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ABSTRACT OF THE DISSERTATION 

 

A Statistical Method for Genotypic Association that Is Robust to Sequencing 

Misclassification 

 

By LISHENG ZHOU 

 

Dissertation Directors: 

Tara Matise, Ph.D., Derek Gordon, Ph.D. 

 

    In analyzing human genetic disorders, association analysis is one of the most commonly 

used approaches. However, there are challenges with association analysis, including 

differential misclassification in data that inflates the false-positive rate. In this thesis, I 

present a new statistical method for testing the association between disease phenotypes and 

multiple single nucleotide polymorphisms (SNPs). This method uses next-generation 

sequencing (NGS) raw data and is robust to sequencing differential misclassification. By 

incorporating expectation-maximization (EM) algorithm, this method computes the test 

statistic and estimates important parameters of the model, including misclassification. By 

performing simulation studies, I report that this method maintains correct type I error rates 

and may obtain high statistical power. 
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Chapter 1 Introduction 

 

Human genetic disorders are unusual traits that are inherited within human genomes. In 

general, there are three categories of genetic disorders, single gene disorders, complex-trait 

disorders and chromosomal disorders. In single gene disorders, mode of inheritance may 

generally be classified as either autosomal dominant disorders, autosomal recessive 

disorders, X-linked disorders or mitochondrial disorders. The most commonly used 

methods for analyzing these genetic disorders are linkage analysis and association analysis. 

In association analysis, existing designs include case-control, family-based and 

quantitative trait. For complex-trait disorder association studies, GWAS (genome-wide 

association studies) are widely applied today. However, there are challenges with GWAS, 

among them those dealing with statistical design and analysis. The purpose of this work is 

to address some of those statistical challenges.  
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1.1 Genetic disorders 

1.1.1 What are genetic disorders? 

Genetic disorders are disease traits that are caused by changes in the genome that result in 

abnormal expression or gain or loss of function of one or more genes. New variants are 

introduced in each generation [1]. Some of these variants may be deleterious in that they 

have a harmful effect on the organism. Such mutations may occur spontaneously during 

one’s life span, or may be inherited from parents.  

 

1.1.2 Single gene, complex, and chromosomal disorders 

As noted above, genetic disorders can generally be classified into three groups. We provide 

more details on each group directly below.  

1.1.2.1 Single gene disorder 

The first type is the single gene disorder, that requires only one mutation in a single gene 

to trigger the expression of the corresponding disorder. This type is also called a Mendelian 

disorder. The occurrence of this type of disorder is rare in the general population. Single 

gene disorders usually have identifiable inheritance patterns [2]. Examples of single gene 

disorders are cystic fibrosis, fragile X syndrome, sickle-cell disease, and Huntington’s 

disease.  

1.1.2.2 Complex-trait disorder 

The second type of genetic disorder is a complex-trait disorder, that requires multiple 

factors for the expression of a disease trait [2]. These factors include multiple genes and 

interactions with the environment, and therefore genetic disorders do not typically exhibit 

distinct inheritance patterns. Complex-trait disorders are often developed by the interaction 
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between genes and environment (G×E), where genetics plays a significant role. Variation 

in a single gene is not expected to be sufficient for the expression of a complex-trait 

disorder phenotype, even though the expression may be dependent upon the number of 

mutations in relevant disease genes [2]. Complex-trait disorders occur more frequently in 

the general population than do most single gene disorders. Examples of complex-trait 

disorders include heart disease, Alzheimer disease, Parkinson disease, and asthma.  

1.1.2.3 Chromosomal disorder 

The last type is a chromosomal disorder, where the disease trait is caused by abnormal 

chromosome structure or number. This may occur due to deletion of a chromosome region 

(or regions), such as Angelman syndrome, or due to the occurrence of an abnormal number 

of chromosomes, such as Down syndrome.  

 

1.1.3 Single Gene Modes of inheritance 

Mode of inheritance is the pattern by which a monogenic trait is transmitted in families. 

Most Mendelian traits follow one of four modes of inheritance: autosomal dominant, 

autosomal recessive, X-linked and mitochondrial [3].  

1.1.3.1 Autosomal dominant 

Autosomal dominant inheritance requires only one disease allele to cause an individual to 

be affected by the disease. If the disease allele is inherited from parents, instead of being a 

de novo mutation, assuming the disease has 100% penetrance, at least one of the parents 

of the affected individual also expresses the disease phenotype. Because the inheritance of 

the disease allele is through autosomal inheritance, male or female offspring share equal 

possibility of inheriting the disease allele. There is a special case existing in this category 
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where the homozygous state of an autosomal dominant mutation presents a lethal 

phenotype, for example, Autosomal dominant osteopetrosis type II (ADO2) [4]. 

1.1.3.2 Autosomal recessive 

Autosomal recessive inheritance requires two trait alleles in the same gene to express the 

trait phenotype. If those alleles are inherited, and neither of the parents of the affected 

individual expresses the trait, then both parents are carriers of the trait allele. An individual 

carrying just one recessive allele but not showing expression of the phenotype is called a 

“carrier”. The probability of inheriting one disease allele from both carriers (parents) at the 

same time and expressing the disease phenotype is 0.25. Again, because the trait is 

autosomal, the sex of offspring does not impact this probability.  

1.1.3.3 X-linked  

In X-linked inheritance, the disease locus is located on the X chromosome. This mode of 

inheritance may be further categorized into dominant or recessive inheritance. Males have 

only one X chromosome whereas females have two, therefore, X-linked traits occur in 

different proportions in males and females. With dominant disease alleles, the occurrence 

of the disease only requires one allele, resulting in that the probability of disease occurrence 

is usually the same in males and in females. For recessive alleles, only one disease allele 

is necessary for males to express the disease phenotype, but two are necessary in females. 

As a result, the probability of disease occurrence due to X-linked recessive inheritance is 

usually considerably higher in males than in females.  

1.1.3.4 Mitochondrial 

In mitochondrial inheritance, the trait allele is located in the mitochondrial DNA (mtDNA) 

and therefore is transmitted to offspring as cytoplasmic genes. mtDNA is strictly 
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maternally inherited [5, 6]. Though a few sperm mitochondrial DNA enter the egg, paternal 

mtDNA is not transmitted to offspring [7, 8]. Therefore, in mitochondrial inheritance, only 

the female parent transmits her mtDNA to all of her offspring [6, 7, 9] (Figure 1.1).  

 

 

 

 

 

 

Figure 1.1 Mitochondrial DNA is only inherited from female parents 

 

This figure is extracted from an online source [10]. 
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1.2 Linkage analysis and association analysis 

1.2.1 Linkage analysis 

In human genetics, linkage analysis plays an important role in disease gene mapping. This 

strategy is achieved by estimating genetic distances from recombination events, by 

studying the co-inheritance of two loci (for example, a disease locus and a non-disease 

locus) within families from generation to generation [11]. In order to locate underlying 

disease loci, linkage analysis depends on the identification of recombinants; that is, 

recombinant haplotypes in children that are different from the parental haplotypes. In his 

book, Analysis of Human Genetic Linkage, Ott defines a haplotype as “the alleles (at 

different genes) received by an individual from one parent” [11]. For many single gene 

disorders, genes have been localized through application of linkage analysis to pedigrees 

with affected individuals. Recombination analysis is used to locate the disease gene (see 

example in Figure 1.2). A few examples of diseases caused by single underlying genes are: 

Cystic Fibrosis [12, 13], Tay Sachs [14], and Huntington’s Disease [15-17]. However, 

linkage analysis has limitations: 1) it is most powerful for studying Mendelian monogenic 

disorders or oligogenic disorders (for complex-trait disorders, other strategies are required); 

2) it requires family data to trace the recombination events [2].  
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Figure 1.2 Pedigree MYO-068 with familial high myopia  

 

This figure and its legend are extracted from a published article [18]: Circles and squares: 
females and males, respectively; solid symbols: affected individuals. Diagonal lines 
through symbols: deceased individuals. The alleles for the most informative polymorphic 
markers are shown for each studied individual. Haplotypes were constructed based on the 
minimum number of recombinations between these markers. Solid bar: the chromosome 
assumed to carry the inherited disease allele; open bars: normal haplotypes. 
Nonparticipating family members are not shown. Only one of the monozygous twins 22 
and 23 was used in the linkage analysis. Note that individuals 6, 16, and 17 are recombinant 
for the telomeric marker D17S1811. Individual 16 was recombinant for the centromeric 
marker D17S787. 
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1.2.2 Association analysis 

When dealing with complex-trait disorders, association analysis is used to identify putative 

genes by testing the correlation between disease status and genetic variation [2]. Comment 

that methods for testing association (methods that incorporate linkage disequilibrium [LD] 

among loci; e.g., chi-square test of independence for alleles or genotypes, transmission 

disequilibrium test [TDT]) have been shown in some circumstance to be more powerful, 

statistically, for gene mapping than linkage analysis [19] (see Figure 1.3). These methods 

are potentially even more powerful with the advent of high-density single nucleotide 

polymorphisms (SNP) chip technology. With chips now containing 500K to 2.5million 

multiple SNPs per chip [20], virtually guaranteed to have LD present amongst markers 

(and that increases power of association methods). More details on genetic association 

analysis will be discussed in the next section. 

 

Figure 1.3 The relative efficiency between linkage analysis and association analysis 
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This figure is extracted from a published review [21]. Association analysis is generally 
more powerful than linkage analysis when the allele of interest is frequent. 
 

1.3 Genetic association analysis 

1.3.1 What is genetic association analysis? 

Unlike linkage analysis, that is often “scored over a limited number of observed 

generations” [22], association analysis utilizes a much larger number of generations to find 

the correlation between complex disease traits and genomic variants.  Furthermore, in 

general, association analysis does not require any relationship between tested individuals. 

 

1.3.2 Existing approaches for association analysis 

1.3.2.1 Case-control test 

One of the existing approaches of association analysis is the use of case-control studies. 

This approach is probably the approach most often observed in published reports of genetic 

association studies. In this kind of study, a set of individuals who are affected by the disease 

of interest are phenotyped and grouped as the case group, and a set of individuals who are 

not affected by the disease are phenotyped and grouped as the control group. Once the final 

set of cases and controls is determined, they are genotyped (typically using SNPs).  Below, 

we mention some of the test statistics that are applied to case-control designs. Also, when 

conducting a case-control study, it is important to address potential confounding factors, 

such as population stratification [2]. 

1.3.2.2 Family-based association study 

To avoid the potential type I error inflation caused by using stratified populations, the 

family-based association study approach was developed. It was first proposed by Falk and 
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Rubinstein (reference here) by testing the association between an affected child and the 

unaffected parents within the family [23]. The test statistic of this association was later 

defined as haplotype relative risk (HRR) [24]. After some statistical limitations were 

identified in HRR (e.g., the statistic may only be applied to simplex families (father, mother, 

affected child) [25], TDT was developed to test for the linkage between a marker and the 

disease, and applied to all SNPs whether or not previously identified for association [26, 

27]. Apart from the original TDT test, there were several extensions of TDT [28-34], 

including one that allows for locus heterogeneity [30].  

1.3.2.3 Quantitative traits association study 

A quantitative disease trait exhibits a continuous distribution of disease phenotypic values 

(Figure 1.4). These values cannot be simply categorized and fit in Mendelian segregation 

ratios [35]. A general way to test the association between markers and quantitative traits is 

to take the mean train values into account [2, 36]. 
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Figure 1.4 Example distribution of a quantitative trait 

 

This figure and its legend are extracted from a book, Evolution [37]: The distribution of a 
quantitative trait in individuals with different marker genotypes (PP, PQ, QQ) in parental, 
F1 and F2 generations. 
 

1.3.3 Genome-wide association studies (GWAS)  

For complex diseases with causal genes contributing moderate effects to the disease risk, 

identifying candidate genes requires large-scale testing through an association study 

(Figure 1.3); one approach is GWAS [19]. In a GWAS study, typically thousands to tens 

of thousands of individuals carrying the disease of interest (as well as unmatched controls) 

are recruited and genotyped, and the genetic variants across genomes are then tested to 

identify the correlation between any of these variants and the disease [38, 39]. 

 

1.3.4 Significant genetic association 

If a significant genetic association is found (see Figure 1.5 for example), there are three 

possible scenarios: 1) Direct association, meaning the genotyped SNPs identified are the 
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true causal variants of the disease of interest; 2) Indirect association, where the genotyped 

SNPs identified are adjacent markers and in LD with the true causal variant of the disease; 

3) False-positive results, that may be caused by chance or systematic confounding (e.g. 

population stratification) [2]. A possible solution to distinguish disease causal variants 

from indirect association results is fine mapping [40]. 

 

 

 

Figure 1.5 Example of Manhattan plot showing all genotyped SNPs 

 

This figure and its legend are extracted from a published article [41]: Manhattan plot 
showing all genotyped SNPs. X-axis: genomic coordinates of GWAS tested SNPs from 
chromosome 1 to X. Y-axis: significance level for each SNP on a –log10 scale. Genome-
level significance, P = 5 × 10-8; suggestive P value threshold, P = 1 × 10-5.  
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1.3.5 Problems existing in case-control association analysis: 

1.3.5.1 Quality control 

Unlike family-based studies, case-control studies recruit participants with a variety of 

genetic backgrounds. After recruiting, samples from the participants are examined at 

different times and locations, and are often genotyped by different protocols and 

technicians. These variations may introduce uncontrollable bias in the data. Such biases 

may worsen if the individuals in the control group are recruited without confirming their 

negative status of disease affection [2]. Therefore, the qualities of the genomic data from 

study participants that are recruited separately may vary a great deal. These quality 

variations could lead to false-positive results of the analyses, that may eventually cost the 

time and money of a study, and possibly even negatively impact the health of the patients.  

1.3.5.2 Departure from HWE 

Hardy-Weinberg equilibrium (HWE) [42, 43] is assumed when testing the genetic 

association in case-control studies, and is used in association studies to control the quality 

of data. Any observation of departures from HWE in controls are associated with quality 

problems that may cause fluctuation in type I errors, especially in the presence of 

population stratification, genotyping errors and selection bias [44]. 

1.3.5.3 Genotyping misclassifications 

Genotyping misclassification is also known as genotype error, and indicates that the true 

genotype is misclassified so that the reported genotype is different from the true underlying 

genotype. This may affect gene mapping and significantly decrease the power of the 

association test [45-47]. There are two types of misclassification, differential and non-

differential. In the case of non-differential misclassification, the events that introduce 
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genotyping misclassifications are assumed to be the same between cases and controls. 

However, few real-world studies have this non-differential misclassification property. This 

non-differential misclassification, if applied improperly, may result in reduction of 

statistical power and biased estimates of parameters [48-52]. For differential 

misclassification, genotyping misclassification rates between cases and controls are 

different. These kinds of misclassifications are inevitable and could be introduced in every 

step of the study. However, even small differential genotyping misclassifications could 

result in significant problems in association analyses, such as type I error rate inflation and 

false-positive associations [48, 53, 54]. Figure 1.6 below shows the increase in false 

positive rate when differential misclassifications occur between cases and controls. 

 

Figure 1.6 The distribution of false positive rate in differential misclassifications 

 

Legend: FPR: false positive rate; Error(case): the misclassification rate in the case group; 
Error(control): the misclassification rate in the control group. 
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1.4 Motivation of our method 

1.4.1 Direct association approach – identify causal variant 

To solve the problem of decreased power in association studies with differential 

misclassifications, we developed a statistical test of association that is robust to differential 

misclassifications. In this method, we utilized next-generation sequencing raw data, instead 

of genotyping data, to discover the association between the disease of interest and causal 

variants in the genome. 

1.4.2 Using NGS 

With current technology, genotyping is generally designed to cover a subset of loci in the 

genome, that may cause missing data. Therefore, in an association study using genotyping 

data, the variants detected to be in association with the disease of interest may not be the 

causal variants, but merely variants in LD with the disease causal variants. If that is the 

case, a further approach of fine mapping is then required to identify causal variants. To 

avoid this kind of situation caused by missing genotypes, sequencing technology may be 

applied in association studies. Genome sequencing technology is able to reflect every 

variant in a genome region of interest if properly designed. 

Next-generation sequencing (NGS), also known as high-throughput sequencing, was 

developed to meet demands for low-cost, high efficiency sequencing. Before the first 

appearance of parallelized sequencing technology of NGS in 2005, Sanger sequencing was 

used widely for nearly 30 years [55-58]. Compared to Sanger sequencing (that serves as 

gold standard sequencing with sequencing read lengths reaching 750 base pairs [bp]), NGS 

generates shorter reads (100 - 250 bp) and a higher number of sequencing reads from a 

single instrument run [55]. Moreover, NGS is able to sequence several samples at a single 
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run, that provides for a much shorter time in data generation for a large number of samples. 

However, the data quality from NGS is not always satisfactory, and the different algorithms 

in NGS downstream data processing may cause data quality variations between studies.   

1.4.3 A test of association robust to differential misclassification 

One feature of our method is its robustness to differential misclassifications. The 

misclassification we consider in our method is a combination of sequencing errors and 

systematic errors that exist between cases and controls in raw NGS data such as errors 

introduced by sample recruiting, sample preparation and downstream data processing. 

These misclassifications inevitably vary between cases and controls, and therefore, require 

our careful attention when designing an association test. 
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Chapter 2 Methods  

 

This chapter describes the development of a statistical method, +,-./,123, that tests for 

association between disease phenotypes and multiple single nucleotide polymorphisms 

(SNPs). Such association may indicate that certain multi-locus genotypes (MLGs) are 

"risk" genotypes. A novel feature of this method is its robustness to misclassification that 

may exist in next-generation sequencing (NGS) data. The data used in this approach are 

affection status, observed alternative read counts, and sequencing coverage values of 

multiple genetic loci (SNPs), from a group of phenotyped individuals.  

The first section of this chapter describes the process of developing the statistical method. 

It gives readers step-by-step explanations of how this approach was created. At the 

beginning of the section, we clarify the terms and notation mentioned in the equations. 

Then we explain the key equations used in the algorithm, and how they interact and form 

the expectation-maximization (EM) algorithm. The second section of this chapter explains 

the process of how the observed datasets are simulated. These datasets are used to evaluate 

the performance of the method. We develop a software program implementing our method. 

The source code and instructions of the program are provided in the Appendix.  
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2.1 Key terms and notation used in this chapter 

2.1.1 Definitions of terms used throughout this work 

 

Allele frequency 

An allele frequency is the proportion of a particular allele (at a given locus on a 

chromosome; from this point forward, any locus is assumed to be on a chromosome) in a 

population [2]. It is always expressed as a percentage. We may estimate the allele frequency 

from a finite sample by counting the number of copies of the particular allele, and dividing 

by the total number of copies of all alleles (at the locus) in the finite sample.  

For example, consider a locus in a population, where the locus has two alleles, 4 and 5. In 

the population, there are three possible genotypes: 44 (homozygous genotype for A allele); 

45 (heterozygous genotype); and 55 (homozygous genotype for a allele).  Now consider 

a random sample of ten individuals from this population. Among the ten individuals, we 

determine that, two of them are homozygous for the 44 genotype, five are heterozygotes 

45, and three are homozygous for the 55 genotype. The estimated frequency of allele 4 is 

2×2 + 5 2×10 = 0.45 , and the estimated frequency of allele 5  is 

3×2 + 5 2×10 = 0.55. 

 

Genotype frequency 

As with the allele frequency, for a given locus, a genotype frequency is the proportion of a 

given genotype in a population, where the genotype is one of the possible genotypes at the 

locus [1]. It is expressed as a percentage. Analogous to the estimated allele frequencies, 

each estimated genotype frequency (denoted >?) is given by: 



23	
	

 

>? =
@?
@
. 2.1  

Here, A refers to the ABC genotype, 1 ≤ A ≤ E. That is, there is an ordering to the genotypes, 

and there are n of them. Taking the example from the allele frequency, the frequency of 

genotype 44  is 2 10 = 0.2 , the frequency of genotype 45  is 5 10 = 0.5 , and the 

frequency of genotype 55 is 3 10 = 0.3. 

 

Multi-locus genotype (MLG) 

A multi-locus genotype is the combination of specific genotypes across two or more loci. 

 

Multi-locus genotype frequency 

A MLG frequency is the proportion of a MLG in a population. It is always expressed as a 

percentage. MLG frequency is the number of individuals with a given MLG F  (@G ) 

divided by the total number of individuals of population (@): 

>G =
@G
@
. 2.2  

Due to possible linkage disequilibrium, the MLG frequency may be different from the 

product of the genotype frequencies on those loci with given genotypes. 

 

Sequencing coverage 

Sequencing coverage is the number of times a base pair is observed for individual H at 

locus F for a given NGS sequencing experiment (Figure 2.1)[3, 4]. 
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Alternative allele read count  

Alternative allele read count is the number of times a given alternative allele is observed 

for individual H at locus F, for a given NGS sequencing experiment (number bounded 

between 0 and coverage) (see Figure 2.1 below) [5]. 

 

Figure 2.1 Example of sequencing coverage and alternative allele read count of an 
individual 

 

Top panel: A region of the reference sequence and two DNA sequences for an individual 
(strand 01 and strand 02). As indicated, there are four markers sequenced (locus 1-4) in 
this region. The individual is heterozygous at locus 01 (genotype T/C), homozygous at 
locus 02 (genotype G/G), heterozygous at locus 03 (genotype G/A) and homozygous at 
locus 04 (genotype C/C). Bottom panel: The sequence reads consist of random selections 
of one or two strands. In this example, strand 01 is selected to be sequenced 5 out of 8 
times and strand 02 is selected to be sequenced 3 out of 8 times. For these four markers, 
strand 01 consists of the reference alleles at locus 01, 02 and 04, while strand 02 consists 
of the reference allele at locus 02, 03 and 04. Finally, for this individual, we note that the 
sequencing coverage for this region of the genome is 8x (8 sequence reads), and the 
alternative allele read counts for locus 01 to 04 are 3, 0, 5 and 0.   
 

 

 

 

 



25	
	

 

Sequencing misclassification rate 

Sequencing misclassification rate is the proportion of sequenced reads in which sequenced 

alleles are misclassified as an allele other than true allele in all sequenced reads. It is the 

number of sequenced reads with misclassified alleles divided by the total number of 

sequenced reads: 

 

I =
EJFKLM	OP	QLRJLESL	ML5TQ	UVWℎ	FVQSY5QQVPVLT	5YYLYLQ

WOW5Y	EJFKLM	OP	QLRJLESLT	ML5TQ
. 

 

 

2.1.2 Notation 

 

Z = the number of SNPs considered when determining the multi-locus genotypes (MLGs) 

and their frequencies. 

 

W(superscript) = indicates the true value of the variable.  

 

[G,\
] = sequencing coverage for individual H at locus F (no misclassification is assumed; 

note, 1 ≤ F ≤ Z). 

 

^G,\ = alternative allele read count for individual H at locus F. 

 

V\
] 	= phenotype value for individual H (no misclassification is assumed) = value indicating 

whether individual H is affected by the disease (V\] = 1)	or unaffected (V\] = 0). 
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AG,\
]  = genotype value for individual H at locus F (no misclassification is assumed) = value 

indicating genotype with homozygous reference alleles (AG,\] = 0), heterozygous reference 

allele/alternative allele (AG,\] = 1), and homozygous alternative alleles (AG,\] = 2). This 

value is a latent variable; that is, it is not part of the observed data. 

 

I`ab
]  = misclassification rate of alternative and reference alleles (which varies with 

phenotype) for individual H. 

 

2.1.3 Mathematical principles 

 

Hardy-Weinberg equilibrium 

In this work, we specify that single or multi-locus genotype frequencies follow Hardy-

Weinberg Equilibrium (HWE) proportions. The Hardy-Weinberg Equilibrium is an 

important concept in population genetics in that it describes a condition under which 

genotype frequencies may be written as functions of allele frequencies [6, 7]. In a single 

locus case with two alleles, 4 and 5, with the allele frequency of P 4 = 	c and P 5 = R, 

the expected genotype frequencies are P 44 = cd  for the genotype 44; P 45 = 2cR 

for the genotype 45; and P 55 = Rdfor the genotype 55. Consider a case with two loci, 

Locus 1 with alleles 4 and 5, and Locus 2 with alleles e and K. Denote the allele frequency 

of P 4 = 	c and P e = R. Under random mating and certain population assumptions, 

Hardy-Weinberg equilibrium will be achieved after one generation, as stated above. After 
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many of generations the joint genotypic frequencies at Locus 1 and Locus 2 will be 

independent. For instance: 

 

Genotype Frequency 

44ee cd×Rd 

44eK cd×2R(1 − R) 

44KK cd×(1 − R)d 

45ee 2c(1 − c)×Rd 

etc ⋯ 

 

Contingency table 

A contingency table displays the multivariate frequency distribution of a study’s variables, 

in a matrix format [8, 9]. Differences in genotype frequencies may be indicative of a disease 

locus within close proximity of the sequenced marker. From the example of a study of 

genotype frequency differences in affection status (Table 2.1), there are two variables, 

affection status (affected or unaffected) and genotype (44, 45 or 55), which are cross-

classified. Table 2.1 gives an example of a contingency table. Suppose that 200 individuals 

(100 affected patients and 100 unaffected healthy people) are randomly sampled from a 

large population. Each has a genotype (here we specify that the typed locus has two 

alleles,	4 and 5) that is determined by the underlying frequency distribution for the two 

affection-status groups (affected and unaffected). Table 2.1 provides the numbers of 

individuals who satisfy the following conditions:  
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Affected and with genotype 44 (64), affected and with genotype 45 (32), affected with 

genotype 55 (4), unaffected with genotype 44 (36), unaffected with genotype 45 (48), 

and unaffected with genotype 55 (16). The data is organized in such a way to test the null 

hypothesis that genotype frequencies are equal in affected individuals and unaffected 

individuals. In this example, the value of the chi-square test statistic is 18.24 with a p-value 

of 0.000109 (degrees of freedom = 2). Based on this information, one is able to determine 

whether or not to reject the null hypothesis (in this example, we reject the null hypothesis 

at the significance level of 0.05). 

 

 Table 2.1 Contingency table example of a study of genotype frequency differences 

 44 45 55 Row Totals 

Affected 

Individuals 
64 32 4 100 

Unaffected 

Individuals 
36 48 16 100 

Column Totals 100 80 20 
200 (Grand 

Total) 

 

Example of contingency table with genotypes AA, Aa, aa in a population of 200 individuals 
(100 affected patients and 100 unaffected healthy people). 
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2.1.4 Statistical terms 

 

Likelihood and log-likelihood 

The likelihood, +, of an observed data set is the hypothetical probability of a specific 

outcome from an event that has already occurred. While probability typically refers to the 

occurrence of future events, in this case, the likelihood refers to past events with known 

outcomes. In his book, Likelihood, Edwards provides the classic definition of likelihood 

[9]: 

+ T5W5	[5MV5KYLQ	|	T5W5 = j×Pr variables data  

(K is some arbitrary constant) 

 

The log-likelihood, ln	(+) , is the logarithm of the likelihood. It is used in statistical 

hypothesis testing.  

 

Likelihood ratio 

The likelihood ratio quantitatively measures how much more probable the observed data is 

under one set of parameter settings than another set [10, 11]. Our likelihood ratio test 

requires nested models (e.g., the complete likelihood and the likelihood with observed data), 

where the more complex models can be transformed into simpler ones by applying a set of 

constraints on the parameters. For our work, we apply a specific set of parameter 

constraints (described below) to obtain our likelihood ratio test.  
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Log-likelihood ratio test (LRT) statistic 

The log-likelihood ratio test statistic is: 

 

td = 2 ln YVHLYVℎOOT	POM	5YWLME5WV[L	FOTLY − 2 ln YVHLYVℎOOT	POM	EJYY	FOTLY  

 

Under the null hypothesis that MLG frequencies are equal between cases and controls, this 

statistic is distributed as a central chi-square test statistic, with degrees of freedom equal to 

the difference in the number of parameters in the two models [12]. 

The likelihood ratio test rejects the null hypothesis if the p-value of the statistic  td for a 

given data set is less than the user-specified value. This value is referred to as the 

significance level of the test. 

 

Chi-square test of independence on genotypes 

When assuming the null hypothesis is true, the probability distribution of the log-likelihood 

ratio statistic can be approximated using Wilk’s theorem [13]: 

As the sample size E approaches ∞, the test statistic −2log	(Λ) for a nested model will be 

asymptotically a central td-distribution with degrees of freedom equal to the difference in 

the number of parameters in the two models: 

 

T. P. = T. P. JESOEQWM5VELT	FOTLY − T. P. (EJYY	FOTLY) 

 

For example, if we consider 3 loci and each locus is bi-allelic, the degrees of freedom for 

the null model is 3y − 1 = 26, while the degrees of freedom for the unconstrained model 
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is 2× 3y − 1 = 52. Therefore, if the genotype frequencies between cases and controls 

are equal, the probability distribution of the log-likelihood ratio statistic is a central td-

distribution with 52 − 26 = 26 degrees of freedom. 

 

Expectation-Maximization algorithm 

The Expectation-Maximization (EM) algorithm is a method to find maximum likelihood 

estimates of parameters by iteration of steps computing expectation and maximization [14-

16].  The expectation step creates a function for the expectation of the log-likelihood 

evaluated using the current parameter estimates. The maximization step computes 

parameters maximizing the expected log-likelihood from the expectation step, where the 

parameters will be used in the next expectation step until the algorithm meets the 

maximized log-likelihood by reaching the tolerance. A general workflow of the EM 

algorithm is shown in Figure 2.2. 
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Figure 2.2 A general workflow of EM algorithm 

 

 

Bayes’ Rule 

Bayes’ rule describes the conditional probability of event A, given that event B is true. The 

conditional probability is equal to the probability of A multiplied by the probability of B 

(given that A is true), and then divided by the probability of B [17]: 

 

{ 4 e =
{ 4 { e 4

{ e
. 2.3  

 

Initialize	starting	values
(! = 0)

Parameter	estimation	for	the	
!-th step

Compute	the	statistic	using	
estimates	of	the	!-th step

Use	the	parameters	of	the	!-th
step to	update	the	estimates	

for	the	 ! + 1 -th step

Compute	the	statistic	using	
estimates	of	the	 ! + 1 -th

step

Difference	of	statistics	
between	!-th and	
! + 1 -th step	is	less	
than	tolerance?

The	maximum	statistic	is	
achieved	in	the	!-th step

Replace	!	with	 ! + 1

YES

NO
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For example, given a group of 100 individuals, 60 are unaffected (control) and 40 are 

affected by a disease (case). Among the controls, 30 of them have the genotype 44, and 

the other 30 have the genotype 45. Among the cases, 15 of them has the genotype 44, and 

the other 25 has the genotype 45. By applying Bayes’ rule, we can therefore compute an 

individual’s probability of being affected or unaffected by the disease with a given 

genotype. For instance, 

{ affected 45 =
{ affected { 45 affected

{ 45
=

40
100×

25
40

30 + 25
100

≈ 0.45. 

 

Bayesian posterior probability 

Bayesian posterior probability is the probability of parameters �  given the relevant 

evidence Ä, c � Ä 	[18]. The posterior probability can then be described by Bayes’ Rule 

as [19]: 

 

c � Ä = 	
c Ä � c �

c Ä
. 2.4  

 

Odds ratio 

Odds ratio (OR) quantifies the association between the presence or absence of two 

properties in a given population [20-22]. Given two properties, 4 and e, a portion of the 

individuals who are affected by a disease were previously exposed to 4	(ÅÇ), while the 

others were exposed to e	(ÅÉ). Also, some of the unaffected individuals were exposed to 

4	(ÑÇ), and the rest were exposed to e	(ÑÉ). We can then compute the odds ratio as, 
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Ö, =

ÅÇ
ÑÇ

ÅÉ
ÑÉ

. 2.5  

 

2.2 Development of the likelihood ratio test 

 

For the developed likelihood ratio test, +,-./,123, the null hypothesis states that there is 

no difference in the MLG frequencies between cases and controls, while the alternative 

hypothesis states that, for at least one MLG, the case and control frequencies are not equal. 

2.2.1 Log-likelihood of the observed data 

 

With the total number of markers Z , the likelihood function of the multiple-locus 

alternative allele count data involves 3Ü genotype configurations. With H indicating the 

H]á position in @ sequenced individuals, with F being the marker number, if we set àâ =

^ä,\,⋯ , ^Ü,\ , ãâ
å = [ä,\

] ,⋯ , [Ü,\
] , çâ

å = Aä,\
] ,⋯ , AÜ,\

] , the complete likelihood 

function may be written as: 

+é,\ = Pr àâ, ãâ
å , V\

]

1

\èä

	

= Pr àâ, ãâ
å , V\

] , çâ
å ê çâ

å

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

. 2.6  
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í  is the indicator function indicating the MLG in Pr àâ, ãâå , V\] , çâå 	is çâå . If the value 

of the	í  is known, then this equation demonstrates the complete likelihood; in other 

words, each individual’s çâå  is known. 

Upon finding the logarithm of both sides, Equation (2.6) can be rewritten as, 

YE +é,\ = í çâ
å ×YE Pr àâ, ãâ

å , V\
] , çâ

å

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

. 2.7  

 

Considering the observed data, àâ, ãâå , V\] , Equation (2.7) may be rewritten as: 

 

î YE +é,\ àâ, ãâ
å , V\

] 	

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

																																										×YE Pr àâ ãâ
å , V\

] , çâ
å ×Pr çâ

å ãâ
å , V\

] ×Pr ãâ
å V\

] ×Pr V\
] .

																																																																																																																																							 2.8

 

 

Because the sequencing coverage vector ãâå  has no effect on the MLG çâå  , and the 

affection status V\]  has no effect on the sequencing coverage vector ãâå  (according to the 

sequencing technology characteristics, sequencing coverage value is independent of the 

affection status), Equation (2.8) can be rewritten as: 

 

î YE +é,\ àâ, ãâ
å , V\

] 	
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= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

×YE Pr àâ ãâ
å , V\

] , çâ
å ×Pr çâ

å V\
] ×Pr ãâ

å ×Pr V\
] 	

= î í çâ
å àâ, ãâ

å , V\
] × ln 1 − V\

]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

×Pr àâ ãâ
å , V\

] = 0, çâ
å ×Pr çâ

å V\
] = 0 ×Pr V\

] = 0

+ V\
]×Pr àâ ãâ

å , V\
] = 1, çâ

å ×Pr çâ
å V\

] = 1 ×Pr V\
] = 1

+ ñ,																																																																																															(2.9) 

 

where ñ = ln Pr ãâ
å1

\èä . The last equality follows from the fact that the phenotypes 

and genotypes are independent of the coverage. 

 

Summing all true genotype vectors çâå  is equivalent to summing each locus F’s genotype 

value from 0  to 2 . In this work, we specify that, conditional on the underlying data 

(including the genotype vector	çâå ), the observed alternative allele counts are independent. 

We specify that, conditional on sequencing coverage, affection status and true underlying 

genotype, the observed alternative allele counts follow a binomial distribution. Written 

another way, the equation reads: 

 

Pr àâ ãâ
å = [ä,\

] ,⋯ , [Ü,\
] , V\

] , çâ
å 	= Aä,\

] ,⋯ , AÜ,\
] = eVE(^G,\; [G,\

] ; c(V\
] , AG,\

] ))
Ü

Gèä

.

																																																																																																																																																		 2.10
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Before proceeding with the log-likelihood and the test statistics, the binomial probability 

mass function is computed. We compute the binomial probability mass function 

eVE(^G,\|[G,\
] , V\

] , AG,\
] ) for each single locus F	to calculate the probability of alternative 

allele read count ^G,\ given sequencing coverage [G,\] , affection status V\] , and single locus 

genotype AG,\] . For example, in eVE(^ä,\|[ä,\] , V\
] , Aä,\

] ), the subscript “1” indicates that it is 

the first marker, while the subscript “H” indicates that it is the H-th individual in the sample. 

The superscript “W” indicates that it is the true value, which means no misclassification 

occurs for this value. The determination of the probability mass function is necessary for 

computation of the log-likelihoods.  

 

 In general, at the FBC  locus,  and for the HBC  individual, in the binomial distribution 

eVE(^G,\; [G,\
] ; c(V\

] , AG,\
] )) , the number of "successes" (i.e., observing the alternative 

allele instead of the reference allele) is ^G,\, the total number of experiments is [G,\] , and 

the probability of a success for any given experiment (i.e., reading a sequence) is  

c V\
] , AG,\

] =
dô?ö,a

b

d
I`ab
] +

?ö,a
b

d
(1 − I`ab

] )  . 

 

Also, I`ab
]  is the probability in individual H  of misclassifying alleles. We specify a 

symmetric error model in which, given the alternative allele 4 and the reference allele 5, 

the misclassification probability of observing the alternative allele 4 when the true allele 

is 5, equals the misclassification probability of observing the	reference	allele	5 when the 

true allele is	4: 
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I`ab , .→Ç
] = I`ab , Ç→.

] = I`ab
] . 2.11  

 

To demonstrate that the formula correctly computes the misclassification probabilities, 

consider the following: for genotype AG,\] = 0 and AG,\] = 2. For instance, when AG,\] = 0, 

the individual’s genotype is 5/5 . Thus, every observed alternative allele 4 is really a 

reference allele 5 that has been misread. The number of misclassifications is ^G,\, so that 

^G,\ follows a binomial distribution, with a probability of success for each experiment 

equal to I`ab
] = dôë

d
I`ab
] + ë

d
(1 − I`ab

] ) , given [G,\]  trials. Similarly, when AG,\] = 2, every 

read of alternative allele 4  is now a correct read from the genotype 4/4 . Thus, ^G,\ 

follows a binomial distribution with probability of success for each experiment equal to 

1 − I`ab
] = dôd

d
I`ab
] + d

d
(1 − I`ab

] ) , given [G,\]  trials. For the heterozygote genotype 

AG,\
] = 1, the probability of alternative allele 4 being read on a single trial is the sum of 

two probabilities: 

 

Pr sequenced	allele	 = 5 ×Pr observed	allele = 4 	sequenced	allele = 5  

+Pr sequenced	allele = 4 ×Pr observed	allele = 4 	sequenced	allele = 4 , 

=
1
2
I`ab
] +

1
2
1 − I`ab

] , 

=
1
2
. 

 

It follows that we can rewrite Equation (2.9) under the null hypothesis as: 
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+ü† = î ln +é,\ àâ, ãâ
å , V\

]

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE ^G,\; [G,\

] ; c V\
] = 0, AG,\

]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,∗× Pr V\
] = 0 + V\

]

× eVE ^G,\; [G,\
] ; c V\

] = 1, AG,\
]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,∗× Pr V\
] = 1

+ ñ,																																																																																																																																																							 

 2.12  

 

where ° ?¢,a
b ,⋯,?£,a

b ,∗ indicates that the frequencies of multi-locus genotype Aä,\] ,⋯ , AÜ,\
]  

are equal under different affection statuses (affected and unaffected).  

Similarly, the alternative hypothesis is written as: 

+ü¢ = î YE +é,\ àâ, ãâ
å , V\

]

= î í çâ
å àâ, ãâ

å , V\
]

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

] ))
Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèë×Pr V\

] = 0

+ V\
]

× eVE(^G,\; [G,\
] ; c(V\

] = 1, AG,\
] ))

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèä×Pr V\

] = 1

+ ñ,																																																																																																																																																								 

	(2.13) 
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where ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë  indicates the MLG frequencies in the unaffected population 

(controls) while ° ?¢,a
b ,⋯,?£,a

b ,`a
bèä	indicates the MLG frequencies in the affected population 

(cases) and they may not equal to ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë. 

2.2.2 Expectation-maximization algorithm estimates 

We provide closed formula solutions of the (M + 1)st-step estimates of the parameters 

necessary to compute the log-likelihoods. The estimates are determined as a function of a 

vector of genotypes rather than a single genotype, so MLGs are considered all together. 

This approach is more efficient in comparison to considering only one single genotype at 

a time.  

 

The posterior probability that individual H  has genotype vector 	çâå = Aä,\
] ,⋯ , AÜ,\

]  is 

calculated as: 

 

•
	çâ
å ,`a

b
¶ = î í çâ

å àâ, ãâ
å , V\

] 	

= Pr çâ
å àâ, ãâ

å , V\
] 	

=
Pr çâ

å , àâ, ãâ
å , V\

]

Pr àâ, ãâ
å , V\

] 	

=
Pr çâ

å V\
] ×Pr àâ ãâ

å , V\
] , çâ

å ×Pr V\
] ×Pr ãâ

å

Pr ßâ
å V\

] ×Pr àâ ãâ
å , V\

] , ßâ
å ×Pr V\

] ×Pr ãâ
åd,d,⋯,d

ßâ
å è ë,ë,⋯,ë

 

=
° ?¢,a

b ,⋯,?£,a
b ,`a

b× eVE ^G,\; [G,\
] ; c V\

] , AG,\
]Ü

Gèä

° ®¢,a
b ,⋯,®£,a

b ,`a
b× eVE ^G,\; [G,\

] ; c V\
] , QG,\

]Ü
Gèä

d,d,⋯,d
ßâ
å è ë,ë,⋯,ë

	.							 2.14 	
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To compute the (M + 1)st-step estimates of the genotype frequencies under the alternative 

hypothesis, for a specific affection status (here we specify the affection status to be 

unaffected [controls], V\] = 0), we have, 

 

Pr çâ
å = Aä,\

] ,⋯ , AÜ,\
] V\

] = 0

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

= 1, 2.15  

 

which is,  

 

°
çâ
å ,ë
¶

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

= 1. 2.16  

 

Therefore,  

° d,d,⋯,d ,ë
¶ = 1 − °

çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

. 2.17  

 

Then Equation (2.13) can be rewritten as, 

 

+ü¢ = •
	çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

1

\èä

× ln eVE ^ G,\; [G,\
] ; c 0, AG,\

]

Ü

Gèä

×°
?¢,a
b ,⋯,?£,a

b ,ë
¶ × Pr V\

] = 0 	
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+ • d,d,⋯,d ,ë
¶ × ln eVE(^G,\; [G,\

] ; c(0, AG,\
] ))

Ü

Gèä

×° d,d,⋯,d ,ë
¶ × Pr V\

] = 0
1

\èä

+ ñ		

							= •
	çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

1

\èä

× ln eVE(^G,\; [G,\
] ; c(0, AG,\

] ))
Ü

Gèä

×°
?¢,a
b ,⋯,?£,a

b ,ë
¶ × Pr V\

] = 0 	

+ • d,d,⋯,d ,ë
¶

1

\èä

× ln eVE(^G,\; [G,\
] ; c(0, AG,\

] ))
Ü

Gèä

× 1 − °
çâ
å ,ë
¶

d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

× Pr V\
] = 0

+ñ.		

 

(2.18) 

Taking the partial derivative of ° ë,ë,⋯,ë ,ë
(¶) , we compute: 

 	

©+ü¢
©° ë,ë,⋯,ë ,ë

¶ =
• ë,ë,⋯,ë ,ë
¶ × eVE(^G,\; [G,\

] ; c(0, AG,\
] ))Ü

Gèä ×Pr V\
] = 01

\èä

eVE(^G,\; [G,\
] ; c(0, AG,\

] ))Ü
Gèä ×° ë,ë,⋯,ë ,ë

¶ × Pr V\
] = 0

	

																					+
• d,d,⋯,d ,ë
¶ × −1 × eVE(^G,\; [G,\

] ; c(0, AG,\
] ))Ü

Gèä ×Pr V\
] = 01

\èä

eVE(^G,\; [G,\
] ; c(0, AG,\

] ))Ü
Gèä × 1 − °

çâ
å ,ë
¶d,d,⋯,ä

çâ
å è ë,ë,⋯,ë

× Pr V\
] = 0

 

=
• ë,ë,⋯,ë ,ë
¶1

\èä

° ë,ë,⋯,ë ,ë
¶ −

• d,d,⋯,d ,ë
¶1

\èä

° d,d,⋯,d ,ë
¶ . (2.19) 

 

To maximize the function, we set Equation (2.19) as: 

©+ü¢
©° ë,ë,⋯,ë ,ë

¶ = 0. 2.20  
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Therefore, 

° ë,ë,⋯,ë ,ë
¶ =

• ë,ë,⋯,ë ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
¶ . 2.21  

Similarly, 

 

° ë,ë,⋯,ä ,ë
(¶) =

• ë,ë,⋯,ä ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
(¶) , 

 

⋮ 

 

° d,d,⋯,ä ,ë
¶ =

• d,d,⋯,ä ,ë
¶1

\èä

• d,d,⋯,d ,ë
¶1

\èä

×° d,d,⋯,d ,ë
¶ . 2.22  

 

Equation (2.16) can then be rewritten as, 

° d,d,⋯,d ,ë
¶ ×

•
	çâ
å ,ë
¶d,d,⋯,ä

	çâ
å è ë,ë,⋯,ë

1
\èä

• d,d,⋯,d ,ë
¶1

\èä

+ 1 = 1. 2.23  

 

Thus, 

° d,d,⋯,d ,ë
¶ =

• d,d,⋯,d ,ë
¶1

\èä

•
	çâ
å ,ë
¶d,d,⋯,d

	çâ
å è ë,ë,⋯,ë

1
\èä

=
• d,d,⋯,d ,ë
¶1

\èä

1 − V\
]1

\èä
. 2.24  

 

Therefore the (M + 1)st-step estimates of the genotype frequencies are: 
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Under the alternative hypothesis, for the control population (unaffected), 

 

°
?¢,a
b ,⋯,?£,a

b ,ë
¶ =

•
?¢,a
b ,⋯,?£,a

b ,ë
¶1

\èä

1 − V\
]1

\èä
; 2.25  

 

For the case population (affected), 

°
?¢,a
b ,⋯,?£,a

b ,ä
¶ =

•
?¢,a
b ,⋯,?£,a

b ,ä
¶1

\èä

V\
]1

\èä
. 2.26  

 

Under the null hypothesis, 

°
?¢,a
b ,⋯,?£,a

b ,∗
¶ =

•
?¢,a
b ,⋯,?£,a

b ,∗
¶1

\èä

@
. 2.27  

 

For the (M + 1) st-step estimates of the sequence error probabilities, we can rewrite 

Equation (2.13) as the following (here we specify the affection status to be unaffected 

[controls], V\] = 0): 

 

+ü¢ = •
	çâ
å ,ë
¶

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

× ln 1 − V\
] × eVE ^ G,\; [G,\

] ; c V\
] = 0, AG,\

]

Ü

Gèä

×° ?¢,a
b ,⋯,?£,a

b ,`a
bèë×Pr V\

] = 0

+ ñ.																																																																																																			 

 (2.28) 
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Taking the partial derivative of I`abèë
] , we compute: 

 

©+ü¢
©I`abèë

]

=
©
©Ië

] •
	çâ
å ,ë
¶ × YE eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

] ))
Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

	

= •
	çâ
å ,ë
¶ ×

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

1
eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

] ))
×
©eVE(^G,\; [G,\

] ; c(V\
] = 0, AG,\

] ))
©Ië

]

Ü

Gèä

.

																																																																																																																																																						 2.29

 

 

When AG,\] = 0, c V\
] = 0, AG,\

] = 0 = Ië
], 

 

©eVE(^G,\; [G,\
] ; c(V\

] = 0, AG,\
] = 0))

©Ië
] 	

=
©
©Ië

]

[G,\
]

^G,\
×Ië

]´ö,a× 1 − Ië
] ¨ö,a

b ô´ö,a 	

=
[G,\
]

^G,\
^G,\×Ië

]´ö,aôä× 1 − Ië
] ¨ö,a

b ô´ö,a + Ië
]´ö,a× −1 × [G,\

] − ^G,\

× 1 − Ië
] ¨ö,a

b ô´ö,aôä 	

=
[G,\
]

^G,\
×Ië

]´ö,aôä× 1 − Ië
] ¨ö,a

b ô´ö,aôä× ^G,\ − [G,\
] ×Ië

] . 2.30  
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Therefore, when AG,\] = 0, 

©+ü¢
©I`abèë

] = •
	çâ
å ,ë
¶ ×

^G,\ − [G,\
] ×Ië

]

Ië
]× 1 − Ië

]

Ü

Gèä

.

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

2.31  

 

Similarly, when AG,\] = 2, c V\
] = 0, AG,\

] = 2 = 1 − Ië
], 

 

©eVE(^G,\; [G,\
] ; c(V\

] = 0, AG,\
] = 2))

©Ië
] 	

=
©
©Ië

]

[G,\
]

^G,\
× 1 − Ië

] ´ö,a×Ië
]¨ö,a

b ô´ö,a 	

=
[G,\
]

^G,\
× 1 − Ië

] ´ö,aôä×Ië
]¨ö,a

b ô´ö,aôä× [G,\
] − ^G,\ − [G,\

] ×Ië
] . 2.32  

 

Thus when AG,\] = 2, 

©+ü¢
©I`abèë

] = •
	çâ
å ,ë
¶ ×

[G,\
] − ^G,\ − [G,\

] ×Ië
]

Ië
]× 1 − Ië

]

Ü

Gèä

.

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

1

\èä

2.33  

 

To achieve a maximum log-likelihood, we set Equation (2.33) as:  

©+ü¢
©I`abèë

] = 0. 

 

The equation may be rewritten as: 
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•
	çâ
å ,ë
¶ ×

^G,\ − [G,\
] ×Ië

]

Ië
]× 1 − Ië

]

Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

?ö,a
b èë

1

\èä

+ •
	çâ
å ,ë
¶ ×

[G,\
] − ^G,\ − [G,\

] ×Ië
]

Ië
]× 1 − Ië

]

Ü

Gèä

d,d,⋯,d

çâ
å è ë,ë,⋯,ë

?ö,a
b èd

1

\èä

= 0.																																										 2.34  

 

Thus, for the (M + 1)st-step estimates of the sequence error probabilities, we have, 

I
`a
bèë
], ¶≠ä =

•
	çâ
å ,ë
¶ ^G,\ + •

	çâ
å ,ë
¶ [G,\

] − ^G,\çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

•
	çâ
å ,ë
¶ [G,\

] + •
	çâ
å ,ë
¶ [G,\

]
çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

.

																																																																																																																																																					 2.35

 

 

Similarly, 

 

I
`a
bèä
], ¶≠ä =

•
	çâ
å ,ä
¶ ^G,\ + •

	çâ
å ,ä
¶ [G,\

] − ^G,\çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

•
	çâ
å ,ä
¶ [G,\

] + •
	çâ
å ,ä
¶ [G,\

]
çâ
å ,?ö,a

b èd
Ü
Gèäçâ

å ,?ö,a
b èë

Ü
Gèä

1
\èä

.

																																																																																																																																																					 2.36

 

 

We note that these probabilities are locus-independent, that is, the subscripts do not contain 

the individual locus number. However, the formulas indicate that the error probabilities are 

computed as a composite of the individual locus data values ([G,\] and	^G,\), suggesting an 

“average” of all the loci. 
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2.2.3 Derivation of test statistic 

We use the log-likelihood for each hypothesis for a given iteration value M to ultimately 

determine the maximum log-likelihoods under each scenario (Null and Alternative). We 

then use these maximums to determine the value of the test statistic. The following notation 

is used: 

 

ln +üÆ = ln Pr àâ, ãâ
å , V\

]1
\èä  = Log-likelihood Equation of the observed data. 

 

Note: 

T = 0 for Null Hypothesis:                         (Ñë: ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë = ° ?¢,a

b ,⋯,?£,a
b ,`a

bèä). 

 

There is no difference in the MLG frequencies between cases and controls. 

 

T = 1	for Alternative Hypothesis:            (Ñä: ° ?¢,a
b ,⋯,?£,a

b ,`a
bèë ≠ ° ?¢,a

b ,⋯,?£,a
b ,`a

bèä). 

 

Therefore, there is a difference in the MLG frequencies between cases and controls.  

 

ln +üÆ 	= The maximum log-likelihood of the data for each hypothesis. This maximum is 

achieved by applying the EM algorithm in the following way (Figure 2.3): 

1. Specify a certain number of starting points (randomly generated vector ∞	of 

parameter settings for °
?¢,a
b ,⋯,?£,a

b ,`a
b

(¶èë)  and I
`a
b
],(¶èë)). 
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2. For each vector ∞	in Item 1, update the log-likelihoods under each hypothesis until 

some specified stopping condition is satisfied, such as: 

ln +üÆ of	 M + 1 ±B	step − ln +üÆ 	of M
BC	step	 < ≥. 

 

In this work, we use ≥ = 0.00001 . The maximum log-likelihood is then the 

M BC	step	of	 ln +üÆ . This value is denoted by: ln +üÆ ¶(¥)
. 

NOTE: For an arbitrary vector ∞	in Item 1, if the stopping condition (2) is 

not met after the maximum number of steps, we define the log-likelihood 

as: ln	(+üÆ)¶µ∂∑ ¥ , where M∏π∫ is the total number of steps specified for the 

EM algorithm. For example, in the Simulation section, M∏π∫ = 100. 

 

3. We define the maximum log-likelihood of the observed data, denoted ln +üÆ , as: 

 

ln +üÆ =
max
∞ ln +üÆ ¶ ¥

. 2.37  

 

The test statistic is: 

+,-./,123 = 2 ln +ü¢ − ln +ü† . 2.38  

 

As noted above in item (3), the carat symbol  indicates that we have obtained the 

maximum log-likelihood of the data under the particular hypothesis. Note that Ωæø¿¡,¬ç√ 

is asymptotically a chi-square distribution with certain degrees of freedom. We consider 

two versions of the Ωæø¿¡,¬ç√  statistic. In this work, we allow for differential 
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misclassification in the computation of the Ωæø¿¡,¬ç√ statistic. Specifically, the two error 

model parameters are unconstrained (that is, it may be that	ƒ≈âå è∆
å ≠ ƒ≈âå è«

å ). 

 

Figure 2.3 The workflow of the EM algorithm in obtaining the maximum log-
likelihood of the observed data, »… Ω À . 

 

2.3 Simulations of observed data for type I error rates and power evaluations 

To evaluate the performance of the test statistic, we compute the empirical type I error rate 

and power. To do so, we must manipulate the true underlying MLG frequencies, 

conditional on different affection statuses. We performed simulation studies under 

different scenarios to evaluate the type I error rate under the null model, and power under 

the alternative model. In the null model, the MLG frequencies are equal in cases and 

controls; in the alternative model, the MLG frequencies differ between cases and controls.  

From the power simulation, we created a factorial design to determine which factor(s) 

significantly alter(s) the test statistics. Factorial design is known as two-way design. It 
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considers all factors with equal interests, as well as the possibility of interaction between 

these factors. If two factors interact, their effect will not behave in an additive manner. 

There are two effects of high importance in the factorial design, main effects from single 

factors, and interaction effects from possible interactions between factors [23]. 

In the simulation, it is assumed that each locus has only two alleles. First, we randomly 

generate standardized MLG frequencies. Next, we compute the MLG frequencies 

conditional on affected status, by applying Ã (odds), odds-ratio (OR), mode of inheritance 

(MOI) and standardized MLG frequencies. Observed data is then simulated with the 

sequencing misclassification model incorporated. 

 

2.3.1 How MLG frequencies are computed during simulation 

To compute the conditional MLG frequencies for simulation, the MLG frequencies are 

conditional on affection status. The formulas provided below document how those MLG 

frequencies are computed.  

Let say the disease MOI is dominant, only one alternative allele is necessary for the 

individual to be at increased risk of developing the disease. Here, we specify Õ = log	(Ö,).  

Penetrance of affection status V,	conditional on MLG Œ, can be calculated as: 

P≈,Œ =
Lœ≠–Œ—

`

1 + Lœ≠–Œ—
, 2.39  
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where UŒ  is the weight corresponding to the MLG, Œ. As aforementioned, a dominant 

weight parameterization is used. Specifically: 

UŒ =
0, Œ = (0,0, … ,0)	
1,								otherwise

. 

 

With known or randomly-generated standardized MLG frequencies, >Œ,∗, the probability of 

having MLG Œ and affection status V is, 

Pr V, Œ = 	P≈,Œ×>Œ,∗, 2.40  

which may be written as, 

Pr V, Œ

d,d,⋯,d

Œè ë,ë,⋯,ë

= P≈,Œ×>Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

= P≈,∗× >Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

. 2.41  

As defined, 

>Œ,∗

d,d,⋯,d

Œè ë,ë,⋯,ë

= 1. 2.42  

 

Therefore, the prevalence of affection status V is, 

P≈,∗ = Pr V, Œ

d,d,⋯,d

Œè ë,ë,⋯,ë

. 2.43  

According to Bayes’ Rule, the MLG frequencies conditional on affection status can be 

calculated as, 
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>Œ,` = Pr Œ V =
Pr V Œ Pr Œ

Pr V
=
Pr V, Œ
P≈,∗

=
P≈,Œ×>Œ,∗

P≈,Œ×>Œ,∗
d,d,⋯,d
Œè ë,ë,⋯,ë

. 2.44  

 

To provide an example of the formulas used above, standardized MLG frequencies are 

randomly generated for each two-locus genotype, as shown in columns 1 and 2 in Table 

2.2. The table provides two examples of how odds-ratio will affect the MLG frequencies 

conditional on affection status, using OR=1 and OR=2. 

When the odds-ratio equals 1, Õ = log Ö, = 0. The penetrance of affection status, P≈,Œ, 

will not be affected by MLG Œ. Consequently, the MLG frequencies are not altered by the 

affection status (i.e., data is simulated under the null). It should be noted that in Table 2.2 , 

for OR = 1, the MLG frequencies in cases and controls are equal for each MLG. 

When OR does not equal 1, the penetrance of affection status is altered according to the 

MLG, based on the disease mode of inheritance. As a result, the MLG frequencies vary 

between different affection statuses, as seen in Table 2.2, under the heading "OR = 2". 
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Table 2.2 Computation of MLG frequencies conditional on affection status under 
different odds-ratios 

 

The odds (α) is 0.1 for all the columns. 
 
 

2.3.2 Determination of data during simulation 

 

Observed data can be simulated in null or alternative models regarding the MLG 

frequencies, conditional on affection status. In the simulation process, the MLG at a locus 

will be simulated first, based on its affection status and its frequency, conditional on the 

affection status. Then the alternative allele read count will be simulated based on the 

sequencing coverage and the sequencing error model at that locus, which is determined by 

the sequencing misclassification rate and the MLG. A workflow chart is demonstrated in 

Figure 2.4, and the formulas used will be shown. 

 

 

 

 

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

Penetrance MLG	
Frequency

0,	0 0.0963 0.4750 0.0963 0.5250 0.0963 0.4750 0.1121 0.5250 0.0855
0,	1 0.0493 0.4750 0.0493 0.5250 0.0493 0.4011 0.0484 0.5989 0.0498
0,	2 0.0449 0.4750 0.0449 0.5250 0.0449 0.4011 0.0441 0.5989 0.0454
1,	0 0.0961 0.4750 0.0961 0.5250 0.0961 0.4011 0.0944 0.5989 0.0973
1,	1 0.1844 0.4750 0.1844 0.5250 0.1844 0.4011 0.1812 0.5989 0.1867
1,	2 0.1380 0.4750 0.1380 0.5250 0.1380 0.4011 0.1356 0.5989 0.1396
2,	0 0.1870 0.4750 0.1870 0.5250 0.1870 0.4011 0.1837 0.5989 0.1892
2,	1 0.0223 0.4750 0.0223 0.5250 0.0223 0.4011 0.0219 0.5989 0.0226
2,	2 0.1817 0.4750 0.1817 0.5250 0.1817 0.4011 0.1785 0.5989 0.1839

Standardized	MLG	
FrequencyMLG Controls Cases Controls Cases

OR=2OR=1
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Figure 2.4 Workflow for simulation on alternative allele read count 

 

 

 

Here the notation for simulation parameters is specified: 

^G,\ = observed alternative allele read count for individual H at locus F (number bounded 

between 0 and sequencing coverage, [G,\] ). 

 

[G,\
] = sequencing coverage for individual H at locus F (no misclassification is assumed). 

 

V\
] 	= affection status of individual H (no misclassification is assumed) = value indicating 

whether individual H is affected by the disease (V\] = 1)	or not affected (V\] = 0). 
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AG,\
]  = genotype value for individual H at locus F (no misclassification is assumed) = value 

indicating genotype with homozygous reference alleles (AG,\] = 0), heterozygous reference 

allele/alternative allele (AG,\] = 1), and homozygous alternative alleles (AG,\] = 2). 

 

> ?¢,a
b ,⋯,?£,a

b ,`a
b= frequency of MLG Aä,\] ,⋯ , AÜ,\

]  from locus 1 to locus Z conditional on 

the affection status of individual H, V\] . 

 

I`ab
]  = misclassification rate for individual H of alternative allele and reference allele, which 

varies with affection status. 

 

2.3.2.1 Determination of an individual's simulated MLG 
 

To simulate the observed alternative read count for each of the individuals, the true 

underlying MLG, affection status, sequencing coverage and misclassification rates (error 

rates) are used as simulation parameters. Among these parameters, sequencing coverage 

and misclassification rates are determined as input values. The affection status value is 

randomly assigned to be 0 (not affected) or 1 (affected) according to the number of cases 

and the number of controls in the data set. 

The first step in simulating observed alternative read counts for one individual (for example, 

individual H) is to simulate true underlying MLG from locus 1 to locus Z, Aä,\] ,⋯ , AÜ,\
] , 
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from the MLG frequencies, conditional on the affection status of that individual, 

> ?¢,a
b ,⋯,?£,a

b ,`a
b .  

 

The MLG frequencies, conditional on a particular affection status sum to 1: 

 

> ?¢,a
b ,⋯,?£,a

b ,`a
b

d,d,⋯,d

?¢,a
b ,⋯,?£,a

b è ë,ë,⋯,ë

= 1. 2.45  

 

To obtain a simulated MLG on a given affection status, use the vector of MLG frequencies, 

> ?¢,a
b ,⋯,?£,a

b ,`a
b , as the vector of probability weights for random selection. The selected MLG, 

with the corresponding frequency, is then the simulated MLG on that given affection status. 

See Table 2.3 for illustration. 

 

Table 2.3 Determination of an individual’s simulated MLG 

Aä,\
] , Ad,\

]  > ?¢,a
b ,?’,a

b ,`a
bèä 

Cumulative  

> ?¢,a
b ,?’,a

b ,`a
bèä 

Random 

Number 

0, 0 0.0855 0.0855  

0, 1 0.0498 0.1353  

0, 2 0.0454 0.1808  

1, 0 0.0973 0.2780  
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1, 1 0.1867 0.4647  

1, 2 0.1396 0.6043  

2, 0 0.1892 0.7935  

2, 1 0.0226 0.8161 0.7991 

2, 2 0.1839 1.0000  

 

MLG (2, 1) is simulated for individual H who is affected by the disease (V\] = 1). In this 
example, two-locus genotype frequencies being affected by the disease, corresponding to 
particular two-locus genotypes, are listed in column 2, while column 3 lists the cumulative 
two-locus genotype frequencies. A random number (0.7991) is generated in column 4. This 
random number is greater than the cumulative two-locus genotype frequency of (2, 0) and 
less than that of (2, 1). Two-locus genotype (2, 1) is thus selected as the simulated genotype.  

 

2.3.2.2 Determination of an individual's simulated vector of observed data 
 

Observed alternative read counts can be simulated after the previous step using the 

simulated MLGs. The probability of each possible vector of alternative read counts, àG,\, 

is computed as the binomial probability product from all loci, 

 

eVE(^G,\; [G,\
] ; c(V\

] , AG,\
] ))

Ü

Gèä

. 

 

The binomial distribution eVE(^G,\; [G,\] ; c(V\
] , AG,\

] ))	at each locus (for instance, locus F) 

of individual H has the following properties: 
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1) The number of repeated trials is equal to the value of sequencing coverage 

at that locus. 

2) The detection of the alternative allele from the sequencing reads is the 

success outcome, while on the contrary, the detection of the reference allele 

is the failure outcome. Therefore, the value of alternative read counts, is the 

number of success trials. 

3) The probability of success (error model) is computed by the genotype at the 

locus, affection status, and the error rate of misclassification, conditional on 

the affection status: 

c V\
] , AG,\

] =
2 − AG,\

]

2
I`ab
] +

AG,\
]

2
1 − I`ab

] . 2.46  

 

The probability of the vector of alternative read counts can then serve as the vector of 

probability weights for random selection of observed alternative read counts (Table 2.4). 

With the simulation process established, we simulate data for our method. The parameter 

settings that we consider are: 

Disease MOI:      Dominant 

Number of loci tested:    3 

Number of controls:     500, 1000 

Number of cases:     500, 1000 

Error rate in controls:     0.001, 0.05 

Error rate in cases:     0.001, 0.05 

Baseline odds-ratio (Ã):    0.1 
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OR:       1, 2, 4. 

The test results using data simulated from the above parameter settings are reported in 

Chapter 3. 
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Table 2.4 Determination of an individual's simulated vector of observed data 

!",$%  !&,$%  '",$ '&,$ 
()*('",$; !",$% ; -()$% = 1, 0",$%

= 2)) 

()*('&,$; !&,$% ; -()$% = 1, 0",$%

= 1)) 
Product Cumulative 

Random 

Number 

3 3 0 0 0.0000 0.1250 0.0000 0.0000  

3 3 1 0 0.0026 0.1250 0.0003 0.0003  

3 3 2 0 0.0847 0.1250 0.0106 0.0109  

3 3 3 0 0.9127 0.1250 0.1141 0.1250  

3 3 0 1 0.0000 0.3750 0.0000 0.1250  

3 3 1 1 0.0026 0.3750 0.0010 0.1260  

3 3 2 1 0.0847 0.3750 0.0318 0.1577  

3 3 3 1 0.9127 0.3750 0.3423 0.5000  

3 3 0 2 0.0000 0.3750 0.0000 0.5000  

3 3 1 2 0.0026 0.3750 0.0010 0.5010  

3 3 2 2 0.0847 0.3750 0.0318 0.5327  

3 3 3 2 0.9127 0.3750 0.3423 0.8750 0.6997 

3 3 0 3 0.0000 0.1250 0.0000 0.8750  
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3 3 1 3 0.0026 0.1250 0.0003 0.8753  

3 3 2 3 0.0847 0.1250 0.0106 0.8859  

3 3 3 3 0.9127 0.1250 0.1141 1.0000  

 

Observed alternative read counts (3, 2) are simulated for individual 3 whose underlying two-locus genotype is (2, 1). This 
individual is affected by the disease ()$% = 1). The overall error rate of sequencing misclassification, 45678"

% , is 0.03 (not shown in 
the table). Columns 1 and 2 list the sequencing coverages from two loci, while columns 3 and 4 list all possible alternative read 
counts based on the sequencing coverages. Columns 5 and 6 show the computation results for binomial probabilities with all the 
parameters provided at locus 1 and locus 2, separately. Column 7 lists the products of binomial probabilities on both loci, of each 
possible vector of alternative read counts, while column 8 lists the cumulative products. A random number 0.6997 is generated 
in column 9. This random number is greater than the cumulative product of (2, 2) and less than that of (3, 2). Observed alternative 
read counts (3, 2) is thus selected as the simulated value.
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Chapter 3 Results 

 

In this chapter, we compute empirical type I error and power values for !"#$%,'(), by 

applying NGS data. Simulation programs developed by the author generate data used by 

the statistic. For a single run, user input to the program consists of a vector of 10 parameters: 

number of loci tested, number of cases, number of controls, sequencing coverage, 

misclassification rate in cases, misclassification rate in controls, odds, odds-ratio, mode of 

inheritance, and multi-locus genotype frequencies. The empirical type I error rate for a 

given vector (with odds ratio of 1) is the proportion of p-values among all simulated 

replicates that are less than a specified significance level. Similarly, the empirical power 

for a given vector (with odds ratio greater than 1) is the proportion of p-values among all 

simulated replicated that are less than a given significance level. We use the empirical 

powers in a factorial design to determine those factors (parameters) that most significantly 

alter the power of the test. At the end of the chapter, we also evaluate the performance of 

our method on misclassification rate estimation, and test it against the real data from the 

1000 Genomes Project.  
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3.1 Likelihood ratio test calculations using factorial design 

 

To find out the factors that most substantially affect the likelihood ratio test (!"#$%,'()) 

statistic when testing the association between multi-locus genotype (MLG) frequencies and 

the disease affection status, we apply a 2+×3 factorial design on a total of 6 design factors 

(number of cases, number of controls, misclassification rate in cases, misclassification rate 

in controls, odds-ratio, and multi-locus genotype frequencies). We use the empirical power 

for each vector of settings in a linear regression. The input values are all main factors, and 

are all two-way iterations. We obtain coefficients for all input parameters, thereby 

determining a linear approximation to each empirical power value (see Chapter 2, 

Simulations of observed data for type I error and power evaluation). One factor considered 

is the frequency of the non-disease MLG, where the MLG consists of all single-locus 

genotypes that are homozygous for the wild-type allele. This parameter is considered as a 

setting because our previous work has shown that marker-allele or marker-genotype 

frequencies could significantly alter power of the test, or it may alter the sample size 

required to gain the expected power [5-7].  

 

3.1.1 Calculations of empirical type I error rate and empirical power 

 

To compute the empirical values for each parameter vector, for each of the 500 simulation 

replicates, an observed dataset is first generated based on the functions of the design factors. 

Random permutation is then applied to the affection statuses of the simulated dataset to 

generate 500 null permutation replicates.  
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The empirical .-value is calculated by comparing the LRTs from the permuted datasets to 

the LRT from the original dataset: 

. =
0
1. 

 

0 is the number of permutation replicates that produce an LRT greater than or equal to the 

calculated LRT for the original dataset. 1 is the number of replicates permuted (500 in this 

study). See Figure 3.1 for illustration. 

 

With the empirical .-values generated for all simulation replicates, the empirical type I 

error rate, or empirical power for a vector at a given significance level, is the proportion of 

empirical . -values that reject the null hypothesis. The empirical type I error rate 

corresponds to the null model, whereas the empirical power corresponds to the alternative 

model. 

Figure 3.1 Workflow for empirical 3-value calculation 
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3.1.1.1 Null model – empirical type I error  

 

Under the null hypothesis, all MLG frequencies among case and controls are equal 

(4!560789$:% = 4!560789;<=>;?). Therefore, in the null simulations, we set odds-ratio 

(OR) equal to 1; that is, the odds that an individual will become affected is independent of 

the MLG frequency [8-10]. The OR is calculated as the following: 

 

@" =
#	C6	DEF7F 4!560789$:%

#	C6	DC1G0CHF 4!560789$:%
#	C6	DEF7F 4!560789;<=>;?

#	C6	DC1G0CHF 4!560789;<=>;?

. 

 

When OR equals 1, it means that the risk of developing the disease with MLG frequencies 

in cases is the same as that in controls, which describes our null hypothesis. On the other 

hand, if OR is not equal to 1, the disease risk with MLG frequencies in cases is different 

from that in controls, and therefore, the simulation model is alternative, rather than being 

null. 

In this work, the non-disease MLG frequency is set as 0.5 or 0.95. Thus, 2+×3 = 96 

vectors of factor settings are used in the simulations for null and alternative models. For 

each of the vector settings, 500 simulation replicates are generated to compute the 

empirical type I error or empirical power. 

Figure 3.2 shows boxplots of empirical type I error rates under three significance levels. 

Most of the empirical type I error rates fall in the corresponding significance levels, with 

the median and mean close to the values. The medians are 0.008, 0.048 and 0.094 for 

significance levels of 1%, 5% and 10%, respectively. The means are 0.009, 0.046 and 0.094 
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for significance levels of 1%, 5% and 10%, respectively. When the significance level is 

1%, about 94% of the empirical type I errors are within the 95% confidence interval within 

the 500 simulations. The percentages for significance levels of 5% and 10% are 91% and 

84%, respectively. The parameter settings that are within the 95% confidence intervals are 

listed in Table 3.1. These confidence intervals were computed in BINOM, a statistical 

genetics utility programs [11, 12]. 

Figure 3.2 Boxplots for empirical type I error rates 

 

 

 

Legend (values are shown for 1%, 5% and 10%):  
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♦ (0.009, 0.046, 0.094): mean value of empirical type I error rate; Upper horizontal side of 
box (0.010, 0.054, 0.105): 3rd quartile (3K) of values; Black horizontal line inside box 
(0.008, 0.048, 0.094): median value; Lower horizontal side of box (0.006, 0.040, 0.082): 
1st quartile (1K) of values; Upper line segment at top of “T”( 0.016, 0.072, 0.136): upper 
whisker, maximum value for set of empirical type I error rates that is lower than or equal 
to 3K + 1.5O , O = 3K − 1K = Inter − quartile	range	(]K") ; Lower line segment at 
bottom of inverted “T” ( 0, 0.032, 0.068): lower whisker, minimum value for set of 
empirical type I error rates that is higher than or equal to 1K − 1.5O; ×: outlier. 
 

Table 3.1 The parameter settings and the empirical type I errors that are within the 

upper and lower whisker range 

n_Controls n_Cases _`a  _ba  OR 

Non-

disease 

MLG 

Freq 

Empirical Type I Error 

1% 5% 10% 

         

500 500 0.001 0.001 1 0.5 0.008 0.06 0.102 

500 500 0.05 0.05 1 0.5 0.002 0.032 0.08 

500 500 0.001 0.05 1 0.5 0.01 0.042 0.088 

500 500 0.05 0.001 1 0.5 0.002 0.054 0.104 

1000 1000 0.001 0.001 1 0.5 0.008 0.048 0.088 

1000 1000 0.05 0.05 1 0.5 0.008 0.05 0.104 

1000 1000 0.001 0.05 1 0.5 0.006 0.04 0.074 

1000 1000 0.05 0.001 1 0.5 0.016 0.046 0.102 

500 1000 0.001 0.001 1 0.5 0.008 0.052 0.106 

500 1000 0.05 0.05 1 0.5 0.01 0.054 0.11 
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500 1000 0.001 0.05 1 0.5 0.01 0.048 0.096 

500 1000 0.05 0.001 1 0.5 0.006 0.036 0.078 

1000 500 0.001 0.001 1 0.5 0.002 0.042 0.09 

1000 500 0.05 0.05 1 0.5 - 0.068 0.116 

1000 500 0.001 0.05 1 0.5 0.008 0.044 0.098 

1000 500 0.05 0.001 1 0.5 0.01 0.048 0.096 

500 500 0.001 0.001 1 0.95 0.01 0.056 0.106 

500 500 0.05 0.05 1 0.95 0.008 0.058 0.096 

500 500 0.001 0.05 1 0.95 0.01 0.036 0.084 

500 500 0.05 0.001 1 0.95 0.012 0.04 0.08 

1000 1000 0.001 0.001 1 0.95 0.01 0.054 - 

1000 1000 0.05 0.05 1 0.95 0.002 0.048 0.092 

1000 1000 0.001 0.05 1 0.95 0.004 0.05 - 

1000 1000 0.05 0.001 1 0.95 0.012 0.038 0.078 

500 1000 0.001 0.001 1 0.95 0.008 0.044 0.082 

500 1000 0.05 0.05 1 0.95 0.006 0.034 0.092 

500 1000 0.001 0.05 1 0.95 0.018 0.06 - 

500 1000 0.05 0.001 1 0.95 - - - 

1000 500 0.001 0.001 1 0.95 0.01 0.036 0.084 

1000 500 0.05 0.05 1 0.95 0.014 0.052 0.128 

1000 500 0.001 0.05 1 0.95 0.004 - - 

1000 500 0.05 0.001 1 0.95 0.02 - 0.122 
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Legend: n_Controls = number of controls; n_Cases = number of cases; cd=  = 
misclassification rates in controls; ce= = misclassification rates in cases; OR = odds ratio; 
Non-disease MLG Freq = the frequency of the non-disease MLG. 
 

3.1.1.2 Alternative model – empirical power 

 

In the alternative hypothesis, the MLG frequencies differ between cases and controls. 

Therefore, in the simulations for the alternative model, we set OR not equal to 1 to measure 

power of the test. To test in different situations, OR was set to be 2 or 4. See Figure 3.3 for 

the boxplot of empirical power on different significance levels. 
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Figure 3.3 Boxplots for empirical power 

 

 
Legend (values are shown for 1%, 5% and 10%): 
♦ (0.650, 0.752, 0.802): mean value of empirical type I error rate; Upper horizontal side of 
box (0.991, 0.999, 1): 3rd quartile (3K) of values; Black horizontal line inside box (0.817, 
0.926, 0.957): median value; Lower horizontal side of box (0.234, 0.493, 0.633): 1st quartile 
(1K) of values; Upper line segment at top of “T”( 1, 1, -): upper whisker, maximum value 
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K") ; Lower line segment at bottom of inverted “T” 
( 0.018, 0.06, 0.122): lower whisker, minimum value for set of empirical type I error rates 
that is higher than or equal to 1K − 1.5O. 
 

The empirical power from all of the parameter settings are within the upper and lower 

whiskers range (reported in Table 3.2). 
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Table 3.2 The parameter settings and the empirical power that are within the upper 

and lower whisker range 

n_Contr

ols 
n_Cases _`a  _ba  OR 

Non-disease 

MLG Freq 

Empirical Power 

1% 5% 10% 

         

500 500 0.001 0.001 2 0.5 0.714 0.896 0.944 

500 500 0.05 0.05 2 0.5 0.704 0.868 0.938 

500 500 0.001 0.05 2 0.5 0.704 0.866 0.922 

500 500 0.05 0.001 2 0.5 0.696 0.874 0.932 

1000 1000 0.001 0.001 2 0.5 0.988 0.998 1 

1000 1000 0.05 0.05 2 0.5 0.986 0.996 0.998 

1000 1000 0.001 0.05 2 0.5 0.978 0.994 0.998 

1000 1000 0.05 0.001 2 0.5 0.982 0.998 0.998 

500 1000 0.001 0.001 2 0.5 0.874 0.966 0.98 

500 1000 0.05 0.05 2 0.5 0.886 0.966 0.982 

500 1000 0.001 0.05 2 0.5 0.884 0.97 0.984 

500 1000 0.05 0.001 2 0.5 0.858 0.958 0.978 

1000 500 0.001 0.001 2 0.5 0.888 0.968 0.99 

1000 500 0.05 0.05 2 0.5 0.854 0.964 0.988 

1000 500 0.001 0.05 2 0.5 0.856 0.962 0.98 

1000 500 0.05 0.001 2 0.5 0.898 0.98 0.984 

500 500 0.001 0.001 4 0.5 1 1 1 

500 500 0.05 0.05 4 0.5 1 1 1 
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500 500 0.001 0.05 4 0.5 1 1 1 

500 500 0.05 0.001 4 0.5 1 1 1 

1000 1000 0.001 0.001 4 0.5 1 1 1 

1000 1000 0.05 0.05 4 0.5 1 1 1 

1000 1000 0.001 0.05 4 0.5 1 1 1 

1000 1000 0.05 0.001 4 0.5 1 1 1 

500 1000 0.001 0.001 4 0.5 1 1 1 

500 1000 0.05 0.05 4 0.5 1 1 1 

500 1000 0.001 0.05 4 0.5 1 1 1 

500 1000 0.05 0.001 4 0.5 1 1 1 

1000 500 0.001 0.001 4 0.5 1 1 1 

1000 500 0.05 0.05 4 0.5 1 1 1 

1000 500 0.001 0.05 4 0.5 1 1 1 

1000 500 0.05 0.001 4 0.5 1 1 1 

500 500 0.001 0.001 2 0.95 0.062 0.174 0.274 

500 500 0.05 0.05 2 0.95 0.056 0.216 0.3 

500 500 0.001 0.05 2 0.95 0.052 0.206 0.326 

500 500 0.05 0.001 2 0.95 0.046 0.138 0.198 

1000 1000 0.001 0.001 2 0.95 0.192 0.404 0.522 

1000 1000 0.05 0.05 2 0.95 0.162 0.362 0.496 

1000 1000 0.001 0.05 2 0.95 0.174 0.372 0.5 

1000 1000 0.05 0.001 2 0.95 0.096 0.262 0.394 

500 1000 0.001 0.001 2 0.95 0.046 0.15 0.268 
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500 1000 0.05 0.05 2 0.95 0.062 0.19 0.31 

500 1000 0.001 0.05 2 0.95 0.084 0.242 0.362 

500 1000 0.05 0.001 2 0.95 0.018 0.06 0.122 

1000 500 0.001 0.001 2 0.95 0.148 0.326 0.454 

1000 500 0.05 0.05 2 0.95 0.17 0.36 0.464 

1000 500 0.001 0.05 2 0.95 0.1 0.254 0.354 

1000 500 0.05 0.001 2 0.95 0.166 0.338 0.45 

500 500 0.001 0.001 4 0.95 0.448 0.686 0.79 

500 500 0.05 0.05 4 0.95 0.49 0.696 0.788 

500 500 0.001 0.05 4 0.95 0.484 0.708 0.802 

500 500 0.05 0.001 4 0.95 0.362 0.58 0.71 

1000 1000 0.001 0.001 4 0.95 0.886 0.95 0.978 

1000 1000 0.05 0.05 4 0.95 0.886 0.94 0.972 

1000 1000 0.001 0.05 4 0.95 0.894 0.948 0.978 

1000 1000 0.05 0.001 4 0.95 0.808 0.93 0.95 

500 1000 0.001 0.001 4 0.95 0.45 0.73 0.84 

500 1000 0.05 0.05 4 0.95 0.528 0.746 0.84 

500 1000 0.001 0.05 4 0.95 0.596 0.812 0.89 

500 1000 0.05 0.001 4 0.95 0.248 0.522 0.67 

1000 500 0.001 0.001 4 0.95 0.826 0.908 0.95 

1000 500 0.05 0.05 4 0.95 0.792 0.922 0.964 

1000 500 0.001 0.05 4 0.95 0.734 0.86 0.898 

1000 500 0.05 0.001 4 0.95 0.774 0.91 0.944 
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Legend: n_Controls = number of controls; n_Cases = number of cases; cd=  = 
misclassification rates in controls; ce= = misclassification rates in cases; OR = odds ratio; 
Non-disease MLG Freq = the frequency of the non-disease MLG. 
 
 

3.1.2 ANOVA for effects on power 

 

Despite remaining high level, the empirical powers are varying between wide ranges, 

especially in the significance levels of 1% and 5%. Therefore, we utilized factorial designs 

to determine the factors that alter statistical powers significantly for the significance levels 

of 1%, 5% and 10%. 

Analysis of Variance (ANOVA) was conducted to determine the factors of empirical power 

for the significance levels of 1%, 5% and 10%. The results are reported in Table 3.3, Table 

3.4 and Table 3.5, separately. The factors are sorted based on the F-statistics, from the 

largest to the least. The value fg, the respective factor’s proportion of the overall Sum of 

Squares, was reported. Specifically, fg = ))hijklmn
))homljp

. 

Table 3.3 ANOVA for main effects and all two-way interactions on the significance level of 

1% 

Factor Df qqrstuvwx 
F 

Statistic 
yz 

Non-disease MLG 

Freq 
1 5.012 815.038 0.601 

OR 1 1.83 297.579 0.219 
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OR×	Non-disease 

MLG Freq 
1 0.624 101.554 0.075 

n_Controls 1 0.373 60.659 0.045 

n_Controls	×	Non-

disease MLG Freq 
1 0.111 18.06 0.013 

n_Cases 1 0.037 6.042 0.004 

n_Controls	×	OR 1 0.019 3.086 0.002 

n_Controls	×	ce= 1 0.009 1.522 0.001 

n_Cases	×	OR 1 0.009 1.506 0.001 

n_Cases	×	ce= 1 0.008 1.266 0.001 

n_Cases	×	Non-

disease MLG Freq 
1 0.008 1.252 0.001 

ce=×	Non-disease 

MLG Freq 
1 0.008 1.369 0.001 

ce= 1 0.006 1.047 0.001 

cd=×	ce= 1 0.006 0.933 0.001 

ce=×	OR 1 0.005 0.803 0.001 

cd= 1 0.004 0.725 0 

n_Cases×	cd= 1 0.004 0.682 0 

cd=×	Non-disease 

MLG Freq 
1 0.004 0.61 0 

n_Controls	×	cd= 1 0.002 0.318 0 
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cd=×	OR 1 0.002 0.27 0 

n_Controls	×

	n_Cases 
1 0 0.031 0 

Residuals 42 0.258 
 

{{K|}~�Ä  8.339 

Legend is the same as the legend in Table 3.1. 

 

 

Table 3.4 ANOVA for main effects and all two-way interactions on the significance 

level of 5% 

Factor Df ÅÅÇstuvwx F Statistic Éz 

Non-disease MLG Freq 1 3.205 1850.939 0.525 

OR 1 1.431 826.435 0.234 

OR ×	Non-disease MLG 

Freq 
1 1.005 580.119 0.164 

n_Controls 1 0.212 122.601 0.035 

n_Controls	× Non-disease 

MLG Freq 
1 0.113 65.491 0.018 

n_Cases 1 0.01 5.862 0.002 

n_Controls	×	ce= 1 0.01 5.632 0.002 

ce=	×	Non-disease MLG 

Freq 
1 0.01 6.038 0.002 
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ce= 1 0.008 4.6 0.001 

n_Controls × cd= 1 0.006 3.358 0.001 

n_Cases ×	cd= 1 0.006 3.673 0.001 

cd=×	ce= 1 0.006 3.673 0.001 

cd= 1 0.005 2.973 0.001 

cd=×	Non-disease MLG 

Freq 
1 0.005 2.651 0.001 

n_Cases	×	ce= 1 0.004 2.31 0.001 

n_Cases ×	OR 1 0.001 0.326 0 

n_Controls	×	n_Cases 1 0 0 0 

n_Controls ×	OR 1 0 0.073 0 

n_Cases	×	Non-disease 

MLG Freq 
1 0 0.153 0 

cd= ×	OR 1 0 0.172 0 

ce=×	OR 1 0 0.126 0 

Residuals 42 0.073 
 

{{K|}~�Ä  6.11 

Legend is the same as the legend in Table 3.1  
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Table 3.5 ANOVA for main effects and all two-way interactions on the significance level of 

10% 

Factor Df qqrstuvwx F 

Statistic 

yz 

Non-disease MLG 

Freq 

1 2.1897 2227.036 0.472 

OR 1 1.1486 1168.255 0.248 

OR×Non-disease 

MLG Freq 

1 0.9424 958.441 0.203 

n_Controls 1 0.1457 148.221 0.031 

n_Controls×Non-

disease MLG Freq 

1 0.0978 99.482 0.021 

n_Controls×	εe~  1 0.0091 9.227 0.002 

εe~×  Non-disease 

MLG Freq 

1 0.0087 8.844 0.002 

εe~  1 0.008 8.102 0.002 

εd~ ×εe~  1 0.0078 7.921 0.002 

n_Cases 1 0.0069 7.049 0.001 

εd~  1 0.0059 5.991 0.001 

n_Controls×	εd~  1 0.0059 5.991 0.001 

εd~ × Non-disease 

MLG Freq 

1 0.0059 5.991 0.001 



 

 

82 

n_Cases×εd~  1 0.005 5.091 0.001 

n_Cases×	εe~  1 0.004 4.069 0.001 

n_Controls×OR 1 0.0031 3.161 0.001 

n_cases× Non-

disease MLG Freq 

1 0.0005 0.55 0 

n_Cases×OR 1 0.0002 0.237 0 

εe~×OR 1 0.0002 0.207 0 

n_Controls× 

n_Cases 

1 0.0001 0.061 0 

εd~ ×OR 1 0 0.023 0 

Residuals 42 0.0413   

  SSQ|}~�Ä  4.6368 

Legend is the same as the legend in Table 3.1. 
 
 
 

 

In the tables above (Table 3.3, Table 3.4 and Table 3.5), there are five factors that most 

substantially affect the power of the association test, based on the F-statistics and the fg 

values. These factors are (in order of the F-statistic values), frequency of the non-disease 

MLG, odds-ratio, odds-ratio × frequency of the non-disease MLG, number of controls, 

number of controls × frequency of the non-disease MLG. All of these factors account for 

95.3%, 97.6% and 97.6% of the total Sum of Squares ({{K|}~�Ä) in the significance levels 

of 1%, 5% and 10%, respectively. 



 

 

83 

Using the results in the above three tables, we selected the four main-effect terms and their 

two-way interactions (if applicable) to perform a regression analysis. The results are 

displayed in Table 3.6, Table 3.7 and Table 3.8. 

 

Table 3.6 Linear regression analysis coefficients for the three most significant 

factors from Table 3.3, and their two-way interaction terms (significance level of 

1%) 

Variable Factor 
Coefficient 

Estimate 

Standard 

Error 
t-statistic 

 (Intercept) 0.81 0.05 17.58 

áe n_Controls = 1000 0.04 0.05 0.93 

ág OR = 4 0.12 0.05 2.56 

áà 
Non-disease MLG Freq 

= 0.95 
-0.83 0.05 -17.21 

áeág 
n_Controls = 1000, OR 

= 4 
0.07 0.04 1.76 

áeáà 

n_Controls = 1000, Non-

disease MLG Freq = 

0.95 

0.17 0.04 4.25 

ágáà 
OR = 4, Non-disease 

MLG Freq = 0.95 
0.4 0.04 10.08 

Legend is the same as the legend in Table 3.1. 
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Table 3.7 Linear regression analysis coefficients for the three most significant 

factors from Table 3.4, and their two-way interaction terms (significance level of 

5%) 

Variable Factor 
Coefficient 

Estimate 

Standard 

Error 
t-statistic 

 (Intercept) 0.93 0.02 37.98 

áe n_Controls = 1000 0.03 0.03 1.33 

ág OR = 4 0.05 0.03 2.05 

áà 
Non-disease MLG Freq = 

0.95 
-0.79 0.03 -30.88 

áeág n_Controls = 1000, OR = 4 0.01 0.02 0.27 

áeáà 
n_Controls = 1000, Non-

disease MLG Freq = 0.95 
0.17 0.02 8.1 

ágáà 
OR = 4, Non-disease MLG 

Freq = 0.95 
0.5 0.02 24.09 

Legend is the same as the legend in Table 3.1. 

 

Table 3.8 Linear regression analysis coefficients for the three most significant 

factors from Table 3.5 and their two-way interaction terms (significance level of 

10%) 

Variable Factor 
Coefficient 

Estimate 

Standard 

Error 
t-statistic 
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(Intercept) 0.96 0.02 52.1 

áe n_Controls = 1000 0.03 0.02 1.76 

ág OR = 4 0.05 0.02 2.36 

áà 
Non-disease MLG Freq = 

0.95 
-0.7 0.02 -36.5 

áeág n_Controls = 1000, OR = 4 -0.03 0.02 -1.78 

áeáà 
n_Controls = 1000, Non-

disease MLG Freq = 0.95 
0.16 0.02 9.97 

ágáà 
OR = 4, Non-disease MLG 

Freq = 0.95 
0.49 0.02 30.96 

Legend is the same as the legend in Table 3.1. 

 

From the above Table 3.6, Table 3.7 and Table 3.8, we computed the fitted functions under 

different significance levels as the following: 

 

.Câ70e% = 0.81 + 0.04áe + 0.12ág − 0.83áà + 0.07áeág + 0.17áeáà + 0.4ágáà, 

.Câ70+% = 0.93 + 0.03 + 0.05ág − 0.79áà + 0.01ág + 0.17áeáà + 0.5ágáà, 

.Câ70ed% = 0.96 + 0.03áe + 0.05ág − 0.7áà − 0.03áeág + 0.16áeáà + 0.49ágáà, 

where, 

áe =
1, n_Controls	 = 1000
0, n_Controls	 = 500		 , 

ág =
1, OR = 4
0, OR = 2 , 

áà =
1, Non − disease	MLG	Freq	 = 0.95
0, Non − disease	MLG	Freq	 = 0.5		 . 
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Upon examining the above equations, we note that two factors play a significant role in 

altering the power of the test. Taking the significance level of 1% for example: Increasing 

the non-disease MLG frequency from 0.5 to 0.95 produces a substantial decrease in power 

of 0.83(coefficient for variable áà ), while increasing it from 0.5 to 0.95 and jointly 

increasing the odds-ratio from 2 to 4 produces a power increase of approximately 0.4 

(coefficient for variable ágáà). 

 

In Figure 3.4, Figure 3.5 and Figure 3.6, we plot the fitted values (using the above equations) 

versus the empirical powers. The coefficients of the trend line, computed using a 

generalized linear model in R, are consistent with the finding that the empirical powers are 

accurately represented by a linear combination of the three variables (áe,	ág and áà) and 

their two-way interactions. We may conclude that for the parameter settings, only three of 

the six factors are needed to approximate the empirical power. These factors are the number 

of controls, odds-ratio and the non-disease MLG frequency. Moreover, apart from these 

three factors, values of the misclassification rate (in cases or in controls) do not affect the 

power significantly. 
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Figure 3.4 Scatter plot of empirical power versus fitted power using 64 vectors of 

factor settings (significance level: 1%) 

 

The trend line intercept is 0.0167 and the slope is 0.954 (the multiple R-squared value is 
0.954). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted 
line: It’s slope equals 1. 
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Figure 3.5 Scatter plot of empirical power versus fitted power using 64 vectors of 

factor settings (significance level: 5%) 

 

The trend line intercept is 0.0196 and the slope is 0.989 (the multiple R-squared value is 
0.976). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted 
line: It’s slope equals 1. 
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Figure 3.6 Scatter plot of empirical power versus fitted power using 64 vectors of 

factor settings (significance level: 10%) 

 

The trend line intercept is 0.0016 and the slope is 0.996 (the multiple R-squared value is 
0.976). Blue dots: Data points. Blue Line: Fitted trend line of the data points. Red dotted 
line: It’s slope equals 1. 
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3.2 Performance evaluation on misclassification estimates 

3.2.1 Testing on Simulated Data 

 

Since the true misclassification rates cannot be observed directly to determine the 

correctness from our method’s misclassification estimation, we simulate NGS data with 

known underlying misclassification rates, which are differential according to affection 

status. The data simulation is processed through the simulation computer program we 

developed.  

We simulated a dataset of 1000 controls and 500 cases. The simulated dataset was 

generated by a fixed sequencing coverage of 4 on each tested locus and other known 

parameters (see simulation notation in Chapter 2): 

 

Disease MOI:      Dominant 

Number of loci tested:    3 

Number of controls:     1000 

Number of cases:     500 

Error rate in controls:     0.001 

Error rate in cases:     0.05 

õ:       0.1 

OR:       1 

Frequency of non-disease MLG  0.95. 
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Note that the misclassification rates are 0.05 in cases and 0.001 in controls. This dataset is 

simulated under the constrained (null) model, of which the MLG frequencies are equal 

between cases and controls. The simulated dataset is tested using our method for 

misclassification rate estimation. 

We generated 500 replicates of the simulation and estimation process, and the results are 

shown in a boxplot in Figure 3.7. The mean estimates for misclassification rate are 0.05 in 

cases, and 0.001 in controls (the medians are 0.05 and 0.001 in cases and in controls, 

respectively). The boxplot indicates that our method is able to correctly estimate the true 

underlying differential misclassification rates of the observed data. 

 

Figure 3.7 Boxplot of misclassification estimates from simulated data 
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Legend: 
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K) 
of values; Black horizontal line inside box: median value; Lower horizontal side of box: 
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value 
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower 
whisker, minimum value for set of empirical type I error rates that is higher than or equal 
to 1K − 1.5O; ×: outlier. 
 

 

3.2.2 Testing on real data: the 1000 Genomes Project data 

 

In order to test the performance of our method on a real-world situation, we tested it on the 

real data that we extracted from the 1000 Genomes Project [1-4, 13]. 

First, we downloaded the available exome sequencing data in BAM (Binary Sequence 

Alignment/Map) [14] format on chromosome 20 from 2,504 individuals in the 1000 

Genomes Project Phase 3 archive (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/).  

To make our process computationally efficient, we only kept the exome sequenced regions 

on chromosome 20, from base pair position 60897487 to position 60908969 for each 

individual [15]. After sorting and indexing the data on the selected region, we used the 

option “mpileup” in Samtools (version 1.3.1) [14, 16] and the option “call -m” in Bcftools 

(version 1.3.1) [16, 17] for variant calling and converted the data into VCF (Variant Call 

Format) [18]. With the variants called for every individual, we filtered out variants with 

QUAL (quality) lower than 100. QUAL is the Phred-scaled probability indicating the 

existence of a variant [18].  

To make the data set comparable to the imputed data sets, we selected three genetic 

positions (loci) from the extracted region: 60907675, 60908964 and 60908969. Among all 



 

 

93 

2,504 individuals, we kept those individuals who are heterozygotes or alternative allele 

homozygotes at all three of these loci. 1,314 individuals are kept in the end. Their non-

reference allele counts (sum of forward non-reference and reverse non-reference alleles, 

labeled “DP4” in VCF format) and raw sequencing coverages (labeled “DP” in VCF format) 

on each of the three loci are extracted using a computer program developed by the author. 

In the extracted region, the non-reference allele counts are in a range of 4-84, with a mean 

of 20.8 and a median of 18; the raw sequencing coverages are in a range of 5-158, with a 

mean of 28.4 and a median of 26.  

On each of these individuals, the affection status is assigned randomly with 657 affected 

(cases) and 657 unaffected (controls). The preprocessed dataset is tested using our method 

for misclassification rate estimation.  

The affection assigning step in the process is repeated 500 times to generate permutation 

replicates and the results are shown in a boxplot in Figure 3.8. The mean misclassification 

estimates are 0.134 in cases, and 0.133 in controls (medians are 0.133 and 0.133 in cases 

and in controls, respectively). The estimated misclassification rates are inflated 

considerably from the previous published error rates in the NGS platforms: Illumina HiSeq 

(0.34%), Ion Torrent PGM (1.9%) and Complete Genomics (2.4%) [19]. 
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Figure 3.8 Boxplot of misclassification estimates from 1000 Genomes Project data 

 

Legend: 
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K) 
of values; Black horizontal line inside box: median value; Lower horizontal side of box: 
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value 
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower 
whisker, minimum value for set of empirical type I error rates that is higher than or equal 
to 1K − 1.5O; ×: outlier. 
 

 

3.2.3 Testing on simulated data with high misclassification rates: 

The surprisingly inflated estimates of misclassification rates in the real-world data raised 

some concerns. Is this inflation possibly caused by the fact that our method is not able to 

handle higher differential misclassification rates? Or, does our method only work on 
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simulated data, instead of real NGS-processed data? To clarify the answer, we further 

tested the performance of our method, on higher misclassification rates. 

We simulated a new dataset, generated by the same known parameters and under the same 

constrained model as in Section 3.2.1. Testing on Simulated Data, except for that the 

misclassification rates are set to 0.1 in cases and 0.13 in controls. The newly simulated 

dataset is then tested with our method under the same process with 500 replicates.  

The results are shown in a boxplot in Figure 3.9. The mean estimates for misclassification 

rate are 0.099 in cases, and 0.129 in controls (the medians are 0.099 and 0.129 in cases and 

in controls, respectively).  The boxplot indicates that our method is able to correctly 

estimate the higher true underlying differential misclassification rates of the dataset. 
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Figure 3.9 Boxplot of misclassification estimates from simulated data 

 

Legend: 
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K) 
of values; Black horizontal line inside box: median value; Lower horizontal side of box: 
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value 
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower 
whisker, minimum value for set of empirical type I error rates that is higher than or equal 
to 1K − 1.5O; ×: outlier. 
 

 

3.2.4 Testing on real data of high quality  

 

In the boxplot in Figure 3.7, we see that our method is able to correctly estimate the higher 

differential misclassification rates from the simulated data. This raises another question: 

Why is our method not working with the real data extracted from the 1000 Genomes Project? 



 

 

97 

Is this problem caused by the quality of the data? Thus, we attempted testing our method 

again in estimating the misclassification rates in the 1000 Genomes Project data, by 

replacing raw sequencing coverage with sequencing coverage from high quality bases. The 

raw sequencing coverage (labeled “DP” in VCF format) is the number of detected 

sequencing reads that are covering a position of interest, while sequencing coverage with 

higher quality is the value of the sum of high quality bases at a position, including forward 

reference alleles, reverse reference alleles, forward non-reference alleles and reverse non-

reference alleles (labeled “DP4” in VCF format). This high-quality sequencing coverage 

excludes the count of low-quality bases so it is equal to, or lower than, the raw sequencing 

coverage. The low quality on bases might be caused by bases being misaligned to the 

position [13].  

 

To make a dataset comparable to the previously tested 1000 Genomes Project dataset, we 

use the same pipeline for variant calling, and selected the same three loci from chromosome 

20 on positions 60907675, 60908964, and 60908969. The same 1314 individuals are kept. 

We extract their non-reference allele counts (labeled “DP4” in VCF format) and compute 

high-quality sequencing coverages (as the sum of high-quality base counts from the 4 

values labeled in “DP4” in VCF format) on each of the three loci, using another computer 

program developed by the author. In the extracted region, the high-quality sequencing 

coverages are in a range of 4-134, with a mean of 24.8 and a median of 23. 

The affection status is once again assigned randomly with half of the individuals being 

affected and the other half being unaffected (657 in cases and 657 in controls). The newly 

preprocessed dataset is tested using our method for misclassification rate estimation.  
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The affection assigning is repeated 500 times and the results are shown in a boxplot in 

Figure 3.10. The mean misclassification estimates are 0.004 in cases, and 0.004 in controls 

(the medians are 0.004 and 0.004 in cases and in controls, respectively).  The boxplot 

indicates that the misclassification rates from the 1000 Genomes Project data with high-

quality sequencing coverage is around 0.004, which is much lower than the previous 

estimates on the same set of individuals and genetic positions. These misclassification rates 

also match the published rate range of 0.4-3% [19].  

Given the estimation performance on the simulated misclassification and the actual data, it 

is reasonable to conclude that our method is able to estimate the underlying 

misclassification of the sequencing data. 
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Figure 3.10 Boxplot of misclassification estimates from 1000 Genomes Project data 

with sequencing coverage from high quality bases 

 

Legend: 
♦ : mean value of empirical type I error rate; Upper horizontal side of box: 3rd quartile (3K) 
of values; Black horizontal line inside box: median value; Lower horizontal side of box: 
1st quartile (1K) of values; Upper line segment at top of “T: upper whisker, maximum value 
for set of empirical type I error rates that is lower than or equal to 3K + 1.5O, O = 3K −
1K = Inter − quartile	range	(]K"); Lower line segment at bottom of inverted “T”: lower 
whisker, minimum value for set of empirical type I error rates that is higher than or equal 
to 1K − 1.5O; ×: outlier. 
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Chapter 4 Discussion 

 

Here, we discuss some possible improvements for our method. One improvement is the 

extension to allow for locus-specific sequence error. Another improvement may be 

speeding up the computer program, so that our computer program may perform association 

tests on a greater number of genetic loci jointly. The current computer time under various 

conditions (such as the number of loci or sequencing coverage) is discussed in this chapter. 

We also discuss the potential to enhance the statistical power of our method by applying a 

double-sampling approach to a subset of sequenced individuals, meaning re-sequencing a 

small set of samples through another sequencing technology. In the end, we discuss the 

advancements in high-throughput technologies, that may give inspiration to readers for 

research in a similar field. 
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4.1 Summary 

 

The method developed in this work is a likelihood-ratio approach (!"#$%,'()), designed to 

detect the association between genetic variants and genetic disorders using NGS data. We 

extend this approach to multiple genetic loci, which allows users to test all their genetic 

loci of interest at once. In our simulation results, our method maintains correct type I error 

rates for the null hypothesis, and has both a wide range and high level of powers for the 

alternative hypothesis. By applying factorial designs, we detect three factors altering test 

power significantly, including the number of controls, odds ratio and the most common, 

multi-locus genotype frequency. By using the expectation-maximization algorithm, we 

compute our test statistic and estimate differential misclassification rates from the observed 

data. By comparing the misclassification rate estimates to their true values from simulation 

studies, our method shows its robustness and accuracy in estimating differential 

misclassification rates. 

 

4.2 Locus-specific misclassification rates 

 

In our method, the misclassification rate is dependent on the affection status. In other words, 

our method allows for the possibility that misclassification probabilities are different 

between cases and controls. For this version of our statistical method, we specify that the 

misclassification probabilities (case or control) remain constant across all tested loci. 

However, this model may not hold for actual data.  A more robust model is one that allows 
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for locus-specific error rates in cases and controls. In terms of notation, we extend our 

current notation to be:  cú,ùûü
=  (notation for other parameters, see Chapter 2).  

Therefore, for the †th individual, the probability of observing alternative allele counts for a 

total of 4  loci, conditional on sequencing coverage, affection status and the true 

underlying genotype (Chapter 2, Equation 2.10), can be written as: 

 

Pr ¢£ §£a = •e,¶= ,⋯ , •®,¶= 	 , ©¶= , ™£a = ´e,¶= ,⋯ , ´®,¶=

= ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= , ´ú,¶=
®

úØe

.
 

(4. 1) 

 

In the above binomial probability mass function, ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= , ´ú,¶= , the 

probability of a success in observing an alternative allele instead of a reference allele is 

. Æ, ©¶= , ´ú,¶= = g∞±≤,û
ü

g
cú,ùûü
= + ±≤,û

ü

g
1 − cú,ùûü

= . As in our original statistic, here, the 

error model is specified to be symmetric.  

 

The log-likelihood of the observed data ¢£, §£a , ©¶=  for ≥ individuals over 4 loci, under 

the null hypothesis (Chapter 2, Equation 2.12) may be rewritten as: 
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!¥µ	

= ∂ ] ™£a ¢£, §£a , ©¶=
g,g,⋯,g

™£
a Ø d,d,⋯,d

'

¶Øe

×H1 1 − ©¶= × ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 0, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,∗×Pr ©¶= = 0

+ ©¶=× ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 1, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,∗×Pr ©¶= = 1

+ ª.	 

 (4. 2) 

Similarly, for the alternative hypothesis (Chapter 2, Equation 2.13), the equation may be 

rewritten as: 

 	

!¥∏	

= ∂ ] ™£a ¢£, §£a , ©¶=
g,g,⋯,g

™£
a Ø d,d,⋯,d

'

¶Øe

×H1 1 − ©¶= × ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 0, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,ùû
üØd×Pr ©¶= = 0

+ ©¶=× ¨©1 áú,¶; •ú,¶= ; . Æ, ©¶= = 1, ´ú,¶=
®

úØe

×∑ ±∏,û
ü ,⋯,±π,û

ü ,ùû
üØe×Pr ©¶= = 1

+ ª.			 

  (4. 3) 
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4.3 Computer program execution time 

 

To calculate the test statistics, and to estimate the MLG frequencies and the 

misclassification rates in the case-control datasets more efficiently, we developed a C 

computer program that implements our method. For data simulation, we have developed 

another program using both C and R. The source codes for these two programs may be 

found in the Appendix. Comments are provided to help the user understand how the codes 

implement the simulations, compute the EM-algorithms and statistics, and produce the 

output. 

To evaluate the computer performance of our program, we measured the execution time 

for computing on various datasets with different numbers of loci, or different levels of 

sequencing coverage. The datasets tested were simulated by our simulation program. In the 

simulated datasets, we generally set the simulation parameters as the following (see 

simulation notation in Chapter 2), except for those listed particularly under each test: 

 Disease MOI:        Dominant 

 Number of controls:       1000 

 Number of cases:       500 

 Error rate in controls:       0.13 

 Error rate in cases:       0.1 

 α:         0.1 

 OR:         1 

 Frequency of non-disease MLG:    0.95. 
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For each of the tests below, we performed 500 runs. 

 

4.3.1 Computer time on different number of loci tested 

 

We tested the effect of loci number on computer time by running our program with a 

number of loci ranging from one to four. Four sets were tested with the sequencing 

coverage set to be 4. As illustrated in Figure 4.1, the time (measured in seconds) increases 

exponentially with the increased number of loci. 

 

4.3.2 Computer time of different sequencing coverage on a single locus 

 

With a single locus, we tested the effect of sequencing coverage on time. The number of 

sequencing coverage varies from 4x to 40x (4 sets). The time of execution increases as the 

sequencing coverage increases, but not exponentially. See Figure 4.2. 
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Figure 4.1 Computer program execution time on different number of loci 

 

Figure 4.2 Computer program execution time on different sequencing coverage 
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4.3.3 Computer time of different sequencing coverage on two loci 

 

To test whether the execution time acts similarly with more than one locus, we tested the 

program performance on two-locus datasets. The settings for sequencing coverage is the 

same as in Figure 4.2. From our results (Figure 4.3), we found that the time for execution 

in a two-locus setting decreases exponentially with the increase of sequencing coverage.  

This finding can be explained by the following: The likelihood of the MLG is a product of 

the individual binomial distribution. With a reasonably high coverage, the binomial 

probability for a more likely genotype from the observed data is much higher than that for 

a less likely genotype, even with the presence of sequencing error. Therefore, the binomial 

probabilities product for the less likely genotypes becomes practically 0 during the first 

few steps of a run, which decreases the number of steps required for the convergence to 

correct MLG. This outcome can be observed by noting the number of steps those tests took 

to achieve the maximum likelihood in Figure 4.4.  
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Figure 4.3 Computer program execution time on different sequencing coverage 
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Figure 4.4 Number of steps to achieve maximum likelihood on different sequencing 

coverage 

 

4.3.4 Computer time on real data: the 1000 Genomes Project data 

We also tested the speed of our program on the real exome sequencing data from the 1000 

Genomes Project. As described in Section 3.2.4 Testing on real data of high quality, we 

extracted four sequenced loci from chromosome 20 on positions 60905878, 60907675, 

60908964 and 60908969. The number of individuals tested is 1006. In the extracted region, 

the non-reference allele counts are in a range of 3-89, with a mean of 23 and a median of 

20; the high-quality sequencing coverages are in a range of 3-134, with a mean of 27.4 and 

a median of 25. We tested our program on this dataset with simulated affected status for 
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100 times, and average computer time is 2.198 seconds, with a maximum time of 6.075 

seconds and minimum of 1.061 seconds. 

 

4.4 Using double-sampling to increase genetic association test power 

 

Among the different sequencing approaches, Sanger sequencing has a much higher 

accuracy rate (99.99%) compared to NGS. Thus, the Sanger approach may serve as a “gold 

standard” sequencing method, and may provide confirmation for NGS results [1]. If Sanger 

sequencing or some other highly accurate MLG classification method is available for a 

subset of individuals, we may extend our statistic test by using double-sampling.  

In double-sampling procedures, samples are sequenced by one of two methods: a method 

that is cost-effective but “fallible” – with lower accuracy; or the other method that is 

“infallible” and has higher accuracy than the first, but is more expensive and may not be 

feasible for an entire study [2]. In the case of our study, the samples sequenced by NGS 

are considered “fallible” samples, while those sequenced by the Sanger method (for 

example) may be considered “infallible” samples. Because NGS is more economical than 

Sanger sequencing in genome sequencing [3], it is reasonable to assume that researchers 

would sequence all samples through NGS, and only double-sample a few through Sanger. 

The previously developed LRTae method can then be applied to the double-sampled data to 

gain higher test power [2]. Another example of double sampling is to sequence samples in 

a large cohort at low coverage (when the sequencing coverage is low, the sequenced 

outputs are generally considered “fallible”) and combine with a subset of samples 

sequenced at high coverage (“infallible” method). 



112 
	

 

 

4.5 Advancement in high-throughput technologies 

 

NGS technology is favored for its low cost and efficiency in population-scale sequencing 

[4], however, the short reads generated from these sequencing platforms makes it difficult 

apply in analyses of larger structural variations [5]. Also, de novo genome assembly using 

reads from NGS outputs could be problematic, because this could lead to missing key 

portions in the genome, or difficulty in identifying the position or number of repeats due 

to presence of repeating regions [6-9]. 

Thanks to the advancement of technology, the existing problems of de novo genome 

assembly that come from NGS, could possibly be solved by using the third-generation 

DNA sequencing technology. The currently available third-generation sequencing 

platforms can produce average read length of more than 10,000bp, with a few even 

reaching 100,000bp [5]. These commercial platforms include [5]: Pacific Biosciences 

(PacBio) Single Molecule Real Time (SMRT) sequencing [10], the Illumina Tru-seq 

Synthetic Long-Read technology [11] and the Oxford Nanopore Technologies sequencing 

platform [12]. With longer sequencing reads, the outputs from the third-generation 

sequencing technology generally span larger regions of the genome. It is believed that 

examination of these regions allows for the identification of more structural variations [13], 

such as insertions, deletions and translocations [5], as well as missing regions in genomes 

[14]. Moreover, the third-generation sequencing technology does not require 

synchronization, which eliminates the errors introduced by PCR (polymerase chain 

reaction) amplification and dephasing as in NGS process [15]. 
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Sequencing data generated from these platforms should be able to be applied to our method 

with proper extensions on algorithms and equations. This data could also be applied to the 

aforementioned double-sampling approach (See Chapter 4, Using double-sampling to 

increase genetic association test power) with proper design.
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Appendix 1. Source code for the statistical test ( in C ) 

 

#define _GNU_SOURCE 

 

#include <string.h> 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

#include "BinomDist.h" 

#include "chisqr.h" 

#include "mapping_func.h" 

#include "split.h" 

/* 

Last update:  21JAN2017 

Created by:  Lisheng Zhou 

 

This program will do the followings: 

* Calculation of LRT (test statistic) 

* Estimation of multilocus genotype frequencies, misclassification rates (error rates) using 

EM algorithm 

* Generate random starting points 
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MAX EM steps:  200  

MAX locus: 10 

MAX individuals: 1000 

 

input file: multi_locus_dataset.csv 

(this input file will be generated from the Simulation program) 

 

*/ 

 

int main() 

{ 

 // BLOCK START: Read in data in the input file  

 // number of tested loci will be calculated from the input file 

 FILE *infile; 

 char infileName[80] = "multi_locus_dataset.csv"; 

 infile = fopen(infileName, "r"); 

 if (infile == NULL) 

 { 

  fprintf(stderr, "Cannot open input file %s!\n", infileName); 

  exit(1); 

 } 

 

 // count:  how many loci are tested in the dataset 
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 int nloci; 

 char term[100]; 

 fscanf(infile, " %100[^\n]", term); 

 char **list; 

 list = split(term, ","); 

  

 int n = 0; 

 while(list[n]) 

 { 

  n++; 

 } 

 nloci = (n - 2) / 2; 

  

 free(list); 

 free(list[0]); 

 

 // count: number of individuals 

 rewind(infile); 

 char test_count[100]; 

 int num_ind = 0; 

 while(fscanf(infile, " %100[^\n]", test_count) != EOF){ 

  num_ind++; 

 } 
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 int ind[num_ind]; 

 int pheno[num_ind]; 

 int x[num_ind][nloci]; 

 int v[num_ind][nloci]; 

 

 int case_count = 0; 

 int cont_count = 0; 

 

 char * line = NULL; //line read in 

 size_t len = 0; 

 ssize_t read;  // length of line 

 

 int order = 0; 

 rewind(infile); 

 while ((read = getline(&line, &len, infile)) != -1) 

 { 

  char **array; 

  array = split(line, ","); 

  sscanf(array[0], "%i", &ind[order]); 

  sscanf(array[1], "%i", &pheno[order]); 

 

  if(pheno[order] == 0) 
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  { 

   cont_count++; 

  } else if (pheno[order] == 1) 

  { 

   case_count++; 

  } 

 

  for (int dat_v = 0; dat_v < nloci; dat_v++) 

  { 

   sscanf(array[dat_v + 2], "%i", &v[order][dat_v]); 

  } 

  for (int dat_x = 0; dat_x < nloci; dat_x++) 

  { 

   sscanf(array[dat_x + 2 + nloci], "%i", &x[order][dat_x]); 

  } 

  order++; 

  free(array[0]); 

  free(array); 

 } 

 fclose(infile); 

 // BLOCK END: Read in data -- with number of loci not specified 
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 /* BLOCK START: Initialization*/ 

 double tolerance = 0.00001;  // difference tolerance to stop EM 

 double diff = 100;   // initialized different 

 

 double q_0 = (double)cont_count / (double)num_ind; // control rate 

 double q_1 = (double)case_count / (double)num_ind; // case rate 

  

 // total number of multilocus genotype (MLG): 3^nloci 

 int total_MLE = (int)pow(3, nloci); 

 

 double *err; 

 err = (double *)malloc(sizeof(double) * 2); 

 double *NullGenoFreq; 

 NullGenoFreq = (double *)malloc(sizeof(double) * total_MLE); 

 double *RandGeno; 

 RandGeno = (double *)malloc(sizeof(double) * total_MLE); 

 

 // Generate random multilocus geneotype (MLG) frequencies and error rates 

 FILE *ConstantFile; 

 char ConstantFileName[80] = "Constant.in"; 

 ConstantFile = fopen(ConstantFileName, "r"); 

 if (ConstantFile == NULL){ 
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  fprintf (stderr, "Cannot open constant input file %s!\n", 

ConstantFileName); 

  exit(1); 

 } 

 long int seed; 

 fscanf(ConstantFile, "%li\n", &seed); 

// double srand48(); 

 srand48(seed); 

 fclose(ConstantFile); 

 

 FILE *ConstantFileOut; 

 ConstantFileOut = fopen(ConstantFileName, "w"); 

 double drand48(); 

 int tempSeed = drand48() * 100000000 ; 

 fprintf(ConstantFileOut, "%i\n", tempSeed); 

 fclose(ConstantFileOut); 

 

 double randSum = 0; 

 double drand48(); 

 

 // generate random starting points for error 

 err[0] = drand48() * 0.03; 

 err[1] = drand48() * 0.03; 
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 for (int i_hap = 0; i_hap < total_MLE; i_hap++) 

 { 

  RandGeno[i_hap] = drand48(); 

  randSum += RandGeno[i_hap]; 

 } 

// printf("starting points:\n"); 

 for (int i_hap2 = 0; i_hap2 < total_MLE; i_hap2++) 

 { 

  NullGenoFreq[i_hap2] = RandGeno[i_hap2] / randSum; 

 

 } 

 /* BLOCK END: Initialization*/ 

 

 /* BLOCK START: EM steps -- calculate NULL model likelihood*/ 

 int step = 0; 

  

 double *pre_geno_freq; // to store the genoype frequencies of the previous step 

 pre_geno_freq = (double *)malloc(sizeof(double) * total_MLE); 

 

 double *pre_err; // to store the error rates of the previous step 

 pre_err = (double *)malloc(sizeof(double) * 2); 
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 double pre_lnSum; // to store the log(sum) of the previous step 

 

 double *inter_geno_freq; 

 inter_geno_freq = (double *)malloc(sizeof(double) * total_MLE); 

  

 double inter_error0, inter_error1, lnSum; 

 

 // while loop starts from here 

 // to initialize the parameters 

 while ((diff >= tolerance) && (step <= 200)) 

 { 

  // START: store previous values 

  for (int init_geno_i = 0; init_geno_i < total_MLE; init_geno_i++) 

  { 

   pre_geno_freq[init_geno_i] = NullGenoFreq[init_geno_i]; 

   if (step > 0) 

   { 

    NullGenoFreq[init_geno_i] = 

inter_geno_freq[init_geno_i]; 

   } 

  } 
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  pre_err[0] = err[0]; 

  pre_err[1] = err[1]; 

   

  if (step > 0) 

  { 

   err[0] = inter_error0; 

   err[1] = inter_error1; 

 

   pre_lnSum = lnSum; 

  } 

  // END: store previous values 

  for (int inter_geno_j = 0; inter_geno_j < total_MLE; inter_geno_j++) 

  { 

   inter_geno_freq[inter_geno_j] = 0; 

 

  } 

 

  lnSum = 0; 

  double errorSum_num_cont = 0; 

  double errorSum_num_case = 0; 

  double errorSum_den_cont = 0; 

  double errorSum_den_case = 0; 
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  for (int i = 0; i < num_ind; i++) 

  { 

   // success rate for binomial probability 

   double p[3]; 

   p[1] = 0.5; 

   if (pheno[i] == 0) 

   { 

    p[0] = err[0]; 

    p[2] = 1 - err[0]; 

   } else if (pheno[i] == 1) 

   { 

    p[0] = err[1]; 

    p[2] = 1 - err[1]; 

   } 

 

   // calculate binomial probability for each genotype 

   double binom[nloci][3]; 

   for (int binom_loc = 0; binom_loc < nloci; binom_loc++) 

   { 

    binom[binom_loc][0] = binomial(x[i][binom_loc], 

v[i][binom_loc], p[0]); 

    binom[binom_loc][1] = binomial(x[i][binom_loc], 

v[i][binom_loc], p[1]); 
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    binom[binom_loc][2] = binomial(x[i][binom_loc], 

v[i][binom_loc], p[2]); 

   } 

 

   // caulculate tau (posterior probability) numerator 

   double *tau_num; 

   tau_num = (double *)malloc(sizeof(double) * total_MLE); 

   for (int tau_num_i = 0; tau_num_i < total_MLE; 

tau_num_i++) 

   { 

    tau_num[tau_num_i] = NullGenoFreq[tau_num_i]; 

    int tau_num_remain = 0; 

    int tau_num_temp = tau_num_i; 

    int tau_num_geno; 

 

 

    for (int tau_num_loc = 0; tau_num_loc < nloci; 

tau_num_loc++) 

    { 

     if (tau_num_loc != nloci - 1) 

     { 

      tau_num_remain = 

tau_num_temp % (int)pow(3, (nloci - 1 - tau_num_loc)); 
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      tau_num_geno = 

(tau_num_temp - tau_num_remain) / (int)pow(3, (nloci - 1 - tau_num_loc)); 

      tau_num_temp = 

tau_num_remain; 

     }else{ 

      tau_num_geno = 

tau_num_remain; 

     } 

     //printf("%i-%i:%lf,", tau_num_loc, 

tau_num_geno, binom[tau_num_loc][tau_num_geno]); 

     tau_num[tau_num_i] *= 

binom[tau_num_loc][tau_num_geno]; 

    } 

 

   } 

 

   // calculate tau denominator 

   double tau_sum = 0; 

   double temp_sum = 0; // calculate the sum of pre-LN for each 

line 

   for (int tau_den_i = 0; tau_den_i < total_MLE; tau_den_i++) 

   { 

    tau_sum += tau_num[tau_den_i]; 
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    if (pheno[i] == 0) 

    { 

     temp_sum += tau_num[tau_den_i] * q_0;  

    //  temp_sum += 

tau_num[tau_den_i]; 

    }else if (pheno[i] == 1) 

    { 

    // temp_sum += tau_num[tau_den_i]; 

     temp_sum += tau_num[tau_den_i] * q_1; 

    } 

   } 

 

   // sum of LN 

   lnSum += log(temp_sum); 

 

   // calculate tau 

   double *tau; 

   tau = (double *)malloc(sizeof(double) * total_MLE); 

   for (int tau_i = 0; tau_i < total_MLE; tau_i++) 

   { 

    tau[tau_i] = tau_num[tau_i] / tau_sum; 

    inter_geno_freq[tau_i] += tau[tau_i]; // intermediate 

genotype frequency of a specific locus 
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   } 

   // error calculation -- numerator 

   double error_num = 0; 

 

   for (int error_num_i = 0; error_num_i < total_MLE; 

error_num_i++) 

   { 

    int error_num_remain = 0; 

    int error_num_temp = error_num_i; 

    int error_num_geno; 

 

 

    for (int error_num_loc = 0; error_num_loc < nloci; 

error_num_loc++) 

    { 

     if (error_num_loc != nloci - 1) 

     { 

      error_num_remain = 

error_num_temp % (int)pow(3, (nloci - 1 - error_num_loc)); 

      error_num_geno = 

(error_num_temp - error_num_remain) / (int)pow(3, (nloci - 1 - error_num_loc)); 

      error_num_temp = 

error_num_remain; 
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     }else{ 

      error_num_geno = 

error_num_remain; 

     } 

     if (error_num_geno == 0) 

     { 

      error_num += tau[error_num_i] 

* (double)x[i][error_num_loc]; 

     } else if (error_num_geno == 2) 

     { 

      error_num += tau[error_num_i] 

* (double)(v[i][error_num_loc] - x[i][error_num_loc]); 

     } 

    } 

 

   } 

 

   // error calculation -- denominator 

   double error_den = 0; 

 

   for (int error_den_i = 0; error_den_i < total_MLE; 

error_den_i++) 

   { 
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    int error_den_remain = 0; 

    int error_den_temp = error_den_i; 

    int error_den_geno; 

 

 

    for (int error_den_loc = 0; error_den_loc < nloci; 

error_den_loc++) 

    { 

     if (error_den_loc != nloci - 1) 

     { 

      error_den_remain = 

error_den_temp % (int)pow(3, (nloci - 1 - error_den_loc)); 

      error_den_geno = 

(error_den_temp - error_den_remain) / (int)pow(3, (nloci - 1 - error_den_loc)); 

      error_den_temp = 

error_den_remain; 

     }else{ 

      error_den_geno = 

error_den_remain; 

     } 

     if (error_den_geno == 0) 

     { 
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      error_den += tau[error_den_i] * 

(double)v[i][error_den_loc]; 

     } else if (error_den_geno == 2) 

     { 

      error_den += tau[error_den_i] * 

(double)v[i][error_den_loc]; 

     } 

    } 

 

   } 

   if (pheno[i] == 0) 

   { 

    errorSum_num_cont += error_num; 

    errorSum_den_cont += error_den; 

   }else if (pheno[i] == 1) 

   { 

    errorSum_num_case += error_num; 

    errorSum_den_case += error_den; 

   } 

 

   free(tau_num); 

   free(tau); 
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  } 

  /* calculate INTERMEDIATE ERROR RATES */ 

  inter_error0 = errorSum_num_cont / errorSum_den_cont; 

  inter_error1 = errorSum_num_case / errorSum_den_case; 

  // printf("%lf, %lf\n", inter_error0, inter_error1); 

  // printf("%lf\n", lnSum); 

 

  /* calculate INTERMEDIATE GENOTYPE FREQUENCIES */ 

  for (int inter_geno_freq_i = 0; inter_geno_freq_i < total_MLE; 

inter_geno_freq_i++) 

  { 

   inter_geno_freq[inter_geno_freq_i] = 

inter_geno_freq[inter_geno_freq_i] / (double)num_ind; 

   // printf("%lf\n", inter_geno_freq[inter_geno_freq_i]); 

  } 

 

  if (step > 0) 

  { 

   diff = lnSum - pre_lnSum; 

  } 

  step++; 

 } 

 double H0_LN = pre_lnSum; 
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 printf ("EM ends...\nNull\nsteps: %i\n", step); 

 printf ("LN_H0: %lf\n", H0_LN); 

 printf ("MLG freq:\n"); 

 

 

 for (int pre_geno_freq_i = 0; pre_geno_freq_i < total_MLE; pre_geno_freq_i++) 

 { 

  printf("%lf,", pre_geno_freq[pre_geno_freq_i]); 

//  fprintf(bootstrap, "%lf,", pre_geno_freq[pre_geno_freq_i]); 

 } 

 printf("\n"); 

 printf ("Error: %lf, %lf\n", pre_err[0], pre_err[1]);  

// fprintf(bootstrap, "\n%lf, %lf\n", pre_err[0], pre_err[1]); 

 

 

 /* BLOCK START:EM steps -- calculate ALTERNATIVE model likelihood*/ 

 int alt_step = 0; 

 

 // MLG freq and errors during calculation 

 double *err_alt; 

 err_alt = (double *)malloc(sizeof(double) * 2); 

 double *CaseGenoFreq; 

 CaseGenoFreq = (double *)malloc(sizeof(double) * total_MLE); 
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 double *ContGenoFreq; 

 ContGenoFreq = (double *)malloc(sizeof(double) * total_MLE); 

 

 // to store MLG freq of the previous step for case and control 

 double *pre_geno_freq_case; 

 pre_geno_freq_case = (double *)malloc(sizeof(double) * total_MLE); 

 double *pre_geno_freq_cont; 

 pre_geno_freq_cont = (double *)malloc(sizeof(double) * total_MLE); 

 

 // to store error rates of the previous step -- alternative 

 double *pre_err_alt; 

 pre_err_alt = (double *)malloc(sizeof(double) * 2); 

  

 // to store log of sum of the previous step -- alternative 

 double pre_lnSum_alt; 

 

 // intermediate MLG freq 

 double *inter_geno_freq_case; 

 inter_geno_freq_case = (double *)malloc(sizeof(double) * total_MLE); 

 double *inter_geno_freq_cont; 

 inter_geno_freq_cont = (double *)malloc(sizeof(double) * total_MLE); 

 

 // intermediate error rates 
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 double inter_error0_alt, inter_error1_alt, lnSum_alt; 

  

 double diff_alt = 100; 

 // while loop 

 // use the values from null 

 while ((diff_alt >= tolerance) && (alt_step <= 200)) 

 { 

  // START: use the MLG freq from null and store previous values 

  for (int init_geno_m = 0; init_geno_m < total_MLE; init_geno_m++) 

  { 

   if ( alt_step == 0 ) {  

    pre_geno_freq_case[init_geno_m] = 

pre_geno_freq[init_geno_m]; 

    pre_geno_freq_cont[init_geno_m] = 

pre_geno_freq[init_geno_m]; 

 

    CaseGenoFreq[init_geno_m] = 

pre_geno_freq[init_geno_m]; 

    ContGenoFreq[init_geno_m] = 

pre_geno_freq[init_geno_m]; 

    

   } 

   else if ( alt_step > 0 ) { 
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    pre_geno_freq_case[init_geno_m] = 

CaseGenoFreq[init_geno_m]; 

    pre_geno_freq_cont[init_geno_m] = 

ContGenoFreq[init_geno_m]; 

 

    CaseGenoFreq[init_geno_m] = 

inter_geno_freq_case[init_geno_m]; 

    ContGenoFreq[init_geno_m] = 

inter_geno_freq_cont[init_geno_m]; 

     

   } 

  } 

  //pre_err_alt[0] = pre_err[0]; 

  //pre_err_alt[1] = pre_err[1]; 

 

  if (alt_step > 0) 

   

  { 

   pre_err_alt[0] = err_alt[0]; 

   pre_err_alt[1] = err_alt[1]; 

   err_alt[0] = inter_error0_alt; 

   err_alt[1] = inter_error1_alt; 

   pre_lnSum_alt = lnSum_alt; 
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  } else if ( alt_step == 0 ) { 

   pre_err_alt[0] = pre_err[0]; 

   pre_err_alt[1] = pre_err[1]; 

   err_alt[0] = pre_err[0]; 

   err_alt[1] = pre_err[1]; 

  } 

   // END: store previous values 

   

  for (int inter_geno_n = 0; inter_geno_n < total_MLE; inter_geno_n++) 

  { 

   inter_geno_freq_case[inter_geno_n] = 0; 

   inter_geno_freq_cont[inter_geno_n] = 0; 

  } 

 

  lnSum_alt = 0; 

 

  double errorSum_num_cont_alt = 0; 

  double errorSum_num_case_alt = 0; 

  double errorSum_den_cont_alt = 0; 

  double errorSum_den_case_alt = 0; 

 

  for (int m = 0; m < num_ind; m++) 

  { 
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   // success rate for binomial probability 

   double p_alt[3]; 

   p_alt[1] = 0.5; 

   if (pheno[m] == 0) 

   { 

    p_alt[0] = err_alt[0]; 

    p_alt[2] = 1 - err_alt[0]; 

   }else if (pheno[m] == 1) 

   { 

    p_alt[0] = err_alt[1]; 

    p_alt[2] = 1 - err_alt[1]; 

   } 

 

   // binomial probability  

   double binom_alt[nloci][3]; 

   for (int binom_loc_alt = 0; binom_loc_alt < nloci; 

binom_loc_alt++) 

   { 

    binom_alt[binom_loc_alt][0] = 

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[0]); 

    binom_alt[binom_loc_alt][1] = 

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[1]); 
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    binom_alt[binom_loc_alt][2] = 

binomial(x[m][binom_loc_alt], v[m][binom_loc_alt], p_alt[2]); 

   } 

 

   // tau -- numerator 

   double *tau_num_case; 

   tau_num_case = (double *)malloc(sizeof(double) * 

total_MLE); 

   double *tau_num_cont; 

   tau_num_cont = (double *)malloc(sizeof(double) * 

total_MLE); 

 

   for (int tau_num_m = 0; tau_num_m < total_MLE; 

tau_num_m++) 

   { 

    tau_num_case[tau_num_m] = 

CaseGenoFreq[tau_num_m]; 

    tau_num_cont[tau_num_m] = 

ContGenoFreq[tau_num_m]; 

    int tau_num_remain_alt = 0; 

    int tau_num_temp_alt = tau_num_m; 

    int tau_num_geno_alt; 

    /* 
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    if (( m == 0 ) && ( tau_num_m == 1 )) { 

     printf( "Case: %lf\n", 

tau_num_case[tau_num_m] ); 

     printf( "Cont: %lf\n", 

tau_num_cont[tau_num_m] ); 

    } 

    */ 

 

    for (int tau_num_loc_alt = 0; tau_num_loc_alt < 

nloci; tau_num_loc_alt++) 

    { 

     if (tau_num_loc_alt != nloci - 1) 

     { 

      tau_num_remain_alt = 

tau_num_temp_alt % (int)pow(3, (nloci - 1 - tau_num_loc_alt)); 

      tau_num_geno_alt = 

(tau_num_temp_alt - tau_num_remain_alt) / (int)pow(3, (nloci - 1 - tau_num_loc_alt)); 

      tau_num_temp_alt = 

tau_num_remain_alt; 

     }else{ 

      tau_num_geno_alt = 

tau_num_remain_alt; 

     } 
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     if (pheno[m] == 1) 

     {  

      tau_num_case[tau_num_m] *= 

binom_alt[tau_num_loc_alt][tau_num_geno_alt]; 

     }else 

     { 

      tau_num_cont[tau_num_m] *= 

binom_alt[tau_num_loc_alt][tau_num_geno_alt]; 

     } 

    } 

   } 

    

 

   // tau --denominator 

   double tau_sum_case = 0; 

   double tau_sum_cont = 0; 

   double temp_sum_alt = 0; 

   for (int tau_den_m = 0; tau_den_m < total_MLE; 

tau_den_m++) 

   { 

    

    if (pheno[m] != 1) 

    { 
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     tau_sum_cont += 

tau_num_cont[tau_den_m]; 

     temp_sum_alt += 

tau_num_cont[tau_den_m] * q_0; 

    // temp_sum_alt += 

tau_num_cont[tau_den_m]; 

    }else if (pheno[m] == 1) 

    { 

     tau_sum_case += 

tau_num_case[tau_den_m]; 

    // temp_sum_alt += 

tau_num_cont[tau_den_m]; 

     temp_sum_alt += 

tau_num_case[tau_den_m] * q_1; 

    } 

   } 

 

   // sum of LN 

   lnSum_alt += log(temp_sum_alt); 

 

   // tau 

   double *tau_case; 

   tau_case = (double *)malloc(sizeof(double) * total_MLE); 



144 
	

 

   double *tau_cont; 

   tau_cont = (double *)malloc(sizeof(double) * total_MLE); 

   for (int tau_m = 0; tau_m < total_MLE; tau_m++) 

   { 

    tau_case[tau_m] = tau_num_case[tau_m] / 

tau_sum_case; 

    tau_cont[tau_m] = tau_num_cont[tau_m] / 

tau_sum_cont; 

    if ( pheno[m] == 1 ) { 

     inter_geno_freq_case[tau_m] += 

tau_case[tau_m]; 

    } else if ( pheno[m] == 0 ) { 

     inter_geno_freq_cont[tau_m] += 

tau_cont[tau_m]; 

    } 

   } 

 

 

   //error calculation -- numerator 

   double error_num_alt = 0; 

 

   for (int error_num_m = 0; error_num_m < total_MLE; 

error_num_m++) 
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   { 

    int error_num_remain_alt = 0; 

    int error_num_temp_alt = error_num_m; 

    int error_num_geno_alt; 

 

 

    for (int error_num_loc_alt = 0; error_num_loc_alt < 

nloci; error_num_loc_alt++) 

    { 

     if (error_num_loc_alt != nloci - 1) 

     { 

      error_num_remain_alt = 

error_num_temp_alt % (int)pow(3, (nloci - 1 - error_num_loc_alt)); 

      error_num_geno_alt = 

(error_num_temp_alt - error_num_remain_alt) / (int)pow(3, (nloci - 1 - 

error_num_loc_alt)); 

      error_num_temp_alt = 

error_num_remain_alt; 

     }else{ 

      error_num_geno_alt = 

error_num_remain_alt; 

     } 

     if (error_num_geno_alt == 0) 
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     { 

      if (pheno[m] == 0) 

      { 

       error_num_alt += 

tau_cont[error_num_m] * (double)x[m][error_num_loc_alt]; 

      }else if (pheno[m] == 1) 

      { 

       error_num_alt += 

tau_case[error_num_m] * (double)x[m][error_num_loc_alt]; 

      } 

     } else if (error_num_geno_alt == 2) 

     { 

      if (pheno[m] == 0) 

      { 

       error_num_alt += 

tau_cont[error_num_m] * (double)(v[m][error_num_loc_alt] - x[m][error_num_loc_alt]); 

      }else if (pheno[m] == 1) 

      { 

       error_num_alt += 

tau_case[error_num_m] * (double)(v[m][error_num_loc_alt] - x[m][error_num_loc_alt]); 

      } 

     } 

    } 
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   } 

 

   // error calculation -- denominator 

   double error_den_alt = 0; 

 

   for (int error_den_m = 0; error_den_m < total_MLE; 

error_den_m++) 

   { 

    int error_den_remain_alt = 0; 

    int error_den_temp_alt = error_den_m; 

    int error_den_geno_alt; 

 

 

    for (int error_den_loc_alt = 0; error_den_loc_alt < 

nloci; error_den_loc_alt++) 

    { 

     if (error_den_loc_alt != nloci - 1) 

     { 

      error_den_remain_alt = 

error_den_temp_alt % (int)pow(3, (nloci - 1 - error_den_loc_alt)); 

      error_den_geno_alt = 

(error_den_temp_alt - error_den_remain_alt) / (int)pow(3, (nloci - 1 - error_den_loc_alt)); 
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      error_den_temp_alt = 

error_den_remain_alt; 

     }else{ 

      error_den_geno_alt = 

error_den_remain_alt; 

     } 

     if (error_den_geno_alt == 0) 

     { 

      if (pheno[m] == 0) 

      { 

       error_den_alt += 

tau_cont[error_den_m] * (double)v[m][error_den_loc_alt]; 

      }else if (pheno[m] == 1) 

      { 

       error_den_alt += 

tau_case[error_den_m] * (double)v[m][error_den_loc_alt]; 

      } 

     } else if (error_den_geno_alt == 2) 

     { 

      if (pheno[m] == 0) 

      { 

       error_den_alt += 

tau_cont[error_den_m] * (double)v[m][error_den_loc_alt]; 
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      }else if (pheno[m] == 1) 

      { 

       error_den_alt += 

tau_case[error_den_m] * (double)v[m][error_den_loc_alt]; 

      } 

     } 

    } 

 

   } 

   if (pheno[m] == 0) 

   { 

    errorSum_num_cont_alt += error_num_alt; 

    errorSum_den_cont_alt += error_den_alt; 

   }else if (pheno[m] == 1) 

   { 

    errorSum_num_case_alt += error_num_alt; 

    errorSum_den_case_alt += error_den_alt; 

   } 

 

   free(tau_num_case); 

   free(tau_num_cont); 

   free(tau_case); 

   free(tau_cont); 
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  } 

   

  /* INTERMEDIATE ERROR RATES */ 

  inter_error0_alt = errorSum_num_cont_alt / errorSum_den_cont_alt; 

  inter_error1_alt = errorSum_num_case_alt / errorSum_den_case_alt; 

   

  /* INTERMEDIATE GENOTYPE FREQUENCIES */ 

  for (int inter_geno_freq_m = 0; inter_geno_freq_m < total_MLE; 

inter_geno_freq_m++) 

  { 

   inter_geno_freq_case[inter_geno_freq_m] = 

inter_geno_freq_case[inter_geno_freq_m] / (double)case_count; 

   inter_geno_freq_cont[inter_geno_freq_m] = 

inter_geno_freq_cont[inter_geno_freq_m] / (double)cont_count; 

 

  } 

 

 // printf("CaseFreq: %lf\n", inter_geno_freq_case[0]); 

 // printf("ContFreq: %lf\n", inter_geno_freq_cont[0]); 

 

  if (alt_step > 0) 

  { 

   diff_alt = lnSum_alt - pre_lnSum_alt; 
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  } 

  alt_step++; 

 } 

 

 double H1_LN = pre_lnSum_alt; 

 

 printf("Alternative\nsteps: %i\n", alt_step); 

 printf("LN_H1: %lf\n", H1_LN); 

 printf("MLG freq:\nCase:\n"); 

  

 for (int pre_geno_freq_m1 = 0; pre_geno_freq_m1 < total_MLE; 

pre_geno_freq_m1++) 

 { 

  printf("%lf,", pre_geno_freq_case[pre_geno_freq_m1]); 

 } 

 printf("\n"); 

 printf("Control\n"); 

 for (int pre_geno_freq_m2 = 0; pre_geno_freq_m2 < total_MLE; 

pre_geno_freq_m2++) 

 { 

  printf("%lf,", pre_geno_freq_cont[pre_geno_freq_m2]); 

 } 

 printf("\n"); 
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 printf ("Error: %lf, %lf\n", pre_err_alt[0], pre_err_alt[1]);  

 

 /* ALTERNATIVE - END */ 

 double LRT = 2 * (H1_LN - H0_LN); 

 // int df = total_MLE + 1; 

 printf("LRT:\t%lf\n", LRT); 

 

 free(inter_geno_freq); 

 free(pre_geno_freq); 

 free(pre_err); 

 

 free(err); 

 free(NullGenoFreq); 

 free(RandGeno); 

 

 free(inter_geno_freq_case); 

 free(inter_geno_freq_cont); 

 free(pre_geno_freq_case); 

 free(pre_geno_freq_cont); 

 free(pre_err_alt); 
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 free(err_alt); 

 free(CaseGenoFreq); 

 free(ContGenoFreq); 

  

 return 0; 

} 
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Appendix 2. Source code for the simulation process 

2.1. Generate input file for the simulation program (in C)  

/*  

 

Date:   June 06, 2016 

Created by: Lisheng Zhou 

 

This program will generate an input file Sim_parameter.in  

for data simulation program in the Appendix Section 2.2 Simulation program 

 

Input file: 

1. Vector_setting_fixed.in 

 Format of this input file: 

 Line 1: number of locus 

Line 2: number of controls 

Line 3: number of cases 

Line 4: sequencing coverage value 

Line 5: misclassification in controls 

Line 6: misclassification in cases 

Line 7: based-line odds-ratio 

Line 8: odds-ratio 

Line 9: mode of inheritance (dominant only for this version, use “1”) 
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From Line 10: each line contains one of the population MLG frequencies value 

(Line 10 should be the non-disease MLG frequency)  

 

2.  Constant.in: a file containing random number 

 

Output file: 

1. Sim_parameter.in 

 

*/ 

 

#include <string.h> 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include "mapping_func.h" 

 

int main() 

{ 

 FILE *infile; 

 char infileName[80] = "Vector_setting_fixed.in"; 

 infile = fopen(infileName, "r"); 

 if (infile == NULL){ 

  fprintf(stderr, "Cannot open infile file %s!\n", infileName); 
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  exit(1); 

 } 

 

 // Read in parameters 

 // line #1. number of loci 

 int nloci; 

 fscanf(infile, "%i", &nloci); 

 

 int nMLE = pow(3, nloci); 

 

 // line #2. number of controls 

 int ncontrol; 

 fscanf(infile, "%i", &ncontrol);  

 

 // line #3. number of cases 

 int ncase; 

 fscanf(infile, "%i", &ncase);  

 

 // line #4. coverage 

 int cvrg; 

 fscanf(infile, "%i", &cvrg); 

 

 // line #5. error rate for control 
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 double err_cont; 

 fscanf(infile, "%lg", &err_cont); 

 

 // line #6. error rate for case 

 double err_case; 

 fscanf(infile, "%lg", &err_case); 

 

 // line #7. disease prevalence 

 double alpha; 

 fscanf(infile, "%lg", &alpha); 

 

 // line #8. odds ratio 

 double OR; 

 fscanf(infile, "%lg", &OR); 

 

 // line #9. model 

 // 1 --> dominant 

 int model; 

 fscanf(infile, "%i", &model); 

 

 

// printf("%i, %lg, %lg, %i\n", nloci, prevalence, OR, model);  
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 // END Read in parameters 

 

 // Computation 

 // beta 

 double beta = log(OR); 

 

// printf("%lg\n", beta); 

 

 // weight w_j 

 double *w; 

 w = (double *) malloc(sizeof(double) * nMLE); 

  

 if (model == 1) 

 // dominant model, this is the only model considered in this program 

 { 

  w[0] = 0; 

  for (int w_i = 1; w_i < nMLE; w_i++) 

  { 

   w[w_i] = 1; 

  } 

 } 

 /* 

 // generate randomized data 
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 double *tempMLE; 

 tempMLE = (double *) malloc(sizeof(double) * nMLE); 

 double tempSum = 0; 

 

 for(int temp_i = 0; temp_i < nMLE; temp_i++) 

 { 

  FILE *ConstantFile; 

  char ConstantFileName[80] = "Constant.in"; 

  ConstantFile = fopen(ConstantFileName, "r"); 

  if (ConstantFile == NULL){ 

   fprintf (stderr, "Cannot open constant input file %s!\n", 

ConstantFileName); 

   exit(1); 

  } 

  long int seed;  

  fscanf(ConstantFile, "%li\n", &seed); 

  double srand48(); 

  srand48(seed); 

  fclose(ConstantFile); 

 

  FILE *ConstantFileOut; 

  ConstantFileOut = fopen(ConstantFileName, "w"); 

  double drand48(); 
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  long int tempSeed = drand48() * 100000000 ; 

  fprintf(ConstantFileOut, "%li\n", tempSeed); 

  fclose(ConstantFileOut); 

 

  double drand48(); 

 

  tempMLE[temp_i] = drand48(); 

  tempSum += tempMLE[temp_i]; 

 } 

 */ 

 

 // population MLE 

 double *popMLE; 

 popMLE = (double *) malloc(sizeof(double) * nMLE); 

 

 for (int pop_i = 0; pop_i < nMLE; pop_i++) 

 { 

  fscanf(infile, "%lg", &popMLE[pop_i]); 

 // popMLE[pop_i] = tempMLE[pop_i] / tempSum; 

//  printf("%lg\n", popMLE[pop_i]); 

 } 

  

 fclose(infile); 
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 // Pr(aff|MLG) 

 // control 

 double *Pr0_j; 

 Pr0_j = (double *) malloc(sizeof(double) * nMLE); 

 // case 

 double *Pr1_j; 

 Pr1_j = (double *) malloc(sizeof(double) * nMLE); 

 

 // Pr(aff,MLG) 

 // control 

 double *Pr0MLG; 

 Pr0MLG = (double *) malloc(sizeof(double) * nMLE); 

 // case 

 double *Pr1MLG; 

 Pr1MLG = (double *) malloc(sizeof(double) * nMLE); 

 

 

 // MLEs 

 // control 

 double *MLE_0; 

 MLE_0 = (double *) malloc(sizeof(double) * nMLE); 

 // case 
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 double *MLE_1; 

 MLE_1 = (double *) malloc(sizeof(double) * nMLE); 

 

 double prevalence_unaff = 0; 

 double prevalence_aff = 0; 

 

 for (int pr_i = 0; pr_i < nMLE; pr_i++) 

 { 

  Pr0_j[pr_i] = 1 / ( 1 + exp( alpha + beta*w[pr_i] )); 

  Pr1_j[pr_i] = exp( alpha + beta*w[pr_i] ) / ( 1 + exp( alpha + 

beta*w[pr_i] )); 

  Pr0MLG[pr_i] = Pr0_j[pr_i] * popMLE[pr_i]; 

  prevalence_unaff += Pr0MLG[pr_i]; 

  Pr1MLG[pr_i] = Pr1_j[pr_i] * popMLE[pr_i]; 

  prevalence_aff += Pr1MLG[pr_i]; 

 } 

 

 for (int MLEi = 0; MLEi < nMLE; MLEi++) 

 { 

  MLE_0[MLEi] = Pr0MLG[MLEi] / prevalence_unaff; 

  MLE_1[MLEi] = Pr1MLG[MLEi] / prevalence_aff; 

 } 
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 FILE *outfile; 

 char outfileName[80] = "Sim_parameter.in"; 

 outfile = fopen(outfileName, "w"); 

 fprintf( outfile, "%i\n", nloci ); 

 fprintf( outfile, "%i\n", ncontrol ); 

 fprintf( outfile, "%i\n", ncase ); 

 fprintf( outfile, "%i\n", cvrg ); 

 fprintf( outfile, "%lg\n", err_cont ); 

 fprintf( outfile, "%lg\n", err_case ); 

  

  

 for (int i1 = 0; i1< nMLE; i1++) 

 { 

  fprintf( outfile, "%.16lg\n", MLE_0[i1] ); 

 } 

 fprintf( outfile, "-99\n" ); 

 for (int i2 = 0; i2 < nMLE; i2++) 

 { 

  fprintf( outfile, "%.16lg\n", MLE_1[i2] ); 

 } 

 

 fclose(outfile); 
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 free(MLE_1); 

 free(MLE_0); 

 free(Pr1MLG); 

 free(Pr0MLG); 

 free(Pr1_j); 

 free(Pr0_j); 

 free(popMLE); 

// free(tempMLE); 

 free(w); 

 

 return 0; 

} 

2.2. Simulation program (in C ) 

/* 

Date:  May 27, 2016 

Created by: Lisheng Zhou 

 

This program is to do simulations according to  

an input file: 

1. Sim_parameter.in  
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(this input is generated by the program described in the Appendix Section 2.1 Generate 

input file for the simulation program) 

 

Output file: 

1. multi_locus_dataset.csv 

 

 

************************************* 

Updated: 06/02/2016 by Lisheng Zhou 

 * Format of the input file is updated 

  - Sim_parameter.in 

 

************************************* 

 

 */ 

 

#include <string.h> 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include "BinomDist.h" 

#include "split.h" 

#include "mapping_func.h" 



166 
	

 

#include "x_mapping.h" 

 

typedef double error[2]; // double: list to store error rates 

typedef double array3[3]; // double: array with 3 elements 

int main() 

{ 

 FILE *infile; 

 char infileName[80] = "Sim_parameter.in"; 

 infile = fopen(infileName, "r"); 

 if (infile == NULL){ 

  fprintf(stderr, "Cannot open parameter input file %s!\n", infileName); 

  exit(1); 

 } 

 

 // Read in parameters from input file  

 

 // line #1. number of loci 

 

 int nloci; 

 fscanf(infile, "%i", &nloci);  

 

 int nMLE = pow(3, nloci); // number of MLEs 
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 // line #2. number of controls 

 int ncontrol; 

 fscanf(infile, "%i", &ncontrol);  

 

 // line #3. number of cases 

 int ncase; 

 fscanf(infile, "%i", &ncase);  

 

 // line #4. coverage 

 int cvrg; 

 fscanf(infile, "%i", &cvrg); 

 

 // line #5. error rate for control 

 error err; 

 fscanf(infile, "%lg", &err[0]); 

 

 // line #6. error rate for case 

 fscanf(infile, "%lg", &err[1]); 

 

 // from line #7: MLEs 

 

 // memory allocation for MLEs 

 double *MLE; 



168 
	

 

 MLE = (double *)malloc(sizeof(double) * nMLE); 

 

 for (int scan_i = 0; scan_i < nMLE; scan_i++) 

 { 

  fscanf(infile, "%lg", &MLE[scan_i]); 

 } 

  

 int check; 

 fscanf(infile, "%i", &check); 

 if (check != -99) 

 { 

  fprintf(stderr, "Number of lines for MLEs is not correct!\n"); 

  exit(1); 

 } 

 

 double *MLE_alt; 

 MLE_alt = (double *)malloc(sizeof(double) * nMLE); 

 

 for (int scan_alt = 0; scan_alt < nMLE; scan_alt++) 

 { 

  fscanf(infile, "%lg", &MLE_alt[scan_alt]); 

//  printf("%.16lg\n", MLE_alt[scan_alt]); 

 } 
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 fclose(infile); 

 

 // print out inputs 

 // printf("%i\n%i\n%i\n%i\n", nloci, ncontrol, ncase, cvrg); 

 // printf("%lf\n%lf\n", err[0], err[1]); 

 /* 

 printf("MLEs:\n"); 

 for (int i = 0; i < nMLE; i++) 

 { 

  printf("%lf\n", MLE[i]); 

 } 

 */ 

 // --------------------------------DATA-SIMULATION----------------------------------

--- 

 

 FILE *outfile; 

 char outfileName[80] = "multi_locus_dataset.csv"; 

 outfile = fopen(outfileName, "w"); 

 

 int Y; // phenotype 

 // MLG 

 int *MLG; 
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 MLG = (int *)malloc(sizeof(int) * nloci); 

 // success rate  

 double* successrate; 

 successrate = (double *)malloc(sizeof(double) * nloci); 

 // x 

 int* xarray; 

 xarray = (int *)malloc(sizeof(int) * nloci); 

 

 for (int individual = 0; individual < ncontrol+ncase; individual++) 

 { 

  fprintf(outfile, "%i,", individual); 

 

  if (individual < ncontrol){ 

   Y = 0; 

  } else { 

   Y = 1; 

  } 

 

  fprintf(outfile, "%i,", Y); 

 

  for (int vi = 0; vi < nloci; vi++) 

  { 

   fprintf(outfile, "%i,", cvrg); 
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  } 

 

  // [1] simulate multi-locus genotype 

  // generate random number 1 for genotype simulation 

  FILE *ConstantFile; 

  char ConstantFileName[80] = "Constant.in"; 

  ConstantFile = fopen(ConstantFileName, "r"); 

  if (ConstantFile == NULL){ 

   fprintf (stderr, "Cannot open constant input file %s!\n", 

ConstantFileName); 

   exit(1); 

  } 

  long int seed;  

  fscanf(ConstantFile, "%li\n", &seed); 

  double srand48(); 

  srand48(seed); 

  fclose(ConstantFile); 

 

  FILE *ConstantFileOut; 

  ConstantFileOut = fopen(ConstantFileName, "w"); 

  double drand48(); 

  long int tempSeed = drand48() * 100000000 ; 

  fprintf(ConstantFileOut, "%li\n", tempSeed); 
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  fclose(ConstantFileOut); 

 

  double drand48(); 

  double r_g; 

  r_g = drand48(); 

 

 // printf("random number 1: %.9lf\n", r_g); 

 

  double g_sum = 0; 

  int tempMLG; 

  double tempMLE; 

 

  for ( int i_g = 0; i_g < nMLE; i_g++ ) 

  { 

   if ( Y == 0 ) 

   { 

    tempMLE = MLE[i_g]; 

   } else if ( Y == 1 ) 

   { 

    tempMLE = MLE_alt[i_g]; 

   } 

 

   if (( r_g > g_sum ) && ( r_g <= (g_sum + tempMLE) ))  
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   { 

    tempMLG = i_g; 

    break; 

   }  

   g_sum += tempMLE; 

 

  } 

  // printf( "%i\n", tempMLG); 

 

  // convert the number into multi-locus genotype 

  map_in( tempMLG, nloci, MLG ); 

 

 /* 

  printf("selection of MLG-"); 

  for (int printMLGi = 0; printMLGi < nloci; printMLGi++ ) 

  { 

   printf("%i", MLG[printMLGi]); 

  } 

  printf("\n"); 

  

  printf("Error rates: %0.3f, %0.3f\n", err[0], err[1]); 

 */ 

  // [2] simulate alternative read counts (x) 
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  // generate random number 2 for x simulation 

  FILE *ConstantFile2; 

  ConstantFile2 = fopen(ConstantFileName, "r"); 

  if (ConstantFile2 == NULL){ 

   fprintf (stderr, "Cannot open constant input file %s!\n", 

ConstantFileName); 

   exit(1); 

  } 

  long int seed2;  

  fscanf(ConstantFile2, "%li\n", &seed2); 

  //double srand48(); 

  srand48(seed2); 

  fclose(ConstantFile2); 

 

  FILE *ConstantFileOut2; 

  ConstantFileOut2 = fopen(ConstantFileName, "w"); 

  double drand48(); 

  long int tempSeed2 = drand48() * 100000000 ; 

  fprintf(ConstantFileOut2, "%li\n", tempSeed2); 

  fclose(ConstantFileOut2); 

 

  double drand48(); 

  double r_x; 



175 
	

 

  r_x = drand48(); 

 

 

  // success rate of binomial distribution 

  array3 p; 

 

  p[0] = err[Y]; 

  p[1] = 0.5; 

  p[2] = 1 - err[Y]; 

 

  // success rates according to MLG 

  for (int success_i = 0; success_i < nloci; success_i++) 

  { 

   successrate[success_i] = p[MLG[success_i]]; 

   // printf("%lf\n", successrate[success_i]); 

  } 

 

  // a table of X probabiluty according to the multi-locus genotype 

 

  // number of total possible x 

  int total_x_order = (int) pow( cvrg+1, nloci ); 

  // sum of probabilities of x 

  double sum_x = 0; 
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  for ( int x_i = 0; x_i < total_x_order; x_i++ ) 

  { 

   x_map_in( x_i, nloci, xarray, cvrg ); 

   double temp_sum = 1; 

   for ( int xnloci = 0; xnloci < nloci; xnloci++ ) 

   { 

  //  printf("%0.9lf,", binomial(xarray[xnloci], cvrg, 

successrate[xnloci])); 

    temp_sum *= binomial(xarray[xnloci], cvrg, 

successrate[xnloci]); 

   } 

  // printf("\nPr(x1,x2,x3,x4): %0.9lf\n", temp_sum); 

  // printf("cumulative probability: %0.9lf\n", sum_x+temp_sum); 

   if ((r_x > sum_x) && (r_x <= sum_x + temp_sum)) 

   { 

    break; 

   } else { 

    sum_x += temp_sum; 

 

   } 

  } 

 



177 
	

 

 // printf("\nrandom number 2: %.9lf\nselected x:", r_x); 

  for ( int print_x = 0; print_x < nloci; print_x++ ) 

  { 

 //  printf("%i,", xarray[print_x]); 

   fprintf(outfile, "%i,", xarray[print_x]); 

  } 

 // printf("\n"); 

  fprintf(outfile, "\n"); 

 

 } 

 

 fclose(outfile); 

 

 // free(x); 

 free(xarray); 

 free(successrate); 

 free(MLG); 

 free(MLE_alt); 

 free(MLE); 

 

 return 0; 

}
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Appendix 3. Source code for the permutation step ( in R ) 

 

## Date: 03/30/2016 

## Created by: Lisheng Zhou 

## Purpose: data simulation for bootstrap based on estimated parameters 

 

## ==============================READ IN DATA 

 

##setwd("C:/Users/zhou/Desktop/Today/R bootstrap simulation") 

ori_data<-read.csv("multi_locus_dataset.csv",header=F) 

 

## number of loci 

n.loci=(dim(ori_data)[2]-2)/2 

## number of individuals 

n.k=dim(ori_data)[1] 

 

 

## individual list 

ind=ori_data[,1] 

## phenotype list 

Y=ori_data[,2] 

## coverage matrix 

V=data.matrix(ori_data[,3:(dim(ori_data)[2]-n.loci)]) 
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## causal variant counts 

X=data.matrix(ori_data[,(dim(ori_data)[2]-n.loci+1):dim(ori_data)[2]]) 

##===============================END OF DATA READ IN 

 

n0=length(which(Y==0)) 

n1=length(which(Y==1)) 

N=n0+n1 

Y=sample(c(rep(0,n0),rep(1,n1)),N) 

 

dat=data.frame(IND=ind,Y=Y,V=V,X=X) 

write.table(dat, 

file="multi_locus_dataset.permuted.csv",col.names=F,row.names=F,sep=",") 
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Appendix 4. Source code for utility functions 

4.1. Binomial Distribution 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <string.h> 

 

/*Binomial Distribution Function (probability mass function, not cummulative*/ 

#include "BinomDist.h" 

 

//factor function 

double fact(int x) 

{ 

 double i; 

 double f = 1; 

 for (i = x; i > 1; i--) 

 { 

  f = f * i; 

 } 

 return f; 

} // end of factor function 

 

//Binomial distribution 
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double binomial(short x, short n, float p) 

{ 

 double pmf = (fact(n)/(fact(x)*fact(n-x)))*pow(p,x)*pow((1-p),(n-x)); 

 // double pmf = rfact(x,n)/fact(x)*pow(p,x)*pow((1-p),(n-x)); 

 return pmf; 

} //end of Binomial distribution 

 

4.2. Mapping Function 

#include <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

#include "mapping_func.h" 

 

// from number to vector 

 

void map_in(int InNum, int NumLocus, int GenomArray[]){ 

  

 

 int remain = 0; 

 int TempIn = InNum; 

 int TempGeno = 0; 
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 for (int i = NumLocus-1; i >= 0; i--){ 

  remain = TempIn % (int)pow(3, i); 

  TempGeno = (TempIn - remain)/(int)pow(3,i); 

  TempIn = remain; 

  GenomArray[i] = TempGeno; 

 } 

} 

 

int map_out(int GenomArray[], int NumLocus){ 

 int sum = 0; 

 for (int i = 0; i < NumLocus; i++){ 

  sum += GenomArray[i] * (int)pow(3,i); 

 } 

 return sum; 

} 

 

4.3. Splitting function 

#include <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

#include "split.h" 
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char **split ( const char *s1, const char *s2) { 

 

    char **lista; 

    char *aux = (char*)malloc(strlen(s1) + 1); 

    strcpy(aux, s1); 

    char *token_Ptr; 

    int i = 0; 

 

    lista = (char **) malloc (sizeof (char *)); 

    token_Ptr = strtok(aux, s2); 

    lista[i] = token_Ptr; 

    i++; 

    while(token_Ptr != NULL) 

    { 

        lista = (char **)realloc(lista, sizeof(char*) * (i + 1)); 

        token_Ptr = strtok(NULL, s2); 

        lista[i] = token_Ptr; 

        i++; 

    }  

    return lista; 

} 
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Appendix 5. Instruction for running a simulation test 

Following this instruction, reads may run the simulation program, calculate the test statistic 

and misclassification estimates from the simulated data, and even perform a permutation 

on the individuals’ affection statuses in the simulated data. Before running the programs 

listed above, reads need to compile the source codes if they are written in C (this step will 

not be provided in this work). 

5.1. Simulate NGS raw data 

5.1.1. Data preparation 

Readers must generate a proper formatted input file for the simulation program. The 

program that generates the right-formatted input file is provided in the Appendix Section 

2.1 Generate input file for the simulation program (in C). However, this program requires 

two input files, a file containing all parameters (File “Vector_setting_fixed.in”), and a file 

containing a random number (File Constant.in). Here is the example file 

“Vector_setting_fixed.in”: 

 Line 1: number of locus (e.g. 2) 

Line 2: number of controls (e.g. 500) 

Line 3: number of cases (e.g. 500) 

Line 4: sequencing coverage value (e.g. 4) 

Line 5: misclassification in controls (e.g. 0.01) 

Line 6: misclassification in cases (e.g. 0.05) 

Line 7: based-line odds-ratio (e.g. 0.1) 

Line 8: odds-ratio (e.g. 1) 

Line 9: mode of inheritance (dominant only for this version, use “1”) (e.g. 1) 
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From Line 10: each line contains one of the population MLG frequencies value 

(Line 10 should be the non-disease MLG frequency) 

e.g.   Line 10: 0.75 

Line 11: 0.006342811 

Line 12: 0.0320819 

Line 13: 0.03839475 

Line 14: 0.045684489 

Line 15: 0.038255781 

Line 16: 0.037676154 

Line 17: 0.008587083 

Line 18: 0.042977033 

5.1.2. Data Simulation 

Use the output file “Sim_parameter.in” generated from the above step as the input in the 

simulation program described in Appendix Section 2.2 Source code for the statistical test 

( in C ). Run the simulation program and reads will get an output file named 

“multi_locus_dataset.csv”.  

5.2. Calculate test statistic and misclassification estimates 

Use the simulated dataset “multi_locus_dataset.csv” as an input for the program described 

in Appendix 1 Source code for the statistical test ( in C ). Run the program and the test 

statistic and misclassification estimate will be printed out to the screen as outputs. 

5.3. Permutation program 

Use the simulated dataset “multi_locus_dataset.csv” as an input and run the R script 

described in Appendix 3 Source code for the permutation step ( in R ). A Permuted file 
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named “multi_locus_dataset.permuted.csv” will then be generated, that may be used for 

further testing.  

 


