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ABSTRACT OF THE DISSERTATION

New Methods for Design of Full- and Reduced-Order Observers and

Observer-Based Controllers for Systems with Slow and Fast Modes

by Heonjong Yoo

Dissertation Director:

Professor Zoran Gajić

This dissertation addresses the design of observer and observer-based controllers for sin-

gularly perturbed linear systems. To that end, we present an algorithm for the recursive

solution of the singularly perturbed algebraic Sylvester equation. Due to the presence

of a small singular perturbation parameter that indicates separation of the system vari-

ables into slow and fast, the corresponding algebraic Sylvester equation is numerically

ill-conditioned. The observer driven controller design of singularly perturbed linear sys-

tems with the observer design done using the algebraic Sylvester equation is extremely

ill-conditioned since the observer has to be much faster than the feedback system. The

proposed method for the recursive reduced-order solution of the algebraic Sylvester

equations removes ill-conditioning and iteratively obtains the solution in terms of four

reduced-order numerically well-conditioned algebraic Sylvester equations corresponding

to slow and fast variables. The convergence rate of the proposed algorithm is O(ε),

where ε is a small positive singular perturbation parameter.

The new design technique for full-order Luenberger observers for systems with slow and

fast modes is presented. The existing methods are able to design independent slow and

fast observers with O(ε) accuracy only, where ε is a small positive singular perturbation

parameter. In this dissertation, the design of independent slow and fast reduced-order

observers was performed with the exact accuracy. The results obtained are extended
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to the design of corresponding observer driven controllers. The design allows complete

time-scale separation for both the observer and controller through the complete and

exact decomposition into slow and fast time scale problems. This method reduces both

off-line and on-line computations. The effectiveness of the new methods is demonstrated

through both theoretical and simulation results.

The results obtained for the full-order observer of singularly perturbed linear systems

are extended to design of reduced-order observers (using both the Sylvester equation

and Luenberger observer formulations) and the design of corresponding controllers for

singularly perturbed systems. In such design additional computational advantages are

achieved due to the use of the reduced order observers. Several cases of reduced-order

observer designs are considered depending on the measured state space variables: only

all slow variables are measured, only all fast variables are measured, some combinations

of the slow and fast variables are measured.
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Chapter 1

Introduction

Traditionally, decomposing the original ill-conditioned singularly perturbed system into

two subsystems resolves numerical ill-conditioning of the problem. The controller design

may be then implemented at each subsystems level, and the results can be combined to

produce a composite controller design for the original system. These reduced-order con-

troller designs were presented with an O(ε), O(ε2) accuracy [11] and exact the accuracy

[12], [32]. It has been known that the observer for singularly perturbed systems can be

designed with an O(ε) accuracy [29]. However, the O(ε2) and higher accuracy designs

for observers have not been presented so far. In this dissertation, we present the exact

accuracy designs for the observer and the observer driven controller.

The book [16] summarizes guidance for the observer design in terms of the Sylvester alge-

braic equation. The aforementioned design, called the Sylvester approach here, applied

to singularly perturbed systems, will suffer from ill-conditioning due to the presence of

a small positive singular perturbation parameter ε. To overcome the problem, we pro-

pose the recursive reduced-order solution of the singularly perturbed algebraic Sylvester

equation in Chapter 2. The proposed method was adopted from the corresponding

method for solving the algebraic Lyapunov equation of singularly perturbed systems

[3]. The method is extended to a Sylvester equation which is especially crucial to the

observer design.

Chapter 3 is focused on the new design of an observer for singularly perturbed systems

using the two-stage feedback design method [32]. The two-stage method is originally

applied to the controller design of singularly perturbed linear systems. We extend this

method to the observer design using the duality between the controller and the ob-

server. In the last part of Chapter 3, we propose the design of observer driven controller

for singularly perturbed systems putting the controller and observer design together.
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We want to emphasize that the subject of Chapter 3 was studied in the master thesis

of the author [51] in 2014. Here, we make the design more systematic fully based on

the duality between the controller and observer designs for singularly perturbed linear

systems. The results obtained in the course of this research have been submitted for

journal publication. The main results of Chapter 2 have been submitted to Automatica

[52], and the main results of Chapter 3 have been submitted to IEEE Transaction on

Automatic Control [53]

In Chapter 4 and 5 we present an idea how to extend the results obtained in Chap-

ter 2 and 3 to the design of reduced-order observers and corresponding controllers for

singularly perturbed linear systems.

1.1 Introduction to Observer and Controller

Sometimes all state space variables are not available for measurements, or it is not prac-

tical to measure all of them, or it is too expensive to measure all state space variables.

In order to be able to apply the state feedback control to a system, all of its state space

variables must be available at all times. Thus, we face the problem of estimating system

state space variables.

1.1.1 Full-Order Observer Design

Consider a linear time invariant system given as

ẋ(t) = Ax(t) +Buc(t), xt0 = x0 = unknown

y(t) = Cx(t)

(1.1)

where x(t) ∈ <n, u(t) ∈ <r, y(t) ∈ <p, and constant matrices A,B,C having appropriate

dimensions. We may construct a full-order observer having the same matrices A,B,C

that is
˙̂x(t) = Ax̂(t) +Buc(t), x̂t0 = x̂0

ŷ(t) = Cx̂(t)

(1.2)
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Then, we compare the output y(t) of the system (1.1) and the output ŷ(t) of the full-

order observer (1.2). These two outputs will be different since in the first case the system

initial condition is unknown, and in the second case it has been chosen arbitrarily. The

difference between these two outputs will generate an error signal

y(t)− ŷ(t) = Cx(t)− Cx̂(t) = Ce(t) (1.3)

which can be used as the feedback signal to the full-order observer such that the esti-

mation error e(t) is reduced to zero. Considering the feedback signal (1.3), the observer

structure is given by

˙̂x(t) = Ax̂(t) +Buc(t) +K(y(t)− ŷ(t)) (1.4)

Note that the observer has the same structure as the system plus the driving feedback

term that contain information about the observation error. The observer is implemented

on line as a dynamic system driven by the same input as the original system and the

measurements coming from the original systems, that is

˙̂x(t) = (A−KC)x̂(t) +Buc(t) +Ky(t)

y(t) = Cx(t), uc(t) = Fx̂(t)

(1.5)

This can be realized by proposing the system-observer structure as given in Figure. 1.1,

[16] It is easy to derive an expression for dynamics of the observation error as

ė(t) = ẋ(t)− ˙̂x(t) = (A−KC)e(t) (1.6)

If the observer gain K is chosen such that the matrix A−KC is asymptotically stable,

then the error e(t) can be reduced to zero at steady state. At this point, we need the

following assumption.

Assumption 1.1.1. The pair (A,C) is observable

In practice, the observer eigenvalues should be chosen to be about 5− 6 times faster
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Figure 1.1: Full-order observer-based controller

than the system eigenvalues so that the minimal real part of the observer eigenvalues

has to be 5− 6 times bigger than the maximal real part of system eigenvalues, that is

|<(λmin)|observer > (5 or 6)× |<(λmax)|system (1.7)

1.1.2 Separation Principle

This section presents the fact that the observer-based controller preserves the closed-loop

system eigenvalues. The system under state feedback control, that is u(t) = −Fx(t)

has the closed-loop form as

ẋ(t) = (A−BF )x(t) (1.8)

so that the eigenvalues of the matrix A − BF are the closed-loop system eigenvalues

under state feedback. In the case of the observer-based controller, as given in Figure

1.1, the control input signal applied to the observer-based controller is given as

uc(t) = −Fx̂(t) = −Fx(t) + Fe(t) (1.9)
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Substituting equation (1.9) in the full-order observer (1.5) and the system (1.8), we

obtain the following augmented closed-loop matrix form

ẋ(t)

˙̂x(t)

 =

 A −BF

KC A−KC −BF

x(t)

x̂(t)

 (1.10)

At this point, we introduce the state transformation matrix given by

x(t)

e(t)

 =

I 0

I −I

x(t)

x̂(t)

 = Taug

x(t)

x̂(t)

 (1.11)

Since matrix Taug is nonsingular, we can apply the similarity transformation to the

closed-loop matrix form (1.10), which leads to

ẋ(t)

ė(t)

 =

A−BF BF

0 A−KC

x(t)

e(t)

 (1.12)

It is well known that the similarity transformation preserves the same eigenvalues as in

the original system. The state matrix of the system (1.12) is upper block triangular and

its eigenvalues are equal to the eigenvalues λ(A − BF ) ∪ λ(A −KC), which indicates

that the independent placement of observer and controller eigenvalues is possible.

1.2 An Observer for Singularly Perturbed Linear Systems

The singularly perturbed system (3.1) may be rewritten as

ẋ(t) = Ãx(t) + B̃u(t), x(t0) = x0

y(t) = Cx(t)

(1.13)

with

Ã =

A11 A12

A21
ε

A22
ε

 , B̃ =

B1

B2
ε


x(t) =

x1
x2


(1.14)



6

The corresponding full-order observer for the singularly perturbed system (1.13) is

˙̂x(t) = (Ã−KC)x̂(t) + B̃u(t) +Ky(t)

ŷ(t) = Cx̂(t)

(1.15)

where x̂(t) is an estimate of the state x(t) in (1.13) and the state error is defined as

e(t) = x̂(t)− x(t) (1.16)

The role of the observer (3.17) is to reconstruct the state x(t) of (1.13) in a uniformly

asymptotic manner in the sense that

lim
t→∞

e(t) = 0 (1.17)

The observability Assumption 1.1.1 is needed for (1.17) to hold

1.2.1 State Reconstruction for the Composite System

This section presents one of the results of a composite observer design based on the two

slow and fast observers [29].

Lemma 1.2.1. If the observer (1.4) is coupled to the system (1.1) with

K =

 K1

1
εK2

 (1.18)

where

K1 =
1

ε2
A12A

−1
22 K2 +K0[I −

1

ε2
C2A

−1
22 K2] (1.19)

and if A0 +K0C0 and A22 +K2C2 are uniformly asymptotically stable, then the eigen-

values related to the error dynamics in the original coordinates satisfy

λi = λi(A0 +K0C0) +O(ε), i = 1, ..., n1

λj = λj(
1

ε
A22 +

1

ε
K2C2) +

O(ε)

ε
, i = n1 + j, j = 1, ..., n2

(1.20)
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1.3 Observer-based Controllers for Singularly Perturbed Systems

A dynamical feedback controllers for the singularly perturbed system (1.13) is given by

uc(t) = Fx̂(t) (1.21)

where x̂(t) is an estimate of the state x(t) generated by the full-order observer (1.4).

The overall closed-loop system for the original system (1.13) is given by

ẋ(t)

ė(t)

 =

Ã+ B̃F −B̃F

0 Ã−KC

x(t)

e(t)

 (1.22)

It is required that the controller (3.19) be uniformly asymptotically stable in the sense

that

lim
t→∞

x(t)

e(t)

 = 0 (1.23)

Obviously, this may be achieved if and only if (1.13) is stabilizable by feedback (3.19)

and the observer reconstruction error system

ė(t) = (Ã−KC)e(t), e(t0) = x̂(t0)− x(t0) (1.24)

is asymptotically stable.

Observability Assumption 1.1.1 and the following assumption are needed for (3.19) to

hold

Assumption 1.3.1. The pair (Ã, B) is controllable.

1.3.1 A Composite Observer-based Controller

At this point, we need to introduce the observer driven controller proposed by [29].

Lemma 1.3.1. If the observer and controller are coupled to the system (1.13) with

F =
[
F1 F2

]
(1.25)
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F1 = [I +K2A
−1
22 B2]F0 + F2A

−1
22 A21 (1.26)

K =

 K1

1
εK2

 (1.27)

K1 =
1

ε2
A12A

−1
22 K2 +K0[I −

1

ε2
C2A

−1
22 K2] (1.28)

and if the slow subsystem and fast subsystem are each uniformly stabilizable by two

observers and controllers, then there exists a positive ε∗ sufficiently small such that the

original system (1.13) is uniformly completely stabilizable for any ε ∈ (0, ε∗].

This lemma indicates that the state and error dynamic can be reconstructed within

O(ε) approximation. There are several papers for observers and observer driven con-

trollers for singularly perturbed systems and all of them did design with O(ε) accuracy

[29], [30], [31] and [34].

1.3.2 Design Procedure

The procedure for computing the feedback gain through the Lyapunov method is pre-

sented in [16]. Assume a controllable pair (A,B), where A is <n×n and B is <n×m.

Find a <m×n real matrix F such that (A − BF ) has a set of desired eigenvalues that

contains no eigenvalues of A.

Step 1. Select an <n×n matrix Λdesired that has the desired set of eigenvalues. The form

of Λdesired can be chosen arbitrarily. Often it is a diagonal matrix.

Step 2. Select an arbitrary <m×n vector F̄ such that (Λdesired, F̄ ) is observable.

Step 3. Solve the Sylvester equation AP − PΛdesired = BF̄ for the unique P .

Step 4. Compute the feedback gain F = F̄P−1 if the matrix P is invertible. If P is not

invertible, go back to Step 2 and choose another F̄ .

1.4 Observer Eigenvalues Assignment

The corresponding Lyapunov method for obtaining the observer gain is to find the

observer gain in the original coordinates. To find the observer gain, we need to transpose
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matrix (A−KC). Consider the similarity transformation

P−1(AT − CTKT )P = Λobsdesired (1.29)

where

λ(AT − CTKT ) = λ(Λobsdesired) = λdesired (1.30)

If (A,C) is observable, λ(A−KC) can be arbitrarily located according to [16]. It is well

known that the closed-loop eigenvalues of the observer should be located 5 − 6 times

farther to the left from the closed-loop system eigenvalues. Multiplying both side of

(1.29) by P , (1.29) becomes the following Lyapunov equation

ATP − PΛobsdesired = CT K̄T (1.31)

with

K̄T = KTP (1.32)

1.4.1 Design Procedure

For this section we introduce the procedure to compute the observer gain through the

Lyapunov method. The following design procedure is presented in [16]. Consider the

observable pair (A,C), where A is <n×n and C is <p×n. Find a <n×p real K such that

(A−KC) has any set of desired eigenvalues that contains no eigenvalues of A.

Step 1. Select an arbitrary matrix Λobsdesired that has no common eigenvalues with those

of A.

Step 2. Select an arbitrary <p×n vector K̄T such that (Λobsdesired, K̄
T ) is observable.

Step 3. Solve for the unique P from the Sylvester equation ATP −PΛobsdesired = CT K̄T .

Step 4. Obtain the transposed observer gain from KT = K̄TP−1. If P is not invertible,

go back to Step 2 and choose another K̄T .
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1.5 Dissertation contributions

The Sylvester approach to the full-order observer design for singularly perturbed linear

systems considered in Chapter 2. The aforementioned design, which can be applied to

the normal linear system without numerical ill-conditional problem, can also be utilized

to the singularly perturbed systems. To overcome the numerical ill-conditioning problem

that comes from the perturbation parameter ε, we propose the recursive reduced-order

solution of the singularly perturbed algebraic Sylvester equation. The proposed method

was adopted from [3] where Lyapunov equation was considered. That method is ex-

tended to the Sylvester equation.

The two-stage feedback design approach is applied in the new design of an observer for

singularly perturbed linear systems. The two-stage method is originally developed in

[32] to the controller design of singularly perturbed linear systems with exact accuracy.

We extend the two-stage method to the observer design using the duality between the

controller and the observer. In the last part of Chapter 3, we propose the design of

an observer driven controller for singularly perturbed linear systems by putting the ob-

server and the corresponding controller designs together. Here, we want to emphasize

that the proposed design method improves the accuracy from the previous observer de-

sign method for singularly perturbed systems : O(ε) design method [29], [30], [31] and

[34].

We extend the results in Chapter 3 to the reduced-order observer design in Chapter 4

where the design algorithm is more complicated. To that end, five cases are considered.

It should be emphasized that the proposed design produces the exact accuracy for the

reduced-order observer designs for singularly perturbed systems.

The corresponding controller design based on the reduced-order observers is presented

in Chapter 5. We have designed with very high accuracy the pure-slow and pure-fast

reduced-order observer-based controllers for three out of five cases identified in Chapter

4.

To summarize the contribution of dissertation, we emphasize that an full-order and

reduced-order observer and corresponding controller designs are implemented with an
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arbitrary high accuracy.
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Chapter 2

Reduced-Order Algorithm for Eigenvalue Assignment of
Singularly Perturbed Linear Systems

2.1 Introduction

The general algebraic Sylvester equation ([1], [2]) has many applications in engineering

and sciences, including control systems [3],[4],[5],[16]. It is defined by

TA+MT +N = 0 (2.1)

Its unique solution T exists under the assumption that matrices A and −M has no

eigenvalues in common [1], [2], [16].

Assumption 2.1.1. Matrices A and −M have no common eigenvalues.

The classical method for numerical solution of (2.1) dates back to the reference

[6]. However, it should be pointed out that solving the Sylvester algebraic equation

numerically is not a simple task [7], [8]. Namely, it was stated in [7], [8] that the

algorithm of [6] can not produce a highly accurate solution. In this paper, without loss

of generality, we will consider the Sylvester equation encountered in the control system

design of linear dynamic systems represented in state space formed by

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t)

(2.2)

where x(t) ∈ Rn are the state space variables, u(t) ∈ Rm is the control input vector,

y(t) ∈ Rp is the vector of system measurements, and A, B, and C, i, j = 1, 2, are

constant matrices of appropriate dimensions.

Forms of the Sylvester algebraic equations that appear in the observer and controller
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designs are respectively given by

ToA+MTo − K̄C = 0, K̄ = TK

ATc + TcN −BF̄ = 0, F̄ = FT

(2.3)

where K stands for the observer feedback gain, and F is the system feedback gain.

These Sylvester equations were extensively studied in a series of papers by [5], [7],

[8]. It should be emphasized that in the observer driven controller design of singularly

perturbed linear systems, [9], [10] due to the design requirement that the observer must

be much faster that the system, the corresponding observer design algebraic Sylvester

equation is extremely ill-conditioned.

2.2 Problem Statement

In this section, we study the Sylvester algebraic equation corresponding to singularly

perturbed systems defined by ([11], [12])

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t), x1(t0) = x10

εẋ2(t) = A3x1(t) +A4x2(t) +B2u(t), x2(t0) = x20

y(t) = C1x1(t) + C2x2(t)

(2.4)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1+n2 = n are respectively slow and fast state variables

and ε is a small positive singular perturbation parameter. The following is standard

assumption used in theory of singular perturbation, [11].

Assumption 2.2.1. The matrix A4 is nonsingular.

We study, without loss of generality, a variant of the observer design algebraic

Sylvester equation (2.3) given by

TA−AdesT = K̄C, K̄ = TK, K =

 K1

1
εK2

 (2.5)

under the standard observer design assumptions [16].



14

Assumption 2.2.2. The pair (A,C) is observable and the pair (Ades, K̄) is controllable.

The general existence condition given in Assumption 1, and specialized to (2.5) leads

to the following assumption.

Assumption 2.2.3. λ(A) 6= λ(Ades)

Having found an invertible solution of (2.5) then the observer gain is given by K =

T−1K̄.

Note that Assumption 3 for single-input single-output systems is both sufficient and

necessary condition for the existence of an invertible solution of (2.5). For multi-input

multi-output systems it is only a necessary condition, [16] so that why a repetitive design

algorithm has to be performed until an invertible solution T is obtained (see Section 5).

The system matrices defined in (2.4) and (2.5) are partitioned as

A =

 A1 A2

1
εA3

1
εA4

 , Ades =

As 0

0 1
εAf

 , C =
[
C1 C2

]
(2.6)

where Ades contains the desired observer closed-loop eigenvalues, that is, λ(Ades) =

λ(A − KC). We have found that the following scaling is appropriate for the solution

matrix T

T =

 T1 εT2

εT3 εT4

 (2.7)

which is consistent with the structures of matrices defined in (2.5) and (2.6). Namely,

the right-hand side of (2.5) is

K̄C =

 T1 εT2

εT3 εT4

 K1

1
εK2

[
C1 C2

]
=

 T1K1C1 + T1K2C1 T1K1C2 + T2K2C2

εT3K1C1 + T4K2C1 εT3K1C2 + T4K2C2


= −

Q1 Q2

Q3 Q4

 =

O(1) O(1)

O(1) O(1)


(2.8)

With the scaling chosen in (2.7), the left-hand side terms of (2.5), that is, TA and AdesT

are also both O(1).

Due to the structure of matrices A and Ades, the singularly perturbed algebraic Sylvester
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equation defined in (2.5) is numerically ill-conditioned. To overcome numerical ill-

conditioning, we propose in the next section a new recursive algorithm for solving (2.5)

in terms of reduced-order well-defined algebraic Sylvester equations. The dual version

of (2.5) used for the system controller design is given by

ATc − TcAcdes = BF̄ , F̄ = FT, B =

 B1

1
εB2

 , Acdes =

Asc 0

0 1
εAfc

 (2.9)

It can be shown that the structure of Tc is given by

Tc =

T1c T2c

T3c
1
εT4c

 (2.10)

Algebraic Sylvester equation (2.9)-(2.10) will be solved numerically in terms of reduced-

order numerically well-conditioned algebraic Sylvester equations under the standard

controller design assumptions, [16].

Assumption 2.2.4. The pair (A,B) is controllable and the pair (Acdes, F̄ ) is observable.

Moreover, the existence of a unique solution of (2.9) requires the assumption dual

to Assumption 4.

Assumption 2.2.5. λ(A) 6= λ(Acdes).

2.3 Parallel Algorithm for the Observer Design Sylvester Equation

The partitioned form of the Sylvester equation given in (2.5) subject to (2.6)-(2.8) is

given by

T1A1 + T2A3 −AsT1 +Q1 = 0

T1A2 + T2A4 − εAsT2 +Q2 = 0

εT3A1 + T4A3 −AfT3 +Q3 = 0

εT3A2 + T4A4 −AfT4 +Q4 = 0

(2.11)
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Setting ε = 0, the algebraic equations for zeroth-order approaximations of solutions

T
(0)
1 , T

(0)
2 , T

(0)
3 , T

(0)
4 are obtained as

T
(0)
1 A1 + T

(0)
2 A3 −AsT (0)

1 +Q1 = 0 (2.12)

T
(0)
1 A2 + T

(0)
2 A4 +Q2 = 0 (2.13)

T
(0)
4 A3 −AfT

(0)
3 +Q3 = 0 (2.14)

T
(0)
4 A4 −AfT

(0)
4 +Q4 = 0 (2.15)

Unique solution T (0)
4 can be obtained from the reduced-order Sylvester equation (2.15)

under the following assumption.

Assumption 2.3.1. Eigenvalues of A4 and Af have no eigenvalues in common.

Since Af , defined in (2.6), is chosen by the designer, this assumption is easily satis-

fied. From (2.13) and (2.14), we can obtain T (0)
3 , T

(0)
2 as

T
(0)
3 = A−1f (T

(0)
4 A3 +Q3) (2.16)

T
(0)
2 = −(Q2 + T

(0)
1 A2)A

−1
4 (2.17)

Substituting (2.17) into (2.12) results in

T
(0)
1 A0 −AsT (0)

1 +Q0 = 0 (2.18)

where

A0 = A1 −A2A
−1
4 A3, Q0 = Q1 −Q2A

−1
4 A3 (2.19)

The unique solution T (0)
1 of the reduced-order algebraic Sylvester equations (2.18) exists

under the following assumption.

Assumption 2.3.2. Matrices A0 and As have no eigenvalues in common.

Since As is chosen by the designer, this assumption is easily satisfied. Furthermore,

T
(0)
2 and T (0)

3 can be found from (2.16)-(2.17).
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The solutions T (0)
1 , T

(0)
2 , T

(0)
3 , and T (0)

4 are O(ε)1 close to the exact solutions, that is

T1 = T
(0)
1 + εE1

T2 = T
(0)
2 + εE2

T3 = T
(0)
3 + εE3

T4 = T
(0)
4 + εE4

(2.20)

Subtracting (2.12)-(2.15) from (2.11) and using (2.20), we obtain the error equations

(after some algebra) in the form

E1A1 −AsE1 = −E2A3 (2.21)

E2A4 − εAsE2 = −E1A2 +AsT
(0)
2 (2.22)

εE3A1 −AfE3 = −T (0)
3 A1 − E4A3 (2.23)

E4A4 −AfE4 = −T (0)
3 A2 − εE3A2 (2.24)

The error equations can be solved iteratively using the following fixed-point algorithm.

Algorithm I :

E
(i+1)
1 A0 −AsE(i+1)

1 = −AsT (0)
2 A−14 A3 − εAsE(i)

2 A−14 A3

− εAsE(i+1)
2 + E

(i+1)
2 A4 = AsT

(0)
2 − E(i+1)

1 A2

εE
(i+1)
3 A1 −AfE

(i+1)
3 = −T (0)

3 A1 − E(i)
4 A3

E
(i+1)
4 A4 −AfE

(i+1)
4 = −T (0)

3 A2 − εE(i)
3 A2

(2.25)

with starting points

E
(0)
2 = 0

E
(0)
3 = A−1f (T

(0)
3 A1 + E

(0)
4 A3)

E
(0)
4 A4 −AfE

(0)
4 + T

(0)
3 A2 = 0

(2.26)

1O(ε) is defined by O(ε) ≤ cε, where c is a bounded constant.
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We first solve (2.22) as

E
(i+1)
2 = [AsT

(0)
2 − E(i+1)

1 A2 + εAsE
(i)
2 ]A−14 (2.27)

Substituting (2.27) in to (2.21) gives

E
(i+1)
1 A0 −AsE(i+1)

1 = −AsT (0)
2 A−14 A3 − εAsE(i)

2 A−14 A3 (2.28)

Equations (2.27) and (2.28) have very nice forms since the quantity E2 in (2.28) is

multiplied by a small parameter ε. Similarly, equations for E3 and E4 can be iteratively

solved as

εE
(i+1)
3 A1 −AfE

(i+1)
3 = −T (0)

3 A1 − E(i)
4 A3 (2.29)

E
(i+1)
4 A4 −AfE

(i+1)
4 = −T (0)

3 A2 − εE(i)
3 A2 (2.30)

The following theorem presents the main feature of Algorithm I. Under assumptions

7 and 8, Algorithm I converges to the exact solution E with the rate of convergence

of O(ε). The convergence is obtained for sufficiently small values of ε that makes the

radius of convergence smaller than 1 in each iteration. Hence, after i iterations, the

solution T is obtained with the accuracy of O(εi), that is

T
(i)
j = T

(0)
j + εEj +O(εi), j = 1, 2, 3, 4; i = 1, 2, ... (2.31)

Proof of Theorem 1 :

For i = 1, (2.28) implies

E
(1)
1 A0 −AsE(1)

1 = −AsT (0)
2 A−14 A3 − εAsE(0)

2 A−14 A3 = −AsT (0)
2 A−14 A3 (2.32)

Note that E(0)
2 = 0. For i = 2, (2.28) produces

E
(2)
1 A0 −AsE(2)

1 = −AsT (0)
2 A−14 A3 − εAsE(1)

2 A−14 A3 (2.33)
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Subtracting (2.32) from (2.33), we have

(E
(2)
1 − E

(1)
1 )A0 −As(E(2)

1 − E
(1)
1 ) = −εAsE(1)

2 A−14 A3 = O(ε) (2.34)

At this point, we conclude that

‖E(2)
1 − E

(1)
1 ‖ = O(ε) (2.35)

In a similar way, we can write the relationship between E(3)
1 and E(2)

1 given as

(E
(3)
1 − E

(2)
1 )A0 −As(E(3)

1 − E
(2)
1 ) = −εAsE(2)

2 A−14 A3 = O(ε) (2.36)

which implies that

‖E(3)
1 − E

(2)
1 ‖ = O(ε) (2.37)

Continuing the same procedure we obtain

‖E(i+1)
1 − E(i)

1 ‖ = O(ε) (2.38)

Now, we work with E2 using (2.27). When i = 0, we have

E
(1)
2 = [AsT

(0)
2 − E(1)

1 A2 + εAsE
(0)
2 ]A−14 (2.39)

For i = 1

E
(2)
2 = [AsT

(0)
2 − E(2)

1 A2 + εAsE
(1)
2 ]A−14 (2.40)

Using the fact that E(0)
2 = 0, and the result established in (2.35), we get

‖E(2)
2 − E

(1)
2 ‖ = O(ε) (2.41)

Considering (2.27) for i = 2 and using (2.41), we obtain

‖E(3)
1 − E

(1)
1 ‖ = O(ε2) (2.42)
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If we keep repeating this process, we conclude that

‖E(i+1)
1 − E1‖ = O(ε(i)) (2.43)

Similar procedures can be applied to (2.29) and (2.30), which produces

‖E(i+1)
4 − E(i)

4 ‖ = O(ε) (2.44)

and

‖E(i+1)
3 − E(i)

3 ‖ = O(ε) (2.45)

Results established in (2.38), (2.43)-(2.45), can be summarized in

‖E(i)
j − Ej‖ = O(εi), j = 1, 2, 3, 4; i = 1, 2, ... (2.46)

which completes the proof of the stated theorem.

2.4 Parallel Algorithm for the Controller Design Sylvester Equations

The controller design algebraic Sylvester equation defined in (2.9)-(2.10) can be parti-

tioned as
A1T1c +A2T3c − T1cAsc +Q1c = 0

εA1T2c +A2T4c − T2cAfc +Q2c = 0

A3T1c +A4T3c − εT3cAsc +Q3c = 0

εA3T2c +A4T4c − T4cAfc +Q4c = 0

(2.47)

where

Qc = BF̄ = BFTc = −

 Q1c
1
εQ2c

1
εQ3c

1
ε2
Q4c

 =

O(1) O(1ε )

O(1ε ) O( 1
ε2

)

 (2.48)

Setting ε = 0 in (2.47), the zeroth-order approximations T (0)
1c , T

(0)
2c , T

(0)
3c and T (0)

4c can be

obtained

A1T
(0)
1c +A2T

(0)
3c − T

(0)
1c Asc +Q1c = 0 (2.49)



21

A2T
(0)
4c − T

(0)
4c Afc +Q4c = 0 (2.50)

A3T
(0)
1c +A4T

(0)
3c +Q3c = 0 (2.51)

A4T
(0)
4c − T

(0)
4c Afc +Q4c = 0 (2.52)

The unique solution T (0)
4c can be found from the reduced-order algebraic Sylvester equa-

tion (2.52) under the following assumption.

Assumption 2.4.1. Matrices A4 and Afc have no eigenvalues in common.

From (2.50)-(2.51), we can obtain T (0)
2c and T (0)

3c as

T
(0)
2c = (A2T

(0)
4c +Q2c)A

−1
fc (2.53)

T
(0)
3c = −A−14 (A3T

(0)
1c +Q3c) (2.54)

Substituting (2.54) into (2.49) results in

A0T
(0)
1c − T

(0)
1c Asc +Q0c = 0 (2.55)

where

A0 = A1 −A2A
−1
4 A3, Q0c = Q1c −A2A

−1
4 Q3c (2.56)

The solution T
(0)
1 can be obtained by solving the reduced-order algebraic Sylvester

equation (2.55) under the assumption.

Assumption 2.4.2. Matrices A0 and Asc have no eigenvalues in common.

Since Asc is chosen by the designer, this assumption is easily satisfied. Similarly,

what we did in Section 3, we define the approximation errors as

T1c = T
(0)
1c + εE1c

T2c = T
(0)
2c + εE2c

T3c = T
(0)
3c + εE3c

T4c = T
(0)
4c + εE4c

(2.57)
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Subtracting (2.49)-(2.52) from (2.47) and using (2.52), we obtain the error equations

(after some algebra) in the form

A1E1c − E1cAsc = −A2E3c (2.58)

E2cAfc − εA1E2c = −A1T
(0)
2c +A2E4c (2.59)

A4E3c − εE3cAsc = −A3E1c − T (0)
3c Asc (2.60)

E4cAfc −A4E4c = A3T
(0)
2c − εA3E2c (2.61)

These error equations can be solved using the fixed point algorithm, dual to Algorithm

I, as follows

Algorithm: II :

A0E
(i+1)
1c − E(i+1)

1c Asc = −εA2A
−1
4 E

(i)
3c Asc −A2A

−1
4 T

(0)
3c Asc

A4E
(i+1)
3c − εE(i+1)

3c Asc = −A3E
(i)
1c + T

(0)
3c Asc

E
(i+1)
2c Afc − εA1E

(i+1)
2c = A1T

(0)
2c +A2E

(i)
4c

E
(i+1)
4c Afc −A4E

(i+1)
4c = A3T

(0)
2c + εA3E

(i)
2c

(2.62)

with starting points

E
(0)
3c = 0

E
(0)
2c = 0

A0E
(0)
1c − E

(0)
1c Asc +A2A4T

(0)
3c Asc = 0

(2.63)

The convergence proof of Algorithm II can be done via the dual arguments used in

Algorithm I. Similarly, we can state the corresponding theorem dual to Theorem 1.

Under Assumptions 5, 9, and 10, Algorithm II converges for sufficiently small values of

ε with the rate of O(ε) to the sought solution Tj , j = 1, 2, 3, 4, that is after i iterations,

we have

T
(i)
jc = T

(0)
jc + εEjc +O(εi), j = 1, 2, 3, 4; i = 1, 2, 3, ... (2.64)

The proof of Theorem 2 parallels the proof of Theorem 1, and hence it is omitted.
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2.5 Observer And Controller Designs via the Sylvester Equations

In this section, we present the design of an observer and a controller using the Sylvester

approach following the steps of Chen (2013). We will exploit two-time scale property

so that the design is done in terms of reduced-order problems.

The goal is that λ(A −KC) = λobserverdesired are the desired observer eigenvalues. For the

observer design, we first check that (A,C) is observable. The observer design procedure

for the system defined in (2.2) has the following steps, Chen (2013).

Algorithm III: (Observer Design)

Step 1 : Choose Ades =

As 0

0 1
εAf

 such that λ(Ades) 6= λ(A).

Step 2 : Guess K̄ =

 K̄s

1
ε K̄f

 such that (Ades, K̄) is controllable.

Step 3 : Solve TA−AdesT = K̄C using Algorithm I.

Step 4 : If T−1 does not exists, go back to Step 2 and guess another K̄ and repeat the

process until T−1 exists. If T−1 exists then x̂(t) = T−1z(t) where the observer structure

for z(t) is given as, Chen (2013)

ż(t) = Adesz(t) + TBu(t) + K̄y(t)

x̂(t) = T−1z(t)

(2.65)

For the controller design, we first check that (A,B) is controllable. The state feedback

controller for the system defined in (2.2) can be obtained using the following steps, [16]

Algorithm IV: (Controller Design)

Step 1 : Choose Acdes =

Acs 0

0 1
εA

c
f

 such that λ(Acdes) 6= λ(A)

Step 2 : Guess F̄ =
[
F̄s F̄f

]
such that (Ades, F̄ ) is observable.

Step 3 : Solve ATc − TAcdes = BF̄ using Algorithm II.

Step 4 : If T−1c exists then F = F̄ T−1c , otherwise go back to Step 2, guess another F̄ ,

and repeat the process.
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The feedback system is given by

ẋ(t) = (A−BF )x(t), λ(A−BF ) = λsystemdesired (2.66)

2.6 Simulation Results

Consider a 4th− order system with the matrices A,B and C taken from [11].

A =



0 0.4000 0 0

0 0 0.3450 0

0 −5.2400 −4.6500 2.6200

0 0 0 −10.0000


, B =



0

0

0

10


C =

1 0 0 0

0 0 1 0


The pair (A,C) is observable and we can proceed with the observer design algorithm.

The designer decides to place observer eigenvalues at the desired location by choosing

matrices As and Af . In the following we will design a controller with the desired closed-

loop eigenvalues placed at {−0.2,−0.3,−7,−8}. Note that (A,B) is controllable.

Observer Design Algorithm III :

We choose the observer eigenvalues such that it is roughly ten times faster than the

closed-loop system. Consequently, we choose Ades as

Ades =

As 0

0 1
εAf

 =



−50 0 0 0

0 −60 0 0

0 0 −500 0

0 0 0 −600
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We choose K̄ as

K̄ =



1 3

2 4

3 5

4 6


so that (Ades, K̄) is controllable, as required in Step 2 of Algorithm III.

The matrix Q defined in (2.8) is given as

Q = −K̄C =



1 0 −3 0

−2 0 −4 0

−3 0 −5 0

−4 0 −6 0


The zeroth-order approximation T (0)

1 , T
(0)
2 , T

(0)
3 and T (0)

4 are obtained as

T
(0)
1 =

0.02000000 −0.06830400

0.03333333 −0.07583907

 ,
T
(0)
2 =

−6.50229006 −1.70360000

−8.65841823 −2.26850557

 ,
T
(0)
3 =

0.06000000 0.00105783

0.06666666 0.00088015

 ,
T
(0)
4 =

0.10093873 −0.00053971

0.10078105 −0.00044753
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Performing iterations, we obtain the sixteen decimal digits accuracy after i = 50

E
(50)
1 =

0 0.75071350

0 0.81924891

 ,
E

(50)
2 =

71.63296737 16.60304059

93.80712798 22.30657343

 ,
E

(50)
3 = 10−3 ×

0 −0.48007370

0 −0.44448673

 ,
E

(50)
4 = 10−5 ×

−0.70332400 0.00376063

0.48428406 0.00215054


The corresponding iterative solution T̂ and the exact solution T (obtained by using the

MATLAB function lyap to solve the full-order sylvester equation) are given by

T̂ =



0.02000000 0.00676734 0.06610066 −0.00432960

0.03333333 0.00608581 0.07222945 −0.00378482

0.00600000 0.00010100 0.01009380 −0.00005400

0.00666666 0.00008357 0.01007805 −0.00004475


= T

The difference ‖T − T̂‖ is

‖T − T̂‖ = 1.677861779926784× 10−16

The solution T is invertible in the first run of Algorithm III (see Section 5). The

corresponding observer gain K = (T̂ )−1K̄ is

K = 105 ×



0.01122902 0.01013856

−0.78192851 −0.92597450

−0.00234100 0.00072447

−1.20836830 −1.39637444
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Checking the corresponding observer closed loop eigenvalues, we have

λ(A−KC) =



−49.9999999999540

−60.0000000000346

−499.9999999999835

−599.9999999999814


which with the accuracy of O(10−12) is close to the chosen desired eigenvalues of the

matrix Ades. The observer’s structure is given as in (2.65).

Algorithm IV : ( Controller Design )

Similarly, we design a controller for the same system using the algorithm for solving the

controller algebraic Sylvester equation from Section 4. We choose

Acdes =

Acs 0

0 1
εA

c
f

 =



−0.2 0 0 0

0 −0.3 0 0

0 0 −7 0

0 0 0 −8


The zeroth-order approximations T (0)

1c , T
(0)
2c , T

(0)
3c and T (0)

4c are obtained as

T
(0)
1c =

 2.05946684 2.91957364

−1.02973342 −2.18968023

 ,
T
(0)
2c =

 0 0

−0.18316110 −0.16863805

 ,
T
(0)
3c =

 0.59694691 1.90406976

−1.00000000 −1.00000000

 ,
T
(0)
4c =

 0.37163120 0.39104477

−0.33333333 −0.50000000
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Using the proposed algorithm, we obtain after i = 50

E
(50)
1c =

−0.49558505 −4.48463407

0.24779252 3.36347555

 ,
E

(50)
2c =

0.09430020 0.07899070

0.18135735 0.10656670


E

(50)
3c =

−0.14364784 −2.92476135

−0.20408163 −0.30927835

 ,
E

(50)
4c =

−0.36797143 −0.24711120

0 0


The iterative solution T̂ c and the exact solution T c are given by

T̂ c =



2.00990834 2.47111023 0.00943002 0.00789910

−1.00495420 −1.85333270 −0.16502535 −0.15798140

0.58258212 1.61159363 3.34834061 3.66333660

−1.02040816 −1.03092783 −3.33333333 −5.00000000


= T c

Their difference is

‖T c − T̂ c‖ = 1.761132598848588× 10−14

The solution T c is invertible in the first run of Algorithm IV (see Section 5). The

controller gain F = F̄ (T̂ c)−1 is given as

F =
[
0.92930633 1.02725633 0.43128625 0.08500000

]

Checking λ(A−BF ), we have

λ(A−BF ) =



−0.199999999999998

−0.300000000000001

−7.000000000000027

−7.999999999999988
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which have produced the desired eigenvalues with the accuracy of O(10−13).

2.7 Conclusion

It has been shown that the numerically ill-conditioned Sylvester algebraic equation for

singularly perturbed systems can be decomposed into four lower order well conditioned

Sylvester equations. The recursive fixed-point type methods was utilized in order to

obtain numerical solutions for such lower-order algebraic Sylvester equations. The cor-

responding observer and controller design algorithms for assignment of observer and

controller closed-loop eigenvalues in terms of reduced-order slow and fast subproblems

are presented. The main result of Chapter 2 have been submitted for publication in

Automatica [52].
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Chapter 3

New Designs of Linear Observers and Observer-Based
Controllers for Singularly Perturbed Linear Systems

3.1 Introduction

Singularly perturbed systems have been studied in different set-ups by many researchers

[11], [12], [19], [21], [25], [27] and [38]. Under ceratin conditions, a decoupling transfor-

mation was introduced, [17], such that a singularly perturbed linear system composed

of two sub-systems can be internally decomposed into two reduced-order slow and fast

sub-systems. After a system is internally decoupled into two subsystems, suitable con-

trol laws can be chosen for each subsystems. Traditionally, solutions of controller and

observer designs for singularly perturbed linear systems were obtained with an O(ε)

accuracy [18], [21], [24], [29], [30], [34], [35]. Observers nowadays play very important

roles in all areas of science and engineering, see [22] and references there. There are

several papers for observer driven controllers for singularly perturbed systems and all

of them provide O(ε) accuracy only.

The paper is organized as follows. In Section 2, singularly perturbed systems are re-

viewed, including state transformation that decouples slow and fast modes, and observer

and observer-driven controller for singularly perturbed systems. It was emphasized that

the current design methods are with O(ε) accuracy. In Section 3, we review the results

of [32],[33] in which exact eigenvalues assignment was implemented through a two-stage

method. Sections 4 and 5 present new research results. The new two stage method

for the observer design is presented in Section 4. The corresponding observer based

controller design is presented in Section 5. In this paper, it will be shown how to de-

sign exactly (with arbitrary high accuracy) reduced-order slow and fast observers and

corresponding controllers such that complete parallelism is introduced, which facilitates
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significant reduction in on- and off-line computational requirements and reduces the

observer and controller signal processing time.

3.2 Review of Singularly Perturbed Linear Systems

Large-scale linear systems are encountered frequently in engineering [11], [12], [19], [21],

[25],[27] and [38]. The crucial theme is how to reduce a large time scale system into a

reduced form in which slow and fast dynamics is separated to enhance analysis, design,

and simulation. Consider a linear time invariant singularly perturbed system, [11].

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t), x1(t0) = x01 ẋ(t) = Ax(t) +Bu(t)

ẋ2(t) =
1

ε
A21x1(t) +

1

ε
A22x2(t) +

1

ε
B2u(t), x2(t0) = x02 ⇒ y(t) = Cx(t) +Du(t)

y(t) = C1x1(t) + C2x2(t) +Du(t)

(3.1)

where ε is a small positive singular perturbation parameter that indicates seperation

of state variables x(t) ∈ <n into slow x1(t) ∈ <n1 and fast x2(t) ∈ <n2 , n1 + n2 = n

state variables. u(t) ∈ <m is the control input and y(t) ∈ <p the system measured

output. ε usually represents small time constants, small masses, small resistances and

capacitance, small moments of inertia. Often such systems have eigenvalues clustered

into two groups, slow ones close to the imaginary axis and fast ones, far from the

imaginary axis. The parameter ε can be taken as the ratio of the eigenvalue real parts,

ε =
maxi{Re|λsi (A)|}
minj{Re|λfi (A)|}

(3.2)

Traditionally, the system (3.1) may be approximately decomposed into reduced slow

system having n1 slow modes and a fast subsystem having n2 fast modes [11]. The

reduced slow subsystem is obtained by setting ε = 0 in (3.1), that is

ẋ1s(t) = A11x1s(t) +A12x2s(t) +B1u(t) (3.3)

0 = A21x1s(t) +A22x2s(t) +B2u(t) (3.4)
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ys(t) = C1x1s(t) + C2x2s(t) +Du(t) (3.5)

The standard assumption used for singularly perturbed linear system, [11], is

Assumption 3.2.1. Matrix A22 is invertible.

Under Assumption 1, x2s(t) can be obtained from (3.4) as

x2s(t) = −A−122 A21xs(t)−A−122 B2us(t) (3.6)

Substitution of (3.6) into (3.3) results in the approximate slow subsystem

ẋ1s(t) = A0x1s(t) +B0us(t), x1s(t0) = x01

ys(t) = C0x1s(t) +D0us(t)

(3.7)

with
A0 = A11 −A12A

−1
22 A21, B0 = B1 −A12A

−1
22 B2

C0 = C1 − C2A
−1
22 A21, D0 = −C2A

−1
22 B2

(3.8)

The fast subsystem for the approximate fast variable xf (t) = x2(t) − x2s(t) is defined

as, [? ].

ẋ2f (τ) = A22x2f (τ) +B2uf (τ), x2f (t0) = x02 +A−122 A21x
0
1

yf (τ) = C2x2f (τ)

(3.9)

where τ = (t−t0)
ε represents the stretched time scale (fast time scale).

3.2.1 Chang Transformation

This is a similarity transformation defined by [15]

Tc =

 In εH

−L Im − εLH

 , T−1c =

In − εHL −εH

L Im

 (3.10)
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It is used to relate the original state variables x1(t) and x2(t) and xs(t) and xf (t)- the

pure slow and pure fast state variables.

xs(t)
xf (t)

 =

In − εHL −εH

L Im

x1(t)
x2(t)

 = T−1c

x1(t)
x2(t)

 (3.11)

The original state variables can be reconstructed from

x1(t)
x2(t)

 =

 In εH

−L Im − εLH

xs(t)
xf (t)

 = Tc

xs(t)
xf (t)

 (3.12)

The matrices L and H satisfy the following algebraic equations

0 = εL(A11 −A12L) + (A21 −A22L)

0 = ε(A11 −A12L)H +A12 −H(A22 + εLA12)

(3.13)

The solutions for L and H can be obtained using either fixed-point iterations or Newton

method, or eigenvector method [? ]. Using the Chang transformation (3.10), the original

system (3.1) becomes

ẋs(t) = Asxs(t) +Bsu(t)

εẋf (t) = Afxf (t) +Bfu(t)

y(t) = Csxs(t) + Cfxf (t) +Du(t)

(3.14)

where
As = A11 −A12L, Bs = B1(In − εHL)− εHB2

Af = A22 + εLA12, Bf = LB1 + ImB2

Cs = C1 − C2L, Cf = εC1H + C2(Im − εLH)

(3.15)

It is known from [11], that the unique solutions of the L and H equations exist for

sufficiently small ε under Assumption 1.
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3.2.2 Linear Observers for Singularly Perturbed Systems

Consider a general linear time invariant system.

ẋ(t) = Ax(t)

y(t) = Cx(t)

(3.16)

The design of linear observers for linear systems (3.16) requires the following assumption,

[16].

Assumption 3.2.2. The pair (A,C) is observable.

The full-order observer for the singularly perturbed system (whose system and out-

put variables are defined in (3.1)) is given by

 ˙̂x1(t)

˙̂x2(t)

 =

 A11 A12

1
εA21

1
εA22

x̂1(t)
x̂2(t)

 +

 K1(t)

1
εK2(t)

 (y(t)− ŷ(t)) = Ax̂(t) +K(y(t)− ŷ(t))

= (A−KC)x̂(t) +Ky(t)

ŷ(t) = C1x̂1(t) + C2x̂2(t) = Cx̂(t)

(3.17)

where x̂1(t) and x̂2(t) are estimates of the state variables x1(t) and x2(t). The state

estimation (observation) error is defined as

e(t) = x̂(t)− x(t) =

e1(t)
e2(t)

 =

x1(t)− x̂1(t)
x2(t)− x̂2(t)

 (3.18)

The role of the observer (3.17) is to reconstruct the state x(t) in an asymptotic manner

in the sense that limt→∞ e(t) = 0. To achieve that goal, the observer gains K1 and K2

must be chosen to make the observer (3.17) asymptotically stable.
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3.2.3 Observer-based Controllers for Singularly Perturbed Linear

Systems

A observer-based feedback controller for the singularly perturbed system (3.1) is given

by

u(t) = −Fx̂(t) (3.19)

where x̂(t) is obtained from (3.17). The overall closed-loop system for the original

system (3.1) and the observer (3.17) is given by

ẋ(t)

ė(t)

 =

A−BF BF

0 A−KC

x(t)

e(t)

 (3.20)

A =

 A11 A12

1
εA21

1
εA22

 , B =

 B1

1
εB2

 , K =

 K1

1
εK2

 , F =
[
F1 F2

]
(3.21)

In many applications, it is required that the controller (3.19) produces asymptotic sta-

bilization in the sense that

lim
t→∞

x(t)

e(t)

 = 0 (3.22)

This may be achieved if and only if the system (3.1) is stabilizable by feedback (3.19)

and the observer reconstruction error system is asymptotically stable

ė(t) = (A−KC)e(t), e(t0) = x̂(t0)− x(t0) (3.23)

Assumption 2 produces the required condition for (3.23). For the system feedback

stabilization, we need the next assumption, [16].

Assumption 3.2.3. The pair (A,B) is stabilizable.
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3.3 Two-Stage Eigenvalue Assignment for Singularly Perturbed Lin-

ear Systems

This section reviews the exact assignment of both slow and fast eigenvalues via state

feedback by following the two stage design of [32], [33]. This result will be used in

Sections 4 and 5 for the exact design of pure-slow and pure-fast observers and corre-

sponding observer driven controllers. The original singularly perturbed linear system

given by (3.1) can be decoupled into the slow-fast form defined in (3.14) using the Chang

transformation (3.10)-(3.13).

Suppose, we want to place n1 slow open-loop eigenvalues and get n1 new closed eigen-

values. We take the input for the slow subsystem as

u(t) = v(t)− Fsxs(t) (3.24)

Substituting (3.24) in (3.14), the following equations are obtained

ẋs(t) = (As −BsFs)xs(t) +Bsv(t)

εẋf (t) = Afxf (t)−BfFsxs(t) +Bfv(t)

(3.25)

The feedback gain Fs is chosen such to place slow eigenvalues at the desired locations,

that is

λ(As −BsFs) = λdesireds (3.26)

The eigenvalues of the slow subsystem can be arbitrarily located under the following

assumption.

Assumption 3.3.1. The pair (As, Bs) is controllable.

The fast subsystem has now a term with the slow states 1
εBfFsxs(t). The second

transformation is needed to remove the slow term in ẋf (t) as

xfnew(t) = Pxs(t) + xf (t) (3.27)
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where

εP (As −BsFs)−BfFs −AfP = 0 ⇒ P 0 = A−1f BfFs +O(ε) (3.28)

Since Af = A22 + O(ε), the algebraic Sylvester equation (3.28) has a unique solution

for sufficiently small values of ε assuming that Assumption 1 is satisfied. The change of

variables (3.27) leads to

ẋfnew(t) = Pẋs(t) + ẋf (t)

= [P (As −BsFs)−
1

ε
BfFs −

1

ε
AfP ]xs(t) +

1

ε
Afxfnew(t) + PBsv(t) +

1

ε
Bfv(t)

(3.29)

Therefore, if the Sylvester equation (3.28) is satisfied, (3.29) becomes

εẋfnew(t) = Afxfnew(t) + (Bf + εPBs)v(t) = Afxfnew(t) +Bfnewv(t) (3.30)

where Bfnew = Bf + εPBs. The input v(t) can be used to assign the fast subsystem

eigenvalues independently of the slow subsystem. The input v(t) can be taken as

v(t) = −Ff2xfnew(t) (3.31)

To locate the fast subsystem eigenvalues arbitrarily, we need the following assumption.

Assumption 3.3.2. The pair (Af , Bfnew) is controllable.

This two stage method facilitates the independent slow and fast eigenvalue assign-

ments. After obtaining the gains Fs and Ff2, we go back to the original coordinates to

find the corresponding gains. The control input in the new coordinates is given by

u(t) = v(t)− Fsxs(t) = −Ff2xfnew(t)− Fsxs(t) (3.32)

Using the Chang transformation (3.10), the state feedback gains F1 and F2 in the original

coordinates are obtained as follows [14], [32], [33].

u(t) = −Fx(t) = −
[
Fs Ff2

] xs(t)

xfnew(t)

 = −
[
Fs + Ff2P Ff2

]
T−1c

x1(t)
x2(t)

 (3.33)
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3.4 Two-Stage Observer Design for Singularly Perturbed Systems

The objective of this section is to present a new design technique for a full-order observer

in slow and fast time scales. A full-order observer will be designed is Section 4.1 using

the two-stage design. In Section 4.2, it is shown how to find the observer gain in the

original coordinates. Observer design algorithm is formulated in Section 4.3. Numerical

example is presented in Section 4.4.

3.4.1 Two-Stage Two-Time Scale Design of the Full-Order Observer

A full-order observer for the singularly perturbed system (3.1) is defined in (3.17).

For simplicity of the design, we will assume that no control input is presented, that

is u(t) = 0. When developing the two-stage method to a full-order observer we will

start the duality between the controller and observer design. The duality says that

ẋ(t) = (A−BF )x(t) and ˙̂x(t) = (A−KC)x̂(t) +Ky(t) can use the same procedure for

the design of feedback matrices since transposing the observer feedback matrix, that is,

AT − CTKT produces the dual form to the system feedback matrix A−BF .

Hence, it will be needed to transpose matrices A and KC of the full-order observer

(3.17) and consider a hypothetical control system

ż1(t) = AT11z1(t) +
1

ε
AT21z2(t) + CT1 û(t)

ż2(t) = AT12z1(t) +
1

ε
AT22z2(t) + CT2 û(t)

(3.34)

where states z1(t) and z2(t) are used for the purpose of design only. To transform (3.34)

into an explicit singularly perturbed form we introduce q1(t) = z1(t) and q2(t) = 1
ε z2(t)

which leads to
q̇1(t) = AT11q1(t) +AT21q2(t) + CT1 û(t)

εq̇2(t) = AT12q1(t) +AT22q2(t) + εCT2 û(t)

(3.35)

The Chang transformation applied to (3.35) produces

q̇s(t) = ATsqqs(t) + CTsqû(t)

εq̇f (t) = ATfqqf (t) + εCTfqû(t)

(3.36)
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where
ATsq = AT11 − LTAT12, ATfq = AT22 + εAT12L

T

CTsq = CT1 − LTCT2 , CTfq = HTCT1 +
1

ε
(Im − εHTLT )CT2

(3.37)

The Chang transformation needed for the proposed observer design relates the original

state variables q1(t) and q2(t) and the slow and fast variables qs(t) and qf (t) as follows

qs(t)
qf (t)

 =

 In −εLT

HT Im − εHTLT

q1(t)
q2(t)

 = T Tcq

q1(t)
q2(t)

 (3.38)

The state variables q1(t) and q2(t) can be reconstructed from the inverse transformation

as q1(t)
q2(t)

 =

In − εLTHT εLT

−HT Im

qs(t)
qf (t)

 = T−Tcq

qs(t)
qf (t)

 (3.39)

where LT and HT are the transposed solution of (3.13). The duality between the

controller and observer designs requires that the controller gain, obtained from λ(A −

BF ), is the same as the observer gain obtained from λ(AT − CTKT ). The duality

between the controller and observer designs means A→ AT , B → CT , F → KT . From

the sub-matrix point of view corresponding to slow and fast subsystems, the duality

implies

A11 → AT11, A12 →
1

ε
AT21,

1

ε
A21 → AT12, A22 → AT22, B1 → CT1 ,

1

ε
B2 → CT2 , F1 → KT

1 ,

F2 →
1

ε
KT

2 , As → ATsq,
1

ε
Af →

1

ε
ATfq, Bs → CTsq,

1

ε
Bf → CTfq, Fs → KT

s , Ff →
1

ε
KT
f

(3.40)

The goal is to find the observer gain K using the two stage feedback design from Section

3.

We take û(t) for the slow subsystem as

û(t) = −KT
s qs(t) + v(t) (3.41)



40

Substituting (3.41) into (3.36), we have

q̇s(t) = (ATsq − CTsqKT
s )qs(t) + CTsqv(t)

εq̇f (t) = ATfqqf (t)− εCTfqKT
s qs(t) + εCTfqv(t)

(3.42)

At this point, it is possible to place the slow observer eigenvalues in the desired locations,

that is

λ(ATsq − CTsqKT
s ) = λ(Asq −KsCsq) = λdesireds (3.43)

assuming that the following assumption is satisfied.

Assumption 3.4.1. The pair (Asq, Csq) is observable.

Now, the following change of coordinates is introduced

qfnew(t) = Poqs(t) + qf (t) → qf (t) = qfnew(t)− Poqs(t) (3.44)

where Po satisfies the algebraic Sylvester equation

εPo(A
T
sq − CTsqKT

s )− εCTfqKT
s −ATfqPo = 0 ⇒ Po = O(ε) (3.45)

The unique solution for Po exist for sufficiently small values of ε under Assumption 1.

By setting ε = 0 in (3.45) we see that ATfqP
(0)
o = 0 ⇒ P

(0)
o = 0 and Po = O(ε)1. The

change of variables in (3.44) results in

εq̇fnew(t) = εPoq̇s(t) + εq̇f (t)

= [−ATfqPo − εCTfqKT
s + εPo(A

T
sq − CTsqKT

s )]qs(t) +ATfqqfnew(t) + ε(CTfq + PoC
T
sq)v(t)

(3.46)

When the Sylvester equation (3.45) is satisfied, (3.46) becomes

εq̇fnew(t) = ATfqqfnew(t) + ε(CTfq + PoC
T
sq)v(t) = ATfqqfnew(t) + εCTfnewv(t) (3.47)

where CTfnew = CTfq + PoC
T
sq. The input v(t) can be used to locate the fast subsystem

1An O(ε) is defined by O(ε) ≤ kε, where k is a bounded constant.
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eigenvalues

v(t) = −KT
f2qfnew(t) (3.48)

At this point, it is possible to locate the fast eigenvalues in the original coordinates at

the desired location as

λ(Afq −Kf2Cfnew) = λdesiredf (3.49)

If the following observability assumption is satisfied.

Assumption 3.4.2. The pair (Afq, Cfnew) is observable.

Substituting (3.41) and (3.48) into (3.42) and (3.47), we obtain

 q̇s(t)

εq̇fnew(t)

 =

(Asq −KsCsq)
T −(Kf2Csq)

T

0 (Afq −Kf2Cfnew)T

 qs(t)

qfnew(t)

 (3.50)

The original coordinates z1(t), z2(t) and qs(t), qfnew(t) coordinates are related via

 qs(t)

qfnew(t)

 = T T2 T
T
cqT

T
1

z1(t)
z2(t)

 (3.51)

where

T T1 =

In 0

0 1
ε Im

 , T T2 =

In 0

Po Im

 (3.52)

with T Tcq defined in (3.38). It is possible to reconstruct z1(t), z2(t) from qs(t), qfnew(t)

via the inverse transformation

z1(t)
z2(t)

 = T−T1 T−Tcq T−T2

 qs(t)

qfnew(t)

 = T−T4

 qs(t)

qfnew(t)

 (3.53)

From the above relation (3.53), we can construct the state transformation from xs(t),

xfnew(t) to x1(t), x2(t) as follows

x̂1(t)
x̂2(t)

 = T4

 x̂s(t)

x̂fnew(t)

 (3.54)
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Applying above the state transformation (3.54) to (3.17), we get

T4

 ˙̂xs(t)

˙̂xfnew(t)

 = (A−KC)T4

 x̂s(t)

x̂fnew(t)

 +Ky(t)

 ˙̂xs(t)

˙̂xfnew(t)

 = T−14 (A−KC)T4

 x̂s(t)

x̂fnew(t)

 + T−14 Ky(t)

(3.55)

Now we can present the observer configuration using the result in (3.50) and the duality

between controller and observer designs

 ˙̂xs(t)

ε ˙̂xfnew(t)

 =

Asq −KsCsq 0

−εKf2Csq Afq −Kf2Cfnew

 x̂s(t)

x̂fnew(t)

 +

 Ks

εKf2

 y(t) (3.56)

where

Ks = (In − εHL− εP To L)K1 −HK2 − P To K2, Kf2 = εLK1 + εK2 (3.57)

The block diagram for the sequential reduced-order observer is presented in Figure

3.1. The observer obtained in (3.56) has a sequential structure. The slow observer

Figure 3.1: Sequential reduced-order slow and fast observers.

is independent of the fast and it is used to drive the fast observer. We can obtain a

fully decoupled slow and fast observers working in parallel as follows. We change the
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coordinates once again given as

x̂fnew2(t) = Po2x̂s(t) + x̂fnew(t) → x̂fnew(t) = x̂fnew2(t)− Po2x̂s(t) (3.58)

where Po2 satisfies the algebraic Sylvester equation represented by

εPo2(Asq −KsCsq)− εKf2Csq − (Afq −Kf2Cfnew)Po2 = 0 ⇒ P 0
o2 = O(ε) (3.59)

The linear algebraic equation (3.59) has a unique solution since Afq −Kf2Cfnew is an

asymptotically stable fast subsystem feedback matrix. The change of variable (3.58)

results in

ε ˙̂xfnew2(t) = εPo2 ˙̂xs(t) + ε ˙̂xfnew(t)

= [εPo2(Asq −KsCsq)− εKf2Csq − (Afq −Kf2Cfnew)Po2]x̂s(t)

+ (Afq −Kf2Cfnew)x̂fnew2(t) +Kf3y(t)

(3.60)

where

Kf3 = ε(Po2Ks +Kf2) (3.61)

Hence, if the second algebraic Sylvester equation (3.59) is satisfied, (3.60) becomes

ε ˙̂xfnew2(t) = (Afq −Kf2Cfnew)x̂fnew2(t) +Kf3y(t) (3.62)

At this point, we have the block-diagonalized form of the observer obtained as

˙̂xs(t) = (Asq −KsCsq)x̂s(t) +Ksy(t)

ε ˙̂xfnew2(t) = (Afq −Kf2Cfnew)x̂fnew2(t) +Kf3y(t)

(3.63)

The original coordinates x̂1(t), x̂2(t) and the new coordinates x̂s(t), x̂fnew2(t) are related

via  x̂s(t)

x̂fnew2(t)

 = T3T
−1
4

x̂1(t)
x̂2(t)

 = T−1

x̂1(t)
x̂2(t)

 (3.64)
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where

T3 =

 I 0

Po2 I

 (3.65)

Now, the original coordinates can be reconstructed via

x̂1(t)
x̂2(t)

 = T4T
−1
3

 x̂s(t)

x̂fnew2(t)

 = T

 x̂s(t)

x̂fnew2(t)

 (3.66)

In (3.63), we have the parallel slow and fast observer structure that is graphically repre-

sented in Figure 4.12. A summary of all matrices appearing in Figure 4.12 and equations

used to obtain them is presented in Table 1.

Table 3.1: Parameters of Slow and Fast subsystems
Slow data Fast Data
Asq = A11 −A12L Afq = A22 + εLA12

Csq = C1 − C2L Cfnew = ε(C1 − C2L)P To + εC1H
+C2(Im − εLH)

λ(Asq −KsCsq) = λdesireds ⇒ Ks λ(Afq −Kf2Cfnew) = λdesiredf ⇒ Kf2

Kf3 = ε(Po2Ks +Kf2)
εPo(A

T
sq − CTsqKT

s )− εCTfqKT
s −ATfqPo εPo2(Asq −KsCsq)− εKf2Csq

= 0 −(Afq −Kf2Cfnew)Po2 = 0

Figure 3.2: Slow-fast reduced-order parallel estimation (observation) with the reduced-
order observers of dimensions n1 × n1 and n2 × n2, n1 + n2 = n, n = order of the
system.
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3.4.2 Observation Error Equations

From (3.16)-(3.18), we have

 ė1(t)
εė2(t)

 = (A−KC)

ê1(t)
ê2(t)

 (3.67)

Using the state transformation (3.66), the original error coordinates e1(t), e2(t) and the

new error coordinates es(t), efnew2(t) are related via

e1(t)
e2(t)

 =

x1(t)
x2(t)

−
x̂1(t)
x̂2(t)


= T

 xs(t)

xfnew2(t)

− T
 x̂s(t)

x̂fnew2(t)


= T

 es(t)

efnew2(t)


(3.68)

From (3.67) and (3.68), we obtain

T−1

 ė1(t)
εė2(t)

 = T−1(A−KC)T

 ês(t)

êfnew2(t)

 (3.69)

which produces

ės(t) = Âses(t)

εėfnew2(t) = Âfefnew2(t)

(3.70)

Âs = Asq −KsCsq

Âf = Afq −Kf2Cfnew

(3.71)

The asymptotic convergence of the error dynamic is generated since the eigenvalues

satisfy

Reλ(s) < 0, Reλ(f ) < 0 (3.72)
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3.4.3 Observer Gain in the Original Coordinates

We will show that the observer in the original coordinates is given by

K = (
[
KT
s +KT

f2Po KT
f2

]
T TcqT

T
1 )T =

T1Tcq(Ks + P To Kf2)

T1TcqKf2

 =

K1

K2

 (3.73)

where Tcq is the Chang transformation (3.38), Po is the solution of the algebraic Sylvester

equation (3.45). We previously set KT q(t) = v(t)−KT
s qs(t) = −KT

s qs(t)−KT
f2qfnew(t)

in (3.41) and (3.48) , which implies

KT q(t) =
[
KT
s KT

f2

] qs(t)

qfnew(t)

 =
[
KT
s KT

f2

]In1 0

Po In2

qs(t)
qf (t)


=

[
KT
s +KT

f2Po KT
f2

]
T Tcq

q1(t)
q2(t)

 =
[
KT
s +KT

f2Po KT
f2

]
T TcqT

T
1

z1(t)
z2(t)


(3.74)

Hence
[
KT
s +KT

f2Po KT
f2

]
T TcqT

T
1 represents transpose of the observer gain matrix K

in original coordinates. It is important to notify that the observer gain K = f(Ks,Kf2)

can be obtained using computations with reduced order matrices Ks and Kf2.

3.4.4 Design Algorithm for Finding the Observer Gain

Given that the linear system (3.1) is observable, the following two-time scale design

algorithm can be applied for the design of a full-order observer of singularly perturbed

system.

Step 1. Transpose the matrices of the full-order observer from (3.17) and apply the

change of variable to the hypothetical system defined in (3.35).

Step 2. Apply the Chang transformation (3.38) to (3.35) to get (3.36).

Step 3. Obtain the partitioned submatrices ATsq,
1
εA

T
fq, C

T
sq and CTfq.

Step 4. Place the slow observer eigenvalues in the desired location and obtain the slow

observer gain KT
s using the eigenvalue assignment for λ(Asq −KsCsq).

Step 5. Solve the reduced-order Sylvester algebraic equation (3.45) to get Po.For the

parallel observer structure, solve in addition for Po2 from (3.59).
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Step 6. Place fast observer eigenvalues at the desired location using the eigenvalue

assignment for λ(Afq −Kf2Cfnew) and obtain Kf2.

Step 7. Find the observer gain in the original coordinates using (3.73) and check λ(A−

KC) = λdesireds ∪ λdesiredf .

3.4.5 A Numerical Example

Consider a 4th− order system with the system matrices A and C taken from [? ]

A =



0 0.4000 0 0

0 0 0.3450 0

0 −5.2400 −4.6500 2.6200

0 0 0 −10.0000


, B =



0

0

0

10


.

C =

1 0 0 0

0 0 1 0


Our goal is to design independently slow and fast reduced-order observers with the

desired eigenvalues as λdesireds = {−50,−60} and λdesiredf = {−200,−300}. The observ-

ability matrix has full rank and therefore the pair (A,C) is observable.

According to Step 3 of Algorithm from Section 4.3, the following sub-matrices are ob-

tained

ATsq =

 0 0

0.4000 −0.4282

 , ATfq =

−0.4221 0

0.2620 −1.0000

 ,
CTsq =

1.0000 0

0 −1.2412

 , CTfq =

0.0086 1.1128

0.0032 0.0308

 ,
CTfnew =

 0.0070 −0.0756

−0.0004 0.0563


Following Step 4, we place the slow eigenvalues in the original coordinates at {−50,−60}

via the slow feedback gain matrix
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KT
s =

50.0000 0

−0.3223 −47.9961


In Step 5 of the algorithm, we solve the Sylvester algebraic equations (3.45) and (3.59)

and obtain matrices Po and Po2 as

Po =

−0.0158 9.5761

−0.0371 −0.2052

 , Po2 =

20.6930 −0.2663

24.2598 −2.9173


In Step 6 of the algorithm, we place the fast observer eigenvalues at the desired location

{−200,−300}. The fast observer gain KT
f2 is given by

KT
f2 =

3103.957 6064.972

30.041 564.109

 , Kf3 =

413.861 3.615

727.796 69.631


In Step 7, using (3.73), matrix K is obtained as

K =



240.549 −0.808

24146.674 −43.824

1069.235 354.800

60649.720 5641.093


It can be checked that λ(A−KC) in the original coordinate are given by

λ(A−KC) =



−50.0000000000000

−60.0000000000000

−200.0000000000000

−300.0000000000002


which is the same (with the accuracy of O(10−14)) as we placed the slow and fast

eigenvalues using the two time scale decomposition designs. Figures 3.3 present the slow

and fast observation errors. The observer initial conditions were chosen as x̂s(0) = [1, 5]

and x̂fnew2(0) = [1, 3]. In order to be able to run MATLAB simulink simulation we had

to specify also the system initial conditions (these initial conditions are in general not



49

known). We have chosen them as x̂1(0) = [2, 2] and x̂2(0) = [2, 2].

Figure 3.3: Convergence of the slow states x1(t) ∈ <2 and the fast states x2(t) ∈ <2

3.5 Slow and Fast Observer-based Controller Design for Singularly

Perturbed Systems

In the previous section, we have accurately observed the states of the original system

using independent the reduced-order slow and fast observers (3.63). In this section,

we use these observers and consider the observer-based controller design for singularly

perturbed linear systems. The observers are driven by the system measurements and

control inputs with both observers implemented independently in the slow and fast time

scales
˙̂xs(t) = (Asq −KsCsq)x̂s(t) +Bs2u(t) +Ksy(t)

ε ˙̂xfnew2(t) = (Afq −Kf2Cfnew)x̂fnew2(t) +Bf2u(t)

+Kf3y(t)

(3.75)

where Bs2, Bf2 are obtained from T−1B with T defined in (3.66), that is

Bs2 = (In − εHL)B1 − εP To LB1 −HB2 − P To B2,

Bf2 = εPo2(In − εHL)B1 − ε2Po2P To LB1 + ε2LB1

− εPo2HB2 − εPo2P To B2 + εB2

(3.76)
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The control input in the x̂s-x̂fnew2 coordinates is given by

u(t) = −Fx̂(t) = −
[
F1 F2

]x̂1(t)
x̂2(t)


= −

[
F1 F2

]
T

 x̂s(t)

x̂fnew2(t)


= −

[
Fs2 Ff2

] x̂s(t)

x̂fnew2(t)


= −Fs2x̂s(t)− Ff2x̂fnew2(t)

(3.77)

Fs2 = F1(In − P To Po2 −HPo2)− F2L(In − P To Po2)

− 1

ε
F2(Im − εLH)Po2

Ff2 = F1(P
T
o +H)− F2LP

T
o +

1

ε
F2(Im − εLH)

(3.78)

The corresponding block diagram for the observer driven controller is presented in Figure

3.4. This block diagram clearly indicates full parallelism of the slow controller driven

by the slow observer and the fast controller driven by the fast observer.

3.5.1 Numerical Example

Consider a 4th− order system with the system matrices A,B and C defined in Section

4.C. The controllability matrix has full rank and therefore the pair (A,B) is controllable.

The results obtained using MATLAB are given below. We locate the feedback system

slow eigenvalues at λdesiredcs = (−2,−3) and the feedback system fast eigenvalues at

λdesiredcf = (−7,−8), and the slow observer eigenvalues at λdesiredos = (−50,−60) and the

fast observer eigenvalues at λdesiredof = (−200,−300), given in the previous numerical

example. Following the design procedure of from Sections 4 and 5, the completely

decoupled slow and fast observer in the xs-xfnew2 coordinates, driven by the system
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measurements and control inputs, are

˙̂xs(t) =

−50.0000 0.0000

0.0000 −60.0000

 x̂s(t)
+

0.0046

0.4541

u(t) +

50.0000 −0.3223

0 −47.9961

 y(t)

˙̂xfnew2(t) =

−200.0000 0.0000

−0.0000 −300.000

 x̂fnew2(t)
+

−0.0255

−0.2129

u(t) +

4138.6098 36.1545

7277.9664 696.3118

 y(t)

u(t) = −
[
−6530.3242 91.6868

]
x̂s(t)

−
[
332.8512 −10.9008

]
x̂fnew2(t)

The slow and fast controller gains Fs2, Ff2 are obtained as

Fs2 =
[
−6530.3242 91.6868

]
,

Ff2 =
[
332.8512 −10.9008

]

Figure 3.4: Complete parallelism and exact decomposition of the observer-based con-
troller for singularly perturbed linear systems



52

3.6 Conclusions

We have designed with very high accuracy the pure-slow and pure-fast observer-based

controllers. They are designed independently using the reduced-order slow and fast sub-

matrices. The numerical ill-conditioning problem of the original system is removed. We

have demonstrated that the full-order singularly perturbed system can be successfully

controlled with the state feedback controllers designed on the subsystem levels. The two

stage method is successfully implemented for both observer and controller designs. The

main result of Chapter 3 have been submitted for publication in IEEE Transactions on

Automatic Control [53]
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Chapter 4

New Designs of Reduced-Order Observers for Singularly
Perturbed Linear Systems

In Chapter 3, we have designed slow and fast full-order observers and observer-based

controllers by placing eigenvalues using the two-stage feedback design for slow and fast

subproblems. The numerically ill-conditioning problem is avoided using the two stage

design method for singularly perturbed linear systems so that independent feedback

controllers can be applied to each sub-system. We have demonstrated that the singularly

perturbed system can be successfully controlled via the eigenvalue placement technique

with the state feedback controllers and the full-order observers designed at the subsystem

levels. The two stage method is successfully implemented for both the full-order observer

and corresponding controller designs. In this chapter, we will consider the problem

studied in Chapter 3, but using the reduced-order observers. The reduced-order observer

for singularly perturbed systems have been studied only in a few papers [54]-[55], all of

them producing accuracy of O(ε). The approach presented in this chapter will produce

O(εk), k = 2, 3, ... accuracy, which for large k practically mean the exact accuracy.

4.1 Two-Stage Reduced-Order Observer Design for Singularly Per-

turbed Linear Systems

We extend the two-stage feedback design method to both the Sylvester equation based

and the Luenberger reduced-order observers for systems that contain slow and fast

modes [11], [16]. Consider a singularly perturbed linear system

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

(4.1)
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with the corresponding measurements

y(t) = Cx(t) =
[
C1 C2

]x1(t)
x2(t)

 (4.2)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, y(t) ∈ Rl. We assume that the matrix C

has full rank. The following assumption is standard in the theory of singularly perturbed

linear systems [11].

Assumption 4.1.1. Matrix A22 is nonsingular.

The reduced-order observer for singularly perturbed linear systems will be considered

for the following cases :

Case I. All slow variables are measured only, dim y(t) = n1,

y(t) = x1(t)⇒ need only reduced order observer for εx̂2(t)

Case II. All fast variables are measured only, dimy(t) = n2,

y(t) = x2(t)⇒ need only reduced order observer for εx̂1(t)

Case III. Only part of the slow variables vector is measured,

l < n1 < n⇒ n− l > n1 ⇒ y(t) = x11(t), x1(t) =

x11(t)
x12(t)


⇒ need only reduced order observer for x̂12(t), εx̂2(t)

Case IV. Only a part of the fast variable vector is measured,

l < n2 < n⇒ n− l > n2 ⇒ y(t) = x22(t), x2(t) =

x21(t)
x22(t)


⇒ need only reduced order observer for x̂1(t), εx̂21(t)

Case V. Only parts of the slow and fast variables are measured,

y(t) = C1x1(t) + C2x2(t), y(t) =

y1(t)
y2(t)

 =

x12(t)
0

 +

 0

x21(t)


where x11(t), x22(t) ∈ Rl.

Case I) indicates that only the slow variables are measured, so that the corresponding

reduced-order observer has to estimate fast variables which are unmeasurable. Case II)

says that only fast variables are measured which means the reduced-order observer must

estimate the slow variables. These are simplistic situations in which the reduced-order

observer has no singularly perturbed structure. However, there are general cases III)
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and IV) in which dimension of slow state n1 and fast state n2 are not the same as the

dimension of measurement l.

4.2 Case I : All Slow Variables are Measured Only

Case I) says that the measurable states are the slow states x1(t) in the singularly

perturbed linear system defined in (4.1), that is

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = x1(t)

(4.3)

If we differentiate the output variable we will obtain

ẏ(t) = ẋ1 = A11x1(t) +A12x2(t) (4.4)

To construct an observer for x2(t), we use the knowledge that an observer has the

same structure as the system plus the driving feedback term whose role is to reduce the

observation error to zero. We define an observer for x2(t) as (See Appendix A.2 )

ε ˙̂x2(t) = A21x1(t) +A22x̂2(t) +K11(ẏ(t)− ˙̂y(t))

˙̂y(t) = ẋ1 = A11x1(t) +A12x̂2(t)

(4.5)

The observation error dynamics can be obtained from ė2(t) = ẋ2(t)− ˙̂x2(t) as

εė2(t) = (A22 −K11A12)e2(t) (4.6)

To place the reduced-observer eigenvalues in the left half of the complex plane such that

the observation error e2(t)→ 0, we need the following assumption.

Assumption 4.2.1. The pair (AT22, A
T
12) is controllable, which is equivalent to the pair

(A22, A12) is observable.

By applying the change of variables x̂2(t) − 1
εK11y(t) = ẑ2(t) in (4.5), in order to



56

eliminate ẏ(t), we obtain the fast subsystem observer given by

ε ˙̂z2(t) = Az ẑ2(t) +Kzy(t) (4.7)

where [39]

Az = A22 −K11A12,

Kz = A21 −K11A11 +
1

ε
A22K11 −

1

ε
K11A12K11

(4.8)

The estimates of the original system state space variables are now obtained as

ẑ2(t) +
1

ε
K11y(t) = x̂2(t) (4.9)

The corresponding block diagram is presented in Figure 4.1.

Figure 4.1: Case I : Reduced-order observer

4.2.1 Example 4.1

The system matrices are taken from [11] with modification of matrix C as

A =



0 0.4000 0 0

0 0 0.3450 0

0 −5.2400 −4.6500 2.6200

0 0 0 −10.0000


, B =



0

0

0

10


. C =

1 0 0 0

0 1 0 0
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Our goal is to design the reduced-order observer with desired eigenvalues as λdesired =

{−1,−2}. The observability matrix has full rank and therefore the pair (A22, A12) is

observable.

According to the Algorithm from Section 4.2, the following sub-matrices are obtained

Az =

 −6.0000 0.2620

−22.9008 −1.0000

 , K11 =

0 16.0434

0 66.3790

 , Kz =

0 −789.2196

0 −4337.8692


In order to be able to run MATLAB Simulink simulation we had to specify also the

system states initial conditions (these initial conditions are in general not known). We

have chosen them as x1(0) = [2, 2] and x2(0) = [2, 2]. From Appendix A.5, the initial

condition for x̂2(0) is given as

x̂2(0) =

0

0


which results in

ẑ2(0) = x̂2(0)− 1

ε
K11x1(0)) = −1

ε
K11x1(0)) =

 −320.8695

−1327.5804


so that we set z21(0) = [−320.8695] and z22(0) = [−1327.5804] in MATLAB simulation

for the reduced-order observer. At this point, the initial condition for the error e2(0) is

given as

e2(0) = x2(0)− x̂2(0) =

2

2

−
0

0

 =

2

2
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Figure 4.2: Case I : Convergence of the error state e2(t) = x2(t)− x̂2(t)

4.3 Case II : All Fast Variables are Measured Only

Case II) says that the measurable states are the fast states x2(t) in the singularly

perturbed linear system defined in (3.1), that is

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = x2(t)

(4.10)

If we differentiate the output variable we obtain

ẏ(t) = ẋ2 =
1

ε
A21x1(t) +

1

ε
A22x2(t) (4.11)

To construct an observer for x1(t), we use the knowledge that an observer has the

same structure as the system plus the driving feedback term whose role is to reduce the

observation error to zero given as (See Appendix A.3)

˙̂x1(t) = A11x̂1(t) +A12x2(t) +K12(ẏ(t)− ˙̂y(t))

˙̂y(t) = ẋ2(t) =
1

ε
A21x̂1(t) +

1

ε
A22x2(t)

(4.12)

The observation error dynamics can be obtained from ė1(t) = ẋ1(t)− ˙̂x1(t) as

ė1(t) = (A11 −
1

ε
K12A21)e1(t) (4.13)
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To place the reduced-observer eigenvalues in the left half plane, we need the following

assumption

Assumption 4.3.1. The pair (AT11,
1
εA

T
21) is controllable, which is equivalent to the pair

(A11,
1
εA21) is observable.

Using the fact that rank(αM) = rank(M), α 6= 0, it is easy to show that assumption

4.1.3 is equivalent to the following assumption

Assumption 4.3.2. The pair (A11, A21) is observable.

By introducing a change of variables x̂1(t)−K12y(t) = ẑ1(t) (4.12) becomes

˙̂z1(t) = Az ẑ1(t) +Kzy(t) (4.14)

where [39]

Az = A11 −
1

ε
K12A21,

Kz = A12 +A11K12 −
1

ε
K12A22 −

1

ε
K12A21K12

(4.15)

Note that in this case the observer (4.14) is a fast observer given by

ε ˙̂z1(t) = (εA11 −K12A21)ẑ1(t) + (εA12 − εA11K12 −K12A22 −K12A21K12)y(t) (4.16)

The estimates of the original system state space variables are now obtained as

ẑ1(t) +K12y(t) = x̂1(t) (4.17)

The corresponding observer is presented in Figure 4.3.
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Figure 4.3: Case II : Reduced-order Observer

4.3.1 Example 4.2

The system matrices are given by

A =



0.2300 0.4000 0.5000 0.7000

0 0.2340 0.3460 −1.0000

2.3400 −5.2400 −4.6500 2.6200

2.3600 5.6700 3.4500 1.2300


, B =



0

0

0

10


. C =

0 0 1 0

0 0 0 1



Our goal is to design reduced-order observer with the desired eigenvalues, λdesired =

{−5,−7}. The observability matrix has full rank and therefore the pair (A11, A21) is

observable.

According to the Algorithm from Section 4.3, the following sub-matrices are obtained

Az =

−5.0000 0.0000

−0.0000 −7.0000

 , K12 =

 1.1199 1.1056

−0.6659 0.6603

 , Kz =

−3.7063 −9.1223

−0.3671 −4.6898


In order to be able to run MATLAB Simulink simulation we had to specify also the

system states initial conditions (these initial conditions are in general not known). We

have chosen them as x1(0) = [2, 2] and x2(0) = [2, 2]. From Appendix A.5, the initial
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condition for x̂2(0) is given as

x̂1(0) =

0

0


which results in

ẑ1(0) = x̂1(0)−K12x2(0)) = −K12x2(0) =

−4.4512

0.0113


so that we set z11(0) = [−4.4512] and z12(0) = [0.0113] in MATLAB simulation for the

reduced-order observer The initial condition for the error e2(0) is given as

e1(0) = x1(0)− x̂1(0) =

2

2

−
0

0

 =

2

2



Figure 4.4: Case II : Convergence of the error state e1(t) = x1(t)− x̂1(t)

4.4 Case III : Only a Part of Slow Variables is Measured

Case III) says that the measurable states x11(t) are parts of the slow state x1(t) in

the singularly perturbed linear system defined in (3.1), that is

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = x11(t)

(4.18)
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where

x1(t) =

x11(t)
x12(t)

 ,
A11 =

a11 a12

a21 a22

 , A12 =

a13
a23


A21 =

[
a31 a32

]
, A22 =

[
a33

]
(4.19)

and a11 ∈ Rl×l, a12 ∈ Rl×(n1−l), a13 ∈ Rl×n2 , a21 ∈ R(n1−l)×l, a22 ∈ R(n1−l)×(n1−l), a23 ∈

R(n1−l)×n2 , a31 ∈ Rn2×l, a32 ∈ Rn2×(n1−l), a33 ∈ Rn2×n2 , x11(t) ∈ Rl×1,

x12(t) ∈ R(n1−l)×1, x2(t) ∈ Rn2 , b1 ∈ Rl×1, b2 ∈ R(n−l)×1 and y(t) ∈ Rl×1, p(t) ∈

R(n−l)×1. We assume that the slow states x1(t) ∈ Rn1 , which might exceed the dimen-

sion of y(t) in Case III, (4.18).

The system (4.18) with information (4.19) can be represented as

ẋ11(t) = Ar11x11(t) +Ar12x
r
2(t)

ẋr2(t) = Ar21x11(t) +Ar22x
r
2(t)

y(t) = x11(t)

(4.20)

where

xr2(t) =

x12(t)
x2(t)


Ar11 =

[
a11

]
, Ar12 =

[
a12 a13

]
Ar21 =

 a21

1
εa31

 , Ar22 =

 a22 a23

1
εa32

1
εa33


(4.21)

At this point, the above redefined system can be used to design a reduced-order observer.

To construct an observer for xr2(t), we use the knowledge that an observer has the same

structure as the system plus the driving feedback term whose role is to reduce the

estimation error to zero. The reduced-order observer with the feedback information

coming from ẏ(t) is

˙̂xr2(t) = Ar21x11(t) +Ar22x̂
r
2(t) +K2(ẏ(t)− ˙̂y(t)) (4.22)
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If we differentiate the output variable y(t), we obtain

ẏ(t) = ẋ11(t) = Ar11x11(t) +Ar12x
r
2(t)

˙̂y(t) = ẋ11(t) = Ar11x11(t) +Ar12x̂
r
2(t)

(4.23)

The error dynamic is governed by

ė2(t) = ẋr2(t)− ˙̂xr2(t) = (Ar22 −K2A
r
12)e2(t) (4.24)

The following assumption is needed to make e2(t)→ 0 at steady state.

Assumption 4.4.1. The pair (Ar22, A
r
12) is observable.

The change of variable is required to remove ẏ(t) term in (4.22) as

x̂r2(t)−K2y(t) =

x̂12(t)
x̂2(t)

−
 K21

1
εK22(t)

 y(t) = ẑr2(t) =

ẑ12(t)
ẑ2(t)

 (4.25)

Applying this change of variables, (4.22) leads to

˙̂zr2(t) = Arz ẑ
r
2(t) +Kr

zy(t) (4.26)

where

Arz = Ar22 −K2A
r
12 =

 a22 a23

1
εa32

1
εa33

−
K21

K22

[
a12 a13

]
,

Kr
z = Ar21 −K2A

r
11 +Ar22K2 −K2A

r
12K2,

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K21r

K22r


(4.27)

Since K2 is determined by eigenvalue assignment in terms of two matrices Ar22, Ar12, we

can apply the two stage method to overcome numerical ill-conditioning problem coming

from the perturbation parameter presented in matrix Ar22. Here, we are going to use

the duality between the controller and the observer so that we will need to transpose
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matrices Ar22 and K2A
r
12 and consider hypothetical control system, that is

q̇12(t) = aT22q12(t) +
1

ε
aT32q2(t) + aT12û(t)

q̇2(t) = aT23q12(t) +
1

ε
aT33q2(t) + aT13û(t)

(4.28)

where û(t) = −KT
2 q(t) = −

[
KT

21 KT
22

]q12(t)
q2(t)

, and states q12(t), q2(t) are used for

the purpose of design only. Here, the goal is to find a reduced-order observer gain K2

using the two-stage method. To transform (4.28) into an explicit singularly perturbed

form we introduce r12(t) = q12(t) and r2(t) = 1
ε q2(t) which leads to

ṙ12(t) = aT22r12(t) + aT32r2(t) + aT12û(t)

εṙ2(t) = aT23r12(t) + aT33r2(t) + aT13û(t)

(4.29)

The Chang transformation applied to (4.29) produces

ṙs(t) = ATsrrs(t) + cTsrû(t)

εṙf (t) = ATfrrf (t) + cTfrû(t)

(4.30)

where
ATsr = aT22 − LTr aT23, ATfr = aT33 + εaT23L

T
r

CTsr = aT12 − LTr aT13, CTfr = εHT
r a

T
12 + (In2 − εHT

r L
T
r )aT13

(4.31)

The goal is to find the observer gain KT
2 using the two stage feedback design. The

Chang transformation needed for the proposed observer design relates the original state

variables r12(t) and r2(t) and the slow and fast variables rs(t) and rf (t) as follows

rs(t)
rf (t)

 =

I(n1−l) −εLTr

HT
r In2 − εHT

r L
T
r

r12(t)
r2(t)

 = T Tcr

r12(t)
r2(t)

 (4.32)

The state variables r12(t) and r2(t) can be reconstructed from the inverse transformation

as r12(t)
r2(t)

 =

I(n1−l) − εLTr HT
r εLTr

−HT
r In2

rs(t)
rf (t)

 = T−Tcr

rs(t)
rf (t)

 (4.33)
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where LTr and HT
r are the transposed solution given by

0 = ε(aT22 − LTr aT23)LTr + (aT32 − LTr aT33)

0 = εHT
r (aT22 − LTr aT23) + aT23 − (aT33 + εaT23L

T
r )HT

r

(4.34)

We take û(t) for the slow subsystem as

û(t) = −KT
srrs(t) + v(t) (4.35)

Substituting (4.35) into (4.30), (4.30) becomes

ṙs(t) = (ATsr − CTsrKT
sr)rs(t) + CTsrv(t)

εṙf (t) = ATfrrf (t)− CTfrKT
srrs(t) + CTfrv(t)

(4.36)

At this point, it is possible to place the slow observer eigenvalues in the desired locations,

that is

λ(ATsr − CTsrKT
sr) = λ(Asr −KsrCsr) = λdesireds (4.37)

assuming that the following assumption is satisfied.

Assumption 4.4.2. The pair (Asr, Csr) is observable.

Now, the following change of coordinates is introduced

rfnew(t) = Porrs(t) + rf (t) → rf (t) = rfnew(t)− Porrs(t) (4.38)

where Por satisfies the algebraic Sylvester equation

εPor(A
T
sr − CTsrKT

sr)− CTfrKT
sr −ATfrPor = 0 ⇒ Por = O(ε) (4.39)

The unique solution for Por exist for sufficiently small values ε under Assumption 3.2.1.
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The change of variables in (4.38) results in

εṙfnew(t) = εPorṙs(t) + εṙf (t)

= [−ATfrPor − CTfrKT
sr + εPor(A

T
sr − CTsrKT

sr)]rs(t) +ATfrrfnew(t)

+ (CTfr + εPorC
T
sr)v(t)

(4.40)

When the Sylvester equation (4.39) is satisfied, (4.40) becomes

εṙfnew(t) = ATfrrfnew(t) + (CTfr + εPorC
T
sr)v(t) = ATfrrfnew(t) + CTfnewrv(t) (4.41)

The input v(t) can be used to locate the fast subsystem eigenvalues

v(t) = −KT
f2rrfnew(t) (4.42)

At this point, it is possible to locate the fast eigenvalues in the original coordinates at

the desired location (left half complex plane)

λ(Afr −Kf2rCfnewr) = λdesiredf (4.43)

if the following observability assumption is satisfied.

Assumption 4.4.3. The pair (Afr, Cfnewr) is observable.

Substituting (4.35) and (4.42) into (4.30) and (4.41), we obtain

 ṙs(t)

εṙfnew(t)

 =

(Asr −KsrCsr)
T −(Kf2rCsr)

T

0 (Afr −Kf2rCfnewr)
T

 rs(t)

rfnew(t)

 (4.44)

The original coordinates q̂12(t), q̂2(t) and rs(t), rfnew(t) coordinates are related via

 rs(t)

rfnew(t)

 = T T2rT
T
crT

T
1r

q̂12(t)
q̂2(t)

 (4.45)
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where

T T1r =

I(n1−l) 0

0 1
ε In2

 , T T2r =

I(n1−l) 0

Por In2

 (4.46)

with T Tcr defined in (4.32). It is possible to reconstruct q̂12(t), q̂2(t) from rs(t), rfnew(t)

via the inverse transformation

q̂12(t)
q̂2(t)

 = T−T1r T−Tcr T−T2r

 rs(t)

rfnew(t)

 = T−T4r

 rs(t)

rfnew(t)

 (4.47)

From the above relation (4.47), we can construct the state transformation from zs(t),

zfnew(t) to z12(t), z2(t) as follows

ẑ12(t)
ẑ2(t)

 = T4r

 ẑs(t)

ẑfnew(t)

 (4.48)

Applying above the state transformation (4.48) to (4.26), we get

T4r

 ˙̂zs(t)

˙̂zfnew(t)

 = (Ar22 −K2A
r
12)T4r

 ẑs(t)

ẑfnew(t)

 +Kr
zy(t)

 ˙̂zs(t)

˙̂zfnew(t)

 = T−14r (Ar22 −K2A
r
12)T4r

 ẑs(t)

ẑfnew(t)

 + T−14r K
r
zy(t)

(4.49)

Now we can present the observer configuration using the result in (4.44) and the duality

between controller and observer designs

 ˙̂zs(t)

ε ˙̂zfnew(t)

 =

Asr −KsrCsr 0

−εKf2rCsr Afr −Kf2rCfnewr

 ẑs(t)

ẑfnew(t)

+

K∗sr
K∗f2r

 y(t) (4.50)

where K∗sr,
1
εK
∗
f2r can be obtained from T−14r K

r
z . We can obtain a fully decoupled

slow and fast reduced-order observers working in parallel as follows. We change the

coordinates once again given as

ẑfnew2(t) = Po2rẑs(t) + ẑfnew(t) → ẑfnew(t) = ẑfnew2(t)− Po2rẑs(t) (4.51)
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Figure 4.5: Case III : Sequential reduced-order slow and fast observers for the reduced-
order observer

where Po2r satisfies the algebraic Sylvester equation represented by

εPo2r(Asr−KsrCsr)− εKf2rCsr− (Afr−Kf2rCfnewr)Po2r = 0 ⇒ P 0
o2r = O(ε) (4.52)

The linear algebraic equation (4.52) has a unique solution since Afr − Kf2rCfnewr is

an asymptotically stable fast subsystem feedback matrix. The change of variable (4.51)

results in

ε ˙̂zfnew2(t) = εPo2r ˙̂zs(t) + ε ˙̂zfnew(t)

= [εPo2r(Asr −KsrCsr)− εKf2rCsr − (Afr −Kf2rCfnewr)Po2r]ẑs(t)

+ (Afr −Kf2rCfnewr)ẑfnew2(t) +Kf3ry(t)

(4.53)

where

Kf3r = ε(Po2rK
∗
sr +K∗f2r) (4.54)

Hence, if the second algebraic Sylvester equation (4.52) is satisfied, (4.53) becomes

ε ˙̂zfnew2(t) = (Afr −Kf2rCfnewr)ẑfnew2(t) +Kf3ry(t) (4.55)
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At this point, we have the block-diagonalized form of the observer obtained as

˙̂zs(t) = (Asr −KsrCsr)ẑs(t) +K∗sry(t)

ε ˙̂zfnew2(t) = (Afr −Kf2rCfnewr)ẑfnew2(t) +Kf3ry(t)

(4.56)

The original coordinates ẑ12(t), ẑ2(t) and the new coordinates ẑs(t), ẑfnew2(t) are related

via  ẑs(t)

ẑfnew2(t)

 = T3rT
−1
4r

ẑ12(t)
ẑ2(t)

 = T−1r

ẑ12(t)
ẑ2(t)

 (4.57)

where

T3r =

 I 0

Po2r I

 (4.58)

Now, the original coordinates can be reconstructed via

ẑ12(t)
ẑ2(t)

 = T4rT
−1
3r

 ẑs(t)

ẑfnew2(t)

 = Tr

 ẑs(t)

ẑfnew2(t)

 (4.59)

At this point, the original state x̂12(t) and x̂2(t) can be reconstructed in terms of (4.25)

and (4.59) given as ẑ12(t)
ẑ2(t)

 +

 K21

1
εK22

 y(t) =

x̂12(t)
x̂2(t)


ẑr2(t) +K2y(t) = x̂r2(t)

(4.60)

4.4.1 Case III : Reduced-order Observation Error Equations

The error equation given in (4.24) is rewritten as

ėr2(t) = ẋr2(t)− ˙̂xr2(t) =

ẋ12(t)
ẋ2(t)

−
 ˙̂x12(t)

˙̂x2(t)

 =

ė12(t)
ė2(t)


= (Ar22 −K2A

r
12)

e12(t)
e2(t)


(4.61)
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Figure 4.6: Case III : Slow-fast reduced-order parallel observation with the reduced-
order observers of dimensions (n1 − l) and n2, (n1 − l) + n2 = n, (n − l) = order of
unmeasurable states of the system.

Using state transformation defined in (4.59), the original error coordinates e12(t), e2(t)

and the new error coordinates ers(t), erfnew2(t) are related via

e12(t)
e2(t)

 =

x12(t)
x2(t)

−
x̂12(t)
x̂2(t)

 = Tr

 zs(t)

zfnew2(t)

− Tr
 ẑs(t)

x̂fnew2(t)


= Tr

 ers(t)

erfnew2(t)


(4.62)

Applying state transformation (4.62) into (4.61), (4.61) becomes

T−1

ė12(t)
εė2(t)

 = T−1r (Ar22 −K2A
r
12)Tr

 êrs(t)

êrfnew2(t)

 (4.63)

Analytical result for (4.63) is given as

ėrs(t) = Âsre
r
s(t)

εėrfnew2(t) = Âfre
r
fnew2(t)

(4.64)
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where
Âsr = Asr −KsrCsr

Âfr = Afr −Kf2rCfnewr

(4.65)

The convergence of the error dynamics will be obtained under the eigenvalues condition

given as

Reλ(Âsr) < 0, Reλ(Âfr) < 0 (4.66)

4.4.2 Case III : Reduced-order Observer Gain in the Original Coor-

dinates

We will show that the observer in the original coordinates is given by

K2 = (
[
KT
sr +KT

f2rPor KT
f2r

]
T TcrT

T
1r)

T =

T1rTcr(Ksr + P TorKf2r)

T1rTcrKf2r

 =

K21

K22

 (4.67)

where Tcr is the Chang transformation (4.32), Por is the solution of the algebraic

Sylvester equation (4.39). We previously set KT
2 r(t) = v(t) −KT

srrs(t) = −KT
srrs(t) −

KT
f2rrfnew(t) in (4.35) and (4.42), which implies

KT
2 r(t) =

[
KT
sr KT

f2r

] rs(t)

rfnew(t)

 =
[
KT
sr KT

f2r

]In1−l 0

Por In2

rs(t)
rf (t)


=

[
KT
sr +KT

f2rPor KT
f2r

]
T Tcr

r12(t)
r2(t)

 =
[
KT
sr +KT

f2rPor KT
f2r

]
T TcrT

T
1r

q12(t)
q2(t)


(4.68)

Hence
[
KT
sr +KT

f2rPor KT
f2r

]
T TcrT

T
1r represents transpose of the observer gain ma-

trix K2 in the original coordinates. It is important to notify that the observer gain

K2 = f(Ksr,Kf2r) can be obtained using computations with reduced-order matrices

Ksr,Ksr,2. Using this fact, the observer gain matrix K2 is given by (4.67).
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4.4.3 Case III : Design Algorithm for Finding the reduced-order Ob-

server Gain

Given that the linear system (Ar22, A
r
12) is observable, the following two-time scale de-

sign algorithm can be applied for the design of a reduced-order observer for singularly

perturbed linear system.

Step 1. Transpose the first part of matrices from (4.27) and apply the change of variable

to the hypothetical system defined in (4.28).

Step 2. Apply the Chang transformation (4.33) to (4.29) to get (4.30).

Step 3. Obtain the partitioned submatrices ATsr,
1
εA

T
fr, C

T
sr and CTfr.

Step 4. Place the slow observer eigenvalues in the desired location and obtain the slow

observer gain KT
sr using the eigenvalue assignment for λ(Asr −KsrCsr).

Step 5. Solve the reduced-order Sylvester algebraic equation (4.39) to get Por.

Step 6. Place fast observer eigenvalues at the desired location using the eigenvalue as-

signment for 1
ελ(Afr −Kf2rCfnewr) and obtain Kf2r.

Step 7. Find the reduced-order observer gain K2 in the original coordinates using (4.67)

and check λ(Ar22 −K2A
r
12) = λdesireds ∪ λdesiredf .

4.4.4 Example 4.3

Consider a 4th− order system with the system matrices A and C taken from [11]

A =



0 0.4000 0 0

0 0 0.3450 0

0 −5.2400 −4.6500 2.6200

0 0 0 −10.0000


, B =



0

0

0

10


. C =

[
1 0 0 0

]

Our goal is to design independently slow and fast reduced-order observers with desired

eigenvalues λdesireds = {−5} and 1
ελ

desired
f = {−20,−30}. The observability matrix has

full rank and therefore the pair (Ar22, A
r
12) is observable.

According to Steps 1 and 2 of the Algorithm from Section 4.4.3 in Casr III), the following
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sub-matrices are obtained

ATsr =
[
−0.4282

]
,

1

ε
ATfr =

−4.2218 0

2.6200 −10.0000

 ,
CTsr =

[
0.4000

]
, CTfr =

−0.0364

−0.0100

 , CTfnewr =

0.1773

0.0929


Following Step 4 in Section 4.4.3, we place the slow eigenvalues in the original coordi-

nates at {−5} via the slow feedback gain matrix

KT
sr =

[
11.4294

]
In Step 3 of the algorithm, we solve the Sylvester algebraic equation and obtain matrix

Por as

Por =

5.3426

2.5719

 , Po2r =

0.1076

0.2295


In Step 4 of the algorithm, we place fast observer’s eigenvalues at the desired location

{−200,−300}. The fast observer gain KT
f2 is given by

KT
f2r =

[
165.1035 −276.5792

]
,

1

ε
Kf3 =

−808.9746

1391.2645


Step 5. Using (4.67), matrix K2 is obtained as

K2 = 103 ×


0.100874999999999

1.525831159420266

−2.765792676180949


It can be checked that λ(Ar22 −K2A

r
12) in the original coordinate are given by

λ(Ar22 −K2A
r
12) =


−4.999999999999998

−19.999999999999979

−29.999999999999709
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which is the same (with the accuracy of O(10−14)) as we placed the slow and fast eigen-

values using the two time scale decomposition designs. Figures 4.13 present the slow

and fast observation errors. In order to be able to run MATLAB Simulink simulation

we had to specify also the system states initial conditions (these initial conditions are

in general not known). We have chosen them as x1(0) = [2, 2] and x2(0) = [2, 2]. From

Appendix A.7, the initial condition for x̂r2(0) is given as

x̂r2(0) =

x12(0)

x2(0)

 =


0

0

0


which results in

ẑr2(0) = x̂r2(0)−K2x11(0) = −K2x11(0) =


−201.7499

−3051.6623

5531.5853


Using (4.59), we obtain ẑs(0), ẑfnew2(0) given as

 ẑs(0)

ẑfnew2(0)

 = T−1r

ẑ12(0)

ẑ2(0)

 =


−22.8589

−332.6667

547.9104


so that zs(0) = [−22.8589] and zfnew2(0) = [−332.6667, 547.9104] in MATLAB simu-

lation for the reduced-order observer. At this point, the initial condition for the errors

e12(0), e2(0) are given as

e12(0)

e2(0)

 =

x12(0)

x2(0)

−
x̂12(0)

x̂2(0)

 =


2

2

2
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Figure 4.7: Case III : Convergence of the slow state observation error e12(t) = x12(t)−
x̂12(t) and the fast state observation error e2(t) = x2(t)− x̂2(t) for the parallel structure
from Fig. 4.6

4.5 Case IV: Only a Part of Fast Variables is Measured

Case IV says that the measurable states x22(t) are parts of fast states x2(t).

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = Ilx22(t)

(4.69)

where

x2(t) =

x21(t)
x22(t)

 ,
A11 =

[
a11

]
, A12 =

[
a12 a13

]
A21 =

a21
a31

 , A22 =

a22 a23

a32 a33


(4.70)

with a33 ∈ Rl×l, a32 ∈ Rl×(n2−l), a31 ∈ Rl×n1 , a23 ∈ R(n2−l)×l, a22 ∈ R(n2−l)×(n2−l),

a21 ∈ R(n2−l)×n1 , a13 ∈ Rn1×l, a12 ∈ Rn1×(n2−l), a11 ∈ Rn1×n1 , x22(t) ∈ Rl×1,

x21(t) ∈ Rn2−l×1, x1(t) ∈ Rn1 , y(t) ∈ Rl×1, and p(t) ∈ R(n−l)×1.

We can also construct another form of a linear system to design the reduced-order
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observer
ẋr1(t) = Ar11x

r
1(t) +Ar12x22(t)

ẋ22(t) = Ar21x
r
1(t) +Ar22x22(t)

y(t) = Ilx22(t)

(4.71)

where

xr1(t) =

 x1(t)
x21(t)


Ar11 =

 a11 a12

1
εa21

1
εa22

 , Ar12 =

 a13

1
εa23


Ar21 =

[
1
εa31

1
εa32

]
, Ar22 =

[
1
εa33

]
(4.72)

At this point, the above redefined system (4.71) can be used to design the reduced-order

observer. To construct an observer for xr2(t), we use the knowledge that an observer has

the same structure as the system plus the driving feedback term whose role is to reduce

the estimation error to zero. The reduced-order observer with the feedback information

coming from ẏ(t) is

˙̂xr1(t) = Ar11x̂
r
1(t) +Ar12x22(t) +K3(ẏ(t)− ˙̂y(t)) (4.73)

If we differentiate the output variable y(t), we obtain

ẏ(t) = ẋ22(t) = Ar21x
r
1(t) +Ar22x22(t)

˙̂y(t) = ẋ22(t) = Ar21x̂
r
1(t) +Ar22x22(t)

(4.74)

The error dynamic is governed by

ė1(t) = ẋr1(t)− ˙̂xr1(t) = (Ar11 −K3A
r
21)ė1(t) (4.75)

The change of variable is required to remove ẏ(t) and ˙̂y(t) terms in (4.74) given by

x̂r1(t)−K3y(t) =

 x̂1(t)
x̂21(t)

−
K31

K32

 y(t) = ẑr1(t) =

 ẑ1(t)
ẑ21(t)

 (4.76)
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Applying the change of variable (4.76), (4.73) leads to

˙̂zr1(t) = Arz,2ẑ
r
1(t) +Kr

z,2y(t) (4.77)

where

Arz,2 = Ar11 −K3A
r
21 =

 a11 a12

1
εa21

1
εa22

−
K31

K32

[
1
εa31

1
εa32

]
,

Kr
z,2 = Ar12 −K3A

r
22 +Ar11K3 −K3A

r
21K3

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K21r

K22r


(4.78)

Since K3 is determined by the eigenvalue assignment in terms of two matrices Ar11, Ar21,

we can apply the two stage method to overcome numerical ill-conditioning problem

coming from the singular perturbation parameter in matrix Ar11.

Here, we are going to use the duality between the controller and the observer so that it

will be needed to transpose matrices Ar22 and K2A
r
12 and consider a hypothetical control

system, that is

q̇1(t) = aT11q1(t) +
1

ε
aT21q21(t) +

1

ε
aT31û(t)

q̇21(t) = aT12q1(t) +
1

ε
aT22q21(t) +

1

ε
aT32û(t)

(4.79)

where û(t) = −KT
3 q(t) = −

[
KT

31 KT
32

] q1(t)
q21(t)

. States q1(t), q21(t) are used for the

purpose of design only. Here, the goal is to find a reduced-order observer gain K3 using

the two-stage method. To transform (4.79) into an explicit singularly perturbed form,

we introduce r1(t) = q1(t) and r21(t) = 1
ε q21(t) which leads to

ṙ1(t) = aT11r1(t) + aT21r21(t) +
1

ε
aT31û(t)

εṙ21(t) = aT12r1(t) + aT22r21(t) +
1

ε
aT32û(t)

(4.80)
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The Chang transformation applied to (4.80) produces

ṙs,2(t) = ATsr,2rs,2(t) + cTsr,2û(t)

εṙf,2(t) = ATfr,2rf,2(t) + cTfr,2û(t)

(4.81)

where

ATsr,2 = aT11 − LTr,2aT12, ATfr,2 = aT22 + εaT12L
T
r,2

CTsr,2 =
1

ε
aT31 −

1

ε
LTr,2a

T
32, c

T
fr,2 = HT

r,2a
T
31 +

1

ε
(I(n2−l) − εH

T
r,2L

T
r,2)a

T
32

(4.82)

The goal is to find the observer gain K3 using the two stage feedback design. The

Chang transformation needed for the proposed observer design relates the original state

variables r1(t) and r21(t) and the slow and fast variables rs,2(t) and rf,2(t) as follows

rs,2(t)
rf,2(t)

 =

 In1 −εLTr,2

HT
r,2 I(n2−l) − εHT

r,2L
T
r,2

 r1(t)
r21(t)

 = T Tcr,2

 r1(t)
r21(t)

 (4.83)

The state variables r1(t) and r21(t) can be reconstructed from the inverse transformation

as  r1(t)
r21(t)

 =

In1 − εLTr,2HT
r,2 εLTr,2

−HT
r,2 I(n2−l)

rs,2(t)
rf,2(t)

 = T−Tcr,2

rs,2(t)
rf,2(t)

 (4.84)

where LTr,2 and HT
r,2 are the solution given as

0 = ε(aT22 − LTr,2aT23)LTr,2 + (aT32 − LTr,2aT33)

0 = εHT
r,2(a

T
22 − LTr,2aT23) + aT23 − (aT33 + εaT23L

T
r,2)H

T
r,2

(4.85)

We take û(t) for the slow subsystem as

û(t) = −KT
sr,2rs,2(t) + v(t) (4.86)
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Substituting (4.86) to (4.81), (4.81) becomes

ṙs,2(t) = (ATsr,2 − CTsr,2KT
sr,2)rs,2(t) + CTsr,2v(t)

εṙf,2(t) = ATfr,2rf,2(t)− εCTfr,2KT
sr,2rs,2(t) + εCTfr,2v(t)

(4.87)

At this point, it is possible to place the slow observer eigenvalues in the desired locations,

that is

λ(ATsr,2 − CTsr,2KT
sr,2) = λ(Asr,2 −Ksr,2Csr,2) = λdesireds (4.88)

assuming that the following assumption is satisfied.

Assumption 4.5.1. The pair (Asr,2, Csr,2) is observable.

Now, the following change of coordinates is introduced

rfnew,2(t) = Por,2rs,2(t) + rf,2(t) → rf,2(t) = rfnew,2(t)− Por,2rs,2(t) (4.89)

where Por,2 satisfies the algebraic Sylvester equation

εPor,2(A
T
sr,2 − CTsr,2KT

sr,2)− CTfr,2KT
sr,2 −ATfr,2Por,2 = 0 ⇒ Por,2 = O(1) (4.90)

The unique solution for Por,2 exist for sufficiently small values of ε under Assumption

3.2.1. The change of variables in (4.89) results in

εṙfnew,2(t) = εPor,2ṙs,2(t) + εṙf,2(t)

= [−ATfr,2Por,2 − CTfr,2KT
sr,2 + εPor,2(A

T
sr,2 − CTsr,2KT

sr,2)]rs,2(t) +ATfr,2rfnew,2(t)

+ (CTfr,2 + εPor,2C
T
sr,2)v(t)

(4.91)

When the Sylvester equation (4.90) is satisfied, (4.91) becomes

εṙfnew,2(t) = ATfr,2rfnew,2(t) + (CTfr,2 + εPor,2C
T
sr,2)v(t) = ATfr,2rfnew,2(t) + CTfnewr,2v(t)

(4.92)
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The input v(t) can be used to locate the fast subsystem eigenvalues

v(t) = −KT
f2r,2rfnew,2(t) (4.93)

At this point, it is possible to locate the fast eigenvalues in the original coordinates at

the desired location as

λ(Afr,2 −Kf2r,2Cfnewr,2) = λdesiredf (4.94)

If the following observability assumption is satisfied.

Assumption 4.5.2. The pair (Afr,2, Cfnewr,2) is observable.

Substituting (4.86) and (4.93) into (4.87) and (4.92), we obtain

 ṙs,2(t)

εṙfnew,2(t)

 =

(Asr,2 −Ksr,2Csr,2)
T −(Kf2r,2Csr,2)

T

0 (Afr,2 −Kf2r,2Cfnewr,2)
T

 rs,2(t)

rfnew,2(t)


(4.95)

The original coordinates q̂1(t), q̂21(t) and rs,2(t), rfnew,2(t) coordinates are related via

 rs,2(t)

rfnew,2(t)

 = T T2r,2T
T
cr,2T

T
1r,2

 q̂1(t)
q̂21(t)

 (4.96)

where

T T1r,2 =

In1 0

0 1
ε I(n2−l)

 , T T2r,2 =

 In1 0

Por,2 I(n2−l)

 (4.97)

with T Tcr,2 defined in (4.83). It is possible to reconstruct q̂1(t), q̂21(t) from rs,2(t),

rfnew,2(t) via the inverse transformation

 q̂1(t)
q̂21(t)

 = T−T1r,2T
−T
cr,2T

−T
2r,2

 rs,2(t)

rfnew,2(t)

 = T−T4r,2

 rs,2(t)

rfnew,2(t)

 (4.98)

From the above relation (4.98), we can construct the state transformation from zs,2(t),
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zfnew,2(t) to q1(t), q21(t) as follows

 ẑ1(t)
ẑ21(t)

 = T4r,2

 ẑs,2(t)

ẑfnew,2(t)

 (4.99)

Applying the state transformation (4.99) to (4.77), we get

T4r,2

 ˙̂zs,2(t)

˙̂zfnew,2(t)

 = (Ar11 −K3A
r
21)T4r,2

 ẑs,2(t)

ẑfnew,2(t)

 +Kr
zy(t)

 ˙̂zs,2(t)

˙̂zfnew,2(t)

 = T−14r,2(A
r
11 −K3A

r
21)T4r,2

 ẑs,2(t)

ẑfnew,2(t)

 + T−14r,2K
r
z,2y(t)

(4.100)

Now we can present the observer configuration using the result in (4.95) and the duality

between the controller and the observer designs

 ˙̂zs,2(t)

ε ˙̂zfnew,2(t)

 =

Asr,2 −Ksr,2Csr,2 0

−εKf2r,2Csr,2 Afr,2 −Kf2r,2Cfnewr,2

 ẑs,2(t)

ẑfnew,2(t)


+

K∗sr,2
K∗f2r,2

 y(t)

(4.101)

where K∗sr,2,
1
εK
∗
f2r,2 can be obtained from T−14r,2K

r
z,2

r. We can obtain a fully decoupled

Figure 4.8: Case IV : Sequential reduced-order slow and fast observers for the reduced-
order observer
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slow and fast reduced-order observers working in parallel as follows. We change the

coordinates once again given as

ẑfnew2,2(t) = Po2r,2ẑs,2(t)+ẑfnew,2(t) → ẑfnew,2(t) = ẑfnew2,2(t)−Po2r,2ẑs,2(t) (4.102)

where Po2r,2 satisfies the algebraic Sylvester equation represented by

εPo2r,2(Asr,2 −Ksr,2Csr,2)− εKf2r,2Csr,2 − (Afr,2 −Kf2r,2Cfnewr,2)Po2r,2 = 0

⇒ P 0
o2r,2 = O(1)

(4.103)

The linear algebraic equation (4.103) has a unique solution since Afr,2−Kf2r,2Cfnewr,2

is an asymptotically stable fast subsystem feedback matrix. The change of variable

(4.102) results in

ε ˙̂zfnew2,2(t) = εPo2r,2 ˙̂zs,2(t) + ε ˙̂zfnew2,2(t)

= [εPo2r,2(Asr,2 −Ksr,2Csr,2)− εKf2r,2Csr,2

− (Afr,2 −Kf2r,2Cfnewr,2)Po2r,2]ẑs,2(t)

+ (Afr,2 −Kf2r,2Cfnewr,2)ẑfnew2,2(t) +Kf3r,2y(t)

(4.104)

where

Kf3r,2 = ε(Po2r,2Ksr,2 +Kf2r,2) (4.105)

Hence, if the second algebraic Sylvester equation (4.103) is satisfied, (4.104) becomes

ε ˙̂zfnew2,2(t) = (Afr,2 −Kf2r,2Cfnewr,2)ẑfnew2,2(t) +Kf3r,2y(t) (4.106)

At this point, we have the block-diagonalized form of the observer obtained as

˙̂zs,2(t) = (Asr,2 −Ksr,2Csr,2)ẑs,2(t) +Ksr,2y(t)

ε ˙̂zfnew2,2(t) = (Afr,2 −Kf2r,2Cfnewr,2)ẑfnew2,2(t) +Kf3r,2y(t)

(4.107)

The original coordinates ẑ1(t), ẑ21(t) and the new coordinates ẑs,2(t), ẑfnew2,2(t) are
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related via  ẑs,2(t)

ẑfnew2,2(t)

 = T3r,2T
−1
4r,2

 ẑ1(t)
ẑ21(t)

 = T−1r,2

 ẑ1(t)
ẑ21(t)

 (4.108)

where

T3r,2 =

 In1 0

Po2r,2 In2−l

 (4.109)

Now, the original coordinates can be reconstructed via

 ẑ1(t)
ẑ21(t)

 = T4r,2T
−1
3r,2

 ẑs,2(t)

ẑfnew2,2(t)

 = Tr,2

 ẑs,2(t)

ẑfnew2,2(t)

 (4.110)

At this point, the original state x̂1(t) and x̂21(t) can be reconstructed in terms of (4.76)

and (4.110) given as  ẑ1(t)
ẑ21(t)

 +

K31

K32

 y(t) =

 x̂1(t)
x̂21(t)


ẑr1 +K3y(t) = x̂r1(t)

(4.111)

Figure 4.9: Case IV : Slow-fast reduced-order parallel observation with the reduced-
order observers of dimensions n1 and (n2 − l), n1 + (n2 − l) = (n− l), (n− l) = order
of unmeasurable states of the system.



84

4.5.1 Case IV : Reduced-order Observation Error Equations

The error equation given in (4.75) is rewritten as

ėr1(t) = ẋr1(t)− ˙̂xr1(t) =

 ẋ1(t)
ẋ21(t)

−
 ˙̂x1(t)

˙̂x21(t)

 =

 ė1(t)
ė21(t)

 = (Ar11 −K3A
r
21)

 e1(t)
e21(t)


(4.112)

Using the state transformation defined in (4.110), the original error coordinates

e1(t), e21(t) and the new error coordinates ers,2(t), erfnew2,2(t) are related via

 e1(t)
e21(t)

 =

 x1(t)
x21(t)

−
 x̂1(t)
x̂21(t)

 = Tr,2

 zs,2(t)

zfnew2,2(t)

− Tr,2
 ẑs,2(t)

x̂fnew2,2(t)


= Tr,2

 ers,2(t)

erfnew2,2(t)


(4.113)

Applying the state transformation (4.113), (4.112) becomes

T−1r,2

 ė1(t)

εė21(t)

 = T−1r,2 (Ar11 −K3A
r
21)Tr,2

 êrs,2(t)

êrfnew2,2(t)

 (4.114)

Analytical result for (4.114) is given as

ėrs,2(t) = Âsr,2e
r
s,2(t)

εėrfnew2,2(t) = Âfr,2e
r
fnew2,2(t)

(4.115)

where
Âsr,2 = Asr,2 −Ksr,2Csr,2

Âfr,2 = Afr,2 −Kf2r,2Cfnewr,2

(4.116)

The convergence of the error dynamics will be obtained under the eigenvalues condition

given as

Reλ(Âsr,2) < 0, Reλ(Âfr,2) < 0 (4.117)
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4.5.2 Case IV : Reduced-order Observer Gain in the Original Coor-

dinates

We will show that the observer in the original coordinates is given by

K3 = (
[
KT
sr,2 +KT

f2r,2Por,2 KT
f2r,2

]
T Tcr,2T

T
1r,2)

T =

T1r,2Tcr,2(Ksr,2 + P Tor,2Kf2r,2)

T1r,2Tcr,2Kf2r,2


=

K31

K32


(4.118)

where Tcr,2 is the Chang transformation (4.83), Por,2 is the solution of the algebraic

Sylvester equation (4.103). We previously set KT
3 r(t) = v(t)−KT

sr,2rs,2(t)

= −KT
sr,2rs,2(t)−KT

f2r,2rfnew,2(t) in (4.86) and (4.93) , which implies

KT
3 r(t) =

[
KT
sr,2 KT

f2r,2

] rs,2(t)

rfnew,2(t)

 =
[
KT
sr,2 KT

f2r,2

] In1 0

Por,2 I(n2−l)

rs,2(t)
rf,2(t)


=

[
KT
sr,2 +KT

f2r,2Por,2 KT
f2r,2

]
T Tcr,2

 r1(t)
r21(t)


=

[
KT
sr,2 +KT

f2r,2Por,2 KT
f2r,2

]
T Tcr,2T

T
1r,2

 q1(t)
q21(t)


(4.119)

Hence
[
KT
sr,2 +KT

f2r,2Por,2 KT
f2r,2

]
T Tcr,2T

T
1r,2 represents transpose of the observer gain

matrix K3 in the original coordinates. It is important to notice that the observer gain

K3 = f(Ksr,2,Kf2r,2) can be obtained using computations with reduced order matrices

Kf2r,Kf2r,2. From this fact, the observer gain matrix K3 is given by (4.118).

4.5.3 Case IV : Design Algorithm for Finding the Reduced-order

Observer Gain

Given that the linear system (Ar11, A
r
21) is observable, the following two-time scale design

algorithm can be applied for the design of a reduced-order observer for a singularly

perturbed system.
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Step 1. Transpose matrices in (4.77) and apply the change of variable to the hypothetical

system defined in (4.79).

Step 2. Apply the Chang transformation (4.83) to (4.80) to get (4.81).

Step 3. Obtain the partitioned sub-matrices ATsr2,
1
εA

T
fr2, C

T
sr2 and CTfr2.

Step 4. Place the slow observer eigenvalues in the desired location and obtain the slow

observer gain KT
sr2 using the eigenvalue assignment for λ(Asr2 −Ksr2Csr2).

Step 5. Solve the reduced-order Sylvester algebraic equation (4.90) to get Por2.

Step 6. Place fast observer eigenvalues at the desired location using the eigenvalue

assignment for 1
ελ(Afr2 −Kf3rCfnewr2) and obtain Kf3r.

Step 7. Find the reduced-order observer gain K3 in the original coordinates using (4.67)

and check λ(Ar11 −K3A
r
21) = λdesireds ∪ λdesiredf .

4.5.4 Example 4.4

Consider a 4th− order system with the system matrices A and C given as

A =



0 0 0 −1.0000

0 −0.5240 −0.4650 0.2620

−6.5400 −5.7800 −3.4500 0

0 −4.0000 0 0


, B =



0

0

0

10


. C =

[
0 0 0 1

]

Our goal is to design independently slow and fast reduced-order observers with desired

λdesireds = {−1,−2} and 1
ελ

desired
f = {−10}. The observability matrix has full rank and

therefore the pair (Ar22, A
r
12) is observable.

According to Steps 1 and 2 of the Algorithm from Section 4.5.3 in Case IV, the following

sub-matrices are obtained

ATsr,2 =

0 0.7268

0 0.2103

 , 1

ε
ATfr,2 =

[
−4.184

]
,

CTsr,2 =

 0

−4

 , CTfr,2 =
[
−0.4232

]
, CTfnewr,2 =

[
−1.1190

]



87

Following Step 4 in Case IV, we place the slow eigenvalues in the original coordinates

at {−50,−60} via the slow feedback gain matrix

KT
sr,2 =

[
−0.6880 −0.8026

]
In Step 3 of the algorithm, we solve the Sylvester algebraic equation and obtain matrix

Por as

Por,2 =
[
1.8397 1.7393

]
, Po2r,2 =

[
−0.0210 0.2887

]
In Step 4 of the algorithm, we place fast observer’s eigenvalues at the desired location

{−28,−32}. The fast observer gain KT
f2 is given by

KT
f2r,2 =

[
−0.5197

]
,

1

ε
Kf3r,2 =

[
0.7441

]

Step 5. Using (4.67), matrix K2 is obtained as

K3 = 104 ×


−1.6441

−2.2565

0.9356


It can be checked that λ(Ar22 −K2A

r
12) in the original coordinate are given by

λ(Ar11 −K3A
r
21) =


−0.999999999996988

−2.000000000003534

−9.999999999999481


which is the same (with the accuracy of O(10−14)) as we placed the slow and fast eigen-

values using the two time scale decomposition designs. Figures 4.10 presents the slow

and fast observation errors. In order to be able to run MATLAB Simulink simulation

we had to specify also the system states initial conditions (these initial conditions are

in general not known). We have chosen them as x1(0) = [2, 2] and x2(0) = [2, 2]. From
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Appendix A.7, the initial condition for x̂r1(0) is given as

x̂r1(0) =

 x1(0)

x21(0)

 =


0

0

0


which results in

ẑr1(0) = x̂r1(0)−K3x22(0) = −K3x22(0) =


3.2883

4.5130

−1.8712


Using (4.110), we obtain ẑs,2(0), ẑfnew2,2(0) as

 ẑs,2(0)

ẑfnew2,2(0)

 = T−1r,2

 ẑ1(0)

ẑ21(0)

 =


1.3759

1.6051

1.4741


so that zs,2(0) = [1.3759, 1.6051] and zfnew2(0) = [1.4741] in MATLAB simulation for

the reduced-order observer. At this point, the initial condition for the errors e12(0), e2(0)

are given as  e1(0)

e21(0)

 =

 x1(0)

x21(0)

−
 x̂1(0)

x̂21(0)

 =


2

2

2



4.6 Case V : Only a Part of Slow and Fast Variables are Measured

Case V) says that the measurable states x11(t), x21(t) are parts of the slow state x1(t)

and the fast state x2(t) in the singularly perturbed linear system defined in (3.1), that
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Figure 4.10: Case IV : Convergence of the slow state observation error e1(t) = x1(t)−
x̂1(t) and the fast state observation error e21(t) = x21(t)−x̂21(t) for the parallel structure
from Fig. 4.9

is
ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) =

I 0 0 0

0 0 I 0




x11(t)

x12(t)

x21(t)

x22(t)


=

x11(t)
x21(t)

 =

y1(t)
y2(t)


(4.120)

where

x1(t) =

x11(t)
x12(t)

 , x2(t) =

x21(t)
x22(t)


A11 =

a∗11 a∗12

a∗21 a∗22

 , A12 =

a∗13 a∗14

a∗23 a∗24


A21 =

a∗31 a∗32

a∗41 a∗42

 , A22 =

a∗33 a∗34

a∗43 a∗44


(4.121)

where x11(t) ∈ Rl1 , x12(t) ∈ R(n1−l1), x21(t) ∈ Rl2 , x22(t) ∈ R(n2−l1) and a11 ∈ Rl1×l1 ,

a12 ∈ Rl1×(n1−l1), a13 ∈ Rl1×l2 , a14 ∈ Rl1×(n2−l2), a21 ∈ R(n1−l1)×l1 ,

a22 ∈ R(n1−l1)×(n1−l1), a23 ∈ R(n1−l1)×l2 , a24 ∈ R(n1−l1)×(n2−l2), a31 ∈ Rl2×l1 ,

a32 ∈ Rl2×(n1−l1), a33 ∈ Rl2×l2 , a34 ∈ Rl2×(n2−l2), a41 ∈ R(n2−l2)×l1 ,

a42 ∈ R(n2−l2)×(n1−l1), a43 ∈ R(n2−l2)×l2 , a44 ∈ R(n2−l2)×(n2−l2),
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y(t) ∈ R(l1+l2), and p(t) ∈ R(n−l)×1.

We assume x11(t) and x21(t) are directly measured and present in y(t).

The system (4.120) with information (4.121) can be redefined as

ẋm(t) = Ar1xm(t) +Ar2xu(t)

ẋu(t) = Ar3xm(t) +Ar4xu(t)

y(t) =

I 0 0 0

0 0 I 0




x11(t)

x12(t)

x21(t)

x22(t)


=

x11(t)
x21(t)

 =

y1(t)
y2(t)


(4.122)

where

xm(t) =

x11(t)
x21(t)

 , xu(t) =

x12(t)
x22(t)


Ar1 =

 a∗11 a∗13

1
εa
∗
31

1
εa
∗
33

 , Ar2 =

 a∗12 a∗14

1
εa
∗
32

1
εa
∗
34


Ar3 =

 a∗21 a∗23

1
εa
∗
41

1
εa
∗
43

 , Ar4 =

 a∗22 a∗24

1
εa
∗
42

1
εa
∗
44


(4.123)

where xm(t) is the measurable states and xu(t) is the unmeasurable states. Ar1, Ar3 are

elements in (4.121) relevant to the measurable states, Ar2, Ar4 are elements in (4.121)

relevant to the unmeasurable states.

At this point, the above redefined system can be used to design a reduced-order observer.

To construct an observer for xu(t), we use the knowledge that an observer has the same

structure as the system plus the driving feedback term whose role is to reduced the

estimation error to zero. The reduced-order observer with the feedback information

coming from ẏ(t) is

˙̂xu(t) = Ar3xm(t) +Ar4x̂u(t) +K4(ẏ(t)− ˙̂y(t)) (4.124)
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If we differentiate the output variable y(t), we obtain

ẏ(t) = ẋm(t) = Ar1xm(t) +Ar2xu(t)

˙̂y(t) = ẋm(t) = Ar1xm(t) +Ar2x̂u(t)

(4.125)

The error dynamic is governed by

ėu(t) = ẋu(t)− ˙̂xu(t) = (Ar4 −K4A
r
2)eu(t) (4.126)

The following assumption is needed.

Assumption 4.6.1. The pair (Ar4, A
r
2) is observable.

The change of variable is required to remove ẏ(t) terms in (4.124)

x̂u(t)−K4y(t) =

x̂12(t)
x̂22(t)

−
 K41

K42(t)

 y(t) = ẑu(t) =

ẑ12(t)
ẑ22(t)

 (4.127)

Applying the change of variable (4.25) into (4.22), (4.22) leads to

˙̂zu(t) = Arz,3ẑu(t) +Kr
z,3y(t) (4.128)

where

Arz,3 = Ar4 −K4A
r
2 =

 a∗22 a∗24

1
εa
∗
42

1
εa
∗
44

−
K41

K42

 a∗12 a∗14

1
εa
∗
32

1
εa
∗
34

 ,
Kr
z,3 = Ar3 −K4A

r
1 +Ar4K4 −K4A

r
2K4

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K41r

K42r


(4.129)

Since K4 is determined by eigenvalue assignment in terms of two matrices Ar2, Ar4, we

can apply the two-stage method to overcome numerical ill-conditioning problem coming

from the small singular perturbation parameter presented in matrix Arz,3. Here, we

are going to use the duality between the controller and the observer so that it will be
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needed to transpose matrices Ar4 and K4A
r
2 and the considered hypothetical control

system, that is

q̇12(t) = a∗22
T q12(t) +

1

ε
a∗42

T q22(t) +
[
a∗12

T 1
εa
∗
32
T
]
û(t)

q̇22(t) = a∗24
T q12(t) +

1

ε
a∗44

T q22(t) +
[
a∗14

T 1
εa
∗
34
T
]
û(t)

(4.130)

where û(t) = −KT
4 q(t) = −

[
KT

41 KT
42

]q12(t)
q22(t)

 . States q12(t), q22(t) are used for the

purpose of design only. Here, the goal is to find a reduced-order observer gain K4 using

the two-stage method. To transform (4.130) into an explicit singularly perturbed form

we introduce r12(t) = q12(t) and r22(t) = 1
ε q22(t) which leads to

ṙ12(t) = a∗22
T r12(t) + a∗42

T r22(t) +
[
a∗12

T 1
εa
∗
32
T
]
û(t)

εṙ22(t) = a∗24
T r12(t) + a∗44

T r22(t) +
[
a∗14

T 1
εa
∗
34
T
]
û(t)

(4.131)

The Chang transformation applied to (4.131) produces

ṙs,3(t) = ATsr,3rs,3(t) + CTsr,3û(t)

εṙf,3(t) = ATfr,3rf,3(t) + CTfr,3û(t)

(4.132)

where

CTsr,3 =
[
CTsr,31 CTsr,32

]
, CTfr,3 =

[
CTfr,31 CTfr,32

]
(4.133)

and
ATsr,3 = a∗22

T − LTr,3a∗24T , ATfr,3 = a∗44
T + εa∗24

TLTr,3

CTsr,31 = a∗12
T − LTr,3a∗14T , CTsr,32 =

1

ε
a∗32

T − LTr,3
1

ε
a∗34

T

CTfr,31 = εHT
r,3a
∗
12
T + (I(n2−l2) − εH

T
r,3L

T
r,3)a

∗
14
T ,

CTfr,32 = εHT
r,3

1

ε
a∗32

T + (I(n2−l2) − εH
T
r,3L

T
r,3)

1

ε
a∗34

T

(4.134)

The goal is to find the observer gain KT
4 using the two stage feedback design. The

Chang transformation needed for the proposed observer design relates the original state
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variables r12(t) and r22(t) and the slow and fast variables rs,3(t) and rf,3(t) as follows

rs,3(t)
rf,3(t)

 =

I(n1−l1) −εLTr,3

HT
r,3 I(n2−l2) − εHT

r,3L
T
r,3

r12(t)
r22(t)

 = T Tcr,3

r12(t)
r22(t)

 (4.135)

The state variables r12(t) and r22(t) can be reconstructed from the inverse transforma-

tion as

r12(t)
r22(t)

 =

I(n1−l1) − εLTr,3HT
r,3 εLTr,3

−HT
r,3 I(n2−l2)

rs,3(t)
rf,3(t)

 = T−Tcr,3

rs,3(t)
rf,3(t)

 (4.136)

where LTr,3 and HT
r,3 are the transposed solutions obtained from

0 = ε(a∗22
T − LTr,3a∗24T )LTr,3 + (a∗42

T − LTr,3a∗44T )

0 = εHT
r,3(a

∗
22
T − LTr,3a∗24T ) + a∗24

T − (a∗44
T + εa∗24

TLTr,3)H
T
r,3

(4.137)

We take û(t) for the slow subsystem as

û(t) = −KT
sr,3rs,3(t) + v(t) (4.138)

where

KT
sr,3 =

KT
sr,31

KT
sr,32

 (4.139)

Substituting (4.138) to (4.133) produces

ṙs,3(t) = (ATsr,3 − CTsr,3KT
sr,3)rs,3(t) + CTsr,3v(t)

εṙf,3(t) = ATfr,3rf,3(t)− Cfr,3KT
sr,3rs,3(t) + Cfr,3v(t)

(4.140)

At this point, it is possible to place the slow observer eigenvalues in the desired locations,

that is

λ(ATsr,3 − CTsr,3KT
sr,3) = λ(Asr,3 −Ksr,3Csr,3) = λdesireds (4.141)

assuming that the following assumption is satisfied.

Assumption 4.6.2. The pair (Asr,3, Csr,3) is observable.
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Now, the following change of coordinates is introduced

rfnew,3(t) = Por,3rs,3(t) + rf,3(t) → rf,3(t) = rfnew,3(t)− Por,3rs,3(t) (4.142)

where Por,3 satisfies the algebraic Sylvester equation

εPor,3(A
T
sr,3 − CTsr,3KT

sr,3)− CTfr,3KT
sr,3 −ATfr,3Por,3 = 0

⇒ Por,3 = O(ε)

(4.143)

The unique solution for Por,3 exist for sufficiently small values of ε under Assumption

3.2.1. The change of variables in (4.142) results in

εṙfnew,3(t) = εPor,3ṙs,3(t) + εṙf,3(t)

= [−ATfr,3Por,3 − CTfr,3KT
sr,3 + εPor,3(A

T
sr,3 − CTsr,3KT

sr,3)]rs,3(t)

+ATfr,3rfnew,3(t) + (CTfr,3 + εPor,3C
T
sr,3)v(t)

(4.144)

When the Sylvester equation (4.143) is satisfied, (4.144) becomes

εṙfnew,3(t) = ATfr,3rfnew,3(t) + (CTfr,3 + εPor,3C
T
sr,3)v(t)

= ATfr,3rfnew,3(t) + CTfnewr,3v(t)

(4.145)

The input v(t) can be used to locate the fast subsystem eigenvalues

v(t) = −KT
f2r,3rfnew,3(t) (4.146)

where

KT
f2r,3 =

KT
f2r,31

KT
f2r,32

 (4.147)

At this point, it is possible to locate the fast eigenvalues in the original coordinates at

the desired location as

λ(Afr,3 −KT
f2r,3Cfnewr,3) = λdesiredf (4.148)
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if the following observability assumption is satisfied.

Assumption 4.6.3. The pair (Afr,3, Cfnewr,3) is observable.

Substituting (4.138) and (4.146) into (4.133) and (4.145), we obtain

 ṙs,3(t)

εṙfnew,3(t)

 =

(Asr,3 −Ksr,3Csr,3)
T −(Kf2r,3Csr,3)

T

0 (Afr,3 −Kf2r,3Cfnewr,3)
T

 rs,3(t)

rfnew,3(t)


(4.149)

The original coordinates q12(t), q22(t) and rs,3(t), rfnew,3(t) coordinates are related via

 rs,3(t)

rfnew,3(t)

 = T T2r,3T
T
cr,3T

T
1r,3

q̂12(t)
q̂22(t)

 (4.150)

where

T T1r,3 =

I(n1−l1) 0

0 1
ε I(n2−l2)

 , T T2r,3 =

I(n1−l1) 0

Por,3 I(n2−l2)

 (4.151)

with T Tcr,3 defined in (4.135). It is possible to reconstruct q̂12(t), q̂22(t) from rs,3(t),

rfnew,3(t) via the inverse transformation

q̂12(t)
q̂22(t)

 = T−T1r,3T
−T
cr,3T

−T
2r,3

 rs,3(t)

rfnew,3(t)

 = T−T4r,3

 rs,3(t)

rfnew,3(t)

 (4.152)

From the above relation (4.152), we can construct the state transformation from zs,3(t),

zfnew,3(t) to z12(t), z22(t) as follows

ẑ12(t)
ẑ22(t)

 = T4r,3

 ẑs,3(t)

ẑfnew,3(t)

 (4.153)

Applying the state transformation (4.153) to (4.128), we get

T4r,3

 ˙̂zs,3(t)

˙̂zfnew,3(t)

 = (Ar4 −K4A
r
2)T4r,3

 ẑs,3(t)

ẑfnew,3(t)

 +Kr
z,3y(t)

 ˙̂zs,3(t)

˙̂zfnew,3(t)

 = T−14r,3(A
r
4 −K4A

r
2)T4r,3

 ẑs,3(t)

ẑfnew,3(t)

 + T−14r,3K
r
z,3y(t)

(4.154)
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Now we can present the observer configuration using the result in (4.149) and the duality

between the controller and the observer designs

 ˙̂zs,3(t)

ε ˙̂zfnew,3(t)

 =

Asr,3 −Ksr,3Csr,3 0

−εKf2r,3Csr,3 Afr,3 −Kf2r,3Cfnewr,3

 ẑs,3(t)

ẑfnew,3(t)


+

 K∗sr,3

εK∗f2r,3

 y(t)

(4.155)

where K∗sr,3,K∗f2r,3 can be obtained from T−14r,3K
r
z,3.

We can obtain a fully decoupled slow and fast reduced-order observers working in

Figure 4.11: Case V : Sequential reduced-order slow and fast observers for the reduced-
order observer

parallel as follows. We change the coordinates once again given as

ẑfnew2,3(t) = Po2r,3ẑs,3(t)+ẑfnew,3(t) → ẑfnew,3(t) = ẑfnew2,3(t)−Po2r,3ẑs,3(t) (4.156)

where Po2r,3 satisfies the algebraic Sylvester equation represented by

εPo2r,3(Asr,3 −Ksr,3Csr,3)− εKf2r,3Csr,3 − (Afr,3 −Kf2r,3Cfnewr,3)Po2r,3 = 0

⇒ P 0
o2r,3 = O(ε)

(4.157)

The linear algebraic equation (4.157) has a unique solution since Afr,3−Kf2r,3Cfnewr,3

is an asymptotically stable fast subsystem feedback matrix. The change of variable
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(4.156) results in

ε ˙̂zfnew2,3(t) = εPo2r,3 ˙̂zs,3(t) + ε ˙̂zfnew,3(t)

= [εPo2r,3(Asr,3 −Ksr,3Csr,3)− εKf2r,3Csr,3 − (Afr,3 −Kf2r,3Cfnewr,3)Po2r,3]ẑs,3(t)

+ (Afr,3 −Kf2r,3Cfnewr,3)ẑfnew2,3(t) +Kf3r,3y(t)

(4.158)

where

Kf3r,3 = ε(Po2r,3K
∗
sr,3 +K∗f2r,3) (4.159)

Hence, if the second algebraic Sylvester equation (4.157) is satisfied, (4.158) becomes

ε ˙̂zfnew2,3(t) = (Afr,3 −Kf2r,3Cfnewr,3)ẑfnew2,3(t) +Kf3r,3y(t) (4.160)

At this point, we have the block-diagonalized form of the observer obtained as

˙̂zs,3(t) = (Asr,3 −Ksr,3Csr,3)ẑs,3(t) +K∗sr,3y(t)

ε ˙̂zfnew2,3(t) = (Afr,3 −Kf2r,3Cfnewr,3)ẑfnew2,3(t) +Kf3r,3y(t)

(4.161)

The original coordinates ẑ12(t), ẑ2(t) and the new coordinates ẑs(t), ẑfnew2(t) are related

via  ẑs,3(t)

ẑfnew2,3(t)

 = T3r,3T
−1
4r,3

ẑ12(t)
ẑ22(t)

 = T−1r,3

ẑ12(t)
ẑ22(t)

 (4.162)

where

T3r,3 =

 I 0

Po2r,3 I

 (4.163)

Now, the original coordinates can be reconstructed via

ẑ12(t)
ẑ22(t)

 = T4r,3T
−1
3r,3

 ẑs,3(t)

ẑfnew2,3(t)

 = Tr,3

 ẑs,3(t)

ẑfnew2,3(t)

 (4.164)

The original state x̂12(t) and x̂22(t) can be reconstructed in terms of (4.127) and (4.164)
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as ẑ12(t)
ẑ22(t)

 +

K41

K42

 y(t) =

x̂12(t)
x̂22(t)


ẑu(t) +K4y(t) = x̂u(t)

(4.165)

Figure 4.12: Case V : Slow-fast reduced-order parallel observation with the reduced-
order observers of dimensions (n1− l1) and (n2− l2), (n1− l1) + (n2− l2) = n− (l1 + l2),
(n− (l1 + l2)) = order of unmeasurable states of the system.

4.6.1 Case V : Reduced-order Observation Error Equations

The error equation given in (4.126) is rewritten as

ėu(t) = ẋu(t)− ˙̂xu(t) =

ẋ12(t)
ẋ22(t)

−
 ˙̂x12(t)

˙̂x22(t)

 =

ė12(t)
ė22(t)


= (Ar4 −K4A

r
2)

e12(t)
e22(t)


(4.166)
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Using the state transformation defined in (4.164), the original error coordinates e12(t),

e22(t) and the new error coordinates ers,3(t), erfnew2,3(t) are related via

e12(t)
e22(t)

 =

x12(t)
x22(t)

−
x̂12(t)
x̂22(t)

 = Tr,3

 zs,3(t)

zfnew2,3(t)

− Tr,3
 ẑs,3(t)

ẑfnew2,3(t)


= Tr,3

 ers,3(t)

erfnew2,3(t)


(4.167)

Applying the state transformation (4.167) to (4.166) produces

T−1r,3

 ė12(t)
εė22(t)

 = T−1r,3 (Ar4 −K4A
r
2)Tr,3

 êrs,3(t)

êrfnew2,3(t)

 (4.168)

Analytical result for (4.168) is given as

ėrs,3(t) = Âsr,3e
r
s,3(t)

εėrfnew2,3(t) = Âfr,3e
r
fnew2,3(t)

(4.169)

where
Âsr,3 = Asr,3 −Ksr,3Csr,3

Âfr,3 = Afr,3 −Kf2r,3Cfnewr,3

(4.170)

The convergence of the error dynamic will be obtained under the eigenvalues condition

given as

Reλ(Âsr,3) < 0, Reλ(Âfr,3) < 0 (4.171)
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4.6.2 Case V : Reduced-order Observer Gain in the Original Coordi-

nates

We will show that the observer in the original coordinates is given by

K4 = (
[
KT
sr,3 +KT

f2r,3Por,3 KT
f2r,3

]
T Tcr,3T

T
1r,3)

T =

T1r,3Tcr,3(Ksr,3 + P Tor,3Kf2r,3)

T1r,3Tcr,3Kf2r,3


=

K41

K42


(4.172)

where

KT
sr,3 =

KT
sr,31

KT
sr,32

 ,KT
f2r,3 =

KT
f2r,31

KT
f2r,32

 (4.173)

where Tcr,3 is the Chang transformation (4.135). Por,3 is the solution of the alge-

braic Sylvester equation (4.143). We previously set KT
4 r(t) = v(t) − KT

sr,3rs,3(t) =

−KT
sr,3rs,3(t)−KT

f2r,3rfnew,3(t) in (4.138) and (4.146), which implies

KT
4 r(t) =

[
KT
sr,3 KT

f2r,3

] rs,3(t)

rfnew,3(t)

 =
[
KT
sr,3 KT

f2r,3

]I(n1−l1) 0

Por,3 I(n2−l2)

rs,3(t)
rf,3(t)


=

[
KT
sr,3 +KT

f2r,3Por,3 KT
f2r,3

]
T Tcr,3

r12(t)
r22(t)


=

[
KT
sr,3 +KT

f2r,3Por,3 KT
f2r,3

]
T Tcr,3T

T
1r,3

q12(t)
q22(t)


(4.174)

Hence
[
KT
sr,3 +KT

f2r,3Por,3 KT
f2r,3

]
T Tcr,3T

T
1r,3 represents transpose of the observer gain

matrix K4 in the original coordinates. It is important to note that the observer gain

K4 = f(Ksr,3,Kf2r,3) can be obtained using computations with reduced-order matrices

Ksr,3,Kf2r,3. From this fact, the observer gain matrix K4 are given by (4.172).
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4.6.3 Case V : Design Algorithm for Finding the Reduced-order Ob-

server Gain

Given that the linear system (Ar4, A
r
2) is observable, the following two-time scale design

algorithm can be applied for the design of a reduced-order observer for singularly per-

turbed linear system.

Step 1. Transpose the first part of matrices from (4.129) and apply the change of vari-

able to the hypothetical system defined in (4.130).

Step 2. Apply the Chang transformation (4.135) to (4.131) to get (4.133).

Step 3. Obtain the partitioned submatrices ATsr,3,
1
εA

T
fr,3, C

T
sr,3 and CTfr,3.

Step 4. Place the slow observer eigenvalues in the desired location and obtain the slow

observer gain KT
sr,3 using the eigenvalue assignment for λ(Asr,3 −Ksr,3Csr,3).

Step 5. Solve the reduced-order Sylvester algebraic equation (4.143) to get Por,3.

Step 6. Place fast observer eigenvalues at the desired location using the eigenvalue as-

signment for 1
ελ(Afr,3 −Kf2r,3Cfnewr,3) and obtain Kf2r,3.

Step 7. Find the reduced-order observer gainK4 in the original coordinates using (4.172)

and check λ((Ar4 −K4A
r
2)) = λdesireds ∪ λdesiredf .

4.6.4 Example 4.5

Consider a 4th− order system with the system matrices A and C given as

A =



0 0.4000 0 0

0 0 0.3450 0

0 −52.4000 −46.5000 26.2000

0 0 0 −100.0000


, B =



0

0

0

10


. C =

1 0 0 0

0 0 1 0



Our goal is to design independently slow and fast reduced-order observers with desired

λdesireds = {−1} and 1
ελ

desired
f = {−200}. The observability matrix has full rank and

therefore the pair (Ar4, A
r
2) is observable.

According to Steps 1 and 2 of the Algorithm from Section 4.63 in Case V), the following
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sub-matrices are obtained

ATsr =
[
0

]
,

1

ε
ATfr =

[
−100

]
,

CTsr =
[
0.4000 −52.4000

]
, CTfr =

[
0 26.2000

]
, CTfnewr =

[
−0.0020 26.4646

]
Following Step 4 from Section 4.63 in Case V), we place the slow eigenvalues in the

original coordinates at −1 via the slow feedback gain matrix

KT
sr =

 0.000145670667754

−0.019082857475819


The Step 3 of the algorithm solves the Sylvester algebraic equation and obtains matrix

Por, Po2r as

Por =
[
−0.505021076632777

]
, Po2r =

[
−0.009949760280849

]

In Step 4 of the algorithm, we place fast observer’s eigenvalues at the desired location

{−200,−300}. The fast observer gain KT
f2 is given by

KT
f2r =

−0.000002884282566

0.037786281339235

 , 1

ε
Kf3 =

[
0.000008667341580 −0.058327718759739

]

Step 5. Using (4.67), matrix K2 is obtained as

K4 =

 0.000147127291241 −0.038165725959708

−0.000288428256597 3.778628133923465


It can be checked that λ(Ar4 −K4A

r
2) in the original coordinates

λ(Ar4 −K4A
r
2) =

 −1.0000000000000

−200.0000000000000


which is the same (with the accuracy of O(10−14)) as we had placed the slow and fast

eigenvalues using the two time scale decomposition designs. Figures 4.13 present the
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slow and fast observation errors.

In order to be able to run MATLAB Simulink simulation we had to specify also the

system states initial conditions (these initial conditions are in general not known). We

have chosen them as x1(0) = [2, 2] and x2(0) = [2, 2]. From Appendix A.9, the initial

condition for x̂u(0) is given as

x̂u(0) =

x̂12(0)

x̂22(0)

 =

0

0


which results in

ẑu(0) = x̂m(0)−K4y(0) = −K4x̂m(0) =

 0.076037197336934

−7.556679411333735


Using (4.162), we obtain ẑs,3(0), ẑfnew2,3(0) as

 ẑs,3(0)

ẑfnew2,3(0)

 = T−1r,3

ẑ12(0)

ẑ22(0)

 =

 0.037874373616129

−0.075943635051605


so that zs(0) = [0.037874373616129] and zfnew2(0) = [−0.075943635051605] in MAT-

LAB simulation for the reduced-order observer. At this point, the initial condition for

error e12(0), e22(0) are given as

e12(0)

e22(0)

 = xu(t)− x̂u(t) =

x12(0)

x22(0)

−
x̂12(0)

x̂22(0)

 =

2

2



4.7 Conclusions

We have designed the reduced-order observers for singularly perturbed linear systems.

There are five cases for the design based on the status of measured states : only all slow

variables are measured (Case I), only all fast variables are measured (Case II), some

combinations of slow and fast variables are measured (Case III - Case V). In Case I)
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Figure 4.13: Case V : Convergence of the slow state observation error e12(t) = x12(t)−
x̂12(t) and the fast state observation error e22(t) = x22(t) − x̂22(t) for the parallel
structure from Fig. 4.12

and Case II) the reduced-order observer doesn’t have the singularly perturbed struc-

ture, since the dimension of measurement l matches with the dimension of slow states

n1 and fast states n2. That means if measurable states are slow states x1(t), correspond-

ing reduced-order observer design can be applied to the fast states x2(t). Considering

only fast states, there is no slow and fast decomposition for the reduced-order observer.

Similarly, if measurable states are fast states x2(t), corresponding reduced-order ob-

server design is implemented for the slow states x1(t). Considering only slow states,

there is no slow and fast composition in which numerical ill-conditioning problem is not

encountered. However, in Case III) to Case V) the condition that the dimension of mea-

surement l is much smaller than the dimension of slow states n1 and fast states n2 makes

the reduced-order observer to contain singular a perturbation parameter. The aforemen-

tioned condition causes numerical ill-conditioning for the eigenvalue assignment in the

reduced-order observer design. To overcome the numerical ill-conditioning problem, we

use the two-stage method presented in Chapter 3 for the eigenvalue assignment, which

facilitate the reduced-order observer design.
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Chapter 5

New Designs of Reduced-Order Observer-Based Controllers
for Singularly Perturbed Linear Systems

In the previous chapter, we have designed reduced-order observers for singularly per-

turbed linear systems. For Cases I) and II), the corresponding reduced-order observers

are not respectively pure fast and pure slow. For Cases III)-V), we have observed

the states of the original system using both reduced-order slow and fast observers

(4.56),(4.107),(5.34). For Cases III)-V), the two-stage method have been used to over-

come the numerical-ill conditioning problem. In this chapter, we use these observers and

consider the observer-based controller designs for singularly perturbed linear systems.

The observers are driven by the system measurements and control inputs with observers

implemented independently in the slow and fast time scales.

5.1 Case I: Controller Design when All Slow Variables are Measured

Only

Consider a linear time invariant singularly perturbed control system, [11]

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) =
1

ε
A21x1(t) +

1

ε
A22x2(t) +

1

ε
B2u(t)

y(t) = x1(t)

(5.1)

where ε is a small positive singular perturbation parameter that indicates seperation

of state variables x(t) ∈ <n into slow x1(t) ∈ <n1 and fast x2(t) ∈ <n2 , n1 + n2 = n.

u(t) ∈ <m is the control input and y(t) ∈ <p the system measured output.

The reduced-order observer for the system defined in (5.1) was derived in Chapter 4,
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Section 4.2, given by

ε ˙̂z2(t) = Az ẑ2(t) +Bzu(t) +Kzy(t) (5.2)

where [39]

Az = A22 −K11A12,

Bz = B2 −K11B1

Kz = A21 −K11A11 +
1

ε
A22K11 −

1

ε
K11A12K11

(5.3)

The state estimation of the fast variables is obtained from

x̂2(t) = ẑ2(t) +
1

ε
K11y(t) (5.4)

so that

x̂(t) =

x1(t)
x̂2(t)

 =

 y(t)

x̂2(t)

 (5.5)

The matrix K11 is chosen to stabilize the reduced order observer (5.2), that is

λ(A22 −K11A12) = λ(AT22 −AT12KT
11) = λdesiredrobs (5.6)

In the following, the Chang transformation matrix, [15], will be needed

Tc =

 In εH

−L Im − εLH

 , T−1c =

In − εHL −εH

L Im

 (5.7)

where matrices L and H satisfy the algebraic equations

0 = εL(A11 −A12L) + (A21 −A22L)

0 = ε(A11 −A12L)H +A12 −H(A22 + εLA12)

(5.8)

The solutions for L and H can be obtained using either the fixed-point iterations or

Newton method or eigenvector method [12].

Using the separation principle, the observer based controller design via the two stage
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design was considered in Chapter 3, as

u(t) = −Fx̂(t) = −
[
F1 F2

]x1(t)
x̂2(t)

 = −
[
Fs + Ff2P Ff2

]
T−1c

 y(t)

x̂2(t)

 (5.9)

The feedback gain Fs is chosen such to place slow eigenvalues at the desired locations,

that is

λ(As −BsFs) = λdesireds (5.10)

The matrix P is obtained from the Sylvester algebraic equation

εP (As −BsFs)−BfFs −AfP = 0 ⇒ P (0) = A−1f BfFs (5.11)

where
As = A11 −A12L, Bs = B1(In − εHL)− εHB2

Af = A22 + εLA12, Bf = εLB1 +B2

(5.12)

The feedback gain Ff2 is chosen such to place the fast eigenvalues at the desired loca-

tions, that is

λ(Af − (Bf + εPBs)Ff2) = λ(Af −BfnewFf2) = λdesiredf (5.13)

Based on information from (5.2), (5.6), (5.9) and Figure 4.1, we present in Figure 5.1

the block diagram for the reduced-order observer-based controller when only all state

variables are perfectly measured. In (5.10) and (5.13) we have chosen the feedback gains

for the eigenvalue assignment problem. However, any F1 and F2 can be used to control

the system and provide corresponding design requirements.

5.1.1 Case I: Numerical Example

Consider a 4th− order system with the system matrices A,B, and C defined in Ex-

ample 4.1 in Sections 4.2.1. The controllability matrix has full rank and therefore the

pair (A,B) is controllable. The results obtained using MATLAB are given below. We

locate the feedback system slow eigenvalues at λdesiredcs = (−2,−3) and the feedback
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Figure 5.1: Case I: Reduced-order observer based controller design for a singularly
perturbed linear systems

system fast eigenvalues at λdesiredcf = (−7,−8), and the reduced-order observer eigen-

values at λdesiredrobs = (−50,−60), given in the previous numerical example. Following

the design procedure from Example 4.1 in Sections 4.2.1 and 5.1, the observer matrices

Az,Kz,K11, F1, F2 are given as

Az =

 −108.9999 0.2620

−11034.3511 −1.0000

 , K11 =

0 314.5942

0 31983.6265

 ,
Kz =

0 −259111.1037

0 −35033265.2948

 ,
and the feedback gains are obtained as

F1 =
[
92.9306 37.8637

]
, F2 =

[
2.4356 0.5349

]
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5.2 Case II : Controller Design when All Fast Variables are Measured

Only

Consider a linear time invariant singularly perturbed control system, [11]

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) =
1

ε
A21x1(t) +

1

ε
A22x2(t) +

1

ε
B2u(t)

y(t) = x2(t)

(5.14)

where ε is a small positive singular perturbation parameter that indicates separation

of state variables x(t) ∈ <n into slow x1(t) ∈ <n1 and fast x2(t) ∈ <n2 , n1 + n2 = n.

u(t) ∈ <m is the control input and y(t) ∈ <p the system measured output.

The reduced-order observer for the system (5.14) is defined in Chapter 4, Section 4.3,

and given by

˙̂z1(t) = Az ẑ1(t) +Bzu(t) +Kzy(t) (5.15)

where [39]

Az = A11 −
1

ε
K12A21,

Bz = B2 −
1

ε
K12B1

Kz = A12 +A11K12 −
1

ε
K12A22 −

1

ε
K12A21K12

(5.16)

The state estimation is obtained from

x̂1(t) = ẑ1(t) +K12y(t) (5.17)

so that

x̂(t) =

x̂1(t)
x2(t)

 =

x̂1(t)
y(t)

 (5.18)

The matrix K12 is chosen to stabilize the reduced-order observer (5.15), that is

λ(A11 −
1

ε
K12A21) = λ(AT11 −

1

ε
AT21K

T
12) = λdesiredrobs (5.19)
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Additional matrices needed in this design can be obtained from (5.8),(5.11)-(5.12). Using

the separation principle, the observer based controller can be designed via the two-stage

design considered in Chapter 3.

u(t) = −Fx(t) = −
[
F1 F2

]x̂1(t)
x2(t)

 = −
[
Fs + Ff2P Ff2

]
T−1c

x̂1(t)
y(t)

 (5.20)

The feedback gain Fs is chosen such to place slow eigenvalues at the desired locations,

that is

λ(As −BsFs) = λdesireds (5.21)

The feedback gain Ff2 is chosen such to place fast eigenvalues at the desired locations,

that is

λ(Af − (Bf + εPBs)Ff2) = λ(Af −BfnewFf2) = λdesiredf (5.22)

In Figure 5.2, the block diagram for the reduced-order observer-based controller when

only all fast variables are perfectly measured, is presented.

Figure 5.2: Case II: Slow and fast observer-based controller design for a singularly
perturbed linear system
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5.2.1 Case II: Numerical Example

Consider a 4th− order system with the system matrices A,B, and C defined from

Example 4.1 in Sections 4.2.1. The controllability matrix has full rank and therefore

the pair (A,B) is controllable. We locate the feedback system slow eigenvalues at

λdesiredcs = (−2,−3) and the feedback system fast eigenvalues at λdesiredcf = (−7,−8), and

the reduced-order observer eigenvalues at λdesiredrobs = (−50,−70), given in the previous

numerical example. Following the design procedure of from Example 4.1 and in Sections

4.2.1 and 5.2, the observer matrices Az,Kz,K12, F1, F2 are given as

Az =

−49.9999 0.0000

−0.0000 −70.0000

 , K12 =

11.0734 10.3042

−6.4660 6.4112

 ,
Kz =

−537.2325 −556.1992

400.7840 −440.7330

 ,
and the feedback gains are

F1 =
[
92.9306 37.8637

]
, F2 =

[
2.4356 0.5349

]

5.3 Case III: Controller Design when Only a Part of the Slow Vari-

ables is Measured

In Case III), the measurable states x11(t) are parts of the slow state vector x1(t) in

the singularly perturbed linear system defined in (3.1), as

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = x11(t)

(5.23)

where

x1(t) =

x11(t)
x12(t)

 =

 y(t)

x12(t)

 , (5.24)
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Use the following partitioning

A11 =

a11 a12

a21 a22

 , A12 =

a13
a23


A21 =

[
a31 a32

]
, A22 =

[
a33

] (5.25)

where a11 ∈ Rl×l, a12 ∈ Rl×(n1−l), a13 ∈ Rl×n2 , a21 ∈ R(n1−l)×l, a22 ∈ R(n1−l)×(n1−l),

a23 ∈ R(n1−l)×n2 , a31 ∈ Rn2×l, a32 ∈ Rn2×(n1−l), a33 ∈ Rn2×n2 ,

x11(t) ∈ Rl×1, x12(t) ∈ R(n1−l)×1 , x2(t) ∈ Rn2 , b1 ∈ Rl×1, b2 ∈ R(n−l)×1

and y(t) ∈ Rl×1, p(t) ∈ R(n−l)×1.

The system (5.23) with (5.24)-(5.25) can be represented as

ẋ11(t) = Ar11x11(t) +Ar12x
r
2(t)

ẋr2(t) = Ar21x11(t) +Ar22x
r
2(t)

y(t) = x11(t)

(5.26)

where

xr2(t) =

x12(t)
x2(t)


Ar11 =

[
a11

]
, Ar12 =

[
a12 a13

]
Ar21 =

 a21

1
εa31

 , Ar22 =

 a22 a23

1
εa32

1
εa33


(5.27)

The observer gains are obtained from

Arz = Ar22 −K2A
r
12 =

 a22 a23

1
εa32

1
εa33

−
K21

K22

[
a12 a13

]
,

Kr
z = Ar21 −K2A

r
11 +Ar22K2 −K2A

r
12K2,

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K21r

K22r


(5.28)
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The reduced-order observer configuration obtained in Section 4.4 is given by

 ˙̂zs(t)

ε ˙̂zfnew(t)

 =

Asr −KsrCsr 0

−εKf2rCsr Afr −Kf2rCfnewr

 ẑs(t)

ẑfnew(t)

+

K∗sr
K∗f2r

 y(t) (5.29)

where K∗sr,K∗f2r are obtained from T−14r K
r
z , with T4r defined by

ẑ12(t)
ẑ2(t)

 = T1rTcrT2r = T4r

 ẑs(t)

ẑfnew(t)

 (5.30)

where

T1r =

I(n1−l) 0

0 1
ε In2

 , T2r =

I(n1−l) P Tor

0 In2

 (5.31)

The Chang transformation is given by

T Tcr =

I(n1−l) −εLTr

HT
r In2 − εHT

r L
T
r

 (5.32)

where LTr and HT
r are the transposed solution, that is

0 = ε(aT22 − LTr aT23)LTr + (aT32 − LTr aT33)

0 = εHT
r (aT22 − LTr aT23) + aT23 − (aT33 + εaT23L

T
r )HT

r

(5.33)

with aij matrices defined in (5.27)

The reduced-order observer (5.29) has a sequential structure. It can be block diag-

onalized and used as a parallel structure as follows

˙̂zs(t) = (Asr −KsrCsr)ẑs(t) +K∗sry(t)

ε ˙̂zfnew2(t) = (Afr −Kf2rCfnewr)ẑfnew2(t) +Kf3ry(t)

(5.34)

where  ẑs(t)

ẑfnew2(t)

 =

I(n1−l) 0

Po2r In2

 ẑs(t)

ẑfnew(t)

 = T3r

 ẑs(t)

ẑfnew(t)

 (5.35)
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The original coordinates ẑ12(t), ẑ2(t) and the coordinates ẑs(t), ẑfnew2(t) are related via

 ẑs(t)

ẑfnew2(t)

 = T3rT
−1
4r

ẑ12(t)
ẑ2(t)

 = T−1r

ẑ12(t)
ẑ2(t)

 (5.36)

where Po2r satisfies the algebraic Sylvester equation represented by

εPo2r(Asr−KsrCsr)− εKf2rCsr− (Afr−Kf2rCfnewr)Po2r = 0 ⇒ P 0
o2r = O(ε) (5.37)

In the previous chapter, we have observed the original system state using independent

reduced-order slow and fast observers (5.34). In this section, we use these observers and

consider the observer-based controller design for singularly perturbed linear systems.

The observer is driven by the system measurements and control inputs, that is

 ˙̂zs(t)

ε ˙̂zfnew2(t)

 =

Asr −KsrCsr 0

0 Afr −Kf2rCfnewr

 ẑs(t)

ẑfnew2(t)

 +

Bsr2
Bf2r

u(t)

+

K∗sr
Kf3r

 y(t)

(5.38)

Thus, these two observers (5.38) can be implemented independently in the slow and fast

time scales

˙̂zs(t) = (Asr −KsrCsr)ẑs(t) +Bsr2u(t) +K∗sry(t)

ε ˙̂zfnew2(t) = (Afq −Kf2Cfnew)ẑfnew2(t) +Bf2ru(t) +Kf3y(t)

(5.39)

where Bsr2, Bf2r can be obtained from T−1r B as

Bsr2 = (I(n1−l) − εHrLr)Bz1 − εP TorLrBz1 −HrBz2 − P TorBz2,

Bf2r = εPo2r(I(n1−l) − εHrLr)Bz1 − ε2Po2rP TorLrBz1 + ε2LrBz1 − εPo2rHrBz2

− εPo2rP TorBz2 + εBz2

(5.40)
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The control input in the ẑs-ẑfnew2 coordinates is given by

u(t) = −Frx̂(t) = −
[
F12 F2

]x̂12(t)
x̂2(t)


= −(

[
F12 F2

]K21

K22

 y(t) +
[
F12 F2

]
Tr

 ẑs(t)

ẑfnew2(t)

)

= −(
[
F12 F2

]K21

K22

 y(t) +
[
Fsr2 Ffr2

] ẑs(t)

ẑfnew2(t)

)

= −FrK2y(t)−
[
Fsr2 Ffr2

] ẑs(t)

ẑfnew2(t)



(5.41)

with

Fsr2 = F12(I(n1−l) − P
T
orPo2r −HrPo2r)− F2L(In − P TorPo2r)−

1

ε
F2(In2 − εLrHr)Po2r

Ffr2 = F12(P
T
or +Hr)− F2LrP

T
or +

1

ε
F2(In2 − εLrHr)

(5.42)

Here, Fr is taken from (3.33), and F12 ∈ R1×(n1−l), F2 ∈ R1×(n2). The corresponding

block diagram for the observer driven controller is presented in Figure 5.3. This block

diagram clearly indicates full parallelism of the slow controller driven by the slow ob-

server and the fast controller driven by the fast observer.

The remaining matrices obtained in (5.29) are given by

ATsr = aT22 − LTaT23, ATfr = aT33 + εaT23L
T

CTsr = aT12 − LTaT13, CTfr = εHTaT12 + (In2 − εHTLT )aT13

Cfnewr = Cfr + εCsrP
T
or

(5.43)

Ksr,Kf2r, Por can be obtained from the formulas in Section 4.4, that is

λ(ATsr − CTsrKT
sr) = λ(Asr −KsrCsr) = λdesireds

λ(Afr −Kf2rCfnewr) = λdesiredf

εPor(A
T
sr − CTsrKT

sr)− CTfrKT
sr −ATfrPor = 0 ⇒ Por = O(ε)

(5.44)
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Figure 5.3: Case III: Slow and fast observer-based controller design for a singularly
perturbed linear systems with the system feedback gains obtained in (5.41)

5.3.1 Case III : Numerical Example

Consider a 4th− order system with the system matrices A,B, and C defined in Section

4.4. The controllability matrix has full rank and therefore the pair (A,B) is controllable.

We locate the feedback system slow eigenvalues at λdesiredcs = (−2,−3) and the feedback

system fast eigenvalues at λdesiredcf = (−7,−8), and the slow observer eigenvalues at

λdesiredos = −50 and the fast observer eigenvalues at λdesiredof = (−200,−300), given in

the previous numerical example. Following the design procedure of from Sections 5.3,

the completely decoupled slow and fast observer in the zs-zfnew2 coordinates, driven by

the system measurements and control inputs, are

˙̂zs(t) =
[
−50.0000

]
ẑs(t)

+
[
−2.323033338614758

]
u(t) +

[
−6196.4741

]
y(t)
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˙̂zfnew2(t) =

 −1693.6295 113.2762

−18376.0229 1193.6295

 ẑfnew2(t)
+

−0.2499

0.4666

u(t) +

 −2859901.4120

−33059040.2923

 y(t)

u(t) = −
[
1761.6414

]
ẑs(t)

−
[
26.9824 5.1780

]
ẑfnew2(t)

The slow and fast controller gains Fsr2, Ffr2 are obtained as

Fsr2 =
[
1761.6414

]
,

Ffr2 =
[
26.9824 5.1780

]
5.4 Case IV: Controller Design when Only a Part of Fast Variables is

Measured

In Case IV), the measurable states x21(t) are parts of the slow state vector x2(t) in

the singularly perturbed linear system defined in (3.1), as

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) = Ilx22(t)

(5.45)

where

x2(t) =

x21(t)
x22(t)

 =

x21(t)
y(t)

 , (5.46)

using the following partitioning

A11 =
[
a11

]
, A12 =

[
a12 a13

]
A21 =

a21
a31

 , A22 =

a22 a23

a32 a33

 (5.47)
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where a33 ∈ Rl×l, a32 ∈ Rl×(n2−l), a31 ∈ Rl×n1 , a23 ∈ R(n2−l)×l, a22 ∈ R(n2−l)×(n2−l),

a21 ∈ R(n2−l)×n1 , a13 ∈ Rn1×l, a12 ∈ Rn1×(n2−l), a11 ∈ Rn1×n1 , x22(t) ∈ Rl×1,

x21(t) ∈ Rn2−l×1, x1(t) ∈ Rn1 , y(t) ∈ Rl×1, and p(t) ∈ R(n−l)×1.

The system (5.45) with (5.46)-(5.47) can be represented as

ẋr1(t) = Ar11x
r
1(t) +Ar12x22(t)

ẋ22(t) = Ar21x
r
1(t) +Ar22x22(t)

y(t) = Ilx22(t)

(5.48)

where

xr1(t) =

 x1(t)
x21(t)


Ar11 =

 a11 a12

1
εa21

1
εa22

 , Ar12 =

 a13

1
εa23


Ar21 =

[
1
εa31

1
εa32

]
, Ar22 =

[
1
εa33

]
(5.49)

The reduced-order observer configuration is obtained in Section 4.5 is given by

 ˙̂zs,2(t)

ε ˙̂zfnew,2(t)

 =

Asr,2 −Ksr,2Csr,2 0

−εKf2r,2Csr,2 Afr,2 −Kf2r,2Cfnewr,2

 ẑs,2(t)

ẑfnew,2(t)


+

K∗sr,2
K∗f2r,2

 y(t)

(5.50)

where K∗sr,2,K∗f2r,2 are determined by T−14r,2K
r
z,2, with T4r,2(t) defined by

 ẑ1(t)
ẑ21(t)

 = T1r,2Tcr,2T2r,2

 ẑs,2(t)

ẑfnew,2(t)

 = T4r,2

 ẑs,2(t)

ẑfnew,2(t)

 (5.51)

where

T T1r,2 =

In1 0

0 1
ε I(n2−l)

 , T T2r,2 =

 In1 0

Por,2 I(n2−l)

 (5.52)
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The observer gains are obtained from

Arz,2 = Ar11 −K3A
r
21 =

 a11 a12

1
εa21

1
εa22

−
K31

K32

[
1
εa31

1
εa32

]
,

Kr
z,2 = Ar12 −K3A

r
22 +Ar11K3 −K3A

r
21K3

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K21r

K22r


(5.53)

The Chang transformation needed for the reduced-order observer design is given as

T Tcr,2 =

 In1 −εLTr,2

HT
r,2 I(n2−l) − εHT

r,2L
T
r,2

 (5.54)

where LTr,2 and HT
r,2 are the transposed solution, that is

0 = ε(aT22 − LTr,2aT23)LTr,2 + (aT32 − LTr,2aT33)

0 = εHT
r,2(a

T
22 − LTr,2aT23) + aT23 − (aT33 + εaT23L

T
r,2)H

T
r,2

(5.55)

with aij matrices defined in (5.49)

The reduced-order observer (5.50) has a sequential structure. It can be block diagonal-

ized and used as a parallel structure as

˙̂zs,2(t) = (Asr,2 −Ksr,2Csr,2)ẑs,2(t) +Ksr,2y(t)

ε ˙̂zfnew2,2(t) = (Afr,2 −Kf2r,2Cfnewr,2)ẑfnew2,2(t) +Kf3r,2y(t)

(5.56)

where  ẑs,2(t)

ẑfnew2,2(t)

 =

 In1 0

Po2r,2 In2−l

 ẑs(t)

ẑfnew(t)

 = T3r,2

 ẑs(t)

ẑfnew(t)

 (5.57)

The original coordinates ẑ1(t), ẑ21(t) and the coordinates ẑs,2(t), ẑfnew2,2(t) are related

via  ẑs,2(t)

ẑfnew2,2(t)

 = T3r,2T
−1
4r,2

 ẑ1(t)
ẑ21(t)

 = T−1r,2

 ẑ1(t)
ẑ21(t)

 (5.58)
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where Po2r,2 satisfies the algebraic Sylvester equation represented by

εPo2r,2(Asr,2 −Ksr,2Csr,2)− εKf2r,2Csr,2 − (Afr,2 −Kf2r,2Cfnewr,2)Po2r,2 = 0

⇒ P 0
o2r,2 = O(1)

(5.59)

In Section 4.5, we have observed the original system state using independent reduced-

order slow and fast observers (5.56). In this section, we use these observers and consider

the observer-based controller design for singularly perturbed linear systems. The ob-

server is driven by the system measurements and control inputs, that is

 ˙̂zs,2(t)

ε ˙̂zfnew2,2(t)

 =

Asr,2 −Ksr,2Csr,2 0

0 Afr,2 −Kf2r,2Cfnewr,2

 ẑs,2(t)

ẑfnew2,2(t)


+

Bs2r,2
Bf2r,2

u(t) +

K∗sr,2
Kf3r,2

 y(t)

(5.60)

These two observers (5.60) can be implemented independently in the slow and fast time

scales

˙̂zs,2(t) = (Asr,2 −Ksr,2Csr,2)ẑs,2(t) +Bs2r,2u(t) +K∗sr,2y(t)

ε ˙̂zfnew2,2(t) = (Afr,2 −Kf2r,2Cfnewr,2)ẑfnew2,2(t) +Bf2r,2u(t) +Kf3r,2y(t)

(5.61)

where Bsr2,2, Bf2r,2 can be obtained from T−1r,2 B as

Bs2r,2 = (In1 − εHr,2Lr,2)Bz1 − εP Tor,2Lr,2Bz1 −Hr,2Bz2 − P Tor,2Bz2,

Bf2r,2 = εPo2r,2(In1 − εHr,2Lr,2)Bz1 − ε2Po2r,2P Tor,2Lr,2Bz1 + ε2Lr,2Bz1

− εPo2r,2Hr,2Bz2 − εPo2r,2P Tor,2Bz2 + εBz2

(5.62)
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The control input in the ẑs,2-ẑfnew2,2 coordinates is given by

u(t) = −Frx̂(t) = −
[
F1 F21

] x̂1(t)
x̂21(t)


= −(

[
F1 F21

]K31

K32

 y(t) +
[
F1 F21

]
Tr,2

 ẑs,2(t)

ẑfnew2,2(t)

)

= −(
[
F1 F21

]K31

K32

 y(t) +
[
Fsr2,2 Ffr2,2

] ẑs,2(t)

ẑfnew2,2(t)

)

= −Fr,2K3y(t)−
[
Fsr2,2 Ffr2,2

] ẑs,2(t)

ẑfnew2,2(t)



(5.63)

with

Fsr2,2 = F1(In1 − P Tor,2Po2r,2 −Hr,2Po2r,2)− F21L(I(n2−l) − P
T
or,2Po2r,2)

− 1

ε
F2(I(n2−l) − εLr,2Hr,2)Po2r,2

Ffr2,2 = F1(P
T
or,2 +Hr,2)− F21Lr,2P

T
or,2 +

1

ε
F21(I(n2−l) − εLr,2Hr,2)

(5.64)

Here, Fr is taken from (3.33), and F1 ∈ R1×n1 , F21 ∈ R1×(n2−l). The corresponding

block diagram for the observer driven controller is presented in Figure 5.4. This block

diagram clearly indicates full parallelism of the slow controller driven by the slow ob-

server and the fast controller driven by the fast observer.

The remaining matrices introduced in (5.50) are given by

ATsr,2 = aT11 − LTr,2aT12, ATfr,2 = aT22 + εaT12L
T
r,2

CTsr,2 =
1

ε
aT31 −

1

ε
LTr,2a

T
32, c

T
fr,2 = HT

r,2a
T
31 +

1

ε
(I(n2−l) − εH

T
r,2L

T
r,2)a

T
32,

Cfnewr,2 = Cfr,2 + εCsr,2P
T
or,2

(5.65)
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Ksr,2,Kf2r,2, Por,2 can be obtained from the formulas in Section 4.5, that is

λ(ATsr,2 − CTsr,2KT
sr,2) = λ(Asr,2 −Ksr,2Csr,2) = λdesireds

λ(Afr,2 −Kf2r,2Cfnewr,2) = λdesiredf

εPor,2(A
T
sr,2 − CTsr,2KT

sr,2)− CTfr,2KT
sr,2 −ATfr,2Por,2 = 0 ⇒ Por,2 = O(1)

(5.66)

Figure 5.4: Case IV: Slow and fast observer-based controller design for a singularly
perturbed linear systems with the system feedback gains obtained in (5.63)

5.4.1 Case IV : Numerical Example

Consider a 4th− order system with the system matrices A,B, and C defined in Section

4.5. The controllability matrix has full rank and therefore the pair (A,B) is controllable.

We locate the feedback system slow eigenvalues at λdesiredcs = (−2,−3) and the feedback

system fast eigenvalues at λdesiredcf = (−7,−8), and the slow observer eigenvalues at

λdesiredos = (−50,−60) and the fast observer eigenvalues at λdesiredof = −300, given in

the previous numerical example. Following the design procedure from Sections 5.4, the

completely decoupled slow and fast observer in the zs-zfnew2 coordinates, driven by the
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system measurements and control inputs, are

˙̂zs,2(t) =

−0.0000 −4127.7367

0.7267 −110.0000

 ẑs,2(t)
+

 4.7409

−3.9951

u(t) +

113729.6251

2281.0457

 y(t)

˙̂zfnew2,2(t) =
[
−300.0000

]
ẑfnew2,2(t)

+
[
−779.5149

]
u(t) +

[
437703.1601

]
y(t)

u(t) = −
[
−6530.3242 91.6868

]
ẑs(t)

−
[
332.8512 −10.9008

]
ẑfnew2(t)

The slow and fast controller gains Fsr2,2, Ffr2,2 are obtained as

Fsr2,2 =
[
−6530.3242 91.6868

]
,

Ffr2,2 =
[
332.8512 −10.9008

]
5.5 Case V : Controller Design when Only a Part of Slow and Fast

Variables are Measured

In Case V), the measurable states x11(t), x21(t) are parts of the slow state vector x1(t)

and the fast state x2(t) in the singularly perturbed linear system defined in (3.1), as

ẋ1(t) = A11x1(t) +A12x2(t)

εẋ2(t) = A21x1(t) +A22x2(t)

y(t) =

I 0 0 0

0 0 I 0




x11(t)

x12(t)

x21(t)

x22(t)


=

x11(t)
x21(t)

 =

y1(t)
y2(t)


(5.67)
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where

x1(t) =

x11(t)
x12(t)

 , x2(t) =

x21(t)
x22(t)

 =

 y1(t)
x12(t)

 , x2(t) =

x21(t)
y2(t)

 (5.68)

Using the following partitioning

A11 =

a∗11 a∗12

a∗21 a∗22

 , A12 =

a∗13 a∗14

a∗23 a∗24


A21 =

a∗31 a∗32

a∗41 a∗42

 , A22 =

a∗33 a∗34

a∗43 a∗44


(5.69)

where x11(t) ∈ Rl1 , x12(t) ∈ R(n1−l1), x21(t) ∈ Rl2 , x22(t) ∈ R(n2−l1) and a11 ∈ Rl1×l1 ,

a12 ∈ Rl1×(n1−l1), a13 ∈ Rl1×l2 , a14 ∈ Rl1×(n2−l2), a21 ∈ R(n1−l1)×l1 ,

a22 ∈ R(n1−l1)×(n1−l1), a23 ∈ R(n1−l1)×l2 , a24 ∈ R(n1−l1)×(n2−l2), a31 ∈ Rl2×l1 ,

a32 ∈ Rl2×(n1−l1), a33 ∈ Rl2×l2 , a34 ∈ Rl2×(n2−l2), a41 ∈ R(n2−l2)×l1 ,

a42 ∈ R(n2−l2)×(n1−l1), a43 ∈ R(n2−l2)×l2 , a44 ∈ R(n2−l2)×(n2−l2),

y(t) ∈ R(l1+l2), and p(t) ∈ R(n−l)×1.

The system (5.67) with (5.68)-(5.69) can be represented as

ẋm(t) = Ar1xm(t) +Ar2xu(t)

ẋu(t) = Ar3xm(t) +Ar4xu(t)

y(t) =

I 0 0 0

0 0 I 0




x11(t)

x12(t)

x21(t)

x22(t)


=

x11(t)
x21(t)

 =

y1(t)
y2(t)


(5.70)
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where

xm(t) =

x11(t)
x21(t)

 , xu(t) =

x12(t)
x22(t)


Ar1 =

 a∗11 a∗13

1
εa
∗
31

1
εa
∗
33

 , Ar2 =

 a∗12 a∗14

1
εa
∗
32

1
εa
∗
34


Ar3 =

 a∗21 a∗23

1
εa
∗
41

1
εa
∗
43

 , Ar4 =

 a∗22 a∗24

1
εa
∗
42

1
εa
∗
44


(5.71)

xm(t) are the measurable states and xu(t) are the unmeasurable states. Ar1, Ar3 are ele-

ments in (5.68) relevant to the measurable states, Ar2, Ar4 are elements in (5.68) relevant

to the unmeasurable states.

The reduced-order observer configuration obtained in Section 4.6 is given by

 ˙̂zs,3(t)

ε ˙̂zfnew,3(t)

 =

Asr,3 −Ksr,3Csr,3 0

−εKf2r,3Csr,3 Afr,3 −Kf2r,3Cfnewr,3

 ẑs,3(t)

ẑfnew,3(t)


+

 K∗sr,3

εK∗f2r,3

 y(t)

(5.72)

where K∗sr,3,K∗f2r,3 are determined by T−14r,3K
r
z,3, with T4r,3(t) defined by

ẑ12(t)
ẑ22(t)

 = T1r,3Tcr,3T2r,3

 ẑs,3(t)

ẑfnew,3(t)

 = T4r,3

 ẑs,3(t)

ẑfnew,3(t)

 (5.73)

where

T T1r,3 =

I(n1−l1) 0

0 1
ε I(n2−l2)

 , T T2r,3 =

I(n1−l1) 0

Por,3 I(n2−l2)

 (5.74)

The Chang transformation is given by

T Tcr,3 =

I(n1−l1) −εLTr,3

HT
r,3 I(n2−l2) − εHT

r,3L
T
r,3

 (5.75)
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where LTr,3 and HT
r,3 are the transposed solution, that is

0 = ε(a∗22
T − LTr,3a∗24T )LTr,3 + (a∗42

T − LTr,3a∗44T )

0 = εHT
r,3(a

∗
22
T − LTr,3a∗24T ) + a∗24

T − (a∗44
T + εa∗24

TLTr,3)H
T
r,3

(5.76)

with a∗ij matrices defined in (5.71)

The observer gains are obtained from

Arz,3 = Ar4 −K4A
r
2 =

 a∗22 a∗24

1
εa
∗
42

1
εa
∗
44

−
K41

K42

 a∗12 a∗14

1
εa
∗
32

1
εa
∗
34

 ,
Kr
z,3 = Ar3 −K4A

r
1 +Ar4K4 −K4A

r
2K4

=

 a21 −K21a11 + a22K21 + 1
εa23K22 −K21(a12K21 + 1

εa13K22)

1
εa31 −

1
εK22a11 + 1

εa32K21 + 1
ε2
a33K22 − 1

εK22(a12K21 + 1
εa13K22)

 =

K41r

K42r


(5.77)

The reduced-order observer (5.72) has a sequential structure. It can be block diagonal-

ized and used as a parallel structure as

˙̂zs,3(t) = (Asr,3 −Ksr,3Csr,3)ẑs,3(t) +K∗sr,3y(t)

ε ˙̂zfnew2,3(t) = (Afr,3 −Kf2r,3Cfnewr,3)ẑfnew2,3(t) +Kf3r,3y(t)

(5.78)

where

 ẑs,3(t)

ẑfnew2,3(t)

 =

I(n1−l1) 0

Po2r,3 I(n2−l2)

 ẑs,3(t)

ẑfnew,3(t)

 = T3r,3

 ẑs,3(t)

ẑfnew,3(t)

 (5.79)

The original coordinates ẑ12(t), ẑ22(t) and the coordinates ẑs,3(t), ẑfnew2,3(t) are related

via  ẑs,3(t)

ẑfnew2,3(t)

 = T3r,3T
−1
4r,3

ẑ12(t)
ẑ22(t)

 = T−1r,3

ẑ12(t)
ẑ22(t)

 (5.80)

where Po2r,3 satisfies the algebraic Sylvester equation represented by

εPo2r,3(Asr,3 −Ksr,3Csr,3)− εKf2r,3Csr,3 − (Afr,3 −Kf2r,3Cfnewr,3)Po2r,3 = 0

⇒ P 0
o2r,3 = O(ε)

(5.81)
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In the previous chapter, we have observed the original system state using independent

reduced-order slow and fast observers (5.78). In this section, we use these observers and

consider the observer-based controller design for singularly perturbed linear systems.

The observer is driven by the system measurements and control inputs, that is

 ˙̂zs,3(t)

ε ˙̂zfnew2,3(t)

 =

Asr,3 −Ksr,3Csr,3 0

0 Afr,3 −Kf2r,3Cfnewr,3

 ẑs,3(t)

ẑfnew2,3(t)


+

Bsr2,3
Bf2r,3

u(t) +

K∗sr,3
Kf3r,3

 y(t)

(5.82)

Thus, these two observers (5.82) can be implemented independently in the slow and fast

time scales

˙̂zs,3(t) = (Asr,3 −Ksr,3Csr)ẑs,3(t) +Bsr2,3u(t) +K∗sr,3y(t)

ε ˙̂zfnew2,3(t) = (Afr,3 −Kfr2,3Cfnewr,3)ẑfnew2,3(t) +Bf2r,3u(t) +Kf3r,3y(t)

(5.83)

where Bsr2,3, Bf2r,3 can be obtained from T−1r,3 B as

Bsr2,3 = (I(n1−l1) − εHr,3Lr,3)Bz1 − εP Tor,3Lr,3Bz1 −Hr,3Bz2 − P Tor,3Bz2,

Bf2r,3 = εPo2r,3(I(n1−l1) − εHr,3Lr,3)Bz1 − ε2Po2r,3P Tor,3Lr,3Bz1 + ε2Lr,3Bz1

− εPo2r,3Hr,3Bz2 − εPo2r,3P Tor,3Bz2 + εBz2

(5.84)

The control input in the ẑs,3-ẑfnew2,3 coordinates is given by

u(t) = −Fr,3x̂(t) = −
[
F12 F21

]x̂12(t)
x̂21(t)


= −(

[
F12 F21

]K41

K42

 y(t) +
[
F12 F21

]
Tr

 ẑs,3(t)

ẑfnew2,3(t)

)

= −(
[
F12 F21

]K41

K42

 y(t) +
[
Fsr2,3 Ffr2,3

] ẑs,3(t)

ẑfnew2,3(t)

)

= −Fr,3K4y(t)−
[
Fsr2,3 Ffr2,3

] ẑs,3(t)

ẑfnew2,3(t)



(5.85)
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with

Fsr2,3 = F12(I(n1−l1) − P
T
or,3Po2r,3 −Hr,3Po2r,3)− F21L(I(n2−l2) − P

T
or,3Po2r,3)

− 1

ε
F21(I(n2−l2) − εLr,3Hr,3)Po2r,3

Ffr2,3 = F12(P
T
or,3 +Hr,3)− F21Lr,3P

T
or,3 +

1

ε
F21(I(n2−l2) − εLr,3Hr,3)

(5.86)

Here, Fr is taken from (3.33), and F12 ∈ R1×(n1−l1), F21 ∈ R1×(n2−l2). The correspond-

ing block diagram for the observer driven controller is presented in Figure 5.5. This

block diagram clearly indicates full parallelism of the slow controller driven by the slow

observer and the fast controller driven by the fast observer.

The remaining matrices introduced in (5.72) are given by

ATsr,3 = a∗22
T − LTr,3a∗24T , ATfr,3 = a∗44

T + εa∗24
TLTr,3,

CTsr,31 = a∗12
T − LTr,3a∗14T , CTsr,32 =

1

ε
a∗32

T − LTr,3
1

ε
a∗34

T ,

CTfr,31 = εHT
r,3a
∗
12
T + (I(n2−l2) − εH

T
r,3L

T
r,3)a

∗
14
T ,

CTfr,32 = εHT
r,3

1

ε
a∗32

T + (I(n2−l2) − εH
T
r,3L

T
r,3)

1

ε
a∗34

T ,

CTsr,3 =
[
CTsr,31 CTsr,32

]
, CTfr,3 =

[
CTfr,31 CTfr,32

]
Cfnewr,3 = Cfr,3 + εCsr,3P

T
or,3

(5.87)

Ksr,3,Kf2r,3, Por,3 can be obtained from the formula in Section 4.6, that is

λ(ATsr,3 − CTsr,3KT
sr,3) = λ(Asr,3 −Ksr,3Csr,3) = λdesireds

λ(Afr,3 −KT
f2r,3Cfnewr,3) = λdesiredf

εPor,3(A
T
sr,3 − CTsr,3KT

sr,3)− CTfr,3KT
sr,3 −ATfr,3Por,3 = 0

⇒ Por,3 = O(ε)

(5.88)

5.5.1 Case V : Numerical Example

Consider a 4th− order system with the system matrices A,B, and C defined in Section

4.C. The controllability matrix has full rank and therefore the pair (A,B) is controllable.

We locate the feedback system slow eigenvalues at λdesiredcs = (−2,−3) and the feedback
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Figure 5.5: Case V: Slow and fast observer-based controller design for a singularly
perturbed linear systems with the system feedback gains obtained in (5.85)

system fast eigenvalues at λdesiredcf = (−7,−8), and the slow observer eigenvalues at

λdesiredos = −50 and the fast observer eigenvalues at λdesiredof = (−200,−300), given in

the previous numerical example. Following the design procedure of from Sections 5.5,

the completely decoupled slow and fast observers in the zs,3-zfnew2,3 coordinates, driven

by the system measurements and control inputs, are

˙̂zs,3(t) =
[
−50.0000

]
ẑs(t)

+
[
−2.323033338614758

]
u(t) +

[
−6196.4741

]
y(t)

˙̂zfnew2,3(t) =

 −1693.6295 113.2762

−18376.0229 1193.6295

 ẑfnew2(t)
+

−0.2499

0.4666

u(t) +

 −2859901.4120

−33059040.2923

 y(t)

u(t) = −
[
−6530.3242 91.6868

]
ẑs(t)

−
[
332.8512 −10.9008

]
ẑfnew2(t)
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The slow and fast controller gains Fsr2,3, Ffr2,3 are obtained as

Fsr2,3 =
[
−6530.3242 91.6868

]
,

Ffr2,3 =
[
332.8512 −10.9008

]
5.6 Conclusions

We have designed with high accuracy reduced-order observer-based controllers for sin-

gularly perturbed linear systems in Chapter 5. The numerical ill-conditioning problem

of the original system is removed. We have demonstrated that the full-order singularly

perturbed system can be successfully controlled with the state feedback reduced-order

controllers designed on the subsystem levels. The two stage method is successfully

implemented for both observer and controller designs from Case III) to Case V).
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Chapter 6

Conclusions and Future work

6.1 Conclusions

We have designed with very high accuracy the pure-slow and pure-fast observer-based

controllers. They are designed independently using the reduced-order slow and fast

sub- system matrices. The numerical ill-conditioning problem of the original system is

removed. We have demonstrated that the full-order singularly perturbed linear system

can be successfully controlled with the state feedback controllers designed on the sub-

system levels. The two stage method is successfully implemented for both observer and

controller designs. Furthermore, we extend the two stage method to the reduced-order

observer design and apply it to observer-based controller design. We consider several

cases: Case I to Case V for the reduced-order observer design of singularly perturbed

linear systems in order to account for different measurement situations.

6.2 Future Work

In the future, more realistic models of singularly perturbed linear system could be and

should be developed since we did not consider noise in the state space model. In that

case, we plan to extend this approach to design of the Kalman filter and Kalman filter

based controllers for singularly perturbed linear systems [40]-[53]. Corresponding con-

trollers may be designed in the future using multiple time scales [39]. The study of the

corresponding discrete-time problems is also an interesting area for future research. Ex-

tensions to multi-time scale systems are interesting future research topics. In addition,

studying the sensitivity of presented algorithms should be addressed in the future.
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Appendix A

Proof

A.1 Rank Condition in Section 4.3

If the pair (A,C) is observable, we form matrix given as



C

CA

CA2

.

.

.

CAn−1


The rank condition after scalar multiplication is unchanged

rank(αA) = rank(A)

In Section 4.2.1, the pair (A11,
1
εA21) is observable, which implies

rank



1
εA21

1
εA21A11

1
εA21A

2
11

.

.

.

1
εA21A

n−1
11



= rank



A21

A21A11

A21A
2
11

.

.

.

A21A
n−1
11
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A.2 Reduced-Order Observer Design for Section 4.2

The unmeasured portion of the system is

εẋ2(t) = (A21x1(t)) +A22x2(t) (A.1)

The term within the parentheses is a known quantity. Because there are n1 measured

states, the number of unmeasured states is n− n1, so that we will build an observer of

order n− n1 to estimate these states. The observer structure is given by the following

procedure (this is the same procedure used for the full-order observer): copy the system

equation, replace unknown quantities by their estimates, and add a correction term

multiplied by the observer gain. The correction term is the difference between the plant

output and the observer output, producing

εẋ2(t) = A22x2(t) + (A21x1(t)) +K11(correction term) (A.2)

The correction term in the full-order observer case was (y(t) − Cx̂(t)). In the present

case, it is

y(t)−
[
I 0

]x1(t)
x2(t)

 = y(t)− x1(t) = 0 (A.3)

Hence, using the output will not provide any useful information. However, if the output

is available, we can assume that their derivatives are also available. Now, we observe

that the derivative of the plant output is equal to the measured portion of the system,

i.e.,

ẏ(t) = ẋ1(t) = A12x2(t) +A11x1(t)→ ẏ(t)−A11x1(t) = A12x2(t) (A.4)

where we have collected the measured quantities on the left-hand side. We can use the

known quantities on the left as a substitute for the plant output, and the right hand

side as the observer output. Substituting this in the observer equation, we obtain

εẋ2(t) = A22x2(t) + (A21x1(t)) +K11(ẏ(t)−A11x1(t)−A12x2(t)) (A.5)
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which corresponds to (4.5).

A.3 Reduced-Order Observer Design for Section 4.3

The unmeasured portion of the system is

ẋ1(t) = (A12x2(t)) +A11x1(t) (A.6)

The term within the parentheses is a known quantity. Because there are n2 measured

states, the number of unmeasured states is n− n2, so that we will build an observer of

order n− n2 to estimate these states. The observer structure is given by the following

procedure (this is the same procedure used for the full-order observer): copy the system

equation, replace unknown quantities by their estimates, and add a correction term

multiplied by the observer gin. The correction term is the difference between the plant

output and the observer output, which produces

ẋ1(t) = A11x1(t) + (A12x2(t)) +K12(correction term) (A.7)

The correction term in the full-order observer case was (y(t) − Cx̂(t)). In the present

case, it is

y(t)−
[
0 I

]x1(t)
x2(t)

 = y(t)− x2(t) = 0 (A.8)

Hence, using the output will not provide any useful information. However, if the output

is available, we can assume that their derivatives are also available. Now, we observe

that the derivative of the plant output is equal to the measured portion of the system,

i.e.,

ẏ(t) = ẋ2(t) =
1

ε
A21x1(t) +

1

ε
A22x2(t)→ ẏ(t)− 1

ε
A22x2(t) =

1

ε
A21x1(t) (A.9)

where we have collected the measured quantities on the left-hand side. We can use the

known quantities on the left as a substitute for plant output, and the right hand side
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as the observer output. Substituting this in the observer equation, we obtain

ẋ1(t) = A11x1(t) + (A12x2(t)) +K12(ẏ(t)− 1

ε
A21x1(t)−

1

ε
A22x2(t)) (A.10)

which corresponds to (4.12).

A.4 Least Square Solution for the Full-Order Observer

From measurements, we have n− unknown components of x̂(t), but l− equations given

as
y(t) = Cx̂(t)

at t=0, y(0) = Cx̂(0)

(A.11)

Multiplying by CT on both side of the second equation in (A.11), we obtain

CTCx̂(0) = CT y(0)

x̂(0) = (CTC)−1CT y(0)

(A.12)

which gives the least square solution for x̂(0).

A.5 Case I : Least Square Solution for the Reduced-Order Observer

in Section 4.2.1

From (4.3) at t = 0, the measurements are given as

y(0) = CIx(0) = x1(0) =
[
I 0

]x1(0)

x2(0)

 (A.13)

We can obtain the least square solution for x̂1(0), x̂2(0) given as

x̂1(0)

x̂2(0)

 = (CTI CI)
]CTI y(0) == (CTI CI)

]CTI x1(0) (A.14)

where ] is a generalized inverse. We used the Penrose inverse since pinv exists in

MATLAB.
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A.6 Case II : Least Square Solution for the Reduced-Order Observer

in Section 4.3.1

From (4.10) at t = 0, the measurements are given as

y(0) = CIIx(0) = x2(0) =
[
0 I

]x1(0)

x2(0)

 (A.15)

We can obtain the least square solution for x̂1(0), x̂2(0) given as

x̂1(0)

x̂2(0)

 = (CTIICII)
]CTIIy(0) == (CTII × CII)

]CTIIx2(0) (A.16)

A.7 Case III : Least Square Solution for the Reduced-Order Observer

in Section 4.4.4

From (4.18) at t = 0, the measurements are given as

y(0) = CIIIx(0) = x11(0) =
[
I 0 0

]

x11(0)

x12(0)

x2(0)

 (A.17)

We can obtain the least square solution for x̂11(0), x̂12(0), x̂2(0) given as


x̂11(0)

x̂12(0)

x̂2(0)

 = (CTIIICIII)
]CTIIIy(0) == (CTIIICIII)

]CTIIIx11(0) (A.18)
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A.8 Case IV : Least Square Solution for the Reduced-Order Observer

in Section

From (4.69) at t = 0, the measurements are given as

y(0) = CIVx(0) = x22(0) =
[
0 0 I

]

x1(0)

x21(0)

x22(0)

 (A.19)

We can obtain the least square solution for x̂1(0), x̂21(0), x̂22(0) given as


x̂1(0)

x̂21(0)

x̂22(0)

 = (CTIVCIV)]CTIVy(0) == (CTIVCIV)]CTIVx22(0) (A.20)

A.9 Case V : Least Square Solution for the Reduced-Order Observer

in Section 4.6.4

From (4.120) at t = 0, the measurements are given as

y(0) = CVx(0) = x11(0) + x22(0) =

I 0 0 0

0 0 I 0




x11(0)

x12(0)

x21(0)

x22(0)


(A.21)

We can obtain the least square solution for x̂11(0), x̂12(0), x̂21(0), x̂22(0) given as



x̂11(0)

x̂12(0)

x̂21(0)

x̂22(0)


= (CTVCV)]CTVy(0) == (CTVCV)]CTV(x11(0) + x22(0)) (A.22)
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