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ABSTRACT OF THE DISSERTATION

Homogeneous solutions of stationary Navier-Stokes

equations with isolated singularities on the unit sphere.

By XUKAI YAN
Dissertation Director:

Yanyan Li

We classify all (—1)—homogeneous axisymmetric no-swirl solutions of incompressible
stationary Navier-Stokes equations in three dimension which are smooth on the unit
sphere minus the south and north poles. We establish existence and nonexistence
results of (-1)-homogeneous axisymmetric solutions with nonzero swirl emamnating
from axisymmetric no-swirl solutions. We also establish asymptotic expansions for
every (-1)-homogeneous axisymmetric solutions in a neighborhood of a singular point
on the unit sphere. This dissertation is based on my papers [4], [5] and [6] joint with

Li Li and Yanyan Li.
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Chapter 1

Introduction

Consider (—1)-homogeneous solutions of incompressible stationary Navier-Stokes Equa-
tions (NSE) in R3:
—Au+4u-Vu+Vp=0,
(1.1)
div u = 0.

The NSE is invariant under the scaling u(z) — Au(\z) and p(x) — \2p(Az), A > 0..
It is natural to study (—1)-homogeneous solutions, namely, solutions which are invariant
under this scaling.

In 1944, L.D. Landau discovered a 3-parameter family of explicit (—1)-homogeneous
solutions of stationary NSE in C°°(R3\ {0}). They are axisymmetric with no-swirl.
He arrived at these solutions, now called Landau solutions, using the following ansatz:
looking for solutions which are axisymmetric, no-swirl, and with two vanishing diagonal
components of the t ensor of momentum flow density. Tian and Xin proved in [16] that

all (—1)-homogeneous, axisymmetric nonzero solutions of the stationary NSE (L.1)) in

C%(R3\ {0}) are Landau solutions. Sverdk established the following result in 2006:

Theorem A ([15]) All (-1)-homogeneous nonzero solutions of in C?(R3\ {0})

are Landau solutions.

He also proved in the same paper that there is no nonzero (-1)-homogeneous solution
of the stationary NSE in C?(R™\ {0}) for n > 4. In dimension n = 2, he characterized

all such solutions satisfying a zero flux condition.

Instead of studying (-1)-homogeneous solutions smooth on S", we would like to

analyze (-1)-homogeneous solutions in R” with finite singularities on S"~!, as well as



(-1)-homogeneous solutions in half space R’} with finite singularities on S} and zero
velocity on OR’}. In this thesis, we focus on axisymmetric solutions of the problem in
R? which have exactly one or two singularities on the unit sphere S2.

In polar coordinates (r, 6, ¢), where r is the radial distance from the origin, 6 is the
angle between the radius vector and the positive xs-axis, and ¢ is the meridian angle

about the wz-axis. A vector field © can be written as

U = Ureyr + Ugey + Uges, (1.2)
where
sin 6 cos ¢ cos 0 cos ¢ —sing
er = | sinfsing |, € = | cosfsing |, €y =] cos¢
cos 6 —sinf 0

A vector field u is called axisymmetric if u,, ug and ug depend only on r and 6, and
is called no-swirl if ugy = 0.

If u is (-1)-homogeneous and p is (-2)-homogeneous, system (1) is a system of partial
differential equations of u|g2 and p|s2 on S2. For a (-1)-homogeneous and axisymmetric

solution, (u,p) depends only on @ in polar coordinates, and the system on S? takes the

form )
( d2u, du,
102 + (cot 6 — uyg) 70 +uf+u§+u§)+2p:0;
d 2 2
i(%—i-cot@ )—u(%—kco‘cﬁu)—O' |
d6" o o) T gg o=
d
Uy + 2 4 cot Oug = 0. (divergence free condition)

de
Since p is determined by u and its derivatives up to second order, in view of the first

line of , we often say that u is a solution of without mentioning p.

By the divergence free condition in , the radial component u, of the velocity u
is determined by ugy and its first derivative.

Our first result classifies all (-1)-homogeneous axisymmetric no-swirl solutions u of
in C%(S?\ {S}), where S denotes the south pole of S%. In this case ugs = 0, and

Uy, p can be determined by wug and its derivatives. So we only need to solve ug.



We introduce the following subsets of R?
1
J1:={(r,0) | T<2,0< 1(4 —-7)},

Jy:={(r,0) | T=2,0< %}, (1.4)

Jy:={(r,0) | T>2,0= %},

and J := Jy UJo U Js.

Theorem 1.0.1. For every (1,0) € J , there exists a unique ug := (ug)ro € C (S*\ {S})

such that
Ug

lim ugsind =7, lim —— =o, 1.5
P 6—0+ sin 0 (15)

and the corresponding (u,p) satisfies on S?\ {S}. Moreover, these are all axisym-

metric no-swirl solutions in C?(S?\ {S}).

The solutions ug are explicitly given by, with b:= |1 — Z|,

4
1 —cosf 2b(1 — 20 — b) ]
sind I=b- I+cosf, _, » (1o) €y
(1—2a+b)(T) +20—-1+b
Uy =
1 —cosf 2(1 — 20)
1 ) b )
sin 0 (1-20)In —1—5059_2
1+b6)(1—cosf
( )s(in9 ), (1,0) € Js.
(1.6)

By saying (u,p) corresponding to ug we mean that on S?, u, is determined by wuy
through the divergence free condition in (|1.3)), and p is determined by the first line in
(1.3) using ugy = 0, and then u and p are extended respectively to (-1)-homogeneous

and (-2)-homogeneous functions. Also, we often simply say that u satisfies (|1.1)) instead
of saying that (u,p) satisfies (|1.1)).

We use (ur,q, pro) to denote the vector-valued function corresponding to (ug)r,o-

In (1.6), {(up)ro|T = 0,0 € (—00,0) U (0,1)} are Landau solutions. They can also

be rewritten as
2sin 6

o= A+ cos@’

|A] > 1.



For an axisymmetric no-swirl solution (ur.q,pre) of (1.1)) in C>°(S?\ {S}), where
(ug)r,o is given by Theorem the linearized equation of (L.1) at (ur s, pr o) is

—Av+ure-Vo+v-Vur s+ Vg =0,

(1.7)
div v =0.
Define
0 0
a0 (0) = — / (200t t + (ug)ro)dts  bro(0) = — / (g,
2 2
and
o0z ) 0 0
U7l',o = ﬁe_a'r’”(e) ) Uz,a = 0 ) 7)73',0 = 0
0 _ .
0 g Jo ¢ oo Wsintdt o

Then {v; ,,v7,,0v2,} are linearly independent solutions of , in polar coordinates,
on S§?\ {S}.

{(ug)ro|(T,0) € J} is a 2-parameter family of axisymmetric no-swirl solutions of
in C?(S?\ {S}). In the following theorem, we prove the existence of a curve of
axisymmetric solutions with nonzero swirl in C?(S? \ {S}) emanating from (ug),, for

each (1,0) € J1 U JoU{JsN{2 < 7 < 3}}. We also prove the nonexistence of such

solutions for (7,0) € JsN {7 > 3}.

Theorem 1.0.2. Let K be a compact subset of one of the four sets Ji, Jo, JsN{2 < 7 <
3} and J3N {7 = 2}, then there exist 6 = §(K) > 0, and (u,p) € C°(K x (—4,68) x (S?\
{S})) such that for every (1,0, B) € K x(—6,6), (u,p)(1,0,8;-) € C(S*\{S}) satisfies
in R3\{(0,0,z3)|z3 < 0}, with nonzero swirl if 8 # 0, and || (sin HT”) (u(t,0,8)—
Ur )| oo (s2\(s3) — 0 as B — 0. Moreover, %u(r, a,58)|p=0 = v%a.

On the other hand, for (t,0) € J3N{r > 3}, there does not exist any sequence of
solutions {u'} of in C°°(S*\ {S}), with nonzero swirl, such that || (sin HT”) (u® —

uT’O')HLOO(SQ\{S}) — 0 as 1 — 0.

In the above theorem, (u,p) € C*°(S?\ {S}) is understood to have been extended
to R3\ {(0,0, x3]x3 < 0)} so that u is (-1)-homogeneous and p is (-2)-homogeneous. We

use this convention throughout the paper unless otherwise stated.



Remark 1.0.1. As far as we know, all previously known (-1)-homogeneous solutions
u € C®(S2\{S}H\C>(S?) of satisfying lim sup,,_, g dist(y, SYNu(y) < oo for some
N > 0 are azisymmetric with no swirl. The existence of such solutions with nonzero
swirl are given by Theorem [1.0.2. A more detailed and stronger version of Theorem
1.0.2, including a uniqueness result, is given by Theorem [3.2.1, Theorem and
Theorem [3.2.3| in Chapter 3.

In this thesis we work with new functions and a different variable:
x:=cosl, U,:=u,sinf, U:=ugsinf, Uy :=ugsinb. (1.8)

In particular, z = 1 and —1 correspond to the north and south poles N and S of S?
respectively, while —1 < 2 < 1 corresponds to S? \ {S, N}. We will use ” ’ 7 to denote

differentiation in z.

Our next two theorems are on the asymptotic behavior of a solution u in a punctured
ball Bs(S) \ {S} of §2, § > 0.

In the next two theorems, we will state that U = (Up,Uy) is a solution of ,
meaning that the u determined by U through and , extended as a (-1)-
homogeneous function, satisfies .

Theorem 1.0.3. For § > 0, let Uy € C*(—1,-1+ 6], Uy € C*(—1,—-1+ 4], and
U = (Up,Uyp) be an azisymmetric solution of . Then

(i) Up(—1) :=lim,_, 1+ Ug(x) exists and is finite.

(ii) lim, , 1+(1 4+ z)Uj(z) = 0.

(i1i) If Ug(—1) < 2 and Uy(—1) # 0, denote ag = 1 — w, then there exist some

constants ai,az such that for every e > 0,
Ug(x) = Up(—1) + a1(1 + 2)* + as(1 +z) + O((1 +2)**° ) + O((1 + 2)*).
If Up(—1) = 0, then there exist some constants a1, az such that for every e > 0,

Up(z) = ar(1 + ) In(1 + z) + ag(1 + ) + O((1 + x)*7°).



If Up(—1) = 2, then, for every € > 0, either

4

Uolw) =2+ In(1+z)

+O((In(1 + ))>),

or

Up(z) = 2+ O((1 + 2)'°).

If 2 < Up(—1) < 3, then there exist constants ai,as such that for every e >0,

Up(x) = Up(—1) + ar (1 + 2)*" 0D - ag(1 + 2) + O((1 4 2)*E Vo)),

Recall that we denote ag = 1 — %

Theorem 1.0.4. For § > 0, let Uy € CY(—1,-1+6), Uy € C*(—1,—1+ ), and
U = (Up,Uy) be an azisymmetric solution of ([L.1]). Then
(1) If Ug(—1) < 2, then Uyg(—1) exists and is finite, and there exist some constants

b1, bs, b3 such that

;

Uy(—1) + b1 (1 + )% + by (1 + 2)* + bg(1 + x)t T
+O((1 4 2)* 27 + O((1 4 z)**7), if Up(—1) # 0;

Ug(—=1) + b1 (1 + ) + bo(1 + 2)* In(1 + ) + b3(1 + x)?

+O((1+2)%79), if Up(—1) = 0.

(ii) If 2 < Up(—1) < 3, then there exist some constants by, ba, b3, by such that

3Up(—1) Up(—1)

1_Ye(=1) 4— 2
U¢(:E) :b1(1+£6) 2 +b2—|—b1b3(1+$) 2 —|—b1b4(1+l‘) 2

_ 5Up(=1)

+00((L+2)" 2 9.
In particular, Uy is either a constant or an unbounded function in (—1,—1+9).
(i) If Ug(—=1) > 3, then Uy must be a constant in (=1, =14 0).
(i) If Ug(—1) = 2, then n:=lim,_, 1+ (Up—2)In(1+ z) exists and is 0 or 4. If n =0,

then Uy is either constant or unbounded, and there exist some constants by, by such that
Uy =biIn(1 +z) + by + b1O((1 +2)' 7).

If n =4, then Uy is in L>°(—=1,—=140), and there exists some constant b such that

b

U¢ = U¢(—1) + m

+O((In(1 +z))~2*9).



A consequence of Theorem [1.0.2] and Theorem [1.0.4] is

Corollary 1.0.1. For every T < 3, there exists an axisymmetric solution (Uy,Uy) with
nonzero swirl of in C®(S?\ {S}) such that Us(—1) = 7. On the other hand, every
axisymmetric solution (Ug,Uy) of in C(S?\ {S}) with Ug(—1) > 3 necessarily

has zero swirl, i.e. Uy = 0.

Corollary 1.0.2. There are similar results about the asymptotic behavior of solutions
u in a punctured ball Bs(N)\ {N} on S?, 6 > 0. We will state the results in detail in

Chapter 4.

Our next work focus on (-1)-homogeneous axisymmetric solutions which are smooth
on S?\ {5, N}, where S is the south pole and N is the north pole.

The first result on such solutions is a classification of (-1)-homogeneous axisymmetric
no-swirl solutions which are smooth on 2\ {S, N}.

For each ¢ > —1,¢c9 > —1, define

1
3(c1,c2) i= -5 (Vite+vVite) (Vitea+vVite+2). (1.9)
Let ¢ := (c1, 2, ¢3), we introduce the set
D:={ceR®c; > —1,c2 > —1,¢3 > C3(c1, c2)}, (1.10)

and the following subsets D;, 1 <17 < 8, of D as:

D = {C|Cl >—1,c0>—1,¢c3 > 53}, Dy := {C|Cl =—-1l,c0>—-1,c5> 53},

D3 :={c|lcy > —1,c0 = —1,¢c3 >3}, Dy:={clec1 =—1,c0 =—1,¢c3 > 3},

(1.11)

D5 :={c|lcy > —1,c0 > —1,c3 =¢3}, Dg:={clc1 = —1,ca > —1,¢c3 =3},

D7 :={cle1 > —1,c0 = —1,c3 = ¢3}, Ds:={clcy = —1,co = —1,c3 =¢3}.

Then we have
Theorem 1.0.5. There exist y~,vt € C®(Dy)NC°(D), 1 < k < 8, satisfying v~ (c) <
vt (c) for all ¢ € J, where the equality holds if and only if ¢ € U2:5Dk, such that for

each (c,7) in the set

E:={(c7) 1> ~lea>~1,e3 > @(c1,e2),77 () v <77 (o)},



there exists a unique C' solution Uy of in (—1,1) satisfying Uy (0) =~ and
1
(1 =2 (U +22U57 + 5(Ug”)2 =c1(1—x)+c2(14+2) +e3(1—2%).  (1.12)

c?’y
Moreover, {U,

(¢c,v) € E} are all (-1)-homogeneous azxisymmetric no-swirl solu-

tions of the Navier-Stokes equations on $?\ {S,N}.

Remark 1.0.2. The solution Uy is a continuous map from the set E \ {(c,v) €
Elc € U}_Dy,v = v (c) orv = v(c)} to C°[—1,1]. On the other hand, for every
¢ € U3_, Dy, we have either im0 Uy (—1) # Ug’ﬂﬁ(c)(—l) orlim,_,— ) Uy (1) #

UGC"Y_ (c) (1) .

Theorem [1.0.5] gives a classification of all axisymmetric, no-swirl solutions of the

Navier-Stokes equations in C2(S?\ {S, N}).

We denote by (u®?,p%7) the axisymmetric no-swirl solution of ([1.1)) in C°°(S?\
{N,S}) obtained by Uy”. For each (c,v) € E, the linearized equation of (1.1 at

—Av+u®" - Vu+v - Vu®? +Vqg=0,

(1.13)
divo =0.
Define
¢ %
ac;y(ﬂ) = _/ (2 cott + ugﬁ) dt? bc,’Y(G) = _/ Ug"ydt,
and
Sil]iee—ac,’v(e) dac(,i’é(e) %cg(m fg eac,'y(t) Sin tdtdaid’i’é(e) + 1
_ 2 B _ )
Ugﬁ = ﬁe ac,y(0) , Vo = ﬁe ac,~ (6) fg e () gin tdt ’
0 0
0 0
UE:’Y = 0 , v;“ﬁ =1 0

sin 6



Then {vé,,y, 1 <i < 4} are linearly independent solutions of the linearized equation
of (L.1)) at (u®?,p*?7), in spherical coordinates, on S?\ {N, S}.
We introduce the following subsets of E:

For 1 <k <4, let

3
Ek,l = {(677) € E‘C € Dk,Cl < _177 = 7+(C)}7

3
Ek,2 = {(677) € E‘C € Dkch < _177 = ’yi(c)}? (114)

Eyz:={(c,7) € Elc € D,y (¢) <v <~y (0)},
and for 5 < k <8, let Ex;:={(c,7) € Dp x {77 (¢)}er, 0 < —% )
Moreover, let

3
E :={(c¢,7) € E\ Ui<k<s,i<i<sErlct > ——

gorez> —Z} (1.15)

Let B;s(0) be a ball in R? with radius § and centered at the origin.

Theorem 1.0.6. Let K be a compact subset of one of the sets Ey;, 1 < k < 8,
1 <1< 3. Then there exist 6 = 6(K) > 0, and (u,p) € C°(K x Bs(0) x (S*\ {N, S}))

such that for every (c,v,B) € K x Bs(0), 8 = (B3,84), (u,p)(c,v,B;-) € C®(S?\
{N,S}) satisfies in R3\ {(0,0,73)|z3 € R}, with nonzero swirl if 8 # 0, and

[ sin @ (u(e, v, B) — u®Y) || (s2\(n,sy) — 0 as B — 0. Moreover, %U(C,%B)LB:O =

i
Uprys © = 3,4.

On the other hand, for (c,v) € E, if there exists a sequence of solutions {u'} of
in C*®(S?\ {N,S}), such that ||sinf(u’ — u“7)|| o (s2\(v,s3) — 0 as i — oo,

Gy
sin 6

then for sufficiently large i, u* = u%" 4 €y for some constants c;,;, C;. Moreover,

(ci,vi) = (¢,7y) and C; — 0 as i — oo.

Landau interpreted the solutions he found (Landau solutions) as a jet discharged
from a point. Experimentally, a pingpong ball can float and be stable in a jet of air
(such as when we blow into a straw upwards). However, as pointed out by Sverdk,
the pressure in the center of the Landau jet is higher than the pressure nearby, and
therefore the exact Landau jets solutions are unlikely to support a pingpong ball in

a stable way. The real-life jets are turbulent and this plays an important role. The
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Landau solutions could still be relevant when one thinks in terms of averaging, turbulent
viscosity, Reynolds stress, etc. Still, the pressure profiles are of interest and in Chapter
6, we identify all axisymmetric no-swirl solutions in a neighborhood of the north pole of
S?, which describe fluid jets with lower pressure in the center. It would be interesting
to compare some of these solutions to real-life jets.

There have been some other papers on (-1)-homogeneous axisymmetric solutions
of the stationary NSE (L.I), see [1], [9], [10], [11], [12], [13], [14], [17] and [1§]. In
the no-swirl case, the equations were converted to an equation of Riccati type in [13],
see also [18] where various exact solutions on annulus regions of S? were given. Some
recent works also study (-1)-homogeneous solutions of the stationary NSE. Karch and
Pilarczyk showed in |2] that Landau solutions are asymptotically stable under any L?
perturbations. Luo and Shvydkoy studied in [7] classifications of homogeneous solutions
to the stationary Euler equation with locally finite energy.

The organization of the paper is as follows. In Chapter 2, we reduce the NSE in the
framework of spherical coordinates. We also give an alternative proof of the above men-
tioned result in [16] in the framework. In Section 3.1, we classify all (-1)-homogeneous
axisymmetric no-swirl solutions of the stationary NSE (1.1)) on S?\ {S}. The existence
part of Theorem [1.0.2]is established in Section 3.2. It is proved by using implicit func-
tion theorems in suitably chosen weighted norm Banach spaces. Three different sets of
spaces are used according to which of the three parts of J, Ji, Jo or J3N {2 <7 < 3},
(1,0) belongs to. Asymptotic behavior of solutions in a punctured ball Bs(S) \ {S} of
S? is studied in Chapter 4. Theorem and the nonexistence part, therefore
the completion of Theorem are established in this Chapter. We then study (-1)-
homogeneous axisymmetric solutions on S? \ {S, N} in Chapter 5. We first classify all
(-1)-homogeneous axisymmetric no-swirl solutions of the the stationary NSE on
S?\ {S, N} in Section 5.1, and prove Theorem in Section 5.2 by implicit function
theorems in suitably chosen weighted norm Banach spaces. Different spaces are used
based on the behavior of solutions near the sigularities. Several results on first order

ordinary differential equations used in Chapter 4 are given in Chapter 6.
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Chapter 2, 3, 4 and 6 are from , Section 5.1 is from [5] and Section 5.2 is from

[6].
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Chapter 2

Reduction of equations

Our first attempt in proving Theorem is to work with (ug,ug) and to find some
spaces with appropriate weights on ug and ug together with their derivatives near the
south pole S. However, we encounter difficulties of loss of derivatives when trying to
apply implicit function theorems. As mentioned earlier, we work with new functions
U, Up and Uy, and a new variable x as defined in . Both formulations, with u and
0 or with U and zx are widely used in literature.

For any —1 < §1 < 95 < 1, system in the range §; < < d2 can be reformulated

into the following third order ODE system of Uy, Uy and p:

( 2
— (1= 22U + 22U} — Uy* — UpU} — U _ Us _ 2p =0
1—22 1—2a? '
(1 — 22)UJ — UpU} — %szg - %ﬂw —(1—ad)p =0, (2.1)
— (1= 2*)UY — UpUy, = 0.
with the divergence free condition
U, = Uysin 6. (2.2)

Differentiating the first line of 1} in x, then subtracting ﬁ times the second line,

we have the following fourth order ODE system of Uy and Uy

2[r ([/
— (L= a*)U" + 4aUf! = 3URU] - UpUf! — =5 =0,
1-— .’E2 (23)

— (1= 2*)U} — UgUyj, = 0.

Since

1 n
—(1 = 2*)UY" + 42U} — 3ULU}) — UpUy’ = — ((1 — 22)Uj + 22Uy + 2U3> ,
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system (2.3)) can be converted into

204(
(1 — 2®)U) 4 22Uq + U@ /// s dsdtdl*clx + cox + c3,
(2.4)

(1 —2*)Ug + UpUj = 0,
for some constants ci,cs,c3. By , U, € C((61,62),R) is well-defined if Uy €
CY((61,62),R), and U, = O(1) sin @ if U} is bounded. The original Navier-Stokes system
is equivalent to and .
If there exist some constants ci, 2, c3 and Uy € C*(61, 52), Uy € C?(81, 62) such that
(Up,Uy) is a solution of in (d1,92), then the (-1)-homogeneous u = (u, ug, ue)

given in the corresponding domain on S? by

U
Uy Uy = ¢

!
ur = U, Ug = :
" 0 sinf’

g’
satisfies the stationary NSE (1.1). We will use U = (Up, Uy) to denote solutions of the
stationary Navier-Stokes equations , with the meaning that u determined by U as
above is a solution to .

With the above set up, we give an alternative proof of the following theorem:

Theorem B ([16]) All (-1)-homogeneous nonzero axisymmetric solutions of in
C?(R3\ {0}) are Landau solutions.

Proof. Since the solution u is smooth in R3\ {0}, the components U,., Uy, U, and their
derivatives are well-defined on S?. Uy and Uy vanish at z = +1, Uy = O(1)(1 —2?), Uy,
Uy are bounded in [—1,1].

From the second line of (2.4]), we have

Up
— ds
Ué, =ce . ,

for some constant ¢, so Uy is monotone for x € [—1,1]. Since Uy(1) = Ug(—1) = 0, we
must have Uy = 0, i.e. the solution does not have a swirling components.
Let z go to 1 in the first line of (2.4). Notice that Uy = O(1)(1 — 2?), and U} is

bounded, we obtain

1
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Differentiate the first line of (2.4]) with respect to x, then send  — 1, we have
2c1+ c3 = lim (1 — 2®)Uy + 2Up + UpUy) = 0.
Tr—r

It follows that

12? + o + 03 = c1(1— :L')2.

Repeat the above analysis similarly as x goes to —1, we have
2 _ 2
c1x” + cox + 3 = c1(1+ 2)”.

Therefore, we must have ¢; = c3 = c3 = 0, Uy = 0. It is now easy to see that u is a

Landau solution, u = /\2&2890 with [A] > 1. O



15

Chapter 3

(-1)-homogeneous axisymmetric solutions on S?\ {S}

3.1 Classification of axisymmetric no-swirl solutions on S\ {S}

In this section, we will prove Theorem which classifies all (-1)-homogeneous ax-
isymmetric no-swirl C*°(S?\ {S}) solutions of . More generally, we study axisym-
metric no-swirl solutions of which are smooth in a neighborhood of the north
pole.

By arguments used in Chapter 2, u is a solution of in S?\ {NV, S} if and only if
U defined by satisfies in (—1,1) for some constants c1, c2 and c3. When the

solution has no swirling component, ([2.4)) becomes
N7l Lo 2
(1 —2°)Upy + 22Uy + §U9 = c12” + cax + c3. (3.1)

Let u be a solution which is smooth in a neighborhood of the north pole, the proof
of Theorem B in Chapter 2 actually shows that the polynomial on the right hand side
of (3.1)) must be u(1 — z)? for some constant p. Therefore, the NSE is

1
(1 —2H)Uf + 22Uy + §U92 = u(l —z)2. (3.2)

Lemma 3.1.1. Let p,v € R and 6 € [-1,1), equation has at most one solution

Uy € CY(6,1) satisfying

lim Uy(z) =0, and lim Up(x) = 7. (3.3)

r—1— r—1—

Proof. Let Ue(i) (i =1, 2) be two such solutions. Then g;(z) := (1 — :UQ)_lUg(i) satisfies

1 Iz
/ 20, _ .
gi($)+§9i($)—m, d<x<l, i=1,2
Using (3.3) and the L'Hospital’s rule,
: Y
Jm gi(w) = =5, =1,
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So gi(r) can be extended as functions in C°(8,1], g1(1) = g2(1), and g1 — go satisfies

(g1 —92) + %(gl +92)(g1—9g2) = 01in (§,1) with (g1 —g2)(1) = 0. It follows that g1 = g
in (6,1), so UY = U in (6,1). 0

Let b := /|1 + 2pu|, 6* € C(R?,[~1,1)) be given by

-1, p= =572 =1+ VI+20);
~y4+1—b —1/b 1 A9,
_1‘}'2(7_;,_1_;,_1)) ) ,U'> _§,7< _(1+ 1+2:U');
2
. . —1+ 2e+1, u:—%,’y<—1;
6" =0"(p,y) == ) \ :
—14+2exp (E(arctanﬁ—ﬂ)), < —5,7>-1
—1+2exp (=7), p<—37=-1
—1+4+ 2exp (%arctan%), u<—%,'y<—1.
(3.4)

Theorem 3.1.1 (Exact form of axisymmetric no-swirl solutions). For every (u,7y) €

R2, there exists a unique Uy := Up(u, ;) € C(6*,1) satisfying in (6%,1) and

lim Uy(z) = 7. (3.5)

r—1—

The interval (6*,1) is the maximal interval of existence for Uy, and in particular,

lim |Up(z)| = oo, if 6 > —1. (3.6)

r—8*+

Moreover, Uy is explicitly given by

2b(y+1-b) 1
(I —=2) (1 —b- (7+1+b)(131)b—7—1+b> » HZ Ty
_ 2(y+1) __1

Ug(l’) - (1_$) <1+ ('y—i—l)ln l-gx_2> ) H = R (37)

b(btan 2 1y 1 1)
(v+1) tan L(;)fb ’

1
/.L<—§,

(1-a) (14

\

- - 14z
where b := /|1 4 2p|, and B(z) := bln =L,

We will also use U*7 to denote the axisymmetric no-swirl solution (Up(u,v;-),0) in

the above theorem.

Let uw = u(u,v) be the solution generated by (Up(u,~),0), then {u(0,v) | v >

2(1—22)
T+

—2,7 # 0} are Landau solutions. In particular, Uy(x) = with [A| > 1, and

0*(0,7) = —1 for any v > —2, v # 0.



17

It is easy to see that Up(u,v) # Up(p/, ') if (u,v) # (1/,7'). Let I be defined by

1 c
L={(my) |p>—57>-1-VI+2}, I°=R*\IL

Then 6*(u,7y) = —1 if and only if (u,7) € I. Consequently, u(u,v) € C*(S?\ {S}) \
C*(S?) if and only if for all (u,7y) € I\ {(0,7) | v > —2}. Also, it is not hard to see

lim §*(u,v) =1, lim 6 (u,v) =1.
p—>—00

Y——00
6™ (1,7) 6™ (,7)
= A f I¢.

Proof of Theorem : For every (u,v) € R?, let a be a root of %a2 —a = p (real or
complex) then h(z) := a(1 —z) is a solution of (3.2)). If Uy is a solution of (3.2), denote

g := Uy — h, then g satisfies

1
(1—2%)g + 229 + hg + 592 =0.

Multiplying both sides by the integrating factor (1 + z)* (1 — x)~!, we have

- 1 e
g+50+) “3* =0,

where §(z) := (1 4+ 2)% 1(1 — 2)~'g. Solving this equation directly we have

7= 21 —a) if a2 1.

14+ xz)l-e+ ¢’

Then
2(1—a)(1 —z)(Hx)l-e
e &

Up=a(l—x)+

where ¢ is a (real or complex) constant.

Let b:= /|1 +2u|. When i > —1, we can take a =1+b, c = 777%2;% Then Uy is

the function in the first line of (3.7)) which satisfies (3.5) and (3.2)) in (6*,1) where §*

is given in (3.4)), and by Lemma it is the only solution satisfying (3.2]) and ({3.5).
Property (3.6 follows from standard ODE theory. Uy are Landau solutions when p = 0

and v > —2, v # 0,
2(1 — 2)

Us(z) = T+ A
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where A = —77+4. It can be seen that when v > —2, v # 0, there is || > 1.

When p < —%, we can take a = 1 + b, ¢ = _Z/%cha Then the real part of li

can be rewritten as the function in the third line of (3.7)), which satisfies the required

properties.

When p = —1/2, we have a = 1 and

1 1
g+50+2)75" =0

where () := (1 — 2)"!g. Thus,

1—=x

Up=(l-a)+ ——
o=(1-2) sIn(l+2)+ec

Choosing ¢ = 7_—:1 — %ln 2, then Uy is the function in the second line of 1} which

satisfies all the required properties. O

Y

Landau Sol.: u =0,y > -2,y #0

. . . . .
-2 -1 1 2 3

g n r J=5hUhUJs

T

, | o J3iT 2 _Z

—le Iip=-—, yzfl—\/]+2;4 ““““““

2
. . & . . >
Ps -4 -2 ¥ 4 6 ’
.
- 1k

Landau Sol.:
7=0,0<1,0%0

-3}

-3
1 —— 1
Il:y<—;,0ry<*lf\/7l Jii1<2, o< —(4-1) Jrt=2 o< —
4

4L

Figure 3.1: Dependence on parameters (i, ) or (7, o) of the maximal existence domains
of the solutions to NSE

Figure 1 shows the dependence of the maximal existence domains on parameters
(t,7y) or (1,0). When the parameters (u,~y) € I, or equivalently (7,0) € J, the solution
is smooth on S? \ {S}; When the parameters (u,v) € I, or equivalently (7,0) & J, the
solution exists and is smooth in a neighborhood of the north pole { N} but not on the
entire S? \ {S}. Some typical points are chosen in the (u,7) plane, (i.e. left part of
Figure 1). The graph and stream lines at these points are presented in Section

Here is an immediate consequence of Theorem [3.1.1
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Corollary 3.1.1. Suppose U is an axisymmetric, no-swirl solution of Navier-Stokes
equation and is smooth on S%\ {S}, then Uy(x) is given by a two-parameter-family

() with 1> —5, v > =1 — T+ 2p:

2b(y+1—b 1
1—2)(1-b— (7+1+b)(%”)b)—7—1+b> y om> =5,y > —1— /142,

Up(x) =4 (1—ux) 1+M> p=—1y>-1,

(y+1)In H;c -2 27
(1+b)(1_$)> UZ_%7’7:_1_V1+21U'
(3.9)

Since Up(z) = ugsin®, x = cos @ and (1.5)), 7 = limy_, .- up(z) sinf = lim,_, 1+ Up(x),

v = limg_yy Uj(z) = —2limg_g 525 = —20, and p = lim, , 1+ $(3UZ(z) — 2Up(z)) =
%7‘2 — %7’. The relation
1 1
M:§72_§T7 y=-20

gives a one-one correspondence between {u,q|, (7,0) € J} and {U*7|(u, ) € I} with

Ur o sinf = U7, Moreover, region J; corresponds to

1
Li=10={(n7) €Il p> =5,y > =1 = V/1+2u},

boundary Jo corresponds to

1
I :={(p,y) ellp= 57> —1},

J3 corresponds to

1
I:={(py) € ln>—g,v=~1—1+2u}

Also, J3N{2 < 7 < 3} corresponds to IsN{—3 < u < —2} and J3N{r > 3} corresponds
to IsN{u>—3}.

Theorem follows from the above corollary.

Remark 3.1.1. From Theorem and Corollary we can see that Ug(p,y) exists
on all (—1,1] if and only if (u,7y) € I, which is shown in the first graph of Figure 1,
and the behavior of Uy near the south pole is different when (u,~) € Iy, the interior of
I, and when (u,~) € OI.



20
When (u,vy) € I, up > —1/2, we have for —1 <x <1,1i,j5 €Z

In
2

i>0,7>1.

U7 (@) = (1= 2)(1 = /1+2u+0(1)(1 +2)°),
LU () = (1 - =) (—dd: V1+2u+01)(1 + )b

w
In 1+
2
When (p,7) € Iz, we have

lw”@f‘ﬂ—x)0+a(mlg$>1+4Xn<mlg$)2>7

>, i> 1, (3.10)

7

|0, 2UL Y (2)| = O(1)(1 — 2)(1 + )"

)

, (3.11)
DU (z) = O(1)(1 miE) s
L) = o) —x) (m ) iz
When (u,7y) € I3, Up(z) = (1 + b)(1 — ), which is a linear function, and
VP @) = (1—2)(1+ /T 5 2),
i (3.12)

i 9 .
9,Up" () = 8Mi\/1+2u(1—x), i>1.
3.2 Existence of axisymmetric solutions with nonzero swirl on S?\ {5}

3.2.1 Framework of proofs

The set of all axisymmetric no swirl solutions of the NSE (1) in C°°(S?\ {S}) is classified
in Section 3.1|as the two dimensional surface of solutions {U*” = (U}"7,0) | (u,7) € I}.
In this chapter, we will use implicit function theorems in suitably chosen weighted
normed spaces to prove the existence of a curve of axisymmetric solutions with non-
zero swirl emanating from each UMY for (u,7) € I\ (IsN{pn > —2}).

Since Up(—1) affects the behavior of Up and Uy near the singularity x = —1, we will
need to use different function spaces according to the values of Up(—1). It is easy to
check that U*7(—1) € (—o0,2) for (u,y) € I, UMY (=1) = 2 for (u,y) € I, UM (1) €
2,3) for (u,7) € 5N {—%1 < p < —3}. We will use three different sets of weighted
normed spaces based on which of the three sets, Iy, I, and I3 N {—3 < pu < =2}, (11,7)
belongs to.

On the other hand, U*Y(—1) > 3 for (u,7) € IsN{u > —2}. It will be proved
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in Chapter 4 that for every (u,v) € IsN{u > —%}, there exists no sequence of ax-
isymmetric solution with nonzero swirl in C*°(S? \ {S}) which converge to U*? in
L>(-1,1).

For convenience, let us use U to denote axisymmetric no-swirl solutions of the
stationary NSE.

In this section we denote U = (Up, Ug). The equations of axisymmetric solutions in

C>(S%\ {S}) are of the form

1 2U4(s) ,
(1 —2®)Ug + 22Up + = Ua—/// 2 ddtdl a(l — )%,
1-s (3.13)

(1— 22 YU + UgUj =0

where [ is a constant.

We first introduce the implicit function theorem (IFT) which we use:
Theorem C ([8]) (Implicit Function Theorem) Let X,Y,Z be Banach spaces and f
a continuous mapping of an open set U C X x Y — Z. Assume that f has a Fréchet
derivative with respect to x, fy(x,y) which is continuous in U. Let (xg,y0) € U and
f(zo,y0) =0. If A= fr(x0,y0) is an isomorphism of X onto Z then
(1) There is a ball {y : ||y — yo|| < r} = By(yo) and a unique continuous map u :
B, (y0) — X such that u(yo) = xo and f(u(y),y) = 0.
(2) If f is of class C! then u(y) is of class C and uy,(y) = —(fo(u(y),y)) Lo fy(u(y),y).
(3) uy(y) belongs to C* if f is in CF, k > 1.

We will work with U := U — U, a calculation gives
1 ~ - 1~
(1 — 2®)Up + 22Uy + §U92 —u(l—2)? =1 -2} + (22 + Ug)Up + 5U92,

where U¢ = Uyg. Denote

12 ¢
¢
/ / / T dsdidl. (3.14)
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Define a map G on (u,7,U) by

5 (1 —2?)U) + (2z + Uy)Up + $UZ — p[Uy)(z) + L9[U](-1)(1 — x)?
G(p, 7, U) = - o
(1- x2)Ug + (Up + Ug)Ué)
. (59)
£s

If (j1,7,U) satisfies G(u,7,U) = 0, then U = U + U gives a solution of (3.13)with
fi = i — 19 [Ug)(—1) satisfying Up(—1) = Up(—1).

Let A and ) be maps of the form

(3.15)

. A 1 — 22U} + (22 + Up) T,
A(ﬂa'%U) = ’ = ( ) ’ N( _ Ne) ’ 5 (316)
A (1 - a?)U) + Tyl
and
- Qo
QU,V) = ( )
o
20, (s)V! 20, (s)V! (3.17)
LV — (21 [ 2SS ey L L 2O sl
: U9V¢ )

Then G(u,7,U) = A(p,7,U) + Q(U, U).

By computation, the linearized operator of G with respect to U at (7, U ) is given

by
LT (1 —2*)Vy + (22 + Up)Vp + UpVy — U5 [Vl () + 3V [Vol(—1)(1 — 2)?
v (1 —2?)V/ + (Ug + U(,)f/ + VU,
(3.18)
where
L 2(Uy(s)Vi(s) + Vy(s)U,
/ / / o(IVol) + Vo&)Us(5) ) ey
1 — 5
In particular, at U = 0, the linearized operator of G with respect to U is
- 1 — 22)V] + (22 + Up)V,
LAY = (=% ] ( i Ne) 1. (3.19)
(1-— x2)V¢§’ + U9V¢’)
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Let

T 25+ U, T,
4 (2) ;:/ f* 4, by () ;:/ 0 ds, —1<z<l. (3.20)
0 -5 o 1—s

By Corollary for all (u,v) € I, Up is smooth in (—1,1] and Uy(z) = O(1 — x).
So a,~ € C*(—1,1) and b, , € C(-1,1].

Note that this definition of a(z) and b(z) are consistent with the definition of a(0)
and b(#) in Chapter 1, and a(x) = —In(1 — 22) + b(x). A calculation gives

2z + Up(x) y 24 Ug(x)  4a® + 2zUp(x)

a;w(l’) - 1— 22 }L,"/( ) 122 (1 _ 1'2)2 (321)
Consider the following system of ordinary differential equations in (—1,1):
(1 —2?)Vy +22Vp + UpVp = 0,
(1 =2V} + UpVj = 0.
All solutions V = (Vp, V) € C?((—1,1),R?) are given by
V=aV,, +aV., +aV, (3.22)
where c¢1, c9,c3 € R, and
—ay ~(T)
e Yy 0 0
1 . 2 3
VL = CV=l L, o vi=1| |- (3.23)
0 fm et gy 1

Next, by computation (V. )s(0) =1, (V,;,)e =0, (V2. )g = 0 and

1
(V,)o0) = [ ettt >0
0

finite. Introduce the linear functionals l1, [ acting on vector functions V() = (Vy(x), Vy(x))
by
L(V):=Vp(0), 12(V) :=Vy(0). (3.24)

It can be seen that for every (u,7) € I, the matrix (ZZ(V,f,y)) is a diagonal invertible

matrix.
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3.2.2 Existence of solutions with nonzero swirl near U"" when (u,7) €

I

Let us first look at the problem near U*” when (u,7) € I;. For some fixed (p,7) € I,
write U = UM7, recall that in Corollary we have

Fo = (1— o L 20(14+~v—0b)
Ug=(1 )(1 b (1+7+b)(“§$)—b—7—1+b) (3.25)

where b = /1 4+ 2u. It satisfies
27/ 7o, Lo 2
(1—=z )U9—|—2xU9+§U9 =u(l —x)°.

Let us start from constructing the Banach spaces we use. Given a compact subset
K C I, from the explicit formula of U*7 in Section U := UM satisfies Up(—1) < 2,

U/'I’fy _1
so there exists an € > 0, depending only on K, satisfying max M

< e< 1 for
(mmEeK 2

all (1,7) € K. For this fixed ¢, define
M; =M (e)
= {09 € C([-1,1),R) N CY((—1,1],R) N C?((0,1),R) | U(1) = Up(—1) = 0,
(1 +2) "+ Upl| oo (—1,1) < 00, [[(1 + 2)Upll oo (—1,1) < 00, [|Tg || oe0.1) < oo} ;
M; =My (e)
= {0y € CH((=1,1,R) N CH(~1,1),R) | Ty(1) = 0, 1Tl oo 1,1) < o0,
101+ )Tl o (-11) < 00, (1 + @) F2TG] e 1.1y < 00}

with the following norms accordingly:

Tsllnn, = [1(1+ 2) " Upl| poo(—1,1) + (L + 2)Tpll poo(—1,1) + 1T | 10 0,1
NTslInmy = 11Ul oo (—1,1) + [[(1+ 2)° Ul oo 1,1y + (1 + 2) U | oo (—1,1)-

Next, define the following function spaces:

N = Nl(e) = {59 € C((_17 1],]R> N Cl((ov 1]7R) | 69(1) = éé(l) = 59(_1) =0,

&

1—z

101+ )€l e (1.1) < 00, |||ty < oo} ,

N2 = Na(e)i= { € € CU-1LR) | 66(1) =0 128 oy < 0
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with the following norms accordingly:

!

e 13
€0l Iy = 11(1 4 2) " | | oo (—11) + ||ﬁ||mo(o,1),

A+ )
1€sliny = 1= M1

Let X := {U = (Up,Uy) | Ug € My,U, € My} with the norm [|U|[x := ||Ug||m, +
1Usl[v,, and Y = {€ = (€9,€) | & € N1, & € No} with the norm [|¢]ly = ||| |n, +
[1€o|In, - It is not difficult to verify that My, My, Ni, No, X and Y are Banach spaces.
Let l1,lo : X — R be the bounded linear functionals defined by for each

V e X. Define
X :=kerl; Nkerls. (3.26)

Theorem 3.2.1. For every compact K C I, with max{0,U)""(—1)} < 2¢ < 2 for
every (u,7v) € K, there exist § = §(K) > 0, and V € C®(K x B;(0),X;) satisfying
ov
V(u,v,0,0) =0 and %M:O =0,i=1,2, such that
i

U=U""+BV,  + BV, +V(u7, b1, B) (3.27)

1
satisfies equation (|3.13|) with it = p — Zw[U¢}(—1). Moreover, there exists some §' =

Ix <&, (1,7) € K, and U satisfies equation
with some constant [i, then holds for some |(1,B2)] < 0 .

8 (K) >0, such that if ||U — UMY

To prove the theorem, we first study the properties of the Banach spaces X and Y
we constructed.

With the fixed €, we have

Lemma 3.2.1. For every U € X, it satisfies the following
10s(s)] < 0gllna(1—8), ¥ —1<s<1, (3.28)
1U(s)| < [|Ugllnt, (1 —8)(1+8)17¢, ¥V —1<s<1. (3.29)

Proof. For s € (0,1), there exists y € (s,1) such that

Us ()| = 1Us(s) = Us(1)] = [T »)|(1 = 5) < (1= 5)1UplIm,,

while for s € (—1,0], [Ug(s)| < ||Us|/m,- So (3.28) is proved.
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Now we prove (3.29). For 0 < s < 1, |(1+5)"1Uy(s)| < |Up(s)| = |Ug(s)—Up(1)| <
||ﬁé||Loo(071)(1—5) < ||U@||M1(1—S), and for —1 < 5 <0, (14 s)71T¢(1 — s)_lffg(s) <

|(1+5) " +<Uy(s)| < [|Usllna,

Lemma 3.2.2. For every & € Ny,
o(@)] < [éollny (1 +2) (1 —2)?, V-1<z<1l (3.30)
Proof. If &g € Ny, (1) = 0. So for every 0 < x < 1, there exists y € (x,1) such that

[(1+2) " ()] < & ()| = 15%W)IA — ) < |1€lIn, (1 — ) (1 —z) < [|&]In, (1 — 2)%.
For =1 <z <0, |(1+2)""&(a)| < [|¢lIn, < [1&lIn, (1 — )2 m

Near U = (Uy,0), we will prove the existence of a family of solutions U(u,~, 3) in
X, B = (B1,32) € R%, which are (-1)-homogeneous, axisymmetric, with non-zero swirl

when 8 # 0, and U(u,~,0) = U.

For Uy € My, let ¢[Ug](x) be defined by (3.14). Define a map G on K x X by

(B15) with Tp given by (3:25).

Proposition 3.2.1. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

to U at (u,v,U) € X is given by the linear bounded operator Lg’fy : X = Y defined as

in (B15).

To prove Proposition [3.2.1] we first prove the following lemmas:

Lemma 3.2.3. For every (u,v) € K, A(p,7,-) : X = Y defined by is a well-

defined bounded linear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote A = A(u,~,-) for some fixed (u,7y) € K. We make use

of the property of Uy that Up(1) = 0 and Uy € C?(—1,1] N L>(—1,1).
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A is clearly linear. For every U € X, we prove that AU defined by li isin’Y

and there exists some constant C' such that ||[AU||y < C||U||x for all U € X.

By the fact that Uy € M; and (3.29)), we have
[(1+a) 4] < (1= 2)|(1+2) gl + (2 + [Ug)(L + 2) " |Up| < C(1 — 2)/|UplIna,

We also see from the above that lim Ay(z) = lim Ag(x) = 0. By computation Aj =

z—1
(1 — 22)0) + UpUp + (2 + Uj)Up. Then, byand (3:23),
Al Uy 8
L < s a1+ 1%L 0+ 1103012 < i, 0 <2 < 1.

So we have Ay € N7 and HA9HN1 < CHU@HNh
Next, since Ay = (1— xQ)Ug+UQU(;, by the fact that U¢ € Mj and l) we have that

(1+x)°
1—=z

10slIms | (1L +2)|To|  [[Ugllm,
(14 x)tte l1—=x (1+z)e

IN

(1-2?) < O1|UslIvr,-

(1+ )4y
11—z

We also see from the above that lim, ;1 Ag(x) = 0. So A, € Ny, and [|4A4|n, <
C||Ug|Im,. We have proved that AU € Y and ||AU|ly < C||U||x for every U € X.
The proof is finished. O

Lemma 3.2.4. The map Q : X x X — Y defined by is a well-defined bounded

bilinear operator.

Proof. 1t is clear that ) is a bilinear operator. For every U,V € X, we will prove that
Q(U, V) is in Y and there exists some constant C' independent of U and V such that
QU V)ly < C||Ux][V||x.

For convenience we write

- 12U¢
(U, V) /// 20eVo8) ) v,

For U,V € X, we have, using 1} and the fact that U¢, ‘N/¢ € My, that

< (148 Nl Tl Y—1<s<1  (331)

Qz

It follows that o (U, V)(x) is well-defined and

(U, V)(@)] < Cle)(1 — 2)*||UglInte | UglIng,, V=1 <o <1 (3.32)
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Moreover, we have, in view of (3.31]), that
(1 - )
4

_ WL 7)) — (0, 7)(~1) +

[V (U, V)(2) ~ Y(U,V)(-1)]

(1+z)(3—2)
4

'///12% ddtdl+(1+$)4(3_x)w(ﬁ,f/)(—1)

< C(e)(1 + )| Ul Ino V| Ivtzs V=1 <z <1

Thus, using (3.32), we have for any x € (—1,1)

(1— =)
4

So by (3:29) and (3:33).

(1 + 2) 7 Qo ()]
1

V(U V)(2) YU, V)(=1)] < C(e)(1 + 2)(1 — )| Ugllvr, || Vsl Iz (3.33)

(1 + ) TUp(@) V(@) + (1 +2) "1 e(U, V) () —

— N

5 (1= 2)*||Usl[an, Vol [z, + C(e)(1+2) (1 — 2)2 (| U Inga [ V| Inaa

Do |

<ClO1 -2} Ux|Vlx, V-1<z<T1.
From this we also have lim Qp(z) = lim Qg(x) = 0.
z—1 z——1

By computation,

, 1 2U¢ 1—2a ~ o~
Qy(x) = Ung—i- U9V9+ dsdt— 5 (U, V)(-1), for 0 <z < 1.

UsmgUeX,- and ,Weseethatfor0<:1:<1

19| Ty (s)||V (s T V) (-
Qb(w) < 2106lIV31 + 2 !VeHUeH/ [ 2N g TN

1 1
< C(1 — 2)|[Tollna Vallngs + 21(Tl o [Vl In / /l (1+ )" Ldedl

+C()(1 = )| |Us| Ino | Vsl Ivr,
< C(1 — )| Upl[n, [1Val g, + C(e)(1 = 2)||Us | Ina | Vsl Ivr,
< C(e(1 - 2)||U]IxIV]]x.

So there is Qg € Ny, and ||Qgl|n, < C()||U|1x]|V]|x.

Next, since Qq(z) = Ug(m)vdg(x), for -1 <z <1,

’(1 +2)°Qp(x)

l1—z

(1+z)° ~ 11V Im,
11—z |U(”“ﬂ)|(1+ )¢

< s ATYANAIYS
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We also see from the above that lim, 1 Q4(x) = 0. So Q4 € Ny, and

1QslINa < [1TUsl v, ||Vl |, -

Thus we have proved that Q(U,V) € Y and [|Q(U,V)|ly < C||U||x]|V]|x for all
U,VeX. Lemma is proved. O

Proof of Proposition|3.2.1): By definition, G (u, 7, U) = A(p, 7y, U)—i—Q(ﬁ, [7) for (u,~,U) €
K x X. Using standard theories in functional analysis, by Lemma [3.2.4]it is clear that
Q is C* on I; x X. By Lemma A(p,y;+) : X = Y is O for each (u,7) € 1.

For all 4,5 > 0, i + j # 0, we have

Usg

adi
Us

000 Ap, v, U) = 0,00 UL
By (3.10), for each pair of integers (i,) where 4,5 > 0, i + j # 0, there exists some
constant C' = C(i, j, K), depending only on i, j, K, such that
0,0 UL ()] < C(i,j, K)(1 —x), —-1<z<L (3.34)
From we can also obtain

‘818’(]’” (x)| <C(i,j,K), 0<z<l.

Using the above estimates and the fact that Uy € M, we have
’(1 + HJ)_1+68;8%A9(,U,,’)/, U)’ < C<Z7]7 K)(l - x)HﬁHHMU —l<z<l,

and

%8,38%49(#,% ‘ ’8Z3]U‘”()

@)l + UL )| - 0u(o

<CK)(1- :E)||U9HM1, O<z<l.

S0 904 Ag (1,7, U) € N, with [|0},04 Ag (1,7, U)lIn, < C(i, 4, K)||UglIm, for all (u,,0) €
K x X.

Next, by 1} and the fact that U¢ € M, we have

Lha) (0 @)
(42 5101 07,0 )] = (25308

(14 2)Ug| < C(i, 4, K)||Up|In
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S0 0,04 Ag (11,7, U) € Na, with [|3,04 Ag (1,7, )l Iy < Clis 4, FOI|Tllna, for all (1,7, 0) €
K x X. Thus 9.0A(p,v,U) € Y, with [|0/4A(, 7, U)|ly < C(i, 5, K)||U||x for all
(1,7, 0) € K x X, 4,57 >0, i+ j #0.

So for each (u,v) € K, 8};8%'/1(#, v;+) : X = Y is a bounded linear map with uniform
bounded norm on K. Then by standard theories in functional analysis, A: K x X — Y
is C*°. So G is a C* map from K x X to Y. By direct calculation we get its Fréchet
derivative with respect to X is given by the linear bounded operator Lg’v X =Y
defined as . The proof is finished. O

By Proposition Li7 : X — Y, the Fréchet derivative of G with respect to U
at U = 0, is given by .

Let ay,~(z),b,~(z) be the functions defined by with Uy given by . For
£ = (£,&p) €Y, let the map W7 be defined as WH7(§) := (W (£), Wi (€)), where

W (€)(w) i= e~ @) /x eam(s)fe_(s;dsa
g S b e Ea(s) (3.35)
Wgﬁ(f)(x) ::/z e~ m()/t e “’"(S)mdsdt.
A calculation gives
(W (©)) (@) = —a )Wy (@) + 42 (3.36)

1—a2
Lemma 3.2.5. For every (u,v) € K, WY :' Y — X is continuous, and is a right

inverse of L.

Proof. We make use of the property that Ug(1) = 0, Uy € C?(—1,1] N C°[~1,1] and
Up(—1) < 2e < 2. For convenience let us write W := W7 (£) for £ € Y, a(x) = a, ()
and b(z) = by, ().

We first prove W is well-defined. Applying Lemma [3.2.2] in the expression of Wy in

B:33).

|(1+z) " Hewy(z)| < (1+az)1+€|§9||Nlea(I)/ e (1—s)(145)"ds, —1<z<1.
0
(3.37)
We make estimates first for 0 < z < 1 and then for —1 < 2z < 0.

Casel 0<x<1.
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Since Uy(w) = —Up(1)(1 — ) + O((1 — z)?),

b(z) = b(1) +/11 0 ?032 ds =b(1)+ %Ué(l)(l —z)+0(1)(1—x)%, 0<z<1, (3.38)

where b(1) := fol 1?05 zds exists and is finite, we have

@) = ) [1 + %Ug(l)(l —z)+O0(1)(1— a:)Q] : (3.39)

Notice a(x) = —In(1 — 22) + b(z), so

b)) _
(@) — =5 <1 + % (Up(1)+1) (1 —2)+0(1)(1 — x)2> : (3.40)

Then in li using the estimate of a(z) and e®®) it is not hard to see that there
exists some positive constant C' such that

1

1)1+ S0 W2 s, 0<s<a<l

Thus

[Wo(2)] < CllélIn, (1 —2), 0<az<1 (3.41)
In particular, Wy(1) = 0.

By (3.21)) and (3.36)), for 0 < = < 1,
C C
/ < " < .
(@) < o W@ (3.42)
X
W) < @)Wl + 2 < g, 0<a<,

where we have used (3.41)), (3.42), the fact that £ € N, and Lemma Next,

Wy (z) = =" ()W — o' () Wp(x) + <1§6—(2‘)2>

Eo () N &p(2) n 2x8y(x)

1—22 1-—22 (1-2a2)%

= ((d'(2))? — a”"(2))Wy(z) — d'(2)

Thus

Gl 16, lal

W) < (e ())? = a"@)|Wol + 1o/ (@) 705 + 7 25+ e

1

By computation

l1—z

72 x* r 7/
@@ - a'e) = EEET 2 o (1),
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It follows, using (3.41)), (3.42) and Lemma that

W)l | lal 16
1" < ‘ 0 0 < .
wi@i <o (s oy J90) <clgl, 0<a<t

Case 2. -1 <z<0.
Recall that Up(—1) < 2e < 2. Moreover, Up(x) = Ug(—1) + O((1 + z)°) with
b =+/1+ 2u. Then we have , for —1 < z <0, that

b(x) = []9(2_1) In(14+2z)+0(1), a(z)= ([]9(2_1) —1)In(1+2) 4+ O(1),

ea(x) _ (1 n .CL‘) 09(2_1)_160(1), e—a(oc) _ (1 + Z’)l_Ue(z_l)eO(l)'

So there exists some constant C' such that

To(=1) __, 1-Ta (=D

WA —s)(1+s) <C+s) 2 7 e <o+, —1<s<0.

Apply these estimates in (3.37), and use the fact that Up(—1) < 2¢, we have

1+zx repa(z) < © 1+zx W;)e—l <C -1<xz<0
|( ) 9( )| > ( ) ||§9||N1 > ||§6||N1, <z <0
(3.43)

By (3.36)), (3.21)) and (3.43)), we have, for —1 < x <0, that

€0 ()| (1 + 2)°
1—2a2

(1 + 2)Wy(x)] < |a’(x)(1 + 2) Wo(x)| + < Cll€o I, -

So we have shown that Wy € My, and ||Wy||m, < C||&]||n, for some constant C.

By the definition of Wy(€) in (3.35) and the fact that {, € Na, we have, for every

-1l<z <],
1
|W¢<HT)| < / eb(t)l b(s |£¢( )‘d dt < "§¢|N2/ b(t)/ —1=¢ st

Since b(z) = % In(1+2)+ O(1) for all —1 < = < 1, there is some constant C' such
that

PO <0149, MO <o), —l<si<l. (3.44)

To(—1

So we have, using []9(2) < e <1, that for -1 <z <1,

eb(s)
< b(t)
Wo()] < |11 / / . +S) et

s0||5¢\|N2/ (1+1) /

< O = )|

—1=€qsdt
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In particular, Wy(1) = 0. By computation

1
Wj(z) = - / e L0) 4

5ds.
" 1-s

Thus, using (3.44) and the fact that {; € Na, we have for —1 < x < 1 that

1
(04 2 Wola)| < ol a1+ 2™ [ M1 5)71<ds

T

. _Op=y 1 Tp(-1)
< Ollgsl I (T +2) (1 +2)" 7> (1+s) > ds
x

< Ollépl N,
Similarly
1
mey —b(x) b(s) €s(s) §s(@)
Wy (x) =b(z)e /x e 1—52d3+1—x2'
Since |b/(x)| = '1[]9(36)2 S for all —1 <z < 1, using (3.44), that
—x x

(1 +2) Wi (2)] < Clléglln,, —1<z<1.

So Wy € My, and ||[Wy||m, < C||&s||n, for some constant C.
Then WH7(£) € X for all £ € Y, and |[WH7(§)||x < C|[¢]|y for some constant C.

So W7 .Y — X is well-defined and continuous. It can be checked directly that W7

is a right inverse of L{". O
1 2 3
Let V., V4, V., be vectors defined by 1D we have

Lemma 3.2.6. {VA}N,VEN} is a basis of the kernel of Ly : X — Y.

Proof. Let V € X, LE'V = 0. We know that V' is given by (3.22)) for some ¢y, ¢2, c3 € R.

Since Up(—1) < 2, it is not hard to verify that V!

2 3 .
i Viy € X, and V) ¢ X. Since

V € X, we must have c;;Vi7 eX,s0c3=0,and V € span{Vﬂlﬁ, VIZ’Y}' It is clear that

{V.i,, V.2, } is independent. So {Vi,, V2 } is a basis of the kernel. O
Corollary 3.2.1. For any £ €Y, all solutions of L'V = ¢, V € X, are given by

V =WHIE) +aV,, + eV}

s C1,02 ER

Namely,

1
Vo = W (&) + cre” @) Vi = W (€) + ¢ / et Wdt, ¢y, eo € R.

xT
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Proof. By Lemma V — WHY(€) is in the kernel of Ly : X — Y. The conclusion
then follows from Lemma [3.2.61 O

Let 11,12 be the functionals on X defined by (3.24]), and X; be the subspace of

X defined by (3.26). As shown in Section the matrix (1;(V{,)) is a diagonal

invertible matrix, for every (u,v) € K. So Xj(u,7) is a closed subspace of X, and
X =span{V,., V2, } & Xi(p,7),  V(u7) € K, (3.45)
with the projection operator P(u,v) : X — X; given by
P(u,v)V=V— ll(V)VN{7 - c(,u,,’y)lg(V)V/i7 for Ve X.
where c(,7y) = (fol e*bw(t)dt)_l > 0 for all (u,7) € K.

Lemma 3.2.7. For each (u,v) € K, the operator L7 : X1 — Y is an isomorphism.

Proof. By Corollary and Lemma LE7 : X — Y is surjective and ker L7 =

span {V/}ﬁ7 Viﬁ}. The conclusion of the lemma then follows in view of the direct sum

property (3.45). O

112
Lemma 3.2.8. V, V7 € C%°(K,X).

Proof. We know 2¢ := max{U}""(—1)|(u,7) € K} < 2¢. For convenience in this proof

let us denote a(z) = ay(2), b(x) = by (x) and VI = V! i=1,2.

By computation, using the explicit expression of U}""(z), a(z), @/ (z), b(z), V,} (x) and

V2(z) given by (3.25), (3.20), (3.21) and (3.23), and the estimate of 95,04U4"" in (3.10)

for all 4, j > 0. we have, for (u,7) € K, that

Ug”'y(fl) Ug”y(fl)

e @ o)1 +2)"" 2z, @ =014z "2z , -1<z<0.
So
1 G 1-¢ 2
Vi (z)] =0(1)(1 + ) 2 =0(1)(1+4x)" Vi) =0(1), -1<z<0,
and
d_ i) e -
SV (@) = e @a (x)) —O0W)(1+2) T =0)(1+2)F, —l<z<0,
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d up (-1 _
deq?(:L‘)‘ =@ o)1 +2)" "2z =0(1)(1+2)"F, —-1<z<0.
Moreover,

o' o' T 19
e g - 204
ama(:”) Guib(x) /0 1—s20u Ur(s)ds

_ dl n T ’ Sb_l n S ‘ S
— <d".im)l(l+ )+0(1)/0(1+ )" In(1 + s)["d
- <dCL M) In(1+2) +O0(1)(1 + )" In(1 + o),

where |O(1)| < C depending only on K and i. So we have
0LV (z)] = e *@O (ylnu + ;r)yi) =0 (142) F In(1 + )", —-1<z<0,i=1,2,3..
Similarly,

|090LV) (z)] = e~ @O ((1 + ) [In(1 + W) =0(1)(1+x)'"%, —1<z<0,i=1,23..

From the above we can see that for all (u,y) € K and i,j > 0, there exists some

constant C' = C(i, j, K), such that

. d . .
(1 +2) AV (@) < C, ‘(1 + o) ROV (1) <O, 1<z <o,

We can also show that for 4,7 > 0,
-
8%8;‘/9 (1)=0,
and there exists some constant C such that

’d 0LV (1) <C, 1=0,1,2, 0<a<l.

The above imply that for all 4,5 > 0, 8%8LV1(x) € X, and Ve1 € C*(K, M).

Similarly, we can show that Vd? € C®(K,Ms). So V1, V? e C*(K,X). O

Lemma 3.2.9. There exists C = C(K) > 0 such that for all (u,7) € K, (B1, 32) € R?,
and V € Xy,

IVIIx + (81, B2)| < ClB1V, + B2Viiy + VIx.
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Proof. We prove the lemma by contradiction. Assume there exist a sequence (u?, %) €

K, and (5%, 3}) € R?, V' € X, such that
IVillx + (8L, 83)] = dllBIVE L + BV2 .+ Vilix. (3.46)
Without loss of generality we can assume that
IV?x + (81, 83)] = 1.

Since K is compact, there exists a subsequence of (u?,~%), we still denote it as (u*,~?)
and some (p,vy) € K such that (u',7*) — (u,y) € K as i — oo. Similarly, since

|(8%, B%)] < 1, there exists some subsequence, still denote as (3%, 83), such that (5%, %) —

(B1, B2) € R? as i — co. By Lemma we have

VI Vi
Y

o Vi =12

By (3.46),
BiViyi i+ B5VE i+ V0.
This implies
Vi V= —(B1V,, + BV

On the other hand, V¢ € X;. Since X; is a closed subspace of X, we have V € X;.
Thus V e X1 N span{Vu{,y7 Vin}‘ So V =0.

Since V1

oy V/z7 are independent for any (u,7y) € K. We have 81 = 82 = 0. However,

Vi Ix + (8], 85)] = 1 leads to ||[V||x + |(B1,52)] = 1, contradiction. The lemma is

proved. O
Proof of Theorem [3.2.1: Define a map F : K x R? x X; — Y by

F(p,7, 1,82, V) = G, v, iV, + B2V, + V).

By Proposition G is a C™ map from K x X to Y. Let U = U(u,, 1, B2, V) =
BLVL, + B2V2, + V. Using Lemma we have U € C™(K x R? x X1,X). So it
concludes that FF € C®°(K x R? x X1,Y).

Next, by definition F'(u,,0,0,0) = 0 for all (u,v) € K. Fix some (g,7) € K, using
Lemma we have Fy(f,7,0,0,0) = Lg’iy : X7 — Y is an isomorphism.
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Applying Theorem C, there exist some 6 > 0 and a unique V € C*®(Bs(f,7) X
Bs(0),X1), such that

F(,ua’77617627‘/(#’7761762)) = 0> V(M>’7) € B(S(/TL?F_}/)’ (61)52) € 35(0)7

and

V(,%,0,0) = 0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § < 4,

such that Bs(f1,¥,0,0,0)NF~1(0) C {(, v, B1, Ba, V (1,7, B1, B2)) (1, ) € Bs(fi, 7), B €
B;(0)}.

Claim: there exists some 0 < d; < g, such that V(u,v,0,0) = 0 for every (u,vy) €
Bs, (1, 7)-

Proof of the claim: Since V(f,7%,0,0) = 0 and V' (u,7,0,0) is continuous in (u, ),
there exists some 0 < §; < g, such that for all (i, y) € Bs, (,7), (#,7,0,0,V(1,7,0,0)) €

B5(1.5,0,0,0)- We know that for all (u,7) € Bs, (i, 7),
F(M? 77 O? 07 0) = 07

and
F(p,7,0,0,V(,7,0,0)) = 0.

By the above mentioned uniqueness result, V (i, v,0,0) = 0, for every (u,y) € Bs, (f1,7)-

Now we have V' € C*°(Bs, (j1,7) x Bs,(0),X1(f,7)), and
F(p,, B1, B2,V (1,7, Br, B2)) = 0, V(u,7) € Bs, (11,7), (B, B2) € Bs, (0).
i.e.
G117, 81V + B2V + V7, b1, B2)) = 0, V() € Bsy, (1,7), (81, B2) € B, (0).
Take derivative of the above with respect to f; at (u,,0), i = 1,2, we have
G (1,7, 0)(Viy + 05,V (1,7,0,0)) = 0.
Since G (1,7, O)VIj',7 = 0 by Lemma we have

Gf](”v 7> O)a@V(M, 7,0, O) = 0.
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But 9,V (11,7, 0,0) € C*°(X4), so
851“/(/1’77’0)0) =0, 2=1,2.

Since K is compact, we can take d; to be a universal constant for each (u,7y) € K. So
we have proved the existence of V' in Theorem [3.2.1

Next, let (u,7) € By, (f1,7). Let ¢’ be a small constant to be determined. For any
U satisfies the equation (3.13)) with U — U*7 € X, and ||U — U*7||x < ¢’ there exist

some (1, 82 € R and V* € X7 such that
U—UM =BV, +BVi + V"
Then by Lemma there exists some constant C' > 0 such that
2B B+ IV ) < IV, + BaV2, + V¥l < 8

This gives ||[V*||x < C¢'.
Choose ¢’ small enough such that Cé’ < §;. We have the uniqueness of V*. So

V* =V (u,, b1, B2) in (3.27). The theorem is proved. d

3.2.3 Existence of solutions with nonzero swirl near U when (u,7) €

Iy

Let us look at the problem near U when pu = —% and v > —1. For such a fixed

(1, ), write U = (Uy, 0). Recall that in Corollary we have

o= (1 — 2 2(y+1)
Uy =(1 )<1+(v+1)ln1§‘”2>' (3.47)

It satisfies

_ _ 1- 1
(1 — 2®)U) 4 22Uy + §U92 = 75(1 — )%
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We will work with U =U —U. Let 0 < € < %, define

M, = {Ug e O([-1,1,R) N CY((~1,1,R) N C%((0,1),R) |

~ 1+z)\ ~
(1) = Oo(-1) = 0 1 (52 ) Gollry <

1+«

l(1-+) (1 ) Tl an < oo, \|U9|Looon<oo}

Mg :MQ(G)
—{Ts € CH-1LUR)NCA(=1,1),R) [ Ty(1) = 0,[[(1 + &) Tl oo -1,1) < o0,
I+ 2) Tl e 1) < 09, 1L+ @) Tl oo 1,1y < 00}

with the following norms accordingly:

~ 14+x)\ ~ 1+2)\?2 ~, ~
[[Ug|In, = || In 3 Usl|peo (1,1 + ] | In 3 (1 +2)Upl oo (—1,1) + Ug [l Lo (0,1)
Uy = [1(1+ 2)Ug|lpoo—11) + 11+ 2) US| oo 1,1 + 111+ 2) 2T UL poo(—1,1)-

Next, define
N = {& € C(-1 1L, R) N CH(0, 11, R) | &(1) = &o(—1) = (1) =
H( 1+Jj> éHHL‘X’ -1,1) < 00, H 5 HLoo 01)<OO}

T 1+e
Ny = Na(e) = { € € (-1 1LR) [ 1) = ||(+)f¢|u <o

with the following norms accordingly:

1+a)>
leol, s= 11 (152 ollsry + 1172

(1+2)'*eg,
H§¢>HN2 = Hi_ HL°°(71,1)'
1—=x

é‘/

V2RV

Let X := {U = (Up,Uy) | Ug € My,U, € My} with the norm [|U|[x := ||Us||m, +
105l I, and Y = {€ = (€9, &5) | &0 € N1, & € No} with the norm |[€][y == [|€]In, +
[1€o|In, - It is not difficult to verify that My, My, Nq, No, X and Y are Banach spaces.

Let l1,l3 : X — R be the bounded linear functionals defined by for each
V € X. Define

X :=kerl; Nkerls. (3.48)
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Theorem 3.2.2. For every compact subset K of (—1,+00), there exists 6 = §(K) > 0,
ov

and V € C®(K x Bs(0),X1) satisfying V(+,0,0) =0 and 8—ﬂ|5:0 =0,:=1,2, such
that

U=U27 45V +5V2 + V(1.6 5) (3.49)

27 bl
11
2 4
1

8 = 0'(K) > 0, such that if ||lU —U"27||x < ¢, v € K, and U satisfies equation
with some constant [i, then holds for some |(B1,B2)] <9 .

satisfies equation (|3.13|) with i = — Y[Uy)(—1). Moreover, there exists some

To prove Theorem we first study properties of the Banach spaces X and Y.

With the fixed € € (0,1), we have

Lemma 3.2.10. For every U € X, it satisfies

Ts()] < (1= )1+ ) NTgllvtae V1 <s<1, (3.50)

~ 2\ 2 14+ s\ " ~
|Up(s)] < (In3) lng In 3 (1=9)|Upllvy, V—1<s<1 (3.51)
Proof. For s € (0,1), there exists y € (s,1) such that
Us(5)] = U5 ()I(1 = 5) < (1= )||UsgInns

while for s € (~1,0, [T5(s)] < (1 +8)~Tsllngs < (1 = 5)(1 + )T lnay- S0 (B50)
is proved.

Now we prove (3.51). For 0 < s < 1, by the fact that Uy € My, we have |Uj(s)| <
(0 2) 2 (|Tg[nr, - So

‘ings>ﬁﬂg

< (n3)[Ug(s)| = (n3)|Up(s) — Up(1)| < (10.3)[|Tgl| oo (0,1)(1 — 5)

-2
< (n3) (mi) (1= )1 Tsllna,-

For —1 < s < 0,

(InE) (1 —s)_lﬁe(s)} < ‘(111%) 06(5)‘ < |Usl[m,- So (3.51) is

proved. ]

Lemma 3.2.11. For every & € Ny,

—2
o)l < (037 (n 25 5) (= oPlall, -1<o<t
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Proof. If &g € Ny, (1) = 0. So for every 0 < x < 1, there exists y € (x,1) such that

(ml'gx)lm

< (In3)%|g ()| = (In3)%|&(y) (1 — 2)| < (In3)?[|&lInv, (1 — )(1 — x)

< (In3)]|€ol I, (1 — 2)*.

For —1 <z <0,

(In 52)* 60(@)| < [I8olln, < [16oll, (1 - 2)°. =

Now let K be a compact subset of (—1,400). For Us € My, let [Ug](z) be
defined by (3.14). Then define a map G on K x X such that for each (7, U ) € K x X,
G(v,U) = G(—3,7,0) given by (3.15) with Uy in (3.47). If U satisfies G(v,U) = 0,

then U = U + U gives a solution of 1} with g = —% - iw[U¢](_1)7 satisfying
Up(—1) = Up(—1) = 2.

Proposition 3.2.2. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

1
to U at (v,U) € K x X is given by the linear operator L[}Q’ﬂ/ : X — Y defined as in

3.18]).
To prove Proposition we first prove the following lemmas:

Lemma 3.2.12. For every v € K, the map A(—%,fy, ) : X =Y defined by (|3.16]) is

a bounded linear operator.

Proof. For convenience we denote A = A(—%,% -). We make use of the properties of
1

In(1+x)
A is clearly linear. For every U € X, we prove that AU defined by li isin’Y

Up that Uyg(1) =0, Uy € C?(—1,1] N L>=(—1,1) and Uy — 2 = O(1)

and there exists some constant C' such that ||[AU||y < C||U||x for all U € X.

By the fact that Uy € M, and (3.51)), we have
1 2
‘(ln —i—a;) Ay
3
1 ?
(14 x) <ln —;—m) Uy

<C(1 —2)[|Uglm,-

1+ 2

<(1-a)

T '(2x+U9) In
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From the above we also see that lim,_,; Ag(x) = lim,_,_1 Ag(z) = 0. By computation
Al = (1 — 22)U) + UpU} + (2 + U})Uy. Then by the fact that Up € My and (3.51)), for

O<z<l,

!U!

[45(@)

1 SCHUQHMl, 0<x<l.

< (1+2)|U}

So Ay € Ny and HA9HN1 < CH[?QHMI.
Next, by the fact that U¢, € Ms and l ,

1-—

|Us|

1—=z

Ayl < (L +2)* UG+ (1 + 2)'* Uyl < CllUs|Iva,-

We also see from the above that lim,_,1 Ag(x) = 0. So Ay € N, and [|Ay4||n, <
C||Ug||n,- We have proved that AU € Y, and ||AU|ly < C||U||x for every U € X. [

Lemma 3.2.13. The map Q : X x X — Y defined by is a bounded bilinear

operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. It is clear that @) is a bilinear operator. For every U,V e X, we will prove that
Q(U,V) is in Y and there exists some constant C' independent of U and V such that

1QU, V)|l < ClIUIx|IV|Ix.

For convenience we write

o 12U¢
(T, V)( /// 20oVol8) ) v,

For U,V € X, we have, using 1} in Lemma |3.2.10, that

Us(s)Vj(s)

T2 | St Ol [ ALVR ALV (3.52)

It follows that (U, V)(z) is well-defined and

[W(U,V)(@)] < Cle)(1 = 2)*||UglIng [ Vol Ing,,  —1 <z <1 (3.53)
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Moreover, we have, in view of (3.52)), that
(1— )
4

Y(U,V)(-1)|
(1+2x)(3—

~|v@. 7)) - v P+ i@ 7))
/ / /1 2U¢ d dtdl + W¢(ﬁ’ ‘7)(—1)
<o+ x>1*2€|\0¢||M2||V¢HM2, Vo1<a<o

Thus, using ) and -, we have

V(U V)(2)

(3.54)

~ ~ —_ 2 ~ ~ ~ ~
(@, v><ac>—(1 4‘”) BT (1)] < OO 1+) > (121 Tllaas | Tollngy -1 <z < 1.
(3.55)
So by and the fact that Uy, Vy € My, we have
| (lnl”) Qo)
~ ~ 2 ~ ~ —_ 2 ~ ~
<2 (WY @i + (n2) ud e - 52w e

3
1+

2
< C(1 = 2)?/[TslInas Vol lny + € (m ) (L4 2)4(1 = 2210 (5)] vt T
<O -2 0IxlIPllx, V-1<a <L
From this we also have lim Qp(z) = lim Qg(x) = 0.
z—1 rx——1

A calculation gives

, 1 2U¢ 1—2xa ~ o~
Qp(x) = U9V9+ U9V9+/ / dsdt— 5 YU, V)(—1), for 0 <z < 1.
Using UeX, . and , we see that,
Qp(z)| < C(1—2)||U|Ix[|VIIx, ¥0<z<1.

So Q¢ € N1, and ||Qg||n, < C|[U]x|[Vx-
Next, since Qy(z) = (79(1’)17(;(37), for -1 <z <1,

Vel . -
()] M2 < O[Ty, | Vo Ina,-

(1+x)1+EQ¢ - (1+x>1+e N
> )H—e >

11—z l1—x (1+
We also see from the above that hm Q¢( ) = 0. So Qp € Ny, and [|Qy|ln, <
106l In1, 1 Vsl [z, - Thus we have proved Q. V) €Y and [|Q(U, V)lly < ClIU|Ix|IVIIx

for all U,V € X. The proof is finished. O
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Proof of Proposition : By definition, G(—3,7, U) = A(-3,7, U) + Q(U,U) for
(7,U) € K x X. Using standard theories in functional analysis, by Lemma [3.2.13|it is
clear that @ is C*° on K x X. By Lemma (3.2.12 A(—%,’y, ) : X =Y is C™ for each

v € K. For all i > 1, we have

i L = i3

By (3.11)), for each integer i > 1, there exists some constant C' = C(i, K), depending

only on 7, K, such that

.1 1 -2
00U, 2 ()| < C(6, K)(1 — ) (ln “3) , —l<az<l (3.56)
From (3.47]) we also obtain
d

dx 7

.o 1
—alU, 2’”(95)’ <C(i,K), 0<z<l.

Using the above estimates and the fact that Uy € My, we have

1+2\° 1 -
<ln > 87A0(_7777U)

3 5 < C(i, K)(1 - 2)||Ug||m,, —1<z<1,

and

d., 1 | |d ..t
‘Cma'yA@(_QvFYa U)‘ < 'd.’L’aFyUe : ’y(x>

- - d -~
Gata)| + 10505 27 @)1 | £-Oote)

< C(i, K)(1 - 2)||Ugllm,, 0<a <1

So 9! Ag(—%,7,U) € Ny, with [|0! Ag(—3,7,U)|In, < C (i, K)||Up||ny, for all (v,0) €
K x X.
Next, by 1} and the fact that (~]¢ € My, we have

R
108U, (@)

1—=x

(14 x)tte
1—=x

107 A (11,7, U) ()] (14 2) U] < Cl, K)||Ug||n, -

So 8§A¢(—%,’y, U) € Ny, with \|8§A¢(—%,’y, U)HN2 < C’(i,K)|](?¢HM2 for all (v, (7) €

K x X. Thus 0{A(—3,7,U) € Y, with ||08A(—3,7,0)|ly < C(i,K)||U||x for all

(v, U)e KxX,i>1.
So for each v € K, 8§A(—%,’y, ) : X = Y is a bounded linear map with uniform

bounded norm on K. Then by standard theories in functional analysis, A : K xX =Y
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is C*. So G is a C*° map from K x X to Y. By direct calculation we have

that its Fréchet derivative with respect to X is given by the linear bounded opera-

1
tor LUQ”y : X — Y defined as (3.18)). The proof is finished. O

1
By Proposition |3.2.2, L, 27 . X — Y, the Fréchet derivative of G with respect to
U at U = 0, is given by 1'

Next, with ‘L%,»y(x)v bféﬁ(:n) defined by l) with Uy given by 1} we define
W_%’7(§) by (3.35) for £ € Y. Then a_1_(x) and W_%”(f)(x) satisfy (3.21]) and
27

(3-36).

Lemma 3.2.14. For everyvy € K, W27 :Y — X is continuous and is a right inverse

_1
Of LO 277'

_1 _1
Proof. We make use of the properties that U, 27(1) =0, Uy 27 e C2(-1,1]nC"—1,1]
and |(In HT“”) (Ug(z) —2)| € L®(—1,1). For convenience, we write W := W_%’A’,
a(xz) = a_%ﬁ(x) and b(z) = b_%ﬂ(a:).
We first prove that W is well-defined, denote W := W (¢). Applying Lemma [3.2.11

in the expression of Wy in (3.35)), we have, for —1 < x < 1, that

T —2
‘(m ! ; x) Wy(z)| < C <ln ! ; x) \|59|1Nle“<x>/ ) (1—5)(14s) <ln ! 'g 5) ds.
0
(3.57)

We make estimates first for 0 < x < 1 and then for —1 < z < 0.

Case 1: 0 < x <1.

By , Up = —Uj)(1)(1 — ) + O((1 — z)?). Using similar arguments as in the
proof of Lemma [3.2.5] b(z) and a(z) satisfy (3.38)), and (3.40). So there exists

some positive constant C such that

1 - 1
e“(s)(l—s)(l—l—s)_l <h’1 "3"5‘) SC, ea(x) 2 m, O<s<x<l.
Then using the above estimate in (3.57)), we have that
[Wo(x)| < Cl&glIn, (1 —2), 0<a< 1. (3.58)

In particular, Wy(1) = 0.
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In (3.21), using Up = —Uj(1)(1 — z) + O((1 — z)?), we have

C

l1—=z

C
1-a)

o’ ()] < , " (@)] <

0<z<l. (3.59)

Then
€0 ()]

1—=x

[Wy()| < |a'(2)][W ()| + < Cllgollny, O <z <1,

where we have used (3.58)), (3.59)), the fact that £ € Y and Lemma |3.2.11

Next, A calculation gives

Wi (@) = (@ @) - " (@)Wale) - o (0) 247 4 Sy 2O

So

&l [ n [5]

1" / " / ‘
W5 ()] < [(a())* = a" (@) [[Wol + |a (2)| =5 + (-2 (=22

1—=x

By computation

U2 422Uy 2+ U} 1
’ 2 _ -9 . 0 _
(a'(x))” — a"(x) (1—22)2 1 — 22 (1 _ x) :

It follows, using (3.58)), (3.59) and Lemma [3.2.11} that

W ()| |6l (9
1 < | 0 0 < .
!WG(@\_C( -2 "o T 1oa <C||%llny, O<z<1

Case 2: -1 <z <0.

In (3.47), since v > —1, we have

_ 4 142\ 2

Then we have, for —1 < z < 0, that

1+zx 1+zx 1+

b(z) = In +2In <—ln > +0(1), a(z)=2h (— In

2 —2
pa@) _ (ln“?:ﬂf> O ala) _ (lnlgfﬂ) L0

So there exists some constant C such that for —1 <z < s <0

> + O(1),

-2 —2
(1 —s)(1+s5)7" <ln ! ?’,_ 8> <C(l+s)7, e@ < <ln ! —;x) .
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Apply these estimates in (3.57)), we have

‘ <ln ! ;m> Wy (x)

1T+2\ "t /1
< 1 < —1 < 0.
_C||59HN1<H 3 ) /01+8d3_0||§9||N1, <z<0
(3.61)

By (3.21)) and (3.60)), there exists some C' such that

C
14z °
(1+2)ln 2

Then by (3.36]), (3.61) and Lemma [3.2.11] we have, for —1 < x < 0, that
1 2
(1+2) <ln §x> Wé(m)'

>2W9($)

o/ ()] <

< 1+zx

2
# (w1 57) < cpalin,.
— T

o (z)(1 + z) <ln .

So we have shown that Wy € My, and ||[Wy||m, < C||é]||n, for some constant C.
By the definition of Wy(€) in (3.35) and the fact that £, € No, we have, for every

-1 <z <1, that

! s [€s(s)] ! !
[Wy(z)| < / e~ / eb<5>ﬁdsdtg||§¢|\N2 / et / ") (1 4 s) "2 dsdt.
x t -8 x t

Since b(z) = In 5% + 21n (— In 1£%) + O(1) for —1 < @ < 1, there exists some constant

C such that
1 2
eb(S) é C(l + 5) (h'l —;;8) ’ e—b(t) S ( )Z 1+t)2’ —1 < S,t S 1 (362)
1 +t HT
So we have

1 —2 1 2
(1+x)€|W¢(x)|SC(1+$)€||§¢||N2/Z (144)! (mlg’f) /t(1+s)—1—f <1n1;5> dsdt

< CllslINg, —1<ax <1

For 0 < z < 1, it can be seen from the above that |[Wy(z)| < C||&s|In,(1 — ). In

particular, Wy (1) = 0. By computation

1
_ —b(x b(s ‘£¢(8)
Wi(z) = —e ()Ae()1_82ds.

Using (3.62) and the fact that {; € Ny, we have that for -1 <z <1,

Lterpr 1\t e[ 148)\?
(L) T W (2)] < ClléslIn, (142)" { In— (1+s) In——) ds < OlléslIne
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Similarly,

1
W) = ge ) [ o £ gy Sol0)

1—s2 1— a2

By (3.60), |V/(x)| = o)l O((1+ x)71). Using (3.62)), we have

(1 +2) Wi (2)] < Clléglln,, —1<z<1.

So Wy € My, and ||[Wy||m, < C||€s||n, for some constant C.
Thus W*%’V(ﬁ) € Xforall £ €Y, and HWfé"Y(f)HX < C||¢]|y for some constant

C. So W=37 : Y — X is well-defined and continuous. It can be directly checked that

1
W is a right inverse of L 27, O
1 2 3 - .
Let V_%ﬁ, V_%ﬂ, V_%ﬁ be defined by (3.23)) with related a_%ﬂ(x) and b_%ﬁ(x) in

the current case, we have
_1
Lemma 3.2.15. {V!, . V3, 7} is a basis of the kernel of Ly : X =Y.
2” 27

Proof. Let V € X, LoV = 0. It can be seen that V is given by V = 1 V', V+C2V—21 Lt
27 27
csV3, y for some constants ci, co,c3. It is not hard to verify that V1, o V2, ., € X,
27 27 27

and V—glv ¢ X. Since V € X, we must have c3V? € X, s0 c3 = 0, and V €
27

span{V', V2, 1} TItis clear that {V', ,V?, }isindependent. So {V!, ,V? }
_Ev’y _577 _577 _Ev’y _577 _Ev’y

is a basis of the kernel. O

_1
Corollary 3.2.2. For any & = (§9,&y) € Y, all solutions of L 2’v(V) =&, VeX, are
given by
V=W 2 +aV +eV2 ., a,caeR
2”Y 2’7

Namely,

1

_1 _1 1
Vo =W, 27(8) + cre™@), Vo =W, 2O+ 02/ e "Mdt, ci,cr € R.

_1
Proof. By Lemma |3.2.14) V — W_%”(ﬁ) is in the kernel of L 27 . X - Y. The

conclusion then follows from Lemma [3.2.15] O

Let [1,l2 be the functionals on X defined by (3.24), and X; be the subspace of X

defined by (3.48)). As shown in Section [3.2.1} the matrix (I;(V7, 7)), i,7 = 1,2, is an

2




invertible matrix, for every v € K. So X is a closed subspace of X, and
X = span{Vfl%ﬁ,Vféﬁ} ® Xy, VyeK,
with the projection operator P(y) : X — X; given by
PV =V — ll(V)vj%,V — c(’y)lg(V)VE%ﬁ for Ve X.

_ -1
where ¢(v) = (fol e b‘%”(t)dt) >0 for all v € K.

_1
Lemma 3.2.16. The operator L 27X, > Y is an isomorphism.
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(3.63)

_1
Proof. By Corollary|3.2.2|and Lemma|3.2.15| L, 27X 5 Yis surjective and ker Ly =

span{V1 V2}. The conclusion of the lemma then follows in view of the property that

X = span{V! V?} @ X;.

Lemma 3.2.17. V!, 7,Vfl , € C*((—1,00),X).
2’

29

O

Proof. For convenience, in this proof we denote a(x) = a_%ﬁ(x), b(x) = b_%ﬁ(x) and

Vi=Vi, i=1,2.
_5,7

_1
By computation, using the explicit expression of U, 27(2), a(x), d (), b(z), V()

and Vq?(x) given by (3.47)), (3.20)), (3.21)) and (3.23)), and the estimates of OQU_%’”’ given

by (3.11]) for all i > 0, we have, for v € K, that

~a(z) L+a\ ™ 1
e =0(1)(In 3 , e =0(1) el -1 <2 <0.
and )
2w+ U, 2 (x) 1
a(x) = 6 =0(1
@)= Vi mEe)
So
1 -2
[V (z)| = O(1) <ln ?”) , V(@) =0(1), -1<z<0,
and
iVel(a:) ‘e*“(‘f”)a’(m’)’ =0(1 ! , —1l<z<0,
o (1+2) (in52)’
1
dV;(m)’ —b(*) — 01 5, —1<x<0
dx (14 ) (In 1£2)




Moreover,
ok " 10
— — -3
872.a(a:) 87Zb(w) /0 T (s)ds
z 1
o(1 / ds = O(1),
M 0 (1+s)(In4z)?
and
o, o, 1 0 1
a'(z) = =—b(z) = ——==—U"2"7(x) = 0(1 ,
a,yz ( ) 871 ( ) 1—%28’71 ( ( )(1+ )(1 l-gx)2
where |O(1)| < C depending only on v and . So we have

2
9V (@)| = e @0(1) = 0(1) (ln ! ;9”) . —1<z<0,i=123.

From the above we can see that for all v+ > —1 and ¢ > 0, there exists some constant
C, such that

1+2\?
<ln 3 > 871/91(30)

We can also show that for i > 0

<C,

1+2\*d
(1+x) (ln 3 > @87‘/91(35)

<C, —-1l<z<O.

9LV (1) = 0,

and there exists some constant C' such that

e

N<c, 1=0,1,2, 0<z<l

The above imply that for all i >0, 02V!(z) € X, and V' € C*°((—1,400), M)
Similarly, we can show that Vf € C®((—1,+00),M3). So V1, V2% € C*®((~1, +x), X)

O]

Next, by similar arguments in the proof of Lemma [3.2.9] using Lemma [3.2.17]
have

Lemma 3.2.18. There exists C = C(K) > 0 such that for all v € K, (f1,2)
and V € Xy,

7

1V]lx + [(B, B2)| < C||ﬁ1V_1%,W + 52V_2%,7 +Vlx.

50
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Proof of Theorem [3.2.2]: Define a map F : K x R? x X; =Y by
F(v, b1, 62, V) = G(v, 51V_1%77 + 52V_2%77 +V).

By Proposition G is a C°° map from K x X to Y. Let U = U(y, 1,82, V) =

BV, L+ BaV2, , V. Using Lemma 3.2.17, we have UeC®K xR?x X1,X). So

2° 27

FeC®K xR?xX1,Y).

Next, by definition F(+,0,0,0) = 0 for all v € K. Fix some 4 € K, using Lemma

_1x
3.2.16, we have Fy/(7,0,0,0) = L, 27Xy = Y is an isomorphism.

Applying Theorem C, there exist some § > 0 and a unique V € C°(Bs(¥) x
Bs(0),X), such that

F(v,B1, B2,V (7, B1,82)) =0, Vv € Bs(¥),(B1,B2) € Bs(0),

and

V(4,0,0) = 0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § < 6,

such that Bj(¥,0,0,0) N F~1(0) C {(v, b1, B2, V (7, B1, B2))|(7) € Bs(7), B € Bs(0)}.
Claim: there exists some 0 < §; < g, such that V(+,0,0) = 0 for every vy € By, (7).
Proof of the claim: Since V(%,0,0) = 0 and V(+,0,0) is continuous in =, there
exists some 0 < §; < g, such that for all v € By, (%), (v,0,0,V(~,0,0)) € B5(5.0,0,0)-
We know that for all v € By, (),

F(v,0,0,0) =0,

and

F(v,0,0,V(v,0,0)) = 0.

By the above mentioned uniqueness result, V(,0,0) = 0, for every v € Bs, (7).

Now we have V' € C*®(Bjy, (7) x Bs, (0),X1), and

F(’Y?Blalg%v(ﬂ)@ 61752)) = 07 v7 € B51 (’_Y)? (617/82) € 361 (0)
i.e.

G(V?ﬂlvj%ﬁ + BQVE%N + V(Vaﬂhﬁ?)) == 07 V’Y S B51 (’7)7 (ﬂl)ﬁQ) S B51 (0)
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Take derivative of the above with respect to ; at (,0), i=1,2, we have

G (1. 0)(V! s +05V(3,0.0)) = 0.

Since G (7, 0V, .= 0 by Lemma |3.2.15, we have
27

Gy (7,0)95,V(7,0,0) = 0.
But 93,V (7,0,0) € Xy, so
03,V (7,0,0) =0, i=1,2.

Since K is compact, we can take §; to be a universal constant for each v € K. So we
have proved the existence of V' in Theorem
Next, let v € By, (7). Let ¢’ be a small constant to be determined. For any U
satisfying the equation with U — U~277 € X, and ||U — U_%’VHX < ¢’ there exist
some f1, 82 € R and V* € X such that
U-U™27 =BV +BV? V™
Then by Lemma [3.2.18] there exists some constant C' > 0 such that

1
= (181, B) +IVF[Ix) < NBVEL + B2V +VH|x <0
C 37 577

This gives ||[V*||x < C¢'.
Choose ¢’ small enough such that Cé’ < §;. We have the uniqueness of V*. So

V* =V (v,p1,P2) in (3.49). The theorem is proved. O
3.2.4 Existence of solutions with nonzero swirl near U"" when (u,7v) €
Iin{—3 <p<-%}

Next we look at the problem near U*Y when y > —3 and v = —(1 4 /T + 2p). For
such a fixed (p,7), write U = U*7. Recall that in Corollary we have

Up=(1—2z)(1++/1+2pu). (3.64)

It satisfies

_ _ 1._
(1 — 23 Uj + 22Uy + §U92 = u(l—x)%
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We will work with U = U—~U. Given a compact subset K € (—1, —Hor K ={-1

1
there exists an € > 0, depending only on K, satisfying max Vi42u<e< 3 For this
pne
fixed €, define

M; =M; (e)
= {U@ € C([-1,1],R) N C*((—1,1],R) N C%((0,1),R) | Up(1) = Up(—1) = 0,
(L + ) =420 o (—1,1) < 00, [[(L+ @) Tpllpoe (1,1) < 00, 107 Il e 0,1y < OO} :
My =M (e)
= {0y € CH(-1, 11, R) N C3(=1,1), R) | Tg(1) = 0, [|(1 + 2)°Tl 1.1y < o0,
I[(1+ x)HeUéﬁHLW(—m) < oo, [|(T + x)2+EU<Z||L°°(—1,1) < OO}
with the following norms accordingly:
10slIn, = [1(1 +2) " 2T oo (—1,0) + 11+ 2)* Upl| oo (—1.1) + 10U l] oo 0,1):
10118z 2= 11+ ) Upll oo 1,1y + 11+ ) UG oo (—1,1y + (L +2) 2 UG | oo (1,0)-
Next, define
N1 = Ni(e) :=={& € C((-1, 1, R) N C*((0, 1], R) | &(1) = &(1) = &(-1) =

l
11+ 2) 72| oo—1,1) < 00, 11

HL°°(01) < OO}
T 1+e€
Ny = Na(e) = { € € C(-1L1LR) | 1) = ||(+)f¢|u <o

with the following norms accordingly:

!/

f
160l Iy == [1(L +2) ™ 2] | oo (1,1) Rl g [FZURDE

(1 + x)H_E&Zﬁ ||
SR G RIE

I€slIn, =1

Let X := {U = (Uy,Uy) | Uy € My, Uy € My} with the norm ||U||x := ||Up||m, +

[10s]Ivay, and Y o= {€ = (69,84) | € € N1, & € No} with the norm [[¢]}y := [[lIn, +

[1€o|IN, - It is not difficult to verify that My, My, N1, No, X and Y are Banach spaces.

Let I3 : X — R be the bounded linear functional defined by for each V € X.
Define

X := kerls. (3.65)



54

Theorem 3.2.3. For every compact subset K of (—3,—3) or K = {—3}, there exist

d=06K) >0, and V € C®(K x Bs(0),X1) satisfying V(u,0) = 0 and g‘ﬂqﬁo =0,
such that
U=Ur—tViE 4 gvE | + V(s 6) (3.66)

1
satisfies equation (|3.13|) with i = p — Z@Z’[Uqﬁ}(_l)- Moreover, there exists some §' =

§'(K) > 0, such that if ||U — Ur—1VIT2||x < §, p e K, and U satisfies equation
with some constant [i, then holds for some |B] <9 .

To prove Theorem [3.2.3] we first study the properties of the Banach spaces X and
Y.

With the fixed €, we have

Lemma 3.2.19. For every Ue X, it satisfies
[Us(s)] < (1 —8)(148) | Upllpr,, V—1<s<1, (3.67)
|Ua(s)| < (1 — s)(1 + 8)2|Up||n1,, V—1<s<1. (3.68)
Lemma 3.2.20. For every & € Ny,
[€o()] < (1= 9)*(1L+5)" " léplln, ¥—1<s<1. (3.69)

Now let K be a compact subset of (—1,—3) or K = {—1}. For Uy € My, let
w[0¢] (z) be defined by . Then define a map G on K x X such that for each
(1, U) € KxX, G(u,U) = G(p, —1—/T + 2, U) given by with Uy in (3.64). If U
satisfies G(u, U) = 0, then U = U+U gives a solution of with i = p—1 [U,](—1),
satisfying Up(—1) = Up(—1).

Proposition 3.2.3. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

to U at (u,U) € K x X is given by the linear operator Lg : X = Y where L* =
L= 1=VIF20 defined as in .

To prove Proposition [3.2.3] we first have the following lemmas:
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Lemma 3.2.21. For every u € K, the map A(p,—1 — /1 +2u,-) : X = Y defined by

3.16]) is a bounded linear operator.

Proof. For convenience we denote A = A(u,—1 — /1 +2u,-). We make use of the
properties of Uy that Uyp(1) = 0 and Uy € C?(—1,1] N L*°(—1,1).

A is clearly linear. For every U € X, we prove that AU defined by isin’Y
and there exists some constant C' such that ||[AU||y < C||U||x for all U € X.

By the fact that Uy € M; and (3.67)), we have
(1 +2)7 2 Ag| < (1= 2)(1+2)*|Ugl + (2+[Up|) (1 +2) 1 **|Us| < C(1—2)/|UplIna,

We also see from the above that lim, ;1 Ag(x) = lim,_,_1 Ag(z) = 0. By computation

Al = (1—2®)U) + UgU)+ (2+U})Up. Then by (3.64), (3.68) and the fact that Uy € Mj,

|45 ()]
1—=x

< CHU@HMl, O<ax<l.

So Ap € Ny and ||4p||n, < C||Ug||M1.
Next, by the fact that U¢ € M, and 1 , with similar arguments in the proof of

Lemma [3.2.12], we have

(14 x)lte
D) a) < Clllhgy, <2<,
In particular, lim, 1 Ag(z) = 0. So Ay € Na, and [|A4|ln, < C||Us||m,. We have

proved that AU € Y, and ||AU||ly < C||U||x for every U € X. O

Lemma 3.2.22. The map Q : X x X — Y defined by is a bounded bilinear

operator.

Proof. Tt is clear that Q is a bilinear operator. For every U,V € X, we will prove that
Q(U, f/) is in Y and there exists some constant C' independent of U and V such that
QU V)|ly < C|IUx]|V]x-

For convenience we write

- 12U¢
(T, V) /// 2UolWaS) )
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By the same proof as that of Lemma |3.2.13} for U¢, ‘7¢ € Ms, we have for any —1 <

r<l1

(1—x)
1

(U, V) (z) - (U, V)(=1)] < Cle)(1+a)' > (1= 2)?[|Us| v, | [V [vr,- (3.70)
So by 1) l) and the fact that Uy, Vy € My, we have

(1 +2) 7% Qy ()]

%(1 +2) " Uy (2)|[Vo ()] + (1 + 2) 720 (U, V) (2) —

< O(1 — 2)°||Us[an, Vel [ag, + O (1 — )| U (5)Ivrs || Vs I

C(l—x) HUHxHVHX7 V-1l<z<l.

Since € < %, from the above we also see that lim,_,; Qg(z) = lim,_—,_1 Qg(z) = 0.
Using (3.67), (3.68) and the fact that U € X, with the same argument in the proof

of Lemma [3.2.13] it can be shown that
Qy(x)| < C(L—2)|U[Ix][VI[x, Y0<z<L.

So Q¢ € Ny, and ||Qg|In, < C||U|x]|V||x-
Next, using (3.68)) and similar proof of Lemma [3.2.13] we can prove

(1+2)*Q . -

‘l—xd) < ClUollgp, IVollyg,, —1<z<1,

and i1_>H11Q¢(1') = 0. So Qp € Ny, and ||Qqlln, < ||Us||M, ||Vel|n,- Thus we have
proved Q(U,V) € Y and ||Q(U,V)|ly < C||U||x||V]|x for all U,V e X. The proof is

finished. O

Proof of Proposition [3.2.3: By definition, G(p, U) = A(p, —1 — /T + 21, 0) +Q(U, U)
for (u, U ) € K x X. Using standard theories in functional analysis, by Lemma (3.2.22
it is clear that @ is C*° on K x X. By Lemma [3.2.21}, A(pu, —1 — /1 +2u,-) : X =Y

is C*° for each € K. For all i > 1, we have

— V1 +2p,0) = 9 U VI
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By (3.12)), for each integer i > 1, there exists some constant C' = C(i, K), depending

only on 7, K, such that
LUy IR ) < O, K) (1 —7), 1<z <1. (3.71)
From we can also obtain
(Z%%rbﬂHWﬂFﬂMJQ,O<$<L

Using the above estimates and the fact that Uy € My, we have

’(1+x) 1+258’A9 —/1+2u,0) ’ <O, K)1 —2)||Ug||nm,, —1<z<1,
and
‘31149 \/HT,UI
< ‘;;%Ué‘ TV )| T ()] + (05U Y ()| ’;;UQ(@

<C(i, K)(1 = 2)|[Usllty, 0 <2< 1.

S0 &, Ag(p, —1—/T+ 211, U) € Ny, with ||, Ag(n, —1— /T + 211, U)|In, < C(i, K)||Upllna,
for all (u,U) € K x X.
Next, by l} and the fact that (~f¢ € M, we have

‘81 U,u,—l m‘

(1+m)1+6 A 1+ery . 7
0 A (1~ 1=/ T+ 2, 0)| ———— (1) UY| < O, K| T I,

1

So 8% Ag(pt, —1 — \/T+2p,U) € Ny, with

107, A (1t =1 = /14 20,7, 0|, < CLi, K)||Usgl Iy

for all (u,U) € K x X. Thus A, —1—/T+2 ,U) €Y, with
167, A — V142, 0)|ly < CG, K)||U||x

for all (u,U) € K x X, i > 1.
So for each pu € K, 8LA(M,—1 —V1+2u,-) : X = Y is a bounded linear map

with uniform bounded norm on K. Then by standard theories in functional analysis,

A: K xX =Y is C*® SoGisaC*™ map from K x X to Y. By direct calculation
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we get its Fréchet derivative with respect to X is given by the linear bounded operator

Lg’flf VIT2 . X 5 Y defined as (3.18). The proof is finished. ]

By Proposition Lf : X — Y, the Fréchet derivative of G at U =0 is given by
(13.19)).

Next, let a,(z) = a, _1_ g52u(2), bu(z) = b, _1_ 152:(2) be the functions defined
by with Uy given by .

Since U = (1 — 2)(1 + /T + 2p), we have

au(r) = —In(1 — 2%) + (1 + /1 +2p) In(1 + ),

bu(z) = (1++/142p)In(1 + ).
For £ = (&,&4) € Y, by (3.69) and (3.72), we have

! a (s)|§9(8)| ! V1+2p—2e
/e“ 1ds§|]§9HNl/ (14 5)VTF%2 s < o0,

2
—1 S -1

(3.72)

Let the map W* be defined as W*(¢) := (Wy'(€), W (£)) by

W) = o) [ e S g,

—1 1—52 ’
! ! §o(s)
W (&) (x) = / e~ bu(®) / e (9) 22277 dsd.
T t

1—s?
Then WH satisfies (3.36)).

(3.73)

Lemma 3.2.23. W*: Y — X is continuous and is a right inverse of Lj.

Proof. For convenience we write W = WH(&), a(z) = a,(z) and b(x) = b,(z).
We first prove that W is well-defined. For £ € Y, denote W := W (). Applying
Lemma [3.2.20]in the expression of Wy in (3.73|), we have

xT

(1 +2) 7 2 Wy (2)] < O(1+a)72|¢g | e @ / e (1—s)(14s) %ds, —1<z<1.
-1
(3.74)

Using (3.72)), we have
) = (14 s)VIF2H1—5)7t, 9@ =145 VIFH1 ), —-1<s<z<l.
Apply this in (3.74), it is not hard to see that

[Wo(x)| < ClléplIn, (L +2) (1 —2), -1<z<L (3.75)
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In particular Wy(1) = 0. Since € < %, lim1 Wy(x) =0,
T—>—

By (8.72),
c C
’a/($)| S m’ |(L”($)| S m, 1<z < 1. (376)

Using the above estimate of |a’(z)], (3.69), (3.75) and (3.36]), we have

(4 2)2Wj) < (1 2 (@) W] + S =

<C|élIn,, —1<z<1.

Next, A calculation gives

G) | &), 208(@)

Wil(a) = (@) = a"(@)Wole) —a/ ()72 + 770+ 705

So

Gl 16, ol

W5 (@)] < [(a/(2))* = a" (@) ||Wo] + |/ (2)| =5 + (-2 -2

1
By (3.72), we have the estimate

(@ (@)? —d"(z) = O ( ! ) .

1-2z
It follows, using (3.75)), (3.76) and Lemma [3.2.20] that

Wolw) L6l . g
1) <o (o ol ) < 1.
Wi <o (P24 84 80) <l 0<o<

So we have shown that Wy € My, and ||Wy||m, < C||¢s|In, for some constant C.
By definition of Wy(&) in (3.73) and the fact that {, € N2, we have, for every

—1 < x <1, that

1 1
Wo()] < |11 / e bt / SO (11 5) 2 dsdt.
t

xT

Using , we have
) = (14 g)1TVIFI b — () IVIRI ) o5t < 1. (3.77)
So we have, using /T +2p < € < 3,
Wa(a)] < Cllésl I, / (1401 / (1 )T

<Cllgsln,(1+2)7¢ —1<z <1
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For 0 < 2 < 1, it can be seen from the above that [Wy(z)| < C||&s|In,(1 — ). In
particular, Wy (1) = 0. By computation
1

Wi(x) = —6b(x)/ e

xT

b(s) €o(8)
1—s2""

Using (3.77)), € > /T + 2 and the fact that £, € N2, we have,

1+ 2) Wi @)| < Cligsle, —1<a<1.

Similarly,
1
meoN —b(x) b(s) €s(s) §s(@)
Wy (x) =b(z)e /x e 1—52d3+1—x2'
By (3.72), V/'(z) = 2 = O((1 + 2) 7). Using (3.77), we have

(1 +2)* W ()] < Cllésllv,, —1<z<1.

So Wy € My, and ||[Wy||m, < C||€s|In, for some constant C.
Thus WH(E) € X for all £ € Y, and ||[IW(§)||x < C|[¢||y for some constant C. So
WH . X — Y is well-defined and continuous. It can be directly checked that W* is a

right inverse of L. O

Let Vlf = V;_l_m, 1 =1,2,3, be defined by 1) with related a, _1_ /59, =
au(z) and b, _i_ 1525 = bu(x) given by (3.72) , we have

Lemma 3.2.24. {VMQ} is a basis of the kernel of Lfy : X — Y.

Proof. By 1' it is not hard to verify that VM2 € X, and VJ,V:’ ¢ X. Then by
similar proof as Lemma we obtain the conclusion. ]

Corollary 3.2.3. For any £ = (£p,&s) € Y, all solutions of LE(V) =&, V € X, are
given by
V=WH(E) + cVi, ceR.

Namely,
1

Vo =W (&), Ve=WHE+ c/ e Wdt, ceR.

x

Proof. By Lemma [3.2.23, V — WH(£) is in the kernel of L : X — Y. The conclusion
then follows from Lemma [3.2.24 O
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Let Il be the functionals on X defined by (3.24]), and X; be the subspace of X
defined by (3.65). As shown in Section lg(V/f) > 0 for every p € K. So X is a

closed subspace of X, and
X = span{VMQ} & Xy, VpueK,
with the projection operator P(u) : X — Xj given by
P(p)V =V —c(u)la(V)V, for V € X.

where c(u (fo dt) > 0 for all u € K.

By Lemma [3.2.24 and Corollary [3.2.3] using similar proof as Lemma [3.2.7, we have
Lemma 3.2.25. The operator Ly : X1 — Y is an isomorphism.
Lemma 3.2.26. V? € C*°(K, X).

Proof. For convenience, in this proof we denote a(z) = a,(z), b(z) = b,(z) and V2 =

2
Vi

By computation, using the explicit expression of U, IV a(x), d (x), b(x)

and qu(x) given by (3.64), (3.72) and (3.23), and the estimates of 9" ,Us A

l) we have, for u € (—%, —%), that

So
T d bl -
Vf(x) =0(1)(1 —z)(1 +x)" VIt %Vg(ac) =t = (14 ) tmvitae,
d? _
‘d2v¢, = |0/(x)] e @ = O(1)(1 + 2) "2 VIH2 l<z<l
Moreover,
ai
1+ 2u
8,u +

So we have, for —1 <z < 1,i=1,2,3..., that

0. V2(2)| = O(1)(1 — 2)(1 + 2)"VIF2(In(1 + 2))’,
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0LV ()| = O)(1 +a) VI (In(1 4 )’
0LV = 01 +a) V(1 + ).

The above imply that for all i > 0, GLVQ(:L‘) € X, and V(f € C®(K,Ms). So V? ¢
(K, X). O

Next, by similar arguments in the proof of Lemma [3.2.9] using Lemma [3.2.26] we

have

Lemma 3.2.27. There exists C = C(K) > 0 such that for all u € K, 8 € R?, and
Ve Xy,
IVIIx + 18] < ClIBV, + V||x-

Proof of Theorem |3.2.3]: Define a map F': K x R x X; — Y by
F(p,8,V) = G(u, BV + V).

By Proposition G is a C® map from K x X to Y. Let U = U(p,3,V) =
ﬁQVMQ + V. Using Lemma we have U € C*(K xR x X1,X). So it concludes
that F' € C*°(K x R x X1,Y).

Next, by definition F'(1,0,0) = 0 for all p € K. Fix some i € K, using Lemma
we have Fy (1,0,0) = Lg : X7 — Y is an isomorphism.

Applying Theorem C, there exist some § > 0 and a unique V € C®(Bs(fn) x
Bs(0),X1), such that

F(p,B,V(u,8)) =0, Vue Bs(), 8 € Bs(0),
and
V(g,0) =0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § < 4,

such that Bj(f,0,0) N F~1(0) C {(, B,V (1, B)(7) € Bs(i), B € B5(0)}.

Claim: there exists some 0 < §; < g, such that V(u,0) = 0 for every p € Bg, ().
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Proof of the claim: Since V(f,0) = 0 and V(p,0) is continuous in pu, there exists
some 0 < ;1 < g, such that for all p € By, (1), (1, 0,V (1, 0)) € Bj(;,0,0)- We know that
for all u € By, (),

F(p,0,0) =0,

and

F(p,0,V(p,0)) =0.

By the above mentioned uniqueness result, V(u,0) = 0, for every u € Bs, ().

Now we have V € C*°(Bjs, (1) x Bs,(0),X1), and

F(:Uﬂﬁ,V(,ua B)) =0, VM € B&(ﬁ)vﬂ € B51(0)

ie.
G(M,ﬁVHQ + V(,u, B)) =0, Vpe B<51 (ﬁ)a pe B<51 (0)

Take derivative of the above with respect to 8 at (u,0), we have
G, 0) (V7 + 5V (1, 0)) = 0.

Since G (u,0)V;? = 0 by Lemma we have
G (n,0)08V (1, 0) = 0.
But 05,V (11,0) € C*(X1), so
95V (11,0) = 0.

Since K is compact, we can take d; to be a universal constant for each u € K. So we
have proved the existence of V' in Theorem [3.2.3

Next, let p € By, (j1). Let ¢’ be a small constant to be determined. For any U
satisfies the equation (3.13) with U — U#—1=VI¥2h ¢ X and ||U — U~ 1= VIF2||x < ¢

there exist some 8 € R and V* € X4 such that
U — Ut iovIiie — gy 4y,
Then by Lemma there exists some constant C' > 0 such that

1 *
B+ 1IV7Ix) < 18V +V*x < 8.
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This gives ||[V*||x < C¢'.
Choose ¢’ small enough such that Cé’ < §;. We have the uniqueness of V*. So
V* =V (u,B) in (3.66). The theorem is proved. O

Now with Theorem [3.2.1 we can give the

Proof of the existence part of Theorem [1.0.2]: Recall the relation between the parameters

(1,7) and (7, 0)

W= =T"— =T, = —20.

8 2
Let K be a compact subset of one of the four sets Ji, Jo, JsN {2 < 7 < 3} and
J3 N {1 = 2}, where Ji, Jo, J3 are the sets defined by (1.10].

For (1,0) € KN Jy, let

(UM BV 4 V(i 7,0,6) . B € (-5,)

sin

u(r, 0, f)

2 .
where 4,V and V(u,,0, ) are as in Theorem

For (1,0) € K N Jy, let

1

sin 6

u(r,0,0) =

(U7 +8V2, +V(1,0,8)), Be (=50,

where 4, V2, 8 and V (7,0, ) are as in Theorem [3.2.2
27

For (1,0) e KN (JsN{2 <7 <3}), let

1
sin @

u(r,0,8) = —— (URTIVIB L g2 V(). B e (<6,0),

where 4, Vi—l—m and V' (u, B) are as in Theorem
With (7,0, 3) defined as the above, the existence part of Theorem follows
from Theorem [B3.2.1H3.2.3]

3.3 Pingpong ball on top of a fountain

As mentioned in the introduction, the pressure of Landau solutions at the center of
north pole is greater than the pressure nearby. In this section, we identify all (-1)

homogeneous, axisymmetric, no-swirl solutions which describe outward jets with lower
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pressure in the center. We tend to believe that the pressure profiles are of interest and
modification of these solutions is more likely to support a pingpong ball.
Set a := v 4+ 1, consider below the exact form solutions in Theorem [3.1.1

When p > —%, the solutions are expressed as

Up(z) = (1 —x) <l—b—

From the second line of (2.1)) with Uy = 0, we have

. . 1 T 2 1 1 2 1 2
Jim = i (V= 00 U ) = (e bl =)+ SR U3
1 1 3 1 1 1
= b)(a—b)+-(a—1)="a*— —a+ - — b
2(a+ )« )—|—4(a ) 1° 2a+4 5

Since b = /T +2p > 0, it can be proved that u,|;—1 = a —1 > 0 and lim p'(x) =

rz—1—

1 1 2 . . 1 2 2 3
i(a—i-b)(a—b)%—z(a—l) <Oifand only if b > 1,1 < o < 5 +4/5b% — 5. Notice

thatb>1,1<a<%+\/%b2—%implies
2
>0, 0<’y<§(\/1+3u—1).

Therefore, under the condition > 0, 0 < v < %(\/1 +3u — 1), we have u, [z=1> 0,
% |»=1< 0. The corresponding solutions describe fluid jets with lower pressure at north
pole than nearby.

It remains to check the case when u, |y,—1> 0, % |z=1= 0. This condition implies

1 2. 2
b>1, a=—-+4/202—2
I S Vi S
or equivalently,
2
1> 0, 7=§(~/1+3u—1). (3.78)

Notice that {(1,7) | ¢ > 0,7 = % (VI+3u—1)} C I. We substitute (3.78) into
the the first line of (3.7) in Theorem 3.1, then use the first line of (2.1)) to derive the

pressure p. Direct computation shows that

p(z) = C+ f(b)(1 - 2)* + O(1)(1 — 2)°,
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where function

Fb) = — (5452 — 22— \/2(3b2 — 1)(15b% + 1)) .

432

It can be checked that
FO) =) =00 FE <> (1) <0.

So f(b) <0 for all b > 1. It means that when p’ |,—1= 0, the pressure at the center of
north pole is greater than the pressure nearby.

When p = —%, the solutions are expressed as

2c0
Up(z)=(1—2) [14+ — 0
O(x) ( CC) ( +aln 1_5;5_2> ;

and there is lim,_,;- u, = a — 1. Similarly, by L’Hospital’s rule, we get

1 1 1
1- / — 1 UI/ + 7U/2 ——— 2 + - _ 1 2.
oy e < 0T ) =g rglem D)

It is not hard to see that lim,_,;- p’ > 0 for any « € R.

When p < —%, the solution can be exactly expressed as

anM (0%
Up(z) = (1 — ) (1+b(bt 2 T )>,

B(x
atan%—b

where 3(z) is determined by B(z) = bln £, There is u,[y—1 = a — 1, and

1 T a2 o1
lim ' =U) — ——UpUy— — 2 u2=2 17 | “(a—1)2
Jm p=Uy = =50l = g—lo = 5 + 5 + 50— 1)

It is not hard to see that p/|,—1 > 0 for any « € R.

According to the above computation, if u < 0, the fluid does not fit our pressure
profile to support a pingpong ball. In particular, Landau solutions correspond to u = 0,
and they have greater pressure in the center.

Define the open set I, C I by

2
I = {(u,7) CR}u>0,0<y< g(\/l +3u—1)}.

Theorem 3.3.1. For any (u,7) € Iy, tr|a=1 > 0, p'|z=1 < 0. For any (u,7) € R*\ I,
either

ur|:1::1 < 07
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or there exists 6 > 0 such that

p(z) < p(l), in (1 —6,1).

Remark 3.3.1. We have therefore identified all (-1) homogeneous, axisymmetric, no-
swirl solutions of NSE, which describe outward jets with lower pressure in the center.
They are {u(p,7) | (1, 7) € Lp}-

In particular, those solutions which can not be extended to solutions in C*°(S?\{S})
are nmot in this set. There are also many solutions in C*°(S?\ {S}), including Landau

solutions, not in this set.



68

Chapter 4

Asymptotic behavior of solutions

In this Chapter we study the asymptotic behavior of (-1)-homogeneous axisymmetric
solutions of (1.3]) in a punctured ball around the north or south pole of S?. In particular
we prove Theorem [T.0.3] and Theorem [1.0.4]

Recall that the Navier-Stokes equations for (-1)-homogeneous solutions have been

converted to the system

t 2U4(s)
(1—SU)U6+21‘U9+ Ug / / / 1 2 ddtdl—clx + cox + c3,
-5
(1-=z )U(;)/ + UQU(; =0.
(4.1)
where x( is some fixed number in (—1, 1), ¢1, ¢2, c3 are constants.
It follows from the second line of the above that
/ - 245 %ds
Ug(z) = Ce “71Ho1-277 (4.2)
Let 6 > 0 be a real number, H be a function of x, we consider the equation
1
(1—x2)Ué(x)+2xU9+§U92 =H(z), —-l<z<-1+6. (4.3)

Define, with xg = —1 + 4,

x t 2U¢
:/ / / 2 dsdtdl. (4.4)
20 Jxo 1—s
We can write I as

/acg / /m 2U¢ 2O g /zj U‘f’(S)U}(Sl(QS =

(z — 20)?
21— ad)

(4.5)
U¢, (CCo) + 1
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where

2 U2(s)(s — z)(1 — sx
Il(x):_/xo Bl )((1_5)2()2 s (4.6)

By computation

z U2(s)(—s? +2xs — 1
PRI Cleiht L)

1= 522 ds <0, —-1<uz<uxg. (4.7)

0
Indeed, the first inequality in the above follows from —s%+2xs—1 < —s2+s2+22—1 =

22 —1<0,forall -1 <z < s < .

Proof of (i) and (ii) of Theorem [1.0.3|: We write the first equation of (4.1)) as (4.3]) with
H(z) = —I(z) 4+ c12® + cox + c3,

where I(z) is defined in ([4.4)).

By and , H(z) is the sum of a bounded function and a monotonically
increasing function in (—1,—1 + §]. It follows that HT € L>®(—1, -1+ §).

Let g(z) := Uy(x), a(r) := 1 — 22 and b(z) := 22. An application of Proposition
yields part (i) and (ii) of the theorem. O

For H € C|—1,—1+4], denote 71 =2 — /4 +2H(—-1), and 7o =2+ /4 + 2H(-1)

Lemma 4.0.1. For § >0, H € C[-1,—1+4], let Uy € C*(—1,—1+ 8] be a solution
of in (=1,=146). Then

Up(—1) := x—l:Hlﬁ‘ Up(z) =11 or 1o,

and H(—1) = —2Uy(—1) + 3UZ(-1) > —2.

Proof. Let g(x) := Up(x), a(z) := 1 — 2? and b(z) := 2z. By Proposition
Up(—1) := lim,_,_+ Up(z) exists and is finite, and lim,_,_+(1—2?)Uj(z) = 0. Sending
x — —1in (4.3)) leads to

H(—1) = —2Up(—1) + %Ug<_1> _!

5 (Us(=1) = 2)? — 2.

Lemma [L.0.1] follows from the above. O
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Now we are ready to give some further local asymptotic behavior of local solutions
U of (4.1) as x — —1T. By part (i) of Theorem we know that lim,_, ;+ Up(z) =

Up(—1) exists and is finite. Now let us prove part (iii) of Theorem

Lemma 4.0.2. For 6 >0, g € (—1,—140], let U = (Uy,Uy) be a solution of system
in (—1,—1+0), and Uy € C(=1,—-1+6], Uy € C*(—1,—1+4], with Up(—1) < 2.
Then if Ug(—1) # 0, there exist some constants ay,az and by, by, bs, such that for any
€ >0,
Up(x) =Up(=1) + ar(1+2)* + as(1 + z) + O((1 +2)* ) + O((1 + 2)*™),
Ug() =Up(=1) + br(1 4+ 2)% + by(1 + 2)20 + by(1 + )0
+O((1 4 2)*T7) + O((1 + z)**~°)
where ag = 1 — @
If Up(—1) = 0, there exist some constants ai,as and by,be,bs such that for any
€ >0,
Up(x) = a1 (1 + z)In(1 + 2) + ag(1 + z) + O((1 + z)>7°),
Ug(x) = Us(—1) + b1(1 + @) + ba(1 + 2)*In(1 + ) + bs(1 + 2)? + O((1 + 2)* ™).
Proof. Let I(z) be defined by (4.4). The first equation of can be written as

1
(1 —2H)Uj + 22Uy + §U92 = A+ h(z),

where by Lemma A is a constant , A = —2Up(—1) 4+ JUZ(—1) = —T2, and
h(z) = —I(x) + I(—1) + c1(1 + z) + c2(1 + x)? for some constants ¢; and c.
U, Up(—1
Since Up(—1) < 2, there exist d1,e > 0 such that () < o) Fe < 1 for

l1—ax — 2
—1l<ax<—-1+6.

For convenience denote 71 = Up(—1) and let 7o = 4 — Up(—1). It follows from
that for some constant C1, |Uj| < Ci(1 + :L")_TIT“ and |Up(z)| < Cy for =1 <z <
—1+61. Then I"(xz) = O((1 + x)_l_TlTﬂ). Therefore both I(—1) and I'(—1) exist
and are finite, and I(z) = I(—1) + I'(=1)(1 + 2) + O((1 + z)2) + O((1 + z)* 2 ). So
h(z) = (e = I'(=1) (1 +2) + O((1 + )?) + O((1 + z)>~7 7).

Rewriting the above equation as

(1—a2)(Us— ) + %(Ug — ) Uy — 1) = () = h(z) — 2(1 + 2)Up.
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LetV:=Uyp—7, B := %, H .= # It can be checked that B, H € C(—1, —1+4],

H e L*>®(—1,-1+6) and lim,_, 4+ (14+2)B(z) = "3 = —ag < 0, and V, B, H satisfy
V'(z) + B(z)V(xz) = H(z), —-1<z<-1+0.

So we can apply Lemma with 8 = ap and b = 1 to obtain Uy — 71 = O((1 +
z)min{eo1}=€) for any € > 0.

Next, use this estimate in , we have Uj = O(1)(1 + $)_%1. So Uy = Uy(—1) +
O)(1+2)"" 7 and I(z) = I(=1) + I'(=1)(1 + z) + O((1 + )%~ 2 ) for any € > 0.
Then by the estimate of I(z) and Uy, notice ag = 1 — %, there is some constant
dy, such that h(z) = di(1 + z) + O((1 + x)ttmin{eol}=€) for any ¢ > 0. So H =
dy + O((1 4 z)™ir{eo k=€) Moreover,

(1+2)B + ag = O((1 + z)minteo k=€),
So we can apply Lemma . If ag # 1, there exist some constants ai,as such that
Up— 71 = a1(1+2)™ + ax(1+ ) + O((1 + z)Tminteol=6) 4 O((1 4 g)otmin{aoi=e)

Then by (4.2), we have estimate of U, (; and Uy(—1) exists and finite, and there exist

some constants by, by, by such that

Uy =Us(=1) + by (1 4 ) + bo(1 + 2)2* + bg(1 + )1 +e0
+ O((l + x)ao-i-l—&-min{ao,l}—e) + O((l + x)?ao—i-min{ozo,l}—e)

for any € > 0.

If ag =1, Up(—1) = 0, there exist some constants a1, as such that
Ug = a1(1 4+ z)In(1 4 2) 4+ az(1 + ) + O((1 4 z)Fmin{ao.l}—e)
By (4.2), Ug(—1) exists and there exist some constants by, by, b3 such that
Up = Uy(—1) 4+ by (1 + ) + ba(1 + 2)2 In(1 4 ) + b3(1 + x)? + O((1 + z)>Tminfeol}—e)

for any € > 0. O
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Lemma 4.0.3. Let U = (Ug, Uy) be a solution of system , and Uy € CH(—1,-1+
8], Uy € C*(—1,—1+4], for some § >0 and v € (—1,—1+ 0], with Up(—1) = 2. Then

for some constants by and ba, and for any € € (0,1), either

Up=2+ 4 + O((In(1 + z))~27°),

In(1+ z) . (4.8)
Up =Up(—1) + n(l +2) +O((In(1 + z))~>),
Up =2+ O((1 +2)'7),
(4.9)

Up = b1 In(1 +z) + by + b1O((1 + 2)'79).
Proof. Let I be the triple integral defined by (4.4). The equation (4.3)) can be written
as

1 .
(1—2)(Uyg—2)"+ §(U9 22 =h:=—I2)+caz®+cr+cs+2—2(1+x)Uy. (4.10)

Since Uy(—1) = 2, for any € > 0,

“+e

UL < C(1+2)~ %%,

and |Uy| < C(1 4 x)~2 for some constant C' > 0. Thus I(z) = I(—1) + O((1 + x)'~°).
So h=O0((1+z)'°).
By (4.10)), g := (Up — 2) In(1 + x) satisfies

(1 =) (1 +2)g’ — (1~ 2)g + 59° = h)(In(1 + )"

By Proposition |6.1.1{, g € L>®(—1,—1 + %), lim g(z) exists and is finite, lim (1 —

rz——171 rz——11

) 1In(1 + z)g =0, and —2¢g(1) + %92(1) =0.Sog(l)=0o0r4

Let us write
n

=24+ — .
Ug(x) + ln(l n .%') + V.

We can see that n =0 or 4, V(=1) =0 and V = 0(‘1n(11+x))'
By (4.10), V satisfies

1 .
(1—z2)V' + vV + 5V2 = h,

_n
In(1+ x)
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7 12— —x €T .
where h := —I(z) + c12% + cox + 3 — %ﬁm) —2(142)V -4z —2— i?((llj—_x)) Since

n=20or4, h = O((1 +z)'79).

1y, n N
Let B = 22050 [(y) = —k, Then B,H € C(~1,-1+ 0] satisfy H(x) =

1—22
O((1+2)79), lim,,_+(I1+2)In(l1+2)B=13,V = o(m). So we can apply Lemma
[6.1.11] to conclude that V = O((In(14=))2+¢) if n =4 and V = O((1+x)'~¢) if n = 0.
We have established the estimates of Uy in and .
With estimates of Uy in and , we obtain from the estimates of Uy in

(4.8) and (4.9). The lemma is proved. O]

Remark 4.0.1. This case does occur. For example, as given by Corollary for

ally > =1, (Up,Up) = (1 —2)(1 + Mfﬁn%u)ﬂ) are smooth solutions on S*\ {S}.
2

Lemma 4.0.4. Let U = (Uy, Uy) be a solution of the system , and Uy € CH(—1, -1+
8], Uy € C*(—1,—1+ 4], for some § > 0 and xg € (—1,—1+6]. If 2 < Up(—1) < 3,
there exist constants a1, as and by, bo, b3, by such that for any € > 0,

Ug(z) =Ug(—1) + a1 (1 + )37V £y (1 + ) + O((1 + 2)26-Ve(=D)=e),

3Ug(—1) _Up(=D)

(=1
Up() =b1(1+2)' =25 + by + biby(1 + 2)*~ 5 + byby(1+ )22 (411)

_ 5Up(=1) _

+00((142)" =2 ).

Proof. Let 72 = Up(—1), and I(z) be the triple integral defined by (4.4). Using the
fact 2 < Up(—1) < 3 and (4.2)), for any e > 0, there exists some constant C; such
that |Ug(z)] < Ci(1 + ac)fTQTJre Then by we obtain that in the current situation
I(z) = I(—1) + O((1 + x)37™7¢). So Uy satisfies

(1—$2)(UQ—TQ)/—F%(UQ—Tl)(UQ—Tg) = h = —I(2)+I(=1)+c1 (142)+eo (1+x) 2 —2(142) Uy

where ¢, ¢y are constants. By the estimate of I(z), h = O((1 + 2)3 7). Let V =

Up— 12, B = gii=iy, H= 1. Then V € C'(~1,-1+4], B.H € C(=1,~1+4],

satisfy V! + BV = H, and H(z) = O((1 +x)?>7™7¢), lim,_,_;+(1 +2)B = o > 0, and

lim, , ¢+ V(:U)eﬁlﬁ B(s)ds — (0. So we can apply Lemma to obtain

Up(z) — 10 = O((1 4 2)37™79),
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_2
2

With this estimate, we derive from 1) that U = C(1+x) (1+0((1+z)37™79)). So

Up = 52 C(142)~ % (140((142)3 ™)) and I (z) = I(—1)+c (1+z)3 24y (14z)+

2—To

O((1+x)%G=72)=¢) for some constants ¢}, ¢y. Let b = 3—75. Then by the estimate of I(x)

and Up, there is some constant dy such that h(z) = ¢} (142)0+d; (142)+O((1+2)20-¢).

So H = ¢,(14 z)"* + dy + O((1 + 2)%~17¢). Moreover,
(1+2)B—ag=0((1+z)"°).

So we can apply Lemma [6.1.10| to obtain the first estimate of Uy in (4.11). Then by
(4.2), we have the estimate of Uy in (4.11]), using the first estimate in (4.11)). O

Part (iii) of Theorem and part (i), (ii) and (iv) of Theorem follow from
Lemma (4.0.2 So Theorem is proved. Next let us prove part (iii) of Theorem
Lo4

Lemma 4.0.5. If U = (U, Uy) is a solution of and Uy € CY(—1,-1 + 9),
0 <8 <2, Up(—1) > 3, then Uy is a constant in (—1,—149).

Proof. We prove it by contradiction. Assume that Uy is not a constant, then holds
for a nonzero constant C' and we may assume that C' is positive. Let I(z) be given by
with 9 = —1 + 4. Since Uy and (1 — x2)Ué are bounded according to Theorem
I(z) is bounded in view of (.1)). We divide the proof into two cases.

Case 1. Up(—1) > 3.

If Up(—1) > 3, there exist a > 3 such that Up(z) > a > 3 for x close to —1. So by
, there exists ¢ > 0 such that U}, > ¢(1 +2)7% and —Uy > c(1 +2)7 27! for z close
to —1 . Then, using , we have —I(z) — +o0o as x — —17, a contradiction.

Case 2. Up(—1) = 3.

Since Uy(—1) = 3, we rewrite the first line of as
1 -
(1= 2%)(Up = 3)' + 5 (Up = 1)(Up = 3) = h(2) := =2(1 + 2)Up + Q(w) + L (1) = I (),

where I is given by , and Q(x) is a quadratic polynomial with Q(—1) = 0.

By [@.7), I;(—=1) — Ii(z) > 0 in (—1,—1 + §). Thus, using the boundedness of Uy
and the fact that Q(—1) = 0, h(x) > —C(1 + z) in (=1, —1 + §) for some constant
C>0.
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Let V(z) = Up(z) — 3, B(z) = 289__;2) and H(z) = 1iL—(?2 Then , 1 , (6.13
and 1) hold with b =1, g = —%. By Lemma see also Remark we have,

for some positive constant C, and for any € > 0, Ug—3 > —C(1+x)' "¢ in (=1, —1+4).

Next, in (4.2), apply the estimate of Up(x), in (—1, -1+ §) there is
Ugy(x) > ce~ 2 n(1+2) > c(1 +x)_%, for x close to — 1.

Then —Ug(x) > c(1 + x)_% for = close to —1.

2U(2)U) ()

" . 9] -3

~I"M@) = —— 55— 2 C+a)7%

Thus I > C|In(1 + z)| is unbounded, contradiction. So Uy is a constant. O

Completion of the proof of Theorem [1.0.2: We have proved the existence part of the
theorem in Chapter 3 for (1,0) € J1 U Jo U (J3N {2 < 7 < 3}). Now we prove the
nonexistence part of the theorem.

For (7,0) € J3N{r > 3}, let {u’} be a sequence of solutions of satisfying
|| sin %(Ui—U/T’g)HLoo(SZ\{S}) —0asi— oo. Let U" = sinfu’ for all i € N. Recall that
U = sinBuyp with (u,7) = (§72 — 37, —20). We have ||Uj — U}""|| 001, — 0. By
Theorempart (a), U'(—1) must exists and is finite for every i. Since U7 (—1) > 3,
Ué(—l) > 3 for large i. Then by Theorem Udi) must be constant for large i. Since
ut € C=(S*\ {S}), Udi)(l) =0, so U;) = 0 for large i. The theorem is proved. O

As stated in Chapter 1, we also have similar results for solutions in a punctured
ball near the north pole. By making the transformation U(z) = —U(—z) and applying
Theorem and Theorem to U, we have the following results.

Theorem 4.0.1°. For § >0, let Uy € C*(1—6,1], Uy € C*(1—6,1], and U = (Up, Uy)
be an axisymmetric solution of . Then

(i) Up(1) :=lim,_,1- Up(x) exists and is finite.

(ii) lim, ;- (1 — z)Uy(x) = 0.

(i5i) If Up(1) > —2 and Uy(1) # 0, denote g = 1+ U92(1) , then there exist some constants

ai, a2 such that for every e > 0,

Up(x) = Ug(1) + ar(1 — 2)?° + az(1 — z) + O((1 — )%~ + O((1 — z)*7°).



If Up(1) = 0, then there exist some constants ay,ag such that for every e > 0,
Up(z) = a1(1 — z)In(1 — z) + ag(1 + z) + O((1 — 2)*7°).

If Up(1) = =2, then, for every € > 0, either

4

Uolw) = =2 = a0y

+0((In(1 - 2))7**),
or
Up(z) = =2+ O((1 — 2)'7).
If =3 < Up(1) < =2, then there exist constants ay,ay such that for every e > 0,

Ug(z) = Up(1) + a1 (1 — 2)>TV D 4 ay(1 — 2) + O((1 — 2)2CG+Ve()) =y,
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Theorem 4.0.2°. For§ >0, let Uy € C1(1—6,1), Uy € C*(1—6,1), and U = (Up, Uy)

be an axisymmetric solution of . Then

(i) If Up(1) > —2, then Ug(1) exists and is finite, and there exist some constants by, by, b3

such that
(U5(1) + by(1 — 2)% + by(1 — 2)200 4+ by(1 — g)L+eo
+O((1 =)™ + O((1 — x)**7), if Up(1) # 0;
Us(x) =
U¢(1) + bl(l — (L‘) + bQ(]. . QZ)Q ln(l — l’) + bg(l — ac)2
+0((1 —2)*7°), if Up(1) = 0.
(ii) If =3 < Up(1) < —2, then there exist some constants by, bz, b3, by such that
(1) 3Up(1) (1)
Up(x) =bi(1 — 2) 757 4 by + baby(1 — 2) 75 4 byby(1 — 2)2H 5

5Up(1)

+00((1 —z) 2 7).

In particular, Uy is either a constant or an unbounded function in (1 —6,1).

(111) If Up(1) < =3, then Uy must be a constant in (1 —0,1).

(iv) If Up(1) = —2, then n = lim,_,1- (Up+2) In(1 — ) exists and is 0 or —4. Ifn =0,

then Uy is either constant or unbounded, and there exist some constants by, by such that

Us = by In(1 — ) + by + bO((1 — 2)' 7).

If n = —4, then Uy is in L>(1 — §,1), and there exists some constant b such that

b

Up = Uy(1) + n(l—2)

+O((In(1 — z))~27°).
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Chapter 5

(-1)-homogeneous axisymmetric solutions on S?\ {S, N}

5.1 Classification of axisymmetric no-swirl solutions on §?\ {S, N'}

In this section, we will prove Theorem which classifies all (-1)-homogeneous ax-
isymmetric no-swirl C*°(S? \ {S, N}) solutions of (1.1)).
By arguments used in Chapter 2, the NSE equations (1.1)) of a (-1)-homogeneous

axisymmetric no-swirl solution can be reduced to

1
(1 — 22)Uj + 22Uy + §U92 =ci(1—x) + (1 +2) + e3(1 — 22), (5.1)
for some constants ¢y, ¢a, c3, where ””” denote differentiation in .

Denote ¢ := (c1, c2,c3), and
P.(z) :=c1(1 — x) + ca(1 + ) + c3(1 — 22). (5.2)

We will show that the existence of solutions of (5.1)) in C*(—1,1) depends on the

constants cq, co and cs.

Define
’7'1(01) =2 —=2v/1+4 ¢y, TQ(Cl) =24+ 2v/1 4 ¢y, (53)
T(e) i= =2 =21+ co, T7h(c2) :=—2+4 21+ cg, (5.4)

Lemma 5.1.1. Let § > 0, Uy € CY(—1,—1+3) satisfy with c1,co,c3 € R. Then

c1 > —1 and Ug(—1) :=lim,_, 1+ Up(z) exists and is finite. Moreover,
Ug(—l) = 7'1(61) or 7'2(01).
Proof. By Theorem lim,_, 1+ Up(x) exists and is finite and

lim (14 x)Upj(z) = 0.

r——11



Sending x to —1 in (5.1)) leads to
1 2
—2U9(—1) + iUG(_l) = 261.

Thus,

and Uy(—1) = 71(c1) or 1o(cq).
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Lemma 5.1.1°. Let 6 > 0, Uy € CY(1 — 4,1) satisfy with ¢1,c3,c3 € R. Then

ca > —1 and Uy(1l) :=lim,_,,- Up(x) exists and is finite. Moreover,
Ug(1) = 7i(ca) or mo(ca).
Proof. Consider Up(x) := —Up(—x), and apply Lemma to Up.

Recall that in Chapter 1 we defined

cs(c1, c) 1= —% (Vi+tea+vVite)  Vita+Vitea+2).
and the set
D:={ce R3|cl > —1,c0 > —1,¢c3 > ¢3(c1,2)}.
Moreover, the subsets Dy, 1 < k < 8 are defined as
Dy :={cley > —1,ca > —1,¢c3 >3}, Do :={clc; = —1,c0 > —1,¢c3 > 3},
D3 :={cley > —1,ca = —1,¢c3 >3}, Dy:={clec; = —1,c0=—1,¢c3 > 3},
D5 :={clex > =1,c0 > —1,c3 =3}, Dg:={clc1 = —1,c0 > —1,c3 =3},

D7 :={clexs > —1,c0 = —1,c3 =3}, Dg:={clc; =—1,c0=—1,c3 =¢3}.

(5.7)

Theorem 5.1.1. There existy~,vt € C°(Dy)NC°(D), 1 < k < 8, satisfying v~ (c) <

vt (e) for all ¢ € D, where the equality holds if and only if ¢ € U2:5Dk, such that for

each (c,7) in the set

E:={(c,7)|c1>-1,c0 > —1,¢3 > é3(c1,¢2),7 (¢) <v <y (0)},

there exists a unique C solution Uy of in (—1,1) satisfying Uy (0) = ~. More-

over, these are all solutions of in C1(—1,1).
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c3

Figure 5.1: The parameter space D.

Though the axisymmetric no-swirl solution {Uy""} do not have explicit formulas,

they have the following nice properties.

Theorem 5.1.2. Suppose (c,7v) € E, then

(i) If c3 = e3(c1, ¢2), then vy~ (c) = v (c), and equation has a unique C*(—1,1)

solution

Us(c1,c2) = 72(201) 1-2)+ 71(262) (1+ ).

(ii) If c3 > ¢3(c1, o), then v~ (c) < vT(c), and for any v~ (c) < v < v < ~7(e),

/
U7 < U7 in (—1,1). Moreover,

¢,y (¢ eyt (e C
{(@,y) | -1 <z<1, U 2y <y<Us™ D)} = U {@U7@)|-1<z<1}
yely= ()t (c)]

(iii) For any (c,v) € I, Uy (1) both exist and are finite. Moreover,

To(c1), when v =~T(c), 7{(c2), when v =~"(c),
U5 (~1) 2(c1) v=7"(c) U (1) = 1(c2) v=7"(c)

T1(c1), otherwise, To(c2), otherwise.
(5.8)

Remark 5.1.1. Theorem gives a classification of all (-1)-homogeneous, azisym-
metric, no swirl solutions of Navier-Stokes equations in C®(S*\ {S,N}).

Remark 5.1.2. Landau solutions correspond to ¢; = 0,co = 0,¢c3 = 0 > ¢3(0,0) =

—4,v € (—2,2), and v # 0.
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Now let us define the following subsets of E: for 1 < k < 4, let

Fia = {(c,7) € Elc € D,y =77 (c)},
Fro:={(¢,7) € Elc € D,y =7 (0)},
Frs:={(c,7) € Elc € Dy, (c) <7 <~%(c)}
and for 5 <k <8, let Fy;:= Dy, 1 =1,2,3.
The solution Uy of equation satisfying U, (0) = ~ has the following property:
Theorem 5.1.3. Let K be a compact set contained in one of Fi;, 1 <k <8,1=1,2,3.
Then the solution Uy of equation is C®°(K x (—=1,1)). Moreover,

(i) If5<k<8, ork=1andl=1,2,3, or (k1) =(2,1) or (3,2), then
|8§8%'l79] <C(m,K), forany0<|a|+j<m,-1<z<l (5.9)

where j =04fl=1,2, as=0if5< k<8 a1 =01ifk=2,4; and ap =0 if k = 3,4.
(i) If (k,1) = (2,2) or (2,3) or (4,2), then

1 2 o
(hl ?) 020905 < C(m,K),  for any 1 < |a]+j <m,a1 =0,-1 <z < 1.
(5.10)
where 7 =0 if l =2, and ag = 0 if k = 4.

(iii) If (k,1) = (3,1),(3,3) or (4,1), then

1—x)? -
(111 33”) |0202Up| < C(m, K), forany 1 <l|af+j<m,aa=0,-1<z<1

(5.11)
where j =0 ifl=1, and a7 =0 if k = 4.

() If (k,1) = (4,3), then

1 2/ 1-2\? -
<1n ";37) (ln 337) fagafyUo!SC(m,K), for any 1 < |a|+j <m,o; =ay =0,-1 <z < 1.

(5.12)

Theorem [1.0.5] is a direct consequence of Theorem Now let us turn to the
proof of Theorem [5.1.1] In order to avoid the redundancy of the subscript in Uy, we

consider equation

(1—a?)f +2zf + %fQ =ci(1 —z) +co(1 + ) + c3(1 — z2). (5.13)
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instead of (5.1)).

We first prove the following lemmas on local behaviors near x = —1 or x = 1.
Roughly speaking, local existence of real analytic solutions is proved in Lemma [5.1.2
and Lemma [5 Corollary [p.I.1] and Corollary [5.1.1]] give the uniqueness of solution
satisfying f(—1) > 2 or f(1) < —2. While Lemmal5.1.3|and Lemma[5.1.3] present some

local comparison results.

Lemma 5.1.2. Let ¢y > —1, 7 = 1a(c1) or 7 =11(c1) € {0,—2,—4,—6,---}. Then for
every co,cs € R, there exist § > 0 depending only on an upper bound of Z§:1 lei| and
a positive lower bound of infren |7 + 2k|, and a sequence {an}°, depending only on

c1,ca,c3 and T, such that
o

Z |an|0" < oo,

n=1
and

f@) =7+ an(l+z)"

n=1

is a real analytic solution of in (—1,—1+98). Moreover, f is the unique real

analytic solution of in (=1, =1+ 4") satisfying f(—1) =7 for any 0 < § < 4.
Proof. Let s =1+ x. Rewrite
P(x) = 2c1 + (—c1 + o 4 2¢3)(1 + x) — c3(1 + x)% =: & + Gas + E35°.

Suppose f =7+ Y o a,s", then f/ =3 na,s""!. Plug them into (5.13)),

LHS
(o]
s(2—s Znan nlo(s—1) T—i—Zan (T+Zans”)2
n=1

Ll (@rast Y -2+ Dt B+ E Y aals”

2 n=2 k+l=nk,l>1
= &) + o5 + E35% = RHS
Compare coefficients,

n=0, ir?-2r=4¢, S0 T =24 /4+2¢ = 11(c1) or 72(c1),
é

n=1, (a1+2)1 = Co, s0ap = —= —2,
T

1,2 _ = L L,
n=2 (2+7)az+a1+zaf=2=C3, s0ay=——(C3—a1— ;ai).

T4 2 2
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For n > 3,

1
2n—2+T)a,+ (3 —n)an—1+ B Z aga; = 0.

k+l=n,k,1>1
Since for any n > 1, 7 # —2(n — 1),
1 1
e s gl Z aga; + (3 —n)an—1 |, (5.14)
k+l=nk,1>1

it can be seen that a,, is determined by ay, ..., a,_1, thus determined by c1, co, c3 and 7.

Claim: there exists some a > 0 large, depending only on ¢y, ¢o, ¢3 and 7, such that
lan| < a™.

Proof: Choose a > 1 large such that for 1 <n < 100|7| + 100, |a,| < a™.
Now for n > 100|7| + 100, suppose that for 1 < k < n — 1, |ag| < a”, then by

induction and the recurrence formula ([5.14)),

2 1 n n—
‘%’SW i(n—l)a +(n —3)a"!

c(be 20D

The claim is proved.

So for § < %, [ =7+ ,",aps", with s = 1+, is a real analytic solution of 1'

in (—1,—1+4¢). The uniqueness of f is clear from the proof above. O

Lemma 5.1.2°. Let co > —1, 7/ = 7{(c2) or 7" = 74(c2) & {0,2,4,6,---}. Then for
every ci,c3 € R, there exist 6 > 0, depending only on an upper bound of Z?:l lci| and
a positive lower bound of infren |T" — 2k|, and a sequence {an}22; depending only on

c1,c2,c3 and ' such that

o
Z |an|0" < oo,
n=1

and
f@) =74 an(l—a)"
n=1

is a real analytic solution of in (1—46,1). Moreover, f is the unique real analytic
solution of in (1 —0",1) satisfying f(1) = 7" for any 0 < §' < 4.

The following two lemmas give some local comparison results.
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Lemma 5.1.3. Suppose 0 < § <2, f1,f2 € CH(=1,—1+6]NC°—1,—1+ ] satisfy

1 1
(l—xz)f{+2xf1+§f122(1—x2)f§+2xf2+§f22, “l<z< -1+

Suppose also that one of the following two conditions holds.
(i) fi(=1) > fo(=1) > 2.
(ii) f1(—=1) = fo(=1) =2, and

lim sup/ Lfl(s)ds < +o00.

2
es—1t Jo14s 1=

Then either

fi> fa, in(=1,-1+9),
or there exists &', 0 < &' < § such that

fi=fa, in(=1,-1+7).
Proof. Let g = f1 — fa, then g(—1) > 0 and g satisfies

1
/
>
g +b(x)g > 201 — 27

where b(x) is given by

b(a) = (1 —a?)""(2z + f).

Let

w(x) = el 1es b(s)dsg(a;).
Then w given satisfies, using (5.16|), that
w'(x) >0in (=1, -1+ ).
Under condition either (i) or (ii), we have

xX
lim sup/ b(s)ds < +o0.
z——1+ J—-1446

g>>0, forallze (—1,-1+9).

(5.15)

(5.16)

(5.17)

(5.18)

Using this and the fact that g(—1) > 0, we have liminf, , ;+w(xz) > 0. Therefore,

using (5.18]), we have either w > 0in (=1, —1+44) or there exists a constant ¢', 0 < §' < §

such that w =0 in (—1,—1+ ¢'). The lemma is proved.

O
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Corollary 5.1.1. For ¢y > —1, co,c3 € R and 0 < 0 < 2, there exists at most one

solution [ of in C1(—1,—1+ ) satisfying

lim f(z) = 72(c1).

z——11

Proof. Since 15(c1) > 2 for ¢; > —1, the uniqueness follows from (i) of Lemma
O

Similarly, we have

Lemma 5.1.3°. Suppose 0 < 6§ <2, f1,fo € C1 —45,1)NC°[1 — 6,1] satisfy
1 1
(1—$2)f{+2$f1+§f12 > (1—m2)fé+2xf2+§f22, l-d<z<l.

Suppose also that one of the following two conditions holds.
(i) f1(1) < fo(1) < =2,
(ii) fr(1) = f2(1) = =2, and

x

2

lim Sup/ Ll(;)ds < +00.
es1- J1-s 1—5

Then either
fi< fo, in (1—5,1),

or there exists &', 0 < &' < & such that
fi=fo, in(1-6,1).

Corollary 5.1.1°. For co > —1, c1,¢3 € R and 0 < § < 2, there exists at most one

solution [ of in C1(1 —6,1) satisfying

lim f(z) = 71(c2).

r—1~

Now we are ready to analyze the global behavior of axisymmetric, no-swirl solutions
of NSE in (—1,1). The behavior of solutions depends closely on parameters c1, 2, c3 €

R.
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Lemma 5.1.4. Suppose ¢; > —1, co > —1, c¢3 = ¢3(c1,¢2), then there exists a unique

Ct solution, f% ., of in (—1,1). Moreover,
Fryea() 1= 0+ b

where

a=—-(V1+a+Vite+2), b=+v1+c —V1+co,

and

fc*1,c2(_1) = 7_2(61)7 f:l,cg(l) = 7—{(62)'

Proof. A direct calculation shows that f* := f% . is a C' solution of (5.13) in (—1,1).
It remains to prove the uniqueness.

Let f be a C! solution of (5.13) in (—1,1), f # f*. By Lemma and Lemma
f can be extended as a function in C°[—1,1], f(—1) € {r1(c1),=(c1)}, f(1) €
{ri(c2), m3(c2)}-

By Corollary and (ii) of Lemma with f1 = f*, we know that there exists
a constant 0 < §1 < % such that f < f*in (—1,—1+ d7). Similarly, by Corollary
and (ii) of Lemmawith f1 = f*, we know that there exists a constant 0 < dg < %
such that f > f*in (1 — d2,1).

Therefore, there exists a point & € (—1+44d1,1—0d2) such that f(z) = f*(&). Standard
uniqueness theory of ODE implies that f = f* in (—1,1). This is a contradiction.

]

Lemma 5.1.5. Suppose ¢1 > —1, co > —1, ¢3 < ¢3(cq, ¢2), then has no solution
in Ct(—1,1).

Proof. If f is a C" solution of (5.13)) in (—1,1). By Lemma and Lemma f

can be extended as a function in CO[—1,1], f(=1) € {ri(c1), 72(c1)}, f(1) € {7 (c2), T5(c2)}.

By Lemma [* = [ ¢, is the unique solution of (5.13) with c3 = ¢3(c1,c2).
Since c3 < ¢3(c1,¢2), f # f* in any open interval in (—1,1). We first assume that

f(@) > f*(z) at some point z € (—1,1). Since c3 < ¢3(c1, c2) we have

(1—x2)f/+2xf+%f2 < (1—x2)f*’+2xf+%f2, —l<z<l (5.19)



86

Since f(—1) < f*(—1), we have, in view of Lemma with fi = f*, fo = f, that
there exists § > 0 such that f < f*in (—1,—1+9).
Now with f(z) > f*(z) and f < f*in (=1, —140), there exist a point £ € (—1+6, Z)

such that

which contradicts inequality (5.19)) at .

Similar arguments will lead to a contradiction when f(z) < f*(z) for some = €

(—1,1) by showing f > f* near x = 1. The lemma is proved. O]

Lemma 5.1.6. Suppose ¢c; > —1, cg > —1, c3 > ¢3(c1,¢2). Let f.F be the power series
solution, obtained in Lemma with f(—1) = m(c1), of in (—=1,—-1+9),
then fI can be extended to be a solution of in (—1,1), and f(1) = 75(c2).

Let f- be the power series solution, obtained in Lemma with f7(1) = 7 (c2),

of in (1 —0,1), then f. can be extended to be a solution of in (—=1,1),
and f7(—=1) = 11(c1). Moreover, f- < f in (=1,1).

Proof. We only need to prove that f := f can be extended to be a solution of (5.13)
in (—1,1) and f*(1) = 74(c2), since similar arguments work for f. .
Standard existence theory of ODE implies that f* can be extended to the maximal

interval of existence, say (—1,¢), £ € (—1 + 6,1]. Since c3 > ¢3(c1,c2), we have, with

=1
(1—2?)ft +20ft + %(ﬁ)? > (1 —ad)f 4+ 22 + éf*Q, —l<z<& (5.20)

Since fT(—1) = f*(—=1) = m2(c1) > 2, by Lemma with fi = ¥, fo = f* and the
fact that fT, f* can not coincide in any open interval, we have f* > f* in (—1,£).
If £ < 1, since fT is bounded from below by f*, there exists a sequence of points

{z;} satisfying

Ty < T < w3 < --- < E liﬁmzci:{,
) < fH(x) < fH(ag) <., lim f*(z;) = 4oo0.

1—00
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Then, in each interval (x;,z;+1), we can find a point y; such that

T < Yi < Tiy1, f+(?/z') > f+(93i)7 f+,(yi) > 0.

Taking = = y; in equation , and sending 7 to infinity, we obtain a contradiction.
So £ = 1. By Lemma lim,_, 1+ fT(z) exists and is finite.

We have extended f* to be a solution of in C1(-1,1)NCY[~1,1] and f* > f*
in (—1,1).

Similarly, f~ can be extended to C°[—1,1], and f~ < f* < f*in (-1,1).

By Lemma [5.1.17] f+(1) € {r{(c2),m5(co)}. If 2 = —1, 7{(c2) = T5(c2), so fH(1) =
Th(ca). If o > —1, since f~(1) = 7{(c2) and f* > f~, by Lemma we have
fH(1) = Th(c2). Similarly, f~(—1) = 1i(c1).

Lemma [5.1.6|is proved.

O]

By Lemma and Lemma for each ¢ € D, where D is defined by (5.6)),
vt (e) := f1(0), and v~ (¢) := f.(0) both exist and are finite. Denote H;, 1 <14 < 6 to

be the following subsets of D:
H;, = {C S D‘Cl >—1,c0>—1,¢c3 > 53}, Hy = {C S D’Cl =—-1l,c0>—1,c3 > 53},

and let

Hs:={ce€ Dle; > —1,c0 > —1,c3 > 3}, Hy:={c€ Dl|c; =—1,c0 > —1,¢c3 > 3},
Hs:={c€ Dlc; > —1,c0=—1,c3 >3}, Hg:={c€ D|c; =—1,c0=—1,c3 > 3}
Lemma 5.1.7. Let fI be the power series solution, obtained in Lemma with
fH(=1) = m(c1). For any integer m > 0, and any compact subset K of one of H;
, 1 < i <6, there exists some § > 0, depending only on m and K, such that fI €

C™(K x (—=1,—146)). Moreover, there exists some constant C(m, K,d), depending

only on m, K and ¢, such that for any multi-index o satisfying |a| < m,
0
0215 (@) < C(m, K,0), Vo€ (-1, -1+ ) cE K.

Proof. Let a = (a!,a?,a?) denote a muti-index where o > 0, i = 1,2,3. The partial

derivative 0% = 02102202 and the absolute value |af = Z?Zl al.
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By Lemma and its proof, f.F can be expressed as

fj(x):T+Zan(1+x)",—1<x<—1+5,

n=1
where
T=2+V4+4c, (5.21)
—c1 + c2 + 2¢3 1,
== 2 _ 9 = — - 5.22
@ ° Car= (et +5ad) (522
and for n > 3,
! ! > +(3—n) (5.23)
ap=——-—1[= ara —n)an—1 | - .
" 2n—2+7\ 2 R n-l
k+l=nk,I>1

By the above expressions and relations it can be seen that 7(c) and a,(c) are all C*
functions of ¢ in Jy or Js. So to prove the lemma, we just need to show that there exists
some d > 0, depending only on m and K, such that for any muti-index a satisfying

1 < || < m, the series

0T = 0%y, n
o +> a(1+w) (5.24)

is absolutely convergent in (—1, —1 4+ ¢) uniformly for ¢ € K.

Case 1: K C H;.

Let C(m, K) be a constant depending only on m and K which may vary from line
to line.

If K is a compact set in Hj, there exists some constant d;(K) > 0, such that

4+ 4¢q > 61(K). Using this, (5.22)), (5.23), and the fact that 7 > 2, we have

g; < C(m, K), ’aa bl <C(m,K), ¥i<n<2,0<la|<m,ceK. (5.25)
c c
Next, let gn(c) := ﬁ By the above estimates and the fact that 7 > 2, we have
- K
‘aaagn(c)' < M, forall 1 <|a| <m,ce K, and n > 1. (5.26)
c n

To prove the series in (5.24)) is convergent for all 1 < |a| < m uniformly in K, we

will show the following:
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Claim: there exists some a > 0, depending only on m and K, such that
(P): 10%n(c)] <a™*HD)  for1<|a|<m, and ce K

holds for all n > 1.

Proof of the claim:

We prove this claim by induction on n. Let a be a constant to be determined in the
proof.

By Lemma and its proof, and estimate , there exists some constant
C(m, K), depending only on m and K, such that for any a > C(m, K), |an(c)] < a"
for all c€ K and n > 1, and , (P;) and (P») holds.

Now for n > 3, suppose that (Py) holds for all 1 <k <n — 1.

Let Qn(c) :== Zml:n’k’lﬂ ara;. Then |i can be written as
1
ap = _ignQn + (TL - 3)gnan71-

So

0 = ~50 (90 Q) + (1~ 30 (gnn 1) (527

Using ([5.26)), by computation we have

(9,1 < C I oo,

a1 <a

Let a > ag, using the definition of @Q,(c), by induction we have that,

C(m, K
0%(9n@n)| < M Z max |0%ag|[0%T T2 q|
ey S

< O(m,K) max max  gkllozl+D) glla—a1—az|+1) (5.28)

as<a—ai k+l=nk,l>1
< C(m, K)an(le+D-lo

Similarly, by (5.26) and induction, we have

0%(gnan-1)| < Olm. K) j1)(atsn) (5.29)

n

Plug (5.28)) and (5.29)) in (5.27), we have that for || > 1,

10%,| < C(m, K)a™loH+D-1
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Let a > max{ag, C(m, K),a;}. We have

10%a,| < a™el+h),

So the claim is true for all n. The lemma is proved for K C Hj.

Case 2: K C Hj, then 7 = 2 and g,(c) is a constant in K. By similar arguments
as in Case 1, we have the same estimate for a, and the proof is finished.

Case 3: K C H;, 3<1<6.

By the definition of é3(c1,c2), we know é3(cq,c2) is smooth in ¢1,cy in each of
{c1 > 1,0 > -1}, {c1 = —1,c0 > =1}, {c1 > —1,c0 = —1}, and {c; = —1,c0 = —1}
By similar arguments as in Case 1, we have the same estimate for 7 and a,, and the

proof is finished. ]

Corollary 5.1.2. For any g € (—1,1), and any K C H;, 1 <1 <6, f(z9) € C°(K).

Moreover, for any € > 0, m € N, there exists some constant C(m, K, €) such that
02 f ] < C(m, K, ¢), (5.30)
forany 0 < l|a| <m, and -1 <z <1—e.

Proof. For any z¢ € (—1, 1), there is some € > 0 such that zp+¢ < 1. By Lemma
there exist some § > 0, such that the power series solution f;F € C"™(K x (—1,—1+4))
obtained in Lemma with fF(—1) = m2(c1) or 2. So fF(~1+ %) € C"™(K). Notice

that fI(x) is the solution of the initial value problem

(1—x2)f’+2xf+%f2 =P(2) i=c1(1— ) +co(l4+2) +e3(1 —2%), —1<z<l,

1) )
f(*1+§) :fj(*1+§)'

By stantdard ODE theories, f(z9) depends smoothly on f(—1+%). So f(zo) is in
C™(K) for all m € N.
Moreover, by Lemma there exists some 6 > 0 and C(m, K) such that |02 f.F| <

Cm,K) for -1 <z < -1+ %. Then by standard ODE theory, for any € > 0 there
exists some C(m, K, €) such that (5.31)) is true for all -1 <z < —1+e.
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Let
Hj:={c€ Dl|ey > —1,c9 > —1,c3 >3}, Hy:={ce€ Dl|e; >—1,c0=—1,c3 >3}
Similarly as Lemma [5.1.7) and Corollary [5.1.2 we have,

Lemma 5.1.7°. Let f_ be the power series solution, obtained in Lemma with
fo (1) = 7{(c2). For any integer m > 0, and any compact set K C Hy, Hy or H;,
3 <1 < 6, there exists some 6 > 0, depending only on m and K, such that f. €
C™(K x (1 —90,1)). Moreover, there exists some constant C(m, K, ), depending only

on m, K and §, such that for any multi-index o satisfying |a| < m,
o p— )
’acfc (x)fﬁc(maK,(s), V$€(1—§,1),C€K.
and

Corollary 5.1.2°. For any zo € (—1,1), and any K C H{, H) or H;, 3 < i < 6,
fo(xo) € C®(K). Moreover, for any € > 0, m € N, there exists some constant
C(m, K, ¢€) such that

00 f7] < Cm, K ), (5.31)

forany 0 < l|a| <m, and —1+e<z < 1.

Remark 5.1.3. It can be actually seen that Hy = D1UD3, Hy = DoUDy, H{ = D1UD>,
Hé =D3UDy, and Hiyo = D; UD;1q, 1 <i <4,

Lemma 5.1.8. Suppose ¢c; > —1, co > —1, c3 > ¢3(c1,c2). Let fF, f= be the unique

C* solution of in (—1,1) obtained in Lemma [5.1.6. Then any C* solution f of
5.13) in (—1,1) other than fF satisfies

fc_ < f < fj? in (_171)7

f(=1) =7i(e1), [f(1) = m3(ca).

Proof. By Lemma [5.1.1] f can be extended to C°[—1,1] with f(—1) = 71(c1) or T2(c1)

(11 < 79).
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We only need to prove f < f.Fin (—1,1) and f(—1) = 71(c1), since similar arguments
imply that f > f. in (—=1,1) and f(1) = 75(c2).

From the standard uniqueness theory of ODE, we know that the graph of f and f.F
can not intersect in (—1,1). So we either have f < f.F in (=1,1) or f > fF in (—1,1).

If f> fFin (—1,—1+6), then, by Lemma .11} f(~1) = fF(-1) = m(c1) > 2.
Note that fi := f. satisfies (5.15), we can apply Lemma [5.1.3| with f; = £}, fo = f to
obtain f < f, a contradiction. So f < f.F in (—1,1).

If 71 (c1) < 72(c1), the uniqueness result Corollary [5.1.1]implies that f(—1) = 71(c1).
If 71(c1) = 72(c1), we again have f(—1) = 71(c1). Lemmal5.1.8]is proved. O

Suppose that ¢; > —1, cg > —1, ¢3 > ¢3(c1, c2). Let f7 be the unique local solution

of (5.13)) with f“7(0) = ~. Denote

It is obvious that f; = 7 and ff = f&7". If v~ (¢) < v < v (¢), Lemma
implies that f¢? can be extended to be a solution of (5.13) in C!(—1,1) satisfying
f(=1) = mi(er) and f(1) = my(ca).

Remark 5.1.4. By Corollary and Corollary we know that v (c) is C* in
each H;, 1 <1i <6, and v~ (c) is C* in each of Hy, Hy, H;, 3 <1i < 6. But they are

not C1 at those points where ¢; = —1 or co = —1 in D.

Lemma 5.1.9. Suppose ¢c; > —1, ca > —1, ¢3 > ¢3(c1, ¢c2), the graphs
Ki(y) = {(z, f*7(2)) [ -1 <z <1}, 77 () <y <77 ()
foliate the set
Ky:={(z,y) | -1 <a <L (2) <y < /7 (a)}

in the sense that for any v,7' € R, v~ (c) < v < v < v (c), f&7 < f&7 in (=1,1)
and Ko =

- (©)<y<rt(0) Ki(). Moreover, f¢7 is a continuous function of (¢,7,z) in

K x [y~ (e),y* (0] x (=1,1).
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Proof. By standard uniqueness theories of ODE;,
fOT < fer < o < fc’7+ in (—1,1), v (e) <y <y <At (e).

It is obvious that K;(v) € Ks. On the other hand, let (xg,yo) € K2,50 —1 <z < 1
and f¢7 (xo) < yo < fc’7+ (xg). By standard existence and uniqueness theories of
ODE,and Lemma there exists a C! solution f of (5.13) in (—1,1) satisfying

f(zo) =yo and f&7 < f < fer" in (—=1,1). In particular,

Y7(e) = £477(0) < £(0) < F4TT(0) = v (e),

f = f¢7 with v = f(0) and therefore xg,yo € Ki(y). We have proved that K, =
U’y‘ <’y<’y+ Kl (7)

The continuity of f¢7 for (c,7v,z) in K x [y~ (¢),7"(c)] x (=1,1) can be derived
from ([5.13]), and the continuous dependence of ODE on its boundary conditions.

O
Theorem [B.1.1] and Theorem [5.1.2] follows from Lemma [5.1.4] - Lemma 5.1.9
Proof of Theorem [5.1.3}
To prove Theorem we make the following observations.
First, when (c,7) € Frg, 5 < k < 8, fi . = — (Vite+vVIite+2)s+

(VI+ec1—+V1+¢2). So ff ., is smooth in Fy .

Next, by Corollary and Corollary we know that for 1 < k < 4 and
1=1,2, f and f; are smooth in F.

By standard ODE theory, since f satisfies , it is smooth in Fj 3 for each
1<k <A4.

So a solution f of the initial problem
1
(1 —z)f +2zf + §f2 = P(x) :=c1(1 —x) +co(14+2) +e3(1 —2%), —1<z<l,
) )

—14 )= fH(-1+2).
F-1+45) = fH(-143)
is smooth with respect to (c,) in each Fj;, 1 <k <8, 1 <1< 3. It remains to prove

the estimates (i)-(iv) in Theorem
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Notice that if 5 < k < 8, the estimates in Theorem (i) can be obtained by
the expression of f* directly. The remaining estimates are obtained from the following

lemmas.

Lemma 5.1.10. For any e >0, m € N, and K € F13, F12, F32 and F33, there exists
some constant C(m, K, €) such that

0200 f| < C(m, K, ), (5.32)
foranyl <l|a|+j<m,and -1 <z <1l-—c¢.

Proof. We prove the lemma by induction.

We use C(m, K, €) and C to denote constants which may be different from line to

line.
we know by that
ofry’ of
1— 22 <> + (22 + <):07
(1= (5) +eeen (G
and
or\’ of
_ .2 (90 9f\ _
(1—2%) (3@) + 2z + f) <80i> Oc; Pe(x).
Denote
B B T2s+ f
ala) = acs (o) = [ T (5.33)
Then
of _ —a(x)
and for ¢ = 1,2, 3,
O\ _ ppate) 4 got@) / " a(s) OeiPels)
(8@) =Ce +e ; e 11— ds. (5.35)

By the definition of a(z), we have

@ =01 +2) T, @ =01 +a) T, —l<a<-lte

Since when (¢,7) € K, f(—=1) < 2, there exists some C(1, K,¢), such that e=%(®) <
C(1,K,e¢). Thus by (6.5) and we have that for —1 <z <1 —¢,

0002 f1 < C(1, K, €) (5.36)
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for all |o| +j = 1.

Now for m > 2, suppose that C(mq, K, €) exist for all 1 < m; < m — 1, then
A . 1 , A
(1—2?) (9200 f) + 22050 f + 5000 f? = 020] Po(a).
This leads to

. ) « ] . o
(=) @2 +rt OO f =he=—3 7 ) omop pop-eronn .

O<a1<a,0<ji<j \ Q1 J1

Then

— S

. _ _ T h(s)
gl f — a(z) a(x) a(s) _\°)
0,0 f =Ce +e /_ng 1 5ds.

By induction assumption, h € L°(—1,1 — ¢) and there exists some C'(m, K, €) such

that |h|pec(—1,1—¢) < C(m, K, d.€). So we have
|8((:Xajy‘f|L°°(—1,1—e) < C(m, K,e).
The proof is finished. O

Similarly we have

Lemma 5.1.10°. For any e >0, m € N, and K € I3, Fy3, F11 or Fy 1, there exists

some constant C(m, K, €) such that
0009 f| < C(m, K, e), (5.37)
forany 1 <l|a|+j<m, and -1+e<z<1.

Lemma 5.1.11. For any e >0, m € N, and K € Fy3, Fo2, Fy3 or Fy2, there exists

some constant C(m, K, €) such that

1+a)\? & aj
In 3 1007 f| < C(m, K, ¢), (5.38)
for any a = (0,0, a3) and j > 0 satisfying 1 < |a|+7<m, and -1 <z <1—e.

Proof. We prove the lemma by induction.
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Denote C(m, K, €) and C to be constants which may vary from line to line. Similar

as the proof of Lemma|5.1.10, we have ([5.34)) and (5.35)) where a(z) is defined by (5.33)).

Notice that in this case

4 0(1)

F=2 pir ) T a2

—-l<z<l-—e (5.39)

We have
e—a(w) _ O(l)(ln(l + l‘))_Q, ea(w) = O(l)(ln(l + 113‘))2

Notice in this case, i = 2 or 3 in (5.35)), and 9., P. = O(1 + x), so we have that for

1<z <1 —gk

1+2)\? o nj
In 3 007 f| < C(1, K, e) (5.40)

for all |o| +j = 1.
Now suppose that C'(mq, K, €) exist for all 1 < my < m — 1. Similar as the proof of

the previous lemma we have

— S

. _ _ x h(s)
g f — a(x) a(z) a(s) _\°)
0.0 f =Ce +e /ng 1 5ds.

where
1 o J
h = —5 E

0<a1<a,0<ji<y \ Q1 jl

oM 8%'1 foo— a%'*jl f.

Then by induction assumption h € L>®(—1,—1 + €) and there is some C(m, K, €) such
that (In HT“)A‘ |h(z)] < C(m, K,e) for all =1 < z < 1 —e. Using this estimate we then

have

1+2\° o
(ln 3 > 020 f| < C(m, K, €)

The lemma is proved. ]

Similarly, we have

Lemma 5.1.11°. For any e >0, m € N, and K € F33, Fy3, F31 or Fy1, there exists

some constant C(m, K, €) such that

1—2\? aai
(ln 3 > 1007 f| < C(m, K, ¢), (5.41)

for any a = (0, a2, a3) and j > 0 satisfying 1 < |a|+j <m, and -1 +e<z <1
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Then by Corollary [5.1.2 Corollary [5.1.2, Lemma[5.1.10} [5.1.107 [5.1.11] and 5.I.1T’]

Theorem [5.1.3|is proved.

From Theorem [£.1.3| we also have
Corollary 5.1.3. Let K be a compact set contained in one of Fj,;, 1 <k <8,1=1,2,3.

Then for any positive integer m, there exists some constant C(m, K), such that

_ . 1 1
0205T3(w)| < Clm, K), 020303 ()] < Cm, K), W0 < fa] +j <m,—5 <z < 5.

Proof. By equation (5.13]),
PN Uy = 8”‘6 I (P. — 22Uy — - Uj)

So by Theorem there is some C(m, K) such that for all 0 < |a| +j < m, and

l\D\H

—% <z < %,we have
|8O‘8] o(z)] < C(m, K).

Similarly we also have the estimate for 836%(75(38) for -1 <z < 1. O

5.2 Existence of axisymmetric solutions with nonzero swirl on S? \

{5, N}

5.2.1 Framework of proofs

The set of all axisymmetric no swirl solutions of the NSE (1) in C*°(S?\ {S, N}) is
classified in Section 5.1 as the four parameter family {U*Y = (U;"”,0) | (c,7) € E}.
In this section, we will use Theorem C in Section 3.2 (Implicit Function Theorem) in
suitably chosen weighted normed spaces to prove Theorem [1.0.6

Denote U := U? for convenience. Recall that for each (c,7) € E, it satisfies
_ 1
(1 —2H)Uj + 22Uy + 5Ug =ci(1 —z) +ea(l +2) + c3(1 — 2?), (5.42)

and Uy (0) = 7.

The equations of axisymmetric solutions in C°°(S?\ {S, N}) are of the form

t 2U4(s)
(1 — 2?)U) + 22Uy + Ug /// 1782 2050068 ) vt = Ps(z)

(1 —2*)Uy + UgUy, = 0.

(5.43)
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where

and ¢1, é2, 3 are constants.

By Theorem and Theorem we know that if U is a solution of ,
then both Uyp(—1) and Up(1l) exist and are finite. In particular, if Up(—1) = 2,
m(U) = limy—_1(Up — 2)In(1l + z) exists and m(U) = 0 or 4. If Uy(l) = -2,
n2(U) = limg_1(Up + 2) In(1 — z) exists and nm2(U) = 0 or —4. Moreover, the sin-
gular behaviors of U near the poles are affected by the values Uy(—1) , Uy(1), m (U)
and n2(U).

So to prove the existence of axisymmetric solutions with nonzero swirl near Uy using

IFT, we construct function spaces according to the values of Up(—1), Uy(1), m (U) and

n2(U).

For convenience let us denote 11 = n1(U) and 12 = 12(U). Our proof of existence
will be carried out in following separate cases:

Case 1: (Ug(—1) < 3, Up(—1) # 2 or Ug(—1) = 2 with n; = 0), while (Up(1) > —3,
Ug(1) # —2 or Up(1) = —2 with 79 = 0).

Case 2: {Uyp(—1) = 2 with 1 = 4, while (Up(1) > —3, Ug(1) # —2 or Up(1) = —2
with 72 = 0)} OR {Uy(1) = —2 with gy = —4, while (Up(—1) < 3, Up(—1) # 2 or
Up(—1) = 2 with g, = 0)}.

Case 3: Ug(—1) = 2 with n; = 4, and Up(1) = —2 with o = —4.

Case 4: Uy(—1) > 3 or Up(1) < —3.

Let Ej; be the sets defined by (1.11]) and (1.14). By Lemma if ¢; = —1, then
m(U") = 0. Then using Lemma n(US7) = 4 for all v < . Similarly, we
have that if ca = —1, 2(U*Y ) = 0 and 12(U*7) = —4 for all v > v~. Using this and

Theorem [5.1.2) we have the following relations:
(i) U*Y satisfies Case 1 if and only if (¢,v) € Ej; with (k,l) € @4 = {(k,]) €
Zk=1or5<k<81<1<3}u{(21),(3,2)}.

(ii) U7 satisfies Case 2 if and only if (¢,v) € Ey; with (k,1) € @b :={(2,2),(2,3),(4,2)}
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or o3 :={(3,1),(3,3),(4,1)}
(ili) U%Y satisfies Case 3 if and only if (c,7) € Ej; with (k,1) = (4, 3).
In this section we denote U = (Up, Up). We will work with U := U U, a calculation

gives
1 - _ o~ 1=
(1—x2)Ué+2xU9+§U92—cl(1—m)—02(1+x)—03(1—$2) = (1—m2)Ué+(2x+U9)U9+§U92,

where U¢ = Ug. Denote

[0, Vl( t2U¢V¢d dtdl 44
w ox ¢ sdt (5 )

and

- - _ - 1 -
Ger[Up)(x) := (1 — 2®)Ug + (22 + Up)Up + 5Ug. (5.45)

For convenience write w[U¢] (x) := ¢[U¢, U¢] (). Define a map G on (¢,v,U) by

— 22U z+ Up)Up + 1U2 7.](x) — P(x
o) (A Ta Cos T+ 307 i) —P))
(1-— xz)U(g + (Up + U@)U(;)

_ 1 -

P(a) = {0011 — ) + 59l0()1 +2) — 5 (00, [Ta])(0) - (1~ ).

2

If U satisfies G(c,7,U) = 0, then U = U + U gives a solution of (5.43) with

ér=c1+ %w[@](—l), éy=co+ %w[ff@s](l)

1

5 (@eslTa])"(0)

63 —= C3 —
satisfying Ug(—1) = Up(—1), Up(1) = Uy(1).

Denote

lo [00)(2) := (1 — 2*)Up(a) + (22 + Ug) Ty (). (5.47)

Let A and Q be maps of the form

7 T 1 T 1\ . o x2
Ao, 0 (Ae) _ (lmwe]( )+ Heo 0 0)- >) e
Ay (1—2*)UY + UpU,,
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and
Q(U>f/) = o
Qo
$UV + ¥[Us, Vgl () — 1550 [Us, Vgl (—1) — H2[Us, Vil(1) + §(UaV)" (0)(1 — 2?)

(5.49)

Then G(c,7,U) = A(e,7,U) +Q(U,U).

By computation, the linearized operator of G with respect to U at (¢,7,U) is given

gV + W, [Vl () = 5550, [Vl (—1) = 5205 [Ve)(1) + 5(TaVa)" (0)(1 — 2?)
0V, + VU,

where

- @ bt 2(Uy(s)Vi(s) + Vi(s)Ul(s
Uy, Vsl () ::/0 /0/0 2Wa(=)Vols) + Vo()Us(s)) .y

1—s°

In particular, at U = 0, the linearized operator of G with respect to U is

) T 1 AN — z2
LT = Ao ) = (@) F el @O =)
(1- xz)V(;/ + UgVé

Let

z 9 7 T r7
e () :—/ s ge ds, be~(z) = / Us zds, —1<z<1. (5.52)
o l1—s o 1—s

From the discussion in Section for all (c,v) € E, Uy is smooth in (—1,1). So
Qepys ey € CF(—1,1).
By observation a(z) = —In(1 — 22) + b(z). A calculation gives

_ 2 + Ue(i) ") — 2+ Ué(l’) n 4z2 + 2xU0(I) (5.53)

!/
Qe (2) 1— 22 Qe (2) 1— 22 (1 - 22)2
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Next, formally define the maps W, ¢t i =1,2a,2b,3, on & by

Wi (€)(e) = etent) [ eoeat0 S g

0 1—32

Wecy’%?a(g)(x) — eac,v(x)/ e (8) 159( s) ds,

—1 — 82

ng%(g)(x) = e—“cwx(ﬂﬂ)/1 e (s 159_( 5)2 ds, .
Wi )(a) = oo [ e (U i) ) as.
where
O3 (&) = fllel()ds/l e (s) 1’59_(; ds.
Define a map W27 on & by
W (€)(x) == /0 " bea® /0 eben (s 5‘15_( 8)2d dt. (5.55)
A calculation gives
(W5 () (&) = —al )W (@) + 0 5= 190,20
W @) (@) = —al, ()W) + 2 0 (e), .
W) (@) = o [ eteats o) 4 (5.57)
(W5 (€))(2) = b ) (WS (@) () + 220 (5.58)

We will prove in the following subsections that W7 = (W7, W;V) is, roughly speak-
ing, a right inverse of Ly"

Consider the following system of ordinary differential equations in (—1,1):

(1 —2®)Vy + (22 + Up)Va + 5(len [Vo))"(0)(1 — 2%) = 0,
(1-— xQ)ngl + Uqué =0.

All solutions V = (Vp, V) € C((—1,1),R?) are given by

V=diV +dV2 +dsVE +dV7E, (5.59)
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where dy,ds, ds,ds € R, and

—ac(z) —ac,(z) fx ac~(8)
e e e e e S
1. 2 0
Ve = y Ven = )
0 0
(5.60)
V3 o= 0 Vi = 0
7 Jy e~terWat o 1
Moreover, denote
—Gc, () fw ac,~(8)
e~ e e S
2a .__ -1
Vi = . , (5.61)
and
—ac,(z) fx ac~(8)
e e e S
2b .__ 1
Vi, = . (5.62)

0

It can be seen that Vfa = V2 + Vlvf e,y (8) ds, and VQb V2 _ Vcl7 01 eer(8) Is.
Next, introduce the linear functionals [;, 1 < ¢ < 4 acting on vector-valued functions

V(z) = (Vo(), Vs (x)) by
(V) =Vy(0), L(V):=V4(0), I3(V)=V5(0), (V)= Vy(0). (5.63)
By computation it can be checked that (ll(VCJV)) is an invertible matrix, and it is
also invertible if we replace ‘/027 by Vfﬁ; or Vfg in this matrix.
5.2.2 Existence of axisymmetric, with swirl solutions around U®7,
when (c,v) € Ey; with (k,l) € o

Let us start from constructing the Banach spaces we use. Given a compact subset
K C Ey; with (k,1) € 1, we have Uy (—1) < 3 and Uy7(1) > —3. So there exists an

0<e< %, depending only on K, satisfying that ,

UC7’Y —]_ c UC,’Y _1 )
~ <9i)> Xy < Uy D)+ <92() - 1> Xqug (1224 Uy (1))

and

UQ’Y(l) . Uc,'y(l) )
- <_ K )X{Uem(l»?}w@ﬁ(l)) " <_ T 1) Xqwgm<-2 (U7 (1)

for all (¢,v) € K.
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Denote Uy = U;". Choose a fixed € as above, define

M; =M, (€) := {Up € C3 (—; ;) NCY(=1,1)NC[-1,1] | Up(—1) = Up(1) = 0,

(1 - 352)71”609‘&00(71,1) < oo, [I(1 - 372)260(3‘&00(71,1) < 00, ||[~]é/”Loo(_%,%) < 00,
Hﬁé’/HLN(—%,%) < oo},

Mz =My(e) = {Up € C*((=1,1),R) | [|(1 = &*)Ugllpoo(-1,1) < 00, (1 = 2?) Ul e (—1,1) < o0,
(1 - $2)2+6U<;5/||L°°(—1,1) < oo}

with the following norms accordingly

1Gellag, = 11— &)~ 2Tl e 11y + 11 = 222 Tglzmcrny + 107l peos 1y + 105 e 3 1

1UslIMy = 11(1 = 2*)Ugllpoo(—1,1) + 111 = 2) Ul oo 21,1y + 111 = 22)*T UG || oo (1,1)-

Next define the following function spaces:

N = Ni(e) i= {6 € C3(—5,5) NC(-1,1),B) | (1) = &(1) = £(0) =0,

(1= 2%) 712 || oo (—1,1) < 00, [1€5 | poo( 1,1y < 00, |€G Il poo (1 1) < 00},

11 11
272 272
N2 = Ny(e) := {& € O((—1,1),R) | |(1 = 2%)" €yl poe(—1,1) < 00},
with the following norms accordingly:
€ollne, == [1(1 = 2%) 72|l oo (—1,1) + 1€5 ] oo
1€olIny i= 1(1 — 2%) g oo (—1,1)-
Then let X := {U = (Up,Uy) | Up € My,Uy € My} with norm ||U||x = ||Upllm, +
1Uslive, Y = {6 = (&.60) | &0 € Ni,& € No}, with the norm [|€]ly = [|€olln, +

|€sllN,- It can be proved that My, My, Ny, Ny, X and Y are Banach spaces.

) ||§{9/”Loo(7%,%),

11
2'2

Let I; : X — R, 1 < i < 4, be the bounded linear functionals defined by (5.63) for
each V € X. Define
X1 :=kerl; Nkerls Nkerls Nkerly, (5.64)

It can be seen that X; is independent of (c, 7).

Theorem 5.2.1. For every compact subset K C Ey3 , there exist 6 = 6(K) > 0,
and V € C®(K x Bs(0),X1) satisfying V(c,v,0) = 0 and
/8 = (517/82753764)7 such that

ov
8—6\620:0,1§i§4,

4
U=U+3 BVi + V(e 8) (5.65)
=1
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satisfies equation with ¢, = ¢ + %w[(j(b](—l), Co = co + %1/1[(7(;5](1), ¢3 = c3 —
3 (e [U0))"(0).

Moreover, there exists some ' = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €
K, and U satisfies equation with some constant ¢1,¢Co, €3, then holds for

some || < 9.

Define
X :=kerl; Nkerls Nkerly. (5.66)

We have

Theorem 5.2.2. For every compact subset K of E 1 or Ea 1, there exist 6 = 6(K) > 0,

oV
and V € C*(K x B;(0),Xs) satisfying V(c,7,0) = 0 and 57.|ﬁ=0 =0,i=234,
/8 = (ﬁ2aﬁ3,ﬂ4)7 such that

U=U+ BV + B3V, + BaVer, + V(e 7, B) (5.67)

satisfies equation with é, = ¢1 + %@Z)[Ud(—l), Gy = cog + %d}[fﬁb](l), 3 = c3 —
3 (e [U0))"(0).

Moreover, there exists some 0’ = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €
K, and U satisfies equation with some constant ¢1, ¢a, €3, then holds for

some |B] < 9.

Theorem 5.2.2°. For every compact subset K of Ey o or Es o, there exist 6 = 6(K) > 0,

and V. € C*(K x Bs(0),Xz2) satisfying V(c,v,0) = 0 and g‘ﬁqﬁO =0,1i=23,4,
/8 = (ﬁ27ﬁ3)/64); such that
U=U"+ BV + B3V, + BaVit, + Ve, 7, B) (5.68)

satisfies equation with é, = ¢1 + %¢[U¢](—l), Gy = cog + %IZJ[UM(I), C3 = c3 —
3 (e [Ua])"(0).

Moreover, there exists some 6’ = §'(K) > 0, such that if ||[U — U7 ||x < &', (c,7) €
K, and U satisfies equation with some constant ¢1,Ca, C3, then holds for

some |B] < 9.
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Define
X3 :=kerls Nkerly. (5.69)

We have

Theorem 5.2.3. Let K be a compact set contained in one of Ei; with 5 < k < 8
and 1 < [ < 3, there exist 0 = 0(K) > 0, and V € C®(K x B;s(0),X3) satisfying

V(e,7,0) =0 and i=3,4, B = (B3, B4), such that

oV
aiﬁi‘ﬁ:o =0,

U =U+ B3V, + BaVery + Ve, 7, ) (5.70)

satisfies equation with ¢1 = c1 + %@Z)[Ud)](—l), Gy = co + %d}[ff(b](l), 3 = c3 —
3 (e~ [Ua])"(0).

Moreover, there exists some 0’ = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €
K, and U satisfies equation with some constant ¢1, ¢a, €3, then holds for

some |B] < 9.

For Uy € My, let ¢[Ug)(x) be defined by (5.44). Let K be a compact set contained
in one of Ey; with k = 1or 5 < k < 8or (k1) = (2,1) or (3,2). Define a map
G = G(c,7,U) on K x X by (5.46).

Proposition 5.2.1. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

to U at (¢,7, U) € K x X s given by the linear bounded operator LCI{Y : X =Y defined

as in .

To prove Proposition [5.2.1] we first prove the following lemmas:

Lemma 5.2.1. For every (¢,7y) € K, A(c,v,-) : X = Y defined by is a well-

defined bounded linear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote [ = I, [Up] defined by (5.47)), and A = A(c,~, -) for some

fixed (c,v) € K. We make use of the property of Uy that Uy € C?(—1,1) N L>(—1,1).
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A is clearly linear. For every U € X, we prove that AU defined by li isin’Y

and there exists some constant C' such that ||AU|jy < C||U||x for all U € X.

By computation,
U(z)=(1—2®)U) + UgU) + (2 + U))Usg
"(x) = (1 — 22U + (U — 22)U} + 2(U4 + 1)Uj + UL Us.
By the fact that Uy € My, we have,
[17(0)] < |U5"(0)]+(1Tg(0)1+2)[T5 (0)|+2(|T(0) [+ 1) T3 (0) |+T5 (0)||Ts (0)] < C|[Tplna,

For -1 <z <1,

(L= 2)7 2] < (1= 22) )] 4 S ((0))(1 - )
< 10— 22T+ (2 + 1) (1~ a2) 72| 4 2 (1~ 220 0)
< C||Upllna, -
For —% <z < %, we have
gl = V')~ 1"(0)
< [T+ [Ool T + (2 + 1T31) [Tl + |1"(0)
< [Tl
and
[45) = () ~ 1"(0)
< (031 + (1T + 2[5 + 2(105] + 1ITp| + 105 1] + 11" O)
< C||Up|Im,

We also see from the above that lim Ap(z) = lim Ag(z) =0. By computation
z—1- z——1%

Al(0) = 0. So we have Ag € Ny and [ 4g|ln, < C||Uslln, -

Next, since Ay = (1 — xQ)U(Z + (790(;, by the fact that Uy € My we have that
(1= 2®) e Ag| < (1= a®)>*UG| + (1= 2®) |00 | U] < C1Us I ms.-

So Ay € Ny, and ||Ay|ln, < C’|]U¢HM2. We have proved that AU € Y and ||AU||y <
C||U||x for every U € X. The proof is finished. O
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Lemma 5.2.2. The map Q : X x X — Y defined by is a well-defined bounded

bilinear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote 1 = w[U¢, ffd,] defined by .

It is clear that Q is a bilinear operator. For every U,V € X, we will prove that
Q(U, V) is in Y and there exists some constant C' independent of U and V such that
QU V)lly < CIU|IxIVx-

For U,V € X, we have, using the fact that U¢, V¢ € My, that

< (1= )20l Vo, V-1<s<1  (5.71)

It follows that (U, V)(z) is well-defined and

YD < Cl0 Vol O] < ClT Vel (572
Moreover,
1 1
5(0) = J0(-1)(1 = 0) = w1+ 0
U= 2) + 501 +2) = FH-D - 2) = Lo+

| /\

;u—x)w) Y1 >r+1<1+x>|¢<> $(0)

t 2U¢ t 2U¢
/ / / d dtdl| + / / / dsdtdl
1-— 52 1-— 52

< O = a)(1+2)' 7% Ugllne | Vil + C 1+ 2)(1 = 2) 7 Us g, Vi v

l—x 1—|-95

< O = 2?) ) UslInm Vil

(5.73)

By (5.71)), we also have

t2U¢ 1 1
ol =| [ [ D ] < Ol Vol —3 <2<t 57
and
© 204 (s)VI(s) . - 1 1
@) = | [ s < Vol —5 <<z (T3
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Using the fact that U@, Vg € My, we have

|(UeVa)" (0)] < U5 (0)][Va(0)] + 2|T5(0) V5 (0)] + |Ts (0)[1V5'(0)]

< C||Usllnr, || Vallna,

(5.76)

So by , , and the fact that Uy, Vp € My, we have that for —1 < z < 1,

(1= 22)7 12 Q(a)

(= 22 Dy(@)| Vi) + (1 - )72 () — So(-1) (1~ 2) — 59(1)(1 +2)
(1~ )| (Ts75)"(0)]

< 2100, 1V, + T el Vv, + €L = 22 [Tl | Vol

< CIFIx |7 .

From this we also have lim Qp(z) = lim Qg(x) = 0.
z—1 z——1

By (5.74), (5.75), (5.76), and the fact that Up, Vp € My, we have that for —3 < z <

1
2
04(0)] = | 5047+ B03) + 4/ (a) + (5(-1) = (1) - §(GaTi" (O
< CI0 IV x.
and
1

) Ung // +w”( )—;(ﬁg%)”(())‘

|

< O|UIxIIVIx

l\D

[\.')\}—t

1 ~ ~
(T4 -+ 20373 + Tl + 4/ (0) = L(GaVa)'O)

From the above we also have Q;(0) = 0. So there is Qp € Ny, and ||Qpln, <
CEIUx IV x-
Next, since Qg(z) = Ug(:ﬁ)f/é(:ﬁ), for -1 <z <1,

(1= 2*) " Qu ()] < 1Un(@)|(1 — ) |V5| < 2] Tpllnay |V -

So Qg € Na, and [|Qplln, < |UslInt, | V|, - Thus we have proved that Q(U,V) € Y

and |Q(U,V)|ly < C|U|x||V|x for all U,V € X. Lemma is proved. O
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Proof of Proposition : By definition, G(c,~v,U) = A(c, v, U)+Q(U, U) for (¢,~,U) €
K x X. Using standard theories in functional analysis, by Lemma it is clear that
@ is C*° on X. By Lemma[5.2.1] A(c,7;-) : X = Y is continuous for each (¢,7) € K.
Let a = (a1, az,a3) be a multi-index where o; > 0, ¢ = 1,2,3, and j > 0. For all

lal + 7 > 1, we have

) N - 1 - - 1
638%/1(0,7, U) = 838%%’7 + 5(838%%’7 -Up)"(0) . (5.77)

By Theorem (i) and Corollary we have
(1 —a?) 720280 Ag (e, 7, U)| < Cla, 4, K)|[Ugllmy, 1<z <1,
and for —% <z < %
10504 Ag(e, 7, U)| < Clav, 4, K)|[Upllna,, 1028445 (c,7,U)| < Cla, 5, K)||Uglm,
The above estimates and also implies that
020 Ag(e, 7, U)(=1) = 820 Ag(c, 7, U)(1) = 9204 Ag(c,~,U)"(0) = 0.

So 828 Ag(c,~,U) € Ny, with [|028] Ag(c, v, U)|In, < C(a,j, K)||Uslln, for all (¢,,U) €
K x X.

Next, by Theorem (i) and the fact that U, € My, we have

(1~ %) |80 Agle 7, 0) (@) = [958 U (x)| - (1 — a*) D3| < Clan, 4, K|,
(5.78)
S0 028 Ay(c,~,U) € Ng with [|020] Ag(c, v, U)|ln, < Clav, j, K)||Ug||n, for all (¢,~,U) €
K x X. Thus 8°# A(c,~,U) € Y, with |02 A(c,~, 0|y < C(a, 4, K)|U|x for all
(e, U) e K x X, o] +j>1.
So for each (¢,7) € K, 0%, A(c,~;-) : X = Y is a bounded linear map with uniform
bounded norm on K. Then by standard theories in functional analysis, A: K xX =Y
is C*°. So G is a C*° map from K x X to Y. By direct calculation we get its Fréchet

derivative with respect to X is given by the linear bounded operator ng X =Y

defined as (5.50). The proof is finished. O
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Let acy(x),bey(x) be the functions defined by (5.52)). For convenience we denote
a(z) = ac(x) and b(z) = be,(x). We have

Lemma 5.2.3. For (c,v) € Ey; with (k,l) € &, there exists some constant C > 0,

depending only on (c,7y), such that for any —1 <z <1,

Ug"(-1) U (1) Uy (-1) Ug (1)

@ <C(lt+a) 2 (1-a) 7, @ <Cta) T (1-2) T, (5.79)

and
USY(—1) US (1) USY(—1) US (1)
@) < Cl+z) 2 M1—a) T, e < O(l4a) e (1—a)
(5.80)

Proof. Denote Uy := Uy, let

. Up(—1) Uy(1)
Qp = min {17 (1 o ) X{Tp(-1)<2} T X{Tp(~1)>2} (1 + ) X > F X y<-2} [ -

Since (¢,7) € Ey; with (k,1) € @4, we have Up(—1) < 3 and Up(—1) # 2, or Up(—1) = 2

with 71 = 0, and Up(1) > —3 and Up(1) # —2, or Uy(1) = —2 with 1y = 0. According
to Theorem [T.0.3] and Theorem we then have

Up = Up(—1) + O((1 + 2)*) = Up(1) + O((1 — 2)*), —-1<z<1.

Thus, by definition of a(x) and b(z) in (5.52)), for —1 < z < 1, we have

b(o) = 22D 1 40y - W -0y 400y
2 2 (5.81)
a(z) = ((]0(2_1) - 1> In(1+x) — <U92(1) + 1) In(1 —z) 4+ O(1).
The lemma then follows from the above estimates. O

For £ = (§9,&y) € Y, let the map W7 be defined as

W () = (W (€), W57 (€)),

where
Wil it

(

w2 if
Wit =4 0 E
(

c, c E1’3

20)
c,v) € By or By
c,)

Wec,'y,2b(£) if c E1,2 or E372

W53 (€) if (e,7) € Epy for 5< k<8, and 1 <1< 3.

W;"y’i, 1 =1,2a,2b,3 are defined by |D and Wg”(g) is defined by 1)
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Lemma 5.2.4. For every (c,vy) € K, W :' Y — X is continuous, and is a right

Y Y
inverse of Ly ',

Proof. In the following, C' denotes a universal constant which may change from line to
line. We make use of the property that Uy € C?(—1,1)N L>(—1,1) and the range of e.

For convenience let us write W := W7 (€) and W := W57 (€) for £ € Y.

By Lemma we have the estimates (5.79)) and (5.80)).
We first prove Wy is well-defined.

Claim. There exists C' > 0, such that
(1 —2?) " 2 Wy (2)] < CléolIn, (5.82)

Proof. We prove the claim for each W?, i = 1, 2a, 2b, 3.
Case 1. (¢,7) € E1 3, then Up(—1) < 2 and Up(1) > —2.

Using the fact that £y € Ny, in the expression of Wy = W91 in (5.54)),
xr
|(1—22)" 2w (2)] < (1 —x2)_1+2€||§9||N16_a($)/ (1 —s2)"2ds, —1<x<l.
0

Applying (5.80) in Lemma using the fact that 4e > max{U(—1),—Up(1)}, we

have

(1 = &)Wy ()]

T o (1) * Tp(=1) Tp(1)
< [lolin, (L +2) ™7 (1 —2) "= +26/0 (145) 7 1721 — )17 ~2¢s
Tp(~1) Tg(1)
< CHngNl (1 + (1 + x)_ &5 +25) <1 + (1 _ :E) & +2e>

< CéalINy

(5.83)

Case 2. (c,7) € Eyqor Eyq, then 2 < Ug(—1) < 3or Up(—1) = 2 withn =
0, and Uy(1) > —2

Using the fact that & € Ny, and (5.80|) we first have

0 0 Ug(—1)
/ pa(9) 180(8)] 5 CH&)HNl/ (14925012 4s < Clleyln
1

—1 1—82

So the definition of Wg“ makes sense.
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In the expression of Wy = W in 1 ,

‘(1_x2)71+2ewga(x)‘ < (1_x2)1+26H§0HN16a(:1:)/ ea(s)(1_82)72ed87 Q<<
—1

Applying (5 in the above, using ( ) ce< 5 Land Up(—1) > 2, we have

(1 — a®) 7w ()|

T 1) o (V) v Tp(=1) T (1)
< [l lIny (1 +2)~ 7+ - $)02+26/ (1+s) 2 1721 —s)" 12 2
1

< ClléollIn,
(5.84)

Case 3. (¢,7) € Ey2 or E35. Similar as in Case 2, we can prove
(1 —2?) 2w ()] < OligslIn, (5.85)
Case 4. (c¢,y) € Eg for5 < k <8 and1 <1 < 3, then 2 < Up(—1) < 3 or

Up(—1) =2 with n; = 0, and —3 < Uy(1) < —2 or Up(1) = —2.

For convenience write

c 1 b s s
Cw = O (&) = e /_1 e )1&)( )2 ds.

e -

Using the fact that £y € Ny, and (5.80) we first have
1 Up(—1)
[ e las <o, [ 9 0
-1 -1

and

1 1 Tg(—1) Tp(1)
/ ) ds > C/ (1+s) "7 l(1-s) "2 ds>C >0
—1 -1

So Cyy is finite, and
ICwl < C[&olIn, - (5.86)

So the definition of Wg’ makes sense.
For —1 < x < 0, using 1) the fact that £ € Ny, 0 < e < %, and Uy(—1) > 2,

we have
X

‘(1 - $2)71+26W93(5L‘)| < (1 - x2)1+2e”§9”N16a(x)/ ea(s) ((1 o 52)726 - OW) ds,
-1

T v Tg(~1)
< Cll€olIn, (1 +2)~ g +26/1(1+8) = —1=2¢

< C[éalINy
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For 0 <z < 1, by computation,

Wi (x) = e 0@ / " gaeals ( “olo) cw> ds

-1

1 Gc (5) €o (S) 1 T
eden ds
_ e—acﬁ(m) / ele, ~( 59( )2 ds — 6—a(m) ffl - 1—s2 </ ea(s)ds + / ea(s) d8>
1 —s 7, eten()ds -1 1
) / " gaen(s) 0(5)2 ds — Cyype—ten®) / " aen(®) g,
1 l—s 1

Then using 1} the fact that { € N1, and 0 < € < %, Ug(l) < —2, we have

— o) e < ollng (1 — ) = Ue(l) —2¢ds
(1= 2?) 2 W (2)] < ClléolIw, (1 .
o)
+Clglin, (1 - )5 / ds
1

< Cl ol

Thus for all -1 < x < 1,
(1—2) W ()| < ClléolIn, (5.87)

So (5.82) can be obtained from (5.83)), (5.84) and (5.87). The claim is proved. From

this we also have lim,_, ;+ Wy(z) = lim,_,;- Wy(z) = 0.

By the first line of (5.56)), (5.53) and (5.82)), we have that for ¢ = 1, 2a, 20,

(1 —2?)* (W)'|
<2+ [ (1 = &%) 72 W] + (1= 2*) 7 (2)] + Cliéol,
<COéoln,, —-l<z<l.
By the second line of (5.56), (5.53), (5.82)), and , we have

(1= a?)*(Wg)'|

<2+ 1O (1 = &%) T2 W + (1= 2?) 7y (2)] + Cll&sll, + [Cw|(1 — 2?)*
<N, —-l<z<l.
Thus,
(1 — 22)*W)| < Clléplln,, —1<z<1. (5.88)
By , it can be seen that |a”(z)|, |a” (z)| < C for —3 < 2 < 1. Then using this
fact and -) and -, we have, for —= < T < 2,

W (@) = 0" @ Wole) + o W) (23 ) | < Cllol
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and

W7 ()] = |a (@) W) + 20" (2)Wy(a) + o ()W () (59) < Ol

1—=x

So we have shown that Wy € My, and ||Wpy|am, < C||ép|ln, for some constant C.

By the definition of W, (§) in (5.55) , using (5.79)) and the fact that £, € Na, we

have, for every —1 < z < 1,

T t
L 2\e L 2\e —b(t) b(s) €6 (5)]
(1 —27) | Wy(z)] < (1 —2) /0 e /0 e\ 2= dsdt

1— g2

T t
< [l€olln2 (1 = 332)6/0 6b(t)/0 et (1 — s2) "2 ¢dsdl.

x Tp(—1) 1) [t Tp(~1) Tp(1)
<l - o [ a0 [ e s
0 0

xX
<Cl-aleoln, [ (0700 -0
0
< CH§¢”N2
Using (5.57), (5.79) and the fact that £, € Ng, we have, for every —1 <z < 1,
(1 —2®) W ()|

Up(=1)

Up(1) ” T (1) Ty (1)
< ésline, (1 +2)" 75 (1 — ) E +1+€/ (1+s) 2 2¢1—s) 2 2°¢s
0

< ClléslIn, -
(5.89)

Similarly, since |b'(z)| = 1Yol using (5.58), (5.89) and the fact that {, € Na, we have

1—22?

(1= @)WY (2)] < O - 2®) WY+ (1 - 2 ey] < [Clléglln,.  (5.90)

Then W () € X for all £ € Y, and [|[W(¢)||x < C||¢|ly for some constant C. So
W Y — X is well-defined and continuous.
By definition of W, i = 1,2a, 2b, we have [[W}](z) = &. So (I[W}])"(0) = &/(0) = 0,
then [IV3](x) + JUIWE)"(0)(1 - a?) = &.
By definition of W3, we have I[Wg](z) = & — Cw (1 — 2?). So (I[W3])"(0) =
4(0) + 2Cy = 2Ciy, then I[W§)(z) + LAWE)"(O0)(1 — #2) = &. Thus LW (€) = €,

W is a right inverse of L. O

Let V!

ey 1 <0< 4, V2a fo; be vectors defined by q5.60D, 45.61[), (]5.62[), we have

C?’Y ’
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Lemma 5.2.5.

span{ V.., V2 V2 VLY if (¢,7) € Eus,
ker L7 — span{Vf‘;, Vc?’w ‘/047} f (c,v) € E11 or Eaq,
span{ V2 V3 V3 if (¢,7) € E12 or E32,
span{V2 , V1 } f (c,y) € By for5 <k <8, and1 <[ <3.

Proof. Let V € X satisfy L;"V = 0. We know that V is given by for some
dy,do,ds,dy € R.

For convenience we denote a(z) = ac(z), b(z) = be(z) and V' = VCZW, | =
1,2,2a,2b, 3.

By Lemma and the expressions of V1, V2 in , we have that

V() = e @ — 0(1)(1 + 2)' =25 (1 — o)+ 5 (5.91)
If Up(—1) # 0, for —1 < 2 <0,
U9(71
—eax)/ ds = O )(l—i-a:)((l—i-x) —i—l).

If Up(—1) =0,
Vi(z)=01)(1+x)In(1+2), —-1<z<0

Similarly, for all 0 < z < 1, V2(z) = O(1)(1 — ) ((1 _2)% 4 1) if Up(1) # 0
and V2 (z) = O(1)(1 — z) In(1 — z) if Up(1) = 0. So we have

Vi (z) =0(1)(1 — 2?) <(1 L) (14 x)X{U9<—1>:0})

i (5.92)
Up(1)
(a-0" + 1m0 - 200
Then by , we also have
LV @)| = e @a@] =oma e T a0 (5.93)
9y )| = V(@) (@) + 1
2" f
Up(=1) Tp)

=0 | (1+z) "= +1+In(l+2)x@,n=0 ) | A —2)72" +1+In(l —2)x(7,0)=0)

(5.94)
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If Ug(—1) > 2 or Ug(—1) = 2 with 7 = 0, by (5.61)) and Lemma we have that

V@) =[e @ [ e =01 -1+ (1= 2) 4 + o1 - 2,y
(5.95)

and

L@ = [V @l (@) + 1] = 00) 1+ (1-0) ™ 4 In(1 = ), 010p)- (5.96)

Similarly, we have if Up(1) < —2 or Uy(1) = —2 with 7o = 0,

e >\ O()(1 =)L+ (1+2)” 5 + (1 +2)x(0,1)-0))

) (5.97)
' o1+ +4z) 2 —I—ln(1+w)x{go(71):0}).
Next, by computation we have for i = 1,2, 2a, 2b
d2 !/ /i d3 "/ AV T M
Vi = (V) @) + Vid @), Vi = (Vi)' @)+ 2(V5) ! (2) + Via" (@),

Using the definition of a(x) in - there exists some constant C'; depending on ¢, 7,

such that

3
‘VG 7 ‘ Vb

1 1
5Vi| <O —g<w<gy i=122a2b (5.98)

Moreover, by Lemma and the expressions of V2 in ([5.60), we have

v _Up(=1)
Vi) :/ e "Wdt = 0(1) <(1 +a) T 1+ In(l+ x)X{Ug(n:z})
O Oy (1) (5.99)
Gp())
. ((1 — [,U)lJr 2 4+ 1+ 11’1(1 — J")X{Ug(l):—Z}) .
and
( )
C%V;(x) =MD — o)1+ a) (1 —2)
d2 Tp(—1) T (1) (5100)
'de (f(x) =@ (@) =0 (1+2)" "7 (1—2) 12

When (c,7) € E13, U(—1) < 2 and U(1) > —2, using the estimates —,
(5.98), (5.99), (5.100), and the definition of V!

¢y

it is not hard to verify that V(};7 eX

1 <i<4. Itis clear that {V.,i,1 <14 < 4} are independent. So {V,i,1 <i<4}isa

basis of the kernel.
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Similarly, when (c,7y) € Ei1 or Ey, it can be checked that span{Vcl’,y,Vf’,,

span{Vc{WVc?g}, where VCQ‘;, given by (5.61)), is a linear combination of Vclﬁ, VCQ7 So
Lg"V = 0 implies

V =diV!, +d3V2 +dsV> + diV7.

It can be checked by the estimates (5.91]), (5.93), (5.95)), (5.96), (5.98), (5.99), (5.100))that

in this case V24, V2 VL € X, and V), ¢ X. So d; = 0.

When (c¢,v) € Eq2 or Es 9, similarly as the proof of the previous case, we have that

V=V ViV,

for some constants do, ds, d4.

When (c,7v) € Eg; for 5 <k <8, and 1 <11 < 3, by (5.91)-(5.94), (5.98), (5.99),

and (5.100), we have V2 V2 € X, and VL , V2 ¢ X. If there exists some di,ds € R,

C?’y ’ C?’y C7’y’ c7’y

such that Vg := leclﬁ —l—alg‘/gﬂY € X, then by the fact that Vy(—1) = V(1) = 0, we have
1 -1
di = —dy / e% ) ds = —dy / e () (s,
0 0

This means ds f_11 e®(8)ds = 0, thus dy = 0, and d; = 0.

So the lemma is proved. O

Corollary 5.2.1. For any £ €Y, all solutions of Ly'V =&, V € X, are given by

(

iV, + doV2 +dsVE, +dsV, if () € Evs
2 3 4 ;
Vo= W o)+ oV + dsVe, + daVe, if(e.7) € Bry or Bz
AoV + dsV3 + daViE, if (¢,7) € Erg or B
dsV3, + V2, if (¢,7) € By for 5<k <8, and 1 <1<3

Let ly,12,13,14 be the functionals on X defined by (5.63)), and X;, i = 1,2,3 be the

subspaces of X defined by (5.64), (5.66) and (5.69). As shown in Section the

matrix (ZZ(VLJW)) is invertible, for every (¢,7y) € K. So X; is a closed subspace of X, and

(

PV, V2,V V) X1 (6) € Bi
X — span{Vc?;‘, VC:’:W Véy} D Xo, (c,v) € E11 or Ea,

span{V2 VZ V1} & Xy, (c,7) € E12 or E3o,

span{V2 , VL } @ X3, (¢,v) € By for 5 <k <8, and 1 <1<3,

(5.101)
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with the projection operator P; : X — X, for ¢ = 1, 2a, 2b, 3 given by

PV =V = (V)Ve, = (V) = b(V)l2(Ver)) Vi, = I(V)VE, = u(V)V,

LV
PV =v - M v v, v,
;( (‘;;) (5.102)
PyV =V — ooV = 15(VIVE, — L(V)VE,,
ll(‘/c,'y)

PV =V —Is(V)V2 —1,(V)V2

ey ¢y

for all V € X.

Lemma 5.2.6. If (¢,7) € Ey 3, the operator Ly” : X1 — Y is an isomorphism.
If (¢,v) € E11, E12, E32 or Ey 1, the operator Lg”y : Xo — Y is an isomorphism.
If (¢,7) € Epy for5 < k <8, and1 <1 < 3, the operator Lg’7 : X3 = Y is an

isomorphism.

Proof. By Corollary and Lemma Lg7 : X — Y is surjective and ker Ly is
given by Lemma The conclusion of the lemma then follows in view of the direct

sum property (5.101)). O

Lemma 5.2.7. Vclm Vfﬁ € C*(K,X) for compact K C E 3.
Vfﬁj € C*(K,X) for compact K C E1q or Eq;.
Vc?g € O (K, X)for compact K C E19 or E3s.

V3 VA € C®(K,X) for compact K C Ex,; with (k,1) € .

Y TGy

Proof. 1t is clear that Vc‘f7 € C*(K,X) for all compact set K described as in the lemma.
Let a = (aq, a9, ag) be a multi-index where a; > 0,7 =1,2,3, and j > 0.
For convenience we denote a(x) = acq(x), b(x) = bey(x) and V! = VI i =
1,2,2a,2b, 3.
Using Theorem part (i), we have that for all || +j > 0 and (¢,7) € K,

e a(x) = 020 b(x) = /0 : —132 LU (s)ds = O(1)| In(1 — 2?)|. (5.103)

(1) If K C Ey 3, we have Uy (—1) < 2 and Uy (1) > —2.

Choose € < € such that 2¢ > max{0, $U;"7(—1), —3Us"7 (1) | (c,7) € K}.
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Using the expressions of V1, V2 in (5.60)), Lemma the estimates (5.91)), (5.92),
(5.103) and Theorem (i), we have that for all |a|+j > 0 and (¢,v) € K,

9209V (@)] = @0 (i1 = 22)[ ") = 0(1) (1 = 2% (1 - 2?)| ",

‘6?81%1/92(90)‘ — |e—al@) /I ) dsl O (‘ln(l _ x2)‘|a|+j> = O(1)(1 — 22)1—% ‘ln 2)|Ia\+j,
0

and

‘;iag(?%vel(x) _ efa(x)’a/(xﬂo (’111(1 - x2)“a|+j> _ 0(1)(1 - x2)72€ ‘111(1 _ x2)||a‘+j7

‘Zé’?a%l(w)‘ = [VZ(2)a(2) + 110 (1 = 22) ") = 0(1)(1 = 2%)7> (1 — )"+

From the above we can see that for all |a| 4+ j > 0, there exists some constant C' =

C(a, j, K), such that(c,v) € K,

(1 —2?) 129200 Vi (z)| < C, ‘(1 - a:?)z’ed%aza%'voi(w) <C, i=1.2.

From the above we also have that for |a| + 7 > 0,
ONVy(1) =02 Vi(—-1) =0, i=1,2

Next,using the definition of a(x) in (5.52)) and Corollary there exists some constant
C = C(K), such that

1 1
<C, foral —-—<ax<—=, i=1,2

2 2’

‘aaaﬂv@ dz3 e

<C, ’ @ A

The above imply that for all |a|+j > 0, 6?8%‘[} € My,i=1,2,50 V1, V?ec C®K,X).
(2) If K C Ey1 or Eyy, we have 2 < Up"(—1) < 3 with U*7(1) > —2.
Choose € < € satisfying 2¢ > max{Uy"7(—1) — 2, —1U;7(1) | (c,) € K}.

In this case v = v (c1, ¢, c3). Using the expressions of V2@ in ((5.61), Lemma m

the estimates (5.95), (5.96)), (5.103|) and Theorem (i), we have that for all |a| > 0,

2 |Ia\

|02V (@) = O(1)(1 + 2)(1 — )% [In(1

and

lla\

'aav ‘ 0(1)(1 — 2)% [In(1
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From the above we can see that for any |a| > 0, there exists some constant C = C(«, K),

such that for all (¢,v) € K

(1 a?) 2@ < 0, [(1—a L orve(a)| < C.

We also have that for |a| > 0,
GRVE(1) = BV (~1) = 0.

Similarly as part (1), we have

d® i on 1 1
<, d—ac(")?ng <C, forall —-<z<-~-.

i1/ 2
a2V 2 2

T

d2
’ d x3

The above imply that for all || > 0, 92V € My, so Vi € C*(K, My).

(3) If K C Ey3 or E39, then by similar argument as part (2), we have that V6,2b €
C>™(K, M).

(4) Let K be a subset of Ej; with k=1o0r5 <k <8or (k1) = (2,1),(3,2). Using
the expressions of V3 in (5.60)), Lemmal[5.2.3] the estimates (5.99), (5.100), (5.103) and
Theorem (i), we have that for all |a| + j > 0,

Uy (1

p2adVE| = 0(1) <<1 +a) T 1) ((1 N 1) IIn(1 — 22)[*H+1,

'Cg‘ia?azvm) —O()(1+2) "5 (1—2) %" |In(1 — )| "/,
2 . o ) ‘
'jﬂ?a%‘?(x) — @Y (2) = O(1)(1+2)" " 25 (1= 2) 57 In(1 — 22) el
XT

Since € > max{0, @ -1,-1- %}, there exists some C = C(a, j, K) such that

for all (¢,v) € K,

€ ] € d j € d2 :
|(1—2?) 6?8%\/@‘:’\ <, ‘(1 — )t %638%1/5 <, ‘(1 — %)t @83841/;’ <C.
The above imply that for any |a| + j > 0, 638%%? € My, so V3 € O®(K, X). O

Lemma 5.2.8. (i) If K CC E; 3, then there exists C = C(K) > 0 such that for all

(c,7) € K, B:=(B1,B2,B3,51) €ER*, and V € Xy,

4
IVix + 18 < CI1 > BV, + Viix.
=1
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(i) If € K CC Ei1 or Eaq, then there exists C = C(K) > 0 such that for all
(677) € K7 (627537/84) € RS) and V' € X2;

IVIIx + (B2, B3, Ba)| < Cll B2V + BV, + BaVel, + Vix.

(iii) If € K CC Ei2 or Esg, then there exists C = C(K) > 0 such that for all
(67’7) € K7 (52763754) S RS, andV € Xg,

IVIIx + (B2, B3, Ba)| < ClIB2VE + BV, + BaVi, + VIx.

(w)lf K CC Ey; with 5 <k <8, 1 <1< 3, then there exists C = C(K) > 0 such
that for all (c,7) € K, (B3,84) € R%, and V € X3,

IVIIx +1(8s, B)| < ClIBsViE, + BaVil, + Vx.

Proof. We only prove (i). Similar arguments yield (ii), (iii) and (iv).
We use contradiction argument. Assume there exist a sequence (c!,~!) € K, 3% :=

(8L, L, Bi, B5) € R*, and V' € X, such that
IVillx + 167 = il 3 8iVE_ +Vijix. (5.104)
j=1
Without loss of generality we assume that
IViIx + 167 = 1.

Since |3%| < 1, there exists some subsequence, still denote as 3%, and some 3 € R%, such
that 8° — 3 as i — oo.
Since K is compact, there exist a subsequence of (¢!,7?), still denoted as (c,~?),

and some (c,7) € K such that (c!,7") — (¢,7) € K as i — oo. Then by Lemma

we have
y : ~
‘/Ciy,yi - V::],'ya I<j<4
By (5.104),

4
- )
Z/B;‘/CZ,’W +Vi =0
J=1

This implies
4
Vi V== BiVI .

Jj=1
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On the other hand, V? € X;. Since X; is a closed subspace of X, we have V € X;.
Thus V € X N span{chw VC?W va} So V' = 0. Since VC%A/, Vc?w chﬂf are independent
for any (c,y) € K. We have 81 = 3 = B3 = 0. However, |V¥||x + |(8%, 8%, 83)] = 1

leads to ||V||x + |(B1, B2, B3)| = 1, contradiction. The lemma is proved. O

Proof of Theorem [5.2.1: Define a map F : K x R* x X; =Y by
4 .
Fle,7,8,V) =Gle,y, Y BV, +V).
i=1

By Proposition Gis a C® map from K x X to Y. Let U = U(e,7,8,V) =
Z;lzl BiVC’;«Y + V. Using Lemma we have U € C®°(K x R* x X;,X). So it
concludes that F € C®(K x R* x X1,Y).

Next, by definition F(c,v,0,0) = 0 for all (¢,v) € K. Fix some (¢,7) € K, using
Lemma we have Fy (¢, 5,0,0) = LS’:Y : X1 — Y is an isomorphism.

Applying Theorem C, there exist some 0 > 0 depending only on K and a unique
V € C*(B;s(¢,7) x Bs(0),X1), such that

F(vaaﬁav(cvvaﬁ)) =0, V(C?’y) € B(S(Ea F_Y)aﬁ € B5(0)7

and

V(z,5,0) = 0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § < 6,
such that Bj(¢,7,0,0) N F~1(0) C {(c,7, 8,V (c,7, B)|(c,7) € Bs5(€,7), 8 € B5(0)}
Claim: there exists some 0 < §; < g, such that V(c,7v,0) = 0 for all (¢,v) €
Bs, (€, 7).
Proof of the claim: Since V(¢,7,0) = 0 and V (¢, ~, 0) is continuous in (¢, 7y), there ex-
ists some 0 < &1 < g, such that for all (¢,v) € By, (¢,7), (¢,7,0,V (¢, 7v,0)) € Bs(z.5,0,0-

We know that for all (¢,v) € Bs, (¢,7),
F(C7 ’Y’ 0’ O) = O’

and

F(c,7,0,V(c,7,0)) = 0.
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By the above mentioned uniqueness result, V' (c,v,0) = 0, for every (¢, v) € Bs, (¢, 7).

Now we have V' € C*(Bjy, (¢,7) x Bs,(0),X1(¢,7)), and

F(Ca%ﬁa V(Cf’)/aﬁ)) =0, V(C, 7) € B51 (Ea ;)/)76 € B51 (0)

i.e. for any (¢,v) € By, (¢,7), B € Bs,(0)

G(c %ZW +V(c,7,B)) = 0.

Take derivative of the above with respect to §; at (¢,7,0), 1 <i < 4, we have
G (e, 0)(Vc’;7 + 05,V (¢,7,0)) = 0.
Since G (c,7, O)ch,y = 0 by Lemma we have
Gg(c,v,0)05,V(c,7,0) = 0.
But 95,V (c,7,0) € C*(Xy), so
05,V (c,7,0) =0, 1<i<A4.

Since K is compact, we can take d; to be a universal constant for each (¢,v) € K. So
we have proved the existence of V' in Theorem [5.2.1

Next, let (¢,v) € By, (¢,7). Let 0’ be a small constant to be determined. For any U
satisfies the equation with U — U7 € X, and ||[U — U%7||x < ¢ there exist some

B € R* and V* € X; such that
4 .
U—-U =Y BVi +V"
Then by Lemma there exists some constant C' > 0 such that

4
1 * 7 *
S8+ IV l) < D2 BV + V7lx < 8

i=1

This gives |V*||x < C¥'.
Choose ¢’ small enough such that C§" < §;. We have the uniqueness of V*. So
V*=V(e,v,0) in . The theorem is proved. O
Theorem [5.2.2] m 5.2.27] and Theorem can be proved by replacing X; by Xa,
X3, replacing Y7, BV, by B2V + B3VE, + BV, BV + BsVE + BV, and

53‘/677 + /84VC,A, respectively.
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5.2.3 Existence of axisymmetric, with swirl solutions around U, when

(¢,v) € Ex, with (k,l) € o or A

Denote Uy = Uy". If (c,7) € Ey, with (k,l) € o, then Up(—1) = 2 with i = 4, and
—2 with g = 0. If (¢,7) € Ey,; with (k,l) € o4, then

—3 < Up(1) # —2 or Up(1)
—2 with 7o = —4 and 3 > Uy(—1) # 2 or Uy(—1) = 2 with n; = 0.

Up(1) =
We only need to concentrate on the case when (k,l) € %, since the results of
other cases can be obtained from this case by the transformation # = —z and U () =

—U(—x).

Let us start from constructing the Banach spaces we use. Given a compact subset

K C Ey, with (k,l) € 4%, there exists an 0 < € < %, depending only on K, satisfying

that,

310 4 (_Ue(l) _ 1) Xt (1<—2 (Ta(1)),

> <— Ueil)) X{(Ty(1)>—23 (Un(1))

for all Uy = Uy with (c,v) € 4.
Define

e L) N O-1,1) | Ta(-1) = By(1) =,

M1 :M1(6) = {ﬁg S CS( 55
1+x 149 1+x 2 o
(1 = &) 20y oo 11y < 00, |1 + ) (1n ) (1 = @) T oo 11) < 50,

| In
HU(Q'HLoo(_%é) < 00, Hffé”HLm(_%é) < oo},
My =My (e) := {Us € C*((=1,1),R) | [|(1 = 2°) U] oo (~1,1) < 00,

(1 — $2)1+€U<;>||L°°(—1,1) < oo, [|(1 - $2)2+€U<g||m°(—1,1) < oo}

with the following norms accordingly

~ 1+2 —142¢ 77 l+z 2 2erT!
1Uslln, = [|1In 3 (1-z) Uolloo(—1,0) + (1 +2) { In 3 (1 —2)"UpllLoo(-1,1)

1108 g1 1 + 1105
1slints = 12— 22Tl e 1) + 1A = 22T ety + 1@ = 222 T e (-1

|’L00(_%7%)7
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Next define the following function spaces:

Ny = Ni(e) = & € C(=5,5) NCI-1,1] €(-1) = (1) = &(0) =0,

) < 00, |’§QI9/HL0<>(_%7%) < OO}7

11
272

1+ ? —1+2€¢ /
| {In 3 (1-x) €ollLoo(~1,1) < 00, [|&][ oo

Ny = Na(e) = {& € C((~1,1),R) | [[(1 ~ 2%) €yl 111y < 00},

with the following norms accordingly:

14+ 2 _
) @0 Gl + Il + 16y 3y

fell, =1 (2 .

€6 1Inz = (11 = 2®) €yl Lo (- 1,0)-
Then let X := {U = ((79,[7(]5) | Uy € M1,0¢ € Ms} with norm |U|x = ||Uslla, +
1UslMys Y = {€ = (&.86) | & € N1,&s € Ny}, with the norm [|¢[ly = [N, +
l€slln,- It can be proved that My, My, Ny, N2, X and Y are Banach spaces.
Let [; : X = R, 1 < ¢ < 4, be the bounded linear functionals defined by for
each V € X. Define Xy := kerl; Nkerls Nkerls Nkerly. It can be seen that X is
independent of (c, 7).

Theorem 5.2.4. For every compact subset K C Ey3, there exist 6 = 6(K) > 0
ov

2

and V € C*(K x Bs(0),X1) satisfying V(c,v,0) = 0 and a5 =0,1<i<4,
i|8=0
/8 - (617/827537ﬂ4)7 such that
4 .
U=U+Y BV + V(e B) (5.105)

i=1
satisfies equation with é, = ¢1 + %w[ﬁ(ﬁ](—l), Gy = cog + %w[U(b](l), 3 = c3 —
3 (e [U0))"(0).
Moreover, there exists some ¢’ = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €
K, and U satisfies equation with some constant ¢1, s, C3, then holds for

some |B] < 9.

Define Xs := kerly Nkerls Nkerly. Then Xy is independent of (¢,~).
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Theorem 5.2.5. For every compact subset K of Es 9 or Ey 9, there exist 6 = 6(K) > 0,
oV
and V € C®(K x Bs(0),X2) satisfying V(c,7v,0) = 0 and a5
i|3=0

/8 = (B27/83764); such that

=0,i=234,

U=U"+ BV + B3V, + BV, + Ve, 7, B) (5.106)

satisfies equation with é1 = ¢1 + %1,/}[[7(;5](—1), Gy = cog + %w[f](b](l), ¢3 = c3 —
3 (e~ [U6))"(0).

Moreover, there exists some §' = §'(K) > 0, such that if ||U — U7 ||x < &', (¢,7) €
K, and U satisfies equation with some constant ¢, ¢y, C3, then holds for

some |B] < 4.

For f]¢ € Mo, let ¢[l7¢](x) be defined by 1} Let K be a compact subset
contained in either Ey 9, E 3 or Ey 5. Define a map G = G(c, 7, U) on K x X by (D

Proposition 5.2.2. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

to U at (¢,7, U) € K x X s given by the linear bounded operator LCI{Y : X =Y defined

as in .

To prove Proposition [5.2.2] we first prove the following lemmas:

Lemma 5.2.9. For every (c,v) € K, A(c,7,-) : X = Y defined by is a well-

defined bounded linear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote [ = I, [Up] defined by (5.47)), and A = A(c,~, -) for some
fixed (c,v) € K. We make use of the property of Uy that Uy € C?(—1,1) N L>®(—1,1).

Moreover, by Theorem [1.0.3
B 1 —1 1 —24€
L@:2+4<m ;x> +4xn<m ;x> ,

for any ¢ > 0. So there exists some constant C' > 0 such that

1
In te

|2x+U9|

‘ <(C, —-l<z<l. (5.107)
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A is clearly linear. For every U € X, we prove that AU defined by li isin’Y

and there exists some constant C' such that ||AU|jy < C||U||x for all U € X.

By computation,
(@) = (1—2*)Ug + UgUp + (2 + Ug) Uy,
"(x) = (1 — 22U + (Ug — 22)U} + 2(Uf + 1)Up) + U} Us.
By the fact that Uy € My, we have |I”(0)] < C||Upl|n,. So for —1 < z < 1, using
(5.107)), we have
1 2
| <ln ‘g‘”) (1— ) 124,
1+2)° 1 1+2)\?
< (111 3 ) (1 —z) 2 (z)| + §|l”(0)| <1n 3 > (1+x)(1 —x)*

<| <ln 1;’“)2 (1+ 2)(1 — )20 + ‘(2:6 +Tp) <ln ! ;xﬂ . ’(m ! §x> ' (1 — 2) 142

1+

2
+ C|Uy| <ln > (1+2)(1—x)*

< C||Us|Im,
We also see from the above that i1_>ml Ap(z) = xl—i>n—11 Ap(z) = 0.
For —% <z < %,
|4p| = |I'(z) = 1"(0)a
< |Ug| + 1UslUg| + (2 + |Tg])|Us| + 11" (0)]
< ClUslImy,
and
Al = I"(x) = 1"(0)]
< |05"| + (10s] + 2)|U5 | +2(1U5| + 1)|Tg| + |Ug|Ts| + |1 (0)|
< C||Up|m,
By computation Ajj(0) = 1”(0) — 11”(0) - 2 = 0. So we have Ag € N; and [|4g||n, <
C||UplIna,

Next, since Ay = (1 — xz)Ug + Ugﬁé, by the fact that f]¢ € My we have that

‘(1 o 1’2)1+EA¢‘ < (1 _ x2)2+e’0g| + (1 _ z2)1+6|09||0<;’| < CHUqb”Mz.
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So Ay € Ny, and ||Ay|ln, < C’HU¢HM2. We have proved that AU € Y and ||AU||y <
C||U||x for every U € X. The proof is finished. O

Lemma 5.2.10. The map Q : X x X — Y defined by is a well-defined bounded

bilinear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote 1 = w[Um V¢] defined by .

It is clear that @ is a bilinear operator. For every U,V e X, we will prove that
Q(U, XN/) is in Y and there exists some constant C' independent of U and V such that
QU V)lly < CIU|Ix IV x-

For U,V € X, by the same arguments as in Lemma there exists some constant
C > 0 such that

|(TeVa)" (0)] < C1|Uslln, Vol [na,

and

'w@:)—;w—l)(l—x)—;wm(ux) < U)X Tl Vot —1 < < 1.

So we have that for —1 < x < 1,

‘ = x)z (1 — ) Q)

1 1+2 42e 1+z) -~

)t (15 ]
| @0 o) - o1 - o) - Jea+ o).
+ i ‘1“ : _§ = (1 2)(1 = 2)%(TeV)" (0)],

1 - ~ ~ ~ 1 ~
< 1l [Vallng, + CllUsl v, [Vasllva, + C(1 = 2%)*[Upln, || Vol
< C|U|Ix[IV1x-
From this we also have lim Qp(z) = lim Qq(x) = 0.
z—1 z——1

Similar as in Lemma we have that for —% <z < %,

Q@) < CIUIx VI,  1Q4(x)| < CITIx|IV ]I x-
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So there is Qg € Ny, and [|Qg||n, < C()|U|Ix ||V x-

Next, since Qq(z) = Ug(x)f/qg(:v), for -1 <z <1,
(1= 2*)Qu(@)] < [Us(@)|(1 = 2®)™* V] < 2(Usling, [V | -

So Qg € Na, and [|Qplln, < |UslIna, | Vil i, - Thus we have proved that Q(U,V) € Y
and |Q(U,V)|y < C|U|x||V|x for all U,V € X. Lemma [5.2.10|is proved. O

Proof of Proposition : By definition, G(c,~,U) = A(c, v, U)+Q(U, U) for (¢,~,U) €
K x X. Using standard theories in functional analysis, by Lemma [5.2.10]it is clear that
@ is C* on X. By Lemma[5.2.9, A(c,7;) : X = Y is C™ for each (c,7) € K.

Let o = (a1, a2, a3) be a multi-index where o; > 0, i = 1,2,3, and j > 0. For all

la] +j > 1, we have

Ug 1 anjrrey 17\ 1 2
o +§(8687U0 - Uy)"(0) . (5.108)
¢

By Theorem (ii) and Corollary we have

002 A(c,v,U) = 020U,

| <ln ! —g :E)Z (1- x)*1+268§‘8%A9(c,’y, U)| < C(a, 5, K)|Ugllm,, —-1<z<1,
and for —% <z < %
10504 Ag(e, 7, U)| < Clav, 4, K)|[Upllna, s 1028445 (c,7,U)| < Cla, 5, K)||Uplm,
The above estimates and also imply that
020 Ag(c,7,U)(—1) = 820 Ap(c, 7, U)(1) = 9204 Ag(c,~,U)"(0) = 0.

So 820 Ag(c,~,U) € Ny, with [|028) Ag(c,v,U)||In, < Cla,j, K)||Usln, for all (¢,,U) €

K x X.
Next, by Theorem (ii) and the fact that Ug € M;, we have

(1 =)' F)020] Ag(e,y, U) ()| = |02 05U57 ()] - (1 = 2®) US| < Cla, j, K)||Ug | ms-
(5.109)
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S0 9280 Ag(c,~,U) € Ny with 020 Ag(c, v, U)|ny < Cle, §, K)||Usllm, for all (¢,v,U) €
K x X. Thus 8°# A(c,7,U) € Y, with |02 A(c,~,U)|y < C(e, 5, K)||U|x for all
(c,7,0) € K x X, |a|+j > 1.

So for each (¢,v) € K, 8202 A(c,~;-) : X — Y is a bounded linear map with uniform
bounded norm on K. Then by standard theories in functional analysis, A: K x X — Y
is C*°. So G is a C* map from K x X to Y. By direct calculation we get its Fréchet

derivative with respect to X is given by the linear bounded operator LBV X =Y

defined as (5.50). The proof is finished. O

Let acq(x),bcq(x) be the functions defined by (5.52)). For convenience we denote
a(z) = ac (), b(x) = bey(x), and Uy = Uy, we have

Lemma 5.2.11. For (c,vy) € Ey; with (k,l) € @, there exists some constant C > 0,

depending only on (c,7y), such that for any —1 <z <1,

2 7 —2
W <C <1n S x) (14—55)(1—95)_%7(1), e @ < ¢ (ln Lt x) (142) "' (1—-2) UG?U),

3 3
(5.110)
and
1422 _1-0® _ 142\ 2 Tp(1)
e¥®) < C(In 3 (1-z)'"72, e@<C(In 3 (1—az)tt 2.
(5.111)
Proof. Let
. Up(1)
Qo = min {17 (1 t >}X{Ue(1)>—2} + X{Ue(l)S—Q}}
under the assumption of Up in this case, by Theorem we have that,
4 1 2+€ B
Ug =2+ In 1+z +O(1) <ln 43_:6) =Up(1)+0((1 —x)*), —-1l<z<l.
for any € > 0.
Thus, by definition of a(z) and b(z) in (5.52), for —1 < 2 < 1, we have
1 1 1
b(zr) =In <J3:x) +2In (—ln < ;x)) - U62( ) In(1 —2)+0(1),
(5.112)

a(z) = 21In (- In (1 J;x)) - (U(’él) + 1) In(1 - z) + O(1).

The lemma then follows from the above etimates. O
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For & = (§9,&y) € Y, let the map W7 be defined as

W () = (We (€), W57 (€)),

where

c,v,1 if
Wecﬁ(g) _ W9 (g) 1 (Ca 7) S E2,37 (5113)

Wg’%%(f) if (¢,7y) € Fag or Eya,

Wg’w, 1 = 1,2b are defined by 1' and W;’V(Q is defined by "

Lemma 5.2.12. For every (c¢,v) € K, WY : Y — X is continuous, and is a right

inverse of Lg".

Proof. In the following, C' denotes a universal constant which may change from line to
line. We make use of the property that Uy € C?(—1,1) N L>(—1,1) and the range of e.

For convenience let us write W := W7 (€) and W} := Wg’%i(f) for£ €Y.

By Lemma [5.2.11| we have the estimates (5.110)) and ((5.111)).

We first prove Wy : Y — X is well-defined.

Claim. There exists C' > 0, such that

‘(mlgx)a—x)H%wu@ < Ol N, - (5.114)

Proof. We prove the claim for each W, i = 1, 2b.
Case 1. (c,7) € Ey3, then Up(—1) = 2 with g, = 4 and Up(1) > —2.
In this case Wy = Wel.
Using the fact that & € Ny, in the expression of Wy = ng in , for any

-1l<zx<l1
|
‘(m gx>u—$rH%Wﬂ@

z La(s) 1+ -2
C142¢ _ e s o
(1—2) 12 &lIny e a(gc)/o s <ln ; ) (1 — )~ %ds.

1+=x

< |In
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Applying (5.111)) in the above, using the fact that 4e > —Upy(1), we have

m(lgx)@—er%wgg)

1 - Ug(1) o1 Tp(1)
< e, o 52| - e [
3 o 1+s
1 (5.115)
1 h Ty(1)
< CH£9”N1 (1 + |In e ) (1 + (1 — l’) & +25>
< C|€plIn; -

Case 2. (¢,7) in Ea9 or Egg, then Up(—1) = 2 with n; =4 and —3 < Up(1) < —2
or Up(1) = —2 with 1y = 0.
In this case Wy = ng.

Using the fact that & € Ny, and ([5.111)) we first have

0 s 0 Oy
/ ea(s)wds < ClléolIn, / (1—s)" 2 17%ds < C||&In,
1 ].

— g2

So the definition of ng malkes sense.

In the expression of Wy = ng in , we have for any —1 < x < 1 that
1
'<ln —;—x) (1 —z) ' P2Wgb(z)

1 v 1 2
+x (1 . 1_)—1+26|’£0‘|N16—a(x) /; ea(s) (hl ;‘ 3) — 8(1 _ 3)_2Ed3.

< |ln

Applying (5.111)) in the above, using the fact that Up(1) < —2, and € < %, we have that

'<m1§x>ﬁ—er%W?@)

1 -1 Up(1) Tz q Tp(1)
< [[€olln, |In = (1—x) = +26/ —(1—s)T1 T %y,
3 1 1+s
1 (5.116)
14|
< CllgolIn, (1 + |In ) ,
< C|léolIN,-

So ((5.114) can be obtained from ([5.115) and ((5.116|). The claim is proved.

From the claim we also have that lim,_,_1 Wy(z) = lim,_,; Wy(x) = 0.

By (5.56), (5.53), (5.114), and the property that U = 2+4 (In £2) "' +O(1) (In 1£z) >+
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we have that for —1 <z < 1,

1+zx

)2 (1= 2w

(1+2) (ln

< [e2e o) (55| [ (0 252 0o+ (0 EE) e

< C¢olINy -

(5.117)

By (5.53), it can be seen that |a”(z)|, |a"” ()| < C for —3 < 2 < 1. Then using this

fact and (]5.114[) and (]5.117[), we have, for —% <z< %,

W5 @)l = 0" @ Wole) + o oW(a) + (125

< ClléolINy

and

Wy ()] = < Cliolln,

a" (x)Wo(z) + 2a" (2)Wy(x) + o' (2)W) (x) + (1 §9w2>

So we have shown that Wy € My, and ||[Wp||lm, < C||és|In, for some constant C.

By the definition of W, (&) in (5.55)) , using (5.110) and the fact that {, € N, we

have, for every —1 < z < 1,

1—s2

x t
< sllnn (1 — 22)¢ / e—bl0) / O (1 — 522 gt
0 0
e 1+¢\ 2 B (1)
< Clgslnat -2 [ () o a0
0
t 2 _
(1)
/ (1111_258) (14 8)7 (1 — )" 7 > dsdt
0

< Ollggling (1 — 22)° / (1 ) dt
0

x t
_ 2\e _2\e —b(t) b(s) ’£¢(S)|
(1— 2| Wy(z)| < (1 —2?) /0 e /0 e dsdt

< Oligslin,

Using (5.57)), (5.110) and the fact that {4 € Ng, we have, for every —1 <z < 1,

] 142\ ; o) .
(1= W) < ol (1057 ) (a1 - )00
v/ 2 g (1)
/ (ln ;—5> (14_5)7176(1 _8)7U921 7276(15 (5118)
0

< Oligslin,
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Similarly, since |b'(z)| = | i|2’ using ((5.58)), (5.118)) and the fact that {4 € N2, we have

(1= a?)* W (@) < C(1—a®) Wl + (1 = 2®) 7| < [ClEslIne-

Then W(§) € X for all £ € Y, and ||[W(§)||x < CJ|{|ly for some constant C. So
W Y — X is well-defined and continuous.

By definition of W, i = 1,2b, we have [[W}](z) = &. So (I[W}])"(0) = &/(0) = 0,
then [[W](z) + $(L{WE])"(0)(1 — 22) = &. Thus LoW (£) = &, W is a right inverse of

Ly. O

Let Vciy,y, 1<i<4and Vfﬁ’/ be vectors defined by 1} and 1) we have

Lemma 5.2.13.

span{V} V2 V3 V4 if (¢,v) € Eag3,
keI‘ L(C),’}/ — { Y Y Y CY ( )

Span{‘/c%l;n Vv@?y) ch%'y} /I’f (67 ’Y) € E2,2 or E4,27
Proof. Let V € X, LV = 0. We know that V is given by (5.59)) for some dy, dg, d3,ds €
R. For convenience we denote a(z) = ac~(z), b(x) = bey(z) and Vi = VCZ;W i =

1,2,2b,3, 4.

By Lemma [5.2.11] and the expressions of V!, V? in (5.60)), we have that

—92 _
Vi () = e = 0(1) <ln ! ’g x) (1— )% (5.119)

and

2 —a(z) a(s) AN Tp(1)
Vi(x)=e e"ds=0(1) | In 3 (I-z) | (1—2)"2 +1+In(l —2)xg,q)=0} | -

0
(5.120)
By (5.53)), we also have
—9 _
divl(x) - ‘e—a@)a’(x)) = 0(1) (1 ! ; x) 1+2)" Y1 -2)% (5.121)
X
9y = VR (@) (2) + 1
dr 0 6

1 -2 Tp(1)
:O(l) (hl —i:x> (1—|—x)_1 <(1—.1‘) 921 —|—1—|—1I1(1—.T)X{U9(1):0}>

(5.122)
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If Up(1) < —2 or Uy(1) = —2 with g = 0,

1 -2 d 1 -
“/g%(a:)‘ =0(1) (ln +$> (1—ux), ‘mvgb(x) =0(1) <ln %?:3:) (1+az)!
(5.123)
Next, by computation we have for i = 1,2,2b
ﬁvz _ (Vz)/ /( )+Vz l/( ) d73V7' _ (Vi)l/ /( )+2(Vz)/ /( )+Vz /l/( )
dx29_ p)ax pa (T), dx39_ p) alx p)a\x g ().

Using the definition of a(x) in ((5.52)), there exists some constant C', depending on ¢, 7,
such that

3

2 . 1 1

- 2

d
< -
=G ‘ dxz?

Moreover, by Lemma [5.2.11] and the expressions of V3 in (5.60]), we have

Ug (1)

2 + 1 + ln(l — $)X{U@(1):_2}) . (5125)

Vi(z) = /Om e "Mdt = O(1) ((1 — )t

and
72 -
o] =9 - 00 (157) 1
X
d? 1 —2 ) (5.126)
Ug(1
5V @) =@ (2)] = 0(1) (111 +5”> (14 2)-2(1 — o)1+ 752
X

When (c,7) € Fa3, U(—1) = 2 with 71 = 4, and U(1) > —2, using the estimates

(5.119)—(5.122), (5.124)—(5.126)), and the definition of V!

s 1t 1s mot hard to verify

that VCZ;,Y € X, 1< i< 4. Itis clear that {Vé,y,l < ¢ < 4} are independent. So
{Vei,1 <i < 4} is a basis of the kernel.

Similarly, when (c,7) € Ea2 or Ey9, it can be checked that span{Vclﬁ,Vfﬁ} =
span{Vclﬁ,Vf’g}, where VCQQ, given by , is a linear combination of VC{W,VEN. So
LS’“’V = 0 implies

V=d\V, +d3VZ +dsV2 +diV..

It can be checked by the estimates ((5.119)), (5.121)), and (5.123))-(5.126)) that in this case
V2 V3 VA e X, and ng ¢ X. Sody =0.

c?’y ’ c?’y ’ c?’y

The lemma is proved. O
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Corollary 5.2.2. For any £ €'Y, all solutions of Lg"V =&, V € X, are given by

dl‘/cl,'y + d2‘/vc2,'y + d3‘/c:?'y + d4‘/cil'ya Zf (Cv 7) € E2,3a
AV + dsV3 + dy V2

Y ¢

V= W) +
Zf (C,’}/) € E2’2 or E472.

Let I;, 1 <14 < 4 be the functionals on X defined by (5.63) , and X; = ﬁ?zl ker [;,
Xy = kerly Nkerls Nkerly. It can be checked that X; and X5 are closed subspaces of
X, and

Span{‘/c%fya V2 ‘/c?,)fy} 2] X17 (C7 7) € E2,37

X = e (5.127)
span{V.2, V3 } & X, (c,7) € Eap or Eyp,

with the projection operator P; : X — X1, Py : X — Xy given by ((5.102)).

Lemma 5.2.14. If (¢,) € Ea3, the operator Lg" : X1 — Y is an isomorphism.

If (¢,) € Es9 or Eyg, the operator Ly : Xo — Y is an isomorphism.

Proof. By Corollary and Lemma [5.2.13) Ly” : X — Y is surjective and ker Ly is

given by Lemma 5.2.13] The conclusion of the lemma then follows in view of the direct

sum property (5.127)). 0

Lemma 5.2.15. V.l V2 € C>°(K,X) for compact K C Ey3.
Vc?g € O (K, X)for compact K C Ez9 or Eys.

VC?V,VC% € C®(K,X) for compact K C Ej; with (k1) € <.

Proof. Tt is clear that Vc‘}v € C*(K,X) for all compact set K described as in the lemma.
Let a = (aq, a2, 3) be a multi-index where a; >0, ¢ =1,2,3, and j > 0.
For convenience we denote a(z) = ac,(z), b(z) = bey(z) and V' = VI i =

1,2,2b, 3.

Using Theorem [5.1.3| part (ii), we have that for all |a| 4+ j > 1 and (c,v) € K,

1
1 — s2

%%M@z%%%@z/ DU (s)ds = O(1)| In(1 — )], (5.128)
0

(1) If K C Es3, we have Uy (—1) = 2 with n; =4 and Uy (1) > —2.
Choose € < € satisfying 2¢ > max{0, —3U;"7(1) | (¢,7) € K}.
By Lemma [5.2.13| we know that V1, V2 € X in this case.
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Using the expressions of V1, V2 in (5.60), Lemma [5.2.11) the estimates (5.119),
(5.120)), (5.128)) and Theorem (ii), we have that for all |a|+j > 1 and (¢,v) € K,

1+«

|02V ()] = e @O (lln(l - a:)l'aHj) =0(1) <ln >_2 (1 — )2 |In(1 — z)[l*1+7 |

10000V (z)| = e /Om @ ds| O (|1n(1 - x)||a‘+f) — 0(1) <ln Lt “”)_2 (1 — 2)1"2% In(1 — z)[le7
and

‘;;838%1 ()] = @ ()|0 (In(1 - 2)] ) = O(1) (m ! : ‘”) —a ;fl‘% (1 — ))H
‘;;838%2(9:) = V2d (@) + 10 (In(1 - )<7) = 0(1) <ln ! : "’”) ~a ;fl_% (1 — 2|+

From the above we can see that for all |a| + j > 1, there exists some constant C' =

C(a,j, K), such that for i = 1,2

1 o
' (111 ;IE) (1-— x)_1+268?(")?yV92(x) <C,

1 2 y
<ln Jg””) (14+2)(1— x)%%aga%vg(x) <cC.

We also have that for |a| +j > 1, 83‘8%%"(1) = 838%%"(—1) =0,i=1,2.
Next, using the definition of a(x) in (5.52) and Corollary there exists some

constant C' = C(K), such that

1 1
<O, forall ——<zx<=, i=1,2.

d? y d3 y
‘dxzacam =6 ’dﬁaﬁ% 3 <73

The above imply that for all |a|+j > 1, 638%‘[} € My,i=1,2s0 V! V2 e C®K,X).

(2) If K C Ea or Eyp, we have Uy (—1) = 2 with n; = 4, and U%7(1) € (=3,-2)
or U*V(1) = —2 with 2 = 0.

By Lemma we know that V? € X in this case.

In this case v = v~ (c1, 2, c3). Using the expressions of V' in (5.62)), Lemma
the estimates (5.123), and Theorem (ii), we have that for all |o > 1,

1+=x

-2
> (1—z)|In(1 — z)|lol.

ag“vg%(x)‘ = 0(1) (m

and
1+zx

agv,}b(x)) =0(1) <ln )2 (1+2)"" [In(1 — )|l
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From the above we see that for any |a| > 1, there exists some constant C' = C(a, K),

such that for all (¢,7) € K,
1
(m55) 0o v

We also have that for || > 1, 92V2%(1) = 92V (—1) = 0.

2
<C, <ln ! —I?:x> (14+2z)(1— 33)26%8?‘/9%(35) <C.

Similarly as part (1), we have

1 1
<C, forall—§<x<f.

704]
‘ (98V 5

<C, ‘60‘871/

The above imply that for all || > 1, 92V,?* € My, so Vi’ € C®(K,M,).
(3) Let K be a subset of Ey; with (k,[) € .
By Lemma, [5.2.13| we know that V3 € X.

Using the expressions of V3 in (5.60)), Lemma/|5.2.11] the estimates (5.125)), (5.126]),
(5.128)) and Theorem (ii), we have that for all |o| + 7 > 1,

oefvg] = 0w (1= )+ 5" +1) I1a(1 = )+,

1+=x

(1= ),

-2 5o (1
‘Z@?%VM ) () (1)

= 0(1) (m

1+«

—9 .

~o(1) (1n

a

Since € > max{0, —1 @}, there exists some C = C(a,j, K) such that for all

(¢,7) € K,

d (63
oAV <

dx

-syoravgisc, |u-adel & o

d?
<, ’(1 o) R, o) V¢ <C.
The above imply that for any |a| +j > 1, 83‘8%‘/5 € My, so V3 € O®(K, X). O
Similar arguments as in Lemma [5.2.8] imply the following lemma.

Lemma 5.2.16. (i) If K CC Es3, then there exists C = C(K) > 0 such that for all
(67’7) € K: /8 = (/81752763754) € R4; and V € Xl;

4
IVilx + 181 < CI> - BVE, + Viix.
=1
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(i) If € K CC Eag or Eyp, then there exists C = C(K) > 0 such that for all
(c,7) € K, (B2,53,81) €R3, and V € Xy,

IVIx + (B2, B3, Ba)| < C||B2VE + B3V + BaVE + V]x.

Proof of Theorem [5.2.4: Define a map F : K x R3 x X; =Y by
4
F(e,v,8,V) = G(c,7, Zlglvz,'y +V).
i=1

By Proposition Gisa C® map from K x X to Y. Let U = U(e,7,8,V) =
S BiV., 4+ V. Using Lemma we have U € C°(K x R* x X;,X). So it
concludes that F € C®(K x R* x X;,Y).

Next, by definition F(c,v,0,0) = 0 for all (¢,v) € K. Fix some (¢,7) € K, using
Lemma we have Fy (¢,7,0,0) = Lgﬁ : X7 — Y is an isomorphism.

Applying Theorem C, there exist some § > 0 and a unique V' € C*(B;s(¢,7) x
Bs(0),X1), such that

F(Cv 7, Ba V(C7’7> 5)) =0, V(Ca 7) € B(S(Ea r_Y)a B € B5(0)7
and
V(z,7,0) = 0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § < 4,
such that Bs(c,7,0,0) N F~1(0) C {(c,7,8,V(c,7,8))l(c;7) € Bs(¢,7), B € Bs(0)}.
Claim: there exists some 0 < §; < g, such that V(c,7,0) = 0 for every (c,7v) €
Bs, (¢,7)-
Proof of the claim: Since V(¢,%,0) = 0 and V (¢, 7, 0) is continuous in (c, ), there ex-
ists some 0 < 91 < g, such that for all (c,v) € B, (¢, %), (¢,7,0,V(¢,7,0)) € Bs5.0,0)-

We know that for all (¢,v) € Bg, (¢,7),
F(C7 ,.Y’ 0’ 0) = 07

and

F(¢,v,0,V(c,7,0)) =0.

By the above mentioned uniqueness result, V' (c,v,0) = 0, for every (c,v) € Bs, (¢, 7).
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Now we have V € C*(Bjs,(¢,7) x Bs, (0),X1(¢,7)), and

F(C)’%/Ba V(Cv’%ﬁ)) =0, V(C,’y) € B(51 (E’ F_Y)aﬁ € B51 (0)

i.e. for any (C, ’Y) € B(51 (57 ’7)7 /3 € 351 (O)
4 .
G(C, ) Z 62‘/27 + V(C7 e 6)) =0.
i=1

Take derivative of the above with respect to f; at (¢,7,0), 1 <i < 4, we have

Gy(e,7,0) (VL + 85,V (c,7,0)) = 0.
Since G(c,7,0)V,, = 0 by Lemma5.2.13} we have

Gp(c,7v,0)05,V(c,7,0) = 0.

But 95,V (c,7,0) € C*(Xy), so

05,V(c,7,0) =0, 1<i<4.

2

Since K is compact, we can take d; to be a universal constant for each (¢,7y) € K. So
we have proved the existence of V' in Theorem

Next, let (¢,v) € By, (¢,7). Let 6’ be a small constant to be determined. For any U
satisfies the equation (5.43) with U —UY € X, and ||U —U%"||x < ¢’ there exist some
81,82 € R and V* € Xy such that

4
U-U=> BVi +V"
i=1
Then by Lemma [5.2.16] there exists some constant C' > 0 such that
1 4
U8B B, Bl + V%) < 113 BiVE, + V¥ Ix < 6.
i=1
This gives |[V*||x < C9'.
Choose ¢’ small enough such that Cé’ < §;. We have the uniqueness of V*. So
V*=V(e,v,B) in (5.105). The theorem is proved. O

Theorem can be proved by replacing X7 by Xo, Z?Zl BiVC’;v by ﬁch?g—k Bgvc‘?,y—i—

ﬁzﬂ/'c‘f:Y respectively.
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The case Uy(1) = —2 with 0o = —4, (Ug(—1) < 3, Up(—1) # 2 or Ug(—1) = 2 with

11 = 0) can conclude the following theorems and the theorems can be proved similarly.

Theorem 5.2.4°. For every compact subset K C Esz3 , there exist 6 = §(K) > 0,

ov
and V € C*(K x Bs(0),X1) satisfying V(c,v,0) = 0 and a5 =0,1<1 <4,
7 B=0
B = (B1, B2, B3, Ba), such that
4 .
U=U""+Y BVi + V(e B) (5.129)

i=1
satisfies equation with é, = ¢1 + %d)[@g](—l), Co = cog + %d}[Uqb](l), 3 = c3 —
3 (e [Ua])"(0).
Moreover, there exists some 0’ = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €
K, and U satisfies equation with some constant ¢1, s, C3, then holds for

some |B] < 9.

Recall that V.2 is defined by (5.61).

Theorem 5.2.5°. For every compact subset K of E3 1 or Ey 1, there exist 6 = 6(K) > 0,

and V€ C®(K x Bs(0),X2) satisfying V(c,7v,0) = 0 and SX =0,:=23,4,
% 8=0
B = (B2, B3, Ba), such that
U = U + BoVels + B3V, + BaVa, + V (e, 7, B) (5.130)

satisfies equation with ¢1 = ¢1 + %w[&b](_l): Gy = cg + %1/1[[7(;5](1), é3 = c3 —
3 (e~ [Ua])"(0).
Moreover, there exists some ' = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €

K, and U satisfies equation with some constant ¢1, Co, €3, then (15.130)) holds for

some | < 9.

5.2.4 Existence of axisymmetric, with swirl solutions around U, when

(C7 /7) € E4,3

If (¢,) € By, then Up(—1) = 2 with 7, = 4 and Up(1) = —2 with ny = —4.
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Let us start from constructing the Banach spaces we use. Choose 0 < € < %, define

M, = My (e) = {ﬁ@ c 03(—%, %) ACY(=1,1) A C[1,1] | Ty(1) = Tp(—1) = 0,

1+, 1—=x

- 9 1+a2\2 1—2\? ~,
3 In 3 U@HLoo(,Ll) < 00, ||(1 - ) In In UQHLoo(,l’l) < 00,

1
[ 3 3

i

Hﬁé/HLoo(_l 1y <00, ||Up

272

liwg gy < 0
M, = Ms(e) := {U¢ € C?((-1,1),R) | (1 - $2)€||U¢”L°°(—1,1) < oo, [|(1 - $2)1+€U$>||L°°(—1,1) < 00,
1= 2220 w11y < 00}

with the following norms accordingly

- 4o 1-a- 1+a\? ([ 1-2\* -
[Glss, =1 0 Gl + 10 =23 (1052 ) (10 257) Gyl

+ HUgHLw(_ y ||Ué//”Loo(_%,%)7

1 1
22
1UslMy = (1 = &)Ul poo(—1,1) + (1 = 2®) U || oo (21,1) + (1 = 2°)2 U || oo (—1,1)-

Next, define the following function spaces:

11
272

1+2)\?2 1—2\? , ”
I n—5 In === &ollree-1,1) <00, 1€l poe(—1,2) < 00, 1€ Il oo (1,1 ¢

N3 = Na(e) := {&s € C((—1,1),R) | [|(1 = 2®) "€yl oo (-1,1) < o0}

N; =Nj(e) := {59 € C%(—5,2)NC[-1,1] | &(1) = &(—1) = £4(0) =0,

with the following norms accordingly

T+a\? [ 1-z)\?
el =1 (1252 ) (10255 @l + gl

€6 lIne, = 11(1 = 2®) "€yl oo (—1,1)-

)t Hfgumo(_%é)y

11
272

Then let X := {(7 = (ﬁg,ﬁd)) | Uy € 1\/[1,17¢ € My} with norm ||UHX = HU};HMI +
1Uslivs, Y = {€ = (,6) | & € N1,& € Na}, with the norm [|€]ly = [I€]In, +
l€slln,. It can be proved that My, My, Ny, N, X and Y are Banach spaces.

Let [; : X = R, 1 <7 <4, be the bounded linear functionals defined by for

each V € X. Let Xy := N, kerl;. It can be seen that X; is independent of (¢, 7).

Theorem 5.2.6. For every compact subset K C Ey3 , there exist 6 = 6(K) > 0,

ov
and V € C*(K x Bs(0),X1) satisfying V(c,v,0) = 0 and 5 =0,1<i<4,
i|3=0
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B = (B1, B2, B3, B4), such that

4
U=U"+ Zﬁchi’,y + Ve, v, B) (5.131)
i=1

satisfies equation with ¢1 = ¢1 + %w[&b](_l), Gy = co + %1/1[[7(;5](1), é3 = c3 —
3 (e [Us])"(0).
Moreover, there exists some ' = 6'(K) > 0, such that if |U — U ||x < ¢, (¢,7) €

K, and U satisfies equation with some constant ¢, Co, ¢3, then (|5.131)) holds for

some | < 9.

For Uy € My, let ¢[Uy)(x) be defined by (5.44)).
Let K be a compact subset in E43. Define a map G = G(c,7,U) on K x X by
(5-49).

Proposition 5.2.3. The map G is in C*°(K xX,Y) in the sense that G has continuous
Fréchet derivatives of every order. Moreover, the Fréchet derivative of G with respect

to U at (c,, U) € K x X is given by the linear bounded operator ng : X =Y defined

as in m

To prove Proposition [5.2.3] we first prove the following lemmas:

Lemma 5.2.17. For every (c,v) € K, A(c,v,) : X = Y defined by is a

well-defined bounded linear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. We denote I = I..[Up] defined by (5.47), and A = A(c,,-) for some fixed (c,7) €

K. We make use of the property of Uy that Uy € C?*(—1,1) N L>°(—1,1). Moreover,

by Theorem [1.0.3{ and Theorem |4.0.1°) Uy = 2 + 4 (In HTI)_l +0(1) (In HTCC)_HE/ =

—2—4(In I_T"’““)71 +0(1) (In I_T‘”)fﬂe for any € > 0. So there exists some constant

C > 0, such that

_ 1 1—
‘(2x+ Ty) (ln ng> <ln . x)‘ <0, -l<z<l (5.132)

A is clearly linear. For every U € X, we prove that AU defined by li isin’Y

and there exists some constant C' such that ||AU|ly < C||U||x for all U € X.
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By computation,
U(z) = (1 —2®)UY + UpUp + (2 + U)Up,
"(x)=(1- xQ)Ué” + (Ug — 2x)Ué’ +2(U) + 1)(7(§ + Ué’ﬁg.

By the fact that Uy € M;, we have that |I”(0)] < C||Up||n,. So for —1 < z < 1, we

have

2 2
| lnl—l—x ln1 T A
3

3
1 2 1—2\2 ~ ~ 1 2 1— 2\2
<] <ln §$ (ln 3 x> (1 —2H)Uy| + |(2z + Tp) <ln J?::E) <ln 3 x)

+% <ln L ?)2 <1n ! . x>2 (1 —22)|"(0)]

< C|UslImy.-

We also see from the above that lim Ap(z) = lim Ap(z) = 0.

z—1 r——1

For —% <z < %,
Al = |I'(z) — 1"(0)z]
< U5+ Usl| Ul + (2 + [Tg)|Ts| + |1 (0))]
< C|1Usllm,
and
| Agl = |I"(z) = 1"(0)]
< |05 + (Ul + 2|05 | + 21T + 1)|Tg| + |U511Ts| + 1" (0)|
< C||Uslln,
By computation Ajj(0) = "(0) — 11”(0) -2 = 0. So we have Ay € Ny and ||4g||n, <
C1Uslln, -

Next, since Ay = (1 — xQ)U(;’ + UpUY,, by the fact that Uy € My we have that
(1 —a®) e Ag| < (1= 2?)* (05| + (1 = 2®)"|0 | Ug| < O|UsIna, -

So Ay € Ny, and || Agln, < C||Uglln,- We have proved that AU € Y and [|AU|ly <
C||U||x for every U € X. The proof is finished.
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Lemma 5.2.18. The map Q : X x X — Y defined by is a well-defined bounded

bilinear operator.

Proof. In the following, C' denotes a universal constant which may change from line to
line. For convenience we denote 1 = w[U¢, ffd,] defined by .

It is clear that Q is a bilinear operator. For every U,V € X, we will prove that
Q(U, V) is in Y and there exists some constant C' independent of U and V such that
QU V)lly < CIU|Ix|IVx-

For U,V € X, we have, using the fact that U¢, V¢ € My, that

Uy(s)V(s)

o < (1= ) P, YT <s <1, (5.133)

It follows that (U, V)(z) is well-defined and

Y] < Cl0 I lValv, O] < ClT Vol (5130
Moreover,
1 1
5(0) ~ J0(-1)(1 = 0) = w1+
U= 2) + 501 +2) = FH-D - 2) = Lo+

| /\

;u—x)w) Y1 >r+1<1+x>|¢<> $(0)

t 2U¢ t 2U¢
/ / / d dtdl| + / / / dsdtdl
1-— 52 1-— 52

< O = a)(1+2)' 7% Ugllne | Vil + C 1+ 2)(1 = 2) 7 Us g, Vi v

l—x 1—|-95

< O = 2?) ) UslInm Vil

(5.135)

By (5.133)), we also have

t2U¢ 1 1
7)) = 20V te| < IO Vollss, —3 <a<  (5.136)
and
© 20,4 (s)V(s) - - 1 1
W@l = || =] < Vel —g<z<g  (a3)




146

Using the fact that U@, Vg € My, we have

(TsVa)" (0)] < T3 (0)[[Va(0)] + 2|T5(0)[| V5 (0)] + |Ts(0)[| V5" (0)]
(5.138)

< C|1UslIna, |1 Vallna,

So by (5.135), (5.138), and the fact that Up, Vy € My, we have that for —1 < z < 1,

3
1+a)\2 1—a)?
In - In
3 3
1+a)2 1—x)?
In <[ In
3 3

< C|UIx I VIx

4

From this we also have lim Qg(z) = lim Qp(z) = 0. Similar as in Lemma [5.2.2} we
z—1 z——1

have that for —% <z < %,
Qy(x)| < CIUIxIIVIIx, 1QF(x)| < CIU|Ix|IV]x-

So there is Qy € N1, and ||Qg|In, < C’(e)Hf]Hfo/HX

Next, since Qq(z) = ﬁg(a:)v(;(a:), for -1 <z <1,
(1= 2?)*Qy(x)| < |Up(2)|(1 — o) V5| < 2| Upllna, I Vs lne

So Q4 € Ny, and ||QgplIn, < HUHHM1H‘~/¢>HM2 Thus we have proved that Q(U,f/) €Y
and ||Q(U,V)|ly < C||U||x||V|x for all U,V € X. Lemma|5.2.18 is proved. O

Proof of Proposition : By definition, G(c,~v,U) = A(c,v, U)+Q(U, U) for (¢,~,U) €
K x X. Using standard theories in functional analysis, by Lemma [5.2.18]it is clear that
Q is C* on X. By Lemma [5.2.17, A(c,~;-) : X = Y is C* for each (c,7) € K.

Let a = (a1, a9, a3) be a multi-index where o; > 0, i = 1,2,3, and j > 0. For all

la] +j > 1, we have

1 ) - 1—=x
+ 5(83(9%%0’7 -Uyp)"(0) . . (5.139)

0 Ay, U) = 92U
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By Theorem [5.1.3] (iv) and Corollary we have

2 2

1—=x
3

1+x
3

In

‘ln

020 Ag(c, 7, U)‘ < O(a, j, K)|Ugllvy, —1<a<1,
and for —% <z < %
10505 A(e, 7, U)| < Clav, 4, K)|[Ugllnay s 1028445 (c,7, )| < Clav, 5, K)||Uglma,
The above estimates and also imply that
02 0% Ag(c, 7, U)(=1) = 020 Ag(c,y, U) (1) = 28] Ag(c,~,U)"(0) = 0.

So 820 Ag(c,v,U) € Ny, with 0204 Ap(c,7, U) |~ < C(a, j, K)||Upllm, for all (¢,,0) €
K x X.

Next, by Theorem (iv) and the fact that Uy € My, we have

(1= 2?1020 Ag(c, 7, U)(@)| = 025U ()] - |(1 = a*) T UG| < Clav, j, K) | Us v,
(5.140)
S0 990 Ag(c,,U) € Na with |05 Ag(c,7, U) N, < Cla, j, K)||Ugllm, for all (c,y,U) €
K x X. Thus 8¢ A(c,7,U) € Y, with 0204 A(c,~,U)|ly < C(a, 5, K)||U]x for all
(¢,7,U) € K x X, |a| +j > 0.
So for each (¢,7) € K, 0%, A(c,~;-) : X = Y is a bounded linear map with uniform
bounded norm on K. Then by standard theories in functional analysis, A: K xX =Y
is C*°. So G is a C*° map from K x X to Y. By direct calculation we get its Fréchet

derivative with respect to X is given by the linear bounded operator ng X =Y

defined as (5.50). The proof is finished. O

Let acq(x),bc~(x) be the functions defined by (5.52)). For convenience we denote

a(z) = acq (), b(x) = bey(z), and Uy = Uy7, we have

Lemma 5.2.19. For (¢,7y) € Ey3, there exists some constant C > 0, depending only

on (¢,7), such that for any —1 < x < 1,

2 2
@) §C’<1n1_;x) <1n1;x> (1—2?),
-2 -2
e~ SC(lnlgx> <1n1;x> (1—2%)71,

(5.141)
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and

2 -2 -2

1—=x
3

1—=x 1+=x

3

1+z|

In In

@ < ¢ ‘m (5.142)

) < ¢ ‘

Proof. Under the assumption of Uy in this case, we have for some small ¢ > 0

4 1 2+e€
Up =2+ 1+z+O()<1n J;”) , —l<z<O0.

In
1— —2+¢€
<1n 3$> , O<ax<l.

3
Thus, by definition of a(z) and b(z) in (5.52), for —1 < z < 1, we have

b(z) =In(1+2)+2In(—In(1+2)) +In(1 — z) + 2In(—In(1 — z)) + O(1),
a(r) =2In(—In(1+2)) + 2In(—In(1 — z)) + O(1).

The Lemma follows from the above estimates. O
For £ = (£9,&y) € Y, let the map WY be defined as
W (&) = (W™ (§), W5 (€)),

where W' and W57 (¢) are defined by (5.54) and (5.55).

Lemma 5.2.20. For every (c,y) € K, W% : Y — X is continuous, and is a right

inverse of Lg"

Proof. In the following, C' denotes a universal constant which may change from line to
line.

We make use of the property that Uy € C?(—1,1) N L>(—1,1) and the fact that
0<e<l.

For convenience let us write W := W7 (&) and Wy := Wy’ THE) for £ €Y.

By Lemma [5.2.19| we have the estimates ([5.141)) and (5.142)).

We first prove Wy : Y — X is well-defined. Using Lemma [5.2.19| and the fact that

9 € N1, we have, by the expression of Wy = W} in (5.54), for any —1 < z < 1 that
Yy 6 Yy

1 1-—
T ()

’111

14z, 1—2z

)
In — ds < C|€plIn, -

< {In

o—a() / cals)
0

(5.143)
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From the above we also have that lim,_,_; Wy(x) = lim,_,; Wy(z) = 0.

By (5.56), (5.53), (5.143), and the property that Up = 2 + O(1) (In 12) ™" = —2 ¢

O(1) (In PTI)_I, we have that for —1 <z < 1
14> 1—x)?

(1—2?) <ln 3 ) (111 3 ) Wy
_ 1 (o 1—z\?

(22 + Up) (m ‘?) <ln - ‘””) We

< ClléolINy -

<

4 <ln 1‘5‘”)2 <1n 1;$)2 €5(2)]

By (5.53)), it can be seen that |a”(z)],|a” (z)| < C for -1 <z <
fact and (]5.114[) and (I5.117[), we have, for —% <z < %,

Then using this

D=

W ()] = a"<x>we<x>+a’<x>we'<w>+< Z ) < Clgolln,,

1— 22

and

Wy ()] = < Cliolln,

) Walo) + 2 W) + Wy o)+ (15)

So we have shown that Wy € My, and ||[Wy|lm, < C||€p||n, for some constant C.

By the definition of Wg(€) in (5.55)) , (5.57), Lemma [5.2.19| and the fact that &4 € N,

we have, for every —1 <z < 1,

x t
(1 - x2)€|W¢(az)| < / eb(t)/ eb(s) |£¢(S)|d8dt
0 0

1— g2

T -2 -2
<ct-ayleln, [ (mi5t)  (migt) a-ey

t 2 N2
. / <ln Lt S) <ln ! S) (1 —s*)"1"¢dsdt
) 3 3

< CH§¢”N27

and

1=y < (-t [Tl cojg iy, s
[

[Us|
1—227

Similarly, since |V/(z)| = using ((5.58)), (5.144)) and the fact that {4 € N2, we have

(1= 2?)** W ()] < Cll&slIn,-
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Therefore W (&) € X for all £ € Y, and ||W(¢)||x < C||€|lyv for some constant C. So
W Y — X is well-defined and continuous.

By definition of W, we have I[Wy](x) = &. So (I[Wp])"(0) = &,(0) = 0, I[Wy](x) +
F(UWe))"(0)(1 — 2%) = &. Thus LoW(§) = &, W is a right inverse of Ly.

Let V!

cy?

1 <7 < 4, be vectors defined by 1' we have

Lemma 5.2.21.
ker L§” = span{V,}. V3 vi

c,y? C'y’ c,yr Veyy

Proof. Let V € X, Lg"V = 0. We know that V is given by ([5.59) for some dy, da, d3, ds €

R.
By Lemma [5.2.19] and the expressions of V!, V2 in (5.60), we have that
Tz 2| 1—z|?
Vi) = e @ — 0(1) [ln—%| | — (5.145)
and
- 1 -2 4 -2
Vi (z) = e @ / e ds = O(1) |ln —;x In —zi))-:v (5.146)
0
By (5.53)), we also have
d T+z| 2] 1—z|?
Vi (@)] = e @d (@) = 0(1) |m T I =)L (5.147)
dx 3
d o 9 , 14272 1—z|? o1
Ve (z)| = |V§(z)d' (x) + 1| = O(1) In In 3 (1—2*)71 (5.148)

Next, by computation we have for i = 1,2,

d? d3

23V = (V) d @)+ Via"(z),  ——5Vy = (15)"d(2) + 2(V5) () + Vja" ().

Using the definition of a(z) in - there exists some constant C', depending on c, 7,
such that

d2
i <o |im

Moreover, by Lemma [5.2.19] and the expressions of V3 in (5.60]), we have

Vf(z) _ /Oz —2

1 1
<O, —p<r<gi=1l2 (5.149)

Vg| <

-1 -1

(5.150)

l1—z

3

1
In +t1 1-1¢
3 3

1+zx
3

In

(1—t*)~tdt =0(1) ‘m
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and
-2
%Vg(x) =@ = 0(1) |In Lte In Lo (1—az3H)71
- ) N (5.151)
A7 30— @) o — + -z 22
dx2v¢ (z)|=e Ib'(x)] = O(1) ‘ln 3 In 3 (1—z%)"".

Using the above estimates and the definition of Vc‘fw it is not hard to verify that
Vciﬁ € X,1<17<4. Itis clear that {Vjﬂ, 1 < i < 4} are independent. So {V.4i,1 <

i <4} is a basis of the kernel. O
Corollary 5.2.3. For any £ € Y, all solutions of Ly'V =&, V € X, are given by
V =W(E) + diV, + doV2, + dsV2, + daVi2,.

Let 1;, 1 < i < 4, be the functionals on X defined by (5.63)), and X; = Nkerl; . As
shown in Section the matrix (I;(VZ,)) is invertible, for every (¢,~) € K. So X; is

a closed subspace of X, and

X =span{V,} , V2 V3

ey Ve cm/’VCZ}W}@Xl’ (5.152)

with the projection operator P; : X — X given by ([5.102]).

Lemma 5.2.22. The operator Ly” : X1 — Y is an isomorphism.

Proof. By Corollary and Lemma [5.2.21) Lg” : X — Y is surjective and ker Ly is

given by Lemma [5.2.21] The conclusion of the lemma then follows in view of the direct

sum property (5.152)). ]

Lemma 5.2.23. V! € C®(K,X) for all 1 <i <4 and (¢,7) in compact subset K of
E4’3.

Proof. 1t is clear that ngw € C*°(K,X) for all compact set K in Ey 3.
Let a = (aq, a9, ag) be a multi-index where a; > 0,7 =1,2,3, and j > 0.

For convenience we denote a(z) = ac~(z), b(z) = be(x) and V' = V!

i i=1,2,3.

By Lemma [5.2.21| we know that V? e X, 1 < i < 4.
Using Theorem part (iv), we have that for all |a| +7 > 1 and (c,v) € K,

1

D108 a(x) = o b(x) = / 0RO (5)ds = O(), (5.153)
0
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Using the expression of Vi, 1 < i < 4 in (5.60), Lemma [5.2.19 (5.145)), (5.146]),
(5.153) and theorem (iv), we have that for all || + 7 > 1, and (¢,7) € K,

anjys1 —a(x) 1+x - -
0202 Vy (z)] = e~ O(1) = O(1) [In o In— ,
: @ 1 1—2|?
‘830%1/92(33)‘ = @) / e®®ds| O(1) = O(1) |In o 3 a: ,
0
and
L ge iV (2)] = =@/ (2)]0(1) = 0(1) [In 12 P lalze _2(1 — 2?71
dx c™y’o o - 3 3 )
d . 1+2x -2 1|2 _
‘dﬁ?@%‘/f(@‘ = |V2d/(z) + 1|O(1) = 0(1) ‘m ; In— (1—a2)~L,

From the above we can see that for all |a| + j > 1, there exists some constant C' =
C(a, j, K), such that for i = 1,2,

14z, 1—2x
In

<C,

In

ACAIC))

2
In (1—2?)

<C.
3 3 -

1+, 1—=x d o mivri
'ln %808%‘/9(@

We also have that for |a| +j > 1, 83‘8%1{}(1) = 838%%"(—1) =0,i=1,2.
Next, using the definition of a(x) in (5.52) and Corollary there exists some
constant C' = C(K), such that

1 1
<O, forall ——<zx<=, i=1,2

= aagj
‘ A : >

<C, ‘E)aaﬂ'vg

The above imply that for all |a|+j > 1, 8?8%%1' € My,i=1,2,50 V1 V% e C®K,X).
Using the expressions of V3 in (5.60)), Lemma/[5.2.19] the estimates (5.150)), (5.151),
(5.153)) and Theorem (iv), we have that for all |a| +j > 1,

o d oai l+z, 1—-=x _
| (9%V(§‘| =0(1), ’dl‘ac 8%‘/(5’(3:) =0(1) |In 3 In 3 (1—2*)"1,
o 14z 1—z|? _
’8 87V¢ z)| =0(1) ‘ln In 3 (1—a2%)~2

Since € > 0, there exists some C' = C(q, j, K) such that for all (¢,7) € K,

. d ) d? .
[(1-a?)0c V| < C, ’(1 — x2)1+€%agagvg <C, ‘(1 — x2)2+ewagagvg <C.
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The above imply that for any |a| +j > 1, 838%‘/(;’ € Ms, so V3 € C®(K, X).

Similar arguments as in Lemma [5.2.8| imply the following lemma.

Lemma 5.2.24. There exists C = C(K) > 0 such that for all (¢,y) € K CC Eas3,

/8 = (B17ﬁ27537ﬂ4) S R47 and V S X17
4 .
IVix + 18 < CI1>_ BV, + Viix.
i=1
Proof of Theorem [5.2.6): Define a map F : K x R3 x X; — Y by
F(C7 v /87 V) = G(Q’Y’ Bl‘/c%'y + 52‘/;2,7 + 53‘/03,)7 + V)

By Proposition Gis a C® map from K x X to Y. Let U = U(e,7,8,V) =
PV + V2, + BgVC?”V + V. Using Lemma we have U € C®°(K x R? x X1, X).
So it concludes that F' € C*°(K x R3 x X;,Y).

Next, by definition F(c,v,0,0) = 0 for all (¢,v) € K. Fix some (¢,7) € K, using
Lemma we have Fy(¢,7,0,0) = Lgﬁ : X7 — Y is an isomorphism.

Applying Theorem C, there exist some § > 0 and a unique V € C*°(B;s(c,7) x
B;(0),X1), such that

F(C,"}/”B,V(C,")/,/B)) =0, V(C7 7) € B&(Ea f?)aﬁ € B§(0)7

and
V(z,7,0) = 0.

The uniqueness part of Theorem C holds in the sense that there exists some 0 < § <,
such that Bj(¢,¥,0,0) N F~10) C {(c,7,3,V(c,7,8))|(c,v) € Bs(¢,7), 8 € Bs(0)}.

Claim: there exists some 0 < §; < g, such that V(c,v,0) = 0 for every (c,v) €
Bs, (¢,7).

Proof of the claim: Since V (¢,7,0) = 0 and V (¢, ~, 0) is continuous in (¢, 7), there ex-
ists some 0 < 61 < g, such that for all (¢,v) € By, (¢,7), (¢,7,0,V(c,v,0)) € B5(z5,0,0)-
We know that for all (¢,v) € By, (¢,7),

F(C7 7a 0’ 0) = 0’



and

F(c,7,0,V(e,7,0)) = 0.
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By the above mentioned uniqueness result, V' (c,v,0) = 0, for every (¢, v) € Bs, (¢, 7).

Now we have V' € C*°(By, (¢,7) x Bs,(0),X1(¢,7)), and
F(e,7,8,V(e,7,P)) =0, V(e,7) € Bs, (¢,7), 8 € By, (0).
i.e. for any (c,v) € Bs,(¢,7), B € Bs,(0)
Gle,7, 1V, + BaViy + BsVidy + V(e 7, 8)) = 0.
Take derivative of the above with respect to 5; at (¢,v,0), i = 1,2, 3, we have
G (e, 0)(Vcin + 05,V (c,7,0)) = 0.
Since G (c,7, O)Vé7 =0 by Lemma we have
G(c,7,0)05,V(c,7,0) = 0.
But 93,V (c,7,0) € C*(Xy), so

03,V (c,7,0) =0, i=1,2,3.

Since K is compact, we can take d; to be a universal constant for each (¢,v) € K. So

we have proved the existence of V' in Theorem [5.2.6

Next, let (¢,v) € By, (¢,7). Let 0’ be a small constant to be determined. For any U

satisfies the equation (5.43) with U — U7 € X, and ||[U — U%7||x < ¢’ there exist some

81,82 € R and V* € X such that
U—U" =BV, + BV, + B3V, + V™.
Then by Lemma [5.2.24] there exists some constant C' > 0 such that
151, B2, B + IV ) < ISV, + B2V2, + BV, + V7 x <.

This gives |V*||x < C¥'.

Choose ¢’ small enough such that C¢’ < §;. We have the uniqueness of V*.

V*=V(e,v,B) in (5.131). Theorem is proved.

So
OJ
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Now with Theorem [5.2.1} [5.2.6] we can give the

Proof of Theorem (1.0.6: Let K be a compact subset of one of the four sets Ej,
1 <k <8and 1< <3, where Iy, are the sets defined by (|1.14]).

For (¢,v) €e KN E; with1 <k <4and =3, let

(u9(cvvaﬂ)au¢(c7’7wﬁ)) = L (UCN + 63‘/0?'7 + /84‘/;,1«1 + V(Cﬁ, 0,0, B3’ﬂ4)) ) ﬁ = (B37/84) € B(Sa

sin 6
where 6, Vj’w VC‘}7 and V(c,7,0,0, B3, B4) are as in Theorem Theorem The-

orem [5.2.41 and Theorem [£.2.6]
For (¢,v7) e KNE,; with1 <k <4andl=1,2, let

(ug(c, v, B), up(c,, B)) = $ (U + BsVE + BaVeL, +V(c,7,0,85,81)) . B=(Bs,B4) € Bs,

where 0, Vc‘?,y, Vc‘f,y and V(c,7,0, 1, 52) are as in Theorem Theorem Theo-

rem [5.2.5] and Theorem (5.2.5°1

For (¢,v) € KN Ey; with5 <k <8and 1<1<3,let

(uo(c,v,B), ug(c, v, B)) L (U + BsVE + BaVeL, +V(e,v, B3, B4)), B = (B3, Ba) € Bs,

sin 0

where 9, ny’w ch,ly and V (c,~, B3, 84) are as in Theorem

With (ug(c, 7, 5),us(c,v,3)) defined as the above, the first part of Theorem m
follows from Theorem (.21} 5.2.6

For the second part of Theorem recall U%7 = sin Qu®”. It is not hard to check
that if (¢,~) € I, then Uy (=1) > 3or Uy (1) < —3. let {u'} be a sequence of solutions
of satisfying || sin 6(u® — uY)|| oo (s2\s,ny) — 0 as i — oo. Let U' = sinfu’ for
all i € N. We have ||Uj — U}""||ps(~1,1) = 0. By Theorem and Theorem
U'(+£1) must exists and is finite for every i. If U%7(—1) > 3, Uj(—1) > 3 for large i. If

U (1) < =3, Uj(1) < —3 for large i. Then by Theorem and Theorem Ué

must be constants for large 4. the theorem is then proved. O
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Chapter 6

Appendix

6.1 Asymptotic behavior of certain type of ODE

In Chapter 4, we have analyzed several equations of the following form:
Let 6 > 0 and g € C'(—1, -1+ §] be a solution of

a(z)g'(z) + b(z)g(x) + %gQ(x) =H(z), —-l<z<-1+04. (6.1)

We require a(z),b(x) € C(—1,—1+ ¢] and a(z) satisfy:

—146 1
either (i) a(x) > 0 for every z € (—1,—1 4+ ¢], and lim+/ —— = 400,
——1
’ —11-21-5 1
or (ii) a(xz) < 0 for every z € (—1,—1+ 6], and lim — = —00.
z—=—1* J, a

(
Introduce H* (z) = max{H (x),0} and H™ (z) = max{—H (x),0},so H(x) = H" (z)—
H~(x). This is for b*(z),b (z) as well.

Proposition 6.1.1. For§ > 0, let H,a,b € C(—1,—1+06]) withb, H" € L>®°(—-1,—-1+7)
and a(x) satisfies (i) or (ii) above. Suppose that g € C1(—1,—1+ 6] is a solution of
. Then g € L>®(—1,—1+ ). If in addition, lim H(x) is assumed to exist,

z——11

either finite or infinite, and lim b(x) exists and is finite, then lm g(zx) exists and
z——17+ z——17F

is finite, lim a(x)g'(z) = 0.
z——17F

Lemma 6.1.1. Ford >0, let H,a,b € C(—1,—1+0] with a(z) > 0 forz € (—1,—149).
Suppose that g € C1(—1,—1+ 6] is a solution of . Then

g(x) > — Ay = —max{4|[bT || oo (1, 144), \/8||H+HL°°(—1,—1+5)7 —g(=1+0)},Vz € (-1, —1+9).

Proof. If Ay = oo, done. So we assume A; < oo. If g(x) < —A; for some x €
(=1,—1+9), we have

Ly

a(z)g'(x) = H(z) - 59°(z) — bx)g(x) < H(z) -
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Thus ¢'(z) < 0. This implies, given g(—1+9) > —A;, that g > —A; on (—1,—146). O

Lemma 6.1.2. In addition to the assumption of Lemma [6.1.1], we assume that
—1+46
lim —— = +00.
z——1+ J, a(z)

Then

(&) < Az = max{db {11 vrays | SIH w1y he ¥ € (—1,—140).
Proof. 1f g(z) > Ay for some = € (—1,—1+ ¢), we have
a(z)g'(z) = H(z) —

Thus ¢'(Z) < 0, and therefore for some € > 0, g(z) > g(Z) > Ag forz —e <z < Z. It

follows that g(z) > As for all z € (—1,). Thus as shown above, a(z)g'(z) < —3¢*(z)

for all —1 < x < z. Tt follows that (¢71)'(z) > 8%(1) and
1 z dS 1/ -1 —1/- 1 _
- =2 < — < < —1 .
] @ @ @< g Vot<a<s
This violates f$—1+6 aC(li) = 00, a contradiction. O

Lemma 6.1.3. Ford >0, let H,a,b € C(—1,—1+4] with a(z) < 0 forz € (—1,—146).
Suppose that g € C1(—1,—1+6) is a solution of . Then

9(2) < Ay = max{ 416 |1 ey, St ey, 9(-140)}, Vi € (—1,~1+46).
Proof. Rewriting as

(—a)(=g)' + (=b)(=9) + 5 (~9)* = H. (6.2)
The conclusion follows from Lemma[6.1.1] with a,b and g there replaced by —a, —b and
—g. [

Lemma 6.1.4. In addition to the assumption of Lemma [6.1.3], we assume that
—146 1
lim ——=—
z——1+ [, a(z)

Then

g(x) > —Ay = —maX{4Hb+HL°°(71,71+5)7 \/8HH+HL00(,1’,1+5)}, Vo € (—=1,-1+4).
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Proof. This follows from Lemma [6.1.2] as the way Lemma [6.1.3] being deduced from
Lemma [6.1.11 t

Lemma 6.1.5. Ford >0, letb € CO(—1, —14+0]NL>®(—1,—1+0), H € C°(—1, -1+,

and let a € C°(—1,—1 + 8] be either positive or negative in the interval and satisfies

—1+0 d
lim / 25 | = 0. Assume that g € C*(—1,—1+0] is a solution of . Then
z——1+ |y a(s)
1 2
A= sup H(x)+ =(b(z))*) > 0.
—1<e<—1+9 2

Proof. We only need to treat the case that a(z) > 0 since the other case can be converted

to this case by rewriting (6.1]) as (6.2]). We prove it by contradiction. If not, then

a(z)g' (x) = H(x) — %b(xﬁ — %(g(a:) +b(z))P<A<0, V—1<az<-1+36.

It follows that

—1+6 d
s
— —occasx — —1T.

—1+6
g(—1+6) — g(x) = / J(s)ds < A /

«  olz)
This implies

lim g(z)= +oc. (6.3)

rz——1*1

On the other hand, A\ being negative implies that H™ € L>(—1,—1+4). An application

of Lemma gives that g7 € L>®°(—1,—1 + §), violating (6.3). O

Lemma 6.1.6. For § > 0, let b € C°—1,—1+ 6] and H € C°(—1,—1 + 6] such that
lim+H(:z:) exists, is either finite or infinite, and let a € C°(—1,—1 4+ 8] be either

z——1

positive or negative in the interval. Assume that g € C*(—1,—1+ 4] is a solution of

. Then lirnﬁ 9(x) ezists and b(—1)g(—1) + 3g(—1)> = H(-1).
T——

/z—l—‘ré ac(lz)

lim H(x) is finite, and in this case lim a(z)g' (z) = 0.
z——1F z——17F

If in addition, lim

z——1t

=00, then lim g(z) is finite if and only if

r——17+

Proof. As before, we will only prove it when a > 0, since the a < 0 case follows after

rewriting (6.1)) as (6.2]). We prove it by contradiction.

Assume that lim+ g(z) does not exist, then there exist —oo < a1 < ag < o0 and
z——1

two sequences {z;} and {y;} such that x1 > y1 > z2 > y2 > --- > —1, lim 2; = lim y; =

1—00 1—00

—1,
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g(z;) = a1 and ¢(y;) = ag. Then for any « € (a1, ag), there exists a x; > z; > y; such

that g(z;) = a and ¢g(2) < a,Va; > 2z > z. Clearly lim z; =1 and ¢'(z;) < 0. This
11— 00
leads to, in view of (6.1), b(z)g(2) + 39°(z:) > H(z;). Sending i — oo, we have
b(—l)a+ 302> lim H(z).
z——1+

Similarly, we can find y; > 2; > x;41 satisfying ¢(Z;) = « and ¢’(%;) > 0, which leads
to b(—1)a+ 2a? < lim H(z). So for any a € (a1, a2), b(—1)a + 202 = lim H(x).
z——171 z——171

Contradiction. We have proved that lim+ g(z) exists, either finite or infinite.
z——1

If lim H(x) is finite, then, in view of Lemma [6.1.1)and Lemma [6.1.2] lim ¢(z)
z——17t z——17t

is finite.

If lim H(z) is infinite, then, in view of Lemma [6.1.5, lim H(x) = +oo. We

z——171 z——171

will show by contradiction that lim 9 is infinite. Suppose that the limit is finite, then
z——1

a(z)g'(z) = H(z) — b(z)g(z) — $9°(x) — +oo as © — —17. It follows that there exists

1
0 < € < 4, such that ¢'(z) > ﬁ, for —1 <z < —1 + €. It follows that
a(x

—1+e ds
g(—l—i—e)—g(m)z/z @—>ooasm—>—l+7

a contradiction to the finiteness of lim g(z).
z——1t

We have proved that lim g¢(z) is finite if and only if lim H(x) is finite.
x

E— z——11

If lim g is finite, we see by sending = to —17 in 1D that lim+a(g:)g’ =y for
r——1

rz——171

some p € R. Since g is bounded, u = 0. Indeed, if u # 0, we would have

29'(x) 1
p Za(fL‘)

for x close to —1, and an argument above would lead to a contradiction to the bound-

edness of g. O

Proposition follows from Lemma and Lemma [6.1.6

Next, we study asymptotic behavior of solution V € C'(—1, —1 + 4] of
V'+BV=H in(-1,-1+4) (6.4)

under various hypothesis on B and H.
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Let w := [7, s B(s)ds, then V can be expressed as
V() = V(zg)ev@o)—w@) 4 61“(:”)/ eV H (s)ds, (6.5)
o
for every o € (—1,—1+9].

Lemma 6.1.7. For § >0,0<b<1 and >0, let B,H € C(—1,—1+ 9] satisfy

: 1—b B
—1<;;I%f—1+6(1 +x) "H(z) > —o0, (6.6)
and
lim (14 2)B(z) = —0. (6.7)
z——1t

Assume that V € CY(—1,—1+ 6] and satisfies . Then for every € > 0, there exists

some constant C, such that
Viz) <O+ )08 forall —1 <2< —-1+06. (6.8)

Proof. By
w(z) = (=B +0(1)) In(1 + x), (6.9)

where o(1) denotes some quantity which tends to 0 as z — —17F.
Since V € C'(—1, —1+6] is a solution of (6.4)), (6.5)) holds for every x¢ € (-1, —1+4].
It follows from , and (6.5]) , with zop = —1 + ¢, that

—1+44
Vz) < (1+ m)mou) +(1+ x),8+o(1) / (1+ S)fﬁ+b71+o(1)d8

xT

< (14 2)PT°D 4 (1 4 2)0+°0) < O(1 + g)minidfl=e,

O
Remark 6.1.1. In Lemma if we replace by
sup  (1+ )Y H(x)] < oo, (6.10)

—l<z<—-1+6

then we have, instead of , for any € > 0,

V(z)| < C+z)™B=c forall —1<a<—-1+6

instead of
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Lemma 6.1.8. For 6 >0,0<b<1and <0, let BjH € C(—1,—1+ 4] satisfy
and . Assume that V € C1(—1,—1+ 0] and satisfies and

lim sup V(m)eﬁl% Bls)ds > ¢, (6.11)

z——11

Then for every € > 0, there exists some constant C, such that
—V(z) <CA+2)" ¢ forall —1<z<—1+0. (6.12)

Proof. Estimate still holds by the assumption of B. For all —1 < zy < z, we
obtain from ([6.5)) and that

V(z) > V(zg)e” (o) —w@) — Ce_w(x)/ e (1 + 5)~ds.
zo

Sending zp — —1 along a subsequence in (6.5)), we have, in view of ([6.11))
€T
—V(z) < Ce_w(x)/ e (1 + 5)"Lds.
-1
By , for every € > 0, there exists some constant C, such that
x
—V(z) < (14 2)f+e®) / (14 ) Arb=elgs < C(1 4+ 2)"<.
-1

O]

Remark 6.1.2. In Lemma if we replace and respectively by

and

lim V(z)el 1+s B — (6.13)

z——11

then we have, instead of , that for any € > 0,
V(z)| < CA+x)¢ forall —1<z<—-1+09.

Lemma 6.1.9. For §,5,c1,c2 > 0, let B € C(—1,—-1+6] and H € C[-1,—1 + {]
satisfy

H(z) = HD)+0((14+2)%), —1<z<-1+5, (6.14)

and

(1+2)B(z) + 8 = O((1 + 2)%). (6.15)
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Assume that V € C1(—1,—1+6] and satisfies . Then there exists some constant

a1, such that for every 0 < a < min{ce + 8,2 + 1,¢1 + 1},

T s
V() = a(14+2)’+ B LO((142)%), 1<z < —1+6.

H-D(1+2)In(1+2) if =1

Proof. Since V is a solution of (6.4)), (6.5)) holds. By (6.15]), we have, for some ag € R,

w(z) = —FIn(l+ )+ az + O((1 + z)*). (6.16)

We derive from (6.5)), using (6.14]) and the above that for some constant a; € R,

V(z) =V (xg)e? o)) 4 ew(w)/ V) H (s)ds

= V(@o)e" e (1 4+ 2)7 (1 + O((1 + 2)*2))
+ (14 2)P(1 4 O((1 + x)2)) /1(1 +5)"P(H(=1) + O((1 + s)™idere2by) g,

from which we conclude the proof. ]

Lemma 6.1.10. For ,c1,c0 >0, 8 <0, 0<b<1and v,y € R, let BH €
C(—1,—1+ 6] satisfy and

H(@)=n1+2) " +7+0((1+2) 1), —1<z<-1+04 (6.17)

Assume that V € CY(—1,—1+ 8] and satisfies and V(z) = o((1 +x)%). Then

Viz) = ’115(1 +z)’ + ; ’126 (1+ ) + O((1 4 z)bFminfercaly,

Proof. Expression (6.5)) still holds. By (6.15)), we have (6.16]) for some ag € R. Since
V(z) = o((1 + z)?), we obtain, by sending xo to —1 in (6.5)) similar to the arguments
in the proof of Lemma that

V(z) = e_w(””)/ e H (s)ds.
1

We derive from the above using (6.16)) and (6.17]) that
x

V() = (1+2)’(1+O((1 +x)2)) /_1(1 +5) (L4 2)" 7 4+ O((1+ 5)0 Hrminteready) gy

= 2+ (1 ) + 01+ ) e))
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Lemma 6.1.11. For § >0,0<b <1 and B <0, let B,H € C(—1,—1+ 0] satisfy

and

lim [(1+2)In(l+x)]B(z) =—p. (6.18)

z——17F
Assume that V € CY(—1,—1 + 0] satisfies . When 5 =0, we also assume .

Then for every € > 0, there exists some constant C, such that for all -1 < x < —1+9,

V(z) < C(In(1 + )"+ if B <0,

(6.19)
V(z) > -C(+2)’|In(1+2z)¢ if B=0.

Proof. By ,
w(z) = (=B + o(1)) In(— In(1 + z)).

Expression still holds for all zp € (—1,—1+4]. If 5 <0, take zg = —1 + 4,
V(z) = V(xg)e? @) —w@) 4 o~w(@) /CE eV H(s)ds
zo
< |In(1 + 2)[°W 4 | In(1 + z)[F+e® / x(ln(l +5)) P14 )b 1Hegs
zo
< In(1 + z)|P+e),

If =0, w=0(1)In(—In(1+=x)). By (6.11)), similar as in the proof of Lemma
sending oy to —1 along a subsequence in (6.5]) gives

T

V(x) > —C'e_w(x)/

&“NL%@FWSZ—CUmO+mmdU/(HM1+QWﬂHL+$FWS
—1 Zo

> —C(1 + )" In(1 + z)|°

O]

Remark 6.1.3. If in Lemma [6.1.11], we replace and by and
respectively, then we have, instead of , that for any € > 0,

C(In(1 + )7+ if <0,
C(1+x)°|In(l +z)|° if B=0.

V()| <

6.2 Figures

For a given axisymmetric vector fields (u,, ug), the stream lines can be represented in

the cross section plane z; = 0. The shape of stream lines, along with the graph of
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(ur, ug), depends on parameters (u,7). In this section, we choose some typical points
on the (u,~) plane, whose positions are shown in the left part of Figure 1. At each
parameter point, we present the graph of u,, ug, and the corresponding stream lines.
In stead of presenting a full classification of all possible shapes of the stream lines, we
prefer to emphasize that four border lines play important roles to determine the shape
of stream lines.

1) The line I; : v = 0 separates the stream lines which are upward and downward
along positive x3 axis near the north pole.

2) The line Iy : p = 0, (7 > —2) separates the stream lines which are inward and
outward to negative x3 axis near the south pole.

3) The line I3 : v = —1 4+ /T +2p, (—4 < p < 0) separates the stream lines which
are upward and downward along negative x3 axis near the south pole.

4) The line Iy : p = —% separates the stream lines by the amplitude of u, and
ug. Namely, on the left of Iy, u, dominates, thus the stream line near south pole is

vertical. While on the right of 4, ug dominates, thus the stream line near south pole is

horizontal.
3k
[ Y
4+ ’ T
r 4
[ 4 .
2r P
r -
O --_-1‘:~_-.. T AR | 0

Figure 6.1: The graphs of ugy, u, and stream lines for P;: p=—1, v = %
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—1.

Figure 6.4: The graphs of ug, u, and stream lines for Py: p =0, v
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-3.

Figure 6.7: The graphs of ug, u, and stream lines for P;: p =1, v
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