

©2017

Lisheng Zhou

ALL RIGHTS RESERVED

A STATISTICAL METHOD FOR GENOTYPIC ASSOCIATION THAT IS ROBUST

TO SEQUENCING MISCLASSIFICATION

By

LISHENG ZHOU

A dissertation submitted to the

Graduate School - New Brunswick

And

The Graduate School of Biomedical Sciences �

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements�

For the degree of�

Doctor of Philosophy�

Graduate Program in Microbiology and Molecular Genetics

Written under the direction of

Tara Matise, Ph.D., Derek Gordon, Ph.D.

And approved by

New Brunswick, New Jersey

May 2017

ii

ABSTRACT OF THE DISSERTATION

A Statistical Method for Genotypic Association that Is Robust to Sequencing

Misclassification

By LISHENG ZHOU

Dissertation Directors:

Tara Matise, Ph.D., Derek Gordon, Ph.D.

 In analyzing human genetic disorders, association analysis is one of the most commonly

used approaches. However, there are challenges with association analysis, including

differential misclassification in data that inflates the false-positive rate. In this thesis, I

present a new statistical method for testing the association between disease phenotypes and

multiple single nucleotide polymorphisms (SNPs). This method uses next-generation

sequencing (NGS) raw data and is robust to sequencing differential misclassification. By

incorporating expectation-maximization (EM) algorithm, this method computes the test

statistic and estimates important parameters of the model, including misclassification. By

performing simulation studies, I report that this method maintains correct type I error rates

and may obtain high statistical power.

iii

Acknowledgement

First and foremost, I wish to express my sincere gratefulness to my advisors, Dr. Tara

Matise and Dr. Derek Gordon. Their excellent guidance, continual support, and

encouragement enormously helped me through this remarkable journey of pursuing a Ph.D.

I also wish to thank Dr. Steven Buyske and Dr. Jinchuan Xing for their valuable advice on

my research while on my dissertation committee.

Current and former members in the Matise/Gordon Lab, Dr. Anthony Musolf, Dr.

Alejandro Q. Nato, Dr. Douglas Londono, and Rasheeda Williams, I cherish the exciting

time spent with all of you.

Moreover, to all of my friends in the Genetics Department, the program of Molecular

Biosciences, the iJOBS program, and at Rutgers, I treasure the companion from you.

Special thanks to my boyfriend, Guanjie Huang, who makes me laugh since the first day

we met.

In the end, my deepest gratitude goes to my parents, Weiji Zhou and Yuqing Chen, and my

grandmother, Naiming Gong. The unconditional love and support from them make me a

better me as time goes by.

iv

Table of contents

Abstract of the Dissertation .. ii

Acknowledgement ... iii

Table of contents .. iv

List of tables ... viii

List of illustrations ... ix

Chapter 1 Introduction ... 1

1.1 Genetic disorders .. 2

1.1.1 What are genetic disorders? .. 2

1.1.2 Single gene, complex, and chromosomal disorders .. 2

1.1.3 Single Gene Modes of inheritance .. 3

1.2 Linkage analysis and association analysis .. 6

1.2.1 Linkage analysis .. 6

1.2.2 Association analysis .. 8

1.3 Genetic association analysis ... 9

1.3.1 What is genetic association analysis? ... 9

1.3.2 Existing approaches for association analysis .. 9

1.3.3 Genome-wide association studies (GWAS) .. 11

1.3.4 Significant genetic association .. 11

1.3.5 Problems existing in case-control association analysis: 13

1.4 Motivation of our method ... 15

v

1.4.1 Direct association approach – identify causal variant 15

1.4.2 Using NGS .. 15

1.4.3 A test of association robust to differential misclassification 16

Chapter 2 Methods... 21

2.1 Key terms and notation used in this chapter ... 22

2.1.1 Definitions of terms used throughout this work ... 22

2.1.2 Notation ... 25

2.1.3 Mathematical principles .. 26

2.1.4 Statistical terms ... 29

2.2 Development of the likelihood ratio test ... 34

2.2.1 Log-likelihood of the observed data ... 34

2.2.2 Expectation-maximization algorithm estimates .. 40

2.2.3 Derivation of test statistic ... 48

2.3 Simulations of observed data for type I error rates and power evaluations 50

2.3.1 How MLG frequencies are computed during simulation 51

2.3.2 Determination of data during simulation .. 54

Chapter 3 Results ... 65

3.1 Likelihood ratio test calculations using factorial design 66

3.1.1 Calculations of empirical type I error rate and empirical power 66

3.1.2 ANOVA for effects on power ... 77

3.2 Performance evaluation on misclassification estimates 90

3.2.1 Testing on Simulated Data .. 90

3.2.2 Testing on real data: the 1000 Genomes Project data 92

vi

3.2.3 Testing on simulated data with high misclassification rates: 94

3.2.4 Testing on real data of high quality .. 96

Chapter 4 Discussion ... 101

4.1 Summary ... 102

4.2 Locus-specific misclassification rates ... 102

4.3 Computer program execution time ... 105

4.3.1 Computer time on different number of loci tested 106

4.3.2 Computer time of different sequencing coverage on a single locus 106

4.3.3 Computer time of different sequencing coverage on two loci 108

4.3.4 Computer time on real data: the 1000 Genomes Project data 110

4.4 Using double-sampling to increase genetic association test power 111

4.5 Advancement in high-throughput technologies .. 112

Appendix 1. Source code for the statistical test (in C) .. 115

Appendix 2. Source code for the simulation process .. 154

2.1. Generate input file for the simulation program (in C) 154

2.2. Simulation program (in C) ... 164

Appendix 3. Source code for the permutation step (in R) ... 178

Appendix 4. Source code for utility functions ... 180

4.1. Binomial Distribution ... 180

4.2. Mapping Function ... 181

4.3. Splitting function .. 182

Appendix 5. Instruction for running a simulation test ... 184

vii

5.1. Simulate NGS raw data ... 184

5.1.1. Data preparation .. 184

5.1.2. Data Simulation .. 185

5.2. Calculate test statistic and misclassification estimates 185

5.3. Permutation program .. 185

viii

List of tables

Table 2.1 Contingency table example of a study of genotype frequency differences 28

Table 2.2 Computation of MLG frequencies conditional on affection status under

different odds-ratios .. 54

Table 2.3 Determination of an individual’s simulated MLG .. 57

Table 2.4 Determination of an individual's simulated vector of observed data 61

Table 3.1 The parameter settings and the empirical type I errors that are within the upper

and lower whisker range ... 70

Table 3.2 The parameter settings and the empirical power that are within the upper and

lower whisker range .. 74

Table 3.3 ANOVA for main effects and all two-way interactions on the significance level

of 1% ... 77

Table 3.4 ANOVA for main effects and all two-way interactions on the significance level

of 5% ... 79

Table 3.5 ANOVA for main effects and all two-way interactions on the significance level

of 10% ... 81

Table 3.6 Linear regression analysis coefficients for the three most significant factors

from Table 3.3, and their two-way interaction terms (significance level of 1%) 83

Table 3.7 Linear regression analysis coefficients for the three most significant factors

from Table 3.4, and their two-way interaction terms (significance level of 5%) 84

Table 3.8 Linear regression analysis coefficients for the three most significant factors

from Table 3.5 and their two-way interaction terms (significance level of 10%) 84

ix

List of illustrations

Figure 1.1 Mitochondrial DNA is only inherited from female parents 5

Figure 1.2 Pedigree MYO-068 with familial high myopia ... 7

Figure 1.3 The relative efficiency between linkage analysis and association analysis 8

Figure 1.4 Example distribution of a quantitative trait ... 11

Figure 1.5 Example of Manhattan plot showing all genotyped SNPs 12

Figure 1.6 The distribution of false positive rate in differential misclassifications 14

Figure 2.1 Example of sequencing coverage and alternative allele read count of an

individual .. 24

Figure 2.2 A general workflow of EM algorithm ... 32

Figure 2.3 The workflow of the EM algorithm in obtaining the maximum log-likelihood

of the observed data, lnLHd. ... 50

Figure 2.4 Workflow for simulation on alternative allele read count 55

Figure 3.1 Workflow for empirical p-value calculation ... 67

Figure 3.2 Boxplots for empirical type I error rates ... 69

Figure 3.3 Boxplots for empirical power .. 73

Figure 3.4 Scatter plot of empirical power versus fitted power using 64 vectors of factor

settings (significance level: 1%) ... 87

Figure 3.5 Scatter plot of empirical power versus fitted power using 64 vectors of factor

settings (significance level: 5%) ... 88

Figure 3.6 Scatter plot of empirical power versus fitted power using 64 vectors of factor

settings (significance level: 10%) ... 89

Figure 3.7 Boxplot of misclassification estimates from simulated data 91

x

Figure 3.8 Boxplot of misclassification estimates from 1000 Genomes Project data 94

Figure 3.9 Boxplot of misclassification estimates from simulated data 96

Figure 3.10 Boxplot of misclassification estimates from 1000 Genomes Project data with

sequencing coverage from high quality bases .. 99

Figure 4.1 Computer program execution time on different number of loci 107

Figure 4.2 Computer program execution time on different sequencing coverage 107

Figure 4.3 Computer program execution time on different sequencing coverage 109

Figure 4.4 Number of steps to achieve maximum likelihood on different sequencing

coverage .. 110

	 	
	

1

Chapter 1 Introduction

Human genetic disorders are unusual traits that are inherited within human genomes. In

general, there are three categories of genetic disorders, single gene disorders, complex-trait

disorders and chromosomal disorders. In single gene disorders, mode of inheritance may

generally be classified as either autosomal dominant disorders, autosomal recessive

disorders, X-linked disorders or mitochondrial disorders. The most commonly used

methods for analyzing these genetic disorders are linkage analysis and association analysis.

In association analysis, existing designs include case-control, family-based and

quantitative trait. For complex-trait disorder association studies, GWAS (genome-wide

association studies) are widely applied today. However, there are challenges with GWAS,

among them those dealing with statistical design and analysis. The purpose of this work is

to address some of those statistical challenges.

	 	
	

2

1.1 Genetic disorders

1.1.1 What are genetic disorders?

Genetic disorders are disease traits that are caused by changes in the genome that result in

abnormal expression or gain or loss of function of one or more genes. New variants are

introduced in each generation [1]. Some of these variants may be deleterious in that they

have a harmful effect on the organism. Such mutations may occur spontaneously during

one’s life span, or may be inherited from parents.

1.1.2 Single gene, complex, and chromosomal disorders

As noted above, genetic disorders can generally be classified into three groups. We provide

more details on each group directly below.

1.1.2.1 Single gene disorder

The first type is the single gene disorder, that requires only one mutation in a single gene

to trigger the expression of the corresponding disorder. This type is also called a Mendelian

disorder. The occurrence of this type of disorder is rare in the general population. Single

gene disorders usually have identifiable inheritance patterns [2]. Examples of single gene

disorders are cystic fibrosis, fragile X syndrome, sickle-cell disease, and Huntington’s

disease.

1.1.2.2 Complex-trait disorder

The second type of genetic disorder is a complex-trait disorder, that requires multiple

factors for the expression of a disease trait [2]. These factors include multiple genes and

interactions with the environment, and therefore genetic disorders do not typically exhibit

distinct inheritance patterns. Complex-trait disorders are often developed by the interaction

	 	
	

3

between genes and environment (G×E), where genetics plays a significant role. Variation

in a single gene is not expected to be sufficient for the expression of a complex-trait

disorder phenotype, even though the expression may be dependent upon the number of

mutations in relevant disease genes [2]. Complex-trait disorders occur more frequently in

the general population than do most single gene disorders. Examples of complex-trait

disorders include heart disease, Alzheimer disease, Parkinson disease, and asthma.

1.1.2.3 Chromosomal disorder

The last type is a chromosomal disorder, where the disease trait is caused by abnormal

chromosome structure or number. This may occur due to deletion of a chromosome region

(or regions), such as Angelman syndrome, or due to the occurrence of an abnormal number

of chromosomes, such as Down syndrome.

1.1.3 Single Gene Modes of inheritance

Mode of inheritance is the pattern by which a monogenic trait is transmitted in families.

Most Mendelian traits follow one of four modes of inheritance: autosomal dominant,

autosomal recessive, X-linked and mitochondrial [3].

1.1.3.1 Autosomal dominant

Autosomal dominant inheritance requires only one disease allele to cause an individual to

be affected by the disease. If the disease allele is inherited from parents, instead of being a

de novo mutation, assuming the disease has 100% penetrance, at least one of the parents

of the affected individual also expresses the disease phenotype. Because the inheritance of

the disease allele is through autosomal inheritance, male or female offspring share equal

possibility of inheriting the disease allele. There is a special case existing in this category

	 	
	

4

where the homozygous state of an autosomal dominant mutation presents a lethal

phenotype, for example, Autosomal dominant osteopetrosis type II (ADO2) [4].

1.1.3.2 Autosomal recessive

Autosomal recessive inheritance requires two trait alleles in the same gene to express the

trait phenotype. If those alleles are inherited, and neither of the parents of the affected

individual expresses the trait, then both parents are carriers of the trait allele. An individual

carrying just one recessive allele but not showing expression of the phenotype is called a

“carrier”. The probability of inheriting one disease allele from both carriers (parents) at the

same time and expressing the disease phenotype is 0.25. Again, because the trait is

autosomal, the sex of offspring does not impact this probability.

1.1.3.3 X-linked

In X-linked inheritance, the disease locus is located on the X chromosome. This mode of

inheritance may be further categorized into dominant or recessive inheritance. Males have

only one X chromosome whereas females have two, therefore, X-linked traits occur in

different proportions in males and females. With dominant disease alleles, the occurrence

of the disease only requires one allele, resulting in that the probability of disease occurrence

is usually the same in males and in females. For recessive alleles, only one disease allele

is necessary for males to express the disease phenotype, but two are necessary in females.

As a result, the probability of disease occurrence due to X-linked recessive inheritance is

usually considerably higher in males than in females.

1.1.3.4 Mitochondrial

In mitochondrial inheritance, the trait allele is located in the mitochondrial DNA (mtDNA)

and therefore is transmitted to offspring as cytoplasmic genes. mtDNA is strictly

	 	
	

5

maternally inherited [5, 6]. Though a few sperm mitochondrial DNA enter the egg, paternal

mtDNA is not transmitted to offspring [7, 8]. Therefore, in mitochondrial inheritance, only

the female parent transmits her mtDNA to all of her offspring [6, 7, 9] (Figure 1.1).

Figure 1.1 Mitochondrial DNA is only inherited from female parents

This figure is extracted from an online source [10].

	 	
	

6

1.2 Linkage analysis and association analysis

1.2.1 Linkage analysis

In human genetics, linkage analysis plays an important role in disease gene mapping. This

strategy is achieved by estimating genetic distances from recombination events, by

studying the co-inheritance of two loci (for example, a disease locus and a non-disease

locus) within families from generation to generation [11]. In order to locate underlying

disease loci, linkage analysis depends on the identification of recombinants; that is,

recombinant haplotypes in children that are different from the parental haplotypes. In his

book, Analysis of Human Genetic Linkage, Ott defines a haplotype as “the alleles (at

different genes) received by an individual from one parent” [11]. For many single gene

disorders, genes have been localized through application of linkage analysis to pedigrees

with affected individuals. Recombination analysis is used to locate the disease gene (see

example in Figure 1.2). A few examples of diseases caused by single underlying genes are:

Cystic Fibrosis [12, 13], Tay Sachs [14], and Huntington’s Disease [15-17]. However,

linkage analysis has limitations: 1) it is most powerful for studying Mendelian monogenic

disorders or oligogenic disorders (for complex-trait disorders, other strategies are required);

2) it requires family data to trace the recombination events [2].

	 	
	

7

Figure 1.2 Pedigree MYO-068 with familial high myopia

This figure and its legend are extracted from a published article [18]: Circles and squares:
females and males, respectively; solid symbols: affected individuals. Diagonal lines
through symbols: deceased individuals. The alleles for the most informative polymorphic
markers are shown for each studied individual. Haplotypes were constructed based on the
minimum number of recombinations between these markers. Solid bar: the chromosome
assumed to carry the inherited disease allele; open bars: normal haplotypes.
Nonparticipating family members are not shown. Only one of the monozygous twins 22
and 23 was used in the linkage analysis. Note that individuals 6, 16, and 17 are recombinant
for the telomeric marker D17S1811. Individual 16 was recombinant for the centromeric
marker D17S787.

	 	
	

8

1.2.2 Association analysis

When dealing with complex-trait disorders, association analysis is used to identify putative

genes by testing the correlation between disease status and genetic variation [2]. Comment

that methods for testing association (methods that incorporate linkage disequilibrium [LD]

among loci; e.g., chi-square test of independence for alleles or genotypes, transmission

disequilibrium test [TDT]) have been shown in some circumstance to be more powerful,

statistically, for gene mapping than linkage analysis [19] (see Figure 1.3). These methods

are potentially even more powerful with the advent of high-density single nucleotide

polymorphisms (SNP) chip technology. With chips now containing 500K to 2.5million

multiple SNPs per chip [20], virtually guaranteed to have LD present amongst markers

(and that increases power of association methods). More details on genetic association

analysis will be discussed in the next section.

Figure 1.3 The relative efficiency between linkage analysis and association analysis

	 	
	

9

This figure is extracted from a published review [21]. Association analysis is generally
more powerful than linkage analysis when the allele of interest is frequent.

1.3 Genetic association analysis

1.3.1 What is genetic association analysis?

Unlike linkage analysis, that is often “scored over a limited number of observed

generations” [22], association analysis utilizes a much larger number of generations to find

the correlation between complex disease traits and genomic variants. Furthermore, in

general, association analysis does not require any relationship between tested individuals.

1.3.2 Existing approaches for association analysis

1.3.2.1 Case-control test

One of the existing approaches of association analysis is the use of case-control studies.

This approach is probably the approach most often observed in published reports of genetic

association studies. In this kind of study, a set of individuals who are affected by the disease

of interest are phenotyped and grouped as the case group, and a set of individuals who are

not affected by the disease are phenotyped and grouped as the control group. Once the final

set of cases and controls is determined, they are genotyped (typically using SNPs). Below,

we mention some of the test statistics that are applied to case-control designs. Also, when

conducting a case-control study, it is important to address potential confounding factors,

such as population stratification [2].

1.3.2.2 Family-based association study

To avoid the potential type I error inflation caused by using stratified populations, the

family-based association study approach was developed. It was first proposed by Falk and

	 	
	

10

Rubinstein (reference here) by testing the association between an affected child and the

unaffected parents within the family [23]. The test statistic of this association was later

defined as haplotype relative risk (HRR) [24]. After some statistical limitations were

identified in HRR (e.g., the statistic may only be applied to simplex families (father, mother,

affected child) [25], TDT was developed to test for the linkage between a marker and the

disease, and applied to all SNPs whether or not previously identified for association [26,

27]. Apart from the original TDT test, there were several extensions of TDT [28-34],

including one that allows for locus heterogeneity [30].

1.3.2.3 Quantitative traits association study

A quantitative disease trait exhibits a continuous distribution of disease phenotypic values

(Figure 1.4). These values cannot be simply categorized and fit in Mendelian segregation

ratios [35]. A general way to test the association between markers and quantitative traits is

to take the mean train values into account [2, 36].

	 	
	

11

Figure 1.4 Example distribution of a quantitative trait

This figure and its legend are extracted from a book, Evolution [37]: The distribution of a
quantitative trait in individuals with different marker genotypes (PP, PQ, QQ) in parental,
F1 and F2 generations.

1.3.3 Genome-wide association studies (GWAS)

For complex diseases with causal genes contributing moderate effects to the disease risk,

identifying candidate genes requires large-scale testing through an association study

(Figure 1.3); one approach is GWAS [19]. In a GWAS study, typically thousands to tens

of thousands of individuals carrying the disease of interest (as well as unmatched controls)

are recruited and genotyped, and the genetic variants across genomes are then tested to

identify the correlation between any of these variants and the disease [38, 39].

1.3.4 Significant genetic association

If a significant genetic association is found (see Figure 1.5 for example), there are three

possible scenarios: 1) Direct association, meaning the genotyped SNPs identified are the

	 	
	

12

true causal variants of the disease of interest; 2) Indirect association, where the genotyped

SNPs identified are adjacent markers and in LD with the true causal variant of the disease;

3) False-positive results, that may be caused by chance or systematic confounding (e.g.

population stratification) [2]. A possible solution to distinguish disease causal variants

from indirect association results is fine mapping [40].

Figure 1.5 Example of Manhattan plot showing all genotyped SNPs

This figure and its legend are extracted from a published article [41]: Manhattan plot
showing all genotyped SNPs. X-axis: genomic coordinates of GWAS tested SNPs from
chromosome 1 to X. Y-axis: significance level for each SNP on a –log10 scale. Genome-
level significance, P = 5 × 10-8; suggestive P value threshold, P = 1 × 10-5.

	 	
	

13

1.3.5 Problems existing in case-control association analysis:

1.3.5.1 Quality control

Unlike family-based studies, case-control studies recruit participants with a variety of

genetic backgrounds. After recruiting, samples from the participants are examined at

different times and locations, and are often genotyped by different protocols and

technicians. These variations may introduce uncontrollable bias in the data. Such biases

may worsen if the individuals in the control group are recruited without confirming their

negative status of disease affection [2]. Therefore, the qualities of the genomic data from

study participants that are recruited separately may vary a great deal. These quality

variations could lead to false-positive results of the analyses, that may eventually cost the

time and money of a study, and possibly even negatively impact the health of the patients.

1.3.5.2 Departure from HWE

Hardy-Weinberg equilibrium (HWE) [42, 43] is assumed when testing the genetic

association in case-control studies, and is used in association studies to control the quality

of data. Any observation of departures from HWE in controls are associated with quality

problems that may cause fluctuation in type I errors, especially in the presence of

population stratification, genotyping errors and selection bias [44].

1.3.5.3 Genotyping misclassifications

Genotyping misclassification is also known as genotype error, and indicates that the true

genotype is misclassified so that the reported genotype is different from the true underlying

genotype. This may affect gene mapping and significantly decrease the power of the

association test [45-47]. There are two types of misclassification, differential and non-

differential. In the case of non-differential misclassification, the events that introduce

	 	
	

14

genotyping misclassifications are assumed to be the same between cases and controls.

However, few real-world studies have this non-differential misclassification property. This

non-differential misclassification, if applied improperly, may result in reduction of

statistical power and biased estimates of parameters [48-52]. For differential

misclassification, genotyping misclassification rates between cases and controls are

different. These kinds of misclassifications are inevitable and could be introduced in every

step of the study. However, even small differential genotyping misclassifications could

result in significant problems in association analyses, such as type I error rate inflation and

false-positive associations [48, 53, 54]. Figure 1.6 below shows the increase in false

positive rate when differential misclassifications occur between cases and controls.

Figure 1.6 The distribution of false positive rate in differential misclassifications

Legend: FPR: false positive rate; Error(case): the misclassification rate in the case group;
Error(control): the misclassification rate in the control group.

	 	
	

15

1.4 Motivation of our method

1.4.1 Direct association approach – identify causal variant

To solve the problem of decreased power in association studies with differential

misclassifications, we developed a statistical test of association that is robust to differential

misclassifications. In this method, we utilized next-generation sequencing raw data, instead

of genotyping data, to discover the association between the disease of interest and causal

variants in the genome.

1.4.2 Using NGS

With current technology, genotyping is generally designed to cover a subset of loci in the

genome, that may cause missing data. Therefore, in an association study using genotyping

data, the variants detected to be in association with the disease of interest may not be the

causal variants, but merely variants in LD with the disease causal variants. If that is the

case, a further approach of fine mapping is then required to identify causal variants. To

avoid this kind of situation caused by missing genotypes, sequencing technology may be

applied in association studies. Genome sequencing technology is able to reflect every

variant in a genome region of interest if properly designed.

Next-generation sequencing (NGS), also known as high-throughput sequencing, was

developed to meet demands for low-cost, high efficiency sequencing. Before the first

appearance of parallelized sequencing technology of NGS in 2005, Sanger sequencing was

used widely for nearly 30 years [55-58]. Compared to Sanger sequencing (that serves as

gold standard sequencing with sequencing read lengths reaching 750 base pairs [bp]), NGS

generates shorter reads (100 - 250 bp) and a higher number of sequencing reads from a

single instrument run [55]. Moreover, NGS is able to sequence several samples at a single

	 	
	

16

run, that provides for a much shorter time in data generation for a large number of samples.

However, the data quality from NGS is not always satisfactory, and the different algorithms

in NGS downstream data processing may cause data quality variations between studies.

1.4.3 A test of association robust to differential misclassification

One feature of our method is its robustness to differential misclassifications. The

misclassification we consider in our method is a combination of sequencing errors and

systematic errors that exist between cases and controls in raw NGS data such as errors

introduced by sample recruiting, sample preparation and downstream data processing.

These misclassifications inevitably vary between cases and controls, and therefore, require

our careful attention when designing an association test.

	 	
	

17

Reference:

1. McClellan, J. and M.C. King, Genetic heterogeneity in human disease. Cell, 2010.
141(2): p. 210-7.

2. Al-Chalabi, A. and L. Almasy, Genetics of Complex Human Diseases: A
Laboratory Manual. 2009: Cold Spring Harbor Laboratory Press.

3. Board, P.C.G.E. NCI Dictionary of Genetics Terms: Mode of inheritance. The
NCI Dictionary of Genetics Terms contains technical definitions for more than
200 terms related to genetics. These definitions were developed by the PDQ®
Cancer Genetics Editorial Board to support the evidence-based, peer-reviewed
PDQ cancer genetics information summaries.]. Available from:
https://www.cancer.gov/publications/dictionaries/genetics-
dictionary?cdrid=460196.

4. Alam, I., et al., Generation of the first autosomal dominant osteopetrosis type II
(ADO2) disease models. Bone, 2014. 59: p. 66-75.

5. Pyle, A., et al., Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No
Evidence of Paternal Transmission in Humans. PLoS Genet, 2015. 11(5): p.
e1005040.

6. Giles, R.E., et al., Maternal inheritance of human mitochondrial DNA. Proc Natl
Acad Sci U S A, 1980. 77(11): p. 6715-9.

7. Zeviani, M. and S. Di Donato, Mitochondrial disorders. Brain, 2004. 127(Pt 10):
p. 2153-72.

8. Schwartz, M. and J. Vissing, Paternal inheritance of mitochondrial DNA. N Engl
J Med, 2002. 347(8): p. 576-80.

9. Ankel-Simons, F. and J.M. Cummins, Misconceptions about mitochondria and
mammalian fertilization: implications for theories on human evolution. Proc Natl
Acad Sci U S A, 1996. 93(24): p. 13859-63.

10. Marshalling the Evidence. Understanding Evolution. ; Available from:
http://undsci.berkeley.edu/article/0_0_0/endosymbiosis_07.

11. Ott, J., Analysis of human genetic linkage. 3rd ed. 1999, Baltimore: Johns
Hopkins University Press. xxiii, 382 p.

12. Eiberg, H., et al., Linkage relationships of paraoxonase (PON) with other
markers: indication of PON-cystic fibrosis synteny. Clin Genet, 1985. 28(4): p.
265-71.

13. Tsui, L.C. and R. Dorfman, The cystic fibrosis gene: a molecular genetic
perspective. Cold Spring Harb Perspect Med, 2013. 3(2): p. a009472.

14. Frisch, A., et al., Origin and spread of the 1278insTATC mutation causing Tay-
Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious
hypothesis. Hum Genet, 2004. 114(4): p. 366-76.

15. Bishop, D.T., et al., Strategies for efficient linkage analysis: example of
Huntington's disease pedigrees. Genet Epidemiol Suppl, 1986. 1: p. 217-22.

16. Marazita, M.L. and M.A. Spence, Linkage analysis of G8 and Huntington's
disease. Genet Epidemiol Suppl, 1986. 1: p. 247-50.

	 	
	

18

17. Sarfarazi, M., Report on genetic linkage analysis between Huntington's disease
and the G8 DNA polymorphism. Genet Epidemiol Suppl, 1986. 1: p. 259-64.

18. Paluru, P., et al., New locus for autosomal dominant high myopia maps to the
long arm of chromosome 17. Invest Ophthalmol Vis Sci, 2003. 44(5): p. 1830-6.

19. Risch, N. and K. Merikangas, The future of genetic studies of complex human
diseases. Science, 1996. 273(5281): p. 1516-7.

20. Ha, N.T., S. Freytag, and H. Bickeboeller, Coverage and efficiency in current
SNP chips. Eur J Hum Genet, 2014. 22(9): p. 1124-30.

21. Ardlie, K.G., L. Kruglyak, and M. Seielstad, Patterns of linkage disequilibrium in
the human genome. Nat Rev Genet, 2002. 3(4): p. 299-309.

22. Ott, J., J. Wang, and S.M. Leal, Genetic linkage analysis in the age of whole-
genome sequencing. Nat Rev Genet, 2015. 16(5): p. 275-84.

23. Rubinstein, P., et al., HLA antigens and islet cell antibodies in gestational
diabetes. Hum Immunol, 1981. 3(3): p. 271-5.

24. Falk, C.T. and P. Rubinstein, Haplotype relative risks: an easy reliable way to
construct a proper control sample for risk calculations. Ann Hum Genet, 1987.
51(Pt 3): p. 227-33.

25. Ott, J., Statistical properties of the haplotype relative risk. Genet Epidemiol, 1989.
6(1): p. 127-30.

26. Spielman, R.S. and W.J. Ewens, The TDT and other family-based tests for
linkage disequilibrium and association. Am J Hum Genet, 1996. 59(5): p. 983-9.

27. Spielman, R.S., R.E. McGinnis, and W.J. Ewens, Transmission test for linkage
disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus
(IDDM). Am J Hum Genet, 1993. 52(3): p. 506-16.

28. Deng, H.W. and W.M. Chen, The power of the transmission disequilibrium test
(TDT) with both case-parent and control-parent trios. Genet Res, 2001. 78(3): p.
289-302.

29. Haldar, T. and S. Ghosh, Statistical equivalent of the classical TDT for
quantitative traits and multivariate phenotypes. J Genet, 2015. 94(4): p. 619-28.

30. Londono, D., et al., TDT-HET: a new transmission disequilibrium test that
incorporates locus heterogeneity into the analysis of family-based association
data. BMC Bioinformatics, 2012. 13: p. 13.

31. Rice, J.P., et al., TDT with covariates and genomic screens with mod scores: their
behavior on simulated data. Genet Epidemiol, 1995. 12(6): p. 659-64.

32. Sham, P.C. and D. Curtis, An extended transmission/disequilibrium test (TDT)
for multi-allele marker loci. Ann Hum Genet, 1995. 59(Pt 3): p. 323-36.

33. Waldman, I.D., B.F. Robinson, and S.A. Feigon, Linkage disequilibrium between
the dopamine transporter gene (DAT1) and bipolar disorder: extending the
transmission disequilibrium test (TDT) to examine genetic heterogeneity. Genet
Epidemiol, 1997. 14(6): p. 699-704.

34. Waldman, I.D., B.F. Robinson, and D.C. Rowe, A logistic regression based
extension of the TDT for continuous and categorical traits. Ann Hum Genet,
1999. 63(Pt 4): p. 329-40.

35. St Clair, D.A., Quantitative disease resistance and quantitative resistance Loci in
breeding. Annu Rev Phytopathol, 2010. 48: p. 247-68.

	 	
	

19

36. Boerwinkle, E., R. Chakraborty, and C.F. Sing, The use of measured genotype
information in the analysis of quantitative phenotypes in man. I. Models and
analytical methods. Ann Hum Genet, 1986. 50(Pt 2): p. 181-94.

37. Nicholas H. Barton, D.E.G.B., Jonathan A. Eisen, David B. Goldstein, and Nipam
H. Patel, Evolution. 2007: Cold Spring Harbor Laboratory Press.

38. O'Brien, S.J., Stewardship of human biospecimens, DNA, genotype, and clinical
data in the GWAS era. Annu Rev Genomics Hum Genet, 2009. 10: p. 193-209.

39. MacArthur, J., et al., The new NHGRI-EBI Catalog of published genome-wide
association studies (GWAS Catalog). Nucleic Acids Res, 2016.

40. Devlin, B. and N. Risch, A comparison of linkage disequilibrium measures for
fine-scale mapping. Genomics, 1995. 29(2): p. 311-22.

41. Tsai, E.A., et al., THBS2 Is a Candidate Modifier of Liver Disease Severity in
Alagille Syndrome. Cell Mol Gastroenterol Hepatol, 2016. 2(5): p. 663-675 e2.

42. Hardy, G.H., Mendelian Proportions in a Mixed Population. Science, 1908.
28(706): p. 49-50.

43. Stern, C., The Hardy-Weinberg Law. Science, 1943. 97(2510): p. 137-8.
44. Minelli, C., et al., How should we use information about HWE in the meta-

analyses of genetic association studies? Int J Epidemiol, 2008. 37(1): p. 136-46.
45. Gordon, D., et al., Increasing power for tests of genetic association in the presence

of phenotype and/or genotype error by use of double-sampling. Stat Appl Genet
Mol Biol, 2004. 3: p. Article26.

46. Gordon, D. and S.J. Finch, Factors affecting statistical power in the detection of
genetic association. J Clin Invest, 2005. 115(6): p. 1408-18.

47. Gordon, D., et al., Power and Sample Size Calculations for Case-Control Genetic
Association Tests when Errors Are Present: Application to Single Nucleotide
Polymorphisms. Human Heredity, 2002. 54(1): p. 22-33.

48. Ahn, K., D. Gordon, and S.J. Finch, Increase of rejection rate in case-control
studies with the differential genotyping error rates. Stat Appl Genet Mol Biol,
2009. 8: p. Article25.

49. Mote, V.L. and R.L. Anderson, An Investigation of the Effect of Misclassification
on the Properties of Chi-2-Tests in the Analysis of Categorical Data. Biometrika,
1965. 52: p. 95-109.

50. Gordon, D., et al., A transmission disequilibrium test for general pedigrees that is
robust to the presence of random genotyping errors and any number of untyped
parents. Eur J Hum Genet, 2004. 12(9): p. 752-61.

51. Edwards, B.J., et al., Power and sample size calculations in the presence of
phenotype errors for case/control genetic association studies. BMC Genet, 2005.
6: p. 18.

52. Ahn, K., et al., The effects of SNP genotyping errors on the power of the
Cochran-Armitage linear trend test for case/control association studies. Ann Hum
Genet, 2007. 71(Pt 2): p. 249-61.

53. Moskvina, V., et al., Effects of differential genotyping error rate on the type I
error probability of case-control studies. Hum Hered, 2006. 61(1): p. 55-64.

54. Clayton, D.G., et al., Population structure, differential bias and genomic control in
a large-scale, case-control association study. Nat Genet, 2005. 37(11): p. 1243-6.

	 	
	

20

55. Schuster, S.C., Next-generation sequencing transforms today's biology. Nat
Methods, 2008. 5(1): p. 16-8.

56. Sanger, F., et al., Nucleotide sequence of bacteriophage phi X174 DNA. Nature,
1977. 265(5596): p. 687-95.

57. Smith, M., et al., DNA sequence at the C termini of the overlapping genes A and
B in bacteriophage phi X174. Nature, 1977. 265(5596): p. 702-5.

58. Margulies, M., et al., Genome sequencing in microfabricated high-density
picolitre reactors. Nature, 2005. 437(7057): p. 376-80.

21	
	

Chapter 2 Methods

This chapter describes the development of a statistical method, +,-./,123, that tests for

association between disease phenotypes and multiple single nucleotide polymorphisms

(SNPs). Such association may indicate that certain multi-locus genotypes (MLGs) are

"risk" genotypes. A novel feature of this method is its robustness to misclassification that

may exist in next-generation sequencing (NGS) data. The data used in this approach are

affection status, observed alternative read counts, and sequencing coverage values of

multiple genetic loci (SNPs), from a group of phenotyped individuals.

The first section of this chapter describes the process of developing the statistical method.

It gives readers step-by-step explanations of how this approach was created. At the

beginning of the section, we clarify the terms and notation mentioned in the equations.

Then we explain the key equations used in the algorithm, and how they interact and form

the expectation-maximization (EM) algorithm. The second section of this chapter explains

the process of how the observed datasets are simulated. These datasets are used to evaluate

the performance of the method. We develop a software program implementing our method.

The source code and instructions of the program are provided in the Appendix.

22	
	

2.1 Key terms and notation used in this chapter

2.1.1 Definitions of terms used throughout this work

Allele frequency

An allele frequency is the proportion of a particular allele (at a given locus on a

chromosome; from this point forward, any locus is assumed to be on a chromosome) in a

population [2]. It is always expressed as a percentage. We may estimate the allele frequency

from a finite sample by counting the number of copies of the particular allele, and dividing

by the total number of copies of all alleles (at the locus) in the finite sample.

For example, consider a locus in a population, where the locus has two alleles, 4 and 5. In

the population, there are three possible genotypes: 44 (homozygous genotype for A allele);

45 (heterozygous genotype); and 55 (homozygous genotype for a allele). Now consider

a random sample of ten individuals from this population. Among the ten individuals, we

determine that, two of them are homozygous for the 44 genotype, five are heterozygotes

45, and three are homozygous for the 55 genotype. The estimated frequency of allele 4 is

2×2 + 5 2×10 = 0.45 , and the estimated frequency of allele 5 is

3×2 + 5 2×10 = 0.55.

Genotype frequency

As with the allele frequency, for a given locus, a genotype frequency is the proportion of a

given genotype in a population, where the genotype is one of the possible genotypes at the

locus [1]. It is expressed as a percentage. Analogous to the estimated allele frequencies,

each estimated genotype frequency (denoted >?) is given by:

23	
	

>? =
@?
@
. 2.1

Here, A refers to the ABC genotype, 1 ≤ A ≤ E. That is, there is an ordering to the genotypes,

and there are n of them. Taking the example from the allele frequency, the frequency of

genotype 44 is 2 10 = 0.2 , the frequency of genotype 45 is 5 10 = 0.5 , and the

frequency of genotype 55 is 3 10 = 0.3.

Multi-locus genotype (MLG)

A multi-locus genotype is the combination of specific genotypes across two or more loci.

Multi-locus genotype frequency

A MLG frequency is the proportion of a MLG in a population. It is always expressed as a

percentage. MLG frequency is the number of individuals with a given MLG F (@G)

divided by the total number of individuals of population (@):

>G =
@G
@
. 2.2

Due to possible linkage disequilibrium, the MLG frequency may be different from the

product of the genotype frequencies on those loci with given genotypes.

Sequencing coverage

Sequencing coverage is the number of times a base pair is observed for individual H at

locus F for a given NGS sequencing experiment (Figure 2.1)[3, 4].

24	
	

Alternative allele read count

Alternative allele read count is the number of times a given alternative allele is observed

for individual H at locus F, for a given NGS sequencing experiment (number bounded

between 0 and coverage) (see Figure 2.1 below) [5].

Figure 2.1 Example of sequencing coverage and alternative allele read count of an
individual

Top panel: A region of the reference sequence and two DNA sequences for an individual
(strand 01 and strand 02). As indicated, there are four markers sequenced (locus 1-4) in
this region. The individual is heterozygous at locus 01 (genotype T/C), homozygous at
locus 02 (genotype G/G), heterozygous at locus 03 (genotype G/A) and homozygous at
locus 04 (genotype C/C). Bottom panel: The sequence reads consist of random selections
of one or two strands. In this example, strand 01 is selected to be sequenced 5 out of 8
times and strand 02 is selected to be sequenced 3 out of 8 times. For these four markers,
strand 01 consists of the reference alleles at locus 01, 02 and 04, while strand 02 consists
of the reference allele at locus 02, 03 and 04. Finally, for this individual, we note that the
sequencing coverage for this region of the genome is 8x (8 sequence reads), and the
alternative allele read counts for locus 01 to 04 are 3, 0, 5 and 0.

25	
	

Sequencing misclassification rate

Sequencing misclassification rate is the proportion of sequenced reads in which sequenced

alleles are misclassified as an allele other than true allele in all sequenced reads. It is the

number of sequenced reads with misclassified alleles divided by the total number of

sequenced reads:

I =
EJFKLM	OP	QLRJLESL	ML5TQ	UVWℎ	FVQSY5QQVPVLT	5YYLYLQ

WOW5Y	EJFKLM	OP	QLRJLESLT	ML5TQ
.

2.1.2 Notation

Z = the number of SNPs considered when determining the multi-locus genotypes (MLGs)

and their frequencies.

W(superscript) = indicates the true value of the variable.

[G,\
] = sequencing coverage for individual H at locus F (no misclassification is assumed;

note, 1 ≤ F ≤ Z).

^G,\ = alternative allele read count for individual H at locus F.

V\
] 	= phenotype value for individual H (no misclassification is assumed) = value indicating

whether individual H is affected by the disease (V\] = 1)	or unaffected (V\] = 0).

26	
	

AG,\
] = genotype value for individual H at locus F (no misclassification is assumed) = value

indicating genotype with homozygous reference alleles (AG,\] = 0), heterozygous reference

allele/alternative allele (AG,\] = 1), and homozygous alternative alleles (AG,\] = 2). This

value is a latent variable; that is, it is not part of the observed data.

I`ab
] = misclassification rate of alternative and reference alleles (which varies with

phenotype) for individual H.

2.1.3 Mathematical principles

Hardy-Weinberg equilibrium

In this work, we specify that single or multi-locus genotype frequencies follow Hardy-

Weinberg Equilibrium (HWE) proportions. The Hardy-Weinberg Equilibrium is an

important concept in population genetics in that it describes a condition under which

genotype frequencies may be written as functions of allele frequencies [6, 7]. In a single

locus case with two alleles, 4 and 5, with the allele frequency of P 4 = 	c and P 5 = R,

the expected genotype frequencies are P 44 = cd for the genotype 44; P 45 = 2cR

for the genotype 45; and P 55 = Rdfor the genotype 55. Consider a case with two loci,

Locus 1 with alleles 4 and 5, and Locus 2 with alleles e and K. Denote the allele frequency

of P 4 = 	c and P e = R. Under random mating and certain population assumptions,

Hardy-Weinberg equilibrium will be achieved after one generation, as stated above. After

27	
	

many of generations the joint genotypic frequencies at Locus 1 and Locus 2 will be

independent. For instance:

Genotype Frequency

44ee cd×Rd

44eK cd×2R(1 − R)

44KK cd×(1 − R)d

45ee 2c(1 − c)×Rd

etc ⋯

Contingency table

A contingency table displays the multivariate frequency distribution of a study’s variables,

in a matrix format [8, 9]. Differences in genotype frequencies may be indicative of a disease

locus within close proximity of the sequenced marker. From the example of a study of

genotype frequency differences in affection status (Table 2.1), there are two variables,

affection status (affected or unaffected) and genotype (44, 45 or 55), which are cross-

classified. Table 2.1 gives an example of a contingency table. Suppose that 200 individuals

(100 affected patients and 100 unaffected healthy people) are randomly sampled from a

large population. Each has a genotype (here we specify that the typed locus has two

alleles,	4 and 5) that is determined by the underlying frequency distribution for the two

affection-status groups (affected and unaffected). Table 2.1 provides the numbers of

individuals who satisfy the following conditions:

28	
	

Affected and with genotype 44 (64), affected and with genotype 45 (32), affected with

genotype 55 (4), unaffected with genotype 44 (36), unaffected with genotype 45 (48),

and unaffected with genotype 55 (16). The data is organized in such a way to test the null

hypothesis that genotype frequencies are equal in affected individuals and unaffected

individuals. In this example, the value of the chi-square test statistic is 18.24 with a p-value

of 0.000109 (degrees of freedom = 2). Based on this information, one is able to determine

whether or not to reject the null hypothesis (in this example, we reject the null hypothesis

at the significance level of 0.05).

 Table 2.1 Contingency table example of a study of genotype frequency differences

 44 45 55 Row Totals

Affected

Individuals
64 32 4 100

Unaffected

Individuals
36 48 16 100

Column Totals 100 80 20
200 (Grand

Total)

Example of contingency table with genotypes AA, Aa, aa in a population of 200 individuals
(100 affected patients and 100 unaffected healthy people).

29	
	

2.1.4 Statistical terms

Likelihood and log-likelihood

The likelihood, +, of an observed data set is the hypothetical probability of a specific

outcome from an event that has already occurred. While probability typically refers to the

occurrence of future events, in this case, the likelihood refers to past events with known

outcomes. In his book, Likelihood, Edwards provides the classic definition of likelihood

[9]:

+ T5W5	[5MV5KYLQ	|	T5W5 = j×Pr variables data

(K is some arbitrary constant)

The log-likelihood, ln	(+) , is the logarithm of the likelihood. It is used in statistical

hypothesis testing.

Likelihood ratio

The likelihood ratio quantitatively measures how much more probable the observed data is

under one set of parameter settings than another set [10, 11]. Our likelihood ratio test

requires nested models (e.g., the complete likelihood and the likelihood with observed data),

where the more complex models can be transformed into simpler ones by applying a set of

constraints on the parameters. For our work, we apply a specific set of parameter

constraints (described below) to obtain our likelihood ratio test.

30	
	

Log-likelihood ratio test (LRT) statistic

The log-likelihood ratio test statistic is:

td = 2 ln YVHLYVℎOOT	POM	5YWLME5WV[L	FOTLY − 2 ln YVHLYVℎOOT	POM	EJYY	FOTLY

Under the null hypothesis that MLG frequencies are equal between cases and controls, this

statistic is distributed as a central chi-square test statistic, with degrees of freedom equal to

the difference in the number of parameters in the two models [12].

The likelihood ratio test rejects the null hypothesis if the p-value of the statistic td for a

given data set is less than the user-specified value. This value is referred to as the

significance level of the test.

Chi-square test of independence on genotypes

When assuming the null hypothesis is true, the probability distribution of the log-likelihood

ratio statistic can be approximated using Wilk’s theorem [13]:

As the sample size E approaches ∞, the test statistic −2log	(Λ) for a nested model will be

asymptotically a central td-distribution with degrees of freedom equal to the difference in

the number of parameters in the two models:

T. P. = T. P. JESOEQWM5VELT	FOTLY − T. P. (EJYY	FOTLY)

For example, if we consider 3 loci and each locus is bi-allelic, the degrees of freedom for

the null model is 3y − 1 = 26, while the degrees of freedom for the unconstrained model

31	
	

is 2× 3y − 1 = 52. Therefore, if the genotype frequencies between cases and controls

are equal, the probability distribution of the log-likelihood ratio statistic is a central td-

distribution with 52 − 26 = 26 degrees of freedom.

Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is a method to find maximum likelihood

estimates of parameters by iteration of steps computing expectation and maximization [14-

16]. The expectation step creates a function for the expectation of the log-likelihood

evaluated using the current parameter estimates. The maximization step computes

parameters maximizing the expected log-likelihood from the expectation step, where the

parameters will be used in the next expectation step until the algorithm meets the

maximized log-likelihood by reaching the tolerance. A general workflow of the EM

algorithm is shown in Figure 2.2.

32	
	

Figure 2.2 A general workflow of EM algorithm

Bayes’ Rule

Bayes’ rule describes the conditional probability of event A, given that event B is true. The

conditional probability is equal to the probability of A multiplied by the probability of B

(given that A is true), and then divided by the probability of B [17]:

{ 4 e =
{ 4 { e 4

{ e
. 2.3

Initialize	starting	values
(! = 0)

Parameter	estimation	for	the	
!-th step

Compute	the	statistic	using	
estimates	of	the	!-th step

Use	the	parameters	of	the	!-th
step to	update	the	estimates	

for	the	 ! + 1 -th step

Compute	the	statistic	using	
estimates	of	the	 ! + 1 -th

step

Difference	of	statistics	
between	!-th and	
! + 1 -th step	is	less	
than	tolerance?

The	maximum	statistic	is	
achieved	in	the	!-th step

Replace	!	with	 ! + 1

YES

NO

33	
	

For example, given a group of 100 individuals, 60 are unaffected (control) and 40 are

affected by a disease (case). Among the controls, 30 of them have the genotype 44, and

the other 30 have the genotype 45. Among the cases, 15 of them has the genotype 44, and

the other 25 has the genotype 45. By applying Bayes’ rule, we can therefore compute an

individual’s probability of being affected or unaffected by the disease with a given

genotype. For instance,

{ affected 45 =
{ affected { 45 affected

{ 45
=

40
100×

25
40

30 + 25
100

≈ 0.45.

Bayesian posterior probability

Bayesian posterior probability is the probability of parameters � given the relevant

evidence Ä, c � Ä 	[18]. The posterior probability can then be described by Bayes’ Rule

as [19]:

c � Ä = 	
c Ä � c �

c Ä
. 2.4

Odds ratio

Odds ratio (OR) quantifies the association between the presence or absence of two

properties in a given population [20-22]. Given two properties, 4 and e, a portion of the

individuals who are affected by a disease were previously exposed to 4	(ÅÇ), while the

others were exposed to e	(ÅÉ). Also, some of the unaffected individuals were exposed to

4	(ÑÇ), and the rest were exposed to e	(ÑÉ). We can then compute the odds ratio as,

34	
	

Ö, =

ÅÇ
ÑÇ

ÅÉ
ÑÉ

. 2.5

2.2 Development of the likelihood ratio test

For the developed likelihood ratio test, +,-./,123, the null hypothesis states that there is

no difference in the MLG frequencies between cases and controls, while the alternative

hypothesis states that, for at least one MLG, the case and control frequencies are not equal.

2.2.1 Log-likelihood of the observed data

With the total number of markers Z , the likelihood function of the multiple-locus

alternative allele count data involves 3Ü genotype configurations. With H indicating the

H]á position in @ sequenced individuals, with F being the marker number, if we set àâ =

^ä,\,⋯ , ^Ü,\ , ãâ
å = [ä,\

] ,⋯ , [Ü,\
] , çâ

å = Aä,\
] ,⋯ , AÜ,\

] , the complete likelihood

function may be written as:

+é,\ = Pr àâ, ãâ
å , V\

]

1

\èä

	

= Pr àâ, ãâ
å , V\

] , çâ
å ê çâ

å

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

. 2.6

35	
	

í is the indicator function indicating the MLG in Pr àâ, ãâå , V\] , çâå 	is çâå . If the value

of the	í is known, then this equation demonstrates the complete likelihood; in other

words, each individual’s çâå is known.

Upon finding the logarithm of both sides, Equation (2.6) can be rewritten as,

YE +é,\ = í çâ
å ×YE Pr àâ, ãâ

å , V\
] , çâ

å

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

. 2.7

Considering the observed data, àâ, ãâå , V\] , Equation (2.7) may be rewritten as:

î YE +é,\ àâ, ãâ
å , V\

] 	

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

																																										×YE Pr àâ ãâ
å , V\

] , çâ
å ×Pr çâ

å ãâ
å , V\

] ×Pr ãâ
å V\

] ×Pr V\
] .

																																																																																																																																							 2.8

Because the sequencing coverage vector ãâå has no effect on the MLG çâå , and the

affection status V\] has no effect on the sequencing coverage vector ãâå (according to the

sequencing technology characteristics, sequencing coverage value is independent of the

affection status), Equation (2.8) can be rewritten as:

î YE +é,\ àâ, ãâ
å , V\

] 	

36	
	

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

×YE Pr àâ ãâ
å , V\

] , çâ
å ×Pr çâ

å V\
] ×Pr ãâ

å ×Pr V\
] 	

= î í çâ
å àâ, ãâ

å , V\
] × ln 1 − V\

]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

×Pr àâ ãâ
å , V\

] = 0, çâ
å ×Pr çâ

å V\
] = 0 ×Pr V\

] = 0

+ V\
]×Pr àâ ãâ

å , V\
] = 1, çâ

å ×Pr çâ
å V\

] = 1 ×Pr V\
] = 1

+ ñ,																																																																																															(2.9)

where ñ = ln Pr ãâ
å1

\èä . The last equality follows from the fact that the phenotypes

and genotypes are independent of the coverage.

Summing all true genotype vectors çâå is equivalent to summing each locus F’s genotype

value from 0 to 2 . In this work, we specify that, conditional on the underlying data

(including the genotype vector	çâå), the observed alternative allele counts are independent.

We specify that, conditional on sequencing coverage, affection status and true underlying

genotype, the observed alternative allele counts follow a binomial distribution. Written

another way, the equation reads:

Pr àâ ãâ
å = [ä,\

] ,⋯ , [Ü,\
] , V\

] , çâ
å 	= Aä,\

] ,⋯ , AÜ,\
] = eVE(^G,\; [G,\

] ; c(V\
] , AG,\

]))
Ü

Gèä

.

																																																																																																																																																		 2.10

37	
	

Before proceeding with the log-likelihood and the test statistics, the binomial probability

mass function is computed. We compute the binomial probability mass function

eVE(^G,\|[G,\
] , V\

] , AG,\
]) for each single locus F	to calculate the probability of alternative

allele read count ^G,\ given sequencing coverage [G,\] , affection status V\] , and single locus

genotype AG,\] . For example, in eVE(^ä,\|[ä,\] , V\
] , Aä,\

]), the subscript “1” indicates that it is

the first marker, while the subscript “H” indicates that it is the H-th individual in the sample.

The superscript “W” indicates that it is the true value, which means no misclassification

occurs for this value. The determination of the probability mass function is necessary for

computation of the log-likelihoods.

 In general, at the FBC locus, and for the HBC individual, in the binomial distribution

eVE(^G,\; [G,\
] ; c(V\

] , AG,\
])) , the number of "successes" (i.e., observing the alternative

allele instead of the reference allele) is ^G,\, the total number of experiments is [G,\] , and

the probability of a success for any given experiment (i.e., reading a sequence) is

c V\
] , AG,\

] =
dô?ö,a

b

d
I`ab
] +

?ö,a
b

d
(1 − I`ab

]) .

Also, I`ab
] is the probability in individual H of misclassifying alleles. We specify a

symmetric error model in which, given the alternative allele 4 and the reference allele 5,

the misclassification probability of observing the alternative allele 4 when the true allele

is 5, equals the misclassification probability of observing the	reference	allele	5 when the

true allele is	4:

38	
	

I`ab , .→Ç
] = I`ab , Ç→.

] = I`ab
] . 2.11

To demonstrate that the formula correctly computes the misclassification probabilities,

consider the following: for genotype AG,\] = 0 and AG,\] = 2. For instance, when AG,\] = 0,

the individual’s genotype is 5/5 . Thus, every observed alternative allele 4 is really a

reference allele 5 that has been misread. The number of misclassifications is ^G,\, so that

^G,\ follows a binomial distribution, with a probability of success for each experiment

equal to I`ab
] = dôë

d
I`ab
] + ë

d
(1 − I`ab

]) , given [G,\] trials. Similarly, when AG,\] = 2, every

read of alternative allele 4 is now a correct read from the genotype 4/4 . Thus, ^G,\

follows a binomial distribution with probability of success for each experiment equal to

1 − I`ab
] = dôd

d
I`ab
] + d

d
(1 − I`ab

]) , given [G,\] trials. For the heterozygote genotype

AG,\
] = 1, the probability of alternative allele 4 being read on a single trial is the sum of

two probabilities:

Pr sequenced	allele	 = 5 ×Pr observed	allele = 4 	sequenced	allele = 5

+Pr sequenced	allele = 4 ×Pr observed	allele = 4 	sequenced	allele = 4 ,

=
1
2
I`ab
] +

1
2
1 − I`ab

] ,

=
1
2
.

It follows that we can rewrite Equation (2.9) under the null hypothesis as:

39	
	

+ü† = î ln +é,\ àâ, ãâ
å , V\

]

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE ^G,\; [G,\

] ; c V\
] = 0, AG,\

]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,∗× Pr V\
] = 0 + V\

]

× eVE ^G,\; [G,\
] ; c V\

] = 1, AG,\
]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,∗× Pr V\
] = 1

+ ñ,																																																																																																																																																							

 2.12

where ° ?¢,a
b ,⋯,?£,a

b ,∗ indicates that the frequencies of multi-locus genotype Aä,\] ,⋯ , AÜ,\
]

are equal under different affection statuses (affected and unaffected).

Similarly, the alternative hypothesis is written as:

+ü¢ = î YE +é,\ àâ, ãâ
å , V\

]

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

]))
Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèë×Pr V\

] = 0

+ V\
]

× eVE(^G,\; [G,\
] ; c(V\

] = 1, AG,\
]))

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèä×Pr V\

] = 1

+ ñ,																																																																																																																																																								

	(2.13)

40	
	

where ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë indicates the MLG frequencies in the unaffected population

(controls) while ° ?¢,a
b ,⋯,?£,a

b ,`a
bèä	indicates the MLG frequencies in the affected population

(cases) and they may not equal to ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë.

2.2.2 Expectation-maximization algorithm estimates

We provide closed formula solutions of the (M + 1)st-step estimates of the parameters

necessary to compute the log-likelihoods. The estimates are determined as a function of a

vector of genotypes rather than a single genotype, so MLGs are considered all together.

This approach is more efficient in comparison to considering only one single genotype at

a time.

The posterior probability that individual H has genotype vector 	çâå = Aä,\
] ,⋯ , AÜ,\

] is

calculated as:

•
	çâ
å ,`a

b
¶ = î í çâ

å àâ, ãâ
å , V\

] 	

= Pr çâ
å àâ, ãâ

å , V\
] 	

=
Pr çâ

å , àâ, ãâ
å , V\

]

Pr àâ, ãâ
å , V\

] 	

=
Pr çâ

å V\
] ×Pr àâ ãâ

å , V\
] , çâ

å ×Pr V\
] ×Pr ãâ

å

Pr ßâ
å V\

] ×Pr àâ ãâ
å , V\

] , ßâ
å ×Pr V\

] ×Pr ãâ
åd,d,⋯,d

ßâ
å è ë,ë,⋯,ë

=
° ?¢,a

b ,⋯,?£,a
b ,`a

b× eVE ^G,\; [G,\
] ; c V\

] , AG,\
]Ü

Gèä

° ®¢,a
b ,⋯,®£,a

b ,`a
b× eVE ^G,\; [G,\

] ; c V\
] , QG,\

]Ü
Gèä

d,d,⋯,d
ßâ
å è ë,ë,⋯,ë

	.							 2.14 	

41	
	

To compute the (M + 1)st-step estimates of the genotype frequencies under the alternative

hypothesis, for a specific affection status (here we specify the affection status to be

unaffected [controls], V\] = 0), we have,

Pr çâ
å = Aä,\

] ,⋯ , AÜ,\
] V\

] = 0

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

= 1, 2.15

which is,

°
çâ
å ,ë
¶

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

= 1. 2.16

Therefore,

° d,d,⋯,d ,ë
¶ = 1 − °

çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

. 2.17

Then Equation (2.13) can be rewritten as,

+ü¢ = •
	çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

1

\èä

× ln eVE ^ G,\; [G,\
] ; c 0, AG,\

]

Ü

Gèä

×°
?¢,a
b ,⋯,?£,a

b ,ë
¶ × Pr V\

] = 0 	

42	
	

+ • d,d,⋯,d ,ë
¶ × ln eVE(^G,\; [G,\

] ; c(0, AG,\
]))

Ü

Gèä

×° d,d,⋯,d ,ë
¶ × Pr V\

] = 0
1

\èä

+ ñ		

							= •
	çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

1

\èä

× ln eVE(^G,\; [G,\
] ; c(0, AG,\

]))
Ü

Gèä

×°
?¢,a
b ,⋯,?£,a

b ,ë
¶ × Pr V\

] = 0 	

+ • d,d,⋯,d ,ë
¶

1

\èä

× ln eVE(^G,\; [G,\
] ; c(0, AG,\

]))
Ü

Gèä

× 1 − °
çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

× Pr V\
] = 0

+ñ.		

(2.18)

Taking the partial derivative of ° ë,ë,⋯,ë ,ë
(¶) , we compute:

 	

©+ü¢
©° ë,ë,⋯,ë ,ë

¶ =
• ë,ë,⋯,ë ,ë
¶ × eVE(^G,\; [G,\

] ; c(0, AG,\
]))Ü

Gèä ×Pr V\
] = 01

\èä

eVE(^G,\; [G,\
] ; c(0, AG,\

]))Ü
Gèä ×° ë,ë,⋯,ë ,ë

¶ × Pr V\
] = 0

	

																					+
• d,d,⋯,d ,ë
¶ × −1 × eVE(^G,\; [G,\

] ; c(0, AG,\
]))Ü

Gèä ×Pr V\
] = 01

\èä

eVE(^G,\; [G,\
] ; c(0, AG,\

]))Ü
Gèä × 1 − °

çâ
å ,ë
¶d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

× Pr V\
] = 0

=
• ë,ë,⋯,ë ,ë
¶1

\èä

° ë,ë,⋯,ë ,ë
¶ −

• d,d,⋯,d ,ë
¶1

\èä

° d,d,⋯,d ,ë
¶ . (2.19)

To maximize the function, we set Equation (2.19) as:

©+ü¢
©° ë,ë,⋯,ë ,ë

¶ = 0. 2.20

43	
	

Therefore,

° ë,ë,⋯,ë ,ë
¶ =

• ë,ë,⋯,ë ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
¶ . 2.21

Similarly,

° ë,ë,⋯,ä ,ë
(¶) =

• ë,ë,⋯,ä ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
(¶) ,

⋮

° d,d,⋯,ä ,ë
¶ =

• d,d,⋯,ä ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
¶ . 2.22

Equation (2.16) can then be rewritten as,

° d,d,⋯,d ,ë
¶ ×

•
	çâ
å ,ë
¶d,d,⋯,ä

	çâ
å è ë,ë,⋯,ë

1
\èä

• d,d,⋯,d ,ë
¶1

\èä

+ 1 = 1. 2.23

Thus,

° d,d,⋯,d ,ë
¶ =

• d,d,⋯,d ,ë
¶1

\èä

•
	çâ
å ,ë
¶d,d,⋯,d

	çâ
å è ë,ë,⋯,ë

1
\èä

=
• d,d,⋯,d ,ë
¶1

\èä

1 − V\
]1

\èä
. 2.24

Therefore the (M + 1)st-step estimates of the genotype frequencies are:

44	
	

Under the alternative hypothesis, for the control population (unaffected),

°
?¢,a
b ,⋯,?£,a

b ,ë
¶ =

•
?¢,a
b ,⋯,?£,a

b ,ë
¶1

\èä

1 − V\
]1

\èä
; 2.25

For the case population (affected),

°
?¢,a
b ,⋯,?£,a

b ,ä
¶ =

•
?¢,a
b ,⋯,?£,a

b ,ä
¶1

\èä

V\
]1

\èä
. 2.26

Under the null hypothesis,

°
?¢,a
b ,⋯,?£,a

b ,∗
¶ =

•
?¢,a
b ,⋯,?£,a

b ,∗
¶1

\èä

@
. 2.27

For the (M + 1) st-step estimates of the sequence error probabilities, we can rewrite

Equation (2.13) as the following (here we specify the affection status to be unaffected

[controls], V\] = 0):

+ü¢ = •
	çâ
å ,ë
¶

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE ^ G,\; [G,\

] ; c V\
] = 0, AG,\

]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèë×Pr V\

] = 0

+ ñ.																																																																																																			

 (2.28)

45	
	

Taking the partial derivative of I`abèë
] , we compute:

©+ü¢
©I`abèë

]

=
©
©Ië

] •
	çâ
å ,ë
¶ × YE eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

]))
Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

	

= •
	çâ
å ,ë
¶ ×

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

1
eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

]))
×
©eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

]))
©Ië

]

Ü

Gèä

.

																																																																																																																																																						 2.29

When AG,\] = 0, c V\
] = 0, AG,\

] = 0 = Ië
],

©eVE(^G,\; [G,\
] ; c(V\

] = 0, AG,\
] = 0))

©Ië
] 	

=
©
©Ië

]

[G,\
]

^G,\
×Ië

]´ö,a× 1 − Ië
] ¨ö,a

b ô´ö,a 	

=
[G,\
]

^G,\
^G,\×Ië

]´ö,aôä× 1 − Ië
] ¨ö,a

b ô´ö,a + Ië
]´ö,a× −1 × [G,\

] − ^G,\

× 1 − Ië
] ¨ö,a

b ô´ö,aôä 	

=
[G,\
]

^G,\
×Ië

]´ö,aôä× 1 − Ië
] ¨ö,a

b ô´ö,aôä× ^G,\ − [G,\
] ×Ië

] . 2.30

46	
	

Therefore, when AG,\] = 0,

©+ü¢
©I`abèë

] = •
	çâ
å ,ë
¶ ×

^G,\ − [G,\
] ×Ië

]

Ië
]× 1 − Ië

]

Ü

Gèä

.

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

2.31

Similarly, when AG,\] = 2, c V\
] = 0, AG,\

] = 2 = 1 − Ië
],

©eVE(^G,\; [G,\
] ; c(V\

] = 0, AG,\
] = 2))

©Ië
] 	

=
©
©Ië

]

[G,\
]

^G,\
× 1 − Ië

] ´ö,a×Ië
]¨ö,a

b ô´ö,a 	

=
[G,\
]

^G,\
× 1 − Ië

] ´ö,aôä×Ië
]¨ö,a

b ô´ö,aôä× [G,\
] − ^G,\ − [G,\

] ×Ië
] . 2.32

Thus when AG,\] = 2,

©+ü¢
©I`abèë

] = •
	çâ
å ,ë
¶ ×

[G,\
] − ^G,\ − [G,\

] ×Ië
]

Ië
]× 1 − Ië

]

Ü

Gèä

.

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

2.33

To achieve a maximum log-likelihood, we set Equation (2.33) as:

©+ü¢
©I`abèë

] = 0.

The equation may be rewritten as:

47	
	

•
	çâ
å ,ë
¶ ×

^G,\ − [G,\
] ×Ië

]

Ië
]× 1 − Ië

]

Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

?ö,a
b èë

1

\èä

+ •
	çâ
å ,ë
¶ ×

[G,\
] − ^G,\ − [G,\

] ×Ië
]

Ië
]× 1 − Ië

]

Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

?ö,a
b èd

1

\èä

= 0.																																										 2.34

Thus, for the (M + 1)st-step estimates of the sequence error probabilities, we have,

I
`a
bèë
], ¶≠ä =

•
	çâ
å ,ë
¶ ^G,\ + •

	çâ
å ,ë
¶ [G,\

] − ^G,\çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

•
	çâ
å ,ë
¶ [G,\

] + •
	çâ
å ,ë
¶ [G,\

]
çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

.

																																																																																																																																																					 2.35

Similarly,

I
`a
bèä
], ¶≠ä =

•
	çâ
å ,ä
¶ ^G,\ + •

	çâ
å ,ä
¶ [G,\

] − ^G,\çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

•
	çâ
å ,ä
¶ [G,\

] + •
	çâ
å ,ä
¶ [G,\

]
çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

.

																																																																																																																																																					 2.36

We note that these probabilities are locus-independent, that is, the subscripts do not contain

the individual locus number. However, the formulas indicate that the error probabilities are

computed as a composite of the individual locus data values ([G,\] and	^G,\), suggesting an

“average” of all the loci.

48	
	

2.2.3 Derivation of test statistic

We use the log-likelihood for each hypothesis for a given iteration value M to ultimately

determine the maximum log-likelihoods under each scenario (Null and Alternative). We

then use these maximums to determine the value of the test statistic. The following notation

is used:

ln +üÆ = ln Pr àâ, ãâ
å , V\

]1
\èä = Log-likelihood Equation of the observed data.

Note:

T = 0 for Null Hypothesis: (Ñë: ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë = ° ?¢,a

b ,⋯,?£,a
b ,`a

bèä).

There is no difference in the MLG frequencies between cases and controls.

T = 1	for Alternative Hypothesis: (Ñä: ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë ≠ ° ?¢,a

b ,⋯,?£,a
b ,`a

bèä).

Therefore, there is a difference in the MLG frequencies between cases and controls.

ln +üÆ 	= The maximum log-likelihood of the data for each hypothesis. This maximum is

achieved by applying the EM algorithm in the following way (Figure 2.3):

1. Specify a certain number of starting points (randomly generated vector ∞	of

parameter settings for °
?¢,a
b ,⋯,?£,a

b ,`a
b

(¶èë) and I
`a
b
],(¶èë)).

49	
	

2. For each vector ∞	in Item 1, update the log-likelihoods under each hypothesis until

some specified stopping condition is satisfied, such as:

ln +üÆ of	 M + 1 ±B	step − ln +üÆ 	of M
BC	step	 < ≥.

In this work, we use ≥ = 0.00001 . The maximum log-likelihood is then the

M BC	step	of	 ln +üÆ . This value is denoted by: ln +üÆ ¶(¥)
.

NOTE: For an arbitrary vector ∞	in Item 1, if the stopping condition (2) is

not met after the maximum number of steps, we define the log-likelihood

as: ln	(+üÆ)¶µ∂∑ ¥ , where M∏π∫ is the total number of steps specified for the

EM algorithm. For example, in the Simulation section, M∏π∫ = 100.

3. We define the maximum log-likelihood of the observed data, denoted ln +üÆ , as:

ln +üÆ =
max
∞ ln +üÆ ¶ ¥

. 2.37

The test statistic is:

+,-./,123 = 2 ln +ü¢ − ln +ü† . 2.38

As noted above in item (3), the carat symbol indicates that we have obtained the

maximum log-likelihood of the data under the particular hypothesis. Note that Ωæø¿¡,¬ç√

is asymptotically a chi-square distribution with certain degrees of freedom. We consider

two versions of the Ωæø¿¡,¬ç√ statistic. In this work, we allow for differential

50	
	

misclassification in the computation of the Ωæø¿¡,¬ç√ statistic. Specifically, the two error

model parameters are unconstrained (that is, it may be that	ƒ≈âå è∆
å ≠ ƒ≈âå è«

å).

Figure 2.3 The workflow of the EM algorithm in obtaining the maximum log-
likelihood of the observed data, »… Ω À .

2.3 Simulations of observed data for type I error rates and power evaluations

To evaluate the performance of the test statistic, we compute the empirical type I error rate

and power. To do so, we must manipulate the true underlying MLG frequencies,

conditional on different affection statuses. We performed simulation studies under

different scenarios to evaluate the type I error rate under the null model, and power under

the alternative model. In the null model, the MLG frequencies are equal in cases and

controls; in the alternative model, the MLG frequencies differ between cases and controls.

From the power simulation, we created a factorial design to determine which factor(s)

significantly alter(s) the test statistics. Factorial design is known as two-way design. It

51	
	

considers all factors with equal interests, as well as the possibility of interaction between

these factors. If two factors interact, their effect will not behave in an additive manner.

There are two effects of high importance in the factorial design, main effects from single

factors, and interaction effects from possible interactions between factors [23].

In the simulation, it is assumed that each locus has only two alleles. First, we randomly

generate standardized MLG frequencies. Next, we compute the MLG frequencies

conditional on affected status, by applying Ã (odds), odds-ratio (OR), mode of inheritance

(MOI) and standardized MLG frequencies. Observed data is then simulated with the

sequencing misclassification model incorporated.

2.3.1 How MLG frequencies are computed during simulation

To compute the conditional MLG frequencies for simulation, the MLG frequencies are

conditional on affection status. The formulas provided below document how those MLG

frequencies are computed.

Let say the disease MOI is dominant, only one alternative allele is necessary for the

individual to be at increased risk of developing the disease. Here, we specify Õ = log	(Ö,).

Penetrance of affection status V,	conditional on MLG Œ, can be calculated as:

P≈,Œ =
Lœ≠–Œ—

`

1 + Lœ≠–Œ—
, 2.39

52	
	

where UŒ is the weight corresponding to the MLG, Œ. As aforementioned, a dominant

weight parameterization is used. Specifically:

UŒ =
0, Œ = (0,0, … ,0)	
1,								otherwise

.

With known or randomly-generated standardized MLG frequencies, >Œ,∗, the probability of

having MLG Œ and affection status V is,

Pr V, Œ = 	P≈,Œ×>Œ,∗, 2.40

which may be written as,

Pr V, Œ

d,d,⋯,d

Œè ë,ë,⋯,ë

= P≈,Œ×>Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

= P≈,∗× >Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

. 2.41

As defined,

>Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

= 1. 2.42

Therefore, the prevalence of affection status V is,

P≈,∗ = Pr V, Œ

d,d,⋯,d

Œè ë,ë,⋯,ë

. 2.43

According to Bayes’ Rule, the MLG frequencies conditional on affection status can be

calculated as,

53	
	

>Œ,` = Pr Œ V =
Pr V Œ Pr Œ

Pr V
=
Pr V, Œ
P≈,∗

=
P≈,Œ×>Œ,∗

P≈,Œ×>Œ,∗
d,d,⋯,d
Œè ë,ë,⋯,ë

. 2.44

To provide an example of the formulas used above, standardized MLG frequencies are

randomly generated for each two-locus genotype, as shown in columns 1 and 2 in Table

2.2. The table provides two examples of how odds-ratio will affect the MLG frequencies

conditional on affection status, using OR=1 and OR=2.

When the odds-ratio equals 1, Õ = log Ö, = 0. The penetrance of affection status, P≈,Œ,

will not be affected by MLG Œ. Consequently, the MLG frequencies are not altered by the

affection status (i.e., data is simulated under the null). It should be noted that in Table 2.2 ,

for OR = 1, the MLG frequencies in cases and controls are equal for each MLG.

When OR does not equal 1, the penetrance of affection status is altered according to the

MLG, based on the disease mode of inheritance. As a result, the MLG frequencies vary

between different affection statuses, as seen in Table 2.2, under the heading "OR = 2".

54	
	

Table 2.2 Computation of MLG frequencies conditional on affection status under
different odds-ratios

The odds (α) is 0.1 for all the columns.

2.3.2 Determination of data during simulation

Observed data can be simulated in null or alternative models regarding the MLG

frequencies, conditional on affection status. In the simulation process, the MLG at a locus

will be simulated first, based on its affection status and its frequency, conditional on the

affection status. Then the alternative allele read count will be simulated based on the

sequencing coverage and the sequencing error model at that locus, which is determined by

the sequencing misclassification rate and the MLG. A workflow chart is demonstrated in

Figure 2.4, and the formulas used will be shown.

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

0,	0 0.0963 0.4750 0.0963 0.5250 0.0963 0.4750 0.1121 0.5250 0.0855
0,	1 0.0493 0.4750 0.0493 0.5250 0.0493 0.4011 0.0484 0.5989 0.0498
0,	2 0.0449 0.4750 0.0449 0.5250 0.0449 0.4011 0.0441 0.5989 0.0454
1,	0 0.0961 0.4750 0.0961 0.5250 0.0961 0.4011 0.0944 0.5989 0.0973
1,	1 0.1844 0.4750 0.1844 0.5250 0.1844 0.4011 0.1812 0.5989 0.1867
1,	2 0.1380 0.4750 0.1380 0.5250 0.1380 0.4011 0.1356 0.5989 0.1396
2,	0 0.1870 0.4750 0.1870 0.5250 0.1870 0.4011 0.1837 0.5989 0.1892
2,	1 0.0223 0.4750 0.0223 0.5250 0.0223 0.4011 0.0219 0.5989 0.0226
2,	2 0.1817 0.4750 0.1817 0.5250 0.1817 0.4011 0.1785 0.5989 0.1839

Standardized	MLG	
FrequencyMLG Controls Cases Controls Cases

OR=2OR=1

55	
	

Figure 2.4 Workflow for simulation on alternative allele read count

Here the notation for simulation parameters is specified:

^G,\ = observed alternative allele read count for individual H at locus F (number bounded

between 0 and sequencing coverage, [G,\]).

[G,\
] = sequencing coverage for individual H at locus F (no misclassification is assumed).

V\
] 	= affection status of individual H (no misclassification is assumed) = value indicating

whether individual H is affected by the disease (V\] = 1)	or not affected (V\] = 0).

56	
	

AG,\
] = genotype value for individual H at locus F (no misclassification is assumed) = value

indicating genotype with homozygous reference alleles (AG,\] = 0), heterozygous reference

allele/alternative allele (AG,\] = 1), and homozygous alternative alleles (AG,\] = 2).

> ?¢,a
b ,⋯,?£,a

b ,`a
b= frequency of MLG Aä,\] ,⋯ , AÜ,\

] from locus 1 to locus Z conditional on

the affection status of individual H, V\] .

I`ab
] = misclassification rate for individual H of alternative allele and reference allele, which

varies with affection status.

2.3.2.1 Determination of an individual's simulated MLG

To simulate the observed alternative read count for each of the individuals, the true

underlying MLG, affection status, sequencing coverage and misclassification rates (error

rates) are used as simulation parameters. Among these parameters, sequencing coverage

and misclassification rates are determined as input values. The affection status value is

randomly assigned to be 0 (not affected) or 1 (affected) according to the number of cases

and the number of controls in the data set.

The first step in simulating observed alternative read counts for one individual (for example,

individual H) is to simulate true underlying MLG from locus 1 to locus Z, Aä,\] ,⋯ , AÜ,\
] ,

57	
	

from the MLG frequencies, conditional on the affection status of that individual,

> ?¢,a
b ,⋯,?£,a

b ,`a
b .

The MLG frequencies, conditional on a particular affection status sum to 1:

> ?¢,a
b ,⋯,?£,a

b ,`a
b

d,d,⋯,d

?¢,a
b ,⋯,?£,a

b è ë,ë,⋯,ë

= 1. 2.45

To obtain a simulated MLG on a given affection status, use the vector of MLG frequencies,

> ?¢,a
b ,⋯,?£,a

b ,`a
b , as the vector of probability weights for random selection. The selected MLG,

with the corresponding frequency, is then the simulated MLG on that given affection status.

See Table 2.3 for illustration.

Table 2.3 Determination of an individual’s simulated MLG

Aä,\
] , Ad,\

] > ?¢,a
b ,?’,a

b ,`a
bèä

Cumulative

> ?¢,a
b ,?’,a

b ,`a
bèä

Random

Number

0, 0 0.0855 0.0855

0, 1 0.0498 0.1353

0, 2 0.0454 0.1808

1, 0 0.0973 0.2780

58	
	

1, 1 0.1867 0.4647

1, 2 0.1396 0.6043

2, 0 0.1892 0.7935

2, 1 0.0226 0.8161 0.7991

2, 2 0.1839 1.0000

MLG (2, 1) is simulated for individual H who is affected by the disease (V\] = 1). In this
example, two-locus genotype frequencies being affected by the disease, corresponding to
particular two-locus genotypes, are listed in column 2, while column 3 lists the cumulative
two-locus genotype frequencies. A random number (0.7991) is generated in column 4. This
random number is greater than the cumulative two-locus genotype frequency of (2, 0) and
less than that of (2, 1). Two-locus genotype (2, 1) is thus selected as the simulated genotype.

2.3.2.2 Determination of an individual's simulated vector of observed data

Observed alternative read counts can be simulated after the previous step using the

simulated MLGs. The probability of each possible vector of alternative read counts, àG,\,

is computed as the binomial probability product from all loci,

eVE(^G,\; [G,\
] ; c(V\

] , AG,\
]))

Ü

Gèä

.

The binomial distribution eVE(^G,\; [G,\] ; c(V\
] , AG,\

]))	at each locus (for instance, locus F)

of individual H has the following properties:

59	
	

1) The number of repeated trials is equal to the value of sequencing coverage

at that locus.

2) The detection of the alternative allele from the sequencing reads is the

success outcome, while on the contrary, the detection of the reference allele

is the failure outcome. Therefore, the value of alternative read counts, is the

number of success trials.

3) The probability of success (error model) is computed by the genotype at the

locus, affection status, and the error rate of misclassification, conditional on

the affection status:

c V\
] , AG,\

] =
2 − AG,\

]

2
I`ab
] +

AG,\
]

2
1 − I`ab

] . 2.46

The probability of the vector of alternative read counts can then serve as the vector of

probability weights for random selection of observed alternative read counts (Table 2.4).

With the simulation process established, we simulate data for our method. The parameter

settings that we consider are:

Disease MOI: Dominant

Number of loci tested: 3

Number of controls: 500, 1000

Number of cases: 500, 1000

Error rate in controls: 0.001, 0.05

Error rate in cases: 0.001, 0.05

Baseline odds-ratio (Ã): 0.1

60	
	

OR: 1, 2, 4.

The test results using data simulated from the above parameter settings are reported in

Chapter 3.

61

Table 2.4 Determination of an individual's simulated vector of observed data

!",$% !&,$% '",$ '&,$
()*('",$; !",$% ; -()$% = 1, 0",$%

= 2))

()*('&,$; !&,$% ; -()$% = 1, 0",$%

= 1))
Product Cumulative

Random

Number

3 3 0 0 0.0000 0.1250 0.0000 0.0000

3 3 1 0 0.0026 0.1250 0.0003 0.0003

3 3 2 0 0.0847 0.1250 0.0106 0.0109

3 3 3 0 0.9127 0.1250 0.1141 0.1250

3 3 0 1 0.0000 0.3750 0.0000 0.1250

3 3 1 1 0.0026 0.3750 0.0010 0.1260

3 3 2 1 0.0847 0.3750 0.0318 0.1577

3 3 3 1 0.9127 0.3750 0.3423 0.5000

3 3 0 2 0.0000 0.3750 0.0000 0.5000

3 3 1 2 0.0026 0.3750 0.0010 0.5010

3 3 2 2 0.0847 0.3750 0.0318 0.5327

3 3 3 2 0.9127 0.3750 0.3423 0.8750 0.6997

3 3 0 3 0.0000 0.1250 0.0000 0.8750

62

3 3 1 3 0.0026 0.1250 0.0003 0.8753

3 3 2 3 0.0847 0.1250 0.0106 0.8859

3 3 3 3 0.9127 0.1250 0.1141 1.0000

Observed alternative read counts (3, 2) are simulated for individual 3 whose underlying two-locus genotype is (2, 1). This
individual is affected by the disease ()$% = 1). The overall error rate of sequencing misclassification, 45678"

% , is 0.03 (not shown in
the table). Columns 1 and 2 list the sequencing coverages from two loci, while columns 3 and 4 list all possible alternative read
counts based on the sequencing coverages. Columns 5 and 6 show the computation results for binomial probabilities with all the
parameters provided at locus 1 and locus 2, separately. Column 7 lists the products of binomial probabilities on both loci, of each
possible vector of alternative read counts, while column 8 lists the cumulative products. A random number 0.6997 is generated
in column 9. This random number is greater than the cumulative product of (2, 2) and less than that of (3, 2). Observed alternative
read counts (3, 2) is thus selected as the simulated value.

63

Reference:

1. Brooker, R., E. Widmaier, and L. Graham, P. Stiling.(2011). Biology. New York,

New York: The McGraw-Hill Companies Inc.
2. Gillespie, J.H., Population genetics: a concise guide. 2010: JHU Press.
3. illumina. Sequencing coverage. Available from:

http://www.illumina.com/science/education/sequencing-coverage.html.
4. Sims, D., et al., Sequencing depth and coverage: key considerations in genomic

analyses. Nature Reviews Genetics, 2014. 15(2): p. 121-132.
5. Kim, W., et al., Single-variant and multi-variant trend tests for genetic association

with next-generation sequencing that are robust to sequencing error. Human
Heredity, 2012. 74(3-4): p. 172-183.

6. Hardy, G.H., Mendelian Proportions in a Mixed Population. Science, 1908.
28(706): p. 49-50.

7. Stern, C., The Hardy-Weinberg Law. Science, 1943. 97(2510): p. 137-8.
8. Pearson, K., Davenport's 'Statistical Methods.'. Science, 1904. 20(518): p. 765.
9. Edwards, A.W.F., Likelihood. 1972: Cambridge [Eng.]University Press.
10. Mood, A. and F. Graybill, Introduction to the Theory of Statistics, 2nd edit. 1963.

McGraw-Hill, New York.
11. Kendall, M., et al., Kendall’s Advanced Theory of Statistics: Volume 2A–

Classical Inference and and the Linear Model (Kendall’s Library of Statistics). A
Hodder Arnold Publication, 1999.

12. Ott, J., Analysis of human genetic linkage. 3rd ed. 1999, Baltimore: Johns
Hopkins University Press. xxiii, 382 p.

13. Cox, D.R. and D.V. Hinkley, Theoretical Statistics. 1974: Chapman and Hall.
14. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum likelihood from

incomplete data via the EM algorithm. Journal of the royal statistical society.
Series B (methodological), 1977: p. 1-38.

15. Hartley, H., Maximum likelihood estimation from incomplete data. Biometrics,
1958. 14(2): p. 174-194.

16. Wu, C.J., On the convergence properties of the EM algorithm. The Annals of
statistics, 1983: p. 95-103.

17. Bayes, T. and R. Price, Philosophical Transactions of the Royal Society of
London. Phil Trans R Soc, 1763. 53: p. 370-418.

18. Edwards, W., H. Lindman, and L.J. Savage, Bayesian statistical inference for
psychological research. Psychological review, 1963. 70(3): p. 193.

19. Bishop, C.M., Pattern recognition. Machine Learning, 2006. 128.
20. Cornfield, J., A method of estimating comparative rates from clinical data;

applications to cancer of the lung, breast, and cervix. J Natl Cancer Inst, 1951.
11(6): p. 1269-75.

21. Mosteller, F., Association and Estimation in Contingency Tables. Journal of the
American Statistical Association, 1968. 63(321): p. 1-28.

22. Edwards, A.W.F., The Measure of Association in a 2 × 2 Table. Journal of the
Royal Statistical Society. Series A (General), 1963. 126(1): p. 109-114.

64

23. G. E. P. Box, W.G.H. and J.S. Hunter, Statistics for experimenters : an
introduction to design, data analysis, and model building. 1978, United States:
Wiley, New York. 228-231.

65

Chapter 3 Results

In this chapter, we compute empirical type I error and power values for !"#$%,'(), by

applying NGS data. Simulation programs developed by the author generate data used by

the statistic. For a single run, user input to the program consists of a vector of 10 parameters:

number of loci tested, number of cases, number of controls, sequencing coverage,

misclassification rate in cases, misclassification rate in controls, odds, odds-ratio, mode of

inheritance, and multi-locus genotype frequencies. The empirical type I error rate for a

given vector (with odds ratio of 1) is the proportion of p-values among all simulated

replicates that are less than a specified significance level. Similarly, the empirical power

for a given vector (with odds ratio greater than 1) is the proportion of p-values among all

simulated replicated that are less than a given significance level. We use the empirical

powers in a factorial design to determine those factors (parameters) that most significantly

alter the power of the test. At the end of the chapter, we also evaluate the performance of

our method on misclassification rate estimation, and test it against the real data from the

1000 Genomes Project.

66

3.1 Likelihood ratio test calculations using factorial design

To find out the factors that most substantially affect the likelihood ratio test (!"#$%,'())

statistic when testing the association between multi-locus genotype (MLG) frequencies and

the disease affection status, we apply a 2+×3 factorial design on a total of 6 design factors

(number of cases, number of controls, misclassification rate in cases, misclassification rate

in controls, odds-ratio, and multi-locus genotype frequencies). We use the empirical power

for each vector of settings in a linear regression. The input values are all main factors, and

are all two-way iterations. We obtain coefficients for all input parameters, thereby

determining a linear approximation to each empirical power value (see Chapter 2,

Simulations of observed data for type I error and power evaluation). One factor considered

is the frequency of the non-disease MLG, where the MLG consists of all single-locus

genotypes that are homozygous for the wild-type allele. This parameter is considered as a

setting because our previous work has shown that marker-allele or marker-genotype

frequencies could significantly alter power of the test, or it may alter the sample size

required to gain the expected power [5-7].

3.1.1 Calculations of empirical type I error rate and empirical power

To compute the empirical values for each parameter vector, for each of the 500 simulation

replicates, an observed dataset is first generated based on the functions of the design factors.

Random permutation is then applied to the affection statuses of the simulated dataset to

generate 500 null permutation replicates.

67

The empirical .-value is calculated by comparing the LRTs from the permuted datasets to

the LRT from the original dataset:

. =
0
1.

0 is the number of permutation replicates that produce an LRT greater than or equal to the

calculated LRT for the original dataset. 1 is the number of replicates permuted (500 in this

study). See Figure 3.1 for illustration.

With the empirical .-values generated for all simulation replicates, the empirical type I

error rate, or empirical power for a vector at a given significance level, is the proportion of

empirical . -values that reject the null hypothesis. The empirical type I error rate

corresponds to the null model, whereas the empirical power corresponds to the alternative

model.

Figure 3.1 Workflow for empirical 3-value calculation

68

3.1.1.1 Null model – empirical type I error

Under the null hypothesis, all MLG frequencies among case and controls are equal

(4!560789$:% = 4!560789;<=>;?). Therefore, in the null simulations, we set odds-ratio

(OR) equal to 1; that is, the odds that an individual will become affected is independent of

the MLG frequency [8-10]. The OR is calculated as the following:

@" =
#	C6	DEF7F 4!560789$:%

#	C6	DC1G0CHF 4!560789$:%
#	C6	DEF7F 4!560789;<=>;?

#	C6	DC1G0CHF 4!560789;<=>;?

.

When OR equals 1, it means that the risk of developing the disease with MLG frequencies

in cases is the same as that in controls, which describes our null hypothesis. On the other

hand, if OR is not equal to 1, the disease risk with MLG frequencies in cases is different

from that in controls, and therefore, the simulation model is alternative, rather than being

null.

In this work, the non-disease MLG frequency is set as 0.5 or 0.95. Thus, 2+×3 = 96

vectors of factor settings are used in the simulations for null and alternative models. For

each of the vector settings, 500 simulation replicates are generated to compute the

empirical type I error or empirical power.

Figure 3.2 shows boxplots of empirical type I error rates under three significance levels.

Most of the empirical type I error rates fall in the corresponding significance levels, with

the median and mean close to the values. The medians are 0.008, 0.048 and 0.094 for

significance levels of 1%, 5% and 10%, respectively. The means are 0.009, 0.046 and 0.094

69

for significance levels of 1%, 5% and 10%, respectively. When the significance level is

1%, about 94% of the empirical type I errors are within the 95% confidence interval within

the 500 simulations. The percentages for significance levels of 5% and 10% are 91% and

84%, respectively. The parameter settings that are within the 95% confidence intervals are

listed in Table 3.1. These confidence intervals were computed in BINOM, a statistical

genetics utility programs [11, 12].

Figure 3.2 Boxplots for empirical type I error rates

Legend (values are shown for 1%, 5% and 10%):

70

♦ (0.009, 0.046, 0.094): mean value of empirical type I error rate; Upper horizontal side of
box (0.010, 0.054, 0.105): 3rd quartile (3K) of values; Black horizontal line inside box
(0.008, 0.048, 0.094): median value; Lower horizontal side of box (0.006, 0.040, 0.082):
1st quartile (1K) of values; Upper line segment at top of “T”(0.016, 0.072, 0.136): upper
whisker, maximum value for set of empirical type I error rates that is lower than or equal
to 3K + 1.5O , O = 3K − 1K = Inter − quartile	range	(]K") ; Lower line segment at
bottom of inverted “T” (0, 0.032, 0.068): lower whisker, minimum value for set of
empirical type I error rates that is higher than or equal to 1K − 1.5O; ×: outlier.

Table 3.1 The parameter settings and the empirical type I errors that are within the

upper and lower whisker range

n_Controls n_Cases _`a _ba OR

Non-

disease

MLG

Freq

Empirical Type I Error

1% 5% 10%

500 500 0.001 0.001 1 0.5 0.008 0.06 0.102

500 500 0.05 0.05 1 0.5 0.002 0.032 0.08

500 500 0.001 0.05 1 0.5 0.01 0.042 0.088

500 500 0.05 0.001 1 0.5 0.002 0.054 0.104

1000 1000 0.001 0.001 1 0.5 0.008 0.048 0.088

1000 1000 0.05 0.05 1 0.5 0.008 0.05 0.104

1000 1000 0.001 0.05 1 0.5 0.006 0.04 0.074

1000 1000 0.05 0.001 1 0.5 0.016 0.046 0.102

500 1000 0.001 0.001 1 0.5 0.008 0.052 0.106

500 1000 0.05 0.05 1 0.5 0.01 0.054 0.11

71

500 1000 0.001 0.05 1 0.5 0.01 0.048 0.096

500 1000 0.05 0.001 1 0.5 0.006 0.036 0.078

1000 500 0.001 0.001 1 0.5 0.002 0.042 0.09

1000 500 0.05 0.05 1 0.5 - 0.068 0.116

1000 500 0.001 0.05 1 0.5 0.008 0.044 0.098

1000 500 0.05 0.001 1 0.5 0.01 0.048 0.096

500 500 0.001 0.001 1 0.95 0.01 0.056 0.106

500 500 0.05 0.05 1 0.95 0.008 0.058 0.096

500 500 0.001 0.05 1 0.95 0.01 0.036 0.084

500 500 0.05 0.001 1 0.95 0.012 0.04 0.08

1000 1000 0.001 0.001 1 0.95 0.01 0.054 -

1000 1000 0.05 0.05 1 0.95 0.002 0.048 0.092

1000 1000 0.001 0.05 1 0.95 0.004 0.05 -

1000 1000 0.05 0.001 1 0.95 0.012 0.038 0.078

500 1000 0.001 0.001 1 0.95 0.008 0.044 0.082

500 1000 0.05 0.05 1 0.95 0.006 0.034 0.092

500 1000 0.001 0.05 1 0.95 0.018 0.06 -

500 1000 0.05 0.001 1 0.95 - - -

1000 500 0.001 0.001 1 0.95 0.01 0.036 0.084

1000 500 0.05 0.05 1 0.95 0.014 0.052 0.128

1000 500 0.001 0.05 1 0.95 0.004 - -

1000 500 0.05 0.001 1 0.95 0.02 - 0.122

72

Legend: n_Controls = number of controls; n_Cases = number of cases; cd= =
misclassification rates in controls; ce= = misclassification rates in cases; OR = odds ratio;
Non-disease MLG Freq = the frequency of the non-disease MLG.

3.1.1.2 Alternative model – empirical power

In the alternative hypothesis, the MLG frequencies differ between cases and controls.

Therefore, in the simulations for the alternative model, we set OR not equal to 1 to measure

power of the test. To test in different situations, OR was set to be 2 or 4. See Figure 3.3 for

the boxplot of empirical power on different significance levels.

73

Figure 3.3 Boxplots for empirical power

Legend (values are shown for 1%, 5% and 10%):
♦ (0.650, 0.752, 0.802): mean value of empirical type I error rate; Upper horizontal side of
box (0.991, 0.999, 1): 3rd quartile (3K) of values; Black horizontal line inside box (0.817,
0.926, 0.957): median value; Lower horizontal side of box (0.234, 0.493, 0.633): 1st quartile
(1K) of values; Upper line segment at top of “T”(1, 1, -): upper whisker, maximum value
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K") ; Lower line segment at bottom of inverted “T”
(0.018, 0.06, 0.122): lower whisker, minimum value for set of empirical type I error rates
that is higher than or equal to 1K − 1.5O.

The empirical power from all of the parameter settings are within the upper and lower

whiskers range (reported in Table 3.2).

74

Table 3.2 The parameter settings and the empirical power that are within the upper

and lower whisker range

n_Contr

ols
n_Cases _`a _ba OR

Non-disease

MLG Freq

Empirical Power

1% 5% 10%

500 500 0.001 0.001 2 0.5 0.714 0.896 0.944

500 500 0.05 0.05 2 0.5 0.704 0.868 0.938

500 500 0.001 0.05 2 0.5 0.704 0.866 0.922

500 500 0.05 0.001 2 0.5 0.696 0.874 0.932

1000 1000 0.001 0.001 2 0.5 0.988 0.998 1

1000 1000 0.05 0.05 2 0.5 0.986 0.996 0.998

1000 1000 0.001 0.05 2 0.5 0.978 0.994 0.998

1000 1000 0.05 0.001 2 0.5 0.982 0.998 0.998

500 1000 0.001 0.001 2 0.5 0.874 0.966 0.98

500 1000 0.05 0.05 2 0.5 0.886 0.966 0.982

500 1000 0.001 0.05 2 0.5 0.884 0.97 0.984

500 1000 0.05 0.001 2 0.5 0.858 0.958 0.978

1000 500 0.001 0.001 2 0.5 0.888 0.968 0.99

1000 500 0.05 0.05 2 0.5 0.854 0.964 0.988

1000 500 0.001 0.05 2 0.5 0.856 0.962 0.98

1000 500 0.05 0.001 2 0.5 0.898 0.98 0.984

500 500 0.001 0.001 4 0.5 1 1 1

500 500 0.05 0.05 4 0.5 1 1 1

75

500 500 0.001 0.05 4 0.5 1 1 1

500 500 0.05 0.001 4 0.5 1 1 1

1000 1000 0.001 0.001 4 0.5 1 1 1

1000 1000 0.05 0.05 4 0.5 1 1 1

1000 1000 0.001 0.05 4 0.5 1 1 1

1000 1000 0.05 0.001 4 0.5 1 1 1

500 1000 0.001 0.001 4 0.5 1 1 1

500 1000 0.05 0.05 4 0.5 1 1 1

500 1000 0.001 0.05 4 0.5 1 1 1

500 1000 0.05 0.001 4 0.5 1 1 1

1000 500 0.001 0.001 4 0.5 1 1 1

1000 500 0.05 0.05 4 0.5 1 1 1

1000 500 0.001 0.05 4 0.5 1 1 1

1000 500 0.05 0.001 4 0.5 1 1 1

500 500 0.001 0.001 2 0.95 0.062 0.174 0.274

500 500 0.05 0.05 2 0.95 0.056 0.216 0.3

500 500 0.001 0.05 2 0.95 0.052 0.206 0.326

500 500 0.05 0.001 2 0.95 0.046 0.138 0.198

1000 1000 0.001 0.001 2 0.95 0.192 0.404 0.522

1000 1000 0.05 0.05 2 0.95 0.162 0.362 0.496

1000 1000 0.001 0.05 2 0.95 0.174 0.372 0.5

1000 1000 0.05 0.001 2 0.95 0.096 0.262 0.394

500 1000 0.001 0.001 2 0.95 0.046 0.15 0.268

76

500 1000 0.05 0.05 2 0.95 0.062 0.19 0.31

500 1000 0.001 0.05 2 0.95 0.084 0.242 0.362

500 1000 0.05 0.001 2 0.95 0.018 0.06 0.122

1000 500 0.001 0.001 2 0.95 0.148 0.326 0.454

1000 500 0.05 0.05 2 0.95 0.17 0.36 0.464

1000 500 0.001 0.05 2 0.95 0.1 0.254 0.354

1000 500 0.05 0.001 2 0.95 0.166 0.338 0.45

500 500 0.001 0.001 4 0.95 0.448 0.686 0.79

500 500 0.05 0.05 4 0.95 0.49 0.696 0.788

500 500 0.001 0.05 4 0.95 0.484 0.708 0.802

500 500 0.05 0.001 4 0.95 0.362 0.58 0.71

1000 1000 0.001 0.001 4 0.95 0.886 0.95 0.978

1000 1000 0.05 0.05 4 0.95 0.886 0.94 0.972

1000 1000 0.001 0.05 4 0.95 0.894 0.948 0.978

1000 1000 0.05 0.001 4 0.95 0.808 0.93 0.95

500 1000 0.001 0.001 4 0.95 0.45 0.73 0.84

500 1000 0.05 0.05 4 0.95 0.528 0.746 0.84

500 1000 0.001 0.05 4 0.95 0.596 0.812 0.89

500 1000 0.05 0.001 4 0.95 0.248 0.522 0.67

1000 500 0.001 0.001 4 0.95 0.826 0.908 0.95

1000 500 0.05 0.05 4 0.95 0.792 0.922 0.964

1000 500 0.001 0.05 4 0.95 0.734 0.86 0.898

1000 500 0.05 0.001 4 0.95 0.774 0.91 0.944

77

Legend: n_Controls = number of controls; n_Cases = number of cases; cd= =
misclassification rates in controls; ce= = misclassification rates in cases; OR = odds ratio;
Non-disease MLG Freq = the frequency of the non-disease MLG.

3.1.2 ANOVA for effects on power

Despite remaining high level, the empirical powers are varying between wide ranges,

especially in the significance levels of 1% and 5%. Therefore, we utilized factorial designs

to determine the factors that alter statistical powers significantly for the significance levels

of 1%, 5% and 10%.

Analysis of Variance (ANOVA) was conducted to determine the factors of empirical power

for the significance levels of 1%, 5% and 10%. The results are reported in Table 3.3, Table

3.4 and Table 3.5, separately. The factors are sorted based on the F-statistics, from the

largest to the least. The value fg, the respective factor’s proportion of the overall Sum of

Squares, was reported. Specifically, fg =))hijklmn
))homljp

.

Table 3.3 ANOVA for main effects and all two-way interactions on the significance level of

1%

Factor Df qqrstuvwx
F

Statistic
yz

Non-disease MLG

Freq
1 5.012 815.038 0.601

OR 1 1.83 297.579 0.219

78

OR×	Non-disease

MLG Freq
1 0.624 101.554 0.075

n_Controls 1 0.373 60.659 0.045

n_Controls	×	Non-

disease MLG Freq
1 0.111 18.06 0.013

n_Cases 1 0.037 6.042 0.004

n_Controls	×	OR 1 0.019 3.086 0.002

n_Controls	×	ce= 1 0.009 1.522 0.001

n_Cases	×	OR 1 0.009 1.506 0.001

n_Cases	×	ce= 1 0.008 1.266 0.001

n_Cases	×	Non-

disease MLG Freq
1 0.008 1.252 0.001

ce=×	Non-disease

MLG Freq
1 0.008 1.369 0.001

ce= 1 0.006 1.047 0.001

cd=×	ce= 1 0.006 0.933 0.001

ce=×	OR 1 0.005 0.803 0.001

cd= 1 0.004 0.725 0

n_Cases×	cd= 1 0.004 0.682 0

cd=×	Non-disease

MLG Freq
1 0.004 0.61 0

n_Controls	×	cd= 1 0.002 0.318 0

79

cd=×	OR 1 0.002 0.27 0

n_Controls	×

	n_Cases
1 0 0.031 0

Residuals 42 0.258

{{K|}~�Ä 8.339

Legend is the same as the legend in Table 3.1.

Table 3.4 ANOVA for main effects and all two-way interactions on the significance

level of 5%

Factor Df ÅÅÇstuvwx F Statistic Éz

Non-disease MLG Freq 1 3.205 1850.939 0.525

OR 1 1.431 826.435 0.234

OR ×	Non-disease MLG

Freq
1 1.005 580.119 0.164

n_Controls 1 0.212 122.601 0.035

n_Controls	× Non-disease

MLG Freq
1 0.113 65.491 0.018

n_Cases 1 0.01 5.862 0.002

n_Controls	×	ce= 1 0.01 5.632 0.002

ce=	×	Non-disease MLG

Freq
1 0.01 6.038 0.002

80

ce= 1 0.008 4.6 0.001

n_Controls × cd= 1 0.006 3.358 0.001

n_Cases ×	cd= 1 0.006 3.673 0.001

cd=×	ce= 1 0.006 3.673 0.001

cd= 1 0.005 2.973 0.001

cd=×	Non-disease MLG

Freq
1 0.005 2.651 0.001

n_Cases	×	ce= 1 0.004 2.31 0.001

n_Cases ×	OR 1 0.001 0.326 0

n_Controls	×	n_Cases 1 0 0 0

n_Controls ×	OR 1 0 0.073 0

n_Cases	×	Non-disease

MLG Freq
1 0 0.153 0

cd= ×	OR 1 0 0.172 0

ce=×	OR 1 0 0.126 0

Residuals 42 0.073

{{K|}~�Ä 6.11

Legend is the same as the legend in Table 3.1

81

Table 3.5 ANOVA for main effects and all two-way interactions on the significance level of

10%

Factor Df qqrstuvwx F

Statistic

yz

Non-disease MLG

Freq

1 2.1897 2227.036 0.472

OR 1 1.1486 1168.255 0.248

OR×Non-disease

MLG Freq

1 0.9424 958.441 0.203

n_Controls 1 0.1457 148.221 0.031

n_Controls×Non-

disease MLG Freq

1 0.0978 99.482 0.021

n_Controls×	εe~ 1 0.0091 9.227 0.002

εe~× Non-disease

MLG Freq

1 0.0087 8.844 0.002

εe~ 1 0.008 8.102 0.002

εd~ ×εe~ 1 0.0078 7.921 0.002

n_Cases 1 0.0069 7.049 0.001

εd~ 1 0.0059 5.991 0.001

n_Controls×	εd~ 1 0.0059 5.991 0.001

εd~ × Non-disease

MLG Freq

1 0.0059 5.991 0.001

82

n_Cases×εd~ 1 0.005 5.091 0.001

n_Cases×	εe~ 1 0.004 4.069 0.001

n_Controls×OR 1 0.0031 3.161 0.001

n_cases× Non-

disease MLG Freq

1 0.0005 0.55 0

n_Cases×OR 1 0.0002 0.237 0

εe~×OR 1 0.0002 0.207 0

n_Controls×

n_Cases

1 0.0001 0.061 0

εd~ ×OR 1 0 0.023 0

Residuals 42 0.0413

 SSQ|}~�Ä 4.6368

Legend is the same as the legend in Table 3.1.

In the tables above (Table 3.3, Table 3.4 and Table 3.5), there are five factors that most

substantially affect the power of the association test, based on the F-statistics and the fg

values. These factors are (in order of the F-statistic values), frequency of the non-disease

MLG, odds-ratio, odds-ratio × frequency of the non-disease MLG, number of controls,

number of controls × frequency of the non-disease MLG. All of these factors account for

95.3%, 97.6% and 97.6% of the total Sum of Squares ({{K|}~�Ä) in the significance levels

of 1%, 5% and 10%, respectively.

83

Using the results in the above three tables, we selected the four main-effect terms and their

two-way interactions (if applicable) to perform a regression analysis. The results are

displayed in Table 3.6, Table 3.7 and Table 3.8.

Table 3.6 Linear regression analysis coefficients for the three most significant

factors from Table 3.3, and their two-way interaction terms (significance level of

1%)

Variable Factor
Coefficient

Estimate

Standard

Error
t-statistic

 (Intercept) 0.81 0.05 17.58

áe n_Controls = 1000 0.04 0.05 0.93

ág OR = 4 0.12 0.05 2.56

áà
Non-disease MLG Freq

= 0.95
-0.83 0.05 -17.21

áeág
n_Controls = 1000, OR

= 4
0.07 0.04 1.76

áeáà

n_Controls = 1000, Non-

disease MLG Freq =

0.95

0.17 0.04 4.25

ágáà
OR = 4, Non-disease

MLG Freq = 0.95
0.4 0.04 10.08

Legend is the same as the legend in Table 3.1.

84

Table 3.7 Linear regression analysis coefficients for the three most significant

factors from Table 3.4, and their two-way interaction terms (significance level of

5%)

Variable Factor
Coefficient

Estimate

Standard

Error
t-statistic

 (Intercept) 0.93 0.02 37.98

áe n_Controls = 1000 0.03 0.03 1.33

ág OR = 4 0.05 0.03 2.05

áà
Non-disease MLG Freq =

0.95
-0.79 0.03 -30.88

áeág n_Controls = 1000, OR = 4 0.01 0.02 0.27

áeáà
n_Controls = 1000, Non-

disease MLG Freq = 0.95
0.17 0.02 8.1

ágáà
OR = 4, Non-disease MLG

Freq = 0.95
0.5 0.02 24.09

Legend is the same as the legend in Table 3.1.

Table 3.8 Linear regression analysis coefficients for the three most significant

factors from Table 3.5 and their two-way interaction terms (significance level of

10%)

Variable Factor
Coefficient

Estimate

Standard

Error
t-statistic

85

(Intercept) 0.96 0.02 52.1

áe n_Controls = 1000 0.03 0.02 1.76

ág OR = 4 0.05 0.02 2.36

áà
Non-disease MLG Freq =

0.95
-0.7 0.02 -36.5

áeág n_Controls = 1000, OR = 4 -0.03 0.02 -1.78

áeáà
n_Controls = 1000, Non-

disease MLG Freq = 0.95
0.16 0.02 9.97

ágáà
OR = 4, Non-disease MLG

Freq = 0.95
0.49 0.02 30.96

Legend is the same as the legend in Table 3.1.

From the above Table 3.6, Table 3.7 and Table 3.8, we computed the fitted functions under

different significance levels as the following:

.Câ70e% = 0.81 + 0.04áe + 0.12ág − 0.83áà + 0.07áeág + 0.17áeáà + 0.4ágáà,

.Câ70+% = 0.93 + 0.03 + 0.05ág − 0.79áà + 0.01ág + 0.17áeáà + 0.5ágáà,

.Câ70ed% = 0.96 + 0.03áe + 0.05ág − 0.7áà − 0.03áeág + 0.16áeáà + 0.49ágáà,

where,

áe =
1, n_Controls	 = 1000
0, n_Controls	 = 500		 ,

ág =
1, OR = 4
0, OR = 2 ,

áà =
1, Non − disease	MLG	Freq	 = 0.95
0, Non − disease	MLG	Freq	 = 0.5		 .

86

Upon examining the above equations, we note that two factors play a significant role in

altering the power of the test. Taking the significance level of 1% for example: Increasing

the non-disease MLG frequency from 0.5 to 0.95 produces a substantial decrease in power

of 0.83(coefficient for variable áà), while increasing it from 0.5 to 0.95 and jointly

increasing the odds-ratio from 2 to 4 produces a power increase of approximately 0.4

(coefficient for variable ágáà).

In Figure 3.4, Figure 3.5 and Figure 3.6, we plot the fitted values (using the above equations)

versus the empirical powers. The coefficients of the trend line, computed using a

generalized linear model in R, are consistent with the finding that the empirical powers are

accurately represented by a linear combination of the three variables (áe,	ág and áà) and

their two-way interactions. We may conclude that for the parameter settings, only three of

the six factors are needed to approximate the empirical power. These factors are the number

of controls, odds-ratio and the non-disease MLG frequency. Moreover, apart from these

three factors, values of the misclassification rate (in cases or in controls) do not affect the

power significantly.

87

Figure 3.4 Scatter plot of empirical power versus fitted power using 64 vectors of

factor settings (significance level: 1%)

The trend line intercept is 0.0167 and the slope is 0.954 (the multiple R-squared value is
0.954). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted
line: It’s slope equals 1.

88

Figure 3.5 Scatter plot of empirical power versus fitted power using 64 vectors of

factor settings (significance level: 5%)

The trend line intercept is 0.0196 and the slope is 0.989 (the multiple R-squared value is
0.976). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted
line: It’s slope equals 1.

89

Figure 3.6 Scatter plot of empirical power versus fitted power using 64 vectors of

factor settings (significance level: 10%)

The trend line intercept is 0.0016 and the slope is 0.996 (the multiple R-squared value is
0.976). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted
line: It’s slope equals 1.

90

3.2 Performance evaluation on misclassification estimates

3.2.1 Testing on Simulated Data

Since the true misclassification rates cannot be observed directly to determine the

correctness from our method’s misclassification estimation, we simulate NGS data with

known underlying misclassification rates, which are differential according to affection

status. The data simulation is processed through the simulation computer program we

developed.

We simulated a dataset of 1000 controls and 500 cases. The simulated dataset was

generated by a fixed sequencing coverage of 4 on each tested locus and other known

parameters (see simulation notation in Chapter 2):

Disease MOI: Dominant

Number of loci tested: 3

Number of controls: 1000

Number of cases: 500

Error rate in controls: 0.001

Error rate in cases: 0.05

õ: 0.1

OR: 1

Frequency of non-disease MLG 0.95.

91

Note that the misclassification rates are 0.05 in cases and 0.001 in controls. This dataset is

simulated under the constrained (null) model, of which the MLG frequencies are equal

between cases and controls. The simulated dataset is tested using our method for

misclassification rate estimation.

We generated 500 replicates of the simulation and estimation process, and the results are

shown in a boxplot in Figure 3.7. The mean estimates for misclassification rate are 0.05 in

cases, and 0.001 in controls (the medians are 0.05 and 0.001 in cases and in controls,

respectively). The boxplot indicates that our method is able to correctly estimate the true

underlying differential misclassification rates of the observed data.

Figure 3.7 Boxplot of misclassification estimates from simulated data

92

Legend:
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K)
of values; Black horizontal line inside box: median value; Lower horizontal side of box:
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower
whisker, minimum value for set of empirical type I error rates that is higher than or equal
to 1K − 1.5O; ×: outlier.

3.2.2 Testing on real data: the 1000 Genomes Project data

In order to test the performance of our method on a real-world situation, we tested it on the

real data that we extracted from the 1000 Genomes Project [1-4, 13].

First, we downloaded the available exome sequencing data in BAM (Binary Sequence

Alignment/Map) [14] format on chromosome 20 from 2,504 individuals in the 1000

Genomes Project Phase 3 archive (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/).

To make our process computationally efficient, we only kept the exome sequenced regions

on chromosome 20, from base pair position 60897487 to position 60908969 for each

individual [15]. After sorting and indexing the data on the selected region, we used the

option “mpileup” in Samtools (version 1.3.1) [14, 16] and the option “call -m” in Bcftools

(version 1.3.1) [16, 17] for variant calling and converted the data into VCF (Variant Call

Format) [18]. With the variants called for every individual, we filtered out variants with

QUAL (quality) lower than 100. QUAL is the Phred-scaled probability indicating the

existence of a variant [18].

To make the data set comparable to the imputed data sets, we selected three genetic

positions (loci) from the extracted region: 60907675, 60908964 and 60908969. Among all

93

2,504 individuals, we kept those individuals who are heterozygotes or alternative allele

homozygotes at all three of these loci. 1,314 individuals are kept in the end. Their non-

reference allele counts (sum of forward non-reference and reverse non-reference alleles,

labeled “DP4” in VCF format) and raw sequencing coverages (labeled “DP” in VCF format)

on each of the three loci are extracted using a computer program developed by the author.

In the extracted region, the non-reference allele counts are in a range of 4-84, with a mean

of 20.8 and a median of 18; the raw sequencing coverages are in a range of 5-158, with a

mean of 28.4 and a median of 26.

On each of these individuals, the affection status is assigned randomly with 657 affected

(cases) and 657 unaffected (controls). The preprocessed dataset is tested using our method

for misclassification rate estimation.

The affection assigning step in the process is repeated 500 times to generate permutation

replicates and the results are shown in a boxplot in Figure 3.8. The mean misclassification

estimates are 0.134 in cases, and 0.133 in controls (medians are 0.133 and 0.133 in cases

and in controls, respectively). The estimated misclassification rates are inflated

considerably from the previous published error rates in the NGS platforms: Illumina HiSeq

(0.34%), Ion Torrent PGM (1.9%) and Complete Genomics (2.4%) [19].

94

Figure 3.8 Boxplot of misclassification estimates from 1000 Genomes Project data

Legend:
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K)
of values; Black horizontal line inside box: median value; Lower horizontal side of box:
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower
whisker, minimum value for set of empirical type I error rates that is higher than or equal
to 1K − 1.5O; ×: outlier.

3.2.3 Testing on simulated data with high misclassification rates:

The surprisingly inflated estimates of misclassification rates in the real-world data raised

some concerns. Is this inflation possibly caused by the fact that our method is not able to

handle higher differential misclassification rates? Or, does our method only work on

95

simulated data, instead of real NGS-processed data? To clarify the answer, we further

tested the performance of our method, on higher misclassification rates.

We simulated a new dataset, generated by the same known parameters and under the same

constrained model as in Section 3.2.1. Testing on Simulated Data, except for that the

misclassification rates are set to 0.1 in cases and 0.13 in controls. The newly simulated

dataset is then tested with our method under the same process with 500 replicates.

The results are shown in a boxplot in Figure 3.9. The mean estimates for misclassification

rate are 0.099 in cases, and 0.129 in controls (the medians are 0.099 and 0.129 in cases and

in controls, respectively). The boxplot indicates that our method is able to correctly

estimate the higher true underlying differential misclassification rates of the dataset.

96

Figure 3.9 Boxplot of misclassification estimates from simulated data

Legend:
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K)
of values; Black horizontal line inside box: median value; Lower horizontal side of box:
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower
whisker, minimum value for set of empirical type I error rates that is higher than or equal
to 1K − 1.5O; ×: outlier.

3.2.4 Testing on real data of high quality

In the boxplot in Figure 3.7, we see that our method is able to correctly estimate the higher

differential misclassification rates from the simulated data. This raises another question:

Why is our method not working with the real data extracted from the 1000 Genomes Project?

97

Is this problem caused by the quality of the data? Thus, we attempted testing our method

again in estimating the misclassification rates in the 1000 Genomes Project data, by

replacing raw sequencing coverage with sequencing coverage from high quality bases. The

raw sequencing coverage (labeled “DP” in VCF format) is the number of detected

sequencing reads that are covering a position of interest, while sequencing coverage with

higher quality is the value of the sum of high quality bases at a position, including forward

reference alleles, reverse reference alleles, forward non-reference alleles and reverse non-

reference alleles (labeled “DP4” in VCF format). This high-quality sequencing coverage

excludes the count of low-quality bases so it is equal to, or lower than, the raw sequencing

coverage. The low quality on bases might be caused by bases being misaligned to the

position [13].

To make a dataset comparable to the previously tested 1000 Genomes Project dataset, we

use the same pipeline for variant calling, and selected the same three loci from chromosome

20 on positions 60907675, 60908964, and 60908969. The same 1314 individuals are kept.

We extract their non-reference allele counts (labeled “DP4” in VCF format) and compute

high-quality sequencing coverages (as the sum of high-quality base counts from the 4

values labeled in “DP4” in VCF format) on each of the three loci, using another computer

program developed by the author. In the extracted region, the high-quality sequencing

coverages are in a range of 4-134, with a mean of 24.8 and a median of 23.

The affection status is once again assigned randomly with half of the individuals being

affected and the other half being unaffected (657 in cases and 657 in controls). The newly

preprocessed dataset is tested using our method for misclassification rate estimation.

98

The affection assigning is repeated 500 times and the results are shown in a boxplot in

Figure 3.10. The mean misclassification estimates are 0.004 in cases, and 0.004 in controls

(the medians are 0.004 and 0.004 in cases and in controls, respectively). The boxplot

indicates that the misclassification rates from the 1000 Genomes Project data with high-

quality sequencing coverage is around 0.004, which is much lower than the previous

estimates on the same set of individuals and genetic positions. These misclassification rates

also match the published rate range of 0.4-3% [19].

Given the estimation performance on the simulated misclassification and the actual data, it

is reasonable to conclude that our method is able to estimate the underlying

misclassification of the sequencing data.

99

Figure 3.10 Boxplot of misclassification estimates from 1000 Genomes Project data

with sequencing coverage from high quality bases

Legend:
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K)
of values; Black horizontal line inside box: median value; Lower horizontal side of box:
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower
whisker, minimum value for set of empirical type I error rates that is higher than or equal
to 1K − 1.5O; ×: outlier.

100

Reference:

1. Genomes Project, C., et al., A map of human genome variation from population-
scale sequencing. Nature, 2010. 467(7319): p. 1061-73.
2. Genomes Project, C., et al., An integrated map of genetic variation from 1,092
human genomes. Nature, 2012. 491(7422): p. 56-65.
3. Genomes Project, C., et al., A global reference for human genetic variation. Nature,
2015. 526(7571): p. 68-74.
4. Sudmant, P.H., et al., An integrated map of structural variation in 2,504 human
genomes. Nature, 2015. 526(7571): p. 75-81.
5. Gordon, D., et al., Increasing power for tests of genetic association in the presence
of phenotype and/or genotype error by use of double-sampling. Statistical Applications in
Genetics and Molecular Biology, 2004. 3: p. Article26.
6. Kang, S.J., D. Gordon, and S.J. Finch, What SNP genotyping errors are most costly
for genetic association studies? Genet Epidemiol, 2004. 26(2): p. 132-41.
7. Ahn, K., et al., The effects of SNP genotyping errors on the power of the Cochran-
Armitage linear trend test for case/control association studies. Ann Hum Genet, 2007. 71(Pt
2): p. 249-61.
8. Edwards, A.W.F., The Measure of Association in a 2 × 2 Table. Journal of the
Royal Statistical Society. Series A (General), 1963. 126(1): p. 109-114.
9. Mosteller, F., Association and Estimation in Contingency Tables. Journal of the
American Statistical Association, 1968. 63(321): p. 1-28.
10. Cornfield, J., A method of estimating comparative rates from clinical data;
applications to cancer of the lung, breast, and cervix. J Natl Cancer Inst, 1951. 11(6): p.
1269-75.
11. Ott, J., Analysis of human genetic linkage. 3rd ed. 1999, Baltimore: Johns Hopkins
University Press. xxiii, 382 p.
12. Ott, J. Statistical Genetics Utility programs. Available from:
http://www.jurgott.org/linkage/util.htm.
13. Calling SNPs/INDELs with SAMtools/BCFtools. 2010.
14. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics,
2009. 25(16): p. 2078-9.
15. Kim, W., et al., Single-variant and multi-variant trend tests for genetic association
with next-generation sequencing that are robust to sequencing error. Human Heredity, 2012.
74(3-4): p. 172-183.
16. Li, H., A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics, 2011. 27(21): p. 2987-93.
17. Danecek P., S.S., Durbin R. Multiallelic calling model in bcftools (-m) 2016;
Available from: http://samtools.github.io/bcftools/call-m.pdf.
18. The Variant Call Format (VCF) Version 4.2 Specification. 2015; Available from:
https://samtools.github.io/hts-specs/VCFv4.2.pdf.
19. Ross, M.G., et al., Characterizing and measuring bias in sequence data. Genome
Biol, 2013. 14(5): p. R51.

101
	

Chapter 4 Discussion

Here, we discuss some possible improvements for our method. One improvement is the

extension to allow for locus-specific sequence error. Another improvement may be

speeding up the computer program, so that our computer program may perform association

tests on a greater number of genetic loci jointly. The current computer time under various

conditions (such as the number of loci or sequencing coverage) is discussed in this chapter.

We also discuss the potential to enhance the statistical power of our method by applying a

double-sampling approach to a subset of sequenced individuals, meaning re-sequencing a

small set of samples through another sequencing technology. In the end, we discuss the

advancements in high-throughput technologies, that may give inspiration to readers for

research in a similar field.

102
	

4.1 Summary

The method developed in this work is a likelihood-ratio approach (!"#$%,'()), designed to

detect the association between genetic variants and genetic disorders using NGS data. We

extend this approach to multiple genetic loci, which allows users to test all their genetic

loci of interest at once. In our simulation results, our method maintains correct type I error

rates for the null hypothesis, and has both a wide range and high level of powers for the

alternative hypothesis. By applying factorial designs, we detect three factors altering test

power significantly, including the number of controls, odds ratio and the most common,

multi-locus genotype frequency. By using the expectation-maximization algorithm, we

compute our test statistic and estimate differential misclassification rates from the observed

data. By comparing the misclassification rate estimates to their true values from simulation

studies, our method shows its robustness and accuracy in estimating differential

misclassification rates.

4.2 Locus-specific misclassification rates

In our method, the misclassification rate is dependent on the affection status. In other words,

our method allows for the possibility that misclassification probabilities are different

between cases and controls. For this version of our statistical method, we specify that the

misclassification probabilities (case or control) remain constant across all tested loci.

However, this model may not hold for actual data. A more robust model is one that allows

103
	

for locus-specific error rates in cases and controls. In terms of notation, we extend our

current notation to be: cú,ùûü
= (notation for other parameters, see Chapter 2).

Therefore, for the †th individual, the probability of observing alternative allele counts for a

total of 4 loci, conditional on sequencing coverage, affection status and the true

underlying genotype (Chapter 2, Equation 2.10), can be written as:

Pr ¢£ §£a = •e,¶= ,⋯ , •®,¶= 	 , ©¶= , ™£a = ´e,¶= ,⋯ , ´®,¶=

= ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= , ´ú,¶=
®

úØe

.

(4. 1)

In the above binomial probability mass function, ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= , ´ú,¶= , the

probability of a success in observing an alternative allele instead of a reference allele is

. Æ, ©¶= , ´ú,¶= = g∞±≤,û
ü

g
cú,ùûü
= + ±≤,û

ü

g
1 − cú,ùûü

= . As in our original statistic, here, the

error model is specified to be symmetric.

The log-likelihood of the observed data ¢£, §£a , ©¶= for ≥ individuals over 4 loci, under

the null hypothesis (Chapter 2, Equation 2.12) may be rewritten as:

104
	

!¥µ	

= ∂] ™£a ¢£, §£a , ©¶=
g,g,⋯,g

™£
a Ø d,d,⋯,d

'

¶Øe

×H1 1 − ©¶= × ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 0, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,∗×Pr ©¶= = 0

+ ©¶=× ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 1, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,∗×Pr ©¶= = 1

+ ª.	

 (4. 2)

Similarly, for the alternative hypothesis (Chapter 2, Equation 2.13), the equation may be

rewritten as:

 	

!¥∏	

= ∂] ™£a ¢£, §£a , ©¶=
g,g,⋯,g

™£
a Ø d,d,⋯,d

'

¶Øe

×H1 1 − ©¶= × ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 0, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,ùû
üØd×Pr ©¶= = 0

+ ©¶=× ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 1, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,ùû
üØe×Pr ©¶= = 1

+ ª.			

 (4. 3)

105
	

4.3 Computer program execution time

To calculate the test statistics, and to estimate the MLG frequencies and the

misclassification rates in the case-control datasets more efficiently, we developed a C

computer program that implements our method. For data simulation, we have developed

another program using both C and R. The source codes for these two programs may be

found in the Appendix. Comments are provided to help the user understand how the codes

implement the simulations, compute the EM-algorithms and statistics, and produce the

output.

To evaluate the computer performance of our program, we measured the execution time

for computing on various datasets with different numbers of loci, or different levels of

sequencing coverage. The datasets tested were simulated by our simulation program. In the

simulated datasets, we generally set the simulation parameters as the following (see

simulation notation in Chapter 2), except for those listed particularly under each test:

 Disease MOI: Dominant

 Number of controls: 1000

 Number of cases: 500

 Error rate in controls: 0.13

 Error rate in cases: 0.1

 α: 0.1

 OR: 1

 Frequency of non-disease MLG: 0.95.

106
	

For each of the tests below, we performed 500 runs.

4.3.1 Computer time on different number of loci tested

We tested the effect of loci number on computer time by running our program with a

number of loci ranging from one to four. Four sets were tested with the sequencing

coverage set to be 4. As illustrated in Figure 4.1, the time (measured in seconds) increases

exponentially with the increased number of loci.

4.3.2 Computer time of different sequencing coverage on a single locus

With a single locus, we tested the effect of sequencing coverage on time. The number of

sequencing coverage varies from 4x to 40x (4 sets). The time of execution increases as the

sequencing coverage increases, but not exponentially. See Figure 4.2.

107
	

Figure 4.1 Computer program execution time on different number of loci

Figure 4.2 Computer program execution time on different sequencing coverage

108
	

4.3.3 Computer time of different sequencing coverage on two loci

To test whether the execution time acts similarly with more than one locus, we tested the

program performance on two-locus datasets. The settings for sequencing coverage is the

same as in Figure 4.2. From our results (Figure 4.3), we found that the time for execution

in a two-locus setting decreases exponentially with the increase of sequencing coverage.

This finding can be explained by the following: The likelihood of the MLG is a product of

the individual binomial distribution. With a reasonably high coverage, the binomial

probability for a more likely genotype from the observed data is much higher than that for

a less likely genotype, even with the presence of sequencing error. Therefore, the binomial

probabilities product for the less likely genotypes becomes practically 0 during the first

few steps of a run, which decreases the number of steps required for the convergence to

correct MLG. This outcome can be observed by noting the number of steps those tests took

to achieve the maximum likelihood in Figure 4.4.

109
	

Figure 4.3 Computer program execution time on different sequencing coverage

110
	

Figure 4.4 Number of steps to achieve maximum likelihood on different sequencing

coverage

4.3.4 Computer time on real data: the 1000 Genomes Project data

We also tested the speed of our program on the real exome sequencing data from the 1000

Genomes Project. As described in Section 3.2.4 Testing on real data of high quality, we

extracted four sequenced loci from chromosome 20 on positions 60905878, 60907675,

60908964 and 60908969. The number of individuals tested is 1006. In the extracted region,

the non-reference allele counts are in a range of 3-89, with a mean of 23 and a median of

20; the high-quality sequencing coverages are in a range of 3-134, with a mean of 27.4 and

a median of 25. We tested our program on this dataset with simulated affected status for

111
	

100 times, and average computer time is 2.198 seconds, with a maximum time of 6.075

seconds and minimum of 1.061 seconds.

4.4 Using double-sampling to increase genetic association test power

Among the different sequencing approaches, Sanger sequencing has a much higher

accuracy rate (99.99%) compared to NGS. Thus, the Sanger approach may serve as a “gold

standard” sequencing method, and may provide confirmation for NGS results [1]. If Sanger

sequencing or some other highly accurate MLG classification method is available for a

subset of individuals, we may extend our statistic test by using double-sampling.

In double-sampling procedures, samples are sequenced by one of two methods: a method

that is cost-effective but “fallible” – with lower accuracy; or the other method that is

“infallible” and has higher accuracy than the first, but is more expensive and may not be

feasible for an entire study [2]. In the case of our study, the samples sequenced by NGS

are considered “fallible” samples, while those sequenced by the Sanger method (for

example) may be considered “infallible” samples. Because NGS is more economical than

Sanger sequencing in genome sequencing [3], it is reasonable to assume that researchers

would sequence all samples through NGS, and only double-sample a few through Sanger.

The previously developed LRTae method can then be applied to the double-sampled data to

gain higher test power [2]. Another example of double sampling is to sequence samples in

a large cohort at low coverage (when the sequencing coverage is low, the sequenced

outputs are generally considered “fallible”) and combine with a subset of samples

sequenced at high coverage (“infallible” method).

112
	

4.5 Advancement in high-throughput technologies

NGS technology is favored for its low cost and efficiency in population-scale sequencing

[4], however, the short reads generated from these sequencing platforms makes it difficult

apply in analyses of larger structural variations [5]. Also, de novo genome assembly using

reads from NGS outputs could be problematic, because this could lead to missing key

portions in the genome, or difficulty in identifying the position or number of repeats due

to presence of repeating regions [6-9].

Thanks to the advancement of technology, the existing problems of de novo genome

assembly that come from NGS, could possibly be solved by using the third-generation

DNA sequencing technology. The currently available third-generation sequencing

platforms can produce average read length of more than 10,000bp, with a few even

reaching 100,000bp [5]. These commercial platforms include [5]: Pacific Biosciences

(PacBio) Single Molecule Real Time (SMRT) sequencing [10], the Illumina Tru-seq

Synthetic Long-Read technology [11] and the Oxford Nanopore Technologies sequencing

platform [12]. With longer sequencing reads, the outputs from the third-generation

sequencing technology generally span larger regions of the genome. It is believed that

examination of these regions allows for the identification of more structural variations [13],

such as insertions, deletions and translocations [5], as well as missing regions in genomes

[14]. Moreover, the third-generation sequencing technology does not require

synchronization, which eliminates the errors introduced by PCR (polymerase chain

reaction) amplification and dephasing as in NGS process [15].

113
	

Sequencing data generated from these platforms should be able to be applied to our method

with proper extensions on algorithms and equations. This data could also be applied to the

aforementioned double-sampling approach (See Chapter 4, Using double-sampling to

increase genetic association test power) with proper design.

114
	

Reference:

1. Thermo Fisher Scientific. “Seq It Out”. Available from:
https://www.thermofisher.com/blog/behindthebench/when-do-i-use-sanger-sequencing-
vs-ngs-seq-it-out-7/.
2. Gordon, D., et al., Increasing power for tests of genetic association in the presence
of phenotype and/or genotype error by use of double-sampling. Stat Appl Genet Mol Biol,
2004. 3: p. Article26.
3. Schuster, S.C., Next-generation sequencing transforms today's biology. Nat
Methods, 2008. 5(1): p. 16-8.
4. Mardis, E.R., The impact of next-generation sequencing technology on genetics.
Trends in genetics, 2008. 24(3): p. 133-141.
5. Lee, H., et al., Third-generation sequencing and the future of genomics. 2016.
6. Schatz, M.C., A.L. Delcher, and S.L. Salzberg, Assembly of large genomes using
second-generation sequencing. Genome research, 2010. 20(9): p. 1165-1173.
7. International, R.G.S.P., The map-based sequence of the rice genome. Nature, 2005.
436(7052): p. 793.
8. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature,
2001. 409(6822): p. 860-921.
9. Li, R., et al., The sequence and de novo assembly of the giant panda genome. Nature,
2010. 463(7279): p. 311-317.
10. Pacific Biosciences of California, Inc.; Available from:
http://www.pacb.com/smrt-science/smrt-sequencing/.
11. Illumina, Inc.; Available from: http://www.illumina.com/technology/next-
generation-sequencing/long-read-sequencing-technology.html.
12. Oxford Nanopore Technologies. Available from: https://nanoporetech.com/.
13. Chaisson, M.J., et al., Resolving the complexity of the human genome using single-
molecule sequencing. Nature, 2015. 517(7536): p. 608-611.
14. Ross, M.G., et al., Characterizing and measuring bias in sequence data. Genome
biology, 2013. 14(5): p. 1.
15. Pareek, C.S., R. Smoczynski, and A. Tretyn, Sequencing technologies and genome
sequencing. J Appl Genet, 2011. 52(4): p. 413-35.

115
	

Appendix 1. Source code for the statistical test (in C)

#define _GNU_SOURCE

#include <string.h>

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "BinomDist.h"

#include "chisqr.h"

#include "mapping_func.h"

#include "split.h"

/*

Last update: 21JAN2017

Created by: Lisheng Zhou

This program will do the followings:

* Calculation of LRT (test statistic)

* Estimation of multilocus genotype frequencies, misclassification rates (error rates) using

EM algorithm

* Generate random starting points

116
	

MAX EM steps: 200

MAX locus: 10

MAX individuals: 1000

input file: multi_locus_dataset.csv

(this input file will be generated from the Simulation program)

*/

int main()

{

 // BLOCK START: Read in data in the input file

 // number of tested loci will be calculated from the input file

 FILE *infile;

 char infileName[80] = "multi_locus_dataset.csv";

 infile = fopen(infileName, "r");

 if (infile == NULL)

 {

 fprintf(stderr, "Cannot open input file %s!\n", infileName);

 exit(1);

 }

 // count: how many loci are tested in the dataset

117
	

 int nloci;

 char term[100];

 fscanf(infile, " %100[^\n]", term);

 char **list;

 list = split(term, ",");

 int n = 0;

 while(list[n])

 {

 n++;

 }

 nloci = (n - 2) / 2;

 free(list);

 free(list[0]);

 // count: number of individuals

 rewind(infile);

 char test_count[100];

 int num_ind = 0;

 while(fscanf(infile, " %100[^\n]", test_count) != EOF){

 num_ind++;

 }

118
	

 int ind[num_ind];

 int pheno[num_ind];

 int x[num_ind][nloci];

 int v[num_ind][nloci];

 int case_count = 0;

 int cont_count = 0;

 char * line = NULL; //line read in

 size_t len = 0;

 ssize_t read; // length of line

 int order = 0;

 rewind(infile);

 while ((read = getline(&line, &len, infile)) != -1)

 {

 char **array;

 array = split(line, ",");

 sscanf(array[0], "%i", &ind[order]);

 sscanf(array[1], "%i", &pheno[order]);

 if(pheno[order] == 0)

119
	

 {

 cont_count++;

 } else if (pheno[order] == 1)

 {

 case_count++;

 }

 for (int dat_v = 0; dat_v < nloci; dat_v++)

 {

 sscanf(array[dat_v + 2], "%i", &v[order][dat_v]);

 }

 for (int dat_x = 0; dat_x < nloci; dat_x++)

 {

 sscanf(array[dat_x + 2 + nloci], "%i", &x[order][dat_x]);

 }

 order++;

 free(array[0]);

 free(array);

 }

 fclose(infile);

 // BLOCK END: Read in data -- with number of loci not specified

120
	

 /* BLOCK START: Initialization*/

 double tolerance = 0.00001; // difference tolerance to stop EM

 double diff = 100; // initialized different

 double q_0 = (double)cont_count / (double)num_ind; // control rate

 double q_1 = (double)case_count / (double)num_ind; // case rate

 // total number of multilocus genotype (MLG): 3^nloci

 int total_MLE = (int)pow(3, nloci);

 double *err;

 err = (double *)malloc(sizeof(double) * 2);

 double *NullGenoFreq;

 NullGenoFreq = (double *)malloc(sizeof(double) * total_MLE);

 double *RandGeno;

 RandGeno = (double *)malloc(sizeof(double) * total_MLE);

 // Generate random multilocus geneotype (MLG) frequencies and error rates

 FILE *ConstantFile;

 char ConstantFileName[80] = "Constant.in";

 ConstantFile = fopen(ConstantFileName, "r");

 if (ConstantFile == NULL){

121
	

 fprintf (stderr, "Cannot open constant input file %s!\n",

ConstantFileName);

 exit(1);

 }

 long int seed;

 fscanf(ConstantFile, "%li\n", &seed);

// double srand48();

 srand48(seed);

 fclose(ConstantFile);

 FILE *ConstantFileOut;

 ConstantFileOut = fopen(ConstantFileName, "w");

 double drand48();

 int tempSeed = drand48() * 100000000 ;

 fprintf(ConstantFileOut, "%i\n", tempSeed);

 fclose(ConstantFileOut);

 double randSum = 0;

 double drand48();

 // generate random starting points for error

 err[0] = drand48() * 0.03;

 err[1] = drand48() * 0.03;

122
	

 for (int i_hap = 0; i_hap < total_MLE; i_hap++)

 {

 RandGeno[i_hap] = drand48();

 randSum += RandGeno[i_hap];

 }

// printf("starting points:\n");

 for (int i_hap2 = 0; i_hap2 < total_MLE; i_hap2++)

 {

 NullGenoFreq[i_hap2] = RandGeno[i_hap2] / randSum;

 }

 /* BLOCK END: Initialization*/

 /* BLOCK START: EM steps -- calculate NULL model likelihood*/

 int step = 0;

 double *pre_geno_freq; // to store the genoype frequencies of the previous step

 pre_geno_freq = (double *)malloc(sizeof(double) * total_MLE);

 double *pre_err; // to store the error rates of the previous step

 pre_err = (double *)malloc(sizeof(double) * 2);

123
	

 double pre_lnSum; // to store the log(sum) of the previous step

 double *inter_geno_freq;

 inter_geno_freq = (double *)malloc(sizeof(double) * total_MLE);

 double inter_error0, inter_error1, lnSum;

 // while loop starts from here

 // to initialize the parameters

 while ((diff >= tolerance) && (step <= 200))

 {

 // START: store previous values

 for (int init_geno_i = 0; init_geno_i < total_MLE; init_geno_i++)

 {

 pre_geno_freq[init_geno_i] = NullGenoFreq[init_geno_i];

 if (step > 0)

 {

 NullGenoFreq[init_geno_i] =

inter_geno_freq[init_geno_i];

 }

 }

124
	

 pre_err[0] = err[0];

 pre_err[1] = err[1];

 if (step > 0)

 {

 err[0] = inter_error0;

 err[1] = inter_error1;

 pre_lnSum = lnSum;

 }

 // END: store previous values

 for (int inter_geno_j = 0; inter_geno_j < total_MLE; inter_geno_j++)

 {

 inter_geno_freq[inter_geno_j] = 0;

 }

 lnSum = 0;

 double errorSum_num_cont = 0;

 double errorSum_num_case = 0;

 double errorSum_den_cont = 0;

 double errorSum_den_case = 0;

125
	

 for (int i = 0; i < num_ind; i++)

 {

 // success rate for binomial probability

 double p[3];

 p[1] = 0.5;

 if (pheno[i] == 0)

 {

 p[0] = err[0];

 p[2] = 1 - err[0];

 } else if (pheno[i] == 1)

 {

 p[0] = err[1];

 p[2] = 1 - err[1];

 }

 // calculate binomial probability for each genotype

 double binom[nloci][3];

 for (int binom_loc = 0; binom_loc < nloci; binom_loc++)

 {

 binom[binom_loc][0] = binomial(x[i][binom_loc],

v[i][binom_loc], p[0]);

 binom[binom_loc][1] = binomial(x[i][binom_loc],

v[i][binom_loc], p[1]);

126
	

 binom[binom_loc][2] = binomial(x[i][binom_loc],

v[i][binom_loc], p[2]);

 }

 // caulculate tau (posterior probability) numerator

 double *tau_num;

 tau_num = (double *)malloc(sizeof(double) * total_MLE);

 for (int tau_num_i = 0; tau_num_i < total_MLE;

tau_num_i++)

 {

 tau_num[tau_num_i] = NullGenoFreq[tau_num_i];

 int tau_num_remain = 0;

 int tau_num_temp = tau_num_i;

 int tau_num_geno;

 for (int tau_num_loc = 0; tau_num_loc < nloci;

tau_num_loc++)

 {

 if (tau_num_loc != nloci - 1)

 {

 tau_num_remain =

tau_num_temp % (int)pow(3, (nloci - 1 - tau_num_loc));

127
	

 tau_num_geno =

(tau_num_temp - tau_num_remain) / (int)pow(3, (nloci - 1 - tau_num_loc));

 tau_num_temp =

tau_num_remain;

 }else{

 tau_num_geno =

tau_num_remain;

 }

 //printf("%i-%i:%lf,", tau_num_loc,

tau_num_geno, binom[tau_num_loc][tau_num_geno]);

 tau_num[tau_num_i] *=

binom[tau_num_loc][tau_num_geno];

 }

 }

 // calculate tau denominator

 double tau_sum = 0;

 double temp_sum = 0; // calculate the sum of pre-LN for each

line

 for (int tau_den_i = 0; tau_den_i < total_MLE; tau_den_i++)

 {

 tau_sum += tau_num[tau_den_i];

128
	

 if (pheno[i] == 0)

 {

 temp_sum += tau_num[tau_den_i] * q_0;

 // temp_sum +=

tau_num[tau_den_i];

 }else if (pheno[i] == 1)

 {

 // temp_sum += tau_num[tau_den_i];

 temp_sum += tau_num[tau_den_i] * q_1;

 }

 }

 // sum of LN

 lnSum += log(temp_sum);

 // calculate tau

 double *tau;

 tau = (double *)malloc(sizeof(double) * total_MLE);

 for (int tau_i = 0; tau_i < total_MLE; tau_i++)

 {

 tau[tau_i] = tau_num[tau_i] / tau_sum;

 inter_geno_freq[tau_i] += tau[tau_i]; // intermediate

genotype frequency of a specific locus

129
	

 }

 // error calculation -- numerator

 double error_num = 0;

 for (int error_num_i = 0; error_num_i < total_MLE;

error_num_i++)

 {

 int error_num_remain = 0;

 int error_num_temp = error_num_i;

 int error_num_geno;

 for (int error_num_loc = 0; error_num_loc < nloci;

error_num_loc++)

 {

 if (error_num_loc != nloci - 1)

 {

 error_num_remain =

error_num_temp % (int)pow(3, (nloci - 1 - error_num_loc));

 error_num_geno =

(error_num_temp - error_num_remain) / (int)pow(3, (nloci - 1 - error_num_loc));

 error_num_temp =

error_num_remain;

130
	

 }else{

 error_num_geno =

error_num_remain;

 }

 if (error_num_geno == 0)

 {

 error_num += tau[error_num_i]

* (double)x[i][error_num_loc];

 } else if (error_num_geno == 2)

 {

 error_num += tau[error_num_i]

* (double)(v[i][error_num_loc] - x[i][error_num_loc]);

 }

 }

 }

 // error calculation -- denominator

 double error_den = 0;

 for (int error_den_i = 0; error_den_i < total_MLE;

error_den_i++)

 {

131
	

 int error_den_remain = 0;

 int error_den_temp = error_den_i;

 int error_den_geno;

 for (int error_den_loc = 0; error_den_loc < nloci;

error_den_loc++)

 {

 if (error_den_loc != nloci - 1)

 {

 error_den_remain =

error_den_temp % (int)pow(3, (nloci - 1 - error_den_loc));

 error_den_geno =

(error_den_temp - error_den_remain) / (int)pow(3, (nloci - 1 - error_den_loc));

 error_den_temp =

error_den_remain;

 }else{

 error_den_geno =

error_den_remain;

 }

 if (error_den_geno == 0)

 {

132
	

 error_den += tau[error_den_i] *

(double)v[i][error_den_loc];

 } else if (error_den_geno == 2)

 {

 error_den += tau[error_den_i] *

(double)v[i][error_den_loc];

 }

 }

 }

 if (pheno[i] == 0)

 {

 errorSum_num_cont += error_num;

 errorSum_den_cont += error_den;

 }else if (pheno[i] == 1)

 {

 errorSum_num_case += error_num;

 errorSum_den_case += error_den;

 }

 free(tau_num);

 free(tau);

133
	

 }

 /* calculate INTERMEDIATE ERROR RATES */

 inter_error0 = errorSum_num_cont / errorSum_den_cont;

 inter_error1 = errorSum_num_case / errorSum_den_case;

 // printf("%lf, %lf\n", inter_error0, inter_error1);

 // printf("%lf\n", lnSum);

 /* calculate INTERMEDIATE GENOTYPE FREQUENCIES */

 for (int inter_geno_freq_i = 0; inter_geno_freq_i < total_MLE;

inter_geno_freq_i++)

 {

 inter_geno_freq[inter_geno_freq_i] =

inter_geno_freq[inter_geno_freq_i] / (double)num_ind;

 // printf("%lf\n", inter_geno_freq[inter_geno_freq_i]);

 }

 if (step > 0)

 {

 diff = lnSum - pre_lnSum;

 }

 step++;

 }

 double H0_LN = pre_lnSum;

134
	

 printf ("EM ends...\nNull\nsteps: %i\n", step);

 printf ("LN_H0: %lf\n", H0_LN);

 printf ("MLG freq:\n");

 for (int pre_geno_freq_i = 0; pre_geno_freq_i < total_MLE; pre_geno_freq_i++)

 {

 printf("%lf,", pre_geno_freq[pre_geno_freq_i]);

// fprintf(bootstrap, "%lf,", pre_geno_freq[pre_geno_freq_i]);

 }

 printf("\n");

 printf ("Error: %lf, %lf\n", pre_err[0], pre_err[1]);

// fprintf(bootstrap, "\n%lf, %lf\n", pre_err[0], pre_err[1]);

 /* BLOCK START:EM steps -- calculate ALTERNATIVE model likelihood*/

 int alt_step = 0;

 // MLG freq and errors during calculation

 double *err_alt;

 err_alt = (double *)malloc(sizeof(double) * 2);

 double *CaseGenoFreq;

 CaseGenoFreq = (double *)malloc(sizeof(double) * total_MLE);

135
	

 double *ContGenoFreq;

 ContGenoFreq = (double *)malloc(sizeof(double) * total_MLE);

 // to store MLG freq of the previous step for case and control

 double *pre_geno_freq_case;

 pre_geno_freq_case = (double *)malloc(sizeof(double) * total_MLE);

 double *pre_geno_freq_cont;

 pre_geno_freq_cont = (double *)malloc(sizeof(double) * total_MLE);

 // to store error rates of the previous step -- alternative

 double *pre_err_alt;

 pre_err_alt = (double *)malloc(sizeof(double) * 2);

 // to store log of sum of the previous step -- alternative

 double pre_lnSum_alt;

 // intermediate MLG freq

 double *inter_geno_freq_case;

 inter_geno_freq_case = (double *)malloc(sizeof(double) * total_MLE);

 double *inter_geno_freq_cont;

 inter_geno_freq_cont = (double *)malloc(sizeof(double) * total_MLE);

 // intermediate error rates

136
	

 double inter_error0_alt, inter_error1_alt, lnSum_alt;

 double diff_alt = 100;

 // while loop

 // use the values from null

 while ((diff_alt >= tolerance) && (alt_step <= 200))

 {

 // START: use the MLG freq from null and store previous values

 for (int init_geno_m = 0; init_geno_m < total_MLE; init_geno_m++)

 {

 if (alt_step == 0) {

 pre_geno_freq_case[init_geno_m] =

pre_geno_freq[init_geno_m];

 pre_geno_freq_cont[init_geno_m] =

pre_geno_freq[init_geno_m];

 CaseGenoFreq[init_geno_m] =

pre_geno_freq[init_geno_m];

 ContGenoFreq[init_geno_m] =

pre_geno_freq[init_geno_m];

 }

 else if (alt_step > 0) {

137
	

 pre_geno_freq_case[init_geno_m] =

CaseGenoFreq[init_geno_m];

 pre_geno_freq_cont[init_geno_m] =

ContGenoFreq[init_geno_m];

 CaseGenoFreq[init_geno_m] =

inter_geno_freq_case[init_geno_m];

 ContGenoFreq[init_geno_m] =

inter_geno_freq_cont[init_geno_m];

 }

 }

 //pre_err_alt[0] = pre_err[0];

 //pre_err_alt[1] = pre_err[1];

 if (alt_step > 0)

 {

 pre_err_alt[0] = err_alt[0];

 pre_err_alt[1] = err_alt[1];

 err_alt[0] = inter_error0_alt;

 err_alt[1] = inter_error1_alt;

 pre_lnSum_alt = lnSum_alt;

138
	

 } else if (alt_step == 0) {

 pre_err_alt[0] = pre_err[0];

 pre_err_alt[1] = pre_err[1];

 err_alt[0] = pre_err[0];

 err_alt[1] = pre_err[1];

 }

 // END: store previous values

 for (int inter_geno_n = 0; inter_geno_n < total_MLE; inter_geno_n++)

 {

 inter_geno_freq_case[inter_geno_n] = 0;

 inter_geno_freq_cont[inter_geno_n] = 0;

 }

 lnSum_alt = 0;

 double errorSum_num_cont_alt = 0;

 double errorSum_num_case_alt = 0;

 double errorSum_den_cont_alt = 0;

 double errorSum_den_case_alt = 0;

 for (int m = 0; m < num_ind; m++)

 {

139
	

 // success rate for binomial probability

 double p_alt[3];

 p_alt[1] = 0.5;

 if (pheno[m] == 0)

 {

 p_alt[0] = err_alt[0];

 p_alt[2] = 1 - err_alt[0];

 }else if (pheno[m] == 1)

 {

 p_alt[0] = err_alt[1];

 p_alt[2] = 1 - err_alt[1];

 }

 // binomial probability

 double binom_alt[nloci][3];

 for (int binom_loc_alt = 0; binom_loc_alt < nloci;

binom_loc_alt++)

 {

 binom_alt[binom_loc_alt][0] =

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[0]);

 binom_alt[binom_loc_alt][1] =

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[1]);

140
	

 binom_alt[binom_loc_alt][2] =

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[2]);

 }

 // tau -- numerator

 double *tau_num_case;

 tau_num_case = (double *)malloc(sizeof(double) *

total_MLE);

 double *tau_num_cont;

 tau_num_cont = (double *)malloc(sizeof(double) *

total_MLE);

 for (int tau_num_m = 0; tau_num_m < total_MLE;

tau_num_m++)

 {

 tau_num_case[tau_num_m] =

CaseGenoFreq[tau_num_m];

 tau_num_cont[tau_num_m] =

ContGenoFreq[tau_num_m];

 int tau_num_remain_alt = 0;

 int tau_num_temp_alt = tau_num_m;

 int tau_num_geno_alt;

 /*

141
	

 if ((m == 0) && (tau_num_m == 1)) {

 printf("Case: %lf\n",

tau_num_case[tau_num_m]);

 printf("Cont: %lf\n",

tau_num_cont[tau_num_m]);

 }

 */

 for (int tau_num_loc_alt = 0; tau_num_loc_alt <

nloci; tau_num_loc_alt++)

 {

 if (tau_num_loc_alt != nloci - 1)

 {

 tau_num_remain_alt =

tau_num_temp_alt % (int)pow(3, (nloci - 1 - tau_num_loc_alt));

 tau_num_geno_alt =

(tau_num_temp_alt - tau_num_remain_alt) / (int)pow(3, (nloci - 1 - tau_num_loc_alt));

 tau_num_temp_alt =

tau_num_remain_alt;

 }else{

 tau_num_geno_alt =

tau_num_remain_alt;

 }

142
	

 if (pheno[m] == 1)

 {

 tau_num_case[tau_num_m] *=

binom_alt[tau_num_loc_alt][tau_num_geno_alt];

 }else

 {

 tau_num_cont[tau_num_m] *=

binom_alt[tau_num_loc_alt][tau_num_geno_alt];

 }

 }

 }

 // tau --denominator

 double tau_sum_case = 0;

 double tau_sum_cont = 0;

 double temp_sum_alt = 0;

 for (int tau_den_m = 0; tau_den_m < total_MLE;

tau_den_m++)

 {

 if (pheno[m] != 1)

 {

143
	

 tau_sum_cont +=

tau_num_cont[tau_den_m];

 temp_sum_alt +=

tau_num_cont[tau_den_m] * q_0;

 // temp_sum_alt +=

tau_num_cont[tau_den_m];

 }else if (pheno[m] == 1)

 {

 tau_sum_case +=

tau_num_case[tau_den_m];

 // temp_sum_alt +=

tau_num_cont[tau_den_m];

 temp_sum_alt +=

tau_num_case[tau_den_m] * q_1;

 }

 }

 // sum of LN

 lnSum_alt += log(temp_sum_alt);

 // tau

 double *tau_case;

 tau_case = (double *)malloc(sizeof(double) * total_MLE);

144
	

 double *tau_cont;

 tau_cont = (double *)malloc(sizeof(double) * total_MLE);

 for (int tau_m = 0; tau_m < total_MLE; tau_m++)

 {

 tau_case[tau_m] = tau_num_case[tau_m] /

tau_sum_case;

 tau_cont[tau_m] = tau_num_cont[tau_m] /

tau_sum_cont;

 if (pheno[m] == 1) {

 inter_geno_freq_case[tau_m] +=

tau_case[tau_m];

 } else if (pheno[m] == 0) {

 inter_geno_freq_cont[tau_m] +=

tau_cont[tau_m];

 }

 }

 //error calculation -- numerator

 double error_num_alt = 0;

 for (int error_num_m = 0; error_num_m < total_MLE;

error_num_m++)

145
	

 {

 int error_num_remain_alt = 0;

 int error_num_temp_alt = error_num_m;

 int error_num_geno_alt;

 for (int error_num_loc_alt = 0; error_num_loc_alt <

nloci; error_num_loc_alt++)

 {

 if (error_num_loc_alt != nloci - 1)

 {

 error_num_remain_alt =

error_num_temp_alt % (int)pow(3, (nloci - 1 - error_num_loc_alt));

 error_num_geno_alt =

(error_num_temp_alt - error_num_remain_alt) / (int)pow(3, (nloci - 1 -

error_num_loc_alt));

 error_num_temp_alt =

error_num_remain_alt;

 }else{

 error_num_geno_alt =

error_num_remain_alt;

 }

 if (error_num_geno_alt == 0)

146
	

 {

 if (pheno[m] == 0)

 {

 error_num_alt +=

tau_cont[error_num_m] * (double)x[m][error_num_loc_alt];

 }else if (pheno[m] == 1)

 {

 error_num_alt +=

tau_case[error_num_m] * (double)x[m][error_num_loc_alt];

 }

 } else if (error_num_geno_alt == 2)

 {

 if (pheno[m] == 0)

 {

 error_num_alt +=

tau_cont[error_num_m] * (double)(v[m][error_num_loc_alt] - x[m][error_num_loc_alt]);

 }else if (pheno[m] == 1)

 {

 error_num_alt +=

tau_case[error_num_m] * (double)(v[m][error_num_loc_alt] - x[m][error_num_loc_alt]);

 }

 }

 }

147
	

 }

 // error calculation -- denominator

 double error_den_alt = 0;

 for (int error_den_m = 0; error_den_m < total_MLE;

error_den_m++)

 {

 int error_den_remain_alt = 0;

 int error_den_temp_alt = error_den_m;

 int error_den_geno_alt;

 for (int error_den_loc_alt = 0; error_den_loc_alt <

nloci; error_den_loc_alt++)

 {

 if (error_den_loc_alt != nloci - 1)

 {

 error_den_remain_alt =

error_den_temp_alt % (int)pow(3, (nloci - 1 - error_den_loc_alt));

 error_den_geno_alt =

(error_den_temp_alt - error_den_remain_alt) / (int)pow(3, (nloci - 1 - error_den_loc_alt));

148
	

 error_den_temp_alt =

error_den_remain_alt;

 }else{

 error_den_geno_alt =

error_den_remain_alt;

 }

 if (error_den_geno_alt == 0)

 {

 if (pheno[m] == 0)

 {

 error_den_alt +=

tau_cont[error_den_m] * (double)v[m][error_den_loc_alt];

 }else if (pheno[m] == 1)

 {

 error_den_alt +=

tau_case[error_den_m] * (double)v[m][error_den_loc_alt];

 }

 } else if (error_den_geno_alt == 2)

 {

 if (pheno[m] == 0)

 {

 error_den_alt +=

tau_cont[error_den_m] * (double)v[m][error_den_loc_alt];

149
	

 }else if (pheno[m] == 1)

 {

 error_den_alt +=

tau_case[error_den_m] * (double)v[m][error_den_loc_alt];

 }

 }

 }

 }

 if (pheno[m] == 0)

 {

 errorSum_num_cont_alt += error_num_alt;

 errorSum_den_cont_alt += error_den_alt;

 }else if (pheno[m] == 1)

 {

 errorSum_num_case_alt += error_num_alt;

 errorSum_den_case_alt += error_den_alt;

 }

 free(tau_num_case);

 free(tau_num_cont);

 free(tau_case);

 free(tau_cont);

150
	

 }

 /* INTERMEDIATE ERROR RATES */

 inter_error0_alt = errorSum_num_cont_alt / errorSum_den_cont_alt;

 inter_error1_alt = errorSum_num_case_alt / errorSum_den_case_alt;

 /* INTERMEDIATE GENOTYPE FREQUENCIES */

 for (int inter_geno_freq_m = 0; inter_geno_freq_m < total_MLE;

inter_geno_freq_m++)

 {

 inter_geno_freq_case[inter_geno_freq_m] =

inter_geno_freq_case[inter_geno_freq_m] / (double)case_count;

 inter_geno_freq_cont[inter_geno_freq_m] =

inter_geno_freq_cont[inter_geno_freq_m] / (double)cont_count;

 }

 // printf("CaseFreq: %lf\n", inter_geno_freq_case[0]);

 // printf("ContFreq: %lf\n", inter_geno_freq_cont[0]);

 if (alt_step > 0)

 {

 diff_alt = lnSum_alt - pre_lnSum_alt;

151
	

 }

 alt_step++;

 }

 double H1_LN = pre_lnSum_alt;

 printf("Alternative\nsteps: %i\n", alt_step);

 printf("LN_H1: %lf\n", H1_LN);

 printf("MLG freq:\nCase:\n");

 for (int pre_geno_freq_m1 = 0; pre_geno_freq_m1 < total_MLE;

pre_geno_freq_m1++)

 {

 printf("%lf,", pre_geno_freq_case[pre_geno_freq_m1]);

 }

 printf("\n");

 printf("Control\n");

 for (int pre_geno_freq_m2 = 0; pre_geno_freq_m2 < total_MLE;

pre_geno_freq_m2++)

 {

 printf("%lf,", pre_geno_freq_cont[pre_geno_freq_m2]);

 }

 printf("\n");

152
	

 printf ("Error: %lf, %lf\n", pre_err_alt[0], pre_err_alt[1]);

 /* ALTERNATIVE - END */

 double LRT = 2 * (H1_LN - H0_LN);

 // int df = total_MLE + 1;

 printf("LRT:\t%lf\n", LRT);

 free(inter_geno_freq);

 free(pre_geno_freq);

 free(pre_err);

 free(err);

 free(NullGenoFreq);

 free(RandGeno);

 free(inter_geno_freq_case);

 free(inter_geno_freq_cont);

 free(pre_geno_freq_case);

 free(pre_geno_freq_cont);

 free(pre_err_alt);

153
	

 free(err_alt);

 free(CaseGenoFreq);

 free(ContGenoFreq);

 return 0;

}

154
	

Appendix 2. Source code for the simulation process

2.1. Generate input file for the simulation program (in C)

/*

Date: June 06, 2016

Created by: Lisheng Zhou

This program will generate an input file Sim_parameter.in

for data simulation program in the Appendix Section 2.2 Simulation program

Input file:

1. Vector_setting_fixed.in

 Format of this input file:

 Line 1: number of locus

Line 2: number of controls

Line 3: number of cases

Line 4: sequencing coverage value

Line 5: misclassification in controls

Line 6: misclassification in cases

Line 7: based-line odds-ratio

Line 8: odds-ratio

Line 9: mode of inheritance (dominant only for this version, use “1”)

155
	

From Line 10: each line contains one of the population MLG frequencies value

(Line 10 should be the non-disease MLG frequency)

2. Constant.in: a file containing random number

Output file:

1. Sim_parameter.in

*/

#include <string.h>

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "mapping_func.h"

int main()

{

 FILE *infile;

 char infileName[80] = "Vector_setting_fixed.in";

 infile = fopen(infileName, "r");

 if (infile == NULL){

 fprintf(stderr, "Cannot open infile file %s!\n", infileName);

156
	

 exit(1);

 }

 // Read in parameters

 // line #1. number of loci

 int nloci;

 fscanf(infile, "%i", &nloci);

 int nMLE = pow(3, nloci);

 // line #2. number of controls

 int ncontrol;

 fscanf(infile, "%i", &ncontrol);

 // line #3. number of cases

 int ncase;

 fscanf(infile, "%i", &ncase);

 // line #4. coverage

 int cvrg;

 fscanf(infile, "%i", &cvrg);

 // line #5. error rate for control

157
	

 double err_cont;

 fscanf(infile, "%lg", &err_cont);

 // line #6. error rate for case

 double err_case;

 fscanf(infile, "%lg", &err_case);

 // line #7. disease prevalence

 double alpha;

 fscanf(infile, "%lg", &alpha);

 // line #8. odds ratio

 double OR;

 fscanf(infile, "%lg", &OR);

 // line #9. model

 // 1 --> dominant

 int model;

 fscanf(infile, "%i", &model);

// printf("%i, %lg, %lg, %i\n", nloci, prevalence, OR, model);

158
	

 // END Read in parameters

 // Computation

 // beta

 double beta = log(OR);

// printf("%lg\n", beta);

 // weight w_j

 double *w;

 w = (double *) malloc(sizeof(double) * nMLE);

 if (model == 1)

 // dominant model, this is the only model considered in this program

 {

 w[0] = 0;

 for (int w_i = 1; w_i < nMLE; w_i++)

 {

 w[w_i] = 1;

 }

 }

 /*

 // generate randomized data

159
	

 double *tempMLE;

 tempMLE = (double *) malloc(sizeof(double) * nMLE);

 double tempSum = 0;

 for(int temp_i = 0; temp_i < nMLE; temp_i++)

 {

 FILE *ConstantFile;

 char ConstantFileName[80] = "Constant.in";

 ConstantFile = fopen(ConstantFileName, "r");

 if (ConstantFile == NULL){

 fprintf (stderr, "Cannot open constant input file %s!\n",

ConstantFileName);

 exit(1);

 }

 long int seed;

 fscanf(ConstantFile, "%li\n", &seed);

 double srand48();

 srand48(seed);

 fclose(ConstantFile);

 FILE *ConstantFileOut;

 ConstantFileOut = fopen(ConstantFileName, "w");

 double drand48();

160
	

 long int tempSeed = drand48() * 100000000 ;

 fprintf(ConstantFileOut, "%li\n", tempSeed);

 fclose(ConstantFileOut);

 double drand48();

 tempMLE[temp_i] = drand48();

 tempSum += tempMLE[temp_i];

 }

 */

 // population MLE

 double *popMLE;

 popMLE = (double *) malloc(sizeof(double) * nMLE);

 for (int pop_i = 0; pop_i < nMLE; pop_i++)

 {

 fscanf(infile, "%lg", &popMLE[pop_i]);

 // popMLE[pop_i] = tempMLE[pop_i] / tempSum;

// printf("%lg\n", popMLE[pop_i]);

 }

 fclose(infile);

161
	

 // Pr(aff|MLG)

 // control

 double *Pr0_j;

 Pr0_j = (double *) malloc(sizeof(double) * nMLE);

 // case

 double *Pr1_j;

 Pr1_j = (double *) malloc(sizeof(double) * nMLE);

 // Pr(aff,MLG)

 // control

 double *Pr0MLG;

 Pr0MLG = (double *) malloc(sizeof(double) * nMLE);

 // case

 double *Pr1MLG;

 Pr1MLG = (double *) malloc(sizeof(double) * nMLE);

 // MLEs

 // control

 double *MLE_0;

 MLE_0 = (double *) malloc(sizeof(double) * nMLE);

 // case

162
	

 double *MLE_1;

 MLE_1 = (double *) malloc(sizeof(double) * nMLE);

 double prevalence_unaff = 0;

 double prevalence_aff = 0;

 for (int pr_i = 0; pr_i < nMLE; pr_i++)

 {

 Pr0_j[pr_i] = 1 / (1 + exp(alpha + beta*w[pr_i]));

 Pr1_j[pr_i] = exp(alpha + beta*w[pr_i]) / (1 + exp(alpha +

beta*w[pr_i]));

 Pr0MLG[pr_i] = Pr0_j[pr_i] * popMLE[pr_i];

 prevalence_unaff += Pr0MLG[pr_i];

 Pr1MLG[pr_i] = Pr1_j[pr_i] * popMLE[pr_i];

 prevalence_aff += Pr1MLG[pr_i];

 }

 for (int MLEi = 0; MLEi < nMLE; MLEi++)

 {

 MLE_0[MLEi] = Pr0MLG[MLEi] / prevalence_unaff;

 MLE_1[MLEi] = Pr1MLG[MLEi] / prevalence_aff;

 }

163
	

 FILE *outfile;

 char outfileName[80] = "Sim_parameter.in";

 outfile = fopen(outfileName, "w");

 fprintf(outfile, "%i\n", nloci);

 fprintf(outfile, "%i\n", ncontrol);

 fprintf(outfile, "%i\n", ncase);

 fprintf(outfile, "%i\n", cvrg);

 fprintf(outfile, "%lg\n", err_cont);

 fprintf(outfile, "%lg\n", err_case);

 for (int i1 = 0; i1< nMLE; i1++)

 {

 fprintf(outfile, "%.16lg\n", MLE_0[i1]);

 }

 fprintf(outfile, "-99\n");

 for (int i2 = 0; i2 < nMLE; i2++)

 {

 fprintf(outfile, "%.16lg\n", MLE_1[i2]);

 }

 fclose(outfile);

164
	

 free(MLE_1);

 free(MLE_0);

 free(Pr1MLG);

 free(Pr0MLG);

 free(Pr1_j);

 free(Pr0_j);

 free(popMLE);

// free(tempMLE);

 free(w);

 return 0;

}

2.2. Simulation program (in C)

/*

Date: May 27, 2016

Created by: Lisheng Zhou

This program is to do simulations according to

an input file:

1. Sim_parameter.in

165
	

(this input is generated by the program described in the Appendix Section 2.1 Generate

input file for the simulation program)

Output file:

1. multi_locus_dataset.csv

Updated: 06/02/2016 by Lisheng Zhou

 * Format of the input file is updated

 - Sim_parameter.in

 */

#include <string.h>

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "BinomDist.h"

#include "split.h"

#include "mapping_func.h"

166
	

#include "x_mapping.h"

typedef double error[2]; // double: list to store error rates

typedef double array3[3]; // double: array with 3 elements

int main()

{

 FILE *infile;

 char infileName[80] = "Sim_parameter.in";

 infile = fopen(infileName, "r");

 if (infile == NULL){

 fprintf(stderr, "Cannot open parameter input file %s!\n", infileName);

 exit(1);

 }

 // Read in parameters from input file

 // line #1. number of loci

 int nloci;

 fscanf(infile, "%i", &nloci);

 int nMLE = pow(3, nloci); // number of MLEs

167
	

 // line #2. number of controls

 int ncontrol;

 fscanf(infile, "%i", &ncontrol);

 // line #3. number of cases

 int ncase;

 fscanf(infile, "%i", &ncase);

 // line #4. coverage

 int cvrg;

 fscanf(infile, "%i", &cvrg);

 // line #5. error rate for control

 error err;

 fscanf(infile, "%lg", &err[0]);

 // line #6. error rate for case

 fscanf(infile, "%lg", &err[1]);

 // from line #7: MLEs

 // memory allocation for MLEs

 double *MLE;

168
	

 MLE = (double *)malloc(sizeof(double) * nMLE);

 for (int scan_i = 0; scan_i < nMLE; scan_i++)

 {

 fscanf(infile, "%lg", &MLE[scan_i]);

 }

 int check;

 fscanf(infile, "%i", &check);

 if (check != -99)

 {

 fprintf(stderr, "Number of lines for MLEs is not correct!\n");

 exit(1);

 }

 double *MLE_alt;

 MLE_alt = (double *)malloc(sizeof(double) * nMLE);

 for (int scan_alt = 0; scan_alt < nMLE; scan_alt++)

 {

 fscanf(infile, "%lg", &MLE_alt[scan_alt]);

// printf("%.16lg\n", MLE_alt[scan_alt]);

 }

169
	

 fclose(infile);

 // print out inputs

 // printf("%i\n%i\n%i\n%i\n", nloci, ncontrol, ncase, cvrg);

 // printf("%lf\n%lf\n", err[0], err[1]);

 /*

 printf("MLEs:\n");

 for (int i = 0; i < nMLE; i++)

 {

 printf("%lf\n", MLE[i]);

 }

 */

 // --------------------------------DATA-SIMULATION----------------------------------

 FILE *outfile;

 char outfileName[80] = "multi_locus_dataset.csv";

 outfile = fopen(outfileName, "w");

 int Y; // phenotype

 // MLG

 int *MLG;

170
	

 MLG = (int *)malloc(sizeof(int) * nloci);

 // success rate

 double* successrate;

 successrate = (double *)malloc(sizeof(double) * nloci);

 // x

 int* xarray;

 xarray = (int *)malloc(sizeof(int) * nloci);

 for (int individual = 0; individual < ncontrol+ncase; individual++)

 {

 fprintf(outfile, "%i,", individual);

 if (individual < ncontrol){

 Y = 0;

 } else {

 Y = 1;

 }

 fprintf(outfile, "%i,", Y);

 for (int vi = 0; vi < nloci; vi++)

 {

 fprintf(outfile, "%i,", cvrg);

171
	

 }

 // [1] simulate multi-locus genotype

 // generate random number 1 for genotype simulation

 FILE *ConstantFile;

 char ConstantFileName[80] = "Constant.in";

 ConstantFile = fopen(ConstantFileName, "r");

 if (ConstantFile == NULL){

 fprintf (stderr, "Cannot open constant input file %s!\n",

ConstantFileName);

 exit(1);

 }

 long int seed;

 fscanf(ConstantFile, "%li\n", &seed);

 double srand48();

 srand48(seed);

 fclose(ConstantFile);

 FILE *ConstantFileOut;

 ConstantFileOut = fopen(ConstantFileName, "w");

 double drand48();

 long int tempSeed = drand48() * 100000000 ;

 fprintf(ConstantFileOut, "%li\n", tempSeed);

172
	

 fclose(ConstantFileOut);

 double drand48();

 double r_g;

 r_g = drand48();

 // printf("random number 1: %.9lf\n", r_g);

 double g_sum = 0;

 int tempMLG;

 double tempMLE;

 for (int i_g = 0; i_g < nMLE; i_g++)

 {

 if (Y == 0)

 {

 tempMLE = MLE[i_g];

 } else if (Y == 1)

 {

 tempMLE = MLE_alt[i_g];

 }

 if ((r_g > g_sum) && (r_g <= (g_sum + tempMLE)))

173
	

 {

 tempMLG = i_g;

 break;

 }

 g_sum += tempMLE;

 }

 // printf("%i\n", tempMLG);

 // convert the number into multi-locus genotype

 map_in(tempMLG, nloci, MLG);

 /*

 printf("selection of MLG-");

 for (int printMLGi = 0; printMLGi < nloci; printMLGi++)

 {

 printf("%i", MLG[printMLGi]);

 }

 printf("\n");

 printf("Error rates: %0.3f, %0.3f\n", err[0], err[1]);

 */

 // [2] simulate alternative read counts (x)

174
	

 // generate random number 2 for x simulation

 FILE *ConstantFile2;

 ConstantFile2 = fopen(ConstantFileName, "r");

 if (ConstantFile2 == NULL){

 fprintf (stderr, "Cannot open constant input file %s!\n",

ConstantFileName);

 exit(1);

 }

 long int seed2;

 fscanf(ConstantFile2, "%li\n", &seed2);

 //double srand48();

 srand48(seed2);

 fclose(ConstantFile2);

 FILE *ConstantFileOut2;

 ConstantFileOut2 = fopen(ConstantFileName, "w");

 double drand48();

 long int tempSeed2 = drand48() * 100000000 ;

 fprintf(ConstantFileOut2, "%li\n", tempSeed2);

 fclose(ConstantFileOut2);

 double drand48();

 double r_x;

175
	

 r_x = drand48();

 // success rate of binomial distribution

 array3 p;

 p[0] = err[Y];

 p[1] = 0.5;

 p[2] = 1 - err[Y];

 // success rates according to MLG

 for (int success_i = 0; success_i < nloci; success_i++)

 {

 successrate[success_i] = p[MLG[success_i]];

 // printf("%lf\n", successrate[success_i]);

 }

 // a table of X probabiluty according to the multi-locus genotype

 // number of total possible x

 int total_x_order = (int) pow(cvrg+1, nloci);

 // sum of probabilities of x

 double sum_x = 0;

176
	

 for (int x_i = 0; x_i < total_x_order; x_i++)

 {

 x_map_in(x_i, nloci, xarray, cvrg);

 double temp_sum = 1;

 for (int xnloci = 0; xnloci < nloci; xnloci++)

 {

 // printf("%0.9lf,", binomial(xarray[xnloci], cvrg,

successrate[xnloci]));

 temp_sum *= binomial(xarray[xnloci], cvrg,

successrate[xnloci]);

 }

 // printf("\nPr(x1,x2,x3,x4): %0.9lf\n", temp_sum);

 // printf("cumulative probability: %0.9lf\n", sum_x+temp_sum);

 if ((r_x > sum_x) && (r_x <= sum_x + temp_sum))

 {

 break;

 } else {

 sum_x += temp_sum;

 }

 }

177
	

 // printf("\nrandom number 2: %.9lf\nselected x:", r_x);

 for (int print_x = 0; print_x < nloci; print_x++)

 {

 // printf("%i,", xarray[print_x]);

 fprintf(outfile, "%i,", xarray[print_x]);

 }

 // printf("\n");

 fprintf(outfile, "\n");

 }

 fclose(outfile);

 // free(x);

 free(xarray);

 free(successrate);

 free(MLG);

 free(MLE_alt);

 free(MLE);

 return 0;

}

178
	

Appendix 3. Source code for the permutation step (in R)

Date: 03/30/2016

Created by: Lisheng Zhou

Purpose: data simulation for bootstrap based on estimated parameters

==============================READ IN DATA

##setwd("C:/Users/zhou/Desktop/Today/R bootstrap simulation")

ori_data<-read.csv("multi_locus_dataset.csv",header=F)

number of loci

n.loci=(dim(ori_data)[2]-2)/2

number of individuals

n.k=dim(ori_data)[1]

individual list

ind=ori_data[,1]

phenotype list

Y=ori_data[,2]

coverage matrix

V=data.matrix(ori_data[,3:(dim(ori_data)[2]-n.loci)])

179
	

causal variant counts

X=data.matrix(ori_data[,(dim(ori_data)[2]-n.loci+1):dim(ori_data)[2]])

##===============================END OF DATA READ IN

n0=length(which(Y==0))

n1=length(which(Y==1))

N=n0+n1

Y=sample(c(rep(0,n0),rep(1,n1)),N)

dat=data.frame(IND=ind,Y=Y,V=V,X=X)

write.table(dat,

file="multi_locus_dataset.permuted.csv",col.names=F,row.names=F,sep=",")

180
	

Appendix 4. Source code for utility functions

4.1. Binomial Distribution

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

/*Binomial Distribution Function (probability mass function, not cummulative*/

#include "BinomDist.h"

//factor function

double fact(int x)

{

 double i;

 double f = 1;

 for (i = x; i > 1; i--)

 {

 f = f * i;

 }

 return f;

} // end of factor function

//Binomial distribution

181
	

double binomial(short x, short n, float p)

{

 double pmf = (fact(n)/(fact(x)*fact(n-x)))*pow(p,x)*pow((1-p),(n-x));

 // double pmf = rfact(x,n)/fact(x)*pow(p,x)*pow((1-p),(n-x));

 return pmf;

} //end of Binomial distribution

4.2. Mapping Function

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mapping_func.h"

// from number to vector

void map_in(int InNum, int NumLocus, int GenomArray[]){

 int remain = 0;

 int TempIn = InNum;

 int TempGeno = 0;

182
	

 for (int i = NumLocus-1; i >= 0; i--){

 remain = TempIn % (int)pow(3, i);

 TempGeno = (TempIn - remain)/(int)pow(3,i);

 TempIn = remain;

 GenomArray[i] = TempGeno;

 }

}

int map_out(int GenomArray[], int NumLocus){

 int sum = 0;

 for (int i = 0; i < NumLocus; i++){

 sum += GenomArray[i] * (int)pow(3,i);

 }

 return sum;

}

4.3. Splitting function

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "split.h"

183
	

char **split (const char *s1, const char *s2) {

 char **lista;

 char *aux = (char*)malloc(strlen(s1) + 1);

 strcpy(aux, s1);

 char *token_Ptr;

 int i = 0;

 lista = (char **) malloc (sizeof (char *));

 token_Ptr = strtok(aux, s2);

 lista[i] = token_Ptr;

 i++;

 while(token_Ptr != NULL)

 {

 lista = (char **)realloc(lista, sizeof(char*) * (i + 1));

 token_Ptr = strtok(NULL, s2);

 lista[i] = token_Ptr;

 i++;

 }

 return lista;

}

184
	

Appendix 5. Instruction for running a simulation test

Following this instruction, reads may run the simulation program, calculate the test statistic

and misclassification estimates from the simulated data, and even perform a permutation

on the individuals’ affection statuses in the simulated data. Before running the programs

listed above, reads need to compile the source codes if they are written in C (this step will

not be provided in this work).

5.1. Simulate NGS raw data

5.1.1. Data preparation

Readers must generate a proper formatted input file for the simulation program. The

program that generates the right-formatted input file is provided in the Appendix Section

2.1 Generate input file for the simulation program (in C). However, this program requires

two input files, a file containing all parameters (File “Vector_setting_fixed.in”), and a file

containing a random number (File Constant.in). Here is the example file

“Vector_setting_fixed.in”:

 Line 1: number of locus (e.g. 2)

Line 2: number of controls (e.g. 500)

Line 3: number of cases (e.g. 500)

Line 4: sequencing coverage value (e.g. 4)

Line 5: misclassification in controls (e.g. 0.01)

Line 6: misclassification in cases (e.g. 0.05)

Line 7: based-line odds-ratio (e.g. 0.1)

Line 8: odds-ratio (e.g. 1)

Line 9: mode of inheritance (dominant only for this version, use “1”) (e.g. 1)

185
	

From Line 10: each line contains one of the population MLG frequencies value

(Line 10 should be the non-disease MLG frequency)

e.g. Line 10: 0.75

Line 11: 0.006342811

Line 12: 0.0320819

Line 13: 0.03839475

Line 14: 0.045684489

Line 15: 0.038255781

Line 16: 0.037676154

Line 17: 0.008587083

Line 18: 0.042977033

5.1.2. Data Simulation

Use the output file “Sim_parameter.in” generated from the above step as the input in the

simulation program described in Appendix Section 2.2 Source code for the statistical test

(in C). Run the simulation program and reads will get an output file named

“multi_locus_dataset.csv”.

5.2. Calculate test statistic and misclassification estimates

Use the simulated dataset “multi_locus_dataset.csv” as an input for the program described

in Appendix 1 Source code for the statistical test (in C). Run the program and the test

statistic and misclassification estimate will be printed out to the screen as outputs.

5.3. Permutation program

Use the simulated dataset “multi_locus_dataset.csv” as an input and run the R script

described in Appendix 3 Source code for the permutation step (in R). A Permuted file

186
	

named “multi_locus_dataset.permuted.csv” will then be generated, that may be used for

further testing.

