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ABSTRACT OF THE DISSERTATION

Risk-Averse Optimal Control of Diffusion Processes

by Jianing Yao

Dissertation Director: Andrzej Ruszczyński

This work analyzes an optimal control problem for which the performance is measured by a

dynamic risk measure. While dynamic risk measures in discrete-time and the control problems

associated are well understood, the continuous-time framework brings great challenges both in

theory and practice. This study addresses modeling, numerical schemes and applications.

In the first part, we focus on the formulation of a risk-averse control problem. Specifically,

we make use of a decoupled forward-backward system of stochastic differential equations to

evaluate a fixed policy: the forward stochastic differential equation (SDE) characterizes the

evolution of states, and the backward stochastic differential equation (BSDE) does the risk

evaluation at any instant of time. Relying on the Markovian structure of the system, we obtain

the corresponding dynamic programming equation via weak formulation and strong formula-

tion; in the meanwhile, the risk-averse Hamilton-Jacobi-Bellman equation and its verification

are derived under suitable assumptions.

In the second part, the main thrust is to find a convergent numerical method to solve the

system in discrete-time setting. Specifically, we construct a piecewise-constant Markovian

control to show its arbitrarily closeness to the optimal control. The results heavily relies on the

regularity of the solution to generalized Hamilton-Jacobi-Bellman PDE.

In the third part, we propose a numerical method for risk evaluation defined by BSDE. Us-

ing dual representation of the risk measure, we converted risk valuation to a stochastic control
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problem, where the control is the Radon-Nikodym derivative process. The optimality conditions

of such control problem enables us to use a piecewise-constant density (control) to arrive at a

close approximation on a short interval. Then, the Bellman principle extends the approximation

to any finite time horizon problem. Lastly, we give a financial application in risk management

in conjunction with nested simulation.
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Chapter 1

Introduction

1.1 Optimization Under Risk Aversion

1.1.1 Classiclal Risk Modeling

A great volume of literature in decision making under uncertainty is concerned with optimiza-

tion of expected value, i.e.,

min
x∈X
E
[
Zx

]
= min

x∈X

∫
Ω

Zx(ω)P(dω).(1.1)

Here, X is the decision space and Z is a random cost depending on decision x ∈ X. Using

expected value guiding decisions, however, is justified only if the law of large numbers can

be invoked, because optimizing based on average requires observation of a large number of

outcomes. In real life, we rarely enjoy these repetitions; usually, only a handful scenarios are

available. This motivates the concept of risk, which can be defined as the existence of unlikely

and undesirable outcomes. Namely, an event that incurs huge loss, but with low probability

should drew special attention in many real world situations, such as, catastrophic risk manage-

ment.

The first attemp to dealing with risk, to our knowledge, dates back to 1944, when von

Neumann and Morgenstern [73] proposed expected utility models in economics. The resulting

decision problems have the form:

min
x∈X
E
[
u
(
Zx

)]
=

∫
Ω

u
(
Zx(ω)

)
dP(ω),(1.2)

where u : R 7→ R is a non-decreasing dis-utility function. They derived the existence of a

dis-utility function nonlinearly transforming the cost so that decision maker make a decision

based on that. Such a model is characterized by a set of axioms, which were later criticized
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by economists. An alternative utility theory – dual utility – is built on the distortion function

w : [0, 1] 7→ R,

min
x∈X

∫ 1

0
F−1

Zx
(p)dw(p), F−1

Zx
(·) is the quantile function of Zx(1.3)

The model [74, 62] attaches different weights to quantile functions aiming to amplify bad out-

comes. The downside of the dis-utility theory is due to the difficulty to specify individuals’, or

a group of people’s disutility functions in practice, which can lead to an undesired decision in

the end.

In the field of operations research, similar ideas were employed. The optimization problem

with chance constrained is postulated by [60, 52],

min
x∈X

f (x) s.t. P(Zx ≤ y) ≥ 1 − α.(1.4)

The interpretation can be, for instance, requiring the loss less than a certain benchmark y to be

very probable, i.e., at least 1 − α. The model (1.4) can be generalized to individual constraints

that are separable for each component of Zx, or joint constraints enforcing the entire vector Zx

to be below target with hight probability (particularly useful in coping with systemic risk). The

recent advance of chance constraints optimization is so called stochastic dominance constraints

by Ruszczyński and Dentcheva [18]. The stochastic dominance constraints consider the entire

distribution of the outcome Zx rather than the probability of one event,

min
x∈X

f (x) s.t. Zx ≤SD Y.(1.5)

There are first order and second order of stochastic orders, both of which require that the cost

Zx is less than random benchmark Y in terms of distribution. It is interesting to point out that

(1.5) is closely related to the models (1.2) and (1.3) in the sense that the dis-utility function is

associated with the Lagrangian multipliers of the constraint present in (1.5).

In finance and engineering, researchers develop another approach to risk-averse optimiza-

tion. Since expected value itself is not sufficient to incorporate risk, variability is taken into

account as another object in the formulation. Here, the variability is considered as risk, which

can be variance, semi-deviation, deviation form quantile and so on so forth. The most famous

model of this kind is the mean-variance model of Markowitz [51], where the variability is
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measured by variance,

min
x,∈X

ρ
[
Zx

]
= E

[
Zx

]
+ κVar

[
Zx

]
, 0 ≤ κ ≤ κmax.(1.6)

The coeeficient κ reflects one’s risk aversion against variability; thus, by adjusting κ, we essen-

tially place different levels of penalisation on the risk.

1.1.2 Modern Theory of Risk Measures

The modern theory of risk measures started in late 1990’s by Artzner et al [2, 3]. Inspired by

the capital adequacy rules of the Basel Accord, they proposed the notion of a coherent risk

measure. The study was advanced by many authors, in particular, Föllmer, Schied [27, 28] and

Frittelli, Rosazza Gianin [30] have extensive discussions on more general convex risk measure.

They consider X as a random variable representing payoff(or, gain), then the risk measure ρ(·)

is simply a nonlinear mapping to quantify the uncertainty. A list of axioms are imposed to em-

body the evaluation, including monotonicity, translation invariance, normalization, convexity

and positive homogeneity. Note, a convex risk measure is coherent if positive homogeinity is

satisfied. The interpretation of monotonicity and normalization are trivial, and translation in-

variance can be understoood as the minimal capital reserve a company should hold in response

to the the risk it exposes itself to, convexity arises due to the fact that diversification should not

increase risk, and homogeneity postulates if an agent multiples his position by λ, his minimal

capital reserves should be multipled by the same λ.

Another angle to view risk measure is to treat it as the equivalent amount of money one

wants to pay to completely avoid the risk incurred by uncertainty, which is more close to the

classical risk-averse models, e.g., utility theory, e.t.c.. In terms of the random loss, by following

Ruszczyński and Shapiro [69, 68, 70], the risk measure is defined as

Definition 1.1.1. (Axioms of Risk Measure) Given probability space (Ω,F ,P) andZ, a vector

space of random variables on it, a functional ρ : Z 7→ R is a convex risk measure if it satisfies

the following properties:

• Convexity: for all Z,V ∈ Z and λ ∈ [0, 1],

ρ(λZ + (1 − λ)V) ≤ λρ(Z) + (1 − λ)ρ(V).
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• Monotonicity: for all Z,V ∈ Z, Z ≤ V almost surely implies ρ(Z) ≤ ρ(V)

• Translation Invariance: for all Z ∈ Z and a constant c ∈ R,

ρ(Z + c) = ρ(Z) + c.

If, additionally, positive homogeneity is imposed, i.e., for all Z ∈ Z and γ ≥ 0,

ρ(γZ) = γρ(Z),

it is then called coherent risk measure.

Remark 1.1.1. Here, the random variable on the vector space is understood as loss and Z is

usually identified by Lp(Ω,F ,P) with p ∈ [1,+∞], while in [2, 3] only L∞(Ω,F ,P) is consid-

ered.

Example 1.1.2. Let us give several well-known risk measures:

1. Mean-semideviation (Ogryczak, Ruszczyński [53])

ρ(Z) ::= E[Z] + κ
(
E
[((

Z − E[Z]
)
+

)p]) 1
p
, κ ∈ [0, 1], p ≥ 1.

2. Average Value at Risk (Rockafellar, Uryasev [64])

ρ(Z) := AV@R+
α(Z) :=

1
α

∫ α

0
F−1

Z (1 − β)dβ = min
η
∈ R

{
η +

1
α
E
[(

Z − η
)
+

]}
, α ∈ (0, 1]

3. Entropic risk measure (Föllmer and Schied[28])

ρ(Z) :=
1
γ

ln
(
E
[
eγZ]), γ > 0.

The appealing fact about risk measure is that they contain implicit protection against mod-

eling under uncertainty. Mathematically, all convex risk measure have an alternative represen-

tation – dual representation, for cost depending on decision x ∈ X,

ρ(Zx) = max
µ∈A

(
Eµ[Zx] − αmin(Qµ)

)
(1.7)

where the penalty function αmin maps probability measure into real value. Notice Qµ is a prob-

ability measure parameterized by µ that is absolutely continuous with respect to the original

measure P. The technical details can be found in, for example, [28], which mainly uses sepa-

ration theory from functional analysis. In the coherent case, Ruszczyński and Shapiro in [70]
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give a more intuitive and concise proof. They used well-developed theory of convex analysis

to obtain:

ρ(Zx) = max
µ∈A

Eµ[Zx].(1.8)

Clearly, as observed in (1.8), the coherent risk measure is the worst expected value over a

certain set of probability measure.

Now, considering a risk averse optimization problem as before, but using ρ(·),

min
x∈X

ρ(Zx) = min
x∈X

max
µ∈A

Eµ[Zx]

By using dual representation, we found it can be interpreted as a game, i.e., min-max game,

where one choose an action from an admissible set, and the opponent, or nature, selects a

distribution µ ∈ A. Using game theory, it can be shown such optimization problems have an

equilibrium under milde conditions,

min
x∈X

ρ(Zx) = min
x∈X

max
µ∈A

Eµ[Zx] = max
µ∈A

min
x∈X
E[Zx].(1.9)

The introduction of risk measure opens a new field of stochastic programming, bringing both

opportunities and challenges. The main difference is the nonlinearity of the objective function,

which complicates the analysis of optimality conditions as well as developing corresponding

efficient algorithms.

1.1.3 Risk-averse Optimization in Dynamic Setting – Discrete Time

In classical stochastic programming literature, it is very important to extend static models to

a multi-stage setting. Namely, when data {Zi}i∈{1,...,T }, modeled as a discrete-time continuous

state space Markov chain (discrete time stochastic process), are revealed gradually over time,

the decision sequence, {xi}i∈{1,...,T } should be adapted to the process. That is to say, the value

of the decision process, chosen at stage t, only depends on the information generated by Zi

up to time t, bu not the results of the future observations. This is requirement is also called

non-anticipativity. The diagram below is a crystal clear illustration:

decision(x1) ∼ observation(Z2) ∼ decision(x2) ∼ · · · observation(ZT ) ∼ decision(xT ).
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Since the performance measure is conditional expectation (expectation is a special case of

conditioning on the initial filtration), the tower property gives the nested structure. For such

a mechanism, one can solve the problem by backward induction, or a dynamic programming

equation. The former is more appropriate when the number of stages is relatively small but

additional constraints can be imposed, the latter are powerful for large scale problem without

additional constraints.

Adopting risk measure in multi-stage problem requires two fundamental elements. To mo-

tivate further discussion, let us suppose (Z1, ...,ZT ) ∈ Z1× · · ·×ZT
1 is a random cost sequence

from current time 1 to T , the objective will be to evaluate the risk associated with this sequence,

i.e., discrete-time stochastic process. However, it is not sufficient to only have risk evaluation

at the present time t for the tail process Zt, ...,ZT ; we should be able to evaluate the risk from

tomorrow for the remaining sequence. In other words, in a dynamic setting, a collection of risk

evaluators are required. As studied in [19], we call such evaluator – conditional risk measures

and thus the family,
{
ρt,s(·)

}
t,s∈{1,...,T } for t ≤ s, dynamic risk measure. The evaluator ρt,s(·) is a

mapping from Zt × · · · × Zs to Zt, that is, the risk evaluation at future time t for tail cost Zt

through Zs is uncertain now but becomes known at t, i.e.,

ρ1,T (Z1,Z2, ...,ZT ) ∈ Z1 = R

ρ2,T (Z2,Z3, ...,ZT ) ∈ Z2

ρ3,T (Z3,Z4, ...,ZT ) ∈ Z3

· · · · · ·

Now, the question arises whether we can have arbitrary collection of risk evaluators ρt,s(·). The

answer is no: the risk evaluators should have the properties of time consistency. If we have

less risky tail process in the future, call it time t, and between now and future time t, nothing

happens, then it should also look safe today.

Definition 1.1.2. (Ruszczyński [70]) A dynamic risk measure {ρt,T }t∈{1,...,T } is time consistent if

for all τ < θ, Zk = Wk, k = τ, ..., θ − 1 and ρθ,T (Zθ, ...,ZT ) ≤ ρθ,T (Wθ, ...,WT ) imply

ρτ,T (Zτ, ...,ZT ) ≤ ρτ,T (Wτ, ...,WT ).

1Here,Zt, for t ∈ {1, ...,T }, are some vector space of random variables on (Ω,F ,P), e.g., L2(Ω,F ,P).
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The big advantage of having the above definition is summarized in the following theorem:

Theorem 1.1.3. (Ruszczyński [70]) Suppose a dynamic risk measure
{
ρt,T

}
t∈{1,...,T } is time-

consistent, in addition,

ρt,T (Zt, ...,ZT ) = Zt + ρt,T (0,Zt+1, ...,ZT )

ρt,T (0, ..., 0) = 0,

then, for all t we have

ρt,T (Zt, ...,ZT ) = Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · · + ρT−1(ZT )

))
(1.10)

where,

ρt(Zt+1) = ρt,T (0,Zt+1, 0, ..., 0).

Very similar to the case of conditional expectation, the nested decomposition above con-

nects all conditional risk evaluations; in addition to that, it gives an algorithm to evaluate the

risk in a dynamic setting, namely, backward induction. Only one step risk evaluation is needed,

for example, we can define one-step mean-semideviation risk measure as:

ρt(Z) := E[Z | Ft] + κ
(
E
[((

Z − E[Z | Ft]
)
+

)p
| Ft

]) 1
p
, κ ∈ [0, 1], p ≥ 1.

for Z ∈ Zt+1.

Remark 1.1.4. A more recent study in refining definition of time consistency can be found

in [23] where the comparison or riskiness is based on stochastic dominance. In that work,

more generalized partial observable system is discussed when risk measure is the performance

measure.

Optimizing with dynamic risk measure can be accomplished with some effort. In particular,

if structure is Markovian and the cost sequence is a function of the control sequence {xi}i∈{1,...,T },

then one can develop a corresponding dynamic programming equation. For a Markov control

u ∈ U(x) with U being a muiltifunction,
vT+1(x) = cT+1(x), x ∈ X,

vt(x) = minu∈U(x)
{
ct(x, u) + σt(x,Qt(x, u), vt+1)

}
, x ∈ X, t = T, ..., 1.

(1.11)
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Here, c is the cost function, the final stage depends only on the state while the running cost

depends on both action and state, σt(·, ·, ·) is called Markov risk mapping, which plays the same

role as conditional expectation in the classical control context. It takes current state, the Markov

transition kernel Q and value function of next time instance, evaluating the minimum risk of

future cost. In [67], both value iteration and policy iteration are discussed, and the convergence

of the methods are also guaranteed. If an additional constraint is imposed, backward induction

can be used based on (1.10).

1.1.4 Risk-averse Optimization in Dynamic Setting – Continuous Time

In continuous-time setting, the stochastic optimization problem is known as stochastic control,

which is concerned with the following problem:

V(0, x) = inf
u∈U
E

[ ∫ T

0
c(s, Xs, us)ds +Φ(XT )

]
,(1.12)

where the process X follows some continuous-time dynamics with initial state X0 = x. Sim-

ilar to the discrete-time case, the cost rate functional c depends on time, state and control in

general, while the final stage cost only depends on the final state. The setU is the set of admis-

sible controls,which will be detailed in later chapters. As we can observe, the continuous-time

stochastic control problem aims to find an optimal control process as well as the optimal value

under such control. This is rather a challenging problem, because we shall not in general as-

sume the optimal control of Markovian type. In fact, it turns out that in most cases, the optimal

control is not a function of corresponding state. In addition, the dynamics of the system is also

difficult to analyze. Let’s give a brief discussion of the underlying dynamics of the optimal

control problem above – the stochastic differential equation (SDE).

One of the earliest works related to Brownian motion is by Bachelier [4] in his thesis, later

on, Stratonovich and Itô made significant contributions the area and built the foundation (e.g.,

see [33, 34, 35]). The literature studying SDE is extensiv; among which one can refer to mono-

graphs Økesendal[54], Protter[61], Karatzas and Shreve [38], Rogers and Williams [66], Jacod

and Shiryaev [36]. The stochastic differential equation can be viewed as a generalization of

ordinary differential equation(ODE), involving Itô integration. On complete filtered probabil-

ity space (Ω,F ,P,F) with F being the filtration generated by d-dimensional Brownian motion
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{Wt}t≥0, consider the SDE of the following form:
dXt = b(t, X, ω)dt + σ(t, X, ω)dWt, t ∈ [0,T ],

X0 = η(ω).
(1.13)

Observe that the evolution of the state X depends on the path generated and the randomness ex-

plicitly. This is a very general SDE with random coefficients, as drift functional b and diffusion

functional σ are random themselves.

Definition 1.1.3. Let the maps b : [0,∞)×C([0,T ]×Rn)×Ω 7→ Rn and σ : [0,∞)×C([0,T ]×

Rn) × Ω 7→ Rn×m be given on the probability space defined above. Let η be a F0-measurable.

An Ft-adapted continuous process {Xt}t≥0 is called a solution of (1.13) if

X0 = η, a.s.,(1.14) ∫ t

0

{∣∣∣b(s, X, ω)
∣∣∣ +

∣∣∣σ(s, X, ω)
∣∣∣2}ds < +∞, t ≥ 0, a.s.,(1.15)

Xt = η +

∫ t

0
b(s, X, ω)ds +

∫ t

0
σ(s, X, ω)dWs, t ≥ 0 a.s..(1.16)

If P(Xt = Yt, 0 ≤ t < +∞) = 1, holds for any two solutions X and Y of (1.13), we say that the

solution is unique.

Assumption 1.1.5. For any ω ∈ Ω, the functions b(·, ·, ω) and σ(·, ·, ω) are progressively mea-

surable w.r.t. the natural filtrtion on C([0,T ] × Rn) and for any x ∈ C([0,T ] × Rn), b(·, x, ·)

and σ(·, x, ·) are both Ft-adapted processes. Moreover, there exists an L > 0 such that for all

t ∈ [0,∞), x., y. ∈ C([0,T ] × Rn), and ω ∈ Ω,

|b(t, x., ω) − b(t, y., ω)| ≤ L|x. − y.|C([0,T ]×Rn),

|σ(t, x., ω) − σ(t, y., ω)| ≤ L|x. − y.|C([0,T ]×Rn),

|b(·, 0, ·)| + |σ(·, 0, ·)| ∈ M2[0,T ], ∀T ≥ 0.

Theorem 1.1.6. Let assumption 1.1.5 hold, then for any η ∈ L2(Ω,F0,P), (1.13) admits a

unique solution X such that for any T > 0,

E
[

max
0≤s≤T

∣∣∣Xs
∣∣∣2] ≤ KT

(
1 + E

[∣∣∣η∣∣∣2])
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and

E
[∣∣∣Xt − Xs

∣∣∣2] ≤ KT (1 + E
[∣∣∣η∣∣∣2]∣∣∣t − s

∣∣∣ l
2 , ∀s, t, ∈ [0,T ].

Moreover, if η̂ ∈ L2(Ω,F0,P) is another random variable and X̂ is the corresponding solution

of (1.13), then for any T > 0, there exists KT > 0 such that

E
[

max
0≤s≤T

∣∣∣Xs − X̂s
∣∣∣] ≤ KTE

[∣∣∣η − η̂∣∣∣].(1.17)

After establishing the well-posedness of the general SDE (1.13), let us restrict our attention

to a specific parameterization. Since the controller should have impact on the dynamics of X,

both drift and diffusion terms should depend on control. Meanwhile, to preserve the Markovian

property, we assume that b and σ are only functions of the current state. As a consequence, a

controlled diffusion process takes the forms,
dXt = b(t, Xt, ut)dt + σ(t, Xt, ut)dWt, t ∈ [0,T ],

X0 = η(ω).
(1.18)

The randomness of the coefficients is absorbed into the control process so that the system is

Markovian with respect to (X, u).

The original control problem (1.21) can be treated in different ways, one can, as in the

discrete-time case, derive dynamic programming equation,

V(t, x) = inf
u∈U
E
[ ∫ r

t
c(s, Xs, us)ds + V(r, Xr)

]
, 0 ≤ t ≤ r ≤ T,(1.19)

and use Markov chain approximation [42] to solve the problem, or, obtain a Hamilton-Jacobi-

Bellman equation,

∂tV(t, x) + inf
u∈U

{
c(t, x, u) + b(t, x, u)∂xV(t, x) +

1
2

tr(σ(t, x, u))∂xxV(t, x)
}

= 0(1.20)

U is where the admissible control is valued. The analytical solution to such highly nonlinear

partial differential equation is out of reach; numerical methods, such as finite difference, fi-

nite element, can be adopted to solve the problem numerically. Another approach is to work

with the stochastic maximum principle. By defining the Hamiltonian, one can derive necessary

conditions for optimal control u∗. Iterative methods can be designed to construct a piecewise
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constant control that is close to the original optimal control (see Bonnans [9]). For continuous

time, the classical references are [77, 26, 1, 44, 5, 8]. A more generalized optimal control prob-

lem uses utility function as performance measure, references concerned with such formulations

are [14, 24, 25].

As expectation is criticized for ignoring the shape of the distribution, we want to use non-

linear evaluation instead, that is,

Ṽ(0, x) = inf
u∈U

ρ
[ ∫ T

0
c(s, Xs, us)ds +Φ(XT )

]
,(1.21)

for some continuous-time dynamic risk measure ρ, where X satisfies (1.18). The operator ρ

has to evaluate the risk in a continuous-time dynamic setting. Before discussing the specific

form of evaluation, we should, again, have time consistency enforced. Following Cheridito et

al [12, 13], Barrieu, El Karoui [6], a dynamic risk measure {ρs,T }0≤s≤T should also satisfy:

Definition 1.1.4. (Time Consistency) For Z,V ∈ Lp(Ω,FT ,P) and s ≤ t ≤ T, ρt,T (Z) ≤ ρt,T (V)

a.s. implies ρs,T (Z) ≤ ρs,T (V) a.s..

The intuition of time consistency is when the terminal random variable Z is riskier than V at

time t ≥ s in the future, then at time s, Z should still be considered riskier than V .

As for the specific computation regarding operator ρ, the continuous-time dynamic risk

measure is representable by the backward stochastic differential equation (BSDE) under mild

assumptions (see detailed discussion in the seminal paper by Coquet et al [15].) The history of

backward stochastic differential equation (BSDE) goes back to 1980, when Bismut [8] studied

the stochastic maximum principle. Peng and Pardoux [57, 58] extend linear BSDE to nonlinear

BSDE, following which BSDE is extensively studied and becomes one of the most popular

topics in applied probability, especially, for applications in mathematical finance. It is by nature

a nonlinear evaluation of future outcomes. In the risk measure context, let us suppose ξ ∈

L2(Ω,FT ,P), which stands for future loss at time T , the 1-dimensional BSDE takes the form,

Yt = ξ +

∫ T

t
g(s,Ys,Zs)ds −

∫ T

t
ZsdWs, s ∈ [t,T ].

It can be shown that finding risk valuation of ξ is equivalent to solving the above BSDE for Y ,

i.e., ρt,T (ξ) := Yt. Furthermore, time consistency is automatic in this case,

ρt,T
(
·
)

= ρt,s
(
ρs,T

(
·
) )
, 0 ≤ s ≤ t ≤ T,



12

as discussed in Barrieu, El Karoui [6, 7], Peng [59] and Riedel citeRF. It is worth mentioning,

by the convergence results from Briand et al[11], Stadje’s work[72] presents an approach for the

transition from convex risk measure in a discrete-time setting to their counterparts in continuous

time. This allows obtaining continuous-time analogues of a collection of one-step convex risk

measures.

In this thesis, we study the continuous-time optimal control problem with risk-aversion. As

pointed out earlier, it requires an analysis of a backward stochastic differential equation that

facilitates risk evaluation at any time. Such control problems are closely related to forward-

backward systems of stochastic differential equations (FBSDE) (see, [75]). For controlled fully

coupled FBDEs, Li and Wei[48] obtained the dynamic programming equation, and derived the

corresponding Hamilton-Jacobi-Bellman equation. Maximum principle for forward-backward

systems and corresponding games was derived in [55, 56], including models with Lévy pro-

cesses. We presents a simplified yet significant model formulation, in addition, special approx-

imation algorithm are developed.

1.2 Organization of Thesis

In chapter 2, we review the concept of nonlinear evaluations proposed by Peng [59], also his

Ft-consistent evaluation in a dynamic setting. Then, the connection to backward stochastic dif-

ferential equation (BSDE) is established. We discuss general theory of BSDE and its properties.

In particular, the features of the BSDE structure when interpreted as a dynamic risk measure

will be emphasized and explored. In addition, the generalization of dual representation will be

explained as a counterparty of dual representation in the static case (or the conditional case).

Chapter 3 plays the most significant role in terms of modeling. It starts by introducing

decoupled forward - backward stochastic differential equation as the foundation of risk-averse

modeling in a continuous-time setting. The forward stochastic differential equation (SDE) is

controlled by functions satisfying admissibility, and backward stochastic differential equation

(BSDE) measures the risk of accumulated cost and final cost. Both weak formulation and

strong formulation will be discussed, as in [77]. The former requires switching from different

probability space but being intuitive, the latter is more technical in terms of analysis. After
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the formulation step, risk-averse dynamic programming can be derived, which leads to a risk-

averse Hamilton-Jacobi-Bellman equation.

In chapter 4, we propose a theoretical algorithm based on discretization of the risk-averse

dynamic programming equation. The classical method based on the discussion in [41] works

under expectation, however, it generates uncontrollable errors when non-linear evaluation is

considered. We therefore use Borel ball technique to show the existence of a Markovian piece-

wise constant ε-optimal control, namely, we show the arbitrarily closeness of such policy to

the original optimal control. Unfortunately, such constructions cannot lead to a convergence

rate. This is an open questions for interested researchers and scholars, a possible solution is

to use maximum principle for control of FBSDE system to design a penalty method. Such an

algorithm is investigated by F. Bonnans in expectation, which should be possible to generalize.

The purpose of the final chapter – chapter 5 is to devise a numerical scheme for risk evalu-

ation in a short-time interval. This is important if one wants to utilize the theoretical numerical

schemes proposed in chapter 4. At each discretized interval, an efficient and ”accurate” risk

evaluation should be available. This amounts to solving a FBSDE system on such interval. The

key idea here is to convert risk evaluation into a optimal control problem, where the Radon

Nikodym derivative process is the control. By exploring the stochastic maximum principle

and taking advantage of regularity of a semi-linear PDE, we reduce a functional optimization

to vector optimization with acceptable error. A financial application – risk management – is

provided at the end, to illustrate the risk exposure of holding derivatives in the future. The

numerical example and simulation are based on a tree structure and nested simulation.
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Chapter 2

Dynamic Risk Measures in Continuous Time

2.1 F-consistent Nonlinear Expectation

We establish a suitable framework and briefly review the concept of F-consistent nonlinear

expectations (for an extensive treatment, see [59]). Fix a finite horizon [0,T ] for 0 < T < ∞,

let (Ω,F ,P,F) be a probability space, where F = (Ft)t∈[0,T ] is a filtration. A vector-valued

stochastic process {Xt}0≤t≤T is said to be adapted to F if Xt is an Ft-measurable random variable

for any t ∈ [0,T ].

Let us start by introducing the concept of a nonlinear expectation.

Definition 2.1.1. For 0 ≤ T < ∞, a nonlinear expectation is a functional ρ0,T : L2(Ω,FT ,P)→

R satisfying the strict monotonicity property:

if ξ1 ≥ ξ2 a.s., then ρ0,T [ ξ1 ] ≥ ρ0,T [ ξ2 ];

if ξ1 ≥ ξ2 a.s., then ρ0,T [ ξ1 ] = ρ0,T [ ξ2 ] if and only if ξ1 = ξ2 a.s.;

and the constant preservation property:

ρ0,T [ c1. ] = c, ∀ c ∈ R.

where 1. is the indicator function of an event.

Based on that, the F-consistent nonlinear expectation is defined as follows.

Definition 2.1.2. For a filtered probability space (Ω,F ,P,F), a nonlinear expectation ρ0,T [ · ]

is F-consistent if for every ξ ∈ L2(Ω,FT ,P) and every t ∈ [0,T ] a random variable η ∈

L2(Ω,Ft,P) exists such that

ρ0,T [ ξ1A ] = ρ0,T [ η1A ] ∀A ∈ Ft.
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The variable η in Definition 2.1.2 is uniquely defined, we denote it by ρt,T [ ξ ]. Observe

that such identification also defines conditional expectation. Therefore, we interpret ρt,T [ ξ ]

as a nonlinear conditional expectation of ξ at time t. The nonlinear expectation defined above

preserves essential properties of conditional expectation.

Proposition 2.1.1. Let ρ[ · ] be as in definition 2.1.1, for each t ∈ [0,T ] and ξ ∈ L2(Ω,FT ,P),

there exists a ρt,T [ ξ ] ∈ L2(Ω,Ft,P) satisfying definition 2.1.2, then
{
ρt,T [ ξ ]

}
0≤t≤T satisfies the

following axioms:

(i) Monotonicity: ρt,T [ ξ ] ≥ ρt,T [ ξ′ ] a.s., if ξ ≥ ξ′ a.s.;

(ii) Constant-preserving: ρt,T [ ξ ] = ξ, if ξ ∈ L2(Ω,Ft,P);

(iii) Local Property: for each t, ρt,T
[
1Aξ

]
= 1Aρt,T [ ξ ], where A ∈ Ft;

(iv) Time consistency: ρs,t
[
ρt,T [ ξ ]

]
= ρs,T [ ξ ], if s ≤ t ≤ T.

It follows that F-consistent nonlinear expectations are special cases of dynamic time-consistent

measures of risk, enjoying a number of useful properties. They do not, however, have the prop-

erties of convexity, translation invariance, or positive homogeneity, unless additional assump-

tions are made. We shall return to this in later sections.

2.2 Connection of Dynamic Risk Measures to Backward Stochastic Differential

Equations

The first introduction of BSDE was by Bismut [8], who analyzed optimality conditions of

stochastic control problems; in that case, the BSDE is linear in the sense that the driver g is

linear in y and z. The main development is due to Pardoux and Peng in their seminal papers

[57, 58], where they generalized the maximum principle; a nonlinear BSDE is postulated, with

a nonlinear driver, under certain regularity conditions. In the last decades, nonlinear BSDE be-

came a popular in various areas of mathematical finance [37, 22, 16, 17, 21], such as derivative

pricing, hedging strategies, recursive utility and dynamic risk measures.

These wide applications result from the nature of BSDE being a nonlinear evaluation of

future randomness generated by Brownian motion, which connects nonlinear expectation dis-

cussed in the previous section. This motivates the discussion of BSDE below, let us recall

that the stochastic differential equation (SDE) is a nonlinear extension of a stochastic integral,
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because of the presence of a drift term. In the meanwhile, the martingale representation (in

Brownian case) states the following, assuming Yt is a martingale, then

dYt = ZtdWt, or equivalently, Yt = ξ −

∫ T

t
ZsdWs,(2.1)

with ξ being the random outcome at time T . If we take conditional expectation on both sides,

we obtain

Yt = Et[ ξ ].(2.2)

This implies that if we find a solution (Y,Z) to (2.1), the Y part gives a linear evaluation –

conditional expectation. Notice that the Z process in (2.1) must be an adapted process; it

makes the evaluation Yt non-trivial, although, as far as evaluation is concerned, we’re most

interested in the Y part. In the same spirit as generalization of Itô integral, adding a ”drift term”

to martingale representation leads to a nonlinear evaluation,

Yt = ξ +

∫ T

t
g(s,Ys,Zs)ds −

∫ T

t
ZsdWs,(2.3)

a Backward Stochastic Differential Equation (BSDE). The ”drift term” appearing above is usu-

ally called the driver of BSDE, it has a special structure, depending on the solution (Y,Z).

In the following, we formally introduce BSDE and its theory, since it is heavily used in

our formulation and numerical approximation. After the detour, we finally build the formal

connection between BSDE and nonlinear expectation in a continuous time setting.

2.2.1 Initial Set-up

We equip (Ω,F ,P,F) with a d-dimensional Brownian filtration, i.e., Ft = σ{(Ws; 0 ≤ s ≤

T ) ∪N}, where N is the collection of P-null sets in Ω. In this paper we consider the following

1-dimensional BSDE:

(2.4) −dYt = g(t,Yt,Zt) dt − Zt dWt, YT = ξ,

where the data is the pair (ξ, g), called the terminal condition and the generator (or driver),

respectively. Here, ξ ∈ L2(Ω,FT ,P), and g : [0,T ] × R × Rd × Ω → R is a measurable

function (with respect to the product σ-algebra), which is nonanticipative, that is, g(t,Yt,Zt) is

Ft-progressively measurable for all t ∈ [0,T ].
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The solution of the BSDE is a pair of processes (Y,Z) ∈ S2[0,T ] ×H2,d[0,T ] such that

(2.5) Yt = ξ +

∫ T

t
g(s,Ys,Zs) ds −

∫ T

t
Zs dWs, t ∈ [t,T ].

Two sets of assumptions are available, under which the existence and uniqueness of the solution

of (2.4) can be guaranteed.

Assumption 2.2.1 (Peng and Pardoux[57]). (i) g is jointly Lipschitz in (y, z), i.e., a constant

K > 0 exists such that for all t ∈ [0,T ], all y1, y2 ∈ R and all z1, z2 ∈ R
d we have

|g(t, y1, z1) − g(t, y2, z2)| ≤ K(|y1 − y2| + |z1 − z2|) a.s.;

(ii) the process g(·, 0, 0) ∈ H2[0,T ].

Assumption 2.2.2 (Kobylanski [40]). (i) for every C > 0, there exists a K such that for all

y ∈ [−C,C]

|
∂g(t, y, z)

∂y
| ≤ K(1 + |z|2) a.s.,

and

|
∂g(t, y, z)

∂z
| ≤ K(1 + |z|) a.s..

(ii) For some K > 0, |g(t, y, z)| ≤ K(1 + |y| + |z|2) a.s;

(iii) ξ ∈ L∞(Ω,FT ,P;R).

Notice, under assumption (2.2.2), the solution Y is not in S2,d[0,T ], but we only have

E
[

sup
0≤t≤T

∣∣∣Yt
∣∣∣ ] < ∞.(2.6)

In this paper, we mainly focus our attention on assumption 2.2.1.

Theorem 2.2.3. Let Assumption 2.2.1 be satisfied. Then for any given ξ ∈ L2(Ω,FT ,P), the

BSDE (2.4) admits a unique adapted solution (Y.,Z.) ∈ M[0,T ].

The proof can be found in numerous references. A special equivalent norm1 is introduced

under which we have a Banach space setting, namely, for any β ∈ R, defineMβ[0,T ] to be the

Banach space,

Mβ[0,T ] := H2[0,T ] ×H2[0,T ](2.7)

1All the norms ‖ · ‖Mβ[0,T ] with different β are equivalent.
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equipped with the norm

‖
(
Y.,Z.

)
‖Mβ[0,T ] :=

{
E
[

sup
t∈[0,T ]

|Yt|
2e2βt

]
+ E

[ ∫ T

0
|Zs|

2e2βtdt
]} 1

2
(2.8)

The advantage of this equivalent norm is to obtain a contraction mapping T : Mβ[0,T ] 7→

Mβ[0,T ] by (y, z) 7→ (Y,Z) via the following BSDE:

dYt = g(t, yt, zt)dt + ZtdWt, YT = ξ.(2.9)

Specifically, the following inequality holds:

‖T (y, z) − T (ȳ, z̄)‖Mβ[0,T ] ≤
1
2
‖(y, z) − (ȳ − z̄)‖Mβ[0,T ], ∀(y, z), (ȳ, z̄) ∈ Mβ[0,T ].(2.10)

Then, we proceed similar to the proof of existence and uniqueness of SDE solution; we can

claim that T has a unique fixed point, which is an adapted solution to (2.4).

2.2.2 Some Useful Results on BSDE

We recall essential properties of BSDE that will be used later for risk-averse modeling. The

first results follow from the uniqueness of BSDE (2.4). Fix t0 ∈ [0,T ], denote

F
t0

t := σ
{ (

Ws −Wt0 ; t0 ≤ s ≤ t
)
∪ N

}
.(2.11)

Proposition 2.2.4. We assume that g satisfies Assumption 2.2.1; moreover, for a fixed t0 ∈

[0,T ] and for each (y, z) ∈ R × Rd, the process g(·, y, z) is F t0
t -progressively measurable on

the interval [t0,T ] and ξ ∈ L2(Ω,F t0
T ,P). Then the solution (Y,Z) of BSDE (2.4) is also F t0

t -

adapted on [t0,T ]. In particular, Yt0 and Zt0 are deterministic.

Proof. Let (Y ′.,Z′.) be the solution ofF t0
t -adapted solution, on the interval [t0,T ] of the BSDE:

Y ′t = ξ +

∫ T

t
g(s,Y ′s,Z

′
s)ds −

∫ T

t
Z′sdW0

s

where we denote W0
t := Wt − Wt0 (observe that (W0

s )t0≤s≤T is an F t0
t - Brownian motion on

[t0,T ]). But note F t0
t ⊆ Ft, (Y ′t ,Z

′
t )t0≤s≤T is also Ft - adapted and

∫ T
t Z′sdWs =

∫ T
t Z′sdW0

s

for t ∈ [t0,T ]. Thus from the uniqueness result of BSDE, the solution (Y.,Z.) of BSDE (2.4)

coincides with (Y ′,Z′) on [t0,T ]. Thus (Y.,Z.) is F t0
t - adapted. �
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The significance of the above results will be evident when deriving a dynamic programming

equation under both strong formulation and weak formulation.

As the data (ξ, g) uniquely identify each BSDE, we state the comparison theorem which

gives us more insight into the mechanism of BSDE. Consider BSDE below,

Y1
t = ξ1 +

∫ T

t
g1(s,Y1

s ,Z
1
s ) ds −

∫ T

t
Z1

s dWs,(2.12)

Y2
t = ξ2 +

∫ T

t
g2(s,Y2

s ,Z
2
s ) ds −

∫ T

t
Z2

s dWs.(2.13)

We have following theorems

Theorem 2.2.5. Let the assumptions of Theorem 2.2.8 hold, and let (Y1,Z1) and (Y2,Z2) be

the unique solutions of (2.12) and (2.13), respectively, with ξ1, ξ2 ∈ L2(Ω,FT ,P). If ξ1 ≥ ξ2

a.s. and

g1(s,Y1
s ,Z

1
s ) ≥ g2(s,Y1

s ,Z
1
s ), ∀ s ∈ [0,T ], a.s.,

then Y1
t ≥ Y2

t , a.s., for all t ∈ [0,T ].

Proof. Without loss of generality, let’s set t = 0 and define

ĝs = g1(s,Y1
s ,Z

1
s ) − g2(s,Y2

s ,Z
2
s ), Ŷ = Y1 − Y2, Ẑ = Z1 − Z2, ξ̂ = ξ1 − ξ2.(2.14)

By construction, (Ŷ , Ẑ) satisfies the following linear BSDE:

−dŶs = (asŶs + bsẐs + ĝs)ds − ẐsdWs, ŶT = ξ̂,(2.15)

where

as :=


g1(s,Y1

s ,Z
1
s )−g1(s,Y2

s ,Z
1
s )

Y1
s−Y2

s
, if Y1

s , Y2
s ,

0, if Y1
s = Y2

s ,

bs :=


g1(s,Y2

s ,Z
1
s )−g1(s,Y2

s ,Z
2
s )

Z1
s−Z2

s
, if Z1

s , Z2
s ,

0, if Z1
s = Z2

s .

Since g1 satisfies Lipschitz condition, |as| ≤ C and |bs| ≤ C. We set

Λt := exp
{ ∫ T

0
bsdWs −

1
2

∫ T

0
|bs|

2ds +

∫ T

0
asds

}
.(2.16)
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Applying Itô’s formula to ΛtŶt on the interval [0,T ] and taking expectation gives:

Ŷ0 = E
[

ŶT ΛT +

∫ T

0
Λtĝtdt

]
≥ 0.(2.17)

As desired, it follows that Y1
0 ≥ Y2

0 . �

Proposition 2.2.6. For L > 0, the following estimate holds:

∥∥∥Y1. − Y2.,Z1. − Z2.
∥∥∥2
M2[0,T ] ≤ K

{
E
[∣∣∣ξ1 − ξ2

∣∣∣2] + E
[ ∫ T

0

∣∣∣g1(s,Y2
s ,Z

2
s ) − g2(s,Y1

s ,Z
1
s )
∣∣∣2ds

] }
.

(2.18)

Proof. Set Ŷ , Ẑ, ξ̂ and ĝ as in proof of theorem 2.2.5 and apply Itô’s formula to |Ŷ .|2, we obtain

(2.19)

∣∣∣Ŷt
∣∣∣2 +

∫ T

t

∣∣∣Ẑs
∣∣∣2ds

=
∣∣∣ξ̂∣∣∣2 − 2

∫ T

t
Ŷs

(
g1(s,Y1

s ,Z
1
s ) − g2(s,Y2

s ,Z
2
s )
)
ds − 2

∫ T

t
ŶsẐsdWs

≤
∣∣∣ξ̂∣∣∣2 + 2

∫ T

t
|Ŷs||ĝs| + K|Ŷs|

(
|Ŷs| + |Ẑs|

)
ds − 2

∫ T

t
ŶsẐsdWs

≤
∣∣∣ξ̂∣∣∣2 + 2

∫ T

t

[
(1 + 2K + 2K2)|Ŷs|

2 +
1
2
|Ẑs|

2 + |ĝs|
2]ds − 2

∫ T

t
ŶsẐsdWs

Taking expectation on both sides, for any t ∈ [0,T ],

E
[∣∣∣Ŷt

∣∣∣2] +
1
2
E
[ ∫ T

t

∣∣∣Ẑs
∣∣∣2ds

]
≤ E

[∣∣∣ξ̂∣∣∣2] + E
[ ∫ T

t

∣∣∣ĝs
∣∣∣2ds

]
+ (1 + 2K + 2K2)

∫ T

t
E
[∣∣∣Ŷs

∣∣∣2]ds.

(2.20)

By Gronwall’s inequality,

E
[∣∣∣Ŷt

∣∣∣2] +
1
2
E
[ ∫ T

t

∣∣∣Ẑs
∣∣∣2ds

]
≤ L

{
E
[∣∣∣ξ̂∣∣∣2] + E

[ ∫ T

t
|ĝs|

2ds
]}
.(2.21)

On the other hand, by Burkholder-Davis-Gundy’s(BDG) inequality, it follows

E
[

sup
t∈[0,T ]

∣∣∣Ŷt
∣∣∣2] ≤ L

{
E
[∣∣∣ξ̂∣∣∣2] + E

[ ∫ T

0

∣∣∣ĝs
∣∣∣2ds

]}
+ 2E

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0
ŶsẐsdWs

∣∣∣∣∣]
≤L

{
E
[∣∣∣ξ̂∣∣∣2] + E

[ ∫ T

0

∣∣∣ĝs
∣∣∣2ds

]}
+ L

(
E
[

sup
t∈[0,T ]

∣∣∣Ŷt
∣∣∣2]) 1

2
(
E
[ ∫ T

0

∣∣∣Ẑs
∣∣∣2ds

]) 1
2

(2.22)

The result follows immediately. �
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2.2.3 g-Expectation by BSDE

For this subsection, we closely follow [59] and refer the readers to the proofs there. The earlier

discussion on BSDE indicates the nonlinearity of the evaluation is due to the driver g. Under

assumption 2.2.1, we have:

Definition 2.2.1. For each 0 ≤ t ≤ T and ξ ∈ L2(Ω,FT ,P), the g-Expectation at time t is the

operator ρg
t,T : L2(Ω,FT ,P)→ L2(Ω,Ft,P) defined as follows:

(2.23) ρ
g
t,T [ ξ ] := Yt,

where (Y.,Z.) ∈ S2,d[t,T ] ×H2[t,T ] is the unique solution of (2.4).

The solution (Y.,Z.) is a functional of the driver, that is, by specifying g, we obtain a certain

nonlinear evaluation. Let’s make the following assumption:

Assumption 2.2.7. Assume the driver g satisfies:

(i) g(·, 0, 0) ≡ 0;

(ii) g is independent of z.

The following theorem by Coquet Hu, Mémin and Peng [15] reveals the relationship be-

tween g-expectation and F-consistent nonlinear expectation.

Theorem 2.2.8. Let the driver g satisfy assumption 2.2.1 and the condition (i) of assumption

2.2.7. Then the system of g-Expectation
(
ρ

g
t,T

)
0≤t≤T defined in (2.23) is a system of F-consistent

conditional nonlinear expectations. Furthermore, we have

lim
s↑t

ρ
g
s,t[ ξ ] = ξ, ∀ ξ ∈ L2(Ω,Ft,P), t ∈ [0,T ].

Surprisingly, Coquet, Hu, Mémin, and Peng proved in [15] that every F-consistent nonlin-

ear expectation which is dominated by ρ
µ,ν
0,T (a g-evaluation with g = µ|y| + ν|z| with some

ν, µ > 0) is in fact a g-evaluation for some g. The domination is understood as follows:

ρ0,T [Y + η] − ρ0,T [Y] ≤ ρµ,ν0,T [η], for all Y , η ∈ L2(Ω,FT ,P).

The importance of (ii) in assumption 2.2.7 is economically significant, as the following

proposition implies:
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Proposition 2.2.9. Let g satisfy assumption of theorem 2.2.8, then,

ρ
g
t,T

[
ξ + η

]
= ρ

g
t,T

[
ξ
]
+ η,(2.24)

for ξ ∈ L2(Ω,FT ,P) and η ∈ L2(Ω,Ft,P), if and only if g satisfies (ii) of assumption 2.2.7.

Remark 2.2.10. By imposing the independence assumption of g, g-Expectation preserves the

”take known out” property, satisfied as well by the linear conditional expectation. It is also

essential to the application of Bellman’s principle.

2.2.4 Representation of a Dynamic Risk Measure

From now on we shall use only g-evaluations as time-consistent dynamic measures of risk. To

ensure desirable properties of the resulting measures of risk, we enforce additional conditions

on the driver g.

Assumption 2.2.11. The driver g satisfies assumption 2.2.7 and for almost all t ∈ [0,T ] the

following conditions:

(i) g(t, ·) is convex for all t ∈ [0,T ];

(ii) g(t, ·) is positively homogeneous for all t ∈ [0,T ].

Under these conditions, one can derive new properties of the evaluations ρg
t,T [·], t ∈ [0,T ],

in addition to the general properties of F-consistent nonlinear expectations stated in Proposition

2.1.1.

Theorem 2.2.12. Suppose g satisfies Assumptions 2.2.1 and 2.2.7. Then the system of g-

evaluations ρg
t,r, 0 ≤ t ≤ r ≤ T has the following properties:

(i) Normalization: ρg
t,r(0) = 0;

(ii) Translation Property: for all ξ ∈ L2(Ω,Fr,P) and η ∈ L2(Ω,Ft,P),

ρ
g
t,r(ξ + η) = ρ

g
t,r(ξ) + η, a.s.;(2.25)

If, additionally, condition (i) of of Assumption 2.2.11 is satisfied, then ρ
g
t,r has the following

property:

(iii) Convexity: for all ξ, ξ′ ∈ L2(Ω,Fr,P) and all λ ∈ L∞(Ω,Ft,P) such that 0 ≤ λ ≤ 1,

ρ
g
t,r(λξ + (1 − λ)ξ′) ≤ λρg

t,r(ξ) + (1 − λ)ρg
t,r(ξ

′), a.s..
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Moreover, if g also satisfies condition (ii) of Assumption 2.2.11, then ρg
t,r has also the following

property:

(iv) Positive Homogeneity: for all ξ ∈ L2(Ω,Fr,P) and all β ∈ L∞(Ω,Ft,P) such that β ≥ 0,

we have

ρ
g
t,r(βξ) = βρ

g
t,r(ξ), a.s..

It follows that under Assumptions 2.2.1 and 2.2.11, the g-evaluations ρg
t,r are convex or

coherent conditional measures of risk (depending on whether (ii) is assumed or not). Theo-

rem 2.2.12 provides us a concrete object to work on in order to evaluate abstract F-consistent

nonlinear expectation, namely, a BSDE with a special driver.

Proof. The normalization property is trivial. The translation property is due to the equivalence

between

Yt = ξ +

∫ T

t
g(s,Zs)ds −

∫ T

t
ZsdWs, and Yt + η = ξ + η +

∫ T

t
g(s,Zs)ds −

∫ T

t
ZsdWs.

(2.26)

A similar argument works for positive homogeneity, i.e.,

Yt = ξ +

∫ T

t
g(s,Zs)ds −

∫ T

t
ZsdWs, and βYt = βξ +

∫ T

t
g(s, βZs)ds −

∫ T

t
βZsdWs.

(2.27)

If the terminal value ξ is multipled, then the solution of BSDE becomes (βYt, βZt), where the Y-

part stands for the risk evaluation. The convexity requires the analysis of the maximum solution

of a BSDE. We call (Y.,Z.) a supersolution of BSDE (2.4) if, for all s, t ∈ [0,T ] with s ≤ t, it

holds:

Ys ≥ Yt +

∫ t

s
g(r,Zr)dr +

∫ T

t
ZrdWr and YT ≥ ξ.(2.28)

We also define

Λ(ξ, g) =

{
(Y,Z) ∈ S 2[0,T ] × H2,d[0,T ] : (2.28) holds.

}
(2.29)

Then, by the dual representation introduced below2,

ρ
g
t,T [ ξ ] = ess inf{Yt : (Y.,Z.) ∈ Λ(ξ, g)}.(2.30)

2The supersolution can thought as the suprimum of a µ-parameterized LBSDE.
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Consider following two supersolutions, (Y.,Z., ) and (Y ′.,Z′.), of the corresponding BSDEs,

respectively,

λYt ≥ λξ +

∫ T

t
λg(s,Zs)ds −

∫ T

t
λZS dWs,

λY ′t ≥ (1 − λ)ξ′ +
∫ T

t
(1 − λ)g(s,Z′s)ds −

∫ T

t
(1 − λ)Z′sdWs,

(2.31)

By convexity of g, we obtain ∀(Y.,Z.) ∈ Λ(ξ, g) and (Y ′.,Z′.) ∈ Λ(ξ′, g),

(
λY. + (1 − λ)Y ′., λZ. + (1 − λ)Z′.

)
∈ Λ(λξ + (1 − λ)ξ′, g)(2.32)

Thus,

λΛ(ξ, g) + (1 − λ)Λ(ξ′, g) ⊂ Λ(λξ + (1 − λ)ξ′, g).(2.33)

In particular,

ρ
g
t,T [λξ + (1 − λ)ξ′] ≤ λρg

t,T [ξ] + (1 − λ)ρg
t,T [ξ′],(2.34)

as desired. �

Recall that in the static(or, conditional) case, the convex risk measure admits a dual rep-

resentation. Barrieu and El Karoui in [6, 7] discovered the continuous-time version dual rep-

resentation as a generalization of Girsanov’s theorem. The key part is again the driver g of a

BSDE. The Legendre-Fenchel transformation yields the conjugate function of g as,

G(t, µ) := sup
z∈Rd

{
〈µ, z〉 − g(t, z)

}
.(2.35)

Since g is continuous (actually Lipschitz continuous),

g(t, z) = g∗∗(t, z) = sup
µ∈Rd

{
〈µ, z〉 −G(t, µ)

}
.(2.36)

In addition, for positively homogeneous g,

g(t, z) = sup
µ∈dom(G)

〈µ, z〉.(2.37)

Definition 2.2.2. Dynamic risk measure ρg
t,T [·] is said to have a dual representation if there

exists a setA of admissible controls such that for t, T and ξ ∈ L2(Ω,FT ,P),

ρ
g
t,T

[
ξ
]

= sup
µ∈A
EQ

µ

t

[
ξT −

∫ T

t
G(t, µt)dt

]
(2.38)

whereQµ is a probability measure absolutely continuous with respect to P, with Radon Nikoydm

derivative µ.
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Theorem 2.2.13. Given Assumptions 2.2.1 and 2.2.11, and with G(·, ·) being the polar process

associated with g(·, ·), then we have

(i) For all t ∈ [0,T ], g(t, z) = supµ∈dom(G)〈µ, z〉 − G(t, µ) has an optimal progressively

measurable solution µ∗. in the sub-differential of g at z, i.e., ∂g(t, z);

(ii) ρg
t,T

[
·
]

has the following dual representation, for any ξ ∈ L2(Ω,FT ,P),

ρ
g
t,T

[
ξ
]

= sup
µ∈A
EQ

µ

t

[
ξ −

∫ T

t
g(s, µs)ds

]
= EQ

µ∗

t

[
ξ −

∫ T

t
G(s, µ∗)ds

]
(2.39)

whereA is the space of A-valued bounded adapted process with A being convex, closed and

bounded, and

dΓµt = µtΓ
µ
t dWt, Γ

µ
0 = 1, t ∈ I.(2.40)

Theorem 2.2.13 implies that the solution of BSDE with convex driver can be interpreted as

the maximum solution of a family of linear BSDEs (LBSDE). Barrieu and El Karoui [6] also

worked out the case when A is the set of bounded mean oscillation martingales, but we will

focus on the bounded density process only.

Remark 2.2.14. It is now clear the supersolution discussed in theorem 2.2.12, the dynamic

risk measure ρg
t,T [ξ] is the maximum solution,

ρ
g
t,T [ξ] = Yt = sup

µ∈A
Yµ

t(2.41)

where

Yµ
t = ξ +

∫ T

t
sup
µ∈A
{〈µs,Z

µ
s 〉 −G(s, µs)}ds −

∫ T

t
Zµs dWs.(2.42)

Corollary 2.2.15. Given the same assumption of theorem 2.2.13, if ρt,T [·] is positive homoge-

neous dynamic risk measure, i.e., g is positive homogeneous, then

(i) For all t ∈ [0,T ], g(t, z) = supµ∈dom(G)〈µ, z〉 has an optimal progressively measurable

solution µ∗. in the sub-differential of g at 0, i.e., ∂g(t, 0);

(ii) ρg
t,T

[
·
]

has the following dual representation, for any ξ ∈ L2(Ω,FT ,P),

(2.43) ρ
g
t,r(ξ) = sup

Γµ∈At,r

EQ
µ[
ξ
]

= E
[
Γµξ

]
whereAt,r = ∂ρ

g
t,r(0) is defined as follows:

(2.44) At,r =

{
exp

(∫ r

t
µs dWs −

1
2

∫ r

t
|µs|

2 ds
)

: µ ∈ H2[t, r], µs ∈ ∂g(s, 0), s ∈ [t, r]
}
.

where Γµ is an exponential martingale as in (2.40).
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Similar to the static dual representation, if the evaluation is coherent, the polar process

(penalty function) G(·, ·) equals to 0 in the its domain for any time t ∈ [0,T ]. As a result,

the dynamic risk measure is equivalent to choosing an optimal Radon Nikodym process, the

exponential density, to maximize the expected value after change of measure. The following

lemma for coherent risk measure is important.

Lemma 2.2.16. A constant C exists, such that for all 0 ≤ t ≤ r ≤ T and all Γµt,r ∈ At,r we have

‖Γ
µ
t,r − 1‖2 ≤

r − t
T

eCT .(2.45)

Proof. It follows from the definition ofAt,r that Γt,r is the solution of the SDE

dΓµt,s = µsΓ
µ
t,s dWs, µs ∈ ∂g(s, 0), s ∈ [t, r], Γ

µ
t,t = 1.(2.46)

Using Itô isometry, we obtain the chain of relations

‖Γ
µ
t,r − 1‖2 =

∫ r

t
‖µsΓ

µ
t,s‖

2 ds ≤
∫ r

t
‖µs‖

2‖Γ
µ
t,s‖

2 ds ≤
∫ r

t
‖µs‖

2(1 + ‖Γ
µ
t,s − 1‖2

)
ds.(2.47)

If u is a uniform upper bound on the norm of the subgradients of g(s, 0) we deduce that ‖Γµt,r −

1‖2 ≤ ∆s, s ∈ [t, r], where ∆ satisfies the ODE: d∆s
ds = u(1 + ∆s), with ∆t = 0. Consequently,

‖Γ
µ
t,r − 1‖2 ≤ ∆r = eu2(r−t) − 1.(2.48)

The convexity of the exponential function yields the postulated bound. �
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Chapter 3

Formulation of Risk-averse Control Problem

In this chapter, we introduce the underlying controlled diffusion process, together with back-

ward stochastic differential equation (BSDEs); the resulting FBSDE system enables evaluation

of risk in the system dynamically. After policy evaluation is addressed, we pass to dynamic pro-

gramming equation with two approaches: weak formulation and strong formulation. Finally,

we derive the risk-averse Hamilton-Jacobi-Bellman equation and discuss its verification.

3.1 Decoupled FBSDE system

As the foundation element of our analysis and modeling, we devote this section to an introduc-

tion to a decoupled forward backward stochastic differential equation system(FBSDEs).

3.1.1 Foundation of FBSDE

On the same probability space (Ω,F ,P,F), we consider a stochastic differential equation (SDE)

with initial condition (t, η), where t ∈ [0,T ) and η ∈ L2(Ω,Ft,P;Rn):

(3.1)


dXt,η

s = b(s, Xt,η
s ) ds + σ(s, Xt,η

s ) dWs, s ∈ [t,T ],

Xt,η
t = η,

where {Ws}t≤s≤T is a d-dimensional Brownian motion. Here, b : [0,T ] × Rn × Ω → Rn and

σ : [0,T ] × Rn × Ω→ Rn×d are Ft-adapted processes.

Assumption 3.1.1.

(i) |b(·, 0)| + |σ(·, 0)| ∈ H2[0,T ];

(ii) b and σ are Lipschitz in x, i.e., a constant C > 0 exists such that for all t ∈ [0,T ] and

x1, x2 ∈ R
n we have:

|b(t, x1) − b(t, x2)| + |σ(t, x1) − σ(t, x2)| ≤ C|x1 − x2| a.s..
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From the standard theory of stochastic differential equations with random coefficients, As-

sumption 5.3.1 implies the existence of solution and its uniqueness. Together with that, we also

consider a BSDE with the terminal condition specified by a function of the final value of the

solution of (3.1),

(3.2)


−dY t,η

s = f (s, Xt,η
s ,Y

t,η
s ,Zt,η

s ) ds − Zt,η
s dWs, s ∈ [t,T ]

Y t,η
T = Φ(Xt,η

T ),

where f : [0,T ]×Rn×R×Rd×Ω→ R is an Ft-adapted process, and the functionΦ : Rn → R is

bounded and Borel measurable. We call this system a decoupled forward backward stochastic

differential equation. Its essential feature is that the solution of the BSDE does not interfere

with the dynamics of the SDE.

Assumption 3.1.2.

(i) | f (·, 0, 0, 0)| ∈ H2[0,T ] and Φ(·) ∈ L2(Ω,FT ,P) ;

(ii) f is jointly Lipschitz in (x, y, z) and Φ is Lipschitz in x, i.e., a constant C > 0 exists such

that for all t ∈ [0,T ] and (x1, y1, z1), (x2, y2, z2) ∈ Rn × R × Rd we have:

| f (t, x1, y1, z1) − f (t, x2, y2, z2)| ≤ C
(
|x1 − x2| + |y1 − y2| + |z1 − z2|

)
, a.s.,

|Φ(x1) −Φ(x2)| ≤ C|x1 − x2|, a.s..

The following proposition follows from the fact that Φ(·) and f (·, ·, ·, ·) provide standard

parameters for the BSDE (3.2), and from the discussion in Chapter 2.

Proposition 3.1.3. If Assumptions 5.3.1 and 3.1.2 are satisfied, then the equation (3.2) has a

unique solution (Y t,η,Zt,η) ∈ S2[t,T ] ×H2,d[t,T ].

The following two prior estimates of a decoupled FBSDE system are standard.

Proposition 3.1.4. under assumption 3.1.1, for any t ∈ [0,T ] and η, η′ ∈ L2(Ω,Ft,P;Rn), there

exists C0(C) such that

Et

[
sup

s∈[t,T ]

∣∣∣Xt,η
s − Xt,η′

s

∣∣∣] ≤ C0
∣∣∣η − η′∣∣∣, a.s.(3.3)

and

Et

[
sup

s∈[t,T ]

∣∣∣Xt,η
s

∣∣∣2] ≤ C0
∣∣∣η∣∣∣2, a.s..(3.4)
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Lemma 3.1.5. Suppose Assumptions 3.1.1 and 3.1.2 are satisfied, then for any t < T, and any

different initial states η, η′ ∈ L2(Ω,Ft,P;Rn), we have following estimates:

(3.5) |Y t,η
t − Y t,η′

t | ≤ C0|η − η
′|

1
2 , a.s.

and

(3.6) |Y t,η
t | ≤ C0(1 + |η|), a.s..

3.1.2 Markovian Properties of Decoupled FBSDEs

For any x ∈ Rn, we define:

(3.7) v(t, x) := Y t,x
t ,

then, according to (3.5) and (3.6), we have

|v(t, x) − v(t, x′)| ≤ C0|x − x′|
1
2 , a.s.,

|v(t, x)| ≤ C0(1 + |x|) a.s..
(3.8)

In general case, v is a random function, i.e., for any x ∈ Rn, v(·, x) is a Ft-adapted process

(this is the case when Φ(x), f (t, x, y, z), b(t, x) and σ(t, x) are random functions). The situation

would simplify under the following assumption.

Assumption 3.1.6. ∀(t, x, y, z), Φ(x), f (t, x, y, z), b(t, x) and σ(t, x) are deterministic functions.

Under the above assumption, v is a deterministic function with respect to (t, x). As a special

case, if f only depends on (t, x), then

v(t, x) = E
[ ∫ T

t
f (s, Xt,x

s )ds +Φ(Xt,x
T )

]
which leads to Feynman-Kac equation, i.e., v(t, x) satisfies a nonlinear partial differential equa-

tion.

We shall not assume Assumption 3.1.6 for control problems discussed later. Let us intro-

duce the following definition and an important theorem stating that randomness of the value

function results only from the randomness of the starting point, even if the coefficients are

”arbitrarily” random.
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Definition 3.1.1. For a t ∈ [0,T ], we call {Ai}
N
i=1 ⊂ Ft a partition of measurable space (Ω,Ft)

if
⋃N

i=1 Ai = Ω and

Ai ∈ Ft, i = 1, ...,N; Ai ∩ A j = ø, for i , j

here N ∈ Z+.

Theorem 3.1.7. Under Assumption 5.3.1 and 3.1.2, for any η ∈ L2(Ω,Ft,P,R
n), we have

(3.9) v(t, η) = Y t,η
t

Proof. We first consider the case of simple function,

(3.10) η = ΣN
i=11Ai xi

with {Ai}
N
i=1 being a partition of (Ω,Ft), xi ∈ R

n, i = 1, 2, ...,N. For each i, denote

(3.11) (Xi
s,Y

i
s,Z

i
s) ≡ (Xt,x

s ,Y
t,x
s ,Zt,x

s )|x=xi

where Xi, for all i’s, is the solution of SDEs

(3.12) Xi
s = xi +

∫ s

t
b(r, Xi

r)dr +

∫ s

t
σ(r, Xi

r)dWr, s ∈ [t,T ],

(Y i,Zi), for all i’s, is the solution of BSDEs

(3.13) Y i
s = Φ(Xi

T ) +

∫ T

s
f (r, Xi

r,Y
i
r,Z

i
r) −

∫ T

s
Zi

rdWr, s ∈ [t,T ].

Multiplying by 1Ai on the both sides of SDE and BSDE and take summation over all i’s, using

the fact that Σiψ(xi)1Ai = ψ(Σi1Ai xi) for Borel any measurable function ψ(·), we have

(3.14) ΣN
i=11Ai X

i
s = xi +

∫ s

t
b(r,ΣN

i=11Ai X
i
r)dr +

∫ s

t
σ(r,ΣN

i=11Ai X
i
r)dWr

ΣN
i=11AiY

i
s =Φ(ΣN

i=11Ai X
i
T )+∫ T

s
f (r, ΣN

i=11Ai X
i
r, Σ

N
i=11AiY

i
r, Σ

N
i=11AiZ

i
r) −

∫ T

s
ΣN

i=11AiZ
i
rdWr

(3.15)

By the uniqueness property of the solution of SDE and BSDE,

(3.16) Xt,η
s = ΣN

i=1Xi
s1Ai

and

(3.17) (Y t,η
s ,Zt,η

s ) = (ΣN
i=11AiY

i
s, Σ

N
i=11AiZ

i
s)
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Thus, from (3.9),

Y t,η
t = ΣN

i=1Y i
t1Ai = ΣN

i=1v(t, xi)1Ai = v
(
t, ΣN

i=1xi1Ai

)
= v(t, η).(3.18)

The proof is completed as η is a simple function. For general η ∈ L2(Ω,Ft,P;Rn), we can

choose a sequence {ηi}i∈Z+ that is converging to η in L2(Ω,Ft,P;Rn). Then from the estimates

(3.5), (3.6) and (3.8) we have

(3.19) Et
[
|Y t,ηi

t − Y t,η
t |

2] ≤ C0Et
[
|ηi − η|

]
→ 0

and

(3.20) Et
[
|v(t, ηi) − v(t, η)|2

]
≤ C0Et

[
|ηi − η|

]
→ 0

as desired. �

3.2 Formulation of a Risk-Averse Control Problem

Our objective is to evaluate the risk of cumulative cost generated by diffusion process in a

continuous-time setting via FBSDE system. In the sequel, we will study both a strong formu-

lation and a weak formulation of the risk-averse control problem.

3.2.1 Strong Formulation

Let’s first introduce the class of control processes:

Definition 3.2.1. A stochastic process u(·) is called an admissible control if u(·) is taken from

the set:

U := { u : [0,T ] × Ω 7→ U | u(·) is (Ft)t≥0-adapted }(3.21)

where U ∈ Rm is a compact set for some m ∈ N.

The forward SDE with random coefficients introduced previously can be controlled by com-

posing drift function b and diffusion function σ with control process. In other words, the ran-

domness of the coefficients is due to the control function alone, which leads to a controlled
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diffusion process. For any u(·) ∈ U, initial value ζ ∈ L2(Ω,Ft,P;Rn), consider

(3.22)


dXt,ζ;u

s = b(s, Xt,ζ;u
s , us) ds + σ(s, Xt,ζ;u

s , us) dWs, s ∈ [t,T ],

Xt,ζ;u
t = ζ,

with Borel measurable functions b : [0,T ] × Rn × U → Rn and σ : [0,T ] × Rn × U → Rn×d.

We also introduce the cost rate function which is a measurable map c : [0,T ] × Rn × U → R,

and the final stage cost is given by a measurable function Φ : Rn → R. Therefore, the random

cost accumulated on the interval [t,T ] for any t ∈ [0,T ] is

(3.23) ξt,T (u, ζ) :=
∫ T

t
c(s, Xt,ζ;u

s , us) ds +Φ(Xt,ζ;u
T ), a.s..

Assumption 3.2.1. A constant C > 0 exists such that, for any s ∈ [t,T ] and (x1, u1), (x2, u2) ∈

Rn × U, measurable functions b, σ, c, and Φ satisfy the following conditions:

|b(s, x1, u1) − b(s, x2, u2)| + |σ(s, x1, u1) − σ(s, x2, u2)|+|c(s, x1, u1) − c(s, x2, u2)|

≤ C
(
|x1 − x2| + |u1 − u2|

)
,

(3.24)

|b(s, x1, u1)| + |σ(s, x1, u1)| + |c(s, x1, u1)| + |Φ(x1)| ≤ C(1 + |x1| + |u1|
)
.(3.25)

Under Assumption 3.2.1, the controlled diffusion process (3.22) has a strong solution and

cost functional has desired regularity. Now, we can define the control value function:

Vu(t, x) := ρ
g
t,T [ ξt,T (u, x) ] = Y t,x;u

t , a.s..(3.26)

By theorem 3.1.7 (proved in Peng [59]), we have, for any ζ ∈ L2(Ω,Ft,P;Rn),

Vu(t, ζ) = Y t,ζ;u
t .(3.27)

Using Definition 2.2.1, we can express the control value function as follows:

Vu(t, ζ) = ξt,T (u, ζ) +

∫ T

t
g(s,Zt,ζ;u

s ) ds −
∫ T

t
Zt,ζ;u

s dWs

= Φ(Xt,ζ;u
T ) +

∫ T

t

[
c(s, Xt,ζ;u

s , us) + g(s,Zt,ζ;u
s )

]
ds −

∫ T

t
Zt,ζ;u

s dWs.

Equivalently, we need to evaluate the following BSDE:
−dY t,ζ;u

s =
[
c(s, Xt,ζ;u

s , us) + g(s,Zt,ζ;u
s )

]
ds − Zt,ζ;u

s dWs, s ∈ [t,T ]

Y t,ζ;u
T = Φ(Xt,ζ;u

T ).
(3.28)
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with Borel measurable function g : [0,T ] × Rd 7→ R. Suppose Assumptions 3.2.1, 2.2.1, and

2.2.11 are satisfied, then for every (t, ζ) ∈ [0,T ]× L2(Ω,Ft,P;Rn), (3.28) has a unique solution

(Y t,ζ;u,Zt,ζ;u) ∈ S2[t,T ] ×H2,d[t,T ].

The policy evaluation amounts to solving (3.28), that is, for any fixed policy u(·), the risk

of cumulative cost and final cost can be represented as Y t,ζ;u
t , the solution of (3.28) above. The

following estimates is based on Proposition 2.2.6:

Proposition 3.2.2. Under assumption 3.2.1, for some constant K > 0 and u, u′ ∈ U,

(i) |Y t,ζ;u
t − Y t,ζ′;u

t | ≤ C|ζ − ζ′|, a.s.;

(ii) |Y t,ζ;u
t | ≤ C(1 + |ζ |), a.s.;

(iii) |Y t,ζ;u
t − Y t,ζ;u′

t | ≤ CEt

[ ∫ T
t

∣∣∣u(s) − u′(s)
∣∣∣2ds

]
, a.s..

We can now define the value function of the risk-averse control problem: given (t, x) ∈

[0,T ) × Rn,

V(t, x) := inf
u(·)∈U

Vu(t, x).(3.29)

Proposition 3.2.3. Under Assumption 3.2.1, the value function V(t, x) is a deterministic func-

tion.

Proof. The key step of this proof is to construct a control sequence {ui(·)} satisfying

lim
i→∞

Vu(t, x) = V(t, x)(3.30)

Set,

ui
s = ΣNi

j=1ui j
s 1Ai j

where ui j(·) areU-valued F t
s -adapted process, and for each i, {Ai j}

Ni
j=1, is a partition of (Ω,Ft),

use exactly what was used to prove theorem 3.1.7, we obtain

ΣNi
j=11Ai jV

ui j
(t, x) = V

Σ
Ni
j=1ν

i j
s 1Ai ju

i j (t, x) = Vu(t, x)

Notice that ui1(·) is (F t
s )-adapted, Vui j

(t, x), where j = 1, 2, ...,Ni are deterministic. Thus,

without loss of generality, we can assume that

Vui1
(t, x) ≥ Vui j

(t, x), ∀i = 2, ...,Ni

from which we get immediately limi Vui1
(t, x) = V(t, x), thus V(t, x) is deterministic. �
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We also have estimates of the value function, which follow easily from Proposition 3.2.2:

Proposition 3.2.4. For any t ∈ [0,T ] and x, x′ ∈ Rn, there exists a constant C > 0 such that,

(i) |V(t, x) − V(t, x′)| ≤ C|x − x′|;

(ii) |V(t, x)| ≤ C(1 + |x|).

The inequalities below are decisive for the dynamic programming equation:

Lemma 3.2.5. Fix a t ∈ [0,T ] and ζ ∈ L2(Ω,Ft,P;Rn), for any u(·) ∈ U, we have

(3.31) V(t, ζ) ≤ Y t,ζ;u
t ,

Conversely, for any ε > 0, there exists a admissible control u(·) ∈ U, such that

(3.32) V(t, ζ) + ε ≥ Y t,ζ;u
t .

Proof. In proposition 3.2.4, we already established the continuity for V with respect to x and

Y t,ζ;u
t with respect to (ζ, u), then it is only needed to discuss the situation that ζ and u(·) are

simple functions, i.e.,

(3.33) ζ = ΣN
i=11Ai xi

(3.34) u(·) = ΣN
i=1ui

s1Aiu
i(·)

where for i = 1, 2, ...,N, xi ∈ R
n is F t

s -adapted, {Ai}
N
i=1 is a partition of (Ω,Ft). This enables us

to use the same technique as before to get:

(3.35) Y t,ζ;u
t = ΣN

i=11AiY
t,xi;ui

t ≥ ΣN
i=11Aiv(t, xi) = v(t, ΣN

t=11Ai xi) = V(t, ζ)

then (3.31) is proved. Similarly, we can prove (3.32), define η ∈ L2(Ω,Ft,P;Rn),

(3.36) η = Σ∞i=1xi
1Ai

such that

(3.37) |η − ζ | ≤
(
ε

3C

) 1
α

where {Ai}
∞
i=1 is a partition of (Ω,Ft), xi ∈ R

n(i = 1, 2, ...). Thus, for any u(·) ∈ U,

|Y t,η;u
t − Y t,η;u

t | ≤
ε

3

|u(t, ζ) − u(t, η)| ≤
ε

3

(3.38)
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then for each xi, we choose F t
s -adapted control ui(·), such that

(3.39) V(t, xi) +
ε

3
≥ Y t,xi;ui

t

define

(3.40) u(·) := Σ∞i=1ui
1Ai

from (3.38), we have

Y t,ζ;u
t ≤ |Y t,η;u

t − Y t,ζ;u
t | + Y t,η;u

t ≤
ε

3
+ Σ∞i=1Y t,xi;ui

t 1Ai

≤
ε

3
+ Σ∞i=1

(
V(t, xi) +

ε

3

)
1Ai =

2ε
3

+ Σ∞i=1V(t, xi)1Ai

=
2ε
3

+ V(t, η) ≤ ε + V(t, ζ)

(3.41)

thus we have (3.32). �

Theorem 3.2.6. Suppose Assumption 3.2.1, 2.2.1 and 2.2.11 are satisfied. Then, for any (t, x) ∈

[0,T ) × Rn,

(3.42) V(t, x) = inf
u(·)∈U

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V
(
r, Xt,x;u

r
)]
, 0 ≤ t ≤ r ≤ T, x ∈ Rn.

Proof. We have

V(t, x) = inf
u(·)∈U

ρ
g
t,T

[ ∫ T

t
c(s, Xt,x;u

s , us)ds +Φ(Xt,x;u
T )

]
= inf

u(·)∈U
ρ

g
t,r

[
ρ

g
r,T

[ ∫ T

t
c
(
s, Xt,x;u

s , us
)

ds +Φ
(
Xt,x;u

T
)]]

= inf
u(·)∈U

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + ρ
g
r,T

[ ∫ T

r
c
(
s, Xt,x;u

s , us
)

ds +Φ
(
Xt,x;u

T
)]]

= inf
u(·)∈U

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + Yr,Xt,x;u
r ;u

r

]
≥ inf

u(·)∈U
ρ

g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V(r, Xt,x;u
r )

]
where time consistency, translation invariant, comparison theorem.

On the other hand, for any ε > 0, there exists an admissible control ū(·) ∈ U such that

V(r, Xt,x;u
r ) ≥ Yr,Xt,x;u

r ;ū
r − ε
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Again, by comparison theorem,

V(t, x) ≤ inf
u(·)∈U

ρ
g
t,r

[ ∫ r

t
c(s, Xt,x;u

s , us) ds + Yr,Xt,x;u
r ;ū

r

]
≤ inf

u(·)∈U
ρ

g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V(r, Xt,x;u
r )

]
+ ε

Since ε can be arbitrarily small, dynamic programming equation (3.42) follows. �

3.2.2 Weak Formulation

We now discuss the weak formulation. For any initial condition (t, x) ∈ [0,T ) × Rn, the state

evolution is driven by the following equation:

(3.43) dXt,x;u
s = b(s, Xt,x;u

s , us) ds + σ(s, Xt,x;u
s , us) dWs, s ∈ [t,T ], Xt,x;u

t = x.

Let us define the control value function Vu as follows:

Vu(t, x) = ρ
g
t,T [ξt,T (u)],(3.44)

where, similarly to (3.23), ξt,T (u) is the cost accumulated in the interval [t,T ]:

(3.45) ξt,T (u) =

∫ T

t
c(s, Xt,x;u

s , us) ds +Φ(Xt,x;u
T ).

Using Definition 2.2.1, we can express the control value function as follows:

Vu(t, x) = ξt,T (u) +

∫ T

t
g(s,Zt,x;u

s ) ds −
∫ T

t
Zt,x;u

s dWs

= Φ(Xt,x;u
T ) +

∫ T

t

[
c(s, Xt,x;u

s ,Us) + g(s,Zt,x;u
s )

]
ds −

∫ T

t
Zt,x;u

s dWs.

Equivalently, we need to evaluate the following BSDE on [t,T ]:

−dY t,x;u
s =

[
c(s, Xt,x;u

s , us) + g(s,Zt,x;u
s )

]
ds − Zt,x;u

s dWs, Y t,x;u
T = Φ(Xt,x;u

T ).(3.46)

Let us now define the admissible control system (as defined in [77], p.177):

Definition 3.2.2. Uw[t,T ] is called an admissible control system if it satisfies the following

conditions:

(i) (Ω,F ,P) is a complete probability space;
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(ii) {W(s)}s≥t is an d-dimensional standard Brownian motion defined on (Ω,F ,P) over [t,T ]

and Ft = (Fs)s∈[t,T ], where F t
s = σ{(Ws; t ≤ s ≤ T )∪N} andN is the collection of all P-null

sets in F ;

(iii) u : [t,T ] × Ω→ U is an F t
s -adapted process on (Ω,F ,P) with E

[ ∫ T
t |us|

2 ds
]
< +∞;

(iv) For any x ∈ Rn the system (3.43)–(3.46) admits a unique solution (X,Y,Z) on (Ω,F ,P,Ft).

For notation simplicity, we write u ∈ Uw[t,T ] for (Ω,F ,P,Ft,W(·), u(·)) ∈ Uw[t,T ]. Now,

we define the optimal value function V : [0,T ] × Rn → R as follows:

(3.47) V(t, x) = inf
u∈Uw[t,T ]

Vu(t, x).

The weak formulation of a risk-averse control problem is the following:

Problem W: Given (t, x) ∈ [0,T ) × Rn, find u∗ ∈ Uw[t,T ] such that

(3.48) Vu∗(t, x) = inf
u(·)∈Uw[t,T ]

Vu(t, x).

Proposition 3.2.7. Suppose Assumptions 3.2.1, 2.2.1, and conditions (i) - (ii) of Assumption

2.2.11 are satisfied. Then for every (t, x) ∈ [0,T ] × Rn the system (3.43)–(3.46) has a unique

solution (Xt,x;u,Y t,x;u,Zt,x;u) ∈ S2,n[t,T ] × S2[t,T ] × H2,d[t,T ]. Furthermore Vu(t, x) is deter-

ministic.

Proof. Consider the backward equation:

(3.49) −dȲ t,x;u
s = g(s,Zt,x;u

s ) ds − Zt,x;u
s dWs, s ∈ [t,T ],

where

Ȳ t,x;u
T =

∫ T

t
c(τ, Xt,x;u

τ , sτ) dτ +Φ(Xt,x;u
T ).

By Proposition 3.1.3, equation (3.49) has a unique solution (Ȳ t,x;u,Zt,x;u). Then

Y t,x;u
s = Ȳ t,x;u

s −

∫ s

t
c(τ, Xt,x;u

τ , uτ) dτ, t ≤ s ≤ T,

satisfies (3.46) with the same process Zt,x;u. Moreover, Y t,x;u
t is deterministic, which proves our

last claim. �

Let’s present a technical result that follows from Proposition 2.2.4.
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Proposition 3.2.8. Let (t, x) ∈ [0,T ] × Rn and u(·) ∈ Uw[t,T ]. Then, for any r ∈ [t,T ] and F t
r

- measurable random variable η,

Vu(r, η) = ρr,T
[ ∫ T

r
c(s, Xr,η;u

s , us) ds +Φ(Xr,η;u
T )

]
, P-a.s.

Proof. Observe that η is deterministic under the new probability space (Ω,F ,P(·|F t
r ),Ft). For

any s ≥ r, a progressively measurable process ψ exists, such that

us(ω) = ψ(ω,W·∧s(ω)) = ψ(s, W̄·∧s(ω) + Wr(ω)),

where W̃s = Ws −Wr is a standard Brownian motion. Then us is adapted to F r
s for s ≥ r, and

thus

(Ω,F ,P(·|F t
r )(ω′),Fr, W̃(·), u(·)) ∈ Uw[r,T ].

whereω′ ∈ Ω′ such thatΩ′ ∈ F with P(Ω′) = 1. Working under probability space (Ω,F ,P(·|F t
r )(ω′)),

by Proposition 2.2.4, we obtain our result. �

Let us now derive the dynamic programming equation for the risk-averse control problem

in weak setting.

Theorem 3.2.9. Suppose Assumption 3.2.1, 2.2.1 and conditions (i)–(ii) of Assumption 2.2.11

are satisfied. Then for any (t, x) ∈ [0,T ) × Rn,

(3.50) V(t, x) = inf
u(·)∈Uw[t,r]

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V
(
r, Xt,x;u

r
)]
, 0 ≤ t ≤ r ≤ T, x ∈ Rn.

Proof. For any ε > 0, there exists ũ(·) ∈ Uw[t,T ] such that V(t, x) + ε ≥ V ũ(t, x). By using

the definition of V ũ(t, x) and applying the time-consistency property (Theorem 2.2.8) and the

translation property (Theorem 2.2.12), we obtain

V(t, x) + ε ≥ V ũ(t, x) = ρ
g
t,r

[
ρ

g
r,T

[ ∫ T

t
c
(
s, Xt,x;ũ

s , ũs
)

ds +Φ
(
Xt,x;ũ

T
)]]

= ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;ũ

s , ũs
)

ds + ρ
g
r,T

[ ∫ T

r
c
(
s, Xt,x;ũ

s , ũs
)

ds +Φ
(
Xt,x;ũ

T
)]]

= ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;ũ

s , ũs
)

ds + ρ
g
r,T

[ ∫ T

r
c
(
s, Xr,x(r);ũ

s , ũs
)

ds +Φ
(
Xr,x(r);ũ

T
)]]
.
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By virtue of Proposition 3.2.8,

V(t, x) + ε ≥ ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;ũ

s , ũs
)

ds + V ũ(r, xt,x;ũ
r

)]
≥ ρ

g
t,r

[ ∫ r

t
c
(
s, Xt,x;ũ

s , ũs
)

ds + V
(
r, xt,x;ũ

r
)]

≥ inf
u(·)∈Uw[t,r]

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V
(
r, Xt,x;u

r
)]
.

Since ε > 0 was arbitrary, we have established the inequality “≥” in (3.50).

To prove the reverse inequality, let ε > 0 be fixed, and let ū ∈ Uw[t, r] be an ε-optimal

solution of the problem on the right hand side of (3.50). Thus

inf
u(·)∈Uw[t,r]

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V
(
r, Xt,x;u

r
)]

+ ε ≥ ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;ū

s , ūs
)

ds + V
(
r, Xt,x;ū

r
)]
.

For every y ∈ Rn, let ũ(y) ∈ Uw[r,T ] be such that V(r, y) + ε ≥ V ũ(y)(r, y). Owing to the

measurable selection theorem in Sect. 5.2 of [71], without loss of generality we may assume

that the function y 7→ ũ(y) is Borel measurable. Now we can construct a control function

u0
s =


ūs s ∈ [t, r),

ũs
(
Xt,x;ū

r
)

s ∈ [r,T ].

By construction, u0 ∈ Uw[t,T ]. Using the monotonicity, translation, and time-consistency

properties, we obtain

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;ū

s , ūs
)

ds + V
(
r, Xt,x;ū

r
)]
≥ ρ

g
t,r

[ ∫ r

t
c
(
s, Xt,x;ū

s , ūs
)

ds + V ũs(X
t,x;ū
r )(r, Xt,x;ū

r
)
− ε

]
= ρ

g
t,T

[ ∫ T

t
c
(
s, Xt,x;u0

s , u0
s
)

ds +Φ
(
Xt,x;u0

T
)]
− ε

= Vu0
(t, x) − ε.

Combining the last three inequalities, we obtain

inf
u(·)∈Uw[t,r]

ρ
g
t,r

[ ∫ r

t
c
(
s, Xt,x;u

s , us
)

ds + V
(
r, Xt,x;u

r
)]

+ ε ≥ Vu0
(t, x) − ε ≥ V(t, x) − ε.

As ε > 0 was arbitrary, we proved the inequality “≤” in (3.50). �

3.3 Risk-averse Hamilton-Jacobi-Bellman Equation

So far, we have derived a risk-averse dynamic programming equation in both formulations:

(3.42) and (3.50), respectively. Now our goal is to work out a non-linear partial differential
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equation, similar to the Hamilton-Jacobi-Bellman equation in the classical control case. In this

section, we will not distinguish between strong and weak formulation. With a little abuse of

notation, we denote the admissible control set asU.

For α ∈ U we define the Laplacian operator Lα as follows: for w ∈ C1,2
b ([0,T ] × Rn),

[
Lαw

]
(t, x) = ∂tw(t, x) +

n∑
i, j=1

1
2
(
σ(t, x, α)σ(t, x, α)>

)
i j∂xi x jw(t, x) +

n∑
i=1

bi(t, x, α)∂xiw(t, x).

On the space C1,2
b ([0,T ] × Rn), we consider the following equation

(3.51) min
α∈U

{
c(t, x, α) +

[
Lαv

]
(t, x) + g

(
t, [Dxv · σα](t, x)

)}
= 0,

with the boundary condition

(3.52) v(T, x) = Φ(T, x), x ∈ Rn.

We call (4.12)–(4.13) the risk-averse Hamilton–Jacobi–Bellman equation associated with the

controlled system (3.22) and the risk functional (3.23). It is a generalization of the classical

Hamilton–Jacobi–Bellman Equation with the extra term g(·, ·) responsible for risk aversion. In

the special case, when g ≡ 0, we obtain the standard equation.

Let us recall the notion of a viscosity solution of such an equation.

Definition 3.3.1. A function v : [0,T ] × Rn → R satisfying (4.13) is called a viscosity solution

of the equation (4.12)–(4.13), if the following two conditions are satisfied:

(i) v is a viscosity subsolution: for every w ∈ C1,2
b ([t,T ]×Rn) such that w ≥ v on [0,T ]×Rn,

and min(t,x)[w(t, x) − v(t, x)] = 0, and for every (t̄, x̄) ∈ [0,T ) × Rn such that w(t̄, x̄) = v(t̄, x̄),

we have

min
α∈U

{
c(t̄, x̄, α) +

[
Lαw

]
(t̄, x̄) + g

(
t̄,Dxw(t̄, x̄) · σ(t̄, x̄, α)

)}
≥ 0;

(ii) v is a viscosity supersolution: for every w ∈ C1,2
b ([t,T ] × Rn) such that w ≤ v on [0,T ] ×

Rn, and min(t,x)[v(t, x) − w(t, x)] = 0, and for every (t̄, x̄) ∈ [0,T ) × Rn such that w(t̄, x̄) =

v(t̄, x̄), we have

min
α∈U

{
c(t̄, x̄, α) +

[
Lαw

]
(t̄, x̄) + g

(
t̄,Dxw(t̄, x̄) · σ(t̄, x̄, α)

)}
≤ 0.

Theorem 3.3.1. Suppose Assumption 3.2.1, Assumption 2.2.1 and 2.2.11 are satisfied, in addi-

tion, the functions b, σ are bounded in x. Then the value function V(·, ·) is a viscosity solution

of the equation (4.12)–(4.13).
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Proof. Let w ∈ C1,2
b ([t,T ]×Rn) be such that w ≥ V on [0,T ]×Rn, and min(t,x)[w(t, x)−V(t, x)] =

0. Consider a point (t̄, x̄) ∈ [0,T ) × Rn such that w(t̄, x̄) = V(t̄, x̄). Let us take ∆t > 0, and

consider a constant control us = α for s ∈ [t̄, t̄ + ∆t]. According to (3.42)(or (3.50)), we have

(3.53)
w(t̄, x̄) = V(t̄, x̄) ≤ ρg

t̄,t̄+∆t

(∫ t̄+∆t

t̄
c
(
s, X t̄,x̄;α

s , α
)

ds + V
(
t̄ + ∆t, X t̄,x̄;α

t̄+∆t
))

≤ ρ
g
t̄,t̄+∆t

(∫ t̄+∆t

t̄
c
(
s, X t̄,x̄;α

s , α
)

ds + w
(
t̄ + ∆t, X t̄,x̄;α

t̄+∆t
))
.

Using the translation property of ρt̄,t̄+∆t, we obtain the inequality:

ρ
g
t̄,t̄+∆t

(∫ t̄+∆t

t̄
c
(
s, X t̄,x̄;α

s , α
)

ds + w
(
t̄ + ∆t, X t̄,x̄;α

t̄+∆t
)
− w(t̄, x̄)

)
≥ 0.

Since w ∈ C1,2
b ([t,T ] × Rn), we can evaluate the difference w

(
t̄ + ∆t, X t̄,x̄;α

t̄+∆t
)
− w(t̄, x̄) by Itô

formula between t̄ and t̄ + ∆t:

w
(
t̄ + ∆t, X t̄,x̄;α

t̄+∆t
)
− w(t̄, x̄) =

∫ t̄+∆t

t̄
[Lαw](s, X t̄,x̄;α

s ) ds +

∫ t̄+∆t

t̄
[Dxw · σα](s, X t̄,x̄;α

s ) dWs.

For simplicity of presentation, we write σα(s, x) for σ(s, x, α) and cα(s, x) for c(s, x, α). Sub-

stitution into the previous inequality yields:

(3.54) ρ
g
t̄,t̄+∆t

(∫ t̄+∆t

t̄
[cα +Lαw](s, X t̄,x̄;α

s ) ds +

∫ t̄+∆t

t̄
[Dxw · σα](s, X t̄,x̄;α

s ) dWs

)
≥ 0.

If w ∈ C1,2
b ([t,T ] × Rn), then the argument of the risk measure is well-defined. The evaluation

of the risk measure amounts to solving the following backward stochastic differential equation:

Yt̄ =

∫ t̄+∆t

t̄
[cα +Lαw](s, X t̄,x̄;α

s ) ds +

∫ t̄+∆t

t̄
[Dxw · σα](s, X t̄,x̄;α

s ) dWs

+

∫ t̄+∆t

t̄
g(s,Zs) ds −

∫ t̄+∆t

t̄
Zs dWs.

By Proposition 3.1.3, the equation has a unique solution:

Zs = [Dxw · σα](s, X t̄,x̄;α
s ), t̄ ≤ s ≤ t̄ + ∆t,

Yt̄ =

∫ t̄+∆t

t̄

{
[cα +Lαw](s, X t̄,x̄;α

s ) + g
(
s, [Dxw · σα](s, X t̄,x̄;α

s )
)}

ds.

Substitution into (3.54) yields the inequality:

(3.55)
∫ t̄+∆t

t̄

{
[cα +Lαw](s, X t̄,x̄;α

s ) + g
(
s, [Dxw · σα](s, X t̄,x̄;α

s )
)}

ds ≥ 0.
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Dividing by ∆t and letting ∆t ↓ 0, we obtain

[cα +Lαw](t̄, x̄) + g
(
t̄, [Dxw · σα](t̄, x̄)

)
≥ 0.

Since α ∈ U was arbitrary, we conclude that

(3.56) min
α∈U

{
c(t̄, x̄, α) +Lαw(t̄, x̄) + g

(
t̄, [Dxw · σα](t̄, x̄)

)}
≥ 0.

Consequently, V is a viscosity subsolution of (4.12)–(4.13) (satisfies condition (i) of Definition

3.3.1). The minimum in (3.56) is attained, owing to the compactness of U and the continuity

of the function in braces with respect to α.

Now, let w ∈ C1,2
b ([t,T ] × Rn) be such that w ≤ V on [0,T ] × Rn, and min(t,x)[V(t, x) −

w(t, x)] = 0. Consider a point (t̄, x̄) ∈ [0,T ) × Rn such that w(t̄, x̄) = V(t̄, x̄). Let ũ(·) ∈ U be an

ε∆t-optimal control in (3.42)(or, (3.50)) on the interval [t̄, t̄ + ∆t]. Proceeding exactly as in the

derivation of (3.55), we obtain the inequality:∫ t̄+∆t

t̄

{
[cũs +Lũsw](s, X t̄,x̄;ũ

s ) + g
(
s, [Dxw · σũs](s, X t̄,x̄;ũ

s )
)}

ds ≤ ε∆t.

Therefore, we also have

(3.57)
∫ t̄+∆t

t̄
min
α∈U

{
[cα +Lαw](s, X t̄,x̄;ũ

s ) + g
(
s, [Dxw · σα](s, X t̄,x̄;ũ

s )
)}

ds ≤ ε∆t.

The function (s, x, α) 7→ [cα + Lαw](s, x) + g
(
s, [Dxw · σα](s, x)

)
is continuous, the set U

is compact, and the solution s 7→ X t̄,x̄;ũ
s is continuous. Consequently, the function under the

integral in (3.57) is continuous. Therefore, dividing both sides of (3.57) by ∆t and letting

∆t ↓ 0, we obtain the following inequality:

(3.58) min
α∈U

{
c(t̄, x̄, α) +Lαw(t̄, x̄) + g

(
t̄, [Dxw · σα](t̄, x̄)

)}
≤ ε.

Since ε > 0 was arbitrary, we conclude that V is a viscosity supersolution of (4.12)–(4.13)

(satisfies condition (ii) of Definition 3.3.1). �

It is clear that if V ∈ C1,2
b ([t,T ] × Rn) then it satisfies (4.12)–(4.13). We can also prove the

converse relation (verification theorem).

Theorem 3.3.2. Suppose the assumptions of Theorem 3.3.1 are satisfied and let K ∈ C1,2
b ([t,T ]×

Rn) satisfy (4.12)–(4.13). Then K(t, x) ≤ Vu(t, x) for any control u(·) ∈ U and all (t, x) ∈
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[0,T ] × Rn. Furthermore, if a control process u∗ ∈ U exists, satisfying for almost all (s, Ω) ∈

[0,T ] × Ω, together with the corresponding trajectory X0,x;u∗
s , the relation

(3.59) u∗s ∈ arg min
α∈U

{
c(s, X0,x;u∗

s , α) +LαK(s, X0,x;u∗
s ) + g

(
t, [DxK · σα](t, X0,x;u∗

s )
)}
,

then K(t, x) = V(t, x) = Vu∗(t, x) for all (t, x) ∈ [0,T ] × Rn.

Proof. Let us fix (t, x) ∈ [0,T ) × Rn, a control function u ∈ U, and consider the process

K
(
s, Xt,x;u

s
)

for s ∈ [t,T ]. We can evaluate the difference K
(
T, Xt,x;u

T
)
− K(t, x) by Itô formula

between t and T :

K
(
T, Xt,x;u

T
)
− K(t, x) =

∫ T

t
[Lus K](s, Xt,x;u

s ) ds +

∫ T

t
[DxK · σus](s, Xt,x;u

s ) dWs.

Equation (4.12) for K yields the inequality:

[Lus K](s, Xt,x;u
s ) + c(t, Xt,x;u

s , us) + g
(
t, [DxK · σus](t, Xt,x;u

s )
)
≥ 0.

Combining the last two relations we conclude that

(3.60) K(t, x) ≤ Φ
(
T, Xt,x;u

T
)

+

∫ T

t
[c(t, Xt,x;u

s , us) + g
(
s, [DxK · σus](s, Xt,x;u

s )
)]

ds −
∫ T

t
[DxK · σus](s, Xt,x;u

s ) dWs.

Define Zt,x;u
s = [DxK · σus](s, Xt,x;u

s ), for s ∈ [t,T ]. It follows that K(t, x) ≤ Y t,x;u
t , where

(Y t,x;u,Zt,x;u) is the solution of the backward equation (3.28). Consequently, K(t, x) ≤ Vu(t, x).

If a control process u∗ satisfying (3.59) exists, then inequality (3.60) becomes an equation

for u = u∗. Moreover, u∗ is an element of U, because the process Xt,x;u∗
s is progressively

measurable. Thus, K(t, x) = Vu∗(t, x) = min
u∈U

Vu(t, x) = V(t, x). �
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Chapter 4

Approximation by Piecewise Constant Control

In the previous chapter, we analyzed the optimal control problem under risk aversion,

min
u(·)∈U

ρ
g
0,T

[ ∫ T

0
c(s, Xs, us)ds +Φ(XT )

]
s.t. dXs = b(s, Xs, us)ds + σ(s, Xs, us)dWs, X0 = x, s ∈ [0,T ]

The corresponding dynamic programming equation and Hamilton-Jacobi-Bellman equation are

derived (see (3.42) and (4.12)). Now, we are in a position to solve the problem of finding the

optimal value function and the optimal control. There are two main approximation approaches

to the numerical solution of the problem : one is to attack the partial differential equation

using some numerical scheme, such as a finite difference method or finite element method;

the other is to use the probabilistic approach, namely, to discretize the dynamic programming

equation to get a control problem on discrete-time and continuous state Markov chain. The

recent references for these considerations are [29, 43, 9, 41]. We will focus on the latter one.

4.1 Collapse of Approximation by Regularization (Mollification)

An interesting and remarkable method to transit to the discrete time setting in expectation case

is N. Krylov’s approximation by perturbing the coefficients and adopting integral regularization

(see [41]). He constructed a family of perturbed systems with two types of perturbations: of

the initial time and the initial state. For such a family, he integrated the value functions of a

piecewise constant control with respect to the said initial time and state values. This yields

regularized functions for which Itô calculus can be applied, then by using Hamilton-Jacobi-

Bellman equation, he established an error bound of order h
1
6 , between the optimal values of the

original system and a system with piecewise constant controls with time step of size h2.
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By mimicking his scheme, we can define the corresponding value function Vh : [0,T ] ×

Rn → R as follows:

(4.1) Vh(t, x) = inf
u(·)∈Ut

h

Vu(t, x).

where Uh is collection of piecewise constant control based on discretization h2. Also, we

perturb both the forward process and the backward process, i.e., let B = {(τ, ζ) ∈ R × Rn : τ ∈

(−1, 0), |ζ | < 1},

dX̃s = b(s + ε2τi, X̃s + εζi, αi) ds + σ(s + ε2τi, X̃s + εζi, αi) dW̃s,(4.2)

dỸs =
[
c(s + ε2τi, X̃s + εζi, αi) + g(s + ε2τi, Z̃s)

]
ds − Z̃s dW̃s,(4.3)

s ∈ [ti, ti+1), i = 0, 1, . . . , k,

with a fixed ε > 0, with the initial condition X̃t = x, and with the final condition ỸT = Φ(X̃T ).

Similarly, the value function corresponding to (4.2)-(4.3) can be defined as Ṽh,ε(ti, xi), which

satisfies the following dynamic programming equation:

(4.4) Ṽh,ε(t, x) = inf
αi∈U

inf
βi∈B

ρ
g
t+ε2τ,t+h2+ε2τ

[ ∫ t+h2+ε2τ

t+ε2τ
c
(
s, Xt+ε2τ,x+εζ;αi

s , αi
)

ds

+ Ṽh,ε
(
t + h2, Xt+ε2τ,x+εζ;αi

t+h2+ε2τ
− εζ

)]
.

The following estimates follow from [41] and standard estimates in decoupled FBSDE system,

(i) For t ∈ [0,T ] and x ∈ Rd, we have

∣∣∣Ṽh,ε(t, x) − Vh(t, x)
∣∣∣ ≤ NeNTε,(4.5)

(ii) For t, r ∈ [0,T ], and x, y ∈ Rn, we have

∣∣∣Ṽh,ε(t, x) − Ṽh,ε(r, y)
∣∣∣ ≤ NeNT (|x − y| + |t − r|

1
2 ).(4.6)

It implies the closeness of Vh to Ṽh,ε and shows regularity of Ṽh,ε as expected.

The integral regularization technique brings in a smooth value function based on the follow-

ing mollification: take a non-negative function ϕ ∈ C∞(B) with
∫

B ϕ(τ, ζ) dτ dζ = 1, for ε > 0,

re-scale the mollifier as ϕε(τ, ζ) = ε−n−2ϕ(τ/ε2, ζ/ε), and define the regularized value function

by convolution

V̂h,ε(t, x) =
[
Ṽh,ε ? ϕε

]
(t, x) =

∫
B

Ṽh,ε(t − ε2τ, x − εζ)ϕ(τ, ζ) dτ dζ,
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where t ∈ [0,T − ε2] and x ∈ Rn. It can be shown that V̂h,ε is bounded in terms of semi-norm

‖ · ‖2,1, more importantly, the mollification yields negligible error. Namely, for ε ≥ h,

∥∥∥∥V̂h,ε

∥∥∥∥
2,1
≤ NeNTε−2,

∣∣∣∣V̂h,ε − Ṽh,ε

∣∣∣∣
0
≤ NeNTε.(4.7)

We discovered an interesting result for smooth value function of risk-averse control problem

that connects dynamic programming equation and Hamilton-Jacobi-Bellman PDE,

Lemma 4.1.1. For any w ∈ C1,2
b ([t,T ] × Rn), any 0 ≤ t ≤ θ ≤ T, and all u(·) ∈ U we have:

(4.8) w(t, x) = ρ
g
t,θ

[ ∫ θ

t
c(s, Xt,x;u

s , us) ds + w(θ, Xt,x;u
θ ) − ζ̄

]
,

where

(4.9) ζ̄ =

∫ θ

t

{[
cus +Lusw

]
(s, Xt,x;u

s ) + g
(
s, [Dxw · σus](s, Xt,x;u

s )
)}

ds.

We defer the proof to the next section, where a valid approximation scheme is provided.

Obviously, the mollified value function V̂h,ε is qualified to Lemma 4.2.4; as a result, if we

consider t ∈ [0,T − h2 − ε2], for all u(·) ∈ U on [t,T − h2 − ε2],

V̂h,ε
(
t, x

)
≤ ρ

g
t,T−h2−ε2

∫ T−h2−ε2

t
c(s, Xt,x,u

s , us) ds + V̂h,ε
(
T − h2 − ε2, Xt,x,u

T−h2−ε2) − ζ̄

 ,
with

ζ̄ =

∫ T−h2−ε2

t

([
cus +LusV̂h,ε

]
(s, x) + g(s, [∂xV̂h,ε · σ

us](s, x))
)

ds

≥ −NTeNT
(
ε +

h
ε2

)
.

If we can obtain ζ̄ ≥ −O(h), then by the estimates (4.5)–(4.7) and monotonicity of dynamic

risk measure,

Vh(t, x) ≤ ρg
t,T−h2−ε2

( ∫ T−h2−ε2

t
c(s, Xt,x,u

s , us) ds + V
(
T − h2 − ε2, Xt,x,u

T−h2−ε2)
)

+ O(hα).(4.10)

where α ∈ (0, 1] depending on the choice of ε as a function of h.

Remark 4.1.2. It is rather simple to prove on [T − h2 − ε,T ], Vh and V are close (via terminal

condition).
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By applying dynamic programming equation (3.50) to the right hand side of (4.10), we

conclude

Vh(t, x) ≤ inf
u(·)∈U

ρ
g
t,T−h2−ε2

( ∫ T−h2−ε2

t
c(s, Xt,x,u

s , us) ds

+ V
(
T − h2 − ε2, Xt,x,u

T−h2−ε2)
)

+ NeNT h
1
3 = V(t, x) + NeNT h

1
3 ,

as desired.

Unfortunately, ζ̄ can not be bounded below in order of h. Specifically, the brilliant idea of

N. Krylov is to mollify the whole dynamic programming equation in expectation case, which

generates no error because expectation is of linear nature. However, our dynamic risk measure

is a convex operator, when being regularized, we can only show

(4.11) V̂h,ε
(
t, x

)
≤ ρ

g
t,t+h2

∫ t+h2

t
c(s, Xt,x;u

s , α) ds + V̂h,ε
(
t + h2, Xt,x;α

t+h2

) + O(h).

After Itô’s formulas and other manipulations, it can only end up with ζ̃ = O(1). The most

fundamental issue is the Brownian motion driving the density process when using the dual

representation of dynamic risk measure. Even on a short interval, the error accumulates by the

same order as the Brownian motion.

4.2 Approximation by ε-optimal control

4.2.1 Regularity of Risk-averse HJB

Recall the Hamilton-Jacobi-Bellman equation associated with our risk-averse control problem,

(4.12) min
u∈U

{
c(t, x, u) +

[
LuV

]
(t, x) + g

(
t, [DxV · σu](t, x)

)}
= 0,

with the boundary condition

(4.13) V(T, x) = Φ(x), x ∈ Rn.

If we make a slightly stronger assumptions on the coefficients:

Assumption 4.2.1. (i) |b(·, 0)| + |σ(·, 0)| is bounded;
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(ii) The functions b, σ ∈ C1
b([0,T ] × Rn) and, for some constant C > 0,

|b(t, x1) − b(t, x2)| + |σ(t, x1) − σ(t, x2)| ≤ C|x1 − x2| a.s.

|b(t, x1)| + |σ(t, x1)| ≤ C|x1|, a.s..

(iii) The dimension of Brownian motion and the state process coincide, i.e., n = d, and

σ(t, x)σ>(t, x) ≥
1
C
I, ∀(t, x) ∈ [0,T ] × Rd.

(iv) g(·, z), Φ(x) ∈ CL(Rn), where we use a constant C to denote all the Lipschitz constants,

and

sup
0≤t≤T

|g(t, 0)| + |Φ(0)| ≤ C(4.14)

Theorem 4.2.2. (Zhang [76], Chap 2, Thm 2.4.1) Under Assumption 5.3.1 and compactness

of U, (4.12)-(4.13) has a unique classical solution V ∈ C1,2
b ([0,T ] × Rn).

In following subsection, we are going to exploit risk-averse Hamilton-Jacobi-Bellman equa-

tion (4.12)–(4.13) to design a convergent numerical scheme. And we shall observe, the regu-

larity of solution to the PDE is the cornerstone.

4.2.2 Existence of ε – optimal Control

As before, our intention is again to design a piecewise-constant control which facilitates the

discrete-time approximation. As suggested by risk-averse dynamic programming equation, for

any control u(·) ∈ U,

V(t, x) ≤ ρt,θ

[ ∫ θ

t
c(s, Xt,x;u

s , us) ds + V(θ, Xt,x;u
θ )

]
, 0 ≤ t ≤ θ ≤ T,(4.15)

If we can restrict the class of control to be piecewise-constant, i.e., uh ∈ Uh, while being able

to control the distance between value function (left hand side of (4.15)) and the term appearing

on the right hand side of (4.15) by appropriately choosing uh(·), then as we enforce the distance

to go to 0, a desirable control can be obtained.

This motivates the definition of ε-optimal control below.
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Definition 4.2.1. If for each δ > 0, there exists a policy u(·) ∈ U such that

V(t, x) + δ ≥ ρt,θ

[ ∫ θ

t
c(s, Xt,x;u

s , us) ds + V(θ, Xt,x;u
θ )

]
, 0 ≤ t ≤ θ ≤ T,(4.16)

then we call u(·) a δ – optimal control under risk aversion.

For piecewise constant control, we also need to introduce the following discretization: par-

tition [t,T ] into M equal size subintervals, Ii = [si, si+1), for i = 1, ...,M − 1, i.e., t = s0 <

s1 < · · · < sM = T with si+1 − si = (T − t)/M. We can further narrow the family of piecewise

constant control to be Markovian.

Definition 4.2.2. Let u = (ū1, ..., ūM−1), ū is called a discrete Markov policy if u ∈ U defines a

solution X to controlled diffusion process such that

us = ūi(Xsi), s ∈ Ii, i = 1, ...,M − 1.(4.17)

Clearly, our intention will be to construct a Markov ε–optimal control based on the above

discretization. Namely, the following theorem has to be proved

Theorem 4.2.3. Given V(t, x) is the solution to (3.50), under Assumption 3.1.1 , for any δ > 0,

a Markovian ε-optimal control exists, i.e., (4.16) is valid.

The proof of the main theorem above relies on Lemma 4.2.4 appearing in Subsection 4.1.

Let’s restate and give the proof:

Lemma 4.2.4. For any w ∈ C1,2
b ([t,T ] × Rn), any 0 ≤ t ≤ θ ≤ T, and all u(·) ∈ U we have:

(4.18) w(t, x) = ρ
g
t,θ

[ ∫ θ

t
c(s, Xt,x;u

s , us) ds + w(θ, Xt,x;u
θ ) − ζ̄

]
,

where

(4.19) ζ̄ =

∫ θ

t

{[
cus +Lusw

]
(s, Xt,x;u

s ) + g
(
s, [Dxw · σus](s, Xt,x;u

s )
)}

ds.

Proof. For any u(·) ∈ U, we apply Itô formula to w(s, Xt,x;u
s ):

(4.20) w(θ, Xt,x;u
θ ) − w(t, x) −

∫ θ

t

[
Lusw

]
(s, Xt,x;u

s ) ds =

∫ θ

t
[Dxw · σus](s, Xt,x;u

s ) dWs.
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Subtraction of
∫ θ

t g
(
s,

[
Dxw · σus

]
(s, Xt,x;u

s )
)

ds from both sides and evaluation of the risk on

both sides yields

ρ
g
t,θ

[
w(θ, Xs,x;u

θ ) − w(t, x) −
∫ θ

t

[
Lusw

]
(s, Xt,x;u

s ) + g
(
s, [Dxw · σus](s, Xt,x;u

s )
)

ds
]

= ρ
g
t,θ

[ ∫ θ

t
[Dxw · σus](s, Xt,x,u

s ) dWs −

∫ θ

t
g
(
s, [Dxw · σus](s, Xt,x;u

s )
)

ds
]
.

(4.21)

The risk measure on the right hand side of (4.21) is the solution of the following backward

stochastic differential equation:

Y t,x;u
t =

∫ θ

t
[Dxw · σus](s, Xt,x;u

s ) dWs −

∫ θ

t
g
(
s, [Dxw · σus](s, Xt,x;u

s )
)

ds

+

∫ θ

t
g(s,Zt,x;u

s ) ds −
∫ θ

t
Zt,x;u

s dWs.

(4.22)

Substitution of Zt,x;u
s = [Dxw ·σus](s, Xt,x;u

s ) yields Y t,x;u
t = 0. By the uniqueness of the solution

of BSDE, the right hand side of (4.21) is zero. Using the translation property on the left hand

side of (4.21), we obtain

w(t, x) =ρ
g
t,θ

[
−

∫ θ

t

[
Lusw

]
(s, Xt,x;u

s ) + g
(
s, [Dxw · σus](s, Xt,x;u

s )
)

ds + w
(
θ, Xt,x;u

θ

)]
.(4.23)

This is the same as (4.18). �

Now we can prove Theorem 4.2.3.

Proof. Fix α > 0, define a compact cylinder Oα = [t,T ) × {x ∈ Rn : ‖x‖ < α}. By Theorem

4.2.2, all partial derivatives, ∂tV , ∂xV , ∂xxV , are uniformly continuous on Ōα, where α > 0. Fo

any β > 0, there exists γ > 0 such that for |s − s′| < γ and |x − x′| < γ,

∣∣∣ GuV(s, x) + f
(
s, x, [∂xV · σu](s, x)

)
− GuV(s′, x′) − f

(
s′, x′, [∂xV · σu](s′, x′

) ∣∣∣ < β

2
,(4.24)

where

GuV(s, x) = LuV(s, x) − cu(s, x),

f
(
s, x, [∂xVσu(s, x)

)
= cu(s, x) + g

(
s, [∂xV · σu](s, x)

)
,

(4.25)

for all (s, x) ∈ Ōα and u(·) ∈ U.

We now establish a grid on Ōα: let {x ∈ Rn : ‖x‖ < α} = ∪iBi, for j = 1, ...,N, be a disjoint

partition with {B j}
N
j=1 of diameter less than γ/2. Meanwhile, for the time axis, we make a
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partition such that the length of each subinterval Ii = [si, si+1) < min(γ, 1). Pick any x j ∈ B j

for some j, due to Hamilton-Jacobi-Bellman equation, there exists ui j ∈ U such that

Gui jV(si, x j) + f
(
si, x j, [∂xV · σui j](si, x j)

)
<
β

2
.(4.26)

It follows from continuity (4.24), for all s ∈ Ii and ‖x − x j‖ < γ,

Gui jV(s, x) + f
(
s, x, [∂xV · σui j](s, x)

)
< β.(4.27)

The discrete time Markov control policy u = (ū1, ..., ūM−1) can be set as follows:

ūi(x) =


ui j, if x ∈ B j,

u0, if (s, x) ∈ ([t,T ] × Rn) \ Ōα.

(4.28)

where u0 ∈ U is arbitrary. We can define a control u(·) ∈ U for which Xt,x;u
s has a solution with

Xt,x;u
t = x such that

us = ui j, s ∈ Ii, Xt,x;u
si
∈ B j.(4.29)

Set ζ =
∫ θ

t c(s, Xt,x;u
s , us) ds + V(θ, Xt,x;u

θ ). By Lemma 4.2.4, we have

V(t, x) = ρ
g
t,θ(ζ − ζ̄).(4.30)

The difference between the left hand side and the right hand side corresponds to the solutions

of the following BSDEs,

Y1
t = ζ +

∫ θ

t
g(s,Z1

s ) ds −
∫ θ

t
Z1

s dWs,(4.31)

Y2
t = ζ − ζ̄ +

∫ θ

t
g(s,Z2

s ) ds −
∫ θ

t
Z2

s dWs,(4.32)

By standard estimates of BSDE,

∥∥∥ Y1
t − Y2

t

∥∥∥2
≤ CEt

[
| ζ̄ |2

]
(4.33)

for some C which depends only on the Lipschitz constant of the driver g.

Define the following event:

E =

{
sup

t≤s≤T
‖Xt,x;u

s ‖ ≤ α, |Xt,x;u
s − Xt,x;u

si
| <

γ

2
, s ∈ Ii, i = 0, ...,M − 1

}
(4.34)
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If Xt,x;u
si ∈ B j for some j, then ‖Xt,x;u

s − Xt,x;u
si ‖ <

γ
2 for every x j ∈ B j. Therefore, in the event E,

we have ‖Xt,x;u
s − x j‖ < γ. From (4.27), we obtain,

GusV(s, Xt,x;u
s ) + f

(
s, [∂xV · σus](s, Xt,x;u

s )
)
< β.(4.35)

From standard estimates for stochastic differential equations, there exists C1 > 0 and C2 > 0

such that

Pt

[
max

0≤i≤M−1
max
s∈Ii

∥∥∥Xt,x;u
s − Xt,x;u

si

∥∥∥ ≥ γ

2

]
≤

C1(si+1 − si)2

γ4 =
C1(T − t)

Mγ4 ,(4.36)

and

Pt

[
max
t≤s≤T

∥∥∥Xt,x;u
s

∥∥∥ > α] ≤ C2(1 + ‖x‖)
α

.(4.37)

Therefore,

Pt[EC] ≤
C1C2(T − t)(1 + ‖x‖)

Mγ4α
.(4.38)

Since θ ≤ T ,

Et
[ ( ∫ θ

t
GusV(s, Xt,x;u

s ) + f (s, [∂xV · σus](s, Xt,x;u
s ))ds

)2 ]
= Pt[E]Et

[ ( ∫ θ

t
GusV(s, Xt,x;u

s ) + f (s, [∂xV · σus](s, Xt,x;u
s ))ds

)2 ∣∣∣∣∣ E
]

+ Pt[EC]Et

[ ( ∫ θ

t
GusV(s, Xt,x;u

s ) + f (s, [∂xV · σus](s, Xt,x;u
s ))ds

)2 ∣∣∣∣∣ EC
]

≤ β2(T − t)2 + Et[ζ̄2]
C1C2(T − t)(1 + ‖x‖)

Mγ4α
.

(4.39)

For α and M large enough, the last term can be made smaller than δ2/2C, if β(T − t) < δ√
2C

.

Then, we obtain from (4.33) the inequality,

ρ
g
t,θ[ζ] − ρg

t,θ[ζ − ζ̄] ≤ δ,(4.40)

which implies

V(t, x) = ρ
g
t,θ[ζ − ζ̄] ≥ ρg

t,θ[ζ] − δ.(4.41)

As a result, the control u(·) constructed is a δ – optimal, as desired. �
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Chapter 5

A Dual Method For Backward Stochastic Differential Equations
with Application to Risk Valuation

5.1 Solving Optimal Control Problem in Discrete-Time

In chapter 4, we proposed an approximation of the risk-averse dynamic programming equation

by piecewise constant Markov control. To arrive at a purely discrete-time system, it is not

sufficient to only ”freeze” the control at the initial point (of a discretized interval) but also the

time and state. Without loss of generality, let us focus on policy evaluation. For a finite horizon

T = [0,T ], we consider a forward diffusion process of Markovian type:

dXs = b(s, Xs)dt + σ(s, Xs)dWs, Xt = x, 0 ≤ t ≤ s ≤ T.(5.1)

where Borel function b : T × Rn 7→ Rn, σ : T × Rn 7→ Rn×d are Lipschitz in state and satisfy

linear growth condition. Our objective is to apply g-dynamic risk measure for the future cost at

any time t in T . In particular, we are interested in, for any (t, x) ∈ T × Rn,

v(t, Xt) = ρ
g
t,T

[ ∫ T

t
c(s, Xs)ds +Φ(XT )

]
, where Xs is subject to (5.1),(5.2)

for terminal function Φ specified as before and cost function c a measurable mapping from

T × Rn to R.

Remark 5.1.1. To recover the controlled diffusion process and original system, one can assume

the drift and diffusion functions are parameterized by control u as well as the cost rate c. As a

result, the value function above is a functional of control u(·), that can be optimized by choosing

the best one.

We partition time horizon T into N sub-intervals with length ∆N = T/N (for notation

convenience, we will skip the superscript N if there is no ambiguities), i.e., tk = k∆N are grid
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points, for k = 0, ...,N − 1. Given any initial (t, x) ∈ T × Rn, {X̃s}s∈T proposed below is a

continuous approximation of of (5.1),

X̃t,x
r := x +

∫ r

t
b
(
κ∆

t (s), X̃t,x
κ∆

t (s)

)
ds +

∫ r

t
σ

(
κ∆

t (s), X̃t,x
κ∆

t (s)

)
dWs, r ∈ [t,T ].(5.3)

where κ∆
t (s) = t + ∆[ s−t

∆
]. We define the value functions corresponding to the g-dynamic

risk measure applied on the original underlying process (5.1) and approximation process (5.3),

respectively,

v(t, x) := ρ
g
t,T

[ ∫ T

t
c(s, Xs) ds +Φ(Xt,x

r )
]
,(5.4)

v∆(t, x) := ρ
g
t,T

[ ∫ κ∆
t (T )

t
c(κ∆

t (s), X̃t,x
κ∆

t (s)
) ds +Φ(X̃t,x

κ∆(T )
)
]
.(5.5)

The following theorem shows the closeness between (5.4) and (5.5):

Theorem 5.1.2. For any (t, x) ∈ T × Rn,

∣∣∣ v(t, x) − v∆(t, x)
∣∣∣ = O(∆

1
2 ).(5.6)

Proof. Let’s set, for v ∈ [t,T ],

b̄(v, η) := b
(
κ∆

t (v), η + X̃t,x
κ∆

t (v)
− X̃t,x

v

)
,

σ̄(v, η) := σ
(
κ∆

t (v), η + X̃t,x
κ∆

t (v)
− X̃t,x

v

)
.

Equation (5.3) can be rewritten as:

X̃t,x
r = x +

∫ r

t
b̄ (s, X̃t,x

s ) ds +

∫ r

t
σ̄ (s, X̃t,x

s ) dWs.

The following estimates is well known (see, for example, chap.2, [77]):

E
[

sup
t≤r≤T

∣∣∣ Xt,x
r − X̃t,x

r

∣∣∣2] = O(∆).(5.7)

Since V∆(t, x) and V(t, x) are the solutions of BSDE (5.8) and (5.9) below, respectively,

y1
t = Φ(X̃t,x

r ) +

∫ r

t

(
g(s, z1

s) + c
(
κ∆

t (s), X̃t,x
κ∆

t (s)

) )
ds −

∫ r

t
z1

s dWs,(5.8)



55

y2
t = Φ(Xt,x

r ) +

∫ r

t

(
g(s, z2

s)ds + c(s, Xt,x
s )

)
ds −

∫ r

t
z2

s dWs,(5.9)

standard estimates from BSDE implies (see, chap. 3, [59])

∣∣∣ y1
t − y2

t

∣∣∣2 = O(∆).(5.10)

The proof is completed. �

The above theorem leads us to the recursion form:

vk(X̃k) := v∆(k∆, X̃k∆) = ρ
g
k,k+1

[
c(k∆, X̃k∆)∆ + vk+1(X̃(k+1)∆

) ]
= c ( k∆, X̃k∆ ) ∆ + ρ

g
k,k+1

[
vk+1(X̃(k+1)∆

) ](5.11)

where ρg
k,k+1[·] := ρ

g
k∆,(k+1)∆[·] for k = 1, ...,N − 1. If ρg

k,k+1[·] is conditional expectation, i.e.,

Ek∆[·], the evaluation is straightforward provided the distribution of the next step value function

vk+1(X̃(k+1)∆
)
. However, due to the non-linearity of our evaluation, the risk evaluation present

above requires solving FBSDEs system on a short interval, [k∆, (k + 1)∆]. To be explicit, the

following FBSDEs has to be solved,

Yt = Yt+∆ +

∫ t+∆

t
g(s,Zs) ds −

∫ t+∆

t
Zs dWs, for t = k∆, where k ∈ {0, ...,N − 1},(5.12)

where Yt+∆ = vk+1(X̃(k+1)∆
)
. In this situation, solving (5.12) analytically is hopeless, and we

need to resort to a numerical method. And the proposed numerical method should have the

property that the errors accumulated on each interval will not explode in the end. On the

other hand, as finding optimal control is the the target of the risk-averse control problem, the

numerical algorithm for risk evaluation should be done in an efficient manner.

Our main effort in this chapter is to develop an algorithm for our risk evaluation which can

be applied to more general backward stochastic differential equation with convex and positive-

homogeneous driver. We, first, take advantage of dual representation of the backward stochastic

differential equation to convert risk evaluation to a stochastic control problem where the control

is the Radon-Nikodym derivative process. Then, by exploring optimality conditions, we show

that piecewise constant density (control) provides a close approximation on the short interval.

Last, the backward induction extends the approximation to a finite time horizon, while keeping

the error of order higher than discretization step. A financial application in risk management is

given at the end to present some numerical results and sensitivity analysis.
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5.2 Deficiency of Euler’s Method for Risk Evaluation

Before jumping into our approximation scheme of risk evaluation, we review one of widely

used numerical solution to backward stochastic differential equation, which is proposed by

Zhang [76], among others [49, 31, 20, 10]. We raise the issue that such approximation scheme

does not preserve monotonicity and time consistency of risk evaluation on discretized interval.

Consider the interval [t, t + ∆]. Given Xt = x, the discretized SDE has the form:

X̃t,x
t+∆

(t, x) = x + b(t, x) ∆ + σ(t, x) ∆W, where ∆W = Wt+∆ −Wt.(5.13)

Since b, σ and the terminal function v∆(t + ∆, ·) are known, we can re-express the random

variable that is going to be evaluated by the risk measure as a functional of the initial state x

and FT -measurable random variable ∆W,

ξ∆,x(∆W) := v
(
t + ∆, X̃t,x

t+∆

)
(5.14)

which is Lipschitz in ∆W. We apply Euler’s method to BSDE associated with g-evaluation.

Following [76], the numerical recipe reads:

Ỹt+∆ = ξ∆,x(∆W),

Z̃t =
1
∆
Et

[
Ỹt+∆∆W

]
,

Yt = Et
[
Ỹt+∆

]
+ g ( t, Z̃t ) ∆

(5.15)

To explain, we first compute the terminal data of BSDE, Ỹt+∆ based on the specific functional

form, then multiply it with increment of Brownian motion, after taking expectation and re-

scaling, the approximated Z is obtained; last, the current evaluation Ỹt is a linear combination

of conditional expected value of Ỹt+∆ and driver implemented on computed Z̃t.

For continuous approximation of (Ỹ ., Z̃.), define

Ỹ∆
r := Ỹt+∆ − g ( t, Z̃t )(r − t) +

∫ r

t
Z̃s dWs, t < r ≤ t + ∆(5.16)

Lemma 5.2.1. The following identity holds:

Z̃t∆ = Et

[ ∫ t+∆

t
Z̃s ds

]
(5.17)
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Proof. Since ξ∆,x ∈ L2(Ω,Ft+∆,P), there is a sequence of (εk)k of random variables in D1,2

converging to ξ∆,x in L2(Ω,Ft+∆,P).1 Then, it follows from the Clark-Ocone formula that, for

all k,

εk = Et
[
εk ]

+

∫ t+∆

t
ζk

s dWs, where ζk
s := Es

[
Ds ε

k ]
, t ≤ s ≤ t + ∆.

It can be computed that,

Z̃t∆ = Et
[
ξ∆,x∆W

]
= lim

k→∞
Et

[
εk∆W

]
= lim

k→∞
Et

[ ∫ t+π

t
Ds ε

kds
]

= lim
k→∞
Et

[ ∫ t+∆

t
ζk

s ds
]

(5.18)

by the Malliavin integration by parts formula and the tower property of conditional expecta-

tions. We then estimate,∣∣∣∣∣Et

[ ∫ t+π

t
( ζk

s − Z̃s ) ds
] ∣∣∣∣∣ ≤ ∣∣∣∣∣Et

[ ∫ t+∆

t
( ζk

s − Z̃s)
] ∣∣∣∣∣ 1

2

=

∣∣∣∣∣Et

[
εk − Et[ εk ] −

(
ξ∆,x − Et [ ξ∆,x ]

) ]2 ∣∣∣∣∣ 1
2

≤ 2
∣∣∣∣∣Et

[
ξ∆,x − εk

]2 ∣∣∣∣∣ 1
2

Since εk converges to ξ∆,x in L2(Ω,Ft+∆,P), the last inequality together with (5.18) provide the

required result. �

With the help of lemma above, the following results can be proved (see Bouchard and Touzi

[10]), which shows the algorithm (5.15) has error of order
√

∆.

Lemma 5.2.2. Define

Z̄t :=
1
∆
Et

[ ∫ t+∆

t
Z̃s ds

]
(5.19)

Then,

(5.20) lim sup
∆→0

∆−1
{

sup
t≤s<t+∆

Et

[ ∣∣∣Ys − Yt
∣∣∣2 ]

+ Et

[ ∫ t+∆

t

∣∣∣Z̃s − Z̄t
∣∣∣2 ds

] }
< +∞

1D1,2 is the Hilbert space making ε and its Malliavin derivative bounded in square integrable sense(see formal
definition in the last section of this chapter).
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Theorem 5.2.3. For Euler method with approximation solution (Ỹ , Z̃.) and original solution

(Y.,Z.),

lim sup
∆→0

{
sup

t≤s≤t+∆

Et

[ ∣∣∣Ỹs − Ys
∣∣∣2 ]

+ Et

[ ∫ t+∆

t

∣∣∣Z̃s − Zs
∣∣∣2ds

]}
≤ K∆

Let us investigate the risk measure induced by Euler’s approximation (5.15). For terminal

value ξ∆,x(∆W), that is, we set

ρ̃
g
t,t+∆

[
ξ∆,x(∆W)

]
:= Et

[
ξ∆,x(∆W)

]
+ g

( 1
∆
Et

[
ξ∆,x(∆W)∆W

])
∆(5.21)

It can be shown easily that ρ̃g
t,t+π[·] satisfies:

(i) Normalization property: ξ ≡ 0 implies ρ̃g
t,t+∆

[ξ] ≡ 0;

(ii) Translation invariance: for any η ∈ L2(Ω,Ft,P),

ρ̃
g
t,t+∆

[
ξ∆,x(∆W) + η

]
= Et

[
ξ∆,x(∆W)

]
+ η + g

( 1
∆
Et

[
ξ∆,x(∆W)∆W + η∆W

] )
∆

= Et

[
ξ∆,x(∆W)

]
+ η + g

( 1
∆
Et

[
ξ∆,x(∆W)∆W

] )
∆

= ρ̃
g
t,t+∆

[
ξ∆,x(∆W)

]
+ η.

(5.22)

(iii) Convexity: for any ξ1,∆,x(∆W), ξ2,∆,x(∆W) ∈ L2(Ω,Ft+∆,P) and λ ∈ L∞(Ω,Ft,P), by

convexity of driver g,

g
(

t,
1
∆
Et

[
λ ξ1,∆,x (∆W)∆W + (1 − λ) ξ2,∆,x (∆W)∆W

] )
≤ λ g

(
t,

1
∆
Et

[
ξ1,∆,x(∆W)∆W

] )
+ (1 − λ) g

( 1
∆
Et

[
ξ2,∆,x(∆W)∆W

] )
thus the convexity follows immediately.

However, monotonicity cannot hold in general because of the extra term – increment of the

Brownian motion. Even worse, such approximating dynamic risk measure ρ̃g
t,t+∆

[·] is not time

consistent. Because of these, although the numerical scheme can work with controllable errors,

the evaluation after discretization loses its interpretation as a risk measure, which may lead

to instability and inefficiency. In the following, we develop an alternative numerical method

to efficiently compute risk associated with the underlying dynamic. The approximating risk

measure designed satisfies all properties of a dynamic risk measure.

5.3 Dual Method of Risk Evaluation

From now on, we shall focus on the new method to solve risk evaluation problems (in general,

BSDE with convex and positive-homogeneous driver). The notation will be slightly different
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from the previous discussion, but should not affect reading.

5.3.1 Initial Set-up

Given a complete filtered probability space (Ω,F ,P) with filtration {Ft}t∈[0,T ] generated by

d-dimensional Brownian motion {Wt}t∈[0,T ], we consider the following stochastic differential

equation:

(5.23) dXt = b(t, Xt) dt + σ(t, Xt) dWt, X0 = x, t ∈ [0,T ],

with measurable b : [0,T ] × Rn → Rn, and σ : [0,T ] × Rn → Rn × Rd. Also, the following

assumptions about the drift and volatility terms are made.

Assumption 5.3.1. (i) |b(·, 0)| + |σ(·, 0)| are bounded;

(ii) The functions b, σ ∈ C1
b([0,T ] × Rn), the constant C > 0 denotes the Lipschitz constants

|b(t, x1) − b(t, x2)| + |σ(t, x1) − σ(t, x2)| ≤ C|x1 − x2| a.s.

|b(t, x1)| + |σ(t, x1)| ≤ C|x1|, a.s..

(iii) The dimension of the Brownian motion and the state process coincide, i.e., n = d, and

σ(t, x)σ>(t, x) ≥
1
C
I, ∀(t, x) ∈ [0,T ] × Rd.

Our intention is to evaluate risk of a terminal cost generated by the forward process (5.23):

(5.24) ρ0,T
[
Φ(XT )

]
,

where Φ ∈ CL(Rn) is bounded, and
{
ρs,t

}
0≤s≤t≤T is a dynamic risk measure consistent with

the filtration {Ft}t∈[0,T ]. We refer the reader to [59] for a comprehensive discussion on risk

measurement and filtration-consistent evaluations.

As discussed in Chapter 2, a special role in the dynamic risk theory is played by g-evaluations

which are defined by one-dimensional backward stochastic differential equations of the follow-

ing form:

(5.25) −dYt = g(t,Yt,Zt) dt − Zt dWt, YT = Φ(XT ), t ∈ [0,T ],
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with ρg
t,T

[
Φ(XT )] defined to be equal to Yt. The driver g is jointly Lipschitz in (y, z), and the

process g(·, 0, 0) bounded.

The evaluation of risk is equivalent to the solution of a decoupled forward–backward system

of stochastic differential equations (5.23)–(5.25). An important virtue of this system is its

Markov property:

(5.26) ρt,T
[
Φ(XT )

]
= v(t, Xt),

where v : [0,T ] × Rn → R. We have

(5.27) v(t, x) = ρx
t,T

[
Φ(Xt,x

T )
]
, (t, x) ∈ [0,T ] × Rn,

where {Xt,x
s } is the solution of the system (5.23) restarted at time t from state x:

(5.28) dXt,x
s = b(s, Xt,x

s ) ds + σ(s, Xt,x
s ) dWs, s ∈ [t,T ], Xt,x

t = x,

and ρx
t,T

[
Φ(Xt,x

T )
]

is the (deterministic) value of Y t,x
t in the backward equation (5.25) with ter-

minal condition Φ(Xt,x
T ).

Numerical methods for solving forward equations are very well understood (see, e.g., [39]).

We focus, therefore, on the backward equation (5.25). So far, a limited number of results are

available for this purpose. The most prominent is the Euler method with functional regression

(see, e.g., [20, 10, 76]). Our intention is to show that for drivers satisfying additional coherence

conditions, a much more effective method can be developed, which exploits time-consistency,

duality theory for risk measures, and the maximum principle in stochastic control.

5.3.2 Stochastic Maximum Principle

In this section, we decipher the optimality conditions of the stochastic control problem (2.39)–

(2.40). Since only the process {Γt,s}s∈[t,T ] is controlled, the analysis is rather standard. For

completeness, we repeat some important steps here.

Suppose µ̂ is the optimal control; then, for any µ ∈ A and 0 ≤ α ≤ 1, we can form a

perturbed control function

µα = µ̂ + α(µ − µ̂).
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It is still an element of A, due to the convexity of the sets As. The processes Γ̂, Γ and Γα are

the state processes under the controls µ̂, µ, and µα, respectively.

We linearize the state equation (2.40) about Γ̂ to get, for s ∈ [t,T ],

dηµs =
[
µ̂sη

µ
s + Γ̂t,s(µs − µ̂s)

]
dWs, η

µ
t = 0.(5.29)

It is evident that this equation has a unique strong solution. Denote

hαs =
1
α

[
Γαt,s − Γ̂t,s

]
− η

µ
s , s ∈ [0,T ].

The following result justifies the usefulness of the linearized equation (5.29).

Lemma 5.3.2.

lim
α→0

sup
0≤s≤T

‖hαs ‖
2 = 0.(5.30)

Proof. We first prove that

(5.31) lim
α→0

sup
t≤s≤T

‖Γαt,s − Γ̂t,s‖
2 = 0.

We have

(5.32) d
(
Γαt,s − Γ̂t,s

)
=

(
µαsΓ

α
t,s − µ̂sΓ̂t,s

)
dWs =

(
(µαs − µ̂s)Γ̂t,s + µαs (Γαt,s − Γ̂t,s)

)
dWs.

By Itô isometry,

‖Γαt,r − Γ̂t,r‖
2 =

∫ r

t
‖(µαs − µ̂s)Γ̂t,s + µαs (Γαt,s − Γ̂t,s)‖2 ds

≤ 2
∫ r

t
‖(µαs − µ̂s)Γ̂t,s‖

2 ds + 2
∫ r

t
‖µαs (Γαt,s − Γ̂t,s)‖2 ds

≤ 2
∫ r

t
‖(µαs − µ̂s)Γ̂t,s‖

2 ds + K
∫ r

t
‖Γαt,s − Γ̂t,s‖

2 ds,

where K is a constant. Since the first integral on the right hand side converges to 0, as α → 0,

the Gronwall inequality yields (5.31).

We can now prove (5.30). Combining (5.32) and (5.29), we obtain the stochastic differential

equation for hα:

dhαs =

{ 1
α

[
(µ̂s + α(µs − µ̂s))Γαt,s − µ̂sΓ̂t,s

]
− µ̂sη

µ
s − Γ̂t,s(µs − µ̂s)

}
dWs

=

{ 1
α
µ̂s

[
Γαt,s − Γ̂t,s

]
+ (µs − µ̂s)

[
Γαt,s − Γ̂t,s

]
− µ̂sη

µ
s

}
dWs

=

{
µ̂shαs + (µs − µ̂s)

[
Γαt,s − Γ̂t,s

]}
dWs.



62

Since the processes {µ̂s} and {µs} are bounded, Itô isometry yields again

‖hαr ‖
2 ≤ K

∫ r

t
‖hαs ‖

2 ds + K
∫ r

t
‖Γαt,s − Γ̂t,s‖

2 ds,

where K is constant. By the Gronwall inequality, using (5.31), we get the desired result. �

The convergence result above directly leads to the following variational inequality.

Lemma 5.3.3. For any µ ∈ A we have

E
[
ξTη

µ
T
]
≤ 0.(5.33)

Proof. Since µ̂ is the optimal control,

E
[
ξT

(
Γαt,T − Γ̂t,T

) ]
≤ 0.

Lemma 5.3.2 leads to

lim
α→0
E
[
ξT

1
α

(
Γαt,T − Γ̂t,T

)]
= E

[
ξTη

µ
T
]
≤ 0,

as required. �

We now express the expected value in (5.33) as an integral, to obtain a pointwise varia-

tional inequality (the maximum principle). To this end, we introduce the following backward

stochastic differential equation (the adjoint equation):

(5.34) dps = −ksµ̂s ds + ks dWs, pT = ξT , s ∈ [t,T ],

with ξT = Φ
(
Xt,x

T
)
. By construction, E

[
ξTη

µ
T
]

= E
[

p̂Tη
µ
T
]
. Applying the Itô formula to the

product process psη
µ
s , we obtain

d(psη
µ
s ) =

(
ksη

µ
s + p̂s

[
µ̂sη

µ
s + Γ̂t,s(µs − µ̂s)

])
dWs + ksΓ̂t,s(µs − µ̂s) ds.

If follows that

(5.35) E
[
ξTη

µ
T
]

= E
[ ∫ T

t
ksΓ̂t,s(µs − µ̂s)ds

]
.

We can summarize our derivations in the following version of the maximum principle. We

define the Hamiltonian H : R × Rn × Rn → R:

H(γ, ν, κ) = kγ · ν.
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Theorem 5.3.4. For almost all s ∈ [t,T ], with probability 1,

H(Γ̂t,s, µ̂s, ks) = max
ν∈As

H(Γ̂t,s, ν, ks).

Proof. For any µ ∈ A, we define the set

G = { (ω, s) ∈ Ω × [t,T ] : ksΓ̂t,s(µs − µ̂s) > 0 }.

We construct a new control µ∗ ∈ A:

µ∗s =


µs, (ω, s) ∈ G,

µ̂s, otherwise.

The measurability and adaptedness of µ∗ can be easily verified. It follows from (5.33) and

(5.35) that

E
[ ∫ T

t
ksΓ̂t,s(µ∗s − µ̂s)ds

]
≤ 0.

By the construction of µ∗, "
G

ksΓ̂t,s(µ∗s − µ̂s) ds P(dω) ≤ 0.

Since the integrand is positive on G, the product measure of G must be zero. �

5.3.3 Regularity of the Integrand in the Adjoint Equation

We also make a stronger assumption about the drift and diffusion terms of the forward system,

and about the terminal cost function.

Assumption 5.3.5. The functions b, σ,Φ ∈ C2
b([0,T ] × Rn), and

|σ(s, x) − σ(t, x)| ≤ C|s − t|
1
2

for all s, t ∈ [0,T ] and all x ∈ Rn.

Consider the forward–backward system (5.28) and (5.34). The key to our further estimates

is the following regularity result about the integrand {kt} in the adjoint equation (5.34).

Lemma 5.3.6. A constant C exists, such that for all 0 ≤ t < s ≤ T, and all x ∈ Rn,

(5.36) ‖ks − kt‖ ≤ C|s − t|
1
2 .
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Proof. The quasilinear parabolic partial differential equation corresponding to the forward–

backward system (5.28)–(5.34) has the following form (see, e.g. [50, sec. 8.2]),

(5.37) ut(t, x) + ux(t, x)b(t, x) +
1
2

tr
(
uxx(t, x)σ(t, x)σT (t, x)

)
+ ux(t, x)σ(t, x)µ̂t = 0,

with the boundary condition u(T, x) ≡ Φ(x). Due to the linearity of the driver of (5.34), the

terms with ux can be collapsed. Then the equation (5.37) is the Feynman-Kac equation for

(5.38) u(s, X̃t,x
s ) = E

[
Φ
(
X̃t,x

T
)∣∣∣Fs

]
, s ∈ [t,T ],

where

dX̃t,x
s =

[
b(s, X̃t,x

s ) + σ(s, X̃t,x
s )µ̂s

]
ds + σ(s, X̃t,x

s ) dWs, s ∈ [t,T ], X̃t,x
s = x.

Ma and Yong [50] consider it on page 195 in formula (1.12). Under Assumption 5.3.5, the

equation (5.37) has a classical solution u(·, ·), and then the process

(5.39) ks = ux(s, X̃t,x
s )σ(s, X̃t,x

s ), s ∈ [t,T ],

is the solution of the adjoint equation (5.34). By [50, Prop. 8.1.1], a process H ∈ H2,n×n[t,T ]

exists, such that the process Gs = ux(s, X̃t,x
s ) satisfies the following n-dimensional BSDE:

(5.40) Gt = Φx(X̃t,x
T ) +

∫ T

t

([
bx(s, X̃t,x

s ) +σx(s, X̃t,x
s )µ̂s

]
Gs +σx(s, X̃t,x

s )Hs
)

ds−
∫ T

t
Hs dWs.

We obtain the following estimate:

(5.41)

‖ks − kt‖ = ‖ux(s, X̃t,x
s )σ(s, X̃t,x

s ) − ux(t, x)σ(t, x)‖

≤ ‖ux(s, X̃t,x
s )σ(s, X̃t,x

s ) − ux(s, X̃t,x
s )σ(t, x) + ux(s, X̃t,x

s )σ(t, x) − ux(t, x)σ(t, x)‖

≤ ‖ux(s, X̃t,x
s )‖ ‖σ(s, X̃t,x

s ) − σ(t, x)‖ + ‖σ(t, x)‖ ‖Gs −Gt‖.

The first term on the right hand side of (5.41) can be bounded with the help of Assump-

tion 5.3.5:

‖σ(s, X̃t,x
s ) − σ(t, x)‖ ≤ ‖σ(s, X̃t,x

s ) − σ(s, x)‖ + ‖σ(s, x) − σ(t, x)‖

≤ C1|s − t|
1
2 + C2‖X̃s − x‖ ≤ C3|s − t|

1
2 ,

where C1, C2, and C3 are some universal constants. It follows from (5.40) that

Gr −Gt = −

∫ r

t

([
bx(s, X̃s) + σx(s, X̃s)µ̂s

]
Gs + σx(s, X̃s)Hs

)
ds +

∫ r

t
Hs dWs.
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Therefore, the second term on the right hand side of (5.41) can be bounded as ‖Gs − Gt‖
2 ≤

C4|s − t|. Integrating these estimates into (5.41), we obtain (5.36) with a universal constant

C. �

5.3.4 Error Estimates for Constant Controls on Small Intervals

To reduce an infinite dimensional control problem to a finite dimensional vector optimization,

we partition the interval [0,T ] into N short pieces of length ∆ = T/N, and develop a scheme

for evaluating the risk measure (5.24) by using constant dual controls on each piece. We denote

ti = i∆, for i = 0, 1, . . . ,N.

For simplicity, in addition to Assumption 2.2.11, we assume that the driver g does not

depend on time, and thus all sets At = ∂g(0) are the same. We denote them with the symbol A;

as we shall see later on this is not a major restriction.

If the system’s state at time ti is x, then the value of the risk measure (5.27) is then the

optimal value of problem (2.39). By dynamic programming,

v(ti, x) = ρx
ti,ti+1

[
v
(
ti+1, X

ti,x
ti+1

)]
.

The risk measure ρx
ti,ti+1

[ · ] is defined by problem (2.39), with terminal time ti+1 and the function

Φ(·) replaced by v(ti+1, · ). Equivalently, it is equal to Y ti,x
ti , in the corresponding forward–

backward system on the interval [ti, ti+1]:

dXti,x
s = b(s, Xti,x

s ) ds + σ(s, Xti,x
s ) dWs, Xti,x

ti = x,(5.42)

−dY ti,x
s = g(Zti,x

s ) ds − Zti,x
s dWs, Y ti,x

ti+1
= v

(
ti+1, X

ti,x
ti+1

)
.(5.43)

Under Assumption 5.3.5, the function v(·, ·) is the classical solution of the associated Hamilton–

Jacobi–Bellman equation:

(5.44) vt(t, x) + vx(t, x)b(t, x) +
1
2

tr
(
vxx(t, x)σ(t, x)σT (t, x)

)
+ g

(
vx(t, x)σ(t, x)

)
= 0,

with the terminal condition v(T, x) = Φ(x).

Suppose we use a constant control in the interval [ti, ti+1]:

µs := µ̂ti = arg max
ν∈A

ktiν, ∀s ∈ [ti, ti+1],(5.45)
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where (p, k) solve the adjoint equation corresponding to (5.34):

(5.46) dps = −ksµ̂s ds + ks dWs, s ∈ [ti, ti+1], pti+1 = v
(
ti+1, X

ti,x
ti+1

)
.

We still use Γ̂ to denote the state evolution under the optimal control, while Γ is the process

under control µ defined in (5.45). It is well-known that the value function v(·, ·) of the system

(5.42)–(5.43) is in C2
b([0,T ] × Rn); see, for example, [76, Thm. 2.4.1]. Therefore, the bounds

developed in section 5.3.3 remain valid for the processes (p, k) in (5.46).

Our objective is to show that a constant C exists, independent of x, N, and i, such that the

approximation error on the ith interval can be bounded as follows:

(5.47) 0 ≤ E
[
v
(
ti+1, X

ti,x
ti+1

)(
Γ̂ti,ti+1 − Γti,ti+1

)]
≤ C∆

3
2 .

The fact that we do not know kti will not be essential; later, we shall generate even better

constant controls by discrete-time dynamic programming.

We can now derive some useful estimates for the constant control function (5.45).

Lemma 5.3.7. A constant C exists, such that for all x, N and i

E
[
v
(
ti+1, X

ti,x
ti+1

) ∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
≤ C∆

3
2 .(5.48)

Proof. From (5.46) we get:

(5.49) v
(
ti+1, X

ti,x
ti+1

)
= pti −

∫ ti+1

ti
ksµ̂s ds +

∫ ti+1

ti
ks dWs.

Then the left hand side of (5.48) can be written as follows:

(5.50)

E
[(

pti −

∫ ti+1

ti
ktµ̂t dt +

∫ ti+1

ti
kt dWt

) ∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
= −E

[ ∫ ti+1

ti
ktµ̂t dt

∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
+ E

[ ∫ ti+1

ti
kt dWt

∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
.

The first term on the right hand side of (5.50) can be bounded by the Cauchy-Schwarz inequality

and the Itô isometry:

−E
[ ∫ ti+1

ti
ktµ̂t dt

∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
≤

(
E
[( ∫ ti+1

ti
ksµ̂s ds

)2]) 1
2
(
E
[( ∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

)2]) 1
2

≤ C1∆

( ∫ ti+1

ti
E
[
(µ̂s − µs)2Γ̂2

ti,s

]
ds

) 1
2
≤ C1C2∆

3
2 ,
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where C1 and C2 are some constants. The second term on the right hand side of (5.50) can be

evaluated as follows:

E
[ ∫ ti+1

ti
kt dWt

∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
= E

[ ∫ ti+1

ti
ks(µ̂s − µs)Γ̂ti,s ds

]
= E

[ ∫ ti+1

ti
(ksµ̂sΓ̂ti,s − kti µ̂ti) ds

]
+ E

[( ∫ ti+1

ti

(
kti − ksΓ̂s

)
µ̂ti ds

]
= E

[( ∫ ti+1

ti

(
σA(ksΓ̂ti,s) − σA(kti)

)
ds

]
+ E

[( ∫ ti+1

ti

(
kti − ksΓ̂ti,s

)
µ̂ti ds

]
.

Here, σA(z) = maxµ∈A〈z, µ〉 is the support function of the set A.

By Lemma 2.2.16, a constant C3 exists, such that ‖Γ̂ti,s − 1‖2 ≤ C3|s − ti|. Since the support

function is Lipschitz continuous, we can write the following estimate (again, C4 is a sufficiently

large constant)

E
[ ∫ ti+1

ti
kt dWt

∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
≤ C4

∫ ti+1

ti
E
[
|ksΓ̂ti,s − kti |

]
ds ≤ C4

∫ ti+1

ti
E
[
|ks(Γ̂ti,s − 1)| + |ks − kti |

]
ds

≤ C4

(∫ ti+1

ti
‖Γ̂ti,s − 1‖2 ds

) 1
2
(∫ ti+1

ti
‖ks‖

2 ds
) 1

2

+ C4

(∫ ti+1

ti
‖ks − kti‖

2 ds
) 1

2

≤ C∆
3
2 ,

where C is a sufficiently large constant. In the last step we used Lemma 5.3.6. �

We also have the estimate below:

Lemma 5.3.8. A constant C exists, such that for all x, N, and i

E
[
v
(
ti+1, X

ti,x
ti+1

) ∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]
≤ C∆

3
2 .(5.51)

Proof. We proceed as in the proof of the previous lemma. We use (5.49) and express the left

hand side of (5.51) as follows:

(5.52)

E
[
v
(
ti+1, X

ti,x
ti+1

) ∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]
= −E

[ ∫ ti+1

ti
ktµ̂t dt

∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]
+ E

[ ∫ ti+1

ti
kt dWt

∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]
.
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The first term on the right hand side of (5.52) can be dealt with by the Cauchy-Schwarz in-

equality and Itô isometry, exactly as before:∣∣∣∣∣∣E[
∫ ti+1

ti
ksµ̂s ds

∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]∣∣∣∣∣∣
≤

(
E
[( ∫ ti+1

ti
ksµ̂s ds

)2]) 1
2
(∫ ti+1

ti
E
[
(Γ̂ti,s − Γti,s)

2|µs|
2] ds

) 1
2

≤ C1∆
3
2 .

To estimate the second term, consider two controlled state processes:

Γ̂ti,t = 1 +

∫ t

ti
µ̂sΓ̂ti,s dWs,

Γti,t = 1 +

∫ t

ti
µsΓti,s dWs.

Taking the difference yields,

(5.53) Γ̂ti,t − Γti,t =

∫ t

ti
(µ̂s − µs)Γ̂ti,s dWs +

∫ t

ti
(Γ̂ti,s − Γti,s)µs dWs.

By Itô isometry,

E
[
(Γ̂ti,t − Γti,t)

2] ≤ C2|t − ti|.

Thus, we can write the bound:∣∣∣∣∣∣E[
∫ ti+1

ti
kt dWt

∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]∣∣∣∣∣∣
=

∣∣∣∣∣∣E[
∫ ti+1

ti
ks(Γ̂ti,s − Γti,s)µs ds

]∣∣∣∣∣∣
≤ C1

(∫ ti+1

ti
E
[
|ks|

2] ds
) 1

2
(∫ ti+1

ti
E
[
(Γ̂ti,s − Γti,s)

2] ds
) 1

2

≤ C∆
3
2 ,

where C is a sufficiently large constant. �

We can now compare the value of the functional (2.39) with the value achieved by a constant

control µ.

Theorem 5.3.9. Suppose Assumptions 5.3.1, 2.2.11, and 5.3.5 are satisfied. Then a constant C

exists, independent of x, N and i, such that inequality (5.47) holds.
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Proof. Using (5.53), we obtain

E
[
v
(
ti+1, X

ti,x
ti+1

)(
Γ̂ti,ti+1 − Γti,ti+1

)]
= E

[
v
(
ti+1, X

ti,x
ti+1

) ∫ ti+1

ti
(µ̂s − µs)Γ̂ti,s dWs

]
+ E

[
v
(
ti+1, X

ti,x
ti+1

) ∫ ti+1

ti
(Γ̂ti,s − Γti,s)µs dWs

]
.

Combining the estimates from Lemmas 5.3.7 and 5.3.8, we obtain the postulated result. �

An even smaller error than (5.47) can be achieved by choosing the best constant control in

the interval [ti, ti+1]. For a constant µt ≡ ν, where ν ∈ A, the dual state equation (2.40) has a

closed-form solution, the exponential martingale:

Γti,t = exp
(
ν(Wt −Wti) −

t − ti
2
|ν|2

)
.

It follows that an O
(
∆

3
2
)

approximation of the risk measure can be obtained by solving the

following simple vector optimization problem:

(5.54) ρ̃x
ti,ti+1

[
v
(
ti+1, X

ti,x
ti+1

)]
:= max

ν∈A
E
[
v
(
ti+1, X

ti,x
ti+1

)
exp

(
ν(Wti+1 −Wti) −

∆

2
|ν|2

)]
.

Opposite to (5.45), we do not need to know kti to solve this problem.

By Theorem 5.3.9,

(5.55) v(ti, x) − ρ̃x
ti,ti+1

[
v
(
ti+1, X

ti,x
ti+1

)]
≤ C∆

3
2 .

By construction, the approximating measure of risk ρ̃x
ti,ti+1

[·] is coherent and satisfies all

properties (i)-(iii) of Theorem 2.2.12.

5.3.5 Discrete-Time Approximations by Dynamic Programming

The time-consistency of dynamic risk measure leads to the nested form below:

(5.56) ρ0,T
[
Φ(XT )

]
= ρt0,t1

[
ρt1,t2

[
. . . ρtN−2,tN−1

[
ρtN−1,tN

[
Φ(XT )

]]
. . .

]]
.

By using optimal constant dual controls on each interval [ti, ti+1), we may approximate this

composition by dynamic programming. For i = N we define ṽN(x) = Φ(x). Then, for i =

N − 1,N − 2, . . . , 0, and for x ∈ Rn, we restart the diffusion (5.23) from x at time ti as in (5.42).
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Having obtained Xti,x
ti+1

, we can calculate the approximate risk measure (5.54) on the interval

[ti, ti+1]:

(5.57) ṽi(x) = ρ̃x
ti,ti+1

[
ṽi+1

(
Xti,x

ti+1

)]
= max

ν∈A
E
[
ṽi+1

(
Xti,x

ti+1

)
exp

(
ν(Wti+1 −Wti) −

∆

2
|ν|2

)]
.

Theorem 5.3.10. Suppose Assumptions 5.3.1, 2.2.11, and 5.3.5 are satisfied. Then a constant

C exists, such that for all N and x we have:

(5.58) v(ti, x) − ṽi(x) ≤ C(N − i)∆
3
2 , i = 0, 1, . . . ,N.

In particular, v(0, x) − ṽ0(x) ≤ CT∆
1
2 .

Proof. The result follows by backward induction. It is obviously true for i = N. If it is true for

i + 1, we can easily verify it for i. By the translation property of ρ̃x
ti,ti+1

[ · ] and (5.55) we obtain:

v(ti, x) − ṽi(x) = v(ti, x) − ρ̃x
ti,ti+1

[
ṽi+1

(
Xti,x

ti+1

)]
≤ v(ti, x) − ρ̃x

ti,ti+1

[
v
(
ti+1, X

ti,x
ti+1

)]
+ C∆

3
2 ≤ C(N − i)∆

3
2 ,

as required. �

In practice, the forward process (5.28) is simulated in an approximate way, for example, by

Euler’s method:

(5.59) X̃ti,x
ti+1

= x + b(ti, x) ∆ + σ(ti, x) ∆W, ∆W ∼ N(0,
√

∆I).

It is well known that for small ∆, the error of this Euler scheme is O
(
∆

1
2
)
. Since X̃ti,x

ti+1
is a

normal random vector, streamlined calculation of the risk measure is possible. Denoting by N

a standard normal random vector with independent components, we can simplify the calculation

of the risk measure in (5.57) as follows:

(5.60) ṽi(x) ≈ max
ν∈A
E
[
ṽi+1

(
x + b(ti, x)∆ + σ(ti, x)N

)
exp

(
∆

1
2 νN −

∆

2
|ν|2

)]
.

Observe that the same normal random vector N is used in both terms of this expression.

Remark 5.3.11. Our earlier assumption of time-homogeneity of g is barely a restriction after

discretization, because g can be piecewise α-Hölder continuous between the grid points. As

long as the risk aversion does not change abruptly, the numerical method developed can be

easily adapted to the case of a time-dependent driver.
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5.4 Application to Financial Risk Management

5.4.1 Introduction and Motivation

After a credit crunch, the management of risk is an increasingly important function of any

financial institutions, e.g., major investment banks. The primary goal is to make sure to have

sufficient capital reserves against potential loss in the future. Such risk management is divided

into two stages: scenario generation and portfolio re-pricing.

Scenario generation refers to simulation of sample paths over a given time horizon. This

is also called the outer stage, where Monte Carlo simulation is usually performed to gener-

ate paths governed by stochastic differential equation. Repricing of a portfolio amounts to the

computation of the portfolio value at the risk time horizon, given a particular scenario of risk

factor. The portfolio can consist of derivative securities with nonlinear payoffs that, in con-

junction with financial models, require Monte Carlo simulation for this inner stage as well (see

figure 5.1). Thus, in real world application, the risk measurement requires calculation of a

two-level nested Monte Carlo simulation. Lastly, the risk evaluation is done by risk measure

ρ, a functional that maps future random exposure to a real number. Examples of risk measure

can be value at risk, conditional value at risk, probability of loss, e.t.c.. Such structure leads

to challenging computational task. Especially, the inner step simulation has to be done for

each scenarios generated in the first stage. Much researches have been devoted to address the

computation issue; to name a few, Gordy and Juneja [32], Lee and Glynn [45], Lesnevski et al

[46, 47] and Rockafellar and Uryasev [65].

To fix the notation, on the probability space (Ω,F ,P), let us consider the problem of mea-

suring the risk of a portfolio of assets at the risk horizon t = τ, while standing at time 0. We

denote the current wealth, i.e., net present value of portfolio, by F0 measurable random vari-

able X0(known quantity). At time τ, the value of the portfolio is then a Fτ-measurable random

variable Xτ. In almost all real world applications, we shall assume a probabilistic model for

the evolution of uncertainty between times 0 and τ. For example, a stochastic differential equa-

tion run in between is a qualified model. Suppose the outcome space Ω is a set of possible

future scenarios, each of which incorporates sufficient information so as to determine all assets

prices at the risk horizon. Then, in each scenario ω ∈ Ω, the portfolio has value Xτ(ω). The
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Figure 5.1: Two Stage Simulation

mark-to-market (MTM) loss of this portfolio at time τ in scenario ω̂ ∈ Ω is given by

L(ω̂) = X0 − Xτ(ω̂).(5.61)

The usual risk measurement is static in the sense that it evaluates the risk of exposure at risk

horizon only at current time 0. For instance, if we use the probability of loss model, the ap-

proximation of risk evaluation E[1{L≥c}] is simply

ρ[L] ≈
1
N

N∑
i=1

1{L(ωi)≥c},(5.62)

where N is the number of scenarios in the outer stage and c is certain pre-determined threshold.

However, such an evaluation can be only executed at the initial time; if one wants to check the

risk at the intermediate point of the risk horizon, the whole model has to be re-run. Given the

computational efforts of nested simulation, it can be very burdensome. In addition, repeated

simulations can cause inconsistency of risk evaluation, which is also undesired.

In our work, we use dynamic risk measure and its approximation algorithm proposed in

Theorem 5.56, to measure the risk associated with the portfolio dynamically. In this way, the

risk can be monitored continuously and consistently, in other words, for any time instant t

within the risk horizon, the evolution of risk can be traced.
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5.4.2 Example – Single Put Option

To better illustrate dynamic risk evaluation, let us consider a specific example of a portfolio

consisting of a long position in a single put vanilla option, which expires in T years and has

strike price K. The underlying stock, say ABC, follows the geometric Brownian motion with the

initial price S 0, mean µ and volatility σ, under real world probability measure P, its dynamics

is given by the following SDE:

dS t

S t
= bdt + σdWt, t ∈ [0,T ](5.63)

Here, Wt is P-Brownian motion. Let us also set the flat interest rate level as r; therefore, under

risk-neutral pricing framework, we have stock dynamics,

dS t

S t
= rdt + σdW̃t(5.64)

where W̃t is a Q-Brownian motion. With these specifications, the initial value of the put can be

easily calculated by plugging into the Black-Scholes (BS) formula. It yields

P(0, S 0) := BS(0, S 0, σ,K,T )

= S 0N(d+(T, S 0)) − KD(0,T )N(d−(T, S 0)),

where N(·) stands for the cumulative distribution function of normal distribution and

d+(τ, x) =
1

σ
√
τ

[
ln

x
K

+ (r +
1
2
σ2)τ

]
,

d−(τ, x) =
1

σ
√
τ

[
ln

x
K

+ (r −
1
2
σ2)τ

]
.

Let us fix a risk horizon τ, and denote the price of at the risk horizon as S τ(ω). Then, the

exposure (or, MTM) at time τ is the difference of the initial put price P(0, S 0) and the risk-

neutral price of the option at time τ, i.e.,

Φ(S τ(ω)) := P(0, S 0) − EQ
[
(S T − K)+

∣∣∣ S τ(ω)
]

(5.65)

Here, to get S τ(ω), we have to simulate the path of stock under real-world measure, i.e., ac-

cording to (5.63). Then, to compute the right hand side, we only need to work out the second

term; again, it can be computed analytically by Black-Scholes formula. It is well known that,
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in this case, the loss function Φ(·) is Lipschitz with respect to state. We are in the situation to

apply the dynamic risk measure,

ρ
g
t,τ

[
Φ(S τ)

]
:= yt, where yt = Φ(S τ) +

∫ τ

t
g(s,Zs)ds −

∫ τ

t
ZsdWs, t ∈ [0, τ],(5.66)

which enables us to view the risk at any time t before the risk horizon.

As for implementation details, instead of using Monte Carlo simulation, we use a tree for the

outer stage to generate the evolution of states. This is because, when evaluating risk, by using

our specific algorithm (5.15), we can reduce functional optimization to vector optimization.

However, since backward induction has to be implemented, the state space also needs to be

discretized, which makes tree structure appealing.

5.4.3 Numerical Experiments

We now present the numerical results based on the following data:

K = 95, T = 0.75, S 0 = 100, µ = 0.08, σ = 0.2, r = 0.03, τ = 0.2.

For risk evaluation, we specify the generator to be:

g(z) = γ‖max{zN , 0}‖p, N ∼ N(0, 1),

where the parameters γ > 0 and p ≥ 1 model risk aversion. The corresponding set of ambiguity

is then:

A = ∂g(0) = { l ∈ Rn
+ : |l|q ≤ γk },

with 1/p + 1/q = 1, and

k =


1√
2
(2m(2m − 1) · · · (m + 1))

1
2m , if p = 2m,

(2m
√

2πm!)
1

2m+1 , if p = 2m + 1.

Fix p = 2, at time 0, given Fτ-measurable loss Φ(·) in (5.65). Table 5.1 and Figure 5.2 summa-

rize the valuation when varying the step size and risk tolerance γ. We can observe convergence

of the numerical method, as the step size decreases, uniformly over the whole range of γ.

If we vary the underlying asset volatility, as well as strike price of the contract, we can

construct the risk surface. As Table 5.2 and Figure 5.3 show, the risk is plotted against different

combinations of volatility σ and strike price K.
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Table 5.1: Risk Valuation Convergence Table
step size γ = 0.1 γ = 0.3 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.0

0.4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.03407 0.23907 0.34080 0.54207 0.73957 0.93217
0.1 0.06371 0.37300 0.52628 0.82895 1.12492 1.41239

0.08 0.07086 0.40174 0.56573 0.88956 1.20628 1.51403
0.05 0.08261 0.44695 0.62757 0.98446 1.33392 1.67410
0.04 0.08687 0.46282 0.64924 1.01771 1.37878 1.73064
0.02 0.09622 0.49671 0.69544 1.08872 1.47500 1.85268
0.01 0.10165 0.51579 0.72141 1.12877 1.52971 1.92284

0.008 0.10287 0.51998 0.72712 1.13760 1.54184 1.93852
0.005 0.10485 0.52674 0.73632 1.15187 1.56152 1.96407
0.004 0.10557 0.52919 0.73965 1.15705 1.56869 1.97344
0.002 0.10720 0.53465 0.74709 1.16864 1.58483 1.99465
0.001 0.10822 0.53798 0.75163 1.17574 1.59479 2.00786

0.0008 0.10845 0.53876 0.75269 1.17740 1.59713 2.01099
0.0005 0.10886 0.54007 0.75447 1.18021 1.60109 2.01630
0.0004 0.10901 0.54057 0.75515 1.18127 1.60260 2.01833

Figure 5.2: Convergence Graph: low to high, from γ = 0.1 to γ = 1.0, the horizontal axis
stands for different number of steps while the vertical axis is the measurement of risk.

Table 5.2: Risk Surface Table
K, σ 0.1 0.3 0.5 0.6 0.7 0.8 0.9 1

70 -0.0002 -0.1479 -0.0901 0.0566 0.2612 0.5101 0.7918 1.0962
80 -0.0041 -0.0188 0.2444 0.4645 0.7290 1.0279 1.3517 1.6918
90 0.0737 0.3661 0.7508 1.0114 1.3099 1.6379 1.9869 2.3489

100 0.7941 1.0211 1.4004 1.6691 1.9782 2.3177 2.6780 3.0506
110 2.4089 1.8858 2.1561 2.4081 2.7100 3.0475 3.4087 3.7833
120 3.9179 2.8641 2.9802 3.2007 3.4842 3.8108 4.1655 4.5361
130 4.6752 3.8600 3.8387 4.0233 4.2831 4.5938 4.9376 5.3003
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Figure 5.3: The dependence of risk on the strike price and volatility.

As we can observe, if the stock ABC becomes volatile, the risk of the portfolio should

increase, because volatility implies uncertainty. Moreover, since the current stock price is 100,

as the strike price increases, the risk also goes up, which indicates being engaged in out of

money trade is riskier than at-the-money or in-the-money. Thus, the risk surface constructed

coincides with intuition, which validates the risk evaluation approximation.
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Chapter 6

Conclusion

In this thesis, we discussed optimal control of a dynamic system with risk-aversion. In partic-

ular, we investigated the diffusion setting, i.e., with dynamics given by a Markovian stochastic

differential equation. The challenges arise due to the non-linearity of the evaluation, which is

successfully overcome by adopting a backward stochastic differential equation driven by Brow-

nian motion. The special structure of a dynamic risk measure corresponds to a family of BSDE

with convex (or coherent, resp.) driver. The dynamic risk measure inherits all basic properties

from static risk measure that enables derivation of risk-averse dynamic programming equation

whose connection with Hamilton-Jacobi-Bellman (HJB) equation can also be obtained with an

extra term capturing the form and degree of risk aversion.

As in the case of optimal control under expectation, there are multiple approaches to find-

ing solution to the original problem. Our work focuses on the Markov-Chain Approximation

(MCA). We raise the issue that the integral regularization method proposed in N. Krylov[41]

cannot be adapted to our case for the non-linearity of risk-averse dynamic programming equa-

tion. Having realized Hamilton-Jacobi-Bellman equation is essential for the approximation

scheme, we extensively use the regularity of the PDE to put forward an ε-optimal control ap-

proximation. Essentially, we construct a piecewise constant Markov control that is ε-optimal.

In this case, we can make the original value function and one under ε-optimal control arbitrarily

close. Nevertheless, in this case, we lose track of the convergence rate.

Risk measure is a nonlinear operator, especially, in the continuous time setting, it amounts

to solving a BSDE. After discretization, the policy evaluation requires, on each interval, find-

ing solutions of a forward-backward stochastic differential equation system (FBSDEs). An

analytical approach is not feasible (otherwise, we would directly solving controlled FBSDE in

the first place); we aimed at an efficient numerical solution to FBDSE on each short interval.
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The classical algorithm developed by J. Zhang [76](among many others) is heavily based on

Malliavin calculus; it provides fast computation but loses the fundamental properties of being

monotonic and time-consistent when adapted to risk evaluation. We invented an approximation

through dual representation that is Malliavin calculus free, which converts risk evaluation to a

stochastic optimal control problem of special form. With the same idea as above, we replace

the functional type of Radon-Nikodym derivative by a real-valued vector; as a result, the opti-

mization problem is a simple Euclidean space optimization that can be solved by any non-linear

optimizer. After the replication to all sub-intervals, the whole policy evaluation can be solved

by successive backward induction. We also provide a useful application to financial risk man-

agement, where we measure the risk (exposure at risk horizon) of a financial derivative that is

marked to the market before maturity. The real world practice is to use a static risk measure,

e.g., value at risk, average value at risk. Since the nature of our evaluation is dynamic, it enables

us to trace the risk as time goes on. In addition, the controlled system developed allows us not

only to evaluate the risk but also provides advice to control risk.
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Notation

Here is the list of notations that are frequently used in this work:

• Et[ · ] := E[ · | Ft].

• Pm[t,T ]: the set of Rm-valued adapted processes on Ω × [t,T ].

• L2(Ω,Ft,P;Rm): the set ofRm-valuedFt-measurable random variables ξ such that ‖ξ‖2 :=

E[ |ξ|2 ] < ∞; for m = 1, we write it L2(Ω,F ,P).

• S2,m[t,T ]: the set of elements Y ∈ Pm[t,T ] such that ‖Y‖2
S2,m[t,T ] := E[ sup t≤s≤T |Ys|

2 ] <

∞; for m = 1, we write it S2[t,T ].

• H2,m[t,T ]: the set of elements Y ∈ Pm[t,T ], such that ‖Y‖2
H2,m[t,T ] := E

[ ∫ T
t |Ys|

2 ds
]
<

∞; for m = 1 we write itH2[t,T ].1

• M2[0,T ]: the product space defined asM2[0,T ] = S2[0,T ] ×H2[0,T ].

• Ci, j([t,T ] × Rm) the space of functions f : [t,T ] × Rm → R, which are i-th differen-

tiable with respect to the first argument and j-th differentiable with respect to the second

argument, with all these derivatives continuous with respect to both arguments.

• Ci, j
b ([t,T ] × Rm) the space of functions f ∈ Ci, j([t,T ] × Rm) with all derivatives bounded

and continuous with respect to both arguments.

• C∞(B): the space of functions f : B 7→ R that are infinitely continuously differentiable

with respect to all arguments and have compact support on B ⊂ Rn.

• CL(B): the space of Lipschitz continuous functions f : B→ R.

• For Borel measurable function w : [0,T ] × Rn, the seminorm
∥∥∥ w(t, x)

∥∥∥
2,1 is defined as

1When the norm is clear from the context, the subscripts are skipped.
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follows:

∥∥∥w
∥∥∥

2,1 = sup
(t,x)

∣∣∣w(t, x)
∣∣∣ + sup

(t,x)

∥∥∥Dxw(t, x)
∥∥∥ + sup

(t,x)

∥∥∥D2
xxw(t, x)

∥∥∥ + sup
(t,x)

∣∣∣∂tw(t, x)
∣∣∣

+ sup
(t,x),(s,y)

∥∥∥D2
xxw(t, x) −D2

xxw(s, y)
∥∥∥

|t − s| + |x − y|
+ sup

(t,x),(s,y)

∣∣∣∂tw(t, x) − ∂tw(s, y)
∣∣∣

|t − s| + |x − y|
.

In the formula above, we useDx andD2
xx to denote the gradient and the Hessian matrix,

and the supremum is always over (t, x), (s, y) ∈ [0,T − ε2] × Rn.
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[33] K. Itô. On stochastic integral equation. Proceedings of the Japan Academy, 22, 1946.
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