
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2017 
 

Chengsheng Zhu 
 

ALL RIGHTS RESERVED



FUNCTIONAL ANALYSIS OF MICROBIAL GENOMES AND METAGENOMES 

by 

CHENGSHENG ZHU 

A dissertation submitted to the 

The Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

and  

The Graduate School of Biomedical Science 

For the degree of  

Doctor of Philosophy 

Graduate Program in Microbiology and Molecular Genetics 

Written under the direction of 

Dr. Yana Bromberg 

And approved by 

__________________________ 

__________________________ 

__________________________ 

__________________________ 

 

New Brunswick, New Jersey 

MAY 2017 



	

 ii	

ABSTRACT OF THE DISSERTATION 

FUNCTIONAL ANALYSIS OF MICROBIAL GENOMES AND METAGENOMES 

by CHENGSHENG ZHU 

Dissertation Director: 

Dr. Yana Bromberg 

 

 

Microorganisms are capable of carrying out molecular functionality relevant to a 

range of human interests, including health, industrial production, and 

bioremediation. Current microbial taxonomy is phylogeny-guided, i.e., the 

organisms are grouped based on their evolutionary relationships. Due to 

horizontal gene transfer, evolutionary relatedness cannot guarantee genome-

encoded molecular functional similarity. In this work, we establish a 

computational framework for comparison of microorganisms based on their 

molecular functionality. In the fusion (functional-repertoire similarity-based 

organism network) representation, organisms can be consistently assigned to 

groups based on a quantitative measure of their functional similarities. The 

results highlight the specific environmental factor(s) that explain the functional 

differences between groups of microorganism. We deposit the functional data in 

fusionDB, mapping bacteria and their functions to available metadata: 

habitat/niche, preferred temperature, and oxygen use. The web interface further 



	

 iii	

allows mapping new microbial genomes to the functional spectrum of reference 

bacteria. In the end, we describe mi-faser (microbiome functional annotation of 

sequencing reads), the meta-genomic/-transcriptomic analysis pipeline 

combining an algorithm that is optimised to map reads to molecular functions 

encoded by the read-correspondent genes, and a manually curated reference 

database of protein functions. With mi-faser, we identify previously unseen oil 

degradation-specific functions in BP oil-spill data, and reveal the role of gut 

microbiome in Crohn’s disease pathogenicity, showing that the patient 

microbiomes are enriched in both the functions that promote inflammation and 

those that help bacteria survive it. 
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Chapter 1  
My favourite definition of humour, as Bob Mankoff, the carton editor of the New 

Yorkers for the past two decades, masterfully put it, is the right amount of wrong. 

Being completely right is boring, while being completely wrong is meaningless. 

To me, keeping the balance between the fraction of right and wrong is the key to 

make a good joke, a joyful life, and, as I am about to start to describe, a PhD 

research project.  

Anton Van Leeuwenhoek’s first 1670’s discovery of a microscopic organism, 

which he called “animalcules”, has ushered in centuries of explosive growth of 

field of microbiology. Each day we find more and more impressive evidence of 

the importance of microbes in the natural environment and in human life. 

Microorganisms in the ocean and lakes are the basis of the global food chain, 

while gastrointestinal microbes help with digestion and offer otherwise 

inaccessible nutrition to their human and animal hosts. Microbes fix nitrogen, a 

necessary building block of organic compounds, break down dead matter, clean 

up waste, and otherwise contribute to biogeochemical flux cycles. 

Microorganisms are tremendously valuable in industrial and clinical applications. 

Thus, enormous efforts have been dedicated to answer two central questions:  

who are these bacteria and what do they do? 

The answers to these two questions have long been thought to be tightly 

correlated, where the latter defines the former. Unfortunately, we see that this 
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often not the case. In fact, bacterial taxonomy, which aims to answer the “who” 

question, is dynamic and controversial due to:  

Difficulty cultivating organism mono-cultures in the lab. Classifying a new 

bacterial species requires obtaining its pure culture for direct study of its 

functionality. However, obtaining a pure culture is hard since most microbes 

naturally live within mutualistic communities. It is estimated that only 1% of the 

microbes are cultivable (Zengler, Toledo et al. 2002), as mimicking the natural 

environment of most microbes in the lab is difficult. 

Horizontal gene transfer (HGT). Microbes are able to deliver genetic material 

across species (mostly via plasmid or phage). HGT makes the conventional 

biological species concept, where only the individuals of the same species are 

able to mate to make reproductively able progeny, consistently inapplicable to 

bacteria. 

Difficulty measuring phenotypic traits. Even with the aid of advanced 

experimental techniques, bacterial phenotypic traits are much less clearly defined 

than those of animals or plants; e.g., the colony/cell morphology and biochemical 

environments of bacteria vs. the presence of placenta or size/shape of leaves. 

Thus, a subjective set of poorly-defined features is often used to establish a new 

bacteria species (Vandamme, Pot et al. 1996).  Additionally, as many as three 

hundred biochemical/physiological tests would only access 5-20% of the 

bacterial functional potential (Garrity GM 2001).  



	

 

3	

Since it is not easy to answer the question about what the bacteria do, the “who 

are these bacteria” question is currently answered by relying on incidental 

findings and often subjective judgment calls. 

Current bacterial taxonomy relies on phylogeny. The development of the 

DNA-DNA hybridization technique in the 1960’s offered researchers an objective 

criterion for defining species (Brenner, Fanning et al. 1969). DNA-DNA 

hybridization entails extracting, denaturing, and mixing whole genome DNA from 

different organisms. The mixture is then incubated to form hybrid double-

stranded DNA. The hybrid helix is more stable if the two organisms are closely 

related. The relative binding ratio (RBR), a measure for DNA-DNA similarity, of 

70% is often used as the gold standard for identifying two organisms as coming 

from the same species (Wayne, et al., 1987). Note however, that there are cases 

where organisms of different species, or even different genera, exhibit ≥70% 

DNA-DNA similarity (Gevers, et al., 2005). 

In the 1980’s, the discovery of 16S rRNA set a milestone in prokaryotic 

taxonomy. 16S rRNA is a component of the 30S subunit of the prokaryotic 

ribosome, universal in prokaryotes. Because of its correspondence with DNA-

DNA hybridization (Figure 1), a new method for identifying species membership 

was adapted – 16S rRNA sequence similarity (Stackebrandt and Goebel, 1994). 

However, interpreting this criterion is not straightforward. As shown in Figure 1, 

organism pairs with <97% 16S rRNA similarity always share <70% RBR. 

However, ≥97% 16S rRNA similarity doesn’t guarantee ≥70% RBR. In other 
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words, <97% 16S rRNA similarity indicates different species, while ≥97% 

similarity could equally likely mean same or different species.  

 

Figure 1-1 The correlation between 16S rRNA and DNA-DNA similarity (Rossello-Mora and 
Amann 2001). Each dot in the figure represents a pair of organisms. Organisms with 16S rRNA 
similarity above 97% share DNA-DNA similarity from ~4% to 100%. Organisms with 16S rRNA 
similarity below 97% have DNA-DNA similarity of less than 70%. The latter are classified as being 
of different species. 

The 16S rRNA sequence has both conserved and variable regions (Neefs, 

Vandepeer et al. 1990). Conserved regions are used to design universal primers 

to amplify the variable regions (V1 to V9), which offer phylogenetic information; 

i.e. the accumulation of differences between the corresponding variable regions 

of 16S rRNA of different organisms can be thought of as representative of time 

since the split from the last common ancestor. Wide use of 16s rRNA as a 

phylogenetic marker has led to the development of many organism-sequence 

databases; e.g. GreenGenes, RDP, and Silva (DeSantis, Hugenholtz et al. 2006, 

Pruesse, Quast et al. 2007, Cole, Wang et al. 2009). Moreover, the current gold 

standard for bacterial taxonomy, Bergey’s Manual, is a framework of prokaryotic 

taxonomy built around a backbone of 16S rRNA-derived phylogeny (Garrity GM 

2001).  
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As mentioned above, however, 16S rRNA similarity is not sufficient to identify 

organism species. For example, Fox et al. found the 16S rRNA sequences of 

strains of B. globisporus and B. psychrophilus to be almost identical (>99.5%) 

(Fox, Wisotzkey et al. 1992), while the DNA-DNA hybridization experiment 

clearly showed that the organisms belonged to different species. Similar results 

were obtained in the study of members of the genera Aeromonas and 

Plesiomonas (Martinezmurcia, Benlloch et al. 1992). In addition to cross-species 

similarity 16S rRNA classification also suffers from intraspecies heterogeneity. 

For example, Case et al. (Case, Boucher et al. 2007) report 111 sequenced 

bacterial genomes and 460 corresponding 16S rRNA sequences – 4.6 16S rRNA 

copies per genome, on average. Though in most cases within species 

differences between 16S rRNA sequences are minor, some can reach 2%, and 

for Thermoanaerobacteriales the difference is over 10%. This ambiguity in 

inferring taxonomy with 16S rRNA sequences could lead to overestimation of 

microbial diversity in environmental samples. Finally, due to HGT, the current 

phylogeny-based taxonomic assignments cannot guarantee functional similarity; 

i.e. two microbes of the same taxonomic group inhabiting different environments 

may be functionally very different - just as your cousin may be more different 

from you than your unrelated best friend. Therefore, the current taxonomy’s 

answer to the who question can incorrectly answer the what question, thus 

confusing researchers and hampering en bulk computational analysis. 

Annotation of microbial molecular function potentials encoded in 

metagenomes. As the best available record of organism heritage and 
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functionality, the organism genome contains all the information necessary to 

define a species member (Boussau and Daubin, 2010). With the advent of high-

throughput sequencing, the number of publicly available fully-sequenced 

bacterial genomes has drastically increased. Even the uncultivable microbes can 

now be accessed by metagenome sequencing, an approach that extracts DNA 

directly from the environment and sequences/reconstructs the fragments without 

regard for genome of origin. Metagenome sequencing has been applied to 

numerous environments, e.g. ocean, soil, and human gut (Venter, Remington et 

al. 2004, Simon, Wiezer et al. 2009, Qin, Li et al. 2010), and has vastly 

augmented the bacterial diversity in the tree of life (Hug, Baker et al. 2016). 

Metagenome can be annotated with or without read assembly. If the reads can 

be assembled into large contigs, existing pipelines, e.g., RAST (Aziz, Bartels et 

al. 2008) and IMG (Markowitz, Chen et al. 2014), can be applied. However, 

assembly is often plagued by a large fraction of unassembled reads or short 

length contigs, which belong to the minor microbiome members, and by chimeric 

assemblies, which are especially common for complex and highly diverse 

samples. Downstream gene finding algorithms are further faced with incomplete 

and erroneously assembled sequences, complicating statistical model 

constructions. Read-based annotation, e.g., using a platform such as MG-RAST 

(Aziz, Bartels et al. 2008), can access molecular functionality of the entire 

community. However, reads are usually annotated via function transfer by 

homology that, due to the short read length, is lacking in precision. This 

inaccuracy is additionally compounded by the erroneous computational 
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annotations of most genes in the reference databases (Schnoes, Brown et al. 

2009).  

Network analysis on large-scale biological data. Biological datasets usually 

encompass of a set of discrete objects (e.g. proteins or organisms) and their 

relationships (e.g. similarity). As such, they lend themselves naturally to network-

based analyses, where connected objects can be organized into groups using 

clustering – a type of unsupervised learning. Clustering is completely data driven, 

requiring minimal (if any) prior knowledge of the generated data splits. Commonly 

used algorithms include K-means clustering and Hierarchical clustering. K-means 

aims to partition n objects into k clusters, so that the mean of within-cluster 

distance, i.e. the distance between each cluster member to the cluster center 

(the cluster representative), is minimal (Lloyd 1982). Hierarchical clustering, as 

the name suggests, seeks to build a hierarchy of clusters. It can be performed 

either “bottom up” (agglomerative) or “top down” (divisive) (Rokach 2005). These 

methods, however, are generally too computationally intensive for handling big 

data. They also often conspicuously lack the capability of taking the edge weight 

(e.g. level of similarity) into account. 

Newer clustering techniques have been developed to deal with the influx of big 

data. For example, Markov Cluster (MCL) (Dongen 2000) is a fast and scalable 

clustering algorithm that is based on a very different paradigm. It simulates 

random walks along the nodes and edges of the graph (network) with two steps, 

expansion and inflation. Expansion computes random walks of higher length 

(more steps), linking the “start node” to the “end node”. It is expected that there 
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are more such higher length paths within cluster than across clusters. Therefore 

the more higher length paths are there between the two nodes, the more likely 

are they in the same cluster. The inflation step then selects for intra-cluster walks 

and against inter-cluster walks, based on the desired tightness of clusters. 

Iterations of expansion and inflation eventually result in the partition of the graph 

(Dongen 2000).  

Another clustering method is the Louvain algorithm (Blondel 2008), which maps 

nodes in a network into clusters by considering both edge-weight and node 

connectivity. Note that when all nodes of a network are connected between 

themselves, edge-weight is the sole driver of partitioning. The ability to avoid 

thresholding of similarity (i.e. binary designation of similar vs. not similar), allows 

for better estimates representative of the continuous natural world. An adapted 

version of the Louvain method (Lambiotte 2008) allows users to further tune the 

cluster tightness, i.e., the granularity, which offers flexible clustering levels. 

This work focuses on using computational methods to answer the two key who 

and what questions phrased above. In Chapter 2, we describe fusion – a 

network-based analysis of molecular functions of all available bacteria, which 

allows grouping bacteria by functional similarity; we also compared fusion 

grouping to the current taxonomic assignments of bacteria. Chapter 3, introduces 

fusionDB, which contains the bacteria-to-function mapping (as described in 

Chapter 2) and allows users to map new bacterial genomes to their functional 

abilities and relative locations. In Chapter 4, we describe mi-faser, a pipeline (as 

well as online service) that offers fast and accurate functional annotation of 
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metagenomes, directly from read data. We conclude this work in Chapter 5 with 

a discussion of the potential future directions and applications of this study.   
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Chapter 2  
Introduction 

In biology, the field of taxonomy is tasked with describing, naming, and 

classifying organisms; the latter according to some metrics of similarity. Van 

Leeuwenhoek’s observation of microscopic organisms launched centuries of 

classification based on morphology and physiology (Porter 1976). Since the 

1960’s, DNA-DNA hybridization (DDH) (Brenner, Fanning et al. 1969) has been 

the ‘gold standard’ for bacterial species demarcation. The current polyphasic 

species definition requires a DDH value >70%, as well as shared phenotypic 

characteristics, to assign two bacteria to the same species (Stackebrandt and 

Goebel 1994). Recent emergence of high-throughput genomic sequencing 

(Margulies, Egholm et al. 2005) highlighted the importance of genomic similarity 

in bacterial taxonomy. For example, studies have shown that the average 

genome nucleotide identity (ANI) classifies bacterial species as well as DDH 

values (Konstantinidis and Tiedje 2005). These new metrics also revealed 

previously unseen organismal relationships, highlighting the dynamic state of the 

prokaryotic taxonomy. As there is no one true taxonomy, subjectivity is a factor in 

comparing and contrasting conflicting classifications. Furthermore, special 

human interest, e.g. pathogenicity, and the desire to conserve existing naming 

conventions add to the inconsistency.  

Today, prokaryotic taxonomy relies heavily on phylogenetics. However, there are 

non-phylogenetic alternatives for classification. Phenetics (Sokal 1973), for 

example, classifies organisms based on similarity regardless of shared ancestry. 
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The definition of the term “similarity” is fluid, but in its broadest sense implies a 

comparison of organism phenotypes, including their molecular functional 

capabilities. It is important to note that though both phylogeny-based taxonomy 

(cladistics) and phenetics can be used to investigate bacterial relationships, the 

questions that they try to answer are different. The task of phylogeny is 

reconstructing organismal evolutionary history – think Tree of Life (Woese and 

Fox 1977, Ciccarelli, Doerks et al. 2006) efforts. Phenetics, on the other hand, 

clusters organisms into currently consistent classes on the basis of observable 

traits. Closely related organisms are often phenotypically similar. However, the 

order of evolutionary descent does not directly translate to classification – just as 

whales are more related to cows than to fish, despite the obvious morphological, 

environmental, and functional similarities to the latter.  

The current NCBI Taxonomy (Benson, Karsch-Mizrachi et al. 2009), a trusted 

computationally accessible resource, largely follows Bergey’s Manual of 

Systematic Bacteriology (Garrity GM 2001). Bergey’s Manual is a framework of 

prokaryotic taxonomy built around a backbone of 16S rRNA-derived phylogeny, 

which is used to find “unifying concepts of bacterial taxa [leading] to greater 

taxonomic stability and predictability.” However, as physiology and morphology 

are also relevant to classification, the boundaries between different taxa are often 

subjective and controversial (Garrity GM 2001). Additional techniques, e.g. multi-

locus sequence analysis (MLSA) (Marrero, Schneider et al. 2013), are often used 

to compensate for the lack of 16S rRNA phylogeny resolution (Fox, Wisotzkey et 

al. 1992). For the (even highly accurate) computational organism classification 
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methods (Wu and Eisen 2008) this taxonomic flexibility contributes to 

inconsistent assignments.  

Due to the absence of sexual reproduction and the presence of horizontal gene 

transfer (HGT), speciation is not strictly defined in prokaryotes. Therefore, the 

goal of greater classification stability and predictability could be better achieved 

via phenetically clustering organisms on the basis of quantifiable similarity of their 

molecular function capabilities. In early studies, Enterotubes, a one-stop shop for 

dozens of biochemical tests, were used to accurately classify Enterobacteriaceae 

(Titsworth, Grunberg et al. 1969); however, these could not be applied to other 

organisms. Gram staining, on the other hand, could broadly typify bacteria, but 

lacked in taxonomic resolution. In general, biochemical/physiological tests only 

reflect a small portion of bacterial functionality – as many as three hundred tests 

would only access 5-20% of the bacterial functional potential (Garrity GM 2001). 

Cheaper genome sequencing and advanced computational methods offer a 

different route for measuring bacterial functional capabilities. 

Most of the molecular functionality of one bacterium, its functional repertoire, is 

carried by its proteome, the set of all proteins encoded by its genes. Note that 

while plasmid encoded proteins are also part of the proteome, for reasons 

discussed later in the manuscript, here we only focus on the proteins encoded on 

the bacterial chromosome. The current taxonomy usually reflects either the 

phenotypic manifestations of functional repertoire subsets (morphology, 

physiology) or high-level repertoire interpretations (e.g. DDH). Ideally, however, 

comparison between bacterial repertoires should offer a comprehensive metric 
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for clustering bacteria on the basis of their overall functional similarity – a 

combination of heritage and habitat impact.  

We defined the functional repertoires of over 1,300 fully sequenced bacteria 

using protein clustering by HSSP (Homology-derived Secondary Structure of 

Proteins) distance (Rost 2002). HSSP techniques allow annotating two proteins 

as performing the same molecular function, without specifically defining the 

nature of this function. We also annotated our set of bacterial proteins via 

common function profiling tools: COG (Tatusov, Fedorova et al. 2003), Pfam 

(Punta, Coggill et al. 2012), and RAST (Aziz, Bartels et al. 2008). For the 

purposes of this work, we defined the similarity between any two organisms 

according to the percentage of functions they shared. We first validated the 

reliability of our functional similarity metric by using pairwise organism 

comparison to assign taxonomic ranks. Using the NCBI Taxonomy as a 

benchmark, we show that functional similarity, defined using any of the above-

mentioned function annotation methods, is more descriptive of pairwise organism 

similarity than gene sequence identity – a novel finding. Additionally, our HSSP-

based organism similarity metric was more accurate than metrics based on other 

function assignments evaluated in this study. Since HSSP is not limited by 

availability of annotations, our approach circumvents experimental limitations by 

including novel lesser-studied functions into organism classification.  

We further identified natural clusters of bacteria in our functional-repertoire 

similarity-based organism network (FuSiON; flattened to fusion). Instead of 

assigning organisms into phylogeny-based classes, each of which may 
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encompass a wide range of environmentally, metabolically, and phenotypically 

diverse microbes, fusion groups them according to functional similarity.  Our 

scheme allows for variability in the number of non-hierarchical organism 

modules, where the clustering resolution is adjustable to each specific 

application. Moreover, as fusion is inherently cut-off free, its clade assignments 

are largely independent of current database biases, i.e. our method will not tend 

to assign a novel microbe to Proteobacteria simply because a vastly larger and 

more diverse set of Proteobacteria genomes are available in our databases. We 

investigated the functional basis for some of the individual discrepancies 

between the current taxonomy and the fusion classification via case studies in 

Cyanobacteria and Mycoplasma. We describe how phylogenetically related 

bacteria can still be functionally very different, with the environment playing a key 

role in selecting for each organism’s functional specificity. Our novel phenetic 

method for unambiguous and consistent classification of bacteria provides a 

complementary view to phylogenetic clade assignment. The dynamic nature of 

our network-based organism clustering provides an easy route for incorporation 

of additional organisms and organism features (e.g. plasmids) into the existing 

classification framework. Fusion is, thus, a more practical fit for biomedical, 

industrial, and ecological applications, e.g. (Glare, Caradus et al. 2012, Krishnan, 

Bharathiraja et al. 2014), as many of these rely on understanding the functional 

capabilities of the microbes in their environment, and are less concerned with 

phylogenetic descent.  
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Note that we are currently working on implementing a publicly available fusion 

work-bench, which will allow real-time assignment of novel organisms to fusion 

clades. For now, fusion development data, which are complete enough to 

reproduce our work, are available at http://bromberglab.org/?q=services. In the 

same place we also have a (rudimentary) database (fusionDB) that contains our 

computational results, implemented for any new requests on our network. 
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Methods 

Datasets. We downloaded 1,374 bacterial proteomes from December 2011 

NCBI GenBank release (Benson, Karsch-Mizrachi et al. 2009). Habitat 

information for these organisms was obtained from GOLD (Pagani, Liolios et al. 

2012) and IMG (Markowitz, Chen et al. 2012).  

Defining functional repertoires and their similarity. We defined the functional 

repertoire of a single microorganism to be the set of all molecular function 

capabilities carried by its proteome (excluding plasmids).  

HSSP-based protein clustering. We performed an all-to-all PSI-BLAST (Altschul, 

Gish et al. 1990) of 4.2 million protein sequences in the 1,374 bacteria 

proteomes (parameters: e-value 1e-3; inclusion ethresh 1e-10; num iterations 3; 

max target seqs 1e9; num alignments 1e9). HSSP distances (Rost 2002) were 

calculated from the PSI-BLAST results (Eqn. 1), where L is the length of the 

alignment between two proteins and Id is the percentage of identical residues. 

!""# !"#$%&'( =  
−99, ! < 11

!" −  480!!!.!" !!!!
!

!"""
, 11 < ! ≤ 450

!" − 19.5, ! > 450
          (Eqn. 1) 

The highest HSSP distance was selected for every pair of proteins when multiple 

alignments were possible. Note that here higher distance means higher similarity. 

A threshold of HSSP distance >10 was used to define two proteins as having 

similar function. At this threshold, the HSSP metric attains ~90% precision and 

~40% recall in mapping functional identity of protein pairs (Rost 2002). We 
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further clustered these proteins into function groups using MCL (Markov Cluster 

Algorithm; parameter: -I 1.4) (Dongen 2000). 

Other function profiling tools. We obtained COG (Clusters of Orthologous 

Groups) (Tatusov, Fedorova et al. 2003) annotations for our dataset (personal 

communication with Dr. Yuri Wolf). We downloaded the Pfam database (release 

27.0) (Punta, Coggill et al. 2012) and annotated all proteins using hmmscan 

(Eddy 2011) against both PfamA and PfamB with default settings. We kept the 

top hit for each protein with e-value < 1e-3. We used a local install of the RAST 

toolkit (myRAST) (Aziz, Bartels et al. 2008) to annotate the function of all 

proteins. Each annotation was made at the default reliability level (parameters: -

reliability 3). All the proteins that were not annotated by COG, Pfam and RAST 

were counted as representing individual functions. 

The functional repertoire similarity of two organisms was calculated as the 

number of shared functions in each functional repertoire (as defined by different 

tools above) divided by the bigger repertoire size. We assumed that similar 

organisms should have similar repertoire sizes, thus a vast difference indicates 

low similarity.   

For comparison to gene content phylogenomic approaches, we also calculated 

the whole-genome similarity as the number of shared homologous proteins 

(homology inferred via 40% sequence identity) normalised by the bigger 

proteome size. 

Annotation of function groups derived from HSSP-based protein clustering. 

We divided all 4.2 million proteins in our set into three categories based on their 



	

 

18	

RAST annotation: 1) known, sequences with available function annotation; 2) 

hypothetical, sequences with “hypothetical” or “putative” in their annotation, or 

annotated as “protein” or “Uncharacterized protein conserved in bacteria,” and 3) 

unknown, sequences with no annotations at all. We further assigned all of our 

HSSP-based function groups to one of three categories; for a given function 

group: 1) Kn if it contains at least one sequence of the known category; 2) Hy if it 

contains no known sequences and at least one hypothetical sequence and 3) Un 

if it contains only unknown sequences. In addition, we also tagged our function 

groups as 1) shared, if they exist in more than one organism in the dataset or 2) 

unique, if they exist only in one organism. 

Comparing the performance of the different pairwise similarity metrics to 

infer organism taxonomy. For every pair of organisms of known NCBI 

Taxonomy identity (Benson, Karsch-Mizrachi et al. 2009), functional repertoire 

similarities were computed based on COG, Pfam, RAST, and our HSSP-based 

method. Each method provided either (i) a correct assignment to the same taxon 

(true positive, TP), (ii) incorrect assignment to the same taxon (false positive, 

FP), (iii) correct assignment to different taxa (true negative, TN), or (iv) incorrect 

assignment to different taxa (false negative, FN). The accuracy (positive 

accuracy, precision; PA) and coverage (positive coverage, recall; PC) were 

computed for every metric at every threshold (Eqn. 2). We then compared the 

taxonomic classification performance of different functional similarity metrics and 

the proteome similarity. 

!" =  !"
!"!!"         !" = !"
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Bootstrap analysis was performed by randomly sampling 10% of the data with 

replacement 100 times for each taxonomy level. AUC (Area Under the Curve) 

under the accuracy/coverage (precision/recall) curve was calculated (Eric Jones 

2001 -) for every functional similarity metric and paired t-tests were performed for 

every pair of metrics. 

Generating functional-repertoire similarity-based organism networks. 

Fusion and fusion+ networks were visualized using Gephi (Bastian, Heymann et 

al. 2009) OpenORD (Wu, Wu et al. 2011) and ForceAtlas2 (Jacomy, Venturini et 

al. 2014), respectively. 

In fusion each 1,374 organisms (vertices/nodes) are connected by 943,251 

edges whose weights reflect the pairwise organism functional repertoire 

similarities. In fusion+ vertices/nodes represent organisms and function groups. A 

(larger) organism node shares edges with its (smaller) function group nodes. 

Organism nodes are linked to each other only via function group nodes; i.e. there 

is no edge directly linking organism nodes. The common function group nodes 

are between organism nodes, while the unique function nodes tend localize near 

the edges of the network. 

Calculating overall accuracy and coverage for singly linked networks. In 

single linkage clustering any two nodes that share an edge are assigned to a 

single cluster regardless of their similarity to other nodes in that cluster. The 

presence of an edge indicates similarity of organisms above a minimum cut-off, 

but the level of similarity is not further considered. Isolated organisms, with no 

connection to any other organism in our set, were not shown.  
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We measured the performance of single linkage clustering in identifying current 

taxonomic assignments for a series of similarity cut-offs (5%-100%, at step of 

5%, Figure 1B,C). For each cut-off, we assigned all organisms in one single 

linkage cluster to the taxon of the most common organisms in that cluster; e.g. if 

a cluster of three organisms contained two organisms of taxon X, all three were 

assigned to the taxon X. The overall network accuracy was calculated as the 

sum of all the correctly assigned organisms divided by the total number of 

organisms (Eqn. 3). 

!"#$%&&'(( =  !"##$!%&' !""#$%&' !"#$%&'(' !" !"#$%&' !!
!!!

!"!#$ !"#$%& !" !"#$%&'('         (Eqn. 3) 

We also identified the organism clusters consistent with taxonomic assignments 

of their members; e.g. if 7 organisms are assigned to a taxon X, and 4 of them 

are in cluster A, then A is considered the major cluster of X. For each taxon, the 

coverage is the fraction of its members that are in the major cluster (Eqn. 4); e.g. 

for X in our example coverage is 57%. At 100% coverage all members of a taxon 

are in one cluster. For a given taxonomy level, the overall network coverage was 

calculated as the number of taxa with 100% coverage divided by the total 

number of taxa at this level (Eqn. 5). Note that taxa with only one member would 

contribute trivially to the performance, and thus were excluded for these 

calculations. 

!"# =  !"#$%&'(' !" !!! !"#$% !"#$%&'
!"#$% !"#$%& !" !"#$%&'(' !" !!! !"#$%            (Eqn. 4) 
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Comparing single linkage functional network-based organism classification 

to the NCBI Taxonomy. The 100-layer network-derived hierarchy was built by 

starting at the threshold of 0% functional repertoire similarity, i.e. all 1,374 

bacteria are in a single cluster, and moving outward in 1% increments until the 

100% similarity threshold was reached. For a given cluster of organisms sharing 

at least X% similarity, we (i) clustered the organisms at (X+1)% similarity, (ii) 

calculated the distance between every two clusters by computing the average of 

all inter-cluster pairwise similarities of organisms and (iii) built a neighbor-joining 

tree (layer) of the clusters using PHYLIP (Felsenstein 2005). By combining all 

layers we obtained a 100-layer hierarchical tree-like structure. This hierarchical 

structure provides a compact visual representation of functional similarity of our 

large groups of microorganisms. Note, however, that it is not a phylogeny tree 

and does NOT directly convey organismal evolutionary relationships.  

NCBI Taxonomy hierarchical tree-like structure was generated with iTOL (Letunic 

and Bork 2011) using the NCBI Taxonomy IDs (Benson, Karsch-Mizrachi et al. 

2009). We then computed the correlation (ranged -1 to 1) between network and 

NCBI-derived hierarchical structure using Patristic (Fourment and Gibbs 2006). 

The hierarchical structures were first converted to distance matrices in which the 

distance between two organisms was calculated as the steps between them in 

the hierarchy. We also built 6 and 10 layer network-derived structures to show 

that the difference in the number of layers is not relevant to the comparison of the 

topological relative distances of any two organisms across hierarchies. 
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Detection of fusion modules and calculation of Jaccard index. We identified 

modules in the complete (no similarity cut-offs) fusion with Louvain method 

implemented in Gephi at a series of resolutions (0.05 to 1.2). We further 

calculated the Jaccard index to compare organism assignments from fusion 

modules to the NCBI Taxonomy. At a given resolution, the Jaccard index is 

calculated as the number of organism pairs assigned to both the same fusion 

module and the same NCBI Taxonomy bin, divided by the number of organism 

pairs assigned to either the same fusion module or the same NCBI Taxonomy 

bin. 
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Results and Discussion 

HSSP-based functional repertoire similarity accurately measures pairwise 

bacterial relationships. We annotated functions of 4.2 million proteins, encoded 

in 1,374 fully sequenced bacterial genomes via COG, RAST, and Pfam. We also 

computed HSSP distances for every proteins pair (~1.6x1013 comparisons). The 

HSSP distance is a non-linear metric incorporating sequence identity and 

alignment length that has been parametrized to identify alignments of proteins of 

experimentally established identical functions (Rost 2002). Briefly, enzymes of 

experimentally defined identical function (defined by the Enzyme Commission 

(EC 1992)) were used to determine a threshold curve separating the alignment 

length vs. sequence identity space into regions of same vs. different functions; 

i.e. two proteins that fall above the curve share identical function, while those 

below the curve do not. The distance of every alignment along the sequence 

identity axis away from the curve (HSSP distance) reflects the reliability of these 

assignments of functional identity (Rost 2002).  

We adopted an HSSP distance cut-off of 10, which annotates two proteins as 

sharing the same function with over 90% precision (accuracy/specificity, 

percentage of correct same-function predictions of all such predictions made), 

albeit at only ~40% recall (coverage/sensitivity, percentage of correct same-

function predictions of all same-function pairs in the set) (Rost 2002).  At this 

stringency, ~900,000 proteins (21% of 4.2 million in our set) were unique – one 

protein per functional group. The remaining 3.3 million clustered into ~335,000 

functional groups (Table 1). Note that at lower HSSP cut-offs these groups can 
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be further consolidated, but at a significant loss to accuracy. We choose a more 

conservative, threshold to attain maximal resolution of assignment.  

Table 2-1 Annotation status of HSSP-based function groups. 

 
Function groups 
(>1 sequence) 

Function groups 
(1 sequence) Total 

Known (Kn) 190,272 245,430 435,702 
Hypothetical (Hy) 119,825 267,160 386,985 
Unknown (Un) 24,925 387,768 412,693 
Total 335,022 900,358 1,235,380 
We used RAST annotations to divide our HSSP-based functional groups into Kn 

(known; available annotation), Hy (hypothetical; likely protein existence, function 

not annotated) and Un (unknown; no annotation) sets (Table 1; Methods). We 

further confirmed that each HSSP-based function group contained proteins of 

similar RAST annotations (Table 2). Note that different function groups may 

contain proteins that carry out the same biochemical functions but in a different 

fashion, e.g. at different reaction rates. We found that many organisms contain 

proteins performing the Kn functions, while the Hy and Un functions tend to be 

organism specific, a conclusion that holds even if groups containing a single 

protein are excluded (Figure 1). As a corollary, proteins carrying functions that 

are more common across organisms are more likely to be annotated (Figure 1). 

Interestingly, we note that 26% (127,254 of 481,913) of the unannotated proteins 

in our set fall into the Kn (78%) and Hy (22%) HSSP-based function groups. We 

also show that for 71% of Kn groups (Table 2), 90-100% of annotated proteins in 

each group are functionally identical. Our protein clustering may thus help 

elucidate functions of tens of thousands of yet un-annotated proteins; we 
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anecdotally confirmed some of these via manual curation of new sequence 

annotations. 

Table 2-2 Distribution of proteins of the same functional annotation among all the HSSP-
based function groups. 

Proteins with same annotation  
(% of all in a group) # of groups (% of total) 

0-50 12,777 (6.7) 
50-90 41,634 (21.9) 
90-100 135,861 (71.4) 

 

Figure 2-1 Function groups that are shared by many organisms are more likely to be 
experimentally annotated (Kn>Hy>Un). (a) all function groups, and (b) function groups 
containing at least two proteins. 

We defined the functional repertoire of an organism as the set of all functional 

groups carried by the organism. The size of the repertoire is at most as large as 

the number of proteins in the proteome, but in-paralogs may fall into a single 

functional group. The functional similarity of two bacteria was calculated as the 

number of shared function groups normalized by the bigger repertoire size 

(Methods).  
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Our HSSP-based functional group comparison significantly (Wilcoxon rank-sum 

test, p-value<0.0001; Methods) more accurately recapitulates the NCBI 

taxonomic identity of organism pairs than using other function definitions (COG, 

RAST, and Pfam) at all taxonomy levels, except the genus and species, where 

RAST achieves comparable performance (Figure 2A-F) RAST’s and HSSP’s 

improved performance at these lower levels may be due to their “whole 

sequence”-based function annotation. Pfam works at the domain level, which is 

arguably too broad, including many proteins into one function class. COG is 

designed to detect orthology, i.e. evolutionary relationships, and thus its 

functional groups are likely too narrowly defined. HSSP’s exemplary performance 

over all taxonomic levels is possibly due to the lack of dependence of its pairwise 

sequence comparisons on the external knowledge, e.g. Pfam domains, RAST 

functions, or COGs. Note that here we used COG instead of the more complete 

EggNOG (Powell, Forslund et al. 2014), as we felt that manual curation may 

carry more resolution. We obtained the latest set of COG annotations from its 

developers (2012 update, Yury Wolf personal communication). Here we show 

that all tested function-based metrics reflect the current taxonomic organism 

placement fairly well. We adopt HSSP for this work as it correlates best with the 

current taxonomy (Figure 2A-F), while circumventing limitation of available 

protein function annotations. 
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Figure 2-2 HSSP-based functional similarity correlates with the NCBI taxonomy better than 
other function definitions. Compared with COG, Pfam (both A and B model databases) and 
RAST -based functional repertoire similarity, HSSP shows better performance (P<0.001, 
Wilcoxon test) in assigning two organisms into the same (a) phylum, (b) class, (c) order, and (d) 
family. It is better (P<0.001) than Pfam and COG, but not significantly different from RAST in 
assigning (e) genus and (f) species. (g) HSSP-based functional repertoire similarity also 
classifies organisms into species significantly better (P<0.001) than a sequence identity-based 
metric. 

As described above, the HSSP metric is more informative of function than protein 

sequence identity and alignment length alone (Rost 2002). Thus, although our 

method is mechanistically similar to sequence-based gene content phylogenomic 

approaches (Snel, Bork et al. 1999, Dagan, Artzy-Randrup et al. 2008), it is very 

different from the latter both (1) conceptually – we classify organisms based on 
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their current functional similarity rather than reconstructing their phylogeny and 

(2) practically – functional similarity significantly more accurately describes 

bacterial relationships than sequence identity-based methods (Wilcoxon rank-

sum test p-value<0.0001; Figure 2G). The latter finding is intuitive, as function-

based methods separate sequence-similar out-paralogs into different families, 

which sequence-based methods, by definition, cannot do. However, to the best 

of our knowledge the improvement of functional comparisons over gene content 

in classifying bacteria has not been experimentally shown before.  

We find, perhaps unsurprisingly, that two nearly functionally identical (90% 

similarity) organisms belong to different species as often as a third of the time 

(Figure 2F). These functionally similar, yet taxonomically split organism pairs are 

not uniformly distributed throughout the taxonomy (Garrity GM 2001, 

Konstantinidis and Tiedje 2005). Here we show that most of these occur in three 

pathogenic genera: Borrelia (Lyme disease), Brucella (brucellosis), and 

Mycobacterium (leprosy, tuberculosis), suggesting possible bias of classification 

towards higher resolution for organisms of human interest. This preference is 

also evidenced by the relatively large number of experimental annotations of 

functions of the human-associated microbiome (Figure 3) Though such 

taxonomic resolution bias probably offers convenience in practice, it brings along 

an inconsistency that complicates en bulk analysis of microorganisms; e.g. 

computational methods cannot readily deal with the type of subjectivity that 

separates very similar organisms into different taxa (e.g. Borrelia hermsii and 

Borrelia turicatae share 99% functional similarity), while assigning different 
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organisms into the same taxon (e.g. Clostridium botulinum strains share less 

than 40% similarity). We argue that for practical use, it is often more important to 

know whether two organisms can perform the same molecular functions rather 

than if they share the same lineage. 

 

Figure 2-3 Bias in functional annotation of bacterial proteomes. Box-and-whisker plots 
representing the distributions of the unannotated fractions of bacterial proteomes among (a) 
major phyla and (b) different habitats. The upper/lower box bounds represent the corresponding 
quartiles with the median shown as the crossbar. The “whiskers” of each box are the set’s 
minimum/maximum values with the outliers (individual points >1.5 times the interquartile distance 
away from the quartile bounds) not included in the calculations. The organisms from 
better/longer-studied phyla, or from the human microbiomes, are generally more functionally 
annotated. The * symbol indicates statistical significance for 1) Proteobacteria vs. Actinobacteria, 
Bacteroidetes and Cyanobacteria; 2) Firmicutes vs. Actinobacteria, Bacteroidetes and 
Cyanobacteria; 3) Human vs. Fresh water, Marine and Soil (P<0.0001, Mann-Whitney U-test). 
Note that increased “human interest” is indicated by the in-depth study of human symbiont 
organisms, as compared to inhabitants of other environments. 
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Note that throughout this work, in order to compare our organism assignments to 

the current taxonomy, we conservatively excluded the plasmid proteomes. 

Plasmids contribute heavily to functional differentiation, as opposed to speciation, 

separating classes of microorganisms without explicit phylogenomic commitment. 

Moreover, plasmids follow independent evolutionary models (Sykora 1992, 

Halary, Leigh et al. 2010) and carry many of the environment-related functions 

(Lawrence 2002). We expect that including the plasmid genomes into our 

paradigm will show stronger impact of habitat and we intend to evaluate plasmid 

contribution in further work.  

Fusion organism classification correlates with the NCBI Taxonomy. We 

represented the functional similarity of our microorganisms as a network – fusion 

(functional-repertoire similarity-based organism network). In fusion, organisms 

are vertices (nodes), and edge lengths (weights) indicate pairwise functional 

repertoire similarities. Here all organisms (1,374 nodes) are at least somehow 

similar forming a fully connected network (943,251 edges). The minimum amount 

of similarity between two organisms is <1% -- these edges link the tiny 

Candidatus microbes (Table 3) to the much bigger organisms in our set. 

However, the most common level of similarity between two organisms is 7% 

(mean 7.7% and median 6%). These results indicate that our organisms are 

mostly functionally distant, but maintain a minimal set of identical, globally 

present, likely housekeeping, functions. In a representation that takes into 

account edge-weight and node density (Figure 4A; OpenORD layout (Wu, Wu et 
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al. 2011)), microorganisms cluster consistently within their NCBI Taxonomy 

groups.  

Table 2-3 Six bacteria not matching any organisms in the functional repertoire-based 
network at 10% cutoff. 

Organism Functional 
Repertoire Size  Phylum/Class 

Bdellovibrio bacteriovorus 
HD100 (uid61595) 3,426 Deltaproteobacteria 

Candidatus Carsonella 
ruddii (uid58773) 181 Gammaproteobacteria 

Candidatus Hodgkinia 
cicadicola Dsem (uid59311) 168 Alphaproteobacteria 

Candidatus Tremblaya 
princeps PCIT (uid68741) 119 Betaproteobacteria 

Fibrobacter succinogenes 
S85 (uid41169) 2,837 Fibrobacteres 

Mycoplasma haemofelis 
Langford 1 (uid62461) 1126 Tenericutes 
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Figure 2-4 Fusion-based clustering correlates with NCBI Taxonomy. (a) fusion network 
colored by taxonomic rank. Ap-Alphaproteobacteria; Bp-Betaproteobacteria; Gp-
Gammaproteobacteria; Dp-Deltaproteobacteria; Ep-Epsilonproteobacteria; Ac-Actinobacteria; Fi-
Firmicutes; Cy-Cyanobacteria; Ba-Bacteroidetes; Sp-Spirochaetes; Te-Tenericutes; Ch-
Chlamydiae; Ot-other minor phyla; (b) The overall accuracy of functional similarity networks at 
cut-offs from 5% to 100%, with step of 5%. The overall network accuracy is the fraction of 
correctly assigned organisms of the total number of organisms; i.e. overall accuracy of 100% 
indicates that all organisms in any one cluster are of the same taxon. The overall accuracy for 
each taxonomy level increases with the cut-off. Thus, lower taxonomy levels (e.g. genus, species) 
achieve 100% overall accuracy at higher cut-offs; (c) The overall coverage of the functional 
similarity networks at cut-offs from 5% to 100%, with step of 5%. The overall coverage is the 
percentage of taxa (excluding taxonomic singletons) with all members in one cluster at a given 
cut-off. Overall coverage of 100%, indicates no splitting of any of the taxa; i.e. one cluster per 
taxon. Lower taxonomy levels lose 100% overall coverage at higher cut-offs. 

Earlier studies searched for natural discontinuity in the bacterial pairwise genome 

similarity space (Staley 2006, Goris, Konstantinidis et al. 2007), but found no 

unique break point that would reasonably assign taxa to large sets of organisms. 

To inspect for possible occurrence of these breakpoints in our network 

representation, we adopted a range of cut-offs in a single linkage clustering 

approach. In single linkage clustering any two nodes that share an edge are 

assigned to a single cluster regardless of their similarity to other nodes in that 

cluster. The presence of an edge indicates similarity of organisms above a 
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minimum cut-off, but the level of similarity (edge weight) is not further considered. 

Thus, a large and diverse set of organisms could form a single cluster at fairly 

high similarity cut-offs; i.e. if the similarity cut-off is 15% and organism A is 20% 

similar to organism B, while B is 20% similar to organism C, then all three 

organisms are assigned to the same cluster even if A and C share less than 10% 

similarity. At the 10% cut-off, i.e. when a minimum of 10% repertoire similarity 

creates an edge between two organisms, four clusters were formed, 

encompassing 1,368 (99% of all) organisms (Figure 5A). Note that at this 10% 

cut-off, we removed the majority of the edges in our network (~86%). As 

expected from a large and diverse group, 1,355 organisms fell into one cluster. 

The other three clusters contained a total of 13 organisms, including five of the 

Planctomycetes phylum in one cluster, six of the Leptospira genus in another, 

and two Mycoplasma suis species strains in the third. The separation of 

Planctomycetes can be explained by the uniqueness of this phylum (Fuerst and 

Sagulenko 2011). However, the split of Leptospira away from other genera of 

Spirochaetes, as well as the split of Mycoplasma suis and Mycoplasma 

haemofelis Langford 1 from each other and other Mycoplasma, highlight the 

(known) disagreements of the current taxonomic clade assignments with these 

organisms’ functional abilities (Garrity GM 2001). Note, however, that 

Spirochaetes and Tenericutes (to which Mycoplasma belong) make up less than 

2% of our set, each. Thus, their functional split could also suggest experimentally 

determined lack of similar genomes. The six singletons, i.e. organisms sharing 

less than 10% functional similarity with any other organisms in our dataset, are 



	

 

34	

summarized in Table 3. Individuality of some of these can be explained – 

Fibrobacter succinogenes S85 is the only Fibrobacteres member in our dataset, 

as may be the three Candidatus organisms of unusually small repertoire sizes. 

However, the reasons for differentiating Bdellovibrio bacteriovorus HD100 from 

its taxonomic neighbors must be rooted in the dissimilarity of functional 

annotations and taxonomic assignments. 

	

Figure 2-5 Functional network single linkage clustering correlates with NCBI taxonomy. 
Single linkage clusters based on minimum functional repertoire similarity cut-offs of (a) 10%, (b) 
20% and (c) 30%. As the cut-off increases, smaller-size taxonomically consistent clusters are 
observed. The 100-layer hierarchy of the 1,374 bacteria in (d) is derived from cut-off-based single 
linkage clustering at 1% steps, from 0% to 100% cut-offs (Methods). Ap-Alphaproteobacteria; Bp-
Betaproteobacteria; Gp-Gammaproteobacteria; Dp-Deltaproteobacteria; Ep-
Epsilonproteobacteria; Ac-Actinobacteria; Fi-Firmicutes; Cy-Cyanobacteria; Ba-Bacteroidetes; 
Sp-Spirochaetes; Te-Tenericutes; Ch-Chlamydiae; Ot-other minor phyla. 
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With increasing cut-offs our network contained organism clusters that were 

progressively more taxonomically consistent at lower taxonomic ranks (Figure 

5A-C). This split into clusters is informed by the variation in density of organisms 

across the network, i.e. the increased connectivity between nodes within one 

region as compared to outside the region. Note that density is artificially 

increased in regions of preferentially studied organisms (e.g. Firmicutes and 

Proteobacteria, Figure 3) To study the mapping of functional relationships to 

taxonomy we used 1% cut-off increments in the network to build a 100-layer 

hierarchical structure (Methods; Figure 5D). We found that this structure was 

somewhat topologically similar (corr=0.557) to the NCBI Taxonomy. However, 

the differences between the two indicated the absence of natural breakpoints 

correlating the current taxonomy to functional groupings of microorganisms.  

To quantify the cluster-taxon consistency, we calculated the overall network 

accuracy and coverage at different cut-offs (Methods). With the cut-off increasing 

from 5% to 100%, the overall accuracy increases while the overall coverage 

decreases for each taxonomy level (Figure 5B and 5C). Note that the 100% 

overall accuracy for the species level is only attained at 100% cut-off, which 

results in one organism per cluster (Figure 5B); i.e. NCBI Taxonomy assigns 

highly similar organisms into different species. On the other hand, even 10% 

functional similarity does not guarantee 100% overall coverage for most (phylum 

to genus) taxonomic levels (Figure 5C). All strains of a single species 

consistently fall into a single cluster (100% overall coverage) only until the 30% 

cut-off; i.e. highly dissimilar organisms are classified into the same species. 
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The lowest cut-off resulting in 100% overall accuracy, along with the highest cut-

off resulting in 100% overall coverage, define lower and upper bounds, 

respectively, of the functional repertoire similarity in assigning NCBI Taxonomy. 

Organisms in different clusters at cut-offs less than the lower bound are of 

different taxa, while organisms in the same cluster at cut-offs greater than the 

upper bound are of the same taxon. The ranges of uncertainty of taxonomic 

assignment (region between the lower and upper bound) are varied and often 

large, e.g. spanning cut-offs of 5-95% for genus-level classification (Figure 6A). 

Pairwise comparisons (Figure 6B) display similar behavior, highlighting 

inconsistencies in the prokaryotic taxonomy, previously quantified by e.g. 

(Konstantinidis and Tiedje 2005). Arguably, even more disconcerting for pairwise 

comparisons is the fact that >90% of all organism pairs fall into this uncertainty 

range for all taxonomic ranks except for species (most organism pairs are of 

different species); e.g. for phylum level 97% of all organism pairs are in the 

uncertainty region. These results indicate that setting arbitrary cut-offs, whether 

network- or pairwise- comparison-based, in order to fit organisms into preset 

taxonomic bins, inevitably introduces unquantifiable and non-standardizable bias 

into annotations – a problem for large-scale organism and microbiome studies.  
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Figure 2-6 Both network-based single linkage clustering and pairwise functional repertoire 
similarity correlate poorly with NCBI taxonomy. Similarity range for each NCBI taxonomy level 
defined by (a) network and (b) pairwise functional repertoire similarity cut-offs. The green and 
blue parts of the column indicate the similarity ranges where organisms can be unequivocally 
assigned to the same or different taxa, respectively. The red part of the column indicates 
uncertainty where, such assignment cannot be conclusively made. Note that for organism pairs at 
all taxonomic levels, except species, (b), the number of pairs in the red region exceeds 90%. 
Intuitively, for the species level, the majority of organism pairs (98%) fall into different species. 

 

Fusion modules reflect non-hierarchical organism groupings. State of the 

art in any field often concerns itself with describing available data points and 

extrapolation on the basis of observed trends. Current prokaryotic taxonomy is, 

thus, primarily defined on the basis of culturable and commonly studied 

microorganisms, e.g. Proteobacteria and Firmicutes, which make up 46.8% and 

21.7% of our data set, respectively. Furthermore, the number of well studied 

organisms of a particular kind is often the driving force of taxonomic placement of 

newly discovered (sequenced) organisms; i.e. you could only compare a new 

organism to existing ones, so better represented clades are more likely to be 

populated with additional members. For example, when looking to classify a 

newly cultured microbe on the basis of 16S rRNA sequence similarity, one is 
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simply more likely to find a closer, even if not sufficiently close, sequence 

belonging to a well studied clade than to a poorly described one. Re-assignment 

of organisms to new clades on the basis of additional evidence is fairly common. 

However, follow-up studies are time consuming, limited to organisms of high 

interest, and, thus, unlikely to find all errors. High-throughput experimental 

methods (e.g. cheaper sequencing) and automated organism classification can 

contribute to further propagation of assignment errors. An unfortunate, but highly 

visible result of this state of the art is the significant difference in annotations of 

organism diversity of the same metagenomic sample using data provided by 

different 16S rRNA databases (Delmont, Prestat et al. 2012). 

Network-based organism similarity representations can help alleviate issues of 

data availability bias. In a fully connected network of similarities non-overlapping 

modules, with denser (edge weight-wise) within-module and sparser across-

module connectivity, imply natural organism grouping. The Louvain algorithm 

(Blondel 2008) maps nodes in a network into modules by considering both edge-

weight (extent of similarity) and node connectivity. When all-to-all connectivity 

exists within a network, edge-weight is the sole driver of module detection; i.e. 

five very similar organisms can form a module of their own as well as ten or 

twenty organisms. In fact, a larger number of organisms is more likely to connect 

strongly outside the module and, thus, be subject to dispersion. A newly 

identified organism, placed into a fully connected network is then subject to 

forces (connections) pulling from all directions, to finally identify its placement. 

This placement is dynamic – as new organisms are added a network’s 
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partitioning can change. As a result, this approach is more robust to dealing with 

natural organism diversity then static structures.  

For our purposes, one big advantage of the Louvain algorithm is that it splits the 

fully connected fusion network into communities (modules) without a need for a 

set arbitrary similarity cut-off. However, a problem with this single best grouping 

of organisms is that when the global modularity function is optimized, there is a 

loss of resolution for smaller modules. An adapted version of the Louvain method 

(Lambiotte 2008), instead of modularity, aims to optimize stability of network 

partitions over time. Here, stability reflects flows of probability through the 

network, capturing important aspects of the global architecture and describing 

different optimal partitions of the network at different times. Simply put, a module 

is considered stable if random walkers (described by a particular Markov process 

(Lambiotte 2008)) do not escape from it within the set time limit. Thus, longer 

time limits (higher “resolution” parameter values (Figure 7) result in larger and 

coarser (more functionally diverse) modules. The size and diversity of organism 

modules can thus be optimized for each individual application.  
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Figure 2-7 Organism pairs assigned to the same fusion module seldom overlap with pairs 
assigned to the same NCBI Taxonomy bin. With a given Louvain resolution and NCBI 
Taxonomy level, the Jaccard index is calculated as the number of organism pairs assigned to 
both the same fusion module and the same NCBI Taxonomy bin, divided by the number of 
organism pairs assigned to either the same fusion module or the same NCBI Taxonomy bin. Low 
Jaccard Index values highlight the inconsistency of functional microorganism abilities with the 
current taxonomic assignments. 

While one may see the resolution parameter as cut-off equivalent, it is in fact 

quite different. In setting cut-offs on organism similarity we consistently group 

organisms within the same hierarchy – two organisms of the same species 

always belong to the same genus and the same phylum. On the other hand, 

tuning the stability of modules is a dynamic assignment. Thus, two organisms in 

a low-resolution module can belong to different modules at medium resolution 

and the same module again at high resolution. Note that this implementation of 

Louvain algorithm is not deterministic; that is two organisms (at the “edge” of 

similarity) can be sorted into different modules with two runs of the algorithm at 

the same resolution setting. Correspondence of partitions (estimated by e.g. 
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(Wommack, Bhavsar et al. 2008)) produced at the same resolution setting can 

thus be used to approximate meaningful partition points for growing fusion 

networks as new organisms are added. This option is not available for similarity 

cut-off-based schemes that are easily skewed by the availability of genomic data, 

which, for now, is heavily biased toward organisms of particular human interest 

(Figure 3B). Though fusion is also affected by genome availability, the effect is 

alleviated by all-to-all connectivity, which reduces the importance of node number 

in favor of edge weight for clustering purposes. 

We detected the Louvain communities in the complete fusion network (no edges 

removed) using a set of resolution values. We compared organism pair 

assignments to the same Louvain community vs. the same NCBI taxonomic 

placement using the Jaccard index (species to phylum; resolution 0.05 to 1.2; 

Table 4; Figure 7). Here this metric (ranged [0,1], from no similarity and to 

identity, respectively) evaluates the percentage of organism pairs that is 

simultaneously assigned to the same module and the same taxonomic clade, of 

all same module or same clade assignments (Methods). For example, at the 0.8 

resolution of fusion (Figure 8A; colors indicate modules) there are nine modules 

detected. The NCBI taxon (class for Proteobacteria and phylum for all others) of 

organisms in these modules varies (Figure 8B). Some modules demonstrate a 

highly homogeneous phylum/class distribution, while others are diverse. The 

Jaccard index of this resolution is 0.478 with NCBI class assignment and 0.294 

for phylum assignment. This observation highlights the inconsistency of 

functional microorganism abilities with the current taxonomic assignments.  
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Table 2-4 Similarity of the NCBI Taxonomy assignments and fusion modules. 

 

Modularity 
index 

Number of 
fusion Modules 

Number of  
NCBI clades 

Jaccard  
index 

Phylum	 1.1 3 27 0.423 
Class	 0.8 9 43 0.416 
Order	 0.5 56 97 0.611 
Family	 0.4 99 204 0.433 
Genus	 0.3 170 493 0.458 
Species	 0.1 551 875 0.177 

 

 

Figure 2-8 Fusion module detection reveals natural organism grouping. (a) Colors represent 
each of the nine fusion modules detected at resolution 0.8. (b) Organism diversity (NCBI 
Taxonomy) in each module is shown as: Ap-Alphaproteobacteria; Bp-Betaproteobacteria; Gp-
Gammaproteobacteria; Dp-Deltaproteobacteria; Ep-Epsilonproteobacteria; Ac-Actinobacteria; Fi-
Firmicutes; Cy-Cyanobacteria; Ba-Bacteroidetes; Sp-Spirochaetes; Te-Tenericutes; Ch-
Chlamydiae; Ot-other minor phyla. The difference in diversity among the different modules 
reflects the inconsistencies of the current taxonomy. 

We suggest that our novel network-based classification scheme reveals the 

natural grouping of organisms instead relying on arbitrary similarity cut-offs. 

Unlike classification based on pairwise organism similarity, fusion is more robust 

in handling microorganism diversity. It also alleviates the data availability 

(organism bias) problem and is a more practical fit for large-scale computational 
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analysis. In addition, without the limitation of preset discrete taxonomic bins, 

users can zoom in/out with different resolutions to find out the functional 

organism groups of their specific interest.  

Fusion+ reveals functional basis of classification discrepancy. To study the 

functional basis of taxonomic vs. functional discrepancies, we built, for several 

cases, a variant of the fusion network, fusion+. Our case studies were 

Mycoplasma and Cyanobacteria – organisms with well-known taxonomy 

assignment issues (Garrity GM 2001). Fusion+ has two types of nodes: 

organisms and functions that they perform. Organism nodes are connected by 

edges to their function nodes. Thus, while in fusion one edge connects each 

organism pair, in fusion+ the number of connecting edges is equal to the number 

of shared functions. Thus, fusion modules can be studied in depth in terms of 

specific functions or organism meta-data variables, e.g. salinity, temperature, or 

pH preferences.  

Mycoplasma studies. We created three fusion+ networks for 29 Mycoplasma 

strains, including (1) only their 1,848 Kn functions (Figure 9A), (2) 1,848 Kn and 

1,347 Hy functions (3,195 total, Figure 9B), and (3) all 9,354 functions (Figure 

9C). The shift of the M. suis and M. haemofelis Langford 1 away from other 

Mycoplasma between Kn-only (Figure 9A) and Kn,Hy-network (Figure 9B) 

illustrates the importance for classification of the yet unstudied (Hy) functions. 

Note that while adding the 1,518 Un (95% organism-unique) functions further 

increases the separation between all organisms in the network (Figure 9C) this 

effect can be largely attributed to the impact of repertoire size.  
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Figure 2-9 Mycoplasma fusion+ reveals the importance of Hy and Un functions in 
taxonomy assignment.  The networks include a) Kn functions, b) Kn and Hy functions and c) all 
functions. Unique blood Mycoplasma organisms are indicated by red nodes, with the rest of 
Mycoplasma colored in blue. The length of edges represents the relative (not absolute) 
similarities between organisms. Note the resolution increases as Hy and Un functions added. 

The separation of the two M. suis strains and M. haemofelis from other 

Mycoplasma is not surprising. As noted earlier, in the functional similarity network 

they form isolated clusters at a very low 10% cut-off (Figure 5A; Table 3). 

Previously known as Eperythrozoon suis and Haemobartonella felis, respectively, 

these three strains moved to the Mycoplasma genus on the basis of their 16S 

rRNA phylogeny (Neimark, Johansson et al. 2002, Krieg NR 2011). There are, 

however, ample biological differences of these strains as compared to other 

Mycoplasma (Uilenberg, Thiaucourt et al. 2004). Quantifying these differences is, 

however, very difficult – do they merit re-assignment to another clade or not? Our 

observations highlight the problem: these organism are assigned into a genus 

with less than 10% of common functionality – even organisms of different phyla 

are often more similar (Figure 5A). The structure of the fusion network, however, 

clearly groups them with other Mycoplasma all the way down to a resolution of 

0.1. While the similarity of fusion modules and species assignments is fairly low 
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(Table 4), in this particular case the two metrics agree. Rooted in the same 

ancestor as other Mycoplasma, M. suis and M. haemofelis have evolved specific 

functional differences likely due to their unique epierythrocytic parasitic life styles 

(Neimark, Johansson et al. 2001). However, in the currently available microbial 

functional landscape, even these (very dramatic) in-clade differences do not 

make this set of organisms functionally different enough to merit complete clade 

dispersal. This example demonstrates the subjective (albeit successful, in this 

case) nature of current cladistic assignments when evolutionary relatedness 

does not equal functional similarity. 

We further identified 26 (25 Kn and one Hy) functional groups shared between M. 

suis and M. haemofelis but not by other Mycoplasma (Table 5). Representative 

sequences from two of these groups are detected in a variety of other organisms 

from multiple phyla. The rest are exclusive to M. suis and M. haemofelis. Note 

that other organisms carry out the biochemical functions represented by these 

functional groups, but they do so using sufficiently different proteins from the 

ones specific to these Mycoplasma strains. These differences may include 

different protein stabilities, different rates of reaction, etc. For instance, many of 

these 25 Kn function groups are house-keeping; e.g. DNA polymerase subunits 

that are unlike others in our set, indicate a likely ancient split from other 

Mycoplasma. 

Table 2-5 Blood Mycoplasma functional groups different from other Mycoplasma. 

Cluster #Seq #Bacteria Annotation 
C_1 128 122 DNA-cytosine methyltransferase (EC 2.1.1.37) 
C_2 82 77 Ribonucleotide reductase of class Ib (aerobic), 

beta subunit (EC 1.17.4.1) 
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C_3 4 3 DNA polymerase III subunits gamma and tau (EC 
2.7.7.7) 

C_4 3 3 DNA polymerase III alpha subunit (EC 2.7.7.7) 
C_5 3 3 Glucose-6-phosphate isomerase (EC 5.3.1.9) 
C_6 3 3 Cardiolipin synthetase (EC 2.7.8.-) 
C_7 3 3 RecA protein 
C_8 3 3 SSU ribosomal protein S7p (S5e) 
C_9 3 3 Inosine-5'-monophosphate dehydrogenase (EC 

1.1.1.205) 
C_10 3 3 Thioredoxin reductase (EC 1.8.1.9) 
C_11 3 3 FIG006542: Phosphoesterase 
C_12 3 3 tRNA (5-methylaminomethyl-2-thiouridylate)-

methyltransferase (EC 2.1.1.61) 
C_13 3 3 Phospholipid-lipopolysaccharide ABC transporter 
C_14 3 3 Endonuclease IV (EC 3.1.21.2) 
C_15 3 3 LSU ribosomal protein L13p (L13Ae) 
C_16 3 3 Ferrichrome transport system permease protein 

FhuG 
C_17 3 3 Transcription termination protein NusA 
C_18 3 3 Preprotein translocase secY subunit (TC 

3.A.5.1.1) 
C_19 3 3 SSU ribosomal protein S5p (S2e) 
C_20 3 3 SSU ribosomal protein S19p (S15e) 
C_21 3 3 6-phosphofructokinase (EC 2.7.1.11) 
C_22 3 3 Tryptophanyl-tRNA synthetase (EC 6.1.1.2) 
C_23 3 3 Zn-dependent hydrolase (EC 3.-.-.-) 
C_24 3 3 hypothetical protein 
C_25 3 3 Adenylosuccinate lyase (EC 4.3.2.2) 
C_26 3 3 ABC TRANSPORTER PERMEASE PROTEIN 

 

One difference between M suis and M. haemofelis is their preferred hosts, swine 

and feline, respectively. The species differ from each other by 1,686 functions – 

640 in M. suis (88% unique; remaining 79 genes shared with other Mycoplasma) 

and 1,046 in M. haemofelis (98% unique). This finding is in line with the fact that 

many hemotrophic Mycoplasma contain numerous paralogous gene families, 

which are thought to participate in antigenetic variation (Guimaraes, Santos et al. 
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2014). These functions are less annotated, but likely differentiate these 

organisms in ways necessary to evade specific host immune response.  

Cyanobacteria studies. We explored the fusion+ network of 40 Cyanobacteria 

(49,937 functions: 17,275 Kn, 21,465 Hy, 11,197 Un; 34,678 organism unique). 

Based on the 15,259 functions shared by at least two organisms, the 

Cyanobacteria separate into two clusters (Figure 10). In fusion this split is 

observed at resolution 0.3 – a genus equivalent. One cluster (Figure 10, top) 

contains 16 fresh-water Cyanobacteria, three symbionts (Peters 1991, Swingley, 

Chen et al. 2008, Thompson, Foster et al. 2012), two marine-water organisms 

and one isolated from marine mud. Note that the mud dweller, Synechococcus 

PCC 7002, is salt tolerant, but does not require salt for growth (Rippka, Deruelles 

et al. 1979). Another cluster (Figure 10, bottom) contains only marine 

Cyanobacteria. The Synechococcus genus members are found in both clusters 

with marine Synechococcus sharing more functionality with the marine 

Prochlorococcus than with the fresh water Synechococcus. The intra-genus 

diversity of Synechococcus (Rippka, Deruelles et al. 1979) suggests a division 

into five genera-equivalent subgroups (Garrity GM 2001). Fusion+ reveals that 

the fresh water and marine Synechococcus are significantly functionally different 

and should belong to different taxa, an unsurprising finding that is in line with 

both 16S rRNA-based phylogenetic (Schirrmeister, Anisimova et al. 2011) and 

phylogenomic (Criscuolo and Gribaldo 2011) studies. Bergey’s Manual relies 

heavily on morphology for Cyanobacteria classification. However, for this specific 

example using phylogeny would produce more informative taxonomic 
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assignments. In other cases, phylogeny may be misleading. For example, 

according to evolutionary ancestry fresh-water Synechococcus elongatus strains 

should group together with the marine Synechococcus and Prochlorococcus 

(Criscuolo and Gribaldo 2011, Schirrmeister, Anisimova et al. 2011). However, S. 

elongatus is more functionally similar to fresh water Synechococcus (Figure 10) 

and should be grouped with them despite its evolutionary relationships to the 

marine subgroup.  
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Figure 2-10 Fusion+ of 40 Cyanobacteria reveals environment impact on functions. The 
Cyanobacteria form one mostly fresh water cluster and one marine cluster. The members of 
Synechococcus exist in both clusters. The functions that are shared between marine 
Synechococcus and Prochlorococcus, yet not found in fresh water Cyanobacteria, are likely 
important in the marine environment. Symbiont1-cyanobacterium UCYN-A; Symbiont2- 
Acaryochloris marina MBIC11017; Symbiont3- Nostoc azollae 0708. 

To further study salt tolerance, we identified 181 functional groups only shared by 

the marine Synechococcus and Prochlorococcus in our network. Of these, 15 

groups include proteins from organisms of various phyla; e.g. one of these 

functions is present in Allochromatium vinosum, a halotolerant microbe surviving 

in both marine and freshwater environments (Weissgerber, Zigann et al. 2011). 
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This particular function is RAST annotated as a putative carboxysome peptide A, 

crucial in carbon fixation. We hypothesize that this A. vinosum version of the 

carboxysome subunit is either specific to salt adaptation or transferred together 

with other salt tolerance genes in an HGT event. We also identified 166 functions 

(including 21 Hy and one Un function) exclusive to and ubiquitous in the marine 

Synechococcus and Prochlorococcus. Of these, 34 were unique – not found in 

any other organisms (including the closest evolutionary neighbor, S. elongatus) 

in any other form (manual curation).  

Functional similarity can standardize organism classification. Fusion offers 

a quantitative, objective, and consistent function-based measure of organism 

similarity. Its classifications correlate with the current taxonomy for many 

organisms, but not in cases where close phylogenetic relatives are functionally 

different. Our analysis supports previously reported trends of inconsistencies in 

the current taxonomy (Staley 2006, Goris, Konstantinidis et al. 2007). fusion’s 

functional repertoire definitions are more accurate for organism classification 

than sequence identity-based whole-genome comparisons. Moreover, our novel 

network scheme with module identification, to the best of our knowledge, is the 

first attempt to highlight naturally occurring clusters of organisms, without 

(arbitrary) pairwise similarity cut-offs. It is more robust than pairwise organism 

comparison in dealing with organism diversity, particularly since much of fusion’s 

resolution comes from using unstudied (or poorly studied) functions. Potentially, 

its use of functional similarities to identify organisms can facilitate organismal and 

functional diversity annotation of metagenomes and, under some circumstances, 
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even contamination detection in newly sequenced genomes. fusion reveals the 

significant roles that environmental factors play in determining functional abilities 

of organisms and highlights the key functions shared by different organisms in 

the same environment.  

For large-scale analyses and practical applications requiring systematic 

organismal phenotype assessments, e.g. antibiotics development, 

bioremediation, and industrial uses, classification based on functional 

comparisons may carry more meaning than evolutionary relationships. Fusion is 

a novel framework for organism classification that (1) directly uses organism 

functional comparisons, eliminating the need to consider individual HGT events 

in addition to evolutionary lineage, (2) describes organismal diversity by 

identifying natural organism clusters in a similarity network instead of arbitrarily 

establishing cut-offs in levels of similarity per cluster, and (3) has an unlimited 

capacity to incorporate additional genetic data from plasmids and/or previously 

unseen organisms. At the very least, fusion offers a complementary view to the 

current taxonomy. Comparing the two classification schemes allows detection of 

functionally diversified strains – an ability that, potentially, has a wide range of 

applications, e.g. tracking and surveillance of bacterial pathogens.   
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Conclusion 

Microorganism classification, like many other scientific strategies, is driven by 

expertise and available technology. Historically designed with more emphasis on 

the former the current taxonomy lacks consistency across assignments. Recent 

advances in sequencing abilities have created the possibility of exploiting entire 

organism functional pools for classification. Here we demonstrate fusion – a 

classification technique that compares molecular (genome encoded) functionality 

across microorganisms. Fusion can be used with a predictable consistency to 

classify newly sequenced organisms according to the current taxonomy. More 

importantly, it offers a novel and practical prokaryotic classification scheme, 

which is reflective of, but not dependent on, organism evolutionary history. 

Fusion’s ability to highlight functions key to particular environments will have 

great impact in industrial and clinical practices.  
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Change Note 

In the next chapter I will describe a database built based upon the analysis 

presented here. However, we used a looser cutoff to define the function groups 

(See the picture below). With the current curve (red), there are more same-

function alignments than previous (black), which ends up in function groups with 

larger sizes (See Table 2 in the next chapter).  

   

Note that this modification doesn’t change the main conclusions we made above. 

For comparison, below I listed some key figures generated from the new 

calculation. 
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Correspond to Figure 4a 

  

Correspond to Figure 4b and 4c 
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Correspond to Figure 6 

 

Correspond to Figure 7 

 

	  



	

 

56	

Correspond to Figure 9 

 

Correspond to Figure 10 
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Chapter 3  
Introduction 

Microorganisms are capable of carrying out much of molecular functionality 

relevant to a range of human interests, including health, industrial production, 

and bioremediation. Experimental study of these microbes to optimize their uses 

is expensive and time-consuming; e.g. as many as three hundred 

biochemical/physiological tests only reflect 5-20% of the bacterial functional 

potential (Garrity GM 2001). The recent drastic increase in the number of 

sequenced microbial genomes has facilitated access to microbial molecular 

functionality from the gene/protein sequence side, via databases like Pfam 

(Benson, Karsch-Mizrachi et al. 2009), COG (Tatusov, Fedorova et al. 2003), 

TIGRfam (Haft, Selengut et al. 2003), RAST (Aziz, Bartels et al. 2008) and 

others. Note that the relatively low number of available experimental functional 

annotations limits the power of these databases in recognizing microbial proteins 

that provide novel functionality. Additional information about microbial 

environmental preferences can be found, e.g. in GOLD (Pagani, Liolios et al. 

2012). While it is well known that environmental factors play an important role in 

microbial functionality (Cohan 2001), none of the existing resources directly link 

environmental data to microbial function.   

We mapped bacterial proteins to molecular functions and studied the functional 

relationships between bacteria in the light of their chosen habitats.  We 

previously developed fusion (Sun, Yu et al. 2015), an organism functional 

similarity network, which can be used to broadly summarize the environmental 
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factors driving microbial functional diversification. Here we describe fusionDB – a 

database relating bacterial fusion functional repertoires to the corresponding 

environmental niches. fusionDB is explorable via a web-interface by querying for 

combinations of organism names and environments. Users can also map new 

organism proteomes to the functional repertoires of the reference organisms in 

fusionDB; including, notably, matching proteins of yet unannotated function 

across organisms. The submitted organisms are visualized, and can be further 

explored, interactively as fusion networks in the context of selected reference 

genomes. Additionally, the web interface generates fusion+ networks, i.e. views 

that explicitly indicate shared microbial functions.  

Our overall analyses of the fusionDB data for the first time give quantitative 

support for the fact that environmental factors driving microbial functional 

diversification. To demonstrate fusionDB functionality, for individual organisms 

we mapped a recently sequenced genome of a freshwater Synechococcus 

bacterium to fusionDB. In line with our previous findings (Sun, Yu et al. 2015), we 

demonstrate that this microorganism is more functionally related to other fresh 

water Cyanobacteria than to the marine Synechococcus. In a case study on 

Bacillus microbes we use fusionDB to track organism-unique functions and 

illustrate the detection of core-function repertoires that capture traces of 

environmentally driven horizontal gene transfer (HGT).  fusionDB is a unique tool 

that provides an easy way of analysing the, often unannotated, molecular 

function spectrum of a given microbe. It further places this microbe into a context 

of other reference organisms and relates the identified microbial function to the 
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preferred environmental conditions. Our approach allows for detection of 

microbial functional similarities, often mediated via horizontal gene transfer, that 

are difficult to recover via phylogenetic analysis. We note that fusionDB may also 

be useful for the analysis of functional potentials encoded in microbiome 

metagenomes. We expect that fusionDB will facilitate the study of environment-

specific microbial molecular functionalities, leading to improved understanding of 

microbial lifestyles and to an increased number of applied bacterial uses.   
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Methods 

Database setup. fusionDB is based on alignments of 4,284,540 proteins from 

1,374 bacterial genomes (Dec. 2011 NCBI GenBank (Benson, Karsch-Mizrachi 

et al. 2009). For each bacterium, we store its (1) NCBI taxonomic information 

(Benson, Karsch-Mizrachi et al. 2009) and, where available, (2) environmental 

metadata (temperature, oxygen requirements, and habitat; GOLD (Pagani, 

Liolios et al. 2012). The environments are generalized, e.g. thermophiles include 

hyper-thermophiles. “No data” is used to indicate missing annotations (Table 1). 

The general fusion (functional repertoire similarity-based organism network) 

protocol is described in (Sun, Yu et al. 2015). Briefly, all proteins in our database 

are aligned against each other using three iterations of PSI-BLAST (Altschul, 

Gish et al. 1990) and the alignment length and sequence identity are used to 

compute HSSP (Rost 2002). A network of protein similarities is then clustered 

using MCL (Dongen 2000) clustering. For fusionDB the original fusion algorithm 

was modified to use less stringent protein functional similarity criteria (with HSSP 

distance cutoff = 10), which resulted in 457,576 functions (protein clusters; Table 

2). Each bacterium was thus mapped to a set of functions, its functional 

repertoire. Therefore our functional repertoires include all the bacterial functions, 

regardless of annotation. We are thus able to make function predictions, even the 

functions that have not been annotated before, for proteins in new bacteria. 
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Table 3-1 Taxonomic composition of environmentally distinct groups. 

 

*No Data indicates missing annotations. 
** One organism can be annotated with multiple habitats (e.g. both soil and host). The first 
number includes only organisms with one annotation, whereas the number in parenthesis 
includes organisms with multiple habitats.  

Table 3-2 Annotation status of HSSP-based function groups. 

 

Function groups 
(>1 sequence) 

Function groups 
(1 sequence) Total 

Known (Kn) 54,522 15,738 70,260 
Hypothetical (Hy) 85,252 89,282 174,534 

Unknown (Un) 22,802 189,980 212,782 
Total 162,576 295,000 457,576 

 

Web interface. fusionDB web interface has two functions: explore and map new 

organisms. The explore section contains access to all the 1,374 bacteria and 

their metadata. Users can search these with (combinations of) organism names 

and environmental preferences by using text box input or built in filters. User-

selected organism set is then used to create a fusion network, in which organism 

nodes are connected by functional similarity edges. The fusion network can be 

viewed in an interactive display, as well as downloaded as network data files or 

static images. The user-defined color labels of the organism nodes reflect 

  # phylum # family # organisms 

Temperature 
Mesophile 23 166 1083 
Thermophile 16 42 115 
Psychrophile 3 16 33 
*No Data 14 68 143 

Oxygen Use 
Facultative 10 51 207 
Aerobe 14 115 481 
Anaerobe 20 71 245 
*No Data 15 88 232 

Habitat** 

Soil 8 (11) 43 (75) 78 (279) 
Host 11 (15) 59 (94) 329 (706) 
Marine 10 (15) 24 (49) 61 (116) 
Fresh water 10 (18) 37 (84) 69 (271) 
*No Data 15 88 206 
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microbial taxonomy or environment. In the interactive display clicking an 

organism node reveals its taxonomic information and environmental preferences, 

while clicking an edge between two organisms yields a list of their shared 

functions. A fusion+ network can further be generated from the same list of 

organisms. There are two types of vertices (nodes) in fusion+: organism nodes 

and function nodes. Organism nodes are connected to each other only through 

the function nodes they share. The number of edges (degree) of an organism 

node represents the total number of functions of the organism; the relative 

position of each organism node is determined by the pull towards other 

organisms via the common functions and away from others via unique functions 

(Sun, Yu et al. 2015). Like fusion, fusion+ can be interactively displayed, 

downloaded, and colored by the users’ choices. For both network types, users 

can further retrieve the functions shared by the selected organisms - the core-

functional repertoire of the set. Note that the function annotation is from myRAST 

(Aziz, Bartels et al. 2008). This feature is an efficient tool for investigating 

functions underlying organism diversification, particularly within different 

environment conditions.  

In the map section, users can submit their own new organism proteomes (in fasta 

format) to our server. The submitted proteins are PSI-BLASTed against fusionDB 

and assigned to stored functions using the HSSP distance cutoff = 10. Note that 

novel proteins that can’t be assigned to existing functional groups are reported as 

functional singletons. Additionally, protein alignments that exceed 12 CPU hours 

of run-time are eliminated from future consideration. In testing, we found that no 
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more than 0.1% of the proteins fall into this category. Although long run-times 

usually indicate that query proteins likely align to many others in our database, 

they contribute only a small fraction to the overall bacterial similarity and are 

eliminated for the sake of a faster result turn-around. The server sends out 

emails to users when mapping is finished. The map result page contains two 

tables: one is the list of functions of the submitted bacterium, while the other 

contains pairwise functional similarities (Eqn. 1) between the submitted 

bacterium and the reference proteomes in fusionDB (Figure 1).  

  Eqn. 1 

Both tables can be easily sorted, searched and exported as comma-separated 

files. The submitted proteome is further mapped to user-selected reference 

organisms with fusion and/or fusion+ as describe above.   

similarity = shared functions
the larger functional repertoire size
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Figure 3-1 Example of fusionDB map result page. (a) The functional clusters table contains all 
the fusionDB functions that the submitted genome mapping to. The search box allows search for 
certain functions with partial match. (b) The organism similarities table contains all the 1374 
bacteria in fusionDB, with their ID, name, metadata and functional similarity to the submitted 
genome. Users can easily sort the table by desired column. The search box allows search in 
multiple column with space-separated search terms, e.g., “Acidaminococcus Host Mesophile”. 
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Analysis of environment-driven organism similarity. For each environmental 

condition in fusionDB, we sampled organism pairs where organisms were from (1) 

the same condition (SC, e.g. both mesophiles) and (2) different conditions (DC, 

e.g. thermophile vs. mesophile). To alleviate the effects of data bias, the 

organisms in one pair were always selected from different taxonomic groups 

(different Families). The smallest available set of pairs, SC-psychrophile 

contained 33 organisms from 17 Families (Table 1; 136 pairs – 48 same phylum, 

88 different phyla; due to high functional diversity of Proteobacteria, its classes 

were considered independent phyla). For all other environment factors we 

sampled, 100 bootstrap times, 136 organism pairs for both SC and DC sets, 

covering this same minimum taxonomic diversity. We calculated the pairwise 

functional similarity (Eqn. 1) distributions and discarded organism pairs with less 

than 5% similarity.  

Phylogenetic analysis. Genes homologous to pyruvate, phosphate dikinase 

(PPDK) were extracted from selected organisms via the best hit from BLASTP at 

E value cut-off of 1e-3. We performed multiple sequence alignment and 

reconstructed Neighbor-joining tree with the online version of Mafft (Katoh, 

Misawa et al. 2002). The phylogenetic tree was later visualized via FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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Results and Discussion 

Map new Synechococcus genomes to fusionDB.  We downloaded the full 

genome of Synechococcus sp. PCC 7502 (GCA_000317085.1) as translated 

protein sequence fasta (.faa file) from the NCBI Genbank (Benson, Karsch-

Mizrachi et al. 2009) and submitted it to our web interface. This 3,318 protein 

fresh water Cyanobacteria is isolated from a Sphagnum (peat moss) bog 

(Pagani, Liolios et al. 2012). 2,889 (87%) of the bacterial proteins mapped to 

2,206 fusionDB functions and 426 (13%) were functional singletons; three 

proteins exceeded runtime and were excluded, Methods). The whole process 

from submission to receiving a results notification e-mail took a little under three 

and a half hours. The mapping indicates that Synechococcus sp. PCC 7502 is 

functionally most similar (56%) to Synechocystis PCC 6803, a fresh water 

organism closely related to Synechococcus. It also shares a high functional 

similarity with a mud Synechococcus (S.sp. PCC 7002; 53%) and with other 

fresh water Synechococcus (S.elongatus PCC 7942 and S.elongatus PCC 6301; 

52%). Notably, but not surprisingly, Synechococcus sp. PCC 7502 shares much 

less functional similarity (40-42%) with the marine Synechococcus bacteria. This 

relationship is clearly demonstrated by the fusion+ networks (Figure 2). There are 

874 functions shared by all the twelve Synechococcus, the core-function 

repertoire for this genus, and 1,128 functions shared among the fresh water 

Synechococcus. These additional 254 functions are likely important for surviving 

in the fresh water, as opposed to the marine, environment, e.g. low salinity and 

low osmotic pressure. See http://bromberglab.org/node/32 for these functions. 
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Figure 3-2 The fusion+ view of all Synechoccocus genomes. The submitted Synechococcus 
sp. PCC 7502 (black) cluster with the fresh water Synechococcus organisms (light blue). Note 
that the Synechococcus sp. PCC 7002 (green), which is isolated from marine mud, is salt tolerant 
but does not require salt for growth (see (Zhu, Delmont et al. 2015) ). 

Environment significantly affects microbial function. Not surprisingly, the 

SC-thermophile and SC-psychrophile pairs demonstrate significantly higher 

similarities comparing to all DC pairs (Figure 3A). Notably, the higher functional 

similarity between thermophiles than between psychrophiles suggests that 

protein functional adaptation to low temperature is less drastic than to high 

temperature – an interesting finding itself. Contrast to the extremophiles, 

mesophile organisms seem to have huge functional diversity as the SC-

mesophile similarities are comparable to those the DC pairs (Figure 3A).  



	

 

68	

Different molecular pathways of aerobic-respiration and anaerobic-

respiration/fermentation explain the highest dissimilarity between the aerobes 

and anaerobes (DC-anaerobe-aerobe; Figure 3B). Interestingly, the SC-

anaerobe similarities are higher than the SC-aerobe similarities, probably 

because the more ancient anaerobic-respiration/fermentation machinery is more 

simple and conserved.  

 

Figure 3-3 Organism pairwise similarity is higher among organisms living in the same 
environmental conditions. The mean pairwise similarity for same (SC) and different (DC) 
condition organisms according to (a) temperature preference, (b) oxygen requirement, and (c) 
habitat. For all points without error bars, the standard errors are vanishingly small. 

Habitat-based DC samples show lower pairwise organism similarity than SC 

samples as well (Figure 3C), except for DC-fresh water-marine, which is not 

surprising due the same aquatic condition. SC-host displays the lowest mean 
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organism similarity of the habitat SC samples. We speculate it is the result from 

the evolutionary pressure to deal with diverse host defence mechanisms (Hornef, 

Wick et al. 2002). The soil organisms also share low functional similarity, which is 

likely due to soil’s heterogeneity at physical, chemical, and biological levels, from 

nano- to landscape scale (Bastian, Heymann et al. 2009).  

In general, SC organisms across all environmental factors are more functionally 

similar than DC organisms (Figure 3; with exceptions mentioned above; 

Kolmogorov-Smirnov test p-val<2.5e-6). In other words, organisms in the same 

environment are generally more similar than organisms from different 

environments. This finding is intuitive and many studies have shown HGT within 

environment-specific microbiomes (Saye, Ogunseitan et al. 1987, Kim, Moon et 

al. 2012, Liu, Chen et al. 2012). Our results, however, for the first time quantify 

on a broad scale the environmental impact on microorganism function 

diversification.  

Case study of a temperature driven HGT event. In fusionDB explore, we 

extracted thermophilic, mesophilic, and psychrophilic species representatives 

(one per species) of the Bacillus genus from fusionDB. We also added two other 

thermophilic organisms, D. carboxydivorans CO-1-SRB and S. acidophilus TPY,	

to generate a fusion+ network (Table 3, Figure 4). The non-Bacillus thermophiles 

were more closely related to the thermophilic Bacilli. All five thermophiles 

exclusively share three functions. One is a likely pyruvate phosphate dikinase 

(PPDK) that, in extremophiles, works as a primary glycolysis enzyme (Chastain, 

Failing et al. 2011). Phylogenetic analysis suggests an HGT event between 
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thermophilic organisms or a differential gene-loss in Bacilli that no longer live 

under high temperature (Figure 5). The other two shared functions are carried 

out by proteins translated from mobile genetic elements (MGEs) that mediate the 

movement of DNA within genomes or between bacteria (Frost, Leplae et al. 

2005). Shared closely related MGEs in distant organisms imply HGT (Krupovic, 

Gonnet et al. 2013). We thus suggest that fusionDB offers a fast and easy way to 

trace functionally-necessary HGT within niche-specific microbial communities.  

Table 3-3 Temperature preferences of organisms used in the case study. 

Id Temperature 
Bacillus amyloliquefaciens DSM 7 Mesophile 
Bacillus anthracis A0248 Mesophile 
Bacillus cereus ATCC 14579 Mesophile 
Bacillus coagulans 2 6 Thermophile 
Bacillus coagulans 36D1 Thermophile 
Bacillus licheniformis ATCC 14580 Mesophile 
Bacillus megaterium DSM319 Mesophile 
Bacillus subtilis 168 Mesophile 
Bacillus thuringiensis Al Hakam Mesophile 
Bacillus tusciae DSM 2912 Thermophile 
Bacillus weihenstephanensis KBAB4 Psychrotolerant 
Desulfotomaculum carboxydivorans CO 1 SRB Thermophile 
Sulfobacillus acidophilus TPY Thermophile 
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Figure 3-4 fusion+ visualization of Bacillus and thermophilc Clostridia organisms. Large 
organism nodes are connected via the small function nodes. The two thermophilic Clostridia are 
connected to the thermophilic Bacilli via functions that are likely to be horizontally transferred. 
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Figure 3-5 Phylogenetic analysis of pyruvate, phosphate dikinase (PPDK) gene suggests 
horizontal gene transfer between thermophilc Bacilli and Clostridia, or a differential gene 
loss in non-thermophilic Bacilli. The three thermophilic Bacilli reside within the theromophilc 
Clostridia clade. 

We have highlighted the importance of environmental factors for microbial 

function, and demonstrated the capability of fusionDB to not only annotate 

functions, but also directly link function to environment. Although it was 

developed for mapping new microbial genomes, fusionDB also has the potential 

for microbiome annotation. By mapping the proteins translated from 

metagenomes assembly to fusionDB, both the functional and taxonomical can be 

obtained. We look forward to making fusionDB more useful in this direction. 
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Conclusion 

fusionDB links microbial functional similarities and environmental preferences. 

Our data analysis reveals environmental factors driving microbial functional 

diversification Mapping new genomes to the reference genomes, it offers a novel, 

fast, and simple way to detect core-function repertoires, unique functions, as well 

as traces of HGT. With more microbial genome sequencing and further manual 

curation of environmental metadata, we expect that fusionDB will become an 

integral part of microbial functional analysis protocols in the near future.  
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Chapter 4  
Introduction 

Microorganisms inhabit every available niche of our planet, and our bodies are 

no exception. Microbes that survive and thrive in the environments at the 

extremes of temperature, pH, and chemical or radiation contamination possess 

unique molecular functions of high industrial, clinical, and bioremediation value. 

Specifically, in the human body, the microbiome critically impacts our health. For 

example, Crohn’s Disease (CD) is a multifactorial disorder resulting from the 

interplay of individual genetic susceptibility, the gastrointestinal (GI) microbiome 

and other environmental factors. Taxonomic surveys of the GI microbiome have 

revealed microbial community features that are unique to CD patients, e.g. 

overall loss of microbial diversity (Manichanh, Rigottier-Gois et al. 2006, 

Dicksved, Halfvarson et al. 2008), as well as depletion and enrichment of certain 

bacterial taxa (Frank, St. Amand et al. 2007, Martinez-Medina, Aldeguer et al. 

2009, Sokol, Seksik et al. 2009, Frank, Robertson et al. 2011). Establishing 

whether these observed microbial community shifts contribute to pathogenesis 

or, instead, correlate with or result from the disease onset, requires 

understanding not only what are the microbes involved, but also what they do. 

Earlier studies indicate that in association with CD, the microbiome molecular 

function potential is more consistently disturbed than taxonomic makeup 

(Morgan, Tickle et al. 2012). More thorough functional analyses, e.g. based on 

deep metagenomic sequencing, are necessary to elucidate these findings.   
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Metagenome functional annotation can be performed with or without genome 

assembly. If the reads can be assembled into large contigs, existing annotation 

pipelines, such as RAST (Aziz, Bartels et al. 2008) and IMG (Markowitz, Chen et 

al. 2014), can be applied. However, assembly is difficult and often plagued by a 

large fraction of unassembled reads or short length contigs, which belong to the 

minor microbiome members, and by chimeric assemblies, which are especially 

common for complex and highly diverse samples. Downstream gene finding 

algorithms are further faced with incomplete and erroneously assembled 

sequences, complicating statistical model constructions. Read-based annotation, 

e.g., using a platform such as MG-RAST (Aziz, Bartels et al. 2008), can access 

molecular functionality of the entire community. However, reads are usually 

annotated via function transfer by homology that, due to the short read length, is 

lacking in precision. This inaccuracy is additionally compounded by the 

erroneous computational annotations of most genes in the reference databases 

(Schnoes, Brown et al. 2009). 

Here, we compiled a gold standard set of reference proteins (GS), with 

experimentally annotated molecular functions. We further developed faser 

(functional annotation of sequencing reads), an algorithm that uses alignments of 

translated sequencing reads to full-length proteins to annotate read-“parent 

protein” molecular functionality. faser annotates reads with higher precision at 

higher resolution, i.e. more specific functionality, than PSI-BLAST. In a 

benchmark test, the functional annotations produced by MG-RAST vs. the 

combination of the faser algorithm with the GS database were orthogonal. 
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Furthermore, when GS was replaced with md5nr, MG-RAST’s reference 

database, faser annotated 20% more reads than MG-RAST at a comparable 

precision level.  

Our mi-faser pipeline implementation (Figure 1), combining faser and GS, is 

highly parallelized, making use of all available compute cores and processing a 

(~10GB/70M read) meta-genomic/-transcriptomic file in under half an hour (using 

400 compute cores, on average). We applied our mi-faser to metagenomic data 

collected from beach sands in different stages of oil contamination (Rodriguez-R, 

Overholt et al. 2015). Here, mi-faser was able to identify oil degradation 

functionality that was missed by MG-RAST. We also analyzed the GI tract 

microbiome data from CD patients and their relatives. We found the microbiome 

functional profiles were similar between healthy individuals but different across 

patients and between patients and their healthy relatives. Particularly, our 

analysis revealed that CD patients’ microbiomes were enriched in functions that 

help bacteria survive inflammation, i.e. glutathione metabolism and ribosomal 

RNA methyltransfer, and in functions that cause inflammation, i.e. 

lipopolysaccharide and acetaldehyde production. These results suggest the 

microbiome’s role in CD-associated pathogenicity.  

mi-faser results of the metagenomes analysed in this manuscript are available at 

http://services.bromberglab.org/mifaser/results/example. 
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Figure 4-1 mi-faser pipeline. mi-faser is parallelized and runs a load balancer to submit jobs to 
available [1-2000] compute cores. Under normal functioning conditions (~400 available cores, 
onaverage), it takes ~30 minutes to process a single (10G/70M read) meta-genome/-
transcriptome.  
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Methods 

Datasets. To compile the PE1-set, we extracted from SwissProt (Oct. 2015) 

(Bairoch, Boeckmann et al. 2004) proteins that are 1) bacterial, 2) with evidence 

of existence, i.e. SwissProt protein evidence is 1, and 3) explicitly assigned an 

E.C. (Enzyme Commission) number (EC 1992); note that we excluded proteins 

with incomplete annotations, e.g., 1.1.1.-, as well as those with multiple 

annotations. From the PE1-set, we further extracted proteins whose functions are 

experimentally verified (Evidence=”any experimental assertion”; EXP-set). We 

also identified the overlap between the PE1-set and the proteins in the Catalytic 

Site Atlas database (CSA-set) (Furnham, Holliday et al. 2014). We defined our 

gold-standard dataset (GS-set) as the combination of CSA-set and EXP-set, with 

100% identical sequences removed.  

For each protein of the PE1-set and GS-set, we extracted the corresponding 

gene from ENA (European Nucleotide Archive) (Leinonen, Akhtar et al. 2010) 

(including 5’ UTR and 3’ UTR) and randomly generated 10 DNA reads (50-250 

nucleotides) that overlap at least one nucleotide of the coding region. We further 

performed 6-frame translations of the reads and excluded peptides shorter than 

11 amino acids. We defined the corresponding peptide collection as rPE1-set 

and rGS-set. 

We downloaded from MG-RAST the md5nr database and defined its proteins as 

the md5nr-set. 

We obtained six beach sand metagenomes from a previous study of the 

Deepwater Horizon oil spill (Rodriguez-R, Overholt et al. 2015). In this study, 
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metagenomic DNA was sequenced using Illumina MiSeq with paired-end 

strategy to produce 151bp reads. The samples reside in NCBI (BioProject 

PRJNA260285), including 1) pre-oil phase samples, OS-S1 (SRX692936) and 

OS-S2 (SRX695904), 2) oil phase samples, OS-A (SRX696142) and OS-B 

(SRX696240), and 3) post-oil recovered phase samples, OS-I600 (SRX696250) 

and OS-I606 (SRX696254).  

We additionally obtained 11 human gut (fecal) microbiome samples from a family 

affected by CD from the PopGen biobank (Schleswig-Holstein, Germany). Of 

these, nine members were self-reported as healthy and two were affected. 

Metagenomic data were generated using the Illumina Nextera DNA Library Prep 

Kit and sequenced 2x125bp on an Illumina HiSeq2500. In total, 424.8 million 

paired-end reads were generated with a median number of 38.9 million read 

pairs per sample. Adapter trimming was performed using Trimmomatic (Bolger, 

Lohse et al. 2014) in paired-end mode, discarding reads shorter than 60 bp. 

Quality filtering was done using Sickle (Joshi and Fass 2011) run in paired-end 

mode, with a quality threshold of 20 and a minimum length of 60bp. To remove 

contaminating host sequences from the dataset, DeconSeq (v0.4.3) (Schmieder 

and Edwards 2011) was run with the human reference genome (GRCh38) as 

database. Only read-pairs where both sequences survived quality control were 

retained. On average 11.76 % of raw reads were discarded, leaving 374.8 million 

read pairs for downstream analysis. 

faser curve optimization. We PSI-BLASTed the rGS-set against the GS-set 

(parameters: evalue 1e-3; inclusion ethresh 1e-10; num iterations 3; 
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max_target_seqs 1,000,000), excluding self-hits, i.e. peptide hits of their “parent” 

proteins.  For any peptide, functional annotation (E.C. number) was inherited 

from the “parent” protein; one nucleotide overlap required to transfer annotation. 

A peptide-protein alignment is considered positive if the functional annotations of 

the peptide and the aligned protein match exactly at the selected number of E.C. 

digits, and negative otherwise. Any given alignment can be plotted in an L 

(alignment length) vs. Id (alignment sequence identity) two-dimensional space. 

Further, an exponential decay curve (as for HSSP calculations, (Rost 2002)) can 

be used to identify the alignments in this space as true positives (alignments of 

peptides to proteins of identical function that fall above or on the curve), false 

positives (different functions above or on the curve), true negatives (different 

functions below the curve) and false negatives (identical functions below the 

curve). From these values we calculated precision (positive accuracy; Eqn. 1) 

and recall (positive coverage; Eqn. 2) for different curve parameters (a and b in 

Eqn. 4), optimizing the latter to fit a curve best separating positive from negative 

alignments in terms of the highest F-measure (Eqn. 3).  

  (1) 

 (2) 

 (3) 

 (4) 

Precision= True Positive
True Positive+False Positive

	
	

Recall = True Positive
True Positive+False Negative

	
	

F = 2× Precision×Recall
Precision+ Recall

	
	

b× L−a×(1+e
−

L
1000 ) 		
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To avoid overestimating performance of faser, we clustered the GS-set with CD-

hit at 40% sequence identity and split the clusters into ten subsets. We further 

optimised faser curve parameters in 10-fold cross-validation, i.e. we iteratively 

optimised the curve on nine subsets and tested it on the remaining one, 

repeating this process ten times for a different subset as the test set. We 

evaluated the performance reported here by summing the numbers of true and 

false positives and negatives in each test set. As all ten curves were very similar 

in parameters, we took the average of these to establish the final faser curve.  

To summarise, the faser curve is meant to predict from a peptide-protein 

alignment, whether the “parent” protein of the peptide and the aligned protein 

share the same function (E.C. annotation). Additionally, the distance of the 

alignment point to the curve along the sequence identity (Id) axis indicates the 

reliability of the prediction. 

Evaluating faser using DIAMOND results. We extracted the proteins from the 

GS-set and md5nr-set that had identical UniProt IDs. We performed searches 

against the md5nr database using PSI-BLAST (parameters: evalue 1e-3; 

inclusion ethresh 1e-10; num iterations 3; max_target_seqs 1,000,000) and 

DIAMOND (parameters: min-score 10; k 1,000,000). We further excluded from 

the results the alignments to subject proteins that were not in the overlap set. We 

compared the faser values calculated from the results of different alignment 

algorithms by performing a 100-fold bootstrap, sampling ~20% of the results at 

each iteration. Note that we used the bootstrap approach to assess the 

consistency of the observed performance differences.   
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Comparison to MG-RAST. We submitted the artificial metagenome as well as 

the six sand metagenomes for processing to MG-RAST via its website and 

downloaded the resulting function annotations via MG-RAST API (Wilke, Bischof 

et al. 2015). We used the KEGG (Kanehisa, Sato et al. 2016) annotations from 

the md5nr database to establish the annotated E.C.s. Note that although proteins 

can carry out multiple functions, in this study we, conservatively, only included 

proteins with unique and complete E.C. annotations; i.e. we excluded proteins 

with incomplete or multiple E.C. annotations.   

We compared different database/algorithm combinations for the annotation of the 

same sample (SOM Figure 3). The Venn diagrams of the numbers of E.C.s 

annotated by different such combinations were generated by Venny (Oliveros 

2007). When comparing across sand metagenome samples from different 

phases, sample-specific E.C.s were removed as uninformative (<1% of total 

E.C.s in both cases). The correlation between samples was calculated with 

Spearman’s rho, ρ, offered in the R package, Hmisc (Frank E Harrell Jr 2016).  

Functional analysis of CD metagenomes. NMDS (Non-metric multidimensional 

scaling) (Kruskal 1964) analysis (Shepard plot in Figure 14), along with the 

subsequent permanova test was carried out using the Vegan R package (Jari 

Oksanen 2016). From the distributions of E.C.s in the microbiomes of healthy 

individuals, we calculated the “confidence range” for each E.C. as Q1 – 3*IQR 

(three interquartile ranges below the first quartile) to Q3 + 3*IQR (three 

interquartile ranges above the third quartile). Patient E.C.s that fell outside this 

range were identified as significantly depleted or enriched, respectively. Pathway 
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analysis was performed with the KEGG Mapper tool (Kanehisa, Sato et al. 2016). 

Jaccard Index was calculated as the size of intersection divided by the size of 

union of the two sample sets. 

	  



	

 

84	

Results and Discussion 

Few proteins have experimentally verified function annotation. Among the 

332,193 bacterial proteins in SwissProt (Oct. 2015) (Bairoch, Boeckmann et al. 

2004, Boutet, Lieberherr et al. 2016), only 18,240 (~5%) have been 

experimentally shown to exist. Of these, we extracted 5,965 that have unique 

(one per protein) and explicit (all four digits) Enzyme Commission (E.C.) 

annotations (PE1-set; Methods). From this PE1-set, we further selected proteins 

whose functions were experimentally verified, as noted in the Catalytic Site Atlas 

(CSA-set) (Furnham, Holliday et al. 2014) or SwissProt (EXP-set) (Bairoch, 

Boeckmann et al. 2004, Boutet, Lieberherr et al. 2016). After filtering, our set 

contained 2,848 (2,810 non-redundant at 100% sequence identity; GS-set) 

bacterial proteins of experimentally verified function. Note that this is the cleanest 

available dataset of functional annotations; i.e. functional annotations in public 

databases are usually based on (many rounds of) function transfer by homology 

and are, as such, often questionable.   

faser is more accurate for function transfer by homology than PSI-BLAST. 

We created artificial reads from the gene nucleotide sequences corresponding to 

the proteins in GS-set and PE1-set (6-frame translated to peptides, rGS-set and 

rPE1-set, Methods). We further PSI-BLASTed (Altschul, Gish et al. 1990) the 

rGS-set against itself, excluding self-hits, to determine the equation of the curve 

(Eqn. 1) separating the correct alignments (same function) from the incorrect 

ones (different functions) in the L (alignment length) vs. Id (sequence identity) 

space. Our approach was modeled after the HSSP metric for function transfer 
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between full-length proteins (Schneider, de Daruvar et al. 1997, Rost 2002). We 

optimised the curve parameters to maximise the F measure (Methods), 

representative of best separation of peptide-protein alignments of the same 

function (E.C. annotation) from those of different functions (Methods). Thus, if a 

given alignment is above the curve, the “parent protein” of the peptide and the 

aligned reference protein are predicted to share function. The faser score (the 

distance from the curve along the Id axis) indicates the reliability of such 

predictions. This measure clearly outperforms PSI-BLAST e-value in annotating 

function (AUC of 0.78 vs. 0.62, respectively; recall calculated with the 

background of all PSI-BLAST results at e-value =10-3; Figure 2). For example, at 

recall levels of ~50%, the faser score (= 20) is nearly 90% accurate, which 

is >30% more than e-value (=10-18; Figure 2). E-value reaches ~90% precision at 

cut-offs <10-36, which corresponds to recall of less than 7% (Figure 2).  
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Figure 4-2 faser outperforms PSI-BLAST in annotating read functions. At most cutoffs, faser 
(filled circles) is more precise than BLAST (empty circles). For example, for nearly half the reads, 
it provides as much as 90% annotation accuracy as compared to 57% attained by PSI-BLAST 
(arrows at faser score=20 and e-value=e-18). At the default cutoff of 0, faser attains similar 
accuracy as PSI-BLAST at e-value=e-18, but for ~35% more reads. 

The number of matching E.C. digits reflects the level of resolution of function 

annotation; i.e. proteins that share only the first three E.C. digits have similar 

functions with slight differences. For example, both 1.1.1.1 and 1.1.1.2 are 

alcohol dehydrogenases, but with different electron acceptors: NAD+ and 

NADP+, respectively. PSI-BLAST exhibits comparable performance to faser 

when matching the first three E.C. digits (Figure 3), but fails to differentiate 

functions at the fourth digit resolution level, producing a large number of false 

positives (Figure 2). faser resolves the fourth E.C. digit at >90% precision with 
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>40% recall. At all cut-offs, when compared to PSI-BLAST, faser consistently 

offers as much as ~50% higher recall at same precision level and up to ~25% 

higher precision at same recall level (Figure 2).  

faser score =
−100, L <11

Id −352.3L−0.302×(1+e
−

L
1000 ), L ≥11

⎧
⎨
⎪

⎩⎪
 (1) 

 

Figure 4-3 PSI-BLAST performance is comparable to faser when the “same function” 
definition is loose. Matching only the first a) three E.C. digits, b) two E.C. digits, c) one E.C. 
digit. Note that at high precision (Methods) faser still outperforms PSI-BLAST with significantly 
higher recall.Figure 3. PSI-BLAST offers overall performance comparable to faser when the same 
function requires match only the first a) three E.C. digits; b) two E.C. digits; c) one E.C. digit. Note 
that at high precision level, faser still outperforms PSI-BLAST with significantly higher recalls. 

Note that although faser was developed using PSI-BLAST, it can also be 

calculated via other alignment mechanisms. In a benchmark bootstrap test 

(Methods), we compared the performance of the two alignment mechanisms in 

computing faser score. DIAMOND runs significantly faster (~30,000 times), yet 

produces similar faser scores when compared to PSI-BLAST (Pearson 
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correlation coefficient of 0.99±0.001; Methods). At faser score =20, DIAMOND 

missed 5.2±0.5% (287±32 peptide to protein matches) of the 5,490±146 PSI-

BLAST-identified matches, but gained an additional 7.6±0.4% (418±21 matches). 

Interestingly, among the matches identified by PSI-BLAST but missed by 

DIAMOND, only two thirds (69.0±3%) were correct, i.e. matching the right 

peptide to protein. On the other hand, DIAMOND correctly identified matches that 

were missed by PSI-BLAST almost all (98±0.8%) the time. Note that these 

results suggest that faser can potentially be used with a range of alignment 

mechanisms. To alleviate the long alignment runtimes, we exhaustively tested 

the option and switched to DIAMOND (Buchfink, Xie et al. 2015). 

faser offers complementary function annotations to MG-RAST. We 

compared faser performance to that of MG-RAST (Aziz, Bartels et al. 2008), one 

of the most popular public metagenome annotation platforms. We considered 

both algorithm and database levels using the: 1) faser algorithm with the GS-set 

database (FG, the mi-faser pipeline); 2) faser algorithm with the md5nr database 

(Wilke, Harrison et al. 2012) (FM; faser-md5nr), 3) MG-RAST algorithm with 

md5nr database  (MM, the MG-RAST pipeline) (Figure 4; Methods). Note that we 

could not run the MG-RAST algorithm with the GS-set database because the 

MG-RAST developers advised against it, citing complicated installation.  
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Figure 4-4 Algorithm and database comparisons. Note that the combination of the MG-RAST 
algorithm with the GS database is missing because the MG-RAST developers advised against 
local installation of their software. 

When the rPE1-set is used as the artificial metagenome, the FG and MM 

annotations are significantly different (Table 1), although both pipelines annotate 

a similar number of reads (Figure 5A). This variation in performance is not biased 

toward any specific E.C. class (Figure 6). Note that the rPE1-set is a superset of 

GS-set, which likely contributes to the improved performance of the FG pipeline. 

The differences between FG and MM annotations (Figure 5B, first column) stem 

from the differences between the databases (GS-set vs. md5nr) and/or 

algorithms (faser vs. MG-RAST). The divergence between FG and FM annotations 

(Figure 5B, second column) indicates that the database differences contribute 

significantly to the FG/MM variation. Note that this difference is not surprising as 

the GS-set and md5nr share only 779 E.C.s (62% and 29%, respectively). 

Table 4-1 Artificial metagenome (rPE1) annotation by FG, FM and MM. 

 FG FM MM 
Annotated	reads	 35,119 48,481 30,800 
Multi-E.C.	reads*		 819	 11,373	 200	 
Erroneously	annotated	reads	 1,436	 5,705	 4,237	
Correctly	annotated	reads	 33,683 31,103 26,363 
Precision	 98% 85% 86% 

* Reads with multiple E.C. annotations were excluded from the analysis. 
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Figure 4-5 The faser algorithm in combination with the GS database annotates the artificial 
metagenome functions in a manner complementary to MG-RAST. a) The number of reads 
annotated by each combination of algorithms and databases; b) the read abundance by E.C. 
annotated via each combination of algorithm/database; c) the total E.C. count annotated via each 
combination of algorithm/database. 

 

Figure 4-6 The annotation differences are not biased towards specific E.C.s. Note that this 
is the illustration corresponding to Figure 4-5B with different order of E.C.s. 

The comparison between FM and MM results is more interesting (Figure 5B, third 

column), as it highlights the differences between the faser and MG-RAST 
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algorithms. Using the same md5nr database, faser (FM) annotated ~20% more 

reads than MG-RAST (MM, Figure 5A) with comparable precision (Table 1). Note 

that the precision reported in these comparisons is affected by the misannotation 

(~14%), i.e. UniProt proteins in both the GS-set and md5nr annotated with 

different E.C. numbers – a finding, which is in line with a previous study 

(Schnoes, Brown et al. 2009). FM and MM identified 923 E.C.s in common, while 

175 and 40 E.C.s were uniquely identified by faser and MG-RAST, respectively 

(Figure 5C). After exclusion of the database-specific E.C.s, the database impact 

was reduced (FG/FM, Figure 7), yet we still observed substantial FG/MM 

differences largely due to the pipeline algorithms (Figure 7).  

 

Figure 4-7 The faser algorithm and the GS database (mi-faser) annotate artificial 
metagenome (rPE1 set) functions better than MG-RAST. This Figure represents only the 
E.C.s shared between the GS and md5nr database. a) the number of reads annotated by each 
combination of algorithms and databases; b) the E.C. abundance annotated differently between 
combinations of algorithms and databases; c) the E.C. count of annotations in various 
combinations of algorithms and databases. 
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We further extended the comparison of the annotation methods to six 

metagenomic samples from the Deepwater Horizon oil spill beach sand study 

(Rodriguez-R, Overholt et al. 2015) (Methods). Note that in this real-life case, 

there was no “correct” annotation to use for comparing annotation results. 

However, it appears that FM and MM results are orthogonal. For example, for OS-

A (oil phase) FM annotated >50% more reads than MM (Figure 8A); moreover, 

there were 220 E.C.s unique to FM and 42 E.C.s unique to MM (Figure 8C). 

Annotation of other samples followed a similar pattern. Database differences 

resulted in a significant disparity between the number of reads annotated in each 

sample by FG and MM (e.g. Figure 8B). However, both pipelines agreed that: (1) 

samples taken in the same phase were highly functionally correlated (Table 2 

and 3), (2) samples in oil phase were functionally more correlated with samples 

in recovered phase than pre-oil phase (Table 2 and 3, which may indicate that 

the environment has fully recovered from the contamination), and (3) ~20% of 

reads in all samples mapped to housekeeping functions (housekeeping E.C.s 

complied from (Gil, Silva et al. 2004)). This agreement across methods suggests 

that FG reflects true variation in functionality between samples from a perspective 

complimentary to MM.  
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Figure 4-8 The faser algorithm and GS database (mi-faser) annotate BP-oil-spill 
metagenome functions differently from MG-RAST. a) the number of reads annotated by each 
combination of algorithms and databases; b) the E.C. abundance annotated differently between 
combinations of algorithms and databases; c) the E.C. count of annotations in various 
combinations of algorithms and databases. 

Table 4-2 Spearman correlation between sand samples annotated by FG. 

  Oil Pre-oil Recovered 
  OS_A OS_B OS_S1 OS_S2 OS_I600 OS_I606 

Oil	 OS_A	 1 - - - - - 
OS_B	 0.98 1 - - - - 

Pre-oil	 OS_S1	 0.89 0.89 1 - - - 
OS_S2	 0.89 0.89 0.98 1 - - 

Recovered	 OS_I600	 0.93 0.95 0.93 0.93 1 - 
OS_I606	 0.93 0.94 0.93 0.93 0.99 1 

 

Table 4-3 Spearman correlation between sand samples annotated by MM. 

  Oil Pre-oil Recovered 
  OS_A OS_B OS_S1 OS_S2 OS_I600 OS_I606 

Oil	
OS_A	 1 - - - - - 
OS_B	 0.98 1 - - - - 

Pre-oil	
OS_S1	 0.92 0.93 1 - - - 
OS_S2	 0.93 0.93 0.96 1 - - 

Recovered	
OS_I600	 0.94 0.95 0.94 0.94 1 - 
OS_I606	 0.94 0.95 0.94 0.94 0.99 1 
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We further searched for functions enriched in oil phase metagenomes as 

compared to either pre-oil or recovered phases. FG returned 909 E.C.s (65%, 588 

E.C.s, are GS-set specific), while MM returned 1,627 E.C.s (65%, 1062 E.C.s, are 

md5nr specific). Even for the E.C.s existing in both databases, FG and MM 

revealed considerable discrepancies in across-phase abundance fold-changes; 

ρ=0.46 (Spearman’s rho) for oil-to-recovered phase and only ρ=0.09 for oil-to-

pre-oil phase (Figure 9). We explored E.C.s annotated as highly enriched (≥ 5 

times) in oil-phase as compared to other phases by FG, yet unchanged or even 

decreased by MM. There are nine of these E.C.s in oil-to-pre-oil comparison and 

ten in oil-to-recovered comparison, with three E.C.s overlapping across 

comparisons; i.e. enriched in the oil phase as compared to either pre-oil or 

recovered phases (Table 4 and 5). Of the three overlapping E.C.s, two are 

particularly notable: 1.3.11.1 (catechol 1,2-dioxygenase) directly associates with 

BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) degradation, while 

1.8.99.1 (assimilatory sulfite reductase) is essential for sulfur reducing bacteria, 

known to degrade BTEX.  
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Table 4-4 FG-unique functions annotated as enriched in Oil phase compared to Pre-oil 
phase (annotated as unchanged or decreased by MM). 

EC Fold increase Anno 
1.1.1.169 6 2-dehydropantoate 2-reductase 
1.13.11.1* 8 catechol 1,2-dioxygenase 
1.18.1.1 8 rubredoxin---NAD+ reductase 
1.8.99.1* 15 assimilatory sulfite reductase 

2.1.1.61 7 tRNA (5-methylaminomethyl-2-
thiouridylate)-methyltransferase 

2.7.1.45 6 2-dehydro-3-deoxygluconokinase 
3.1.3.18 7 phosphoglycolate phosphatase 
3.1.4.1 10 phosphodiesterase I 

4.2.1.109* 5 methylthioribulose 1-phosphate 
dehydratase 

*Functions also enriched comparing to Recovered phase. 

Table 4-5 FG-unique functions annotated as enriched in Oil phase compared to Recovered 
phase (annotated as unchanged or decreased by MM). 

EC Fold increase Anno 
1.1.1.290 6 4-phosphoerythronate dehydrogenase 
1.11.1.1 6 NADH peroxidase 

1.13.11.1* 8 catechol 1,2-dioxygenase 
1.6.5.2 11 NAD(P)H dehydrogenase (quinone) 

1.8.99.1* 15 assimilatory sulfite reductase 
2.7.1.107 6 diacylglycerol kinase (ATP) 
3.1.1.73 10 feruloyl esterase 
3.1.21.2 6 deoxyribonuclease IV 

4.2.1.109* 16 
methylthioribulose 1-phosphate 

dehydratase 
4.2.1.83 13 4-oxalomesaconate hydratase 

*Functions also enriched comparing to Pre-oil phase. 
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Figure 4-9 FG and MM annotations reveal different fold-changes of E.C. functions across 
phases. In oil phase as compared to a) pre-oil phase (ρ=0.09, Spearman’s rho) and b) 
recovered phase (ρ=0.46). 

mi-faser reveals microbial functions associated with Crohn’s Disease (CD). 

We used our mi-faser pipeline (Figure 1) to analyse 11 microbiomes from 

individuals of the same extended family – two CD affected patients and nine first-

degree relatives (Figure 10A).  The members of this family live in three 

households that are no more than 32km apart from each other, with the CD 

affected individuals living in households 17km away. No statistically significant 

distinction between functional profiles of individuals in the study was observed on 

the basis of generational or household differences (Figure 10B; p-value =0.48 

and =0.51 respectively, permanova test (Anderson 2001)). The nine healthy 

individuals share highly similar microbiome functional profiles (rho, ρ=0.93±0.03; 

Figure 10B; Table 6). This finding is in line with previous studies that show that 

microbiome functional profiles across healthy individuals are more consistently 

maintained than bacterial species profiles (Morgan, Tickle et al. 2012). On the 

other hand, the microbiome functional profiles of the two CD patients are not only 

distinct from those of their healthy relatives (Figure 4B; ρ=0.75±0.11; p-
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value=0.013, permanova test), but also between themselves (ρ=0.72; Figure 

10B; Table 6). Note that the former holds true even within the same household. 

In concert, these finding indicates that either there are different microbiome 

pathogenesis mechanisms of CD or that CD has a diverse impact on microbiome 

functionality.  
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Figure 4-10 Functional capabilities of microbiomes of CD-affected individuals differ from 
healthy individuals and from each other. a) The pedigree of the family in our study. Filled 
markers indicate CD affected individuals and empty markers are healthy individuals; dashed 
outline markers indicate individuals not included in this study. Individuals grouped by circles live 
in the same household. b) The non-metric multidimensional scaling (NMDS) graph represents the 
distribution of individual microbiome functional profiles. Samples are labeled with identifiers (S1-
S11) and household numbers (H1, H2, or H3, in parenthesis). Legend marker numbers (G1 - 
grandparents, G2 - parents, G3 - children) represent generations, while marker shapes relate 
generations and CD status. Sick individuals (filled markers) localize separately from each other 
and from the cluster of healthy individuals (empty markers). 
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Table 4-6 Spearman correlation between microbiome samples. 

 
S01* S03 S04 S05 S06 S07 S08 S09* S10 S11 S12 

S01* 1 - - - - - - - - - - 
S03 0.58 1 - - - - - - - - - 
S04 0.70 0.88 1 - - - - - - - - 
S05 0.77 0.89 0.95 1 - - - - - - - 
S06 0.65 0.92 0.93 0.94 1 - - - - - - 
S07 0.81 0.87 0.91 0.96 0.90 1 - - - - - 
S08 0.74 0.90 0.93 0.97 0.95 0.96 1 - - - - 
S09* 0.72 0.60 0.69 0.69 0.63 0.67 0.66 1 - - - 
S10 0.74 0.86 0.91 0.93 0.90 0.91 0.93 0.68 1 - - 
S11 0.74 0.91 0.92 0.96 0.93 0.96 0.96 0.65 0.92 1 - 
S12 0.59 0.94 0.91 0.89 0.93 0.86 0.90 0.63 0.87 0.91 1 

* Samples from CD patients. 

We identified those E.C.s in our microbiomes whose abundance significantly 

changed in each patient compared to healthy individuals (Methods). S01 and 

S09 both have a large fraction of such E.C.s (44% and 32% respectively, sum of 

enriched and depleted, Table 7). For example, ten E.C.s enriched in both S01 

and S09 are annotated as rRNA methyltransferases (Table 8), which are known 

to be essential for microbial response to environmental stresses (Baldridge and 

Contreras 2014). We further explored these E.C.s to identify pathways uniquely 

altered in each patient; e.g. more than half of Biotin metabolism pathway E.C.s 

are altered in S01, while Xylene degradation is enriched only in S09 (Figure 11). 

There are also pathways that are similarly changed in both patients, i.e. they are 

enriched in the same E.C.s; for example, glutathione metabolism and 

lipopolysaccharide biosynthesis (Figure 11 & 12; Jaccard index =0.5 and =0.73 

respectively). Given the distant microbiome functional profiles between S01 and 

S09 (Figure 10B), these similarities are unlikely to occur by chance. Glutathione 

is known to help bacteria survive oxidative stress, thus the enriched glutathione 
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pathway could be a response to inflammation (Masip, Veeravalli et al. 2006); a 

previous study has reported enrichment in abundance of genes associated with 

glutathione transportation in CD patients (Morgan, Tickle et al. 2012). However, 

the latter study (Morgan, Tickle et al. 2012) also suggested a decrease in 

propanoate and butanoate metabolism, both of which showed overall enrichment 

in S01 and S09 (Figure 11). Finally, to the best of our knowledge, the role of the 

lipopolysaccharide (LPS) biosynthesis pathway in CD patient microbiomes has 

not yet been reported. However, bacterial LPS is previously reported to increase 

intestinal tight junction permeability in mouse modules (Guo, Al-Sadi et al. 2013). 

Tight junctions normally form a selective seal between adjacent intestinal 

epithelial cells. Its increased permeability induces luminal pro-inflammatory 

molecules, resulting in sustained inflammation and tissue damage (Lee 2015). 

Additionally, we also observed differences within individual pathway changes 

between patients. For example in the glycolysis/gluconeogenesis pathway, S01 

is depleted in proteins necessary to convert glucose to pyruvate, while the 

pyruvate metabolism pathways are enriched (Figure 13A). S09 shows a similar 

pattern, while enriching an alternative route from glyceraldehyde-3P to glycerate-

3P (Figure 13B). Interestingly, in both patients, most enriched E.C.s in pyruvate 

metabolism lead to acetaldehyde production (Figure 13), a metabolite also 

known to induce tight junction disruption in intestinal epithelial cells (Atkinson and 

Rao 2001). Thus, our result indicates the microbiome function shift in CD patients 

contributes to pathogenicity, while helps the bacteria survive host inflammation 

(Figure 14).  
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Table 4-7 Number of enriched and depleted E.C.s of the two CD patients. 

 

Total 
E.C.  

Enriched E.C. Depleted E.C. 

pathway non 
pathway sum % pathway non 

pathway sum % 

S01	 945 246 132 378 40 32 10 42 4 
S09	 902 190 75 265 29 19 5 24 3 

 

Table 4-8 Significantly altered E.C.s from patient microbiomes that are not assigned to any 
pathways. Shading indicates E.C.s with decreases abundance. 

E.C. Annotation 
1.14.12.17 nitric oxide dioxygenase 

1.16.3.2 bacterial non-heme ferritin 
1.17.1.2 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase 
1.3.1.91 tRNA-dihydrouridine20 synthase [NAD(P)+] 
1.8.1.8 protein-disulfide reductase 

2.1.1.166* 23S rRNA (uridine2552-2'-O)-methyltransferase 
2.1.1.176* 16S rRNA (cytosine967-C5)-methyltransferase 
2.1.1.177* 23S rRNA (pseudouridine1915-N3)-methyltransferase 
2.1.1.182* 16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase 
2.1.1.186* 23S rRNA (cytidine2498-2'-O)-methyltransferase 
2.1.1.189* 23S rRNA (uracil747-C5)-methyltransferase 
2.1.1.190* 23S rRNA (uracil1939-C5)-methyltransferase 
2.1.1.191* 23S rRNA (cytosine1962-C5)-methyltransferase 
2.1.1.242* 16S rRNA (guanine1516-N2)-methyltransferase 
2.1.1.266* 23S rRNA (adenine2030-N6)-methyltransferase 
2.1.1.61 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase 
2.10.1.1 molybdopterin molybdotransferase 

2.3.1.118 N-hydroxyarylamine O-acetyltransferase 
2.4.1.180 lipopolysaccharide N-acetylmannosaminouronosyltransferase 
2.4.2.43 lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase 

2.7.1.170 anhydro-N-acetylmuramic acid kinase 
2.7.7.19 polynucleotide adenylyltransferase 
2.7.7.42 [glutamine synthetase] adenylyltransferase 
2.7.7.59 [protein-PII] uridylyltransferase 
2.7.7.72 CCA tRNA nucleotidyltransferase 
2.7.7.75 molybdopterin adenylyltransferase 

2.7.8.33 
UDP-N-acetylglucosamine---undecaprenyl-phosphate N-

acetylglucosaminephosphotransferase 
2.8.1.4 tRNA sulfurtransferase 

2.8.3.16 formyl-CoA transferase 
3.1.1.29 aminoacyl-tRNA hydrolase 
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3.1.11.1 exodeoxyribonuclease I 
3.1.11.2 exodeoxyribonuclease III 
3.1.13.1 exoribonuclease II 
3.1.13.5 RNase D 
3.1.21.7 deoxyribonuclease V 

3.1.26.11 tRNase Z 
3.1.26.12 RNase E 
3.1.3.23 sugar-phosphatase 
3.2.1.17 lysozyme 
3.2.2.28 double-stranded uracil-DNA glycosylase 
3.4.13.9 Xaa-Pro dipeptidase 

3.4.21.105 rhomboid protease 
3.4.23.36 signal peptidase II 
3.5.1.105 chitin disaccharide deacetylase 
3.5.1.28 N-acetylmuramoyl-L-alanine amidase 
3.6.3.34 iron-chelate-transporting ATPase 
4.3.1.15 diaminopropionate ammonia-lyase 
5.1.3.32 L-rhamnose mutarotase 
5.2.1.8 peptidylprolyl isomerase 

5.4.99.12 tRNA pseudouridine38-40 synthase 
5.4.99.19 16S rRNA pseudouridine516 synthase 
5.4.99.22 23S rRNA pseudouridine2605 synthase 
5.4.99.27 tRNA pseudouridine13 synthase 
1.11.1.1 NADH peroxidase 
3.4.11.4 tripeptide aminopeptidase 

*	Enriched	rRNA	methyltransferase
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Figure 4-11 Enriched or depleted molecular pathways in microbiomes of CD-affected individuals. Changes in molecular pathways 
were obtained by counting the numbers of enriched or depleted E.C.s as compared to microbiome functional profiles of the healthy family 
members. 
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Figure 4-12 The pathways of glutathione metabolism and lipopolysaccharide biosynthesis contain E.C.s enriched in both S01 
and S09. a) glutathione metabolism  and b) lipopolysaccharide biosynthesis.The E.C.s enriched in both S01 and S09 (brown), E.C.s only 
enriched in S01 (yellow), and E.C.s only enriched in S09 (green). Pink colour indicates the rest E.C.s in the GS database. 
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Figure 4-13 The E.C.s associated with acetaldehyde production in glycolysis/gluconeogenesis are enriched in both patients. a) 
S01 and b) S09. The red indicates enriched functions, while blue colour indicates depleted functions. Pink indicates the rest of the E.C.s in 
the GS database. Acetaldehyde is located at bottom center in both diagrams. 
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Figure 4-14 Microbial function shift in CD patients is involved in inflammation. Functions 
that are associated with inflammation inducers (acetaldehyde and lipopolysaccharide) are 
enriched in CD patient microbiomes, as are the functions that help bacteria survive inflammation 
conditions (glutathione metabolism, rRNA methytransferase and RNA pseudouridine synthase). 
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Conclusion 

In this study, we compiled a “clean” protein dataset with experimentally confirmed 

E.C. annotations (gold standard, GS-set), and trained the faser algorithm to 

optimise transfer of function annotation from reference proteins to short peptides 

translated from sequencing reads. The faser algorithm significantly outperforms 

PSI-BLAST in differentiating functions at high-resolution levels. It also offers 

~20% more annotations at comparable precision levels than the function 

annotation algorithm of MG-RAST. The mi-faser pipeline (faser in combination 

with GS) was able to identify, in BP oil spill data, unique candidate functions 

associated with oil-degradation, which were missed by the MG-RAST pipeline. 

Our pipeline also revealed that gastrointestinal microbiomes of related CD 

patients are functionally very different. We observed two types of functions 

enriched in CD patients: those that cause inflammation and those that help 

bacteria survive inflammatory stress; these may highlight the possible role of the 

microbiome in CD pathogenicity. Note that all mi-faser annotations, although 

highly informative, are based on the proteins making up the, currently limited, 

GS-set. We expect the growth in the number of proteins with experimentally 

verified functions to make our approach even more powerful in the near future. 
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Chapter 5  
Microbial functional diversification is directly and tightly linked to the environment. 

The environmental records, the metadata, are thus very important to understand 

why evolutionarily closely-related bacteria are so different from each other 

functionally. In Chapter 2 and 3 we showed that relating bacterial functions to 

environments yields many interesting findings. However, the currently available 

metadata have many issues, as they are often 1) incomplete, e.g. only 7% of 

bacteria in our set are annotated with the tolerable pH value, 2) erroneous, e.g. 

some thermophiles are labelled as mesophiles, and 3) not standardized, e.g. 

different labs have different terminologies, blurring the boundary between, for 

example, aerobic and microaerobic, or thermophile and hyperthermophile. A 

manual curation (or a, less costly and less accurate, natural language 

processing) effort will help clarify and augment the current metadata, thus 

benefitting our future analyses. 

With the curated metadata, we can further identify not only organisms, but also 

functions associated with specific environments. For slowly evolving functions, 

we can increase the clustering stringency to look for, if there are, environment-

associated subgroups for the universal functions, e.g., DNA polymerase in 

thermophiles should be more stable than DNA polymerase in mesophiles.  On 

the other hand, for fast evolving, or horizontally transferred, functions that enable 

bacterial adaption to the environment, the signal should be clear. As the result, 

we will add one more layer to annotation of functions, which can be useful when 
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the function itself is unknown or function candidates under certain conditions, 

e.g., low pH, are desired.  

In chapter 2, we clustered bacteria based on the functions that they share. With 

further test for stability we can establish a new bacteria classification scheme. 

Comparing to the current 16S rRNA-based taxonomy, our advantages include: 1) 

function-based. We answer the “what are these bacteria” question with “what do 

these bacteria do”, or to be more precise, “what can the bacteria do”; 2) easy 

assignment. New bacteria genomes can be mapped and assigned in no time to 

existing clusters via our fusionDB online service (chapter 3); 3) strain-level 

resolution. 16S rRNA can’t differentiate the pathogenic strain from other strains 

of the same species, e.g., Escherichia coli O157:H7. In our classification 

scheme, we are able to not only resolve strain level differences, but also pin the 

functions of interest. In addition, like how we clustered the bacteria, we can also 

cluster the functions based on the bacteria that they co-exist in. Functions that 

correlate among different bacteria are likely to be involved in the same pathway, 

which can potentially lead to discovery of novel pathways (previously unknown 

function clusters). In addition, we can further curate the main function clusters 

and assign them as signatures for the major bacteria clusters, which helps to 

make our bacterial classification scheme more informative and useful.  

Another obvious application of this project is to combine fusionDB (chapter 3) 

and mi-faser (chapter 4). We can substitute the GS-set with the collection of 

proteins from all available bacterial genomes as reference database. In this way, 

we can offer: 1) wide range of function annotations, including hypothetical and 
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unknown functions with environment information; 2) pathway reconstructions, as 

we can now map to the function clusters that we define instead of KEGG 

pathway; 3) taxonomy annotations, derived from either the fraction of function-

repertoire present, or the signature pathways detected.  Therefore, for a given 

metagenomic sample, we hope to be able to answer “what are these bacteria”, 

“what do these bacteria do”, and even “which bacteria do what” at the same time. 

In the end, given limited time and with all the possible improvements in mind, I 

hope this work can bring in new views on bacteria classification, offer useful tools 

for (meta)genome annotation and eventually benefit the scientific community. 
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