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ABSTRACT OF THE DISSERTATION
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Parameters

by Immanuel James Williams

Dissertation Director:

Youngsuk Suh

Test speededness is defined as the failure to attempt all items on an assessment

within a specified time frame. The presence of speededness is an issue known to

undermine assessments (Bejar, 1985). Therefore, researchers have developed sev-

eral approaches to reduce test speededness, including non-statistical methods (e.g.,

Evans & Reilly, 1972), as well as probabilistic models, such as augmented item

response theory (IRT) models (e.g., Cao & Stokes, 2008). However, an assumption

about speededness that is often not discussed in the literature is the relationship

between speededness and ability of the examinee in the context of IRT modeling.

Previous studies have used modified IRT models to reduce test speededness, but

none have evaluated the effect of neglecting the association between speededness

and ability. In the same regard, only one model has addressed this association.

This study will address four different purposes regarding the relationship be-

tween speededness and ability. The first purpose is to propose a new IRT model

that associates ability with speededness and to develop an estimation algorithm

for the proposed model, which is evaluated in terms of the recovery of model

parameters by manipulating certain hyperparameters in the model. The second

purpose of this study is to determine the robustness of the proposed IRT model

when speededness is not present, and to show the inefficiency of the traditional

IRT model when speededness is associated with ability. The third purpose is to

examine the impact of ignoring the association between ability and speededness

on parameter estimation and to investigate the robustness of the proposed model

under conditions when speededness and ability are independent. Lastly, data are
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generated from an existing model that associated ability and speededness in a

different manner to determine how robust the proposed model is under a different

speededness schema. These four purposes are used to thoroughly understand the

proposed model and its contribution to the research of test speededness.

The Markov Chain Monte Carlo (MCMC) Metropolis Hastings algorithm was

implemented to estimate model parameters using C++ and R, an object-oriented

language and a statistical software, respectively. The results showed that the pro-

posed model was able to recover the model parameters accurately under various

conditions of known hyperparameters. The proposed model was also able to es-

timate model parameters well when ability was not associated with speededness

when there were a large amount of respondents and items. In addition, the pro-

posed model was also able to estimate model parameters well when speededness

was not present when the sample size and the number of items were large. Lastly,

when speededness and ability were generated under a different method, the pro-

posed model was unable to estimate the model parameters well. In summary, this

work allows researchers to further understand the impact of speededness and its

association with ability in a variety of conditions.
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Chapter 1

INTRODUCTION

1.1 Definition of Test Speededness

Educational achievement metrics are vital to today’s society in many ways.

Assessments within educational programs are used to provide instructors with in-

formation about students’ learning progression or lack thereof. Assessment results

are often a core factor used to determine which students gain access to higher learn-

ing. These results also provide educators with information that can be used to

design curricula, to determine efficacy of classroom methodology, and to evaluate

the effects of policy on student learning. Given these applications, the accuracy of

assessments are of the utmost importance. However, there are several confounding

factors that may potentially undermine or bias the effectiveness of an assessment.

A particular factor that commonly limits the accuracy of an assessment is the

presence of test speededness. Test speededness is defined as the presence of time

constraints on an assessment that prevents a group of examinees from completing

a significant portion of the assessment (Bejar, 1985).

Time constraints are essential to the effective administration of an assessment.

However, when these time constraints significantly affect test completion, they

can undermine the purpose of measuring student ability and thus may negatively

affect how test-takers are evaluated. It has been shown that speededness biases
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model parameter estimates in the context of IRT literature (e.g., Oshima, 1994;

Chang, Tsai, & Hsu, 2014; Brown, Li, & Yang, 2013) and also affects the validity

of a test (e.g., Lu & Sireci, 2007; Jin & Wang, 2014; Wise & Kingsbury, 2015).

Though speededness is most commonly attributed to insufficient time allotment,

there are other confounding effects that may prevent an examinee from finishing

an assessment within specified time limits.

1.2 The Motivation of the Study

There are many theories as to why an examinee might become speeded during a

test, depending on the specific context of an assessment. Time constraints are the

most common factor that researchers use to explain test speededness, especially in

the context of high-stakes assessments (Bolt, Cohen, & Wollack 2002; Yamamoto

& Everson, 1997; Cao & Stokes, 2008; De Boeck, Cho, & Wilson, 2011; Wollack,

Suh, & Bolt, 2007). The most common explanation is that examinees may spend

too much time on items at the beginning of an assessment, leaving insufficient

time to attempt the remaining items on the assessment. This behavior causes

students to feel rushed towards the end of an assessment and prevents them from

using optimal test-taking strategies, resulting in guessing and/or omitting items

(Suh, Cho, & Wollack, 2012). To determine reasonable time constraints for an

assessment, test designers take into account various factors, including the number

of items on a test, the overall difficulty level of the test, and the test-taking

population’s level of ability. If these factors are not considered during the process

of setting time constraints, the validity of an assessment may be questioned.

Additionally, recent theories suggest that a lack of motivation can inhibit stu-

dent performance in the context of low-stakes assessments (Cao & Stokes, 2008;

Jin & Wang, 2014; Wise & Kingsbury, 2015; Wang & Xu, 2015). Though lack of

motivation and time constraints occur during different contexts of an assessment,

they both elicit the same behavior of guessing and/or omitting responses. During
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a low-stakes assessment, this behavior often occurs due to test-takers’ awareness

of the purpose of the assessment (Cao & Stokes, 2008). Determining a confound-

ing factor that may be related to lack of motivation and speededness due to time

constraints may improve the understanding of and response to speededness.

Another perspective on these factors is that speededness can confound the

effect of ability on the overall academic performance on an assessment. Researchers

often overlook the possibility that the completion of an assessment within specified

time constraints may depend on the examinees’ ability. That is, examinees with

high ability have a greater probability of finishing an exam in time compared to low

ability examinees. Whereas, examinees with low ability have a greater probability

of spending too much time on items at the beginning of an assessment, thus leaving

insufficient time to consider all items compared to high ability examinees. This

distinction presents the notion that not all individuals have the same probability

of becoming speeded. This particular association is further deepened if the items

are not ordered in increasing difficulty; examinees with low ability may spend

excessive time on difficult questions received at the beginning of an assessment

(Oshima, 1994). The relationship between ability and speededness was shown to

have an impact on academic performance during an exam (Musch & Broder, 1999).

An examinee with low ability may also experience poor motivation to complete

an assessment, especially when the stakes themselves are low.

Given these three plausible and correlated factors driving test speededness

(i.e., time, motivation, and ability level), it would be reasonable to state that

someone with lower ability has a higher probability of becoming speeded com-

pared to someone with high ability, especially when effected by time constraints

and/or poor motivation. It is also important to note that the location on a test at

which an examinee becomes speeded may also depend on ability. It is a reasonable

assumption that a low-ability examinee will have a higher probability of becom-

ing speeded earlier in the assessment compared to someone with greater ability.

Currently, all but one model (Goegebeur, De Boeck, Wollack, & Cohen, 2008)
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assume an independent relationship between ability and speededness and there

is no model that assumes that ability impacts the point at which an examinee

will become speeded. Additionally, no studies have been conducted to examine

the effect of associating speededness and ability on parameter estimation. A new

speededness IRT model is therefore proposed and investigated in this dissertation.

1.3 The Objectives of the Study

There are many assumptions that are made in regards to how speededness af-

fects the behavior of examinees. These assumptions are modeled when researchers

attempt to evaluate the effect of speededness on an assessment. Some models as-

sume that speededness occurs only on difficult items (Chang, Tsai, & Hsu, 2014;

Cao & Stokes, 2008), whereas other models argue that speededness occurs with

respect to latent groups (De Boeck, Cho, & Wilson 2011; Evans & Riley, 1971).

However, existing models have not been able to explicitly explain speededness in

relation to an examinees’ ability levels, and thus have not examined the effect of

modeling this association on parameter estimation. If this association is ignored,

the estimation of model parameters may be negatively impacted. Therefore, it is

critical to investigate these assumptions regarding speededness to improve upon

these models.

This dissertation is designed to serve four purposes regarding the assumption

of speededness and ability, and thus consists of four related studies. The purpose

of the first study is to propose a model that associates ability and speededness, in

which ability influences the location of speededness, and to implement an estima-

tion procedure for this new model. This new model will be examined by manip-

ulating certain hyperparameters to determine their impact on the estimation of

model parameters. The purpose of the second study is to determine the robustness

of the proposed model even when speededness is not present. This study is also

used to show how traditional IRT models fall short when data are generated under
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the proposed model. The purpose of the third study is to discover if ignoring the

association between ability and speededness within an existing speededness model

impacts the estimation of model parameters, and to verify the robustness of the

proposed model when speededness and ability are not associated. Lastly, the pur-

pose of the fourth study is to determine the impacts of ignoring this association

between speededness and ability and the robustness of the proposed model when

a different speededness model is used to generate data.

The first study is necessary because current literature only describes one pro-

posed model associating ability with speededness (Goegebeur et al., 2008). The

relationship between ability and speededness in Goegebeur et al.’s model is not

easily interpretable and they employ an estimation technique that is not typically

used to estimate model parameters (Bolt, Cohen, & Wollack, 2001; Cao & Stokes,

2008). Therefore, it is necessary to derive a new model that associates ability and

speededness in a manner that test developers and practitioners can understand

as well as implement a tractable estimation method. In order to evaluate the

feasibility of such a model, this study aims to answer the following question:

• How does the parameter recovery of the proposed model perform under

various simulation conditions, including several known values of hyperpa-

rameters?

The second study is undertaken because, in order for a speededness model to

be admissible, the model must be applicable even when speededness is not ap-

parent within data. This is necessary in cases where one suspects the presence

of speededness but, in fact, speededness might not exist in reality. In such an

exploratory stage, the proposed model should estimate model parameters as ac-

curately as traditional IRT models and find any speededness-related parameters

to be minimal. Most speededness modeling studies consider this condition within

their study (Bolt, Cohen, & Wollack, 2001; Cao & Stokes, 2008); however, they

also incorporate the condition when speededness is present and illustrate how

traditional IRT models fall short in the context of the estimation of model pa-
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rameters. This second study is also important to demonstrate how ignoring the

presence of speededness negatively impacts the estimation of model parameters.

Therefore, the second study is structured to answer the following questions:

1. How well are the parameters recovered under traditional IRT model com-

pared to the proposed model with respect to speeded conditions, in which

ability and speededness are associated?

2. How well are the parameters recovered under the proposed model compared

to traditional IRT model with respect to non-speeded conditions, (i.e. speed-

edness is not present)?

The third study is critical to the research of speededness because if ability is

associated with speededness within the data, it is unknown whether ignoring this

information can lead to biased results or not. In other words, does taking into

account this association improve the estimation of model parameters or have a

non-significant effect? Although a speededness model that associates ability and

speededness has been proposed in the literature (Goegebeur et al., 2008), the re-

search question of that study did not address models that did not associate ability

with speededness. Using the same rationale from the second study regarding the

proposed model’s admissibility, it is important to determine the robustness of the

proposed model when speededness is present but not associated with ability. In

sum, the third study is designed to answer the following questions:

1. What are the impacts of ignoring the association between test speededness

and ability on the estimation of model parameters of a preexisting speeded-

ness model when data are generated from the proposed model?

2. How robust is the proposed model when speededness is present but not

associated with ability?

The last study provides another way of determining the robustness of the

proposed model and a preexisting speededness model in a different context of
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assuming a relationship between ability and speededness. This work adds to the

body of research regarding speededness in that it investigates how the proposed

model and a preexisting speededness model recovery model parameters when the

association about ability and speededness is present but generated in a different

manner.

1. How robust is the proposed model when speededness is associated with abil-

ity but generated under a different model?

2. What are the impacts of ignoring the association between ability and speed-

edness when data are generated under a different model?

This dissertation will contribute to the literature by investigating whether ig-

noring the association between speededness and ability is negligible during the

estimation of model parameters, or whether such an assumption needs to be in-

cluded within the discussion of speededness. Although no model can perfectly

describe speededness behavior, it is still important to clarify and validate reason-

able assumptions that may arise in the presence of test speededness.
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Chapter 2

LITERATURE REVIEW

2.1 Concept of Speededness

Gulliksen (1950) noted that there were two types of assessments: those that

tested for power and others that measured speed. Power tests are designed to

measure pure ability, whereas speed tests are constructed to measure ability with

respect to speed (Lu & Sireci, 2007). Additionally, power tests are created with

the intention that test-takers will fully attempt each item. Alternatively, speed

tests are designed with the expectation that examinees will not be able to attempt

each item within the specified time constraints. This dichotomy plays a vital role

not only in the construction of an assessment, but also in its utilization. When

designing a test, test developers have to make important decisions regarding this

dichotomy. These decisions include but are not limited to the following aspects:

time constraints, difficulty of items, number of items, and ordering of items. If

these aspects are not given appropriate consideration, the line that distinguishes

power and speed tests will become distorted.

When a power test has the characteristics of a speed test (i.e., a significant

proportion of examinees do not finish the assessment), it is conceivable that the

power test is confounded by speededness. Speededness is defined as time con-

straints preventing a group of examinees from completing a significant portion of
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an assessment (Bejar, 1985; Oshima, 1994; van der Linden, 2011). Speededness

effects prevents examinees from fully attempting every item, which may induce

random guessing or failure to make responses (Brown, Li, & Yang, 2013; Wang

& Xu, 2015). The primary focus of this study is to evaluate the effects of test

speededness on power tests, not speed tests. In this study, test speededness is also

termed speededness effect or speededness.

It is important to note that time constraints are needed for any assessment, as

tests cannot be administered with unlimited time. However, if the time constraints

of an assessment are not properly defined (i.e., too little time to complete the

assessment), a large number of examinees may not attempt some portions of the

assessment, which can be strong evidence of the presence of speededness. In

addition, if the number of items and /or the order of the difficulty of items are not

taken into account, the speededness effect may worsen. For example, increasing the

number of items while keeping the time constraints constant may cause severe test

speededness. Speededness effects would also worsen if the difficulty of items were

randomly ordered (Lawrence, 1993; Oshima, 1994). Additionally, some studies

have shown that speededness can result from lack of motivation of examinees (Jin

& Wang, 2014; Cao & Stokes, 2008).

2.2 Detecting Speededness

As a metric, speededness can be reported at different levels of severity. Un-

derstanding the precise level of test speededness provides vital insights into test

evaluation, as certain levels can be negligible while others have a dramatic effect

on the quality of an assessment. As a solution to this need, Gulliksen (1950)

proposed a method that compared the variance of incorrect answers from two

sources: the number of items given incorrect responses and the number of items

given no response at all. The former source of incorrect answers is caused by

lack of ability, whereas the latter source is a result of lack of time (Lu & Sireci,



10

2007). If a large amount of variance of incorrect answers is due to incorrect so-

lutions, the test would be deemed unspeeded. On the other hand, if a significant

amount of variance of incorrect answers is due to items not reached, the test would

be considered speeded. Stafford (1971) introduced a similar technique to detect

speededness. This strategy differed from Gulliksen’s (1950) approach by directly

comparing the number of incorrect items and the number of items not reached.

Swineford (1974) approached this problem by introducing a general heuristic

to determine if the presence of speededness is significant. According to Swine-

ford’s rule, if more than 20% of the test-taking population does not complete an

assessment (items left blank), or if each item is completed by less than 75% of

the population, then the test displays a significant amount of speededness. This

heuristic provides practitioners with a quick way to verify if speededness is prob-

lematic. The Swineford, Gulliksen, and Stafford methods were similar in that their

techniques assume speededness to be represented solely by unanswered items, as

opposed to alternative models that assume speededness to be represented by both

unanswered items and random guessing. Additional probabilistic models, dis-

cussed in section 2.4, have also been developed in order to determine signficant

speededness (Wise & DeMars, 2006; De Boeck, Cho, & Wilson, 2012; Bolt, Cohen,

& Wollack, 2002).

2.3 Consequences of Speededness

Speededness negatively impacts many aspects of an exam, which creates cas-

cading effects on the implications of an assessment. These ramifications are a

key concern among researchers and practitioners, who strive to make meaningful

conclusions regarding the assessment studied. The elements of an assessment that

are affected by significant speededness are discussed below. Most of the elements

discussed in this proposal are aligned in the context of IRT.

The use of item parameter estimates in measurement applications (e.g., adap-
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tive testing and equating) is paramount to the administration, and to many impli-

cations, of an assessment. However, one of the critical effects of speededness on an

assessment is how it alters the calibration of these item parameters (Brown, Li, &

Yang, 2013; Oshima, 1994; Suh, Cho, & Wollack, 2012). Consequently, obscuring

the ability to properly calibrate item parameters cascades into other applications

such as adaptive testing and equating (Bridgeman & Cline, 2004; Kingston &

Dorans, 1984; van der Linden, Breithaupt, Chuah, & Zhang, 2007; Wollack, Co-

hen, & Wells, 2003). If traditional IRT models are utilized for test evaluation and

a large amount of speededness occurs, the calibration of items towards the end

of a test tends to be biased (Bolt, Cohen, & Wollack, 2002; Yamamoto, 1995).

Namely, items that appear towards the end of an assessment would end up more

difficult than in non -speeded conditions. Therefore, the estimates of the difficulty

parameters tend to be greater (i.e., more difficult) than the true parameters (Bolt,

Cohen, & Wollack, 2002). Concurrently, the discrimination parameter estimates

are biased to a certain degree (Brown, Li, & Yang, 2013). Once an item is affected

by speededness, it loses its power to discriminate between low- and high-ability

examinees. These confounding effects mean that speededness can have critical

impacts on the proper development and analysis of assessments.

Speededness also has a significant effect on computerized adaptive testing

(CAT) and multistage testing (MST) schemes, as estimated item parameters are

used within the context of test banks to determine which item or sets of items will

be administered during these types of assessments. (Bridgeman & Cline, 2004;

Kingston & Dorans, 1984; van der Linden, Breithaupt, Chuah, & Zhang, 2007).

If an examinee is performing well during a CAT or a MST, more difficult items

should be correspondingly administered to the examinee. However, if the items

within the test bank were calibrated under speeded conditions, the examinee may

receive easier items, and thus his or her ability level will be inflated. Poor cali-

bration of item parameters due to speededness also affects linking, equating, and

scaling. These three processes use item parameter estimates to ensure the con-
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sistency of an assessment through multiple administrations. Research has shown

that poorly calibrated item parameters due to speededness affects linking coeffi-

cients. Biased linking parameters cause the equating function to be skewed, which

then causes the scaling between assessments to be distorted (Brown, Li, & Yang,

2013; Wollack, Cohen, & Wells, 2003).

Speededness also introduces biases in the estimation of ability levels in the

context of IRT (Wollack, Suh, & Bolt 2007). When ability estimates are not ac-

curate, other factors are affected, such as the local item independence assumption

and the validity of the assessment (Yen, 1993). This bias occurs when speed-

edness influences test-takers to change their test-taking strategy (Cao & Stokes,

2008; Jin & Wang, 2014). If examinees use an ability-based strategy during the

first portion of an assessment and subsequently implement a guessing strategy

when speededness occurs, the estimation of ability will not be inaccurate, because

the response pattern during the beginning of an assessment changes undesirably

towards the end of the assessment. This directly affects the validity of an assess-

ment because the construct of interest is distorted by construct-irrelevant variance

(i.e., speededness).

This construct-irrelevant variance creates a local item dependence structure,

thus causing items to have a dependent association. Instead of items being locally

independent with respect to ability, items are locally dependent due to a secondary

stimulus, speededness. Local item dependence may lead to unreliable estimates

of test reliability, item and test information, and standard error estimates (Lee,

Kolen, Frisbie, & Ankenmann, 2001; Sireci, Thissen, & Wainer, 1991). In partic-

ular, the presence of speededness also causes researchers to question the validity

and the reliability of an assessment, as the accuracy of measurement is disrupted

by the presence of speededness (Lu & Sireci, 2007). Speededness specifically af-

fects a test’s precision (Gullkisen 1950), since reliability tends to be magnified

when speededness is present. When an assessment’s validity and reliability are

called into question, test scores and conclusions drawn from the test scores may
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be rendered invalid (Lu & Sireci, 2007).

2.4 Remediating Speededness Effects

Due to the negative impacts of test speededness, researchers have derived meth-

ods for removing these effects from assessments. Some researchers have developed

non-statistical approaches to accomplish this task, while others have proposed

probabilistic models to capture the presence of speededness. One of the primary

goals of this dissertation is to evaluate the effects of ignoring an assumption about

the association between speededness and ability. Therefore, a few non-statistical

techniques and probabilistic models that are not directly related to this disserta-

tion are briefly discussed. Subsequently, a more thorough discussion regarding es-

sential probabilistic models is offered, which is foundational to the model proposed

in this dissertation. These models are inherently designed to reduce speededness

impact on an assessment based on the researchers’ understanding of speededness.

Many non-statistical techniques have been presented to counter speededness

effects, but each approach has its limitations. One method is to increase test

administration time (Lawrence, 1993). Although this is a legitimate approach,

additional time may not always lead to improved performance (Evans & Reilly,

1972). Another technique is to remove items that are located towards the end of

an assessment, assuming that they are the source of speededness. (Oshima, 1994;

Lord, 1980). The main drawback to this approach is the fact that it is nearly im-

possible to determine the inception of speededness behavior that is applicable to all

examinees. Another issue that arises with removing items is that both the content

and construct validity of an assessment decrease when items are removed. Lastly,

Bejar (1985) attempted to determine when a person becomes speeded, based on

the difficulty of items and the performance of the examinee on the assessment, in

order to remove all items after this point. This approach is difficult to implement

because the performance of the student may not be indicative of his or her true
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ability if he or she becomes speeded earlier on an assessment. That being said,

it is critical to consider other techniques to reduce the presence of speededness in

assessments.

As an alternative to the aforementioned non-statistical methods, researchers

have developed several probabilistic models to reduce the effects of speededness on

item calibration. Unlike non-statistical methods, probabilistic models are not con-

trived based on convenience but rather on certain assumptions regarding speeded-

ness. These models generally assume that speededness causes examinees to guess

on items and fail to answer items. (Bolt, Cohen, & Wollack 2002; Yamamoto &

Everson, 1997; Cao & Stokes, 2008; De Boeck, Cho, & Wilson, 2011; Wollack,

Suh, & Bolt, 2007).

One such model seeks to reduce test speededness on computer-based assess-

ments with respect to response time on items (van der Linden, 2007; van der

Linden, 2011). Research by van der Linden (2006) proposed the lognormal model,

which can be used to measure the response time it takes a test-taking population

to respond to each item on an assessment. This metric is then used to model

the total amount of time that a test-taking population requires to complete an

entire assessment. The lognormal model is extremely convenient for adaptive tests

because the algorithm can select items not only based on the difficulty and con-

tent but also on the time expected to complete the item, which may reduce the

probability of speededness.

Another model created for computer-based assessments is the effort-moderated

model proposed by Wise and DeMars (2006). In this model, if an examinee answers

an item within a time frame below a certain threshold (i.e., an unusually short

amount of time), it is assumed that the test-taker is guessing rather than respond-

ing based on his/her ability. This specified time is noted as an item threshold.

However, the effort-moderated model can itself be biased if a test-taking popu-

lation is composed of multiple subgroups that differ in average ability levels and

test-taking strategies. In this case, the threshold parameter will not be invariant,
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meaning that the expected time it takes one subgroup to answer a question may

differ drastically from another. As a result, the threshold used to determine if an

examinee is speeded will be inaccurate.

Although assessments are increasingly being administered in a computer-based

format, a significant number still use a paper-and-pencil format (Patelis, 2000).

This removes the ability to measure time spent on each item, meaning the re-

sponse time and lognormal models will be inadequate in these contexts. The

current models for paper-based tests assume that examinees respond to speeded-

ness via various types of guessing mechanisms. Cao and Stokes (2008) proposed

models that represent these different guessing approaches. One of their models

is the continuous guessing model used for both minimally and highly motivated

students. Under the continuous guessing model, guessing behavior is modeled so

that the probability of correctness is fixed to a constant and the potential to be-

come speeded occurs randomly throughout an assessment. The second guessing

model is based on an assumption that some examinees guess on hard questions but

attempt easy questions based on their ability levels. This model was extended by

Chang, Tsai, and Hsu (2014), who assumed that students leave the more difficult

items until the end of the test while attempting easier items based on their ability.

However, these guessing models are limited in that they assume examinees do not

omit responses as a result of speededness.

These various non-statistical and probabilistic models are essential to the study

of speededness and its reduction. There are some additional models that this

paper will examine more in depth, as they are vital to understanding the proposed

model and are more robust to handle paper-and-pencil tests and missing responses.

In order to model the following assumptions – 1) speededness and ability are

associated, and 2) the inception of speededness depends on ability – one must

understand the basis of Jin and Wang’s (2014) two-parameter logistic mixture

(2PLMix) model and the assumptions made under the gradual process change

(GPC) model introduced by Goegebeur et al. (2008). The 2PLMix model is an



16

extension of the mixture Rasch model (MRM) (Bolt, Cohen, & Wollack, 2002)

and HYBRID model (Yamamoto & Everson, 1997). The 2PLMix model also uses

some of the key assumptions found in the IRT-threshold guessing model (Cao

and Stokes, 2008). Therefore, an understanding of the models used to derive the

2PLMix is crucial in understanding the mechanism used to model the two new

assumptions.

These four models (MRM, HYBRID, IRT-threshold guessing, and 2PLMix) are

considered to be mixture models, which means two aspects (test taking strategy

and guessing/non-response) are used to determine the probability of correctness

based on a latent group. It is also critical to understand the GPC model because

this model formulates an association between speededness and ability level (al-

though this association is derived in an esoteric manner), which suggests there are

ramifications for ignoring this association. The following will include a descrip-

tion of each model and a summary of results found in each paper, followed by a

comparison of the models relating to the 2PLMix.

2.4.1 Gradual Process Change (GPC) Model

The general structure of the GPC model assumes speededness occurs after

an examinee’s threshold has been surpassed, ηi (see the description below) and

gradually impacts the probability of correctness for the remaining items. The

GPC model can be seen as:

Pij = P (Xij = 1|αj, βj, γj, θi)min

{
1,

[
1−

(
j

J
− ηi

)]λi}
(2.1)

where j represents jth item, J is the total number of items on the assessment,

ηi denotes the proportion of nonspeeded items answered by examinee i, λi is the

intensity factor, and Xij denotes the correctness of the response (1 for correct

and 0 for incorrect). The probability of a correct response can be seen as the

3-parameter logistic (3PL) expressed as:
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P (Xij = 1|αj, βj, γj, θi) = γj + (1− γj)
exp(αj(θi − βj))

1 + exp(αj(θi − βj))
(2.2)

where αj denotes the discrimination parameter for item j, βj denotes the diffi-

culty parameter for the jth item, γj is the guessing parameter, and θi is the ability

parameter for the ith examinee. This model shows that normal test-taking behav-

ior occurs on and before the ηi proportion of the test for examinee i; however,

after the ηi proportion of the assessment has been completed, the probability of

obtaining the correct solution begins to diminish. Figure 2.1 illustrates the func-

tioning of Equation 2.1 for a 40 item test, in which an examinee has a threshold

of ηi = 0.5 and intensity factor of λi = 4.

This figure shows the speededness effect that is multiplied by the probability

of a correct answer. If the examinee is speeded, then the probability of a correct

solution is multiplied by a proportion that is between 0 and 1. If the examinee is

not speeded, then the probability of a correct solution is multiplied by 1. Thus,

the test becomes progressively more difficult for an examinee to get a correct

solution once he or she becomes speeded. The association between ability, θi, and

speededness variables, ηi and λi, is established by using a copula function. The

implementation of a copula function is a nonlinear technique used to create an

association among independent random variables.

The simulation study in Goegebeur et al. (2008) compared the performance of

the 3PL model vs the GPC using four different levels of speededness. The results

showed the model parameters were properly estimated under the GPC and out-

performed the 3PL in the context of parameter recovery. However, the estimation

technique implemented was a version of the SAS NLMIXED procedure, which is

not widely used in this line of research, and the method used to associate ability

and speededness is not intuitive to practitioners. Therefore, it is ideal to propose

a model that addresses these issues within the GPC paradigm. Although the fol-

lowing described models do not address the assumption regarding the relationship

between ability and speededness, they are foundational in describing the model
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Figure 2.1: Illustration of the Gradual Process Change model where J = 40, λi = 4,
and ηi = 0.5. which depicts effort only.

proposed in this dissertation.

2.4.2 Mixture Rasch Model (MRM)

The MRM was first introduced by Rost (1990) to model latent groups within

the context of IRT. Bolt et al.’s (2002) study of the MRM was implemented

in the context of speededness. The latent groups were specified by one group

being nonspeeded and the remaining groups all being speeded. Each latent group

was modeled under a Rasch model, with the difficulty levels of speeded items

being different among the groups. Finally, the ability distributions between latent

groups were set to be non-overlapping. These limitations ensure that a person’s

response is based on the group’s specific difficulty level and ability distribution.

The probability of a correct response based on these assumptions can be expressed

as:

P (Xij = 1|βjg, θig) =
exp(θig − βjg)

1 + exp(θig − βjg)
(2.3)
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where g is the number of groups ranging from 1, ..., G, βjg is the difficulty param-

eter for item j in group g, and θig is ith examinee’s ability in group g. Markov

Chain Monte Carlo was used to estimate the MRM parameters. The probability

of being in group g is denoted as πg where
∑

g πg = 1. Although multiple latent

groups are possible in the MRM, Bolt et al. (2002) investigated only two latent

groups, a speeded class and a nonspeeded class. The researchers assumed that

the nonspeeded group’s difficulty parameter was always smaller than the speeded

group’s difficulty parameter for the speeded items. This constraint ensured that

speededness always resulted in an inflated difficulty parameter. The results showed

that difficulty parameters were estimated well in the nonspeeded group.

However, by imposing only two latent classes, the MRM misses the effect of

various levels of speededness occurring at different points of an assessment. Using

data solely from nonspeeded items (i.e., ignoring the speeded items) can be seen

as controversial in the context of ensuring a valid assessment that uses all the

information in parameter estimation. Wollack et al.’s (2003) study went further

and used only the difficulty parameter estimates from the nonspeeded group within

the context of equating, which is even more controversial. Due to these limitations

of the MRM, there is need for a model that includes more than two latent groups.

2.4.3 HYBRID Model

An alternative model used to measure the effect of various levels of speededness

is the HYBRID model by Yamamoto and Everson (1997). The HYBRID model

assumes a switching behavior in the test-takers. Initially, examinees are assumed

to employ a normal test-taking strategy. However, according to the model, some

examinees will switch the normal strategy to a guessing strategy partway through

the test and continue this strategy until completion. A group of examinees that

makes this switch on the same item forms one latent class. Thus, different latent

classes will portray a different number of consecutively guessed items at the end

of the test. This model assumes that normal test-taking strategy occurs during
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nonspeeded conditions of the assessment, while a switch to a guessing strategy

indicates that the examinee has become speeded. The HYBRID model can be

expressed as:

P (Xij = 1|αj, βj, cj, θi, gm) =
(
1 + exp(−αj(θi − βj))

)gm
cgm+1
j (2.4)

where αj, βj, and θi are the discrimination, difficulty, and ability, respectively

and cj is the probability of examinees in latent class g randomly guessing the cor-

rect answer to item j. Additionally, gm is a binary variable that indicates when

a test is taken under nonspeeded (gm = −1) or speeded (gm = 0) conditions.

A marginalized maximum likelihood estimation approach was used to by the re-

searchers to estimate model parameters. The simulation design of Yamamoto and

Everson (1997) investigated a 70-item assessment in which there were 20 different

levels of speededness effects. These levels were arbitrarily defined based on what

the researchers deemed to be the inception of speededness. The HYBRID model

was able to recover its model parameters well, especially the ability and difficulty

parameters, during the speeded sections of the test. The model was also able to

accurately determine the location at which speededness started.

Like the MRM approach, the HYBRID model is based on a mixture model, but

accounts for multiple levels of speededness via various speeded latent classes. The

HYBRID model also differs from the MRM in that each latent class does not obtain

a specific difficulty parameter but rather a random response pattern. Although

the HYBRID model includes more than two latent classes and has the ability to

estimate more latent classes, the simulation study only investigated speededness

occurring at 20 different locations. The number of classes can be easily increased,

but the estimation time is heavily affected by the number of classes. Also, the

model assumes each latent group has the same response pattern, which is not

realistic. Therefore, a model that can overcome these limitations needs to be

introduced.
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2.4.4 Item Response Theory-Threshold Guessing (IRT-TG)

The IRT threshold guessing (IRT-TG) model presented by Cao and Stokes

(2008) differs from the previously discussed models by 1) allowing all items as

locations for the inception of speededness within the simulation study and 2)

implementing the possibility of random guessing for each item. The location of

speededness within a test is not based on belonging to a latent class but rather

is specific to each individual test-taker. The IRT-TG assumes an examinee from

a subpopulation of test-takers uses his or her knowledge to answer questions up

to a given threshold, and then guesses on the remaining items. The remaining

population responds normally until the end of the assessment. The IRT-TG is

expressed in the following equation:

P (Xij = 1|αj, βj, cj, θi, δi) =


exp(αj(θi−βj))

1+exp(αj(θi−βj)) j ≤ δi

exp(cj)

1+exp(cj)
j > δi

(2.5)

where αj, βj, and θi are the discrimination, difficulty, and ability, respectively,

δi is the last item at which examinee i uses normal ability, and cj is a guessing

parameter. Markov Chain Monte Carlo was used to estimate IRT-TG model

parameters. It is important to note that the guessing parameter corresponds to

the item and not the person. Similarly to the HYBRID and MRM approaches,

the IRT-TG assumes J (the total number of items on an assessment) locations

at which speededness begins. Moreover, the IRT-TG uses a stochastic method to

determine the location, δi, at which speededness behavior begins. The distribution

used to determine the probability of being speeded on the jth item can be expressed

as:

πj =
jω − (j − 1)ω

(J − 1)ω
(1− πJ) (2.6)

where ω is a hyperparameter and πJ is the probability of not being speeded.

The probability distribution for an examinee becoming speeded on a test can
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be seen in vector form as [π1, π2, . . . , πJ ]. Another way of understanding this

distribution is to state that δi ∼ [π1, π2, . . . , πJ ] It is important to note that the

probability of an examinee being speeded on a given item is determined by (1−πJ),

and thus the probability of being speeded on an assessment is distributed among

the (1, . . . , J − 1) items. Consequently, an examinee not being speeded on an

assessment is represented by becoming speeded on the J th item (i.e., the last

item). The results of Cao and Stokes (2008) showed that the IRT-TG was able to

recover the model parameters well in both conditions of the presence and absence

of speededness.

Although the HYBRID and IRT-TG models are similar in that they both im-

plement a switching strategy approach, they differ with respect to how the random

responses are generated. The IRT-TG incorporates a guessing parameter, cj, to

generate a random response, whereas the HYBRID model’s random response is

based on a latent class membership. Finally, the IRT-TG model does a better job

representing real-world situations by modelling guessing behavior on an individual

item basis rather than by latent groups. However, this guessing behavior is only

impacted by the item itself, which may not always be the case. Guessing behav-

ior may depend on the location at which speededness behavior begins, which is

affected by both the item and the specific test-taker. This shortfall is addressed

by the next model.

2.4.5 Two Parameter Logistic Mixture Model (2PLMix)

Assumptions found in the MRM, HYBRID, and IRT-TG models were used by

Jin & Wang (2014) to develop the 2PLMix model. The 2PLMix implements each

item as a possible location for the inception of speededness similarly to the previous

two models. The method used to determine the probability of becoming speeded

is similar to the one discussed in the IRT-TG model. However, the 2PLMix model

additionally proposes that the logit of the IRT model is impacted by a decrement

factor once speededness occurs, meaning that the probability of correct solution
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decreases by a calculated factor rather than being determined by a general guessing

factor. The 2PLMix can be expressed as:

P (Xij = 1|αj, βj, θi, ηij) =
exp(αj(θi − βj − ηij))

1 + exp(αj(θi − βj − ηij))
(2.7)

where αj, βj, and θi, are the discrimination, difficulty, and ability, respectively,

and ηij is the decrement parameter. The decrement parameter is determined by

the following function:

ηij =

 0 j ≤ δi

γδi j > δi

(2.8)

where δi is the item at which examinee i becomes speeded and γδi is the speed-

edness effect. The value of nij = 0 when the examinee is not under speeded

conditions (that is, when j ≤ δi ). However, nij resolves to γδi when j > δi. The

equation used to determine the speededness effect can be expressed as:

γδi = κ(J − δi) (2.9)

where κ is a parameter used to moderate the speededness impact. This speed-

edness effect (γδi) is item and person specific, meaning that examinee i becomes

speeded at item j. Once an examinee becomes speeded, the decrement parameter

(ηij) has a constant effect on the probability of obtaining the correct solution on

the remaining items. Equation 2.9 also shows that the earlier an examinee be-

comes speeded on a test, the larger the speededness effect will be and vice versa.

An illustration of this concept will be demonstrated later in section 3. Besides the

2PL version of the model, Jin and Wang (2014) also proposed the 1PL, 3PL, and

graded-response mixture models in their study.

The 2PLMix assumes latent classes of varying levels of speededness, similarly

to the HYBRID and IRT-TG models previously discussed. However, the 2PLMix

adopts and implements multiple levels of speededness based on the number of
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items, much like the IRT-TG model within the simulation study. In other words,

each item on the assessment represents a location at which an examinee may

become speeded. The 2PLMix also implements Equation 2.6 to determine the

location, δi, at which an examinee will become speeded, but with a slight modifi-

cation. It is important to note that the 2PLMix model parameters were estimated

with Markov Chain Monte Carlo simulations. The 2PLMix assumes that the ex-

ponents must always be greater than 1 to ensure the concavity of the probability

mass function. Instead of assuming ω to be always greater than 1, the 2PLMix

model increases the exponent by 1. The modified equation is denoted as:

πj =
jω+1 − (j − 1)ω+1

(J − 1)ω+1
(1− πJ) (2.10)

which represents the probability of being speeded on the jth item. Again, the

probability of being speeded is (1−πJ), which is distributed amongst the 1, . . . J−1

items. Equation 2.10 is a non-decreasing probability function which implies the

probability of becoming speeded increases as an examinee completes the test.

Equation 2.10 also implies that the location at which examinee i becomes speeded,

δi, follows a distribution denoted in vector form as [π1, π2, . . . , πJ ]. If δi = J ,

examinee i did not become speeded during the assessment. The mechanism of

this probability mass function is further discussed in an example in section 3.

The model used within Jin and Wang’s (2014) simulation study was the 3PL-

GPCMix model, which included the 3PL and the general partial credit models.

The item parameters were properly estimated with respect to the parameter re-

covery. However, ability, θi, was briefly discussed, and δi, the parameter of the

location at which speededness occurs, was not mentioned in terms of parameter

recovery. Though the models have progressed in terms of accounting for more

realistic assumptions, some general notions can be found in all four models.

Jin and Wang (2014) highlighted four assumptions about the four mixture mod-

els (MRM, HYBRID, IRT-TG, and 2PLMix) that are important to understand the

general nature of these models and the model presented in this dissertation. The
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first assumption is that examinees answer items based on the original order of the

assessment. This means that items cannot be skipped and returned to. Second, a

proportion of examinees use their ability up to a certain point and then began to

implement a guessing strategy, while the remaining examinees fully attempt the

entire test. The third assumption is that different examinees become speeded at

different locations. This assumption may not seem to hold for the MRM and the

HYBRID, but these models assume that real world applications will see a greater

number of latent groups than those presented within their respective simulation

studies. Lastly, these models assume that once an examinee becomes speeded, the

examinee will remain speeded until the end of the assessment.

Though these models share some common characteristics, there are a few as-

sumptions that inherently make these models different. All the mixture models

discussed so far (except the HYBRID) account for the impact of speededness

within the logit; however, each model implements this slightly differently. The

MRM assumes that the difficulty parameter is different between the two groups.

This is not a favorable assumption because it reflects that speededness only im-

pacts item difficulty and not ability level. The IRT-TG model assumes only the

guessing parameter within the logit when speededness is present. Since this model

removes the item and ability parameters from the logit, its mechanism may not

allow the guessing parameter to accurately account for speededness and its effect

on the other model parameters. The implementation of latent classes within the

HYBRID model implies that examinees within each latent class has the same re-

sponse pattern during the speeded portion of a test, which is not realistic. The

2PLMix model assumes that a parameter representing both the item and the

person reflects the impact of speededness. This is more realistic because if speed-

edness occurs, then this parameter will account for the bias that occurs according

to the item and the examinee. The proposed model takes several features from the

discussed models and attempts to reflect the effect of speededness while resolving

the various limitations of these approaches.
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Chapter 3

Methodology

3.1 Overview

The models highlighted in the literature review lay the foundation for the

development of the model introduced in this dissertation, which correlates ability

and speededness. Based on previous research, there is evidence of a potential

relationship between ability and speededness. Ignoring such a relationship in the

data may have many negative ramifications and has not been thoroughly evaluated

in the literature. Therefore, it is important to determine what happens to quality

of the estimation process when the association between ability and speededness is

ignored.

In section 3.2, the description of a new speededness model and relevant pa-

rameters will be discussed, followed by a comparison between the new model and

the 2PLMix in section 3.3. Next, a comparison between the GPC and the new

model will be provided in section 3.4. An overview will then be given regarding

Markov Chain Monte Carlo (MCMC) in section 3.5. Lastly, section 3.6 will offer

a discussion regarding the implementation of MCMC to the estimation of model

parameters of the models presented within the simulation study.
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3.2 A Modified 2PLMix

The model introduced in this section, denoted as the M2PLMix model, is a

modification of the 2PLMix model. This modification assumes that the probability

of being speeded depends on ability. The M2PLMix model’s probability function

of getting an item correct is identical to the 2PLMix model probability function

denoted as follows:

P (Xij = 1|αj, βj, θi, ηij) =
exp(αj(θi − βj − ηij))

1 + exp(αj(θi − βj − ηij))
(3.1)

where αj is the discrimination parameter, βj is the difficulty parameter, θi is the

ability parameter, and ηij is the decrement parameter. Similarly to the 2PLMix

model, the decrement parameter can be represented as:

ηij =

 0 j ≤ δi

γδi j > δi

(3.2)

and the γδi , the speededness effect parameter, is expressed by the following equa-

tion:

γδi = κ(J − δi) (3.3)

It is important to reiterate that Equations 3.1-3.3 are identical to Equations 2.7-

2.9, which are used to determine the impact of speededness on the probability of

obtaining a correct answer and thus have the same meaning. The only difference

between these two models is that in the M2PLMix, the probability of not being

speeded depends on the ability level, whereas in the 2PLMix model the probability

of not being speeded is fixed across all examinees regardless of ability. Explicitly,

the location of speededness, δi, directly depends on the ability level, θi, for the

M2PLMix. It should be also noted that regardless of the association between

speededness and ability, if the probability of not being speeded is known, the

probability of being speeded is also known, (i.e., P (S) = 1 − P (S), where P(S)
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represents the portability of being speeded).

The probability of not being speeded within the 2PLMix is denoted by the

parameter, πJ , which is the same value for the entire test-taking population. This

assumption not only makes the parameter not applicable under all testing contexts

(i.e., low- and high-stakes assessments), but also makes the use of this parameter

unrealistic. The probability of not being speeded on a test in the 2PLMix is a

property of the test and not a characteristic of the test-taking population. How-

ever, within the M2PLMix model, a probability function is used to describe the

probability of not being speeded based on ability which is expressed as:

π(θi) = λ+ (1− λ)
1

1 + exp(−θi)
, (3.4)

where λ is the threshold probability of not being speeded. The threshold probabil-

ity is the baseline probability of not being speeded for the test-taking population.

In other words, every examinee in the test-taking population has the same baseline

probability of not being speeded. If it is known that the stakes of an assessment

are low and students’ motivation levels are low, it is safe to assume λ is small. The

baseline probability may also be small if the time constraints on a high-stakes as-

sessment are improperly defined. The baseline probability can be adjusted based

on the researcher’s or practitioner’s beliefs about the assessment. Though λ is

typically estimated, under different contexts of an assessment, it is expected that

this value is small. Equation 3.4 allows the probability of not being speeded to

not only be a characteristic of the test but also of the population because of the

inclusion of ability.

Equation 3.4 accomplishes this by involving the logit of the ability level mul-

tiplied by (1 − λ). This product is added to λ, which signifies an increase in the

probability of not being speeded. The higher the ability level is, the larger the logit

will be, and thus the higher the probability of not being speeded. However, the

probability of not being speeded remains close to the baseline if the ability level

is low. In direct terms, the higher the ability level, the lower the probability of
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being speeded. On the other hand, the lower the ability level, the higher the prob-

ability of being speeded. Furthermore, λ is not equivalent to the 2PLMix model

parameter, πJ . Although they both denote the probability not being speeded, λ

is an intermediate parameter, whereas πJ describes the probability of not being

speeded for an entire test-taking population.

Figure 3.1 shows the implementation of Equation 3.4, in which the number

of quadrature nodes (between −3 and 3) for the ability parameter is 25 and the

baseline probability of not being speeded is λ = 0.4 . This baseline is based on the

research conducted by Jin and Wang (2014). This figure shows that low-ability

examinees have a low probability of not being speeded (i.e., a high probability of

being speeded). Conversely, high-ability examinees have a high probability of not

being speeded and thus a low probability of being speeded. It is very important

to emphasize that each examinee has a distinct probability of not being speeded.

Equation 3.4 does not add any new parameters to the model compared to the

2PLMix, but rather replaces the probability of not being speeded with a more

realistic parameter using information already found in the 2PLMix model (the

ability level of each examinee).

Figure 3.1: The probability of not being speeded based on 25 quadrature nodes between
−3 and 3 and the baseline probability (red line) of not being speeded being λ = 0.4

Within the 2PLMix framework, the location at which an examinee becomes

speeded is random. However, the M2PLMix model uses Equation 3.4, which

influences the location where an examinee may become speeded. In other words,
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the ability not only influences whether an examinee becomes speeded but also the

location at which an examinee becomes speeded. If an examinee has low ability,

he or she has a higher probability of being speeded earlier on in the assessment

compared to someone who has higher ability. This has a dramatic effect on the

number of examinees who are speeded within a population, which will be further

discussed within the following section. Equation 3.4 impacts the probability of

being speeded on an assessment with respect to examinee i being speeded on item

j, which can be expressed as:

πj(θi) =
jω+1 − (j − 1)ω+1

(J − 1)ω+1
(1− π(θi)) (3.5)

where ω and J have the same definition as noted in the 2PLMix model and π(θi)

denotes the probability of not being speeded for examinee i. Equation 3.5 is very

similar to Equation 2.10, but includes the ability parameter, with Equation 3.4

embedded within Equation 3.5. Equations 3.4 and 3.5 imply that the location

at which an examinee i becomes speeded, δi, follows a distribution denoted in a

vector form as [π1(θi), π2(θi), . . . , πJ(θi)]. As stated with the 2PLMix model, if

δi = J , the ith examinee is not speeded on any items. The higher the examinee’s

ability, the later the location of speededness (if it occurs at all).

Figures 3.2 and shows the relationships between parameters for the M2PLMix,

2PLMix, and 2PL models. Then 2PLMix displays how the decrement parameter,

ηij, depends on the the location of speededness, δi, and the speededness impact

parameter, γδi , under the 2PLMix model. The location of speededness depends

on a hyperparameter, ω, and the probability of being speeded, πj. Under the

M2PLMix model the decrement parameter is based on the location of speeded-

ness, δi, and the speededness impact parameter, γδi , under the M2PLMix model.

However, δi depends on the probability of being speeded, πJ(θi), based on exami-

nee i ability level, θi, ω, and the baseline probability of not being speeded, λ. The

modified model is more realistic in that examinees with lower ability levels will

become speeded more often and earlier on an assessment compared higher-ability
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examinees. The 2PL model shows that ability and item parameters effect Xij

which is common in the other two models.

Figure 3.2: Displays the relationship between the parameters and how they influence
the probability of Xij within the M2PLMix, 2PLMix, and 2PL models.

3.3 Comparing the 2PLMix and M2PLMix

A clear way to illustrate the difference between the 2PLMix and M2PLMix

models is to work through an example and applying each model. Assume there

are J = 20 items, the probability of not being speeded is πJ = 0.4 for the 2PLMix,

and the baseline probability of not being speeded is λ = 0.4 for the M2PLMix. The

speededness impact factor is κ = 0.2 and the hyperparameter within the probabil-

ity function is set to ω = 1. These values are selected from Jing and Wang (2014).

As noted in the previous section within the 2PLMix model, δi follows the discrete

distribution of a Multinomial[π1, π2, . . . , π20]; however within the M2PLMix model,

δi follows the discrete distribution of a Multinomial[π1(θi), π2(θi), . . . , π20(θi)]. Ta-

ble 3.1 represents the probability of being speeded on items 16 − 19 for a person

with high ability (θ = 3) under M2PLMix, a person with low ability (θ = −3)

under M2PLMix, and a person generated under 2PLMix. This table also shows

the speededness effect on the logit for both models once speeded.
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Table 3.1: 2PLMix and M2PLMix probability distribution of speededness for J = 20
items and the speededness effect.

Probability of Being Speeded for Items 16-19

π16 π17 π18 π19

M2PLMix (θ = 3) π16 = 0.002 π17 = 0.002 π18 = 0.002 π19 = 0.003

M2PLMix (θ = −3) π16 = 0.049 π17 = 0.052 π18 = 0.055 π19 = 0.058

2PLMix π16 = 0.051 π17 = 0.054 π18 = 0.058 π19 = 0.061

Speededness Effect ηij = 0.8 ηij = 0.6 ηij = 0.4 ηij = 0.2

As noted in the previous section, the 2PLMix model assumes every exami-

nee has the same probabilities of being speeded on the items of an assessment,

whereas the M2PLMix demonstrates how ability modifies the probabilities of be-

ing speeded on the items of an assessment. The probability of becoming speeded

on the 16th item within the 2PLMix is 0.051 for all test-takers. In contrast, under

the M2PLMix, an examinee with an ability level of θ = −3 has a probability of

0.049 of becoming speeded on the 16th item and an examinee with an ability of

θ = 3 has a probability of 0.002 for becoming speeded on that same item. This

exemplifies how ability plays a role not only in an examinee becoming speeded

but also where they become speeded. The probability of becoming speeded for

each item is greater for an examinee with lower ability than an examinee with

higher ability, which shows that someone with higher ability is less likely to be-

come speeded compared to a low-ability examinee. The M2PLMix probability

distribution for an examinee with low ability is comparable to the 2PLMix prob-

ability distribution. This occurs due to the logit of a low ability examinee, which

translates to a small increase in the baseline probability of not being speeded.

Table 3.1 draws attention to the fact that an examinee with high ability (e.g., a

meticulous student) may still become speeded, and a low-ability examinee may be

able to complete a test without being speeded.

A common factor between both models is the speededness effect, which shows

that if an examinee became speeded on the 16th item, the speededness effect would
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be 0.8 (i.e., η = 0.8 ) for items 17 though 20. Since both models assume the same

speededness effect with respect to speededness location, the same values are used

regardless of the models. Though table 3.1 shows how the ability level influences

the location of the inception of speededness, another illustration will help clarify

this notion.

A preliminary simulation analysis was implemented to illustrate the mecha-

nism of the 2PLMix and M2PLMix models with respect to the location at which

speededness began based on the models’ assumptions, respectively. This simula-

tion considered three different ability levels, θ = 3 (high ability), θ = 0 (medium

ability), and θ = −3 (low ability), so that generalizations about low-, medium-,

and high-ability examinees can be made. The number of examinees within each

ability level was 300. The baseline probability of not being speeded was λ = 0.4

within the M2PLMix, and the probability of not being speeded was πJ = 0.4 for

the 2PLMix. Though these values have different meaning with respect to their

corresponding models, they still contribute to the probability of not being speeded

in a similar manner. This simulation assumed J = 40 items; however, simulating

location of speededness for all 40 items is cumbersome. Therefore, for the sum-

mary of the results, the test was broken into five sections: the first section denotes

becoming speeded on items 1-10, the second section denotes becoming speeded

on items 11-20, the third section denotes becoming speeded on items 21-30, the

fourth section denotes becoming speeded on items 31-40, and the fifth section is

δ = 40 which implies not becoming speeded.

Within the simulation, the location at which an examinee became speeded

was generated 100 times, and the average was evaluated for each section of the

test corresponding to the ability level for both models. Figure 3.3 displays the

results from this simulation. The x-axis denotes the location at which an examinee

became speeded, the y-axis represents the number of speeded examinees, and the

three ability levels, high, medium, and low, are colored by black, red, and blue,

respectively. The bar plot on the left panel is the M2PLMix, and the bar plot on
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Figure 3.3: Locations at which examinees will become speeded according the M2PLMix
(left panel) and the 2PLMix (right panel).

the right panel is the 2PLMix. The number of examinees that become speeded

increases from one section to the next regardless of the models. However, there

is a general trend for the M2PLMix within each section regarding the first four

sections, in which the number of speeded examinees is the largest for low ability

patrons, followed by medium ability, and then finally high ability levels has the

lowest number of people affected by speededness. However, this does not occur

for the fifth section of the test, in which the ranking order in magnitude is high-

, medium-, and low-ability levels. Therefore, ability not only has an impact on

whether an examine is speeded but also the location at which one becomes speeded,

and those who with higher ability will be more likely not to be speeded.

This is not the case for the 2PLMix model, in which, within all five sections,

almost the same number of examinees from each ability level become speeded

within each section. This implies that no matter the ability level, the location

at which an examinee becomes speeded is constant. Using the M2PLMix model

dramatically changes the number of examinees affected by speededness compared

to the 2PLMix model. This occurs because within the M2PLMix model, the

high- and medium-ability examinees have a higher probability of not becoming

speeded, and thus the total number of speeded examinees decreases. However,

the location at which speededness occurs within the 2PLMix is not influenced by

ability levels.Further comparisons of the proposed model to another existing model
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is provided in the next section to have a deeper understanding of the M2PLMix.

3.4 Comparing the M2PLMix and GPC Models

Although the M2PLMix and GPC models both account for the association

between ability and speededness, this association is carried out in two very dis-

tinct manners. The mechanism of the M2PLMix and GPC models differ on three

primary factors: 1) the level probabilistic theory required, 2) the practicality of

the number of people affected by speededness, and 3) the impact of speededness

on probability.

Equation 3.4 demonstrates the probabilistic theory required to understand how

ability is related to speededness within the M2PLMix model. More specifically,

ability and speededness are simply inversely proportional to one another, meaning

that as ability increases, the probability of being speeded decreases, and as the

ability decreases, the probability of being speeded increases. As mentioned previ-

ously this also has an impact on which item is likely to become speeded on. This is

in contrast to the GPC model, where understanding the relationship between abil-

ity and speededness requires advance knowledge of a copula function. The copula

function forces marginal distributions of random variables to have a dependence

structure based on some known correlation matrix. The copula function can be

represented as

G(θ, η, λ) = C(G1(θ), G2(η), G3(λ)) (3.6)

where C is the copula function, G1 is the marginal distribution for θ (ability),

G2 is the marginal distribution for η (inception of speededness), and G3 is the

marginal distribution for λ (speededness intensity). A correlation structure must

be provided in order to force an association between the marginal distributions.

In Goegebeur et al. (2008), the marginal distributions for the θ, η, and λ were

set as N(0, 1), β(α, β), and logN(µλ, σλ), respectively. These distributions and

hyperparameters are used to illustrate the model which may need to change to
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reflect real life scenarios. These hyperparameters make the GPC model more

convoluted than the M2PLMix model.

The second difference stems from the number of people shown to be affected

by speededness under each model. Under comparable conditions found in the

M2PLMix model, the GPC model’s correlation structure can be seen as ρ(θ, η) =

0.5 (correlation between ability and the location at which speededness occurs) and

ρ(η, λ) = ρ(θ, λ) = 0.2, in which 99% of the sample is calculated to be speeded.

In contrast, creating an association between ability and speededness such that

the M2PLMix model comparable to the GPC model (λ = 0.4, ω = 2), 40% of

the sample is calculated as speeded. This contrast can be seen in Figure 3.4.

This figure shows the proportion of the test completed with respect to ability

level. This figure demonstrates that nearly the entire test population would be

experience test speededness under the GPC model, while the M2PLMix has a

majority of the sample completing the test.

Figure 3.4: The proportion of test completed with respect to ability under the GPC
(left panel) and M2PLMix models (right panel).

The third difference between the two models is the manner by which speed-

edness affects the probability of a correct response. The GPC directly impacts

the probability function of obtaining the correct solution, seen in equation 2.1.

In contrast, the M2PLMix speededness impacts the logit function, indirectly af-
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fecting the probability of a correct answer. Figure 3.5 shows the probability of

a correct answer for a 40 item test. Both models assumed that for an ability

level of 0, speededness occurs halfway through the assessment (the vertical line

shows speededness location). This figure shows that the impact of speededness

on correctness can be equivalent under both models. However, the rate of the

individuals affected by speededness within the GPC model is much greater than

the M2PLMix model, so much that the former becomes unrealistic. Lastly, the

complexity behind understanding copula functions could prevent test developers

from correctly implementing the GPC model. These differences are the key to

understanding how they are used to model reality.

Figure 3.5: Probability of Correct under the GPC (black circle, λ = 4) and M2PLMix
models (red circle).

3.5 Estimation of Model Parameters: Markov

Chain Monte Carlo Algorithm

The technique used to estimate the parameters in the 2PL, 2PLMix, and

M2PLMix models is discussed in this section. When estimating speeded model

parameters, researchers have implemented either the Marginal Maximum Likeli-

hood Estimation (MMLE) algorithm or the Markov Chain Monte Carlo (MCMC)

algorithm, a Bayesian technique. The parameters estimated within the HYBRID
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model proposed by Yamamoto and Everson (1997) used the computer program

HYBIL (Yamamoto, 1989), which implemented MMLE. In contrast, the other

speeded models discussed in this dissertation, including the proposed M2PLMix,

used a variation of the MCMC algorithm to estimate parameters. MCMC is a

technique used to generate samples from a posterior distribution, which is then

used to find the estimates of the parameters within a model. In Bayesian statis-

tics, the posterior distribution is the probability of the parameters within a model

given data. The posterior distribution can be expressed as the joint probability

of the parameters within the model and the data multiplied by the probability of

the data (Junker, Patz, & VanHoudnos, 2012; Gelman, Carlin, Stern, & Rubin,

1995). This can be expressed as:

f(τ |X) = f(τ,X)f(X) (3.7)

where X is the data and τ represents the model parameters. Using Bayes theorem,

the posterior distribution can also be shown as:

f(τ |X) =
f(X|τ)f(τ)∫
f(X|τ)f(τ)dτ

∝ f(X|τ)f(τ). (3.8)

In modern statistics, it is quite challenging to compute the integral of the de-

nominator; therefore, the numerator is typically used as a proxy for the posterior

distribution. Once the posterior distribution is approximated, there are many

different methods for finding the estimates of the parameters. One method is to

determine the posterior mean of the estimate of τ , formally known as the expected

a posteriori (EAP) of τ , which can be expressed as:

E(τ |X) =

∫
τf(τ |X)dτ. (3.9)

Another method is to find the maximum a posteriori (MAP) of τ , which is the
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posterior mode, and can be expressed as:

argmax
τ

=
f(τ |X)f(X)∫
f(τ |X)f(X)dx

. (3.10)

For this study, the EAP and MAP are used to summarize the posterior dis-

tribution, depending on the nature of the parameter of interest (continuous vs.

discrete). In order to find the posterior distribution, a sampling technique or

Monte Carlo integration must be implemented. However, this dissertation only

discusses sampling techniques. In this case, the process of finding the posterior

distribution involves drawing a series of samples generated from a sampling distri-

bution denoted as τ 1, . . . , τ k, where τ k is parameter estimate at the kth iteration.

Within MCMC, there are two types of sampling procedures: Gibbs Sampling and

Metropolis Hastings.

3.5.1 Gibbs Sampling

Gibbs Sampling (Gelfand & Smith, 1990) uses complete conditional distri-

butions to directly sample and find the posterior distribution. There are many

methods of directly sampling from the posterior distribution; this dissertation dis-

cusses two methods: inversion sampling and rejection sampling (Junker, Patz, &

VanHoudnos, 2012). Inversion sampling involves sampling a random number, u,

from a uniform distribution U(0, 1). The inverse of the cumulative distribution

function (CDF) of the random number, F−1(u), would be drawn from the desired

distribution. Inversion sampling can be used only when both the CDF and the

inverse of CDF can be expressed in a closed form.

When the inverse of the CDF cannot be expressed in a closed form, rejection

sampling can be used. Rejection sampling draws a random variable, z, from the

distribution g(z), assuming that cg(z) > f(z) for the support of z, where c is some

constant. From here, a random number, u, is sampled from a uniform distribution

U(0, 1) and is compared to R = f(z)/cg(z). If u < R, then z is accepted from
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f(z); otherwise, it is rejected. These Gibbs Sampling methods are quite robust,

but are not useful when the complete conditional distribution is unknown (Junker,

Patz, & VanHoudnos, 2012).

3.5.2 Metropolis Hastings

The Metropolis Hastings algorithm (Chib & Greenberg, 1995; Hasting, 1970;

Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) presents a viable al-

ternative if one cannot sample from the complete conditional distribution. The

first step is to generate τ from a proposal distribution g(τ |τ k−1). This proposal

distribution in this estimation algorithm is the prior distribution of τ k−1. It is

typical to allow the proposal distribution to be chosen such that it is independent

of the previous iteration of τ k−1 and follows a normal distribution N(τ k−1, σ).

Once a random draw is computed, the following computation can be expressed:

α(τ, τ k−1) = min

{
f(τ |X)g(τ k−1|τ)

f(τ k−1|X)g(τ |τ k−1)
, 1

}
(3.11)

The minimum of equation 3.11 is then compared to a random number, u,

which is sampled from a uniform distribution U(0, 1). It can be concluded that

if u ≤ α(τ, τ k−1), then τ k = τ , otherwise τ k = τ k−1. Once the sample of draws

is large enough (burn-in is established), the techniques used to summarize the

posterior distribution sample (e.g., EAP or MAP) may be used.

3.5.3 Facets of MCMC

There are several concepts within the MCMC method that are pertinent to the

study at hand. Within the process of estimating parameters, starting near true

value, using the right amount of burn-in period, and measuring the convergence of

estimated parameters are critical in determining if estimates are near the true pa-

rameter value. Another important concept is blocking, which is used to efficiently

estimate parameters in groups rather than a single parameter at a single time.
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Initial Parameters In order to avoid using too many iterations or risk extreme

tails of the posterior distribution (which may cause a chain not to converge) in

estimating model parameters, it is ideal to choose initial values that are close to

true parameters based on the data (Spiegelhalter et al, 1996; Thomas & Gauder-

man, 1996) or preconceptions about the model parameters. For example, in Patz

and Junker’s (1999) MCMC algorithm used to estimate IRT model parameters,

all the ability and difficulty parameters were initialized to be 0 and discrimination

parameters were initialized at 1. This was implemented based on the generation

of the model parameters.

Burn-In When implementing MCMC it is imperative that a burn-in period is

allowed so that the true value is approached. In MCMC estimation procedure

it is expected that estimation chains eventually converge to the ideal stationary

distribution, which is the target distribution. This can be done after a number of

iterations is thrown away and the remaining are used to determine the estimated

parameters. A typical length of burn-in period is 5000 iterations (e.g., de la Torre,

2009). The following two paragraphs discuss ways of determining if the parameter

estimate obtained after a burn-in period has stabilized to a specific value.

Convergence There are many ways to visually determine if an estimated value

has stabilized or converged to a specific value. Traceplots are used to display it-

eration number versus the estimated value of the draw of the parameter at each

iteration. If the draw remains consistent around one particular value, then con-

vergence is found. An autocorrelation plot is also used to measure the lag effect of

the estimated parameter for each iteration. It is ideal for the plot to have a high

correlation during its inception and show a rapidly decreasing pattern. Lastly,

a density plot can be used to detect if a parameter has a unimodal distribution,

which is ideal for estimation.

To measure convergence analytically, the Geweke diagnostic (Geweke, 1992)

and Gelman and Rubin statistic (Gelman & Rubin, 1992) can be used. The
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Geweke diagnostic is used to verify convergence for one chain with respect to

the estimated parameters. This approach produces a z-score for every parameter

estimated, and if the z-score is within ±2, the parameter is assumed to have

converged. Alternatively, the Gelman and Rubin statistic,
√
R, uses multiple

chains to determine whether the proportion error found in the estimated parameter

is attributed to Monte Carlo error or lack of convergence. It is ideal that the
√
R < 1.2 for each estimated parameter (de la Torre & Douglass, 2004).

Blocking Blocking is a technique that handles the issue of complete conditional

densities which use univariate densities and require each parameter in the model

to be estimated one at a time. That being said, it allows for estimation to occur

for a group of parameters simultaneously. Blocking also avoids the problem of low

rates of acceptance. It is ideal to block parameters based on elements that are

related to each other (e.g., item parameters).

3.6 Estimation of the 2PL, 2PLMix, and M2PLMix

Models

The majority of speededness models that implement MCMC in the litera-

ture have used WinBUGS (Spiegelhalter, Best, Carlin, & van der Linde, 2002),

a computer software that uses Gibbs sampling, as the methodology of calibrat-

ing item parameters, ability levels and speededness parameters (e.g., Bolt, Cohen,

& Wollack, 2002; Jin & Wang, 2014; Suh, Cho, & Wollack, 2012). Currently,

no speededness model has been implemented using MCMC Metropolis Hastings

to estimate parameters within the speeded model. In this study, the MCMC

Metropolis Hastings algorithm is applied to estimate the parameters of the 2PL,

2PLMix, and M2PLMix models. The software used to generate data and analyze

the estimated parameters was R (R Development Core Team, 2012), and the es-

timation of model parameters was implemented in C++ using various libraries,



43

such as Armadillo and Boost (Sanderson & Curtain, 2016; Schaeling 2008). The

item parameters, ability level, and the location at which speededness begins, δi,

were estimated within the speeded models, whereas the baseline probability of not

being speeded, λ, and probability of not being speeded, πJ , κ and ω are assumed

to be known.

The parameters were initialized by setting all the discrimination parameters to

1 and setting all δis to the maximum number of items (not speeded). The former

was based on the fact that the discrimination parameter has to be greater than

0. The latter, however, was set so that the estimation models can gather enough

evidence from the data to signify that speededness has occurred. In contrast, an

ad-hoc method was implemented to initialize the ability and difficulty parameters.

This process involved finding the proportion correct for each item (difficulty) and

the proportion correct for each examinee (ability) from the data data. These

proportions were used to find z-scores, these z-scores were then multiplied by 0.95

and increased by 0.05 to ensure no values were close to 0. The initial difficulty

estimates were multiplied by −1 to ensure that these values start near the true

parameter. This method is better than setting all the initial values for β and θ to

0 or random numbers because if the item is difficult or the ability level high, the

initial parameter will be positive, otherwise it will be negative.

In order to implement the MCMC Metropolis Hastings algorithm, the poste-

rior distribution (likelihood) must be stated. The following explanation of the

likelihood is shown only for the M2PLMix model, but assuming δi and θi are inde-

pendent would suffice for the 2PLMix model and ignoring δi would suffice for the

2PL model. The posterior distribution is proportional to the conditional distribu-

tion of data given the unknown parameters multiplied by the prior distributions

of the unknown parameters which can be expressed as follows:

f(X|τ )f(τ ) (3.12)

where τ = (θ,α,β, δ). The ability parameters were θ = (θ1, θ2, ..., θN), the
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discrimination parameters were α = (α1, α2, ..., αJ), the difficulty parameters

were β = (β1, β2, ..., βJ) and the location at which speededness begins were δ =

(δ1, δ2, ..., δN). The conditional distribution, f(X|τ ), can be expressed as

f(X|τ ) =
N∏
i=1

J∏
j=1

f(Xij|αj, βj, θi, δi), (3.13)

in which the probability distribution for Xij is the following

f(Xij|αj, βj, θi, δi) = P
Xij
ij (1− Pij)(1−Xij), (3.14)

where the probability of the correct response (Xij) can be seen as:

Pij = P (Xij = 1|αj, βj, θi, δi) =
exp(αj(θi − βj − ηij))

1 + exp(αj(θi − βj − ηij))
. (3.15)

The prior distribution for the M2PLMix model parameters, f(τ ), can be ex-

pressed as:

f(τ ) = f(θ,α,β, δ)

= f(α)f(β)f(δ,θ)

= f(α)f(β)f(δ|θ)f(θ)

=
J∏
j=1

f(αj)
J∏
j=1

f(βj)
N∏
i=1

f(δi|θi)
N∏
i=1

f(θi)

(3.16)

where the hyperparameters within each prior distribution are based on previous

studies (Jin & Wang, 2014; Junker, Patz, & VanHoudnos, 2012). The prior dis-

tributions for each parameter can be seen as:

f(θi|0, 1) = N(θi|0, 1)

f(αj|0.3, 1) = log-N(αj|0.3, 1)

f(βj|0, 1) = N(βj|0, 1)

f(δi|θi, λ) = Multinomial[(π1(θi), ..., πJ(θi)]

(3.17)
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The complete likelihood function can be expressed as:

f(X|τ )f(τ ) =
N∏
i=1

J∏
j=1

f(Xij|αj, βj, θi, ηi(δi))
J∏
j=1

f(αj)
J∏
j=1

f(βj)
N∏
i=1

f(δi|θi)
N∏
i=1

f(θi).

(3.18)

The complete conditional densities for each individual parameter can be seen

as:

f(θi|rest) ∝
N∏
i=1

P
Xij
ij (1− Pij)(1−Xij)N(θi|0, 1) ∀i = 1, ..., N, (3.19)

f(αj|rest) ∝
J∏
j=1

P
Xij
ij (1− Pij)(1−Xij)log-N(αj|0.3, 1) ∀i = 1, ..., J, (3.20)

f(βj|rest) ∝
J∏
j=1

P
Xij
ij (1− Pij)(1−Xij)N(βj|0, 1) ∀i = 1, ..., J, (3.21)

f(δi|rest) ∝
N∏
i=1

P
Xij
ij (1− Pij)(1−Xij)Multinomial[π1(θi), ..., πJ(θi)] ∀i = 1, ..., N.

(3.22)

where the prior probability of each parameter is multiplied by the distribution of

Xij for each item or examinee, respectively. The term, rest, denotes the remaining

parameters that are being estimated in the model. The algorithm is seen appendix

G.
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Chapter 4

Simulation Study

4.1 Description of Four Studies

As mentioned previously, to evaluate the viability of the M2PLMix model, four

studies were investigated via a simulation study. The first study was used to deter-

mine the implications of assuming the hyperparameters (λ, ω, and κ) were known

during the estimation of M2PLMix model parameters. This was done by generat-

ing data in which specific values for the hyperparameters were chosen. This state

was referred to as the normal condition because these values were used in studies

2-4 for the M2PLMix and 2PLMix models. Next, data were generated in which

each hyperparameter was modified individually (further discussed in Data Gen-

eration). Lastly, the model parameters (α, β, θ, & δ) were then estimated under

each condition. The model parameter estimates with the modified hyperparam-

eters were then compared to the model parameters under the normal condition.

This was done to examine the recovery of model parameters when speededness

hyperparameters differ within the generation of data and during the estimation of

model parameters.

The second study was designed to determine if the M2PLMix model can recover

model parameters when speededness was not present. The design of this study

was also intended to show that the 2PL (a traditional IRT model) does not esti-
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mate model parameters well when the data were generated under the M2PLMix

model. The third study was used to determine if the 2PLMix model (ability and

speededness were not associated) can estimate model parameters in a case where

ability and speededness were associated. This study was also used to verify if

the M2PLMix can estimate model parameters well when ability and speededness

were not associated. Lastly, the fourth study was designed to determine how the

M2PLMix and 2PLMix perform when speededness and ability were associated,

but the data were generated under the GPC model. Studies 2 and 3 considered

the same simulation factors to answer their respective questions. The factors stud-

ied include sample size, test length, probability of not being speeded (baseline)

and item difficulty ordering.

4.1.1 Generation of Data

The discrimination parameters for the items were generated from a lognormal

distribution with mean and standard deviation of 0.3 and 1, respectively. Further-

more, the item difficulty parameters and the examinees’ ability levels were both

generated from a normal distribution with mean and variance of 0 and 1, respec-

tively. The item parameters can be found in Appendix E. The location of the

inception of speededness was generated using both the M2PLMix and 2PLMix

models discussed in the previous chapters in which the hyperparameters were

ω = 2, κ = 0.2, and the probability of not being speeded (baseline) was a factor.

The distributions for these parameters used to generate the data within this dis-

sertation were based on the generation of data found in Jin and Wang’s (2014)

study.

The item and ability level parameters were generated to be consistent under

each condition and replication for the first 3 simulation studies. For example, the

examinees’ abilities were the same across all conditions and replications when for

a particular sample size (i.e., N = 500) for all models. This was not the case

for the ability levels within the fourth study. The generation of data under the



48

GPC model, used in the fourth study, required the ability level and speededness

parameters to be generated through a known correlation structure. The data

generation algorithm for each model used to generate data is found in appendix

F.

The first study generated data in which the hyperparameters were λ = 0.4,

ω = 2, and κ = 0.2 based on Jin and Wang’s (2014) study. These hyperparameters

were then modified by the following design: λ and κ by ±0.05 and ω by ±0.5 to

generate data. These deviations were based on retaining the functionality of the

M2PLMix model and each deviation occurred in isolated events. Meaning that

if κ became 0.25 then the following parameters remained λ = 0.4 and ω = 2.

Therefore, the normal condition composed of all unmodified parameters and the

two modifications of each hyperparameter implied seven different hyperparameter

conditions. The sample size was N = 1000 and number of items was J = 40 for

all seven conditions. The number of replications for each condition was set to

R = 15. The M2PLMix model parameters were then estimated assuming λ = 0.4,

ω = 2, and κ = 0.2. The potential values of the hyperparameters were based on

the conditions found in Cao and Stokes (2008) and Jin and Wang (2014).

The factors investigated under studies 2 and 3 were sample size, test length,

probability of not being speeded (baseline) and item difficulty ordering. There

were three levels of sample size: N = 500, 1000, and 2000; three levels of test

length: J = 20, J = 40, and 80; three levels of probability (baseline) of not being

speeded: π = 0.2, 0.4, and 0.6 (2PLMix model) or λ = 0.2, 0.4, and 0.6 (M2PLMix

model); and the item difficulty was either randomly ordered or ordered from easiest

to most difficult. It should be noted that when the data were generated under the

2PL model, the speededness factors were not included. It was imperative to study

various sample sizes and test lengths because no research has evaluated how the

number of examinees or the lengths of a test impact the calibration of item param-

eters and the estimation of ability parameters under the speededness conditions.

Though multiple studies have evaluated different types of speededness, no work
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has cross evaluated speededness and item difficulty ordering in an comprehensive

manner. Thus studying these factors adds to the field of education measurement

research in that this work poses questions that have yet to be answered.

Data generated under the speeded models within studies 2 and 3 implied 54

unique conditions for each speeded model. Additionally, data generated under

the 2PL model resulted in 18 distinct conditions. The number of replications for

each condition was set to R = 40. The simulation factors and the corresponding

levels were based on previous studies that were used to research the effects of

speededness (Cao & Stokes, 2008; Jin & Wang, 2014; Oshima, 1994; Goegebeur

et al., 2008).

The second study included the generation of data under the M2PLMix and

2PL models in which the M2PLMix and 2PL models parameters were estimated

for both types of generation of data. This design was also implemented for the

third study in which data were generated under the M2PLMix and 2PLMix models

in which the M2PLMix and 2PLMix models parameters were estimated for both

types of generation of data. This design was imperative to answer the research

questions proposed.

The generation of the data under the fourth study was created by correlat-

ing the speededness parameters within the GPC model using the following three

correlation structures:

• ρ(θ, η) = 0.5, ρ(η, λ) = 0.2, ρ(θ, λ) = 0.2

• ρ(θ, η) = 0.6, ρ(η, λ) = 0.2, ρ(θ, λ) = 0.2

• ρ(θ, η) = 0.7, ρ(η, λ) = 0.2, ρ(θ, λ) = 0.2

where ρ denotes the correlation between two parameters. These values were used

to mimic the capability of the M2PLMix model in that there was an association

between ability and speededness via ρ(θ, η). Since neither ability and speededness

intensity (ρ(θ, λ)) nor speededness location speededness intensity (ρ(η, λ)) were

associated within the M2PLMix model, the correlation between these values were
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set to 0.2. Furthermore, three different levels of association were used to depict the

relationship between ability and the speededness location to imitate the varying

levels of the baseline probability of not being speeded under the M2PLMix model.

The marginal distributions for θ, η, and λ wereN(0, 1), β(2, 2), and logN(0, 0.01),

respectively. The parameters used within these distributions were based on Goege-

beur’s et. al (2008) study. The three structures were evaluated in order to de-

termine how the M2PLMix and 2PLMix models performed when the association

between speededness and ability was generated from a different model.

The fourth study primarily focused on how ability and speededness were asso-

ciated differently; however, the intensity of speededness was assumed to have the

same relationship between ability and location of speededness. The sample size

was N = 1000 and number of items was J = 40. R = 15 replications were gener-

ated for each condition. Once the data were generated under the GPC model, both

the M2PLMix and 2PLMix models were used to estimate their model parameters,

respectively.

4.1.2 Estimation of Model Parameters

All four studies exclusively used the proposed algorithm written in C++ and

various libraries (i.e., Armadillo, Boost) to estimate the 2PL, 2PLMix, and M2PLMix

model parameters (2PL code found in Appendix D). This algorithm was imple-

mented using parallel programming to increase the number of data sets the CPU

could estimate at a time. Amazon Web Services Elastic Cloud Compute was also

used to enhance the number of programs that could run in parallel. Code for the

parallel programming is found in Appendix D.

The parameters of interest within each estimation algorithm, regardless of the

model, were the discrimination (α), difficulty (β), and ability (θ) parameters.

However, within the speeded models, an additional parameter of interest was the

location at which speededness begins (δ). There were two chains created for each

parameter. For each replication of a particular condition, the number of iterations
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was 10, 000, in which the burn-in was 5, 000 iterations. The EAP method was

used to estimate all model parameters except for δ. This parameter is discrete;

therefore, the MAP method was used.

4.2 Evaluating Simulation Studies

Since MCMC was used to estimate the model parameters, multiple aspects of

the estimation process were investigated to ensure the model parameter estimates

were near expected (true) parameters. Three questions were posed to evaluate the

estimated parameters from each model:

1. Does the Markov chain converge to a value for each parameter?

2. Were the estimates of the model parameters close to the original (true)

values?

3. Does the model (estimated parameters) fit the data well?

The first question was used to examine whether the model parameters converged,

whereas the second and third questions were used to compare the models them-

selves. These evaluative aspects are typical concepts discussed in recent research

of speededness (Jin & Wang, 2014; Cao & Stokes,2008; Chang, Tsai, & Hsu, 2014),

and thus are discussed in detail in the following subsections.

4.2.1 Model Convergence

When estimating parameters within the implementation of MCMC, chain con-

vergence is key to the evaluation and stability of the estimated parameters. There

are many techniques that exist to determine if a chain converged, which was dis-

cussed in section 3. The Gelman and Rubin
√
R statistic was implemented to

analytically show convergence in this dissertation. The average percentage of

non-converged parameters for each condition was calculated for each IRT model
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parameter estimation (i.e., α, β, θ). Autocorrelation and trace plots of each pa-

rameter are traditionally used to ensure proper convergence graphically. However,

due to the number of plots required, none will be provided.

4.2.2 Evaluation Criterion

Once it is known that the model parameters have properly converged, it is

imperative to determine how well each parameter was recovered. The measures

used to evaluate the recovery of the traditional IRT model parameters were the

bias and root mean squared error (RMSE). The bias and RMSE of a parameter,

ξ, where ξ can represent α, β, or θ parameters, are denoted as the following:

bias(ξ) =
R∑
r=1

(ξ − ξ̂)
R

(4.1)

RMSE(ξ) =
R∑
r=1

√
(ξ − ξ̂)2

R
(4.2)

where ξ̂ is the estimated parameter, ξ is the true parameter, and R is the

number of replications. These measures are common tools to evaluate the accuracy

of the calibration of item parameters and estimation of the ability parameters

within speeded models in the literature (e.g., Lee & Ying, 2015; Chang, Tsai, &

Hsu, 2014; Brown, Li, & Yang, 2013). The standard deviation of each criterion was

determined as well to show the variation in estimating a parameter over multiple

replications.

Several different methods were proposed to investigate the recovery of the

speededness location parameter. Five distinct techniques were implemented to

measure the accuracy of the inception of speededness. These measures are as

follows:
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1. M1 denotes the average proportion of correct specification

M1 =
N∑
i=1

1(δ̂i = δi)

N
, (4.3)

2. M2 denotes the average proportion of correct specification of the inception

for speeded examinees

M2 =
N∑
i=1

1(δi 6= J)1(δ̂i 6= J)∑N
i=1 1(δi 6= J)

, (4.4)

3. M3 denotes the average proportion of correct specification of the inception

for non-speeded examinees

M3 =
N∑
i=1

1(δi = J)1(δ̂i = J)∑N
i=1 1(δi = J)

, (4.5)

4. M4 represents the average of relative bias (Forero & Maydeu-Olivares, 2009)

M4 =

∑N
i=1

δi−δ̂i
δi

N
, (4.6)

5. M5 denotes the average proportion difference between the true proportion

of speeded examinees and the estimated proportion of speeded examinees

M5 =
N∑
i=1

1(δi 6= J)

N
−

N∑
i=1

1(δ̂i 6= J)

N
, (4.7)

where 1 represents an indicator function (i.e. equal to 1 when the statement

within the parenthesis is true and 0 when the statement is false), N is the sample

size and J is the number of items. These values were averaged with respect to all

replications for each condition.

M1, M2, and M3 were very similar in that they were used to measure correct

specification of being speeded or not being speeded, using the location parameter,

δ . M1 was able to determine if the specification of the inception of speededness or
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being not being speeded was correct. Further, M2 verifies those that were speeded

to be estimated as speeded. M3 verifies those that were truly not speeded to be

estimated as not speeded. Since these measures were proportions, the range of

possible values were between 0 and 1. The closer these statistics were to 1, the

better the estimation of the inception of speededness. M1 & M3 were conservative

statistics, in that if δ̂i was not exactly δi, a misspecification will have occurred. In

contrast, δ̂i does not have to be exactly δi to be a correct specification for M2.

M4 represents the difference between δi and δ̂i in relation to δi, meaning that

the closer the estimated value is to the true value, the smaller the relative bias

becomes. M4 ranges from −1−J
J

to (J−1). However, this statistic has an intrinsic

penalty for being speeded earlier on an assessment and obtaining an incorrect δ̂i in

terms of estimation. For example, if two examinees were speeded at two different

locations, say item 4 and item 35, and the model estimated the speeded locations

to be 6 and 37 respectively, the relative bias for the first examinee is 0.5 and the

second is 0.05. This is important to note when evaluating the models in the results

section. It is also important to note that the implementation of M4 was proposed

by Forero and Maydeu-Olivares (2009) in which they defined any value greater

than 0.2 was not ideal. The last measure, M5, measures the proportion difference

between the true and estimated δi parameters with respect to the proportion of

specifying a person as speeded. This measure’s possible values were between −1

to 1 and the closer M5 is to 0 the better.

Currently, no research has created a robust index to measure the location

of where speededness occurs for each individual. This is probably attributed to

the fact that measuring the exact location in which speededness begins is very

difficult and imprecise. However, these measurements were used to provide an

initial attempt of evaluating the accuracy of measuring speededness location.
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4.2.3 Model Comparison

Model comparison analyses were conducted to determine which model fitted

the data best among the models being compared. Note that the model comparison

was only conducted in studies 2 and 3. Multiplying −2 by the log-likelihood func-

tion (−2 logL) is a typical technique used to compare two models. The likelihood

uses the estimated parameters within equation ?? can be seen as:

−2 logL = −2 logL(X|ξ̂) (4.8)

where ξ̂ denotes the estimated model parameters and X is the data. Other mea-

sures can be used to determine the fit of parameters to the data such as the Akaike

Information Criterion (AIC) which is used when investigating the complexity of

a model versus how well the model fits the data. This measure can be seen as:

AIC = 2k − 2 logL(X|ξ̂) (4.9)

where k denotes the number of estimated parameters. A correction is often needed

when estimating many parameters, therefore the Akaike Information Criterion

Correction (AICc) is provided as:

AICc = AIC +
(2k(k + 1))

(n− k − 1)
, (4.10)

where n denotes the sample size. Another measure named the Bayesian Infor-

mation Criterion (BIC) is used to reduce over fitting which can be represented

as:

BIC = −2 logL(X|ξ̂) + k log(n). (4.11)
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Lastly, the adjusted Bayesian Information Criterion is used as another method of

comparing the models:

AdjBIC = −2 logL(X|ξ̂) + k log(
n+ 2

24
). (4.12)

4.3 Results

Each study was presented in a different format to ensure that results patterns

were recognized and the differences between the models were observed easily. For

the first and fourth studies, the majority of the results are presented within the

main body of the dissertation. However, the second and third studies conditions

that are checked in Table 4.1 are shown in the following sections and the remaining

are provided in the Appendix in terms of the recovery of parameters and model

fit. Therefore, there are only 18 conditions when the data were generated under

a speededness model (i.e. M2PLMix & 2PLMix) and there are 6 conditions when

the data were generated under the 2PL model presented in the results section.

This was carried out due to space, but generalizations are extended to the results

shown in the appendices. The plots of the bias and RMSE of the estimated model

parameters do not include the ability parameter and are shown for N = 1000 and

J = 40 within studies 2 and 3, due to the number of plots. The convergence of

the α, β and θ parameters are only shown within studies 2 and 3, for the same

condition due to space limitations.

Table 4.1: Results presented within Dissertation for Study 2 and 3

Test Length
J = 20 J = 40 J = 80

N = 500 X - -
Sample Size N = 1000 - X -

N = 2000 - - X
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4.3.1 Study 1 Outcomes

This study was used to determine the ramifications of generating the data

under a set of hyperparameters and to determine if the recovery of the model

parameters would be affected by using different sets of hyperparameters during

the estimation process. Table 4.2 shows the bias, standard deviation of the bias,

RMSE, and standard deviation of the RMSE for the traditional 2PL IRT param-

eters (α, β, θ).

Table 4.2: IRT model parameters: Generating data through changing hyperparameters
and estimating M2PLMix model parameters with hyperparameters set to λ = 0.4, ω = 2,
and κ = 0.2

Estimating Under λ = 0.4, ω = 2, and κ = 0.2 Model N = 1000, J = 40
Normal -

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.04 0.05 0.1 0.16 - - - -

Normal β -0.09 0.07 0.11 0.18 - - - -
θ -0.04 0.19 0.28 0.13 - - - -

ω = 1.5 ω = 2.5
Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD

α 0.02 0.05 0.1 0.15 0.08 0.04 0.12 0.16
ω β -0.1 0.07 0.12 0.18 -0.08 0.1 0.12 0.19

θ -0.04 0.21 0.29 0.15 -0.04 0.15 0.26 0.1
κ = 0.15 κ = 0.25

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.14 0.06 0.16 0.18 -0.02 0.08 0.12 0.19

κ β -0.08 0.13 0.14 0.21 -0.09 0.08 0.12 0.18
θ -0.04 0.16 0.28 0.12 -0.04 0.19 0.27 0.13

λ = 0.35 λ = 0.45
Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD

α 0.05 0.04 0.11 0.17 0.06 0.04 0.1 0.16
λ β -0.09 0.09 0.12 0.19 -0.08 0.07 0.11 0.18

θ -0.04 0.15 0.27 0.1 -0.04 0.19 0.28 0.13

Each variation of a hyperparameter shows its recovery of α, β, and θ in Ta-

ble 4.2. Again, normal denotes when the hyperparameters were all unmodified

(normal condition). When ω was modified (with respect to ±0.5), the recovery

of the model parameters were the same as if the data were generated with no

modifications made to the ω (i.e., the normal case) except for one parameter. The

exception was when ω = 2.5, where the discrimination parameters were slightly
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underestimated compared to the normal case.

The λ hyperparameter also behaved similarly; parameter recovery was con-

sistent, regardless of the variation in λ. This was not the case for κ, as the

discrimination parameters were underestimated when κ = 0.15. The rationale for

this result stems from κ’s direct impact on the amount speededness that affects

the probability of correctness in which more items will be answered correctly when

κ = 0.15. Since the discrimination parameter was estimated with κ = 0.2, the dis-

crimination parameter loses its power to discriminate between high and low ability

examinees, because κ = 0.2 assumes more incorrect solutions. The variations of

the κ parameter also had an impact on the difficulty parameter, increasing the

standard deviation of the bias for all items. However, κ was not problematic in

the recovery of the ability parameter.

Figures 4.1 - 4.6 display the RMSE and bias for each item’s α and β parameter

when the data were generated with modified hyperparameters ω = 2.5, κ = 0.25,

λ = 0.45 with the normal condition as the control. The bottom two panels display

when the data were generated and estimated under the normal condition and the

top panels shows when the data were generated with a modification and estimated

under the normal case. The outcomes for when ω = 1.5, κ = 0.15, λ = 0.35 are

found in Appendix A.



59

Figure 4.1: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with ω = 2.5 (top) and Normal (bottom) models, N = 1000,
J = 40

Figure 4.2: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with ω = 2.5 (top) and Normal (bottom) models, N = 1000,
J = 40
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Figure 4.3: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with κ = 0.25 (top) and Normal (bottom) models, N = 1000,
J = 40

Figure 4.4: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with κ = 0.25 (top) and Normal (bottom) models, N = 1000,
J = 40
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Figure 4.5: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with λ = 0.45 (top) and Normal (bottom) models, N = 1000,
J = 40

Figure 4.6: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with λ = 0.45 (top) and Normal (bottom) models, N = 1000,
J = 40

A gauge was created to determine if the bias or RMSE per item was in a

reasonable range: if the absolute value of an item parameter’s bias or RMSE was

above an arbitrary number, then it was classified as an open triangle, otherwise

it was classified as a closed circle. Throughout all four studies this gauge was

arbitrarily set to 0.3 for the RMSE and bias for each estimated item parameter.

Figure 4.1 shows when ω = 2.5, all discrimination parameters were underesti-

mated. However, under the normal condition, all the discrimination parameters
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were overestimated with some exceptions at the end of the test. Figure 4.2 demon-

strates that when ω = 2.5, difficulty parameters tended to be overestimated and

were better estimated than the discrimination parameters but the last few items

showed large bias and RMSE. The results were very similar to those of the normal

condition. Figure 4.3 depicts that when κ = 0.25, item discrimination parameters

were overestimated towards the end of the test, whereas discrimination parameters

for the normal condition tended to be underestimated in the beginning of the test.

However, RMSE values were similar between the two conditions. Figure 4.4 de-

picts when κ = 0.25, difficulty parameters were overestimated towards the end of

the test, matching the recovery of the M2PLMix model under normal conditions.

Figure 4.5 reveals that when λ = 0.45, most item discrimination parameters were

underestimated which was very similar to the normal condition. Figure 4.6 shows

when λ = 0.45, difficulty parameters were overestimated towards the end of the

test, matching the recovery of the M2PLMix model under normal conditions.

In general, the graphs indicate that modifying these hyperparameters causes

slight over- or underestimation depending on parameter types. However, the recov-

ery of these parameters only slightly deviated from the normal condition, meaning

that hyperparameters modification did not have an crucial impact.

All five measures used to determine the accuracy of the inception of speeded-

ness are seen in Table 4.3. M1 was used to determine the proportion of potential

speededness locations that were correctly specified. The classification rates were

similar for all 7 conditions, which was around 0.7. M2 measures the proportion

of those that accurately identified as speeded. M2 ranged from 0.23 to 0.38 on

average, which was a relatively poor result. This implies that the model identifies

speeded examinees as not being speeded. This result is corroborated in studies

2 and 3. M2 performs poorly especially when κ = 0.15 and ω = 2.5. Setting

κ = 0.15 appears to mask the effect of speededness, especially when compared to

the normal condition, yielding the failure of M2 to be able to correctly identify

speeded examinees. Setting ω = 2.5 impacts the convexity of the probability of
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not being speeded in such a way that less examinees were seen as speeded. That

being said, if less people are specified as speeded during the estimation of δ then

this would lower the classification rate of those that are speeded.

M3 denotes the proportion that accurately identified those that were not

speeded and had a value of 1 under all variations of the hyperparameters. This

result implies that the M2PLMix was proficient in determining unspeeded exam-

inees. For M4 (relative bias) in absolute value, values of relative bias larger than

|0.2| were considered unacceptable. When ω = 1.5, the M4 (relative bias) was

relatively large, implying that the less convex the baseline probability distribution

of not being speeded, the more inaccurate the location of speededness. However

it is important to be aware of the inherent bias found in this statistic, discussed

previously. More specifically, when ω was small during generation of data the

probability of being speeded occurs earlier. For other conditions, the M4 statistic

was close to or smaller than the normal condition. M5 was used to gauge the pro-

portion of speeded baseline examinees compared to the true proportion of speeded

examinees. M5 was fairly comparable throughout all variations of the hyperpa-

rameters. The difference was high because of the M2PLMix model’s failure to

correctly identify speeded examinees (which will be discussed further in studies 2

and 3).

It was important to note that these indices have not been vetted and were

based on the nature of the inception of speededness. It was also important to note

that there was no absolute way to determine when an examinee switches their test

taking strategy, therefore it was expected for these rates to be imperfect. This

study allows us to understand the effect of assuming known hyperparameters and

the ramifications of generating the data with different hyperparameters.
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Table 4.3: Location of Speededness: Generating data through changing hyperpa-
rameters and estimating M2PLMix model parameters with hyperparameters set to
λ = 0.4, ω = 2, and κ = 0.2 as the normal condition.

Estimating under λ = 0.4, ω = 2, and κ = 0.2 for N = 1000, J = 40
Normal -

M1 M2 M3 M4 M5

Normal δ 0.7 0.3 1 -0.18 -0.21
ω = 1.5 ω = 2.5

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

ω δ 0.69 0.38 1 -0.29 -0.2 0.7 0.25 1 -0.08 -0.23
κ = 0.15 κ = 0.25

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

κ δ 0.68 0.23 1 -0.12 -0.25 0.7 0.35 1 -0.12 -0.2
λ = 0.35 λ = 0.45

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

λ δ 0.69 0.37 1 -0.09 -0.2 0.72 0.34 1 -0.14 -0.18

M1: correct specification of the location, M2: correct specification for examinees, M3:
correct specification for nonspeeded examinees, M4: relative bias, M5: proportion
difference of specified speeded between true and estimated.
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4.3.2 Study 2 Outcomes

Data generated under M2PLMix Model when λ = 0.2

This section discusses the results of the 2PL and M2PLMix when data were

generated under the M2PLMix model with the baseline probability of not being

speeded λ = 0.2. Table 4.4) shows the parameter recovery results of the two

models. When the sample size and the number of items were N = 500 and J = 20

respectively and the data were generated under the M2PLMix, the M2PLMix

model performed better than the 2PL. The M2PLMix model resulted in lower

RMSE and bias values than the 2PL in terms of α, β, and θ as expected.The RMSE

of β was the smallest, and the RMSE of θ was the largest across all conditions,

which is a typical observation in other IRT parameter recovery studies. When

the items were ordered by difficulty level, the parameters were better estimated in

both models, compared to the random order condition. This was natural because

once an examinee became speeded, the items were already difficult. Therefore,

it was expected for these students to underperform during the latter part of the

assessment.

As the sample size (N = 1000, N = 2000) and the length of the test (J = 40,

J = 80) increased, the M2PLMix produced better estimates for α, β and θ, while

the 2PL did not. Though the number of unspeeded examinees increased (when the

number of observations increases), the number of speeded students increased as

well. Therefore, ignoring speededness was problematic no matter the sample size

or the number of items. As the sample size and the number of items increased, the

standard deviations of the bias and RMSE of the α, β, and θ parameters tended

to decrease in the M2PLMix model, while the opposite pattern was observed in

the 2PL model.
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Table 4.4: IRT model parameters: Generated Model M2PLMix; Estimated Models the
M2PLMix and 2PL with λ = 0.2.

Generating Model M2PLMix N = 500, J = 20 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.16 0.2 0.24 0.17 -0.27 0.36 0.37 0.27

Random β -0.16 0.12 0.19 0.19 -0.25 0.22 0.28 0.23
θ -0.02 0.4 0.4 0.21 -0.02 0.5 0.44 0.25
α -0.14 0.12 0.2 0.16 -0.24 0.19 0.28 0.18

Ordered β -0.07 0.08 0.13 0.22 -0.1 0.11 0.16 0.19
θ -0.03 0.37 0.38 0.19 -0.02 0.41 0.39 0.22

Generating Model M2PLMix N = 1000, J = 40 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.08 0.12 0.19 -0.28 0.39 0.38 0.29

Random β -0.07 0.08 0.11 0.17 -0.24 0.3 0.27 0.3
θ -0.03 0.17 0.28 0.12 -0.02 0.49 0.4 0.26
α -0.09 0.09 0.13 0.19 -0.21 0.19 0.25 0.22

Ordered β -0.05 0.03 0.08 0.15 -0.11 0.08 0.14 0.14
θ -0.03 0.19 0.28 0.12 -0.02 0.4 0.34 0.24

Generating Model M2PLMix N = 2000, J = 80 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0 0.03 0.07 0.06 -0.29 0.44 0.41 0.35

Random β -0.03 0.04 0.06 0.06 -0.25 0.33 0.28 0.34
θ -0.02 0.1 0.2 0.15 -0.02 0.54 0.41 0.33
α -0.03 0.07 0.08 0.11 -0.2 0.21 0.25 0.21

Ordered β -0.01 0.03 0.05 0.06 -0.08 0.1 0.12 0.08
θ -0.02 0.11 0.19 0.15 -0.02 0.38 0.28 0.27

The measures used to determine the location of speededness can be seen in

Table 4.5. M1 across all conditions shows that the proportion of examinees that

were classified correctly occurred at very similar rates in both models. However,

since the 2PL classifies the entire test-taking population as not speeded, M2 was

0, as expected. In contrast, M2 increases as the number of observations (i.e., N &

J) increased for the M2PLMix model. The measurement used to determine the

proportion of properly classified nonspeeded examinees, M3, were consistently 1

for the M2PLMix and 2PL models.

The relative bias and the difference between the true and estimated proportions

of speeded examinees, M4 and M5, tended to decrease as the length of the test
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and sample size increased for the M2PLMix. On the other hand, these factor

remain did not affect the results of M4 and M5 for the 2PL under all conditions.

M4 and M5 tended to performed better under the M2PLMix model than the 2PL,

regardless of item order. This tendency was more apparent with the random order

condition than the ordered condition.

Table 4.5: Location of Speededness: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PL with λ = 0.2.

Generating Model M2PLMix N = 500, J = 20 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.59 0.02 1 -0.41 -0.4 0.59 0 1 -0.43 -0.41
Ordered δ 0.61 0.01 1 -0.39 -0.39 0.61 0 1 -0.4 -0.39

Generating Model M2PLMix N = 1000, J = 40 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.24 1 -0.22 -0.3 0.6 0 1 -0.37 -0.4
Ordered δ 0.58 0.1 1 -0.25 -0.38 0.58 0 1 -0.37 -0.42

Generating Model M2PLMix N = 2000, J = 80 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.57 1 -0.05 -0.17 0.59 0 1 -0.41 -0.41
Ordered δ 0.6 0.24 1 -0.13 -0.3 0.6 0 1 -0.35 -0.4

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Data generated under M2PLMix Model when λ = 0.4

This section provides the results in which the data were generated under the

M2PLMix model with the baseline probability of not being speeded was 0.4. Model

parameters were estimated under the 2PL and M2PLMix models. As the baseline

probability of not being speeded (λ) increases, the parameters become better es-

timated in both models, which can be seen in Table 4.6. This was caused by less

examinees being affected by speededness. Though both models performed better

when the λ increases, the M2PLMix model recovered α, β, and θ better than the

2PL model.



68

Item ordering caused the difficulty parameter to be better estimated no matter

the sample size, number of items, and the baseline probability of not being speeded

for both models. The standard deviation of the RMSE and the bias decreased as

sample size and number of items increased for the M2PLMix model but not for

the 2PL model. In addition, the standard deviation of the bias was consistently

larger for θ across all conditions for both models due to the number of parameters.

The standard deviation of bias for α, β, and θ regarding the M2PLMix model was

always lower than that of the 2PL model.

Table 4.6: IRT model parameters: Generated Model M2PLMix; Estimated Models the
M2PLMix and 2PL with λ = 0.4.

Generating Model M2PLMix N = 500, J = 20 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.11 0.19 0.2 -0.19 0.22 0.27 0.19

Random β -0.13 0.12 0.18 0.2 -0.19 0.2 0.24 0.19
θ -0.02 0.34 0.38 0.16 -0.02 0.44 0.41 0.21
α -0.1 0.09 0.16 0.21 -0.18 0.14 0.22 0.19

Ordered β -0.06 0.04 0.11 0.2 -0.08 0.07 0.12 0.17
θ -0.02 0.3 0.35 0.14 -0.02 0.32 0.35 0.16

Generating Model M2PLMix N = 1000, J = 40 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.04 0.07 0.11 0.18 -0.22 0.31 0.31 0.24

Random β -0.06 0.07 0.1 0.15 -0.21 0.25 0.24 0.27
θ -0.03 0.18 0.27 0.12 -0.02 0.49 0.39 0.29
α -0.06 0.06 0.11 0.17 -0.15 0.13 0.19 0.19

Ordered β -0.03 0.03 0.08 0.1 -0.06 0.07 0.11 0.1
θ -0.03 0.18 0.26 0.14 -0.02 0.32 0.29 0.2

Generating Model M2PLMix N = 2000, J = 80 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.04 0.07 0.06 -0.2 0.31 0.3 0.25

Random β -0.04 0.04 0.06 0.07 -0.19 0.26 0.23 0.27
θ -0.03 0.09 0.19 0.14 -0.02 0.47 0.35 0.3
α -0.04 0.05 0.08 0.1 -0.18 0.16 0.22 0.18

Ordered β -0.02 0.02 0.06 0.04 -0.07 0.08 0.11 0.06
θ -0.03 0.12 0.2 0.16 -0.02 0.37 0.27 0.27

Figures 4.7 - 4.10 display the bias and RMSE for α and β where the sample size

was N = 1000 and the number of items was J = 40 for random and ordered item
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difficulty with respect to both M2PLMix and 2PL models. The bias and RMSE

for each item discrimination parameter with random difficulty ordering tended to

be estimated well during the beginning of the assessment and increased towards

the end of the test for both models, as seen in Figure 4.7. However, the 2PL

model performs worse compared to the M2PLMix towards the end of the test. As

mentioned in the first study, if parameters are poorly recovered (bias or RMSE are

greater than 0.3), triangles are used to display their values. There were no poorly

recovered items under the M2PLMix model, but 43% of the item discrimination

parameters were poorly calibrated within the 2PL model. When item difficulty

was ordered, modeling speededness was still found to impact the recovery of α,

however at a lower rate, and only 13% of item discrimination parameters were

poorly calibrated under the 2PL model.

Figure 4.9 displays a similar pattern in the recovery of difficulty parameters, in

that poorly calibrated items primarily occurred towards the end of an assessment

for both models. But items were only classified as poorly calibrated only under

the 2PL model. In fact, no items were considered to be poorly calibrated when the

item difficulty was ordered, as found in Figure 4.10. Under his ordered condition,

it appeared that item difficulty parameters were estimated well during beginning

of the test, then become underestimated, and then become estimated better again.

This pattern becomes stronger under the 2PL model. This result was probably

due to the fact that medium difficulty items were affected by speededness, whereas

truly difficult items were more impacted by the difficulty of the items.
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Figure 4.7: Bias and RMSE for α, data generation under M2PLMix model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 λ = 0.4 , Item Ordering was
Random

Figure 4.8: Bias and RMSE for α, data generation under M2PLMix model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 λ = 0.4 , Item Ordering was
Ordered
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Figure 4.9: Bias and RMSE for β, data generation under M2PLMix model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 λ = 0.4 , Item Ordering was
Random

Figure 4.10: Bias and RMSE for β, data generation under M2PLMix model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 λ = 0.4 , Item Ordering was
Ordered

Table 4.7 shows the measures of inception of speededness when λ = 0.4. In

the same manner as Table 4.5, the M1 was similar between both models, and

M3 was always 1 for both models. Compared to Table 4.5, M1 increased because

the number of people affected by speededness decreased. As the sample size and

the number of items increase, M2, M4, and M5 are better estimated under the

M2PLMix model.
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Table 4.8 denotes the convergence rate of α, β, and θ. Each numerical value

represents the average of parameters that did not converge. This table shows that

when the M2PLMix model was used to estimate the model parameters, almost all

parameters converge using the Gelman-Rubin criteria under most conditions. In

a similar respect, under the 2PL model used to estimate the model parameters,

all the model parameters were able to converge with respect to the Gelman-Rubin

criteria. The parameters that did not converged was included within the results

(recovery of parameters and model fit) and did not affect the general pattern of

the results.

Table 4.7: Location of Speededness: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PL with λ = 0.4.

Generating Model M2PLMix N = 500, J = 20 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.01 1 -0.27 -0.29 0.7 0 1 -0.27 -0.3
Ordered δ 0.67 0 1 -0.27 -0.33 0.67 0 1 -0.27 -0.33

Generating Model M2PLMix N = 1000, J = 40 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.71 0.25 1 -0.17 -0.22 0.71 0 1 -0.31 -0.29
Ordered δ 0.7 0.08 1 -0.22 -0.27 0.7 0 1 -0.28 -0.3

Generating Model M2PLMix N = 2000, J = 80 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.72 0.55 1 -0.04 -0.13 0.71 0 1 -0.27 -0.29
Ordered δ 0.69 0.24 1 -0.16 -0.24 0.69 0 1 -0.35 -0.31

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.
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Table 4.8: Percentage of Non-Convergence of IRT Parameters, α, β, and θ for
M2PLMix and 2PL models, generated under M2PLMix model, using the Gelman-Rubin
Criteria

N = 500, J = 20, λ = 0.4
M2PLMix R 2PL R

α 0 0
Random β 0 0

θ 0.008 0
α 0 0

Ordered β 0.05 0
θ 0.012 0

N = 1000, J = 40, λ = 0.4
M2PLMix R 2PL R

α 0 0
Random β 0.1 0

θ 0.01 0
α 0 0

Ordered β 0 0
θ 0.022 0

N = 2000, J = 80, λ = 0.4
M2PLMix R 2PL R

α 0 0
Random β 0 0

θ 0.005 0
α 0 0

Ordered β 0 0
θ 0.032 0

Data generated under M2PLMix Model when λ = 0.6

This section provides the results in which the data were generated under the

M2PLMix model with the baseline probability of not being speeded λ = 0.6, and

model parameters were estimated under the 2PL and M2PLMix models. Even

though the baseline probability of not being speeded was λ = 0.6, hence less

examinees were affected by speededness, the 2PL model was still unable to recover

the item parameters, compared to the M2PLMix model, as seen in Table 4.9.

Furthermore, both models improved in terms of recovery of item parameters and

ability level due to a lower number of speeded examinees. As with the other λ

levels, model parameters were better estimated when item difficulty was ordered.
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The standard deviation for bias and RMSE decreased as the sample size and the

number of items increased. Of all three baseline probabilities of not being speeded,

λ = 0.6 has the lowest RMSE and bias due to the low number of individuals that

were impacted by speededness.

Table 4.9: IRT model parameters: Generated Model M2PLMix; Estimated Models the
M2PLMix and 2PL with λ = 0.6.

Generating Model M2PLMix N = 500, J = 20 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.12 0.18 0.17 -0.18 0.18 0.24 0.18

Random β -0.09 0.11 0.15 0.18 -0.13 0.17 0.19 0.2
θ -0.03 0.31 0.35 0.15 -0.02 0.36 0.37 0.17
α -0.04 0.06 0.14 0.19 -0.1 0.1 0.17 0.18

Ordered β -0.04 0.06 0.11 0.26 -0.05 0.06 0.11 0.2
θ -0.02 0.29 0.34 0.15 -0.02 0.31 0.35 0.16

Generating Model M2PLMix N = 1000, J = 40 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.05 0.1 0.16 -0.1 0.2 0.2 0.21

Random β -0.05 0.04 0.09 0.13 -0.16 0.17 0.18 0.21
θ -0.02 0.16 0.26 0.1 -0.02 0.4 0.33 0.25
α -0.04 0.06 0.1 0.16 -0.11 0.11 0.16 0.19

Ordered β -0.03 0.03 0.08 0.15 -0.06 0.07 0.1 0.15
θ -0.03 0.17 0.26 0.12 -0.02 0.33 0.29 0.22

Generating Model M2PLMix N = 2000, J = 80 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.03 0.07 0.06 -0.15 0.23 0.23 0.21

Random β -0.03 0.03 0.06 0.07 -0.16 0.21 0.18 0.23
θ -0.03 0.09 0.19 0.15 -0.02 0.41 0.3 0.28
α -0.02 0.04 0.07 0.05 -0.1 0.11 0.14 0.18

Ordered β -0.03 0.03 0.06 0.06 -0.06 0.06 0.08 0.07
θ -0.03 0.11 0.19 0.15 -0.02 0.31 0.24 0.23

M1 in Table 4.10 was similar for both the M2PLMix and the 2PL models.

However, the correct specification for when λ = 0.6 was greater than that of the

other levels because the number of speeded examinees was smaller with this set.

Similar patterns for the other measures were found as the other levels of λ.
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Table 4.10: Location of Speededness: Generated Model M2PLMix; Estimated Mod-
els the M2PLMix and 2PL with λ = 0.6.

Generating Model M2PLMix N = 500, J = 20 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.01 1 -0.19 -0.2 0.8 0 1 -0.2 -0.2
Ordered δ 0.79 0 1 -0.19 -0.21 0.79 0 1 -0.19 -0.21

Generating Model M2PLMix N = 1000, J = 40 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.27 1 -0.08 -0.14 0.8 0 1 -0.16 -0.2
Ordered δ 0.79 0.1 1 -0.13 -0.18 0.8 0 1 -0.19 -0.2

Generating Model M2PLMix N = 2000, J = 80 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.59 1 -0.03 -0.08 0.8 0 1 -0.21 -0.2
Ordered δ 0.78 0.23 1 -0.1 -0.17 0.78 0 1 -0.2 -0.22

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Table 4.11 shows the model fit results in which the item ordering difficulty was

random (ordered is found in Appendix B). The M2PLMix model does not fit the

data well when the sample size and the number of items were small (i.e., N = 500

and J = 20) across all baselines of probability of not being speeded. However as

the amount of parameters increase the model starts to fit the data well, according

to the −2LL fit. Even though the items were better estimated with the M2PLMix

than the 2PL, when the sample size was small, the model fit of the 2PL was slightly

better than the M2PLMix which was due to the fact that the M2PLMix model

estimates 500 more parameters (δ) than the 2PL. This was not the case for the

other 5 measures of model fit. The other measures indicated that the 2PL fitted

the data better than the M2PLMix with a few exceptions which was caused by

the number of parameters the M2PLMix model was estimating. The number of

parameters does not have an impact on −2LL as much as the others measures in

terms of the number of parameters found in the M2PLMix model compared to

2PL model.
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Table 4.11: Model Fit Data Generation under M2PLMix Model; λ = 0.2, λ = 0.4,
λ = 0.6, Item Difficulty Ordering Random

Model Fit Data Generation under the M2PLMix Model
Estimating Model M2PLMix and 2PL

M2PLMix Model
−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 8710.53 10790.53 6788.17 15173.73 11872.7
λ = 0.2 N = 1000, J = 40 34186.4 38346.4 30338.11 48554.53 41948.33

N = 2000, J = 80 130134.6 138454.6 122434.47 161754.36 148537.81
N = 500, J = 20 8815.63 10895.63 6893.26 15278.82 11977.8

λ = 0.4 N = 1000, J = 40 34657.43 38817.43 30809.15 49025.57 42419.37
N = 2000, J = 80 135331.38 143651.38 127631.25 166951.14 153734.59
N = 500, J = 20 8792.62 10872.62 6870.25 15255.81 11954.79

λ = 0.6 N = 1000, J = 40 35447.63 39607.63 31599.34 49815.76 43209.56
N = 2000, J = 80 138533.06 146853.06 130832.93 170152.82 156936.27

2PL Model
−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 8474.07 9554.07 4696.66 11829.96 10115.96
λ = 0.2 N = 1000, J = 40 34745.77 36905.77 8079.1 42206.14 38776

N = 2000, J = 80 140560.41 144880.41 86895.81 156978.36 150115.92
N = 500, J = 20 8646.19 9726.19 4524.54 12002.08 10288.09

λ = 0.4 N = 1000, J = 40 35189.56 37349.56 8522.89 42649.94 39219.8
N = 2000, J = 80 143365.79 147685.79 89701.19 159783.74 152921.3
N = 500, J = 20 8681.78 9761.78 4488.95 12037.67 10323.68

λ = 0.6 N = 1000, J = 40 36137.36 38297.36 9470.69 43597.74 40167.6
N = 2000, J = 80 144807.11 149127.11 91142.52 161225.06 154362.63

Data generated under the 2PL Model

No Speededness PresentNo Speededness PresentNo Speededness Present

This section provides the results when the data were generated under the 2PL

model in which speededness was not present. Model parameters were estimated

under the 2PL and M2PLMix models. In general, when the data were generated

under the 2PL model and the sample size was small, the M2PLMix model did

not recover the IRT model parameters as well as the 2PL (see Table 4.12). The

M2PLMix model assumes that examinees with low ability were seen as speeded.

The low RMSE and bias for the estimates of the parameters under the 2PL model

also indicates that the proposed algorithm works well in estimating model param-
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eters. On the other hand, the M2PLMix model only works well in the absence

of speededness if the sample size and item length were large. Additionally, the

model parameters were better estimated when the items were ordered based on

difficulty, similar to when the data was generated under the M2PLMix model.

Table 4.12: IRT model parameters: Generated Model 2PL; Estimated Models the
M2PLMix and 2PL, no speededness.

Generating Model 2PL N = 500, J = 20
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.14 0.13 0.2 0.13 -0.02 0.06 0.14 0.2

Random β 0.11 0.25 0.23 0.42 -0.02 0.04 0.11 0.19
θ -0.02 0.23 0.34 0.1 -0.02 0.2 0.32 0.09
α 0.09 0.06 0.17 0.17 -0.02 0.05 0.14 0.19

Ordered β 0.03 0.08 0.13 0.21 -0.02 0.03 0.11 0.18
θ -0.02 0.22 0.33 0.1 -0.02 0.19 0.32 0.09

Generating Model 2PL N = 1000, J = 40
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.11 0.1 0.15 0.18 -0.02 0.03 0.09 0.17

Random β 0.03 0.2 0.15 0.23 -0.03 0.02 0.08 0.11
θ -0.02 0.12 0.25 0.09 -0.02 0.12 0.23 0.08
α 0.08 0.05 0.12 0.19 -0.02 0.04 0.1 0.17

Ordered β -0.02 0.07 0.09 0.16 -0.03 0.02 0.07 0.11
θ -0.02 0.12 0.24 0.1 -0.03 0.12 0.23 0.09

Generating Model 2PL N = 2000, J = 80
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.04 0.04 0.08 0.07 -0.01 0.02 0.07 0.06

Random β -0.01 0.06 0.06 0.11 -0.02 0.02 0.05 0.05
θ -0.03 0.06 0.17 0.13 -0.02 0.08 0.17 0.14
α 0.04 0.04 0.07 0.06 -0.02 0.02 0.07 0.05

Ordered β -0.03 0.03 0.06 0.09 -0.02 0.02 0.05 0
θ -0.03 0.07 0.17 0.13 -0.02 0.08 0.17 0.14

The recovery for the item parameters estimated under the 2PL and M2PLMix

models when data were generated under the 2PL models are found in figures 4.11 -

4.14. These figures show that the 2PL model was able to recover item parameters

well when speededness is not present. In contrast, the discrimination and the

difficulty parameters were not recovered well towards the end of an assessment

for the M2PLMix model. The M2PLMix model improved in terms of estimation
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of the item parameters towards the end of the assessment when item difficulty

was ordered. The estimation of item parameters are better estimated when item

difficulty is ordered because

Figure 4.11: Bias and RMSE for α, data generation under 2PL model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 , Item Ordering was Random

Figure 4.12: Bias and RMSE for α, data generation under 2PL model, estimation
were the M2PLMix and 2PL models, N =1000, J = 40 , Item Ordering was Ordered
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Figure 4.13: Bias and RMSE for β, data generation under 2PL model, estimation were
the M2PLMix and 2PL models, N =1000, J = 40 , Item Ordering was Random

Figure 4.14: Bias and RMSE for β, data generation under 2PL model, estimation were
the M2PLMix and 2PL models, N =1000, J = 40 , Item Ordering was Ordered

Table 4.13 shows the measures used to estimate the inception of speededness

when the data were generated under the 2PL model. Since no speededness was

present, M1 and M3, were 1 whereas M4 and M5 were 0. M2 should not be

applicable because there were no true speeded examinees in the data set. However,

when the sample size was small and the item difficulty was ordered there were slight

deviations based on the sample size and the length of the test.
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Table 4.13: Location of Speededness: Generated Model 2PL; Estimated Mod-
els the M2PLMix and 2PL.

Generating Model 2PL N = 500, J = 20
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 0.99 NA 0.99 0.01 0.01 1 NA 1 0 0

Generating Model 2PL N = 1000, J = 40
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

Generating Model 2PL N = 2000, J = 80
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

M1: correct specification of the location, M2: correct specification for speeded
examinees, M3: correct specification for nonspeeded examinees, M4: relative
bias, M5: proportion difference of specified speeded between true and estimated.

Table 4.14 shows the model fit when the data were generated under the 2PL

model and estimated under the M2PLMix and 2PL models for randomly ordered

items. The model fit indices indicate that the data fits the 2PL model better than

M2PLMix model under all conditions. This was caused by the data generated

under the 2PL model and N more parameters to be estimated in the M2PLMix.

However, as the sample size and length of test increase the M2PLMix and 2PL

model became comparable for the −2LL and AIC due to the number of param-

eters. This result was also produced when the items were ordered by increasing

difficulty.
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Table 4.14: Model Fit Data Generation under 2PL Model

Model Fit Data Generation under the 2PL Model

M2PLMix Model

−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 9128.81 11208.81 7206.45 15592.01 12290.98
No Speededness N = 1000, J = 40 36632.93 40792.93 32784.64 51001.06 44394.87

N = 2000, J = 80 148022.74 156342.74 140322.61 179642.5 166425.95

2PL Model

−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 8906.36 9986.36 4264.37 12262.25 10548.26
No Speededness N = 1000, J = 40 36440.12 38600.12 9773.45 43900.49 40470.35

N = 2000, J = 80 147952.81 152272.81 94288.21 164370.76 157508.32

Table 4.15 displays the convergence rate of α, β, and θ. Each numerical value

represents the average of parameters that did not converge. This table shows that

under most conditions when the M2PLMix model was used to estimate the model

parameters, almost all parameters converged using the Gelman-Rubin criteria.

However, when the sample size and number of items were N = 2000 and J =

80, respectively,all parameters converged. Under the 2PL model, all the model

parameters were able to converge with respect to the Gelman-Rubin criteria.
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Table 4.15: Percentage of Non-Convergence of IRT Parameters, α, β, and θ for
M2PLMix and 2PL models, generated under 2PL model, using the Gelman-Rubin Cri-
teria

N = 500, J = 20, λ = 0.4

M2PLMix R 2PL R

α 0 0
Random β 0.05 0

θ 0.012 0

α 0 0
Ordered β 0 0

θ 0.016 0

N = 1000, J = 40, λ = 0.4

M2PLMix R 2PL R

α 0 0
Random β 0 0

θ 0.001 0

α 0 0
Ordered β 0 0

θ 0.011 0

N = 2000, J = 80, λ = 0.4

M2PLMix R 2PL R

α 0 0
Random β 0 0

θ 0 0

α 0 0
Ordered β 0 0

θ 0 0
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4.3.3 Study 3 Outcomes

Data generated under M2PLMix Model where λ = 0.2

The following section discusses the results for when the data were generated

under the M2PLMix model with the baseline probability of not being speeded

λ = 0.2, and model parameters were estimated under the 2PLMix and M2PLMix

models. Under this simulation, the 2PLMix and M2PLMix models provided com-

parable results except for a few conditions (large sample size and number of items)

found in Table 4.16. The RMSE for the difficulty parameter estimated under the

M2PLMix model was smaller than that of the 2PLMix model when the sample

size was N = 1000 and N = 2000 and the number of items was J = 40 and J = 80,

respectively, independent of item ordering. In contrast, the bias for the difficulty

parameter was consistently smaller under the 2PLMix model when compared to

the M2PLMix model. The bias of for the discrimination parameter was smaller

under the M2PLMix when the sample size was N = 1000 and N = 2000 and the

number of items was J = 40 and J = 80, except when item difficulty was ordered

with N = 1000 and J = 40. The M2PLMix model also recovered the difficulty

parameter better than the 2PLMix model when the sample size and test length

was N = 500 and J = 20, respectively, but only when the item difficulty was

ordered.

When the sample size and length of test increased, the RMSE, RMSE SD,

bias, and bias SD decreased for α, β, and θ parameters. This pattern occurred

when these parameters were estimated by the M2PLMix, except for bias of θ and

RMSE SD of θ and α. This trend also occurred when the model parameters were

estimated under the 2PLMix, except for bias of θ. These exceptions were due

to the randomness of the data and did not show on any clear pattern regarding

simulation factors. .
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Table 4.16: IRT model parameters: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PLMix with λ = 0.2.

Generating Model M2PLMix N = 500, J = 20 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.16 0.2 0.24 0.17 -0.01 0.07 0.15 0.19

Random β -0.16 0.12 0.19 0.19 0.09 0.15 0.17 0.18
θ -0.02 0.4 0.4 0.21 -0.03 0.35 0.4 0.18
α -0.14 0.12 0.2 0.16 -0.02 0.05 0.15 0.24

Ordered β -0.07 0.08 0.13 0.22 0.11 0.12 0.16 0.21
θ -0.03 0.37 0.38 0.19 -0.02 0.35 0.39 0.18

Generating Model M2PLMix N = 1000, J = 40 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.08 0.12 0.19 0.05 0.04 0.11 0.18

Random β -0.07 0.08 0.11 0.17 0.04 0.13 0.13 0.19
θ -0.03 0.17 0.28 0.12 -0.03 0.17 0.28 0.12
α -0.09 0.09 0.13 0.19 0.04 0.04 0.11 0.18

Ordered β -0.05 0.03 0.08 0.15 0.03 0.05 0.09 0.16
θ -0.03 0.19 0.28 0.12 -0.03 0.17 0.28 0.11

Generating Model M2PLMix N = 2000, J = 80 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0 0.03 0.07 0.06 0.04 0.02 0.07 0.03

Random β -0.03 0.04 0.06 0.06 0 0.07 0.07 0.1
θ -0.02 0.1 0.2 0.15 -0.03 0.09 0.2 0.14
α -0.03 0.07 0.08 0.11 0.05 0.03 0.08 0.06

Ordered β -0.01 0.03 0.05 0.06 0 0.04 0.06 0.09
θ -0.02 0.11 0.19 0.15 -0.03 0.1 0.2 0.14

Table 4.17 shows the accuracy of δ̂ with respect to the M2PLMix and 2PLMix

models when the data were generated under the M2PLMix model. The 2PLMix

model cannot identify unspeeded individuals (M3) when the sample size and num-

ber of items was small, but the M2PLMix was able to identity unspeeded exam-

inees well. The accuracy of determining the exact location of speededness, M1,

was better estimated under the M2PLMix when the sample size and number of

items were N = 500, 1000 and J = 20, 40 respectively.

The M2PLMix required θ̂ to estimate δ̂ well, whereas the 2PLMix did not

require any information about θ̂. Further, the probability of becoming speeded

on any item under the M2PLMix model required the ability of the examinee.
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However, since the ability parameter was being estimated simultaneously with

the location of the inception of speededness, δ was not recovered well under the

M2PLMix model. In contrast, the probability of becoming speeded on any item

under the 2PLMix model was the same for all examinees and did not use other in-

formation. Therefore, the M2PLMix model was unable to label speeded examinees

as well as the 2PLMix, which was seen in M2. Also, as the number of observa-

tions increases, M4 and M5 favor the 2PLMix over the M2PLMix. The results

showed that the M2PLMix was able to better identify unspeeded examinees but

the 2PLMix correctly labeled speeded examinees better than the M2PLMix when

the baseline probability of not being speeded was λ = 0.2.

Table 4.17: Location of Speededness: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PLMix with λ = 0.2.

Generating Model M2PLMix N = 500, J = 20 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.59 0.02 1 -0.41 -0.4 0.53 0.47 0.87 -0.12 -0.14
Ordered δ 0.61 0.01 1 -0.39 -0.39 0.46 0.58 0.74 0.09 -0.01

Generating Model M2PLMix N = 1000, J = 40 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.24 1 -0.22 -0.3 0.59 0.54 0.97 -0.08 -0.16
Ordered δ 0.58 0.1 1 -0.25 -0.38 0.54 0.35 0.94 -0.07 -0.24

Generating Model M2PLMix N = 2000, J = 80 λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.57 1 -0.05 -0.17 0.6 0.66 0.99 -0.02 -0.13
Ordered δ 0.6 0.24 1 -0.13 -0.3 0.6 0.33 0.99 -0.09 -0.27

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Data generated under M2PLMix Model where λ = 0.4

The following section discusses the results when the data were generated under

the M2PLMix model with the baseline probability of not being speeded λ = 0.4,
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and model parameters were estimated under the 2PLMix and M2PLMix models.

When the baseline probability of not being speeded increased, it was expected that

fewer examinees were affected by speededness. This expectation was confirmed in

Tables 4.18 and 4.19 regarding the recovery of model parameters. The M2PLMix

model was unable to proficiently recover α, β, and θ when the sample size N = 500

and the test length J = 20, given the lower number of speeded examinees. As

the sample size and the number of items increased, the M2PLMix model was

able to better estimate the α, β, and θ parameters. When the sample size was

N = 1000, 2000 and the length of test was J = 40, 80, the M2PLMix and 2PLMix

models were comparable in terms of the bias and RMSE of α, β, and θ parameters.

It was sufficient to conclude that the models’ recovery of the IRT model parameters

were comparable except when the sample size and the number of items were small.
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Table 4.18: IRT model parameters: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PLMix with λ = 0.4.

Generating Model M2PLMix N = 500, J = 20 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.11 0.19 0.2 -0.03 0.07 0.16 0.18

Random β -0.13 0.12 0.18 0.2 0.01 0.07 0.13 0.21
θ -0.02 0.34 0.38 0.16 -0.03 0.3 0.37 0.13
α -0.1 0.09 0.16 0.21 -0.04 0.05 0.14 0.22

Ordered β -0.06 0.04 0.11 0.2 0.04 0.06 0.12 0.18
θ -0.02 0.3 0.35 0.14 -0.02 0.28 0.35 0.13

Generating Model M2PLMix N = 1000, J = 40 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.04 0.07 0.11 0.18 0.03 0.04 0.1 0.15

Random β -0.06 0.07 0.1 0.15 0 0.07 0.09 0.17
θ -0.03 0.18 0.27 0.12 -0.03 0.16 0.27 0.11
α -0.06 0.06 0.11 0.17 0.01 0.03 0.1 0.14

Ordered β -0.03 0.03 0.08 0.1 0.01 0.04 0.08 0.13
θ -0.03 0.18 0.26 0.14 -0.03 0.18 0.27 0.13

Generating Model M2PLMix N = 2000, J = 80 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.04 0.07 0.06 0.03 0.03 0.07 0.05

Random β -0.04 0.04 0.06 0.07 -0.02 0.04 0.06 0.09
θ -0.03 0.09 0.19 0.14 -0.03 0.08 0.19 0.14
α -0.04 0.05 0.08 0.1 0.01 0.02 0.07 0.05

Ordered β -0.02 0.02 0.06 0.04 -0.01 0.02 0.05 0.06
θ -0.03 0.12 0.2 0.16 -0.03 0.1 0.19 0.14

Within Figures 4.15 - 4.18, the bias and RMSE of the estimation for the dis-

crimination and difficulty parameters under the M2PLMix and 2PLMix models

are shown. Figures 4.15 and 4.16 show that the 2PLMix was able to recover the

discrimination parameter regardless of item ordering, especially towards the end

of the test. This was not the case for the M2PLMix model, wherein the discrim-

ination parameter was overestimated towards the end of the test for both types

of item ordering. Figure 4.17 reveals that the difficulty parameter for both mod-

els experienced a similar pattern when item ordering was random. Towards the

end of the test, the difficulty parameter was overestimated for the M2PLMix and

underestimated for the 2PLMix model. However, in Figure 4.18, the difficulty
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parameters were recovered well for both models, although the M2PLMix did not

vary as much as the 2PLMix towards the end of the assessment.

Figure 4.15: Bias and RMSE for α, data generation under M2PLMix model, estimation
was M2PLMix (top) and 2PLMix models (bottom), N =1000, J = 40 λ = 0.4, Item
Ordering was Random

Figure 4.16: Bias and RMSE for α, data generation under M2PLMix model, estimation
was M2PLMix and 2PLMix models, N =1000, J = 40 λ = 0.4, Item Ordering was
Ordered
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Figure 4.17: Bias and RMSE for β, data generation under M2PLMix model, estimation
was M2PLMix and 2PLMix models, N =1000, J = 40 λ = 0.4, Item Ordering was
Random

Figure 4.18: Bias and RMSE for β, data generation under M2PLMix model, estimation
was M2PLMix and 2PLMix models, N =1000, J = 40 λ = 0.4, Item Ordering was
Ordered

The recovery of the location of speededness parameter is found in Table 4.19.

M2 showed that the 2PLMix was able to correctly identify speeded examinees

more accurately than the M2PLMix model with respect to all conditions shown

on the table. When the sample size and test length were N = 500 and J = 20, re-

spectively, the M2PLMix model could not sufficiently identify speeded examinees,

especially when item difficulty was ordered. As the baseline probability of not be-

ing speeded increased, less examinees became speeded, meaning the M1 increased
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as well. M3, M4, and M5 indicate that the 2PLMix model did better than the

M2PLMix in terms of measuring the speededness location. However, the 2PLMix

was unable to recover unspeeded examinees as well as the M2PLMix when the

sample size and the number of items were N = 500 and J = 20, respectively.

Table 4.19: Location of Speededness: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PLMix with λ = 0.4.

Generating Model M2PLMix N = 500, J = 20 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.01 1 -0.27 -0.29 0.69 0.16 0.98 -0.2 -0.24
Ordered δ 0.67 0 1 -0.27 -0.33 0.65 0.12 0.97 -0.17 -0.28

Generating Model M2PLMix N = 1000, J = 40 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.71 0.25 1 -0.17 -0.22 0.71 0.39 1 -0.11 -0.18
Ordered δ 0.7 0.08 1 -0.22 -0.27 0.7 0.17 0.99 -0.17 -0.24

Generating Model M2PLMix N = 2000, J = 80 λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.72 0.55 1 -0.04 -0.13 0.72 0.6 1 -0.02 -0.11
Ordered δ 0.69 0.24 1 -0.16 -0.24 0.69 0.29 1 -0.11 -0.22

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Table 4.20 denotes the non-convergence rate of α, β, and θ. Each numerical

value represents the average percent of parameters that did not converge. This

table shows that under most conditions nearly all parameters converged using the

Gelman-Rubin criteria. Though some parameters did not converge under these

speeded models, these occurrences were trivially significant.



91

Table 4.20: Percentage of Non-Convergence of IRT Parameters, α, β, and θ for
M2PLMix and 2PLMix models, generated under M2PMixL model, using the Gelman-
Rubin Criteria

N = 500, J = 20, λ = 0.4

M2PLMix R 2PLMix R

α 0 0
Random β 0 0

θ 0.008 0.01

α 0 0.05
Ordered β 0.05 0.05

θ 0.012 0.028

N = 1000, J = 40, λ = 0.4

M2PLMix R 2PLMix R

α 0 0
Random β 0.1 0

θ 0.001 0.003

α 0 0
Ordered β 0 0

θ 0.022 0.01

N = 2000, J = 80, λ = 0.4

M2PLMix R 2PLMix R

α 0 0
Random β 0 0

θ 0.005 0

α 0 0
Ordered β 0 0

θ 0.032 0.005

Data generated under M2PLMix Model where λ = 0.6

This section provides the results when the data were generated under the

M2PLMix model with the baseline probability of not being speeded λ = 0.6, and

model parameters were estimated under the 2PLMix and M2PLMix models. In

terms of the recovery of α, β and θ, fewer individuals were affected by speededness

when λ = 0.6 than the previous two sections. As a consequence, those that became

speeded tended to have low ability. In Table 4.21, this effect was demonstrated by

the small values for bias and RMSE under both models for all conditions compared

to λ = 0.2 or λ = 0.4. When the sample size and number of items were N = 2000

and J = 80, respectively, the item ordering style did not impact the recovery of

the α, β and θ parameters, with the exception of RMSE SD for the α parameter.
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As noted previously, the M2PLMix did not recover the IRT model parameters

well when the number of data points (sample size and number of items) were

small, whereas the 2PLMix model was able to recover the parameters well. The

M2PLMix model became comparable to the 2PLMix model as the sample size and

number of items increased.

Table 4.21: IRT model parameters: Generated Model M2PLMix; Estimated Models
the M2PLMix and 2PLMix with λ = 0.6.

Generating Model M2PLMix N = 500, J = 20 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.12 0.18 0.17 -0.05 0.07 0.14 0.19

Random β -0.09 0.11 0.15 0.18 -0.01 0.06 0.11 0.21
θ -0.03 0.31 0.35 0.15 -0.02 0.29 0.35 0.14
α -0.04 0.06 0.14 0.19 -0.01 0.05 0.13 0.21

Ordered β -0.04 0.06 0.11 0.26 0.02 0.04 0.11 0.26
θ -0.02 0.29 0.34 0.15 -0.02 0.28 0.35 0.14

Generating Model M2PLMix N = 1000, J = 40 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.05 0.1 0.16 0.02 0.03 0.1 0.16

Random β -0.05 0.04 0.09 0.13 -0.03 0.04 0.08 0.14
θ -0.02 0.16 0.26 0.1 -0.03 0.15 0.26 0.1
α -0.04 0.06 0.1 0.16 0 0.04 0.09 0.13

Ordered β -0.03 0.03 0.08 0.15 0 0.03 0.08 0.14
θ -0.03 0.17 0.26 0.12 -0.03 0.15 0.26 0.12

Generating Model M2PLMix N = 2000, J = 80 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.03 0.07 0.06 0.01 0.02 0.07 0.07

Random β -0.03 0.03 0.06 0.07 -0.02 0.03 0.06 0.08
θ -0.03 0.09 0.19 0.15 -0.03 0.09 0.19 0.14
α -0.02 0.04 0.07 0.05 0.01 0.03 0.07 0

Ordered β -0.03 0.03 0.06 0.06 -0.02 0.02 0.05 0.06
θ -0.03 0.11 0.19 0.15 -0.03 0.09 0.19 0.14

The measures used to gauge the recovery of δ can be found in Table 4.22.

Similar patterns were found within this table as the ones found in Table 4.19,

especially as the sample size and number of items increased. M1 was closer to 1,

and M4 and M5 were close to 0, which was caused by the low number of speeded

examinees. M2 was small when the sample size and number of items were small
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but increased as the number of speeded examinees increased. Lastly, M3 was

consistently 1 for both models due to the number of examinees not being speeded.

The 2PLMix was comparable to the M2PLMix for all measures except for M2.

Table 4.22: Location of Speededness: Generated Model M2PLMix; Estimated Mod-
els the M2PLMix and 2PLMix with λ = 0.6.

Generating Model M2PLMix N = 500, J = 20 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.01 1 -0.19 -0.2 0.8 0.03 1 -0.19 -0.2
Ordered δ 0.79 0 1 -0.19 -0.21 0.79 0.01 1 -0.18 -0.2

Generating Model M2PLMix N = 1000, J = 40 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.27 1 -0.08 -0.14 0.81 0.32 1 -0.07 -0.13
Ordered δ 0.79 0.1 1 -0.13 -0.18 0.79 0.15 1 -0.1 -0.17

Generating Model M2PLMix N = 2000, J = 80 λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.59 1 -0.03 -0.08 0.81 0.62 1 -0.02 -0.08
Ordered δ 0.78 0.23 1 -0.1 -0.17 0.78 0.29 1 -0.06 -0.16

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Table 4.23 displays model fit indices when the data were generated under the

M2PLMix model and estimated by the M2PLMix and 2PLMix models for each

level of λ when the item difficulty was random (item difficulty ordered in Appendix

C). The model fit for these two models shows that the M2PLMix model did not fit

the data well compared to the 2PLMix model under all measures except for when

the sample size and number of items were N = 500 and J = 20 and the baseline

probability of not being speeded was λ = 0.4 and λ = 0.6. However, as the sample

size and number of items increased the difference between the models became

smaller for all measures, regarding the −2LL. For the other four measures, the

2PLMix and M2PLMix models were comparable in terms of fitting the data. This

result was probably caused by the poor calibration of M2PLMix model parameters,

especially when the sample size and the number of items were small.
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Table 4.23: Model Fit Data Generation under M2PLMix Model; λ = 0.2, λ = 0.4,
λ = 0.6, Item Difficulty Ordering Random

Model Fit Data Generation under the M2PLMix Model
M2PLMix Model

−2LL AIC AICc BIC Adj.BIC
N = 500, J = 20 8710.53 10790.53 6788.17 15173.73 11872.7

λ = 0.2 N = 1000, J = 40 34186.4 38346.4 30338.11 48554.53 41948.33
N = 2000, J = 80 130134.6 138454.6 122434.47 161754.36 148537.81
N = 500, J = 20 8815.63 10895.63 6893.26 15278.82 11977.8

λ = 0.4 N = 1000, J = 40 34657.43 38817.43 30809.15 49025.57 42419.37
N = 2000, J = 80 135331.38 143651.38 127631.25 166951.14 153734.59
N = 500, J = 20 8792.62 10872.62 6870.25 15255.81 11954.79

λ = 0.6 N = 1000, J = 40 35447.63 39607.63 31599.34 49815.76 43209.56
N = 2000, J = 80 138533.06 146853.06 130832.93 170152.82 156936.27

2PLMix Model
−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 8563.77 10643.77 6641.41 15026.96 11725.94
λ = 0.2 N = 1000, J = 40 33096.74 37256.74 29248.46 47464.88 40858.68

N = 2000, J = 80 129468.32 137788.32 121768.18 161088.08 147871.53
N = 500, J = 20 8902.46 10982.46 6980.09 15365.65 12064.62

λ = 0.4 N = 1000, J = 40 34348.36 38508.36 30500.07 48716.49 42110.29
N = 2000, J = 80 135160.33 143480.33 127460.2 166780.09 153563.54
N = 500, J = 20 8923.83 11003.83 7001.46 15387.02 12085.99

λ = 0.6 N = 1000, J = 40 35431.06 39591.06 31582.77 49799.19 43193
N = 2000, J = 80 138371.07 146691.07 130670.93 169990.82 156774.27

Data generated under 2PLMix Model where π = 0.2

The following section discusses the results when the data were generated un-

der the 2PLMix model with the probability of not being speeded π = 0.2, and

model parameters were estimated under the 2PLMix and M2PLMix models. In

this simulation (assuming no association between ability and speededness), the

2PLMix was able to recover its model parameters well, except for the difficulty

parameter when the sample size was N = 500 and the length of test was J = 20

(see Table 4.24). In contrast, the M2PLMix was unable to recover the parameters

well except for a few conditions. The M2PLMix could not sufficiently recover the

difficulty parameter well, regardless of item ordering. Also, the discrimination pa-

rameter under the M2PLMix tended to be overestimated when the item difficulty
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was ordered compared to the case in which the item difficulty was random for

N = 1000, 2000 and J = 40, 80. The RMSE of θ was consistently larger than the

RMSE for other parameters no matter model or condition. In contrast, the bias of

θ was the smallest regardless of the model or condition. It can be concluded that

the 2PLMix was able to recover α and β better than M2PLMix under all condi-

tions. The M2PLMix model poor recover of α, β, and θ was due to the number of

examinees that were speeded. As noted in section 3, the 2PLMix generates data

in which more examinees are speeded compared to the M2PLMix.

Table 4.24: IRT model parameters: Generated Model 2PLMix; Estimated Models the
M2PLMix and 2PLMix with π = 0.2.

Generating Model 2PLMix N = 500, J = 20 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.14 0.16 0.23 0.09 -0.06 0.09 0.18 0.16

Random β -0.34 0.25 0.37 0.21 -0.15 0.1 0.18 0.21
θ -0.02 0.46 0.45 0.22 -0.02 0.4 0.42 0.19
α -0.06 0.13 0.19 0.18 0 0.07 0.16 0.19

Ordered β -0.32 0.31 0.38 0.23 -0.15 0.18 0.21 0.3
θ -0.03 0.48 0.46 0.22 -0.02 0.44 0.44 0.2

Generating Model 2PLMix N = 1000, J = 40 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.03 0.06 0.11 0.18 0.04 0.04 0.11 0.18

Random β -0.22 0.24 0.24 0.27 -0.08 0.08 0.11 0.2
θ -0.02 0.24 0.33 0.14 -0.03 0.22 0.31 0.13
α -0.12 0.14 0.18 0.2 -0.01 0.06 0.12 0.21

Ordered β -0.2 0.19 0.23 0.23 -0.08 0.1 0.12 0.2
θ -0.03 0.36 0.36 0.22 -0.03 0.3 0.33 0.19

Generating Model 2PLMix N = 2000, J = 80 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.04 0.05 0.09 0.09 0.03 0.03 0.08 0.06

Random β -0.11 0.17 0.13 0.2 -0.05 0.06 0.08 0.12
θ -0.03 0.13 0.23 0.13 -0.02 0.13 0.22 0.12
α -0.09 0.11 0.13 0.19 -0.01 0.04 0.08 0.11

Ordered β -0.1 0.13 0.12 0.18 -0.04 0.05 0.07 0.17
θ -0.02 0.17 0.24 0.15 -0.03 0.14 0.23 0.14

The M2PLMix was able to identify nonspeededness, M3, better than the

2PLMix model when the sample size and the number of items were small (see
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Table 4.25). M1 was consistent for both models regardless of the conditions. M2

shows that the 2PLMix was able to correctly identify speeded examinees better

than the M2PLMix. M4 and M5 decreased as the sample size and the number

of items increased, and they performed better when items were randomly ordered

compared to being ordered by difficulty. This occurred for both models.

Table 4.25: Location of Speededness: Generated Model 2PLMix; Estimated Models
the M2PLMix and 2PLMix with π = 0.2.

Generating Model 2PLMix N = 500, J = 20 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.2 0.02 1 -0.7 -0.78 0.2 0.34 0.91 -0.36 -0.51
Ordered δ 0.2 0 1 -0.61 -0.8 0.18 0.45 0.79 -0.07 -0.4

Generating Model 2PLMix N = 1000, J = 40 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.19 0.25 1 -0.37 -0.61 0.21 0.5 0.99 -0.15 -0.4
Ordered δ 0.2 0.1 1 -0.5 -0.72 0.2 0.35 0.96 -0.18 -0.51

Generating Model 2PLMix N = 2000, J = 80 π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.21 0.59 1 -0.07 -0.33 0.22 0.69 1 -0.03 -0.25
Ordered δ 0.21 0.3 1 -0.28 -0.55 0.21 0.43 1 -0.14 -0.45

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Data generated under 2PLMix Model where π = 0.4

This section explains the results when the data were generated under the

2PLMix model with the probability of not being speeded π = 0.4, and model

parameters were estimated under the 2PLMix and M2PLMix models. The diffi-

culty parameters were affected the most by both models when the sample size and

the number of items were small regardless of item difficulty ordering, as seen in

Table 4.26. However, when the sample size increased, both models estimated the

difficulty parameter better, with the 2PLMix outperforming the M2PLMix. The
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discrimination parameters were recovered well by the M2PLMix when the item

difficulty was randomly ordered, but when the item difficulty was ordered, these

estimates were distorted. The discrimination parameter under the 2PLMix model

was generally well estimated, however, when the sample size and the length of

test were N = 500 and J = 20, respectively, these parameters were overestimated.

The recovery of the ability parameters for both models was comparable between

the models and improved as the sample size and the number of items increased.

Table 4.26: IRT model parameters: Generated Model 2PLMix; Estimated Models the
M2PLMix and 2PLMix with π = 0.4.

Generating Model 2PLMix N = 500, J = 20 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.07 0.12 0.18 0.18 -0.03 0.06 0.16 0.21

Random β -0.28 0.21 0.31 0.24 -0.15 0.11 0.18 0.21
θ -0.02 0.44 0.43 0.22 -0.02 0.38 0.41 0.19
α -0.15 0.19 0.24 0.13 -0.11 0.12 0.19 0.17

Ordered β -0.21 0.18 0.26 0.18 -0.11 0.1 0.16 0.23
θ -0.03 0.51 0.45 0.27 -0.03 0.46 0.43 0.24

Generating Model 2PLMix N = 1000, J = 40 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.07 0.11 0.21 0.03 0.05 0.1 0.18

Random β -0.16 0.16 0.19 0.21 -0.08 0.08 0.12 0.18
θ -0.03 0.22 0.31 0.14 -0.03 0.19 0.29 0.12
α -0.08 0.09 0.14 0.19 -0.03 0.05 0.11 0.19

Ordered β -0.17 0.15 0.19 0.22 -0.09 0.09 0.12 0.2
θ -0.03 0.31 0.34 0.19 -0.02 0.26 0.32 0.16

Generating Model 2PLMix N = 2000, J = 80 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.03 0.07 0.06 0.02 0.03 0.07 0.05

Random β -0.06 0.08 0.09 0.13 -0.04 0.04 0.07 0.11
θ -0.03 0.12 0.21 0.13 -0.03 0.12 0.21 0.13
α -0.07 0.08 0.1 0.15 -0.02 0.04 0.08 0.09

Ordered β -0.07 0.07 0.09 0.15 -0.03 0.03 0.06 0.1
θ -0.03 0.17 0.23 0.15 -0.03 0.14 0.21 0.14

Figures 4.19 and 4.20 shows that the 2PLMix estimates of α were comparable

to the M2PLMix estimates except towards the end of the assessment. However,

when the item difficulty was ordered, the α estimates for both models overesti-
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mated towards the end of the test. The inability of the M2PLMix and 2PLmix

models to recover the β can be seen in Figures 4.21 and 4.22. The 2PLMix model

estimated the β parameter better than the M2PLMix, but both models seemed to

overestimate the difficulty parameters towards the end of the assessment indepen-

dent of item ordering. However, the M2PLMix model estimates of the difficulty

parameter, regardless of item ordering, was worse compared to the 2PLMix model

in which many items were beyond the threshold of 0.3 towards the end.

Figure 4.19: Bias and RMSE for α, data generation under 2PLMix model, estimation
were the M2PLMix and 2PLMix models, N =1000, J = 40 π = 0.4 , Item Ordering was
Random

Figure 4.20: Bias and RMSE for α, data generation under 2PLMix model, estimation
were the M2PLMix and 2PLMixmodels, N =1000, J = 40 π = 0.4 , Item Ordering was
Ordered
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Figure 4.21: Bias and RMSE for β, data generation under 2PLMix model, estimation
were the M2PLMix and 2PLMix models, N =1000, J = 40 π = 0.4 , Item Ordering was
Random

Figure 4.22: Bias and RMSE for β, data generation under 2PLMix model, estimation
were the M2PLMix and 2PLMix models, N =1000, J = 40 π = 0.4 , Item Ordering was
Ordered.

Similar patterns in 4.25 were found in Table 4.27 in terms of the measures of

accuracy of the inception of speededness. For M3, the 2PLMix did not proficiently

recover those that were not speeded compared to the M2PLMix when the sample

size and number of items were small. Similarly, the M2PLMix did not recover those

that were speeded as well as the 2PLMix. A slight difference between the π = 0.2

and π = 0.4 simulations was that the classification of speeded vs. nonspeeded

examinees caused the M1 statistic to increase for both models.
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Table 4.27: Location of Speededness: Generated Model 2PLMix; Estimated Models
the M2PLMix and 2PLMix with π = 0.4.

Generating Model 2PLMix N = 500, J = 20 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.4 0.01 1 -0.53 -0.6 0.4 0.1 0.99 -0.45 -0.54
Ordered δ 0.4 0 1 -0.58 -0.6 0.4 0.11 0.98 -0.42 -0.52

Generating Model 2PLMix N = 1000, J = 40 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.4 0.26 1 -0.24 -0.45 0.4 0.38 1 -0.17 -0.38
Ordered δ 0.38 0.1 1 -0.41 -0.55 0.38 0.22 0.99 -0.26 -0.48

Generating Model 2PLMix N = 2000, J = 80 π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.42 0.63 1 -0.05 -0.22 0.42 0.67 1 -0.04 -0.2
Ordered δ 0.4 0.27 1 -0.22 -0.44 0.4 0.34 1 -0.15 -0.4

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

Table 4.28 denotes the convergence rate of α, β, and θ. This table shows

that under most conditions when the M2PLMix or 2PLMix models were used

to estimate the model parameters, almost all parameters converged using the

Gelman-Rubin criteria. When the sample size and the number of items were large

(i.e., N = 2000, J = 80), all the parameters converged under the 2PLMix model.

As the sample size and number of items increased, fewer parameters converged

under M2PLMix, but this difference was negligible.
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Table 4.28: Percentage of Non-Convergence of IRT Parameters, α, β, and θ for
M2PLMix and 2PLMix models, generated under 2PLMix model, using the Gelman-
Rubin Criteria

N = 500, J = 20, λ = 0.4

M2PLMix R 2PLMix R

α 0 0
Random β 0 0

θ 0.01 0.024

α 0 0
Ordered β 0 0

θ 0.01 0.014

N = 1000, J = 40, λ = 0.4

M2PLMix R 2PLMix R

α 0 0
Random β 0 0

θ 0.03 0.01

α 0 0
Ordered β 0 0.025

θ 0.055 0.01

N = 2000, J = 80, λ = 0.4

M2PLMix R 2PLMix R

α 0.013 0
Random β 0.013 0

θ 0.016 0

α 0.013 0
Ordered β 0 0

θ 0.046 0

Data generated under 2PLMix Model where π = 0.6

The following section provides the results when the data were generated under

the 2PLMix model with the probability of not being speeded π = 0.6, and model

parameters were estimated under the 2PLMix and M2PLMix models. Similar

results were produced when π = 0.6 (compared to other levels of π) in terms

of the α, β, and θ as well as the measures for the location of speededness, as

seen in Tables 4.29 and 4.30. The difficulty parameters were not well estimated

under the M2PLMix model when the number of items and sample size were small.

However, when the number of observations increased the M2PLMix began to

recover the difficulty parameter at a rate close to that of the 2PLMix model.

Since the proportion of speeded examinees was smaller than that in the other two
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conditions (π = 0.2 or π = 0.4), the bias and RMSE were smaller (see Table 4.29).

Table 4.29: IRT model parameters: Generated Model 2PLMix; Estimated Models the
M2PLMix and 2PLMix with π = 0.6.

Generating Model 2PLMix N = 500, J = 20 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.16 0.17 0.24 0.12 -0.12 0.11 0.2 0.12

Random β -0.22 0.17 0.26 0.19 -0.14 0.1 0.18 0.2
θ -0.02 0.44 0.42 0.21 -0.02 0.38 0.4 0.18
α -0.04 0.1 0.16 0.2 -0.03 0.07 0.15 0.19

Ordered β -0.15 0.19 0.22 0.24 -0.1 0.14 0.17 0.26
θ -0.02 0.42 0.4 0.23 -0.02 0.4 0.39 0.21

Generating Model 2PLMix N = 1000, J = 40 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0 0.04 0.1 0.14 0.02 0.03 0.1 0.13

Random β -0.11 0.1 0.14 0.18 -0.07 0.06 0.1 0.16
θ -0.03 0.23 0.29 0.15 -0.03 0.2 0.28 0.13
α -0.06 0.07 0.12 0.2 -0.02 0.04 0.1 0.18

Ordered β -0.1 0.08 0.13 0.2 -0.06 0.05 0.11 0.19
θ -0.02 0.31 0.32 0.21 -0.03 0.26 0.3 0.17

Generating Model 2PLMix N = 2000, J = 80 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.01 0.02 0.07 0.04 0.02 0.02 0.07 0.04

Random β -0.05 0.05 0.07 0.1 -0.04 0.03 0.07 0.1
θ -0.02 0.1 0.2 0.14 -0.03 0.1 0.2 0.13
α -0.03 0.05 0.08 0.13 -0.01 0.03 0.07 0.08

Ordered β -0.06 0.07 0.08 0.14 -0.03 0.04 0.06 0.13
θ -0.02 0.15 0.21 0.16 -0.03 0.12 0.2 0.14

As shown in Table 4.30, the ability to correctly label examinees as speeded

or not speeded (M1) were lower compared to when the data was generated under

the M2PLMix (see Table 4.22) because the number of individuals affected by

speededness was greater under the 2PLMix model. Since all examinees have the

same likelihood of being speeded under the 2PLMix model, more people were

assumed to be speeded, making it difficult to correctly identify the inception of

speededness. This trend was found in the other measures of the inception of

speededness. As with the other levels of π, item ordering was found to have an

impact on measures M2 to M5 for π = 0.6.
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Table 4.30: Location of Speededness: Generated Model 2PLMix; Estimated Models
the M2PLMix and 2PLMix with π = 0.6.

Generating Model 2PLMix N = 500, J = 20 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0 1 -0.45 -0.4 0.6 0.03 1 -0.43 -0.39
Ordered δ 0.61 0 1 -0.34 -0.39 0.61 0.01 1 -0.33 -0.38

Generating Model 2PLMix N = 1000, J = 40 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.59 0.28 1 -0.22 -0.3 0.59 0.33 1 -0.2 -0.27
Ordered δ 0.59 0.11 1 -0.29 -0.36 0.59 0.17 1 -0.23 -0.34

Generating Model 2PLMix N = 2000, J = 80 π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.62 0.63 1 -0.05 -0.14 0.62 0.66 1 -0.03 -0.13
Ordered δ 0.62 0.24 1 -0.15 -0.29 0.62 0.33 1 -0.09 -0.25

M1: correct specification of the location, M2: correct specification for speeded ex-
aminees, M3: correct specification for nonspeeded examinees, M4: relative bias, M5:
proportion difference of specified speeded between true and estimated.

The model fit found in Table 4.31 indicates that the 2PLMix model fits the

data better than M2PLMix model for all conditions, except when π = 0.4 or

π = 0.6 and the sample size and number of items were N = 500 and J = 20,

respectively, for all indices. As the sample size, test length, and probability of not

being speeded increased, the difference between the fit of the two models became

more comparable for all measures, with a few exceptions in which the M2PLMix

model fits the data better.
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Table 4.31: Model Fit Data Generation: 2PLMix Model and Parameter Estimation:
M2PLMix (top 3) and 2PLMix Models (bottom 3)

Model Fit Data Generation under the 2PLMix Model
M2PLMix Model

−2LL AIC AICc BIC Adj.BIC
N = 500, J = 20 8539.99 10619.99 6617.62 15003.18 11702.15

π = 0.2 N = 1000, J = 40 31825.29 35985.29 27977.01 46193.43 39587.23
N = 2000, J = 80 112551.16 120871.16 104851.02 144170.91 130954.37
N = 500, J = 20 8866 10946 6943.63 15329.19 12028.17

π = 0.4 N = 1000, J = 40 33258.75 37418.75 29410.47 47626.88 41020.69
N = 2000, J = 80 120792.62 129112.62 113092.48 152412.37 139195.83
N = 500, J = 20 8690.92 10770.92 6768.55 15154.11 11853.08

π = 0.6 N = 1000, J = 40 34379.62 38539.62 30531.33 48747.75 42141.56
N = 2000, J = 80 130492.98 138812.98 122792.84 162112.74 148896.19

2PLMix Model
−2LL AIC AICc BIC Adj.BIC

N = 500, J = 20 8289.19 10369.19 6366.83 14752.39 11451.36
π = 0.2 N = 1000, J = 40 29717.21 33877.21 25868.92 44085.34 37479.15

N = 2000, J = 80 110943.22 119263.22 103243.08 142562.97 129346.42
N = 500, J = 20 8891.78 10971.78 6969.41 15354.97 12053.94

π = 0.4 N = 1000, J = 40 32645.4 36805.4 28797.11 47013.53 40407.34
N = 2000, J = 80 120279.63 128599.63 112579.49 151899.38 138682.84
N = 500, J = 20 8814.45 10894.45 6892.08 15277.64 11976.62

π = 0.6 N = 1000, J = 40 34286.08 38446.08 30437.8 48654.21 42048.02
N = 2000, J = 80 130266.33 138586.33 122566.19 161886.09 148669.54
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4.3.4 Study 4 Outcomes

Data generated under GPC Model

This section provides the results in which the data were generated under

the GPC model, and model parameters were estimated under the 2PLMix and

M2PLMix models. The sample size and the test length were N = 1000 and

J = 40, respectively, for all conditions in this study. When the data were gener-

ated under the GPC model, a large discrepancy occurred that was not seen during

the generation of data within the other two speededness models (M2PLMix and

2PLMix). Under all the data sets that were generated under the GPC model, on

average three examinees were simulated as not speeded within data. This concept

directly impacted the capabilities of the M2PLMix and 2PLMix models to recover

model parameters well.

Figures 4.23 - 4.28 display the inability of the M2PLMix and 2PLMix models

to estimate item parameters when the data were generated under the GPC model.

These figures show that no matter how the data were generated under the GPC

model, the model parameters were not recovered the well. Though these figures

are not ideal, certain patterns can be captured in these graphs. For example, the

bias and RMSE patterns found during the estimation of α and β were comparable

between the M2PLMix and 2PLMix models. When the correlation between ability

and speededness was the smallest (i.e., ρ(θ, η) = 0.5) there were more items that

were classified as below 0.3 for both models.
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Figure 4.23: Bias and RMSE for α, data generation under the GPC Model (ρ(θ, η) =
0.5) and parameter estimation under the M2PLMix (top) and 2PLMix (bottom) models,
N =1000, J = 40.

Figure 4.24: Bias and RMSE for β, data generation under the GPC Model (ρ(θ, η) =
0.5) and parameter estimation under the M2PLMix (top) and 2PLMix (bottom) models,
N =1000, J = 40.
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Figure 4.25: Bias and RMSE for α, data generation under the GPC Model (ρ(θ, η) =
0.6) and parameter estimation under the M2PLMix (top) and 2PLMix (bottom) models,
N =1000, J = 40.

Figure 4.26: Bias and RMSE for β, data generation under the GPC Model (ρ(θ, η) =
0.6) and parameter estimation under the M2PLMix(top) and 2PLMix (bottom) models,
N =1000, J = 40.



108

Figure 4.27: Bias and RMSE for α, data generation under the GPC Model (ρ(θ, η) =
0.7) and parameter estimation under the M2PLMix(top) and 2PLMix (bottom) models,
N =1000, J = 40.

Figure 4.28: Bias and RMSE for β, data generation under the GPC Model (ρ(θ, η) =
0.7) and parameter estimation under the M2PLMix(top) and 2PLMix (bottom) models,
N =1000, J = 40.

Tables 4.32 and 4.33 display the recovery model parameters from both the

M2PLMix and the 2PLMix. Again these results were not ideal, but they provide

insight into the capabilities of these speededness models. For instance, the greater

the correlation between inception of speededness and ability level, the worse the

performance on the assessment, which makes the ability level easy to recover.

However, the difficulty parameter had too large standard deviations of bias and

RMSE to make any generalizations.
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Table 4.32: IRT model parameters: Generation of data through Gradual Process
Change Model under 3 different correlation models.

Estimating Under ρ(η, θ) = 0.5
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.18 0.91 0.81 0.38 0.38 0.71 0.69 0.37

Low β 3.12 5.79 3.9 5.28 3.02 5.01 3.53 4.67
θ 0.04 0.99 0.84 0.5 0.03 0.93 0.81 0.44

Estimating Under ρ(η, θ) = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.65 0.67 0.83 0.42 0.77 0.56 0.83 0.43

Low β -1.92 6.53 4.54 5.02 -2.69 5.28 4.25 4.08
θ 0.07 0.89 0.76 0.42 0.06 0.86 0.75 0.4

Estimating Under ρ(η, θ) = 0.7
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.59 0.73 0.83 0.4 0.7 0.61 0.81 0.41

Low β -0.82 6.73 4.29 5.2 -1.3 4.63 3.48 3.27
θ -0.01 0.82 0.71 0.38 -0.02 0.8 0.7 0.37

In terms of M1 (see Table 4.33), it was impossible for both models to determine

the exact location of speededness, since 99 % of the test-taking population was

speeded. M3 was consistently 0 because most examinees were speeded, which im-

plies M2 to be 1. M5, the difference between the proportion of speeded examinees,

was also very small due to the models identifying most examinees as speeded. M4

on the other hand was difficult to interpret due to the instability of this statis-

tic in other contexts discussed in the previous studies. These results show that

both models have the capacity to identify speeded examinees generated under a

different model.
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Table 4.33: Location of Speededness: Generation of data through Gradual Process
Change Model under 3 different correlation models.

Generated Under GPC Model
M2PLMix 2PLMix

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

ρ(η, θ) = 0.5 δ 0.01 1 0 -0.95 0.01 0.02 1 0 -0.8 0.01
ρ(η, θ) = 0.6 δ 0 1 0 -0.98 0.01 0 1 0 -0.99 0.01
ρ(η, θ) = 0.7 δ 0 1 0 -0.94 0.01 0.01 1 0 -0.87 0.01

M1: correct specification, M2: correct speeded specification, M3: correct not speeded
specification, M4: relative bias, M5: percentage difference of specified speeded
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Chapter 5

Conclusion

5.1 Summary and Implications

In Study 1, an analysis was done to understand the implication of assuming

the hyperparameters to be known within the M2PLMix model. When data were

generated in which ω = 2.5, the RMSE, Bias, RMSE SD and Bias SD, for all

IRT parameters were similar to the normal condition except for the bias of the

discrimination parameter. In terms of the inception of speededness, M1, M3, and

M5 were comparable between the normal condition and the condition with ω = 2.5;

however, M2 and M4 were lower when ω = 2.5 than the normal condition. This

implies that assuming a lower ω parameter during the estimation of the M2PLMix

parameters causes speeded examinees to be classified as not speeded according to

the M2 measure. The relative bias indicated that though misclassification of a

hyperparameter occurred, the estimated value was close to the true value.

The discrimination parameter for each item were always underestimated when

the data was generated under the ω = 2.5 and was always underestimated with

respect to the normal condition except for seven items. On the other hand, the

difficulty parameter tended to be around zero when ω = 2.5; however, this pa-

rameter became more overestimated towards the end of the test under the normal

condition. Increasing the ω parameters during the generations of data causes ex-



112

aminees to become speeded later during the assessment. According to the results,

if ω is smaller during estimation of the M2PLMix model parameters compared

to ω during the generation of data, the recovery of the item parameters will be

the same as the normal condition throughout the entire test. However, individual

items tended to lose their discrimination power, and it seems as though less people

were classified as speeded.

For data generated under ω = 1.5, the RMSE, Bias, RMSE SD, and Bias SD

for IRT model parameters were comparable to the normal condition. In terms of

the location of speededness, M1, M3, and M5 were comparable between these two

conditions; howeverM2 andM4 were greater when ω = 1.5 compared to the normal

condition. This implies that assuming a larger ω parameter during the estimation

of the M2PLMix parameters causes speeded examinees to be correctly classified

more frequently than the normal condition. The relative bias indicated that when

misclassification occurred, examinees that were speeded earlier on the test were

misclassified more often than those speeded later during the test. It is important

to note that more people were correctly classified as speeded, but the penalty was

greater for misclassification earlier on the assessment than later which caused the

relative bias measure when ω = 1.5 to be greater than the normal condition. The

item parameters were graphically the same when ω = 1.5 compared to the normal

condition, seen in figures found in Appendix A. In conclusion, assuming ω to be

larger during the estimation process only slightly impacted the recovery of the

location of speededness.

When data were generated in which κ = 0.25, the RMSE, Bias, RMSE SD, and

Bias SD for IRT model parameters were comparable to the normal condition. In

terms of the location of speededness, M1−M5 were comparable between κ = 0.25

and the normal condition. This implies that assuming a smaller κ parameter

during estimation does not impact the recovery of M2PLMix model parameters.

The item parameters were graphically the same in terms of the RMSE and bias

with respect to the two conditions. In conclusion, assuming κ to be smaller during
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the estimation process does not have an impact on the estimation of M2PLMix

model parameters. When data were generated in which κ = 0.15, the RMSE,

Bias, RMSE SD, and Bias SD for all IRT parameters were similar to the normal

condition except for the bias and RMSE of the discrimination parameter. In terms

of the location of speededness, M1, M3, M4, and M5 were comparable between

these two conditions, and M2 was lower for κ = 0.15. This implies that assuming

a larger κ parameter during the estimation of the M2PLMix parameters causes

the discrimination parameter to lose its power and causes speeded examinees to

be classified as not speeded. The discrimination parameter for each item was

always underestimated when κ = 0.15. These figures can be found in Appendix

A. In conclusion, assuming a larger value for the κ during the estimation of item

parameters mainly affects the calibration of the discrimination parameter and the

model’s ability to recover those that are speeded.

For data generated under λ = 0.45, the majority of M2PLMix model param-

eters were not affected by estimating parameters under λ = 0.4 (same results as

normal condition). The discrimination parameters for the individual items were

underestimated when λ = 0.45 for all items except for one but this result is com-

parable to the normal condition. Assuming the baseline probability of not being

speeded to be λ = 0.45 did not impact the test in terms of bias and RMSE com-

pared to λ = 0.4. The discrimination parameters for each individual item were

underestimated for all items except for one item when λ = 0.35. The difficulty

parameters were overestimated when data were generated under either λ = 0.35

or λ = 0.4. These figures can be found in Appendix A. Assuming the baseline

probability of not being speeded to be λ = 0.35 did not impact the entire test in

terms of bias and RMSE compared to λ = 0.4. However, individual items for the

discrimination and difficulty parameters were impacted when λ = 0.35 but this

was found in the normal condition as well.

In sum, the first study showed that generating data with certain values for

the hyperparameters and then assuming that hyperparameter to be another value
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during the estimation of model parameters were not detrimental in all cases. This

research showed that variations to ω and κ may negatively impact the discrimina-

tion parameters as a whole. This is important for the implementation of estimation

model parameters from real data, as knowing how certain hyperparameter values

may cause biases would lead to better estimation of IRT model parameters as

well as speededness location. An important note to make when comparing the six

different conditions to the normal conditions was that the normal condition did

not estimate the M2PLMix model parameters perfectly.

Modifying more than one hyperparameter to determine the impact on the

estimation of IRT and location of speededness parameters would contribute to the

research. Estimating the hyperparameters would also be valuable as a future study

by potentially providing a better estimation of the IRT and speededness model

parameters. Lastly, using real data to determine the implications of assuming

these hyperparameters to be known or unknown will provide insight into better

estimation of the other model parameters.

The second study showed that the 2PL model did not perform well when

speededness was present and associated with ability. The M2PLMix model out-

performed the 2PL model under all conditions in terms of RMSE, bias, RMSE

SD, bias SD, and the inception of speededness when data were generated under

the M2PLMix model. As the amount of data and the baseline probability of not

being speeded increased both models estimated the examinee and item parame-

ters better, with the M2PLMix model consistently outperforming the 2PL model.

This result was expected because the 2PL model does not account for speeded-

ness. These results implied that ignoring speededness when it was associated with

ability negatively impacts the recovery of model parameters.

On other hand, the recovery of the 2PL model parameters when data were gen-

erated under the 2PL model verified the proposed MCMC algorithm’s capability

of estimation. Moreover, if speededness was not present, the M2PLMix model was

only able to recover its parameters well when the number of items and the sample
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size were large. These conclusions were also found in Appendix B in terms of other

conditions. In summary, if speededness was not present, the M2PLMix was able

to recover the IRT model parameters as long as the sample size and number of

items were large. On the other hand, the 2PL model was consistently unable to

recover its parameters when speededness was present and associated with ability.

The third study showed the 2PLMix model can recover its model parameters

well when speededness was present and associated with ability, regardless of sim-

ulation conditions. This study also determined the M2PlMix model was able to

recover its model parameters well when speededness was present but not associ-

ated with ability only when the sample size and the number of items were large.

When speededness and ability were associated, both models were generally able

to recover the IRT model parameters at comparable rates when the sample size

and the number of items were large. Only when the sample size and the number

of items were small, was the 2PLMix model able to recover the IRT model param-

eters better than the M2PLMix model. The 2PLMix model was able to recover

its model parameters better than the M2PLMix model under the generation of

data from both models because the 2PLMix model did not take into account the

estimation of θ when estimating δ. This allowed the 2PLMix model to estimate

its model parameters better than the M2PLMix model. These patterns were also

found in Appendix C.

Ignoring the association between ability and speededness was not detrimental

to the recovery of IRT model parameters for the 2PLMix model. These results

imply that if there was an association between ability and speededness that oc-

curred in the mechanism of the M2PLMix model, the 2PLMix model can will be

able to recover its parameters. But there are other ways of associating ability and

speededness that need to be evaluated before discounting the ramifications of the

association between ability and speededness. This result does not imply that all

speededness models that do not account for this association will recover model

parameters well.
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On the other hand, when there was no association between speededness and

ability, the M2PLMix model was able to recover the IRT model parameters as well

as the 2PLMix model only when π, N , and J were large. This implies that the

2PLMix model was the optimal model outside of these circumstances. Essentially,

if there was an association between speededness and ability and the sample size

and the number of items were large (N = 2000 and J = 80), the M2PLMix model

can be used, otherwise, it would be better to implement the 2PLMix model. These

generalizations were also found in the results of the conditions shown within the

Appendix C.

When data were generated under the GPC model, both the 2PLMix and

M2PLMix models were unable to recover their model parameters well, respec-

tively. This was due to the fact that all examinees were affected by speededness.

This implies a scenario at which the 2PLMix model was not able to recover model

parameters when the association between ability and speededness was present.

This study showed an alternative way to associate ability and speededness, but

also portrayed the unrealism of the GPC model, which identified 99% of examinees

were speeded.

5.2 Conclusion and Further Studies

The purpose of this dissertation was to propose a model that associated abil-

ity with speededness and propose an algorithm to estimate not only IRT model

parameters but also the inception of speededness parameter within this speed-

edness model. This model was used to determine the ramifications of assuming

hyperparameters to be known during the estimation of its model parameters. This

dissertation also investigated the implications when not only the association be-

tween speededness and ability was ignored, but also when speededness was ignored

entirely. Furthermore, the studies provided insight in the assumption of associat-

ing ability with speededness under various conditions.
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The results suggest that assuming κ and ω to be known when estimating

M2PLMix model parameters can have an impact on the recovery of the discrimi-

nation parameters and the location at which speededness begins. The findings also

verify that the 2PL model cannot estimate model parameters well when speed-

edness is present and associated with ability. If speededness is not present, the

M2PLMix model only estimates model parameters well when the sample size and

the number of items are large. These findings also suggest that the M2PLMix

model can recover its parameters well when speededness is not associated with

ability when the sample size and the number if items are large. In addition, the

2PLMix model is able to recover model parameters well when ability and speed-

edness are associated using the M2PLMix model to generate data. Though the

M2PLMix model only estimates its parameters well when the sample size is large

within size, the idea of a large sample is relative in terms of the implementation

of this model on real data in which the sample size could be 100,000 examinees

depending on the assessment.

The M2PLmix and 2PLMix models could not recover their model parameters

well, respectively, when ability and speededness are associated under the GPC

model. One of the conclusions of this dissertation is not that any speededness

model that ignores the association between ability and speededness is appropriate.

Therefore, the assumption regarding ability and speededness needs to be tested

within previous and future speededness models.

There are many facets of this study that contribute to the research of education

measurement, more specifically the topic of speededness. The proposed M2PLMix

model provides insights about speededness that has an impact on the calibration

of item parameters and the estimation of the ability parameter. According to

the results, implementing the M2PLMix model when speededness and ability are

associated allows for a better calibration of item parameters and ability estimates

compared to when the speededness is not accounted for. This research also shows

that item ordering has a large impact on the recovery of item parameters when
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speededness is present. This information is useful in that test administrations may

want to implement this design to reduce speededness effects. This research also

enhances the understanding of speededness because it considers various sample

sizes and number of items. This is insightful because most studies ignore how

the sample size and the number of items on an assessment play a role in how

speededness impacts the recovery of model parameters.

In education measurement, the notion of speededness may have an impact

on many applications that have not been investigated. One such application is

the use of cut scores. If speededness can be account for during an assessment

(reducing speededness effects), some individuals that are near the cut point(s) of

proficient skill(s) could be better estimated. This could allow for better tests and

items that accurately measure one’s ability. Another facet that could be analyzed

is the baseline probability of not being speeded. In other words, creating multiple

baseline probabilities of not being speeded based on a latent variable (not ability).

For example, it is possible that different global cultures have different approaches

on guessing behavior on an exam, which would impact the baseline probability of

not being speeded. This could be modeled on an international test such as the

Trends in International Mathematics and Science Study (TIMSS) and the Progress

in International Reading Literacy Study (PIRLS), which can use such models that

account for different test-taking strategies.

The inspiration to evaluate test speededness was from the possibility of speed-

edness impacting not only item parameters within IRT but also linking coefficients

and equating functions. No research has shown how speededness-reducing models

have an influence on the estimation of linking coefficients and equating functions.

This research is important because the speededness models do not always remove

the entire presence of speededness, especially when the sample size and the number

of items are small.

Lastly, other approaches that can be studied based on this dissertation would

be to change more than one hyperparameter at a time within the first study.
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As mentioned before, changing more than one hyperparameter at a time would

give researchers more insight into the ramifications of assuming these parameters

known. Another approach would be to implement other speeded IRT models such

as the GPC or the IRT-TG to estimate speededness and recovery of model param-

eters to determine if ignoring this association has negligible effects. Furthermore,

creating and implementing other techniques to measure the estimation of the lo-

cation of speededness would be worthwhile. Most research do not evaluate the

effectiveness of recovering the location of speededness. A more robust technique

for determining if the location parameter is properly recovered would add to this

line of work as well.
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Appendix A

Study 1 Results Figures

Figure A.1: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with ω = 1.5 (top) and normal (bottom) models, N = 1000,
J = 40
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Figure A.2: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with ω = 1.5 (top) and normal (bottom) models, N = 1000,
J = 40

Figure A.3: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with κ = 0.15 (top) and normal (bottom) models N = 1000,
J = 40
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Figure A.4: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with κ = 0.15 (top) and normal (bottom) models, N = 1000,
J = 40

Figure A.5: Bias and RMSE for α, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with λ = 0.35 (top) and normal (bottom) models, N = 1000,
J = 40



130

Figure A.6: Bias and RMSE for β, the estimation model with λ = 0.4, ω = 2, and
κ = 0.2, data generation with λ = 0.35 (top) and normal (bottom) models, N = 1000,
J = 40
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Appendix B

Study 2 Results Tables & Figures

Table B.1: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PL, N = 500, J = 40, λ = 0.2.

Generating Model M2PLMix N = 500, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.11 0.15 0.2 -0.32 0.46 0.44 0.34

Random β -0.08 0.1 0.14 0.21 -0.25 0.31 0.29 0.3
θ -0.03 0.17 0.28 0.12 -0.01 0.51 0.41 0.28
α -0.05 0.1 0.16 0.22 -0.25 0.23 0.31 0.21

Ordered β -0.04 0.09 0.13 0.22 -0.11 0.14 0.18 0.18
θ -0.03 0.23 0.29 0.17 -0.02 0.48 0.37 0.31

Generating Model M2PLMix N = 500, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.02 0.1 0.15 0.2 -0.22 0.37 0.35 0.25

Random β -0.07 0.08 0.13 0.21 -0.2 0.24 0.24 0.25
θ -0.02 0.16 0.27 0.11 -0.01 0.46 0.37 0.28
α -0.04 0.07 0.16 0.19 -0.19 0.16 0.25 0.16

Ordered β -0.05 0.08 0.13 0.23 -0.1 0.09 0.15 0.2
θ -0.03 0.21 0.28 0.16 -0.02 0.4 0.32 0.28

Generating Model M2PLMix N = 500, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.01 0.07 0.14 0.18 -0.14 0.22 0.24 0.18

Random β -0.05 0.07 0.12 0.22 -0.14 0.18 0.19 0.21
θ -0.02 0.14 0.26 0.1 -0.02 0.37 0.32 0.21
α -0.02 0.07 0.14 0.19 -0.13 0.12 0.19 0.18

Ordered β -0.02 0.06 0.11 0.19 -0.05 0.06 0.11 0.16
θ -0.03 0.13 0.25 0.1 -0.03 0.24 0.27 0.13
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Table B.2: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 500, J = 40, λ = 0.2 .

Generating Model M2PLMix N = 500, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.57 0.22 1 -0.24 -0.33 0.57 0 1 -0.39 -0.43
Ordered δ 0.57 0.12 1 -0.24 -0.38 0.57 0 1 -0.42 -0.43

Generating Model M2PLMix N = 500, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.68 0.22 1 -0.13 -0.25 0.68 0 1 -0.25 -0.32
Ordered δ 0.67 0.09 1 -0.27 -0.3 0.67 0 1 -0.35 -0.33

Generating Model M2PLMix N = 500, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.82 0.25 1 -0.11 -0.13 0.82 0 1 -0.18 -0.18
Ordered δ 0.8 0.08 1 -0.14 -0.19 0.8 0 1 -0.19 -0.2
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Table B.3: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PL, N = 500, J = 80, λ = 0.2.

Generating Model M2PLMix N = 500, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.06 0.14 0.18 -0.24 0.47 0.44 0.27

Random β -0.05 0.13 0.14 0.22 -0.27 0.33 0.32 0.32
θ -0.03 0.09 0.2 0.11 0.01 0.61 0.45 0.38
α 0.06 0.06 0.15 0.17 -0.25 0.26 0.32 0.2

Ordered β -0.02 0.12 0.13 0.23 -0.09 0.13 0.16 0.19
θ -0.02 0.09 0.2 0.14 -0.01 0.45 0.32 0.3

Generating Model M2PLMix N = 500, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.05 0.14 0.18 -0.21 0.31 0.32 0.21

Random β -0.04 0.12 0.14 0.21 -0.2 0.26 0.25 0.27
θ -0.03 0.09 0.2 0.12 0 0.52 0.36 0.35
α 0.06 0.06 0.14 0.19 -0.17 0.19 0.24 0.17

Ordered β -0.02 0.12 0.13 0.22 -0.07 0.1 0.14 0.18
θ -0.02 0.09 0.2 0.13 -0.01 0.37 0.28 0.25

Generating Model M2PLMix N = 500, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.07 0.05 0.14 0.17 -0.1 0.26 0.26 0.17

Random β -0.04 0.11 0.13 0.24 -0.16 0.21 0.21 0.22
θ -0.02 0.07 0.19 0.13 0 0.44 0.31 0.3
α 0.08 0.06 0.14 0.2 -0.08 0.11 0.16 0.18

Ordered β -0.03 0.12 0.13 0.23 -0.04 0.06 0.1 0.18
θ -0.03 0.11 0.2 0.14 -0.02 0.28 0.22 0.23
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Table B.4: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 500, J = 80, λ = 0.2.

Generating Model M2PLMix N = 500, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.6 1 -0.02 -0.16 0.59 0 1 -0.38 -0.41
Ordered δ 0.58 0.31 1 -0.15 -0.29 0.58 0 1 -0.45 -0.42

Generating Model M2PLMix N = 500, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.56 1 -0.02 -0.13 0.7 0 1 -0.34 -0.3
Ordered δ 0.68 0.32 1 -0.09 -0.21 0.68 0 1 -0.29 -0.32

Generating Model M2PLMix N = 500, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.63 1 -0.03 -0.08 0.79 0 1 -0.19 -0.21
Ordered δ 0.81 0.21 1 -0.08 -0.14 0.82 0 1 -0.16 -0.18
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Table B.5: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PL, N = 1000, J = 20, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.15 0.15 0.19 0.2 -0.22 0.3 0.3 0.26

Random β -0.16 0.15 0.18 0.22 -0.25 0.23 0.27 0.26
θ -0.02 0.36 0.38 0.18 -0.02 0.46 0.42 0.22
α -0.11 0.09 0.15 0.2 -0.19 0.16 0.23 0.19

Ordered β -0.06 0.04 0.1 0.17 -0.09 0.08 0.13 0.19
θ -0.03 0.32 0.36 0.15 -0.02 0.35 0.36 0.18

Generating Model M2PLMix N = 1000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.15 0.11 0.17 0.17 -0.23 0.23 0.27 0.21

Random β -0.1 0.11 0.13 0.16 -0.17 0.19 0.2 0.22
θ -0.03 0.31 0.36 0.15 -0.02 0.4 0.38 0.19
α -0.09 0.08 0.13 0.2 -0.15 0.13 0.18 0.18

Ordered β -0.04 0.05 0.09 0.1 -0.07 0.08 0.11 0.1
θ -0.03 0.31 0.35 0.16 -0.03 0.33 0.35 0.17

Generating Model M2PLMix N = 1000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.09 0.09 0.14 0.22 -0.13 0.16 0.18 0.2

Random β -0.08 0.07 0.12 0.12 -0.13 0.13 0.16 0.18
θ -0.03 0.3 0.35 0.15 -0.02 0.37 0.37 0.2
α -0.07 0.06 0.13 0.18 -0.11 0.09 0.15 0.19

Ordered β -0.05 0.04 0.09 0.13 -0.06 0.05 0.1 0.08
θ -0.02 0.31 0.35 0.16 -0.02 0.33 0.36 0.17
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Table B.6: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 1000, J = 20, λ = 0.2 .

Generating Model M2PLMix N = 1000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.57 0.02 1 -0.34 -0.42 0.57 0 1 -0.35 -0.43
Ordered δ 0.61 0.01 1 -0.32 -0.39 0.61 0 1 -0.33 -0.39

Generating Model M2PLMix N = 1000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.72 0.01 1 -0.25 -0.28 0.72 0 1 -0.26 -0.28
Ordered δ 0.7 0 1 -0.25 -0.3 0.7 0 1 -0.26 -0.3

Generating Model M2PLMix N = 1000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.01 1 -0.15 -0.19 0.81 0 1 -0.16 -0.19
Ordered δ 0.79 0 1 -0.21 -0.21 0.79 0 1 -0.21 -0.21
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Table B.7: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PL, N = 1000, J = 80, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.05 0.1 0.15 -0.36 0.5 0.47 0.4

Random β -0.03 0.05 0.08 0.15 -0.23 0.34 0.28 0.33
θ -0.03 0.1 0.2 0.15 0 0.51 0.39 0.31
α -0.01 0.07 0.11 0.17 -0.23 0.23 0.29 0.21

Ordered β -0.02 0.06 0.08 0.16 -0.08 0.11 0.14 0.16
θ -0.02 0.13 0.2 0.16 -0.02 0.4 0.29 0.28

Generating Model M2PLMix N = 1000, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.04 0.1 0.13 -0.19 0.33 0.31 0.25

Random β -0.04 0.06 0.09 0.16 -0.2 0.26 0.23 0.28
θ -0.03 0.08 0.19 0.13 -0.01 0.48 0.35 0.3
α 0 0.06 0.1 0.17 -0.16 0.17 0.21 0.18

Ordered β -0.01 0.05 0.08 0.15 -0.06 0.09 0.11 0.14
θ -0.02 0.08 0.19 0.14 -0.02 0.33 0.25 0.23

Generating Model M2PLMix N = 1000, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.04 0.09 0.11 -0.16 0.26 0.26 0.21

Random β -0.04 0.04 0.08 0.14 -0.18 0.23 0.21 0.24
θ -0.02 0.08 0.19 0.14 -0.01 0.46 0.33 0.31
α 0.01 0.04 0.09 0.14 -0.12 0.12 0.16 0.2

Ordered β -0.03 0.05 0.08 0.16 -0.05 0.06 0.09 0.1
θ -0.03 0.09 0.19 0.15 -0.02 0.3 0.23 0.23
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Table B.8: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 1000, J = 80, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.59 1 -0.06 -0.16 0.6 0 1 -0.49 -0.4
Ordered δ 0.57 0.25 1 -0.2 -0.32 0.57 0 1 -0.45 -0.43

Generating Model M2PLMix N = 1000, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.56 1 -0.03 -0.13 0.69 0 1 -0.28 -0.31
Ordered δ 0.71 0.25 1 -0.11 -0.22 0.71 0 1 -0.26 -0.29

Generating Model M2PLMix N = 1000, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.79 0.59 1 -0.05 -0.09 0.78 0 1 -0.27 -0.22
Ordered δ 0.79 0.28 1 -0.08 -0.15 0.8 0 1 -0.2 -0.2
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Table B.9: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PL, N = 2000, J = 20, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.18 0.12 0.19 0.18 -0.26 0.27 0.3 0.26

Random β -0.13 0.14 0.15 0.16 -0.23 0.24 0.24 0.26
θ -0.03 0.35 0.37 0.16 -0.02 0.44 0.41 0.21
α -0.13 0.09 0.15 0.18 -0.19 0.16 0.22 0.19

Ordered β -0.05 0.06 0.09 0 -0.09 0.09 0.13 0.07
θ -0.03 0.34 0.36 0.16 -0.03 0.37 0.37 0.19

Generating Model M2PLMix N = 2000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.14 0.1 0.15 0.19 -0.18 0.21 0.22 0.22

Random β -0.11 0.12 0.13 0.15 -0.18 0.19 0.2 0.22
θ -0.03 0.33 0.36 0.16 -0.03 0.41 0.39 0.2
α -0.1 0.07 0.13 0.18 -0.15 0.12 0.17 0.18

Ordered β -0.04 0.04 0.07 0 -0.07 0.07 0.1 0
θ -0.03 0.31 0.35 0.15 -0.03 0.34 0.36 0.17

Generating Model M2PLMix N = 2000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.13 0.11 0.15 0.18 -0.17 0.19 0.21 0.21

Random β -0.08 0.11 0.11 0.13 -0.14 0.16 0.16 0.17
θ -0.03 0.31 0.35 0.15 -0.03 0.37 0.37 0.19
α -0.07 0.06 0.1 0.17 -0.1 0.09 0.13 0.19

Ordered β -0.04 0.03 0.07 0 -0.06 0.05 0.09 0.07
θ -0.03 0.28 0.34 0.13 -0.03 0.29 0.34 0.14
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Table B.10: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 2000, J = 20, λ = 0.2 .

Generating Model M2PLMix N = 2000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.58 0.02 1 -0.37 -0.41 0.58 0 1 -0.39 -0.42
Ordered δ 0.61 0.01 1 -0.33 -0.39 0.61 0 1 -0.34 -0.39

Generating Model M2PLMix N = 2000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.71 0.01 1 -0.27 -0.28 0.71 0 1 -0.27 -0.29
Ordered δ 0.7 0 1 -0.25 -0.3 0.7 0 1 -0.25 -0.3

Generating Model M2PLMix N = 2000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.79 0.01 1 -0.19 -0.2 0.79 0 1 -0.19 -0.21
Ordered δ 0.8 0 1 -0.18 -0.2 0.8 0 1 -0.18 -0.2
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Table B.11: IRT model parameters: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 2000, J = 40, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.06 0.09 0.1 0.14 -0.32 0.47 0.44 0.38

Random β -0.07 0.09 0.09 0.12 -0.26 0.31 0.28 0.33
θ -0.03 0.19 0.28 0.12 -0.02 0.53 0.42 0.29
α -0.09 0.08 0.11 0.16 -0.21 0.21 0.26 0.21

Ordered β -0.02 0.04 0.06 0 -0.09 0.11 0.13 0.09
θ -0.03 0.2 0.28 0.13 -0.02 0.41 0.33 0.25

Generating Model M2PLMix N = 2000, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.06 0.08 0.1 0.14 -0.23 0.34 0.32 0.27

Random β -0.06 0.08 0.09 0.15 -0.21 0.26 0.24 0.28
θ -0.02 0.18 0.27 0.12 -0.02 0.47 0.38 0.27
α -0.09 0.07 0.11 0.17 -0.17 0.16 0.21 0.18

Ordered β -0.02 0.03 0.06 0 -0.07 0.08 0.1 0.05
θ -0.02 0.18 0.27 0.12 -0.02 0.33 0.3 0.2

Generating Model M2PLMix N = 2000, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.04 0.08 0.1 -0.14 0.2 0.2 0.21

Random β -0.04 0.04 0.06 0.08 -0.16 0.18 0.17 0.21
θ -0.02 0.16 0.26 0.11 -0.02 0.39 0.33 0.23
α -0.05 0.05 0.09 0.15 -0.11 0.1 0.14 0.19

Ordered β -0.03 0.02 0.06 0 -0.05 0.06 0.08 0.05
θ -0.03 0.17 0.26 0.12 -0.02 0.28 0.28 0.17
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Table B.12: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PL, N = 2000, J = 40, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.25 1 -0.23 -0.31 0.59 0 1 -0.4 -0.41
Ordered δ 0.61 0.11 1 -0.25 -0.35 0.61 0 1 -0.37 -0.39

Generating Model M2PLMix N = 2000, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.69 0.24 1 -0.16 -0.24 0.69 0 1 -0.28 -0.31
Ordered δ 0.7 0.09 1 -0.23 -0.28 0.7 0 1 -0.3 -0.3

Generating Model M2PLMix N = 2000, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.26 1 -0.09 -0.15 0.8 0 1 -0.17 -0.2
Ordered δ 0.8 0.07 1 -0.15 -0.19 0.8 0 1 -0.19 -0.2

Table B.13: Model Fit Data Generation Model M2PLMix Model, N = 500, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 500, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, λ = 0.2 17009.14 19169.14 15150.28 23720.92 20292.93

E=2PL, J = 40, λ = 0.2 17207.68 18367.68 10047.18 20812.15 18971.2
E=M2PLMix, J = 80, λ = 0.2 32304.12 34624.12 30549.21 39513.07 35831.16

E=2PL, J = 80, λ = 0.2 35374.3 36694.3 31274.92 39475.94 37381.06
E=M2PLMix, J = 40, λ = 0.4 17234.69 19394.69 15375.83 23946.47 20518.48

E=2PL, J = 40, λ = 0.4 17538.92 18698.92 10378.43 21143.4 19302.44
E=M2PLMix, J = 80, λ = 0.4 33523.7 35843.7 31768.79 40732.65 37050.74

E=2PL, J = 80, λ = 0.4 35551.81 36871.81 31452.43 39653.45 37558.57
E=M2PLMix, J = 40, λ = 0.6 17686.9 19846.9 15828.03 24398.67 20970.69

E=2PL, J = 40, λ = 0.6 17855.49 19015.49 10695 21459.96 19619.01
E=M2PLMix, J = 80, λ = 0.6 34494.91 36814.91 32739.99 41703.85 38021.94

E=2PL, J = 80, λ = 0.6 36354.87 37674.87 32255.5 40456.52 38361.64
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Table B.14: Model Fit Data Generation Model M2PLMix Model, N = 500, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 500, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, λ = 0.2 16565.95 18725.95 14707.09 23277.73 19849.74

E=2PL, J = 40, λ = 0.2 16688.72 17848.72 9528.23 20293.19 18452.24
E=M2PLMix, J = 80, λ = 0.2 32548.54 34868.54 30793.62 39757.49 36075.57

E=2PL, J = 80, λ = 0.2 33745.83 35065.83 29646.45 37847.47 35752.59
E=M2PLMix, J = 40, λ = 0.4 17093.52 19253.52 15234.66 23805.3 20377.31

E=2PL, J = 40, λ = 0.4 17093.49 18253.49 9932.99 20697.96 18857
E=M2PLMix, J = 80, λ = 0.4 33617.74 35937.74 31862.83 40826.69 37144.78

E=2PL, J = 80, λ = 0.4 34545.15 35865.15 30445.77 38646.79 36551.91
E=M2PLMix, J = 40, λ = 0.6 17492.95 19652.95 15634.09 24204.73 20776.74

E=2PL, J = 40, λ = 0.6 17503.1 18663.1 10342.61 21107.58 19266.62
E=M2PLMix, J = 80, λ = 0.6 35393.97 37713.97 33639.05 42602.92 38921

E=2PL, J = 80, λ = 0.6 35740.44 37060.44 31641.06 39842.08 37747.2

Table B.15: Model Fit Data Generation Model M2PLMix Model, N = 1000, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 1000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 17623.46 21703.46 13704.15 31715.28 25236.12

E=2PL, J = 20, λ = 0.2 17239.91 19319.91 -33491.8 24423.98 21120.88
E=M2PLMix, J = 80, λ = 0.2 64373.04 68693.04 60652.11 79293.79 72433.51

E=2PL, J = 80, λ = 0.2 69071.77 71391.77 54661.83 77084.76 73400.54
E=M2PLMix, J = 20, λ = 0.4 17551.91 21631.91 13632.6 31643.73 25164.58

E=2PL, J = 20, λ = 0.4 17212.13 19292.13 -33519.58 24396.19 21093.1
E=M2PLMix, J = 80, λ = 0.4 67313.64 71633.64 63592.71 82234.39 75374.11

E=2PL, J = 80, λ = 0.4 71690.14 74010.14 57280.2 79703.13 76018.91
E=M2PLMix, J = 20, λ = 0.6 17736.95 21816.95 13817.64 31828.77 25349.62

E=2PL, J = 20, λ = 0.6 17541.85 19621.85 -33189.85 24725.92 21422.82
E=M2PLMix, J = 80, λ = 0.6 68759.44 73079.44 65038.51 83680.19 76819.91

E=2PL, J = 80, λ = 0.6 72255 74575 57845.06 80267.99 76583.77
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Table B.16: Model Fit Data Generation Model M2PLMix Model, N = 1000, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 1000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 16889.35 20969.35 12970.04 30981.17 24502.02

E=2PL, J = 20, λ = 0.2 16695.11 18775.11 -34036.59 23879.18 20576.08
E=M2PLMix, J = 80, λ = 0.2 66267.82 70587.82 62546.89 81188.57 74328.29

E=2PL, J = 80, λ = 0.2 68125.58 70445.58 53715.64 76138.58 72454.35
E=M2PLMix, J = 20, λ = 0.4 17199.68 21279.68 13280.37 31291.5 24812.34

E=2PL, J = 20, λ = 0.4 17054.87 19134.87 -33676.84 24238.93 20935.84
E=M2PLMix, J = 80, λ = 0.4 68601.22 72921.22 64880.29 83521.97 76661.69

E=2PL, J = 80, λ = 0.4 69999.42 72319.42 55589.48 78012.41 74328.19
E=M2PLMix, J = 20, λ = 0.6 17315 21395 13395.7 31406.83 24927.67

E=2PL, J = 20, λ = 0.6 17224.53 19304.53 -33507.18 24408.6 21105.5
E=M2PLMix, J = 80, λ = 0.6 69781.2 74101.2 66060.27 84701.96 77841.68

E=2PL, J = 80, λ = 0.6 70844.45 73164.45 56434.51 78857.45 75173.22

Table B.17: Model Fit Data Generation Model M2PLMix Model, N = 2000, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 2000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 34969.05 43049.05 27051.36 65676.7 52841.4

E=2PL, J = 20, λ = 0.2 34152.07 38232.07 -164872.32 49657.91 43176.72
E=M2PLMix, J = 40, λ = 0.2 67861.33 76021.33 60018.94 98873.01 85910.63

E=2PL, J = 40, λ = 0.2 68956.06 73116.06 -33759.99 84765.94 78157.66
E=M2PLMix, J = 20, λ = 0.4 35316.39 43396.39 27398.7 66024.04 53188.74

E=2PL, J = 20, λ = 0.4 34741.24 38821.24 -164283.15 50247.08 43765.89
E=M2PLMix, J = 40, λ = 0.4 69219.95 77379.95 61377.56 100231.63 87269.25

E=2PL, J = 40, λ = 0.4 70409.19 74569.19 -32306.86 86219.07 79610.8
E=M2PLMix, J = 20, λ = 0.6 35310.27 43390.27 27392.59 66017.92 53182.62

E=2PL, J = 20, λ = 0.6 34862.19 38942.19 -164162.2 50368.03 43886.84
E=M2PLMix, J = 40, λ = 0.6 70730.02 78890.02 62887.63 101741.7 88779.32

E=2PL, J = 40, λ = 0.6 71836.04 75996.04 -30880.01 87645.91 81037.64
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Table B.18: Model Fit Data Generation Model M2PLMix Model, N = 2000, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 2000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 33922.59 42002.59 26004.91 64630.24 51794.94

E=2PL, J = 20, λ = 0.2 33542.08 37622.08 -165482.31 49047.92 42566.73
E=M2PLMix, J = 40, λ = 0.2 67337.42 75497.42 59495.04 98349.1 85386.72

E=2PL, J = 40, λ = 0.2 67726.44 71886.44 -34989.61 83536.32 76928.05
E=M2PLMix, J = 20, λ = 0.4 34324.85 42404.85 26407.16 65032.49 52197.19

E=2PL, J = 20, λ = 0.4 34038.09 38118.09 -164986.3 49543.93 43062.74
E=M2PLMix, J = 40, λ = 0.4 68737.08 76897.08 60894.7 99748.76 86786.38

E=2PL, J = 40, λ = 0.4 68833.12 72993.12 -33882.93 84642.99 78034.72
E=M2PLMix, J = 20, λ = 0.6 34765.6 42845.6 26847.91 65473.25 52637.95

E=2PL, J = 20, λ = 0.6 34594.02 38674.02 -164430.37 50099.86 43618.67
E=M2PLMix, J = 40, λ = 0.6 70404.72 78564.72 62562.34 101416.41 88454.02

E=2PL, J = 40, λ = 0.6 70409.92 74569.92 -32306.13 86219.79 79611.52
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Table B.19: IRT model parameters: Generated Model 2PL Estimated Models the
M2PLMix and 2PL, N = 500, J = 40.

Generating Model 2PL N = 500, J = 40
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.14 0.11 0.19 0.18 -0.03 0.05 0.14 0.22

Random β 0.05 0.24 0.19 0.25 -0.01 0.03 0.09 0.18
θ -0.03 0.12 0.26 0.1 -0.02 0.12 0.24 0.08
α 0.11 0.07 0.17 0.17 -0.01 0.04 0.13 0.19

Ordered β -0.02 0.11 0.13 0.21 -0.02 0.03 0.09 0.18
θ -0.03 0.12 0.24 0.09 -0.02 0.12 0.23 0.07

Generating Model 2PL N = 1000, J = 20
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.11 0.14 0.17 0.19 -0.03 0.04 0.1 0.18

Random β 0.12 0.19 0.17 0.22 -0.01 0.03 0.07 0
θ -0.03 0.24 0.34 0.11 -0.03 0.19 0.32 0.08
α 0.06 0.07 0.13 0.19 -0.03 0.03 0.11 0.18

Ordered β 0.02 0.06 0.09 0.17 -0.03 0.02 0.07 0.16
θ -0.02 0.22 0.33 0.1 -0.02 0.19 0.32 0.09

Generating Model 2PL N = 2000, J = 20
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.12 0.13 0.15 0.18 -0.02 0.02 0.07 0.08

Random β 0.1 0.2 0.15 0.21 -0.03 0.01 0.05 0
θ -0.03 0.24 0.34 0.11 -0.03 0.19 0.32 0.09
α 0.07 0.06 0.11 0.12 -0.01 0.02 0.07 0

Ordered β 0.03 0.04 0.07 0 -0.02 0.02 0.06 0
θ -0.03 0.23 0.33 0.1 -0.03 0.2 0.32 0.09
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Table B.20: Location of Speededness: Generated Model 2PL Estimated Models the
M2PLMix and 2PL, N = 500, J = 40.

Generating Model 2PL N = 500, J = 40
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

Generating Model 2PL N = 1000, J = 20
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 0.99 NA 0.99 0.01 0.01 1 NA 1 0 0

Generating Model 2PL N = 2000, J = 20
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 0.99 NA 0.99 0.01 0.01 1 NA 1 0 0
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Table B.21: IRT model parameters: Generated Model 2PL Estimated Models the
M2PLMix and 2PL, N = 500, J = 80.

Generating Model 2PL N = 500, J = 80
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.13 0.06 0.17 0.16 0 0.04 0.12 0.19

Random β -0.02 0.17 0.17 0.23 -0.02 0.04 0.1 0.19
θ -0.02 0.08 0.19 0.11 -0.02 0.07 0.17 0.14
α 0.12 0.05 0.16 0.16 -0.02 0.04 0.13 0.18

Ordered β -0.04 0.14 0.15 0.23 -0.02 0.04 0.1 0.17
θ -0.03 0.07 0.19 0.12 -0.02 0.07 0.17 0.13

Generating Model 2PL N = 1000, J = 80
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.04 0.11 0.16 -0.01 0.03 0.09 0.14

Random β -0.02 0.1 0.1 0.18 -0.02 0.02 0.07 0.1
θ -0.02 0.06 0.18 0.13 -0.02 0.07 0.17 0.14
α 0.06 0.04 0.1 0.13 -0.01 0.03 0.09 0.14

Ordered β -0.03 0.06 0.08 0.17 -0.02 0.02 0.07 0.09
θ -0.03 0.06 0.17 0.12 -0.02 0.07 0.17 0.12

Generating Model 2PL N = 2000, J = 40
Estimating Model M2PLMix Estimating Model 2PL

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.09 0.09 0.11 0.11 -0.02 0.02 0.07 0

Random β 0.02 0.14 0.1 0.16 -0.02 0.02 0.05 0
θ -0.03 0.12 0.24 0.08 -0.02 0.12 0.23 0.08
α 0.05 0.05 0.08 0.09 -0.02 0.03 0.07 0

Ordered β -0.01 0.03 0.05 0.09 -0.02 0.02 0.05 0.05
θ -0.03 0.12 0.24 0.09 -0.03 0.12 0.23 0.08
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Table B.22: Location of Speededness: Generated Model 2PL Estimated Models the
M2PLMix and 2PL, N = 500, J = 80 .

Generating Model 2PL N = 500, J = 80
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

Generating Model 2PL N = 1000, J = 80
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

Generating Model 2PL N = 2000, J = 40
Estimating Model M2PLMix Estimating Model 2PL
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 1 NA 1 0 0 1 NA 1 0 0
Ordered δ 1 NA 1 0 0 1 NA 1 0 0

Table B.23: Model Fit Data Generation Model 2PL Model, N = 500, Item Difficulty
Random

Model Fit Data Generation under the 2PL Model, N = 500, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40 18291.19 20451.19 16432.33 25002.97 21574.98

E=2PL, J = 40 18162.58 19322.58 11002.09 21767.05 19926.1
E=M2PLMix, J = 80 36918.02 39238.02 35163.11 44126.97 40445.06

E=2PL, J = 80 36883.01 38203.01 32783.63 40984.65 38889.77

Table B.24: Model Fit Data Generation Model 2PL Model, N = 500, Item Difficulty
Ordered

Model Fit Data Generation under the 2PL Model, N = 500, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40 18287.73 20447.73 16428.87 24999.51 21571.52

E=2PL, J = 40 18222.02 19382.02 11061.53 21826.5 19985.54
E=M2PLMix, J = 80 36777.94 39097.94 35023.03 43986.89 40304.98

E=2PL, J = 80 36755.26 38075.26 32655.88 40856.9 38762.02
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Table B.25: Model Fit Data Generation Model 2PL Model, N = 1000, Item Difficulty
Random

Model Fit Data Generation under the 2PL Model, N = 1000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20 18264.26 22344.26 14344.95 32356.08 25876.93

E=2PL, J = 20 17850.09 19930.09 -32881.61 25034.16 21731.06
E=M2PLMix, J = 80 73909.15 78229.15 70188.22 88829.9 81969.62

E=2PL, J = 80 73860.54 76180.54 59450.6 81873.54 78189.31

Table B.26: Model Fit Data Generation Model 2PL Model, N = 1000, Item Difficulty
Ordered

Model Fit Data Generation under the 2PL Model, N = 1000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20 17998.06 22078.06 14078.76 32089.89 25610.73

E=2PL, J = 20 17799.66 19879.66 -32932.05 24983.72 21680.63
E=M2PLMix, J = 80 73805.03 78125.03 70084.1 88725.78 81865.5

E=2PL, J = 80 73779.29 76099.29 59369.35 81792.29 78108.06

Table B.27: Model Fit Data Generation Model 2PL Model, N = 2000, Item Difficulty
Random

Model Fit Data Generation under the 2PL Model, N = 2000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20 36541.57 44621.57 28623.89 67249.22 54413.92

E=2PL, J = 20 35727.7 39807.7 -163296.69 51233.54 44752.35
E=M2PLMix, J = 40 73378.69 81538.69 65536.31 104390.37 91427.99

E=2PL, J = 40 73022.62 77182.62 -29693.43 88832.5 82224.22

Table B.28: Model Fit Data Generation Model 2PL Model, N = 2000, Item Difficulty
Ordered

Model Fit Data Generation under the 2PL Model, N = 2000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20 36237 44317 28319.31 66944.65 54109.35

E=2PL, J = 20 35860.89 39940.89 -163163.5 51366.73 44885.54
E=M2PLMix, J = 40 73201.03 81361.03 65358.64 104212.71 91250.33

E=2PL, J = 40 72977.98 77137.98 -29738.07 88787.85 82179.58
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Appendix C

Study 3 Results Tables & Figures

Table C.1: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PLMix,N = 500, J = 40, λ = 0.2.

Generating Model M2PLMix N = 500, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.11 0.15 0.2 0.07 0.05 0.14 0.2

Random β -0.08 0.1 0.14 0.21 0.04 0.15 0.16 0.21
θ -0.03 0.17 0.28 0.12 -0.02 0.17 0.28 0.12
α -0.05 0.1 0.16 0.22 0.07 0.06 0.16 0.19

Ordered β -0.04 0.09 0.13 0.22 0.03 0.07 0.13 0.24
θ -0.03 0.23 0.29 0.17 -0.03 0.2 0.29 0.14

Generating Model M2PLMix N = 500, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.02 0.1 0.15 0.2 0.05 0.05 0.15 0.19

Random β -0.07 0.08 0.13 0.21 0 0.11 0.13 0.22
θ -0.02 0.16 0.27 0.11 -0.03 0.15 0.27 0.11
α -0.04 0.07 0.16 0.19 0.04 0.05 0.16 0.16

Ordered β -0.05 0.08 0.13 0.23 0 0.07 0.13 0.24
θ -0.03 0.21 0.28 0.16 -0.02 0.19 0.28 0.14

Generating Model M2PLMix N = 500, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.01 0.07 0.14 0.18 0.05 0.05 0.14 0.17

Random β -0.05 0.07 0.12 0.22 -0.01 0.09 0.12 0.21
θ -0.02 0.14 0.26 0.1 -0.02 0.13 0.26 0.09
α -0.02 0.07 0.14 0.19 0.02 0.05 0.13 0.18

Ordered β -0.02 0.06 0.11 0.19 0.01 0.05 0.11 0.19
θ -0.03 0.13 0.25 0.1 -0.03 0.13 0.26 0.1
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Table C.2: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 500, J = 40, λ = 0.2.

Generating Model M2PLMix N = 500, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.57 0.22 1 -0.24 -0.33 0.56 0.53 0.96 -0.07 -0.18
Ordered δ 0.57 0.12 1 -0.24 -0.38 0.54 0.36 0.95 -0.07 -0.24

Generating Model M2PLMix N = 500, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.68 0.22 1 -0.13 -0.25 0.68 0.33 0.99 -0.09 -0.21
Ordered δ 0.67 0.09 1 -0.27 -0.3 0.67 0.18 0.99 -0.18 -0.26

Generating Model M2PLMix N = 500, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.82 0.25 1 -0.11 -0.13 0.82 0.32 1 -0.09 -0.12
Ordered δ 0.8 0.08 1 -0.14 -0.19 0.8 0.12 1 -0.13 -0.18
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Table C.3: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 500, J = 80, λ = 0.2 .

Generating Model M2PLMix N = 500, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.06 0.14 0.18 0.11 0.05 0.15 0.18

Random β -0.05 0.13 0.14 0.22 -0.01 0.15 0.16 0.23
θ -0.03 0.09 0.2 0.11 -0.02 0.09 0.21 0.1
α 0.06 0.06 0.15 0.17 0.13 0.07 0.18 0.16

Ordered β -0.02 0.12 0.13 0.23 -0.01 0.12 0.14 0.22
θ -0.02 0.09 0.2 0.14 -0.03 0.09 0.21 0.13

Generating Model M2PLMix N = 500, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.05 0.14 0.18 0.09 0.05 0.15 0.17

Random β -0.04 0.12 0.14 0.21 -0.03 0.13 0.14 0.22
θ -0.03 0.09 0.2 0.12 -0.03 0.09 0.2 0.13
α 0.06 0.06 0.14 0.19 0.1 0.04 0.15 0.18

Ordered β -0.02 0.12 0.13 0.22 -0.02 0.11 0.13 0.23
θ -0.02 0.09 0.2 0.13 -0.03 0.08 0.2 0.12

Generating Model M2PLMix N = 500, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.07 0.05 0.14 0.17 0.09 0.05 0.14 0.17

Random β -0.04 0.11 0.13 0.24 -0.04 0.12 0.14 0.23
θ -0.02 0.07 0.19 0.13 -0.03 0.07 0.19 0.12
α 0.08 0.06 0.14 0.2 0.1 0.05 0.15 0.2

Ordered β -0.03 0.12 0.13 0.23 -0.02 0.12 0.14 0.23
θ -0.03 0.11 0.2 0.14 -0.03 0.09 0.19 0.12
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Table C.4: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 500, J = 80, λ = 0.2.

Generating Model M2PLMix N = 500, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.6 1 -0.02 -0.16 0.6 0.68 0.99 0 -0.12
Ordered δ 0.58 0.31 1 -0.15 -0.29 0.58 0.41 0.99 -0.09 -0.24

Generating Model M2PLMix N = 500, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.56 1 -0.02 -0.13 0.7 0.61 1 -0.02 -0.12
Ordered δ 0.68 0.32 1 -0.09 -0.21 0.68 0.38 1 -0.06 -0.2

Generating Model M2PLMix N = 500, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.63 1 -0.03 -0.08 0.79 0.66 1 -0.01 -0.07
Ordered δ 0.81 0.21 1 -0.08 -0.14 0.81 0.27 1 -0.06 -0.13
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Table C.5: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 1000, J = 20, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.15 0.15 0.19 0.2 0 0.05 0.11 0.17

Random β -0.16 0.15 0.18 0.22 0.08 0.13 0.14 0.2
θ -0.02 0.36 0.38 0.18 -0.03 0.32 0.38 0.16
α -0.11 0.09 0.15 0.2 0.01 0.04 0.11 0.19

Ordered β -0.06 0.04 0.1 0.17 0.12 0.11 0.15 0.2
θ -0.03 0.32 0.36 0.15 -0.03 0.31 0.38 0.14

Generating Model M2PLMix N = 1000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.15 0.11 0.17 0.17 -0.04 0.05 0.1 0.17

Random β -0.1 0.11 0.13 0.16 0.04 0.08 0.1 0.14
θ -0.03 0.31 0.36 0.15 -0.03 0.29 0.36 0.14
α -0.09 0.08 0.13 0.2 -0.03 0.04 0.1 0.21

Ordered β -0.04 0.05 0.09 0.1 0.06 0.08 0.1 0.15
θ -0.03 0.31 0.35 0.16 -0.03 0.31 0.36 0.15

Generating Model M2PLMix N = 1000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.09 0.09 0.14 0.22 -0.03 0.05 0.11 0.19

Random β -0.08 0.07 0.12 0.12 0 0.03 0.08 0.09
θ -0.03 0.3 0.35 0.15 -0.02 0.28 0.35 0.14
α -0.07 0.06 0.13 0.18 -0.05 0.04 0.11 0.18

Ordered β -0.05 0.04 0.09 0.13 0 0.04 0.08 0.14
θ -0.02 0.31 0.35 0.16 -0.02 0.3 0.35 0.14
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Table C.6: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 1000, J = 20, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.57 0.02 1 -0.34 -0.42 0.52 0.46 0.89 -0.07 -0.16
Ordered δ 0.61 0.01 1 -0.32 -0.39 0.46 0.56 0.74 0.11 -0.01

Generating Model M2PLMix N = 1000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.72 0.01 1 -0.25 -0.28 0.71 0.13 0.98 -0.2 -0.23
Ordered δ 0.7 0 1 -0.25 -0.3 0.68 0.12 0.97 -0.16 -0.24

Generating Model M2PLMix N = 1000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.81 0.01 1 -0.15 -0.19 0.81 0.05 1 -0.14 -0.18
Ordered δ 0.79 0 1 -0.21 -0.21 0.79 0.01 1 -0.2 -0.21
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Table C.7: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 1000, J = 80, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.05 0.1 0.15 0.06 0.04 0.11 0.15

Random β -0.03 0.05 0.08 0.15 0 0.1 0.1 0.18
θ -0.03 0.1 0.2 0.15 -0.03 0.1 0.2 0.14
α -0.01 0.07 0.11 0.17 0.07 0.04 0.11 0.17

Ordered β -0.02 0.06 0.08 0.16 0 0.06 0.09 0.17
θ -0.02 0.13 0.2 0.16 -0.02 0.11 0.2 0.14

Generating Model M2PLMix N = 1000, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.04 0.1 0.13 0.05 0.03 0.1 0.13

Random β -0.04 0.06 0.09 0.16 -0.02 0.07 0.09 0.17
θ -0.03 0.08 0.19 0.13 -0.03 0.08 0.19 0.12
α 0 0.06 0.1 0.17 0.05 0.04 0.1 0.16

Ordered β -0.01 0.05 0.08 0.15 -0.01 0.05 0.08 0.17
θ -0.02 0.08 0.19 0.14 -0.02 0.07 0.19 0.14

Generating Model M2PLMix N = 1000, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.04 0.09 0.11 0.04 0.03 0.1 0.13

Random β -0.04 0.04 0.08 0.14 -0.03 0.05 0.08 0.16
θ -0.02 0.08 0.19 0.14 -0.03 0.08 0.19 0.13
α 0.01 0.04 0.09 0.14 0.03 0.03 0.1 0.13

Ordered β -0.03 0.05 0.08 0.16 -0.02 0.05 0.08 0.18
θ -0.03 0.09 0.19 0.15 -0.02 0.08 0.19 0.14
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Table C.8: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 1000, J = 80, λ = 0.2.

Generating Model M2PLMix N = 1000, J = 80, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.59 1 -0.06 -0.16 0.61 0.69 0.99 -0.06 -0.12
Ordered δ 0.57 0.25 1 -0.2 -0.32 0.57 0.33 0.99 -0.14 -0.28

Generating Model M2PLMix N = 1000, J = 80, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.7 0.56 1 -0.03 -0.13 0.7 0.61 1 -0.03 -0.12
Ordered δ 0.71 0.25 1 -0.11 -0.22 0.71 0.31 1 -0.08 -0.2

Generating Model M2PLMix N = 1000, J = 80, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.79 0.59 1 -0.05 -0.09 0.79 0.63 1 -0.02 -0.08
Ordered δ 0.79 0.28 1 -0.08 -0.15 0.79 0.32 1 -0.06 -0.14
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Table C.9: IRT model parameters: Generated Model M2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 2000, J = 20, λ = 0.2 .

Generating Model M2PLMix N = 2000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.18 0.12 0.19 0.18 -0.02 0.05 0.08 0.11

Random β -0.13 0.14 0.15 0.16 0.11 0.13 0.14 0.15
θ -0.03 0.35 0.37 0.16 -0.03 0.32 0.38 0.14
α -0.13 0.09 0.15 0.18 -0.01 0.04 0.08 0

Ordered β -0.05 0.06 0.09 0 0.12 0.15 0.15 0.18
θ -0.03 0.34 0.36 0.16 -0.03 0.32 0.38 0.14

Generating Model M2PLMix N = 2000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.14 0.1 0.15 0.19 -0.03 0.04 0.07 0.15

Random β -0.11 0.12 0.13 0.15 0.03 0.06 0.07 0.07
θ -0.03 0.33 0.36 0.16 -0.03 0.3 0.36 0.14
α -0.1 0.07 0.13 0.18 -0.04 0.03 0.08 0.12

Ordered β -0.04 0.04 0.07 0 0.06 0.09 0.09 0.15
θ -0.03 0.31 0.35 0.15 -0.03 0.3 0.36 0.14

Generating Model M2PLMix N = 2000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.13 0.11 0.15 0.18 -0.07 0.05 0.1 0.12

Random β -0.08 0.11 0.11 0.13 -0.01 0.05 0.06 0
θ -0.03 0.31 0.35 0.15 -0.02 0.29 0.35 0.14
α -0.07 0.06 0.1 0.17 -0.05 0.04 0.09 0.11

Ordered β -0.04 0.03 0.07 0 0.01 0.05 0.06 0.1
θ -0.03 0.28 0.34 0.13 -0.03 0.27 0.34 0.12
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Table C.10: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 2000, J = 20, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 20, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.58 0.02 1 -0.37 -0.41 0.52 0.44 0.88 -0.11 -0.17
Ordered δ 0.61 0.01 1 -0.33 -0.39 0.45 0.56 0.74 0.11 -0.01

Generating Model M2PLMix N = 2000, J = 20, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.71 0.01 1 -0.27 -0.28 0.7 0.14 0.98 -0.21 -0.24
Ordered δ 0.7 0 1 -0.25 -0.3 0.68 0.14 0.97 -0.14 -0.23

Generating Model M2PLMix N = 2000, J = 20, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.79 0.01 1 -0.19 -0.2 0.79 0.04 1 -0.18 -0.2
Ordered δ 0.8 0 1 -0.18 -0.2 0.8 0.01 1 -0.17 -0.2
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Table C.11: IRT model parameters: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix,N = 2000, J = 40, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.06 0.09 0.1 0.14 0.04 0.04 0.08 0.1

Random β -0.07 0.09 0.09 0.12 0.04 0.12 0.1 0.16
θ -0.03 0.19 0.28 0.12 -0.03 0.18 0.28 0.11
α -0.09 0.08 0.11 0.16 0.05 0.03 0.08 0.05

Ordered β -0.02 0.04 0.06 0 0.05 0.07 0.07 0.11
θ -0.03 0.2 0.28 0.13 -0.03 0.18 0.28 0.12

Generating Model M2PLMix N = 2000, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.06 0.08 0.1 0.14 0.01 0.03 0.07 0.09

Random β -0.06 0.08 0.09 0.15 0 0.05 0.06 0.11
θ -0.02 0.18 0.27 0.12 -0.03 0.16 0.27 0.11
α -0.09 0.07 0.11 0.17 -0.01 0.02 0.07 0.05

Ordered β -0.02 0.03 0.06 0 0.01 0.04 0.06 0.08
θ -0.02 0.18 0.27 0.12 -0.03 0.16 0.27 0.12

Generating Model M2PLMix N = 2000, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.03 0.04 0.08 0.1 0 0.03 0.07 0.08

Random β -0.04 0.04 0.06 0.08 -0.02 0.02 0.05 0.09
θ -0.02 0.16 0.26 0.11 -0.03 0.15 0.26 0.1
α -0.05 0.05 0.09 0.15 -0.01 0.02 0.07 0.07

Ordered β -0.03 0.02 0.06 0 0 0.03 0.05 0.05
θ -0.03 0.17 0.26 0.12 -0.03 0.15 0.26 0.11
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Table C.12: Location of Speededness: Generated Model M2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 2000, J = 40, λ = 0.2.

Generating Model M2PLMix N = 2000, J = 40, λ = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.25 1 -0.23 -0.31 0.58 0.56 0.97 -0.07 -0.16
Ordered δ 0.61 0.11 1 -0.25 -0.35 0.57 0.36 0.94 -0.08 -0.22

Generating Model M2PLMix N = 2000, J = 40, λ = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.69 0.24 1 -0.16 -0.24 0.69 0.36 1 -0.1 -0.2
Ordered δ 0.7 0.09 1 -0.23 -0.28 0.69 0.18 0.99 -0.17 -0.24

Generating Model M2PLMix N = 2000, J = 40, λ = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.8 0.26 1 -0.09 -0.15 0.8 0.29 1 -0.08 -0.14
Ordered δ 0.8 0.07 1 -0.15 -0.19 0.8 0.11 1 -0.13 -0.18
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Table C.13: Model Fit Data Generation Model M2PLMix Model, N = 500, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 500, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, λ = 0.2 17009.14 19169.14 15150.28 23720.92 20292.93
E=2PLMix, J = 40, λ = 0.2 16394.68 18554.68 14535.82 23106.46 19678.47

E=M2PLMix, J = 80, λ = 0.2 32304.12 34624.12 30549.21 39513.07 35831.16
E=2PLMix, J = 80, λ = 0.2 32165.83 34485.83 30410.91 39374.77 35692.86

E=M2PLMix, J = 40, λ = 0.4 17234.69 19394.69 15375.83 23946.47 20518.48
E=2PLMix, J = 40, λ = 0.4 17177.22 19337.22 15318.36 23889 20461.01

E=M2PLMix, J = 80, λ = 0.4 33523.7 35843.7 31768.79 40732.65 37050.74
E=2PLMix, J = 80, λ = 0.4 33483.88 35803.88 31728.97 40692.83 37010.92

E=M2PLMix, J = 40, λ = 0.6 17686.9 19846.9 15828.03 24398.67 20970.69
E=2PLMix, J = 40, λ = 0.6 17681.24 19841.24 15822.38 24393.02 20965.03

E=M2PLMix, J = 80, λ = 0.6 34494.91 36814.91 32739.99 41703.85 38021.94
E=2PLMix, J = 80, λ = 0.6 34451.09 36771.09 32696.17 41660.04 37978.12

Table C.14: Model Fit Data Generation Model M2PLMix Model, N = 500, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 500, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, λ = 0.2 16565.95 18725.95 14707.09 23277.73 19849.74
E=2PLMix, J = 40, λ = 0.2 16109.8 18269.8 14250.94 22821.58 19393.59

E=M2PLMix, J = 80, λ = 0.2 32548.54 34868.54 30793.62 39757.49 36075.57
E=2PLMix, J = 80, λ = 0.2 32407.56 34727.56 30652.65 39616.51 35934.6

E=M2PLMix, J = 40, λ = 0.4 17093.52 19253.52 15234.66 23805.3 20377.31
E=2PLMix, J = 40, λ = 0.4 16940.3 19100.3 15081.44 23652.08 20224.09

E=M2PLMix, J = 80, λ = 0.4 33617.74 35937.74 31862.83 40826.69 37144.78
E=2PLMix, J = 80, λ = 0.4 33517.52 35837.52 31762.6 40726.46 37044.55

E=M2PLMix, J = 40, λ = 0.6 17492.95 19652.95 15634.09 24204.73 20776.74
E=2PLMix, J = 40, λ = 0.6 17500.4 19660.4 15641.54 24212.18 20784.19

E=M2PLMix, J = 80, λ = 0.6 35393.97 37713.97 33639.05 42602.92 38921
E=2PLMix, J = 80, λ = 0.6 35300.06 37620.06 33545.14 42509.01 38827.09
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Table C.15: Model Fit Data Generation Model M2PLMix Model, N = 1000, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 1000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 17623.46 21703.46 13704.15 31715.28 25236.12
E=2PLMix, J = 20, λ = 0.2 17312.8 21392.8 13393.49 31404.62 24925.47

E=M2PLMix, J = 80, λ = 0.2 64373.04 68693.04 60652.11 79293.79 72433.51
E=2PLMix, J = 80, λ = 0.2 64063.02 68383.02 60342.09 78983.77 72123.49

E=M2PLMix, J = 20, λ = 0.4 17551.91 21631.91 13632.6 31643.73 25164.58
E=2PLMix, J = 20, λ = 0.4 17827.54 21907.54 13908.23 31919.36 25440.21

E=M2PLMix, J = 80, λ = 0.4 67313.64 71633.64 63592.71 82234.39 75374.11
E=2PLMix, J = 80, λ = 0.4 67267 71587 63546.07 82187.75 75327.47

E=M2PLMix, J = 20, λ = 0.6 17736.95 21816.95 13817.64 31828.77 25349.62
E=2PLMix, J = 20, λ = 0.6 17952.77 22032.77 14033.46 32044.59 25565.43

E=M2PLMix, J = 80, λ = 0.6 68759.44 73079.44 65038.51 83680.19 76819.91
E=2PLMix, J = 80, λ = 0.6 68664.82 72984.82 64943.89 83585.57 76725.29

Table C.16: Model Fit Data Generation Model M2PLMix Model, N = 1000, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 1000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 16889.35 20969.35 12970.04 30981.17 24502.02
E=2PLMix, J = 20, λ = 0.2 16268.24 20348.24 12348.93 30360.06 23880.91

E=M2PLMix, J = 80, λ = 0.2 66267.82 70587.82 62546.89 81188.57 74328.29
E=2PLMix, J = 80, λ = 0.2 66015.38 70335.38 62294.45 80936.14 74075.85

E=M2PLMix, J = 20, λ = 0.4 17199.68 21279.68 13280.37 31291.5 24812.34
E=2PLMix, J = 20, λ = 0.4 17198.68 21278.68 13279.37 31290.5 24811.34

E=M2PLMix, J = 80, λ = 0.4 68601.22 72921.22 64880.29 83521.97 76661.69
E=2PLMix, J = 80, λ = 0.4 68433.69 72753.69 64712.76 83354.45 76494.17

E=M2PLMix, J = 20, λ = 0.6 17315 21395 13395.7 31406.83 24927.67
E=2PLMix, J = 20, λ = 0.6 17474.91 21554.91 13555.6 31566.73 25087.57

E=M2PLMix, J = 80, λ = 0.6 69781.2 74101.2 66060.27 84701.96 77841.68
E=2PLMix, J = 80, λ = 0.6 69622.7 73942.7 65901.77 84543.45 77683.17
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Table C.17: Model Fit Data Generation Model M2PLMix Model, N = 2000, Item
Difficulty Random

Model Fit Data Generation under the M2PLMix Model, N = 2000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 34969.05 43049.05 27051.36 65676.7 52841.4
E=2PLMix, J = 20, λ = 0.2 34480.08 42560.08 26562.4 65187.73 52352.43

E=M2PLMix, J = 40, λ = 0.2 67861.33 76021.33 60018.94 98873.01 85910.63
E=2PLMix, J = 40, λ = 0.2 65471.79 73631.79 57629.41 96483.47 83521.09

E=M2PLMix, J = 20, λ = 0.4 35316.39 43396.39 27398.7 66024.04 53188.74
E=2PLMix, J = 20, λ = 0.4 35799.39 43879.39 27881.7 66507.03 53671.73

E=M2PLMix, J = 40, λ = 0.4 69219.95 77379.95 61377.56 100231.63 87269.25
E=2PLMix, J = 40, λ = 0.4 68702.53 76862.53 60860.15 99714.22 86751.83

E=M2PLMix, J = 20, λ = 0.6 35310.27 43390.27 27392.59 66017.92 53182.62
E=2PLMix, J = 20, λ = 0.6 35729.52 43809.52 27811.84 66437.17 53601.87

E=M2PLMix, J = 40, λ = 0.6 70730.02 78890.02 62887.63 101741.7 88779.32
E=2PLMix, J = 40, λ = 0.6 70715.18 78875.18 62872.8 101726.86 88764.48

Table C.18: Model Fit Data Generation Model M2PLMix Model, N = 2000, Item
Difficulty Ordered

Model Fit Data Generation under the M2PLMix Model, N = 2000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, λ = 0.2 33922.59 42002.59 26004.91 64630.24 51794.94
E=2PLMix, J = 20, λ = 0.2 32713.92 40793.92 24796.23 63421.57 50586.27

E=M2PLMix, J = 40, λ = 0.2 67337.42 75497.42 59495.04 98349.1 85386.72
E=2PLMix, J = 40, λ = 0.2 65522.15 73682.15 57679.76 96533.83 83571.45

E=M2PLMix, J = 20, λ = 0.4 34324.85 42404.85 26407.16 65032.49 52197.19
E=2PLMix, J = 20, λ = 0.4 34263.41 42343.41 26345.72 64971.06 52135.76

E=M2PLMix, J = 40, λ = 0.4 68737.08 76897.08 60894.7 99748.76 86786.38
E=2PLMix, J = 40, λ = 0.4 68208.66 76368.66 60366.28 99220.34 86257.96

E=M2PLMix, J = 20, λ = 0.6 34765.6 42845.6 26847.91 65473.25 52637.95
E=2PLMix, J = 20, λ = 0.6 35074.59 43154.59 27156.9 65782.23 52946.94

E=M2PLMix, J = 40, λ = 0.6 70404.72 78564.72 62562.34 101416.41 88454.02
E=2PLMix, J = 40, λ = 0.6 70399.55 78559.55 62557.17 101411.24 88448.85
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Table C.19: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 500, J = 40, π = 0.2 .

Generating Model 2PLMix N = 500, J = 40, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.01 0.14 0.17 0.2 0.02 0.08 0.15 0.2

Random β -0.24 0.28 0.29 0.28 -0.08 0.1 0.15 0.23
θ -0.02 0.24 0.34 0.14 -0.03 0.21 0.31 0.14
α -0.11 0.14 0.21 0.2 -0.01 0.07 0.17 0.17

Ordered β -0.21 0.21 0.26 0.24 -0.08 0.11 0.16 0.25
θ -0.03 0.32 0.36 0.18 -0.03 0.25 0.33 0.15

Generating Model 2PLMix N = 500, J = 40, π == 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.03 0.06 0.13 0.2 0.05 0.04 0.14 0.2

Random β -0.18 0.18 0.21 0.23 -0.09 0.11 0.14 0.24
θ -0.03 0.24 0.32 0.15 -0.02 0.21 0.31 0.14
α -0.01 0.07 0.15 0.17 0.02 0.05 0.15 0.19

Ordered β -0.2 0.25 0.26 0.29 -0.12 0.18 0.19 0.27
θ -0.03 0.34 0.35 0.21 -0.02 0.29 0.32 0.19

Generating Model 2PLMix N = 500, J = 40, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.04 0.1 0.16 0.18 0 0.06 0.14 0.19

Random β -0.14 0.13 0.19 0.22 -0.08 0.09 0.14 0.22
θ -0.03 0.24 0.31 0.16 -0.03 0.21 0.29 0.14
α -0.04 0.1 0.16 0.17 -0.01 0.07 0.15 0.19

Ordered β -0.11 0.15 0.17 0.23 -0.07 0.11 0.14 0.22
θ -0.03 0.25 0.31 0.15 -0.03 0.21 0.3 0.13
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Table C.20: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 500, J = 40, π = 0.2.

Generating Model 2PLMix N = 500, J = 40, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.19 0.2 1 -0.43 -0.66 0.21 0.48 0.99 -0.16 -0.42
Ordered δ 0.19 0.11 1 -0.59 -0.72 0.19 0.38 0.97 -0.21 -0.49

Generating Model 2PLMix N = 500, J = 40, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.4 0.25 1 -0.33 -0.46 0.4 0.37 1 -0.25 -0.38
Ordered δ 0.37 0.11 1 -0.43 -0.56 0.37 0.23 0.99 -0.29 -0.48

Generating Model 2PLMix N = 500, J = 40, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.57 0.25 1 -0.25 -0.33 0.57 0.33 1 -0.2 -0.29
Ordered δ 0.56 0.1 1 -0.28 -0.4 0.56 0.16 1 -0.22 -0.37
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Table C.21: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 500, J = 80, π = 0.2.

Generating Model 2PLMix N = 500, J = 80, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.08 0.06 0.16 0.18 0.07 0.05 0.15 0.17

Random β -0.11 0.18 0.19 0.22 -0.06 0.12 0.15 0.22
θ -0.02 0.12 0.23 0.12 -0.02 0.11 0.22 0.13
α 0.01 0.1 0.16 0.19 0.06 0.05 0.16 0.18

Ordered β -0.16 0.34 0.25 0.33 -0.09 0.22 0.19 0.29
θ -0.02 0.2 0.25 0.16 -0.02 0.17 0.24 0.15

Generating Model 2PLMix N = 500, J = 80, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.06 0.05 0.15 0.19 0.06 0.05 0.15 0.2

Random β -0.09 0.14 0.17 0.23 -0.06 0.13 0.15 0.23
θ -0.03 0.12 0.22 0.12 -0.02 0.12 0.22 0.13
α 0.04 0.07 0.15 0.2 0.08 0.05 0.16 0.18

Ordered β -0.1 0.21 0.19 0.26 -0.06 0.16 0.17 0.26
θ -0.02 0.21 0.24 0.19 -0.02 0.16 0.23 0.15

Generating Model 2PLMix N = 500, J = 80, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.06 0.05 0.14 0.18 0.07 0.05 0.14 0.18

Random β -0.06 0.11 0.14 0.22 -0.04 0.11 0.13 0.23
θ -0.03 0.09 0.2 0.13 -0.03 0.08 0.2 0.13
α 0.06 0.06 0.15 0.19 0.08 0.05 0.15 0.18

Ordered β -0.09 0.19 0.18 0.26 -0.06 0.15 0.16 0.26
θ -0.02 0.19 0.23 0.18 -0.02 0.13 0.21 0.13
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Table C.22: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 500, J = 80, π = 0.2.

Generating Model 2PLMix N = 500, J = 80, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.21 0.58 1 -0.04 -0.34 0.22 0.66 1 -0.02 -0.27
Ordered δ 0.19 0.26 1 -0.28 -0.6 0.19 0.37 0.99 -0.15 -0.51

Generating Model 2PLMix N = 500, J = 80, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.37 0.64 1 -0.04 -0.23 0.38 0.68 1 -0.02 -0.2
Ordered δ 0.42 0.32 1 -0.19 -0.39 0.42 0.4 1 -0.12 -0.35

Generating Model 2PLMix N = 500, J = 80, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.59 0.63 1 -0.03 -0.15 0.6 0.66 1 -0.01 -0.14
Ordered δ 0.59 0.26 1 -0.19 -0.3 0.59 0.34 1 -0.13 -0.27
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Table C.23: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 1000, J = 20, π = 0.2.

Generating Model 2PLMix N = 1000, J = 20, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.15 0.18 0.22 0.17 -0.05 0.05 0.11 0.18

Random β -0.38 0.3 0.4 0.28 -0.14 0.09 0.16 0.19
θ -0.03 0.53 0.49 0.26 -0.03 0.44 0.44 0.22
α -0.15 0.16 0.22 0.18 -0.07 0.08 0.15 0.19

Ordered β -0.31 0.22 0.35 0.19 -0.15 0.1 0.18 0.22
θ -0.03 0.55 0.49 0.27 -0.03 0.49 0.46 0.24

Generating Model 2PLMix N = 1000, J = 20, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.08 0.12 0.16 0.18 -0.02 0.05 0.11 0.16

Random β -0.24 0.21 0.27 0.22 -0.09 0.08 0.13 0.21
θ -0.03 0.44 0.43 0.21 -0.03 0.37 0.4 0.18
α -0.11 0.12 0.16 0.21 -0.08 0.07 0.13 0.2

Ordered β -0.23 0.15 0.25 0.17 -0.13 0.08 0.16 0.2
θ -0.03 0.5 0.45 0.26 -0.03 0.46 0.43 0.25

Generating Model 2PLMix N = 1000, J = 20, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.13 0.17 0.19 -0.08 0.08 0.14 0.18

Random β -0.19 0.15 0.21 0.19 -0.12 0.08 0.15 0.19
θ -0.02 0.43 0.41 0.22 -0.03 0.39 0.4 0.2
α -0.09 0.11 0.15 0.2 -0.07 0.07 0.13 0.2

Ordered β -0.14 0.11 0.18 0.21 -0.09 0.06 0.13 0.19
θ -0.02 0.44 0.41 0.25 -0.02 0.42 0.4 0.24
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Table C.24: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 1000, J = 20, π = 0.2 .

Generating Model 2PLMix N = 1000, J = 20, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.2 0.01 1 -0.78 -0.8 0.2 0.34 0.91 -0.4 -0.52
Ordered δ 0.17 0 1 -0.73 -0.83 0.15 0.46 0.79 -0.09 -0.42

Generating Model 2PLMix N = 1000, J = 20, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.42 0.01 1 -0.42 -0.58 0.42 0.1 0.99 -0.34 -0.52
Ordered δ 0.41 0 1 -0.54 -0.59 0.41 0.1 0.97 -0.39 -0.51

Generating Model 2PLMix N = 1000, J = 20, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.01 1 -0.38 -0.4 0.6 0.04 1 -0.36 -0.39
Ordered δ 0.58 0 1 -0.37 -0.42 0.58 0.01 1 -0.36 -0.42
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Table C.25: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 1000, J = 80, π = 0.2.

Generating Model 2PLMix N = 1000, J = 80, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.05 0.05 0.11 0.18 0.04 0.04 0.11 0.17

Random β -0.11 0.17 0.16 0.22 -0.05 0.09 0.11 0.2
θ -0.03 0.12 0.22 0.12 -0.02 0.11 0.22 0.12
α -0.07 0.13 0.15 0.21 0 0.06 0.11 0.2

Ordered β -0.1 0.14 0.14 0.21 -0.04 0.07 0.1 0.19
θ -0.02 0.15 0.24 0.14 -0.02 0.14 0.23 0.14

Generating Model 2PLMix N = 1000, J = 80, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.04 0.04 0.1 0.16 0.04 0.03 0.1 0.16

Random β -0.08 0.09 0.12 0.18 -0.05 0.06 0.09 0.17
θ -0.03 0.12 0.21 0.13 -0.02 0.11 0.21 0.13
α -0.02 0.07 0.11 0.18 0.01 0.04 0.1 0.16

Ordered β -0.09 0.13 0.13 0.2 -0.04 0.08 0.1 0.18
θ -0.03 0.14 0.23 0.14 -0.02 0.12 0.21 0.14

Generating Model 2PLMix N = 1000, J = 80, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.03 0.04 0.1 0.15 0.04 0.04 0.1 0.15

Random β -0.06 0.07 0.09 0.17 -0.04 0.06 0.09 0.16
θ -0.03 0.09 0.2 0.13 -0.03 0.09 0.2 0.12
α -0.03 0.07 0.11 0.19 0.01 0.04 0.1 0.17

Ordered β -0.07 0.09 0.11 0.19 -0.05 0.07 0.09 0.18
θ -0.02 0.19 0.23 0.19 -0.03 0.14 0.21 0.15
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Table C.26: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 1000, J = 80, π = 0.2.

Generating Model 2PLMix N = 1000, J = 80, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.24 0.57 1 -0.05 -0.33 0.25 0.67 1 -0.02 -0.26
Ordered δ 0.21 0.28 1 -0.26 -0.57 0.21 0.38 1 -0.17 -0.49

Generating Model 2PLMix N = 1000, J = 80, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.45 0.63 1 -0.05 -0.21 0.45 0.68 1 -0.03 -0.18
Ordered δ 0.41 0.29 1 -0.19 -0.42 0.41 0.37 1 -0.12 -0.37

Generating Model 2PLMix N = 1000, J = 80, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.62 1 -0.02 -0.15 0.61 0.65 1 -0.01 -0.14
Ordered δ 0.57 0.26 1 -0.23 -0.32 0.57 0.36 1 -0.15 -0.27
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Table C.27: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 2000, J = 20, π = 0.2.

Generating Model 2PLMix N = 2000, J = 20, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.14 0.17 0.18 -0.03 0.05 0.08 0.13

Random β -0.36 0.29 0.37 0.29 -0.13 0.08 0.14 0.17
θ -0.03 0.51 0.47 0.24 -0.03 0.42 0.43 0.2
α -0.15 0.16 0.2 0.16 -0.08 0.06 0.11 0.18

Ordered β -0.29 0.19 0.32 0.18 -0.12 0.06 0.14 0.2
θ -0.03 0.54 0.48 0.28 -0.02 0.49 0.46 0.25

Generating Model 2PLMix N = 2000, J = 20, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.11 0.12 0.15 0.19 -0.07 0.05 0.1 0.14

Random β -0.25 0.21 0.26 0.23 -0.12 0.09 0.14 0.15
θ -0.03 0.45 0.43 0.22 -0.03 0.4 0.41 0.19
α -0.09 0.12 0.15 0.2 -0.06 0.06 0.1 0.18

Ordered β -0.22 0.16 0.25 0.2 -0.12 0.08 0.14 0.18
θ -0.03 0.5 0.46 0.26 -0.02 0.46 0.43 0.24

Generating Model 2PLMix N = 2000, J = 20, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.12 0.14 0.16 0.19 -0.09 0.08 0.12 0.18

Random β -0.22 0.16 0.22 0.2 -0.13 0.09 0.15 0.15
θ -0.03 0.46 0.43 0.24 -0.02 0.41 0.4 0.22
α -0.1 0.1 0.14 0.19 -0.08 0.07 0.11 0.18

Ordered β -0.15 0.08 0.16 0.17 -0.09 0.05 0.11 0.1
θ -0.03 0.45 0.41 0.25 -0.03 0.43 0.4 0.23
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Table C.28: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 2000, J = 20, π = 0.2.

Generating Model 2PLMix N = 2000, J = 20, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.2 0.01 1 -0.68 -0.8 0.2 0.34 0.92 -0.32 -0.52
Ordered δ 0.19 0 1 -0.75 -0.8 0.17 0.47 0.79 -0.09 -0.39

Generating Model 2PLMix N = 2000, J = 20, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.41 0.01 1 -0.52 -0.59 0.41 0.11 0.99 -0.44 -0.52
Ordered δ 0.42 0 1 -0.52 -0.58 0.41 0.09 0.97 -0.39 -0.52

Generating Model 2PLMix N = 2000, J = 20, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.6 0.01 1 -0.4 -0.4 0.6 0.05 1 -0.38 -0.38
Ordered δ 0.6 0 1 -0.4 -0.4 0.6 0.01 1 -0.39 -0.39
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Table C.29: IRT model parameters: Generated Model 2PLMix Estimated Models the
M2PLMix and 2PLMix, N = 2000, J = 40, π = 0.2.

Generating Model 2PLMix N = 2000, J = 40, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α 0.02 0.05 0.08 0.11 0.03 0.03 0.08 0.11

Random β -0.19 0.22 0.21 0.25 -0.08 0.07 0.1 0.15
θ -0.02 0.26 0.33 0.16 -0.03 0.24 0.31 0.16
α -0.13 0.11 0.16 0.18 -0.04 0.04 0.09 0.13

Ordered β -0.19 0.15 0.2 0.21 -0.07 0.06 0.09 0.18
θ -0.03 0.34 0.35 0.21 -0.02 0.29 0.33 0.19

Generating Model 2PLMix N = 2000, J = 40, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.02 0.06 0.09 0.11 0.01 0.03 0.07 0.05

Random β -0.15 0.14 0.16 0.19 -0.07 0.04 0.08 0.1
θ -0.03 0.22 0.31 0.15 -0.03 0.2 0.29 0.13
α -0.11 0.1 0.14 0.2 -0.05 0.05 0.09 0.15

Ordered β -0.14 0.1 0.15 0.18 -0.07 0.04 0.09 0.16
θ -0.02 0.32 0.33 0.2 -0.02 0.27 0.31 0.17

Generating Model 2PLMix N = 2000, J = 40, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix

Bias Bias SD RMSE RMSE SD Bias Bias SD RMSE RMSE SD
α -0.02 0.03 0.07 0.11 0 0.02 0.07 0.08

Random β -0.09 0.08 0.1 0.13 -0.06 0.03 0.07 0.1
θ -0.03 0.19 0.29 0.13 -0.03 0.18 0.28 0.12
α -0.06 0.06 0.1 0.15 -0.03 0.03 0.07 0.11

Ordered β -0.09 0.06 0.1 0.15 -0.05 0.04 0.07 0.09
θ -0.03 0.25 0.29 0.15 -0.03 0.22 0.28 0.14
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Table C.30: Location of Speededness: Generated Model 2PLMix Estimated Models
the M2PLMix and 2PLMix, N = 2000, J = 40, π = 0.2.

Generating Model 2PLMix N = 2000, J = 40, π = 0.2
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.22 0.26 1 -0.34 -0.59 0.23 0.49 0.99 -0.16 -0.4
Ordered δ 0.21 0.11 1 -0.5 -0.71 0.2 0.36 0.97 -0.18 -0.5

Generating Model 2PLMix N = 2000, J = 40, π = 0.4
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.4 0.26 1 -0.3 -0.45 0.41 0.38 1 -0.2 -0.38
Ordered δ 0.4 0.1 1 -0.4 -0.54 0.4 0.22 1 -0.26 -0.47

Generating Model 2PLMix N = 2000, J = 40, π = 0.6
Estimating Model M2PLMix Estimating Model 2PLMix
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Random δ 0.61 0.29 1 -0.18 -0.28 0.61 0.33 1 -0.15 -0.26
Ordered δ 0.62 0.09 1 -0.23 -0.35 0.62 0.14 1 -0.19 -0.33

Table C.31: Model Fit Data Generation Model 2PLMix Model, N = 500, Item Diffi-
culty Random

Model Fit Data Generation under the 2PLMix Model, N = 500, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, π = 0.2 16012.11 18172.11 14153.25 22723.89 19295.9
E=2PLMix, J = 40, π = 0.2 14895.72 17055.72 13036.85 21607.49 18179.51

E=M2PLMix, J = 80, π = 0.2 28277.31 30597.31 26522.4 35486.26 31804.35
E=2PLMix, J = 80, π = 0.2 27936.37 30256.37 26181.46 35145.32 31463.41

E=M2PLMix, J = 40, π = 0.4 16755.06 18915.06 14896.2 23466.84 20038.85
E=2PLMix, J = 40, π = 0.4 16446.95 18606.95 14588.09 23158.73 19730.74

E=M2PLMix, J = 80, π = 0.4 29600.17 31920.17 27845.25 36809.11 33127.2
E=2PLMix, J = 80, π = 0.4 29416.08 31736.08 27661.17 36625.03 32943.12

E=M2PLMix, J = 40, π = 0.6 16818.1 18978.1 14959.23 23529.87 20101.89
E=2PLMix, J = 40, π = 0.6 16690 18850 14831.13 23401.77 19973.79

E=M2PLMix, J = 80, π = 0.6 32204.04 34524.04 30449.12 39412.98 35731.07
E=2PLMix, J = 80, π = 0.6 32108.87 34428.87 30353.96 39317.82 35635.91
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Table C.32: Model Fit Data Generation Model 2PLMix Model, N = 500, Item Diffi-
culty Ordered

Model Fit Data Generation under the 2PLMix Model, N = 500, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 40, π = 0.2 15080.35 17240.35 13221.49 21792.13 18364.14
E=2PLMix, J = 40, π = 0.2 14006.26 16166.26 12147.4 20718.04 17290.05

E=M2PLMix, J = 80, π = 0.2 29085.01 31405.01 27330.09 36293.95 32612.04
E=2PLMix, J = 80, π = 0.2 28586.3 30906.3 26831.39 35795.25 32113.34

E=M2PLMix, J = 40, π = 0.4 15908.55 18068.55 14049.68 22620.32 19192.34
E=2PLMix, J = 40, π = 0.4 15460.02 17620.02 13601.16 22171.8 18743.81

E=M2PLMix, J = 80, π = 0.4 30785.02 33105.02 29030.1 37993.97 34312.05
E=2PLMix, J = 80, π = 0.4 30382.79 32702.79 28627.88 37591.74 33909.83

E=M2PLMix, J = 40, π = 0.6 16555.73 18715.73 14696.86 23267.5 19839.52
E=2PLMix, J = 40, π = 0.6 16436.85 18596.85 14577.98 23148.63 19720.64

E=M2PLMix, J = 80, π = 0.6 33240.42 35560.42 31485.5 40449.37 36767.45
E=2PLMix, J = 80, π = 0.6 32840.87 35160.87 31085.95 40049.82 36367.9

Table C.33: Model Fit Data Generation Model 2PLMix Model, N = 1000, Item
Difficulty Random

Model Fit Data Generation under the 2PLMix Model, N = 1000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, π = 0.2 17183.95 21263.95 13264.64 31275.77 24796.61
E=2PLMix, J = 20, π = 0.2 16686.66 20766.66 12767.35 30778.48 24299.33

E=M2PLMix, J = 80, π = 0.2 57313.8 61633.8 53592.87 72234.56 65374.27
E=2PLMix, J = 80, π = 0.2 56583.54 60903.54 52862.61 71504.29 64644.01

E=M2PLMix, J = 20, π = 0.4 17832.23 21912.23 13912.92 31924.05 25444.89
E=2PLMix, J = 20, π = 0.4 17866.2 21946.2 13946.89 31958.02 25478.87

E=M2PLMix, J = 80, π = 0.4 60665.4 64985.4 56944.47 75586.16 68725.87
E=2PLMix, J = 80, π = 0.4 60333.06 64653.06 56612.13 75253.81 68393.53

E=M2PLMix, J = 20, π = 0.6 17775.27 21855.27 13855.96 31867.09 25387.94
E=2PLMix, J = 20, π = 0.6 17914.7 21994.7 13995.39 32006.52 25527.36

E=M2PLMix, J = 80, π = 0.6 64863.29 69183.29 61142.36 79784.04 72923.76
E=2PLMix, J = 80, π = 0.6 64738.46 69058.46 61017.53 79659.21 72798.93
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Table C.34: Model Fit Data Generation Model 2PLMix Model, N = 1000, Item
Difficulty Ordered

Model Fit Data Generation under the 2PLMix Model, N = 1000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, π = 0.2 15545.17 19625.17 11625.86 29636.99 23157.84
E=2PLMix, J = 20, π = 0.2 14648.75 18728.75 10729.45 28740.57 22261.42

E=M2PLMix, J = 80, π = 0.2 58069.91 62389.91 54348.98 72990.66 66130.38
E=2PLMix, J = 80, π = 0.2 57217.9 61537.9 53496.97 72138.65 65278.37

E=M2PLMix, J = 20, π = 0.4 16288.78 20368.78 12369.47 30380.6 23901.45
E=2PLMix, J = 20, π = 0.4 16180.43 20260.43 12261.12 30272.25 23793.1

E=M2PLMix, J = 80, π = 0.4 61989.43 66309.43 58268.5 76910.18 70049.9
E=2PLMix, J = 80, π = 0.4 61067.89 65387.89 57346.96 75988.64 69128.36

E=M2PLMix, J = 20, π = 0.6 16796.04 20876.04 12876.73 30887.86 24408.71
E=2PLMix, J = 20, π = 0.6 16971.92 21051.92 13052.61 31063.74 24584.59

E=M2PLMix, J = 80, π = 0.6 65605.16 69925.16 61884.23 80525.91 73665.63
E=2PLMix, J = 80, π = 0.6 64582.71 68902.71 60861.77 79503.46 72643.18

Table C.35: Model Fit Data Generation Model 2PLMix Model, N = 2000, Item
Difficulty Random

Model Fit Data Generation under the 2PLMix Model, N = 2000, Item Difficulty Random
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, π = 0.2 35000.62 43080.62 27082.93 65708.27 52872.97
E=2PLMix, J = 20, π = 0.2 33776.48 41856.48 25858.79 64484.12 51648.82

E=M2PLMix, J = 40, π = 0.2 63877.63 72037.63 56035.24 94889.31 81926.93
E=2PLMix, J = 40, π = 0.2 60272.2 68432.2 52429.81 91283.88 78321.5

E=M2PLMix, J = 20, π = 0.4 35517.49 43597.49 27599.8 66225.13 53389.83
E=2PLMix, J = 20, π = 0.4 35400.12 43480.12 27482.44 66107.77 53272.47

E=M2PLMix, J = 40, π = 0.4 65992.85 74152.85 58150.46 97004.53 84042.15
E=2PLMix, J = 40, π = 0.4 64738.06 72898.06 56895.68 95749.75 82787.36

E=M2PLMix, J = 20, π = 0.6 35606.45 43686.45 27688.76 66314.09 53478.79
E=2PLMix, J = 20, π = 0.6 35849.34 43929.34 27931.66 66556.99 53721.69

E=M2PLMix, J = 40, π = 0.6 68903.92 77063.92 61061.54 99915.61 86953.22
E=2PLMix, J = 40, π = 0.6 68591.59 76751.59 60749.21 99603.27 86640.89
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Table C.36: Model Fit Data Generation Model 2PLMix Model, N = 2000, Item
Difficulty Ordered

Model Fit Data Generation under the 2PLMix Model, N = 2000, Item Difficulty Ordered
Estimating Model M2PLMix and M2PLMix

-2LL AIC AICA BIC Adj. BIC
E=M2PLMix, J = 20, π = 0.2 31293.03 39373.03 23375.34 62000.68 49165.38
E=2PLMix, J = 20, π = 0.2 29485.96 37565.96 21568.27 60193.6 47358.3

E=M2PLMix, J = 40, π = 0.2 60885.33 69045.33 53042.95 91897.02 78934.63
E=2PLMix, J = 40, π = 0.2 57070.36 65230.36 49227.98 88082.05 75119.66

E=M2PLMix, J = 20, π = 0.4 32712.03 40792.03 24794.34 63419.68 50584.38
E=2PLMix, J = 20, π = 0.4 32566.25 40646.25 24648.56 63273.9 50438.6

E=M2PLMix, J = 40, π = 0.4 64201.79 72361.79 56359.41 95213.48 82251.09
E=2PLMix, J = 40, π = 0.4 62486.55 70646.55 54644.16 93498.23 80535.85

E=M2PLMix, J = 20, π = 0.6 33728.12 41808.12 25810.44 64435.77 51600.47
E=2PLMix, J = 20, π = 0.6 34043.9 42123.9 26126.22 64751.55 51916.25

E=M2PLMix, J = 40, π = 0.6 68032.16 76192.16 60189.77 99043.84 86081.46
E=2PLMix, J = 40, π = 0.6 67711.67 75871.67 59869.29 98723.35 85760.97
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Appendix D

Code

Estimation of 2PL Model

#include <boost/math/distributions/normal.hpp>
using boost::math::normal;
#include <iostream>
#include <iomanip>
#include <limits>
#include <armadillo>
#include <stdio.h>
#include <stdlib.h>
#include <cstdio>
#include <random>
#include <vector>
#include <numeric>
#include <algorithm>
#include <iterator>
#include <cmath>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <iomanip>
#include <time.h>

// Part 1: Namespace define
using namespace std;
using namespace arma;

// Part 2: To generate random numbers each new time
std::default_random_engine g_generator(time(0));

/////////////////////////////////////////////////////
// 1. Structure Template for Each chain
/////////////////////////////////////////////////////
// c) 2PL
struct cur2PL_2chain
{

int N;
int J;
int BI;
int IT;
int thin;
double s2t; double MHt;
double s2b; double MHb;
double s2a; double MHa;
arma::vec theta;
arma::vec alpha;
arma::vec beta;
arma::mat X;

};

/////////////////////////////////////////////////////
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// 2. Structure Template for Estimated Parameters
/////////////////////////////////////////////////////
// c) 2PL
struct contain2_2PL
{

arma::mat thetaestcon_chainA_2PL;
arma::mat thetaestcon_chainB_2PL;
arma::mat alphaestcon_chainA_2PL;
arma::mat alphaestcon_chainB_2PL;
arma::mat betaestcon_chainA_2PL;
arma::mat betaestcon_chainB_2PL;

};

// -----------------------------------------
//
// Functions
//
// -----------------------------------------
/////////////////////////////////////////////////////
// C1. General Functions
/////////////////////////////////////////////////////
arma::mat getdata(FILE * pFile, int N, int J){

arma::mat X(N,J);
double data[N][J];

for(int i = 0; i < N; i++){
for(int j = 0; j < J; j++){

if (fscanf(pFile,"%lf", &data[i][j])==1){
X(i,j) = data[i][j];

} else{
cout << "Failure" << endl;

}
}

}
return X;

}
void writecsv(arma::mat M, const char *dir, const char *fname){

// Make sure the directory exists
char cmd[4096];
sprintf(cmd, "mkdir -p %s", dir);
system(cmd); // execute the mkdir command

// Concatenate the directory and filename
char path[4096];
char ttpath[4096];

sprintf(ttpath, "%s%s%s%s", dir,"_", fname,".txt");
sprintf(path, "%s/%s", dir, ttpath);

// Open the file path
FILE * pFile = fopen (path,"w");
if (pFile == NULL) {
printf("ERROR: writecsv could not open %s for writing\n", fname);
exit(1);

}

// Write out the data
for(int i = 0; i < M.n_rows; i++){
for(int j = 0; j < M.n_cols; j++){

fprintf(pFile," %0.6f",M(i,j));
}
fprintf(pFile,"\n");

}

// Close the file
fclose (pFile);

}
arma::vec colSumsRcpp(arma::mat x) {

int J = x.n_cols;
arma::vec out(J);
for (int j = 0; j < J; j++) {
double total = 0;
total = sum(x.col(j));
out[j] = total;

}
return out;

}
arma::vec rowSumsRcpp(arma::mat x) {

int N = x.n_rows;
arma::vec out(N);
for (int i = 0; i < N; i++) {
double total = 0;
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total = sum(x.row(i));
out[i] = total;

}
return out;

}
arma::vec rangecpp(const int begin, const int end){

arma::vec ptr(end-1);
for (int i=begin; i < end; i++){
ptr[i-1]=i;

}
return ptr;

}
/////////////////////////////////////////////////////
// C2. Random Distributions Functions
/////////////////////////////////////////////////////
arma::vec dnormcpp(arma::vec nrandomVar, double mu,double sig){

arma::vec A(nrandomVar.size());
for (int i = 0; i < nrandomVar.size(); i++) {
double y = (1/sqrt(2*M_PI* pow(sig,2.0) ))*
exp((-0.5*pow((nrandomVar[i] - mu),2))/pow(sig,2));
A[i] = y;

}
return A;

}
arma::vec rnormcpp(int J){

// default_random_engine generator;
normal_distribution<double> distribution(0,1);
arma::vec B(J);

for (int j=0; j<J;j++) {
double number = distribution(g_generator);
B[j]=number;

}
return B;

}
arma::vec dlnormcpp(arma::vec nrandomVar, double mu, double sig){

arma::vec A(nrandomVar.size());
for (int i = 0; i < nrandomVar.size(); i++) {
double y = (1/(nrandomVar[i]*sig*sqrt(2*M_PI)))*
exp((-0.5*pow(( log(nrandomVar[i]) - mu),2))/pow(sig,2));
A[i] = y;

}
return A;

}
arma::vec runifcpp(int J, double a, double b){

// default_random_engine generator;
uniform_real_distribution<double> distribution(a,b);
arma::vec B(J);

for (int j=0; j<J;j++) {
double number = distribution(g_generator);
B[j]=number;

}
return B;

}
/////////////////////////////////////////////////////
// C3. Initialize Parameters Functions
/////////////////////////////////////////////////////
arma::vec intT(arma::mat X){

normal s;
arma::vec caltheta = 0.025 + (rowSumsRcpp( X)/X.n_cols)*0.95;
arma::vec inttheta(X.n_rows);
for (int j = 0; j < X.n_rows; j++) {
double f = quantile(s,caltheta[j]);
inttheta[j]=f;

}
return inttheta;

}
arma::vec intB(arma::mat X){

normal s;
arma::vec calbeta = 0.025 + (colSumsRcpp( X)/X.n_rows)*0.95;
arma::mat intbeta(X.n_cols,1);
for (int i = 0; i < X.n_cols; i++) {
arma::vec f = quantile(s,calbeta[i]) + runifcpp(1,-0.01,0.01);
intbeta.row(i)=-f;

}
return intbeta;

}
/////////////////////////////////////////////////////
// C4. Speedness Functions
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/////////////////////////////////////////////////////
arma::vec probsp_IW(arma::vec tau, arma::vec theta){

int N=theta.size();
arma::vec nsp(N);
for (int i= 0; i < N; i++){
arma::vec tmp1 = tau + (1-tau) / (1+exp(-theta[i]));
nsp[i]=tmp1[0];

}

return nsp;
}
arma::mat genpmatm2pl(int J, arma::vec taunsp, int omega){

int N = taunsp.size();
arma::vec items = rangecpp(1,J);
arma::mat spvec1(J-1,N);
for (int i= 0; i < N; i++){
arma::vec tmp1 = ((pow(items,omega) - pow(items-1,omega))
* (1-taunsp(i))) / pow(J-1,omega);
spvec1.col(i) = tmp1;

}
arma::mat spvec2 = join_cols(spvec1, arma::trans(taunsp));
return spvec2;

}
arma::vec twoplmixsp(int J, arma::vec tau, int omega){

arma::vec items = rangecpp(1,J);
arma::vec tmp1 = ((pow(items,omega) - pow(items-1,omega))
* (1-tau)) / pow(J-1,omega);
arma::vec spvec= join_cols(tmp1,tau);
return spvec;

}
arma::mat genetacpp(arma::vec delta, arma::vec items, double kappa){

int J = items.max();
int N = delta.size();
arma::vec div_item = 1/items;

arma::mat tmp1(N,J);
for(int i=0;i<N;i++){
tmp1.row(i) = arma::trans(div_item);

}

arma::mat tmp2 = delta * arma::trans(ones<vec>(J));
arma::mat tmp3 = tmp1 % tmp2;
arma::mat tmp4 = tmp3 - ones<mat>(N,J);
arma::mat tmp5(N,J);
for(int i=0;i<N;i++){
for(int j=0;j<J;j++){

if(tmp4(i,j)< 0) {
tmp5(i,j) = 1;

} else
{
tmp5(i,j) = 0;

}
}

}

arma::vec sped= kappa * (J - items);

arma::vec tmp6(N);
for(int i=0;i<N;i++){
tmp6.row(i) = sped [delta(i)-1];

}
arma::mat sp_it = tmp6 * arma::trans(ones<vec>(J));
arma::mat outp = sp_it % tmp5;
return outp;

}
arma::vec gencandd(arma::vec delta){

int N = delta.size(); int J = delta.max();
arma::vec newdelta(N);

std::uniform_int_distribution<int> distribution(-4,4);
for (int i=0; i < N; i++){

// randomly add/sub number

int tmp =delta[i] + distribution(g_generator);
if(tmp <=0){

newdelta[i] = 1;
} else if(tmp>J){
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newdelta[i] = J;
}else{

newdelta[i] = tmp;
}

}
return newdelta;

}
arma::vec priord1(arma::vec de, arma::mat pmat){

int N = pmat.n_cols;
arma::vec priorprob(N);
for (int i=0; i < N; i++) {
priorprob[i] = pmat.col(i)[de[i]-1];

}
return priorprob;

}
arma::vec priord2(arma::vec d, arma::vec p){

int N = d.size();
arma::vec pd(N);
for(int ii=0; ii<N; ii++) {
int dd = d[ii];
pd[ii] = p[dd-1];

}
return pd;

}
/////////////////////////////////////////////////////
// C5. MCMC General Functions
/////////////////////////////////////////////////////
arma::vec dec_ifelse(arma::vec uni, arma::vec lik){

arma::vec C(uni.size());
for(int j; j<uni.size();j++){
if(uni[j]<=lik[j]){

C[j]=1;
} else{

C[j]=0;
}

}
return C;

}
arma::vec starvold(arma::vec uni, arma::vec star, arma::vec old){

arma::vec D(uni.size());

for(int j=0; j<uni.size();j++){
if(uni[j]==1){

D[j]=star[j];
} else{

D[j]=old[j];
}

}
return D;

}
arma::mat logprobRcpp_speeded(arma::mat X,arma::vec t,
arma::vec a, arma::vec b, arma::mat e){

int N = X.n_rows ;int J = X.n_cols ;
arma::vec onetheta(J);
arma::vec onealpha(N);
arma::vec onebeta(N);

onetheta.fill(0);
onealpha.fill(0);
onebeta.fill(0);

arma::mat THETA = t * arma::trans(onetheta.ones());
arma::mat ALPHA = onealpha.ones() * arma::trans(a);
arma::mat BETA = onebeta.ones() * arma::trans(b);

arma::mat ETA = e;

arma::mat LOGIT = exp(ALPHA % (THETA - BETA - ETA));
arma::mat PROB = LOGIT/(1+LOGIT);
arma::mat LL(N,J);

LL = arma::log(PROB) % X + arma::log((1-PROB)) % (1-X);

return LL;
}
arma::mat logprobRcpp_regular(arma::mat X,arma::vec t,
arma::vec a,arma::vec b){

int N = X.n_rows ;int J = X.n_cols ;
arma::vec onetheta(J);
arma::vec onealpha(N);
arma::vec onebeta(N);
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onetheta.fill(0);
onealpha.fill(0);
onebeta.fill(0);

arma::mat THETA = t * arma::trans(onetheta.ones());
arma::mat ALPHA = onealpha.ones() * arma::trans(a);
arma::mat BETA = onebeta.ones() * arma::trans(b);

arma::mat LOGIT = exp(ALPHA % (THETA - BETA));
arma::mat PROB = LOGIT/(1+LOGIT);
arma::mat LL(N,J);
LL.fill(0);

LL = arma::log(PROB) % X + arma::log((1-PROB)) % (1-X);

return LL;
}
/////////////////////////////////////////////////////
// C6. Sampling Functions
/////////////////////////////////////////////////////
/////////////////////////////////////////////////////
// 3. THETA
/////////////////////////////////////////////////////
////////////////////////////////////////////////////
// c) 2PL
void sampletheta_2pl_2chains(cur2PL_2chain& infoA,
cur2PL_2chain& infoB) {

int N = infoA.N; int J = infoA.J;
// A
arma::vec thetaoldA = infoA.theta; arma::vec thetastarA =
infoA.MHt*rnormcpp(N) + thetaoldA;
// OLD-A
arma::vec tmpoldA = rowSumsRcpp
(logprobRcpp_regular(infoA.X,thetaoldA,infoA.alpha,infoA.beta));
arma::vec prioroldA = log(dnormcpp(thetaoldA,0.0,infoA.s2t));
arma::vec tmpoldprA = tmpoldA + prioroldA;
// STAR-A
arma::vec tmpstarA = rowSumsRcpp(logprobRcpp_regular(infoA.X,thetastarA,
infoA.alpha,infoA.beta));
arma::vec priorstarA = log(dnormcpp(thetastarA,0.0,infoA.s2t));
arma::vec tmpstarprA = tmpstarA + priorstarA;
arma::vec likA = exp(tmpstarprA - tmpoldprA);
arma::vec uniA = runifcpp(N,0.0,1.0);
arma::vec decA = dec_ifelse(uniA, likA);
infoA.theta = starvold(decA,thetastarA,thetaoldA);

//B
arma::vec thetaoldB = infoB.theta; arma::vec thetastarB =
infoB.MHt*rnormcpp(N) + thetaoldB;
// OLD-B
arma::vec tmpoldB = rowSumsRcpp(logprobRcpp_regular(infoB.X,thetaoldB,infoB.
alpha,infoB.beta));
arma::vec prioroldB = log(dnormcpp(thetaoldB,0.0,infoB.s2t));
arma::vec tmpoldprB = tmpoldB + prioroldB;
// STAR-B
arma::vec tmpstarB = rowSumsRcpp(logprobRcpp_regular(infoB.X,thetastarB,
infoB.alpha,infoB.beta)) ;
arma::vec priorstarB = log(dnormcpp(thetastarB,0.0,infoB.s2t));
arma::vec tmpstarprB = tmpstarB + priorstarB;
arma::vec likB = exp(tmpstarprB - tmpoldprB);
arma::vec uniB = runifcpp(N,0.0,1.0);
arma::vec decB = dec_ifelse(uniB, likB);
infoB.theta = starvold(decB,thetastarB,thetaoldB);

}
//////////////////////////////////////////////////////

/////////////////////////////////////////////////////
// 4. ALPHA
/////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// c) 2PL
void samplealpha_2pl_2chains(cur2PL_2chain& infoA, cur2PL_2chain& infoB) {

int N = infoA.N; int J = infoA.J;
// A
arma::vec alphaoldA = infoA.alpha; arma::vec alphastarA = infoA.MHa*rnormcpp(J) + alphaoldA;
// OLD-A
arma::vec tmpoldA = colSumsRcpp(logprobRcpp_regular(infoA.X,infoA.theta,alphaoldA,infoA.beta));
arma::vec prioroldA = log(dlnormcpp(alphaoldA,0.0,infoA.s2a));
arma::vec tmpoldprA = tmpoldA + prioroldA;
// STAR-A
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arma::vec tmpstarA = colSumsRcpp(logprobRcpp_regular(infoA.X,infoA.theta,alphastarA,infoA.beta));
arma::vec priorstarA = log(dlnormcpp(alphastarA,0.0,infoA.s2a));
arma::vec tmpstarprA = tmpstarA + priorstarA;
arma::vec likA = exp(tmpstarprA - tmpoldprA);
arma::vec uniA = runifcpp(J,0.0,1.0);
arma::vec decA = dec_ifelse(uniA, likA);
infoA.alpha = starvold(decA,alphastarA,alphaoldA);

// B
arma::vec alphaoldB = infoB.alpha; arma::vec alphastarB = infoB.MHa*rnormcpp(J) + alphaoldB;
// OLD-B
arma::vec tmpoldB = colSumsRcpp(logprobRcpp_regular(infoB.X,infoB.theta,alphaoldB,infoB.beta));
arma::vec prioroldB = log(dlnormcpp(alphaoldB,0.0,infoB.s2a));
arma::vec tmpoldprB = tmpoldB + prioroldB;
// STAR-B
arma::vec tmpstarB = colSumsRcpp(logprobRcpp_regular(infoB.X,infoB.theta,alphastarB,infoB.beta));
arma::vec priorstarB = log(dlnormcpp(alphastarB,0.0,infoB.s2a));
arma::vec tmpstarprB = tmpstarB + priorstarB;
arma::vec likB = exp(tmpstarprB - tmpoldprB);
arma::vec uniB = runifcpp(J,0.0,1.0);
arma::vec decB = dec_ifelse(uniB, likB);
infoB.alpha = starvold(decB,alphastarB,alphaoldB);

}
///////////////////////////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////
// 5. BETA
/////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// c) 2PL
void samplebeta_2pl_2chains(cur2PL_2chain& infoA, cur2PL_2chain& infoB) {

int N = infoA.N; int J = infoA.J;
// A
arma::vec betaoldA = infoA.beta;arma::vec betastarA = infoA.MHb*rnormcpp(J) + betaoldA;
// OLD-A
arma::vec tmpoldA = colSumsRcpp(logprobRcpp_regular(infoA.X,infoA.theta,infoA.alpha,betaoldA));
arma::vec prioroldA = log(dnormcpp(betaoldA,0.0,infoA.s2b));
arma::vec tmpoldprA = tmpoldA + prioroldA;
// STAR-A
arma::vec tmpstarA = colSumsRcpp(logprobRcpp_regular(infoA.X,infoA.theta,infoA.alpha,betastarA)) ;
arma::vec priorstarA = log(dnormcpp(betastarA,0.0,infoA.s2b));
arma::vec tmpstarprA = tmpstarA + priorstarA;
arma::vec likA = exp(tmpstarprA - tmpoldprA);
arma::vec uniA = runifcpp(J,0.0,1.0);
arma::vec decA = dec_ifelse(uniA, likA);
infoA.beta = starvold(decA,betastarA,betaoldA);
// B
arma::vec betaoldB = infoB.beta;arma::vec betastarB = infoB.MHb*rnormcpp(J) + betaoldB;
// OLD-B
arma::vec tmpoldB = colSumsRcpp(logprobRcpp_regular(infoB.X,infoB.theta,infoB.alpha,betaoldB));
arma::vec prioroldB = log(dnormcpp(betaoldB,0.0,infoB.s2b));
arma::vec tmpoldprB = tmpoldB + prioroldB;
// STAR-B
arma::vec tmpstarB = colSumsRcpp(logprobRcpp_regular(infoB.X,infoB.theta,infoB.alpha,betastarB)) ;
arma::vec priorstarB = log(dnormcpp(betastarB,0.0,infoB.s2b));
arma::vec tmpstarprB = tmpstarB + priorstarB;
arma::vec likB = exp(tmpstarprB - tmpoldprB);
arma::vec uniB = runifcpp(J,0.0,1.0);
arma::vec decB = dec_ifelse(uniB, likB);
infoB.beta = starvold(decB,betastarB,betaoldB);

}
///////////////////////////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////
// 7. Controlling Sampling Functions
/////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// c) 2PL
void bmcmcup_2pl_2chains(cur2PL_2chain& infoA, cur2PL_2chain& infoB){
sampletheta_2pl_2chains(infoA,infoB);
samplealpha_2pl_2chains(infoA,infoB);
samplebeta_2pl_2chains(infoA,infoB);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////
// 8. Main MCMC Functions
/////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// c) 2PL
contain2_2PL mainfun_2pl_2chains(cur2PL_2chain & infoA, cur2PL_2chain & infoB){

// Label important variables for simulations
int bi = infoA.BI; // Burn-In
int keep = infoA.IT; // Iterations Kept
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int thin = infoA.thin; // Thinning
int N = infoA.N; // Sample Size
int J = infoA.J; // Number of Items

// Burning
for(int ii=0; ii<bi; ii++) {
bmcmcup_2pl_2chains(infoA,infoB);
cout << "Burn-In: "<< ii+1 << endl;

}

arma::mat matthetaA(N,(keep/thin));
arma::mat matthetaB(N,(keep/thin));
arma::mat matalphaA(J,(keep/thin));
arma::mat matalphaB(J,(keep/thin));
arma::mat matbetaA( J,(keep/thin));
arma::mat matbetaB( J,(keep/thin));

matthetaA.fill(0);
matthetaB.fill(0);
matalphaA.fill(0);
matalphaB.fill(0);
matbetaA.fill(0);
matbetaB.fill(0);

int count=0;
for(int i=0; i<keep; i++) {
bmcmcup_2pl_2chains(infoA,infoB);

cout << "Real Iterations: "<< i+1 << endl;

// Thinning Process HOLLLLA:)
if((i % infoA.thin)==0){
int pl = (count);
matthetaA.col(pl) = infoA.theta;
matthetaB.col(pl) = infoB.theta;
matalphaA.col(pl) = infoA.alpha;
matalphaB.col(pl) = infoB.alpha;
matbetaA.col(pl) = infoA.beta;
matbetaB.col(pl) = infoB.beta;
count ++;

}
}
contain2_2PL info_contain_2PL =
{
// Container for simulations estimates
matthetaA,matthetaB,
matalphaA,matalphaB,
matbetaA,matbetaB
};

return info_contain_2PL;

}
///////////////////////////////////////////////////////////////////////////////////////////////////
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Parallel Programming

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <iostream>
#include <string>
#include <vector>

using namespace std;

// command arguments
char *g_progname; // The name of the command to run
char *g_filelist; // Path to the file containing arguments to split
int g_nProcesses; // How many cores does your machine have?

// the list of tasks from a file
vector<string> g_inputs;

void *runprogram(void *pRank);

int main(int argc, char **argv)
{

//
// 1. Start Timer for Code *Only needed for One Replication
//
clock_t t1,t2;
t1=clock();

char line[4096];

//
// Read command arguments
//
if (argc != 4) {
fprintf(stderr, "usage:\n");
fprintf(stderr, " ./runProgram progname filelist nProcesses\n");
return 1;

}
g_progname = argv[1];
g_filelist = argv[2];
g_nProcesses = atoi(argv[3]);

//
// Read the file
//
FILE *fin = fopen(g_filelist, "r");
if (fin == NULL) {
fprintf(stderr, "ERROR: could not open %s for reading\n", g_filelist);
return 1;

}
while (!feof(fin)) {
fscanf(fin, "%s", line);
fprintf(stderr, "input[%d]: %s", (int)g_inputs.size(), line);
g_inputs.push_back( line );
printf("\n");

}
fclose(fin);

//
// Spawn each task manager individually
//
pthread_t *threads = (pthread_t*)malloc(g_nProcesses*sizeof(pthread_t));
for (int i=0; i<g_nProcesses; i++) {
pthread_create(&(threads[i]), NULL, runprogram, (void*)i);

}

//
// Wait for each manager to complete
//
for (int i=0; i<g_nProcesses; i++) {
pthread_join(threads[i], NULL);

}
free(threads);

printf("runProgram Success!\n");

// //
// // 13. Start Timer for Code *Only needed for One Replication
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// //
// t2=clock();
// float diff ((float)t2-(float)t1);
// float seconds = diff / CLOCKS_PER_SEC;
// cout<<seconds<<endl;
//
// return 0;

}

void *runprogram(void *pRank)
{

char cmd[4096];

// The rank is passed "as" a pointer
// (because a pointer is an integer)
size_t rank = (size_t)pRank;

// The start and end task are based on the rank
int nTasks = g_inputs.size();
int startTask = nTasks * rank / g_nProcesses;
int endTask = nTasks * (rank+1) / g_nProcesses;

for (int i=startTask; i<endTask; i++) {
fprintf(stderr, "--------------------\n");
fprintf(stderr, "- task manager %d running task %s\n", (int)rank, g_inputs[i].c_str());
fprintf(stderr, "--------------------\n");
system("mkdir -p progress");

sprintf(cmd, "./%s %s > progress/%s\n", g_progname, g_inputs[i].c_str(), g_inputs[i].c_str());
printf("%s\n", cmd);
system(cmd);

}
return NULL;

}
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Appendix E

Item Parameters
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Table E.1: The item parameters when J = 20 and Item Difficulty ordering is Random

Item Parameters
α β

Item 1 1 -1.008
Item 2 1.55 1.313
Item 3 0.991 1.458
Item 4 1.729 0.753
Item 5 0.943 -1.639
Item 6 1.773 0.52
Item 7 1.625 -0.287
Item 8 1.459 0.257
Item 9 1.12 -0.403
Item 10 1.224 1.859
Item 11 1.665 -0.33
Item 12 1.604 -1.59
Item 13 0.903 -0.401
Item 14 1.462 1.651
Item 15 1.736 -0.982
Item 16 0.846 0.515
Item 17 1.042 -0.718
Item 18 1.74 0.19
Item 19 1.289 -1.049
Item 20 1.026 1.016
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Table E.2: The item parameters when J = 40 and Item Difficulty ordering is Random

Item Parameters
α β

Item 1 1 -1.008
Item 2 1.55 1.313
Item 3 0.991 1.458
Item 4 1.729 0.753
Item 5 0.943 -1.639
Item 6 1.773 0.52
Item 7 1.625 -0.287
Item 8 1.459 0.257
Item 9 1.12 -0.403
Item 10 1.224 1.859
Item 11 1.665 -0.33
Item 12 1.604 -1.59
Item 13 0.903 -0.401
Item 14 1.462 1.651
Item 15 1.736 -0.982
Item 16 0.846 0.515
Item 17 1.042 -0.718
Item 18 1.74 0.19
Item 19 1.289 -1.049
Item 20 1.026 1.016
Item 21 1 -1.008
Item 22 1.55 1.313
Item 23 0.991 1.458
Item 24 1.729 0.753
Item 25 0.943 -1.639
Item 26 1.773 0.52
Item 27 1.625 -0.287
Item 28 1.459 0.257
Item 29 1.12 -0.403
Item 30 1.224 1.859
Item 31 1.665 -0.33
Item 32 1.604 -1.59
Item 33 0.903 -0.401
Item 34 1.462 1.651
Item 35 1.736 -0.982
Item 36 0.846 0.515
Item 37 1.042 -0.718
Item 38 1.74 0.19
Item 39 1.289 -1.049
Item 40 1.026 1.016
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Appendix F

Data Generation Algorithm

Within the 2PLMix and M2PLMix models, the location at which speededness begins was generated
under the Multinomial[π1, π2, ..., πJ ] and Multinomial[π1(θi), π2(θi), ..., πJ(θi)], respectively. The ability
parameter, θi, was previously generated which was then used to determine the examinee i’s probability
distribution of not being speeded based on Eq. 3.4. The development of the probability distribution
for speededness with respect to the 2PLMix and M2PLMix models can be seen in the code below. The
following code also shows how ηi was calculated based on a δi for the 2PlMix model and δi and θi for
the M2PLMix model.

kappa <- 0.2; omega <- 2; lambda <- 0.4; pi <- 0.4
################## 2PLMix #####################
## 1. Vector of items from 1 to J - 1
items=1:(J[1]-1)

## 2. Probability of being speeded on items 1 to J-1
prob1_Jm1_2 = as.matrix(((items^omega-(items-1)^omega)/
((J-1)^omega))
* (1-pi))

## 3. Probability of being speeded on items 1 to J
prob_2PLMix <- as.matrix(as.numeric(rbind(prob1_Jm1_2,pi))

## 4. Generate Delta from Distribution
delta <- sample(1,J, prob_2PLMix)

## 5.
## 5. Generate Eta via Two function
gen.eta = function(kap,del,J){
## Equation 2.9 to determine
## the speededness effect
gam = rbind(as.matrix(kap*((J-1):1)),0)
## Determine the speededness effect for
## examinee i based on delta
amount.sp <- gam[del,]
## Information used to make vector of
## speededness effect for examinee i
aff.spot <- cbind(del,amount.sp,J)
## Use of function to make
## vector of speededness effect
eta = t(apply(aff.spot,1,replace.val))
return(eta)
}
replace.val = function(spot.aff){
## Determine the number of items
Jc = spot.aff[3]
## Create a vector of 0s
tmp = rep(0,Jc)
## Replace location where speededness
## begins by speededness effects
tmp[spot.aff[1]:Jc]=spot.aff[2]
return(tmp)
}

eta <- gen.eta(kappa,delta,J)
##########################
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################## M2PLMix #####################
## 1. Baseline probability of not
## being speeded for examinee I EQ: 3.4
pi.lambda = lambda + (1-lambda)*(1 / (1+exp(-theta[i])))

## 2. Probability of being speeded on items 1 to J-1
prob1_Jm1_m2 = as.matrix(((items^omega-(items-1)^omega)/
((J-1)^omega)) *
(1- pi.lambda))

## 3. Probability of being speeded on items 1 to J
prob_M2PLMix <- as.matrix(as.numeric(rbind(prob1_Jm1_m2,
pi.lambda))

## 4. Generate Delta from Distribution
delta <- sample(1,J, prob_M2PLMix)

## 5. Generate Eta based on previously defined functions
eta <- gen.eta(kappa,delta,J)
##########################

Under the GPC model, the ability parameter, θi, the proportion of the test complete, ηi, and
speededness intensity, λi, for examinee i, in which an association was created using a copula function.
This was done by the following steps

1. Define the mean parameters used within marginal distribution

2. Define the correlation structure used to associate speededness parameters and ability

3. Generate 3 parameters for each examinee from a multinomial distribution with means based on
the desired distributions and correlation structure from the 2nd step

4. Find the cumulative distribution (probability) value for each value that was generated from step
3

5. Use each probability value within each marginal distribution to find the corresponding quantile,
marginal distributions can be seen as follows:

• θ ∼ N(0, 1)

• η ∼ β(2, 2)

• λ ∼ Log−N(0, 1)

The mechanism for associating ability with speededness in the GPC model can been in the following
code:
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require(mvtnorm)
N <- 1000;J<- 40
## Correlations between
## t: theta; e: eta; l: lambda;
clt<-0.5;cle<-0.25;cet<- 0.25
## Means
m_t <- 0; m_e <- 2 ; m_l <- 1
#Correlation matrix
S <- matrix(c(1,cet,cle,cet,1,
clt,cle,clt,1),3,3)
#Our gaussian variables
AB <- rmvnorm(mean=c(m_t,m_e,m_l),sig=S,n=N)
U <- pnorm(AB)
## Distribution between parameters
theta <- qnorm(U[,1],)
eta <- qbeta(U[,2],2,2)
lambda <- qlnorm(U[,3],1)

Once these parameters were generated with respect to each model, they were used to find the ith

examinee’s probability of getting the jth item correct noted as Pij . This implies that an NxJ matrix
of probabilities was created. This is done by using the parameters for each model to determine the
probability of obtaining the correct solution. A response matrix of 0′s and 1′s was created based on
these probabilities based on the following equation,

Xij =
{

1 Pij > U
0 Pij ≤ U

in which U ∼ U(0, 1), is a continuous distribution.
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Appendix G

Estimation Algorithm

The following are the steps used to estimate θ, α, β, and δ. The priors and full conditional distri-
butions for each parameter were discussed in section 3.3

Algorithm for θi

1. Initialize θk−1
i is found from the Z-score of 0.025 + 0.95 ∗

∑
iXi (previous iterate)

2. Determine θi based on the following:

θi = θk−1
i + 0.2 ∗ ε

where ε ∼ N(0, 1)

3. Calculate the prior probabilities for θk−1
i and θi using Normal(0, 1)

4. Calculate the likelihood of f(θk−1
i |X, rest) and f(θi|X, rest), rest are the other parameters being

estimated

5. Multiply the prior probability of θi to the likelihood of θi for each item for the previous iterate
and candidate parameter to determine the acceptance probability α(θi, θ

k−1
i )

6. The previous iterate is determined by the following:

θk−1
i =

{
θk−1
i α(θi, θ

k−1
i ) < X

θi α(θi, θ
k−1
i ) > X

where X ∼ U(0, 1), a continuous uniform distribution.

Algorithm for αj

1. Initialize αk−1
j = 1 (previous iterate)

2. Determine αj based on the following:

αj = αk−1
j + 0.15 ∗ ε

where ε ∼ N(0, 1.185)

3. Calculate the prior probabilities for αk−1
j and αj using Log-Normal(0.3, 1)
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4. Calculate the likelihood of f(αk−1
j |X, rest) and f(αj |X, rest), rest are the other parameters

5. Multiply the prior probability of αj to the likelihood of αj for each examinee for the previous

iterate and candidate parameter to determine the acceptance probability α(αj , α
k−1
j )

6. The previous iterate is determined by the following:

αk−1
j =

{
αk−1
j α(αj , α

k−1
j ) < X

αj α(αj , α
k−1
j ) > X

where X ∼ U(0, 1), a continuous uniform distribution.

Algorithm for βj

1. Initialize βk−1
j is found from the -Z-score of 0.025 + 0.95 ∗

∑
j Xj (previous iterate)

2. Determine βj based on the following:

βj = βk−1
j + 0.25 ∗ ε

where ε ∼ N(0, 35)

3. Calculate the prior probabilities for βk−1
j and βj using Normal(0, 1)

4. Calculate the likelihood of f(βk−1
j |X, rest) and f(βj |X, rest), rest are the other parameters being

estimated

5. Multiply the prior probability of βj to the likelihood of βj for each examinee for the previous

iterate and candidate parameter to determine the acceptance probability α(βj , β
k−1
j )

6. The previous iterate is determined by the following:

βk−1
j =

{
βk−1
j α(βj , β

k−1
j ) < X

βj α(βj , β
k−1
j ) > X

where X ∼ U(0, 1), a continuous uniform distribution.

Algorithm for δi

1. Initialize δk−1
i = J (previous iterate)

2. Determine δi based on the following:

δi =

 1 δk−1
i + ε < 1

J δk−1
i + ε > J

δk−1
i + ε otherwise

where ε ∼ U(−3, 3), a discrete uniform distribution.
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3. Determine ηk−1
i and ηi based on δk−1

i and δi

η = (0, 0, 0, ..., γδ, γδ, γδ, ..., γδ)

where γδ = κ(J − δ)

4. Calculate the prior probabilities for δk−1
i and δi based on a Multinomial [π1(θi), π2(θi), ..., πJ(θi)]

5. Calculate the likelihood of f(X|δk−1
i ) and f(X|δi), based on ηk−1

i and ηi

6. Multiply the prior probability of δi to the likelihood of δi for each item for the previous iterate
and candidate parameter to determine the acceptance probability α(δi, δ

k−1
i )

7. The previous iterate is determined by the following:

δk−1
i =

{
δk−1
i α(δk−1

i , δi) < X
δi α(δk−1

i , δi) > X

where X ∼ U(0, 1), a continuous uniform distribution.

The algorithm found the iterates for the parameters in the following ordered:

1. θ

2. α

3. β

4. δ


