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ABSTRACT OF THE DISSERTATION 

Some Effects of Exposure Misclassification on Epidemiological Studies 

By JUN ZOU 

Dissertation Director: George Rhoads  

In many epidemiological studies the risk factor or exposure of interest is 

measured with significant error.  In well-designed studies this error is non-

differential with respect to the outcome, but it nevertheless makes it more 

difficult to detect associations and it biases estimates of effect toward the 

null.  Less well recognized is that it increases the probability that a significant 

result, when found, will be a false positive. This is obvious if one considers 

the extreme example where the observed measure bears little association 

with the true value and is essentially random, in which case any significant 

result would have to be an alpha error. 

The traditional error model is not realistic in the presence of substantial error 

because with a fixed observed variance and a large error variance, the 

parameter variance is constrained. We propose a bivariate normal model, 
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which makes fewer assumptions than the traditional model and does not 

constrain the underlying “true” variance. The model implies the need for 

larger sample sizes to assure that an effect associated with a misclassified 

variable is sufficiently unlikely to have occurred by chance that it implies the 

underlying true variable also shows the effect. 

A minimal estimate of misclassification can be obtained from the correlation 

between repeated measurements.  When this correlation is low it implies a 

low correlation of the measurement with the true value and the need for 

large sample size increases that may make the use of such variables  

impractical. We use data from the Honolulu Heart Program, a large 

prospective study of cardiovascular disease to show that risk factors for heart 

attacks that have stood the test of time mostly are repeatable across a two- 

years time span with correlations exceeding 0.7.  Other risk factors such as 

diet and physical activity that are believed to cause heart attacks but have 

been difficult to demonstrate within homogeneous populations have 

substantially lower repeatability correlations. These considerations 

emphasize the importance of good measurement of exposure in 

epidemiological studies.   
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Chapter 1 

Introduction 

Many epidemiological and clinical studies seek to relate a risk factor or treatment to a health 

outcome. In these kinds of studies either the risk factor (exposure) or the health outcome 

(disease) may be measured with error. In this thesis I will focus on error in exposure 

measurement, which can usefully be divided into "differential misclassification" or "non-

differential misclassification" with respect to the outcome of interest. It is obvious that 

differential misclassification, where persons sustaining the outcome are assessed differently 

from persons who do not sustain the outcome could either exaggerate the effect of the 

exposure or obscure its effect depending on the direction and magnitude of the differential 

measurements.  This kind of bias is difficult to measure and cannot usually be adjusted by data 

analysis. Rather, it results from flawed study methods and is best addressed by designing and 

implementing studies in such a way that the exposure of interest is measured with identical 

procedures and techniques in all subjects. In this thesis, differential misclassification will not be 

covered. 

While differential misclassification can usually be remedied by excellent study methods, nearly 

all observational studies will nevertheless include some non-differential measurement error. 

This reflects the imperfect measurement methods that are available for most clinical and 

epidemiological variables. Attributes such as height can be measured very well; others such as 

blood pressure are obviously subject to error but nevertheless are good enough to be related to 

important disease outcomes; still other variables, including many nutritional and environmental 

exposures in free living people are measured with still greater error. It is likely that the 

continuing controversy surrounding the effects of many nutritional and environmental 
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exposures on chronic diseases is partly due to inability to accurately assess the relevant 

exposures in free-living people. 

In most circumstances non-differential misclassification of exposure is thought to bias the 

results of the study toward the null. It is easy to appreciate that a true risk difference between 

exposed and non-exposed individuals will be blurred if some of the exposed individuals are put 

in the non-exposed group and vice versa. As a consequence, when a statistically significant 

result is reported for a poorly measured variable, the claim is sometimes made that the true 

effect is likely to be larger than the observed effect.  In one sense these claims are logical but 

from another perspective they are paradoxical since they imply that when a statistically 

significant result is found (and such results are found in most published studies), it is potentially 

more important if the measurement is poor!  

In Chapter 2,  we will recapitulate and enlarge on a qualitative argument that Rhoads published 

previously 1 making the case that a) the paradox is explained because significant results  (e.g. 

p<0.05) on poor measurements have a high probability  of being false positives;  b) that the 

traditional  formulation for misclassification on a continuous variable, which is based on an 

additive, normally distributed error term,  is not suitable for badly measured variables because it 

leaves little room for variation of the true parameter; and c) that  a minimal estimate of the 

extent of misclassification can be developed by repeating the study measurements in  a 

subsample of subjects. 

In Chapter 3, we will consider misclassification of a continuous variable in a bivariate normal 

model that can accommodate extensive error without constraining the variance of the true 

parameter.  We will develop estimates of stricter requirements for observed significance levels 
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that are needed to reduce the chance of a false positive result to acceptable levels and will 

describe related power and sample size implications.  

In Chapter 4, we test our conclusion that badly measured variables fail to produce scientifically 

useful results.  We examine a large number of variables measured at the Honolulu Heart Study 

and show that the traditional cardiovascular risk factors which have been demonstrated in study 

after study are reasonably repeatable within individuals over a two-year period whereas many 

other variables that might be expected to be predictive of cardiovascular disease, but are not as 

well measured, have not held up. This analysis also shows that for nearly all variables examined 

that Pearson and Spearman correlation coefficients were very similar, and it provides 

substantial information about the extent to which these correlations decline as the time 

between measurements increases.  

In Chapter 5, we summarize an overall conclusion for the thesis. 

 

 

 

 

 

 

 

 

 

 

 



 4 
 

 

 

 

 

 

Chapter 2 

Effects of Non-Differential Exposure Misclassification 

 

Many epidemiologic studies are compromised by unreliable measurements. The presence of 

measurement errors can cause biased and inconsistent parameter estimation and leads to 

unreliable and erroneous conclusions. Epidemiologists often find themselves assessing exposures 

which are difficult to measure but are nevertheless believed to have potentially important causal 

influences on disease. Examples are physical activity, nutritional variables, and individual 

exposures to some air pollutants. Since the true value of risk factors is usually unknown, most 

measures of risk factors are simply “approximations” or “surrogates” for some true underlying 

risk factor. The extent of these measurement errors is difficult to assess because there is usually 

no “gold standard” to which the measurements can be compared.  

The erroneous classification of exposure will result in misclassification bias. Non-differential 

misclassification, defined as when all classes, groups, or categories of a variable (whether 

exposure, outcome, or covariate) have the same error rate or probability of being misclassified 

for all study subjects, will almost always result in underestimation of the strength of an association 

with the underlying true exposure, when one is present. Thus, it will bias the measure of effect 
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(e.g. relative risk, risk difference, odds ratio) toward the null and may result in the loss of statistical 

significance resulting in a Type II error. 1, 2, 3,4,5 

2.1 Non-differential measurement error as a cause of false positive conclusions 

As a consequence of this well-known bias toward the null, when a statistically significant result is 

reported for a poorly measured variable, the claim is sometimes made that the true effect is likely 

to be larger than the observed effect. As noted in the Introduction, such claims, while supported 

by this known bias, are paradoxical since they imply that when a statistically significant result is 

found, it is potentially more important if the measurement is poor. 

While it is true that non-differential misclassification biases toward the null, it is also true that as 

misclassification becomes extreme the observed values have less and less meaning, so that a 

significant difference, if found, is more and more likely to be a false positive result. In the extreme 

case, where the variable is a random number, a statistically significant difference between groups 

with and without a particular health condition would by definition have an alpha error probability 

of 1.0.   

If a significant difference found for a random variable is certain to be an alpha error, whereas a 

significant difference for a perfectly measured variable can be interpreted at its nominal 

significance level, then there must be an escalation in the risk of false positive conclusions as one 

introduces increasing random misclassification into a measurement. This is the root of the 

paradox mentioned above, which arises because this escalation (and the misclassification that 

underlies it) is ignored in the usual power calculations and in usual frequentist statistical inference. 

A result that p ≤ 0.05 is treated the same whether it is based on a well measured variable or a 

poorly measured variable, when, in fact a significant result on a very poorly measured variable 

has much greater than 5% chance of being a false positive.  The difference between the standard 
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frequentist formulation and the argument put forward here arises because prior information 

about the extent of misclassification can often be obtained and should be taken into account. 

2.2   Two Gaussian models of non-differential exposure misclassification. 

The usual model that has been used to study the effects of non-differential exposure 

misclassification of a normally distributed variable has been to assume that the observed value 

(X) is equal to the sum of the normally distributed true value (T) plus an error term (e) that is 

uncorrelated with T and is normally distributed with a mean of 0.  This results in  

Var (X) = Var (T) + Var (e). 

In this model the mean (X) is an unbiased estimate of mean (T) because, on average, the mean 

error is 0. The model also implies that the variance of the true distribution is equal to the 

difference between the observed variance and error variance. If the error is large it implies, 

inappropriately, that the variance of the true variable is small. Moreover, in the presence of 

substantial error the assumption that it is unbiased will in many cases be untrue. Given the 

likelihood of publication bias in many areas of epidemiology, it is probable that the error term 

among published studies of poorly measured exposures is biased away from the null.  

2.3 Non-differential measurement error and loss of statistical power  

The power of a statistical test is the probability that the test will reject the null hypothesis when 

the alternative hypothesis is true (i.e. the probability of not committing a Type II error). The power 

is in general a function of the possible distributions, often determined by a parameter, under the 

alternative hypothesis. As the power increases, the chances of a Type II error occurring decrease. 

The probability of a Type II error occurring is referred to as the false negative rate (β). Therefore, 

power is equal to 1−β, which is also known as the sensitivity.  

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors#False_negative_rate
http://en.wikipedia.org/wiki/Sensitivity_and_specificity
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Statistical power depends on the following: 

 The statistical significance criterion used in the test 

 The underlying variation in the population 

 The magnitude of the effect of interest in the population 

 The sample size used to detect the effect 

A significance criterion is a statement of how unlikely a positive result would be, if the null 

hypothesis of no effect is true. The most commonly used criterion is a probability of 0.05. Under 

this criterion, the probability of the data implying an effect at least as large as the observed effect 

when the null hypothesis is true must be less than 0.05, for the null hypothesis of no effect to be 

rejected. One easy way to increase the power of a test is to carry out a less conservative test by 

using a larger significance criterion, for example 0.10 instead of 0.05. This increases the chance of 

rejecting the null hypothesis (i.e. obtaining a statistically significant result) when the null 

hypothesis is false, that is, reduces the risk of a Type II error (false negative regarding whether an 

effect exists). But it also increases the risk of obtaining a statistically significant result (i.e. rejecting 

the null hypothesis) when the null hypothesis is not false; that is, it increases the risk of a Type I 

error (false positive).6 

For continuous variables the underlying variation in the population is usually assessed as the 

variance.  The magnitude of the effect of interest in the population can be quantified in terms of 

an effect size, where there is greater power to detect larger effects. An effect size can be a direct 

estimate of the quantity of interest, or it can be a standardized measure that also accounts for 

the variability in the population. For example, in an analysis comparing outcomes in a treated and 

control population, the difference of outcome means A − B would be a direct measure of the 

http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Sample_size
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Effect_size
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effect size, whereas (A − B)/σ where σ is the common standard deviation of the outcomes in the 

treated and control groups, would be a standardized effect size. If constructed appropriately, a 

standardized effect size, along with the sample size, and required significance level will completely 

determine the power.  

The sample size determines the amount of sampling error inherent in a test result. Other things 

being equal, effects are harder to detect in smaller samples. Increasing sample size is often the 

most practical way to boost the statistical power of a test.6,7 

Power analysis can be used to calculate the minimum sample size required so that one can be 

reasonably likely to detect an effect of a given size under different assumptions with respect to 

the desired significance level and effect size to be detected.7  Power analysis can also be used to 

calculate the minimum effect size that is likely to be detected in a study using a given sample size. 

In addition, the concept of power is used to make comparisons between different statistical 

testing procedures: for example, between a parametric and a nonparametric test of the same 

hypothesis.8   

The above classical formulation takes no account of the extent of misclassification of the observed 

variable on the ability to detect differences in the true variable. Power to detect true underlying 

differences also depends on the magnitude of the correlation between the observed data and the 

true data (T), as well as the degree of collinearity with other variables in the model.8,9,10  

 

 

 

 

http://en.wikipedia.org/wiki/Sample_size
http://en.wikipedia.org/wiki/Effect_size
http://en.wikipedia.org/wiki/Nonparametric_test
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2.4   Statistical challenge with badly measured variables  

Badly measured variables will increase the probabilities of type 2 error. When significant results 

are found for such variables, misclassification also increases the chance that the result is a false 

positive. The traditional formulation for misclassification on a continuous variable, which is based 

on an additive, normally distributed error term, is not suitable for badly measured variables 

because, given an observed total variance, it leaves little room for variation of the true parameter.  

Power analysis is appropriate when the objective is with the correct rejection, or not, of a null 

hypothesis. In many epidemiology studies, the concern is less about determining if there is or is 

not a difference but rather with getting a more refined estimate of the population effect size. For 

example, if there is the correlation of around .50, a sample size of 200 will give us approximately 

80% power (alpha = .05, two-sided) to reject the null hypothesis of zero correlation. However, in 

doing this study we are probably more interested in knowing whether the correlation is .10 or .50 

or .90. In this context we would need a much larger sample size in order to reduce the confidence 

interval of our estimate to a range that is acceptable for our objectives.10,11,12 

Any statistical analysis involving multiple hypotheses is subject to inflation of the type I error rate 

if appropriate measures are not taken. Such measures typically involve applying a higher 

threshold of stringency to reject a hypothesis in order to compensate for the multiple 

comparisons being made (e.g. as in the Bonferroni method). In this situation, the power analysis 

should reflect the multiple testing approaches to be used. Thus, for example, a given study may 

be well powered to detect a certain effect size when only one test is to be made, but the power 

to detect the same effect size may be much lower if adjustment is made for several tests that are 

to be performed. Still another consideration is that when we control for the effect of correlated 

covariates, we will have more power for a fixed sample size, because the error variance (the 

http://en.wikipedia.org/wiki/Estimation_theory
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Multiple_comparisons
http://en.wikipedia.org/wiki/Bonferroni_method
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variance of the dependent variable scores after being adjusted for the covariate) will be reduced.  

The larger the correlation between the covariate and the dependent variable (or, with multiple 

covariates, the multiple R between covariates and the dependent variable), the greater the 

reduction of error variance will be.11,12,13,14 

The investigator who is planning a study for which misclassification of exposure is known to be a 

problem may wish to assure readers or grant reviewers that the measurement error has been 

taken into account in planning the investigation.  To do so the investigator will need to increase 

the sample size so that when the study is reported there will be adequate power (e.g. >=80%) to 

detect the attenuated odds ratio.  This adjustment is small when misclassification is modest and 

relative risks of interest are 2.0 and greater. Unfortunately, when the odds ratio of interest is 

modest, say less than 1.5, and misclassification is substantial, the increase in sample size required 

may be prohibitive.  In Chapter 3 we will explore these issues in more detail using a bivariate 

normal model.  

2.5 Using Repeat Measurements to Assess Exposure Misclassification  

In most epidemiological studies based on individual subjects it is assumed that there is an 

underlying parameter that best captures the effect of the risk factor that we are trying to assess 

on the outcome.  For the intake of a nutrient, for instance, this would probably not be the amount 

eaten on any particular day but rather some average intake over a period of time that is relevant 

to the pathogenesis of outcome of interest. We call this the true value, which is represented in 

the figure below as T.1 One or more observations, X1 (X2), are correlated with T, but are rarely 

exactly correct.  
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Multiple measurements can be made at different times (repeat measurements) as shown by X1 

and X2. If a “gold standard” were available, it would measure T directly and the correlation, v, 

between T and X1 (X2) could be calculated. This correlation is of considerable interest because if it 

were perfect we could make an uncompromised assessment of the risk factor status of T by simply 

measuring X1 (X2). Unfortunately, a real gold standard generally is unavailable although 
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clues to the validity of a measurement may be provided indirectly by correlations with serum 

levels, other physiological parameters, or external information. 

An additional approach to assessing the relationship between observed variables and the “true” 

parameter of interest is to use the consistency of repeated measurements. A convenient summary 

statistic for this repeatability is the correlation coefficient, r, between repeat assessments.  

Of course, repeatability does not guarantee validity; but a method that does not yield 

reproducible results cannot be valid in the sense of providing trustworthy information.  If the 

variables in question are normally distributed and if the errors of repeat assessment are 

independent of each other (the optimal situation), then v can be estimated as square root of r. 

Stated another way, under ideal conditions r provides a direct estimate of v2, the proportion of 

the variance of the true value that is measured. However, some of the error associated with most 

methods of diet and other risk factor assessments is likely to repeat systematically each time the 

T 

 

 

TT 

X1 X2 

 

v v 

r 
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method is applied to a given subject. In other words, the correlation between repeat values, r, is 

likely to be greater than v2. Hence r can be taken as an upper limit of v square provided it is 

measured on a reasonably large sample of subjects.  

The notion of upper limit should be emphasized. Correlated measurement errors probably are 

common and may be especially likely to occur when reproducibility becomes an objective in 

devising the method. If consistency of response is emphasized at the expense making each 

observation as accurate as possible, repeatability estimates are likely to exaggerate the true 

quality of the data.   In devising measurement methods, validity should be the primary concern 

because if each measurement is a good estimate of the truth, then repeat estimates will be 

correlated mainly through their association with the “truth”.1 

2.6 Estimating the Minimal Extent of Misclassification 

The usual absence of a “gold” standard has probably contributed to the tendency of investigators 

to ignore the effects of misclassification on the interpretation of statistical inference. However, 

since repeatability of a measurement can be assessed in many epidemiological studies as well as 

in surveys and other data collections, it would appear that much more effort should be devoted 

to checking the quality of the data in this way, and in making the results of these assessments 

available to users of the information.  Since the extent of misclassification provided by this 

strategy can be considered a minimal estimate of the problem, it would behoove investigators to 

account at least for this much measurement error in planning and interpreting their studies.  It is 

likely that the true situation is even worse than the repeat data correlations suggest.   
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One significant ambiguity in applying this line of thinking is that the correlation between repeat 

measurements usually falls as time between measurements increases.  We will provide examples 

of this phenomenon in Chapter 4.  Several factors are likely to contribute to this decline. These 

include changes in methodology or circumstances of the measurement such as instrument 

changes, personnel changes, differing seasons or times of day, fading memory, and many other 

issues.  In addition, exposures related to diet, environment social circumstances, and others truly 

change over time and are likely to change more over extended time periods than brief ones. That 

repeatability declines with time does not obviate the need to address the problem for variables 

that are poorly repeatable within time periods that are short relative to the time frame under 

which the putative risk factor is believed to affect the outcome. We are not aware of any 

pragmatic investigation of this issue but believe that for chronic disease outcomes, the time 

period selected should be short relative to the presumed time required for the risk factor to exert 

a measurable effect, but long enough to allow variation between different technicians, instrument 

standardization materials, and week-to-week or seasonal changes in true exposure. For outcomes 

that are believed to develop over many years a separation of repeat measurements of 3 months 

to 2 years may seem reasonable.  If theory suggests that some average exposure is likely the best 

predictor of risk, the repeat interval probably should be long enough to allow short term typical 

true variation to occur.  Laboratory error is not the only reason that a single measurement may 

fail to capture average exposure.   
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2.7 Repeating Measurements to Improve Accuracy 

While repeating measurements to assess error has not been widely advocated, the use of 

repeated assessments to reduce variability and improve accuracy has been widely used.  For 

instance, many studies have taken multiple blood pressure readings during an initial assessment 

to achieve a more stable baseline, and dietary recall or diary methods often will try to capture 

several days of data.  This use of repeat measurements is an important tool for reducing intra-

individual variation and generally requires that the repeat measurements be done in the same 

way for all persons in the study.  If the measurements were unbiased one could theoretically 

achieve any desired level of certainty about the exposure in each individual simply by repeating 

them enough times; but the more subjective and variable the measurements, the less certainty 

there would seem to be that they are unbiased.  No one would argue that any number of 

nutritional assessments in free living people would result in data that are as valid as one or two 

careful measurements of height.  

To use repeat measurements to reduce measurement error within individuals, the extra measures 

must generally be collected in all study subjects.  In practice, 2 repeating measurements with 

reasonable correlation (ρ>0.5) improve accuracy per HHP data, the details can be found in chapter 

4.  

 

 

 

 

 



 16 
 

2.8 Conclusion 

The quality of exposure measurement has important implications for the probability of a 

statistically significant result being a false positive.  This probability ranges from the nominal 

significance level in the absence of measurement error, often 0.05, to 1.0 for a variable that is 

known to be random.  This implies that barely significant findings for substantially poor measured 

variables should be viewed with a skepticism that is not always observed in the literature.  

Moreover, the classic assumptions that measurement error can be modeled as an unbiased 

additive error term is unlikely to hold when measurement error is extensive, because, with a fixed 

observed variance, the large error variance can imply unrealistically constrained variation in the 

true value.  The correlations between repeated measurements can provide a useful minimal 

estimate of the extent of misclassification that is likely to be present, and in Chapter 3 we will 

develop an alternate, less constraining error model and will use it to look quantitatively at ways 

in which investigators might reduce false positive claims.  
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Chapter 3 

Modeling Non-Differential Exposure Misclassification Using a Bivariate Normal Distribution 

3.1 Background 

Non-differential misclassification of exposures is a common limitation of observational 

epidemiological studies, and we have argued in Chapter 2 that repeated independent 

measurements provide a useful approach for estimating a minimal extent of this problem for 

specific study variables.  This idea was developed in a preliminary way by Rhoads in 1987 with 

dietary variables.1 Some of the most important questions that remain unresolved in human 

nutrition concern the relation of diet to the development of chronic disease. While coronary 

heart disease has been a major focus of work in this area, it has estimated that 30% or more of 

cancers also are attributable to dietary habits, and thousands of papers have been written 

exploring the nutritional causes of various tumors.  Conditions as diverse as osteoporosis, 

varicose veins, and diverticulitis, are likely to have nutritional causes. 15 

Unfortunately, findings in this field have often been inconsistent or have failed to reproduce 

associations with physiological attributes that can be demonstrated in controlled experimental 

situations. For example, many experimental studies have shown that saturated animal fats will 

raise serum cholesterol,  that international differences in serum cholesterol can be explained by 

differing fat intake,  and that countries with low fat intake and low serum cholesterol (which 

tend to go together)  have low rates of coronary heart disease.16  But within single 

geographically defined cohorts it has been difficult to show relationships between dietary fat 

and either serum cholesterol or coronary heart disease.16 
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3.2 Using repeatability to provide a minimal estimate of measurement error 

There is assumed the true value of intake of a nutrient that we are trying to assess-- not the 

intake on any particular day but rather some average intake over a period of time-- that is 

relevant to the pathogenesis of chronic disease. This true value is represented in the figure as T.  

 

 

 

 

Fig. 1 Reliability, repeatability and validity (The true value is represented in the figure as T) 

Using some dietary method, such as a 24 hours’ dietary recall, an attempt may be made to 

assess T yielding observation(s), X1(X2), which are correlated with T, but are rarely exactly 

correct. Multiple measurements can be made at different times (repeat measurements) as 

shown by X1 and X2. If a gold standard were available, it would measure T without error and the 

correlation, v, between T and X1(X2) could be calculated. If this correlation were perfect, we 

could make an uncompromised assessment of the risk factor status of T by measuring X1. 

Unfortunately, a real gold standard generally is unavailable, especially because the truth sought 

T 

 

 

TT 

X1 X2 

 

v v 

r 
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is rarely the intake on one day or week but rather some average intake over a sustained period 

of time. Thus, clues to the validity of a measurement may have to be provided indirectly by 

correlations with serum levels, with other physiological parameters, or by examining the 

consistency of repeated measurements. A convenient summary statistic for this repeatability is 

the correlation coefficient, r, between repeat assessments separated by a time period that is 

appropriate for the disease in question. For most chronic diseases, an interim period of 6 

months or more would seem appropriate. Of course, repeatability does not guarantee validity; 

but a method that does not yield reproducible results cannot be valid. If the variables in 

question are normally distributed and if the errors of repeat assessment are independent of 

each other (the optimal situation), then v can be estimated as square root of r. Stated another 

way, under ideal conditions r provides a direct estimate of v square, the proportion of the 

variance of the true value that is measured. However, some of the error associated with most 

methods of diet assessment is likely to repeat systematically each time the method is applied to 

a given subject. In other words, the correlation between repeat values, r, is likely to be greater 

than v square. Hence r can be taken as an upper limit of v square provided it is measured on a 

reasonably large sample of subjects. The notion of upper limit should be emphasized. Correlated 

errors probably are common and seem especially likely to occur when reproducibility becomes 

an objective in devising the method. For instance, at Framingham, the apparent reproducibility 

of the Burke interview was high. However, some subjects were excluded when a regular eating 

pattern could not be established from the interview. The method emphasizes consistency of 

response and in so doing may yield repeatability estimates that exaggerate the apparent quality 

of the data. In devising dietary methods, validity should be the primary concern. 1 
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3.3 Mathematics proof 

In Rhoads paper, he made the statement that under some assumptions v can be estimated as 

square root of r. Stated another way, under ideal conditions r provides a direct estimate of v 

square, assuming the variables in question are normally distributed and that the errors of repeat 

assessments are independent of each other (the optimal situation). for analyzing this we 

introduce not only the traditional approaches but also some new theory development, which is 

absent on any paper so far on this topic. The following mathematics proof provides the further 

details of this work. 

3.4 Mathematical Model of Repeated Independent Observations Under Normal Theory 

X1, X2, T are three random variables. T is random variable for true value, X1 and X2 are two 

repeated measurements for X random variable as the sample value to estimate T value. 

Given error term ε is as Var (Ɛ1) = Var (Ɛ2), which implies E(Ɛ1) = E(Ɛ2) = 0 

Cov (T, Ɛ1) = Cov (T , Ɛ2) = Cov(Ɛ1, Ɛ2) = 0 (X, Ɛ1 and Ɛ2  are iid, independent identically distribution) 

X1 = T + Ɛ1 

X2 = T + Ɛ2 

Corr (X1, T) = 
)()(

),(

1

1

XVarTVar

TXCov

 

Corr (X2, T) = 
)()(

),(

2

2

XVarTVar

TXCov
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Corr (X1, X2) = 
)()(

),(

21

21

XVarXVar

XXCov

 

Cov (X1, X2) = Cov ((T+ Ɛ1) (T+ Ɛ2)) = Var (T) + Cov (T, Ɛ1) + Cov (T, Ɛ2) + Cov(Ɛ1, Ɛ2) = Var (T) 

Given Var (Ɛ1) = Var (Ɛ2) 

)var()var()var()var( 111   TTX
 

)var()var()var()var( 222   TTX
 

Corr (X1, X2) = 
)var()var()var()var(

)var(

12   TT

T

 

Corr (T, X1) = 
))var())(var(var(

),(

1

1









TT

TTCov

= 
)var()var(

)var(

1T

T

 

Corr (T, X2) = 
))var())(var(var(

),(

2

2









TT

TTCov

 = 
)var()var(

)var(

2T

T

 

Corr (T, X1) × Corr (T, X2) = 
)var()var()var()var(

)var(

21   tt

t

= Corr (X1, X2) 

Corr (X1, X2) = Corr (T, X1) × Corr (T, X2) Given Var (Ɛ1) = Var (Ɛ2), equal sign holds. 

if the errors of repeat assessment are independent of each other (the optimal condition), then v 

can be estimated as r½. It means under ideal conditions r provides a direct estimate of v2, the 

proportion of the variance of the true value that is measured. However, some of the error 

associated with the most methods of diet assessment is likely to repeat systematically each time 

the method is applied to a given subject. In other words, the correlation between repeat value, 
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r, is likely to be greater than v square. Hence r can be taken as an upper limit of v2 provided it is 

measured on a reasonably large sample of subjects. The notion of upper limit should be 

emphasized. Correlated errors probably are common and seem especially likely to occur when 

reproducibility becomes an objective in devising a measurement method.  Note that in 

developing this model we ignore the possibility that repeat measurements might be negatively 

correlated as we have not been able to imagine a useful measurement where that would be the 

case.  

As noted in Chapter 2, the classical model of measurement error, is unlikely to hold when the 

error is substantial.  As the variance of the error term increases, the usual model implies that 

the observed variance grossly overestimates the true variance which then is unrealistically small. 

Moreover, the assumption that the measurements with so much error are unbiased, i.e. that 

the mean of the observed distribution accurately centers on the true mean, becomes a matter 

of faith with little objective support.  Researchers often assume that the variance of the 

observed data roughly estimates the variance of the true data and a model is needed that allows 

that possibility even in the presence of substantial error.  We note, however, that epidemiologic 

inferences can be made in the presence of biased measurement as long as the bias is unrelated 

to the outcome and a linear relationship between the observed and true values is maintained.   

The usual model is a special case of a bivariate normal distribution.  By relaxing the special case 

assumptions, the problems noted above can be avoided. Thus, to make sense of measurements 

with substantial error we posit a bivariate normal distribution between the observed and true 

distributions without making further assumptions about the distribution of the errors.  Of 

course, a bivariate normal distribution is a special case of the multivariate normal distribution. 
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3.5 The Multivariate Normal Distribution 

The multivariate normal distribution is an extension of the one-dimensional univariate normal 

distribution to higher dimensions. A random vector (rv) is defined to be k-variate normally 

distributed if and only if every linear combination of its k components is univariate normally 

distributed. Furthermore, its importance derives from the multivariate central limit theorem 

(CLT). That is when the sample size is large, the average of any random vectors is approximately 

multivariate normally distributed regardless of the components of the random vector are 

correlated or not. 

The multivariate normal distribution is to be "non-degenerate" when the symmetric 
covariance matrix  is positive definite. The distribution has density as  

 

where  is the determinant of . Note the equation above can reduce to that of the 

univariate normal distribution if  is a  matrix (i.e. a real number, or k=1).16 

 

3.6 The Bivariate Normal Distribution  

The bivariate normal distribution is the form of the multivariate normal distribution that has 

most applicability to exposure measurement error.  

In the 2-dimensional nonsingular case (k = rank(Σ) = 2), the joint density function f (X1, X2) of two 

jointly normally distributed variables X1 and X2 can be written as   

f (X1, X2) = 1/[2x1 x2 √1 − 𝜌2)] exp{(-1/[2(1-2)])([(X1- x1)/x1]2 - 2[(X1- x1)/x1 ][(X2- x2)/x2] 

+[(X2- x2)/x2]2 }      

http://en.wikipedia.org/wiki/Univariate
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Random_vector
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Central_limit_theorem#Multivariate_central_limit_theorem
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Determinant
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where ρ is the correlation between X1 and X2 and 𝜎𝑥1  > 0 and 𝜎𝑥2. > 0. In the matrix notation 

of Section 3.5, we have 

𝜇 = (𝜇𝑥1
𝜇𝑥2

),  Σ = [
𝜎𝑥1

2 𝜌𝜎𝑥1𝜎𝑥2

𝜌𝜎𝑥1𝜎𝑥2 𝜎𝑥2
2 ] 

It can be shown that the marginal mean and variance of Xi are xi and xi
2 respectively, i=1, 2. In 

the following, we will use x and x
2 for the mean and variance of random variable X 

respectively. In the bivariate case, the equivalent condition for bivariate normality is to verify 

that any distinct linear combinations of X1 and X2 are normal in order to conclude that the vector 

[X1, X2] is bivariate normal. 16 

3.7 The Range of ρ 

The value range of ρ under the given assumptions is the first step to be explored. In this thesis, 

we assume at n dimensional space, such as n random variables (rv), the correlation (ρ) will be 

the same for any two of them, it is often referred to as compound symmetry correlation 

structure. 

Let  

X ~ N (𝜇,Σ) 

Σ = Variance- Covariance Matrix; and Σ is defined as non-positive definite Matrix, hence we have 

| Σ | = det (Σ) ≥ 0. We will show that −
1

𝑁−1
 ≤ 𝜌 ≤ 1 if the correlation (ρ) is the same for any two 

of components of the normally distributed random vector. 

With equal correlation assumption, we have 

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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 𝛴 = 

[
 
 
 
 𝜎𝑥1

2 𝜌𝜎𝑥1𝜎𝑥2 ⋯ 𝜌𝜎𝑥1𝜎𝑥𝑁

𝜌𝜎𝑥2𝜎𝑥1 𝜎𝑥2
2 ⋯ 𝜌𝜎𝑥2𝜎𝑥𝑁

⋮ ⋮ ⋱ ⋮

𝜌𝜎𝑥𝑁𝜎𝑥1 𝜌𝜎𝑥𝑁𝜎𝑥2 ⋯ 𝜎𝑥𝑁
2 ]

 
 
 
 

 

=

[
 
 
 
 𝜎𝑥1 0 ⋯ 0

0 𝜎𝑥2 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎𝑥𝑁]
 
 
 
 

 [

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

]

[
 
 
 
 𝜎𝑥1 0 ⋯ 0

0 𝜎𝑥2 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎𝑥𝑁]
 
 
 
 

=DRD 

where D=

[
 
 
 
 𝜎𝑥1 0 ⋯ 0

0 𝜎𝑥2 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎𝑥𝑁]
 
 
 
 

 and R=[

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

]. 

Since Det (𝐷)= 𝜎𝑥1𝜎𝑥2 …𝜎𝑥𝑁>0, we have Det(R) ≥ 0. We will use two methods to show that 

−
1

𝑁−1
 ≤ 𝜌 ≤ 1. 

Method 1. Direct calculation of Det(R): 

Det (R) =  |

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

|  

= |

1 + (𝑁 − 1)𝜌 1 + (𝑁 − 1)𝜌 ⋯ 1 + (𝑁 − 1)𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

|   add all rows to the 1st row 

= (1 + (N-1) 𝜌) |

1 1 ⋯ 1
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

| 

= (1 + (N-1) 𝜌) |

1 1 ⋯ 1
0 1 − 𝜌 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 − 𝜌

|  minus all other rows by 𝜌 times the first row 
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= (1 + (N-1) 𝜌) (1 − 𝜌)𝑁−1 by the property of upper triangular matrix. 

Since det (𝑅) ≥ 0 and │ 𝜌│≤ 1, we have (1 + (N-1) 𝜌) (1 − 𝜌)𝑁−1) ≥ 0. This implies that 1 + (N-

1) 𝜌 ≥ 0  for 𝜌 ≠ 1, therefore 𝜌 ≥ − 
1

𝑁−1
 

Method 2. Since R can be written as  

𝑅 = (1 − 𝜌)I + 𝜌 11T 

Where I is N x N identity matrix and 1 = (1, 1, ⋯, 1)T is N by 1 matrix with elements of 1 for all 

entries. Since 𝛴 𝑖𝑠 non-negative definite and D is diagonal matrix with standard deviation on the 

main diagonal, by definition, we have for any x ϵ R N, xT𝛴x ≥ 0 and hence xT𝑅x ≥ 0. By Cauchy 

inequality, we have 

∑ 𝑥𝑖
𝑁
𝑖=1  = ∑ 1×𝑥𝑖

𝑁
𝑖=1 ≤ √∑ 12𝑁

𝑖=1  √∑ 𝑥𝑖
2𝑁

𝑖=1  = √N∑ 𝑥𝑖
2𝑁

𝑖=1  

Therefore  

0 ≤ xT𝑅x = xT((1 − 𝜌)I + 𝜌 1T1 )x 

= (1 − 𝜌)xTx + 𝜌 (xT𝟏) (1Tx) 

= (1 − 𝜌)xTx + 𝜌 (∑ 𝑥𝑖
𝑁
𝑖=1 )2 

= (1 − 𝜌) ∑ 𝑥𝑖
2𝑁

𝑖=1  + 𝜌 (∑ 𝑥𝑖
𝑁
𝑖=1 )2 

≤ (1 − 𝜌) ∑ 𝑥𝑖
2𝑁

𝑖=1  + 𝜌 𝑁 ∑ 𝑥𝑖
2𝑁

𝑖=1  by Cauchy inequality 

= ((1 − 𝜌)  + 𝜌 𝑁) ∑ 𝑥𝑖
2𝑁

𝑖=1  

This implies that (1 − 𝜌)  + 𝜌 𝑁 ≥ 0 and 𝜌 ≥ − 
1

𝑁−1
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3.8 Testing mean difference under measurement error 

First we will show that If two random variables are independent, then they are uncorrelated. 

Proof:  If X and T are two independent random variables, then  

E[XT] = ∫ ∫ X T 𝑝𝑋,𝑇(x, y) 𝑑𝑥 𝑑𝑇 

= ∫ ∫ XT 𝑝𝑋(𝑥)  𝑝𝑇(𝑇)𝑑𝑥 𝑑𝑇 

= (∫ X 𝑝𝑋(𝑥) 𝑑𝑥 ) (∫ T 𝑝𝑇(𝑇)𝑑𝑇)  

= E[X]E[T] 

Therefore, Cov (X, T) = EXT − EXET = EXET − EXET = 0. This implies that X and T are uncorrelated. 

In general, if two random variables are uncorrelated, they can still be dependent. However, in 

normal distribution special case, it can be shown that if two random variables are uncorrelated, 

then they are independent as well. This implies that in the multivariate normal situation, lack of 

correlation implies independence. 

Assume that 𝑋 is observed and has measurement error: 𝑋 = 𝑇 + 𝜀, where 𝑇 is the true 

exposure and not measured and 𝜀 is the measurement error and independent of 𝑇. It is clear 

that 𝑋 and 𝑇 are correlated. We have  

𝜎𝑋
2 = 𝑣𝑎𝑟(𝑋) = 𝑣𝑎𝑟(𝑇 + 𝜀) = 𝑣𝑎𝑟(𝑇) + 𝑣𝑎𝑟(𝜀) = 𝜎𝑇

2 + 𝜎𝜀
2 ≥ 𝜎𝑇

2. 

This implies that the variance of 𝑋 is larger than the variance of 𝑇. We also have  

𝐶𝑜𝑟𝑟(𝑋, 𝑇) =
𝐶𝑜𝑣(𝑋,𝑇)

√𝑣𝑎𝑟(𝑋)𝑣𝑎𝑟(𝑇)
=

𝐶𝑜𝑣(𝑇+𝜀,𝑇)

√𝑣𝑎𝑟(𝑋)𝑣𝑎𝑟(𝑇)
=

𝑣𝑎𝑟(𝑇)

√𝑣𝑎𝑟(𝑋)𝑣𝑎𝑟(𝑇)
= √

𝜎𝑇
2

𝜎𝑇
2+𝜎𝜀

2 = 𝜌. 

This implies that 𝜎𝑋
2 = 𝜌2𝜎𝑇

2. 
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 Under normality assumption, (𝑋
𝑇
) will follow a bivariate normal distribution: 

(𝑋
𝑇
)~𝑁 ((𝜇𝑋

𝜇𝑇
) , (

𝜎𝑋
2 𝜌𝜎𝑋𝜎𝑇

𝜌𝜎𝑋𝜎𝑇 𝜎𝑇
2 ) ) 

Now assume that 𝑋𝑖
𝐷and 𝑋𝑖

𝑁 are for observed disease and control groups with iid normal 

distribution as follows: 

𝑋1
𝐷 , 𝑋2

𝐷 , … , 𝑋𝑚
𝐷   ~ 

𝑖𝑖𝑑   𝑁(𝜇𝑋
𝐷 , 𝜎𝑋

2)  and 𝑋1
𝑁 , 𝑋2

𝑁 , … , 𝑋𝑛
𝑁   ~ 

𝑖𝑖𝑑   𝑁(𝜇𝑋
𝑁  , 𝜎𝑋

2),   

Similarly, 𝑇𝑖
𝐷 and 𝑇𝑖

𝑁 are for unobserved true values of disease and control groups with iid 

normal distribution as follows: 

𝑇1
𝐷 , 𝑇2

𝐷, … , 𝑇𝑚
𝐷  ~ 

𝑖𝑖𝑑   𝑁(𝜇𝑇
𝐷 , 𝜎𝑇

2)  and 𝑇1
𝑁, 𝑇2

𝑁 , … , 𝑇𝑛
𝑁  ~ 

𝑖𝑖𝑑   𝑁(𝜇𝑇
𝑁  , 𝜎𝑇

2),   

then 

 (
𝑋𝑖

𝑗

𝑇
𝑖
𝑗)~𝑁 ((

𝜇𝑋
𝑗

𝜇𝑇
𝑗 ) , (

𝜎𝑋
2 𝜌𝜎𝑋𝜎𝑇

𝜌𝜎𝑋𝜎𝑇 𝜎𝑇
2 ) ) 

Where 𝑗 = 𝐷 𝑜𝑟 𝑁. 

The test statistics for testing the difference in means between disease and non-disease groups 

are: 

𝑍𝑋 = 
𝑋𝐷−𝑋𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

  ~  N (
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

, 1)                        (1) 

𝑍𝑇  = 
𝑇𝐷−𝑇𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

  ~  N (
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

, 1)                        (2) 

The covariance between 𝑍𝑋 and 𝑍𝑇  is: 
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Cov (𝑍𝑋 , 𝑍𝑇) = 𝐶𝑜𝑣 (
𝑋𝐷−𝑋𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

 ,
𝑇𝐷−𝑇𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

) = 
𝐶𝑜𝑣( 𝑋𝐷−𝑋𝑁, 𝑇𝐷−𝑇𝑁)

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)√𝜎𝑇  

2 (
1

𝑚
+

1

𝑛
)

 

Per the independent assumptions, 𝑋𝐷 , 𝑋𝑁, 𝑇𝐷 , and  𝑇𝑁 are mutually independent, we have 

𝐶𝑜𝑣( 𝑋𝐷 − 𝑋𝑁 , 𝑇𝐷 − 𝑇𝑁) = 𝐶𝑜𝑣 (𝑋𝐷, 𝑇𝐷 ) +  𝐶𝑜𝑣 (𝑋𝑁, 𝑇𝑁) = 𝜌
1

𝑚
𝜎𝑋𝜎𝑇 + 𝜌

1

𝑛
𝜎𝑋𝜎𝑇 = (

1

𝑚
+

1

𝑛
)𝜌𝜎𝑋𝜎𝑇 

and  

Cov (𝑍𝑋 , 𝑍𝑇) =  
(

1

𝑚
+

1

𝑛
)𝜌𝜎𝑋𝜎𝑇

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)√𝜎𝑇  

2 (
1

𝑚
+

1

𝑛
)

 = 𝜌                         (3) 

Thus, from normal theory, (𝑍𝑋 , 𝑍𝑇) is bivariate normal distributed with 

( 
𝑍𝑋

𝑍𝑇
 )  ~ N 

(

 
 

 

(

 
 

𝜇𝑋− 
𝐷 𝜇𝑋 

𝑁

√𝜎𝑥  
2 (

1

𝑚
+

1

𝑛
)

𝜇𝑇− 
𝐷 𝜇𝑇

𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
))

 
 

, (
1 𝜌
𝜌 1

)

)

 
 

                     (4) Under Ha 

Hence the conditional distribution of 𝑍𝑇 given 𝑍𝑋  is  

 𝑍𝑇|𝑍𝑋 ~ 𝑁 (
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

+  𝜌 (𝑍𝑋 − 
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

) , 1 − 𝜌2).                                   (5) 

Under null hypothesis  𝐻0: 𝜇𝑇 
𝐷 = 𝜇𝑇 

𝑁 , the joint distribution of 𝑍𝑇  and 𝑍𝑋  is  

( 
𝑍𝑋

𝑍𝑇
 )  ~ N ( (

𝜇𝑋− 
𝐷 𝜇𝑋 

𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

0

) , (
1 𝜌
𝜌 1

)),                                  (6)   

the conditional distribution is  
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𝑍𝑇|𝑍𝑋 ~ 𝑁 ( 𝜌 (𝑍𝑋 − 
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

) , 1 − 𝜌2)                                   (7) 

Let  𝑍𝑋
𝑎 = 𝑍𝑋 − 

𝜇𝑋− 
𝐷 𝜇𝑋 

𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

 , then per equation (7), we get the following equation (8) and (9) 

E (𝑍𝑇|𝑍𝑋 ) =  𝜌𝑍𝑋
𝑎                             (8) Under null for true value 

P (𝑍𝑇 ≥ 𝐶|𝑍𝑋) = P (
𝑍𝑇−𝜌𝑍𝑋

𝑎

√1− 𝜌2
 ≥  

𝐶− 𝜌𝑍𝑋
𝑎

√1− 𝜌2
 |𝑍𝑋) = 1 - ɸ (

𝐶 − 𝜌𝑍𝑋
𝑎

√1− 𝜌2
)           (9)  Under null for true value 

Where ɸ is the CDF of standard normal distribution and C is critical value adjusted with 𝜌. 

Under the measurement error model, we have 𝜇𝑋 
𝑁  = 𝜇𝑇 

𝑁  and 𝜇𝑋 
𝐷  = 𝜇𝑇 

𝐷 , hence under null 

hypothesis  𝐻0: 𝜇𝑇 
𝐷 = 𝜇𝑇 

𝑁 , we have 𝜇𝑋 
𝐷 = 𝜇𝑋 

𝑁  as well, therefore 

𝑍𝑋
𝑎 = 𝑍𝑋 − 

𝜇𝑋− 
𝐷 𝜇𝑋 

𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

= 𝑍𝑋                          (10) Under null for observed distribution 

Given one side test for 𝑍X = 1.64 (α = 0.05), or two sided test 𝑍X  
= 1.96 (α = 0.025). Per equation 

(8), the conditional Expected value (𝑍𝑋  is not a random variable (rv) here, 𝑍𝑋  is fixed.) 

E (𝑍𝑇|𝑍𝑋 ) = 𝜌𝑍𝑋  = 1.64 𝜌 (one-side) and = 1.96 𝜌 (two-sides). 

We can see that the expected conditional true test statistic value is smaller than the observed 

one, this will lead to the increase of true Type I error if we use the conventional cut-off value for 

the test. We will discuss in more details in the following section. 

3.9 The Conditional Expected Value Under Null   

Using equation 8 under the null hypothesis we can calculate expected 𝑍𝑇   given a measured 

value, 𝑍𝑋  , as E (𝑍𝑇|𝑍𝑋 ) = 𝜌𝑍𝑋 . The observed Z value in the study sample only provides 
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evidence against the null hypothesis if it implies that the true Z value in the sample is away from 

the null. Given the observed deviation and an independent estimate of the correlation between 

the observed and true distributions, one can find the expected value of 𝑍𝑇.  As shown in Table 

3.1 below, observed Z values that just meet conventional levels of statistical significance do not 

imply critical Z values for the true distribution. Therefore, usual interpretation of these observed 

values will be associated with an excessive number of false positive conclusions.  The lower the 

correlation estimate, the less relevance 𝑍𝑋  has for 𝑍𝑇 . 

Equation 8 can also be used to calculate how extreme an observed value needs to be to imply 

that the expected true value will meet a conventional (or other specified) level of significance 

when the correlation is believed to be less than 1.0.  For example, to achieve an expected true 

deviation (𝑍𝑇) of 1.96 with a correlation between repeated measures of 0.8 one would need to 

observe 𝑍𝑋  of 2.45. as shown in the right hand column of Table.    If the correlation between 

repeat values was as low as 0.3 one would need to observe 𝑍𝑋 of 6.53.  Since the repeat value 

correlation is believed to provide a minimal estimate of the extent of misclassification, these 

estimates of how extreme 𝑍𝑋 is needed could be too small.  

3.10 The Conditional Critical Value for Test Statistics 

In this section, we will also first discuss, if the conventional cut-off value for the observed test 

statistic 𝑍𝑋 is used, what is the expected value of the true test statistics? On this other hand, we 

will also discuss that given critical values for true test statistic 𝑍𝑇  such as 1.64 or 1.96 (i.e., true 

significance level of 10 or 5%), what is the observed 𝑍𝑋 should be to achieve the claim 

significance level?  
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First, if conventional cut-off value such as 1.64 or 1.96 is used for the observed value of 𝑍𝑋 , then 

E (𝑍𝑇|𝑍𝑋 ) = 𝜌𝑍𝑋 = 𝜌1.64  or 𝜌1.96. This implies, for example, for 𝜌 = 0.5, E (𝑍𝑇|𝑍𝑋 ) = 0.82 or 

0.98 as shown in Table 3.1. Hence the true type I error would be inflated. 

On the other hand, in order that E (𝑍𝑇|𝑍𝑋 ) ≥ 1.64 (α = 0.05), or E (𝑍𝑇|𝑍𝑋 ) ≥ 1.96 (α = 0.025), Per 

equation (8), E (𝑍𝑇|𝑍𝑋 ) = 𝜌𝑍𝑋  the observed 𝑍𝑋  should be greater than 1.64/𝜌 ( α = 0.05),  or 

1.96/𝜌 ( α = 0.025). As an example for 𝜌 = 0.5, 𝑍𝑋  ≥ 3.28 or 3.92 as shown in Table 3.1. 

Table 3.1 shows the relationships between the observed critical values and expected ones under 

several different scenarios of 𝜌 and the significance level of 5 and 10%. 
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Table 3.1: The Conditional Expected Value (𝒁𝑻  𝒂𝒏𝒅 𝒁𝑿 ) under Different 𝝆 Scenarios and α 

Levels 

Expected 

Value 

Under null 

for observed 

distribution 

𝜇𝑋 
𝐷 = 𝜇𝑋 

𝑁  

𝜌 E (𝑍𝑇|𝑍𝑋 ) if  

One Side 

(𝑍𝑋 =1.64) 

Observed 

𝑍𝑋  required 

when E(𝑍𝑇|𝑍𝑋 ) ≥ 

1.64 ( α = 0.05)  

𝑍𝑋 ≥ 1.64/𝜌 

E (𝑍𝑇|𝑍𝑋 ) if  

One-sides 

(𝑍𝑋 = 1.96) 

Observed 

𝑍𝑋  required 

when  E(𝑍𝑇|𝑍𝑋 ) 

≥ 1.96 ( α = 

0.025)  

𝑍𝑋 ≥ 1.96/𝜌 

E(𝑍𝑇|𝑍𝑋 ) 0.3 0.492 5.47 0.588 6.53 

E(𝑍𝑇|𝑍𝑋 ) 0.4 0.656 4.1 0.784 4.9 

E (𝑍𝑇|𝑍𝑋 ) 0.5 0.82 3.28 0.98 3.92 

E (𝑍𝑇|𝑍𝑋 ) 0.6 0.984 2.73 1.176 3.27 

E (𝑍𝑇|𝑍𝑋 ) 0.7 1.148 2.34 1.372 2.8 

E (𝑍𝑇|𝑍𝑋 ) 0.8 1.312 2.05 1.568 2.45 

E (𝑍𝑇|𝑍𝑋 ) 0.9 1.476 1.82 1.764 2.18 

E (𝑍𝑇|𝑍𝑋 ) 1 1.64 1.64 1.96 1.96 

 

These relationships are shown graphically in Figure 1. Using expected  𝑍𝑇   given 𝑍𝑋 ( E (𝑍𝑇|𝑍𝑋 )) 

for the determination of P-value (considered as actual P-value), the figure shows the graph for 
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nominal (if X measured without measurement error) versus actual p-values (assuming 𝜌 is the 

correlation between true and observed values).  The numbers on the graph are 𝜌 values. When 

𝜌 is 1.0 the P-values are identical resulting in the straight line at the bottom of the figure, but if 

𝜌 is 0.7, corresponding to a correlation between repeat observations of 0.49, the observed one-

sided P-value would need to be 0.01 to correspond to an actual P-value 0.05. 
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Figure 3.1: One-sided P values corresponding to z scores expected in the “true” distribution 

under the null hypothesis compared to observed P values for different estimates of 𝜌. 

 

 

3.11 Bayes implication with observed 𝑍𝑋  to predict statistical inference 

Given observed 𝑍𝑋 and based on the conditional probability per equation (9) and (10), in order 

to be (1-𝛾) sure that 𝑍𝑇  ≥ 𝑍1−𝛼 , we have 

(𝑍1−𝛼 − 𝜌 𝑍𝑋)/( √1 − 𝜌2 ) = 𝑍𝛾  ⇒  (𝑍1−𝛼 − 𝜌 𝑍𝑋) =𝑍𝛾  √1 − 𝜌2 ⇒ 𝜌 𝑍𝑋 = 𝑍1−𝛼 - 𝑍𝛾  √1 − 𝜌2 

So we get 𝑍𝑋 = (𝑍1−𝛼 - 𝑍𝛾√1 − 𝜌2 ) / 𝜌                            (10a) Under null for observed distribution 

(α is the type 1 error, 𝛾 is the probability).  
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Figure 2 shows the plots of 𝜌 versus 𝑍𝑋   for P (𝑍𝑇  ≥ 𝑍1−𝛼|𝑍𝑥) = 80% and 90% probability 

respectively. From the figure, for example, for α = 0.05 and 𝑍1−𝛼 = 1.64, in order to be 80% sure 

that  𝑍𝑇  ≥ 1.64, with 𝜌 = 0.6, then 𝑍𝑋 should be 3.86 or greater, if 𝜌 = 0.3, 𝑍𝑋 should be 8.16 or 

greater. The detail 𝑍𝑥  with 𝜌 range from (0, 1) is showed in table 2. This is the alternative way to 

show the same message of (table 3.1 and figure 3.1). 

 

Figure 3.2: 𝜌 versus 𝑍𝑋   for P (𝑍𝑇  ≥ 𝑍1−𝛼|𝑍𝑥) = 80% and 90% 
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Table 3.2 shows values from the above figures for selected values of  𝜌.  Note that 𝜌 is the 

square root of the correlation between repeat measurements, so that 𝜌=0.3 corresponds to a 

correlation between repeat measurements of 0.09, 𝜌 = 0.5 corresponds to a correlation 

between measures of 0.25, 𝜌 = 0.7 corresponds to an observed correlation of 0.49, and 𝜌 = 0.9 

corresponds to an observed correlation of 0.81.  
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Table 3.2 The Critical Observed 𝑍𝑋  Value under Different 𝝆 Scenarios α and β Errors 

𝑍𝑋 Value 

Under null 

for 

observed 

distribution 

𝜇𝑋 
𝐷 = 𝜇𝑋 

𝑁  

ρ ρ2 Required 

minimal 

observed 

𝑍𝑋  𝑤ℎ𝑒𝑛 𝑍𝑇  

≥ 𝑍1−𝛼  

(𝑍1−𝛼=1.64) 

80% Sure  

Required 

minimal 

observed 

𝑍𝑋  𝑤ℎ𝑒𝑛 𝑍𝑇  

≥ 𝑍1−𝛼  

 (𝑍1−𝛼=1.64) 

90% Sure 

Required 

minimal 

observed 

𝑍𝑋  𝑤ℎ𝑒𝑛 𝑍𝑇  

≥ 𝑍1−𝛼 

(𝑍1−𝛼 = 1.96) 

80% Sure 

Required 

minimal  

observed 

𝑍𝑋  

 𝑤ℎ𝑒𝑛 𝑍𝑇 

≥ 𝑍1−𝛼  

(𝑍1−𝛼 = 

1.96) 

90% Sure 

𝑍𝑋 0.3 0.09 8.16 9.56 9.21 10.61 

𝑍𝑋 0.4 0.16 6.04 7.05 6.83 7.84 

𝑍𝑋 0.5 0.25 4.75 5.51 5.38 6.14 

𝑍𝑋 0.6 0.36 3.86 4.45 4.39 4.98 

𝑍𝑋 0.7 0.49 3.21 3.66 3.66 4.11 

𝑍𝑋 0.8 0.64 2.69 3.02 3.08 3.41 

𝑍𝑋 0.9 0.81 2.24 2.45 2.59 2.80 

𝑍𝑋 1 1 1.64 1.64 1.96 1.96 
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If 𝜌 =0, then we get P (𝑍𝑇  ≥ 𝑍1−𝛼|𝑍𝑥) = ɸ (𝑍1−𝛼) = 1- (1- α) = α, meaning that X does not 

provide any information on T. On the other hand,  

If 𝜌 =1,  

P (𝑍𝑇  ≥ 𝑍1−𝛼|𝑍𝑋) = 1 if 𝑍1−𝛼 < 𝑍𝑋                                                  (10b) 

or 

P (𝑍𝑇  ≥ 𝑍1−𝛼|𝑍𝑋) = 0 if 𝑍1−𝛼 > 𝑍𝑋                                                   (10c) 

This is logical since X would have the same impact as T because of zero measurement error. 

3.12 The Conditional Power and Sample Size 

Since  

 ( 
𝑍𝑋

𝑍𝑇
 )  ~ N 

(

 
 

 

(

 
 

𝜇𝑋− 
𝐷 𝜇𝑋 

𝑁

√𝜎𝑥  
2 (

1

𝑚
+

1

𝑛
)

𝜇𝑇− 
𝐷 𝜇𝑇

𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
))

 
 

, (
1 𝜌
𝜌 1

)

)

 
 

                     (4) Under Ha 

the conditional distribution is 

𝑍𝑇|𝑍𝑋 ~ 𝑁 (
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

+  𝜌 (𝑍𝑋 − 
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

) , 1 − 𝜌2).                                   (5) 

Therefore 

𝐸 (𝑍𝑇|𝑍𝑋 ) =
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

+  𝜌 (𝑍𝑋 − 
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

) = 𝜇(𝑍𝑇|𝑍𝑋 ),
                              (6) 
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and the power function is 

P (𝑍𝑇 ≥ 𝐶 = 𝑍1−𝛼|𝑍𝑋) = P (
𝑍𝑇− 𝜇

(𝑍𝑇 |𝑍𝑋 )

√1− 𝜌2
 ≥  

𝑍1−𝛼− 𝜇
(𝑍𝑇 |𝑍𝑋 )

√1− 𝜌2
 |𝑍𝑋)  

= 1 - ɸ (
𝑍1−𝛼−𝜇

(𝑍𝑇 |𝑍𝑋 )

√1− 𝜌2
) = 1 ─ 𝛽              (11) Power Function 

where ɸ is CDF of standard normal distribution. 

Under Ha: 𝜇𝑇≠ 
𝐷 𝜇𝑇

𝑁, we assuming that effect sizes for T and X are  

dT = 
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

𝜎𝑇  

 and dX = 
𝜇𝑋− 

𝐷 𝜇𝑋
𝑁

𝜎𝑋  

. 

Since 𝜎𝑋
2 = 𝜌2𝜎𝑇

2 and 𝜇𝑇− 
𝐷 𝜇𝑇

𝑁 = 𝜇𝑋− 
𝐷 𝜇𝑋

𝑁,  

dX = 
𝜇𝑋− 

𝐷 𝜇𝑋
𝑁

𝜎𝑋  

=  𝜌
𝜇𝑇− 

𝐷 𝜇𝑇
𝑁

𝜎𝑇  

=  𝜌dT. 

Let n’ be the harmonic mean of n and m, that is 

 
1

𝑛′
 =  

1

𝑚
+  

1

𝑛
 

𝜇(𝑍𝑇|𝑍𝑋 )
= 

𝜇𝑇− 
𝐷 𝜇𝑇

𝑁

√𝜎𝑇  
2 (

1

𝑚
+

1

𝑛
)

+  𝜌 (𝑍𝑋 − 
𝜇𝑋− 

𝐷 𝜇𝑋 
𝑁

√𝜎𝑋  
2 (

1

𝑚
+

1

𝑛
)

)              (6) 

𝜇(𝑍𝑇|𝑍𝑋 )
= √𝑛′ dT + 𝜌 (𝑍𝑋 − √𝑛′𝑑𝑋) 

= √𝑛′ (dT  − 𝜌 𝑑𝑋) + 𝜌𝑍𝑋           (12) 

Therefore the conditional power of 1 – 𝛽 given observed 𝑍𝑋 for the test is 

P (𝑍𝑇 ≥ 𝐶 = 𝑍1−𝛼|𝑍𝑋, Ha) = P (
𝑍𝑇− 𝜇

(𝑍𝑇 |𝑍𝑋 )

√1− 𝜌2
 ≥  

𝑍1−𝛼− 𝜇
(𝑍𝑇 |𝑍𝑋 )

√1− 𝜌2
 |𝑍𝑋)   
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= 1 - ɸ (
𝑍1−𝛼−√𝑛′ (𝑑𝑇  − 𝜌 𝑑𝑋) + 𝜌𝑍𝑋

√1− 𝜌2
) = 1 ─ 𝛽                (13) 

Hence we have 

𝑍1−𝛼−√𝑛′ (𝑑𝑇  − 𝜌 𝑑𝑋) + 𝜌𝑍𝑋

√1− 𝜌2
  =𝑍𝛽      Since        𝑍𝛽 = − 𝑍(1−𝛽)    (14) 

𝑍(1−𝛼) − (√𝑛′ (𝑑𝑇   −  𝜌 𝑑𝑋)  +  𝜌𝑍𝑋 ) = 𝑍𝛽  √1 − 𝜌2 

√𝑛′ =
𝑍1−𝛼+ 𝑍1−𝛽√1− 𝜌2− 𝜌𝑍𝑋

 (𝑑𝑇  − 𝜌 𝑑𝑋)
  

Since 𝜎𝑋
2 = 𝜌2𝜎𝑇

2, and dX = 𝜌dT. 

𝑛′ = ( 
𝑍1−𝛼+ 𝑍1−𝛽√1− 𝜌2− 𝜌𝑍𝑋

 (𝑑𝑇  − 𝜌 𝑑𝑋) 
)2 = ( 

𝑍1−𝛼+ 𝑍1−𝛽√1− 𝜌2− 𝜌𝑍𝑋

 (
𝑑𝑋
𝜌

 – 𝜌 𝑑𝑋)
)2 = ( 

𝑍1−𝛼+ 𝑍1−𝛽√1− 𝜌2− 𝜌𝑍𝑋

𝑑𝑋 (1–  𝜌2 )/𝜌
)2         (15) 

as the Sample size function in term of 𝑑𝑋. 

Or in terms of true underlying effect size 𝑑𝑇, 

𝑛′ = ( 
𝑍1−𝛼+ 𝑍1−𝛽√1− 𝜌2− 𝜌𝑍𝑋

𝑑𝑇 (1–  𝜌2 )
)2   (16) Sample size function 

Table 3.3 shows sample size increases that would likely be needed to achieve the same 

confidence in results with poorly measured variables that apply to well measured variables.  At 

low values for ρ and ρ2 very large increases in sample size are needed to achieve the high 

observed Z values that are required to make inferences about the underlying weakly correlated 

true data. These estimates of sample size increases do not incorporate all the considerations 

that are relevant to calculating statistical power under the bivariate normal model.   Indeed, 

when measurements are poor it may be difficult to know how to estimate what effect size in the 
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true data one should be looking for since practical experience is nearly always limited to 

observed data.   

A striking feature shown in the tables is the increase in observed Z score that is required in the 

bivariate normal model for even quite well measured variables.  For instance, with ρ =0.9 the 

required observed Z-score is 2.80 to provide confidence that the true Z score is 1.96.  

Mathematically, this results from uncoupling the mean of the true distribution from the 

observed distribution.  The evidence against the use of the traditional error model, which 

assumes the observed mean is unbiased, is quite strong for poorly measured variables since it 

implies restricted variation in the true data.  But little restriction is implied for well measured 

variables, so the bivariate normal distribution may allow too much drift of the observed mean 

and thus over-estimate the effect of modest measurement error. 
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Table 3.3.  Increase in Number of Observations Needed to Expect to Achieve 80% Confidence 

that True Mean in the Study Sample Exceeds the Critical Value (ZT >1.96) 

Correlation of 

Observed with 

True Value (ρ) 

Correlation Between 

Repeat Observations 

(ρ2) 

Required Minimal 

Observed Zx to 

Provide 80% 

Confidence 

ZT >1.96 

Percent Increase in Sample 

Size Required for Increase in 

Needed Zx* 

0.3 0.09  9.21 948.2 

0.4 0.16 6.83 526.5 

0.5 0.25 5.38 322.5 

0.6 0.36 4.39 206.3 

0.7 0.49 3.66 132.5 

0.8 0.64 3.08 81.1 

0.9 0.81 2.59 42.7 

1.0 1.00 1.96 0.0 

*Calculated using ZX from table 3.2 and Zϐ =1.28 
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3.13 Discussion and Conclusion 

We have explored the use of a bivariate normal distribution model to address two deficiencies 

of the classical error model that is used for continuous exposure variables in epidemiological 

(and many other) studies.    These deficiencies are evident mainly when measurement error is 

substantial.  In this setting a significant finding may paradoxically be taken to be of increased 

importance because the variable was poorly measured, and the point estimate is assumed to 

biased toward the null.    In addition to this problem, the decomposition of the observed 

variance into true and error variances implies shrinking true variance as error variance 

increases.  In the presence of poor measurement this can yield unrealistically low estimates of 

true variability. 

The bivariate normal model provides a way of quantitating the effect of misclassification on 

statistical inference in epidemiology that has heretofore been largely ignored.  Moreover, it 

implies no restriction on the variance of the true parameter and it accommodates the reality 

that poorly measured variables may provide very little information about the underlying truth, 

thus increasing the chance that any significant findings may be false positives.  While it is likely 

true that some significant results on poorly measured variables underestimate true effects, it is 

also true that poor measurement will increase the probability of false positive conclusions.  

A probable shortcoming of the bivariate normal model is that it appears likely to be too 

conservative for variables that are quite well measured.  
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Chapter 4 

Repeatability of Epidemiological Data Collected at the Honolulu Heart Study and Implications 

for Data Interpretation. 

4.1.  Objectives 

In this Chapter we investigate the repeatability of a wide variety of epidemiological exposure 

data and explore the implications of the bivariate normal model that is developed in Chapter 3 

for planning sample sizes and developing conclusions from variables that are highly repeatable 

or not so repeatable.  The data selected for this purpose are from the Honolulu Heart Program 

(HHP), which was initiated in 1965 by the National Heart Lung and Blood Institute (NHLBI), NIH, 

as a prospective cohort study of the antecedents and causes of cardiovascular disease among 

Japanese Americans living in Hawaii. Using the extensive data collected in this cohort we explore 

the following three issues:  a) Given the inherent variation in the distributions of various 

exposure risk factors, would it make a substantial difference if one used a rank order statistic to 

assess repeatability rather than the traditional Pearson correlation coefficient which assumes 

normal distributions?  b) How large is the effect of varying the time interval between repeat 

measurements of exposure risk factors on the correlations that are obtained, and what advice 

can be given as to a reasonable time interval to use? c) Among variables that might reasonably 

have been expected to be related to coronary heart disease in this cohort (and more generally in 

the many other cohort studies of CHD that have been done) are those that have turned out to 
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be significant, generally accepted predictors better measured than other variables that would be 

expected to be related to CHD but for which no consistent relationships have been found?  

4.2 Overview of the Honolulu Heart Program 

The Honolulu Heart Program was initiated because the Hawaii Japanese population was known 

to have low incidence of coronary heart disease compared to whites, but a higher incidence 

than the indigenous Japanese.  The study provided opportunities to investigate relationships 

among disease frequencies, pathologic findings, and disease predictors in the cohort and to 

compare the findings in this population with those in other populations, especially cohorts of 

Japanese men resident in Japan and the continental U.S. 1   

The HHP study population was comprised of American men of Japanese ancestry born in 1900-

1919 and living on the island of Oahu in 1965. Of approximately 14,000 such men believed from 

intercensal estimates to be available, 8006 were located and participated in a first examination 

that was conducted in the years 1965-68.  The age range at baseline was 45-68 years.1,17 

 The first examination was followed by a second examination two years later (1967-70) in which 

7498 men participated, comprising about 95% of the survivors.18  A third examination was 

funded by the National Cancer Institute six years after baseline (1971-74) and enrolled 6860 

men;19  and a fourth examination was conducted 25 years after baseline (1991-93) when the 

3,741 participating survivors were aged 71-93 years.20  The National Institute on Aging 

conducted a fifth examination of approximately 2,705 (1994-1996) survivors focusing on 

dementia and its precursors which was completed in 1996.  In addition to the above 

examinations aimed at the entire cohort, three examinations of a sub-sample of participants 

were conducted between 1970 and 1982 to collect more detailed lipid measurements 

(Lipoprotein Exams I, II and III).21   All of these efforts were implemented through contracts with 
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the Kuakini Medical Center in Honolulu, which has played a central role in these landmark 

studies of Japanese migrants to Hawaii.  

While many disease outcomes occurring in the HHP cohort were ascertained at the 

examinations, these were supplemented by an active surveillance program that reviewed the 

death certificates of Japanese men born in 1900-1919 as well as discharges of such men with 

selected diagnoses from all civilian hospitals on the island of Oahu. Hospital surveillance was 

done through December 1999, death certificate surveillance through November 2013.22, 23, 24, 25  

4.3 Source of HHP Data Used for this Thesis 

The HHP Public Use Data Set comprises 12 data files: four cohort examinations, three 

Lipoprotein sub-examinations, three questionnaire data files, and two surveillance files of 

deaths and morbid events which occurred during 1965-1994. A coding manual for each file 

provides variable names, the unit of measurement for measured values, and the meanings of 

codes for categorical variables. An identification number for each cohort member provides 

linkage between files. Ranges of values for measured quantities are included in the coding 

manuals. For certain variables, categories have been collapsed to prevent extreme, or unusual 

(rare) values from being utilized to identify individual cohort members. In all such cases, the 

corresponding variable is marked with an asterisk (*) in the coding manual and the specific 

details on how the variable values were modified are described.  Age has been grouped to 

protect confidentiality.  

The data sets and data documentation were provided by the National Heart, Lung and Blood 

Institute, NIH, for this thesis. The University of Medicine and Dentistry of New Jersey 

Institutional Review Board (IRB) approved this use of the Honolulu Heart Program data on 

August 17, 2012. 
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4.4 General Observations about Correlation Coefficients 

A correlation coefficient measures the strength of a linear relationship existing between two 

continuous variables.  The most commonly used correlation coefficient is called the Pearson 

correlation coefficient, but there are other coefficients, such as Spearman, Kendall Tau b and 

Hoeffding Dependence Coefficients. Most correlation coefficients vary between +1.0 (perfect 

positive association that allows one to specify the second variable if the first is known) and -1.0 

(perfect negative association) with values near zero indicating little or no association.    An 

important assumption concerning a correlation coefficient is that each pair of x and y data 

points is independent of any other pair. That is, each pair of points has to come from a separate 

subject.  

It is common to have a statistical significance level associated with the coefficient, which gives 

the probability of obtaining a sample correlation coefficient as large as or larger than the one 

obtained when, in fact, there is no association in the underlying population. The significance of a 

correlation coefficient is a function of the magnitude of the correlation and the sample size. 

With a large number of data points, even a small correlation coefficient can be significant. But 

statistical significance is not the same as importance or strength. Thus, finding that a correlation 

coefficient between repeated measurements is statistically significant is not informative with 

respect to the extent of misclassification present.  That depends on the magnitude of the 

coefficient.  When the variables are normally distributed, the observed Pearson correlation 

coefficient can be squared to provide a sample estimate of the proportion of the variance in one 

of the variables that can be explained by variation in the other variable.   

In evaluating a correlation coefficient, it is useful to review a scatter plot of the data to identify 

non-linear relationships as well as outliers.  It often turns out that one or two extreme data 



 49 
 

points can cause the correlation coefficient to be much larger (or smaller) than expected. A 

keypunching error in data entry can dramatically alter a Pearson correlation coefficient. 

4.5 Comparison of Pearson and Spearman Correlation Coefficients as Measures of 

Repeatability Across a Broad Range of Variables 

Although a number of different correlation statistics have been developed, the Pearson 

correlation coefficient is the most widely used and is a mathematically useful statistic for 

defining the extent of co-linearity in a bivariate normal distribution.  It evaluates the linear 

relationship between two continuous variables. A relationship is linear when a change in one 

variable is associated with a proportional change in the other variable.2 However, there often is 

concern that the Pearson correlation might be distorted by skewed distributions, non-linear 

relationships, or extreme observations in the data. 

In order to evaluate whether distributional distortions are a serious problem in measuring 

repeatability of epidemiological variables, we sought to test whether the Pearson correlation 

provides results that are similar to those that would be obtained from a non-parametric 

correlation statistic. The Spearman coefficient is an obvious choice since it is calculated in the 

same way as the Pearson correlation except for using rank order data that ignore the extent of 

separation between ranked observations. Thus, the Spearman coefficient is less influenced by 

extreme observations than is the Pearson coefficient.  It should be noted that establishing rank 

order of exposure is an important accomplishment in the context of epidemiology since it allows 

comparison of subjects with high exposure with those with low exposure as is done, for 

instance, when quintiles of an exposure are related to outcomes.  
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Table 4.1 compares Pearson and Spearman correlations for a wide variety of risk factor 

measures collected at the Honolulu Heart Study at Exam 1 (completed in 1968), with those 

collected at Exam 2 (completed in 1970), Exam 3 (completed in 1974), and Exam 4 (completed in 

1993).  The two measures of correlation are remarkably coherent.  For the comparison across 2 

years from Exam 1 to Exam 2, the repeatability correlations for 23 attributes were within 0.01 

for nineteen, 0.02 for three and 0.05 for one. For the comparison 16 variables measured six 

years apart (from Exam 1 to Exam 3), the Pearson and Spearman coefficients were within 0.01 

for 15 with one that differed by 0.03.  For the 25-year interval (Exam 1 to Exam 4) there was a 

little more discrepancy, but 12 of 15 were within .02 and the maximum difference remained 

at .05—still very good agreement. The largest discrepancies were for serum triglyceride which 

has a positive skewed distribution. In 8 of the 10 discrepancies greater than .01, the Spearman 

coefficient was higher. 

It is common practice to transform variables that are not normally distributed before calculating 

Pearson correlation coefficients.  Such transformations do not change the rank order so will not 

affect the Spearman coefficients, but they usually have the effect of reducing the importance of 

extreme values and would be expected to bring the Pearson coefficients closer to the Spearman 

values, i.e. usually to raise the Pearson estimates.  Using the Spearman values to estimate 

repeatability is likely, therefore, to give a more conservative estimate of the extent of 

misclassification.  For studies of a particular exposure it would be desirable to compare the 

correlations on raw and transformed variables. Given the overall close agreement seen here, the 

decision as to which coefficient to use will in most instances be trivial.  
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Table 4.1. Correlation Coefficients Between Repeat Measures of Selected Attributes Measured 

as Continuous Variables at More Than One Examination. Honolulu Heart study 

Attributes Correlation Coefficient 

Exam 1 vs Exam 2 

   2 Year Interval 

(Maximum N = 7498) 

Correlation Coefficient 

Exam 1 vs Exam 3 

6 Year Interval 

(Maximum N = 6860) 

Correlation 

Coefficient 

Exam 1 vs Exam 4 

25 Year Interval 

(Maximum N = 

3741) 

Pearson Spearman Pearson Spearman Pearson Spearm

an 

Systolic BP 

(Average) 

0.75 0.75 0.64 0.65 0.32 0.32 

Systolic BP 

(By nurse) 

0.66 0.66 0.57 0.57 NA NA 

Systolic BP 

(By Physician) 

0.70 0.70 0.60 0.61 NA NA 

Diastolic BP 

(Average) 

0.70 0.69 0.60 0.60 0.25 0.24 
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Diastolic BP (By 

nurse) 

0.60 0.59 0.51 0.51 NA NA 

Diastolic BP    

(By Physician) 

0.67 0.65 0.57 0.56 NA NA 

Serum 

cholesterol 

0.73 0.74 0.62 0.63 0.39 0.40 

Triglyceride 0.56 0.61 NA NA 0.35 0.40 

Uric acid 0.71 0.72 0.59 0.62 NA NA 

Hematocrit 0.69 0.68 0.61 0.62 0.39 0.41 

Height 

(Standing) 

0.97 0.96 0.96 0.96 0.78 0.83 

Weight 0.95 0.95 0.92 0.92 0.62 0.64 

BMI 0.93 0.92 0.89 0.88 0.64 0.63 

Skinfold 

Subscapular 

0.77 0.79 0.76 0.77 0.39 0.39 

Skinfold Triceps 0.67 0.68 0.54 0.55 0.37 0.37 

Physical Activity NA NA NA NA 0.10 0.11 

Cigarettes/Day  0.85 0.87 NA NA 0.47 0.51 
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Years Smoked 0.85 0.85 NA NA 0.73 0.71 

Total Vital 

Capacity 

0.87 0.87 0.85 0.85 0.58 0.57 

FEV1 0.93 0.92 0.91 0.90 0.58 0.59 

Arm Girth 0.68 0.66 NA NA NA NA 

Chest Depth 0.85 0.85 NA NA NA NA 

Height (Sitting) 0.72 0.70 NA NA NA NA 

Biacromial 

Diameter 

0.67 0.67 NA NA NA NA 

All correlations are statistically significant 
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4.6 Repeatability correlations and elapsed time between measurements 

We have argued in previous chapters that poor repeatability of an exposure measure has 

serious implications for the usefulness of an assessment.  In Chapter 3 we also argued that 

correlations between repeated measures provide an indication of the extent of misclassification 

and can be used to adjust required significance levels and sample sizes to reduce the likelihood 

of false positive conclusions. However, as illustrated in Table 4.1, the correlation between 

repeat measurements tends to fall as the time elapsed increases.  

The extent of this decline varies considerably by type of variable.  Anthropometric measures 

which are largely determined by early adulthood and persist with minor changes thereafter tend 

to correlate quite well over the full 25-year period. These include height, and vital capacity and 

presumably would include other measures of body size if they were had been measured at Exam 

4.  In these data weight and BMI were also well established in most men at baseline since the 

subjects were all 45 or older at enrollment.  Physiologic measures such as systolic blood 

pressure, diastolic blood pressure, serum cholesterol and uric acid change more as the time 

between examinations is lengthened.  For these variables the correlations from exam1 to exam 

4, which were separated by 25 years, are much lower than those seen for the two year and six 

year intervals.  All correlations between Exam1 and Exam 2 for these risk factors are above 0.7 

whereas all correlations between Exam1 and Exam 4 are near or below 0.4. 

 For correlations across the first two years there is presumably only modest change in the 

underlying usual values in most subjects, so that most of the observed variation is probably due 

to day-to-day activities, physiologic variation, measurement error and laboratory variation. In 

contrast the large separation in time between Exams 1 and 4 is accompanied by the shift from 

middle age into old age for most of these men with substantial changes in physical activity, 
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physiology and possibly diet, in addition to increased opportunity for changes in laboratory or 

clinic methods, intercurrent illness, and other influences. 

It is interesting that despite the variety of personal attributes studied the extent of the decline 

in correlation over 25 years is strongly related to the extent of repeatability over the first two 

years. For instance, among the 15 attributes that were measured at Exams 1,2, and 4, the seven 

of those had Spearman correlations of 0.8 or better over the first two years maintain an average 

correlation with the baseline of 0.64 at 25 years whereas those that were correlated at lower 

levels over the first two years have an average correlation with baseline at 25 years of only 0.36.  

It is unclear to what extent this pattern can be generalized to other kinds of exposure variables 

such as environmental exposures or diet which were not represented in the data source used 

here.  

As stated in Chapter 2, the goal of exposure measurement is usually to characterize some 

average exposure over a significant period of time that is relevant to the pathogenesis of the 

disease in question.  If this is to be done for most subjects with a single measurement, we need 

to know that the measurement would get similar results if it were done at another equally 

appropriate time. Repeating the measure for a subsample of subjects provides an assessment of 

this.  The repeat measurement should not be so close to the original that it artificially inflates 

the extent of agreement, as might be the case if it is done by the same technician (when 

multiple technicians are involved) or is included in the same lab run.  But it should not be so 

remote in time that substantial secular changes in the characteristic are likely.  An appropriate 

time interval in most instances will be dictated by good judgment concerning the probable time 

frame in which the exposure contributes to the pathogenesis of the disease as well as the 

willingness of subjects and the administrative and budget practicalities.  The two-years interval 
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used at the Honolulu Heart Study showed variation in repeat correlation coefficients that makes 

sense in the light of what we know about many of these variables and was also of interest in 

showing that variables with high repeatability showed less subsequent variability than did those 

with low two-years repeatability.  

4.7 Repeatability of Specific Variables 

4.7.1 Blood Pressure 

It is evident from Table 4.1 that systolic blood pressure (SBP) is better measured than diastolic 

blood pressure (DBP).  This is widely accepted as the case by clinicians because SBP is 

determined by the cuff pressure at which blood flow sounds are first heard as the pressure is 

released, whereas diastolic is determined by a “muffling” of the sound which is not as clearly 

defined.  This difference is discussed further in section 4.8 below.  

4.7.2 Serum Cholesterol 

Serum cholesterol has been known to be associated with CHD since the early reports from the 

Framingham Study.  It can be measured satisfactorily without fasting as is demonstrated by the 

reasonable reproducibility between values at the first and the second examinations (r=0.73).  

The correlation across 25 years was still 0.4. 

4.7.3 Serum Triglyceride 

Serum triglyceride is easily affected by ingestion of a fatty meal in the 8 hours prior to blood 

draw.  Nevertheless, it was measured without fasting at Exam 1.  Although the repeatability was 

lower than serum cholesterol at 2 years, it turned out to be nearly as repeatable after 25 years 

when the measurement was done after an overnight fast.  Triglyceride has not been as regularly 

found to be a predictor of CHD in prospective studies as has serum cholesterol. 
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4.7.4 Blood Sugar 

Blood sugar is best measured after an overnight fast either as a straight fasting determination or 

after an oral glucose load.  HHP subjects were not required to fast at Exam 1 and blood sugar 

was measured one hour after a 50g oral glucose drink.  At Exam 2 blood glucose was measured 

in a modest subsample without the either fasting or a glucose load, while at Exam 4 the men 

were required to fast.  Because of the non-comparability of these determinations, blood glucose 

has been omitted from the data presented here. 

4.7.5 Serum Uric Acid  

Uric acid is a metabolite of purines which are building blocks for DNA and are found in protein 

rich foods. Levels in the blood are influenced by diet and tend to rise in persons with kidney 

disease and certain other medical conditions.  Uric acid was studied at Framingham and has 

been grandfathered into many subsequent cardiovascular studies.  In general, however, it has 

not been found to be a strong risk factor for CHD. The reproducibility of the measurement was 

comparable to cholesterol.  Elevated serum uric acid is a primary cause of gout.  

4.7.6 Smoking 

We have presented two kinds of smoking data:  Number of cigarettes smoked per day and years 

smoked. Number of cigarettes per day was recorded in a comparable manner at exams 1,2, and 

4. Non-smoking was counted as 0.  Across the 25 years the smoking variables were the most 

consistent of the well-established, modifiable coronary risk factors.   
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4.7.7 Physical Activity Index (PAI) 

Even though physical inactivity is a well-established risk factor for CHD 26, physical activity levels 

are difficult to reliably measure in individual patients27. In Honolulu subjects were asked how 

many hours in a 24-hour day they usually spent sleeping, sitting, and in light, moderate, or 

heavy activity.  The hours in each category were multiplied by a coefficient meant to reflect the 

number of METS per hour the activity required and these were summed to create a physical 

activity index (PAI).  The PAI was measured at Exam 1 and Exam 4 with the correlation across the 

25 years (r=0.10) being the lowest shown in Table 4.1.  Given the tracking of repeatability across 

the various exams and this very low correlation between exams 1 and 4, it seems likely that two-

year repeatability for PAI was also low relative to the other risk factors. 

4.7.8 Height, Weight and Body Mass Index (BMI) 

Height is the classic example of a well measured clinical variable that is highly reproducible.  

Weight was also surprisingly consistent across the 25- years period, and so, of course, was BMI. 

4.7.9 Skinfolds 

Skinfolds were measured over the triceps muscle in the upper arm and below the tip of the 

shoulder blade (subscapular) by grasping and gently raising the loose skin and underlying 

adipose tissue and measuring its thickness with special calipers. Skinfolds are believed to be a 

more direct measure of adipose tissue than is BMI, which is influenced by body build, 

muscularity and bone.  Although subscapular skinfolds are measured about as well as blood 

pressure and serum cholesterol, they are not as reproducible as BMI.  
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4.7.10 Total Vital Capacity and 1 sec. Forced Expiratory Volume (FEV1) 

These lung measurements are collected by having subjects blow into a spirometer which 

measures the total volume of air the subject can blow out after taking a deep breath as well as 

the amount that is exhaled in one second. The best of three tries was recorded. The measures 

are surprisingly repeatable, partly because total vital capacity is related to height. 

4.8 Repeatability as a Predictor of Risk Factor Status  

In Chapter 3 we showed that random misclassification of exposure variables reduces the power 

of a study and increases the probability that an apparently significant result will be a false 

positive.  It follows from this that poorly measured variables that confer modest relative risks 

will be difficult to validate in studies of ordinary size and design. To test this inference, we 

identified several attributes measured at HHP that are known to be related to coronary heart 

disease and divided them into those that were found in Honolulu and in many of the older 

cohort studies, and those for which there is substantial other evidence of a causal or protective 

role, but that have not been easy to demonstrate in cohort studies with under 10,000 subjects.  

In Table 4.2 we list seven variables that fall into the first category in the left hand column - 

measures of blood pressure, cholesterol, obesity, smoking and alcohol.  In the right hand 

column, we list dietary and physical activity variables that are believed by most experienced 

observers to have contributed substantially to the CHD epidemic, but have required very large, 

or specialized cohort studies to demonstrate their significance at the individual level28,29,30. 

Repeatability coefficients for the first group are mostly available from the present data while 

data from the literature have been used to estimate repeatability of the dietary variables.  We 

infer low repeatability for the physical activity index from its very low value at 25 years of 

follow-up. 
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Table 4.2 CHD Risk Factors Grouped by Ease with Which Their Association with CHD Has Been 

Demonstrated in Cohort Studies with N<10,000 

Risk Factors Shown in Cohort 

Studies with N<10,000 

Pearson 

Corr. 

2-years 

apart 

 Risk Factors Identified from 

Other Evidence but Not Easy to 

Show in Cohort Studies with 

N<10,000 

Pearson 

Corr.  

2-years 

Apart 

Systolic blood pressure 0.75  Total fat consumption ~0.4 

Diastolic blood pressure 0.70  Saturated fat consumption ~0.4 

Serum cholesterol 0.73  Polyunsaturated fat 

consumption 

~0.1 

HDL Cholesterol (protective)   Physical activity (protective) low 

Body Mass Index 0.93    

Subscapular Skinfold 0.77    

Cigarettes/day 0.85    

Alcohol/day (protective) 0.75    

 

There is a clear difference between the repeatability of the two groups of variables, which is 

consistent with the hypothesis that poor measurement is a likely explanation for the failure of 

many population-based cohort studies to demonstrate the importance of dietary fat, even 



 61 
 

though it has repeatedly been shown experimentally to have a substantial effect on LDL 

cholesterol and, therefore, on coronary risk. Likewise, the evidence that physical activity has an 

important role in reducing risk of coronary disease is strong and consistent, and yet it has been 

difficult to demonstrate persuasively in population based cohort studies.  The implication is that 

average size studies of average strength exposures that are not repeatable with correlations of 

at least 0.50 are unlikely to lead to clear results that hold up across multiple studies.  

4.9 Conclusion 

The Honolulu Heart Program data illustrate and support the practicality of applying the concepts 

regarding exposure misclassification that are developed in the earlier chapters.  They suggest 

that for chronic diseases with long incubation periods that repeatability coefficients are easily 

calculated, that a two-years interval works well to separate repeatable risk factors as compared 

to less repeatable ones, and that even lengthening this to six years does not deflate the 

correlations excessively. Presumably a somewhat shorter time interval would also work well, 

although that should be explored in other data sets.  

A somewhat surprising finding was the very close agreement that was seen between Pearson 

and Spearman correlations across the many variables that were studied.  Since usual 

transformations of skewed variables does not change their rank order it is unlikely that 

transforming the data to achieve a roughly normal distribution would change the extent of this 

agreement substantially.  The correlations across time appear to be quite robust for the 

personal attributes studied in Honolulu.  Whether this would be the case for environmental or 

nutritional variables deserves some investigation.  

Finally, the Honolulu data support the inference that risk factors that are reproducible and well 

established are repeatable.  If they were not, the studies would have compromised power such 
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significance tests that exceeded critical values would have an enhanced probability of being 

false positives.    
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Chapter 5 

Summary and Conclusions 

In many epidemiological studies the risk factor or exposure of interest is measured with 

significant error.  While differential misclassification can usually be remedied by excellent study 

methods, nearly all observational studies will nevertheless include some non-differential 

measurement error. This reflects the imperfect measurement methods that are available for 

many clinical and epidemiological variables.  

This non-differential misclassification makes it more difficult to detect associations and it biases 

estimates of effect such the risk ratio or the risk difference, toward the null.   As a consequence, 

when a statistically significant result is reported for a poorly measured variable, the claim is 

sometimes made that the true effect is likely to be larger than the observed effect.  In one sense 

these claims are logical but from another perspective they are paradoxical since they imply that 

when a statistically significant result is found (and such results are found in most published 

studies), it is potentially more important if the measurement is poor!  

Intuitively, one recognizes that a statistically significant result found for a very poorly measured 

variable must be less meaningful than a result found for a well measured variable. We point out 

that the reason for this is that substantial misclassification increases the probability that a 

significant result, when found, will be a false positive. This is obvious if one considers the 

extreme example where the observed measure is so bad as to be essentially random, in which 

case any significant result would have to be an alpha error. 

Thus, the quality of exposure measurement has important implications for the probability of a 

statistically significant result being a false positive.  This probability ranges from the nominal 
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significance level in the absence of measurement error, usually 0.05, to 1.0 for a variable that is 

known to be random.  This implies that with substantial misclassification findings of modest 

statistical significance (e.g. p<0.05) are quite likely to be false positive and should be viewed 

with a skepticism that is not always observed in the literature.  Moreover, the classic 

assumptions that measurement error can be modeled as an unbiased additive error term is 

unlikely to hold when measurement error is extensive, because, with a fixed observed variance, 

the large error variance can imply unrealistically constrained variation in the true value.  

To address this concern, we use a bivariate normal distribution to model the relationship 

between the observed variable in the study sample and the true variable in the study sample. 

With this model the true variance is not constrained and, under the null hypothesis, the 

expected true z value in the sample ranges from being identical to the observed z value if the 

correlation between them is 1.0 to an expectation of 0 if there is no association between 

observed and expected (observed being essentially random).  This fits the concept that the more 

misclassification there is, the less information about the true variable is provided by the 

measurement.   

To implement the bivariate normal model in practice, it is necessary to have an estimate of the 

correlation between the observed variable and the truth.  Rarely there may be a gold standard 

with previous duplicate assessments that can provide a correlation of the study measurements 

with the standard.  More commonly this is not the case.  In that case a minimal estimate of 

misclassification can be obtained from the correlation between repeated measurements. If 

repeated measurements are independent, then the correlation between them should result 

only from both being correlated with the true value.  It is easily shown that under these 
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assumptions the correlation between the observed and true values is the square root of the 

correlation between independent repeat variables.   

Recognizing that repeat measurements may be correlated for reasons besides their association 

with the truth (i.e. not completely independent) the correlations between repeated 

measurements may exaggerate their correlation with the underlying truth, so the square root 

may be too high.  Then adjusting for it would be minimal adjustment for the extent of 

misclassification that is likely to be present.  

We develop estimates of stricter requirements for observed significance levels that are needed 

to reduce the chance of a false positive result to acceptable levels and describe related power 

and sample size implications. When the correlation between repeat observations is low it 

implies a low correlation of the measurement with the true value and the need for large sample 

size increases that may make the use of such variables impractical. The model implies the need 

for larger sample sizes to assure that an effect associated with a misclassified variable is 

sufficiently unlikely to have occurred by chance that it implies the underlying true variable also 

shows the effect. 

If it is true that significant results found for misclassified variables are likely to be false positives, 

then one would expect such variables, even if they are causally important, to fail to hold up 

repeatedly in studies of ordinary size.  We use data from the Honolulu Heart Program, a large 

prospective study of cardiovascular disease to show that risk factors for heart attacks that have 

stood the test of time mostly are repeatable across a two-year period with correlations 

exceeding 0.7.  There is extensive evidence from metabolic experiments and targeted 

epidemiological studies that saturated fat intake and physical activity are important underlying 

causes of CHD but it has been difficult to demonstrate this in general population cohort studies.  
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In Honolulu the repeatability coefficients for these two variables were considerably lower than 

0.7, providing an illustration of the likely effects of misclassification.  Thus, the Honolulu data 

support the inference that risk factors that are reproducible and well established tend to be 

repeatable.  If they were not, the studies would have compromised power and significance tests 

that exceeded critical values would have an enhanced probability of being false positives.    

In conclusion, we believe that non-differential exposure misclassification is a common problem 

that is all too frequently ignored in the interpretation of epidemiological studies.   It would be 

possible in most large, well-funded field studies to recycle some participants so that measures of 

repeatability of all study variables would be obtained.   Having this information would make 

investigators more demanding of quality data and would enable readers to better assess the 

value of the statistical inferences made on misclassified variables. 
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Appendices* 

1. Examples of correlations that range from high to low 

1.1 Results for Measures of Association for HHP Cholesterol (Exam 1 to Exam 4) 

  

Simple Statistics 

Variab

le N Mean Std Dev Median 

Minimu

m Maximum Label 

HA16

8 

7961 218.34 38.26 216.00 51.00 537.00 SERUM 

CHOLESTEROL(MG%)(5:53

-55) 

HB141 1855 210.44 35.26 209.00 99.00 454.00 SERUM CHOLESTEROL 

(MG PCT) 45:22-24 

HC359 6753 215.88 36.57 212.00 79.00 510.00 SERUM CHOL-MG%(932-

934) 

CHOL

X4 

3572 189.73 33.16 189.00 81.00 382.00 cholesterol at exam 4 
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Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

 HA168 HB141 HC359 CHOLX4 

HA168 

SERUM CHOLESTEROL(MG%)(5:53-55) 

1.00 

 

7961 

0.73 

<.0001 

1845 

0.62 

<.0001 

6718 

0.39 

<.0001 

3551 

HB141 

SERUM CHOLESTEROL (MG PCT) 45:22-24 

0.73 

<.0001 

1845 

1.00 

 

1855 

0.66 

<.0001 

1644 

0.44 

<.0001 

911 

HC359 

SERUM CHOL-MG 

0.62 

<.0001 

6718 

0.66 

<.0001 

1644 

1.00 

 

6753 

0.44 

<.0001 

3398 

CHOLX4 

cholesterol at exam 4 

0.38976 

<.0001 

3551 

0.44176 

<.0001 

911 

0.43515 

<.0001 

3398 

1.00000 

 

3572 
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Spearman Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

 HA168 HB141 HC359 CHOLX4 

HA168 

SERUM CHOLESTEROL(MG%)(5:53-55) 

1.00 

 

7961 

0.74 

<.0001 

1845 

0.63 

<.0001 

6718 

0.40 

<.0001 

3551 

HB141 

SERUM CHOLESTEROL (MG PCT) 45:22-24 

0.74 

<.0001 

1845 

1.00 

 

1855 

0.67 

<.0001 

1644 

0.47 

<.0001 

911 

HC359 

SERUM CHOL-MG 

0.63 

<.0001 

6718 

0.67 

<.0001 

1644 

1.00 

 

6753 

0.44 

<.0001 

3398 

CHOLX4 

cholesterol at exam 4 

0.40 

<.0001 

3551 

0.47 

<.0001 

911 

0.44 

<.0001 

3398 

1.00 

 

3572 
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1.2 Results for Measures of Association for HHP DBP (lipo 1-3) 

 

Simple Statistics 

Variable N Mean Std 

Dev 

Media

n 

Min Max Label 

LA82 2779 82.72 11.40 82.00 46.0

0 

140.

00 

EXAM2 MD DIASTOL BLOOD PRES-L(74:30-32) 

LB157 2385 83.16 9.64 84.00 50.0

0 

130.

00 

MD DIASTOLIC BLOOD PRESSURE 85:18-20 

LC179 1963 80.70 9.88 80.00 38.0

0 

124.

00 

MD DIASTOLIC BP (MM HG) 98:26-28 

 

Pearson Correlation  Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 
 

 LA82 LB157 LC179 

LA82 

EXAM2 MD DIASTOL BLOOD PRES-L(74:30-32) 

1.00 

 

2779 

0.51 

<.0001 

2342 

0.42 

<.0001 

1962 
LB157 

MD DIASTOLIC BLOOD PRESSURE 85:18-20 

0.51 

<.0001 

2342 

1.00 

 

2385 

0.53 

<.0001 

1937 

LC179 

MD DIASTOLIC BP (MM HG) 98:26-28 

0.42 

<.0001 

1962 

0.53 

<.0001 

1937 

1.00 

 

1963  
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Spearman Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 
 LA82 LB157 LC179 

LA82 

EXAM2 MD DIASTOL BLOOD PRES-L(74:30-32) 

1.00 

 

2779 

0.50 

<.0001 

2342 

0.40 

<.0001 

1962 
LB157 

MD DIASTOLIC BLOOD PRESSURE 85:18-20 

0.50 

<.0001 

2342 

1.00 

 

2385 

0.53 

<.0001 

1937 

LC179 

MD DIASTOLIC BP (MM HG) 98:26-28 

0.40 

<.0001 

1962 

0.53 

<.0001 

1937 

1.00 

 

1963 
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