
LEARNING THE NONLINEAR GEOMETRIC
STRUCTURE OF HIGH-DIMENSIONAL DATA:

MODELS, ALGORITHMS, AND APPLICATIONS

BY TONG WU

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Waheed U. Bajwa

and approved by

New Brunswick, New Jersey

May, 2017

ABSTRACT OF THE DISSERTATION

Learning the nonlinear geometric structure of

high-dimensional data: Models, Algorithms, and

Applications

by TONG WU

Dissertation Director: Prof. Waheed U. Bajwa

Modern information processing relies on the axiom that high-dimensional data lie near

low-dimensional geometric structures. The work presented in this thesis aims to develop

new models and algorithms for learning the geometric structures underlying data and

to exploit the application of geometry learning in image and video analytics.

The first part of the thesis revisits the problem of data-driven learning of these

geometric structures and puts forth two new nonlinear geometric models for data de-

scribing “related” objects/phenomena. The first one of these models straddles the

two extremes of the subspace model and the union-of-subspaces model, and is termed

the metric-constrained union-of-subspaces (MC-UoS) model. The second one of these

models—suited for data drawn from a mixture of nonlinear manifolds—generalizes the

kernel subspace model, and is termed the metric-constrained kernel union-of-subspaces

(MC-KUoS) model. The main contributions in this regard are threefold. First, we

motivate and formalize the problems of MC-UoS and MC-KUoS learning. Second, we

present algorithms that efficiently learn an MC-UoS or an MC-KUoS underlying data

of interest. Third, we extend these algorithms to the case when parts of the data are

missing.

ii

The second part of the thesis considers the problem of learning meaningful human

action attributes from video data. Representation of human actions as a sequence

of human body movements or action attributes enables the development of models

for human activity recognition and summarization. We first propose a hierarchical

union-of-subspaces model and an approach called hierarchical sparse subspace clustering

(HSSC) is developed to learn this model from the data in an unsupervised manner

by capturing the variations or movements of each action in different subspaces. We

then present an extension of the low-rank representation (LRR) model, termed the

clustering-aware structure-constrained low-rank representation (CS-LRR) model, for

unsupervised learning of human action attributes from video data. The CS-LRR model

is based on the union-of-subspaces framework, and integrates spectral clustering into

the LRR optimization problem for better subspace clustering results. We also introduce

a hierarchical subspace clustering approach, termed hierarchical CS-LRR, to learn the

attributes without the need for a priori specification of their number. By visualizing

and labeling these action attributes, the hierarchical model can be used to semantically

summarize long video sequences of human actions at multiple resolutions. A human

action or activity can also be uniquely represented as a sequence of transitions from one

action attribute to another, which can then be used for human action recognition.

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my PhD advisor,

Prof. Waheed U. Bajwa, for his guidance and support during the past five years.

Ever since the first few days when he guided me through my first research project,

Prof. Bajwa has been an outstanding advisor and friend. His enthusiasm for research,

constant encouragement, and strong willingness to support his students’ growth and

independence always inspire me in both research work and personal life. It is my great

fortune to work with him for five years and this experience will be the most cherished

treasure of my life.

Next, I would like to express my sincerest gratitude to Dr. Prudhvi Gurram at U.S.

Army Research Lab, for his advice and generous help on a number of academic and

nonacademic matters during our collaborative research. I would also like to thank the

other three members of my dissertation committee, Prof. Vishal Patel, Prof. Laleh

Najafizadeh and Dr. Raghuveer M. Rao, for their precious time in reviewing my dis-

sertation and providing valuable suggestions. I am also grateful to Prof. Kristin Dana,

who served on my dissertation proposal committee.

In addition, I would like to thank all the members of the Information, Networks,

and Signal Processing Research (INSPIRE) Lab, including Haroon Raja, Talal Ahmed,

Zahra Shakeri, Muhammad Asad Lodhi and Zhixiong Yang, for their help and friend-

ship.

Finally, I want to thank my parents for their unconditional support and continuous

encouragement. Thank you for your sacrifices and constant support during my years

of study in the United States.

iv

Dedication

To my parents, for their endless love, support and encouragement.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

1. Introduction . 1

1.1. Thesis Statement . 2

1.2. Major Contributions . 4

1.2.1. Metric-Constrained Union-of-Subspaces 4

1.2.2. Human Action Attribute Learning 5

1.3. Notational Convention . 6

1.4. Thesis Outline . 6

2. Metric-Constrained Union-of-Subspaces 8

2.1. Problem Formulation . 8

2.2. MC-UoS Learning Using Complete Data 11

2.3. Practical Considerations . 14

2.4. MC-UoS Learning Using Missing Data 17

2.5. Experimental Results . 19

2.5.1. Experiments on Synthetic Data 21

2.5.2. Experiments on City Scene Data 26

2.5.3. Experiments on Face Dataset . 29

3. Metric-Constrained Kernel Union-of-Subspaces 32

3.1. Problem Formulation . 32

3.2. MC-KUoS Learning Using Complete Data 34

vi

3.3. MC-KUoS Learning Using Missing Data 38

3.4. Pre-Image Reconstruction . 42

3.4.1. Pre-Image Reconstruction Using Complete Data 43

3.4.2. Pre-Image Reconstruction Using Missing Data 44

3.5. Experimental Results . 45

3.5.1. Experiments on Image Denoising 46

3.5.2. Experiments on Clustering . 48

4. Hierarchical Union-of-Subspaces Model for Human Activity Summa-

rization . 50

4.1. Motivation . 50

4.2. Background: Sparse Subspace Clustering 53

4.3. Hierarchical Sparse Subspace Clustering 54

4.3.1. Complexity Analysis for Flat SSC and Hierarchical SSC 60

4.3.2. Action Recognition Using Learned Subspaces 61

4.4. Performance Evaluation . 63

4.4.1. Semantic Labeling and Summarization 64

4.4.2. Action Recognition: Evaluation on Different Datasets 65

5. Human Action Attribute Learning Using Low-Rank Representations 67

5.1. Feature Extraction for Attribute Learning 68

5.2. Clustering-Aware Structure-Constrained Low-Rank Representation . . . 69

5.2.1. Brief Review of LRR and SC-LRR 70

5.2.2. CS-LRR Model . 71

5.2.3. Solving CS-LRR . 73

5.3. Hierarchical Subspace Clustering Based on CS-LRR Model 75

5.4. Attribute Visualization and Semantic Summarization 77

5.4.1. Visualization of Attributes Using HOG Features 78

5.4.2. Visualization of Attributes Using MBH Features 79

5.5. Action Recognition Using Learned Subspaces 80

vii

5.5.1. Closed Set Action Recognition Using k-NN 80

5.5.2. Closed Set Action Recognition Using SVM 81

5.5.3. Open Set Action Recognition . 82

5.6. Experimental Results . 82

5.6.1. Datasets . 83

5.6.2. Semantic Labeling and Summarization 84

5.6.3. Action Recognition . 89

Closed Set Recognition . 90

Open Set Recognition . 95

6. Conclusion and Future Work . 97

References . 99

viii

1

Chapter 1

Introduction

We have witnessed an explosion in data generation in the last decade or so. Modern

signal processing, machine learning and statistics have been relying on a fundamental

maxim of information processing to cope with this data explosion. This maxim states

that while real-world data might lie in a high-dimensional Hilbert space, relevant in-

formation within them almost always lies near low-dimensional geometric structures

embedded in the Hilbert space. Knowledge of these low-dimensional geometric struc-

tures not only improves the performance of many processing tasks, but also helps reduce

computational and communication costs, storage requirements, etc.

Information processing literature includes many models for geometry of high-dimensi-

onal data, which are then utilized for better performance in numerous applications, such

as dimensionality reduction and data compression [1–5], denoising [6, 7], classification

[8–11], and motion segmentation [12,13]. These geometric models broadly fall into two

categories, namely, linear models [1,9,14] and nonlinear models [3,13,15–17]. A further

distinction can be made within each of these two categories depending upon whether

the models are prespecified [18,19] or learned from the data themselves [7,13,16,20–22].

The focus in this thesis is on the latter case, since data-driven learning of geometric

models is known to outperform prespecified geometric models [7, 23].

Linear models, which dictate that data lie near a low-dimensional subspace of the

Hilbert space, have been historically preferred within the class of data-driven models due

to their simplicity. These models are commonly studied under the rubrics of principal

component analysis (PCA) [1,24], Karhunen–Loève transform [25], factor analysis [14],

etc. But real-world data in many applications tend to be nonlinear. In order to better

capture the geometry of data in such applications, a few nonlinear generalizations of

2

data-driven linear models that remain computationally feasible have been investigated

in the last two decades. One of the most popular generalizations is the nonlinear

manifold model [3, 5, 26, 27]. The (nonlinear) manifold model can also be considered

as the kernel subspace model, which dictates that a mapping of the data to a higher-

(possibly infinite-) dimensional Hilbert space lies near a low-dimensional subspace [28].

Data-driven learning of geometric models in this case is commonly studied under the

moniker of kernel PCA (KPCA) [26]. Another one of the most popular generalizations of

linear models is the union-of-subspaces (UoS) (resp., union-of-affine-subspaces (UoAS))

model, which dictates that data lie near a mixture of low-dimensional subspaces (resp.,

affine subspaces) in the ambient Hilbert space. Data-driven learning of the UoS model

is commonly carried out under the rubrics of generalized PCA [29], dictionary learning

[16, 30], and subspace clustering [13, 31–34]. On the other hand, data-driven learning

of the UoAS model is often studied under the umbrella of hybrid linear modeling [35],

mixture of factor analyzers [36], etc.

1.1 Thesis Statement

In this thesis, we first consider the problem of learning the geometric structure under-

lying the signals describing similar phenomenon (e.g., similar frontal facial images). In

the literature, encouraging results have been reported for both the UoS and the kernel

subspace models in the context of a number of applications [6, 11, 13, 37]. But there

remains a lot of room for improvement in both these models. The canonical UoS model,

for example, does not impose any constraint on the collection of subspaces underlying

data of interest. On the other hand, one can intuit that subspaces describing “similar”

data should have some “relation” on the Grassmann manifold. The lack of any a priori

constraint during learning on the subspaces describing “similar” data has the potential

to make different methods for UoS learning susceptible to errors due to low signal-to-

noise ratio (SNR), outliers, missing data, etc. Another limitation of the UoS model is

the individual linearity of its constituent subspaces, which limits its usefulness for data

drawn from a nonlinear manifold [26]. On the other hand, while the kernel subspace

model can handle manifold data, a single kernel subspace requires a large dimension to

3

capture the richness of data drawn from a mixture of nonlinear manifolds.

Our first goal in this thesis is to improve the state-of-the-art data-driven learning

of geometric data models for both complete and missing data describing similar phe-

nomenon. We are in particular interested in learning models for data that are either

mildly or highly nonlinear. Here, we are informally using the terms “mildly nonlin-

ear” and “highly nonlinear.” Heuristically, nonlinear data that cannot be represented

through a mixture of linear components should be deemed “highly nonlinear.” Our key

objective in this regard is overcoming the aforementioned limitations of the UoS model

and the kernel subspace model for mildly nonlinear data and highly nonlinear data,

respectively. The solution to these two problems are addressed in detail in Chapter 2

and Chapter 3, respectively.

Next, we consider the problem of learning meaningful human action attributes from

video data. A complex human activity or a high-level event can be considered to be

a hierarchical model [38], consisting of a sequence of simpler human actions. Each

action can further be divided into a sequence of movements of the human body, which

we call action attributes [39]. In the past, a significant fraction of the video analytics

literature has been devoted to the study of learning attributes in human actions [40,41].

In this thesis, we propose to represent human action attributes based on the UoS

model [13,42], which is motivated by the fact that high-dimensional video data usually

lie in a union of low-dimensional subspaces instead of being uniformly distributed in

the high-dimensional ambient space [13]. The hypothesis of this model is that each

action attribute is represented by a subspace. A human action or activity can then

be represented as a sequence of transitions from one attribute to another and, hence,

can be represented by a subspace transition vector. Even though multiple actions

can share action attributes, each action or activity can be uniquely represented by

its subspace transition vector when the attributes are learned using the UoS model.

One of the applications of learning the subspaces based on the UoS model is semantic

description of long video sequences with multiple human actions. Since the subspaces

corresponding to each action attribute can be visualized using the first few dimensions

of the corresponding orthonormal bases and assigned a semantic label, any long video

4

sequence can be semantically explained using the semantic labels of the subspaces to

which the frames are assigned and the transitions between the subspaces. Another

major application of this representation is human action recognition. If training labels

are available for human actions, classifiers can be trained for each of the actions based

on the transition sequence and can be used to recognize human actions in videos.

We describe the details of learning the attributes from video data in Chapter 4 and

Chapter 5.

1.2 Major Contributions

In this thesis, we present new frameworks for learning the geometric structure under-

lying imaging/video data. We propose algorithms based on union-of-subspaces model

and optimization techniques to effectively address different problems such as clustering

and human action attribute learning. Below, we highlight some of the primary aspects

of the thesis contributions.

1.2.1 Metric-Constrained Union-of-Subspaces

In the first part of the thesis, we consider the problem of learning the structure of data

describing similar phenomenon. One of our main contributions is introduction of a novel

geometric model, termed metric-constrained union-of-subspaces (MC-UoS) model, for

mildly nonlinear data describing similar phenomenon. Similar to the canonical UoS

model, the MC-UoS model also dictates that data lie near a union of low-dimensional

subspaces in the ambient space. But the key distinguishing feature of the MC-UoS

model is that it also forces its constituent subspaces to be close to each other according

to a metric defined on the Grassmann manifold. In this work, we formulate the MC-UoS

learning problem for a particular choice of the metric and derive three novel iterative

algorithms for solving this problem. The first one of these algorithms operates on

complete data, the second one deals with the case of unknown number and dimension

of subspaces, while the third one carries out MC-UoS learning in the presence of missing

data.

5

One of our other main contributions is extension of our MC-UoS model for highly

nonlinear data. This model, which can also be considered a generalization of the kernel

subspace model, is termed metric-constrained kernel union-of-subspaces (MC-KUoS)

model. The MC-KUoS model asserts that mapping of data describing similar phe-

nomenon to some higher-dimensional Hilbert space (also known as the feature space)

lies near a mixture of subspaces in the feature space with the additional constraint that

the individual subspaces are also close to each other in the feature space. In this regard,

we formulate the MC-KUoS learning problem using the kernel trick [15], which avoids

explicit mapping of data to the feature space. In addition, we derive two novel iterative

algorithms that can carry out MC-KUoS learning in the presence of complete data and

missing data.

1.2.2 Human Action Attribute Learning

In the second part of the thesis, we address the problem of learning meaningful hu-

man action attributes from video data. A cornerstone of this effort in this regard is

union-of-subspaces model for learning of low- and medium-level features from video

sequences. In Chapter 4, we propose a hierarchical union-of-subspaces model to learn

human action attributes and use Sparse Subspace Clustering (SSC) [13], a state-of-the-

art subspace clustering method on top of it. We use silhouette structure of the human

as the feature in this framework. Experimental results demonstrate the hierarchical

UoS model results in better performance than the canonical UoS models in terms of

human action recognition.

In Chapter 5, we introduce an extension of the low-rank representation (LRR)

model, termed clustering-aware structure-constrained LRR (CS-LRR) model, to obtain

optimal clustering of human action attributes from a large collection of video sequences.

We formulate the CS-LRR learning problem by introducing spectral clustering into the

optimization program. We also propose a hierarchical extension of our CS-LRR model

for unsupervised learning of human action attributes from the data at different resolu-

tions without assuming any knowledge of the number of attributes present in the data.

Once the graph is learned from CS-LRR model, we segment it by applying hierarchical

6

spectral clustering to obtain action attributes at different resolutions. The proposed

approach is called hierarchical clustering-aware structure-constrained LRR (HCS-LRR).

Our results confirm the superiority of HCS-LRR in comparison to a number of state-

of-the-art subspace clustering approaches.

1.3 Notational Convention

The following notation will be used throughout the rest of this thesis. We use non-

bold letters to represent scalars, bold lowercase letters to denote vectors/sets, and bold

uppercase letters to denote matrices. The i-th element of a vector a is denoted by

a(i) and the (i, j)-th element of a matrix A is denoted by ai,j . The i-th row and j-th

column of a matrix A are denoted by ai and aj , respectively. Given a set Ω, [A]Ω,:

(resp., [v]Ω) denotes the submatrix of A (resp., subvector of v) corresponding to the

rows of A (resp., entries of v) indexed by Ω. Given two sets Ω1 and Ω2, [A]Ω1,Ω2

denotes the submatrix of A corresponding to the rows and columns indexed by Ω1 and

Ω2, respectively. The zero matrix and the identity matrix are denoted by 0 and I of

appropriate dimensions, respectively.

The most commonly used vector norm in this thesis is the `2 norm, which is rep-

resented by ‖ · ‖2. We use a variety of norms on matrices. The `1 and `2,1 norms are

denoted by ‖A‖1 =
∑

i,j |ai,j | and ‖A‖2,1 =
∑

j ‖aj‖2, respectively. The `∞ norm is

defined as ‖A‖∞ = maxi,j |ai,j |. The spectral norm of a matrix A, i.e., the largest

singular value of A, is denoted by ‖A‖. The Frobenius norm and the nuclear norm

(the sum of singular values) of a matrix A are denoted by ‖A‖F and ‖A‖∗, respectively.

Finally, the Euclidean inner product between two matrices is 〈A,B〉 = tr(ATB), where

(·)T and tr(·) denote transpose and trace operations, respectively.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we formally define the

metric-constrained union-of-subspaces (MC-UoS) model and present three algorithms

7

for learning the geometry of mildly nonlinear data. In Chapter 3, we extend the MC-

UoS model to the feature space and give the details of two algorithms for learning of

an MC-UoS in the feature space, corresponding to the cases of complete and missing

data. In Chapter 4, we present our hierarchical union-of-subspaces model and an al-

gorithm for learning the human action attributes for video summarization and human

action recognition. In Chapter 5, we describe the CS-LRR model and present an algo-

rithm based on CS-LRR model. We also extend the CS-LRR model into a hierarchical

structure. Finally, we conclude this thesis and discuss future work in Chapter 6.

8

Chapter 2

Metric-Constrained Union-of-Subspaces

2.1 Problem Formulation

In this chapter, we study the problem of learning the geometry of mildly nonlinear data

based on the metric-constrained union-of-subspaces (MC-UoS) model. Recall that the

canonical UoS model asserts data in an m-dimensional ambient space can be represented

through a union of L low-dimensional subspaces [5, 43]: ML =
⋃L
`=1 S`, where S` is

a subspace of Rm. In here, we make the simplified assumption that all subspaces in

ML have the same dimension, i.e., ∀`, dim(S`) = s � m. In this case, each subspace

S` corresponds to a point on the Grassmann manifold Gm,s, which denotes the set of

all s-dimensional subspaces of Rm. While the canonical UoS model allows S`’s to be

arbitrary points on Gm,s, the basic premise of the MC-UoS model is that subspaces

underlying similar signals likely form a “cluster” on the Grassmann manifold. In order

to formally capture this intuition, we make use of a distance metric on Gm,s and define

an MC-UoS according to that metric as follows.

Definition 1. (Metric-Constrained Union-of-Subspaces.) A UoSML =
⋃L
`=1 S`

is said to be constrained with respect to a metric du : Gm,s × Gm,s → [0,∞) if

max`,p: 6̀=p du(S`,Sp) ≤ ε for some positive constant ε.

The metric we use to measure distances between subspaces is based on the Hausdorff

distance between a vector and a subspace, which was first defined in [44]. Specifically,

if D` ∈ Rm×s and Dp ∈ Rm×s denote orthonormal bases of subspaces S` and Sp,

respectively, then

du(S`,Sp) =
√
s− tr(DT

` DpDT
p D`) = ‖D` − PSpD`‖F , (2.1)

9

where PSp denotes the projection operator onto the subspace Sp: PSp = DpD
T
p . It is

easy to convince oneself that du(·, ·) in (2.1) is invariant to the choice of orthonormal

bases of the two subspaces, while it was formally shown to be a metric on Gm,s in [45].

Note that du(·, ·) in (2.1) is directly related to the concept of principal angles between

two subspaces. Given two subspaces S`,Sp and their orthonormal bases D`,Dp, the

cosines of the principal angles cos(θj`,p), j = 1, . . . , s, between S` and Sp are defined

as the ordered singular values of DT
` Dp [34]. It therefore follows that du(S`,Sp) =√

s−
∑s

j=1 cos2(θj`,p). We conclude our discussion of the MC-UoS model by noting that

other definitions of metrics on the Grassmann manifold exist in the literature that are

based on different manipulations of cos(θj`,p)’s [46]. In this work, however, we focus only

on (2.1) due to its ease of computation. Next, we assume access to a collection ofN noisy

training samples, Y = [y1, . . . ,yN] ∈ Rm×N , such that every sample yi can be expressed

as yi = xi + ξi with xi belonging to one of the S`’s in ML and ξi ∼ N (0, (σ2
tr/m)Im)

denoting additive noise. We assume without loss of generality throughout this chapter

that ‖xi‖22 = 1, which results in training SNR of ‖xi‖22/E[‖ξi‖22] = σ−2
tr . To begin, we

assume both L and s are known a priori. Later, we relax this assumption and extend

our work in Section 2.3 to the case when these two parameters are unknown. Our goal

is to learnML using the training data Y, which is equivalent to learning a collection of

L subspaces that not only approximate the training data, but are also “close” to each

other on the Grassmann manifold (cf. Definition 1). Here, we pose this goal of learning

an MC-UoS ML in terms of the following optimization program:

{S`}L`=1 = arg min
{S`}⊂Gm,s

L∑
`,p=1
`6=p

d2
u(S`,Sp) + λ

N∑
i=1

‖yi − PSliyi‖
2
2, (2.2)

where li = arg min` ‖yi−PS`yi‖22 with PS`yi denoting the (orthogonal) projection of yi

onto the subspace S`. Notice that the first term in (2.2) forces the learned subspaces to

be close to each other, while the second term requires them to simultaneously provide

good approximations to the training data. The tuning parameter λ > 0 in this setup

provides a compromise between subspace closeness and approximation error. While a

discussion of finding an optimal λ is beyond the scope of this work, cross validation

can be used to find ranges of good values of tuning parameters in such problems [47]

10

(also, see Section 2.5). It is worth pointing out here that (2.2) can be reformulated for

the UoAS model through a simple extension of the metric defined in (2.1). In addition,

note that (2.2) is mathematically similar to a related problem studied in the clustering

literature [48]. In fact, it is straightforward to show that (2.2) reduces to the clustering

problem in [48] for ML being a union of zero-dimensional affine subspaces.

Remark 1. The MC-UoS model and the learning problem (2.2) can be further motivated

as follows. Consider a set of facial images of individuals under varying illumination

conditions in the Extended Yale B dataset [49], as in Figs. 2.1(a) and 2.1(b). It is

generally agreed that all images of an individual in this case can be regarded as lying

near a 9-dimensional subspace [50], which can be computed in a straightforward manner

using singular value decomposition (SVD). The subspace distance defined in (2.1) can be

used in this case to identify similar-looking individuals. Given noisy training images of

such “similar” individuals, traditional methods for UoS learning such as sparse subspace

clustering (SSC) [13] that rely only on the approximation error will be prone to errors.

Fig. 2.1 provides a numerical validation of this claim, where it is shown that SSC has

good performance on noisy images of different-looking individuals (cf. Fig. 2.1(b)), but

its performance degrades in the case of similar-looking individuals (cf. Fig. 2.1(a)). The

MC-UoS learning problem (2.2), on the other hand, should be able to handle both cases

reliably because of the first term in (2.2) that penalizes subspaces that do not cluster on

the Grassmann manifold. We refer the reader to Section 2.5.3 for detailed experiments

that numerically validate this claim.

In this work, we study two variants of the MC-UoS learning problem described by

(2.2). In the first variant, all m dimensions of each training sample in Y are observed

and the geometry learning problem is exactly given by (2.2). In the second variant, it

is assumed that some of the m dimensions of each training sample in Y are unobserved

(i.e., missing), which then requires a recharacterization of (2.2) for the learning problem

to be well posed. We defer that recharacterization to Section 2.4. In order to quantify

the performance of our learning algorithms, we will resort to generation of noisy test

data as follows. Given noiseless (synthetic or real) data sample x with ‖x‖22 = 1, noisy

test sample z is given by z = x + ξ with the additive noise ξ ∼ N (0, (σ2
te/m)Im).

11

(a) (b)

Figure 2.1: An example illustrating the limitations of existing methods for UoS learning
from noisy training data. The top row in this figure shows examples of “clean” facial
images of four individuals in the Extended Yale B dataset [49], while the bottom row
shows noisy versions of these images, corresponding to σ2

tr = 0.1. The “ground truth”
distance between the subspaces of the individuals in (a) is 1.7953, while it is 2.3664
between the subspaces of the individuals in (b). State-of-the-art UoS learning methods
have trouble reliably learning the underlying subspaces whenever the subspaces are
close to each other. Indeed, while the distance between the two subspaces learned by
the SSC algorithm [13] from noisy images of the individuals in (b) is 2.4103, it is 2.4537
for the case of “similar-looking” individuals in (a).

We will then report the metric of average approximation error of noisy test data using

the learned subspaces for synthetic and real data. Finally, in the case of synthetic

data drawn from an MC-UoS, we will also measure the performance of our algorithms

in terms of average normalized subspace distances between the learned and the true

subspaces. We defer a formal description of both these metrics to Section 2.5.1, which

describes in detail the setup of our experiments.

2.2 MC-UoS Learning Using Complete Data

In order to reduce the effects of noisy training data, we begin with a pre-processing step

that centers the data matrix Y.1 This involves defining the mean of the samples in Y

as ȳ = 1
N

∑N
i=1 yi and then subtracting this mean from Y to obtain the centered data

Ỹ = [ỹ1, . . . , ỹN], where ỹi = yi − ȳ, i = 1, . . . , N . Next, we focus on simplification

of the optimization problem (2.2). To this end, we first define an L × N indicator

1While such pre-processing is common in many geometry learning algorithms, it is not central to
our framework.

12

matrix W that identifies memberships of the ỹi’s in different subspaces, where w`,i = 1,

` = 1, . . . , L, i = 1, . . . , N , if and only if ỹi is “closest” to subspace S`; otherwise,

w`,i = 0. Mathematically,

W =
[
w`,i ∈ {0, 1} : ∀i = 1, . . . , N,

L∑
`=1

w`,i = 1
]
. (2.3)

Further, notice that ‖yi − PS`yi‖22 in (2.2) can be rewritten as

‖yi − PS`yi‖
2
2 = ‖ỹi − PS` ỹi‖

2
2 = ‖ỹi‖22 − ‖DT

` ỹi‖22, (2.4)

where D` ∈ Rm×s denotes an (arbitrary) orthonormal basis of S`. Therefore, defining

D = [D1, . . . ,DL] to be a collection of orthonormal bases of S`’s, we can rewrite (2.2)

as (D,W) = arg minD,W F1(D,W) with the objective function F1(D,W) given by2

F1(D,W) =

L∑
`,p=1
6̀=p

‖D` − PSpD`‖2F + λ

N∑
i=1

L∑
`=1

w`,i(‖ỹi‖22 − ‖DT
` ỹi‖22). (2.5)

Minimizing (2.5) simultaneously over D and W is challenging and is likely to be

computationally infeasible. Instead, we adopt an alternate minimization approach [51,

52], which involves iteratively solving (2.5) by alternating between the following two

steps: (i) minimizing F1(D,W) over W for a fixed D, which we term as the subspace

assignment step; and (ii) minimizing F1(D,W) over D for a fixed W, which we term

as the subspace update stage. To begin this alternate minimization, we start with an

initial D in which each block D` ∈ Rm×s is a random orthonormal basis. Next, we

fix this D and carry out subspace assignment, which now amounts to solving for each

i = 1, . . . , N ,

li = arg min
`=1,...,L

‖ỹi − PS` ỹi‖
2
2 = arg max

`=1,...,L
‖DT

` ỹi‖22, (2.6)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. In order to move to the subspace

update step, we fix the matrix W and focus on optimizing F1(D,W) over D. However,

this step requires more attention since minimizing over the entire D at once will also

lead to a large-scale optimization problem. We address this problem by once again

2Note that the minimization here is being carried out under the assumption of D`’s being orthonor-
mal and W being described by (2.3).

13

resorting to block-coordinate descent (BCD) [51] and updating only one D` at a time

while keeping the other Dp’s (p 6= `) fixed in (2.5). In this regard, suppose we are

in the process of updating D` for a fixed ` during the subspace update step. Define

c` = {i ∈ {1, . . . , N} : w`,i = 1} to be the set containing the indices of all ỹi’s that

are assigned to S` (equivalently, D`) and let Ỹ` = [ỹi : i ∈ c`] be the corresponding

m×|c`| matrix. Then it can be shown after some manipulations of (2.5) that updating

D` is equivalent to solving the following problem:

D` = arg min
Q∈Vm,s

∑
p 6=`
‖Q− PSpQ‖2F +

λ

2
(‖Ỹ`‖2F − ‖QT Ỹ`‖2F)

= arg max
Q∈Vm,s

tr
(
QT (

∑
p6=`

DpD
T
p +

λ

2
Ỹ`Ỹ

T
`)Q

)
, (2.7)

where Vm,s denotes the Stiefel manifold, defined as the collection of allm×s orthonormal

matrices. Note that (2.7) has an intuitive interpretation. When λ = 0, (2.7) reduces to

the problem of finding a subspace that is closest to the remaining L−1 subspaces in our

collection. When λ =∞, (2.7) reduces to the PCA problem, in which case the learning

problem (2.2) reduces to the subspace clustering problem studied in [53]. By selecting an

appropriate λ ∈ (0,∞) in (2.7), we straddle the two extremes of subspace closeness and

data approximation. In order to solve (2.7), we define an m×m symmetric matrix A` =∑
p 6=` DpD

T
p + λ

2 Ỹ`Ỹ
T
` . It then follows from [54] that (2.7) has a closed-form solution

that involves eigendecomposition of A`. Specifically, D` = arg max tr(DT
` A`D`) is

given by the first s eigenvectors of A` associated with its s-largest eigenvalues.

This completes our description of the subspace update step. We can now combine

the subspace assignment and subspace update steps to fully describe our algorithm

for MC-UoS learning. This algorithm, which we term metric-constrained union-of-

subspaces learning (MiCUSaL), is given by Algorithm 1. In terms of the complexity

of this algorithm in each iteration, notice that the subspace assignment step requires

O(mLsN) operations. In addition, the total number of operations needed to compute

the A`’s in each iteration is O(m2(Ls + N)). Finally, each iteration also requires L

eigendecompositions of m × m matrices, each one of which has O(m3) complexity.

Therefore, the computational complexity of MiCUSaL in each iteration is given by

O(m3L+m2N +m2Ls+mLsN). We conclude this discussion by pointing out that we

14

Algorithm 1: Metric-Constrained Union-of-Subspaces Learning (MiCUSaL)

Input: Training data Y ∈ Rm×N , number of subspaces L, dimension of
subspaces s, and parameter λ.

Initialize: Random orthonormal bases {D` ∈ Rm×s}L`=1.

1: ȳ = 1
N

∑N
i=1 yi, ỹi = yi − ȳ, i = 1, . . . , N .

2: while stopping rule do
3: for i = 1 to N (Subspace Assignment) do
4: li = arg max` ‖DT

` ỹi‖2.
5: wli,i = 1 and ∀` 6= li, w`,i = 0.
6: end for
7: for ` = 1 to L (Subspace Update) do
8: c` = {i ∈ {1, . . . , N} : w`,i = 1}.
9: Ỹ` = [ỹi : i ∈ c`].

10: A` =
∑

p6=` DpD
T
p + λ

2 Ỹ`Ỹ
T
` .

11: Eigendecomposition of A` = U`Σ`U
T
` .

12: D` = Columns of U` corresponding to the s-largest diagonal elements in Σ`.
13: end for
14: end while

Output: Orthonormal bases {D` ∈ Rm×s}L`=1.

cannot guarantee convergence of MiCUSaL to a global optimal solution. However, since

the objective function F1 in (2.5) is bounded below by zero and MiCUSaL ensures that

F1 does not increase after each iteration, it follows that MiCUSaL iterates do indeed

converge (possibly to one of the local optimal solutions). This local convergence, of

course, will be a function of the initialization of MiCUSaL. In this work, we advocate

the use of random subspaces for initialization, while we study the impact of such random

initialization in Section 2.5.

2.3 Practical Considerations

The MiCUSaL algorithm described in Section 2.2 requires knowledge of the number of

subspaces L and the dimension of subspaces s. In practice, however, one cannot assume

knowledge of these parameters a priori. Instead, one must estimate both the number

and the dimension of subspaces from the training data themselves. In this section,

we describe a generalization of the MiCUSaL algorithm that achieves this objective.

Our algorithm, which we term adaptive MC-UoS learning (aMiCUSaL), requires only

knowledge of loose upper bounds on L and s, which we denote by Lmax and smax,

15

respectively.

The aMiCUSaL algorithm initializes with a collection of random orthonormal bases

D = [D1, . . . ,DLmax], where each basis D` is a point on the Stiefel manifold Vm,smax .

Similar to the case of MiCUSaL, it then carries out the subspace assignment and sub-

space update steps in an iterative fashion. Unlike MiCUSaL, however, we also greedily

remove redundant subspaces from our collection of subspaces {S`}Lmax
`=1 after each sub-

space assignment step. This involves removal of D` from D if no signals in our training

data get assigned to the subspace S`. This step of greedy subspace pruning ensures that

only “active” subspaces survive before the subspace update step.

Once the aMiCUSaL algorithm finishes iterating between subspace assignment, sub-

space pruning, and subspace update, we move onto the step of greedy subspace merging,

which involves merging of pairs of subspaces that are so close to each other that even

a single subspace of the same dimension can be used to well approximate the data

represented by the two subspaces individually.3 In this step, we greedily merge pairs of

closest subspaces as long as their normalized subspace distance is below a predefined

threshold εmin ∈ [0, 1). Mathematically, the subspace merging step involves first finding

the pair of subspaces (S`∗ ,Sp∗) that satisfies

(`∗, p∗) = arg min
` 6=p

du(S`,Sp) s.t.
du(S`∗ ,Sp∗)√

smax
≤ εmin. (2.8)

We then merge S`∗ and Sp∗ by setting c`∗ = c`∗ ∪ cp∗ and Ỹ`∗ = [ỹi : i ∈ c`∗],

where c`∗ , cp∗ are as defined in Algorithm 1. By defining an m×m symmetric matrix

A`∗ =
∑
6̀=`∗,p∗ D`D

T
` + λ

2 Ỹ`∗Ỹ
T
`∗ , D`∗ is then set equal to the first smax eigenvectors of

A`∗ associated with its smax-largest eigenvalues. Finally, we remove Dp∗ from D. This

process of finding the closest pair of subspaces and merging them is repeated until the

normalized subspace distance between every pair of subspaces becomes greater than

εmin. We assume without loss of generality that L̂ subspaces are left after this greedy

subspace merging, where each S` (` = 1, . . . , L̂) is a subspace in Rm of dimension smax.

After subspace merging, we move onto the step of estimation of the dimension, s,

3Note that the step of subspace merging is needed due to our lack of knowledge of the true number
of subspaces in the underlying model. In particular, the assumption here is that the merging threshold
εmin in Algorithm 2 satisfies εmin � ε√

s
.

16

Algorithm 2: Adaptive MC-UoS Learning (aMiCUSaL)

Input: Training data Y ∈ Rm×N , loose upper bounds Lmax and smax, and
parameters λ, k1, k2, εmin.

Initialize: Random orthonormal bases {D` ∈ Rm×smax}Lmax
`=1 , and set L̂ = Lmax.

1: ȳ = 1
N

∑N
i=1 yi, ỹi = yi − ȳ, i = 1, . . . , N .

2: while stopping rule do
3: Fix D and update W using (2.6). Also, set T = ∅ and L1 = 0.
4: for ` = 1 to L̂ (Subspace Pruning) do
5: c` = {i ∈ {1, . . . , N} : w`,i = 1}.
6: If |c`| 6= 0 then cL1+1 = c`, ỸL1+1 = [ỹi : i ∈ c`], L1 = L1 + 1 and T = T ∪ {`}.
7: end for
8: D = [DT(1) , . . . ,DT(L1)

] and L̂ = L1.

9: Update each D` (` = 1, . . . , L̂) in D using (2.7).
10: end while
11: (`∗, p∗) = arg min 6̀=p,`,p=1,...,L̂

du(S`,Sp).

12: while
du(S`∗ ,Sp∗)√

smax
≤ εmin (Subspace Merging) do

13: Merge S`∗ and Sp∗ , and update Y`∗ and D`∗ .

14: D = [D1, . . . ,D`∗ , . . . ,Dp∗−1,Dp∗+1, . . . ,DL̂
] and L̂ = L̂− 1.

15: (`∗, p∗) = arg min 6̀=p,`,p=1,...,L̂
du(S`,Sp).

16: end while
17: Fix D, update W ∈ RL̂×N using (2.6), and update {c`}L̂`=1.

18: for ` = 1 to L̂ do
19: Ỹ` = [ỹi : i ∈ c`] and Ŷ` = D`D

T
` Ỹ`.

20: Calculate ŝ` using (2.9) and (2.10).
21: end for
22: s = max{ŝ1, . . . , ŝL̂}.
23: D̂` = First s columns of D`, ` = 1, . . . , L̂.

24: Initialize Algorithm 1 with {D̂`}L̂`=1 and update {D̂`}L̂`=1 using Algorithm 1.

Output: Orthonormal bases {D̂` ∈ Rm×s}L̂`=1.

of the subspaces. To this end, we first estimate the dimension of each subspace S`,

denoted by s`, and then s is selected as the maximum of these s`’s. There have been

many efforts in the literature to estimate the dimension of a subspace; see, e.g., [55–58]

for an incomplete list. In this work, we focus on the method given in [55], which

formulates the maximum likelihood estimator (MLE) of s`. This is because: (i) the

noise level is unknown in our problem, and (ii) the MLE in [55] has a simple form.

However, the MLE of [55] is sensitive to noise. We therefore first apply a “smoothing”

process before using that estimator. This involves first updating W (i.e., c`’s) using the

updated D and “denoising” our data by projecting Ỹ` onto S`, given by Ŷ` = D`D
T
` Ỹ`,

17

and then using Ŷ` to estimate s`. For a given column ŷ in Ŷ` and a fixed number of

nearest neighbors k0, the unbiased MLE of s` with respect to ŷ is given by [55]

ŝk0` (ŷ) =
[1

k0 − 2

k0−1∑
a=1

log
Γk0(ŷ)

Γa(ŷ)

]−1
, (2.9)

where Γa(ŷ) is the `2 distance between ŷ and its a-th nearest neighbor in Ŷ`. An

estimate of s` can now be written as the average of all estimates with respect to every

signal in Ŷ`, i.e., ŝk0` = 1
|c`|
∑

i∈c`
ŝk0` (ŷi). In fact, as suggested in [55], we estimate s`

by averaging over a range of k0 = k1, . . . , k2, i.e.,

ŝ` =
1

k2 − k1 + 1

k2∑
k0=k1

ŝk0` . (2.10)

Once we get an estimate s = max` ŝ`, we trim each orthonormal basis by keeping only

the first s columns of each (ordered) orthonormal basis D` in our collection, which is

denoted by D̂`.
4 Given the bases {D̂` ∈ Rm×s}L̂`=1, we finally run MiCUSaL again

that is initialized using these D̂`’s until it converges. Combining all the steps men-

tioned above, we can now formally describe adaptive MC-UoS learning (aMiCUSaL) in

Algorithm 2.

2.4 MC-UoS Learning Using Missing Data

In this section, we study MC-UoS learning for the case of training data having missing

entries. To be specific, for each yi in Y, we assume to only observe its entries at locations

given by the set Ωi ⊂ {1, . . . ,m} with |Ωi| > s, which is denoted by [yi]Ωi ∈ R|Ωi|.

Since we do not have access to the complete data, it is impossible to compute the

quantities ‖yi − PS`yi‖22 in (2.2) explicitly. But, it is shown in [59] that ‖[yi]Ωi −

PS`Ωi [yi]Ωi‖22 for uniformly random Ωi is very close to |Ωi|
m ‖yi − PS`yi‖22 with very

high probability as long as |Ωi| is slightly greater than s. Here, PS`Ωi is defined as

PS`Ωi = [D`]Ωi,:([D`]Ωi,:)
† with ([D`]Ωi,:)

† =
(
[D`]

T
Ωi,:

[D`]Ωi,:

)−1
[D`]

T
Ωi,:

. Motivated by

this, we replace ‖yi − PS`yi‖22 by m
|Ωi|‖[yi]Ωi − PS`Ωi [yi]Ωi‖22 in (2.2) and reformulate

4Recall that the columns of D` correspond to the eigenvectors of A`. Here, we are assuming that
the order of these eigenvectors within D` corresponds to the nonincreasing order of the eigenvalues of
A`. Therefore, D̂` comprises the eigenvectors of A` associated with its s-largest eigenvalues.

18

the MC-UoS learning problem as (D,W) = arg minD,W F2(D,W) with the objective

function F2(D,W) given by

F2(D,W) =

L∑
`,p=1
6̀=p

‖D` − PSpD`‖2F + λ

N∑
i=1

L∑
`=1

w`,i
m

|Ωi|
∥∥[yi]Ωi − PS`Ωi [yi]Ωi

∥∥2

2
. (2.11)

As in Section 2.2, we propose to solve this problem by making use of alternating

minimization that comprises subspace assignment and subspace update steps. To this

end, we again initialize D such that each block D` ∈ Rm×s is a random orthonormal

basis. Next, when D is fixed, subspace assignment corresponds to solving for each

i = 1, . . . , N ,

li = arg min
`=1,...,L

‖[yi]Ωi − PS`Ωi [yi]Ωi‖22, (2.12)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. When W is fixed, we carry out subspace

update using BCD again, in which case minD F2(D,W) for a fixed W can be decoupled

into L distinct problems of the form D` = arg minD`∈Vm,s f2(D`), ` = 1, . . . , L, with

f2(D`) = −tr(DT
` A`D`) +

λ

2

∑
i∈c`

m

|Ωi|
∥∥[yi]Ωi − PS`Ωi [yi]Ωi

∥∥2

2
. (2.13)

Here, c` is as defined in Section 2.2 and A` =
∑

p6=` DpD
T
p . It is also easy to ver-

ify that f2(D`) is invariant to the choice of the orthonormal basis of S`; hence, we

can treat minD`∈Vm,s f2(D`) as an optimization problem on the Grassmann mani-

fold [60]. Note that we can rewrite f2(D`) as f2(D`) =
∑|c`|

q=0 f
(q)
2 (D`), where f

(0)
2 (D`) =

−tr(DT
` A`D`) and f

(q)
2 (D`) = λm

2|Ωc`(q)
|‖[yc`(q)]Ωc`(q)

− PS`Ωc`(q)
[yc`(q)]Ωc`(q)

‖22 for q =

1, . . . , |c`|. In here, c`(q) denotes the q-th element in c`. In order to minimize f2(D`),

we employ incremental gradient descent procedure on Grassmann manifold [61], which

performs the update with respect to a single component of f2(D`) in each step. To be

specific, we first compute the gradient of a single cost function f
(q)
2 (D`) in f2(D`), and

move along a short geodesic curve in the gradient direction. For instance, the gradient

of f
(0)
2 (D`) is

∇f (0)
2 = (Im −D`D

T
`)
df

(0)
2

dD`
= −2(Im −D`D

T
`)A`D`. (2.14)

19

Then the geodesic equation emanating from D` in the direction −∇f (0)
2 with a step

length η is given by [60]

D`(η) = D`V` cos(Σ`η)VT
` + U` sin(Σ`η)VT

` , (2.15)

where U`Σ`V
T
` is the SVD decomposition of −∇f (0)

2 . The update of D` with respect

to f
(q)
2 (D`) (q = 1, . . . , |c`|) can be performed as in the GROUSE algorithm [62] but

with a step size λm
2|Ωc`(q)

|η. In order for f2 to converge, we also reduce the step size after

each iteration [62]. We complete this discussion by presenting our learning algorithm for

missing data in Algorithm 3, termed robust MC-UoS learning (rMiCUSaL). By defining

T = maxi |Ωi|, the subspace assignment step of rMiCUSaL requires O(TLs2N) flops in

each iteration [62]. Computing the A`’s in each iteration requires O(m2Ls) operations.

Next, the cost of updating each D` with respect to f
(0)
2 (D`) is O(m3), while it is O(ms+

Ts2) with respect to f
(q)
2 (D`) for q 6= 0 [62]. It therefore follows that the computational

complexity of rMiCUSaL in each iteration is O(m3L + m2Ls + msN + TLs2N). We

refer the reader to Section 2.5 for exact running time of rMiCUSaL on training data.

2.5 Experimental Results

In this section, we examine the effectiveness of MC-UoS learning using Algorithms 1–

3. For the complete data experiments, we compare MiCUSaL/aMiCUSaL with sev-

eral state-of-the-art UoS learning algorithms such as Block-Sparse Dictionary Design

(SAC+BK-SVD) [30], K-subspace clustering (K-sub) [53], Sparse Subspace Clustering

(SSC) [13], Robust Sparse Subspace Clustering (RSSC) [34], Robust Subspace Clus-

tering via Thresholding (TSC) [33], as well as with Principal Component Analysis

(PCA) [1]. In the case of the UoS learning algorithms, we use codes provided by their

respective authors. In the case of SSC, we use the noisy variant of the optimization

program in [13] and set λz = αz/µz in all experiments, where λz and µz are as de-

fined in [13, (13) & (14)], while the parameter αz varies in different experiments. In

the case of RSSC, we set λ = 1/
√
s as per [34], while the tuning parameter in TSC

is set q = max(3, dN/(L × 20)e) when L is provided. For the case of training data

having missing entries, we compare the results of rMiCUSaL with k-GROUSE [22] and

20

Algorithm 3: Robust MC-UoS learning (rMiCUSaL)

Input: Training data {[yi]Ωi}Ni=1, number of subspaces L, dimension of
subspaces s, and parameters λ and η.

Initialize: Random orthonormal bases {D` ∈ Rm×s}L`=1.

1: while stopping rule do
2: for i = 1 to N (Subspace Assignment) do
3: li = arg min` ‖[yi]Ωi − PS`Ωi [yi]Ωi‖22.
4: wli,i = 1 and ∀` 6= li, w`,i = 0.
5: end for
6: for ` = 1 to L (Subspace Update) do
7: c` = {i ∈ {1, . . . , N} : w`,i = 1}, t = 0.
8: while stopping rule do
9: t = t+ 1, ηt = η

t .
10: A` =

∑
p 6=` DpD

T
p , ∆` = 2(Im −D`D

T
`)A`D`.

11: D` = D`V` cos(Σ`ηt)V
T
` + U` sin(Σ`ηt)V

T
` , where U`Σ`V

T
` is the compact

SVD of ∆`.
12: for q = 1 to |c`| do
13: θ = ([D`]Ωc`(q)

,:)
†[yc`(q)]Ωc`(q)

, ω = D`θ.

14: r = 0m, [r]Ωc`(q)
= [yc`(q)]Ωc`(q)

− [ω]Ωc`(q)
.

15: D` = D` +
(

(cos(µ λm
|Ωc`(q)

|ηt)− 1) ω
‖ω‖2 + sin(µ λm

|Ωc`(q)
|ηt)

r
‖r‖2

)
θT

‖θ‖2 , where

µ = ‖r‖2‖ω‖2.
16: end for
17: end while
18: end for
19: end while

Output: Orthonormal bases {D` ∈ Rm×s}L`=1.

GROUSE [62].5

In order to generate noisy training and test data in these experiments, we start

with sets of “clean” training and test samples, denoted by X and Xte, respectively.

We then add white Gaussian noise to these samples to generate noisy training and

test samples Y and Z, respectively. In the following, we use σ2
tr and σ2

te to denote

variance of noise added to training and test samples, respectively. In the missing data

experiments, for every fixed noise variance σ2
tr, we create training (but not test) data

with different percentages of missing values, where the number of missing entries is

set to be 10%, 30% and 50% of the signal dimension. Our reported results are based

5As discussed in [63], we omit the results for SSC with missing data in this thesis because it fills
in the missing entries with random values, resulting in relatively poor performance for problems with
missing data.

21

on random initializations of MiCUSaL and aMiCUSaL algorithms. In this regard, we

adopt the following simple approach to mitigate any stability issues that might arise due

to random initializations. We perform multiple random initializations for every fixed

Y and λ, and then retain the learned MC-UoS structure that results in the smallest

value of the objective function in (2.2). We also use a similar approach for selecting the

final structures returned by K-subspace clustering and Block-Sparse Dictionary Design,

with the only difference being that (2.2) in this case is replaced by the approximation

error of training data.

2.5.1 Experiments on Synthetic Data

In the first set of synthetic experiments, we consider L = 5 subspaces of the same

dimension s = 13 in an m = 180-dimensional ambient space. The five subspaces S`’s of

R180 are defined by their orthonormal bases {T` ∈ Rm×s}5`=1 as follows. We start with

a random orthonormal basis T1 ∈ Rm×s and for every ` ≥ 2, we set T` = orth(T`−1 +

tsW`) where every entry in W` ∈ Rm×s is a uniformly distributed random number

between 0 and 1, and orth(·) denotes the orthogonalization process. The parameter ts

controls the distance between subspaces, and we set ts = 0.04 in these experiments.

After generating the subspaces, we generate a set of n` points from S` as X` = T`C`,

where C` ∈ Rs×n` is a matrix whose elements are drawn independently and identically

from N (0, 1) distribution. In here, we set n1 = n3 = n5 = 150, and n2 = n4 = 100;

hence, N = 650. We then stack all the data into a matrix X = [X1, . . . ,X5] = {xi}Ni=1

and normalize all the samples to unit `2 norms. Test data Xte ∈ Rm×N are produced

using the same foregoing strategy. Then we add white Gaussian noise with different

expected noise power to both X and Xte. Specifically, we set σ2
tr to be 0.1, while σ2

te

ranges from 0.1 to 0.5. We generate X and Xte 10 times, while Monte Carlo simulations

for noisy data are repeated 20 times for every fixed X and Xte. Therefore, the results

reported in here correspond to an average of 200 random trials.

We make use of the collection of noisy samples, Y, to learn a union of L subspaces

of dimension s and stack the learned orthonormal bases {D`}L`=1 into D. In this set

22

Table 2.1: davg of different UoS learning algorithms for synthetic data

davg Algorithms

Complete

MiCUSaL(λ = 2) SAC+BK-SVD K-sub
0.1331 0.2187 0.1612

SSC RSSC TSC
0.1386 0.2215 0.2275

Missing

rMiCUSaL-10% rMiCUSaL-30% rMiCUSaL-50%
0.1661 0.1788 0.2047

k-GROUSE-10% k-GROUSE-30% k-GROUSE-50%
0.3836 0.4168 0.4649

0.1 0.2 0.3 0.4 0.5
0.02

0.04

0.06

0.08

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(a)

0.1 0.2 0.3 0.4 0.5
0.02

0.03

0.04

0.05

0.06

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL−λ=1

MiCUSaL−λ=2

MiCUSaL−λ=4

MiCUSaL−λ=8

MiCUSaL−λ=20

K−sub

(b)

0.1 0.2 0.3 0.4 0.5
0.024

0.044

0.064

0.084

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

10%

30%

50%

k-GROUSE

rMiCUSaL

GROUSE

(c)

0.1 0.2 0.3 0.4 0.5
0.022

0.032

0.042

0.052

0.062

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

rMiCUSaL−λ=1

rMiCUSaL−λ=2

rMiCUSaL−λ=4

rMiCUSaL−λ=10

rMiCUSaL−λ=20

k−GROUSE

(d)

Figure 2.2: Comparison of MC-UoS learning performance on synthetic data. (a) and
(c) show relative errors of test signals for complete and missing data experiments, where
λ = 2 for both MiCUSaL and rMiCUSaL. The numbers in the legend of (c) indicate
the percentages of missing entries within the training data. (b) and (d) show relative
errors of test signals for MiCUSaL and rMiCUSaL (with 10% missing entries) using
different λ’s.

23

of experiments, we use MiCUSaL and rMiCUSaL for complete and missing data ex-

periments, respectively. The number of random initializations used to select the final

geometric structure in these experiments is 8 for every fixed Y and λ. We use the fol-

lowing metrics for performance analysis of MC-UoS learning. Since we have knowledge

of the ground truth S`’s, represented by their ground truth orthonormal bases T`’s, we

first find the pairs of estimated and true subspaces that are the best match, i.e., D`

is matched to T̂̀ using ̂̀= arg maxp ‖DT
` Tp‖F . We also ensure that no two D`’s are

matched to the same T̂̀. Then we define davg to be the average normalized subspace

distances between these pairs, i.e., davg = 1
L

∑L
`=1

√
s−tr(DT

` T̂̀TT̂̀ D`)

s . A smaller davg

indicates better performance of MC-UoS learning. Also, if the learned subspaces are

close to the ground truth, they are expected to have good representation performance

on test data. A good measure in this regard is the mean of relative reconstruction

errors of the test samples using learned subspaces. To be specific, if the training data

are complete, we first represent every test signal z such that z ≈ Dτα
te + ȳ where

τ = arg max` ‖DT
` (z − ȳ)‖22 (recall that ȳ = 1

N

∑N
i=1 yi) and αte = DT

τ (z − ȳ). The

relative reconstruction error with respect to its noiseless part, x, is then defined as

‖x−(Dταte+ȳ)‖22
‖x‖22

. On the other hand, if the training data have missing entries then

for a test signal z, the reconstruction error with respect to x is simply calculated by

‖x−DτDT
τ z‖22

‖x‖22
, where τ = arg max` ‖DT

` z‖22.

To compare with other UoS learning methods, we choose λ = 2 for both MiCUSaL

and rMiCUSaL. In the complete data experiments, we perform SSC with αz = 60. We

set the subspace dimension for PCA to be the (unrealizable, ideal) one that yields the

best denoising result on training samples. We also use the same subspace dimension

(again, unrealizable and ideal) for GROUSE in the corresponding missing data exper-

iments. Table 2.1 summarizes the davg’s of different UoS learning algorithms for both

complete and missing data experiments. As can be seen, MiCUSaL produces smaller

davg’s, which in turn leads to smaller relative errors of test data; see Fig. 2.2(a) for

a validation of this claim. For MC-UoS learning with missing data, rMiCUSaL also

learns a better MC-UoS in that: (i) for a fixed percentage of the number of missing

observations in the training data, the davg for rMiCUSaL is much smaller than the

24

one for k-GROUSE (see Table 2.1); and (ii) rMiCUSaL outperforms k-GROUSE and

GROUSE in terms of smaller reconstruction errors of test data. Moreover, we can infer

from Fig. 2.2(c) that for a fixed σte, when the number of missing entries increases, the

performance of rMiCUSaL degrades less compared to k-GROUSE. We also test the

UoS learning performance with complete data when the subspaces are not close to each

other (e.g., ts = 0.2). In this case, all the UoS learning algorithms, including MiCUSaL,

learn the subspaces successfully. We omit these plots because of space constraints.

Table 2.2: davg of MiCUSaL and rMiCUSaL for different λ’s using synthetic data

davg λ

MiCUSaL
λ = 1 λ = 2 λ = 4 λ = 8 λ = 20
0.1552 0.1331 0.1321 0.1378 0.1493

rMiCUSaL λ = 1 λ = 2 λ = 4 λ = 10 λ = 20
(10% missing) 0.2096 0.1661 0.1725 0.2065 0.2591

For both MiCUSaL and rMiCUSaL, we also analyze the effect of the key parameter,

λ, on the UoS learning performance. We implement MiCUSaL with λ ∈ {1, 2, 4, 8, 20}

in the complete data experiments and select λ ∈ {1, 2, 4, 10, 20} for rMiCUSaL in the

missing data experiments, where the number of missing entries in the training data

is 10% of the signal dimension. The results are shown in Fig. 2.2(b), Fig. 2.2(d) and

Table 2.2. We can see when λ = 1, both the davg’s and reconstruction errors of the

test data are large for MiCUSaL and rMiCUSaL. This is because the learned subspaces

are too close to each other, which results in poor data representation capability of the

learned D`’s. When λ = 2 or 4, both these algorithms achieve good performance in

terms of small davg’s and relative errors of test data. As λ increases further, both davg

and relative errors of test data also increase. Furthermore, as λ grows, the curves of

relative errors of test data for MiCUSaL and rMiCUSaL get closer to the ones for K-

sub and k-GROUSE, respectively. This phenomenon coincides with our discussion in

Section 2.2 and 2.4. Finally, we note that both MiCUSaL and rMiCUSaL achieve their

best performance when λ ∈ [2, 4], and deviations of the representation errors of test

data are very small when λ falls in this range.

Next, we study the effect of random initialization of subspaces on MiCUSaL perfor-

mance by calculating the standard deviation of the mean of the reconstruction errors

25

of the test data for the 8 random initializations. The mean of these 200 standard devi-

ations ends up being only 0.003 for all σte’s when λ = 2. In addition, as λ gets larger,

the variation of the results increases only slightly (the mean of the standard deviations

is 0.0034 for λ = 8). On the other hand, the mean of the standard deviations for

K-sub is 0.0039. Furthermore, the performance gaps between MiCUSaL and all other

methods are larger than 0.003. Finally, the learned MC-UoS structure that results in

the smallest value of the objective function (2.2) always results in the best denoising

performance. This suggests that MiCUSaL always generates the best results and it is

mostly insensitive to the choice of initial subspaces during the random initialization.

Table 2.3: Running time comparison (in sec) for rMiCUSaL and k-GROUSE
Data rMiCUSaL k-GROUSE

Synthetic Missing entries (%) Missing entries (%)
(m = 180, N = 650, 10% 30% 50% 10% 30% 50%
L = 5, s = 13) 8.02 7.41 6.62 7.46 6.95 6.11

San Francisco Missing entries (%) Missing entries (%)
(m = 600, N = 722, 10% 30% 50% 10% 30% 50%
L = 5, s = 12) 23.19 22.46 20.31 16.56 14.75 12.53

We also examine the running times of rMiCUSaL and k-GROUSE per iteration,

which include both the subspace assignment and subspace update stages. For each

subspace S`, we implement the optimization over D` (i.e., Steps 8 to 17 in Algorithm 3)

for 100 iterations. All experiments are carried out using Matlab R2013a on an Intel

i7-2600 3.4GHz CPU with 16 GB RAM. From the fourth row of Table 2.3, we observe

rMiCUSaL takes slightly more time compared to k-GROUSE because rMiCUSaL needs

two more steps for updating D` (Steps 10 and 11 in Algorithm 3). However, the ad-

vantage of rMiCUSaL over k-GROUSE in learning a better UoS significantly outweighs

this slight increase in computational complexity. We can also see that as the number

of missing entries increases, both algorithms become faster. The reason for this is that

when |Ωi| decreases for all i’s, less time is needed during the subspace assignment step

and for computing θ and r in Algorithm 3.

26

(a) (b)

Figure 2.3: (a) San Francisco City Hall image. (b) Paris City Hall image.

2.5.2 Experiments on City Scene Data

To further show the effectiveness of the proposed approaches, we test our proposed

methods on real-world city scene data. First, we study the performance of our methods

on San Francisco City Hall image, as shown in Fig. 2.3(a). To generate the clean

training and test data, we split the image into left and right subimages of equal size.

Then we extract all 30× 20 nonoverlapping image patches from the left subimage and

reshape them into N = 722 column vectors of dimension m = 600. All these vectors

are normalized to have unit `2 norms and are then used as signals in X. Test signals in

Xte ∈ R600×722 are extracted in the same way from the right subimage. White Gaussian

noise is then added to X and Xte separately, forming Y and Z, respectively. In these

experiments, σ2
tr is set to be 0.02 and 0.05, while σ2

te again ranges from 0.1 to 0.5. The

Monte Carlo simulations for noisy data are repeated 50 times and the results reported

here correspond to the average of these 50 trials. Note that each patch is treated as

a single signal here, and our goal is to learn an MC-UoS from Y such that every test

patch can be reliably denoised using the learned subspaces.

We perform aMiCUSaL on the training data Y with parameters Lmax = 8, smax =

20, λ = 4, k1 = 6, k2 = 10 and εmin = 0.08. The number of random initializations

that are used to arrive at the final MC-UoS structure using aMiCUSaL is 10 for every

fixed Y. The output L from aMiCUSaL is 4 or 5 and s is always between 11 and 13.

We also perform MiCUSaL with the same L and s 10 times. For fair comparison, we

also use the method in this thesis to get the dimension of the subspace for PCA, in

27

0.1 0.2 0.3 0.4 0.5
0.05

0.055

0.06

0.065

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

MiCUSaL
aMiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(a) σ2
tr = 0.02

0.1 0.2 0.3 0.4 0.5
0.05

0.055

0.06

0.065

0.07

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

10%

30%

50%

k-GROUSE

rMiCUSaL

GROUSE

(b) σ2
tr = 0.02

0.1 0.2 0.3 0.4 0.5
0.05

0.055

0.06

0.065

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

rMiCUSaL−λ=2

rMiCUSaL−λ=4

rMiCUSaL−λ=6

rMiCUSaL−λ=10

rMiCUSaL−λ=20

k−GROUSE

(c) σ2
tr = 0.02

0.1 0.2 0.3 0.4 0.5
0.051

0.056

0.061

0.066

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

MiCUSaL
aMiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(d) σ2
tr = 0.05

0.1 0.2 0.3 0.4 0.5
0.052

0.057

0.062

0.067

0.072

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

10%

30%

50%

k-GROUSE

rMiCUSaL

GROUSE

(e) σ2
tr = 0.05

0.1 0.2 0.3 0.4 0.5
0.05

0.055

0.06

0.065

test noise level (σ
te

2
)

re
la

ti
v
e

 e
rr

o
r

rMiCUSaL−λ=2

rMiCUSaL−λ=4

rMiCUSaL−λ=6

rMiCUSaL−λ=10

rMiCUSaL−λ=20

k−GROUSE

(f) σ2
tr = 0.05

Figure 2.4: Comparison of MC-UoS learning performance on San Francisco City Hall
data. (a) and (d) show relative errors of test signals for complete data experiments. (b)
and (e) show relative errors of test signals for missing data experiments. The numbers in
the legend of (b) and (e) indicate the percentages of missing entries within the training
data. (c) and (f) show relative errors of test signals for rMiCUSaL (with 10% missing
entries) using different λ’s.

which case the estimated s is always 10. Note that for all state-of-the-art UoS learning

algorithms, we use the same L and s as aMiCUSaL instead of using the L generated by

the algorithms themselves. The reason for this is as follows. The returned L by SSC

(with αz = 40) is 1. Therefore SSC reduces to PCA in this setting. The output L for

RSSC is also 4 or 5, which coincides with our algorithm. The estimation of L (with

q = 2 max(3, dN/(L × 20)e)) for TSC is sensitive to the noise and data. Specifically,

the estimated L is always from 6 to 9 for σ2
tr = 0.02 and L is always 1 when σ2

tr = 0.05,

which results in poorer performance compared to the case when L = 4 or 5 for both

training noise levels. In the missing data experiments, we set L = 5 and s = 12 for

rMiCUSaL (with λ = 4) and k-GROUSE, and s = 10 for GROUSE. Fig. 2.4(a) and

Fig. 2.4(d) describe the relative reconstruction errors of test samples when the training

data are complete. We see both MiCUSaL and aMiCUSaL learn a better MC-UoS

since they give rise to smaller relative errors of test data. Further, the average standard

deviation of the mean of relative errors for test data is around 0.00015 for MiCUSaL and

28

0.00045 for K-sub. It can be inferred from Fig. 2.4(b) and Fig. 2.4(e) that rMiCUSaL

also yields better data representation performance for the missing data case.

To examine the effect of λ on the denoising result in both complete and missing data

experiments, we first run aMiCUSaL with λ ∈ {1, 2, 4, 6, 8, 10} without changing other

parameters. When λ = 1 or 2, aMiCUSaL always returns L = 2 or 3 subspaces, but

the reconstruction errors of the test data are slightly larger than those for λ = 4. When

λ ≥ 6, the distances between the learned subspaces become larger, and the resulting

L will be at least 6 when εmin is fixed. However, the relative errors of test data are

still very close to the ones for λ = 4. This suggests that λ = 4 is a good choice in this

setting since it leads to the smallest number of subspaces L and the best representation

performance. We also perform rMiCUSaL with λ ∈ {2, 4, 6, 10, 20} while keeping L

and s fixed, where the number of missing entries in the training data is again 10%

of the signal dimension. We show the relative errors of test data in Fig. 2.4(c) and

Fig. 2.4(f). Similar to the results of the experiments with synthetic data, we again

observe the fact that when λ is small (e.g., λ = 2), the reconstruction errors of the test

data are large because the subspace closeness metric dominates in learning the UoS.

The results for λ = 4 and 6 are very similar. As λ increases further, the performance

of rMiCUSaL gets closer to that of k-GROUSE. We again report the running time

of rMiCUSaL and k-GROUSE per iteration in the seventh row of Table 2.3, where

we perform the optimization over each D` for 100 iterations in each subspace update

step for both rMiCUSaL and k-GROUSE. In these experiments, rMiCUSaL appears

much slower than k-GROUSE. However, as presented in Fig. 2.4(b) and Fig. 2.4(e), the

performance of rMiCUSaL is significantly better than k-GROUSE.

Next, we repeat these experiments for the complete data experiments using Paris

City Hall image in Fig. 2.3(b), forming X,Xte ∈ R600×950. We perform aMiCUSaL

using the same parameters (λ = 4) as in the previous experiments. The estimated L in

this case is always between 5 and 6 and s is always between 11 and 12. The estimated

dimension of the subspace in PCA is 9 or 10 when σ2
tr = 0.02 and it is always 10 when

σ2
tr = 0.05. In these experiments, we again use the same L and s as aMiCUSaL for all

state-of-the-art UoS learning algorithms. This is because the returned L by SSC (with

29

0.1 0.2 0.3 0.4 0.5
0.062

0.067

0.072

0.077

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL
aMiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(a) σ2
tr = 0.02

0.1 0.2 0.3 0.4 0.5
0.064

0.069

0.074

0.079

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL
aMiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(b) σ2
tr = 0.05

Figure 2.5: Comparison of MC-UoS learning performance on Paris City Hall data when
the training data are complete.

αz = 20) is again 1 in this case. The estimated L by RSSC is usually 7 or 8, and the

reconstruction errors of test data are very close to the ones reported here. If we apply

TSC using the L estimated by itself (again, with q = 2 max(3, dN/(L× 20)e)), we will

have L = 4 when σ2
tr = 0.02, while the relative errors of test data are very close to

the results shown here. For σ2
tr = 0.05, TSC will again result in only one subspace.

The relative reconstruction errors of test data with different training noise levels are

shown in Fig. 2.5, from which we make the conclusion that our methods obtain small

errors, thereby outperforming all other algorithms. The average standard deviation of

the mean of relative errors for test data is also smaller for MiCUSaL (around 0.00023)

compared to K-sub (around 0.00037).

2.5.3 Experiments on Face Dataset

In this section, we work with the Extended Yale B dataset [49], which contains a set

of 192 × 168 cropped images of 38 subjects. For each individual, there are 64 images

taken under varying illumination conditions. We downsample the images to 48 × 42

pixels and each image is vectorized and treated as a signal; thus, m = 2016. It has been

shown in [50] that the set of images of a given subject taken under varying illumination

conditions can be well represented by a 9-dimensional subspace.

We first focus on a collection of images of subjects 5, 6 and 8 and normalize all the

images to have unit `2 norms. Some representative images are presented in the first row

of Fig. 2.6(a). Here we assume the images of these three subjects lie close to an MC-UoS

30

(a)

0.2 0.3 0.4 0.5
0.102

0.107

0.112

0.117

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(b)

0.2 0.3 0.4 0.5
0.085

0.09

0.095

0.1

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MiCUSaL
SAC+BK−SVD
K−sub

SSC

RSSC

TSC

PCA

(c)

Figure 2.6: Comparison of MC-UoS learning performance on Extended Yale B dataset.
The first row of (a) shows some images of subject 5, 6, 8 and the second row presents
some images of subject 22, 28, 30. (b) and (c) show relative errors of test data in the
two experiments.

with L = 3 and s = 9. For each set of images from one subject, we randomly select

half of them for training and the remaining 32 images belong to test samples; therefore,

X,Xte ∈ R2016×96. Then we add white Gaussian noise to both X and Xte and obtain

Y and Z. The random selection for generating X and Xte is repeated 10 times and we

conduct Monte Carlo simulations for noisy data 10 times for every fixed X and Xte.

In these experiments, the value σ2
tr is equal to 0.2 and σ2

te is from 0.2 to 0.5. For fair

comparison, the dimension of the subspace for PCA is set to be 9. We apply MiCUSaL

with parameter λ = 2 and SSC with αz = 40. The number of random initializations

in these experiments for both MiCUSaL and K-sub is set at 8 for every fixed Y. Once

again, we observe that MiCUSaL outperforms other learning methods, since it results

in smaller relative errors (cf. Fig. 2.6(b)). Moreover, the average standard deviation of

MiCUSaL for the 100 realizations of Y and Z is only 0.0013 for all σte’s, which is again

smaller than that of K-sub (the corresponding value is 0.002).

We then repeat these experiments using a set of images of subjects 22, 28 and 30,

31

and show some image samples in the second row of Fig. 2.6(a). We set L = 3, s = 9 and

λ = 2 for MiCUSaL and αz = 40 for SSC. We again provide evidence in Fig. 2.6(c) that

MiCUSaL yields better data representation performance in this setting. The average

standard deviation of the mean of the reconstruction errors for test data is around

0.0012 for MiCUSaL and 0.0019 for K-sub in this case.

32

Chapter 3

Metric-Constrained Kernel Union-of-Subspaces

3.1 Problem Formulation

In this chapter, we study the geometry learning problem corresponds to the case of

high-dimensional data drawn from a mixture of nonlinear manifolds in the ambient

space Rm. The basic premise in this case is that when data drawn from a mixture of

nonlinear manifolds are mapped through a nonlinear map φ : Rm → F to a higher-

dimensional feature space F ⊂ Rm̃ with m̃≫ m, then the φ-mapped “images” of these

data can be modeled as lying near an MC-UoS ML in the feature space. In order to

learn this model, we once again assume access to a collection of N training samples,

Y = [y1, . . . ,yN] ∈ Rm×N , with the fundamental difference here being that the mapped

training data φ(Y) = [φ(y1), . . . , φ(yN)] are now assumed to be drawn from an MC-

UoS ML =
⋃L
`=1 S` ⊂ Gm̃,s ⊂ F . Here, we also make the simplified assumption that

rank(φ(Y)) = N , which is justified as long as m̃≫ N and no two training samples are

identical. Our goal in this setting is to learn the (feature space) MC-UoSML using the

training data Y, which in theory can still be achieved by solving the following variant

of (2.2):

{S`}L`=1 = arg min
{S`}⊂Gm̃,s

L∑
`,p=1
`6=p

d2
u(S`,Sp) + λ

N∑
i=1

‖φ(yi)− PSliφ(yi)‖22, (3.1)

where li = arg min` ‖φ(yi) − PS`φ(yi)‖22 with PS`φ(yi) denoting the (orthogonal) pro-

jection of φ(yi) onto the s-dimensional subspace S` in Rm̃.

In practice, however, solving (3.1) directly is likely to be computationally intractable

due to the extremely high dimensionality of the feature space. Instead, we are interested

in solving the problem of MC-UoS learning in the feature space using the “kernel

33

trick” [15], which involves transforming (3.1) into a learning problem that only requires

evaluations of inner products in F . Such a transformation can then be followed with

the use of a Mercer kernel κ, which is a positive semidefinite function κ : Rm×Rm → R

that satisfies κ(y,y′) = 〈φ(y), φ(y′)〉 for all y,y′ ∈ Rm, to develop algorithms that can

learn an MC-UoS in the feature space without explicit mapping of the training data

to the feature space. We term the learning of an MC-UoS in the feature space using

the kernel trick as metric-constrained kernel union-of-subspaces (MC-KUoS) learning.

Similar to the case of MC-UoS learning, we consider two scenarios in this work for

MC-KUoS learning. The first one of these scenarios corresponds to the standard setup

in which all m dimensions of each training sample in Y are observed, while the second

scenario corresponds to the case of “missing data” in which some dimensions of each

training sample in Y remain unobserved. Finally, we will evaluate the proposed MC-

KUoS learning algorithms using (i) the metric of average approximation error of noisy

test data, and (ii) their clustering performance on training data having either complete

or missing entries. We conclude here by pointing out that MC-KUoS learning invariably

also leads us to the problem of finding the “pre-images” of data in the feature space

induced by our chosen kernel (e.g., Gaussian or polynomial kernel) [6, 64], which will

also be addressed in this chapter.

Remark 2. It is worth noting here that (3.1) requires knowledge of the nonlinear map

φ. However, since we rely on the kernel trick for our MC-KUoS learning framework, we

only need access to an appropriate kernel κ. It is assumed in this chapter that such a

kernel is readily available to us. While learning the “best” kernel from training data is

an interesting extension of our work, it is beyond the scope of this thesis.

In the following sections, we present algorithms to solve the problem of MC-KUoS

learning from Y ∈ Rm×N for highly nonlinear data. We first generalize the MiCUSaL

algorithm using the kernel trick [15] to learn an MC-KUoS from complete data. To

deal with the case of “missing data,” we propose “kernel function value estimators” to

solve (3.1). Finally, we discuss the problem of finding the “pre-images” of data in the

feature space based on the MC-KUoS model in Section 3.4.

34

3.2 MC-KUoS Learning Using Complete Data

To begin our discussion, we define the kernel matrix on the training data Y to be

G = φ(Y)Tφ(Y) ∈ RN×N , with its individual entries gi,j = κ(yi,yj) for a pre-specified

kernel κ : Rm × Rm → R. Under the assumption that rank(φ(Y)) = N , the matrix G

is positive definite. Similar to Algorithm 1, we begin with centering the φ-mapped data

in the feature space F as a pre-processing stage.1 We denote the mean of the φ-mapped

“images” of Y by φ = 1
N

∑N
i=1 φ(yi) and write the N centered “mapped training data”

as φ̃(Y) = [φ̃(y1), . . . , φ̃(yN)], where φ̃(yi) = φ(yi) − φ, i = 1, . . . , N . The centered

kernel matrix G̃ = φ̃(Y)T φ̃(Y) can be calculated from G by [15]

G̃ = G−HNG−GHN + HNGHN , (3.2)

where HN is an N × N matrix with all elements 1
N . Then for any y,y′ ∈ Rm, we

have [64]

κ̃(y,y′) = φ̃(y)T φ̃(y′) = κ(y,y′)− 1

N
1TNky −

1

N
1TNky′ +

1

N2
1TNG1N , (3.3)

where 1N = [1, 1, . . . , 1]T is anN -dimensional vector and ky = [κ(y,y1), . . . , κ(y,yN)]T ∈

RN . To write the expression in (3.1) in terms of inner products, we again use W to

denote the membership indicator matrix as in (2.3), where w`,i = 1, ` = 1, . . . , L,

i = 1, . . . , N , if and only if φ̃(yi) is assigned to subspace S`. Let D = [D1, . . . ,DL],

where D` is an (arbitrary) orthonormal basis of S`. Then for any i = 1, . . . , N , we have

the following

‖φ(yi)− PS`φ(yi)‖22 = ‖φ̃(yi)− PS` φ̃(yi)‖22 = ‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22. (3.4)

Therefore, (3.1) can be written as (D,W) = arg minD,W F3(D,W) with the objective

function F3(D,W) given by

F3(D,W) =

L∑
`,p=1
` 6=p

‖D` − PSpD`‖2F + λ

N∑
i=1

L∑
`=1

w`,i(‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22). (3.5)

1This step is only for the purpose of derivation of our algorithm. In particular, explicit centering of
data in the feature space is never required in the following.

35

Before discussing our algorithm to minimize (3.5) using the kernel trick, we further

simplify the terms in (3.5). We again define c` = {i ∈ {1, . . . , N} : w`,i = 1} to

be the set containing the indices of all φ̃(yi)’s that are assigned to S`, and let Y` =

[yi : i ∈ c`] be the corresponding m × |c`| matrix. Then the centered data that are

assigned to subspace S` can be denoted by φ̃(Y`) = [φ̃(yi) : i ∈ c`]. Since S` is

spanned by the columns of φ̃(Y`), we can write D` = φ̃(Y`)E`, where E` ∈ RN`×s

is some basis representation matrix with N` = |c`| such that D` is an orthonormal

matrix. Also, it is easy to verify that E` has to satisfy ET
` [G̃]c`,c`E` = Is, where

[G̃]c`,c` = φ̃(Y`)
T φ̃(Y`) denotes the centered kernel matrix for subspace S`. Now

instead of using D` explicitly for computations, it suffices to use c` and E` for MC-

KUoS learning and all the computations involving D` can be carried out using c`, E`

and the kernel trick. Specifically, notice that for any i = 1, . . . , N , we can write

‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22 = κ̃(yi,yi)− ‖ET

` φ̃(Y`)
T φ̃(yi)‖22, (3.6)

where κ̃(yi,yi) = κ(yi,yi)− 2
N 1TNkyi+

1
N2 1TNG1N . To compute φ̃(Y`)

T φ̃(yi), we define

φ(Y`) = [φ(yi) : i ∈ c`] and let ψ`(yi) = [κ(yc`(1) ,yi), . . . , κ(yc`(N`)
,yi)]

T ∈ RN` be a

vector with elements given by the inner products between φ(yi) and columns of φ(Y`).

Then ψ̃`(yi) = φ̃(Y`)
T φ̃(yi) = ψ`(yi) − 1

N 1N`1
T
Nkyi − 1

N [G]c`,:1N + 1
N2 1N`1

T
NG1N .

Therefore, we can write ‖φ(yi)− PS`φ(yi)‖22 = κ̃(yi,yi)− ‖ET
` ψ̃`(yi)‖22. Also, we have

d2
u(S`,Sp) = ‖D` − PSpD`‖2F = s− tr(DT

` DpD
T
p D`)

= s− tr
[
(φ̃(Y`)E`)

T φ̃(Yp)Ep(φ̃(Yp)Ep)
T φ̃(Y`)E`

]
= s− tr

[
ET
` [G̃]c`,cpEpE

T
p [G̃]cp,c`E`

]
, (3.7)

where [G̃]c`,cp = φ̃(Y`)
T φ̃(Yp) denotes the centered inter-subspace kernel matrix be-

tween S` and Sp.

Now we are ready to describe our algorithm in detail. Similar to MiCUSaL, we

minimize (3.5) by alternating between (i) minimizing F3(D,W) over W for a fixed

D (the kernel subspace assignment step) and (ii) minimizing F3(D,W) over D for

a fixed W (the kernel subspace update step). To begin this alternate optimization

strategy, we start by initializing the orthonormal basis of each subspace. As discussed

36

Algorithm 4: Initialization for S`’s in F (GKIOP)

Input: Centered kernel matrix G̃ ∈ RN×N , number of subspaces L, and
dimension of subspaces s.

Initialize: IN = {1, . . . , N} and {c` = ∅}L`=1.

1: for ` = 1 to L do
2: Choose an arbitrary element in IN , include that element in c`, and set

IN = IN \ c`.
3: for q = 2 to s do
4: i∗ = arg maxi∈IN

∑
j∈c`

g̃i,j .
5: Set c` = c` ∪ {i∗} and IN = IN \ {i∗}.
6: end for
7: Eigendecomposition of [G̃]c`,c` = U`Σ`U

T
` .

8: E` = U`Σ
− 1

2
` .

9: end for

Output: Initial {c`}L`=1 and {E` ∈ Rs×s}L`=1.

earlier, the orthonormal basis D` of S` can be represented as D` = φ̃(Y`)E` and we can

compute E` explicitly by using [G̃]c`,c` . Therefore the initialization of D` is equivalent

to initializing c`. Note that any s linear independent vectors define an s-dimensional

subspace. Therefore, to initialize c`, we need to choose s samples in the training set

such that the φ-mapped “images” of these training samples are linearly independent

in the feature space. Our selection of s samples is based on the intuition that the

inner products between samples that lie in the same subspace in the feature space will

be typically large [33]. Our initialization procedure then involves greedily selecting a

new sample yi∗ from the training data in each step such that the sum of the inner

products between φ̃(yi∗) and the data points already in φ̃(Y`) is the largest, and then

setting Y` = Y` ∪ yi∗ . We list our initialization method in Algorithm 4, referred to

as greedy kernel initial-orthogonalization procedure (GKIOP). Based on the assumption

that all the φ(yi)’s are linearly independent, it is guaranteed that φ̃(Y`) can define an s-

dimensional subspace S`. Note that
⋂L
`=1 c` = ∅ and we compute E` by E` = U`Σ

− 1
2

` ,

where [G̃]c`,c` = U`Σ`U
T
` . Since D` = φ̃(Y`)E`, it is easy to convince oneself that

DT
` D` = Is in this case.

We now move onto the kernel subspace assignment step. When D (equivalently, c`’s

37

and E`’s) is fixed, kernel subspace assignment corresponds to first solving ∀i = 1, . . . , N ,

li = arg min
`=1,...,L

‖φ̃(yi)− PS` φ̃(yi)‖22 = arg min
`=1,...,L

κ̃(yi,yi)− ‖ET
` ψ̃`(yi)‖22, (3.8)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. Next, for the kernel subspace update

stage, since W is fixed, all the c`’s and Y`’s are fixed. By writing D` = φ̃(Y`)E`,

minimization of (3.5) for a fixed W can be written as a function of E`’s as follows:

min
{E`}

f3(E1, . . . ,EL) =

L∑
`,p=1
` 6=p

‖φ̃(Y`)E` − PSp(φ̃(Y`)E`)‖2F

+ λ

L∑
`=1

(
‖φ̃(Y`)‖2F − ‖ET

` φ̃(Y`)
T φ̃(Y`)‖2F

)
s.t. ET

` [G̃]c`,c`E` = Is, ` = 1, 2, . . . , L. (3.9)

Instead of updating all the E`’s simultaneously, which is again a difficult optimiza-

tion problem, we use BCD to minimize f3 and update E`’s sequentially. Unlike MC-UoS

learning, however, we have to be careful here since the number of samples in Y that be-

long to Y` (i.e., N`) may change after each subspace assignment step. In particular, we

first need to initialize all the E`’s such that E` ∈ RN`×s and ET
` [G̃]c`,c`E` = Is. To do so,

we again apply eigendecomposition of [G̃]c`,c` = U`Σ`U
T
` with the diagonal entries of

Σ` in nonincreasing order. Then we define Is = {1, . . . , s} and E` = [U`]:,Is [Σ`]
− 1

2
Is,Is .

After this bases initialization step, we are ready to update E`’s sequentially and after

some manipulations, each BCD subproblem of (3.9) can be expressed as

E` = arg min
Q:QT [G̃]c`,c`Q=Is

∑
p 6=`
‖φ̃(Y`)Q− PSp(φ̃(Y`)Q)‖2F

+
λ

2
(‖φ̃(Y`)‖2F − ‖QT φ̃(Y`)

T φ̃(Y`)‖2F)

= arg max
Q:QT [G̃]c`,c`Q=Is

tr(QTA`Q), (3.10)

where A` =
∑

p 6=` [G̃]c`,cpEpE
T
p [G̃]cp,c` + λ

2 [G̃]2c`,c` is a symmetric matrix of dimension

N` ×N`. Note that (3.10) has a similar intuitive interpretation as (2.7). When λ = 0,

(3.10) reduces to the problem of finding a subspace that is closest to the remaining

L− 1 subspaces in the feature space. When λ =∞, (3.10) reduces to the kernel PCA

38

Algorithm 5: Metric-Constrained Kernel Union-of-Subspaces Learning (MC-
KUSaL)

Input: Training data Y ∈ Rm×N , number and dimension of subspaces L and s,
kernel function κ and parameter λ.

1: Compute kernel matrix G: gi,j = κ(yi,yj).

2: G̃ = G−HNG−GHN + HNGHN .
3: Initialize {c`}L`=1 and {E`}L`=1 using GKIOP (Algorithm 4).
4: while stopping rule do
5: for i = 1 to N (Kernel Subspace Assignment) do
6: li = arg min` κ̃(yi,yi)− ‖ET

` ψ̃`(yi)‖22.
7: wli,i = 1 and ∀` 6= li, w`,i = 0.
8: end for
9: for ` = 1 to L (Kernel Bases Initialization) do

10: c` = {i ∈ {1, . . . , N} : w`,i = 1} and N` = |c`|.
11: Eigendecomposition of [G̃]c`,c` = U`Σ`U

T
` , with the diagonal elements of Σ` in

nonincreasing order.

12: E` = [U`]:,Is [Σ`]
− 1

2
Is,Is .

13: end for
14: while stopping rule do
15: for ` = 1 to L (Kernel Subspace Update) do
16: A` =

∑
p 6=` [G̃]c`,cpEpE

T
p [G̃]cp,c` + λ

2 [G̃]2c`,c` .
17: E` = Eigenvectors corresponding to the s-largest eigenvalues for the

generalized problem A`b = ζ[G̃]c`,c`b such that ET
` [G̃]c`,c`E` = Is.

18: end for
19: end while
20: end while

Output: {N` ∈ N}L`=1, {c`}L`=1 and {E` ∈ RN`×s}L`=1.

problem [26]. Since [G̃]c`,c` is a positive definite matrix, it again follows from [54] that

the trace of ET
` A`E` is maximized when E` = [b1, . . . ,bs] is the set of eigenvectors

associated with the s-largest eigenvalues for the generalized problem A`b = ζ[G̃]c`,c`b,

with ET
` [G̃]c`,c`E` = Is. The whole algorithm can be detailed in Algorithm 5, which

we refer to as metric-constrained kernel union-of-subspaces learning (MC-KUSaL). An

important thing to notice here is that the complexity of MC-KUSaL does not scale with

the dimensionality of the feature space F owing to our use of the kernel trick.

3.3 MC-KUoS Learning Using Missing Data

In this section, we focus on MC-KUoS learning for the case of training data having

missing entries in the input space. Our setup is similar to the one in Section 2.4.

39

That is, for i = 1, . . . , N , we observe yi only at locations Ωi ⊂ {1, . . . ,m}. In the

following, the resulting observed vector of yi is denoted by [yi]Ωi ∈ R|Ωi|. Also, we

assume that the observed indices of each signal, Ωi, are drawn uniformly at random

with replacement from {1, . . . ,m}. Note that the results derived in here can also be

translated to the case of sampling Ωi without replacement (we refer the reader to [65,

Lemma 1] as an example). Given the missing data aspect of this setup and the kernel

trick, it is clear that we cannot apply the method in Section 2.4 for MC-KUoS learning.

However, as described in Section 3.2, the solution to the MC-KUoS learning problem

using complete data only requires computations of the inner products in F . In this

regard, we propose an estimate of the kernel function value κ(yi,yj) using incomplete

data [yi]Ωi and [yj]Ωj . Mathematically, our goal is to find a proxy function h(·, ·)

such that h([yi]Ωi , [yj]Ωj) ≈ κ(yi,yj). To derive this proxy function, we start by

considering the relationship between [yi]Ωi , [yj]Ωj and yi,yj in the context of different

kernel functions.

We first consider isotropic kernels of the form κ(yi,yj) = k(‖yi − yj‖22) for our

analysis. To begin, we define z−ij = yi − yj and Ωij = Ωi ∩Ωj , resulting in [z−ij]Ωij =

[yi]Ωij − [yj]Ωij ∈ R|Ωij |. For any vector z−ij , the authors in [59] define the coherence

of a subspace spanned by a vector z−ij to be µ(z−ij) =
m‖z−ij‖

2
∞

‖z−ij‖22
and show that ‖[z−ij]Ωij‖22

is close to
|Ωij |
m ‖z

−
ij‖22 with high probability. Leveraging this result, we can give the

following corollary that is essentially due to [59, Lemma 1] by plugging in the definition

of z−ij and [z−ij]Ωij .

Corollary 1. Let δ > 0, Ωij = Ωi ∩ Ωj and α =
√

2µ(yi−yj)2

|Ωij | log(1
δ). Then with

probability at least 1− 2δ,

(1− α)‖yi − yj‖22 ≤
m

|Ωij |
‖[z−ij]Ωij‖22 ≤ (1 + α)‖yi − yj‖22. (3.11)

Using this simple relationship in Corollary 1, we can replace the distance term

‖yi − yj‖22 in any isotropic kernel function by m
|Ωij |‖[yi]Ωij − [yj]Ωij‖22 and provide an

estimate of its true value κ(yi,yj) using entries of yi and yj that correspond to Ωij only.

For example, for the Gaussian kernel κ(yi,yj) = exp(−‖yi−yj‖22
c) with c > 0, we can

replace κ(yi,yj) with h([yi]Ωi , [yj]Ωj) = exp(−
m‖[yi]Ωij−[yj]Ωij ‖

2
2

|Ωij |c) in our algorithms. In

40

this case, the following result provides bounds for estimation of the Gaussian kernel

value.

Theorem 1. Let δ > 0, Ωij = Ωi ∩ Ωj and α =
√

2µ(yi−yj)2

|Ωij | log(1
δ). Then for a

Gaussian kernel κ(yi,yj), with probability at least 1− 2δ, we have

h([yi]Ωi , [yj]Ωj)
1

1−α ≤ κ(yi,yj) ≤ h([yi]Ωi , [yj]Ωj)
1

1+α . (3.12)

We skip the proof of this theorem since it is elementary. We also note here that

h([yi]Ωi , [yi]Ωi) = κ(yi,yi) = 1 as a special case for Gaussian kernels.

Next, we consider dot product kernels of the form κ(yi,yj) = k(〈yi,yj〉), where we

again need to estimate 〈yi,yj〉 using entries of yi and yj corresponding to Ωij only. In

order to find an estimator of 〈yi,yj〉, we define z∗ij = yi ◦yj ∈ Rm to be the coordinate-

wise product of yi and yj . This means that 〈yi,yj〉 and 〈[yi]Ωij , [yj]Ωij 〉 equal the sum

of all the entries of z∗ij and [z∗ij]Ωij ∈ R|Ωij |, respectively. We now have the following

lemma that describes deviation of the estimated inner product between yi and yj .

Lemma 1. Let δ > 0, Ωij = Ωi ∩ Ωj and β =
√

2m2‖yi◦yj‖2∞
|Ωij | log(1

δ). Then with

probability at least 1− 2δ,

〈yi,yj〉 − β ≤
m

|Ωij |
〈[yi]Ωij , [yj]Ωij 〉 ≤ 〈yi,yj〉+ β. (3.13)

Proof. First, we have 〈yi,yj〉 =
∑m

u=1 z
∗
ij(u)

and 〈[yi]Ωij , [yj]Ωij 〉 =
∑n

v=1 z
∗
ij(Ωij(v))

with n = |Ωij |. Here, z∗ij(u)
denotes the u-th entry of a vector z∗ij and Ωij(v) denotes the

v-th element of Ωij . Let ~(Z1, . . . , Zn) =
∑n

v=1 Zv be the sum of n random variables

and Zv = z∗ij(Ωij(v))
. We prove the bound under the assumption that these n variables

are drawn uniformly from a set {z∗ij(1)
, . . . , z∗ij(m)

} with replacement. This means they

are independent and we have E[
∑n

v=1 Zv] = E[
∑n

v=1 z
∗
ij(Ωij(v))

] = n
m

∑m
u=1 z

∗
ij(u)

. If the

value of one variable in the sum is replaced by any other of its possible values, the sum

changes at most 2‖z∗ij‖∞, i.e., |
∑n

v=1 Zv −
∑

v 6=v′ Zv − Ẑv′ | = |Zv′ − Ẑv′ | ≤ 2‖z∗ij‖∞ for

any v′ ∈ {1, . . . , n}. Therefore, McDiarmid’s Inequality [66] implies that for β > 0,

P
[
|
n∑
v=1

Zv −
n

m

m∑
u=1

z∗ij(u)
| ≥ n

m
β
]
≤ 2 exp

(−nβ2

2m2‖z∗ij‖2∞

)
, (3.14)

41

or equivalently,

P
[m∑
u=1

z∗ij(u)
− β ≤ m

n

n∑
v=1

Zv ≤
m∑
u=1

z∗ij(u)
+ β

]
≥ 1− 2 exp

(−nβ2

2m2‖z∗ij‖2∞

)
. (3.15)

Taking the definition of β =

√
2m2‖z∗ij‖2∞
|Ωij | log(1

δ) yields the result.

The above lemma establishes that 〈[yi]Ωij , [yj]Ωij 〉 is close to
|Ωij |
m 〈yi,yj〉 with high

probability. We once again use this relationship and give an estimate of the correspond-

ing kernel function value. For example, for the polynomial kernel κ(yi,yj) = (〈yi,yj〉+

c)d with d > 0 and c ≥ 0, we have h([yi]Ωi , [yj]Ωj) = (m
|Ωij |〈[yi]Ωij , [yj]Ωij 〉 + c)d. To

analyze the bounds on estimated kernel function value in this case, notice that if (3.13)

holds and d is odd, we will have

(〈yi,yj〉 − β + c)d ≤ (
m

|Ωij |
〈[yi]Ωij , [yj]Ωij 〉+ c)d ≤ (〈yi,yj〉+ β + c)d. (3.16)

But the above inequalities cannot be guaranteed to hold when d is even. Using this,

we trivially obtain the theorem below, as a counterpart of Theorem 1, for polynomial

kernels.

Theorem 2. Let δ > 0, Ωij = Ωi ∩ Ωj and β =
√

2m2‖yi◦yj‖2∞
|Ωij | log(1

δ). Then for a

polynomial kernel κ(yi,yj) with an odd degree d, with probability at least 1 − 2δ, we

have

(h([yi]Ωi , [yj]Ωj)
1
d − β)d ≤ κ(yi,yj) ≤ (h([yi]Ωi , [yj]Ωj)

1
d + β)d. (3.17)

Based on the discussion above, we can estimate the kernel function value κ(yi,yj)

using the associated proxy function h(·, ·) that utilizes entries of yi and yj belonging

to Ωij only. Thus, we can compute the estimated kernel matrix G ∈ RN×N as gi,j =

h([yi]Ωi , [yj]Ωj) in the case of missing data. But the positive definiteness of G is not

guaranteed in this case. We therefore first need to find a positive definite matrix Ĝ ≈ G

before we can carry on with MC-KUoS learning in this setting. To deal with this issue,

we begin with eigendecomposition of G = UΛUT , where Λ = diag{λ(1)
G , . . . , λ

(N)
G }

contains eigenvalues of G. The resulting approximated kernel matrix Ĝ that is “closest”

42

to G can then be calculated by Ĝ = UΛ̂UT , where Λ̂ = diag{λ(1)

Ĝ
, . . . , λ

(N)

Ĝ
} and each

λ
(i)

Ĝ
, i = 1, . . . , N , is defined as

λ
(i)

Ĝ
=


λ

(i)
G , λ

(i)
G > 0

δmin, λ
(i)
G = 0

−λ(i)
G , λ

(i)
G < 0.

Here, δmin > 0 is a predefined (small) parameter. Using the above procedure, one can

obtain a positive definite matrix Ĝ such that ĝi,j ≈ κ(yi,yj) and use it for MC-UoS

learning in the feature space. Effectively, MC-KUoS learning in the presence of missing

data also relies on Algorithm 5, with the difference being that we use ĝi,j , obtained from

h([yi]Ωi , [yj]Ωj), in lieu of κ(yi,yj) in the overall learning process, which includes both

kernel subspace assignment and kernel subspace update stages. We dub this approach

robust MC-KUoS learning (rMC-KUSaL). We conclude this section by noting that we

can also robustify classical kernel PCA by using Ĝ as a means of performing kernel

PCA with missing data, which we call rKPCA in our experiments.

3.4 Pre-Image Reconstruction

Thus far in this chapter, we have discussed MC-UoS learning in the kernel space with

complete and missing data using the kernel trick. Now suppose we are given a new noisy

(test) sample z = x + ξ ∈ Rm, where ξ is a noise term and φ̃(x) = φ(x) − φ belongs

to one of the subspaces in ML (i.e., φ̃(x) ∈ Sτ , τ ∈ {1, . . . , L}). In most information

processing tasks, one needs to first find a representation of this sample z in terms of the

learned MC-KUoS, which is akin to “denoising” z. The “denoised sample” in the feature

space is the projection of φ(z) onto Sτ , which is given by PSτφ(z) = DτD
T
τ φ̃(z)+φ with

φ̃(z) = φ(z)− φ. However, in order to visualize the “denoised” sample in the ambient

space, we often need to project PSτφ(z) onto the input space in many applications [6,67],

which is termed pre-image reconstruction. In this section, we consider the problem of

pre-image reconstruction based on the MC-KUoS model.

Mathematically, the problem of pre-image reconstruction can be stated as follows.

We are given z ∈ Rm and we are interested in finding ẑ ∈ Rm whose mapping to the

43

feature space is closest to the projection of φ(z) onto the learned MC-UoS in F . This

involves first finding the index τ such that τ = arg min` ‖φ̃(z) − PS` φ̃(z)‖22, which can

be easily done using the kernel subspace assignment step described in (3.8). Next, we

need to solve ẑ = arg min%∈Rm ‖φ(%) − PSτφ(z)‖22. To solve this problem, we leverage

the ideas in [64,68] that only use feature-space distances to find ẑ (equivalently, to find

the pre-image of PSτφ(z)). We first study this problem when the training samples Y

are complete.

3.4.1 Pre-Image Reconstruction Using Complete Data

We first calculate the squared “feature distance” between PSτφ(z) and any φ(yi), i =

1 . . . , N , defined as [64]

d2
F (φ(yi), PSτφ(z)) = ‖PSτφ(z)‖22 + ‖φ(yi)‖22 − 2(PSτφ(z))Tφ(yi). (3.18)

Notice that ‖PSτφ(z)‖22 and (PSτφ(z))Tφ(yi) can be calculated in terms of kernel rep-

resentation as follows:

‖PSτφ(z)‖22

= φ̃(z)TDτD
T
τ φ̃(z) + φ

T
φ+ 2φ̃(z)TDτD

T
τ φ

= φ̃(z)T φ̃(Yτ)EτE
T
τ φ̃(Yτ)T φ̃(z) +

1

N2
1TNG1N +

2

N
φ̃(z)T φ̃(Yτ)EτE

T
τ φ̃(Yτ)Tφ(Y)1N

= ψ̃τ (z)TEτE
T
τ

(
ψ̃τ (z) +

2

N
[G]cτ ,:1N −

2

N2
1Nτ1

T
NG1N

)
+

1

N2
1TNG1N ,

and

(PSτφ(z))Tφ(yi) = ψ̃τ (z)TEτE
T
τ

(
ψτ (yi)−

1

N
1Nτ1

T
Nkyi

)
+

1

N
1TNkyi . (3.19)

Therefore, (3.18) becomes

d2
F (φ(yi), PSτφ(z)) = ψ̃τ (z)TEτE

T
τ

(
ψ̃τ (z) +

2

N
[G]cτ ,:1N − 2ψτ (yi)

− 2

N2
1Nτ1

T
NG1N +

2

N
1Nτ1

T
Nkyi

)
+ gi,i

+
1

N2
1TNG1N −

2

N
1TNkyi

with gi,i = κ(yi,yi).

44

We now describe our method for pre-image reconstruction using the Gaussian kernel

κ(yi,yj) = exp(−‖yi−yj‖22
c) first. In this case, the problem of minimizing ‖φ(ẑ) −

PSτφ(z)‖22 is equivalent to maximizing the function ρ(ẑ) = (PSτφ(z))Tφ(ẑ) [6], whose

extremum can be obtained by setting ∇ẑρ = 0, where ∇ẑρ denotes the gradient of ρ

with respect to ẑ. To do so, we express ρ(ẑ) as

ρ(ẑ) = (DτD
T
τ φ̃(z) + φ)Tφ(ẑ)

= φ̃(z)T φ̃(Yτ)EτE
T
τ φ̃(Yτ)Tφ(ẑ) +

1

N
1TNφ(Y)Tφ(ẑ)

= ψ̃τ (z)TEτE
T
τ (ψτ (ẑ)− 1

N
1Nτ1

T
Nkẑ) +

1

N
1TNkẑ

= ζτ (z)T (ψτ (ẑ)− 1

N
1Nτ1

T
Nkẑ) +

1

N
1TNkẑ, (3.20)

where ζτ (z) = EτE
T
τ ψ̃τ (z) ∈ R|Nτ |. Next, we define χ = 1

N (1 − ζτ (z)T1Nτ)1N ∈ RN

and let χ̂ be an N -dimensional vector such that [χ̂]cτ = [χ]cτ + ζτ (z) and [χ̂]IN\cτ =

[χ]IN\cτ (recall that IN = {1, . . . , N} and cτ contains all the indices of φ̃(yi)’s that are

assigned to Sτ), which means ρ(ẑ) = χ̂Tkẑ =
∑N

i=1 χ̂(i)κ(ẑ,yi). By setting ∇ẑρ = 0,

we get

ẑ =

∑N
i=1 χ̂(i) exp(−‖ẑ− yi‖22/c)yi∑N
i=1 χ̂(i) exp(−‖ẑ− yi‖22/c)

. (3.21)

By using the approximation PSτφ(z) ≈ φ(ẑ) and the relation ‖ẑ− yi‖22 = −c log(1
2(2−

d2
F (φ(yi), φ(ẑ)))) [64], a unique pre-image can now be obtained by the following formula:

ẑ =

∑N
i=1 χ̂(i)

(
1
2

(
2− d2

F (φ(yi), PSτφ(z))
))

yi∑N
i=1 χ̂(i)

(
1
2

(
2− d2

F (φ(yi), PSτφ(z))
)) . (3.22)

Next, for the polynomial kernel κ(yi,yj) = (〈yi,yj〉+ c)d with an odd degree d, we

can follow a similar procedure and have the following expression for an approximate

solution for pre-image reconstruction:

ẑ =
N∑
i=1

χ̂(i)

((PSτφ(z))Tφ(yi)

‖PSτφ(z)‖22

) d−1
d

yi. (3.23)

3.4.2 Pre-Image Reconstruction Using Missing Data

We next consider the problem of reconstructing the pre-image of PSτφ(z) when the

training samples have missing entries. As can be easily seen from (3.22), the solution

45

of a pre-image for the Gaussian kernel can be written as ẑ =
∑N
i=1 eiyi∑N
i=1 ei

, where ei =

χ̂(i)

(
1
2(2 − d2

F (PSτφ(z), φ(yi)))
)
. Similarly, from (3.23), we can also write the solution

of ẑ to be ẑ =
∑N

i=1 eiyi for the polynomial kernel, where ei = χ̂(i)

((PSτ φ(z))Tφ(yi)

‖PSτ φ(z)‖22

) d−1
d

in this case. In words, the pre-image solution is a linear combination of the training

data, where the weights ei’s can be explicitly computed using the respective kernel

functions. In this regard, as described in Section 3.3, for each i = 1, . . . , N , we can

estimate κ(z,yi) using entries of z belonging to Ωi (i.e., [z]Ωi) and [yi]Ωi , where the

estimated kernel function value is denoted by h(z, [yi]Ωi).

Based on the estimated kernel function values h(z, [yi]Ωi)’s, we can then find the

solution of τ such that τ = arg min` ‖φ̃(z) − PS` φ̃(z)‖22, and calculate the weights ei’s

(i = 1, . . . , N). Note that unlike the complete data case, we do need to compute the

entries of ẑ separately in this case. To be specific, for the u-th entry of ẑ, u = 1, . . . ,m,

we define ru to be the set containing the indices of the samples yi’s whose u-th entry are

observed. Then ẑ(u) =
∑
i∈ru

eiyi(u)

(
∑N
i=1 ei)|ru|/N

for the Gaussian kernel and ẑ(u) =
∑

i∈ru
eiyi(u) for

the polynomial kernel. We conclude this section by noting that the methods described

in here can also be applied to the case when the test sample z has missing entries.

3.5 Experimental Results

In this section, we evaluate the performance of the MC-KUoS learning approaches in

terms of the following two problems: image denoising using the learned MC-KUoS and

clustering of training data points. For both these problems, we consider the USPS

dataset [69], which contains a collection of m = 256-dimensional handwritten digits.

The authors in [6] have demonstrated that using nonlinear features can improve the

denoising performance of this dataset. Unlike the experiments for MC-UoS learning, the

training data we use in this set of experiments are noiseless. For denoising experiments,

we assume every noisy test sample z = x + ξ, where φ̃(x) = φ(x) − φ belongs to one

of the S`’s in F (again ‖x‖22 = 1) and ξ has N (0, (σ2
te/m)Im) distribution. In these

experiments, σ2
te ranges from 0.2 to 0.5.

46

3.5.1 Experiments on Image Denoising

For denoising experiments, we compare the result of MC-KUSaL with three other meth-

ods: (i) kernel k-means clustering (kernel k-means) [15], where for each test signal z,

we first assign φ(z) to a cluster whose centroid is closest to φ(z) in F , followed by kernel

PCA and the method in [68] to calculate the pre-image; (ii) kernel PCA [26] with the

same number of eigenvectors as in MC-KUSaL (KPCA-Fix); and (iii) kernel PCA with

the number of eigenvectors chosen by s = arg mins ||PSφ(z)− φ(x)||22 (KPCA-Oracle),

where x and z are clean and noisy test samples, respectively. In this manner, the num-

ber of eigenvectors s for KPCA-Oracle will be different for different noise levels σte’s.

We use the same dimension of the subspaces for MC-KUSaL, kernel k-means clustering

and KPCA-Fix, while the number of subspaces L for kernel k-means clustering also

equals the one for MC-KUSaL. For the case of missing training data, we report the

results of rMC-KUSaL as well as rKPCA. For every fixed test noise level σte, we set the

dimension of the subspace s for rKPCA to be the same as the one for KPCA-Oracle.

The relative reconstruction error of a clean test signal x ∈ Xte is calculated by
‖x−ẑ‖22
‖x‖22

,

where ẑ denotes the pre-image with respect to the noisy test sample z.

We experiment with Gaussian kernel with parameter c = 4. We choose the digits

“0” and “4” and for each digit we select the first 200 samples in the dataset (400 images

in total) for our experiments. All these 400 samples are then vectorized and normalized

to unit `2 norms. From these samples, we randomly choose 120 samples (without

replacement) from each class for training and the remaining 80 samples of each class

for testing, forming X ∈ R256×240 and Xte ∈ R256×160. This random selection of test

and training samples is repeated 20 times for cross-validation purposes. We perform

10 Monte Carlo trials for noisy test data and report the mean over these 200 random

trials.

In these experiments, we implement MC-KUSaL with parameters L = 2, s = 45 and

λ ∈ {1, 4, 20, 100} to learn an MC-UoS in the feature space F . Fig. 3.1(a) shows the

mean of relative reconstruction errors of test data for different methods in the presence

of complete training data, where we use the result of MC-KUSaL with λ = 4 for

47

0.2 0.3 0.4 0.5
0.14

0.19

0.24

0.29

0.34

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MC−KUSaL
KPCA−Oracle
KPCA−Fix
kernel k−means

(a) Complete data

0.2 0.3 0.4 0.5
0.16

0.2

0.24

0.28

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

MC−KUSaL−λ=1

MC−KUSaL−λ=4

MC−KUSaL−λ=20

MC−KUSaL−λ=100

(b) Complete data

0.2 0.3 0.4 0.5
0.16

0.2

0.24

0.28

0.32

test noise level (σ
te

2
)

re
la

ti
v
e
 e

rr
o
r

rMC−KUSaL−10%
rMC−KUSaL−20%
rKPCA−10%
rKPCA−20%

(c) Missing data

Figure 3.1: Comparison of MC-KUoS learning performance on USPS dataset using

Gaussian kernel κ(y,y′) = exp(−‖y−y′‖22
4). In (a), we perform MC-KUSaL with λ = 4.

Note that the KPCA-Oracle algorithm is the ideal case of kernel PCA. The numbers in
the legend of (c) indicate the percentages of missing entries within the training data.

comparison with other methods. We observe that for almost all noise levels, our method

produces better results than other methods. The only exception is when σ2
te = 0.2, in

which case MC-KUSaL is the second best of all methods. The caveat here is that in

practice, we cannot know beforehand the dimension of the subspace in the feature space

for kernel PCA, which yields the best denoising result at this particular noise level. We

show the denoising performance of MC-KUSaL with different λ’s in Fig. 3.1(b), and we

observe that a small λ usually results in good performance when σ2
te is relatively small,

while increasing the λ will slightly improve the denoising performance when the SNR

of test data gets small.

In the missing data experiments, we set the number of missing entries in the training

data to be 10% and 20% of the signal dimension. We use parameters L = 2, s = 45 and

λ = 4 for rMC-KUSaL. It can be inferred from Fig. 3.1(c) that (i) the performance of

rKPCA and rMC-KUSaL is comparable for all noise levels; and (ii) when the number

48

Table 3.1: Clustering error (%) of the USPS dataset
Digits Kernel Function Algorithms

1,7

κ(y,y′) = exp(−‖y−y′‖22
8)

MC-KUSaL kernel k-means k-means SSC
7.21 20.94 21.19 12.13

rMC-KUSaL(10%) rMC-KUSaL(20%)
11.52 12.69

κ(y,y′) = (〈y,y′〉+ 2)3

MC-KUSaL kernel k-means k-means SSC
8.23 20.54 21.19 12.13

rMC-KUSaL(10%) rMC-KUSaL(20%)
10.60 11.85

1,6

κ(y,y′) = exp(−‖y−y′‖22
4)

MC-KUSaL kernel k-means k-means SSC
5.00 11.04 11.29 8.71

rMC-KUSaL(10%) rMC-KUSaL(20%)
6.27 7.88

κ(y,y′) = (〈y,y′〉+ 1)3

MC-KUSaL kernel k-means k-means SSC
4.85 10.60 11.29 8.71

rMC-KUSaL(10%) rMC-KUSaL(20%)
7.54 8.04

of missing elements is fixed, rMC-KUSaL outperforms the rKPCA when the SNR of

the test data is small and vice versa.

3.5.2 Experiments on Clustering

In this section, we empirically compare the clustering performance of MC-KUSaL with

(i) kernel k-means clustering (kernel k-means) [15], (ii) standard k-means clustering

(k-means) [70], and (iii) spectral clustering [71] when the training data are complete.

In the case of spectral clustering, we make use of the similarity matrix returned by the

noisy variant of the SSC optimization program in [13]. We also present the clustering

performance of rMC-KUSaL, with the number of missing entries in the training data

being set to 10% and 20% of the signal dimension. We compute the clustering error for

MC-KUSaL/rMC-KUSaL by using the final kernel subspace assignment labels {li}Ni=1.

For all the following experiments, we select L = 2 (since we only have 2 classes) and

λ = 200.

We first experiment with digits “1” and “7” in the USPS dataset, where in every

trial we randomly choose 120 `2 normalized samples from the first 200 samples of these

two digits and use these 240 samples in these experiments. This random selection is

49

repeated 20 times. We perform MC-KUSaL and rMC-KUSaL using Gaussian kernel

κ(y,y′) = exp(−‖y−y′‖22
8) with s = 35 and polynomial kernel κ(y,y′) = (〈y,y′〉 + 2)3

with s = 40. The parameter αz for SSC is set to be 20. The clustering results are

listed in Table 3.1, where we can see the clustering error for MC-KUSaL is roughly

40% of the ones for kernel/standard k-means clustering and MC-KUSaL is much better

than SSC (with 32% reduction) in these experiments. In addition, the clustering error

for rMC-KUSaL is an increasing function of the number of missing entries for both

Gaussian kernel and polynomial kernel.

As another example, we repeat the above experiments using digits “1” and “6”,

where we again apply MC-KUSaL and rMC-KUSaL using Gaussian kernel κ(y,y′) =

exp(−‖y−y′‖22
4) with s = 35 and polynomial kernel κ(y,y′) = (〈y,y′〉+ 1)3 with s = 40.

In these experiments, SSC is performed with αz = 10. From Table 3.1, we again

observe that MC-KUSaL outperforms other clustering algorithms with 42% reduction

(compared to SSC) in the clustering error. In the missing data experiments, the clus-

tering performance of rMC-KUSaL using Gaussian kernel degrades as the number of

missing entries of the data increases. When we use polynomial kernel for rMC-KUSaL,

increasing the number of entries in the missing data does not result in much degradation

of the clustering performance.

We conclude by noting that the choice of kernels in these experiments is agnostic

to the training data. Nonetheless, data-driven learning of kernels is an active area

of research, which is sometimes studied under the rubric of multiple kernel learning

[72–75]. While some of these works can be leveraged to further improve the performance

of our proposed algorithms, a careful investigation of this is beyond the scope of this

work.

50

Chapter 4

Hierarchical Union-of-Subspaces Model for Human

Activity Summarization

4.1 Motivation

The need for high-level analytics of large streams of video data has arisen in recent

years in many practical commercial, law enforcement, and military applications [38,76–

78]. Examples include human activity recognition, video summarization and indexing,

human-machine teaming, and human behavior tracking and monitoring. The human

activity recognition process requires recognizing both objects in the scene as well as

body movements to correctly identify the activity with the help of context [79]. In the

case of video summarization, one should be able to semantically segment and summarize

the visual content in terms of context. This enables efficient indexing of large amounts

of video data, which allows for easy query and retrieval [80]. For effective human-

machine (robot) teaming, autonomous systems should be able to understand human

teammates’ gestures as well as recognize various human activities taking place in the

field to gain situational awareness of the scene. Further, an important step in building

visual tracking systems is to design ontologies and vocabularies for human activity and

environment representations [81,82]. All these tasks necessitate automated learning of

movements of the human body or human action attributes.

Human activities consist of a sequence of actions that can be represented hierarchi-

cally [38] as shown in Fig. 4.1. The bottom level of the hierarchy consists of the fine

resolution description of an action, i.e., movement of the human body (e.g., right arm

moves up, left arm moves up, torso bending, and legs moving apart) and can be called

an action attribute [39]. At the middle level, a sequence of these attributes forms a

51

Human Activity

Action

Attribute L Attribute 2 Attribute 1

Action Action

…

Figure 4.1: The hierarchical model for complex human activity representation.

human action. The human actions and their interactions form an activity, while a se-

quence of activities forms an event. An important advantage of the hierarchical model

is that such structures go hand in hand with semantic or syntactic approaches and

they provide us with the flexibility to generate summaries of long video sequences at

different resolutions based on the needs of the end application.

In this work, we focus on the bottom two layers of the human activity hierarchical

model, i.e., human actions and their representations using attributes. One possible

way of obtaining such representations is to manually specify the action attributes and

assign training video sequences to each attribute [39]. Another way is to manually

annotate training video sequences by labeling movements [83]. Any human action in

a test sequence can then be described using such user-defined attributes. Both of

these approaches fall into supervised category. However, a set of user-defined action

attributes may not completely describe all the human actions in given data. Also,

manual assignment of training data for each of the action attributes is time consuming,

if not impossible, for large datasets. Another issue with supervised learning of action

attributes is that there might be attributes that were not seen in the training data by

the system, but that might be seen in the field. Because of these reasons, unsupervised

techniques to learn action attributes have been investigated [41,84,85]. These methods

learn action attributes by clustering low-level features based on their co-occurrence in

training videos. However, video data are not usually well distributed around cluster

centers and hence, the cluster statistics may not be sufficient to accurately represent

the attributes [13].

52

Video data
Feature

Extraction

Human Action Attribute

Learning Based on UoS

Model

Semantically

Labeled Attributes

Human Action

Recognition

Semantic

Summarization

Human in the

loop
Visualization

Test Human

Action Video

Subspace Transition

based Classifier

Long Video Sequences

of Human Activities

Figure 4.2: Block diagram of the human action recognition and summarization system.

Motivated by the premise that high-dimensional video data usually lie in a union of

low-dimensional subspaces, instead of being uniformly distributed in the high-dimensional

ambient space [13], we propose to represent human action attributes based on the union-

of-subspaces (UoS) model [42]. The hypothesis of the UoS model is that each action

attribute can be represented by a subspace. We conjecture that the action attributes

represented by subspaces can encode more variations within an attribute compared

to the representations obtained using co-occurrence statistics [41, 84, 85]. The task of

unsupervised learning of the UoS underlying data of interest is often termed subspace

clustering [13,42,86], which involves learning a graph associated with the data and then

applying spectral clustering on the graph to infer the clustering of data.

The block diagram of the system that learns human action attributes is shown in

Fig. 4.2. A large stream of video data is taken as input and features such as silhouettes,

frame-by-frame spatial features like histograms of oriented gradients (HOG) [87], and

spatio-temporal features like motion boundary histogram (MBH) [88] are extracted

from the input. The data samples in this high-dimensional feature space are given

as the input to the learning algorithm and human action attributes are obtained as

the output. One of the main applications of learning the attributes based on the

UoS model is semantic summarization of long video sequences. The attributes at

different levels of the hierarchy can be labeled by an expert-in-the-loop by visualizing

53

the first few basis vectors of each attribute (subspace) in the form of images. Once the

labeled attributes are available, any long video sequence of human activity can then be

semantically summarized at different levels of granularity based on the requirements of

an application. Another major application of learning the attributes is human action

recognition. A human action or activity can be represented as a sequence of transitions

from one attribute to another, and hence, can be represented by a subspace transition

vector. Even though multiple actions can share action attributes, each action or activity

can be uniquely represented by its subspace transition vector. A classifier can be trained

based upon these transition vectors to classify an action in a test video sequence into

one of the actions in the training data.

In this chapter, we propose a hierarchical union-of-subspaces (UoS) model to learn

human action attributes from the data at different resolutions in an unsupervised man-

ner. We use the silhouette structure of the human (after background suppression and

thresholding) as the feature in our approach. Each action attribute is represented

by a subspace built from the silhouette features. We use Sparse Subspace Clustering

(SSC) [13], a state-of-the-art subspace clustering method, as the basic subspaces learn-

ing algorithm and build our hierarchical UoS learning algorithm on top of it. Note that

in the remainder of this chapter, we use the words “subspace” and “action attribute”

interchangeably for convenience.

4.2 Background: Sparse Subspace Clustering

We start with a brief review of the Sparse Subspace Clustering (SSC) algorithm de-

scribed in [13]. Suppose we are given a collection of N signals in Rm, denoted by

Y = [y1, . . . ,yN] ∈ Rm×N , and assume these N samples are drawn from a union of L

subspaces {S`}L`=1 of dimensions {d`}L`=1 in Rm, where every signal belongs to one of

the subspaces in {S`}L`=1. Therefore, we can write Y = Y1 ∪Y2 ∪ · · · ∪YL where each

Y` ∈ Rm×N` is a submatrix of Y containing all the samples that belong to subspace

S` with N` > d`, and we have
∑L

`=1N` = N . Based on the intuition that each sample

yi can be expressed as a sparse linear combination of the data points from the same

54

subspace to which yi belongs, one can represent yi as follows:

âi = arg min
ai

‖ai‖1 s.t. yi = Yai, ai(i) = 0, (4.1)

where ai = [ai(1) , ai(2) , . . . , ai(N)
]T ∈ RN is the coefficient vector and ‖ai‖1 =

∑N
j=1 |ai(j) |.

Considering all the data points in matrix form, SSC learns a sparse coefficient matrix

Â = [â1, â2, . . . , âN] ∈ RN×N by minimizing the following objective function:

Â = arg min
A

‖A‖1 s.t. Y = YA, diag(A) = 0, (4.2)

where diag(A) is the diagonal vector of matrix A. Using the resulting coefficient matrix

Â, the segmentation of data points into respective subspaces Y1, . . . ,YL can be done

by applying spectral clustering [71] on the similarity matrix W = |Â|+ |Â|T , where | · |

denotes the element-wise absolute value operation. In the case when data are corrupted

by noise, SSC solves the following convex optimization problem for Â:

Â = arg min
A

‖A‖1 + λ‖Y −YA‖2F s.t. diag(A) = 0. (4.3)

Here, λ > 0 is a regularization parameter. The authors in [13] proposed an efficient

solution for calculating the sparse coefficients Â using Alternating Direction Method

of Multipliers (ADMM) [89]. Note that there also exist some other UoS learning ap-

proaches, such as robust sparse subspace clustering (RSSC) [34] and robust subspace

clustering via thresholding (TSC) [33]. In this work, we propose our hierarchical UoS

learning algorithm based on SSC due to its superior performance, although our ap-

proach is extendable to other algorithms.

4.3 Hierarchical Sparse Subspace Clustering

In this section, we introduce our Hierarchical Sparse Subspace Clustering (HSSC) algo-

rithm for learning multiple levels of UoS using a collection of high-dimensional data. We

use Yp|` ∈ Rm×Np|` to denote the set of signals that are assigned to the `-th subspace at

the p-th level of the hierarchical structure, where Np|` is the number of signals in Yp|`.

Let Lp denote the number of subspaces at the p-th level, then we have
∑Lp

`=1Np|` = N

and Y =
⋃Lp
`=1 Yp|` for all p’s. The subspace underlying Yp|` is denoted by Sp|` and its

55

orthonormal basis is denoted by Dp|` ∈ Rm×dp|` , where dp|` denotes the dimension of

the subspace Sp|`.

We begin by applying SSC on Y at the first level (p = 1), which divides Y into

two subspaces with clusters Y = Y1|1 ∪ Y1|2 such that Y1|1 ∩ Y1|2 = ∅. At the

second level, we again perform SSC on Y1|1 and Y1|2 separately and divide each of

them into 2 clusters, yielding 4 clusters Y =
⋃4
`=1 Y2|` with Y1|` = Y2|2`−1 ∪ Y2|2`

(` = 1, 2). Using the signals in Y2|` (` = 1, . . . , 4), we estimate the four subspaces S2|`’s

underlying Y2|`’s by identifying their orthonormal bases D2|`’s. To be specific, we obtain

eigendecomposition of the covariance matrix C2|` = Y2|`Y
T
2|` as C2|` = U2|`Σ2|`U

T
2|`,

where Σ2|` = diag(λ1, . . . , λN2|`) is a diagonal matrix (λ1 ≥ λ2 ≥ · · · ≥ λN2|`) and

U2|` = [u1, . . . ,uN2|`]. Then the dimension of the subspace S2|`, denoted by d2|`, is

estimated based on the energy threshold, i.e., d2|` = arg mind

∑d
j=1 λj∑N2|`
j=1 λj

≥ α, where α is

a predefined threshold and is set close to 1 for better representation. The orthonormal

basis of S2|` can then be written as D2|` = [u1, . . . ,ud2|`]. After this step, we end

up with 4 subspaces with clusters {Y2|`}4`=1 and their associated orthonormal bases

{D2|`}4`=1.

𝒑 = 𝟎

𝒑 = 𝟏

𝒑 = 𝟐

𝒑 = 𝟑

Figure 4.3: An example of using HSSC to learn a hierarchical UoS model. Each circle
represents one cluster/subspace, and the first two vectors of each Dp,` are plotted in
each circle. The green nodes represent the clusters that are further divided in the next
level of the hierarchy. Leaf nodes are represented as yellow, these clusters cannot be
further divided and are the final attributes obtained at the bottom most level of the
hierarchical model.

56

Algorithm 6: Hierarchical Sparse Subspace Clustering (the p-th level)

Input: A set of clusters {Yp|`}
Lp
`=1, their underlying subspace bases {Dp|`}

Lp
`=1

and {gp|`}
Lp
`=1, and parameters α, β and dmin.

1: L̂ = 0.
2: for all ` = 1 to Lp do
3: if gp|` = 1 then
4: θ = 0.
5: Split Yp|` into Z1 and Z2 using SSC.
6: ∀k = 1, 2, estimate dZk and DZk of SZk using Zk.

7: ∀k = 1, 2, compute Ek and Êk.
If (Ek − Êk)/Ek ≥ β, θ = θ + 1.

8: If θ ≥ 1 and min(dZ1 , dZ2) ≥ dmin

9: ∀k = 1, 2, Y
p+1|L̂+k

= Zk, D
p+1|L̂+k

= DZk , and g
p+1|L̂+k

= 1.

10: L̂ = L̂+ 2.
11: Else Y

p+1|L̂+1
= Yp|`, D

p+1|L̂+1
= Dp|`, gp+1|L̂+1

= 0, and L̂ = L̂+ 1.

12: else
13: Y

p+1|L̂+1
= Yp|`, D

p+1|L̂+1
= Dp|`, gp+1|L̂+1

= 0, and L̂ = L̂+ 1.

14: end if
15: end for
16: Lp+1 = L̂.

Output: A set of clusters {Yp+1|`}
Lp+1

`=1 , subspace bases {Dp+1|`}
Lp+1

`=1 and

{gp+1|`}
Lp+1

`=1 .

For every p ≥ 2, we decide whether or not to further divide each single cluster

or subspace at the p-th level into two clusters or subspaces at the (p + 1)-th level

based on the following principle. We use a binary variable gp|` to indicate whether

the cluster Yp|` is further divisible at the next level or not. If it is, we set gp|` = 1,

otherwise gp|` = 0. We initialize g2|` = 1 for all `’s (` = 1, . . . , 4). Consider the

cluster Yp|` at the p-th level and assume that L̂ clusters already exist at the (p + 1)-

th level derived from {Yp|1,Yp|2, . . . ,Yp|`−1}. If gp|` = 0, the (L̂ + 1)-th cluster at

the (p + 1)-th level will be the same as Yp|`; thus, we simply set Y
p+1|L̂+1

= Yp|`,

D
p+1|L̂+1

= Dp|` and g
p+1|L̂+1

= 0. If gp|` = 1 (in which case Yp|` corresponds to the

green nodes in Fig. 4.3), we first split Yp|` into two sub-clusters Yp|` = Z1 ∪ Z2 using

SSC and find the best subspaces SZk (k = 1, 2) that fit Zk’s respectively using the

aforementioned strategy, while their dimensions and orthonormal bases are denoted by

dZk ’s and DZk ’s, respectively. Then for every signal yi in Zk (k = 1, 2), we compute the

57

relative representation error of yi using the parent subspace basis Dp|` and the child

subspace basis DZk , which are defined as ei =
‖yi−Dp|`D

T
p|`yi‖

2
2

‖yi‖22
and êi =

‖yi−DZk
DT

Zk
yi‖22

‖yi‖22
,

respectively. The means of the relative reconstruction errors of all the signals in Zk

using Dp|` and DZk are denoted by Ek and Êk, respectively. Finally, we divide Yp|` into

Z1∪Z2 if (i) the relative reconstruction errors of the signals using the child subspace are

less than the reconstruction errors of the signals using the parent subspace by a certain

threshold, i.e., (Ek−Êk)/Ek ≥ β for either k = 1 or 2, and (ii) the dimensions of the two

child subspaces meet a minimum requirement, that is, min(dZ1 , dZ2) ≥ dmin. In here, β

and dmin are user-defined parameters and are set to avoid redundant subspaces. When

either β or dmin decreases, we will have more subspaces. Assuming the two conditions

are satisfied, the cluster Yp|` is then divided by setting Y
p+1|L̂+1

= Z1 (g
p+1|L̂+1

= 1)

and Y
p+1|L̂+2

= Z2 (g
p+1|L̂+2

= 1). The bases of the subspaces at the (p+1)-th level are

set by D
p+1|L̂+1

= DZ1 and D
p+1|L̂+2

= DZ2 . If the above conditions are not satisfied,

we set Y
p+1|L̂+1

= Yp|`, gp|` = 0 and g
p+1|L̂+1

= 0 to indicate Yp|`, i.e., Y
p+1|L̂+1

, is a

leaf cluster and this cluster will not be divided any further (which corresponds to the

yellow nodes in Fig. 4.3). This process is repeated until we reach a predefined maximum

level in the hierarchy denoted by P . The hierarchical SSC algorithm for any level p ≥ 2

is described in Algorithm 6.

Fig. 4.3 also shows an example of applying HSSC to determine the action attributes

for three actions: bend, jumping jack and jump in the Weizmann dataset [90]. Here,

the maximum number of levels in the model P is set to 3 because we don’t expect

to have more than 23 = 8 subspaces at the bottom level for only three actions. The

hierarchical UoS model is initialized with the silhouette features of all the actions from

multiple subjects at the top (p = 0). Each silhouette frame (obtained after background

suppression and thresholding) in the video sequence is a data sample yi in both SSC

and HSSC. Inside each node, we visualize the first two basis vectors of the subspaces

obtained at each level. We can see that at the first level (p = 1), the attributes

corresponding to two actions, jumping jack and jump are represented by one subspace

and attributes corresponding to the bend action are represented by another subspace.

At the second level (p = 2), the action attributes corresponding to jumping jack and

58

jump are separated into two different subspaces. While the action attributes of the bend

action, which is a more complex action with wider range of movement, are divided into

two subspaces, representing the more upright part of the bend action as one higher

resolution attribute and the lower part of the bend action as another higher resolution

attribute. The lower part of the bend action is further divided into two more attributes

at the next level (p = 3) while the other attributes are left as they were. Thus, we can

see that as p increases, the variations within each action can be identified, extracted

and represented using more number of higher resolution action attributes.

The proposed HSSC algorithm has some obvious advantages over flat SSC for learn-

ing human action attributes. First, in the case of flat SSC, one has to define the num-

ber of subspaces into which the data are to be clustered [13]. This requirement puts

a constraint of prior knowledge about the data in that we need to know the number

of underlying human action attributes present in the data. Such an approach moves

away from data-driven learning. On the other hand, HSSC algorithm only requires the

knowledge of a maximum level P , and it can stop before it reaches the P -th level if

no clusters can be further divided. HSSC algorithm is designed in such a way that all

the variations within each action can be identified automatically to determine the final

number of action attributes. Second, HSSC provides us with multiple resolutions of ac-

tion attributes, which are extremely useful for semantic labeling and understanding of

human actions. The multi-resolution attributes can be used for semantic summarization

of long video sequences at different resolutions starting from giving just an overview of

the action to detailed explanation of movements occurring in the video. Flat SSC can

provide us with only one set of action attributes at one single resolution, which depends

on the number of subspaces that is the input to the algorithm. The empirical results

presented in Section 4.4 illustrate these benefits of HSSC with examples.

To demonstrate the reason why HSSC outperforms flat SSC, we consider the follow-

ing example. We perform HSSC with P = 3 to learn attributes for three actions: bend,

run and one-hand wave in Weizmann dataset [90]. It has 6 subspaces as the leaf nodes,

and the first three basis vectors of each leaf subspace are illustrated in Fig. 4.4 (a)-(f).

We then apply SSC to learn 6 attributes and all those subspaces are depicted in Fig. 4.4

59

(a) Stand with one hand
out

(b) Stand with one hand
up

(c) 45 degree bend

(d) 90 degree bend (e) Run (f) 30 degree bend

(g) Stand with one hand
out

(h) Stand with one hand
up

(i) Run

(j) 30 degree bend (k) Stand with one hand
out

(l) Bend

Figure 4.4: Visualization of subspaces (first three dimensions) learned using the frames
of three actions: bend, run and one-hand wave. (a)-(f) represent the leaf subspaces
learned by HSSC. (g)-(l) represent the subspaces which are learned using SSC.

(g)-(l). It can be seen that the attributes learned using hierarchical SSC capture the

variations and full range of movement within the bend action in a better way compared

to SSC (as can be seen in (c), (d) (f) and (j), (l)). While the first subspace of SSC

(seen in (g)) does not provide any additional information of one-hand wave action. We

also present the three action video sequences for 9 subjects in Weizmann dataset as

transition sequences of the learned attributes in Fig. 4.5. The run action is represented

by a single subspace in both methods. As expected, the bend action is represented by

more number of attributes in HSSC compared to SSC. In terms of subspace transitions,

some frames of one-hand wave action are represented by attribute (f) in HSSC, which

corresponds to the bend action attribute. However, in SSC, there are more frames in

one-hand wave action which are represented by the attribute (j) (see Fig. 4.5(b)). Thus,

the action recognition performance using HSSC will be better compared to SSC.

60

Frame indexes

S
u

b
s
p

a
c
e

 a
s
s
ig

n
m

e
n

t
in

d
e

x
e

s

a

b

c

d

e

f

me ind

(a)

Frame indexes

S
u

b
s
p

a
c
e

 a
s
s
ig

n
m

e
n

t
in

d
e

x
e

s

g

h

i

j

k

l

me ind

(b)

Figure 4.5: Subspace assignment result of the video frames from bend, run and one-hand
wave actions using subspaces learned from (a) HSSC and (b) SSC.

4.3.1 Complexity Analysis for Flat SSC and Hierarchical SSC

We first investigate the computational complexity of flat SSC. As proposed in [13],

SSC mainly consists of three steps: learning the sparse coefficients Â using ADMM,

computing the normalized Laplacian matrix from Â, and k-means clustering (with L

clusters) on the normalized Laplacian matrix. For the first two steps, the complexity

is implementation dependent, but the worst case would be O(N3), where N is the

number of samples in the training data Y. The complexity of k-means clustering on

the normalized Laplacian matrix is O(N2L). Therefore, by assuming L � N , the

overall complexity of SSC is O(N3).

To analyze the computational complexity of hierarchical SSC, we assume that there

are 2p clusters at the p-th level (p = 0, 1, . . . , log2 L). For each cluster at the p-th level

(0 ≤ p ≤ log2 L − 1), we run SSC on each cluster to obtain two sub-clusters at the

next level. We again use Np|` to denote number of signals that are assigned to the

`-th cluster at the p-th level. As discussed earlier, the computational complexity of

applying SSC on these Np|` samples for two clusters will be O(N3
p|`). For the sake of

exposition, we make another assumption that Np|` = N/2p for all `’s. In such a case,

the overall complexity at the p-th level is O((N/2p)3×2p) = O(N3/4p). The sum of the

complexity orders over all the levels gives us the overall complexity of hierarchical SSC

as
∑log2 L−1

p=0 O(N3/4p) = O(4
3N

3(1− 1
L2)). The computational complexity of HSSC is

61

slightly more than that of flat SSC. However, the advantages of HSSC over flat SSC in

learning better action attributes at different resolutions without any prior knowledge of

the number of attributes significantly outweighs this slight increase in computational

complexity.

4.3.2 Action Recognition Using Learned Subspaces

In this section, we describe the classification strategy to perform action recognition using

the hierarchical UoS model learned by HSSC algorithm. We first learn the subspaces,

which are the action attributes, by applying HSSC on the silhouette feature sequences

of human actions in an unsupervised manner, where each silhouette frame (each data

sample) is vectorized and normalized to unit `2 norm. We assume HSSC ends up with

LP leaf subspaces and the orthonormal bases of these subspaces can be represented by

{DP |` ∈ Rm×dP |`}LP`=1.

Suppose there are V actions and R subjects in the training set. We use Φv,r ∈

Rm×sv,r to denote the video sequence of the r-th subject with the v-th action, where

sv,r denotes the number of frames in the video. We assign every frame in one video

sequence Φv,r (v ∈ {1, . . . , V }, r ∈ {1, . . . , R}) to the “closest leaf subspace” and we

use φv,r ∈ Rsv,r to denote the vector which contains the resulting subspace assignment

indexes. This vector represents the sequence of action attributes and the transitions

involved in the human action video. All training video samples have subspace tran-

sition vectors φv,r’s. Then for a test video Ψ ∈ Rm×s with s denoting the number

of frames in this video, we first perform subspace assignment for all the frames in Ψ

and we use ψ ∈ Rs to denote the resulting transition vector. Then we use a nearest

neighbor classifier to perform action recognition, i.e., Ψ is declared to be in a partic-

ular action class v′ for which the average of distances between the transition vector ψ

and all the training transition vectors φv′,r’s in the v′-th class is the smallest. Note

that the video sequences, and hence the subspace assignment vectors, are of differ-

ent lengths. In order to make the action recognition process temporal-scale invariant,

62

we use Dynamic Time Warping (DTW) method [91] on the Grassmann manifold, de-

scribed in Algorithm 7, where the element-wise distances used in here are the normal-

ized subspace distances between the leaf subspaces. Mathematically speaking, for every

pair of the subspaces SP |` and S
P |̂̀, the normalized subspace distance between these

two subspaces on the Grassmann manifold (in Step 3 of Algorithm 7) is defined as

du(SP |`,SP |̂̀) =

√
1−

tr(DT
P |`DP |̂̀DT

P |̂̀DP |`)

max(dP |`,dP |̂̀) [44].

Algorithm 7: Dynamic Time Warping on the Grassmann Manifold

Input: Two subspace assignment sequences φ ∈ Rs1 and ψ ∈ Rs2 , leaf subspace
bases {DP |`}LP`=1 of SP |`’s.

Initialize: A matrix E ∈ R(s1+1)×(s2+1) with e1,1 = 0 and all other entries in the
first row and column are ∞.

1: for all i = 1 to s1 do
2: for all j = 1 to s2 do
3: ei+1,j+1 = du(SP |φ(i) ,SP |ψ(j)

) + min(ei,j+1, ei+1,j , ei,j).
4: end for
5: end for

Output: The distance between φ and ψ is es1+1,s2+1.

(a) Stand with one hand
up

(b) Stand with two
hands up

(c) Bend

(d) Jump (e) Walk/Run (f) Jumping jack/Two-

hand wave

(g) Stand

Figure 4.6: Visualization and interpretation of attributes at the 3rd level of HSSC for
Weizmann dataset.

63

(a) One-hand wave (b) Stand with two
hands up

(c) 45 degree bend

(d) 30 degree bend (e) 60 degree bend (f) 90 degree bend

(g) Jump (h) Run (i) Walk

(j) Stand with two hands
out

(k) Jumping jack (l) Stand with two hands
up

(m) Stand

Figure 4.7: Visualization and interpretation of attributes at the bottom (5th) level of
HSSC for Weizmann dataset.

4.4 Performance Evaluation

In this section, we report the experimental results obtained by applying the proposed

HSSC approach on human action video datasets to learn the action attributes. Our

first objective is to semantically interpret and label the learned action attributes from

HSSC and to investigate the utility of the multi-resolution action attributes in semantic

description of long action sequences. The secondary goal is to evaluate the effectiveness

of these learned attributes in human action recognition and to compare the quantitative

results to other UoS learning methods. In all the following experiments, we use the noisy

variant of the optimization program (i.e., ADMM) of SSC and set λz = αz/µz, where

λz and µz are as defined in [13, (13) & (14)] and the parameter αz varies in different

experiments.

64

Frame indexesS
u

b
s
p

a
c
e

 a
s
s
ig

n
m

e
n

t
in

d
e

x
e

s

d

e

f

j

l

m

Frame indexesS
u

b
s
p

a
c
e

 a
s
s
ig

n
m

e
n

t
in

d
e

x
e

s

c

f

g

Figure 4.8: Subspace transition of a long sequence using subspaces at the 5th level (top)
and the 3rd level (bottom). The subspace assignment indexes in the top/bottom figure
correspond to the attributes in Fig. 4.7 and Fig. 4.6, respectively.

4.4.1 Semantic Labeling and Summarization

In this section, we visualize the learned attributes from HSSC at two different resolu-

tions, give them semantic labels and use them for semantic summarization of multiple

actions in a long video sequence. We apply HSSC on the Weizmann dataset with pa-

rameters P = 5, α = 0.9, β = 0.05, dmin = 4 and αz = 20. HSSC returns LP = 13 leaf

subspaces at the 5th level and 7 subspaces at the 3rd level. We show the first three

dimensions of the orthonormal bases of those subspaces (attributes) here and give them

interpretative (semantic) labels in Fig. 4.7 and Fig. 4.6, respectively. To demonstrate

the semantic summarization of a long video sequence, we create a sequence by concate-

nating the bend and two-hand wave sequence of one subject and visualize the subspace

transition of the frames in Fig. 4.8. We can interpret the actions using the attribute

assignment within the interval defined by green lines based on the corresponding labels

in Fig. 4.7 and Fig. 4.6. At Level 5 (Fig. 4.8, top), human actions in the first half of

the video sequence can be described as 30 degree bend followed by 60 degree bend, 90

degree bend, 60 degree bend again, and 30 degree bend, which can be interpreted as

a full range bend action as done in Level 3 (Fig. 4.8, bottom). Next, at Level 5, the

actions in the second half of the video sequence are Stand followed by two alternating

attributes: Stand with two hands out and Stand with two hands up. The complete

65

action can be described as a two-hand wave, which is precisely what is done at a lower

resolution in Level 3. Therefore, we can say that the attributes generated at different

levels of HSSC algorithm can be used for semantic summarization of video sequences

at different resolutions.

4.4.2 Action Recognition: Evaluation on Different Datasets

In this section, we compare the performance of the proposed HSSC algorithm to flat

SSC [13], RSSC [34], and TSC [33] with the number of clusters set (i) to be the same

number of subspaces generated by HSSC at the bottom-most level (which is denoted

by Algorithm-LP) and (ii) to be the same as the number of actions (which is denoted

by Algorithm-V). The parameter αz for flat SSC is the same as the one for HSSC.

In the case of RSSC, we set λ = 1/
√
d as per [34], where d is the mean of the sub-

space dimensions returned by SSC-LP /SSC-V . The tuning parameter q in TSC is set

q = max(3, dN/(L × 20)e), where L is equal to LP and V for TSC-LP and TSC-V ,

respectively.

We use three public datasets for this purpose: the Weizmann action dataset [90], the

Keck gesture dataset [92], and the UT-Tower action dataset [93]. We evaluate all the

subspace/attribute learning approaches based on a leave-one-subject-out experiment.

To be specific, we pick all the videos of one subject (see Section 4.3.2) for testing at one

time, while using all other videos as training samples. The Weizmann dataset consists

of V = 10 different actions: walk, run, jump, gallop sideways, bend, one-hand wave,

two-hands wave, jump in place, jumping jack, and skip. Each action is performed by

nine subjects. The original resolution of the frames is 180×144. We align all the binary

silhouette sequences and crop them into 87× 63 frames, thereby the dimensionality of

data is m = 5481. The hierarchical SSC is performed with parameters described in

Section 4.4.1 and it returns LP = 13 leaf subspaces for final attributes. The Keck

gesture dataset was collected using a camera with 640 × 480 resolution. It consists of

V = 14 different actions, including turn left, turn right, attention left, attention right,

flap, stop left, stop right, stop both, attention both, start, go back, close distance, speed

up, and come near. Each of these 14 actions is performed by three people. In each video

66

sequence, the subject repeats the same action three times. Therefore the total number

of video sequences in this dataset is 14×3×3 = 126. We crop all the silhouette sequences

to 380 × 280 resolution and downsample all the video frames by a factor of 4 in each

dimension for computational purposes, with the resulting sequences being of size 95×70

and hence m = 6650. We perform hierarchical SSC with parameters P = 6, α = 0.98,

β = 0.02, dmin = 3 and αz = 100, in which case it returns LP = 18 leaf subspaces

at the bottom-most level. The UT-Tower action dataset contains a collection of 108

low resolution videos and there exist V = 9 different actions in this dataset, including

pointing, standing, digging, walking, carrying, running, wave1, wave2, and jumping.

Each action is performed twice by 6 individuals, which results in a total of 12 video

sequences per action. We use the bounding boxes and foreground masks provided by

the authors of [93] to extract silhouettes. All the silhouette sequences are of size 49×61

(m = 2989). We perform hierarchical SSC with parameters P = 6, α = 0.95, β = 0.04,

dmin = 4 and αz = 150, obtaining LP = 11 final subspaces. The recognition results of

different algorithms for the three datasets are shown in Table 4.1. We can see that by

representing the human actions using the attributes learned by HSSC, we are able to

recognize the actions at a superior rate compared to other techniques.

Table 4.1: Recognition results (%) on different datasets
Data ↓ Method → HSSC SSC-LP SSC-V RSSC-LP RSSC-V TSC-LP TSC-V

Weizmann [90] 91.11 83.33 76.67 57.78 65.56 87.78 83.33

Keck [92] 78.57 57.94 67.46 34.13 37.30 53.17 53.97

UT-Tower [93] 76.85 75.93 73.15 60.19 63.89 65.74 62.04

67

Chapter 5

Human Action Attribute Learning Using Low-Rank

Representations

In Chapter 4, we use the silhouette structure as the basic feature to learn action at-

tributes. However, it is almost impossible to obtain clean silhouette features in many

real applications due to cluttered background and drastic changes in the background.

On the other hand, the `1 graph built from SSC does not consider the global structure of

the data. Similar features may have drastically different coefficients for subspace clus-

tering, which will degrade the clustering performance. To capture the global structure of

data, low-rank representation (LRR) models with and without sparsity constraints have

been proposed in [94] and [42], respectively. It has been proved that LRR can achieve

perfect subspace clustering results under the condition that the subspaces underlying

the data are independent [42, 95]. However, this condition is hard to satisfy in many

real situations. To handle the case of disjoint subspaces, Tang et al. [96] extended LRR

by imposing restrictions on the structure of the solution, called structure-constrained

LRR (SC-LRR).

Existing LRR based subspace clustering techniques use spectral clustering as a post-

processing step on the graph generated from a low-rank coefficient matrix, but the

relationship between the coefficient matrix and the segmentation of data is seldom

considered, which can lead to sub-optimal results [97]. In this chapter, we propose

a hierarchical clustering-aware structure-constrained LRR (HCS-LRR) model, for un-

supervised learning of human action attributes using other low-level features such as

HOG [87] and MBH [88].

68

HOG feature

matrix

HOG feature

vector

(a)

MBH feature

matrix

MBH feature

vector

Optical flow

components

(b)

Figure 5.1: Illustration of our approach to create the matrix X for (a) HOG and (b)
MBH features, which is then input to the HCS-LRR algorithm.

5.1 Feature Extraction for Attribute Learning

The main focus of our work is to learn meaningful human action attributes from large

streams of video data in an unsupervised manner. The first step in our proposed

framework is to extract feature descriptors from an action interest region in which the

human performs the action. The action interest region of each frame of an action

sequence is determined by a bounding box. In our work, we learn action attributes

using two local visual descriptors: HOG (histograms of oriented gradients) [87] and

MBH (motion boundary histogram) [88]. To extract HOG descriptors, we divide the

action interest region into a grid of blocks, each of size nσ×nσ pixels. Then HOG feature

is extracted for each block and orientations are quantized into 9 bins. Therefore, the

HOG feature of every frame can be stored into a matrix X̂i ∈ Rnb×9, where nb denotes

the number of blocks in the action interest region, and the HOG feature vector of each

block corresponds to a row in X̂i. We vectorize HOG features and normalize each

vector to unit `2 norm, forming individual data samples in a matrix X ∈ Rm×N , where

69

m = nb × 9 and N denotes the total number of frames in the videos, as shown in

Fig. 5.1(a).

The MBH descriptor represents the oriented gradients computed separately from

the vertical and horizontal components of the optical flow, which is robust to camera

and background motion. To extract MBH descriptors, we first split the optical flow field

into two scalar fields corresponding to the horizontal and vertical components, which

can be regarded as “images” of the motion components. Similar to HOG descriptor

extraction, we divide the action interest region of each of the optical flow component

image into a grid of blocks, each of size nσ × nσ pixels. Spatial derivatives are then

computed for each block in each optical flow component and orientation information is

quantized into 9 bins. Instead of using MBH features of optical flow field between every

two video frames separately, we aggregate MBH features of every nτ adjacent optical

flow fields (computed between nτ + 1 video frames) and the sum is used as the feature

of these nτ optical flow fields. Therefore, the MBH feature of every nτ adjacent optical

flow fields corresponds to a matrix X̂i ∈ Rnb×18, where nb denotes the number of blocks

in the action interest region, and the MBH feature vector of each block corresponds

to a row in X̂i. We again vectorize the MBH features and normalize each vector to

unit `2 norm, forming MBH feature matrix X ∈ Rm×N , where m = nb × 18 and N

again denotes the total number of feature descriptors, see Fig. 5.1(b). Given all the

features extracted from the video data, we aim to learn action attributes based on the

UoS model, which will be described in the following sections.

5.2 Clustering-Aware Structure-Constrained Low-Rank Representa-

tion

In this section, we propose our clustering-aware structure-constrained LRR (CS-LRR)

model for learning the action attributes using the feature descriptors extracted from

the video data. We begin with a brief review of LRR and SC-LRR since our CS-LRR

model extends these models.

70

5.2.1 Brief Review of LRR and SC-LRR

Consider a collection of N feature vectors in Rm, X = [x1,x2, . . . ,xN], that are drawn

from a union of L low-dimensional subspaces {S`}L`=1 of dimensions {d`}L`=1. The

task of subspace clustering is to segment the data points according to their respective

subspaces. Low-rank representation (LRR) is a recently proposed subspace clustering

method [42, 95] that aims to find the lowest-rank representation for the data using a

predefined dictionary to reveal the intrinsic geometric structure of the data. Mathe-

matically, LRR can be formulated as the following optimization problem [95]:

Ẑ = arg min
Z

rank(Z) s.t. X = AZ, (5.1)

where A is a predefined dictionary that linearly spans the data space and Z is the

low-rank representation of the data over A. In practice, the observed data X are

often corrupted by noise. To better handle the noisy data, the LRR problem can be

formulated as

(Ẑ, Ê) = arg min
Z,E

‖Z‖∗ + λ‖E‖ι s.t. X = AZ + E, (5.2)

where E is a matrix representing the approximation errors of the data, the nuclear norm

is the convex relaxation of rank operator and ‖ · ‖ι indicates a certain regularization

strategy involving E. In [95], the `2,1 norm is used for regularization because of its

robustness against corruptions and outliers in data. Finally, λ is a positive parameter

that sets the tradeoff between low rankness of Z and the representation fidelity. In [95],

the whole sample set X is used as the dictionary for clustering, which takes advantage

of the self-expressiveness property of data. Once the matrix Ẑ is available, a symmetric

non-negative similarity matrix W can be defined as W = |Ẑ|+|ẐT |
2 , where | · | again

denotes the element-wise absolute value operation. Finally, spectral clustering [71] can

be performed on W to get the final clustering results.

It has been proved that LRR can achieve a block-diagonal (up to permutation)

solution under the condition that the subspaces underlying the data are indepen-

dent [42, 95]. However, clustering of disjoint subspaces is more desirable in many real

71

situations [13].1 To improve upon LRR for disjoint subspace clustering, Tang et al. [96]

proposed structure-constrained LRR (SC-LRR) model, whose learning can be formu-

lated as follows:

(Ẑ, Ê) = arg min
Z,E

‖Z‖∗ + α‖B� Z‖1 + λ‖E‖2,1 s.t. X = XZ + E, (5.3)

where α and λ are penalty parameters, B ∈ RN×N is a predefined weight matrix

associated with the data, and � denotes the Hadamard product. It has been shown

in [96] that by designing some predefined weight matrices, the optimal solution of Z

is block-diagonal for disjoint subspaces when the data are noiseless. In general, the

matrix B imposes restrictions on the solution by penalizing affinities between data

samples from different clusters, while rewarding affinities between data samples from

the same cluster. The sample set X is again selected as the dictionary in [96] for

clustering.

5.2.2 CS-LRR Model

Almost all the existing subspace clustering methods follow a two-stage approach: (i)

learning the coefficient matrix from the data and (ii) applying spectral clustering on the

affinity matrix to segment the data. This two-step approach may lead to sub-optimal

clustering results because the final clustering result is independent of the optimization

problem that is used to obtain the coefficient matrix. We hypothesize that by making

the final clustering result dependent on the generation of the optimal coefficient matrix,

we will be able to obtain better clustering results. Specifically, suppose we have the

coefficient matrix Ẑ for SC-LRR. Then one can define an affinity matrix W as W =

|Ẑ|+|ẐT |
2 . We obtain the clustering of the data by applying spectral clustering [71] on

W, which solves the following problem:

F̂ = arg min
F

tr(FT (V −W)F) s.t. FTF = I, (5.4)

1Heuristically, a collection of L subspaces {S`}L`=1 is said to be independent if the bases of all the
subspaces are linearly independent, whereas {S`}L`=1 are said to be disjoint if every pair of subspaces
are independent; we refer the reader to [13] for formal definitions.

72

where F ∈ RN×L is a binary matrix indicating the cluster membership of the data

points, i.e., ∀i, fi,` = 1 if xi lies in subspace S` and fi,` = 0 otherwise. Here, V ∈ RN×N

is a diagonal matrix with its diagonal elements defined as vi,i =
∑

j wi,j . The solution

of F consists of the eigenvectors of the Laplacian matrix M = V −W associated with

its smallest L eigenvalues. Note that the objective function of (5.4) can also be written

as

tr(FT (V −W)F) =
1

2

∑
i,j

wi,j‖f i − f j‖22 =
∑
i,j

|zi,j |(
1

2
‖f i − f j‖22) = ‖Θ� Z‖1, (5.5)

where θi,j = 1
2‖f

i− f j‖22. In order to capture the relation between Z and F, we imagine

that the exact segmentation matrix F is known. It can be observed that if xi and xj

lie in different subspaces, i.e., f i 6= f j , then we would like to have zi,j = 0 for better

clustering. Therefore, we can use (5.5) to quantify the disagreement between Z and

F [98].

The ground truth segmentation matrix F is of course unknown in practice. In

order to penalize the “disagreement” between Z and F, we propose a clustering-aware

structure-constrained LRR (CS-LRR) model obtained by solving the following problem:

min
Z,F,E

‖Z‖∗ + α‖B� Z‖1 + βtr
(
FT (V − |Z|+ |Z

T |
2

)F
)

+ λ‖E‖ι

s.t. X = XZ + E, FTF = I, (5.6)

where α, β and λ are penalty parameters. Similar to [96], the (i, j)-th entry of B is

defined as bi,j = 1−exp(−1−|xTi xj |
σ), where σ is the mean of all 1−|xTi xj |’s. The CS-LRR

model in (5.6) requires knowledge of the number of subspaces L. Initially, we assume

to have knowledge of an upper bound on L, which we denote by Lmax, and we use Lmax

in (5.6) to learn the representation matrix. In practice, however, one cannot assume

knowledge of this parameter a priori. Therefore, we also develop a hierarchical clustering

technique to automatically determine Lmax, which will be discussed in Section 5.3. The

CS-LRR model encourages consistency between the representation coefficients and the

subspace segmentation by making the similarity matrix more block-diagonal, which can

help spectral clustering achieve the best results.

73

5.2.3 Solving CS-LRR

To solve the optimization problem (5.6), we first introduce an auxiliary variable Q to

make the objective function of (5.6) separable and reformulate (5.6) as

min
Z,F,E

‖Z‖∗ + α‖B�Q‖1 + βtr
(
FT (V − |Q|+ |Q

T |
2

)F
)

+ λ‖E‖ι

s.t. X = XZ + E, FTF = I, Z = Q. (5.7)

This problem can be solved by using the linearized alternating direction method (LADM)

[99]. Specifically, the augmented Lagrangian function of (5.7) is

L(Z,Q,F,E,Γ1,Γ2)

= ‖Z‖∗ + α‖B�Q‖1 + βtr
(
FT (V − |Q|+ |Q

T |
2

)F
)

+ λ‖E‖ι

+ 〈Γ1,X−XZ−E〉+ 〈Γ2,Z−Q〉+
µ

2
(‖X−XZ−E‖2F + ‖Z−Q‖2F), (5.8)

where Γ1 and Γ2 are matrices of Lagrangian multipliers and µ is a penalty parameter.

The optimization of (5.8) can be done iteratively by minimizing L with respect to Z, Q,

F and E one at a time, with all other variables being fixed. Note that we also update

V accordingly once we have Q updated. The constraint FTF = I in (5.7) is imposed

independently in each step of updating F.

Update Z while fixing other variables: When other variables are fixed, the problem

of updating Z in the (t+1)-th iteration (t ≥ 0) is equivalent to minimizing the following

function:

f(Z) = ‖Z‖∗ + ~(Z,Qt,Et,Γt1,Γ
t
2), (5.9)

where ~(Z,Qt,Et,Γt1,Γ
t
2) = µt

2 (‖X −XZ − Et +
Γt1
µt ‖

2
F + ‖Z −Qt +

Γt2
µt ‖

2
F). However,

this variant of the problem does not have a closed-form solution. Nonetheless, in the

spirit of LADM, f(Z) can also be minimized by solving the following problem:

Zt+1 = arg min
Z

‖Z‖∗ + 〈∇Z~(Zt),Z− Zt〉+
ηµt

2
‖Z− Zt‖2F

= arg min
Z

‖Z‖∗ +
ηµt

2
‖Z− Zt +

∇Z~(Zt)

ηµt
‖2F , (5.10)

74

where ∇Z~ is the partial differential of ~ with respect to Z and η is a constant satisfying

η > ‖X‖2. For this problem, ∇Z~ = µtXT (XZ−X+Et− Γt1
µt)+µt(Z−Qt+

Γt2
µt). Then

the closed-form solution for Z is given as

Zt+1 = Υ 1
ηµt

(Zt − ∇Z~(Zt)

ηµt
), (5.11)

where Υ(·) denotes singular value thresholding operator [100].

Update Q while fixing other variables: When other variables are fixed, the problem

of updating Q is

min
Q

α‖B�Q‖1 + βtr
(

(Ft)T (V − |Q|+ |Q
T |

2
)Ft
)

+
µt

2
‖Q− (Zt+1 +

Γt2
µt

)‖2F . (5.12)

According to (5.5), we have tr((Ft)T (V− |Q|+|Q
T |

2)Ft) = ‖Θt�Q‖1, where θti,j = 1
2‖f

t,i−

f t,j‖22. Here, f t,i and f t,j denote the i-th and j-th row of the matrix Ft, respectively.

Therefore, (5.12) can be written as follows:

min
Q

α‖(B +
β

α
Θt)�Q‖1 +

µt

2
‖Q− (Zt+1 +

Γt2
µt

)‖2F , (5.13)

which has the following closed-form solution:

Qt+1 = T
(α
µt
,B+ β

α
Θt)

(Zt+1 +
Γt2
µt

), (5.14)

where the (i, j)-th entry of T(τ,H)(A) is given by Tτhi,j (ai,j) with Tτ ′(x) = max(x −

τ ′, 0)+min(x+τ ′, 0) [96]. After this, we update Vt+1 by setting ∀i, vt+1
i,i =

∑
j

|qt+1
i,j |+|q

t+1
j,i |

2 .

Update F while fixing other variables: When other variables are fixed, the problem

of updating F is

Ft+1 = arg min
FTF=I

tr(FT (Vt+1 − |Q
t+1|+ |(Qt+1)T |

2
)F). (5.15)

Defining Mt+1 = Vt+1 − |Q
t+1|+|(Qt+1)T |

2 , this problem has a closed-form solution that

involves eigendecomposition of Mt+1. In particular, the columns of Ft+1 are given by

the eigenvectors of Mt+1 associated with its smallest Lmax eigenvalues.

Update E while fixing other variables: When other variables are fixed, the problem

of updating E can be written as

Et+1 = arg min
E

λ‖E‖ι +
µt

2
‖E−Ct+1‖2F , (5.16)

75

where Ct+1 = X−XZt+1+
Γt1
µt . For HOG features, we define Êi to be the approximation

error with respect to X̂i (the matrix version of xi) and set the error term ‖E‖ι ≡∑N
i=1 ‖Êi‖2,1 to ensure robustness against “corruptions” in the orientation of each HOG

feature descriptor; this is because the background information is included in the feature

vector. Then (5.16) can be decomposed into N independent subproblems. In order to

update ei, we first convert the vector ct+1
i to a matrix Ĉt+1

i ∈ Rnb×9 and then solve

the following problem:

Êt+1
i = arg min

Êi

λ‖Êi‖2,1 +
µt

2
‖Êi − Ĉt+1

i ‖
2
F , (5.17)

where Êt+1
i ∈ Rnb×9 is the reshaped “image” of the vector et+1

i . This problem can be

solved using [95, Lemma 3.2]. For MBH features, since the noise due to background

motion is eliminated, we simply set the error term ‖E‖ι ≡ ‖E‖2,1; then (5.16) can be

written as

Et+1 = arg min
E

λ‖E‖2,1 +
µt

2
‖E−Ct+1‖2F , (5.18)

which can also be solved by using [95, Lemma 3.2]. The complete algorithm is outlined

in Algorithm 8.

5.3 Hierarchical Subspace Clustering Based on CS-LRR Model

We now introduce a hierarchical subspace clustering algorithm based on CS-LRR ap-

proach for learning action attributes at multiple levels of our UoS model and for au-

tomatically determining the final number of attributes present in a high-dimensional

dataset without prior knowledge. To begin, we introduce some notation used in this

section. We define πp|` to be the set containing the indexes of all xi’s that are assigned

to the `-th subspace at the p-th level (p ≥ 0) of the hierarchical structure, and let

Xp|` = [xi : i ∈ πp|`] ∈ Rm×Np|` be the corresponding set of signals, where Np|` is the

number of signals in Xp|`.
2 Let Lp denote the number of subspaces at the p-th level,

then we have
∑Lp

`=1Np|` = N and X =
⋃Lp
`=1 Xp|` for all p’s. The subspace underlying

2At level 0, we have only one cluster at the top, i.e., π0|1 = {1, 2, . . . , N}, X0|1 = X and N0|1 = N .

76

Algorithm 8: Solving CS-LRR by LADM

Input: The data matrix X and matrix B, and parameters Lmax, α, β and λ.
Initialize: Z0 = Q0 = Θ0 = Γ0

1 = Γ0
2 = 0, ρ = 1.1, η > ‖X‖2, µ0 = 0.1,

µmax = 1030, ε = 10−7, t = 0.

1: while not converged do
2: Fix other variables and update Z:

Zt+1 = arg minZ ‖Z‖∗+
ηµt

2 ‖Z−Zt+(XT (XZ−X+Et− Γt1
µt)+(Z−Qt+

Γt2
µt))/η‖2F .

3: Fix other variables and update Q:

Qt+1 = arg minQ α‖(B + β
αΘt)�Q‖1 + µt

2 ‖Q− (Zt+1 +
Γt2
µt)‖2F .

4: Compute the Laplacian matrix: Mt+1 = Vt+1 − |Q
t+1|+|(Qt+1)T |

2 and update F by
Ft+1 = arg minFTF=I tr(FTMt+1F).

5: Fix other variables and update E:

Et+1 = arg minE λ‖E‖ι + µt

2 ‖E− (X−XZt+1 +
Γt1
µt)‖2F .

6: Update Lagrange multipliers:
Γt+1

1 = Γt1 + µt(X−XZt+1 −Et+1),
Γt+1

2 = Γt2 + µt(Zt+1 −Qt+1).
7: Update µt+1 as µt+1 = min(µmax, ρµ

t).
8: Check convergence conditions and break if
‖X−XZt+1 −Et+1‖∞ ≤ ε, ‖Zt+1 −Qt+1‖∞ ≤ ε.

9: Update t by t = t+ 1.
10: end while

Output: The optimal low-rank representation Ẑ = Zt.

Xp|` is denoted by Sp|` and the orthonormal basis of Sp|` is denoted by Up|` ∈ Rm×dp|` ,

where dp|` denotes the dimension of the subspace Sp|`.

We first apply Algorithm 8 to obtain the optimal representation coefficient matrix

Ẑ. Then we set the coefficients below a given threshold to zeros, and we denote the

final representation matrix by Z̃. By defining the affinity matrix W = |Z̃|+|Z̃T |
2 , our

hierarchical clustering procedure bears resemblance to the procedure in Chapter 4. At

each level p ≥ 0, we split Xp|` into two sub-clusters by applying spectral clustering [71]

on [W]πp|`,πp|` (the submatrix of W whose rows and columns are indexed by πp|`). Note

that when p ≥ 2, we have an additional step which decides whether or not to further

divide each single cluster (i.e., subspace) at the p-th level into two clusters (subspaces)

at the (p + 1)-th level. The cluster Xp|` is divisible if and only if (i) the relative

representation errors of the data samples using the child subspace are less than the

representation errors calculated using the parent subspace by a certain threshold, and

(ii) the dimensions of the two child subspaces meet a minimum requirement. Otherwise

77

Algorithm 9: HCS-LRR (the p-th level, 2 ≤ p ≤ P − 1)

Input: The affinity matrix W obtained from Algorithm 8. A set of clusters
{Xp|`}

Lp
`=1 with their corresponding indexes {πp|`}

Lp
`=1, their underlying subspace

bases {Up|`}
Lp
`=1 and {gp|`}

Lp
`=1, and parameters γ, % and dmin.

1: L̂ = 0.
2: for all ` = 1 to Lp do
3: if gp|` = 1 then
4: θ = 0.
5: Apply spectral clustering on [W]πp|`,πp|` to split Xp|` into Xp|` = Σ1 ∪Σ2

(πp|` = χ1 ∪ χ2).
6: ∀c = 1, 2, estimate dΣc and UΣc of SΣc using Σc.

7: ∀c = 1, 2, compute δ̄c and ζ̄c. If δ̄c−ζ̄c
δ̄c
≥ %, θ = θ + 1.

8: if θ ≥ 1 and min(dΣ1 , dΣ2) ≥ dmin then
9: ∀c = 1, 2, X

p+1|L̂+c
= Σc, πp+1|L̂+c

= χc, U
p+1|L̂+c

= UΣc , and g
p+1|L̂+c

= 1.

10: L̂ = L̂+ 2.
11: else
12: X

p+1|L̂+1
= Xp|`, πp+1|L̂+1

= πp|`, U
p+1|L̂+1

= Up|`, gp|` = 0, g
p+1|L̂+1

= 0,

and L̂ = L̂+ 1.
13: end if
14: else
15: X

p+1|L̂+1
= Xp|`, πp+1|L̂+1

= πp|`, U
p+1|L̂+1

= Up|`, gp+1|L̂+1
= 0, and

L̂ = L̂+ 1.
16: end if
17: end for
18: Lp+1 = L̂.

Output: A set of clusters {Xp+1|`}
Lp+1

`=1 with their corresponding indexes

{πp+1|`}
Lp+1

`=1 , orthonormal bases of the attributes {Up+1|`}
Lp+1

`=1 and {gp+1|`}
Lp+1

`=1 .

the cluster Xp|` is a leaf cluster and this cluster will not be divided any further. This

process is repeated until we reach a predefined maximum level in the hierarchy denoted

by P . The hierarchical subspace clustering algorithm based on CS-LRR model for any

level 2 ≤ p ≤ P − 1 is described in Algorithm 9, which we term HCS-LRR. It is worth

noting that the maximum number of leaf clusters is Lmax = 2P in this setting, which

we set as a key input parameter for Algorithm 8.

5.4 Attribute Visualization and Semantic Summarization

Given the learned subspaces at different levels of the hierarchical structure, our next

goal is to develop a method that helps an expert-in-the-loop to visualize the learned

78

human action attributes, give them semantic labels, and use the labeled attributes to

summarize long video sequences of human activities in terms of language at different

resolutions. As we have shown previously in Chapter 4, if frame-by-frame silhouette

features are used for learning the human action attributes, the attributes (subspaces)

can be easily visualized by reshaping the first few vectors of the orthonormal bases of

the subspaces into an image format and displaying the scaled versions of these images.

However, if other spatial or spatio-temporal features like HOG or MBH are used, the

attributes or the subspaces learned using HCS-LRR algorithm cannot be visualized

directly by just reshaping each dimension of the subspace in the feature domain.

5.4.1 Visualization of Attributes Using HOG Features

In the case of HOG features, inspired by HOGgles [101], we propose an algorithm

to visualize the learned attributes by mapping them back to the pixel domain. In

particular, we are interested in building a mapping between the pixel (image) space

and the HOG feature space and use this mapping to transform the bases of the HOG

feature subspaces into the image space and visualize the attributes. An algorithm

based on paired dictionary learning is used to develop this mapping. Concretely, let

XI = [xI1,x
I
2, . . . ,x

I
Np

] ∈ RmI×Np be the collection of Np vectorized patches of size

mI = nσ×nσ pixels from video frames, and XH = [xH1 ,x
H
2 , . . . ,x

H
Np

] ∈ RmH×Np be the

corresponding HOG feature vectors of the patches in XI . Here, the dimensionality of

the HOG features of each patch mH depends on the choice of the number of bins in the

histogram. For better visualization quality, we extract 18-bin contrast specific HOG

features. Hence, mH = 18 in this work. Then, two dictionaries, i.e., overcomplete bases

whose columns span the data space, DI ∈ RmI×K and DH ∈ RmH×K consisting of K

atoms are learned to represent image space and HOG feature space, respectively, such

that the sparse representation of any xIi ∈ XI in terms of DI should be the same as

that of xHi ∈ XH in terms of DH . Similar to [102], paired dictionary learning problem

79

can be considered as solving the following optimization problem:

min
DI ,DH ,{αi}

Np
i=1

Np∑
i=1

(
‖xIi −DIαi‖22 + ‖xHi −DHαi‖22

)
s.t. ‖αi‖1 ≤ ε,∀i, ‖dI,k‖2 ≤ 1, ‖dH,k‖2 ≤ 1,∀k, (5.19)

where αi denotes the sparse code with respect to xIi /xHi , and dI,k and dH,k denote the

k-th column of DI and DH , respectively.

Equation (5.19) can be simplified into a standard dictionary learning and sparse

coding problem and can be solved using the K-SVD algorithm [16]. Once we have the

collection of HOG feature vectors that lie on a subspace, we can find orthogonal basis of

the attribute (subspace) using eigenanalysis. However, these orthogonal basis vectors

are not guaranteed to be non-negative, which is the characteristic of HOG feature

vectors. Therefore, we use Non-negative Matrix Factorization (NMF) [103] to obtain

non-negative basis vectors (not necessarily orthogonal) of each subspace in the feature

domain. In order to obtain the corresponding pixel values of each of the basis vectors,

we split every basis vector into nb segments and each segment is of length mH (since

the entire basis vector is the concatenation of HOG features extracted from different

patches or blocks in a video frame). After this, we infer the sparse representation of

every small segment in the basis vector with respect to DH using Orthogonal Matching

Pursuit (OMP) [104], and use the resulting sparse code on DI to recover the pixel

values corresponding to that patch (which has mI values) in the frame. This procedure

is repeated for all the segments in the basis vector to obtain its image version for

visualization. Finally, the subspace can be labeled by visualizing the subspaces, similar

to what was done in the case of silhouette features.

5.4.2 Visualization of Attributes Using MBH Features

Unlike HOG features, it is not feasible to learn the mapping between the feature domain

and the pixel domain for MBH features because most of the patches in the pixel domain

will be mapped to zero in the MBH feature domain except the blocks in the action

interest region. Instead, we store an intermediate output, i.e., the magnitude of the

80

optical flow for visualization purpose. In other words, for every nτ consecutive optical

flow fields, we use the magnitude of the first optical flow field, which can be visualized

by an image, as the representative of all these nτ optical flow fields. Then for every nσ×

nσ × nτ spatio-temporal patch (block) of optical flow fields, from which MBH features

are extracted, we have one nσ×nσ optical flow (magnitude) patch associated with this

block. We use MBH features for clustering the data samples into different attributes.

Then, we use the optical flow frames corresponding to the data samples in each cluster

or attribute to visualize the subspace. The optical flow frames look very similar to the

silhouette features with non-zero elements present only in the location where there is

movement between the original video frames. Thus, the attributes (subspaces) can be

easily visualized by reshaping the first few columns of the orthonormal bases of the

subspaces, which are now represented by optical flow frames, into an image format.

5.5 Action Recognition Using Learned Subspaces

In this section, we describe the classification strategy to perform action recognition

using the hierarchical union of subspaces learned from Algorithm 9. We assume HCS-

LRR ends up with LP leaf subspaces and the orthonormal bases of these subspaces are

being represented by {UP |` ∈ Rm×dP |`}LP`=1. We begin our discussion for the classical

multi-class closed set recognition problem.

5.5.1 Closed Set Action Recognition Using k-NN

First, we develop a closed set action recognition method based on a k nearest neighbors

classifier. Let {Φi ∈ Rm×ξi}NTi=1 be a collection of NT labeled training samples, where

ξi denotes the number of feature vectors of the i-th training video sequence. Given

a test video sequence, whose feature vectors are denoted by Φ̂ = [φ̂1, φ̂2, . . . , φ̂ξ̂], we

compute the distance between the feature vectors of every training and test sequence

as follows. Let Φ = [φ1,φ2, . . . ,φξ] be any training sample (we remove subscript

i for ease of notation), we first apply Dynamic Time Warping (DTW) [91] to align

the two action sequences using the HOG/MBH feature vectors and remove redundant

81

segments at the start and the end of the path. We define P
Φ,Φ̂

= {φah , φ̂âh}
H
h=1 to

be the optimal alignment path with length H. Then we assign every vector in these

two sequences to the “closest leaf subspace” in SP |`’s and we use ψ ∈ Rξ and ψ̂ ∈ Rξ̂

to denote the vectors which contain the resulting subspace assignment indexes of Φ

and Φ̂, respectively. Based on the optimal alignment path P, the distance dF (Φ, Φ̂)

between these two action sequences is defined as the average of the normalized distances

between the leaf subspaces on the alignment path:

dF (Φ, Φ̂) =

∑H
h=1 du(SP |ψ(ah)

,S
P |ψ̂(âh)

)

H
, (5.20)

where du(SP |`,SP |̂̀) =

√
1−

tr(UT
P |`UP |̂̀UT

P |̂̀UP |`)

max(dP |`,dP |̂̀) [44]. Finally, we use the k nearest

neighbors (k-NN) classifier to recognize actions based on sequence-to-sequence dis-

tances, i.e., a test sequence is declared to be in the class for which the average distance

between the test sequence and the k nearest training sequences is the smallest.

5.5.2 Closed Set Action Recognition Using SVM

Next, we describe a closed set action recognition method based on a non-linear support

vector machine (SVM) classifier. Given a collection of NT labeled training samples,

denoted by {Φi ∈ Rm×ξi}NTi=1, we first assign every vector in the training samples to the

“closest leaf subspace” in SP |`’s, and we use {ψi ∈ Rξi}NTi=1 to denote the set of resulting

subspace transition vectors. One of the most widely used kernel functions in kernel

SVM is Gaussian radial basis function (RBF) kernel κ(ψi,ψj) = exp(−‖ψi−ψj‖
2
2

ν2
) [105],

where ν is the bandwidth parameter. However, for action recognition based on the

UoS model, the subspace transition vectors of different video sequences have different

lengths. Hence, we first use DTW [91] on the Grassmann manifold to compute the

distance between two action video sequences by only using subspace transition vectors

(without aligning the sequences using feature vectors) in Algorithm 7 described in

Chapter 4, which is denoted by dT (·, ·), and replace the Euclidean distance in the

Gaussian RBF kernel with DTW distance to obtain a Gaussian DTW kernel [106] as

κ(ψi,ψj) = exp(−d2T (ψi,ψj)

ν2
). Finally, we use both one-vs.-all and one-vs.-one approach

[105] for classification.

82

5.5.3 Open Set Action Recognition

We now consider the open set action recognition problem, where we assume to have

knowledge of B known actions in the training stage while new or never-before-seen ac-

tions are also encountered in the test stage [107–109]. We first describe our approach for

the open set problem based on the k nearest neighbors classifier. Similar to the solution

for the traditional multi-class closed set recognition problem described in Section 5.5.1,

we first compute distances between every pair of the training video sequences in each

class using (5.20). Then for every training sequence, we calculate the average distance

between this training sequence and its k nearest neighbors within the same class, and

we use ϕs to denote the maximum of all the averaged distances associated with all the

training sequences in the s-th class (s = 1, 2, . . . ,B). For a test sequence, we first apply

k-NN to assign a “tentative” class membership for this sequence, which is denoted by

ŝ, and we use ϕ̂ to denote the average distance between this test sequence and its k

nearest training sequences in the ŝ-th class. Finally, we declare this test sequence to

be in the ŝ-th class if ϕ̂ ≤ ϕŝς, where ς > 1 is a predefined thresholding parameter,

otherwise it is labeled as a “new” action class.

Next, we discuss our solution for the open set problem based on one-vs.-all SVM.

We first train B one-vs.-all SVM classifiers using training sequences as proposed in

Section 5.5.2. Then for a test sequence, we declare it to be in the ŝ-th class if (i)

the classifier associated with the ŝ-th action returns the maximum score among all the

classifiers and (ii) this maximum score is above zero; otherwise, the test sequence is

declared to be a “new” action.

5.6 Experimental Results

We assess our proposed method on five human action datasets. Our first objective is to

visually interpret and label the learned action attributes from HCS-LRR and to inves-

tigate the utility of the multi-resolution action attributes in semantic summarization

of long video sequences of complex human activities. The second goal is to evaluate

the performance of the learned action attributes in human action recognition/open set

83

(a) (b)

(c)

(d)

(e)

Figure 5.2: Sample frames from the five action recognition datasets used in our exper-
iments: (a) Weizmann dataset; (b) Ballet dataset; (c) UIUC dataset; (d) Keck dataset
and (e) UCF Sports dataset.

recognition and to compare our approach with several other union-of-subspaces learning

methods.

5.6.1 Datasets

The Weizmann dataset [90] consists of 90 low resolution (180 × 144) video sequences

from nine subjects. Each of the subjects performs 10 different actions: walk, run, jump,

gallop sideways, bend, one-hand wave, two-hands wave, jump in place, jumping jack,

and skip. The camera setting is fixed in this dataset. Sample frames are shown in

Fig. 5.2(a).

The Ballet dataset [40] contains 44 video sequences of 8 unique actions. The eight

actions performed by three subjects are left-to-right hand opening, right-to-left hand

opening, standing hand opening, leg swinging, jumping, turning, hopping, and standing

84

still. Fig. 5.2(b) presents the sample frames of each action. Each video may contain

several actions in this dataset. In total, there are 59 video clips, each containing only

one action.

The UIUC dataset [110] consists of 532 videos corresponding to eight subjects. In

total, there are 14 action classes, including walking, running, jumping, waving, jumping

jacks, clapping, jump from situp, raise one hand, stretching out, turning, sitting to

standing, crawling, pushing up and standing to sitting (refer to Fig. 5.2(c)). In this

work, we use the last section of the dataset, which contains 70 action sequences of all

14 actions performed by only one person and each action is performed five times.

The Keck gesture dataset [92] is collected using a camera with 640×480 resolution. It

consists of 14 different gestures, including turn left, turn right, attention left, attention

right, flap, stop left, stop right, stop both, attention both, start, go back, close distance,

speed up, and come near. Example frames of this dataset are shown in Fig. 5.2(d). Each

of these 14 actions is performed by three people. In each video sequence, the subject

repeats the same gesture three times. Therefore the total number of video sequences

with static background is 14× 3× 3 = 126.

The UCF Sports dataset [111] contains 150 video samples, which are collected from

various broadcast television channels such as BBC and ESPN. There are 10 action

classes included in this dataset: diving, golf swing, kicking, lifting, horse riding, running,

skateboarding, swinging-bench, swinging-side and walking, as shown in Fig. 5.2(e). In

this work, we exclude the videos belonging to horse riding and skateboarding actions

as there is little to no body movement in these two classes. We also exclude two videos

in the diving action since there are two subjects in each of those videos. This leaves us

with 124 video sequences of 8 actions.

5.6.2 Semantic Labeling and Summarization

In this section, we study the performance of HCS-LRR using HOG/MBH features for

semantic summarization of multiple actions in a long video sequence. We compare the

performance of HCS-LRR with several state-of-the-art subspace clustering algorithms

such as Low-Rank Representation (LRR) [42], Sparse Subspace Clustering (SSC) [13],

85

(a)
Stand/Clapping

(b) Knee bend (c)
Wave/Jumping

jack

(d) Stretching

out/Stand with

one hand up

(e) Upper posi-

tion of push up

(f) Lower posi-

tion of push up

(g)
Stand/Clapping

(h) Knee bend (i) Jumping

jack/Stand with

two hands out

(j) Wave

(k) Stand with

one hand up

(l) Stretching

out/Stand with

two hands up

(m) Upper posi-

tion of push up

(n) Lower posi-

tion of push up

(o)
Stand/Clapping

(p) Lower posi-

tion of push up

(q) Knee bend (r) Jumping
jack

(s) Upper posi-

tion of push up

(t) Wave

(u) Stand

with one hand

up/Stand

(v)
Wave/Jumping

jack

Figure 5.3: Visualization and interpretation of attributes learned using the frames from
UIUC dataset. (a)-(f) represent the subspaces at the 3rd level of HCS-LRR. (g)-(n)
represent the leaf subspaces (4th level) learned by HCS-LRR. (o)-(v) represent the
subspaces which are learned using SC-LRR.

86

Frame indexes
a
b
c
d
e
f

S
u

b
s
p

a
c
e

 i
n

d
e

x
e

s

Frame indexes
g
h
i
j

k
l

m
n

S
u

b
s
p

a
c
e

 i
n

d
e

x
e

s

Frame indexes
o
p
q
r
s
t

u
v

S
u

b
s
p

a
c
e

 i
n

d
e

x
e

s

Figure 5.4: Subspace transition of a long sequence using subspaces learned from the 3rd
level of HCS-LRR (top), the bottom (4th) level of HCS-LRR (middle), and SC-LRR
(bottom). The subspace assignment indexes correspond to the attributes in Fig. 5.3.

Structure-Constrained LRR (SC-LRR) [96], and Least Square Regression (LSR) [86].

The number of clusters L for these methods is set to be the same number of subspaces

generated by HCS-LRR at the bottom-most level. We first focus on UIUC dataset,

where we select the first four video sequences of clapping, jumping jacks, pushing up,

raise one hand, sitting to standing, standing to sitting, stretching out and waving

actions and use the HOG features of these video sequences to learn the attributes. To

extract HOG features, we use the bounding boxes provided by the authors of [110]

and crop all the sequences into 544 × 448 aligned frames; then we set nσ = 32 and

hence m = 2142. We apply HCS-LRR with parameters α = 1.6, β = 0.5, λ = 0.5,

P = 4, γ = 0.98, % = 0.01 and dmin = 3. HCS-LRR returns 6 subspaces at the

3rd level and LP = 8 leaf subspaces at the 4th level. In order to visualize these

subspaces, we use patches of size 32 × 32 and contrast-sensitive HOG features (18-

bin histogram) to learn the mapping between the HOG feature domain and the pixel

domain, and coupled dictionaries with K = 1000 atoms are learned using (5.19). The

first two dimensions of the bases of those subspaces in the 3rd and 4th level with

their semantic labels are shown in Fig. 5.3 (a)-(f) and Fig. 5.3 (g)-(n), respectively.

It can be seen that the attributes (a), (b), (e) and (f) from the 3rd level are leaf

87

nodes and hence, translate as they were to the 4th level. However, the attribute (c)

corresponding to Wave/Jumping jack at the 3rd level is further divided into attributes

(i) and (j) corresponding to Jumping jack/Stand with two hands out and One-hand wave

at the 4th level, respectively. Similarly, the attribute (d) corresponding to Stretching

out/Stand with one hand up at the 3rd level is further divided into attributes (k) and

(l) corresponding to Stand with one hand up and Stretching out/Stand with two hands

up in the bottom level, respectively. To demonstrate semantic summarization using

these learned attributes on a complex human activity, we select the last video sequence

of each of the aforementioned eight actions as the test sequences and create a long video

stream by concatenating these sequences. The semantic summary is illustrated as the

subspace transition of the frames in Fig. 5.4, where different actions in the sequence are

delimited by green lines. One can summarize the actions in terms of natural language by

using the attribute assignment indexes and the corresponding labels. We compare HCS-

LRR with other subspace clustering algorithms in terms of action recognition of the test

sequences by setting L = 8 for other approaches. SC-LRR also gives perfect recognition

accuracy based on k-NN classifier. To compare SC-LRR with our technique in terms

of semantic summarization, we apply SC-LRR on the training sequences to learn 8

attributes, and the corresponding labeled subspaces are illustrated in Fig. 5.3 (o)-(v).

However, compared to the attributes at the bottom level of HCS-LRR, we observe

that each of the attributes (u) and (v) learned using SC-LRR can have two totally

different interpretations. For instance, attribute (v) is a mixture of “one-hand wave”

and “jumping jack” action attributes. There are two advantages of using HCS-LRR

model over other techniques. First, the semantic summary of the video sequence can be

generated at different resolutions using attributes at different levels of the hierarchical

structure. Second, the summary generated using the attributes learned from HCS-LRR

is very clear because the actions are well-clustered into different attributes, but it is

difficult to generate a summary using the attributes learned from SC-LRR alone due

to confusion in the last two attributes. We provide the evidence of these advantages

in Fig. 5.4. In short, the semantic interpretation performance using HCS-LRR seems

better compared to SC-LRR.

88

(a) Arabesque (b) Arabesque (c) Développé (d) Arabesque (e) Pirouette
with working
leg straight

(f) À la sec-
onde

(g) Change-
ment

(h) Change-
ment

(i) Croisé de-
vant

(j) Arabesque

(k) À la sec-
onde

(l) Développé (m) Pirouette
with working
leg straight

(n) Arabesque

Figure 5.5: Visualization and interpretation of attributes learned using the frames
from Ballet dataset. (a)-(g) represent the leaf subspaces learned by HCS-LRR. (h)-(n)
represent the subspaces which are learned using SSC.

Feature indexes
a

b

c

d

e

f

g

S
u

b
s
p

a
c
e

 i
n

d
e

x
e

s

Feature indexes
h

i

j

k

l

m

n

S
u

b
s
p

a
c
e

 i
n

d
e

x
e

s

Figure 5.6: Subspace transition of a long sequence using subspaces learned from the
3rd level of HCS-LRR (top) and SSC (bottom). The subspace assignment indexes
correspond to the attributes in Fig. 5.5.

89

As another example, we experiment with Ballet dataset, where we select video clips

from standing hand opening, turning, hopping and standing still actions for learning

the attributes, with the number of sequences set to be 5, 5, 2 and 6, respectively.

We crop all the video frames into 288 × 288 pixels and extract MBH descriptors with

nσ = 32 and nτ = 3; thus m = 1458. Then we implement HCS-LRR with parameters

α = 0.8, β = 0.5, λ = 0.4, P = 3, γ = 0.98, % = 0.05 and dmin = 3. It has LP = 7

leaf subspaces at the 3rd level, and the first two basis vectors of each leaf subspace are

illustrated in Fig. 5.5 (a)-(g). Optical flow frames are used for visualization as explained

in Section 5.4.2. For testing purpose, we again choose the video clips belonging to the

aforementioned actions, with the number of clips set to be 2, 2, 1 and 4, respectively.

For these 9 test sequences from these four different actions, attributes learned using

SSC with L = 7 give perfect (100%) action recognition performance when using k-NN

classifier. The subspaces learned using SSC are shown in Fig. 5.5 (h)-(n). We again

concatenate all the test video clips to create a long video sequence and visualize the

subspace transition of the MBH features of the long sequence in Fig. 5.6. In the case

of HCS-LRR, it can be observed that the attribute (b) does not provide any additional

information than that is being provided by attribute (a). The attribute (i) learned using

SSC is not seen among the attributes at the bottom level of HCS-LRR. In addition,

there are no features of the test sequence that get assigned to attributes (a), (b) and

(n) due to the significant intraclass variations. In other words, SSC seems to offer

better summarization performance than HCS-LRR. However, the caveat here is that

in practice, the number of subspaces or attributes is not known a priori for SSC, while

HCS-LRR algorithm can automatically give an estimate of L.

5.6.3 Action Recognition

To quantify the discriminative power of the subspaces learned from HCS-LRR, we also

perform human action recognition using the action attributes learned by our proposed

method. We again compare the performance of HCS-LRR with LRR [42], SSC [13], SC-

LRR [96], and LSR [86]. Different from the experiments in Section 5.6.2, the number of

clusters L for these algorithms is now set (i) to be the same number of leaf subspaces

90

generated by HCS-LRR (which is denoted by 〈Algorithm〉-LP) and (ii) to be the same

as the number of actions in the training data (which is denoted by 〈Algorithm〉-B).

For all these methods, including HCS-LRR, we first tune the parameters for clustering

to achieve their best recognition performance based on k-NN classifier. Once the at-

tributes are learned using these parameters, we further tune the parameters for SVM

classifiers to obtain their best recognition performance. We simply fix γ = 0.98 for all

the experiments. It should be noted that “SVM/ova” and “SVM/ovo” in Table 5.1

stand for “one-vs.-all SVM” and “one-vs.-one SVM,” respectively.

Closed Set Recognition

In this subsection, we carry out the closed set action recognition experiments on the five

datasets described in Section 5.6.1. We begin our experiments on Weizmann dataset,

where we use both HOG and MBH features to learn the attributes and evaluate all the

subspace/attribute learning approaches based on a leave-one-subject-out experiment.

We crop all the sequences into 88× 64 aligned frames and HOG features are extracted

with blocks of size nσ = 8, resulting in m = 792. Then we perform HCS-LRR with

parameters α = 1.2, β = 0.8, λ = 0.8, P = 5, % = 0.01 and dmin = 5, in which

setting it returns LP = 24 leaf subspaces for final attributes. As shown in Table 5.1,

our method significantly outperforms other subspace clustering approaches for all the

classifiers. To be specific, the lowest error is achieved by HCS-LRR when used with

one-vs.-one SVM classifier and the resulting recognition accuracy is 95.56%. Similarly,

we crop all the optical flow fields into 88 × 64 images and extract MBH features with

nσ = 8 and nτ = 3; hence m = 1584. We apply HCS-LRR with parameters α = 0.4,

β = 0.7, λ = 0.4, P = 5, % = 0.01 and dmin = 12, obtaining LP = 23 final subspaces.

We can see from Table 5.1 that for a fixed classifier, the recognition accuracy of all the

approaches is close to each other for 23 clusters. Our algorithm achieves the highest

classification accuracy among all the methods for k-NN classifier and one-vs.-all SVM

classifier. When using one-vs.-one SVM classifier, LRR-LP outperforms others and

HCS-LRR is only 2.2% (corresponds to 2 samples) behind LRR-LP . The main reason

for k-NN classifier outperforming SVM classifiers is that the original feature vectors

91

are used for aligning the training and test sequences in the case of k-NN classification,

and one can get perfect alignment of the video sequences using MBH features on clean

datasets such as Weizmann dataset. However, the SVM classifiers only use subspace

transition vectors instead of using the original feature vectors for alignment of the

sequences via the DTW kernel, which may degrade the recognition performance.

92

T
ab

le
5.

1:
C

lo
se

d
S

et
A

ct
io

n
R

ec
og

n
it

io
n

R
es

u
lt

s
(%

)

D
at

as
et

F
ea

tu
re

C
la

ss
ifi

er
S

u
b

sp
ac

e
cl

u
st

er
in

g
m

et
h

o
d

H
C

S
-L

R
R

L
R

R
-L
P

L
R

R
-B

S
S

C
-L
P

S
S

C
-B

S
C

-L
R

R
-L
P

S
C

-L
R

R
-B

L
S

R
-L
P

L
S

R
-B

W
ei

zm
an

n

H
O

G
k
-N

N
9
0
.0

0
73

.3
3

67
.7

8
58

.8
9

52
.2

2
76

.6
7

6
6
.6

7
6
7
.7

8
6
7
.7

8
S

V
M

/o
va

9
2
.2

2
65

.5
6

52
.2

2
58

.8
9

48
.8

9
64

.4
4

6
3
.3

3
5
8
.8

9
6
5
.5

6
S

V
M

/o
vo

9
5
.5

6
82

.2
2

66
.6

7
64

.4
4

51
.1

1
68

.8
9

6
8
.8

9
7
1
.1

1
7
2
.2

2

M
B

H
k
-N

N
9
1
.1

1
88

.8
9

66
.6

7
86

.6
7

65
.5

6
90

.0
0

7
2
.2

2
9
0
.0

0
7
3
.3

3
S

V
M

/o
va

8
7
.7

8
85

.5
6

64
.4

4
85

.5
6

64
.4

4
81

.1
1

6
8
.8

9
8
6
.6

7
7
1
.1

1
S

V
M

/o
vo

85
.5

6
8
7
.7

8
66

.6
7

84
.4

4
61

.1
1

81
.1

1
6
6
.6

7
8
5
.5

6
7
1
.1

1

B
al

le
t

H
O

G
k
-N

N
7
1
.1

9
54

.2
4

32
.2

0
52

.5
4

38
.9

8
45

.7
6

4
9
.1

5
4
0
.6

8
4
5
.7

6
S

V
M

/o
va

6
7
.8

0
59

.3
2

30
.5

1
6
7
.8

0
38

.9
8

66
.1

0
4
2
.3

7
5
4
.2

4
6
1
.0

2
S

V
M

/o
vo

62
.7

1
62

.7
1

52
.5

4
6
4
.4

1
42

.3
7

6
4
.4

1
5
7
.6

3
5
4
.2

4
6
1
.0

2

M
B

H
k
-N

N
6
9
.4

9
61

.0
2

54
.2

4
57

.6
3

50
.8

5
57

.6
3

5
4
.2

4
6
1
.0

2
5
2
.5

4
S

V
M

/o
va

7
1
.1

9
69

.4
9

61
.0

2
54

.2
4

20
.3

4
61

.0
2

6
2
.7

1
6
7
.8

0
6
7
.8

0
S

V
M

/o
vo

6
9
.4

9
67

.8
0

61
.0

2
45

.7
6

44
.0

7
67

.8
0

6
1
.0

2
6
2
.7

1
6
7
.8

0

U
IU

C

H
O

G
k
-N

N
1
0
0

94
.2

9
98

.5
7

98
.5

7
85

.7
1

1
0
0

9
5
.7

1
9
8
.5

7
9
5
.7

1
S

V
M

/o
va

1
0
0

77
.1

4
91

.4
3

98
.5

7
81

.4
3

1
0
0

9
0
.0

0
1
0
0

9
1
.4

3
S

V
M

/o
vo

1
0
0

92
.8

6
98

.5
7

1
0
0

78
.5

7
1
0
0

9
1
.4

3
1
0
0

8
5
.7

1

M
B

H
k
-N

N
1
0
0

1
0
0

98
.5

7
1
0
0

98
.5

7
1
0
0

8
2
.8

6
1
0
0

9
8
.5

7
S

V
M

/o
va

1
0
0

1
0
0

95
.7

1
1
0
0

1
0
0

1
0
0

7
8
.5

7
1
0
0

1
0
0

S
V

M
/o

vo
1
0
0

1
0
0

95
.7

1
1
0
0

1
0
0

1
0
0

7
7
.1

4
1
0
0

1
0
0

K
ec

k
M

B
H

k
-N

N
8
8
.1

0
83

.3
3

78
.5

7
79

.3
7

83
.3

3
80

.1
6

8
0
.9

5
7
6
.1

9
7
0
.6

3
S

V
M

/o
va

8
7
.3

0
76

.9
8

66
.6

7
74

.6
0

71
.4

3
79

.3
7

8
0
.1

6
5
7
.1

4
6
1
.1

1
S

V
M

/o
vo

9
0
.4

8
76

.9
8

74
.6

0
78

.5
7

73
.8

1
84

.9
2

8
4
.1

3
7
0
.6

3
6
9
.0

5

U
C

F
M

B
H

k
-N

N
5
7
.2

6
50

.8
1

47
.5

8
56

.4
5

47
.5

8
45

.9
7

3
8
.7

1
5
5
.6

5
4
3
.5

5
S

V
M

/o
va

66
.1

3
6
7
.7

4
60

.4
8

66
.1

3
54

.8
4

64
.5

2
5
0
.8

1
6
4
.5

2
5
4
.0

3
S

V
M

/o
vo

7
5
.8

1
75

.0
0

57
.2

6
7
5
.8

1
53

.2
3

73
.3

9
4
5
.1

6
6
8
.5

5
5
0
.0

0

93

For Ballet dataset, we crop all the video frames into 288 × 288 pixels and extract

HOG descriptor of every frame with nσ = 32; hence m = 729. Since there is no

significant motion between consecutive frames, instead of using HOG features of each

frame separately, we take the sum of the HOG features of two adjacent frames at a

time and the sum is used as the feature of two adjacent frames. We perform HCS-LRR

with parameters α = 1.5, β = 0.2, λ = 2.2, P = 4, % = 0.05 and dmin = 3. The

number of subspaces returned by HCS-LRR at the finest scale is LP = 11. We evaluate

the subspace learning approaches using the leave-one-sequence-out scheme. The results

presented in Table 5.1 show that the proposed algorithm generates the lowest error

rates for k-NN and one-vs.-all SVM classifiers. Both SSC-LP and SC-LRR-LP perform

the best for one-vs.-one SVM classifier, and our method is only 1 sample lower than

these two approaches. After extracting the MBH descriptors with the same parameters

as in Section 5.6.2, we set α = 0.6, β = 0.2, λ = 0.2, P = 4, % = 0.05 and dmin = 3 for

HCS-LRR, which gives us LP = 9 leaf subspaces. The results are listed in Table 5.1,

from which we make the conclusion that by representing the human actions using the

attributes learned by HCS-LRR, we are able to recognize the actions at a superior rate

compared to other techniques.

Next, we evaluate our approach on UIUC dataset, where we again use both HOG

and MBH features and conduct leave-one-sequence-out experiments. To extract HOG

features, we crop all the sequences into 544×448 aligned frames by using the bounding

boxes provided by the authors of [110], and follow the same parameter setting as in

Section 5.6.2. We perform HCS-LRR with parameters α = 1, β = 0.2, λ = 0.1, P = 5,

% = 0.01 and dmin = 3, in which case it returns LP = 18 leaf subspaces. We crop all the

optical flow fields and the action interest region also has 544 × 448 pixels, then MBH

features are extracted with nσ = 32 and nτ = 2; therefore m = 4284 in this setting. We

set α = 0.2, β = 0.1, λ = 0.1, P = 5, % = 0.01 and dmin = 5 for HCS-LRR and finally

there are LP = 26 subspaces at the bottom-most level. The recognition accuracy for

all the methods is reported in Table 5.1. As Table 5.1 shows, both our method and

SC-LRR-LP obtain 100% recognition accuracy for both HOG and MBH features. In

general, using the number of clusters that is automatically generated from HCS-LRR

94

will improve the performance for almost all the methods.

To evaluate different methods on Keck dataset, we employ the leave-one-person-out

cross validation protocol. We only use MBH features to learn the attributes on this

dataset since the background of the aligned sequences is dynamic. We crop all the

optical flow fields into 288 × 288 images and extract MBH features with nσ = 32 and

nτ = 3, thereby resulting in m = 1458. We implement HCS-LRR with parameters

α = 0.1, β = 0.1, λ = 0.2, P = 5, % = 0.01 and dmin = 5. The number of leaf attributes

returned by HCS-LRR is LP = 28. The classification results are summarized in Ta-

ble 5.1. Our approach shows noticeable improvement in accuracy compared to other

state-of-the-art subspace clustering algorithms. The recognition rate reaches 90.48% for

HCS-LRR coupled with one-vs.-one SVM classifier, which outperforms SC-LRR-LP , the

second best, by 5.5%.

Finally, we examine the performance of different methods on UCF Sports dataset.

We align the sequences by applying the method proposed in [112] and subtract the

background using the approach described in [113], then we use the bounding boxes

provided by the authors of [111] to crop all the sequences and reshape them into 416×256

frames. Due to the dynamic property of the background, we again only use MBH

features to learn the attributes, where the MBH features are extracted with nσ = 32

and nτ = 3; so that m = 1872. We investigate the performance of the subspace

clustering approaches via the leave-one-sequence-out scheme. We use the following

parameters for HCS-LRR: α = 1.2, β = 0.1, λ = 0.3, P = 5, % = 0.005 and dmin = 3.

Finally, the output LP from HCS-LRR is 26 in this setting. Table 5.1 presents the

recognition results for all the methods. For k-NN classifier, our algorithm achieves the

highest classification accuracy, with 1 sample higher than the second best, SSC-LP .

The classification performance improves drastically when using SVM classifiers. For

one-vs.-one SVM classifier, both HCS-LRR and SSC-LP achieve 75.81% classification

accuracy, but HCS-LRR method has an additional advantage that it can generate the

number of clusters automatically without any prior knowledge of the data.

95

Table 5.2: Open Set Action Recognition Results (%)
Dataset Classifier Subspace clustering method

UIUC

k-NN

HCS-LRR LRR-LP LRR-B SSC-LP SSC-B
100 90.91 86.36 90.91 86.36

SC-LRR-LP SC-LRR-B LSR-LP LSR-B
95.45 95.45 90.91 86.36

one-vs.-all SVM

HCS-LRR LRR-LP LRR-B SSC-LP SSC-B
100 95.45 90.91 90.91 90.91

SC-LRR-LP SC-LRR-B LSR-LP LSR-B
100 86.36 95.45 90.91

Keck

k-NN

HCS-LRR LRR-LP LRR-B SSC-LP SSC-B
89.58 79.17 77.08 79.17 75.00

SC-LRR-LP SC-LRR-B LSR-LP LSR-B
72.92 81.25 77.08 75.00

one-vs.-all SVM

HCS-LRR LRR-LP LRR-B SSC-LP SSC-B
89.58 83.33 85.42 79.17 77.08

SC-LRR-LP SC-LRR-B LSR-LP LSR-B
85.42 87.50 81.25 81.25

Open Set Recognition

One important advantage of learning human action attributes instead of representing

an entire action as a single feature vector is that an action that is absent in the training

stage can be identified as a new action class if it can be represented by the attributes

learned from other actions in the training data. Here, we show the effectiveness of

HCS-LRR for the open set action recognition problem. Consider a collection of Nk test

samples from B known classes and Nu test samples from U unknown classes, which are

denoted by {(Φi, ϑi)}Nk+Nu
i=1 , where ϑi ∈ {1, 2, . . . ,B} for i ≤ Nk and ϑi = new for

i > Nk. We can measure the performance of our algorithm under the classification rule

C as εo =
∑Nk+Nu
i=1 [C(Φi)=ϑi]

Nk+Nu
.

UIUC dataset is used for the first set of experiments. From the 70 sequences in

the dataset, we select the first four video sequences of all classes except “walking” and

“standing to sitting” actions for training and the remaining 22 sequences for testing;

thus B = 12, U = 2, Nk = 12 and Nu = 10. We extract HOG features of the training

sequences as in Section 5.6.3 and perform HCS-LRR with parameters α = 0.8, β = 0.1,

λ = 0.4, P = 5, % = 0.01 and dmin = 3, which in turn provides us with LP = 19 leaf

subspaces. We can observe from Table 5.2 that HCS-LRR achieves perfect accuracy for

96

both classifiers. Moreover, the recognition accuracy is improved when we set L = 19

instead of 12 for other subspace clustering approaches.

The second set of experiments are performed on Keck dataset. We select the video

sequences associated with the last two subjects from all classes except “come near”

action for training and the remaining 48 sequences for testing; hence B = 13, U = 1,

Nk = 39 and Nu = 9. We extract MBH features of the training sequences as in

Section 5.6.3 and set α = 0.1, β = 0.9, λ = 0.8, P = 5, % = 0.01 and dmin = 5 for

HCS-LRR. There are LP = 18 attributes learned from HCS-LRR at the bottom level.

Table 5.2 summarizes the εo’s of all the algorithms for both classifiers. As can be seen,

HCS-LRR outperforms other subspace clustering algorithms, which again proves the

effectiveness of our method. In addition, the performance of other subspace clustering

algorithms can be significantly enhanced when we use one-vs.-all SVM for recognition.

97

Chapter 6

Conclusion and Future Work

In this thesis, we considered the problem of learning the geometric structure of high-

dimensional data. We proposed novel geometric models and algorithms based on the

union-of-subspaces model to learn the geometry efficiently.

In the first part of the thesis, we proposed a novel extension of the canonical union-of-

subspaces model, termed the metric-constrained union-of-subspaces (MC-UoS) model.

We first proposed several efficient iterative approaches for learning of an MC-UoS in

the ambient space using both complete and missing data. Moreover, these methods

were extended to the case of a higher-dimensional feature space such that one can deal

with MC-UoS learning problem in the feature space using complete and missing data.

Experiments on both synthetic and real data showed the effectiveness of our algorithms

and their superiority over the state-of-the-art union-of-subspaces learning algorithms.

Our future work includes estimation of the number and dimension of the subspaces

from the training data for MC-UoS learning in the feature space.

In the second part of the thesis, we put forth different models for learning the

human action attributes from video data based on UoS model. We first proposed

Hierarchical Sparse Subspace Clustering (HSSC) to learn the attributes, which does

not need the number of clusters to be specified and does not require labeled training

data to learn human action attributes, while avoiding generation of trivial attributes.

Then we proposed an extension of the canonical low-rank representation (LRR), termed

the clustering-aware structure-constrained low-rank representation (CS-LRR) model,

for unsupervised data-driven human action attribute learning. The proposed CS-LRR

model incorporates spectral clustering into the learning framework, which helps spectral

clustering achieve the best clustering results. Moreover, we introduced a hierarchical

98

subspace clustering approach based on CS-LRR model, called HCS-LRR model, which

again does not need the number of clusters to be specified a priori. Experimental

results on real video datasets showed the effectiveness of our clustering approach and

its superiority over the state-of-the-art union-of-subspaces learning algorithms for its

utility in semantic summarization of complex human activities at multiple resolutions as

well as human action recognition. One of the interesting avenues of future work involves

the development of a robust, spatio-temporal hierarchical tensor-UoS framework for

learning of semantically interpretable human action attributes and recognition of human

activities from multimodal video data.

99

References

[1] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents,” J. Educ. Psych., vol. 24, pp. 417–441, 498–520, 1933.

[2] T. F. Cox and M. A. A. Cox, Multidimensional scaling. Chapman & Hall, 2000.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[4] M. Elad, R. Goldenberg, and R. Kimmel, “Low bit-rate compression of facial
images,” IEEE Trans. Image Process., vol. 16, no. 9, pp. 2379–2383, 2007.

[5] R. G. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional models for
dimensionality reduction and signal recovery: A geometric perspective,” Proc.
IEEE, vol. 98, no. 6, pp. 959–971, 2010.

[6] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch,
“Kernel PCA and de-noising in feature spaces,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 1998, pp. 536–542.

[7] M. Elad and M. Aharon, “Image denoising via sparse and redundant representa-
tions over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp.
3736–3745, 2006.

[8] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 1991, pp. 586–591.

[9] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image retrieval,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 831–836, 1996.

[10] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recogni-
tion via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 2, pp. 210–227, 2009.

[11] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804, 2012.

[12] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the presence
of outlying, incomplete, or corrupted trajectories,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 10, pp. 1832–1845, 2010.

[13] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and
applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–
2781, 2013.

[14] H. H. Harman, Modern factor analysis. University of Chicago Press, 1976.

100

[15] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5, pp. 1299–1319, 1998.

[16] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process.,
vol. 54, no. 11, pp. 4311–4322, 2006.

[17] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union
of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302–5316, 2009.

[18] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of
JPEG-2000,” in Proc. IEEE Data Compression Conf. (DCC), 2000, pp. 523–541.

[19] J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image
denoising,” IEEE Trans. Image Process., vol. 11, no. 6, pp. 670–684, 2002.

[20] T. Zhang, A. Szlam, and G. Lerman, “Median K-flats for hybrid linear modeling
with many outliers,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2009,
pp. 234–241.

[21] B. V. Gowreesunker and A. H. Tewfik, “Learning sparse representation using
iterative subspace identification,” IEEE Trans. Signal Process., vol. 58, no. 6, pp.
3055–3065, 2010.

[22] L. Balzano, A. Szlam, B. Recht, and R. Nowak, “K-subspaces with missing data,”
in Proc. IEEE Statistical Signal Processing Workshop (SSP), 2012, pp. 612–615.

[23] W. Hong, J. Wright, K. Huang, and Y. Ma, “Multiscale hybrid linear models
for lossy image representation,” IEEE Trans. Image Process., vol. 15, no. 12, pp.
3655–3671, 2006.

[24] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
Philos. Mag., vol. 2, no. 6, pp. 559–572, 1901.

[25] K. Fukunaga, Introduction to statistical pattern recognition. Academic Press,
1990.

[26] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Kernel principal component anal-
ysis,” Advances in kernel methods: support vector learning, pp. 327–352, 1999.

[27] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation,” Neural Comput., vol. 15, no. 6, pp. 1373–1396, 2003.

[28] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf, “A kernel view of the dimensionality
reduction of manifolds,” in Proc. Int. Conf. Mach. Learn. (ICML), 2004, pp. 47–
54.

[29] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis
(GPCA),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12, pp. 1945–
1959, 2005.

[30] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Dictionary optimization for
block-sparse representations,” IEEE Trans. Signal Process., vol. 60, no. 5, pp.
2386–2395, 2012.

101

[31] M. Soltanolkotabi and E. J. Candès, “A geometric analysis of subspace clustering
with outliers,” Ann. Stat., vol. 40, no. 4, pp. 2195–2238, 2012.

[32] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature se-
lection for subspace clustering,” J. Mach. Learn. Res., vol. 14, pp. 2487–2517,
2013.

[33] R. Heckel and H. Bölcskei, “Robust subspace clustering via thresholding,”
arXiv:1307.4891, 2013.

[34] M. Soltanolkotabi, E. Elhamifar, and E. J. Candès, “Robust subspace clustering,”
Ann. Stat., vol. 42, no. 2, pp. 669–699, 2014.

[35] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling via local
best-fit flats,” Int. J. Comput. Vis., vol. 100, no. 3, pp. 217–240, 2012.

[36] Z. Ghahramani and G. E. Hinton, “The EM algorithm for mixtures of factor
analyzers,” CRG-TR-96-1, University of Toronto, Tech. Rep., 1997.

[37] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse rep-
resentation for computer vision and pattern recognition,” Proc. IEEE, vol. 98,
no. 6, pp. 1031–1044, 2010.

[38] Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, and M. Shah, “High-level event recog-
nition in unconstrained videos,” Int. J. Multimed. Inf. Retr., vol. 2, no. 2, pp.
73–101, 2013.

[39] J. Liu, B. Kuipers, and S. Savarese, “Recognizing human actions by attributes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2011, pp. 3337–3344.

[40] A. Fathi and G. Mori, “Action recognition by learning mid-level motion features,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2008, pp. 1–8.

[41] J. Liu, Y. Yang, and M. Shah, “Learning semantic visual vocabularies using
diffusion distance,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2009, pp. 461–468.

[42] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace
structures by low-rank representation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 171–184, 2013.

[43] Y. M. Lu and M. N. Do, “A theory for sampling signals from a union of subspaces,”
IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2334–2345, 2008.

[44] L. Wang, X. Wang, and J. Feng, “Subspace distance analysis with application to
adaptive Bayesian algorithm for face recognition,” Pattern Recognition, vol. 39,
no. 3, pp. 456–464, 2006.

[45] X. Sun, L. Wang, and J. Feng, “Further results on the subspace distance,” Pattern
Recognition, vol. 40, no. 1, pp. 328–329, 2007.

[46] L. Wolf and A. Shashua, “Kernel principal angles for classification machines with
applications to image sequence interpretation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2003, pp. 635–640.

102

[47] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 1995, pp.
1137–1143.

[48] K. Pelckmans, J. De Brabanter, J. A. K. Suykens, and B. De Moor, “Convex
clustering shrinkage,” in Proc. Statist. Optim. Cluster. Workshop (PASCAL),
2005.

[49] K.-C. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face recogni-
tion under variable lighting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 5, pp. 684–698, 2005.

[50] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear subspaces,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2, pp. 218–233, 2003.

[51] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[52] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating optimization,”
Neural Parallel Sci. Comput., vol. 11, no. 4, pp. 351–368, 2003.

[53] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering appearances
of objects under varying illumination conditions,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2003, pp. 11–18.

[54] E. Kokiopoulou, J. Chen, and Y. Saad, “Trace optimization and eigenproblems
in dimension reduction methods,” Numer. Linear Algebra Appl., vol. 18, no. 3,
pp. 565–602, 2011.

[55] E. Levina and P. J. Bickel, “Maximum likelihood estimation of intrinsic dimen-
sion,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2004, pp. 777–784.

[56] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445, 2008.

[57] S. Kritchman and B. Nadler, “Determining the number of components in a factor
model from limited noisy data,” Chemometr. Intell. Lab. Syst., vol. 94, no. 1, pp.
19–32, 2008.

[58] P. O. Perry and P. J. Wolfe, “Minimax rank estimation for subspace tracking,”
IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 504–513, 2010.

[59] L. Balzano, B. Recht, and R. Nowak, “High-dimensional matched subspace de-
tection when data are missing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2010, pp. 1638–1642.

[60] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with
orthogonality constraints,” SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 303–
353, 1998.

[61] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for nondiffer-
entiable optimization,” SIAM J. Optim., vol. 12, no. 1, pp. 109–138, 2001.

103

[62] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking of sub-
spaces from highly incomplete information,” in Proc. Allerton Conf. Communi-
cation, Control, and Computing, 2010, pp. 704–711.

[63] T. Wu and W. U. Bajwa, “Revisiting robustness of the union-of-subspaces model
for data-adaptive learning of nonlinear signal models,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2014, pp. 3390–3394.

[64] J. T.-Y. Kwok and I. W.-H. Tsang, “The pre-image problem in kernel methods,”
IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1517–1525, 2004.

[65] B. Eriksson, L. Balzano, and R. Nowak, “High-rank matrix completion,” in Proc.
Int. Conf. Artificial Intelligence and Statistics (AISTATS), 2012, pp. 373–381.

[66] C. McDiarmid, “On the method of bounded differences,” Surveys in Combina-
torics, vol. 141, pp. 148–188, 1989.

[67] C. J. C. Burges, “Simplified support vector decision rules,” in Proc. Int. Conf.
Mach. Learn. (ICML), 1996, pp. 71–77.

[68] Y. Rathi, S. Dambreville, and A. Tannenbaum, “Statistical shape analysis using
kernel PCA,” in Proc. SPIE, vol. 6064, 2006.

[69] J. J. Hull, “A database for handwritten text recognition research,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554, 1994.

[70] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, 1982.

[71] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2001, pp. 849–856.

[72] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic
duality, and the SMO algorithm,” in Proc. Int. Conf. Mach. Learn. (ICML), 2004,
pp. 41–48.

[73] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan,
“Learning the kernel matrix with semidefinite programming,” J. Mach. Learn.
Res., vol. 5, pp. 27–72, 2004.

[74] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning non-linear combinations
of kernels,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2009, pp. 396–404.

[75] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “`p-norm multiple kernel learn-
ing,” J. Mach. Learn. Res., vol. 12, pp. 953–997, 2011.

[76] W. Niu, J. Long, D. Han, and Y.-F. Wang, “Human activity detection and recog-
nition for video surveillance,” in Proc. IEEE Int. Conf. Multimedia and Expo
(ICME), 2004, pp. 719–722.

[77] J. K. Aggarwal, M. S. Ryoo, and K. Kitani, “Frontiers of human activity analysis,”
Tutorials of Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011.

104

[78] M. S. Ryoo and L. Matthies, “First-person activity recognition: What are they
doing to me?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2013, pp. 2730–2737.

[79] Y. Zhu, N. M. Nayak, and A. K. Roy-Chowdhury, “Context-aware modeling and
recognition of activities in video,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2013, pp. 2491–2498.

[80] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on visual content-
based video indexing and retrieval,” IEEE Trans. Syst., Man, Cybern., Syst Part
C, vol. 41, no. 6, pp. 797–819, 2011.

[81] U. Akdemir, P. Turaga, and R. Chellappa, “An ontology based approach for
activity recognition from video,” in Proc. 16th ACM Int. Conf. Multimedia, 2008,
pp. 709–712.

[82] N. D. Rodŕıguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores, “A survey on
ontologies for human behavior recognition,” ACM Comput. Surv., vol. 46, no. 4,
pp. 43:1–43:33, 2014.

[83] D. Ramanan and D. A. Forsyth, “Automatic annotation of everyday movements,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2003, pp. 1547–1554.

[84] J. Liu and M. Shah, “Learning human actions via information maximization,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2008, pp. 1–8.

[85] J. Yuan, M. Yang, and Y. Wu, “Mining discriminative co-occurrence patterns
for visual recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2011, pp. 2777–2784.

[86] C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan, “Robust and efficient
subspace segmentation via least squares regression,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2012, pp. 347–360.

[87] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2005, pp. 886–893.

[88] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented histograms
of flow and appearance,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2006, pp.
428–441.

[89] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[90] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as space-
time shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp. 2247–
2253, 2007.

[91] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spo-
ken word recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26,
no. 1, pp. 43–49, 1978.

105

[92] Z. Lin, Z. Jiang, and L. S. Davis, “Recognizing actions by shape-motion prototype
trees,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2009, pp. 444–451.

[93] C.-C. Chen, M. S. Ryoo, and J. K. Aggarwal, “UT-Tower dataset: Aerial view
activity classification challenge,” 2010, http://cvrc.ece.utexas.edu/SDHA2010/
Aerial View Activity.html.

[94] L. Zhuang, S. Gao, J. Tang, J. Wang, Z. Lin, Y. Ma, and N. Yu, “Constructing
a nonnegative low-rank and sparse graph with data-adaptive features,” IEEE
Trans. Image Process., vol. 24, no. 11, pp. 3717–3728, 2015.

[95] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank represen-
tation,” in Proc. Int. Conf. Mach. Learn. (ICML), 2010, pp. 663–670.

[96] K. Tang, R. Liu, Z. Su, and J. Zhang, “Structure-constrained low-rank represen-
tation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12, pp. 2167–2179,
2014.

[97] H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 4238–4246.

[98] C.-G. Li and R. Vidal, “Structured sparse subspace clustering: A unified optimiza-
tion framework,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2015, pp. 277–286.

[99] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with adaptive
penalty for low-rank representation,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2011, pp. 612–620.

[100] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp. 1956–1982, 2010.

[101] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, “HOGgles: Visualizing
object detection features,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2013,
pp. 1–8.

[102] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861–2873,
2010.

[103] D. D. Lee and H. S. Seung, “Learning the parts of objects by nonnegative matrix
factorization,” Nature, vol. 401, pp. 788–791, 1999.

[104] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp.
4655–4666, 2007.

[105] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.

[106] S. Gudmundsson, T. P. Runarsson, and S. Sigurdsson, “Support vector machines
and dynamic time warping for time series,” in Proc. IEEE Int. Joint Conf. Neu.
Net. (IJCNN), 2008, pp. 2772–2776.

106

[107] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult, “Toward open set recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1757–1772,
2013.

[108] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition
using probability of inclusion,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014,
pp. 393–409.

[109] A. Bendale and T. Boult, “Towards open world recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 1893–1902.

[110] D. Tran and A. Sorokin, “Human activity recognition with metric learning,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2008, pp. 548–561.

[111] M. Rodriguez, J. Ahmed, and M. Shah, “Action MACH: A spatio-temporal maxi-
mum average correlation height filter for action recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2008, pp. 1–8.

[112] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting contiguous
outliers in the low-rank representation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 3, pp. 597–610, 2013.

[113] X. Ye, J. Yang, X. Sun, K. Li, C. Hou, and Y. Wang, “Foreground-background
separation from video clips via motion-assisted matrix restoration,” IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 11, pp. 1721–1734, 2015.

