantly

reduces code complexity.

We believe that design decisions we have made, enable our framework to provide a high

level of generality as evidenced by the Table 5.1. RepEx is designed to be a research vehicle for

the domain scientists and to enable them to develop and test REMD methods unavailable in

other software frameworks. Design and modularity of the code significantly lower the barrier

for implementation of new features and reduce development time.

In Chapter 4 we have demonstrated scalability of the RepEx using both 1D and 3D REMD

simulations on various HPC clusters, including petascale machines such as Stampede. While

obtained performance results are not ideal, we believe that our framework is not limiting po-

tential users in their ability to do research. In terms of performance, RepEx is bounded by

the RADICAL-Pilot and without major design changes unlikely will demonstrate significantly

better performance.

78

Main performance bottlenecks of RepEx are associated with file staging and task launching.

To overcome the former, usage of a shared file system of the HPC cluster should be minimized.

When possible, individual tasks should write to a local file system of compute nodes. This alone

would greatly reduce file staging time. To further reduce file staging time, individual tasks

should read data from files, stored in a local file system of a compute node, and communicate

this data using a communication protocol.

Task launching delay is a bottleneck arising from the use of RADICAL-Pilot and it increases

as a function of the number of tasks simultaneously submitted for execution. We have made

an attempt to reduce the number of tasks by grouping multiple replicas into a single task, but

this did not result in performance improvement. RADICAL-Pilot is a new pilot system and is

under constant development. As evidenced by the results in section 4.1, during the development

of the RepEx, RP’s task launching delay was significantly reduced. We believe that in a near

future this issue will be mitigated even further.

For the majority of the experiments, duration of the MD phase exceeded 2 minutes of wall

clock time. While this duration is reasonable, especially for large proteins, there are many use

cases, where frequency of exchanges is much higher and consequently duration of the MD phase

is shorter. Undeniably, for these simulations overheads of the RepEx play a more significant

role.

79

Chapter 7

Future Work

The most beneficial task in the context of this project would be developing a better under-

standing of the asynchronous RE. It is crucial to identify scenarios and use cases in which

asynchronous RE is superior to synchronous RE. Also, it is important to provide a clear guide-

lines on how to maximize benefits arising from the usage of asynchronous RE pattern. In

addition to utilization experiments presented in section 4.2.6, there is a number of scenarios

which we haven’t covered. For example, we can compare resource utilization using asynchronous

and synchronous RE, while changing the ratio of replicas to CPU cores.

Another direction for future work is multi-cluster REMD simulations. Scenario when two or

more HPC clusters are used for the same REMD simulation (with single MD engine) might not

be of significant interest, since a single modern HPC cluster is capable to satisfy requirements

of majority of users.

A more realistic usecase for multi-cluster simulations is multi-dimensional REMD simula-

tions involving multiple MD engines. Due to licensing issues, many specialized MD engines are

not available on shared HPC resources. These MD engines are available only on clusters, ac-

cessible to limited number of users. To simultaneously utilize these MD engines and computing

power of large HPC clusters, we can use multi-cluster simulations.

A particularly suitable usecase for multi-cluster simulations is multi-level RE. In multi-level

RE we simultaneously run two multi-dimensional REMD simulations. To steer simulations in

the right direction, during the simulation we periodically exchange simulation data between two

REMD simulations. These exchanges are less frequent than traditional RE exchanges and as a

result make usage of multiple clusters beneficial for this simulation type.

In terms of features and functionality, there are multiple directions for the development of

the RepEx framework:

• Internal implementation of the single point energy calculations for salt concentration ex-

change

• Addition of the new exchange parameters, such as pH, to enable support for new types of

80

multi-dimensional REMD simulations.

• Support for other MD simulation engines

• Explicit support for the simulations concurrently utilizing multiple HPC resources

• Addition of interfaces exposing REMD capability of MD engines

81

Bibliography

[1] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D.

Skeel, L. Kale, and K. Schulten, “Scalable molecular dynamics with namd,” J. Comput.

Chem., vol. 26, no. 16, pp. 1781–1802, 2005.

[2] R. H. Swendsen and J.-S. Wang, “Replica monte carlo simulation of spin-glasses,” Physical

Review Letters, vol. 57, no. 21, p. 2607, 1986.

[3] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation

of state calculations by fast computing machines,” The journal of chemical physics, vol. 21,

no. 6, pp. 1087–1092, 1953.

[4] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein

folding,” Chemical physics letters, vol. 314, no. 1, pp. 141–151, 1999.

[5] H. Fukunishi, O. Watanabe, and S. Takada, “On the hamiltonian replica exchange method

for efficient sampling of biomolecular systems: application to protein structure prediction,”

The Journal of chemical physics, vol. 116, no. 20, pp. 9058–9067, 2002.

[6] Y. Meng and A. E. Roitberg, “Constant ph replica exchange molecular dynamics in

biomolecules using a discrete protonation model,” J. Chem. Theory Comput., vol. 6, no. 4,

pp. 1401–1412, 2010.

[7] R. Salomon-Ferrer, D. A. Case, and R. C. Walker, “An overview of the amber biomolecular

simulation package,” Wiley Interdisciplinary Reviews: Computational Molecular Science,

vol. 3, no. 2, pp. 198–210, 2013. [Online]. Available: http://dx.doi.org/10.1002/wcms.1121

[8] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C.

Smith, P. M. Kasson, D. van der Spoel et al., “Gromacs 4.5: a high-throughput and highly

parallel open source molecular simulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–

854, 2013.

[9] G. Groenhof, “Introduction to qm/mm simulations,” Biomolecular simulations: methods

and protocols, pp. 43–66, 2013.

82

[10] “Repex on github,” https://github.com/radical-cybertools/radical.repex, accessed: 2015-

11-11.

[11] A. Merzky, M. Santcroos, M. Turilli, and S. Jha, “RADICAL-Pilot: Scalable Execution of

Heterogeneous and Dynamic Workloads on Supercomputers,” 2015, (under review) http:

//arxiv.org/abs/1512.08194.

[12] “Principles of modern molecular simulation methods,” https://engineering.ucsb.edu/

∼shell/che210d/, accessed: 2016-10-10.

[13] H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten, “Generalized verlet algorithm

for efficient molecular dynamics simulations with long-range interactions,” Molecular Sim-

ulation, vol. 6, no. 1-3, pp. 121–142, 1991.

[14] D. Fincham, “Leapfrog rotational algorithms,” Molecular Simulation, vol. 8, no. 3-5, pp.

165–178, 1992.

[15] N. S. Martys and R. D. Mountain, “Velocity verlet algorithm for dissipative-particle-

dynamics-based models of suspensions,” Physical Review E, vol. 59, no. 3, p. 3733, 1999.

[16] B. P. C. Isard, Theory and practice in replica-exchange molecular dynamics simulation.

ProQuest, 2008.

[17] Y. Sugita, A. Kitao, and Y. Okamoto, “Multidimensional replica-exchange method for free-

energy calculations,” The Journal of Chemical Physics, vol. 113, no. 15, pp. 6042–6051,

2000.

[18] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new perspec-

tives,” Physical Chemistry Chemical Physics, vol. 7, no. 23, pp. 3910–3916, 2005.

[19] N. Rathore, M. Chopra, and J. J. de Pablo, “Optimal allocation of replicas in parallel

tempering simulations,” The Journal of chemical physics, vol. 122, no. 2, p. 024111, 2005.

[20] A. Kone and D. A. Kofke, “Selection of temperature intervals for parallel-tempering sim-

ulations,” The Journal of chemical physics, vol. 122, no. 20, p. 206101, 2005.

[21] A. Warshel and M. Levitt, “Theoretical studies of enzymic reactions: dielectric, electro-

static and steric stabilization of the carbonium ion in the reaction of lysozyme,” Journal

of molecular biology, vol. 103, no. 2, pp. 227–249, 1976.

[22] H. Yu and L. Kale, “Scalable molecular dynamics with namd on the ibm blue gene/l

system,” 2008.

83

[23] W. Jiang, Y. Luo, L. Maragliano, and B. Roux, “Calculation of free energy landscape in

multi-dimensions with Hamiltonian-exchange umbrella sampling on petascale supercom-

puter,” J. Chem. Theory Comput., vol. 8, pp. 4672–4680, 2012.

[24] B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won,

G. Archontis, C. Bartels, S. Boresch et al., “Charmm: the biomolecular simulation pro-

gram,” J. Comput. Chem., vol. 30, no. 10, pp. 1545–1614, 2009.

[25] W. Jiang, J. C. Phillips, L. Huang, M. Fajer, Y. Meng, J. C. Gumbart, Y. Luo, K. Schul-

ten, and B. Roux, “Generalized scalable multiple copy algorithms for molecular dynamics

simulations in namd,” Computer physics communications, vol. 185, no. 3, pp. 908–916,

2014.

[26] W. Shalongo, L. Dugad, and E. Stellwagen, “Distribution of helicity within the model

peptide acetyl (aaqaa) 3amide,” Journal of the American Chemical Society, vol. 116, no. 18,

pp. 8288–8293, 1994.

[27] B. K. Radak, M. Romanus, E. Gallicchio, T.-S. Lee, O. Weidner, N.-J. Deng, P. He,

W. Dai, D. M. York, R. M. Levy, and S. Jha, “A Framework for Flexible and Scalable

Replica-Exchange on Production Distributed CI,” ser. XSEDE ’13, 2013, pp. 26:1–26:8.

[28] B. K. Radak, M. Romanus, T.-S. Lee, H. Chen, M. Huang, A. Treikalis,

V. Balasubramanian, S. Jha, and D. M. York, “Characterization of the Three-

Dimensional Free Energy Manifold for the Uracil Ribonucleoside from Asynchronous

Replica Exchange Simulations,” Journal of Chemical Theory and Computation, vol. 11,

no. 2, pp. 373–377, 2015, http://dx.doi.org/10.1021/ct500776j. [Online]. Available:

http://dx.doi.org/10.1021/ct500776j

[29] J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A.

Halgren, D. T. Mainz, J. R. Maple et al., “Integrated modeling program, applied chemical

theory (impact),” J. Comput. Chem., vol. 26, no. 16, pp. 1752–1780, 2005.

[30] J. Xia, W. F. Flynn, E. Gallicchio, B. W. Zhang, P. He, Z. Tan, and R. M. Levy, “Large-

scale asynchronous and distributed multidimensional replica exchange molecular simula-

tions and efficiency analysis,” J. Comput. Chem., vol. 36, pp. 1772–1785, 2015.

[31] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford university press,

1989.

84

[32] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathemat-

ical statistics, pp. 79–86, 1951.

[33] E. Gallicchio, M. Lapelosa, and R. M. Levy, “Binding energy distribution analysis method

(bedam) for estimation of protein- ligand binding affinities,” J. Chem. Theory Comput.,

vol. 6, no. 9, pp. 2961–2977, 2010.

[34] C. Bergonzo, N. M. Henriksen, D. R. Roe, J. M. Swails, A. E. Roitberg, and T. E.

Cheatham III, “Multidimensional replica exchange molecular dynamics yields a converged

ensemble of an RNA tetranucleotide,” J. Chem. Theory Comput., vol. 10, pp. 492–499,

2014.

[35] M. T. Panteva, T. Dissanayake, H. Chen, B. K. Radak, E. R. Kuechler, G. M. Giambaşu,

T.-S. Lee, and D. M. York, Multiscale Methods for Computational RNA Enzymology. El-

sevier, 2015, ch. 14.

[36] B. Ensing, M. De Vivo, Z. Liu, P. Moore, and M. L. Klein, “Metadynamics as a tool for

exploring free energy landscapes of chemical reactions,” Acc. Chem. Res., vol. 39, no. 2,

pp. 73–81, 2006.

[37] E. Vanden-Eijnden, “Some recent techniques for free energy calculations,” J.

Comput. Chem., vol. 30, no. 11, pp. 1737–1747, 2009. [Online]. Available:

http://dx.doi.org/10.1002/jcc.21332

[38] T. Dissanayake, J. M. Swails, M. E. Harris, A. E. Roitberg, and D. M. York, “Interpretation

of pH-Activity Profiles for Acid-Base Catalysis from Molecular Simulations,” Biochemistry,

vol. 54, pp. 1307–1313, 2015.

[39] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-level scheduling

on distributed heterogeneous networks,” in Supercomputing, 1996. Proceedings of the 1996

ACM/IEEE Conference on. IEEE, 1996, pp. 39–39.

[40] J. T. Mościcki, “Diane-distributed analysis environment for grid-enabled simulation and

analysis of physics data,” in Nuclear Science Symposium Conference Record, 2003 IEEE,

vol. 3. IEEE, 2003, pp. 1617–1620.

[41] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a fast and light-

weight task execution framework,” in Proceedings of the 2007 ACM/IEEE conference on

Supercomputing. ACM, 2007, p. 43.

85

[42] A. Casajus, R. Graciani, S. Paterson, A. Tsaregorodtsev et al., “Dirac pilot framework and

the dirac workload management system,” in Journal of Physics: Conference Series, vol.

219, no. 6. IOP Publishing, 2010, p. 062049.

[43] A. Luckow, L. Lacinski, and S. Jha, “Saga bigjob: An extensible and interoperable pilot-job

abstraction for distributed applications and systems,” in Cluster, Cloud and Grid Com-

puting (CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, 2010, pp.

135–144.

[44] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: the condor

experience,” Concurrency and computation: practice and experience, vol. 17, no. 2-4, pp.

323–356, 2005.

[45] I. Sfiligoi, “glideinwmsa generic pilot-based workload management system,” in Journal of

Physics: Conference Series, vol. 119, no. 6. IOP Publishing, 2008, p. 062044.

[46] P.-H. Chiu and M. Potekhin, “Pilot factory–a condor-based system for scalable pilot job

generation in the panda wms framework,” in Journal of Physics: Conference Series, vol.

219, no. 6. IOP Publishing, 2010, p. 062041.

[47] J. Gyllenhaal, T. Gamblin, A. Bertsch, and R. Musselman, “Enabling high job throughput

for uncertainty quantification on bg/q,” ser. IBM HPC Systems Scientific Computing User

Group (SCICOMP), 2014.

[48] M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi, and P. J. Maechling,

“Enabling large-scale scientific workflows on petascale resources using mpi master/worker,”

in Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery

Environment: Bridging from the eXtreme to the campus and beyond. ACM, 2012, p. 49.

[49] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,

W. Chen, R. F. da Silva, M. Livny et al., “Pegasus, a workflow management system for

science automation,” Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[50] A. Luckow, M. Santcroos, A. Merzky, O. Weidner, P. Mantha, and S. Jha, “P: a model of

pilot-abstractions,” in E-Science (e-Science), 2012 IEEE 8th International Conference on.

IEEE, 2012, pp. 1–10.

[51] “Pilot api,” http://radicalpilot.readthedocs.org/, accessed: 2015-11-11.

86

[52] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski, C. Lee,

A. Merzky, H. Rajic, and J. Shalf, “Saga: A simple api for grid applications. high-level

application programming on the grid,” Computational Methods in Science and Technology,

vol. 12, no. 1, pp. 7–20, 2006.

[53] J. B. Swadling, D. W. Wright, J. L. Suter, and P. V. Coveney, “Structure, dynamics, and

function of the hammerhead ribozyme in bulk water and at a clay mineral surface from

replica exchange molecular dynamics,” Langmuir, vol. 31, no. 8, pp. 2493–2501, 2015.

[54] M. Turilli, M. Santcroos, and S. Jha, “A Comprehensive Perspective on Pilot-Jobs,” 2015,

http://arxiv.org/abs/1508.04180.

[55] “Extreme science and engineering discovery environment,” https://www.xsede.org/

resources/overview, accessed: 2015-11-11.

[56] T.-S. Lee, B. K. Radak, A. Pabis, and D. M. York, “A new maximum likelihood approach

for free energy profile construction from molecular simulations,” J. Chem. Theory Comput.,

vol. 9, pp. 153–164, 2013.

[57] T.-S. Lee, B. K. Radak, M. Huang, K.-Y. Wong, and D. M. York, “Roadmaps through

free energy landscapes calculated using the multidimensional vFEP approach,” J. Chem.

Theory Comput., vol. 10, pp. 24–34, 2014.

[58] W. Sinko, Y. Miao, C. A. de Oliveira, and J. A. McCammon, “Population Based Reweight-

ing of Scaled Molecular Dynamics,” J. Phys. Chem. B, vol. 117, no. 42, pp. 12 759–12 768,

2013.

[59] X. Peng, Y. Zhang, H. Chu, and G. Li, “Free energy simulations with the AMoeba polar-

izable force field and metadynamics on GPU platform.” J. Comput. Chem., vol. 37, no. 6,

pp. 614–622, Mar. 2016.

[60] T. Takekiyo, T. Imai, and Y. Taniguchi, “Temperature and PressureEffects on Confor-

mational Equilibria of Alanine Dipeptide in Aqueous Solution,” Biopolymers, vol. 73, pp.

283–290, 2004.

[61] “Repex experiments,” https://github.com/radical-cybertools/radical.repex/blob/master/

EXPERIMENTS.md, accessed: 2015-11-11.

87

Appendix A

Appendix

A.1 Abbreviations

• Target/Remote system - HPC cluster which user can access via communication net-

work and which is used to execute simulation tasks

• Local system - laptop or desktop to which user has physical access

• Pilot - task-container launched on compute nodes of HPC cluster and executing tasks

according to their description

• Simulation phase - first phase of REMD simulation, during which replicas propagate

MD simulation. Simulation phase can be defined as a number of time-steps, e.g. 2 ps or

as a fixed real time period, e.g. 1 minute

• Exchange phase - second phase of REMD simulation, during which replicas exchange

thermodynamic parameters.

• Simulation Cycle - simulation phase followed by exchange phase for 1D-REMD and M

simulation phase, exchange phase pairs for M-REMD

• Task - a unit of execution. There is a one-to-one mapping between tasks and RP’s

Compute Units.

• Total Simulation Time - total time required to perform N Simulation Cycles

• RE Pattern - REMD simulation type definition based on synchronization mode between

simulation and exchange phases

• Execution Mode - a set of execution options decoupling simulation requirements from

the resource availability and enabling flexible usage of allocated CPU’s on HPC resources

• Bulk submission - all tasks of a current step are submitted at once (as a Python list)

to RADICAL-Pilot for execution - unit manager.submit units(tasks)

88

• Sequential submission - tasks of a current step are submitted sequentially, one by one

to RADICAL-Pilot for execution

• RP overhead - task launching delay on a target resource and communication delay

• RepEx overhead - task preparation time, e.g. association of data and parameters with

a task and translation of task description to RP task description (creation of Compute

Units); time to perform RepEx method calls inside simulation loop on a local system

• Synchronization pattern - specifies constraints for the execution order of the tasks in

RE

A.2 I/O patterns for different types of REMD simulations with Am-

ber MD engine

In this section we present and discuss file movement patterns for three exchange types supported

for the use with Amber MD engine: Temperature exchange, Umbrella exchange and Salt Con-

centration exchange. Understanding the file movement requirements for a particular exchange

type is a fundamental step in enabling efficient and scalable implementation. It is important

to point out, that despite being similar, file movement patterns for different exchange types

have some important differences. We only discuss file movement patterns for one-dimensional

simulation types, since file movement in any multi-dimensional simulation is a sequential con-

catenation of one-dimensional patterns.

For all three file movement patterns simulation is decomposed into five stages - initialization,

MD simulation, individual exchange, global exchange and post processing. Intuitively, initializa-

tion is performed on a local system. At this stage simulation input files are identified according

to the user input. MD simulation stage is done on a remote system. This stage requires as an

input a set of input files transferred from a local system and other files which are generated

dynamically on a remote system, just before the MD simulation. Individual exchange is a part

of the exchange phase, which can be performed concurrently by multiple processing units. A

subset of MD simulation output files is used as an input for individual exchange stage. Con-

tents of this subset depend on the exchange type. For all three exchange types the output of the

individual exchange stage is a single file - matrix column.dat. As the name suggests, each

of these files contains a single column of the Gibbs ”swap” matrix, which is used during the ex-

change procedure. For global exchange stage are required all matrix column.dat files, which

are used to compose a swap matrix. Global exchange stage is responsible for the majority of

89

exchange calculations. This stage as an output produces a single file - exchange pairs.dat.

In this file are provided id’s of the pairs of replicas, which must exchange their respective para-

meters. Finally, exchange pairs.dat file is transferred back to the local system, where

actual exchange of parameters is performed enabling generation of the next set of Compute

Units for MD simulation.

We first present a file movement pattern for Temperature exchange, then for Umbrella

exchange and finally for Salt Concentration exchange.

A.2.1 Temperature exchange

File movement pattern for temperature exchange simulation is depicted in Figure A.2.1. Initial-

ization stage requires a user to specify at least three shared input files: parameters file (.prmtop),

input file template (.mdin) and coordinates file (.inpcrd). These files are required as in input of

the MD simulation stage. In addition to these three files, just before the MD simulation stage

is generated a simulation input file init input.mdin. Starting with second simulation cycle,

instead of initial input coordinates file, MD simulation stage requires as input a restart file of

the previous cycle - restart id c.rst. After the MD simulation stage are generated four

files: output.mdout, trajectory.mdcrd, restart id c.rst (is used as an input for the

next cycle) and history.mdinfo. The latter file is required as an input of the individual exchange

stage. It is important to note that each individual exchange task requires a history.mdinfo of

each replica in it’s group. That is if we perform an individual exchange calculations for replica

with id = 1 and the group to which this replica belongs is G = {1, 2, 3, 4}, then history.mdinfo

files of replicas 1, 2 and 4 are required as input for individual exchange of replica 1. As men-

tioned previously individual exchange for each replica produces a matrix column.dat file.

Which is required as input for the global exchange stage. The global exchange stage, in turn

produces a single exchange pairs.dat file, which is used for local post-processing.

A.2.2 Umbrella exchange

In Figure A.2.2 is presented a file movement pattern for umbrella exchange simulations. In

addition to parameters file (.prmtop), input file template (.mdin) and coordinates file (.inpcrd),

initialization stage requires user to specify a restraints template file (.RST). Before MD sim-

ulation stage, this file is used to generate an individual restraints (restraint.RST) file for

each replica. In addition to the files specified for MD simulation stage of the temperature

90

exchange file movement pattern, umbrella exchange requires two extra files: restraints tem-

plate file rstr template.RST and restraint.RST. Similarly as for temperature exchange,

first simulation cycle of MD stage requires init coors.inpcrd file, but subsequent cycles

must use restart id c.rst of the previous cycle. Individual exchange stage, as an input

takes two files: history.mdinfo file for current replica and restraint.RST for all repli-

cas in current group. As an output of the individual exchange stage is generated a single

matrix column.dat file. File requirements of global exchange and post-processing stage are

identical with temperature exchange pattern described above.

A.2.3 Salt Concentration exchange

I/O pattern for salt concentration exchange is shown in Figure A.2.3. As we can see, I/O for

initialization stage and MD simulation stage is exactly the same as for temperature exchange.

For salt concentration exchange, individual exchange is more involved than for other REMD

types and consists of three steps. First is pre exec step, where inp energy.mdin files

for Amber’s group execution are generated. Next step is actual execution, where single point

energies for replicas in current group are calculated. This step produces inp energy.mdinfo

files as an output. The final step of the individual exchange stage is post exec. In this step,

single point energies from the inp energy.mdinfo files for all replicas in the current group

are read-in and is produced a matrix column.dat file. Global exchange and post processing

stages are exactly the same as for other REMD types.

91

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

in
p_

te
m

pl
at

e.
m

di
n

In
iti

al
iz

at
io

n
(lo

ca
l)

M
D

 s
im

ul
at

io
n

(r
em

ot
e)

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
 (c

yc
le

 1
 o

nl
y)

In
pu

t
O

ut
pu

t

in
it_

in
pu

t.m
di

n

re
st

ar
t_

id
_c

.rs
t

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

 (c
yc

le
 2

+
fo

r r
ea

d)

ou
tp

ut
.m

do
ut

tra
je

ct
or

y.
m

dc
rd

hi
st

or
y.

m
di

nf
o

re
st

ar
t_

id
_c

.rs
t

no
t t

ra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

In
di

vi
du

al
 E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t

hi
st

or
y.

m
di

nf
o

m
at

rix
_c

ol
um

n.
da

t

tra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
, r

ea
d

on
ly

 lo
ca

lly

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

no
t s

ha
re

d,
 g

en
er

at
ed

 d
ur

in
g

pr
e-

ex
ec

, r
ea

d/
w

rit
e

on
 ta

rg
et

 re
so

ur
ce

Po
st

-p
ro

ce
ss

in
g

 (l
oc

al
)

In
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at

in
p_

te
m

pl
at

e.
m

di
n

G
lo

ba
l E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at
m

at
rix

_c
ol

um
n.

da
t

re
qu

ire
d

as
 in

pu
t b

y
ea

ch
 re

pl
ic

a
(n

ot
 o

nl
y

by
 c

ur
re

nt
 o

ne
),

re
ad

/w
rit

e
on

 ta
rg

et
 re

so
ur

ce

F
ig

u
re

A
.1

:
F

il
e

m
ov

em
en

t
p

a
tt

er
n

fo
r

A
m

b
er

M
D

en
g
in

e:
T

em
p

er
a
tu

re
ex

ch
a
n

g
e.

92

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

in
p_

te
m

pl
at

e.
m

di
n

In
iti

al
iz

at
io

n
(lo

ca
l)

M
D

 s
im

ul
at

io
n

(r
em

ot
e)

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
 (c

yc
le

 1
 o

nl
y)

In
pu

t
O

ut
pu

t

in
it_

in
pu

t.m
di

n

re
st

ar
t_

id
_c

.rs
t

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

 (c
yc

le
 2

+
fo

r r
ea

d)

ou
tp

ut
.m

do
ut

tra
je

ct
or

y.
m

dc
rd

hi
st

or
y.

m
di

nf
o

re
st

ar
t_

id
_c

.rs
t

no
t t

ra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

In
di

vi
du

al
 E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t

re
st

ra
in

t.R
S

T
m

at
rix

_c
ol

um
n.

da
t

tra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
, r

ea
d

on
ly

 lo
ca

lly

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

no
t s

ha
re

d,
 g

en
er

at
ed

 d
ur

in
g

pr
e-

ex
ec

, r
ea

d/
w

rit
e

on
 ta

rg
et

 re
so

ur
ce

Po
st

-p
ro

ce
ss

in
g

 (l
oc

al
)

In
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at

in
p_

te
m

pl
at

e.
m

di
n

G
lo

ba
l E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at
m

at
rix

_c
ol

um
n.

da
t

re
qu

ire
d

as
 in

pu
t b

y
ea

ch
 re

pl
ic

a
in

 g
ro

up
 (n

ot
 o

nl
y

by
 c

ur
re

nt
 o

ne
),

re
ad

/w
rit

e
on

 ta
rg

et
 re

so
ur

ce

hi
st

or
y.

m
di

nf
o

rs
tr_

te
m

pl
at

e.
R

S
T

rs
tr_

te
m

pl
at

e.
R

S
T

re
st

ra
in

t.R
S

T

F
ig

u
re

A
.2

:
F

il
e

m
ov

em
en

t
p

a
tt

er
n

fo
r

A
m

b
er

M
D

en
g
in

e:
U

m
b

re
ll

a
ex

ch
a
n

g
e.

93

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

in
p_

te
m

pl
at

e.
m

di
n

In
iti

al
iz

at
io

n
(lo

ca
l)

M
D

 s
im

ul
at

io
n

(r
em

ot
e)

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce

sh
ar

ed
, r

ea
d-

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
 (c

yc
le

 1
 o

nl
y)

In
pu

t
O

ut
pu

t

in
it_

in
pu

t.m
di

n

re
st

ar
t_

id
_c

.rs
t

pa
ra

m
et

er
s.

pr
m

to
p

in
it_

co
or

ds
.in

pc
rd

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

 (c
yc

le
 2

+
fo

r r
ea

d)

ou
tp

ut
.m

do
ut

tra
je

ct
or

y.
m

dc
rd

hi
st

or
y.

m
di

nf
o

re
st

ar
t_

id
_c

.rs
t

no
t t

ra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

In
di

vi
du

al
 E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t /
 In

pu
t

hi
st

or
y.

m
di

nf
o

tra
ns

fe
rr

ed
 b

ac
k

to
 lo

ca
l m

ac
hi

ne
, w

rit
e

on
ly

 o
n

ta
rg

et
 re

so
ur

ce
, r

ea
d

on
ly

 lo
ca

lly

no
t s

ha
re

d,
 re

ad
/w

rit
e

on
 ta

rg
et

 re
so

ur
ce

no
t s

ha
re

d,
 g

en
er

at
ed

 d
ur

in
g

pr
e-

ex
ec

, r
ea

d/
w

rit
e

on
 ta

rg
et

 re
so

ur
ce

Po
st

-p
ro

ce
ss

in
g

 (l
oc

al
)

In
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at

in
p_

te
m

pl
at

e.
m

di
n

G
lo

ba
l E

xc
ha

ng
e

(r
em

ot
e)

In
pu

t
O

ut
pu

t

ex
ch

an
ge

_p
ai

rs
.d

at
m

at
rix

_c
ol

um
n.

da
t

re
qu

ire
d

as
 in

pu
t b

y
ea

ch
 re

pl
ic

a
(n

ot
 o

nl
y

by
 c

ur
re

nt
 o

ne
),

re
ad

/w
rit

e
on

 ta
rg

et
 re

so
ur

ce

in
p_

en
er

gy
.m

di
n

in
p_

en
er

gy
.m

di
nf

o

O
ut

pu
t

m
at

rix
_c

ol
um

n.
da

t

F
ig

u
re

A
.3

:
F

il
e

m
ov

em
en

t
p

a
tt

er
n

fo
r

A
m

b
er

M
D

en
g
in

e:
S

a
lt

C
o
n

ce
n
tr

a
ti

o
n

ex
ch

a
n

g
e.

