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ABSTRACT OF THE THESIS

Camera based Detection of the Onset of Cognitive Fatigue

by Chintan Trivedi

Thesis Director: Dr. Konstantinos Michmizos

The onset of cognitive fatigue is associated with a period of transient, subconscious

decrease in maximal cognitive ability, typically influencing decision making. The ability

to visually detect this early stage of fatigue can help prevent numerous workplace

hazards where top cognitive performance is of utmost importance. In this work, we

developed a camera-based system that utilizes visual symptoms of fatigue to estimate

its early stage.

For the first part of the work, in collaboration with the Magnetoencephalography

Lab at MIT, we conducted a 3-hour long, fatigue inducing experiment on 13 test sub-

jects and collected synchronous camera (visual) and Magnetoencephalography MEG

(brain) data. We extracted 8 eyelids and 6 head-movement related features to train

binary classifiers like Support Vector Machine, k-Nearest Neighbor, Random Forest

and Artificial Neural Network to distinguish between Non-Fatigue (early stage) and

Fatigue (late stage), achieving test accuracy of 89%, 90%, 95% and 98% respectively.

We propose a temporal sliding window technique of using these binary classifiers for

detecting a gradual change in the level of fatigue. We observed a progressive increment

in detection of Fatigue class inside this window as it moves towards the later stages of

the experiment time-line. For validation, we compared our models results with fatigue-

induced brain signals from the MEG data, namely the alpha band (8-12 Hz) power.
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Regressing alpha power on camera-based features yielded an average r-squared value of

0.6.

For the second part of the work, we conducted a similar experiment at the Lab-

oratory for Computational Brain at Rutgers. We recorded synchronous camera and

Electroencephalography (EEG) data for a 90-minute long experiment conducted on 4

test subjects. For this experiment, the fatigue-inducing task involved was made adap-

tive to the cognitive abilities of the test subject, aiming to make the subject tired in

a shorter amount of time. We repeat our analysis for the camera based and the brain

data based fatigue detection models. We obtained similar progressive increment in the

”Fatigue” class for all subjects. By regressing the alpha power from EEG data on

the visual features, we obtained average r-squared up to 0.8 for fatigue-induced brain

regions. We validate our camera model based on the EEG indicator of fatigue.

Our results demonstrate promise in terms of using a vision-guided fatigue estimation

model for designing a real-time fatigue detection system.
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Chapter 1

Introduction

1.1 Cognitive Fatigue

Cognitive fatigue involves the progressive decrease in one’s cognitive performance due

to mental tiredness. This affects the decision making, task productivity and physical

awareness of the person experiencing mental tiredness. Its early manifestation can be

characterized by experiencing sleepiness and facing difficulty in concentrating on simple

problem solving tasks. This type of fatigue usually lasts for a short time, until the brain

receives adequate rest in the form of sleep or simply by decreasing the difficulty of the

task being performed. It is known as circadian fatigue, which means it roughly follows

a twenty-four hour biological cycle.

Certain tasks in health, military and transportation fields require humans to perform

at their top cognitive condition. Even a slight drop in attention levels can affect the

decision making, resulting in unwanted disastrous situations. Air Traffic Controller

staff, medical surgeons, pilots are some of the jobs that require absolute highest level of

alertness. Any slack in these workplaces can lead to potential loss of many lives. Thus,

it becomes vital to identify early onset of fatigue if we want to prevent occurrence of

disasters stemming from tiredness of the workers involved.

1.2 Cognitive Fatigue: Neuroscience Perspective

We saw some of the physical symptoms that manifest from mental fatigue. However,

from the neuroscience perspective, we try to understand the neurobiological changes

occurring in the brain due to mental tiredness.
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Figure 1.1: Brain Regions monitored for Neural Activity

The neural activity in our brain gives us good indication of its cognitive state. Func-

tional MRI, EEG and MEG recordings are commonly used techniques for detecting the

level of activity going on in different regions of the brain, accurate up to pinpointing

an ensemble of around 50,000 neurons. Zhang et al. [1] show significant activity in the

frontal lobe, parietal lobe, occipital lobe, cingulate gyrus, thalamus and cerebellum re-

gions of the brain while performing cognitive tasks of simple mathematical calculations.

Changes in the activity of neurons belonging to these regions, shown in 1.1, have been

shown to be a good indicator of mental fatigue.

1.3 Literature Review

Sigari et al. [2] review the different driver-fatigue detection systems using visual indi-

cators of fatigue and list the features most indicative of mental fatigue arising during

driving.

Li and Duc [3] conduct a study using Functional MRI of brain for 10 subjects while

performing a 25 hour sleepless experiment. It shows that the neurobiological effects

of fatigue are characterized by the decrease in neural activity in certain regions of the

brain. The study found direct correlation between the reported fatigue level and the

neural activity of regions including right superior temporal gyrus, left thalamus, right

inferior frontal and middle frontal parietal cortex.

Trejo et al. [4] show the relation of mental fatigue with increasing alpha power in
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frontal theta and parietal alpha EEG rhythms. It shows how EEG can be used to track

the state of mental fatigue levels with high accuracy.

1.4 Thesis Statement

In this study, we take a look at the relation between the visual physical symptoms and

the neurobiological symptoms of mental fatigue. Using various tools and techniques

from the field of Machine Learning, we extract various features based upon these symp-

toms and model these against the level of mental fatigue.

1. First, we present various classifiers like Random Forest, K-Nearest Neighbor and

Neural Networks on these features. We show two approaches to detect early stages

of fatigue using these classifiers.

2. Next, we present a Regression Model that correlates these visual symptoms with

the neural activity recorded by Magnetoencephalography (MEG), specifically the

alpha band power of this MEG recording.

3. Last, we conduct the experiment with our own Electroencephalography (EEG)

machine and re-run the above analysis. We present the results from this experi-

ment and compare them to the analysis from MEG experiment.
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Chapter 2

Data

2.1 Data

2.1.1 Data Procurement

The data used in our research has originally been acquired for an experiment at McGov-

ern Institute for Brain Research, Massachusetts Institute of Technology. The recordings

from the camera and MEG from this experiment have been sent over to Rutgers Uni-

versity for the purpose of this research work.

2.1.2 Experiment Details

15 test subjects were asked to perform the task of playing a game of tracking dots on

a computer screen. The experiment was conducted for a duration of about 3 hours for

every subject.

The game is called Multiple Object Tracking (MOT) and involves four tasks of

increasing difficulty. Each task involves tracking of 2, 3, 4 or 5 dots on screen, as shown

in a demo of game in [Figure 2.1]. For the task of tracking 2 dots, there are 2 dots

of one color and 2 dots of another color moving randomly on the screen. After a few

seconds of all these dots moving in a random fashion on the screen, the dots would

pause their movement and all 4 dots would be turned to the same color, except one

dot that would be highlighted. The test subject has to identify which color group did

this highlighted dot belong to before the movement stopped. Naturally, keeping track

of more dots meant the game became harder due to increased requirement of attention

and memory.

For a duration of 30 minutes, the subject performs all four tasks in a random order.
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Figure 2.1: Demo MOT game. Source: Google, not the actual game.

After this, the subject is given a break of one minute before resuming another round of

30 minutes of playing this game. This entire cycle is repeated 6 times, for a duration

of 3 hours.

The game has been designed to test the subject with tasks of varying cognitive

performance requirement. This way, the subject’s mental fatigue state can be observed

relative to both time as well as the task difficulty. Simultaneously during the game, the

subject’s face was recorded using a camera and the brain activity was monitored using

MEG recording.

2.1.3 MEG Recording

The subjects were asked to perform this experiment while in the Magnetoencephalog-

raphy (MEG) machine.

The activity of brain waves [Figure 2.2] were recorded for the following 6 regions of

the brain from the Parietal and Occipital regions:-

1. Inferior Parietal Left

2. Lateral Occipital

Right

3. Inferior Parietal

Right

4. Superior Parietal Left

5. Lateral Occipital Left

6. Superior Parietal

Right
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Figure 2.2: Sample recording of 1 second long raw MEG signal for 6 brain regions.

2.1.4 Camera Recording and Face Tracking

The recording of the faces of these subjects during the experiment was done with a

high speed camera, with video recordings of different subjects ranging from 60 frames

per second to 90 frames per second. Video resolution is constant for all subjects, with

frame width being 864 and frame height being 648 pixels.

Face Landmark Points Tracking

In order to extract visual features from the camera recordings, we tack 66 face landmark

points for all test subjects using a tracking algorithm developed by Yu et al. [5]. These

landmark points include all major face points [Figure 2.3] required to construct a human

face with its major facial features. The face tracking algorithm worked perfectly for 13

out of 15 test subjects. We discard data from the 2 subjects and perform our analysis

on the remaining 13 subjects.
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(a) Data: Video Frame

(b) 66 Face Landmarks Tracking Points

Figure 2.3: Camera Recording for one test subject
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Chapter 3

Features

3.1 Extraction of Visual Features

Once we have the face landmark points, we are interested in extracting meaningful

features from them that are related to the eyes and blinking of the eyelids as they are

the visual symptoms of mental fatigue.

3.1.1 Extraction Technique

To extract temporal features from the video frames, we utilize the sliding window

technique over the time line of the 3 hour long videos. We take a fixed length window

of 60 seconds to extract certain features for that time period. These features extracted

from this window represent one data point in d dimensions for a total of d features.

Then, we move the start of this window over to the end of first window and so on, in a

sliding fashion.

Figure 3.1: Sliding Window Technique for Feature Extraction from a 3 hour video.

Here, as shown in [Figure 3.1], the overlap created between consecutive windows

is kept zero. Thus, for a 3 hour video, we get 180 data points for the feature set.

The parameters of window size and overlap have been set after experimentation with

features so that it represents meaningful visual information regarding the test subjects.
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3.2 Eye Related Features

For the purpose of our research, we specifically take a look at eye related visual features

that are good indicators of mental fatigue. A total of 8 features were extracted for the

3 hour period, giving an 8 dimensional data point. Face tracking points 37 through 48

from [Figure 2.3] have been used for extracting the various eye related features stated

below.

1. Average Eyelid Distance

2. Eye Closure Time

3. Eye Blink Rate

4. Surface Area of Eye

5. Circularity of Eye

6. Distance of Eye Corners from Fixed Point

7. Eye Opening Velocity

8. Eye Closing Velocity

Figure 3.2: Eyelid Points used to calculate the feature Eyelid Distance.

[Figure 3.2] highlights the eyelid points used to calculate these features, described

next.
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3.2.1 Average Eyelid Distance

The Euclidean distance between the upper eyelid and the lower eyelid, averaged over

both eyes. It is measured in number of pixels.

3.2.2 Eye Closure Time

This measures the number of frames upon the total frames in a window where the eyes

of the subject were below a particular threshold level.

This threshold is selected to be different for every subject manually since everyone

has a different size of their eye and different level at which they keep their eyes open.

3.2.3 Eye Blink Rate

The blink rate measures how many times the subject blinked for the duration of one

window.

3.2.4 Surface Area of Eye

This measures the area covered by the polygon formed by connecting all the 6 eyelid

points per eye. So, we have two polygons formed by the two eyes, and the surface area

is calculated as the average of the two areas.

3.2.5 Circularity of Eye

Similar to the surface area, we take the circularity of the polygons and average over

both eyes.

Circularity =
4π ×Area
Perimeter2

(3.1)

3.2.6 Distance of Eye Corners from Fixed Point

This feature measures the average distance of the eye corners from the nose tip.
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3.2.7 Eye Opening Velocity

The number of frames required to take the eye from closing position to above threshold

position, divided by the total number of times eye opening action occurs in the window.

3.2.8 Eye Closing Velocity

The number of frames required to take the eye from open position to below threshold

position, divided by the total number of times eye closing action occurs in the window.

3.3 Data Cleaning

We extract 180 instances or values of a particular feature from a 3 hour video. These

raw values are quite noisy with abrupt changes in values. Moreover, face tracking is

lost when the subjects occlude their faces with hands or simply look away from the

camera momentarily or for a few seconds during the break. These reasons give rise

to missing values of features extracted for certain windows over the three hour time

period. We can consider an array of these features ordered by time as a signal. We

proceed to solve the aforementioned issues by using various signal processing techniques

for pre-processing.

3.3.1 Noise Reduction with Median Filtering

First, we perform noise reduction for every feature by performing a one dimensional

low pass median filter over every feature. This smoothens out the signal as shown in

[Figure 3.3]. We slide a window of size 10 over the one dimensional feature array and

replace the center value of a window with the median value of that window.

3.3.2 Data Normalization: Z-Score

Different subjects foster values of the same feature in different ranges. In order to bring

them to the same scale for making comparisons across different subjects, we normalize
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Figure 3.3: Median Filtering for a noisy signal.

the feature values subject-wise. We use Z-Score Normalization for this.

fi =
xi − µi
σi

(3.2)

3.3.3 Trend Analysis with Polynomial Curve Fitting

After Median Filtering, we fit an order 3 polynomial to each feature. By the method of

least squares best-fit, the order 3 polynomial curve describes the increasing or decreasing

trend for our feature.

p(x) = p1x
3 + p2x

2 + p3x+ p4 (3.3)
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Figure 3.4: Polynomial Curve fit for Median Filtered Feature Value.

3.4 Feature Trends

By applying these techniques to the data collected from the 13 test subjects, we obtain

the following trends [Table 4.1] in feature values for the duration of three hours.
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Table 3.1: 3 hour trend for all features

FEATURE
EXPECTED

TREND

OBSERVED

TREND

Average Eyelid Distance ↓ ↓

Eye Closure Time ↑ ↑

Eye Blink Rate ↑ ↑

Surface Area of Eye ↓ ↓

Circularity of Eye ↓ ↑

Distance of Eye Corners

from Fixed Point
- none

Eye Opening Velocity - ↑

Eye Closing Velocity - ↑
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1. Average Eyelid Distance Trend [Figure 3.5]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.5: 8 out of 13 subjects showing downward trend
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2. Eye Closure Time Trend [Figure 3.6]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.6: 10 out of 13 subjects showing upward trend
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3. Eye Blink Rate Trend [Figure 3.7]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.7: 10 out of 13 subjects showing upward trend
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4. Surface Area of Eye Trend [Figure 3.8]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.8: 9 out of 13 subjects showing downward trend
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5. Circularity of Eye Trend [Figure 3.9]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.9: 9 out of 13 subjects showing upward trend
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6. Distance of Eye Corners from Fixed Point Trend [Figure 3.10]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.10: No noticeable trend observed over all 13 subjects.
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7. Eye Opening Velocity Trend [Figure 3.11]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.11: 8 out of 13 subjects showing upward trend
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8. Eye Closing Velocity Trend [Figure 3.12]

(a) Trend for one subject (camera 13)

(b) Trend for other 12 subjects

Figure 3.12: 9 out of 13 subjects showing upward trend
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Chapter 4

Classifier

4.1 Establishing Ground Truth

After extracting the features, we establish the ground-truth by assigning a class label

corresponding to these feature values. We are interested in determining fatigue levels

during the duration of 3 hours of the experiment. All subjects are assumed to be

non fatigued at the beginning of the experiment and fatigued towards the end of the

experiment.

Figure 4.1: Determining Fatigue and Non - Fatigue periods over 3 hours.

[Figure 4.1] shows the time periods for which we consider these two classes. All

sliding windows lying in the window from 5 minutes to 25 minutes are under Non-

Fatigue class. Features extracted from these windows are assigned the label of ”Non-

Fatigue”. Similarly, sliding windows in the 145 to 165 minute time range are under the

class Fatigue and the corresponding features are labeled as ”Fatigue”.

4.2 Data Visualization

Once we have the labels assigned for our two classes Fatigue and Non-Fatigue, we

try visualizing how different the feature sets are for the two classes in the ambient 8

dimensional space.

[Figure 4.2] shows the histogram of number of points. Here, we select at random
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and fix a data point from the feature set comprising of features of all 13 subjects.

We measure the Euclidean distance of every other data point in the feature set from

this fixed data point. A histogram of these distances is plotted, with each bin colored

according to the percentage of points belonging to both classes. More the red color

indicates more points belonging to the Fatigued class while blue color indicates more

points belonging to the Non-Fatigue class. Thus, a purple colored bin indicates almost

equal points in both classes.

Figure 4.2: Histogram of Euclidean Distances of all data points from a fixed data point.

This plot indicates that the data from two different classes has some amount of linear

separability in the 8 dimensional Euclidean space. Since most points from fatigue class

are nearer to the fixed data point and the rest from non fatigue class are at a greater

distance from that point, we could build a linear classifier that learns a hyperplane to

separate the points from two classes.

4.3 Classifier Training

To train our classifier, we partition the data set in training and testing sets. We have

data from 13 subjects combined as one feature matrix X. We split it into random 70%

as training set and the rest 30% as testing. The labels of fatigue and non fatigue have
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been assigned to these data points as described in 4.1.

We use multiple classifiers for learning the classifier function. We train the following

classifiers:-

• Support Vector Machine (SVM)

• Random Forest (RF)

number of decision trees = 50

• k-Nearest Neighbor (kNN)

k = 3

• Artificial Neural Network (ANN)

one hidden layer of 15 neurons

4.4 Classifier Results

Table 4.1: Classifier Training and Testing Accuracy

Classifier
Training

Accuracy
Testing Accuracy

SVM 92% 89%

RF 98% 95%

kNN 97% 90%

ANN 98% 98%

We have classifiers that are able to separate the data points with fairly high accuracy.

For further analysis, we use the SVM classifier as it consistently gives high accuracy

with different subjects.



26

Chapter 5

Detecting Early Onset of Fatigue

5.1 Early Stage of Fatigue

We showed that our classifier identifies non fatigue and extreme fatigue stages reason-

ably well. Now, we want to find an early indication of increase in the fatigue state.

This stage can be characterized by slight changes in the visual symptoms from our

feature set. In order to detect this early stage using our classifier, we apply a couple of

techniques for detecting onset of cognitive fatigue.

5.2 Detection Techniques

5.2.1 Technique 1: Sliding Middle Window Technique

First, we try to check what the classifier thinks about the time period in between the

stages that we categorized as fatigue and non fatigue and trained the classifier on such

class labels. The time period to be examined by the classifier ranges from the beginning

of the non fatigue class to the end of the fatigue class. A sliding window of the same

length as the training classes, i.e., 20 minutes is selected for testing. This technique is

shown in [Figure 5.1].

Figure 5.1: Non Fatigue and Fatigue Classes used for training the classifier and the

sliding window in between used for testing.

Here, for each sliding window of length 20 minutes, we use the same technique for
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feature extraction that we used previously for acquiring training data [3.1.1]. We obtain

20 features for these 20 minutes in one window and we see how many data points were

classified in each class. The expectation is that during the starting of the time line,

majority of the points should be classified as non fatigue and towards the end, majority

should be fatigue.

Technique 1 Results: Averaged over all 13 subjects

Figure 5.2: Percentage of points classified as Non-Fatigue decreases and Fatigue in-

creases as we move towards end.

[Figure 5.2] shows the trend of the progressive decrement in number of points that the

classifier thinks is non fatigue, and a subsequent increment in the other class fatigue.

Here, if we consider the crossing mark of 50% of points classified as non fatigue to be

an indication of early fatigue, then the classifier shows that at an hour mark, fatigue

starts to kick in on an average over multiple subjects. This is interesting because

one would have expected this point to have arrived at half mark, i.e., after 1 hour 30

minutes simply based on what the classifier has been trained on. This suggests keeping

concentration levels up might be difficult after one hour of cognitive intensive task. To

verify this, we try out another technique, described next.
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5.2.2 Technique 2: Sliding Training Class Window Technique

For this technique, instead of pre-training the classifier on fixed classes and testing on

unseen middle time period, we take a different approach. We fix one class and slide the

other class for training the classifier and then proceed to check how easily the classifier is

able to differentiate the two classes through out the 3 hour time period. This technique

is illustrated in [Figure 5.3] with both possible cases.

(a) Keeping Non Fatigue class fixed and sliding Fatigue class.

(b) Keeping Fatigue class fixed and sliding Non Fatigue class.

Figure 5.3: Technique observing difficulty for the classifier in differentiating non fatigue

and fatigue classes.

In this technique, when both classes are kept at the same time period, the classi-

fication accuracy of the classifier trained based on these class labels should be around

50% mark. This is because the classifier is trying to differentiate essentially the same

data points into two separate classes, hence half the accuracy. As we slide the other

class, it is expected that the classifier should be achieving higher accuracy with greater

separation between the two classes. We repeat this for two cases, once keeping non

fatigue class fixed and once with the fatigue class fixed.
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Technique 2 Results: Averaged over all 13 subjects

(a) Keeping Non Fatigue class fixed and sliding

Fatigue class.

(b) Keeping Fatigue class fixed and sliding Non

Fatigue class.

Figure 5.4: Results for the Technique observing difficulty for the classifier in differenti-

ating non fatigue and fatigue classes.

[Figure 5.4] shows the increasing and decreasing trend of classifier accuracy with sliding

window for fatigue and non fatigue classes respectively. Considering the half way mark

again, 75% for this technique, to consider the onset of cognitive fatigue, we again see

the trend crossing the 75% mark at around one hour. As seen in the first technique,

averaging over all subjects indicates the concentration level of subjects starts decreasing

one hour into the task.
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Chapter 6

Correlation with Brain Waves

6.1 Magnetoencephalography (MEG)

The neural activity in the brain comprises of many electrical impulses. These impulses

being short lived currents, create a constantly varying magnetic field around the brain.

A magnetometer can be used to capture these variations in the magnetic field. A

Magnetoencephalography machine does exactly that, being able to capture the chang-

ing magnetic field with an array of magnetometers called SQUIDs (Superconducting

Quantum Interference Devices). It is good at avoiding distortions coming from the

electrical currents stemming from the skull and the scalp. It can record neural activity

with accurately being able to narrow down to a group of 50000 neurons, giving a good

spatial resolution of the brain activity.

6.2 Creating Response Variable from MEG recording

To quantify the brain activity, we create a response variable from this MEG recording.

The MEG records the changing magnetic fields from the cortical region of the brain,

i.e., the outer layer of the brain near to the scalp. This recording comprises of the

superimposed signals consisting of multiple signals of different frequencies. These bands

and their frequencies are as follows:-

1. Delta (less than 4 Hz)

2. Theta (4 to 8 Hz)

3. Alpha (8 to 12 Hz)

4. Beta (above 14 Hz)
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Trejo et al. [4] have shown the effects of mental fatigue on the alpha band signals.

For our response variable, we will extract the oscillations corresponding to this alpha

band for further analysis.

6.3 Band Pass Filtering

To extract the alpha channel lying in the 8 to 12 Hz frequency band, we apply a 3rd

order bandpass butter filter to the raw recording. This filter allows frequencies in the

band range of 8 to 12 Hz to pass and rejects the rest. [Figure 6.1] shows the alpha

oscillations in red for the raw MEG signal shown in blue.

Figure 6.1: 8 to 12 Hz Alpha Band for one second long recording

6.4 Alpha Band Power

The power of a signal signifies the amplitude of the signal. As mental fatigue creeps in,

this amplitude of the alpha wave is expected to go up. Hence, the power of the alpha

band towards the end of the experiment is expected to progressively increase as well.
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Figure 6.2: Alpha Band Power over 3 hours, divided in time blocks of 30 minutes.

[Figure 6.2] shows the alpha power for 3 hours, segmented into 30 minute time

blocks, averaged over all 13 subjects. Regions Inferior Parietal Right, Lateral Occipital

Right and Superior Parietal Right seem to show a slight increasing trend.

6.5 Regression Model

Here, the alpha power is not very representative of fatigue induced brain signals. The

average correlation obtained by regressing alpha power on 14 visual features is 0.6.

We leave out in depth analysis of this Regression Model as it is not indicative of the

progressive increment in alpha band power that was expected. We explain this model

in detail for the EEG experiment, in the following chapters.
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Chapter 7

EEG Experiment

7.1 Experiment

We conducted an experiment to obtain synchronous camera and brain data of test

subjects when they were involved in a cognitively taxing task. The experiment was

performed for 90 minutes duration on 4 test subjects [Figure 7.1] at the Laboratory of

Computational Brain, Rutgers University. The camera data was acquired using a 720p

HD camera and the brain data was acquired using a 128-channel Electroencephalogra-

phy System.

7.2 Electroencephalography (EEG)

The voltage fluctuations arising due to the electrical activity of the cortical regions of

the brain can be recorded from the scalp. An Electroencephalography (EEG) system

[Figure 7.2] utilizes electrodes placed on the scalp to record this activity. An electrolyte

gel applied to the scalp helps conduct the electrical impulses to the electrodes placed

on the head using an EEG cap. The brain waves from this setup are recorded at 1024

Hz in a computer connected via a fiber-optic cable.

Figure 7.1: Camera recording of 4 test subjects during the EEG experiment
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(a) EEG cap with 128 electrodes (b) EEG System setup

Figure 7.2: Electroencephalography System at Rutgers

7.3 Game

The participants were asked to stay fresh and not be tired at the start of the experiment.

Then, for the duration of 90 minutes, the subjects were made to play a cognitively ex-

hausting object tracking game [Figure 7.3]. The game was developed by Konstantinos

Nikolakakis at Rutgers University.

Figure 7.3: Adaptive object-tracking Game

It involves tracking a set of blue and red dots that move with certain velocity in

random directions. The task is to keep track of every dot until the movement stops
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and one of the dots disappear at random. The subject is then asked to press ’r’ or ’b’

based on which dot has disappeared. If the subject focuses on this task for the entire

duration, the setup is designed to make the subject tired. The game is made adaptive

by adjusting the speed of the moving dots according to the correctness of the answer

entered by the subject playing the game. Thus, the aim of this adaptive game is to

adjust its difficulty to the subject’s abilities in order keep him engaged and make him

tired when played for a long time.

7.4 Visual Indicator of Fatigue

Based on the sliding window technique described earlier for detecting early stages of

fatigue, we obtain the similar plots for each of the test subject involved in the experi-

ment.

Figure 7.4: Visual indicator of early stages of fatigue for all 4 subjects

[Figure 7.4] shows the early stages of fatigue for all subjects, indicating a progressive

increment in the fatigue level. However, the training of the classifier includes data points
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from all test subjects due to the limited availability of subjects in this experiment. The

results show that there is a sharp decline decline in fatigue level for subjects 2 and 4

but a more gradual decrement for subjects 1 and 3. On average, for all subjects, the

early stages of fatigue arise just before the one hour mark in the 46 to 60 minute time

window.

7.5 EEG based Indication of Fatigue

Now that we have the visual indicator of fatigue level derived from the camera data,

we want to ascertain the correctness of our assumption that the subject is tired for the

last 15 minutes of the experiment. For this, we utilize the EEG brain data recorded

along with the camera data. Similar to MEG data analysis, we singled out the alpha

frequency band and used the alpha power as the neural indicator of fatigue.

7.5.1 EEG Artifacts Removal

Before we get the alpha oscillations, we need to clean the data of any contamination.

The raw data obtained form the EEG system is contaminated with artifacts arising due

to eye and muscle movements. These show up as unusual peaks in amplitude of the

oscillations of the potential value measured at every electrode. Moreover, contamination

arises from the fact that electrode recordings tend to be a linear combination of signals

of the neighboring electrodes due to their closeness and the conductivity of the gel

applied on the scalp.

Jung et al. [6] suggest using an Independent Component Analysis (ICA) based Blind

Source Separation technique for cleaning out ocular and other artifacts that show up

in the raw brain data. In order to obtain 128 independent signals from each of the

electrode, ICA requires at least 128 sources to separate out correlated components

from each source. Using all 128 electrode recordings, we are thus able to decompose

them into independent signals that are intended to be recorded at every electrode

source. [Figure 7.5] shows the removal of ocular artifacts from raw data and also the

reconstructed independent source free of any such contamination.
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(a) EEG independent component for an elec-
trode

(b) Corresponding Alpha Wave

Figure 7.6: Extracting Alpha Band from EEG.

(a) EEG contamination due to Ocular Artifacts

(Blinks) signified by the sudden peaks in the

data

(b) Corresponding Independent component re-

covered by ICA, removing blinks

Figure 7.5: Before and After ICA EEG recordings for one electrode.

7.5.2 Band Pass Filtering

Once we have reconstructed the independent components for all electrodes, we extracted

the alpha channel in the 8 to 12 Hz frequency band by applying a 3rd order bandpass

butter filter. [Figure 7.6 (b)] shows the alpha waves extracted with the butter filter from

the recovered independent component [Figure 7.6 (a)] for one second time duration.
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7.5.3 Alpha Band Power

For the EEG based estimation of fatigue, we have used the alpha power as a marker for

fatigue level. [Figure 7.7] shows the EEG indicator of fatigue level based on the power

(Root Mean Square) of the alpha signal we extracted.

Figure 7.7: Alpha Band Power over 90 minutes for all 4 subjects.

These plots suggest that all but camera 3 are showing signs of increase in tiredness.

This indicates that the assumption made for the camera based model where we say

that the subject is taken to be tired at the end of the experiment does not hold true

for camera 3. We can use this information from EEG for validating the camera based

model by removing the subjects from training of classifiers so as to only use features of

those subjects that demonstrate the symptoms of fatigue.
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7.6 Regression Model

We now have a camera based estimation and an EEG based estimation of the fatigue

level. We proceed to correlate the two models by regressing the alpha power on the

camera based features. Consider the alpha power to be Y and the visual features

x1, x2, ...x8. We fit the following regression model with necessary transformations to

correct linearity

−1√
Y

= β0+β1x1+β2log(x2)+β3log(x3)+β4
1

x4
+β5

1

x5
+β6x6+β7log(x7)+β8x8+ε (7.1)

where

β0...β8 are the regression coefficients,

ε is the error,

x1 = Average Eyelid Distance,

x2 = Eye Closure Time,

x3 = Eye Blink Rate,

x4 = Surface Area of Eye,

x5 = Circularity of Eye,

x6 = Distance of Eye Corners from Fixed Point,

x7 = Eye Opening Velocity and

x8 = Eye Closing Velocity.

7.6.1 Visualizing Regression Plane with 2 Features

We then tried to visualize the regression model in order to decide whether assuming

a linear model is a fair assumption or not. Since we cannot visualize more than 3

dimensions intuitively, we used the two most indicative features of camera based model,

namely the Eye Blink Rate and the Eye Closure Time in order to visualize the linear

regression plane alpha power regressing on these two features. [Figure 7.8] shows this

visualization for all four cameras.
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Figure 7.8: All 4 subjects, Linear Regression Plane with X axis = Closure Time, Y axis

= Blink Rate and Z axis = Alpha Power.

As evident from the figure, camera 3 again shows no noticeable trend in terms of

correlating the two indicators of fatigue, leading us to believe that the subject is indeed

not getting tired. Hence, we choose to drop this test subject out during training our

camera based model.

7.6.2 Regression for all 128 electrodes

We fit this regression model for the alpha power for every electrode on the EEG cap.

We then studied the correlation values of all these regression models and plotted a

histogram of correlations (ρ2) and observed an average correlation of 0.55 while certain

electrodes achieved a correlation of 0.8 indicating that they are the regions o scalp that
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are the most indicative of fatigue level. [Figure 7.9] shows the histogram of correlations

for all 4 subjects.

Figure 7.9: Histogram of correlations of Regression Models for all 128 electrodes. This

histogram includes all 4 test subjects.

7.7 Comparison with the MEG model

Here, the EEG experiment was conducted with all parameters controlled by us while

conducting the experiment. By designing an adaptive game, this experiment gives a

clearer indicator of the fatigue levels of the test subjects involved compared to the

MEG experiment. We achieve higher correlation values for validating our classifier

and are able to verify our assumption that the subject is tired towards the end of the

experiment. Based on this information, we say that our EEG-validated camera model

provides a better indication of fatigue levels compared to the MEG model.
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Chapter 8

Conclusion

We showed a novel sliding window technique to estimate an early stage of fatigue purely

based on visual symptoms using a camera model. We validated this model by showing

correlation with the fatigue induced brain waves and decide what subjects to include

in the development of the camera based model. These results show promise in terms of

designing a reliable model using just the visual symptoms of fatigue.

8.1 Future Work

Based on this work, we outline the possible directions where this research could head

towards next.

8.1.1 Conduct experiment on more subjects

The natural extension of this work includes demonstrating the same results for many

more test subjects. Based on EEG validation, we could train a single classifier while

eliminating those subjects that do not get tired during the experiment.

8.1.2 Neuroscience: Fatigue-Source Localization

Based on the correlation values of the regression model, obtained for every electrode, we

could try to isolate the parts of brain that are the most indicative of fatigue. Essentially,

we can try to find if there are any specific locations that are highly indicative of fatigue

across many subjects. [Figure 8.1] shows the source localization for the 128 electrodes of

the experiment. Further studies are required to isolate common positions or electrodes

across many subjects that consistently indicate signs of fatigue.
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Figure 8.1: Top View of head with 128 electrodes. Color-Map: Yellow indicates high

correlation, blue indicates low correlation.

8.1.3 Real Time Fatigue Detection

In our work, we compute the features for our models by looking at the entire duration of

the video and brain recordings. The challenge lies in designing a real time system that

has no access to the final fatigue stage but still can estimate early stages. Moreover,

when the system runs on a new test subject, it is unaware of the operative range

of feature values for that person, hence it requires some training before estimating

the fatigue level of that subject. Here in lies the opportunity to design a real time
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robust system that adapts well to different unseen individuals. Such a system will also

potentially have good commercial application and value.

8.1.4 Automatic Feature Learning and Extraction

In our study, we have used a feature set for the camera model comprising of well known

visual symptoms of fatigue. An alternate study could include exploring the different

undiscovered visual symptoms. Automatic Feature Extraction from videos could enable

achieve this by learning features based on labeled data. Convolution and Recurrent

Neural Networks have the ability to learn features from spatial and temporal data

respectively based on supervised learning methods. These could be used to design the

camera based model and also discover interesting information about these symptoms.
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