
GRIDBOT: TOWARDS A NEUROINSPIRED
NAVIGATION SYSTEM FOR ROBOT PLANNING

BY GUANGZHI TANG

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Konstantinos P. Michmizos

and approved by

New Brunswick, New Jersey

May, 2017



ABSTRACT OF THE THESIS

Gridbot: Towards a neuroinspired navigation system for

robot planning

by Guangzhi Tang

Thesis Director: Konstantinos P. Michmizos

The ability to orient in an unknown, fast-changing, environment is an unmet challenge

for robots but a seamlessly solved problem for the primate brain. This thesis describes

the first steps in developing a neuro-inspired bottom-up model of the brains navigation

system to make a mobile robot localize itself, map its surrounding and plan its trajec-

tory. Our model employs neural spikes to encode and process information in real-time.

Despite a multitude of Nobel-winning studies that have revealed neurons specializing in

self-navigation, such as place, grid, border and head direction cells, their interconnectiv-

ity remains elusive. Therefore, any model employing these neurons needs to make quite

a lot of extrapolations to fill in the gaps of knowledge. The main challenge was to design

a real-time spiking neural network that can compensate for the hardware limitations

as well as its own intrinsic imperfections and work in real conditions. To design the

first component of our model, the head direction cell layer, we employed mechanisms

based on self-organizing and self-sustaining neural activity, or attractor dynamics, re-

sembling those originally proposed in Hebbs cell assembly theory. The information to

be maintained and updated was a continuous variable, or continuous attractor, where

a 1D continuum of cell assemblies represented head direction. In theory, our network

should give rise to a self-sustained hill of excitation - the attractor. In practice, due

ii



to non-ideal speed sensors and the intrinsic spike variability of the spiking network, it

was impossible to sustain a correct approximation of the head direction using just this

scheme. To correct this, we introduced a spike-based Bayesian inference layer of leaky-

integrate-and-fire models of neurons, that combined feedforward (vision) and recursive

(kinesthetic) inputs. We show how such a layer can approximate the posterior probabil-

ity of the preferred state encoded in the spiking probability by adding the logarithms of

the simulated dendritic currents, which is a reasonable approximation of the nonlinear

dendritic activity. We show that our model accurately estimated head direction and

further extend it to include a dynamic network of border cells that can learn to map

the observed environment through simulating synaptic plasticity. Solving the localiza-

tion problem and creating a cognitive map of the surroundings, our thesis paves the

way for tackling robot planning through imitating brain structure, its principles and

its performance.
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Chapter 1

Introduction

1.1 Problem statement

Moving and path planning in dynamic environments are crucial tasks for the survival

of mobile agents. To design any efficient planning strategy, one needs to be fully aware

of the position and the surrounding environment. In robotics, this coupled problem

is defined as localization and mapping problem. Such problems have long been at the

foundation of mobile robotics [1].

Interestingly, localization and mapping are important tasks for humans and animals.

Extensive research has been done on the neural signature of the ability of the brain to

orient itself. These studies have lead to a number of newly discovered cells, such as

place cell [2], grid cell [3], border cell [4], head direction cell (HD cell) [5], and many

other special function neurons [6][7].

Although a unified theory of how such a spatial system in the brain works, a series

of computational models have supported, or triggered, experimental findings. These

models try to fill in the gaps between the already known neurons and propose specific

roles for each one of the neural parts. Place cells in the hippocampus are related to path

integration and planning [8]. Grid cells are related to speed integration and localization

[9]. Border cells are representations of environment information [10]. Head direction

cells give orientation information to the spatial system [11].

producing accurate results from a noisy system that is driven by noisy sensors is a

main challenge for localization and mapping. biological networks of neurons are also

noisy systems and they can be influenced by many factors. Sensors are noisy in the real

world. In mobile robot, motion sensors and depth cameras have huge errors compared
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to the ground truth. In the brain, information come from eyes or vestibular system

are full of noises and errors [12][13]. These noises and errors make it impossible to

trust any sensory system separately. In the brain, information coming from the eyes

or the vestibular system is noisy and error-prone [12][13]. The presence of noise and

other errors makes it impossible to trust any sensory system separately. The brain

combines information from different sensory systems. An interesting recent finding

from an experimental and computational study shows that neural areas can achieve

Bayesian optimal results [14]. In robotics, different sensors are also used to generate

accurate results for future computations in a similar fashion, such as in the simultaneous

localization and mapping (SLAM) algorithms [1].

Mapping the environment is an important task for both the mapping and the lo-

calization problem. Although multiple neurons have been related to the spatial system

of the brain, there is currently no neurophysiologically plausible model that explains

how the environmental map can be represented in the brain. One of the challenges

for building an environmental map is how we should maintain a stable and dynamic

set of memories that relies on sensory input. Sensory observations of the environment

is very limited at a single time point: The human field of view only covers a slightly

over 180-degrees horizontally. Nevertheless, we need to memorize landmarks in multi-

ple directions in order to build a map for the entire environment. Employing synaptic

plasticity, in the form of long-term potentiation (LTP) and long-term depression (LTD)

[15], seems to be an appropriate first step to form these memories. The map of the

environment can be stored in the weights of the synapses and change dynamically using

local, Hebbian-based, synaptic plasticity rules.

This thesis makes the first and most important steps towards building the Gridbot

system, a neuro-inspired navigation system that helps robot to localize itself, map its

surrounding and plan its trajectory. By mimicking the current findings of brain spatial

system, we designed a real-time, robust spiking neural network that can compensate

for the hardware limitations as well as its own intrinsic imperfections. Specifically,

we built a neuro-inspired environmental mapping model on mobile robot. This neuro-

mimetic robotic system follows a bottom-up approach and relies on neural spiking to
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self-map autonomously and on real-time. The construction of the model was done in two

steps. First we built an HD cell layer employing Bayesian inference that can provide an

accurate head direction representation using the real-time spiking of neurons. Second

we built a dynamic border cell network that learns the map in different environments

using synaptic plasticity. Experiments both in simulator and real world environments

show the model successfully uses spiking neurons to generate a map of the environment.

As a result, the model provides a powerful assumption of how border cell network

works intrinsically, and may provide a good direction for neuroscientists to uncover the

biological truth behind neural connectomics for the brain navigational system.

1.2 Background research

Spatial system of the brain has been studied in the past decades, and lots of related

neurons has been found. In 1971, place cell was found in the hippocampus of moving

rats [2]. Place cell becomes active when an animal enters a particular place field in

the environment. In 1984, head direction cell (HD cell) was discovered in the dorsal

presubiculum of rats [5]. HD cell raise its firing rate when animal’s head is reaching

a preferred direction. In 2005, grid cell was found in the medial entorhinal cortex [3].

Different from place cell, grid cell reacts to multiple place fields in the environment, and

all these place fields forms a triangular lattice. It is believed by researchers that grid

cell gives a metric representation to the spatial system [16]. In 2009, border cell was

discovered in the hippocampal formation [4]. Border cell is a kind of neuron related to

the environmental map in the brain. Border cell becomes active when there is a border

at preferred direction and distance.

Since the interconnections between these neurons, and the mechanisms under their

activities are still unknown, multiple computational models have been developed trying

to give assumptions of these neurons. The most popular model is the continue attractor

neural network (CANN) model. First developed for HD cells [11], CANN model has

also been generalized onto place cells [8] and grid cells [9]. Experiment results show

grid cell generates weeks after birth [17], a model generalize CANN model with synaptic

plasticity has been proposed to give an assumption of this process [18].
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There are other models for neurons in brain spatial system as well. Boundary

vector cell (BVC) model not only gives an assumption of border cell, but also generates

place cell activity using borders of the room-like environment [19]. There is also the

oscillatory interference model for grid cell [20], trying to simulate the activity of grid

cell in a oscillatory point of view. Different from CANN, all these models are more

difficult to implement using spiking neurons.

Movements of mobile robots share a lot similarity with moving mammals, like rats

or human. They share similar inputs and goals. Because of this, there are also many

computational models for neurons in brain spatial system inspired by robotic state-

of-the-art methods. The probabilistic learning model for grid cell [10] is inspired by

fastSLAM algorithm [21] in robotics. By combining the visual input and self-motion

input, the probabilistic learning model generates accurate location representation from

grid cells.

1.3 Description of the remaining chapters

There are 4 remaining chapters in this thesis. Chapter 2 briefly explains the compu-

tational neuron models that inspired our approach. These models are mainly focus on

HD cell and border cell. We propose our model in Chapter 3 and Chapter 4. Chap-

ter 3 explains the intrinsic structure of HD cell model employing Bayesian inference.

Chapter 4 discovers the use of depth camera and HD cell for generating border cell

allocentric activity, and the use of synaptic plasticity for forming memory between bor-

der cell interconnections. Chapter 5 gives the conclusion of our work and the future

generalization.
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Chapter 2

Computational Spatial Neuron Models

2.1 Continue attractor neural network model for head direction cell

Continue attractor neural network (CANN) model has been used to simulate the be-

havior of multiple neurons in spatial system of brain [22]. CANN model generalize

the concept of attractor model, a kind of computational model for discrete memories.

Attractor model such as Hopfield network [23] stores memory in self-organizing and

self-sustaining neural activities, or attractor dynamics. It is very hard for the model

to transfer from memory to memory since each memory is in its own lowest energy

attractor.

The information to be maintained and undated in CANN model is not a set of

discrete items, head direction or body position are changing rapidly through time. In

CANN model, attractors no longer lie separately on a surface as in Hopfield network.

They become continuous variables, or continue attractors, and lie continuously on a

manifold from high dimension space. For example, continue attractors for HD cells

lie on a 1D circle manifold [24] and continue attractor for grid cells lie on a 2D twist

torus manifold [25]. Though sacrifice part of the stability of memory, continue attractor

makes memory a lot easier to transfer.

CANN model for HD cells uses a group of neurons to sample a 1D circle manifold of

head direction. Each neuron has a unique preferred head direction, and all the neurons

are uniformly distributed on the circle. Each neuron in the model has synapses with

all other neurons in the network. Neurons in close association excite each other with

the amount of excitation being proportional to the difference of preferred directions

between neurons. Distant neurons are connected with inhibitory connections.



6

Since the weights each neuron connected to all other neurons are symmetrical, an

stationary attractor representing head direction can be formed and sustained under no

external influences. When there is a external stimuli, such as speed, the symmetry of

the network is temporarily distorted by biasing the activities of neurons. This distortion

causes the network trying to get another stable state, therefore drives the attractor to

move.

Many researches have been done on CANN model for HD cells. Most of the re-

searches are focusing on rate model but not spiking model of neuron. CANN model

has also been implemented onto mobile robot [26][27]. However, due to non-ideal speed

sensors and the intrinsic spike variability of spiking neurons, it was impossible to sustain

a correct approximation of the head direction using spiking CANN model in practice.

2.2 Boundary vector cell model

A good example to show how computational models help the understanding of biological

neuron systems in the brain is the boundary vector cell (BVC) model proposed in 1990s

[28]. Experimental results show place cell activity is highly related to the distances

between preferred place field and borders of the environment. Therefor, BVC model is

proposed assuming a predicted boundary vector cell contributes to the firing of place

cell. Amazingly border cell is found in 2009 [4] having very similar activity as the

predicted boundary vector cell.

dft = gt(d, θ)dθ (2.1)

gt(d, θ) ∝
exp[(d− ri)2 2σ2(ri)]√

2πσ2(ri)
× exp[(θ − φi)2 2σ2(φi)]√

2πσ2(φi)
(2.2)

Though BVC model made a huge contribution to the finding of border cell, the

model itself is actually a very simple one without any input to border cell. The model

assumes a rat in a room already know all positions of borders surrounding it. For

instance there is a border cell in the model with preferred direction φi and preferred

distance ri. The updating rule for border cell in BVC model is shown in Equation 2.1
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and 2.2. Since positions of all borders at each direction are already known, border cell

activity is simulated by a integral of a joint Gaussian distribution for all directions.

BVC model doesn’t give a biologically feasible explanation of how border cell activity

is generated. It neglects the transformation between egocentric information from vision

and allocentric information of the environmental map. It also failed to explain how

observed borders are memorize in border cell network. All these questions are waiting

to be answered by more biologically feasible computational models for border cells.

2.3 Probabilistic learning model for grid cell

It is very hard for computational models to satisfy both biologically feasible and working

in real world simulation. Most real world working models of spatial neurons have to

get inspirations from robotics. The probabilistic learning model [10] try to explain

simultaneous learning between information from border cell and grid cell by adapting

the framework from fastSLAM algorithm [21]. It uses rate model to simulate border

cell and grid cell, and proposes a spatial information fusion model (SIFM) algorithm

to generate accurate border cell and grid cell activities.

Different from other computational models for grid cell, the model defines position

represented by grid cell using oscillatory grid code. Each grid code contains multiple

oscillatory grid cell rate model [20] with different grid scales and random grid phase,

and a head direction representation. Therefore each grid code in the model represent

one unique position in environment.

Two kinds of border cells are simulated in the model. Sensory border cells react to

sensory inputs of border positions using mechanism similar to BVC model. Predictive

border cells generate associative maps of the environment for each position. Since each

grid code is a sampled position of the environment, different groups of predictive border

cells are connected to each one of the grid code separated representing the possible map

of positions.

Associative maps represented by predictive border cells are learned using corre-

sponding grid codes and sensory border cells information. A uniform rectangular lattice
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in the environment is used as a base to update the associative weight between grid code

and predictive border cells. Each time-step, the associative weight is updated by the

joint activities between grid code and sensory border cells. Eventually, associative map

of one grid code is generated by a weight summation of elements in the lattice.

Limitation for the probabilistic learning model is very obvious. First it uses very

high level models for simulating neurons. Both grid code and border cell in the model

are more like transforming SLAM concepts into biological terms. The methods based

on grid code, such as directly sampling and associative learning, are almost impossible

to implement on lower level neuron models, like spiking neuron model. However, the

idea of the model is very fascinating. It treats grid cells as a sample of environment,

and each sample has its own predicted map. This idea inspired our approach on border

cell.
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Chapter 3

Head direction cells model employing Bayesian inference

3.1 Why we built a accurate head direction cell model?

Direction is the most basic and fundamental element in navigation. It contributes

to both movement and observation, two of the most important tasks in navigation.

Head direction of moving agent combines both moving direction and visual direction,

since it moves and observes in the direction its head points at most of the time. Head

direction cells (HD cells) have been found in the brain of most mammals. Experimental

studies show HD cells give accurate representations of direction. Though visual and

vestibular influences on HD cells have been observed [29], there is no neurophysiological

explanation on how the head direction representations on HD cells are formed [30].

The most used spiking neural network model for HD cells in computational neuro-

science is the CANN model. The classic HD cell CANN model only uses self-motion

input to drive the activity of HD cells, the head direction represented by the model

results with a drift error when big noises are included in self-motion input. Other HD

cell CANN models try to solve this problem by using visual input. However, mam-

malian visual system provides very noisy visual information. No HD cell model has

been proposed to eliminate both self-motion and visual errors simultaneously with a

spiking neuron network.

An accurate HD cell model is essential to our Gridbot spiking neuron system. Most

importantly, the model gives an assumption of the structure of HD cells and related

neurons. It has the potential to point the way for neuroscientists for better under-

standing of HD cell system in the brain. Therefore, we propose a spiking HD cell model

employing Bayesian inference generating accurate head direction representation.
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3.2 Bayesian inference in spiking neurons

Bayesian inference is a method to update hypothesis using extra evidence base on

Bayes’ theorem. The formal definition of Bayesian inference is shown in equation 4.1.

P (H|E) is the posterior probability, it gives the probability of hypothesis H after new

evidence E has been observed. P (H) is the prior probability, it estimates the probability

of hypothesis H before any new evidence is observed. P (E|H) is the likelihood, it

shows the probability of observing evidence E with the given hypothesis H. P (E) is the

probability of observing evidence E, and since it stays the same for any hypothesis, it

can be ignored in Bayesian inference computation.

P (H|E) =
P (E|H)P (H)

P (E)
∝ P (E|H)P (H) (3.1)

Bayes filter is a method using Bayesian inference recursively at each time step to

estimate the probability of hypothesis of state, or belief of state. Here the belief of

state represents a distribution of head direction of mobile creature or robot. Bayes

filter can be represented by a hidden Markov model (HMM). In HMM belief of state is

propagated through time steps using equation 4.2. At each time step k, belief of state

xk is represented by posterior probability P (xk|u1, ..., uk, z1, ..., zk), uk is the transition

probability from time step k-1 to time step k, zk is the observation of environment at

time step k. Belief propagation through HMM is generated from Bayesian inference

base on Markov assumption between time steps.

Bel(xk) = ηP (zk|xk)

∫
P (xk|uk, xk−1)Bel(xk−1)dxk−1 (3.2)

Experiments shows that the brain performs Bayesian inference for variety of tasks,

such as cue integration and decision making [31] . Multiple models have been proposed

to perform Bayesian inference on spiking neurons [14][32]. Since spiking neurons can

perform Bayesian inference, they can also perform Bayes filter over time.

HMM implemented in spiking neural networks [33] is shown in Figure 3.1. Neurons

in Bayesian inference layer receive inputs from both evidence likelihood layer and state

belief layer, every preset time step state belief layer will be updated by a bursting input
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Figure 3.1: HMM implemented in spiking neural networks

from Bayesian inference layer. Updating rule for neurons in Bayesian inference layer

using leaky-integrate-and-fire (LIF) neuron [34] is shown in equation 4.3. Equation 4.4

and 4.5 show belief propagation through HMM in Equation 4.2 can be implemented

using spiking neural network if it is performed in the logarithm domain [35]. By using

non-linear dendritic functions to approximate the logarithm function, neuron activities

in Bayesian inference layer will eventually proportional to logarithm of belief of state

through time.

τ
d

dt
vi = −vi +R(f(

∑
j

w
(z)
ij I

(z)
j (t)) + g(

∑
j

w
(x)
ij I

(x)
j (t))) (3.3)

f(
∑
j

w
(z)
ij I

(z)
j (t)) = logP (zk|xk) (3.4)

g(
∑
j

w
(x)
ij I

(x)
j (t)) = log

∫
P (xk|uk, xk−1)Bel(xk−1)dxk−1 (3.5)

Synaptic current inputs from evidence likelihood layer and state belief layer generate

a new distribution on Bayesian inference layer by using equation 4.3. This distribution

has the same mean value with the Bayesian inference of two Gaussian distribution from

the pre-synaptic layers, and variance of the distribution is controlled by the connection

between pre and post-synaptic layers. Though current input to Bayesian inference

is performed in the logarithm domain, dendrites of neurons in the layer make the
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distribution expressed by the layer looks very similar to a Gaussian distribution.

3.3 Vision cue for head direction cells

Experimental studies show visual information contributes to the accuracy of head di-

rection representation in HD cells [29]. The absence of visual input to the biological

HD cells introduces a gradual drift due to an error accumulation.This phenomenon can

be observed easily in dark environments, with the sense of orientation weaken dramat-

ically due to lack of visual information. However, visual information can’t provide the

ground truth of head direction, since it is also a noisy signal. In probability model,

visual information is the observation of environment when unknown ground truth head

direction is reached. It contributes as a landmark likelihood to estimate the ground

truth.

Landmark likelihood is hard to compute in real world problems. The easily way

for computing the likelihood is to give a advance knowledge of the environment to the

robot. Suppose the robot knows the estimated position of a certain landmark, then we

can compute a distribution representing the probability of observing the landmark at

different directions, this distribution is the landmark likelihood.

There are also brain-mimicking ways to compute the landmark likelihood. One

possible way is to use border cells to form a estimated map of the environment for

likelihood computation. The border cells map can be learned using visual sensory inputs

and synaptic plasticity. After we get the map of the environment, we can use the visual

observation to compare with the estimated map. A group of similarity indexes can

be generated based on guesses of the head direction performing the observation, these

similarity indexes have equivalent meanings with the landmark likelihood distribution.

3.4 Head direction cells employing Bayesian inference

There are three components of our spiking neural network model for head direction

cells. The core component is a CANN model for HD cell with 1 HD cells layer and 2

HD transition layers [11]. Another two components are the landmark likelihood layer,
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and the Bayesian inference layer. Each layer in the model has 360 LIF neurons, the

resolution for 1 head direction cell is 1 degrees. Synaptic currents are used between

neuron connections, the contribution of spikes to synaptic current decay exponentially

with time.

Figure 3.2: Structure of the HD cell model and 3 different kinds of synaptic connections

Synaptic connections between different layers are shown in Figure 3.2. Neurons in

HD transition layers receive current inputs directly from angular speed sensor. Attrac-

tor bump on HD cells layer represents the distribution of head direction, the bump is

drove by HD transition layers and corrected by Bayesian inference layer in every 500

ms time step. Overall HD cells layer receives information from angular speed sensor

and visual sensor, but not directly, since none of the input from two sensors is fully

trustful. Bayesian inference layer combines cues from two sources and generates a more

accurate distribution.

Different kinds of synaptic connections between pre and post-synaptic layers are

used in the model. The most used synaptic connection in the model is the one-on-one

excitatory synapse between layers, this connection transfers information between layers

plainly without any reinforcement.

Another synaptic connection is the center excitatory global inhibitory synapse. Ev-

ery neuron in pre-synaptic layer has a corresponding neuron in post-synaptic layer. By

using this connection, pre-synaptic neuron will has excitatory synapses with neurons

near its corresponding post-synaptic neuron, and has inhibitory synapses with all other
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neurons far away. Weights of the synapses are determined by the distance between neu-

rons. Distance between neurons here is defined by the semantic meaning represented

by the layer, here it represents the distance of angles represented by neurons. Single

bump distributions, like Gaussian distribution or other similar distributions, can be

more accurately transfered between layers with this connection.

The last kind of synaptic connection used in the model is the shifted center excitatory

global inhibitory synapse, it is only used inside the CANN component of the model.

Different from the previous connection, this connection shifts the post-synaptic neurons

when connecting the synapses. The shift in synaptic connection results a shift of mean

value between distributions in pre and post-synaptic layer.

Equation (1) shows the voltage updating rule for neurons in HD cells layer. Neurons

in the layer receive current inputs from three sources. First is the recurrent synapses

within the layer. Second is the HD transition current from 1 of the 2 HD transition layers

activates attractor’s rotation. Third is the bursting correction current from Bayesian

inference layer.

τ
d

dt
vhi = −vhi +R(

∑
j

whh
ij I

h
j +

∑
k

wrh
ik I

r
k +

∑
m

wbb
imI

b
m) (3.6)

Each neuron in HD cells layer represents a distinct direction of head. Recurrent

synaptic weight follows a Gaussian distribution of distance between pre- and post-

synaptic neurons’ head directions subtract by a positive constant value. Nearby ex-

citatory and global inhibitory synapses for all neurons in the layer generate a stable

attractor state.

HD cells layer receives self-motion information from 2 HD transition layers, clockwise

HD transition neuron layer and counter clockwise HD transition neuron layer. Each

HD transition neuron has a corresponding HD cell. As shown in equation 4.7, HD

transition neuron receives current inputs from angular speed sensor and corresponding

HD cell. Neurons in clockwise and counter clockwise layers are identical. The difference

between these layers is the weight direction of the synapses from rotation neurons to

head direction cells. Clockwise layer’s weights perform clockwise direction exponential
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decay starting at the neuron next to the corresponding head direction cell, and vice

versa for counter clockwise layer. Rotation synaptic currents cause a distortion of the

attractor state, and make it rotate in one direction.

τ
d

dt
vri = −vri +R(αarIai + βhrIhi ) (3.7)

Landmark likelihood layer gives another distribution of head direction generates by

environmental observation. As we previously covered, firing pattern of this layer can be

generated by different mechanisms. Visual information from landmarks or environmen-

tal information from border cells can both contribute to activities of this layer. In our

model, the input of this layer is simplified. We add time independent noises and errors

onto ground truth direction of the robot, and use it to form the landmark likelihood

distribution.

Equation 4.8 shows the voltage updating rule for neurons in Bayesian inference layer.

Bayesian inference layer uses the concept of Bayes filter to estimate head direction.

Bayes filter is a general algorithm to estimate distribution of hidden state in HMM.

It first computes a prior distribution p(x) based on former estimations and transition

functions, then uses Bayesian inference and observation likelihood p(z—x) to estimate

hidden state’s distribution. Bayes filter can’t directly be implemented for real world

problem, since it is hard to find close forms for prior computation and observation

Bayesian inference.

τ
d

dt
vbi = −vbi +R(log(αvbIvi ) + log(βhbIhi )) (3.8)

Here HD cells layer and 2 HD transition layers generate prior distribution for head

direction. Landmark likelihood layer gives observation of the environment. Neurons in

Bayesian inference layer receive current inputs from HD cells layer and landmark like-

lihood layer. It uses dendritic non-linearity to approximate logarithm of current inputs

[36]. Neuron updating voltage using equation (3) will has a tuning curve like Bayesian

inference of HD cells layer distribution and landmark likelihood layer distribution.
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3.5 Model implementation in ROS

We implement our model in Robot Operating System(ROS) [37], the most popular

robotic framework. ROS is a distributed and modular framework very similar to the

brain. As we know, neuron is the basic computing unit in the brain, it communicates

with other neurons using synapses. Biologically all neurons are paralleled and com-

pute separately, these make the brain performs fast computation using slow biological

network. We built a similar network in ROS using paralleled nodes and topics.

Same with neuron to the brain, node is the basic computing unit in ROS. Nodes

are packaged into separate threads, and they can be parallel computed using a multi-

threads system. In ROS, nodes communicates with each other using messages in topics.

A perfect simulation for biological neural network using ROS is to use one single node

to represent one neuron, use topics to represent synapses between neurons, and use

messages to represent neurotransmitters in synapses. However, since we need to build

a real-time system to adapt to the dynamic change of the environment, abstraction and

optimization have to be made.

Instead of using one node to represent one single neuron, we use it to represent

a layer of neurons. Topics between nodes represent synapses between neural layers,

they can be recurrent synapses or feed-forward synapses. Synaptic weights are stored

in matrices and defined in each node. At each time step (10 milliseconds), neurons in

one node are updated using Euler method [38] simultaneous using currents vector from

dendrites. Two kinds of messages are transmitted in topics, spike message and current

message. A spike message is published each time step with a boolean array showing

if the neurons are spiking or not at the current time step. A current message is also

published at each time step to add up the contribution of spikes to synaptic current

with exponential decay.

A nodes and topics graph is generated using a ROS visualization tool. The graph is

shown in Figure 3.3. We use Turtlebot 2 in Gazebo simulator to test our model. In the

figure, We hide the nodes and topics related to Turtlebot 2, and use a single Gazebo

node to represent all of them. At initialization state, landmark likelihood layer gives



17

Figure 3.3: Nodes and topics graph of HD cell model from ROS

HD cells layer a long initialize synaptic current to form a stable initial attractor state

in HD cells layer. Two cue receiver layers are added in the implementation, they help

Bayesian inference layer to compute synaptic current. Two visualization nodes are also

implemented in the model to show the firing rate and raster map of different layers,

these nodes are also used to save history informations for future analyze.

3.6 Experiments and results

Experiments for the HD cell model uses Gazebo simulator. Gazebo is a robot simulator

in ROS simulates robots in customized 3D environments. Simulated robots in Gazebo

simulator publish same topics and provide same services compare to real robots, this

ensures the model tested on Gazebo can be transfered into a real robot without any

change. We built a simulating environment shown in Figure 3.4. The environment sim-

ulates a simple room with 4 straight walls and 4 vertical corners. Similar environments

have been used in the experimental studies for border cells, grid cells, and place cells

[2]. In the experiments we put the Turtlebot 2 robot in the center of the environment.

The robot rotates with angular velocity of 10 deg/s counter-clockwise.

Different parameters used in spiking neuron model and synaptic weights can cause

huge difference in the result. Parameters in our HD cell model is shown in Table 4.1.

We tune the parameters to get a well-performed LIF model. Firing rate of this LIF

model increase almost linearly with the increase of current input, and very sensitive
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Figure 3.4: Simulation environment in Gazebo simulator for HD cell model experiments

to current changes. Decay factor for synaptic current decides how long a spike will

contribute to the output current. Too large decay factor will cause the output current

very unstable, since contributions of spikes decay too fast. At the same time, too small

decay factor will cause the output current unable to adapt to the change of neuron

activity in time. Gaussian distributions are used for synaptic weights between layers.

A global decrease of the distribution makes global inhibition for neurons far away, and

variance of the distribution controls the area of excitation.

HD cell doesn’t fire above baseline when the animal’s head is pointing far away from

HD cell’s preferred firing direction, and increase its firing rate as the animal moves its

head towards the preferred direction. Experimental studies show HD cell’s directional

firing range average around 90 degrees, and the range varies from 60 degrees to 150

degrees [39]. Tuning curves of 2 HD cells from the simulation of our HD cell model is

shown in Figure 3.5. The HD cell in the simulation shows a smaller directional firing

range, varies from 20 degrees to 30 degrees, compares to real experimental findings. We

find smaller directional firing range helps to keep a stable attractor bump in spiking

CANN model, and gives a more accurate head direction representation for further

computations in mapping and localization. However, smaller range also causes problems

when HD cells layer distribution and landmark likelihood distribution varies a lot, this

may cause catastrophic consequences like deactivating all HD cells.



19

LIF neuron model parameters and synaptic current parameter:

dt τ R Reset voltage Spike voltage Decay factor

10.0 60.0 1.0 -50.0 1.0 1.1

Synaptic weights for center excitatory, global inhibitory synapse connection HD cells
layer and HD cells layer:

Mean Variance Decrease Amplitude

0 2π/(HDC quantity/10) 0.4 2.0

Synaptic weights for center excitatory, global inhibitory synapse connection Bayesian
inference layer and HD cells layer:

Mean Variance Decrease Amplitude

0 2π/(HDC quantity/5) 0.5 1.0

Synaptic weights for shifted center excitatory, global inhibitory synapse connection HD
transition layers and HD cells layer:

Mean Variance Decrease Amplitude

±6 2π/(HDC quantity/10) 0.5 1.5

Table 3.1: Parameters in simulation experiment for HD cell model

A partial raster plot for the HD cells layer neurons is shown in Figure 3.6. Spikes

for HD cells with index 110 to 160 during 16.5 seconds to 18.5 seconds are shown in the

plot. Red spikes are fired under the correction from Bayesian inference layer, and black

spikes are fired without the correction. The plot shows less HD cells are active when

correction from Bayesian inference layer is performed on HD cells layer. Since HD cells

layer represents a distribution of head direction, less HD cells firing represents a more

accurate distribution with smaller variance. This phenomenon in the model is cause

by the correction input from the Bayesian inference layer, a Bayesian inference result

with smaller variance is given to the HD cells layer every 500 milliseconds, caused the

attractor bump in HD cells layers to shrink.

Accuracy of the HD cell model we developed compared to a simple CANN HD

cell model is shown in Figure 3.7. A long simulation experiment (300 seconds) in

Gazebo simulator has been done for both models. Previously we show, experimental

studies find HD cell firing patterns drift from ground truth if no visual information is

provided. A spiking CANN HD cell model without Bayesian correction shows similar
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Figure 3.5: Tuning curve for 2 simulated HD cells

Figure 3.6: A partial raster map for HD cells layer neurons

drift error in our simulation experiment, the error accumulates as time goes on due to

instability of spiking network and noise in the self-motion information. Compared to

the spiking CANN HD cell, the HD cell model we propose eliminates the drift error

using visual information. At the same time, our model also lessen the uncertainty of

the visual information using self-motion information. The result shows that although

visual information contributes to the accuracy of the direction representation in HD

cell, they can’t provide the ground truth of head direction, self-motion information are

needed to rectify the errors.

We showed that a model of an HD cell system, reinforced by a neural layer that

performs Bayes inference, can combine stimulus from a self-motion speed sensor and



21

Figure 3.7: result from a long experiment where the robot rotates with angular velocity
of 10 deg/s

a visual sensor to accurately assess on the direction of the head. The addition of the

visual information improved the head direction representation in the presence of noise.

Although still is infancy, our robotic system mimics the behavioral abilities observed in

mammals, at least in terms of localizing its head direction.
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Chapter 4

Dynamic border cell mapping model

4.1 Why we built a dynamic border cell mapping model?

A navigation system relies on environmental map to perform localization and route

planning. In robotics, environmental map can be simplified to positions of landmarks.

Border cells have been found in the brain of most mammals. Experimental studies

show border cells form a map of the environment by reacting to border-like landmarks

at different preferred direction and distance [4]. Besides their special firing patterns,

we still don’t know much about how border cells work. There is no neurophusiological

explanation on how a map is learned in a spiking border cell network using observation

of the environment.

Observation of the environment from vision is always egocentric. However, though

receive inputs from observation, border cells have allocentric preferred directions. There

no computation model with spiking neurons explains the transform from egocentric ob-

servation to allocentric border cell activity. Border cell fires for a border-like landmark

at its preferred direction and distance no matter this landmark is in the range of view

or not. It means a learning process must exist inside border cell network to memorize

all observed landmarks. This learning process has been neglected by most of the com-

putational models of border cells. BVC model for border cell simply defines a known

environment for the agent to generate border cells’ firing patterns [19], and no spiking

neurons involve in the process.

We propose a dynamic border cell mapping model composed by egocentric border

cell layer and allocentric border cell layer. This model uses spiking neurons to provide

environmental map to our Gridbot spiking neuron system. The transformation between
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egocentric layer and allocentric layer using HD cells gives an assumption of how bor-

der cells use egocentric observation to form allocentric firing patterns. The memory

of environmental map inside allocentric layer is formed by synaptic plasticity on the

interconnections between border cells. This is the first of its kind model for spiking

border cells, and it has the potential to point the way for neuroscientists for better

understanding of border cell system in the brain.

4.2 Egocentric border cells

Depth perception is a very important visual ability for human and other mobile crea-

tures to perceive the environment in 3 dimensions. It helps animals to sense the distance

of an object. Human depth perception arises from binocular vision [40], a visual sys-

tem using two eyes simultaneously. This system not only gives a wider field of view,

approximately 190 degrees with two eyes compares to 120 degrees with one eye, but

also gives precise depth perception using the different positioned visual inputs given by

two eyes.

Depth cameras used on robots are very similar to human eyes regarding to depth

perception. The Asus Xtion PRO LIVE 3D sensor on Turtlebot 2 uses a stereo camera

with two lens, it can sense the depth of objects in a range from 0.8 to 3.5 meters with a

60 degrees horizontal range of view. Though the depth perception from a depth cameras

is a lot weaker than human eyes in terms of range of object distance and range of view,

it simulates the depth perception inputs perfectly to the spiking neural network model.

Border cells in the brain can sense the border of the environment located in different

distances and directions. Border cells found in experimental studies act allocentricly,

their preferred directions don’t follow the changes of the head direction. However, inputs

from visual systems like eyes or depth cameras are egocentric, an allocentric direction

of head is not needed when processing these inputs. In order to process inputs directly

from depth camera and avoid using the noisy head direction representation from the

HD cell model, we propose a layer of spiking egocentric border cells to encode depth

information into spiking neurons.
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Figure 4.1: Transform laser scan signal into spiking of neurons in egocentric border cell
layer

The spiking egocentric border cell layer transforms a laser scan signal from depth

camera into activities of real-time spiking LIF neurons, Figure 4.1 shows how the trans-

formation works. Laser scan signal is a simplification from 3D point clouds generated

by depth camera, it gives an estimated nearest obstacle distance for each sampled direc-

tion in the range of view. Neurons in the egocentric border cell layer have 60 different

preferred head directions, ranging from -30 degrees to 30 degrees based on the ego-

centric head direction at 0 degree. For each direction, 5 different preferred distances

ranging from 50 centimeters to 200 centimeters are defined. The preferred distance

increases exponentially with
√

2, this makes our model generates more accurate border

representation for closer borders and landmarks.

Each neuron in these 300 neurons receives a synaptic current input based on data

in laser scan signal. In ROS, laser scan is presented as an array of distances for every

sampled directions. Since the preferred head directions here is less than the sampled

directions, we first average the laser scan array to get a averaged distance for each

preferred head direction. Then we select the neuron with nearest preferred distance

comparing to the averaged distance, and give it the synaptic current input respects to

the difference of distance linearly. At each time step (10 milliseconds), at most 1 neuron

for each preferred direction will receive inputs from vision.
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4.3 Allocentric border cells

As we said before, Border cells respond to borders in the environment allocentricly.

For instance, if a border cell responds to the borders in the east of the creature, it

will always fire if there is a border in the east within the preferred distance, no matter

what direction its head will be facing. In our model, this activity requires to transform

egocentric representation of the border provided by egocentric border cell layer to an

allocentric representation.

Transformation from an egocentric direction to an allocentric direction with a known

head direction is not a hard job in geometry. The transformation is a circular shifting

operation shifts a direction based on 0 degree to the same direction based on current

head direction. However, the job appears a lot more difficult to accomplish using spiking

neural networks. There is no theory about how the brain transforms between egocentric

information and allocentric information, most existing models of border cells directly

use the geometrical operation to get the job done [10].

We build a allocentric border cell layer with 1800 spiking border cells. Border

cells in the layer have 360 preferred head directions, and 5 preferred distances. Each

group of border cells with the same preferred head direction has a corresponding HD

cell. Egocentric border cell layer connects with allocentric border cell layer using group

synapses as shown in Figure 4.2. Synapses in one group changes simultaneously, and

only one group of synapses are activated at one time. Here we propose a method

to transform egocentric border information to allocentric border information in the

allocentric border cell layer, the method uses HD cells layer to manipulate synaptic

weights between egocentric and allocentric border cell layers.

HD cells layer in the previously proposed HD cell model gives an accurate represen-

tation of head direction. In this layer head direction is represented by a distribution

formed by 360 neurons. If we assume the distribution has a similar shape to Gaussian

distribution, we can directly get the mean of the distribution by locating the neuron

with maximum firing rate. This neuron is used to activate the certain group of synapses

between egocentric and allocentric layers.
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Figure 4.2: Transform egocentric border information into allocentric border information
using HD cells

G = arcmaxjSj | Sj =
∑
j

wijaij , j = 1, ..., 360, i = 1, ..., 60 (4.1)

Equation 5.1 is used to determine which group of synapses between egocentric and

allocentric layers is going to be activated, preferred distances are neglected in the equa-

tion for simplification. We define two parameters for each synapse i in group j, aij

is the head direction activation and wij is the head direction weight. As shown in

Figure 4.2, HD cell with maximum firing rate changes the head direction activations

of the synapses connected to the corresponding border cell. Head direction weight of

a synapse is precomputed by the absolute difference between post-synaptic border cell

preferred direction and the center allocentric head direction of the group. The larger

the difference, the smaller the head direction weight. By using equation 5.1, the group

of synapses G with the head direction activation nearest to the center of the group

will be selected. Same synaptic weights are given to all synapses in the selected group,

and egocentric border cells drive allocentric border cells to spike using these activated

synapses.

4.4 Mapping the environment employing synaptic plasticity

The strength of synaptic current from pre-synaptic neuron to post-synaptic neuron is

determined by not only the contribution of the spikes, but also the weight of the synapse.
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In previous models we proposed, weights of synapses are all predefined. Though prede-

fined weights works perfectly in neural models, they can’t adapt to unknown or changing

environments. Experimental studies show synaptic weights can be strengthen (Long-

term potentiation, LTP) or weaken (Long-term depression, LTD) over time by synaptic

plasticity [41]. A neural model with synaptic plasticity learns weights of synapses

through interaction with the environment, this can leads the model to better memorize

and adapt to the environment.

d

dt
wij = cvivj (4.2)

d

dt
wij = c(wmax − wij)vivj (4.3)

d

dt
wij = c1(wmax − wij)vivj − c2wij (4.4)

Hebb rule defines that neurons fire together, wire together [42]. Suppose we have

two neurons, pre-synaptic neuron i and post-synaptic neuron j. At time t, neuron i

have activity vi and neuron j have activity vj . Equation 5.2 shows the simplest Hebbian

learning rule to update the synaptic weight wij between two neurons. Weight changes

in Equation 5.2 only depend on pre- and post-synaptic neurons, and the neurons have

to be active simultaneously to make the changes to occur. Weight never stop increasing

in the simplest rule, a soft bound wmax is added onto the rule in Equation 5.3 to

make weight stop increasing gradually. However, Hebbian learning rule with a soft

bound causes weights eventually saturate at an upper maximum value. Since there is

no decrease of weight in the learning rule, this causes the neural model lost the ability

of learning. Therefore, leaky term in Equation 5.4 is needed to make the learning more

adaptive. The leaky term gives synapse the ability to forget learned weight and learn

new weight to adapt changes in the environment.

Neuroscience studies show synaptic weights changed by long-term plasticity can

last for hours or even days, this makes synaptic plasticity to be one of the important

foundations of memory [41]. Memories are believed preserving in the interconnections
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between neurons [43]. For instance we have two neurons A and B, neuron A fires when

an apple appears and neuron B fires when color red appears. When a red apple appears,

the synaptic weight between A and B is strengthen over time. The memory of seeing a

red apple is saved by the interconnection between A and B. Next time when an apple

appears both neuron A and B will fire, and we directly know the color of the apple

using memory.

Map of the environment is the memories of all landmark positions in the environ-

ment. Here in our model, memory of landmark position is represented by firing of a

border cell with corresponding preferred direction and distance. Since the environment

is unknown, we assume the initial position of the robot to be the coordinate origin of

the map. Suppose we have 3 different border cells in allocentric border cell layer fire

for 3 existing landmarks in the environment. Due to the limitation on range of view,

only 2 landmarks can be observed each time. The synaptic weight between 2 border

cells is strengthen when they fire together. When the robot rotates and observes the

third landmark, all 3 border cells are connected together.Therefore, a cognitive map

represented by border cells and their interconnections is learned.

Figure 4.3: Learning environmental map using synaptic plasticity, each neuron in allo-
centric border cell layer only connect with its surrounding neurons
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We add synaptic plasticity inside allocentric border cell layer to memorize the envi-

ronmental map. Learning process of the synaptic weights between border cells is shown

in Figure 4.3. The plasticity inside the layer is designed to accomplish two goals. First

goal is the persistent firing of border cells for landmarks outside the range of view.

Experimental studies show border cells are activated no matter the border is in the

view or not, as long as the border is in the preferred direction and distance range [4].

Second goal is the real-time spiking for all 1800 border cells inside the layer. The stan-

dard way for synaptic plasticity is to built an all connection network, each neuron has

synapses connect to all other neurons. Since we need to build a real-time model, the

all connection network is computational impracticable. Therefore, border cell inside

the layer only has synapses with its surrounding neurons, this makes synaptic plasticity

plausible for real-time processing.

τ
d

dt
vallo = −v +R(wego

mnI
ego
mn +

∑
surround

wallo
s Iallos ) (4.5)

Updating rule for border cell in allocentric border cell layer is shown in Equation 5.5.

Each border cell receives synaptic current inputs from two sources, the corresponding

egocentric border cell with visual information and the surrounding border cells with

memory information. When the landmark is inside the range of view, current inputs

from egocentric border cell dominates other inputs. At the same time, synaptic weight

wallo
m increases if both border cell and its surrounding border cell s are activated.

When the robot rotates and the landmark moves outside the range of view, border

cell only receives current inputs from its surrounding border cells. Synapses between

border cells are symmetrical. A spiking border cell gives synaptic current to its sur-

rounding border cells, and contributes to their spiking. Surrounding spiking border

cells also give synaptic currents to this border cell to maintain its spiking activity. This

symmetrical behavior inside the allocentric border cell layer preserves the position of

observed landmarks in small groups of spiking border cells without any external visual

information inputs.
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4.5 Model implementation in ROS

Same with previous HD cell model, we implement our border cell model in ROS. A

nodes and topics graph shown in Figure 4.4 is generated us ing a ROS visualization

tool. In addition to the nodes and topics in Border Cell model, the graph also includes

the nodes and topics from HD Cell model to show the interaction between two models.

At initialization state, allocentric border cell layer uses 0 degree head direction and

waits for messages from HD cells layer. Two visualization nodes are implemented in

the model to show the firing activity of egocentric border cells and allocentric border

cells.

Figure 4.4: Nodes and topics graph of border cell model from ROS

4.6 Simulation and results

Experiments for the Border Cell model uses both Gazebo simulator and real Turtlebot

2 robot. In both simulator and real world environment, robot rotates with angular

velocity of 10 deg/s counter-clockwise. Robot is banned to move its location during

the experiment before the map is learned, because the map learned by the model is

based on the initial location of the robot. For the experiment on real Turtlebot 2
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Parameters for Egocentric Border Cell Layer:

Prefer distance Prefer direction Max current Current decay slope

5 60 20.0 20.0

Parameters for Allocentric Border Cell Layer:

Prefer distance Prefer direction Ego to Allo weight

5 360 10.0

Parameters for synaptic plasticity in Allocentric Border Cell Layer:

dt Max synaptic weight c1 c2
10.0 5.0 0.01 0.0005

Table 4.1: Parameters in simulation experiment for Border Cell model

robot, we setup a local area network connecting the ROS system on the robot and our

Desktop computer. This allows us to remotely control the robot using a more powerful

computer.

Figure 4.5: Experiment environments for border cell model

We use the same LIF neuron in both Border Cell model and HD Cell model. All

other parameters assigned in Border Cell model is shown in Table 5.1. Synaptic current

input to egocentric border cell layer decrease from maximum current base on difference

between preferred and actual distance of the landmark. The decrease of input current

follows a linear decay defined by the current decay slope. The selected group of synapses

from egocentric to allocentric border cell layer are given the same synaptic weight.

Synaptic plasticity in allocentric border cell layers using Equation 5.4 to update the

surrounding synaptic weights between border cells, Euler’s method is used here to solve

the differential equation.

Except the simulation environment we use for HD cell model experiments previously,
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we built 2 other environments for Border Cell model experiments to give a comprehen-

sive test on the model. The environments are shown in Figure 4.5. On the left side is

a new environment in Gazebo simulator with two separate objects. This environment

aims to test mapping on not connected landmarks, different with the environment we

use for HD cell model experiments. On the right side is a real world environment we

built in our lab. By using this environment, we want to test if our model works correctly

on real robots.

Figure 4.6: Experimental map generated in 3 different environments, colors in the map
represents strength of border cell activity, x-axis represents preferred directions and
y-axis represents preferred distances. a) Simulator environment of room. b) Simulator
environment of separate objects. c) Real world environment in the lab.
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Environment maps generated by the Border Cell model for 3 different environments

are shown in Figure 4.6. The strength of border cell firing activities is represented by

colors in the maps. The figure on the top is the border cell map for the simple room

environment. The corners of the room are captured by the spiking of border cells with

different preferred distances. The figure in the middle is the border cell map for the

separate objects environment. The map proves the model can memorize an observed

landmark even if no part of the landmark is in the range of view. The last figure is

the border cell map for the real world environment. Real world environment is more

complicated than environments built in Gazebo simulator. The map shows both the

Border Cell model and the HD Cell model work perfectly on real robots.

We showed that a model of border cell mapping system can use spiking of neu-

rons to memorize and encode a map the environment. The model works perfectly in

both simulator environments and real world environment. Although the neurologic the-

ory behind how border cells generate their firing patterns is still unknown, our model

gives a feasible hypothesis by mimicking the behaviors observed in mammals on border

detection and environment sensing.
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Chapter 5

Conclusion

In this thesis we proposed a biologically feasible model for HD cell and border cell. For

HD cell model, we developed the first model for HD cell using spike based Bayesian

inference. For border cell model, we gave an assumption of how environmental map is

formed inside border cell network by using inputs from depth camera. Our model gain

good results in the simulation, and is proved working in real world environment.

However, there are also some limitations in our current model for mapping the

environment. Our model propose in this thesis doesn’t consider movements of robot.

Robot can only build map for one position by rotating 360 degrees. If robot changes its

position, the environmental map built before won’t follow the change. This is because

the model now lack a transition mechanism for the map. A transition system will be

developed in the future to make the map in border cell network to move itself whenever

robot changes its position.

Another limitation in the model is the artificial input used by HD cell landmark

likelihood layer. This artificial input can be replaced by many kinds of real visual

inputs. The best replacement for this input is the border cell activity. The future

plan for solving this limitation is to use both egocentric and allocentric border cells to

compute a spiking based likelihood distribution.

Though still having these limitations, our model proposed here makes the foundation

of Gridbot. Future steps for building the Gridbot will focus on two parts. First we will

generalize the border cell model and the HD cell model to make direction information in

HD cells and environmental map in border cells update simultaneously. By connecting

to each other, a noise filtering system can be encoded into a biologically feasible spiking

neural network. Second we will extend current 1D model into 2D environment by
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proposing models for grid cell and place cell. Multiple grid cells with different grid

spacing can be used together to represent locations. And connected place cells can be

used to represent trajectories. Eventually Gridbot system will be built more flexible to

adapt to new findings in neuroscience.

As an overarching goal to fully mimicking the brain spatial system, Gridbot system

is an exciting approach we will be working on in the near future. We hope Gridbot

system to point the way for neuroscientists to uncover the brain spatial system, and to

bring new ideas and methods to robotic field.
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