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Over the past decade, discrete geometry research has flourished with clever uses of

algebraic methods. The polynomial method has had a deep impact on a wide collection

of results in combinatorics, such as tight asymptotic lower bounds on finite field Kakeya

and Nikodym sets, near optimal lower bound for Erdos’ distinct distances problem, and

improved bounds for cap sets. Spectral methods and rank bounds for matrices have

shed new light on improved bounds for point-line incidences, subspace intersections

and graph rigidity. This thesis is focused on developing new ways to improve on these

techniques, and applying them in a few discrete geometry settings:

• Techniques such as matrix scaling and rank bounds for design matrices have

recently found beautiful applications for understanding configurations of points

and lines over the complex numbers ([BDWY13],[DSW14]). In particular, they

give a different proof of Kelly’s Theorem, which says that any configuration of

points in complex space must either be contained in a plane or have a line passing

through exactly 2 of those points, called an ordinary line. We expand on these

techniques to prove the first quantitative bounds for the number of ordinary lines

in a non planar configuration of points in complex space.

• In 2008, Dvir [Dvi09] showed in a breakthrough result that a Kakeya set over

finite fields has an asymptotically tight lower bound using the polynomial method.
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Later in 2008, Saraf and Sudan [SS08] improved on the polynomial method by

interpolating a polynomial that vanishes with high multiplicity on points of the

Kakeya set. We further enhance the polynomial method by introducing the notion

of “fractional multiplicity,” and use this improvement to obtain a better lower

bound for finite field Kakeya sets in 3 dimensions.

• While studying these 3-dimensional finite field Kakeya sets, we considered the

related 3-dimensional finite field Nikodym sets. Previously, the lower bound for

a 3-dimensional finite field Nikdoym sets was also obtained using the polynomial

method, and had the same lower bound as for a Kakeya set. We achieve a better

lower bound for 3-dimensional finite field Nikodym sets, thus separating it from

the Kakeya set lower bound.
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Chapter 1

Introduction

Discrete geometry problems are attributed to mathematicians as early as the ancient

Greeks. Recently, discrete geometry research has been reinvigorated via algebraic ap-

plications. Many of these applications take advantage of the already present geometric

correlations. In 2008, Dvir [Dvi09] showed in a breakthrough result that a Kakeya

set over finite fields has an asymptotically tight lower bound using a technique called

the polynomial method. This technique has been applied to several other problems,

such as achieving near optimal lower bound for Erdos’ distinct distances problem and

improving bounds for cap sets. Around the same time, aspects of matrices, such as

spectral methods and rank bounds, have shed new light on improved bounds for point-

line incidences, subspace intersections and graph rigidity. In this thesis, we present a

few applications of polynomial and matrix techniques to problems in discrete geometry.

We will briefly summarize the results of this thesis in the following 3 sections:

1.1 Counting Ordinary Lines

Given n points in R2, define an ordinary line to be a line passing through exactly 2

of those points. Sylvester asked if there is a configuration of points with no ordinary

lines, with the exception of all n points lying on a line. In 1944, Gallai proved [Gal44]

that any configuration of n points not all on a line must contain at least one ordinary

line. More recently in 2013, Green and Tao showed [GT13] that such a configuration

contains at least n/2 ordinary lines.

While there exists an ordinary line in noncollinear configurations over R2, this is

not the case over C2. Kelly’s theorem states that a set of n points affinely spanning C3

must determine at least one ordinary line. Recently, Kelly’s theorem was reproved using
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matrix scaling and rank bound techniques ([DSW14]). We expand on these techniques

to show that a noncoplanar set in C3 determines at least 3n/2 ordinary lines, unless

the configuration has n − 1 points in a plane and one point outside the plane (in

which case there are at least n − 1 ordinary lines). In addition, when at most 2n/3

points are contained in any plane, we prove a theorem giving stronger bounds that take

advantage of the existence of lines with 4 and more points (in the spirit of Melchior’s and

Hirzebruch’s inequalities). Furthermore, when the points span 4 or more dimensions,

with at most 2n/3 points contained in any three dimensional affine subspace, we show

that there must be a quadratic number of ordinary lines.

1.2 Finite Field Kakeya Sets in 3 Dimensions

Let Fq denote the finite field of q elements. A Kakeya set K ⊆ Fnq is a set of points which

contains ‘a line in every direction’. More precisely, for all x ∈ Fnq there is a y ∈ Fnq such

that the line1 {xt + y, t ∈ Fq} ⊆ K. In 2008, Dvir [Dvi09] showed in a breakthrough

result that a Kakeya set in Fnq has size at least qn

n! using the polynomial method. Later

in 2008, Saraf and Sudan [SS08] improved the lower bound to the form cnqn, for some

fixed constant c < 1
2 . In particular, for n = 3 they achieve a lower bound of (0.208)q3.

They refined the polynomial method by interpolating a polynomial that vanishes with

high multiplicity on points of the Kakeya set. Our work [LSW16] introduces a notion

that allows the polynomial to vanish with different multiplicities at different points of

the Kakeya set. This technique is referred to as “fractional multiplicity,” as the average

multiplicity at each point is not necessarily an integer. This allows us to achieve an

improved lower bound on Kakeya sets in F3
q .

1.3 Finite Field Nikodym Sets in 3 Dimensions

Related to a Kakeya set, a Nikodym set N ⊆ Fnq is a set of points such that, through

each point p ∈ Fnq , there is a line ` such that ` \ {p} ⊆ N . We use spectral techniques

to give improved lower bounds on the size of Nikodym sets over F3
q . We also propose a

1A line is an affine subspace of dimension 1.
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natural conjecture on the minimum number of points in the union of a not-too-flat set

of lines in F3
q , and show that this conjecture implies an optimal bound on the size of a

Nikodym set. Finally, we study the notion of a weak Nikodym set and give improved,

and in some special cases optimal, bounds for weak Nikodym sets in F2
q and F3

q .

1.4 Organization of this Thesis

In Chapter 2, we show how to obtain lower bounds on the number of ordinary lines in

complex space. In Section 2.2 we develop the necessary machinery on matrix scaling

and Latin squares. In Sections 2.3 and 2.5, we prove some key lemmas that will be

used in the proofs of our main results. Sections 2.4 and 2.6 give the proof of the main

results. In Chapter 3, we give an improved lower bound for finite field Kakeya sets in

3 dimensions. In Section 3.2 we give preliminary lemmas and results to set up for the

proof, and we give the proof in Section 3.3.

In Chapter 4, we discuss lower bounds for finite field Nikodym sets in 3 dimensions.

In Section 4.2.1, we prove an improved lower bound for finite field Nikodym sets in 3

dimensions; as mentioned in the introduction, this is the first separation demonstrated

between the minimum size of a Nikodym set and the minimum size of a Kakeya set

in F3
q that is valid for an arbitrary finite field Fq. In Section 4.2.2, we show that the

this improved lower bound immediately implies a lower bound on the number of points

incident to a large set of lines, and that this bound is nearly tight. This implies that

any substantial improvement to the lower bound will need to use some property of

Nikodym sets that is not exploited by the proof given in Section 4.2.1. In Section 4.2.3,

we observe that a weak Nikodym set has the property that not too many of the lines

given by its definition can lie in any single plane. We make a conjecture about the

size of point sets with not too many lines in any plane, and show that the proof of this

conjecture would imply the main conjecture of finite field Nikodym sets in 3 dimensions.
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Chapter 2

Counting Ordinary Lines in Complex Space

2.1 Introduction

Let V = {v1, v2, . . . , vn} be a set of n points in Cd. We denote by L(V) the set of

lines determined by points in V, and by Lr(V) (resp. L≥r(V)) the set of lines in L(V)

that contain exactly (resp. at least) r points. Let tr(V) denote the size of Lr(V).

Throughout the write-up we omit the argument V when the context makes it clear. We

refer to L2 as the set of ordinary lines, and L≥3 as the set of special lines.

A well known result in combinatorial geometry is the Sylvester-Gallai theorem.

Theorem 2.1.1 (Sylvester-Gallai theorem). Let V be a set of n points in R2 not all

on a line. Then there exists an ordinary line determined by points of V.

The statement was conjectured by Sylvester in 1893 [Syl93] and first proved by

Melchior [Mel40]. It was later reproved by Gallai in 1944 [Gal44], and there are now

several different proofs of the theorem. Of particular interest is the following result by

Melchior [Mel40].

Theorem 2.1.2 (Melchior’s inequality). Let V be a set of n points in R2 that are not

collinear. Then

t2(V) ≥ 3 +
∑
r≥4

(r − 3)tr(V).

Theorem 2.1.2 in fact proves something stronger than the Sylvester-Gallai theorem,

i.e. there are at least three ordinary lines. A natural question to ask is how many

ordinary lines must a set of n points, not all on a line, determine. This led to what is

known as the Dirac-Motzkin conjecture.
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Conjecture 2.1.1 (Dirac-Motzkin conjecture). Let V be a set of n points in R2, not

all on a line. Suppose that n ≥ n0 for a sufficiently large absolute constant n0. Then V

determines at least n/2 ordinary lines.

There were several results on this question (see [Mot51, KM58, CS93]), before it

was completely resolved by Green and Tao [GT13].

Theorem 2.1.3 (Green-Tao). Let V be a set of n points in R2, not all on a line.

Suppose that n ≥ n0 for a sufficiently large absolute constant n0. Then t2(V) ≥ n
2 for

even n and t2(V) ≥
⌊
3n
4

⌋
for odd n.

[GT13] provides a nice history of the problem, and there are several survey articles on

the topic, see for example [BM90].

The Sylvester-Gallai theorem is not true when the field R is replaced by C. In

particular, the well known Hesse configuration, realized by the 9 inflection points of

a non-degenerate cubic, provides a counter example. A more general example is the

following:

Example 1 (Fermat configuration). For any positive integer k ≥ 3, let V be inflection

points of the Fermat Curve Xk + Y k +Zk = 0 in PC2. Then V has n = 3k points, and

in particular

V =

k⋃
i=1

{[1 : ωi : 0]} ∪ {[ωi : 0 : 1]} ∪ {[0 : 1 : ωi]},

where ω is the kth root of −1.

It is easy to check that V determines 3 lines containing k points each, while every

other line contains exactly 3 points. In particular, V determines no ordinary lines.1

In response to a question of Serre [Ser66], Kelly [Kel86] showed that when the points

span more than 2 dimensions, the point set must determine at least one ordinary line.

Theorem 2.1.4 (Kelly’s theorem). Let V be a set of n points in C3 that are not

contained in a plane. Then there exists an ordinary line determined by points of V.

1We note that the while Fermat configuration as stated lives in the projective plane, it can be made
affine by any projective transformation that moves a line with no points to the line at infinity.
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Kelly’s proof of Theorem 2.1.4 used a deep result of Hirzebruch [Hir83] from al-

gebraic geometry. In particular, it used the following result, known as Hirzebruch’s

inequality.

Theorem 2.1.5 (Hirzebruch’s inequality). Let V be a set of n points in C2, such that

tn(V) = tn−1(V) = tn−2(V) = 0. Then

t2(V) +
3

4
t3(V) ≥ n+

∑
r≥5

(2r − 9)tr(V).

More elementary proofs of Theorem 2.1.4 were given in [EPS06] and [DSW14]. To

the best of our knowledge, no lower bound greater than 1 is known for the number of

ordinary lines determined by point sets spanning C3. Improving on the techniques of

[DSW14], we make the first progress in this direction.

Theorem 2.1.6. Let V be a set of n ≥ 24 points in C3 not contained in a plane. Then

V determines at least 3
2n ordinary lines, unless n − 1 points are on a plane in which

case there are at least n− 1 ordinary lines.

Clearly if n− 1 points are coplanar, it is possible to have only n− 1 ordinary lines.

In particular, let V consist of the Fermat Configuration, for some k ≥ 3, on a plane and

one point v not on the plane. Then V has 3k + 1 points, and the only ordinary lines

determined by V are lines that contain v, so there are exactly 3k ordinary lines. We

are not aware of any examples that achieve the 3
2n bound when at most n − 2 points

are contained in any plane.

When V is sufficiently non-degenerate, i.e. no plane contains too many points,

we are able to give a more refined bound in the spirit of Melchior’s and Hirzebruch’s

inequalities, taking into account the existence of lines with more than three points. In

particular, we show the following:

Theorem 2.1.7. There exists an absolute constant c > 0 and a positive integer n0 such

that the following holds. Let V be a set of n ≥ n0 points in C3 with at most 2
3n points

contained in any plane. Then

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).
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the constant 2/3 is arbitrary and can be replaced by any number smaller than 1. Sup-

pose that V consists of n− k points on a plane, and k points not on the plane. There

are at least n − k lines through each point not on the plane, at most k − 1 of which

could contain 3 or more points. So we see that there are at least k(n − 2k) ordinary

lines determined by V. Then if k = εn, for 0 < ε < 1/2, V has Ωε(n
2) ordinary lines,

where the hidden constant depends on ε. Therefore, the bound in Theorem 2.1.7 is

only interesting when no plane contains too many points.

On the other hand, we note that having at most a constant fraction of the points

on any plane is necessary to obtain a bound of this form. Indeed, let V consist of the

Fermat Configuration for some k ≥ 3 on a plane and o(k) points not on the plane.

Then V has O(k) points and determines o(k2) ordinary lines. On the other hand,∑
r≥4 r

2tr(V) = Ω(k2).

Hirzebruch’s inequality (which also gives a bound in C3, though without requiring

that every plane contains not-too-many points) only gives a lower bound on t2(V) +

3
4 t3(V), whereas both Theorems 2.1.6 and 2.1.7 give lower bounds on the number of

ordinary lines, i.e. t2(V). Another important contribution of Theorem 2.1.7 is replacing

the linear (2r − 9) in Hirzebruch’s inequality with a term quadratic in r. We also note

that lines with 4 points do not play any role in Hirzebruch’s inequality, where the

summation starts at r = 5. This is not the case for Theorem 2.1.7. As a consequence,

if a non-planar configuration over C has many lines with 4 points each, then it must

have many ordinary lines.

Finally, when a point set V spans 4 or more dimensions in a sufficiently non-

degenerate manner, i.e. no 3 dimensional affine subspace contains too many points,

we prove that there must be quadratic number of ordinary lines.

Theorem 2.1.8. There exists a positive integer n0 such that the following holds. Let V

be a set of n ≥ n0 points in C4 with at most 2
3n points contained in any 3 dimensional

affine subspace. Then

t2(V) ≥ 1

12
n2.

Here also the constant 2/3 is arbitrary and can be replaced by any positive constant
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less than 1. However, increasing this constant will shrink the constant 1/12 in front of

n2. Also, a quadratic lower bound may be possible if at most 2
3n points are contained

in any 2 dimensional space, but we have no proof or counterexample.

Note that while we state Theorems 2.1.6 and 2.1.7 over C3 and Theorem 2.1.8 over

C4, the same bounds hold in higher dimensions as well since we may project a point set

in Cd onto a generic lower dimensional subspace, preserving the incidence structures.

In addition, while these theorems are proved over C, these results are also new and

interesting over R.

2.2 Preliminaries

2.2.1 Matrix Scaling and Rank Bounds

One of the main ingredients in our proof is rank bounds for design matrices. These

techniques were first used for incidence type problems in [BDWY13] and improved upon

in [DSW14]. We first set up some notation. For a complex matrix A, let A∗ denote

the matrix conjugated and transposed. Let Aij denote the entry in the ith row and

jth column of A. For two complex vectors u, v ∈ Cd, we denote their inner product by

〈u, v〉 =
∑d

i=1 ui · vi.

Central to obtaining rank bounds for matrices is the notion of matrix scaling. We

now introduce this notion and provide some definitions and lemmas.

Definition 2.2.1 (Matrix Scaling). Let A be an m× n matrix over some field F. For

every ρ ∈ Fm, γ ∈ Fn with all entries nonzero, the matrix A′ with A′ij = Aij · ρi · γj

is referred to as a scaling of A. Note that two matrices that are scalings of each other

have the same rank.

We will be interested in scalings of matrices that control the row and column sums.

The following property provides a sufficient condition under which such scalings exist.

Definition 2.2.2 (Property-S). Let A be an m × n matrix over some field. We say

that A satisfies Property-S if for every zero submatrix of size a× b, we have

a

m
+
b

n
≤ 1.
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The following theorem is given in [RS89].

Theorem 2.2.3 (Matrix Scaling theorem). Let A be an m × n real matrix with non-

negative entries satisfying Property-S. Then, for every ε > 0, there exists a scaling A′

of A such that the sum of every row of A′ is at most 1+ ε, and the sum of every column

of A′ is at least m/n−ε. Moreover, the scaling coefficients are all positive real numbers.

We may assume that the sum of every row of the scaling A′ is exactly 1 + ε. Oth-

erwise, we may scale the rows to make the sum 1 + ε, and note that the column sums

can only increase.

The following Corollary to Theorem 2.2.3 appeared in [BDWY13].

Corollary 2.2.4 (`2 scaling). Let A be an m×n complex matrix satisfying Property-S.

Then, for every ε > 0, there exists a scaling A′ of A such that for every i ∈ [m]

∑
j∈[n]

∣∣A′ij∣∣2 ≤ 1 + ε,

and for every j ∈ [n] ∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε

Moreover, the scaling coefficients are all positive real numbers.

Corollary 2.2.4 is obtained by applying Theorem 2.2.3 to the matrix obtained by

squaring the absolute values of the entries of the matrix A. Once again, we may assume

that
∑

j∈[n] |A′ij |2 = 1 + ε.

To bound the rank of a matrix A, we will bound the rank of the matrix M = A′∗A′,

where A′ is some scaling of A. Then we have that rank(A) = rank(A′) = rank(M).

We use Corollary 2.2.4, along with rank bounds for diagonal dominant matrices. The

following lemma is a variant of a folklore lemma on the rank of diagonal dominant

matrices (see [Alo09]) and appeared in this form in [DSW14].

Lemma 2.2.5. Let A be an n × n complex hermitian matrix, such that |Aii| ≥ L for

all i ∈ n. Then

rank(A) ≥ n2L2

nL2 +
∑

i 6=j |Aij |2
.
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The matrix scaling theorem allows us to control the `2 norms of the columns and

rows of A, which in turn allow us to bound the sums of squares of entries of M . For

this, we use a variation of a lemma from [DSW14]. While the proof idea is the same,

our proof requires a somewhat more careful analysis. Before we provide the lemma, we

need some definitions.

Definition 2.2.6. Let A be an m× n matrix over C. Then we define:

D(A) :=
∑
i 6=j

∑
k<k′

∣∣AkiAkj −Ak′iAk′j∣∣2 ,
and

E(A) :=
m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2
.

Note that both D(A) and E(A) are non-negative real numbers.

Lemma 2.2.7. Let A be an m× n matrix over C. Suppose that each row of A has `2

norm α, the supports of every two columns of A intersect in exactly t locations, and the

size of the support of every row is q. Let M = A∗A. Then∑
i 6=j
|Mij |2 =

(
1− 1

q

)
tmα4 −

(
D(A) +

t

q
E(A)

)
.

Proof. Note that ∑
i 6=j
|Mij |2 =

∑
i 6=j
|〈Ci, Cj〉|2

=
∑
i 6=j

∣∣∣∣∣
m∑
k=1

AkiAkj

∣∣∣∣∣
2

.

Since the supports of any two columns of A intersect in exactly t locations, the Cauchy-

Schwarz inequality shows that
∣∣∑m

k=1AkiAkj
∣∣2 ≤ t

∑m
k=1 |Aki|2|Akj |2. Our approach

requires somewhat more careful analysis, so we use the following equality:

∑
i 6=j

∣∣∣∣∣
m∑
k=1

AkiAkj

∣∣∣∣∣
2

=
∑
i 6=j

(
t
m∑
k=1

|Aki|2|Akj |2 −
∑
k<k′

∣∣AkiAkj −Ak′iAk′j∣∣2
)

= t
∑
i 6=j

m∑
k=1

|Aki|2|Akj |2 −D(A)

= t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t
m∑
k=1

(
n∑
i=1

|Aki|4
)
−D(A).
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Since there are q nonzero entries for every row of A, the Cauchy-Schwarz inequality

shows that
∑n

i=1 |Aki|4 ≥
1
q

(∑n
i=1 |Aki|2

)2
. Again, this turns out to be insufficient for

our purpose and we consider the equality:

∑
i 6=j
|Mij |2 = t

m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t
m∑
k=1

1

q

( n∑
i=1

|Aki|2
)2

+
∑
i<j

(
|Aki|2 − |Akj |2

)2−D(A)

=

(
1− 1

q

)
t

m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t

q

m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2 −D(A)

=

(
1− 1

q

)
t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t

q
E(A)−D(A)

=

(
1− 1

q

)
tmα4 −

(
D(A) +

t

q
E(A)

)
.

From this, we get the following easy corollary.

Corollary 2.2.8. Let A be an m × n matrix over C. Suppose that each row of A has

`2 norm α, the supports of every two columns of A intersect in at most t locations, and

the size of the support of every row is q. Let M = A∗A. Then∑
i 6=j
|Mij |2 ≤

(
1− 1

q

)
tmα4.

2.2.2 Latin squares

Latin squares play a central role in our proof. While Latin squares play a role in both

[DSW14] and [BDWY13], our proof exploits their design properties more strongly.

Definition 2.2.9 (Latin square). An r × r Latin square is an r × r matrix L such

that Lij ∈ [r] for all i, j and every number in [r] appears exactly once in each row and

exactly once in each column.

If L is a Latin square and Lii = i for all i ∈ [r], we call it a diagonal Latin square.

Theorem 2.2.10 ([Hil73]). For every r ≥ 3, there exists an r×r diagonal Latin square.

Two Latin squares L and L′ are called orthogonal if every ordered pair (k, l) ∈ [r]2

occurs uniquely as (Lij , L
′
ij) for some i, j ∈ [r]. A Latin square is called self-orthogonal

if it is orthogonal to its transpose, denoted by LT .
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Theorem 2.2.11 ([BCH74]). For every r ∈ N, r 6= 2, 3, 6, there exist an r × r self-

orthogonal Latin square.

Let L be a self-orthogonal Latin square. Since Lii = LTii, the diagonal entries give all

pairs of the form (i, i) for every i ∈ [r], i.e. the diagonal entries must be a permutation

of [r]. Without loss of generality, we may assume that Lii = i and so L is also a diagonal

Latin square.

The following lemma is a strengthening of a lemma from [BDWY13].

Lemma 2.2.12. Let r ≥ 3. Then there exists a set T ⊆ [r]3 of r2 − r triples that

satisfies the following properties:

1. Each triple consists of three distinct elements.

2. For every pair i, j ∈ [r], i 6= j, there are exactly 6 triples containing both i and j.

3. If r ≥ 4, for every i, j ∈ [r], i 6= j, there are at least 2 triples containing i and j

such that the remaining elements are distinct.

Proof. Theorem 2.2.10 guarantees the existence of an r× r diagonal Latin square. Let

L be such a Latin square. Let T be the set of triples (i, j, k) ⊆ [r]3 with i 6= j and

k = Lij . Clearly the number of such triples is r2 − r. We verify that the properties

mentioned hold.

Recall that we have Lii = i for all i ∈ [r], and every value appears once in each row

and column. So for i 6= j ∈ [r], it can not happen that Lij = i or Lij = j and we get

Property 1, i.e. all elements of a triple must be distinct.

For Property 2, note that a pair i, j appears once as (i, j, Lij) and once as (j, i, Lji).

And since every element appears exactly once in every row and column, we have that

i must appear once in the jth row, j must appear once in the ith row and the same for

the columns. It follows that each of (∗, j, i), (j, ∗, i), (∗, i, j) and (i, ∗, j) appears exactly

once, where ∗ is some other element of [r]. This gives us that every pair appears in

exactly 6 triples.

If r ≥ 4 and r 6= 6, Theorem 2.2.11 gives us the existence of an r× r self-orthogonal

Latin square L. Since L can be assumed to be diagonal, we may use a self-orthogonal



13

Latin square and preserve Properties 1 and 2. Now note that for a self-orthogonal Latin

square Lij 6= Lji if i 6= j, and so the triples (i, j, Lij) and (j, i, Lji) have distinct third

elements, i.e. Property 3 is satisfied.

The case r = 6 requires separate treatment. It is known that 6 × 6 self-orthogonal

Latin squares do not exist. Fortunately, the property we require is weaker and we are

able to give an explicit construction of a matrix that is sufficient for our needs. Let L

be the matrix 

1 4 5 3 6 2

3 2 6 5 1 4

2 5 3 6 4 1

6 1 2 4 3 5

4 6 1 2 5 3

5 3 4 1 2 6


.

Clearly L is diagonal, and it is straightforward to check that Lij 6= Lji for i 6= j. This

gives that (i, j, Lij) and (j, i, Lji) have distinct third elements. It follows that we have

Property 3 for all r ≥ 4.

2.3 The dependency matrix

Let V = {v1, . . . , vn} be a set of n points in Cd. We will use dim(V) to denote the

dimension of the linear span of V and by affine-dim(V) the dimension of the affine

span of V (i.e., the minimum r such that points of V are contained in a shift of a

linear subspace of dimension r). We projectivize Cd and consider the set of vectors

V ′ = {v′1, . . . , v′n}, where v′i = (vi, 1) is the vector in Cd+1 obtained by appending a 1

to the vector vi. Let V be the n× (d+ 1) matrix whose ith row is the vector v′i. Now

note that

affine-dim(V) = dim(V ′)− 1 = rank(V )− 1.

We now construct a matrix A, which we refer to as the dependency matrix of V. Note

that the construction we give here is preliminary, but suffices to prove Theorems 2.1.6

and 2.1.8. A refined construction is given in Section 2.5, where we select the triples
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more carefully. The rows of the matrix will consist of linear dependency coefficients,

which we define below.

Definition 2.3.1 (Linear dependency coefficients). Let v1, v2 and v3 be three distinct

collinear points in Cd, and let v′i = (vi, 1), i ∈ {1, 2, 3}, be vectors in Cd+1. Recall that

v1, v2, v3 are collinear if and only if there exist nonzero coefficients a1, a2, a3 ∈ C such

that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0.

We refer to the a1, a2 and a3 as the linear dependency coefficients between v1, v2, v3.

Note that the coefficients are determined up to scaling by a complex number. Throughout

our proof, the specific choice of coefficients does not matter, so we fix a canonical choice

by setting a3 = 1.

Definition 2.3.2 (Dependency Matrix). For every line l ∈ L≥3(V), let Vl denote the

points lying on l. Then |Vl| ≥ 3 and we assign each line a triple system Tl ⊆ V3l , the

existence of which is guaranteed by Lemma 2.2.12. Let A be the m×n matrix obtained

by going over every line l ∈ L≥3 and for each triple (i, j, k) ∈ Tl, adding as a row of

A a vector with three nonzero coefficients in positions i, j, k corresponding to the linear

dependency coefficients among the points vi, vj , vk.

Note that we have AV = 0. Every row of A has exactly 3 nonzero entries. By Prop-

erty 2 of Lemma 2.2.12, the supports of any distinct two columns intersect in exactly 6

entries when the two corresponding points lie on a special line2, and 0 otherwise; that

is, the supports of any two distinct columns intersect in at most 6 entries.

We say a pair of points vi, vj, i 6= j, appears in the dependency matrix A if there

exists a row with nonzero entries in columns i and j. The number of times a pair

appears is the number of rows with nonzero entries in both columns i and j.

Every pair of points that lies on a special line appears exactly 6 times. The only

pairs not appearing in the matrix are pairs of points that determine ordinary lines.

There are
(
n
2

)
pairs of points, t2(V) of which determine ordinary lines. So the number

2Note that while the triple system Tl consists of ordered triples, the supports of the rows of A are
unordered.
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of pairs appearing in A is
(
n
2

)
− t2. The total number of times these pairs appear is then

6
((
n
2

)
− t2

)
. Every row gives 3 distinct pairs of points, so it follows that the number of

rows of A is m = 6
((
n
2

)
− t2

)
/3 = n2 − n− 2t2. Note that m > 0, unless t2 =

(
n
2

)
, i.e.

all lines are ordinary.

As mentioned in the proof overview, we will consider two cases: when A satisfies

Property-S and when it does not. We now prove lemmas dealing with the two cases.

The following lemma deals with the former case.

Lemma 2.3.3. Let V be a set of n points affinely spanning Cd, d ≥ 3, and let A be the

dependency matrix for V. Suppose that A satisfies Property-S. Then

t2(V) ≥ (d− 3)

2(d+ 1)
n2 +

3

2
n

Proof. Fix ε > 0. Since A satisfies Property-S, by Lemma 2.2.4 there is a scaling A′

such that the `2 norm of each row is at most
√

1 + ε and the `2 norm of each column

is at least
√

m
n − ε. Let M := A′∗A′. Then Mii ≥ m

n − ε for all i. Since every row in A

has support 3, and the supports of any two columns intersect in at most 6 locations,

Corollary 2.2.8 implies that
∑
i 6=j
|Mij |2 ≤ 4m(1 + ε)2. By applying Lemma 2.2.5 to M ,

rank(M) ≥
n2(mn − ε)

2

n(mn − ε)2 + 4m(1 + ε)2
.

Taking ε to 0 we see that

rank(A) = rank(A′) = rank(M) ≥
n2m

2

n2

nm
2

n2 + 4m
=

mn

m+ 4n

= n− 4n2

m+ 4n
= n− 4n2

n2 − n− 2t2(V) + 4n

= n− 4n2

n2 + 3n− 2t2(V)
.

Recall that affine-dim(V) = d = rank(V ) − 1. Since AV = 0, we have rank(V ) ≤

n− rank(A). It follows that

d+ 1 ≤ 4n2

n2 + 3n− 2t2(V)

i.e. t2(V) ≥ (d− 3)

2(d+ 1)
n2 +

3

2
n.
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We now consider the case when Property-S is not satisfied.

Lemma 2.3.4. Let V be a set of n points in Cd, and let A be the dependency matrix

for V. Suppose that A does not satisfy Property-S. Then, for every integer b∗, 1 < b∗ <

2n/3, one of the following holds:

1. There exists a point v ∈ V contained in at least 2
3(n+ 1)− b∗ ordinary lines;

2. t2(V) ≥ nb∗/2.

Proof. Since A violates Property-S, there exists a zero submatrix supported on rows

U ⊆ [m] and columns W ⊆ [n] of the matrix A, where |U | = a and |W | = b, such that

a

m
+
b

n
> 1.

Let X = [m] \U and Y = [n] \W and note that |X| = m− a and |Y | = n− b. Let the

violating columns correspond to the set V1 = {v1, . . . , vb} ⊂ V. We consider two cases:

when b < b∗, and when b ≥ b∗.

Case 1 (b < b∗). We may assume that U is maximal, so every row in the submatrix

X×W has at least one nonzero entry. Partition the rows of X into 3 parts: Let X1, X2

and X3 be rows with one, two and three nonzero entries in columns of W respectively.

We will get a lower bound on the number of ordinary lines containing exactly one point

in V1 and one point in V \V1 by bounding the number of pairs {vi, w} that lie on special

lines, with vi ∈ V1 and w ∈ V \V1. Note that there are at most b(n− b) such pairs, and

each pair that does not lie on a special line determines an ordinary line.

Each row of X1 gives two pairs of points {vi, w1} and {vi, w2} that lie on a special

line, where vi ∈ V1 and w1, w2 ∈ V \ V1. Each row of X2 gives 2 pairs of points

{vi, w} and {vj , w} that lie on special lines, where vi, vj ∈ V1 and w ∈ V \ V1. Each

row of X3 has all zero entries in the submatrix supported on X × Y , so it does not

contribute any pairs. Recall, from Lemma 2.5.4, that each pair of points on a special

line appears exactly 6 times in the matrix. This implies that the number of pairs that lie

on special lines with at least one point in V1 and one point in V\V1 is 2|X1|+2|X2|
6 ≤ 2|X|

6 .

Hence, the number of ordinary lines containing exactly one of v1, . . . , vb is then at least

b(n− b)− |X|3 .
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Recall that

1 <
a

m
+
b

n
=

(
1− |X|

m

)
+
b

n
.

Substituting m ≤ n2 − n, we get

|X| < bm

n
≤ b(n− 1).

This shows that the number of ordinary lines containing exactly one point in V1 is at

least

b(n− b)− |X|
3

>
2b

3
n− 3b2 − b

3
.

We now see that there exists v ∈ V1 such that the number of ordinary lines containing

v is at least ⌊
2

3
n− 3b− 1

3

⌋
≥
⌊

2

3
n− b∗ +

4

3

⌋
≥ 2

3
(n+ 1)− b∗.

Case 2 (b ≥ b∗). We will determine a lower bound for t2(V) by counting the number

of nonzero pairs of entries Aij , Aij′ that appear in the submatrix U × Y , with j 6= j′.

There are
(
n−b
2

)
pairs of points in V\V1, each of which appears at most 6 times, therefore

the number of pairs of such entries is at most 6
(
n−b
2

)
. Each row of U has 3 pairs of

nonzero entries, so the number of pairs of entries equals 3a, and it follows that

3a ≤ 6

(
n− b

2

)
. (2.1)

Recall that a
m + b

n > 1, which gives us

a > m

(
1− b

n

)
=
(
n2 − n− 2t2(V)

)(
1− b

n

)
. (2.2)

Combining (2.1) and (2.2), we get

(
n2 − n− 2t2(V)

)(
1− b

n

)
< 2

(
n− b

2

)
, and

solving for t2(V) finally shows

t2(V) >
nb

2
≥ nb∗

2
.
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2.4 Proofs of Theorems 2.1.6 and 2.1.8

The proofs of both Theorems 2.1.6 and 2.1.8 rely on Lemmas 2.3.3 and 2.3.4. Together,

these lemmas imply that there must be a point with many ordinary lines containing it,

or else there are many ordinary lines in total. As mentioned in the proof overview, the

theorems are then obtained by using an iterative argument that removes a point with

many ordinary lines through it, and then applying the same argument to the remaining

points.

2.4.1 Proof of Theorem 2.1.6

We get the following easy corollary from Lemma 2.3.3 and Lemma 2.3.4.

Corollary 2.4.1. Let V be a set of n ≥ 5 points in Cd not contained in a plane. Then

one of the following holds:

1. There exists a point v ∈ V contained in at least 2
3n−

7
3 ordinary lines.

2. t2(V) ≥ 3
2n.

Proof. Let A be the dependency matrix for V. If A satisfies Property-S, then we are

done by Lemma 2.3.3. Otherwise, let b∗ = 3, and note that Lemma 2.3.4 gives us the

statement of the corollary when n ≥ 5.

We are now ready to prove Theorem 2.1.6. For convenience, we state the theorem

again.

Theorem 2.1.6. Let V be a set of n ≥ 24 points in C3, not contained in a plane. Then

V determines at least 3
2n ordinary lines unless n − 1 points are on a plane, in which

case there are at least n− 1 ordinary lines.

Proof. If t2(V) ≥ 3
2n then we are done. Else, by Corollary 2.4.1, we may assume there

exists a point v1 with at least 1
3(2n − 7) ordinary lines and hence at most 1

6(n + 4)

special lines through it. Let V1 = V \ {v1}. If V1 is planar, then there are exactly n− 1

ordinary lines through v1. We note here that this is the only case where there exists

fewer then 3
2n ordinary lines.
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Suppose now that V1 is not planar. Again, by Corollary 2.4.1, there are either

3
2(n−1) ordinary lines in V1 or there exists a point v2 ∈ V1 with at least 2

3(n−1)− 7
3 =

1
3(2n− 9) ordinary lines through it. In the former case, we get 3

2(n− 1) ordinary lines

in V1, at most 1
6(n+ 4) of which could contain v1. This shows that the total number of

ordinary lines in V is

t2(V) ≥ 3

2
(n− 1)− 1

6
(n+ 4) +

1

3
(2n− 7) =

1

2
(4n− 9).

When n ≥ 9, t2(V) ≥ 3
2n.

In the latter case there exists a point v2 ∈ V1 with at least 1
3(2n − 9) ordinary

lines in V1 through it. Note that at most one of these could contain v1, so we get

at least 1
3(2n − 7) + 1

3(2n − 9) − 1 = 1
3(4n − 19) ordinary lines through one of v1

or v2. Note also that the number of special lines through one of v1 or v2 is at most

1
6(n+ 4) + 1

6(n+ 3) = 1
6(2n+ 7).

Let V2 = V1 \ {v2}. If V2 is contained in a plane, we get at least n− 3 ordinary lines

from each of v1 and v2 giving a total of 2n− 6 ordinary lines in V. It follows that when

n ≥ 12, t2(V) ≥ 3
2n.

Otherwise V2 is not contained in a plane, and again Corollary 2.4.1 gives us two

cases. If there are 3
2(n−2) ordinary lines in V2, then the total number of ordinary lines

is

t2(V) =
3

2
(n− 2)− 1

6
(2n+ 7) +

1

3
(4n− 19) =

1

2
(5n− 21).

When n ≥ 11, we get that t2(V) ≥ 3
2n.

Otherwise there exists a point v3 with at least 2
3(n− 2)− 7

3 ordinary lines through

it. At most 2 of these could pass through one of v1 or v2, so we get 2
3(n− 2)− 7

3 − 2 =

1
3(2n − 17) ordinary lines through v3 in V. Summing up the number of lines through

one of v1, v2 and v3, we have that

t2(V) ≥ 1

3
(2n− 17) +

1

3
(4n− 19) = 2n− 12,

and when n ≥ 24, t2(V) ≥ 3
2n.

2.4.2 Proof of Theorem 2.1.8

We get the following easy corollary from Lemma 2.3.3 and Lemma 2.3.4.
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Corollary 2.4.2. There exists a positive integer n0 such that the following holds. Let

V be a set of n ≥ n0 points in Cd not contained in a three dimensional affine subspace.

Then either:

1. There exists a point with at least n
2 ordinary lines through it, or

2. t2(V) ≥ 1
12n

2.

Proof. Let A be the dependency matrix of V. If A satisfies Property-S, then we are

done by Lemma 2.3.3. Otherwise, let b∗ = n/6. Now by Lemma 2.3.4, either the

number of ordinary lines

t2(V) ≥ n

2
b∗ ≥ 1

12
n2

or there exists a point v ∈ V, such that the number of ordinary lines containing v is at

least

2

3
(n+ 1)− b∗ > 1

2
n.

We are now ready to prove Theorem 2.1.8. For convenience, we state the theorem

again.

Theorem 2.1.8. There exists a positive integer n0 such that the following holds. Let V

be a set of n ≥ n0 points in C4 with at most 2
3n points contained in any 3 dimensional

affine subspace. Then

t2(V) ≥ 1

12
n2.

Proof. The basic idea of the proof uses the following algorithm: We use Corollary 2.4.2

to find a point with a large number of ordinary lines, “prune” this point, and then

repeat this process on the smaller set of points. We stop when either we can not find

such a point, in which case Corollary 2.4.2 guarantees a large number of ordinary lines,

or when we have accumulated enough ordinary lines.

Consider the following algorithm:

Let V0 := V and j = 0.

1. If Vj satisfies case (2) of Corollary 2.4.2, then stop.
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2. Otherwise, there must exist a point vj+1 ∈ Vj with at least n−j
2 ordinary lines

through it. Let Vj+1 = Vj \ {vj+1}.

3. Set j = j + 1. If j = n/3, then stop. Otherwise go to Step 1.

Note that since no 3 dimensional plane contains more than 2n/3 points, at no step

will the algorithm stop because the configuration becomes 3 dimensional. That is, we

can use Corollary 2.4.2 in all steps of the algorithm.

We now analyze the two stopping conditions for the algorithm, and show that we can

always find enough ordinary lines by the time the algorithm stops.

Suppose that we stop because Vj satisfies case (2) of Corollary 2.4.2 for some 1 ≤

j < n/3. From case (2) of Corollary 2.4.2, we have that

t2(Vj) ≥
(n− j)2

12
. (2.3)

On the other hand, each pruned point vi, 1 ≤ i ≤ j, has at least n−i+1
2 > n−i

2 ordinary

lines through it that are determined by Vi−1, and hence at most (n−i− n−i+1
2 )/2 < n−i

4

special lines through it. Note that an ordinary line in Vi might not be ordinary in Vi−1

if contains vi. Thus, in order to lower bound the total number of ordinary lines in V,

we sum over the number of ordinary lines contributed by each of the pruned points vi,

1 ≤ i ≤ j, and subtract from the count the number of potential lines that could contain

vi.

Then the number of ordinary lines in V contributed by the pruned points is at least

j∑
i=1

(
n− i

2
− n− i

4

)
=

1

4

j∑
i=1

(n− i) =
jn

4
− j2 + j

8
. (2.4)

Combining (2.3) and (2.4), we have that

t2(V) ≥ 1

12
(n− j)2 +

jn

4
− j2 + j

8

=
n2

12
+
−j2 + j(2n− 3)

24
.

This is an increasing function for j < n− 1, implying that

t2(V) ≥ n2

12
.
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We now consider the case when the algorithm stops because j = n/3. Note that

at this point, we will have pruned exactly j points. Each pruned point vi, 1 ≤ i ≤ j,

has n−i+1
2 ordinary lines through it that are determined by Vi−1. The only way such

an ordinary line is not ordinary in V is that it contains one of the previously pruned

points. At most i− 1 of the ordinary lines through vi contain other pruned points vk,

k < i. Therefore the total number of ordinary lines determined by V satisfies

t2(V) ≥
j∑
i=1

n− i+ 1

2
−

j∑
i=1

(i− 1) =
jn

2
− 3

4
(j2 − j).

Since j = n/3, the number of ordinary lines determined by V is at least

t2(V) ≥ n2

12
.

2.5 A dependency matrix for a more refined bound

In this section we give a more careful construction for the dependency matrix of a point

set V. Recall that we defined the dependency matrix in Definition 2.3.2 to contain a

row for each collinear triple from a triple system constructed on each special line. The

goal was to not have too many triples containing the same pair (as can happen when

there are many points on a single line). At the end of this section (Definition 2.5.7) we

will give a construction of a dependency matrix that will have an additional property

(captured in Item 4 of Lemma 2.5.4) which is used to obtain cancellation in the diagonal

dominant argument, as outlined in the proof overview.

We denote the argument of a complex number z by arg (z). We use the convention

that for every complex number z, arg (z) ∈ (−π, π].

Definition 2.5.1 (angle between two complex numbers). We define the angle between

two complex numbers a and b to be the the absolute value of the argument of ab, denoted

by
∣∣arg

(
ab
)∣∣. Note that the angle between a and b equals the angle between b and a.

Definition 2.5.2 (co-factor). Let v1, v2 and v3 be three distinct collinear points in Cd,

and let a1, a2 and a3 be the linear dependency coefficients among the three points. Define
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the co-factor of v3 with respect to (v1, v2), denoted by C(1,2)(3), to be a1a2
|a1||a2| . Notice

that this is well defined with respect to the points, and does not depend on the choice of

coefficients.

The next lemma will be used to show that “cancellations” must arise in a line

containing four points (as mentioned earlier in the proof overview). We will later use

this lemma as a black box, in order to quantify the cancellations in lines with more

than four points by applying it to random four tuples inside the line.

Lemma 2.5.3. Let v1, v2, v3, v4 be 4 collinear points in Cd. Then at least one of the

following conditions hold:

1. The angle between C(1,2)(3) and C(1,2)(4) is at least π/3.

2. The angle between C(1,3)(4) and C(1,3)(2) is at least π/3.

3. The angle between C(1,4)(2) and C(1,4)(3) is at least π/3.

Proof. For i ∈ {1, 2, 3, 4}, let v′i = (vi, 1), i.e. the vector obtained by appending 1 to vi.

Since v1, v2, v3, v4 are collinear, there exist a1, a2, a3 ∈ C such that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0 (2.5)

and b1, b2, b4 ∈ C such that

b1v
′
1 + b2v

′
2 + b4v

′
4 = 0. (2.6)

We may assume, without loss of generality, that a3 = b4 = 1. Now equations (2.5) and

(2.6) imply that C(1,2)(3) = a1a2
|a1||a2| , C(1,2)(4) = b1b2

|b1||b2| , C(1,3)(2) = a1
|a1| and C(1,4)(2) =

b1
|b1| .

Combining equations (2.5) and (2.6), we get the following linear equation:

(b2a1 − b1a2)v′1 + b2v
′
3 − a2v′4 = 0. (2.7)

Using (2.7), we see C(1,3)(4) = (b2a1−b1a2)b2
|b2a1−b1a2||b2| and C(1,4)(3) = − (b2a1−b1a2)a2

|b2a1−b1a2||a2| .
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Then the angle between C(1,2)(3) and C(1,2)(4) is∣∣∣∣arg

(
a1a2
|a1||a2|

b1b2
|b1||b2|

)∣∣∣∣
=
∣∣arg

(
a1a2b1b2

)∣∣ . (2.8)

The angle between C(1,3)(4) and C(1,3)(2) is∣∣∣∣arg

(
(b2a1 − b1a2)b2
|b2a1 − b1a2||b2|

a1
|a1|

)∣∣∣∣
=
∣∣arg

(
a1b2(b2a1 − b1a2)

)∣∣ . (2.9)

The angle between C(1,4)(2) and C(1,4)(3) is∣∣∣∣∣arg

(
− b1
|b1|

(b2a1 − b1a2)a2
|b2a1 − b1a2||a2|

)∣∣∣∣∣
=
∣∣∣arg

(
−b1a2(b2a1 − b1a2)

)∣∣∣ . (2.10)

Note that the product of expressions inside the arg functions in (2.8), (2.9) and

(2.10) is a negative real number, and so the sum of (2.8), (2.9) and (2.10) must be π.

It follows that one of the angles must be at least π/3.

Our final dependency matrix will be composed of blocks, each given by the following

lemma. Roughly speaking, we construct a block of rows A(l) for each special line l. The

rows in A(l) will be chosen carefully and will correspond to triples that will eventually

give non trivial cancellations.

Lemma 2.5.4. Let l be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 3.

Let Vl be the r× (d+ 1) matrix whose ith row is the vector (vi, 1). Then there exists an

(r2 − r) × r matrix A = A(l), which we refer to as the dependency matrix of l, such

that the following hold:

1. AVl = 0;

2. Every row of A has support of size 3;

3. The support of every two columns of A intersects in exactly 6 locations;
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4. If r ≥ 4 then for at least 1/3 of choices of k ∈ [r2−r], there exists k′ ∈ [r2−r] such

that following holds: For k ∈ [r2 − r], let Rk denote the rth row of A. Suppose

supp(Rk) = {i, j, s}. Then supp(Rk′) = {i, j, t} (for some t 6= s) and the angle

between the co-factors C(i,j)(s) and C(i,j)(t) is at least π/3.

Proof. Recall that Lemma 2.2.12 gives us a family of triples Tr on the set [r]3. For every

bijective map σ : Vl → [r], construct a matrix Aσ in the following manner: Let Tl be the

triple system on V3l induced by composing σ and Tr. For each triple (vi, vj , vk) ∈ Tl,

add a row with three non-zero entries in positions i, j, k corresponding to the linear

dependency coefficients between vi, vj and vk.

Note that for every σ, Aσ has r2−r rows and r columns. Since the rows correspond

to linear dependency coefficients, clearly we have AσVl = 0 satisfying Property 1.

Properties 2 and 3 follow from properties of the triple system from Lemma 2.2.12.

We will use a probabilistic argument to show that there exists a matrix A that

has Property 4. Let Σ be the collection of all bijective maps from [r] to the points

Vl, and let σ ∈ Σ be a uniformly random element. Consider Aσ. Since every pair

of points occurs in at least 2 distinct triples, for every row Rk of Aσ, there exists a

row Rk′ such that the supports of Rk and Rk′ intersect in 2 entries. Suppose that Rk

and Rk′ have supports contained in {i, j, s, t}. Suppose that σ maps {vi, vj , vs, vt} to

{1, 2, 3, 4} and that (1, 2, 3) and (1, 2, 4) are triples in Tr. Without loss of generality,

assume vi maps to 1. Then by Lemma 2.5.3, the angle between at least one of the pairs

{C(i,j)(s), C(i,j)(t)}, {C(i,s)(j), C(i,s)(t)}, {C(i,t)(j), C(i,t)(s)} must be at least π/3. That

is, given that vi maps to 1, we have that the probability that Rk satisfies Property 4 is

at least 1/3. Then it is easy to see that

Pr(Rk satisfies Property 4) ≥ 1/3.

Define the random variable X to be the number of rows satisfying Property 4, and

note that we have

E[X] ≥ (r2 − r)1

3
.

It follows that there exists a matrix A in which at least 1/3 of the rows satisfy Property

4.
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To argue about the off diagonal entries of M = A∗A (where A = A(l)), we will use

the following notion of balanced rows. The main idea here is that, if there are many

rows that are not balanced then we win in one of the Cauchy-Schwartz applications

and, if many rows are balanced then we win from cancellations that show up via the

different angles.

Definition 2.5.5 (η-balanced row). Given an m × n matrix A, we say a row Rk

is η-balanced for some constant η if
∣∣|Aki|2 − |Akj |2∣∣ ≤ η, for every i, j ∈ supp(Rk).

Otherwise we say that Rk is η-unbalanced. When η is clear from the context, we say

that the row is balanced/unbalanced.

Lemma 2.5.6. There exists an absolute constant c0 > 0 such that the following holds.

Let l be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 4. Let A = A(l) be

the dependency matrix for l, defined in Lemma 2.5.4, and A′ a scaling of A such that

the `2 norm of every row is α. Let M = A′∗A′.

∑
i 6=j
|Mij |2 ≤ 4(r2 − r)α4 − c0(r2 − r)α2.

Proof. Recall that A is an (r2 − r) × r matrix, that the support of every row has

size exactly 3, and that the supports of any two distinct columns of A intersects in

6 locations. Clearly, any scaling A′ of A will also satisfy these properties. Applying

Lemma 2.2.7 to A′ we get that

∑
i 6=j
|Mij |2 = 4(r2 − r)α4 − (D(A) + 2E(A)) . (2.11)

We are able to give a lower bound on D(A)+2E(A) using Property 4 of Lemma 2.5.4.

From here on, we focus on the rows mentioned in Property 4. Recall that there are at

least (r2 − r)/3 such rows. For some η to be determined later, suppose that β fraction

of these rows is η-unbalanced. We will show each such row contributes to either D(A)

or E(A).

If a row Rk is η-imbalanced, we get that

∑
i<j

(
|Aki|2 − |Akj |2

)2
> η2.
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Alternatively suppose that Rk is η-balanced. Recall that
∑n

i=1 |Aki|2 = α and note

that we must have that |Aki|2 ∈ [α3 −
2η
3 ,

α
3 + 2η

3 ] for all i ∈ supp(Rk). Suppose that

both Rk and Rk′ have non-zero entries in columns i and j, but Rk has a third nonzero

entry in column s and Rk′ has a third nonzero entry in column t, where s 6= t. Suppose

further that the angle θ between the co-factors C(i,j)(s) and C(i,j)(t) is at least π/3, i.e.

cos θ ≤ 1/2. Then

∣∣AkiAkj −Ak′iAk′j∣∣2
= |AkiAkj |2 + |Ak′iAk′j |2 − 2|AkiAkj ||Ak′iAk′j | cos θ

≥ |AkiAkj |2 + |Ak′iAk′j |2 − |AkiAkj ||Ak′iAk′j |.

For any positive real numbers a, b, we have that

a2 + b2 − ab =
(a

2
− b
)2

+
3

4
a2 ≥ 3

4
a2.

Substituting a = |AkiAkj | and b = |Ak′iAk′j |, we get that

|AkiAkj |2 + |Ak′iAk′j |2 − |AkiAkj ||Ak′iAk′j |

≥ 3

4
|AkiAkj |2

≥ 3

4

(
α

3
− 2η

3

)2

=
1

12
(α− 2η)2 .

Summing over the η-unbalanced rows, we get that

E(A) ≥ β (r2 − r)
3

η2.

Summing over all the η-balanced rows, we get that

D(A) =
∑
i 6=j

∑
k<k′

∣∣AkiAkj −Ak′iAk′j∣∣2
=

1

2

∑
k 6=k′

∑
i 6=j

∣∣AkiAkj −Ak′iAk′j∣∣2
≥ 1

2
· (1− β)

(r2 − r)
3

· 1

12
(α− 2η)2 .

= (1− β)
(r2 − r)

72
(α− 2η)2 .
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Setting η = α/10, we get that

D(A) + 2E(A) ≥ (1− β)
(r2 − r)

72
(α− 2η)2 + 2β

(r2 − r)
3

η2

= (r2 − r)

(
(1− β)

1

72

(
4

5
α

)2

+ β
2

3

(
1

10
α

)2
)

≥ c0(r2 − r)α2

for some absolute constant c0. Combining the above with equation (2.11), we get

∑
i 6=j
|Mij |2 ≤ 4(r2 − r)α4 − c0(r2 − r)α2.

We are now ready to define the full dependency matrix that we will use in the proof

of Theorem 2.1.7.

Definition 2.5.7 (Dependency Matrix, second construction). Let V = {v1, . . . vn} be

a set of n points in Cd and let V be the n× (d+ 1) matrix whose ith row is the vector

(vi, 1). For each matrix A(l), where l ∈ L≥3(V), add n− r column vectors of all zeroes,

with length r2 − r, in the column locations corresponding to points not in l, giving an

(r2 − r)× n matrix. Let A be the matrix obtained by taking the union of rows of these

matrices for every l ∈ L≥3(V). We refer to A as the dependency matrix of V.

Note that this construction is a special case of the one given in Definition 2.3.2 and

so satisfies all the properties mentioned there. In particular, we have AV = 0 and the

number of rows in A equals n2 − n− 2t2(V).

2.6 Proof of Theorem 2.1.7

Before we prove the theorem, we give some key lemmas. As before, we consider two

cases: When the dependency matrix A satisfies Property-S and when it does not. In

the latter case, we rely on Lemma 2.3.4. The following lemma deals with the former

case.



29

Lemma 2.6.1. There exists an absolute constant c1 > 0 such that the following holds.

Let V = {v1, v2, . . . , vn} be a set of points in Cd not contained in a plane. Let A be the

m× n dependency matrix for V, and suppose that A satisfies Property-S. Then

t2(V) ≥ 3

2
n+ c1

∑
r≥4

(r2 − r)tr(V).

Proof. Since A satisfies Property-S, by Corollary 2.2.4 for every ε > 0, there exists a

scaling A′ of A such that for every i ∈ [m]∑
j∈[n]

∣∣A′ij∣∣2 = 1 + ε,

and for every j ∈ [n] ∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε. (2.12)

Let Ci be denote the ith column of A′, and let M = A′∗A′. From (2.12), we get that

|Mii| = 〈Ci, Ci〉 ≥
(
m
n − ε

)
.

To bound the sum of squares of the off-diagonal entries, we go back to the construc-

tion of the dependency matrix. Recall that the matrix A was obtained by taking the

union of rows of matrices A(l), for each l ∈ L≥3. Then we have that A′ is the union of

scalings of the rows of the matrices A(l), for each l ∈ L≥3. Note that |Mij | = 〈Ci, Cj〉

and that the intersection of the supports of any two distinct columns in contained

within a scaling of A(l), for some l ∈ L≥3. Therefore, to get a bound on
∑

i 6=j |Mij |2,

it suffices to consider these component matrices. Combining the bounds obtained from

Lemma 2.5.6, for α = 1 + ε, we get that∑
i 6=j
|Mij |2 ≤

∑
l∈L3

4(r2 − r)α4 +
∑
l∈L≥4

(
4(r2 − r)α4 − c0(r2 − r)α2

)
=
∑
l∈L≥3

4(r2 − r)α4 −
∑
l∈L≥4

c0(r
2 − r)α2

= 4m(1 + ε)4 − (1 + ε)2c0
∑
r≥4

(r2 − r)tr.

Let F = c0
∑n

r≥4(r
2 − r)tr. Lemma 2.2.5 gives us that

rank(M) ≥ n2L2

nL2 +
∑

i 6=j |Mij |2

≥
n2
(
m
n − ε

)2
n
(
m
n − ε

)2
+ 4m(1 + ε)4 − (1 + ε)2F

.
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Taking ε to 0, we get

rank(M) ≥
n2
(
m
n

)2
n
(
m
n

)2
+ 4m− F

= n− 4n2m− n2F
m2 + 4mn− nF

.

Note that

affine-dim(V) = rank(V )− 1 ≤ 4n2m− n2F
m2 + 4mn− nF

− 1.

It follows that if

4n2m− n2F
m2 + 4mn− nF

< 4,

we get that V must be contained in a plane, contradicting the assumption of the theo-

rem. Substituting m = n2 − n− 2t2(V) and simplifying, we get

4t22 − (2n2 + 4n)t2 + 3n3 − 3n2 +
n2F

4
− nF > 0.

This holds when

t2(V) <
3n

2
+
F

8

=
3n

2
+
c0
8

n∑
r=4

(r2 − r)tr(V)

which completes the proof.

We now have the following easy corollary.

Corollary 2.6.2. There exists a positive integer n0 such that the following holds. Let

c1 be the constant from Lemma 2.6.1 and let V be a set of n ≥ n0 points in Cd not

contained in a plane. Then one of the following must hold:

1. There exists a point v ∈ V contained in at least n
2 ordinary lines.

2. t2(V) ≥ 3
2n+ c1

∑
r≥4(r

2 − r)tr(V).

Proof. If A satisfies Property-S, then we are done by Lemma 2.6.1. Otherwise, let b∗

be an integer such that

n

2
(b∗ − 1) <

3n

2
+ c1

∑
r≥4

(r2 − r)tr(V) ≤ n

2
b∗. (2.13)
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Clearly we have b∗ > 1. Recall that
∑

r≥4(r
2 − r)tr(V) < n2, implying that for c1

small enough and n large enough,

b∗ < 4 +
2c1
n

∑
r≥4

(r2 − r)tr(V) <
1

6
n. (2.14)

Now by Lemma 2.3.4 and (2.13), either the number of ordinary lines

t2(V) ≥ n

2
b∗ ≥ 3n

2
+ c1

∑
r≥4

(r2 − r)tr(V),

or, using (2.14), there exists a point v ∈ V, such that the number of ordinary lines

containing v is at least

2

3
(n+ 1)− b∗ > 1

2
n.

The following lemma will be crucially used in the proof of Theorem 2.1.7.

Lemma 2.6.3. Let V be a set of n points in Cd, and V ′ = V \ {v} for some v ∈ V.

Then ∑
r≥4

(r2 − r)tr(V ′) ≥
∑
r≥4

(r2 − r)tr(V)− 4(n− 1).

Proof. Note that when we remove v from the set V, we only affect lines that go through

v. In particular, ordinary lines through v are removed and the number of points on

every special line through v goes down by 1. Every other line remains unchanged and

so it suffices to consider only lines that contain the point v.

We consider the difference

K =
∑
r≥4

(r2 − r)tr(V)−
∑
r≥4

(r2 − r)tr(V ′).

We will consider the contribution of a line l determined by V to the difference K.

Each line l ∈ L≥5(V), i.e. a line that has r ≥ 5 points, that contains v contributes

r2 − r to the summation
∑

r≥4(r
2 − r)tr(V). In V ′, l has r − 1 points, and contributes

(r−1)2−(r−1) to the summation
∑

r≥4(r
2−r)tr(V ′). Therefore, l contributes 2(r−1)

to the difference K. We may charge this contribution to the points on l that are not v.

There are r − 1 other points on l, so each point contributes 2 to K.
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Each line l ∈ L4(V) that contains v contributes r2 − r = 12 to the summation∑
r≥4(r

2−r)tr(V). These lines contain 3 points in V ′, and so do not contribute anything

in the
∑

r≥4(r
2 − r)tr(V ′) term. Once again, we charge this contribution to the points

lying on l that are not v. Each such line has 3 points on it other than v, so each point

contributes 12/3 = 4 to K.

There is a unique line through v and any other point, and each point either con-

tributes 0, 2 or 4 to K. This gives us that

∑
r≥4

(r2 − r)tr(V)−
∑
r≥4

(r2 − r)tr(V ′) ≤ 4(n− 1).

Rearranging completes the proof.

We are now ready to prove the main theorem. For convenience, we restate the

theorem here.

Theorem 2.1.7. There exists an absolute constant c > 0 and a positive integer n0 such

that the following holds. Let V be a set of n ≥ n0 points in C3 with at most 2
3n points

contained in any plane. Then

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).

Proof. The remainder of the proof is similar to the proof of Theorem 2.1.8, i.e. we use

Corollary 2.6.2 to find a point with a large number of ordinary lines, “prune” this point,

and then repeat this on the smaller set of points. We stop when either we can not find

such a point, in which case Corollary 2.6.2 guarantees a large number of ordinary lines,

or when we have accumulated enough ordinary lines.

As before, consider the following algorithm: Let V0 := V and j = 0.

1. If Vj satisfies case (2) of Lemma 2.6.2, then stop.

2. Otherwise, there must exist a point vj+1 with at least n−j
2 ordinary lines through

it. Let Vj+1 = Vj \ {vj+1}.

3. Set j = j + 1. If j = n/3, then stop. Otherwise go to Step 1.
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Note that since no plane contains more than 2n/3 points, at no point will the

algorithm stop because the configuration becomes planar. That is, we can use Corol-

lary 2.6.2 at every step of the algorithm. We now analyze the two stopping conditions

for the algorithm, and show that we can always find enough ordinary lines by the time

the algorithm stops.

Suppose that we stop because Vj satisfies case (2) of Corollary 2.6.2 for some 1 ≤

j < n/3. From case (2) of Lemma 2.6.2 and Lemma 2.6.3, we have that

t2(Vj) ≥
3(n− j)

2
+ c1

∑
r≥4

(r2 − r)tr(Vj)

≥ 3(n− j)
2

+ c1

∑
r≥4

(r2 − r)tr(V)− 4

j∑
i=1

(n− i)

 . (2.15)

On the other hand, each pruned point vi, 1 ≤ i ≤ j, has at least n−i+1
2 > n−i

2 ordinary

lines determined by Vi−1 through it, and hence at most (n− i− n−i+1
2 )/2 < n−i

4 special

lines through it. Note that an ordinary line in Vi might not be ordinary in Vi−1 if

contains vi. Thus, in order to lower bound the total number of ordinary lines in V,

we sum over the number of ordinary lines contributed by each of the pruned points vi,

1 ≤ i ≤ j, and subtract from the count the number of potential lines that could contain

vi. Then the number of ordinary lines contributed by the pruned points is at least

j∑
i=1

(
n− i

2
− n− i

4

)
=

1

4

j∑
i=1

(n− i) . (2.16)

Combining (2.15) and (2.16), we get that

t2(V) ≥ 3

2
(n− j) + c1

∑
r≥4

(r2 − r)tr(V)− 4

j∑
i=1

(n− i)

+
1

4

j∑
i=1

(n− i)

=
3

2
n+ c1

∑
r≥4

(r2 − r)tr(V) +

(
1

4
− 4c1

) j∑
i=1

(n− i)− 3

2
j.

For c1 small enough and n large, the term
(
1
4 − 4c1

)∑j
i=1(n − i) − 3

2j is positive.

Therefore, there exists some absolute constant c > 0 such that

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).
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We now consider the case when the algorithm stops because j = n/3. Note that

at this point, we will have pruned exactly j points. Each pruned point vi, 1 ≤ i ≤ j,

has n−i+1
2 > n−i

2 ordinary lines determined by Vi−1 through it. However, as many as

i− 1 < i ordinary lines through vi contain other pruned points vk, k < i, i.e. lines that

could be special in V. Therefore the total number of ordinary lines determined by V is

at least

t2(V) ≥
j∑
i=1

n− i
2
−

j∑
i=1

i =
1

2

j∑
i=1

(n− 3i).

Since j = n
3 , we get that the number of ordinary lines determined by V is at least

t2(V) ≥ 1

2

j∑
i=1

(n− 3i) =
5n2 − 12n

64
.

Recall that n2 ≥
∑

r≥4(r
2 − r)tr(V), which gives us that

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V)

for some absolute constant c > 0 and n large enough.
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Chapter 3

Finite Field Kakeya Sets in Three Dimensions

3.1 Finite Field Kakeya Sets

Let Fq denote the finite field of q elements. A Kakeya set K ⊆ Fnq is a set of points

which contains ‘a line in every direction’. More precisely, for all x ∈ Fnq there is a y ∈ Fnq

such that the line {xt+ y, t ∈ Fq} ⊆ K.

The question of establishing lower bounds for Kakeya sets over finite fields was asked

by Wolff [Wol99]. In 2008, in a breakthrough result, Dvir [Dvi09] showed that for a

Kakeya set K over a finite field F of size q, |K| > qn

n! , thus exactly pinning down the

exponent of q in the lower bound. Later in 2008, Saraf and Sudan [SS08] improved the

lower bound to the form 1/2 · βnqn, where β is approximately 1/2.6. Moreover, Dvir

showed how to construct a Kakeya set of size qn

2n−1 + O(qn−1) (see [SS08]). In 2009,

Dvir, Kopparty, Saraf and Sudan [DKSS09] proved a lower bound of qn

2n for the size of

Kakeya sets. Thus the gap between the lower bound and the upper bound given by the

construction is only at most a factor of 2, and it is a very interesting question to close

this gap. Though we now know extremely strong lower bounds, we still do not know

an exact bound for any dimension other than 2. For n = 2, Blokhuis and Mazzocca

gave exact bounds on the size of a Kakeya set of q(q + 1)/2 + (q − 1)/2 for odd q and

q(q + 1)/2 for even q. Here we give improved lower bounds for dimension n = 3, using

an extension of the argument presented in [SS08].

In the rest of Chapters 3, all asymptotics will be in terms of q. We will use n

to represent the dimension of the underlying space, but we will think of it as a fixed

constant and the underlying field size q to be growing. Thus o(1) will be a function

that tends to 0 as q tends to ∞.
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3.1.1 Kakeya sets: Background and our results

We prove the following improved lower bounds for Kakeya sets in dimensions n = 3.

Theorem 3.1.1. There exists a constant C > 0, such that for any prime power q > C,

if K ⊆ F3
q is a Kakeya set, then

|K| ≥ 0.2107q3.

Prior to this work, the best lower bound for n = 3 was obtained by Saraf and Sudan

[SS08], and they achieved a lower bound of (0.208)q3.

Though the quantitative improvement in the lower bound is small, we believe our

proof method is interesting and might be of independent interest. The proof of Saraf and

Sudan [SS08] extended the beautiful polynomials based lower bounds of Dvir [Dvi09] by

using the notion of the multiplicity of roots of polynomials. Our work uses the notion

of “fractional multiplicity” to obtain the improved result. We say a few more words

about these proof methods.

Dvir [Dvi09] obtained his lower bound via the following argument using polynomials:

If the size ofK is small, then interpolate a nonzero low degree polynomial P vanishing on

all the points of K. Then, use the properties of K to show that P must actually vanish

at all points of the underlying space1. However this contradicts the low degreeness of

P .

The work of Saraf and Sudan [SS08] extends this idea by taking a polynomial P

that vanishes of each point of K with some higher multiplicity m. To enable this, they

allow the degree of P to be somewhat higher, but they cap the individual degree of each

variable of P . This idea somehow still enables them to get the same conclusion as Dvir,

but now with stronger bounds. The novelty of the current work is that we allow the

multiplicity m to take a non-integer value. We need to now specify what it means for

a polynomial to vanish with multiplicity m, where m is a positive real number that is

not an integer. For this we define a suitable random process which makes the expected

1Actually in this step Dvir uses a polynomial very closely related to P , but for simplicity we think
of it to be P itself.
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multiplicity of P at a point equal to m. By allowing m to take a non-integer value we

are able to make finer optimizations.

3.2 Preliminary Results and Lemmas

Let Fq[x1, ..., xn] = Fq[x] be the ring of polynomials in x1, ..., xn with coefficients in Fq.

The following is a basic and well known fact about zeroes of polynomials.

Fact 1. Let P ∈ Fq[x] be a polynomial of degree at most q − 1 in each variable. If

P (a) = 0 for each a ∈ Fnq , then P ≡ 0.

Let Nq(n,m) be the number of monomials in Fq[x1, ..., xn] of individual degree < q

and total degree < mq. Note that m need not be a natural number to define Nq(n,m),

rather m can be any positive real number greater than or equal to 1.

Lemma 3.2.1.

Nq(n,m) =

n∑
i=0

(−1)i
(
n

i

)(
b(m− i)q + n− 1c

n

)
,

where bxc is the largest integer that is at most x.

Proof. The proof will be via inclusion-exclusion. Consider the total number of monomial

terms of a polynomial of total degree strictly less than mq. This equals
(bmq+n−1c

n

)
. We

only want to include those monomials in our count that have individual degree at most

q−1. Let Cr be the total number of monomials of total degree strictly less than mq and

some particular r of the variables having degree q or more. Then by inclusion-exclusion,

Nq(n,m) =

n∑
i=0

(−1)i
(
n

i

)
Ci.

It is not hard to see that Ci =
(b(m−i)q+n−1c

n

)
since if a particular set of i variables

must have degree at least q, we can “peel off” degree q part from each of these variables

to get a resulting monomial of total degree at most b(m− i)q+ n− 1c. Ci is then then

number of such monomials which equals
(b(m−i)q+n−1c

n

)
.



38

Definition 3.2.2 (multiplicity). For a polynomial g ∈ Fq[x], we say g vanishes at a

point a with multiplicity m if g(x + a) has no monomial term of degree lower than m.

The following lemma is a simple adaptation of a lemma from [SS08] (where instead

of two sets S1 and S2 there was only one set).

Lemma 3.2.3. Let m1 ≥ 0 and m2 ≥ 0 be integers and m > 0 be a real number. Let

S1, S2 ⊂ Fnq be disjoint sets such that |S1|
(
m1+n−1

n

)
+ |S2|

(
m2+n−1

n

)
< Nq(n,m). Then

there exists a non-zero polynomial g ∈ Fq[x] of total degree less than mq and individual

degree at most q − 1 such that g vanishes on each point of S1 with multiplicity m1 and

on S2 with multiplicity m2.

Proof. The total number of possible monomials in g is Nq(n,m). We consider the

coefficients of these monomials to be free variables. For each point a ∈ Fn
q, requiring

that the polynomial vanishes on a with multiplicity mi adds
(
mi+n−1

n

)
homogeneous

linear constraints on these coefficients. Requiring that g vanishes on each point of S1

with multiplicity m1 and on S2 with multiplicity m2 imposes a total of |S1|
(
m1+n−1

n

)
+

|S2|
(
m2+n−1

n

)
homogeneous linear constraints. Since |S1|

(
m1+n−1

n

)
+ |S2|

(
m2+n−1

n

)
<

Nq(n,m), the total number of homogeneous linear constraints is strictly less than the

number of variables and hence a nonzero solution exists. Thus there exists a non-zero

polynomial g ∈ Fq[x] of total degree less than mq and individual degree at most q − 1

such that g vanishes on each point of S1 with multiplicity m1 and on S2 with multiplicity

m2.

For g ∈ Fq[x] let ga,b(t) = g(a + tb) denote its restriction to the “line” {a + tb, t ∈

Fq}. The lemma below is a basic result that also appears in [SS08].

Lemma 3.2.4. If g ∈ Fq[x] vanishes with multiplicity m at some point a + t0b then

ga,b vanishes with multiplicity m at t0.

Proof. By definition, the fact that g has a zero of multiplicity m at a+ t0b implies that

the polynomial g(x+a+t0b) has no support on monomials of degree less than m. Thus

under the homogeneous substitution of x→ tb, we get no monomials of degree less than
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m either, and thus we have tm divides g(tb + a + t0b) = g(a + (t+ t0)b) = ga,b(t+ t0).

Hence ga,b has a zero of multiplicity m at t0.

The following theorem was the lower bound result from [SS08].

Theorem 3.2.5 (Kakeya lower bound from [SS08]). If K is a Kakeya set in Fnq , then

|K| ≥ 1

(m+n−1
n )

Nq(n,m).

By setting n = 3 and m = 2, it is concluded in [SS08] that for a Kakeya set K ⊆ Fnq ,

|K| ≥ 5
24q

3 ≈ 0.2083q3. We manage to obtain our strengthened lower bound by allowing

m to take values that are not necessarily integers. In particular, we introduce a notion

of vanishing with fractional multiplicity and show that it can be used for an improved

bound.

3.3 Proof of Theorem 3.1.1

Let K ⊆ F3
q be a Kakeya set. As a first step in the proof, we will interpolate a nonzero

polynomial vanishing on the points of K with some possibly fractional multiplicity m.

If we wanted to interpolate a polynomial vanishing with multiplicity m where m is

sandwiched between two positive integers u and u + 1, for each point we could make

it vanish with multiplicity u with some probability, say α, and with multiplicity u+ 1

with probability 1−α, so that in expectation the multiplicity of vanishing would be at

least m. It turns out that the main property of the multiplicities of vanishing we will

need is that on each line of the Kakeya set, almost the correct α fraction of points have

multiplicity of vanishing being at least u and the rest have multiplicity of vanishing at

least u+ 1. To do this we will first identify an appropriate subset S of the Kakeya set

on which we will want the vanishing multiplicity to be u, and in the lemma below we

show that such a set can be suitably picked.

Lemma 3.3.1. Let K ⊆ F3
q be a Kakeya set. Let 0 ≤ α ≤ 1, and δ = 1

3
√
q . Then there

exists a constant C > 0 such that for q > C we can pick a subset S ⊂ K such that

||S|−α|K|| < δα|K|, and such that for each line L contained in |K|, ||L∩S|−αq| < δαq.
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Proof. Consider a random subset S ⊂ K, where we choose each point in S inde-

pendently with probability α. By the Chernoff Bound, P[||S| − α|K|| ≥ δα|K|] ≤

exp(−α|K|δ2
3 ). Since |K| is certainly larger than q, exp(−α|K|δ2

3 ) ≤ exp(−αqδ2

3 ).

Note also that there are only q4 + q3 + q2 distinct lines in F3
q , and thus at most

q4 + q3 + q2 lines in K. Let L be any line in K. Again, via the Chernoff Bound, we

have P[||L ∩ S| − αq| ≥ δαq] ≤ exp(−αqδ2

3 ). By the union bound, the probability that

any one of the lines in K has more than (1 + αδ)q or fewer than (1− αδ)q points in S

is at most (q4 + q3 + q2) exp(−αqδ2

3 ).

Thus if we show that exp(−αqδ2

3 )+(q4+q3+q2) exp(−αqδ2

3 ) < 1, then by the probabilistic

method, such a subset S with the desired properties exists. Since lim
q→∞

exp(−αqδ2

3 ) +

(q4 + q3 + q2) exp(−αqδ2

3 ) = 0 forδ = 1
3
√
q , there exists some constant C > 0 such that

for q > C, there exists such a set S.

Lemma 3.3.2. Let K ⊆ F3
q be a Kakeya set. Let u ∈ {1, 2}, let α be such that

0 ≤ α ≤ 1, δ = 1
3
√
q and m = (α− δα)u+ (1− α− δα)(u+ 1). Then

Nq(3,m) ≤ (α+ δα)

(
2 + u

3

)
|K|+ (1− α+ δα)

(
3 + u

3

)
|K|.

Proof. Suppose for contradiction, Nq(3,m) > (α+ δα)
(
2+u
3

)
|K|+ (1−α+ δα)

(
3+u
3

)
|K|.

By Lemma 3.3.1, choose S such that each line in K has between αq−δαq and αq+δαq

points in S and ||S|−α|K|| < δα|K|. In particular |S| < (α+δα)|K| and |K \S| < (1−

α+ δα)|K|. Then by Lemma 3.2.3 there exists a nonzero polynomial g ∈ Fq[x1, x2, x3]

with total degree less than mq and individual degree less than q such that g vanishes

on S with multiplicity at least u and on K \ S with multiplicity at least u + 1. Let

d denote the degree of g. Let g = g0 + g1, where g0 denotes the homogeneous part of

degree d and g1 the part with degree less than d. Note that g0 also has degree at most

q − 1 in each of its variables.

Fix a “direction” b ∈ F3
q . Since K is a Kakeya set, there exists a ∈ F3

q such that

the line a + tb ∈ K for all t ∈ Fq. So consider ga,b(t), the univariate polynomial of

g restricted to the line a + tb. By Lemma 3.3.1 and Lemma 3.2.4, there are at least

(1 − δ)αq choices of t where ga,b vanishes with multiplicity at least u and there are at

least q−αq−δαq choices of t, where ga,b vanishes with multiplicity at least u+1. So in
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total, ga,b has at least (α−δα)uq+(1−α−δα)(u+1)q = mq zeros, which is more than

its degree. Therefore, ga,b must be identically zero. In particular, its leading coefficient

must be 0. Since this leading coefficient equals g0(b), g0(b) = 0. Since b was chosen

arbitrarily, this must happen for all b ∈ F3
q . However, by Fact 1, this contradicts the

fact that g0 is a nonzero polynomial of degree at most q− 1 in each of its variables.

Proof of Theorem 3.1.1. Let δ = 1
3
√
q , let u ∈ {1, 2}, let α be such that 0 ≤ α ≤ 1, and

m = (α − δα)u + (1 − α − δα)(u + 1). Note that once we set the value for u and m

between 1 and 2, this will determine a value for α. For now suppose we have chosen

some values for u, α and m.

By Lemma 3.3.2, |K| ≥ Nq(3,m)

(α+δα)(2+u
3 )+(1−α+δα)(3+u

3 )
. Since we are considering |K| as

q grows asymptotically, we only need to consider the leading term when Nq(3,m) is

expressed as a polynomial in q. Also, note that δ becomes small as q grows large.

The reason we only let u take value 1 or 2 is the following. Since we only care about

polynomials with individual variable degree less than q, the total degree must be less

than 3q. Choosing a value of m that is greater than or equal to 3 will just end up being

somewhat redundant and end up giving a worse bound. Thus we only consider m < 3.

Given the relationship between u and m and given that u needs to be an integer, the

only choices for u are hence 1 or 2 as in the statement of the above lemma.

When u = 1, this makes m = 2− (1 + o(1))α for large q. By Lemma 3.2.1,

Nq(3,m) =

(
−2m3 + 9m2 − 9m+ 3

6
+ o(1)

)
q3.

Substituting u = 1, by Lemma 3.3.2 we get that

|K| ≥
(
−2m3 + 9m2 − 9m+ 3

6(4− 3α)
+ o(1)

)
q3 =

(
−2m3 + 9m2 − 9m+ 3

6(3m− 2)
+ o(1)

)
q3.

We maximize this for 1 ≤ m ≤ 2. For m=1.84, this gives |K| ≥ (0.21076 + o(1))q3.

When u = 2, the best lower bound achieved in this case is |K| ≥ (.2083+o(1))q3. Thus

overall the best lower bound we achieve is (0.21076 + o(1))q3.
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Chapter 4

Finite Field Nikodym Sets in Three Dimensions

4.1 Introduction

A very closely related notion to Kakeya sets is that of Nikodym sets. A Nikodym set

N ⊆ Fnq is a set of points such that, through each point p ∈ Fnq , there is a line ` such

that ` \ {p} ⊆ N .

In fact, a lower bound for Kakeya sets implies a lower bound for Nikodym sets by

the following argument: first observe that up to a multiplicative factor, lower bounds

for Kakeya or Nikodym sets will not change regardless of whether the set is over affine

or projective spaces over finite fields. Now take a Nikodym set over the finite projective

space PG(n, q). We will argue that it is also a Kakeya set. Consider the lines through

points in the hyperplane at infinity. Each point determines a line pointing in each

different affine “direction.” An entire line pointing in the direction dictated by the

point must be included in the Nikodym set. By definition, a set containing a line

pointing in every direction is a Kakeya set.

Almost all lower bounds for Nikodym sets currently follow from a lower bound for

Kakeya sets, although we believe that much stronger lower bounds should hold for

Nikodym sets. Here we study Nikodym sets in 3 dimensions over finite fields and give

improved bounds for this setting. We also study a related notion of weak Nikodym sets

in 3 dimensions.

The main conjecture in the study of finite Nikodym sets we focus on is the following.

Conjecture 4.1.1. Let N be a Nikodym set in Fnq . Then,

|N | ≥ (1− o(1))qn.

Conjecture 4.1.1 is known in some special cases. Feng, Li, and Shen [FLS10] showed
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that the complement of a Nikodym set in F2
q is at most q3/2 + q points. Guo, Kopparty,

and Sudan [GKS13] proved Conjecture 4.1.1 for all dimensions, but only over fields of

constant characteristic. The only known lower bound on the size of a Nikodym set for

general n and q matches the corresponding bound for Kakeya sets.

In Section 4.2, we prove the following theorem which gives the first separation

between the minimum possible size of Kakeya and Nikodym sets in F3
q for any sufficiently

large prime power q.

Theorem 4.1.1. Let N be a Nikodym set in F3
q. Then,

|N | ≥ (0.38− o(1))q3.

While this falls short of proving the case n = 3 of Conjecture 4.1.1, it does show a

separation between Kakeya and Nikodym sets in F3
q , since the construction in [SS08]

gives a Kakeya set of size (0.25 + o(1))q3.

A conjecture on the union of lines

For L a set of lines, we define P (L) to be the collection of points contained in some line

of L. More precisely,

P (L) =
⋃
`∈L
{p | p ∈ `}.

In Section 4.2.2, we show that a slight modification of the proof of Theorem 4.1.1

shows that if L is any set of (0.62 + o(1))q3 lines in F3
q , then |P (L)| ≥ (0.38− o(1))q3.

Such a result is stronger than Theorem 4.1.1 since the definition of a Nikodym set

guarantees the existence of a set L of lines, one for each point in the complement of the

Nikodym set, such that all but one point of each line of L is contained in the Nikodym

set. We also show that the (0.38− o(1))q3 bound is nearly tight.

The proof of Theorem 4.1.1 uses very little information about L (the set of lines

corresponding to the complement of a Nikodym set), and there is actually a lot more

structure that one might be able to exploit in order to get a stronger result. For

example, we show in Section 4.2.3 that no more than (1 + o(1))q3/2 lines of L can be

contained in any plane. We believe that the approach of bounding the size of the set of
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lines associated to the complement of a Nikodym set could lead to a proof of Conjecture

4.1.1, if this additional structure of L is used.

To this end, we propose the following conjecture.

Conjecture 4.1.2. If L is a set of lines in F3
q such that |L| = Ω(q3), and such that no

plane contains ω(q) lines of L, then |P (L)| ≥ (1− o(1))q3.

In Section 4.2.3, we show that Conjecture 4.1.2 implies the three dimensional case

of Conjecture 4.1.1. In addition to making it a very interesting conjecture for under-

standing Nikodym sets, the conjecture seems also very natural and worthwhile to study

for its own sake.

Conjecture 4.1.2 resembles a recent result of Ellenberg and Hablisek [EH13]. A

special case of Ellenberg and Hablisek’s theorem states that, if p is a prime and L

is a set of p2 lines in F3
p such that no more than p lines of L lie in any plane, then

|P (L)| = Ω(p3). The main differences between Conjecture 4.1.2 and the result of

Ellenberg and Hablisek is that we take L to be much larger, we allow the underlying

field to have composite order, and our desired conclusion is stronger.

For Ellenberg and Hablisek’s result, the condition that the underlying field has

prime order is necessary. Indeed, they observe that a nondegenerate Hermitian variety

in F3
q for q a perfect square (which we discuss further in Section 4.3.1) contains a set L

of q2 lines, no more than (1 + o(1))q1/2 on any plane, such that |P (L)| = (1 + o(1))q5/2

points.

Although Conjecture 4.1.2 would be sufficient for an application to Conjecture 4.1.1,

we do not have a counterexample to the following, much stronger, conjecture.

Conjecture 4.1.3. Let ε > 0 be any constant and let q be a sufficiently large prime

power. Let L be a set of at least q5/2+ε lines in F3
q such that no plane contains more

than (1/2)q3/2 lines of L. Then, |P (L)| ≥ (1− o(1))q3.

It may even be that the conclusion |P (L)| ≥ (1− o(1))q3 in Conjecture 4.1.3 could

be replaced by |P (L)| ≥ q3 − 2q5/2 without admitting a counterexample.

There are reasons to be skeptical of Conjecture 4.1.3. Although the construction

of Ellenberg and Hablisek mentioned above does not directly give a counterexample, it
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might be possible to construct a counterexample by taking the union of many, carefully

chosen, copies of their construction. In fact, in Section 4.3.1 we use Hermitian varieties

to construct a set of lines with the following parameters.

Proposition 4.1.1. Let q = p2 for a prime power p. There is a set L of (1/2−o(1))q7/2

lines in F3
q such that no plane contains more than (1/2)q3/2 lines of L, and |P (L)| =

q3 − (1/2 + o(1))q5/2.

A proof of Conjecture 4.1.2 would be new and very interesting even in the case of

prime order fields, for which the above constructions based on Hermitian varieties do

not occur and it is thus even more likely that even Conjecture 4.1.3 might be true.

Weak Nikodym sets

All existing lower bounds on the size of a Nikodym set use only much weaker properties

of Nikodym sets. To capture the part of the definition that is actually used by the

existing proofs, we introduce and initiate the explicit study of weak Nikodym sets. A

weak Nikodym set N in Fnq is a set of points such that, through each point p in the

complement N c of N , there is a line ` such that ` \ {p} ⊆ N .

In Section 4.3.1 we give improved constructions of weak Nikodym sets, and based

on these we conjecture that, at least for fields of square order, there are weak Nikodym

that contain significantly fewer points than any Nikodym set. Since current lower bound

proofs for Nikodym sets only use the fact that Nikodym sets are also weak Nikodym

sets, these proofs are inadequate to prove such a separation.

4.2 Nikodym sets in 3 dimensions and the union of lines

In this section, we investigate Nikodym sets in F3
q and give improved lower bounds.

We will find it easier to work with the complement of a Nikodym set rather than

the Nikodym set itself. We define

f(n, q) = the maximum size of the complement of a Nikodym set in Fnq .

We additionally denote the complement of a set N by N c.
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Using this notation, Conjecture 4.1.1 states that f(n, q) = o(qn), and Theorem 4.1.1

states that f(3, q) ≤ (0.62 + o(1))q3.

In Section 4.2.1, we prove Theorem 4.1.1; as mentioned in the introduction, this is

the first separation demonstrated between the minimum size of a Nikodym set and the

minimum size of a Kakeya set in F3
q that is valid for an arbitrary finite field Fq.

In Section 4.2.2, we show that the proof of Theorem 4.1.1 given in Section 4.2.1

immediately implies a lower bound on the number of points incident to a large set of

lines, and that this bound is nearly tight. This implies that any substantial improvement

to Theorem 4.1.1 will need to use some property of Nikodym sets that is not exploited

by the proof given in Section 4.2.1.

In Section 4.2.3, we observe that a weak Nikodym set has the property that not

too many of the lines given by its definition can lie in any single plane. We further

suggest that exploiting this property might lead to a proof of Conjecture 4.1.1 in the

three dimensional case. In particular, we show that a proof of Conjecture 4.1.2 would

immediately imply the case n = 3 of Conjecture 4.1.1.

4.2.1 Proof of Theorem 4.1.1

Our bound on f(3, q) will use a bound on the number of incidences between points

and lines. The bound we will use was essentially proved by Lund and Saraf in [LS14],

but is not explicitly stated there; a similar bound was obtained by Bennett, Iosevich,

and Pakianathan [BIP14]. We show how to recover the bound from arguments given

in [LS14].

Given a set P of points and a set L of lines, we denote the number of incidences

between P and L as

I(P,L) = |{(p, `) ∈ P × L | p ∈ `}|.

Theorem 4.2.1. Let L be a set of lines and P a set of points in F3
q. Then,

I(P,L) ≤ (1 + o(1))
(
|P ||L|q−2 + q

√
|P ||L|(1− |P |q−3)(1− |L|q−4)

)
.

Proof. A (dU , dV )-biregular graph G is a bipartite graph such that each each left vertex

has degree dU and each right vertex has degree dV . We denote by e(G) the number of
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edges in a graph G, and by e(S, T ) the number of edges between two subsets S, T of

the vertices of a graph. We will use the expander mixing lemma [AC88], specifically the

following bipartite version. A proof of Lemma 4.2.2 is given in [LS14], and an equivalent

result was proved much earlier by Haemers, e.g. [Hae95].

Lemma 4.2.2 (Bipartite expander mixing lemma, [LS14]). Let G be a (dU , dV )-biregular

graph with left vertices U and right vertices V . Let A be the (square) adjacency matrix

of G, and let λ1 ≥ λ2 ≥ . . . ≥ λ|U |+|V | be the eigenvalues of A. Let λ = λ2/λ1. Let

S ⊆ U with |S| = α|U | and let T ⊆ V with |T | = β|V |. Then,∣∣∣∣e(S, T )

e(G)
− αβ

∣∣∣∣ ≤ λ√αβ(1− α)(1− β).

Construct a bipartite graph G with left vertices U being the points of F3
q , and right

vertices V being the lines of F3
q , with (p, `) in the edge set of G if and only if p ∈ `. The

number of points in F3
q is |U | = q3; the number of lines is |V | = (1 + o(1))q4; and the

number of incidences between points and lines in F3
q is e(G) = (1 + o(1))q5. It is shown

in Section 4 of [LS14] that the largest eigenvalue of this graph is (1 + o(1))q3/2, and the

second largest eigenvalue is (1 + o(1))q. We are interested in the number of incidences

between a set P ⊆ U and L ⊆ V . This is exactly the number of edges between P and

L in G, and hence we apply Lemma 4.2.2 with α = |P |q−3 (which is the density of P

in U) and β = (1− o(1))|L|q−4 (which is the density of L in V ), to get that

∣∣(1 + o(1))(I(P,L)q−5 − |L||P |q−7)
∣∣ ≤ (1 + o(1))q−4

√
|P ||L|(1− |P |q−3)(1− |L|q−4).

Thus, simplifying we get

I(P,L) ≤ (1 + o(1))
(
|P ||L|q−2 + q

√
|P ||L|(1− |P |q−3)(1− |L|q−4)

)
.

Now, we complete the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. Suppose that N c is the complement of a weak Nikodym set in

F3
q . Let L be a set of |N c| lines such that each line has exactly one point in common



48

with N c, and there is exactly one line of L through each point of N c; the existence

of such a set is guaranteed by the definition of a weak Nikodym set. Let P = N ; by

definition, |P | = q3 − |L|. Then each line of L is incident to exactly q − 1 points of P ,

so I(P,L) = (q − 1)|L|. Applying Theorem 4.2.1, we get that

(q − 1)|L| ≤ (1 + o(1))
(

(q3 − |L|)|L|q−2 + q
√

(q3 − |L|)|L|(|L|q−3)
)
.

Simplifying the above expression one can show (with a little bit of effort) that

|L| ≤
(

(
√

5− 1)/2 + o(1)
)
q3 ≤ (1 + o(1))0.62q3.

Simplifying the first inequality to get the second one is a messy calculation that we

omit, but it can easily be seen that for instance setting |L|/q3 to be any constant greater

than 0.62 in the first inequality yields a contradiction, for q sufficiently large.

4.2.2 The union of lines

The proof of Theorem 4.1.1 only uses the fact that the definition of a Nikodym set N

guarantees the existence of |N c| distinct lines, each of which are incident to at least

q− 1 points of N . While we do not believe that Theorem 4.1.1 is anywhere near tight,

the same proof gives a nearly tight lower bound on the size of the union of any set of

at least 0.62q3 lines.

Recall from the introduction that, for any set L of lines,

P (L) = {p ∈ ` | ` ∈ L}.

Proposition 4.2.1. If L is a set of 0.62q3 lines in F3
q, then |P (L)| ≥ (1− o(1))0.38q3.

Proof. Since each point on any line in L is contained in P = P (L), the number of

incidences between L and P is q|L| = 0.62q4. Applying Theorem 4.2.1,

0.62q4 ≤ (1 + o(1))(0.62|P |q + q
√

0.62|P |q3(1− |P |q−3)), so, simplifying as before,

|P | > (1− o(1))0.38q3.



49

We now show that without any further condition on the set of lines, Proposition

4.2.1 is nearly tight.

Proposition 4.2.2. There is a set L of (1− o(1))0.62q3 lines in F3
q such that |P (L)| <

0.43q3.

Proof. Let p be an arbitrary point of F3
q . We show below that we can choose a set Π of

0.62q planes incident to p, such that no line is contained in 3 planes of Π. The set L will

be the set of all lines contained in the union of the planes of Π. By inclusion-exclusion,

the total number of lines chosen is |L| ≥ 0.62q3 −
(
0.62q
2

)
= (1 − o(1))0.62q3, and the

total number of points on these lines is (0.62q3 − 1)− (q − 1)
(
0.62q
2

)
+ 1 < 0.43q3, for q

sufficiently large.

To choose the set Π, we first project from the point p; this is a map from the lines

incident to p to points in PG(2, q), the projective plane over Fq. In this projection,

each plane incident to p corresponds to a line in PG(2, q). A conic in PG(2, q) is a

set of q + 1 points, no three collinear; the projective dual to a conic is a set of q + 1

lines, no three coincident. By choosing Π to be an arbitrary subset of size 0.62q among

the planes associated to such a set of lines, we ensure that no three contain a common

line.

4.2.3 Coplanar lines and Conjecture 4.1.2

A consequence of the near tightness of Proposition 4.2.1 is that any substantial im-

provement to Theorem 4.1.1 must use some additional information about Nikodym

sets, beyond the fact that the definition of a Nikodym set N guarantees the existence

of |N c| distinct lines, each incident to q − 1 points of N . One such property is that no

plane can contain too many of the lines associated to the complement of a Nikodym

set.

Proposition 4.2.3. Let N ⊆ F3
q be a Nikodym set. Let L be a set of lines, such that

each line of L is incident to exactly one point of N c, and each point of N c is incident

to exactly one line of L. Then any plane in F3
q contains at most (1 + o(1))q3/2 lines of

L.
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Note that the existence of a set satisfying the conditions on L in this proposition is

guaranteed by the definition of a Nikodym set.

Proof. Let π be a plane, and let L′ be the subset of lines of L that are contained in π.

Let P ⊆ N c be the set of points associated to lines in L′. From the definition, P is the

complement of a planar weak Nikodym set in π. By the result of Feng, Li, and Shen

[FLS10]), |L′| = |P | ≤ (1 + o(1))q3/2.

The observation recorded in Proposition 4.2.3 enables us to show that Conjecture

4.1.2 implies the three dimensional case of Conjecture 4.1.1. Since Proposition 4.2.3 only

gives an upper bound of (1 + o(1))q3/2 lines contained in any plane, while Conjecture

4.1.2 requires a bound of any function in ω(q), we will need to use some additional

incidence theory to bridge the gap. In particular, we will use the following lemma,

which is a special case of Corollary 6 in [LS14].

Lemma 4.2.3 ([LS14]). For k > 1, a set of kq planes in F3
q is incident to at least

(1− 1
k−1+k−1 )q3 points. A set of kq lines in F2

q is incident to (1− 1
k−1+k−1 )q2 points.

We now prove that Conjecture 4.1.2 implies the three dimensional case of Conjecture

4.1.1.

Theorem 4.2.4. If Conjecture 4.1.2 holds, then the case n = 3 of Conjecture 4.1.1

holds.

Proof. Suppose that Conjecture 4.1.2 holds.

Let N c be the complement of a Nikodym set in F3
q . Let L be a set of lines such that

each line of L is incident to exactly one point of N c, and each point of N c is incident

to exactly one line of L; the existence of such a set is guaranteed by the definition of a

Nikodym set. Let L1 ⊂ L be an arbitrary subset of b|L|/2c lines of L, and let P ⊂ N c

be the set of points in N c that are not incident to any line in L1.

Let α(q) ∈ ω(q), and let Π be the set of planes that contain more than α(q) lines of

L1. Let L2 ⊆ L1 be the subset of lines in L1 that are each contained in some plane of

Π.
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Suppose that |L2| = Ω(q5/2 log(q)). Since each plane π ∈ Π contains at least α(q)

lines of L2, Lemma 4.2.3 implies that the probability that a uniformly chosen point

of π is not on any line of L2 is bounded above by (1 + o(1))q/α(q). By Proposition

4.2.3, no plane of Π contains more than (1 + o(1))q3/2 lines of L2; hence, |Π| ≥ (1 −

o(1))q−3/2|L2| = Ω(q log q). By Lemma 4.2.3, the probability that a uniformly chosen

point of F3
q is not on any plane of Π is bounded above by O(1/ log(q)). By a union

bound, all but O(q3/ log(q) + q4/α(q)) = o(q3) points of F3
q are contained in some line

of L2. By construction, half of the points of N c are not in any line of L1, and hence

|N c| = o(q3).

Now, suppose that |L2| = O(q5/2 log q) = o(q3). By construction, no plane contains

more than α(q) lines of L1 \L2. Hence, Conjecture 4.1.2 implies that either |L1 \L2| =

o(q3), and hence |N c| = o(q3), or |P (L1\L2)| = (1−o(1))q3, and hence |N c| = o(q3).

4.3 Weak Nikodym sets

In this section, we begin the investigation of weak Nikodym sets, with a particular focus

on possible differences between weak Nikodym sets and Nikodym sets.

We will find it convenient to work in projective geometry; we denote the n dimen-

sional projective geometry over Fq as PG(n, q).

We define (weak) Nikodym sets in projective geometry the same way as in affine

geometry. We say N is a Nikodym set if, through each point p in PG(n, q) there is

a line ` such that ` \ {p} ⊆ N , and N is a weak Nikodym set if, through each point

p ∈ N c, there is a line ` such that ` \ {p} ⊆ N .

Let

f(n, q) = the maximum size of the complement of a Nikodym set in Fnq ,

fw(n, q) = the maximum size of the complement of a weak Nikodym set in Fnq ,

f∗(n, q) = the maximum size of the complement of a Nikodym set in PG(n, q),

f∗w(n, q) = the maximum size of the complement of a weak Nikodym set in PG(n, q).

There are some easy relations among the above quantities. From the definitions, a
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Nikodym set is also a weak Nikodym set. Hence,

fw(n, q) ≥ f(n, q), (4.1)

f∗w(n, q) ≥ f∗(n, q). (4.2)

Suppose that N c is the complement of a (weak) Nikodym set in Fnq . Take the

projective closure of Fnq by adding a hyperplane, and include the new hyperplane in N .

This expanded N is still a (weak) Nikodym set, and hence

f∗w(n, q) ≥ fw(n, q), (4.3)

f∗(n, q) ≥ f(n, q). (4.4)

Suppose that N c is the complement of a (weak) Nikodym set in PG(n, q). The

expected number of points of N c contained in a hyperplane chosen uniformly at random

is E = (1 + o(1))N c/q; hence, there exists a hyperplane that contains at most E points

of N c. We can obtain a (weak) Nikodym set in Fnq by removing this hyperplane, and

hence

fw(n, q) ≥ (1 + o(1))(1− 1/q)f∗w(n, q), (4.5)

f(n, q) ≥ (1 + o(1))(1− 1/q)f∗(n, q). (4.6)

We can do somewhat better when n = 2.

Suppose that N c is the complement of a Nikodym set in PG(2, q). By the definition

of a Nikodym set, if we take a point p ∈ N , there exists a line ` through p such that

` ∈ N . We can remove ` to obtain an affine plane, and N c will be the complement of

a Nikodym set in this affine plane. Hence, f(2, q) ≥ f∗(2, q), and so

f(2, q) = f∗(2, q). (4.7)

Suppose that N c is the complement of a weak Nikodym set in PG(n, q). If we take

a point p ∈ N c, there exists a line ` through p such that ` \ {p} ∈ N . We can remove `

to obtain an affine plane, and N c \ {p} will be the complement of a weak Nikodym set

in this affine plane. Hence, fw(2, q) + 1 ≥ f∗w(2, q), and so

f∗w(2, q)− 1 ≤ fw(2, q) ≤ f∗w(2, q). (4.8)
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4.3.1 Constructions

In this section, we show how to construct two infinite families of point sets that form

the complement of (weak) Nikodym sets in PG(n, q); we also (in Section 4.3.1) give the

proof of Proposition 4.1.1, which provides an extreme example for Conjecture 4.1.3.

It is easy to see that a hyperplane in Fnq is the complement of a weak Nikodym set

consisting of qn−1 points, and, to our knowledge, no better construction than this was

known. Our first construction is a refinement of this idea, and gives the complement

of a Nikodym set consisting of (1 − o(1))nqn−1 points, or the complement of a weak

Nikodym set consisting of (1− o(1))(n+ 1)qn−1 points. Our second construction gives

the complement of a weak Nikodym set consisting of (1− o(1))qn−1/2 points, but only

works in fields of square order, and cannot be used to construct the complement of a

standard Nikodym set.

Union of hyperplanes with a few points removed

In this section, we construct the complement of Nikodym sets consisting of (1−o(1))nqn−1

points, and the complement of weak Nikodym sets consisting of (1 − o(1))(n + 1)qn−1

points. These constructions work for any sufficiently large finite field.

Let q be a prime power; we will assume that q is sufficiently large relative to n.

Let S be the union of n + 1 hyperplanes Λ1, . . . ,Λn+1 in PG(n, q) that do not all

pass through a single point. For each I ⊂ [n + 1] with 1 ≤ |I| ≤ n, remove a point

pI from S such that pI ∈ Λi for i ∈ I, and pI /∈ Λj for j /∈ I. By simple dimension

counting arguments one can show that such a point always exists. Here is a sketch of

the argument. For any k between 1 and n, the intersection of any k hyperplanes must

be exactly an n−k dimensional space, since if it was larger then there would be a point

in common with all the hyperplanes. If we want a point on those k hyperplanes but

not on any other plane, then it is easy to see that for q large enough, a random point

on the n− k dimensional intersection would not lie on any of the other hyperplanes.

We claim that the resulting set S (after deleting the points as mentioned above) is

the complement of a weak Nikodym set.
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Let q be an arbitrary point of S. Let J ⊆ [n+ 1], such that q /∈ Λj for each j ∈ J ,

and q ∈ Λi for i /∈ J . Note that 1 ≤ |J | ≤ n. Let ` be the line through q and pJ . Note

that ` intersects each Λi at either q or pJ , and does not intersect any Λi at both points.

Hence, q and pJ are the only points at which ` intersects any Λi. Since pJ /∈ S, q is

the unique point in the intersection of S and `. Hence, S is the complement of a weak

Nikodym set.

Consequently,

f∗w(n, q) ≥ (1− o(1))(n+ 1)qn−1.

We can modify S to be the complement of a standard Nikodym set by removing

Λn+1 from the construction. Then, for any point q /∈ S, the line through q and p[n] is

disjoint from S. Hence,

f∗(n, q) ≥ (1− o(1))nqn−1.

Hermitian varieties

In this section, we give an improved construction of weak Nikodym sets in F3
q for

square q, and we prove Proposition 4.1.1, which describes the construction of an extreme

example related to Conjecture 4.1.3. Both of these constructions are based on Hermitian

varieties.

Let q = p2, for p a prime power. For v ∈ Fq, we define the conjugate v = vp. Since q

has order p2, we have v = v. We will use homogenous coordinates to represent a point

v ∈ PG(n, q) as a column vector v = (v0, v1, . . . , vn)T .

A square matrix H = ((hij)) for i, j = 0, 1, . . . , n and hij ∈ Fq is Hermitian if

hij = hji for all i, j. Let xT = (x0, x1, . . . , xn) and x = (x0, x1, . . . , xn)T . The set of

points x in PG(n, q) whose coordinates satisfy xTHx = 0 for a Hermitian matrix H

is a Hermitian variety. The rank of the Hermitian variety V defined by xTHx = 0 is

defined to be the rank of H. We say that V is non-degenerate if its rank is n+ 1.

Let V be a rank r Hermitian variety in PG(n, q) defined by xTHx = 0. A point

c of V is singular if cTH = 0. Clearly, if V is non-degenerate, it has no singular

points. Otherwise, cTH = 0 has n− r+ 1 independent solutions, and hence defines an
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(n− r)-flat, which we term the singular space of V .

The set of points corresponding to row vectors xT that satisfy the equation xTHc =

0 is the tangent space at c. If c is singular, this is the entire space; otherwise, Hc is a

non-zero vector, and hence the tangent space is a hyperplane.

We will use the following properties of Hermitian varieties, determined by Bose and

Chakravarti [BC66].

Lemma 4.3.1 (Section 7 in [BC66]). The intersection of a Hermitian variety with a

flat space is a Hermitian variety. In particular, a line intersects a Hermitian variety

in a single point, q1/2 + 1 points, or is entirely contained in the variety.

Given a Hermitian variety V , we define tangent lines to be those lines that intersect

V in exactly 1 point.

Theorem 4.3.2 (Theorem 7.2 in [BC66]). If V is a degenerate Hermitian variety of

rank r < n + 1, and c is a point belonging to the singular space of V , and d is an

arbitrary point of V , then each point on the line cd belongs to V .

Theorem 4.3.3 (Theorem 7.4 in [BC66]). If V is a non-degenerate Hermitian variety,

the tangent hyperplane at a point c of V intersects V in a degenerate Hermitian variety

U of rank n− 1. The singular space of U consists of the single point c.

Theorem 4.3.4 (Theorem 8.1 in [BC66]). The number of points on a non-degenerate

Hermitian variety is

φ(n, q) = (q(n+1)/2 − (−1)n+1)(qn/2 − (−1)n)(q − 1)−1.

The number of points on a degenerate Hermitian variety of rank r is

(qn−r+1 − 1)φ(r − 1, q) + (qn−r+1 − 1)(q − 1)−1 + φ(r − 1, q).

Using the above definitions and properties, we can use Hermitian varieties to con-

struct small weak Nikodym sets, as well as an extreme example for Conjecture 4.1.3.

Proposition 4.3.1. Let q = p2 for a prime power p, and let n ≥ 2.

f∗w ≥ φ(n, q),

where φ(n, q) = Ω(qn−1/2) is the function defined in Theorem 4.3.4.
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Proof. Let V be a non-degenerate Hermitian variety in PG(n, q), and let c be a point

of V . By Theorem 4.3.3, the tangent hyperplane Σ at c intersects V in a Hermitian

variety of rank n− 1 in PG(n− 1, q). By the second part of Theorem 4.3.4, there is a

point d ∈ Σ that is not contained in V . By Theorem 4.3.2, the intersection of the line

cd with V is only the point c itself. Since this holds for an arbitrary point c ∈ V , it

holds for each point in V , and hence V is the complement of a weak Nikodym set. The

proposition follows from the first part of Theorem 4.3.4.

In Proposition 4.3.1, we use the fact that there is at least one line tangent to V at

each point, together with the fact that a tangent line contains exactly one point of V .

In fact, we know that there are many tangent lines at each point of V , and we use this

fact to prove Proposition 4.1.1. Indeed, we prove a slightly stronger result.

Proposition 4.3.2. Let q = p2 for a prime power p, and let 0 < α < 1. Then, there is

a set L of (α+o(1))q7/2 lines in F3
q such that no plane contains more than (α+o(1))q3/2

lines of L, and |P (L)| = q3 − (1− α+ o(1))q5/2.

Proposition 4.1.1 follows immediately from Proposition 4.3.2 by taking α = 1/2.

Proof. Let V be a non-degenerate Hermitian variety in PG(3, q). By Theorem 4.3.4, we

have |V | = (1+o(1))q5/2. Let P be a set of bα|V |c of the points of V , chosen uniformly

at random. Let L be the set of tangent lines to V at points of P . Since the tangent

lines intersect V only at their points of tangency, it is clear that the d(1 − α)|V |e =

(1− α+ o(1))q5/2 points of V \ P are not incident to any line of L. It remains to show

|L| = (α+ o(1))q7/2, and that no plane contains more than (α+ o(1))(q3/2) lines of L.

By Theorem 4.3.3, the tangent plane Σ to V at an arbitrary point c ∈ P intersects

V in a rank 2 Hermitian variety U ⊆ Σ, having the single singular point c. From the

second part of Theorem 4.3.4, we have that U contains q3/2 + q + 1 points. Together

with Theorem 4.3.2, this implies that U is the union of q1/2 + 1 lines coincident at c.

The remaining q − q1/2 lines contained in Σ and incident to c are tangent lines to V .

Hence, L consists of (q− q1/2)|P | = (α+ o(1))q7/2 distinct lines, and tangent planes to

V each contain at most q − q1/2 lines of L.
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By Lemma 4.3.1, the intersection of a plane Σ with V is a Hermitian variety U ;

if Σ is not tangent to V , then U is non-degenerate. By Theorem 4.3.4, we have that

|U | = q3/2 +q+1, and there is a single tangent line at each of these points. In addition,

a line of L will be contained in Σ only if it is tangent to one of the points of U . Hence,

in order to show that no plane contains more than (α+ o(1))q3/2 lines of L, it suffices

to show that no plane contains more than (α+ o(1))q3/2 points of P .

The expected number of points of P on Σ is α|U |. Since the points of P are chosen

uniformly at random, the Chernoff bound for Bernoulli random variables implies that,

for any 0 < δ < 1, the probability that we have more than (1 + δ)α|U | points of P on

Σ is bounded above by e−δ
2α|U |/3. Taking a union bound over the (1 + o(1))q3 planes

in PG(3, q), we have that the probability that any plane has more than (1 + δ)α|U |

points of P is bounded above by (1 + o(1))q3e−(1+o(1))δ
2αq3/2/3. Hence, taking δ >

(1 + o(1))9α−1q−3/4 log q = o(1) ensures that this happens with probability strictly less

than 1, and hence there is a choice of P such that there are fewer than (α + o(1))q3/2

on any plane.
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