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ABSTRACT OF THE DISSERTATION

Some Applications of Algebraic Methods in

Combinatorial Geometry

by ABDUL BASIT

Dissertation Director: William Steiger

This dissertation explores problems in combinatorial geometry relating to incidences

and to applications of incidence problems in other areas of combinatorics. In recent

years, various tools from algebra have been applied to make significant progress on long-

standing combinatorial geometric problems. These breakthroughs have stimulated work

in developing additional algebraic tools and applying them to other problems. We study

two different flavors of incidence problems using algebraic techniques.

• Given a set of points P and a set of objects V, an incidence is defined to be a

point-object pair (p, v) ∈ P ×V such that p ∈ v, i.e., the point is contained in the

object. In Chapter 2, we introduce a new notion of degeneracy and give bounds

on the maximum number of point-plane and point-sphere incidences in R3 that

are non-degenerate under this notion.

• Given a set of points P, an ordinary line is defined to be a line incident to exactly

two points. In 1893, Sylvester posed the following question: “Prove that it is not

possible to arrange any finite number of real points so that a right line through

every two of them shall pass through a third, unless they all lie in the same right

line.” In other words, Sylvester asked if every finite point set in R2, not all on a
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line, determines an ordinary line. The question was resolved in the affirmative by

Gallai in 1944 and many others subsequently. For point sets in complex space,

Kelly’s theorem states that point sets in C3, not all on a plane, must determine an

ordinary line. In Chapter 3, we give bounds on the minimum number of ordinary

lines determined by sets of points in C3.

Lastly, we give some applications of incidence bounds to other combinatorial problems.

We study the k-most-frequent distances problem in R3. This generalizes the unit dis-

tance problem of Erdős, which asks for the maximum number of times a distance can

be realized among the
(
n
2

)
pairs of n given points. In the k-most-frequent distances

problem, we give a bound on the number of times a set of k distances can be realized

by a set of n points in R3. Next, we consider the sum product conjecture, first stated

by Erdős and Szemerédi in 1983. Informally, the conjecture states that a finite subset

of the reals can not have both additive and multiplicative structure at the same time.

We give new bounds for a more general version of this problem which considers subsets

of complex numbers.
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Chapter 1

Introduction

Combinatorial Geometry is a field bringing together ideas from geometry and combina-

torics. Loosely speaking, it deals with arrangements of geometric objects and involves

studying the combinatorial properties of such arrangements. Problems in the area in-

volve topics such as packing, covering, tiling, partitioning, decomposition, incidences,

and much more. While such problems have been studied for centuries by mathemati-

cians, the field gained much traction over the last century due to the work of Paul Erdős.

Problems in the area (many posed by Erdős) have stimulated beautiful mathematics,

and often, despite decades of work, have eluded resolution. When found, solutions to

these problems involve deep mathematics that have influenced different branches of

mathematics. This thesis presents results on an important subfield of combinatorial

geometry, referred to as incidence geometry.

Consider a set P of points and a set V of “objects” (for example, one might con-

sider lines, circles, cylinders, or tubes) in some vector space. An incidence is a pair

(p, v) ∈ P × V such that the point p is contained in the object v. The area of in-

cidence geometry deals with questions about the set of incidences. For example, some

celebrated results in the area, upon which this thesis builds, are the following:

Theorem 1.1 (The Szemerédi-Trotter Theorem [72]). Let P be a set of m points and

L a set of n lines, both in R2. Then the number of incidences between points of P

and lines of L, i.e., pairs (p, l) ∈ P × L such that p ∈ l, is O(n2/3m2/3 + n + m).

Furthermore, this bound is tight up to constant factors.

Theorem 1.2 (The Sylvester-Gallai Theorem [36]). Let P be a finite set of points in

R2 with the property that the line through any two points of P contains a third. Then

all points of P must lie on a single line.
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In mathematics, incidence theorems have been shown to have connections to prob-

lems in arithmetic combinatorics (e.g., see [31, 20]), combinatorial geometry (e.g.,

see [39, 44, 63]) and harmonic analysis (e.g., see [76]). In theoretical computer science,

incidence theorems are related to the structure of arithmetic circuits (e.g., see [47, 61]),

locally correctable codes (e.g., see [12, 29, 3]) and expanders and extractors (e.g., see

[19]).

In recent years, algebraic methods have been used to make progress on (and often

resolve) many outstanding problems in combinatorial geometry. This thesis presents

some results in incidence geometry based on these methods. In Chapter 2, we study

Szemerédi-Trotter type problems, i.e., problems seeking bounds on the maximum num-

ber of incidences. Chapter 3 deals with Sylvester-Gallai type problems, i.e., problems

considering the lines determined by a set of points. In Chapter 4, we give applications

of incidence theorems to some problems in geometry and combinatorics.

1.1 Szemerédi-Trotter Type Problems

Let P be a set of points and V be a set of objects. A large set of problems in combina-

torial geometry deal with counting the maximum number of incidences in P ×V, taken

over all possible pairs of sets P,V of a given size. Possibly the best known result of

this type is the Szemerédi-Trotter theorem (Theorem 1.1). It deals with the case when

the objects under consideration are lines in R2. In a recent work, Guth and Katz [39]

almost completely resolved (up to a factor of
√

log n) the long-standing planar distinct

distances problem of Erdős [34]. A key idea in their proof was reducing the problem to

a question about incidences between points and lines in R3. To bound the number of

these incidences, they introduced novel tools from algebraic geometry. The introduction

of this approach resulted in progress on several other combinatorial geometric problem

(e.g., see [44, 45, 64, 69, 77, 78]). In Chapter 2, we present yet another application of

these new algebraic techniques, by studying the maximum number of point-sphere and

point-plane incidences in three-dimensional Euclidean space.
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1.1.1 Non-degenerate sets of spheres

Given a set P of m points and a set S of n spheres, both in R3, we denote the number

of point-sphere incidences in P ×S as I(P,S). Consider a point set P with every point

contained in a circle c, and a set of spheres S with every sphere containing c. In this

case, every sphere of S is incident to every point of P, and we have I(P,S) = mn.

This led Agarwal et al. [1] to study non-degenerate spheres (based on the definition of

η-degenerate hyperplanes of Elekes and Tóth [32]). In their terminology, a sphere σ

is said to be η-degenerate with respect to P, for 0 < η < 1, if there exists a circle c

contained in σ with

|c ∩ P| ≥ η · |σ ∩ P|.

The above example, which led to I(P,S) = mn, cannot occur when the spheres of S are

η-non-degenerate, for any 0 < η < 1, which hints that the maximum value of I(P,S)

should be smaller in this case. Indeed, when S is a set of η-non-degenerate spheres,

Apfelbaum and Sharir [8] derived the bound

I(P,S) = O∗(n8/11m9/11 + nm1/2), (1.1)

where the O∗(·)-notation hides sub-polynomial factors, with a constant of proportion-

ality depending on η.

We present a different notion of degeneracy, which does not depend on the point set

P and is not defined on a single sphere, but rather on a set of spheres.

Definition 1.3. We say that a set S of n spheres is k-non-degenerate, for a constant

k, 1 < k < n, if there does not exist a circle that is contained in k spheres of S.

Notice that the above construction with I(P,S) = mn also does not apply to k-non-

degenerate sets of spheres. This new definition is a natural notion of non-degeneracy

(at least in the eyes of the authors), and is independent of the point set P. It also

has the advantage of being easy to analyze with the recent algebraic technique of par-

titioning polynomials. The algebraic techniques seem to work well in cases where the

incidence graph contains no copy of some constant-sized complete bipartite graph Ks,t.

Specifically, we prove the following theorem.
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Theorem 1.4. Let P be a set of m points and let S be a k-non-degenerate set of n

spheres, both in R3, for some 1 < k < n. Then for every ε > 0,

I(P,S) = O(m3/4+εn3/4k1/4 + n+mk),

where the constant of proportionality depends on ε.

By placing every point of P on a circle c and taking k−1 spheres that contain c, we

obtain Θ(mk) incidences. Thus, the term mk (and obviously also the term n) cannot

be removed from the bound.

The case of k = 3 was considered 25 years ago by Chung [23]. Specifically, Chung

proved that when S is a 3-non-degenerate set, then I(P,S) = O
(
m4/5n4/5 + nm1/2 +m

)
.

Recently, Zahl [77] presented an improved bound of O
(
m3/4n3/4 + n+m

)
for this case.

Notice that any set of unit spheres in R3 is 3-non-degenerate; this special case has also

been independently considered in [44]. Theorem 1.4 implies the same bound, up to the

mε factor, for any constant k. As far as we know, there are no previous results for

k > 3. We note that a direct extension of Zahl’s technique to cases where k > 3 would

imply much weaker bounds.

1.1.2 Non-degenerate sets of planes

We next consider incidences between points and planes in R3. Let P be a set of m

points and Π a set of n planes, both in R3. We denote the number of point-plane

incidences in P ×Π as I(P,Π).

Similarly as in the case of spheres, we want to avoid the existence of a line ` such

that every point in P is contained in `, and every plane of Π contains `, a situation

that would lead to I(P,Π) = mn. This has prompted the study of several types of

“non-degenerate” scenarios. Edelsbrunner, Guibas, and Sharir [30] derived the bound

O(m3/5−εn4/5+2ε + m + n logm), for any ε > 0, under the assumption that there are

no three collinear points in P. Late, Apfelbaum and Sharir [7] derived the bound of

O
(
m3/4n3/4 +m+ n

)
under the condition that the incidence graph does not contain

a copy of Kr,r for some fixed constant r ∈ N (this is a slight improvement on an
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earlier result by Brass and Knauer [21]). Elekes and Tóth [32] define a plane h to be

η-degenerate,1 for 0 < η < 1, if for any line ` contained in h

|` ∩ P| ≤ η · |h ∩ P|.

They established the bound Θ(m3/4n3/4 + mn1/2 + n) for the maximum number of

incidences between m points and n η-degenerate planes.

Definition 1.5. We say that a set Π of n planes is k-non-degenerate, for a constant

k, 1 < k < n, if there does not exist a line that is contained in k planes of Π.

Consider a set P of points, a set Π of planes, and a point p that is not incident

to any plane of Π, all in R3. The inversion transformation around p transforms every

plane of Π to a sphere, all incident to p, while preserving the number of incidences with

P (e.g., see [41, Chapter 37]). Moreover, if Π is a k-non-degenerate set, then so is the

resulting set of spheres. (Indeed, a circle not incident to p can be contained in at most

one of the image spheres, and a circle incident to p is the image of a line which can lie

in at most k − 1 planes of Π.) Combining this with Theorem 1.4 immediately implies

the following result.

Corollary 1.6. Let P be a set of m points and let Π be a k-non-degenerate set of n

planes, both in R3, for some 1 < k < n. Then for every ε > 0,

I(P,Π) = O(m3/4+εn3/4k1/4 + n+mk),

where the constant of proportionality depends on ε.

We prove the following improved bound in Section 2.2 (this bound is stronger than

the bound of Corollary 1.6 when k = O(n/m1/3); for larger values of k, both bounds

are dominated by the term mk and are thus equivalent).

Theorem 1.7. Let P be a set of m points and let Π be a k-non-degenerate set of n

planes, both in R3, for some 1 < k < n. Then for every ε > 0,

I(P,Π) = O
(
m4/5+εn3/5k2/5 + n+mk

)
,

1Notice the somewhat confusing change of notation. Similar to Agarwal et al. [1], we use the term
non-degenerate configurations, while Elekes and Tóth [32] use the term degenerate plane.
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where the constant of proportionality depends on ε.

The scenario described in Theorem 1.7 is dual to the problem of point-plane inci-

dences in R3, with no k points lying on a common line. The aforementioned work of

Edelsbrunner, Guibas, and Sharir [30] considers this problem for the special case of

k = 3. By using a point-plane duality argument (e.g., see [26, Chapter 8]), we obtain

the following generalization.

Corollary 1.8. Let P be a set of m points and let Π be a set of n planes, both in R3,

such that no k points of P are collinear. Then

I(P,Π) = O
(
n4/5+εm3/5k2/5 +m+ nk

)
.

1.1.3 Applications

We believe that, due to their natural definition, k-non-degenerate sets of spheres/planes

would have various applications. As an example, we present such an application in

Section 4.1, which is an extension of the three-dimensional unit distances problem,

in which one considers the k most frequent distances. Given a set P of points in

R2 and a set D of k distinct distances, we let g(P, D) denote the number of pairs

of points of P that span a distance in D. Akutsu, Tamaki, and Tokuyama [4] studied

gk(m) = max g(P, D), where the maximum is taken over all sets P of m points in R2 and

all sets D of k distinct distances. They derived the bound gk(m) = O(m10/7k5/7) ≈

O(m1.4286k0.7143). Solymosi, Tardos, and Tóth [70] established the bound gk(m) =

O(m1.4571k0.6286), which is an improvement when k > n1/3.

We consider the three-dimensional variant of this problem and denote its value as

fk(m). That is, given a set P of points in R3 and a set D of k distinct distances,

we denote by f(P, D) the number of pairs of points of P ⊂ R3 that span a distance

in D. We set fk(m) = max f(P, D), where the maximum is taken over all sets P

of m points in R3 and all sets D of k distinct distances. Currently, the best known

bound for the three-dimensional unit distances problem is f1(m) = O(m3/2) [44, 77].

By applying this bound independently for every distance in D, we obtain the trivial
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bound fk(m) = O(km3/2). In Section 4.1, we establish the following bound, which is

an improvement for k = Ω(m25/48+ε) ≈ Ω(m0.52).

Theorem 1.9. For any ε > 0, fk(m) = O(m236/149+εk125/149) ≈ O(m1.58k0.84).

1.2 Sylvester-Gallai Type Problems

The Sylvester-Gallai theorem (Theorem 1.2) is perhaps one of the best known result

in combinatorial geometry. The statement was conjectured by Sylvester in 1893 [71],

and the first published proof is by Melchior [55]. Later proofs were given by Gallai in

1944 [36] and others. There are now several different proofs of the theorem. We study

and improve upon a generalization of this theorem, referred to as Kelly’s theorem, to

the complex numbers.

Let V = {v1, v2, . . . , vn} be a set of n points in Cd. We denote by L(V) the set of

lines determined by points in V, and by Lr(V) (resp. L≥r(V)) the set of lines in L(V)

that contain exactly (resp. at least) r points. Let tr(V) denote the size of Lr(V).

Throughout the write-up we omit the argument V when the context makes it clear. We

refer to L2 as the set of ordinary lines, and L≥3 as the set of special lines.

Melchior [55] proved the following, using arguments based on the Euler characteristic

of R2.

Theorem 1.10 (Melchior’s inequality). Let V be a set of n points in R2 that are not

collinear. Then

t2(V) ≥ 3 +
∑
r≥4

(r − 3)tr(V).

Theorem 1.10 in fact proves something stronger than the Sylvester-Gallai theorem,

namely that there are at least three ordinary lines. A natural question to ask is how

many ordinary lines must a set of n points, not all on a line, determine. This led to

what is known as the Dirac-Motzkin conjecture.

Conjecture 1 (Dirac-Motzkin conjecture). For every n 6= 7, 13, the number of ordinary

lines determined by n noncollinear points in the plane is at least
⌈
n
2

⌉
.
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There were several results on this question (see [57, 49, 25]), before Green and Tao [37]

resolved it for large enough point sets.

Theorem 1.11 (Green and Tao [37]). Let V be a set of n points in R2, not all on a

line. Suppose that n ≥ n0 for a sufficiently large absolute constant n0. Then t2(V) ≥ n
2

for even n and t2(V) ≥
⌊
3n
4

⌋
for odd n.

A nice history of the problem is given in [37] and there are several survey articles on

the topic, see for example [18].

The Sylvester-Gallai theorem does not hold when the field R is replaced by C.

The well known Hesse configuration, realized by the nine inflection points of a non-

degenerate cubic, provides a counter example. A more general example is the following:

Example 1 (Fermat configuration). For any positive integer k ≥ 3, let V be inflection

points of the Fermat Curve Xk + Y k + Zk = 0 in PC2. Then V has n = 3k points, in

particular

V =
k⋃
i=1

{[1 : ωi : 0]} ∪ {[ωi : 0 : 1]} ∪ {[0 : 1 : ωi]},

where ω is a kth root of −1.

It is easy to check that V determines three lines containing k points each, while every

other line contains exactly three points. In particular, V determines no ordinary lines.2

In response to a question of Serre [62], Kelly [48] showed that when the points span

more than two complex dimensions, the point set must determine at least one ordinary

line.

Theorem 1.12 (Kelly’s theorem [48]). Let V be a set of n points in C3 that are not

contained in a (complex) plane. Then there exists an ordinary line determined by points

of V.

Kelly’s proof of Theorem 1.12 used a deep result of Hirzebruch [43] from algebraic ge-

ometry. More specifically, it used the following result, known as Hirzebruch’s inequality.

2While the Fermat configuration as stated lives in the projective plane, it can be made affine by any
projective transformation that moves a line with no points to the line at infinity.
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Theorem 1.13 (Hirzebruch’s inequality [43]). Let V be a set of n points in C2, such

that tn(V) = tn−1(V) = tn−2(V) = 0. Then

t2(V) +
3

4
t3(V) ≥ n+

∑
r≥5

(2r − 9)tr(V).

Theorem 1.13 requires that no line contains more than n− 2 points. Under a stronger

assumption, i.e., no line contains more than 2n/3 points, Bojanowski [17] obtained a

better lower bound.

Theorem 1.14 (Bojanowski [17]). Let V be a set of n points in C2, such that tr(V) = 0

for r > 2n/3. Then

t2(V) +
3

4
t3(V) ≥ n+

∑
r≥5

(
r2

4
− r)tr(V).

More elementary proofs of Theorem 1.12 were given in [33] and [29]. To the best of

our knowledge, no lower bound greater than one is known for the number of ordinary

lines determined by point sets spanning C3. Improving on the techniques of [29], we

make the first progress in this direction.

Theorem 1.15. Let V be a set of n ≥ 24 points in C3 not contained in a (complex)

plane. Then V determines at least 3
2n ordinary lines, unless n−1 points are on a plane

in which case there are at least n− 1 ordinary lines.

Clearly if n− 1 points are coplanar, it is possible to have only n− 1 ordinary lines.

In particular, let V consist of the Fermat Configuration, for some k ≥ 3, on a plane and

one point v not on the plane. Then V has 3k + 1 points, and the only ordinary lines

determined by V are lines that contain v, so there are exactly 3k ordinary lines. We are

not aware of any examples that achieve the 3
2n bound when at most n − 2 points are

contained in any plane. Using a similar argument, for point sets in R3, Theorems 1.11

and 1.15 give us the following easy corollary.

Corollary 1.16. Let V be a set of n points in R3 not contained in a plane. Suppose that

n ≥ n0 for a sufficiently large absolute constant n0. Then V determines at least 3
2n− 1

ordinary lines.
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When V is sufficiently non-degenerate, i.e., no plane contains too many points, we

are able to give a more refined bound in the spirit of Melchior’s and Hirzebruch’s

inequalities, taking into account the existence of lines with more than three points. In

particular, we show the following (the constant 1/2 in Theorem 1.17 is arbitrary and

can be replaced by any positive constant smaller than 1):

Theorem 1.17. There exists an absolute constant c > 0 and a positive integer n0 such

that the following holds. Let V be a set of n ≥ n0 points in C3 with at most 1
2n points

contained in any plane. Then

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).

We note that having at most a constant fraction of the points on any plane is

necessary in order to obtain a bound as in Theorem 1.17. Indeed, let V consist of

the Fermat Configuration for some k ≥ 3 on a plane and o(k) points not on the

plane. Then V has O(k) points and determines o(k2) ordinary lines. On the other

hand,
∑

r≥4 r
2tr(V) = Ω(k2).

Suppose that V consists of n− k points on a plane, and k points not on the plane.

There are at least n − k lines through each point not on the plane, at most k − 1 of

which could contain three or more points, i.e., V determines at least k(n−2k) ordinary

lines. Then if k = εn, 0 < ε < 1/2, V will have Ωε(n
2) ordinary lines, where the hidden

constant depends on ε. Therefore, the bound in Theorem 1.17 is only interesting when

no plane contains too many points.

Theorems 1.13 and 1.14 (which also give a bound in C3) only give a lower bound

on t2(V) + 3
4 t3(V), whereas both Theorems 1.15 and 1.17 give lower bounds on the

number of ordinary lines, i.e., t2(V). We also note that lines with four points do not

play any role in Theorems 1.13 and 1.14, where the summation starts at r = 5. This

is not the case for Theorem 1.17. As a consequence, we have that if a non-planar

configuration over C has many 4-rich lines, then it must have many ordinary lines.

Finally, when a point set V spans four or more dimensions in a sufficiently non-

degenerate manner, i.e., no three-dimensional affine subspace contains too many points,

we can show that there must be a quadratic number of ordinary lines.
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Theorem 1.18. There exists a positive integer n0 such that the following holds. Let V

be a set of n ≥ n0 points in C4 with at most 1
2n points contained in any three-

dimensional affine subspace. Then

t2(V) ≥ 1

16
n2.

Here, again, the constant 1/2 is arbitrary and can be replaced by any positive

constant less than 1. However, increasing this constant will shrink the constant in front

of n2. A quadratic lower bound may also be possible if at most 1
2n points are contained

in any two dimensional space, but we have no proof or counterexample.

Note that while we state Theorems 1.15 and 1.17 over C3 and Theorem 1.18 over C4,

the same bounds hold in higher dimensions as well since we may project a point set

in Cd, d > 4, onto a generic lower dimensional subspace, preserving the incidence

structures. Finally, although these theorems are stated over C, these results are also

new and interesting over R.

1.3 Sum-Product Estimates

Let F be a field, and A ⊂ F be a finite set. We define the sum set of A to be the set

A+A = {a+ b : a, b ∈ A}.

Similarly, we define the difference set, product set and ratio set respectively as

A−A = {a− b : a, b ∈ A}, AA = {ab : a, b ∈ A}, A/A = {a/b : a, b ∈ A}.

When A ⊂ R, the sum-product conjecture of Erdős and Szemerédi [35] states that, for

any ε > 0,

max{|AA|, |A+A|} = Ω(|A|2−ε).

The conjecture quantifies the idea that finite subsets of the reals can not have additive

and multiplicative structure simultaneously. The central theme of our result is based

on ideas introduced by Solymosi [68] in the proof of the following result.

Theorem 1.19 (Solymosi [68]). Let A ⊂ R be a finite set. Then

|A+A|2|AA| = Ω∗
(
|A|4

)
.
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As a consequence, we obtain

max{|AA|, |A+A|} = Ω∗
(
|A|4/3

)
.

Throughout this thesis, we use the O∗(·) and Ω∗ (·) notation to hide sub-polynomial

factors. By taking A to be an arithmetic progression, it is easy to see that the bound

in Theorem 1.19 can not be improved. Recently, Konyagin and Shkredov [51, 52] were

able to obtain a better bound on the sum-product problem by studying what happens

when the bound in Theorem 1.19 is close to being tight.

Theorem 1.20 (Konyagin, Shkredov [52]). Let A ⊂ R be a finite set. Then, for

any c < 5/9813,

max{|AA|, |A+A|} = Ω∗
(
|A|4/3+c

)
.

We refer the reader to the excellent exposition of the proof of Theorem 1.20 by Shef-

fer [65].

In a similar vein to the sum-product problem, it is expected that a set defined by a

combination of additive and multiplicative operations on a given set A should be large

compared to A. One such example is the following result of Balog and Roche-Newton.

Theorem 1.21 (Balog, Roche-Newton [11]). Let A ⊂ R be a finite set. Then∣∣∣∣A+A

A+A

∣∣∣∣ ≥ 2|A|2 − 1.

Later work by Roche-Newton [59] and then Lund [53] gave the following improve-

ment on Theorem 1.21.

Theorem 1.22 (Lund [53]). Let A ⊂ R be a finite set. Then∣∣∣∣A+A

A+A

∣∣∣∣ = Ω∗

(
|A|2+1/4

|A/A|1/8

)
.

Konyagin and Rudnev [50] used an elegant argument to show that Theorem 1.19

also holds when A is a subset of C. We extend their work and show that Theo-

rems 1.20 and 1.22 also hold over the complex numbers. As a consequence, we obtain

the following theorems.
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Theorem 1.23. Let A ⊂ C be a finite set. Then, for any c < 5/9813,

max{|AA|, |A+A|} = Ω∗
(
|A|4/3+c

)
.

Theorem 1.24. Let A ⊂ C be a finite set. Then, for every ε > 0,∣∣∣∣A+A

A+A

∣∣∣∣ = Ω∗

(
|A|2+1/4−ε

|A/A|1/8

)
,

where the constant of proportionality depends on ε.
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Chapter 2

Incidences with Non-Degenerate Sets

A common approach to bounding the number of incidences over R is the following. One

first proves a weak bound using Cauchy-Schwarz or Hölder’s inequality. Then, one can

partition the space into well-behaved cells, i.e., in such a way that the objects being

studied do not interact with too many cells. The weak bound is then applied to each of

these cells to obtain the final bound. One way to partition the space is the use the notion

of cuttings (e.g., see [54, Chapter 4]). In their solution of the Erdős distinct distances

problem, Guth and Katz introduced a new method to partition space using polynomials.

This method is now referred to as the polynomial partitioning method. This method

appears to be better than cuttings in terms of better bounds on complexity and handing

of lower-dimensional objects.

2.1 Algebraic Preliminaries

Consider a set P of m points in Rd. Given a polynomial f ∈ R[x1, . . . , xd], we define

the zero set of f to be Z(f) = {p ∈ Rd | f(p) = 0}. For 1 < r ≤ m, we say that

f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for P if no connected component

(referred to as cell cell) of Rd \ Z(f) contains more than m/r points of P. Notice that

there is no restriction on the number of points of P that lie in Z(f). The following

result is due to Guth and Katz [39].

Theorem 2.1. (Polynomial partitioning [39]) Let P be a set of m points in Rd,

for some fixed constant dimension d. Then for every 1 < r ≤ m, there exists an r-

partitioning polynomial f ∈ R[x1, . . . , xd] of degree D = O(r1/d), where the implicit

constant depend on the dimension d.
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To use the above theorem effectively, we need to bound the number of cells in the

resulting partition. For this, we rely on the following theorem (see also [5, 45]).

Theorem 2.2 (Warren’s Theorem [75]). For a polynomial f ∈ R[x1, . . . , xd] of degree

D, the number of connected components of Rd \ Z(f) is O
(
(2D)d

)
.

As a consequence, for an r-partitioning polynomial as defined above, the number

of connected components in the resulting partition is O(r) (the degree is O(r1/d) and

the dimension d is a fixed constant). In this work, we are only interested in the case

d = 3. When using a partitioning polynomial for an incidence problem, usually the main

difficulty in the analysis is bounding the number of incidences with points contained

in the zero set Z(f) of the partitioning polynomial. One technique for overcoming this

difficulty is presented in the following theorem, which is proved in [77] and in [44]. Our

formulation follows the one presented in [44].

Theorem 2.3. (Second partitioning polynomial [44, 77]) Given an irreducible

trivariate polynomial f of degree D, a parameter E ≥ D, and a finite point set P in

R3, there is a polynomial g of degree at most E, co-prime with f , which partitions P

into subsets Q0 ⊂ Z(g) and Q1, . . . , Qt, for t = Θ(DE2), so that each Qi, i = 1, . . . , t,

lies in a distinct connected component of R3 \ Z(g), and |Qi| ≤ |Q|/t.

This theorem provides us with a second partitioning polynomial that can be used

to partition the points contained in the zero set of the first partitioning polynomial. It

is possible that some of the points will be contained in both zero sets. However, since

the two polynomials have no common factors, their intersection is a one-dimensional

variety, making the analysis easier (though by no means trivial).

In order to study the interaction of the spheres and planes with the partitioning

polynomial, we will rely on several results from algebraic geometry. The following

result gives bounds on the number of connected components of an algebraic variety.

Theorem 2.4 (The Milnor-Thom Theorem [56, 73] (see also [5])). Let V be a real

variety in Rd, that is the solution set of real polynomial equations

fi(x1, . . . , xd) = 0, (i = 1, . . . ,m),
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and suppose that the degree of each polynomial fi is at most D. Then the number of

connected components of V is at most D(2D − 1)d−1.

We also need the following basic properties of the zero set of polynomials in the

plane.

Theorem 2.5 (Bézout’s theorem (e.g., see [45])). Let f, g be two polynomials in R[x1, x2]

of degrees Df and Dg respectively, with no common factors. Then Z(f) and Z(g) have

at most DfDg points in common, i.e., |Z(f) ∩ Z(g)| ≤ DfDg.

A detailed explanation of Theorem 2.5, though focusing on the complex plane,

can be found in [24, Section 8.7]. The following theorem, similar to Theorem 2.4, gives

bounds on the number of connected components of a plane curve. The following version

is from [45].

Theorem 2.6 (Harnack’s curve theorem [40]). Let f ∈ R[x, y] be a bivariate polynomial

of degree D. Then the number of (arcwise) connected components of Z(f) is at most

1 +
(
D−1
2

)
. The bound is tight in the worst case.

2.2 Proving the Incidence Bounds

In this section we prove our incidence bounds, i.e., Theorems 1.4 and 1.7. Since the

proofs are very similar, we present the full details of the first proof and skip several

identical arguments in the second one. Several algebraic issues that are related to inter-

sections of varieties are deferred to Section 2.3. The proofs rely on the so-called “second

partitioning polynomial technique,” presented in [77] and [44]. We use constant-degree

partitioning polynomials, as in [64, 69]. As far as we know, this is the first combina-

tion of these two techniques (i.e., using a second partitioning polynomial where both

polynomials are constant-degree).

2.2.1 Proof of Theorem 1.4

We start by deriving a weaker bound, which will then be used in the derivation of the

sharper bound of Theorem 1.4.
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Lemma 2.7. Let P be a set of m points and S be a k-non-degenerate set of n spheres,

both in R3, for some 1 < k < n. Then

I(P,S) ≤ mn2/3k1/3 + 2n.

Proof. The proof is a variant of the standard proof of the Kővari–Sós–Túran theorem

in extremal graph theory (e.g., see [54, Section 4.5]). We double-count the number Q of

quadruples (a, b, c, σ), where σ ∈ S, a, b, c ∈ P ∩σ and a, b, c are distinct. On one hand,

there are
(
m
3

)
triples of points of P, and every sphere that contains all three points

must contain the unique circle that they span. Since any such circle can be contained

in at most k − 1 spheres of S, we have

Q ≤
(
m

3

)
(k − 1) <

1

6
m3k. (2.1)

On the other hand, for each σ ∈ S, put dσ = |P ∩σ|, so that I(P,S) =
∑

σ∈S dσ. Then,

by Hölder’s inequality, we have

Q =
∑
σ∈S

(
dσ
3

)
≥ 1

6

∑
σ∈S

(dσ−2)3 ≥ 1

6n2

(∑
σ∈S

(dσ − 2)

)3

=
1

6n2

(
I(P,S)−2n

)3

. (2.2)

By combining (2.1) and (2.2), we obtain

1

6n2

(
I(P,S)− 2n

)3

<
1

6
m3k.

Hence I(P,S) ≤ mn2/3k1/3 + 2n, as asserted.

We are now ready to prove our bound on the number of incidences with k-non-

degenerate sets of spheres. For the convenience of the reader, we repeat the statement

of the theorem before presenting its proof.

Theorem 1.4. Let P be a set of m points and S be a k-non-degenerate set of n spheres,

both in R3, for some 1 < k < n. Then for every ε > 0,

I(P,S) = O(m3/4+εn3/4k1/4 + n+mk),

where the constant of proportionality depends on ε.
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Proof. When m = O(n1/3/k1/3), the bound in Lemma 2.7 implies I(P,S) = O(n).

Thus, in the rest of the proof we may assume that n = O
(
m3k

)
.

We prove the theorem by induction on m + n. Specifically, we prove by induction

that

I(P,S) ≤ α1m
3/4+εn3/4k1/4 + α2(n+mk),

for any fixed ε > 0 and sufficiently large constants α1, α2 that depend on ε.

For the induction basis, by choosing α2 to be sufficiently large, we obtain that the

bound holds for small values of m,n. We next consider the induction step.

Partitioning the space.

We construct an r-partitioning polynomial f for P of degree D = O(r1/3), where r

is a sufficiently large constant which will be determined later. For convenience we work

with D instead of r. Denote the open cells of the partitioning as C1, . . . , Ct, where

t = O(D3). Let ni denote the number of spheres of S that intersect the cell Ci, and

let mi denote the number of points contained in Ci. We have mi = O(m/D3) for every

1 ≤ i ≤ t. We write m′ =
∑t

i=1mi.

Let P0 denote the subset of points of P contained in Z(f), and let P ′ = P \ P0.

Clearly

I(P,S) = I(P0,S) + I(P ′,S). (2.3)

By the induction hypothesis, we have

I(P ′,S) ≤
t∑
i=1

(
α1m

3/4+ε
i n

3/4
i k1/4 + α2(ni +mik)

)

≤ O

(
α1

m3/4+ε

D9/4+3ε
k1/4

t∑
i=1

n
3/4
i

)
+ α2

t∑
i=1

ni + α2m
′k.

By Lemma 2.9 in Section 2.3, every sphere of S intersects O(D2) cells of the par-

titioning. Therefore,
∑t

i=1 ni = O
(
nD2

)
. Combining this with Hölder’s inequality

implies

t∑
i=1

n
3/4
i = O

((
nD2

)3/4
t1/4
)

= O
((
nD2

)3/4 (
D3
)1/4)

= O
(
n3/4D9/4

)
.

Hence

I(P ′,S) = O

(
α1
m3/4+εn3/4k1/4

D3ε
+ α2nD

2

)
+ α2m

′k.
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Since n = O
(
m3k

)
, we have n1/4 = O

(
m3/4k1/4

)
or n = O

(
m3/4n3/4k1/4

)
. By choos-

ing α1 to be sufficiently larger than α2 and and choosing D to be sufficiently larger

than the constant in the O()-notation, we have

I(P ′,S) ≤ α1

3
m3/4+εn3/4k1/4 + α2m

′k. (2.4)

Bounding the number of incidences on the partitioning polynomial.

To bound I(P0,S), we construct a second partitioning polynomial with respect

to P0, as stated in Theorem 2.3. Since this theorem requires the first partitioning

polynomial to be irreducible, we factor f into irreducible factors f1, . . . , fs. Then,

for each fi of degree Di, we apply Theorem 2.3 to construct a second partitioning

polynomial gi, co-prime with fi and of a large constant degree Ei ≥ Di, which we will

specify later. We assume that every point of P0 is incident to exactly one of the zero

sets Z(fi). If a point p ∈ P0 is incident to more than one such zero set, we arbitrarily

choose one of these sets Z(fi) and treat p as if it were incident only to Z(fi). Let P i0

denote the set of points of P0 contained in Z(fi) (in the sense just defined, for points

contained in more than one zero set) but not in Z(gi), and set P i0,0 = P ∩Z(fi)∩Z(gi).

We have

I(P0,S) =
s∑
i=1

(
I(P i0,S) + I(P i0,0,S)

)
. (2.5)

Let us denote the cells of the second partitioning polynomial gi that contain at least

one point of P i0 as Ci,1, . . . , Ci,ti , where ti = O(DiE
2
i ). Let ni,j denote the number of

spheres that intersect the cell Ci,j , and set mi
0 = |P i0|. The number of points of P i0∩Ci,j

is O
(
mi

0/(DiE
2
i )
)
.

When mi
0 = O(n1/3/k1/3), the bound in Lemma 2.7 implies I(P i0,S) = O(n). Let

A be the set of indices i with the property that mi
0 = O(n1/3/k1/3). By taking α2 to

be sufficiently larger than r (and thus also to s), we have∑
i∈A

I(P i0,S) ≤ α2n/2. (2.6)

We next consider the case of i /∈ A. We have n = O
((
mi

0

)3
k
)

, which in turn implies

n = O
((
mi

0

)3/4
n3/4k1/4

)
. If Z(fi) is a sphere of S, then this sphere is incident to all mi

0
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points of P i0. By Lemma 2.11 in Section 2.3, any other sphere of S is incident to points

of P i0 in O(DiEi) cells of the second partitioning. Therefore,
∑ti

j=1 ni,j = O (nDiEi)

(possibly ignoring a sphere that coincides with Z(fi)). Using Hölder’s inequality as

above implies
∑ti

j=1 n
3/4
i,j = O

(
n3/4DiE

5/4
i

)
. Thus, for i /∈ A, we have

I(P i0,S) ≤ O

 ti∑
j=1

α1
(mi

0)
3/4+ε

D
3/4+ε
i E

6/4+2ε
i

n
3/4
i,j k

1/4

+ α2

 ti∑
j=1

ni,j +mi
0k


= O

(
α1(m

i
0)

3/4+εn3/4k1/4 ·
D

1/4−ε
i

E
1/4+2ε
i

+ α2nDiEi

)
+ α2m

i
0k

≤ α1

3D
(mi

0)
3/4+εn3/4k1/4 + α2m

i
0k, (2.7)

when α1 is sufficiently larger than α2, and Ei is sufficiently large than the constant of the

O()-notation (recall that n = O
(
(mi

0)
3/4n3/4k1/4

)
). Set m′′ =

∑s
i=1m

i
0. Combining

(2.7) with (2.6) and recalling that s ≤ D, we have

s∑
i=1

I(P i0,S) ≤ α1

3
m3/4+εn3/4k1/4 + α2(n/2 +m′′k). (2.8)

Set mi
0,0 = |P ∩ Z(fi) ∩ Z(gi)| and m0,0 =

∑s
i=1m

i
0,0. Lemma 2.12 implies

I(P i0,0,S) = O(mi
0,0kDiEi + nDiEi).

Once again, by choosing α2 to be sufficiently large compared to Ei and D, we have

I(P i0,0,S) ≤ α2(m
i
0,0k + n/(2D)), which in turn implies

s∑
i=1

I(P i0,0,S) ≤ α2(m0,0k + n/2). (2.9)

Finally, the assertion of the theorem follows immediately by combining (2.3), (2.4),

(2.5), (2.8), and (2.9).

2.2.2 Proof of Theorem 1.7

This proof is very similar to the one in the previous section. Once again, we begin by

deriving a weaker bound.

Lemma 2.8. Let P be a set of m points and Π be a k-non-degenerate set of n planes,

both in R3, for some 1 < k < n. Then

I(P,Π) ≤ m
√
nk + n.
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The proof of Lemma 2.8 is almost identical to the proof of Lemma 2.7. The main

change is that in this case we double-count a set of triples (of P ×P ×Π), rather than

a set of quadruples.

Theorem 1.7. Let P be a set of m points and Π be a k-non-degenerate set of n planes,

both in R3, for some 1 < k < n. Then for every ε > 0,

I(P,Π) = O
(
m4/5+εn3/5k2/5 + n+mk

)
,

where the constant of proportionality depends on ε.

Proof. This proof is very similar to the one of Theorem 1.4. Thus, we skip various

details that are identical in both proofs.

By Lemma 2.8, we may assume that n = O
(
m2k

)
. We prove the theorem by

induction on m+ n. Specifically, we prove by induction that for any fixed ε > 0,

I(P,Π) ≤ α1m
4/5+εn3/5k2/5 + α2(n+mk),

for sufficiently large constants α1, α2 that depend on ε. As before, the induction basis

is straight forward.

Partitioning the space.

For the induction step, we construct an r-partitioning polynomial f for P of degree

at most D = O(r1/3), where r is a sufficiently large constant. Denote the open cells of

the partitioning as C1, . . . , Ct, where t = O
(
D3
)
. Let ni denote the number of planes

of Π intersecting the cell Ci, and let mi denote the number of points contained in Ci.

We write m′ =
∑t

i=1mi.

Let P0 denote the subset of points of P contained in Z(f), and write P ′ = P \ P0.

Notice that

I(P,Π) = I(P0,Π) + I(P ′,Π). (2.10)

We analyze the incidences with P ′ just as before. The only difference is how we bound∑t
i=1 ni. The number of cells intersected by a hyperplane h of Π is at most the number

of connected components of h\Z(f). According to Theorem 2.2, this number is O(D2).

Therefore,
∑t

i=1 ni = O
(
nD2

)
. Completing the analysis as before yields

I(P ′,Π) ≤ α1

3
m4/5n3/5k2/5 + α2m

′k. (2.11)
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Bounding the number of incidences on the partitioning polynomial.

To bound I(P0,Π), we construct a second partitioning polynomial with respect

to P0, as stated in Theorem 2.3. Since this theorem requires the first partitioning

polynomial to be irreducible, we factor f into irreducible factors f1, . . . , fs. Then,

for each fi of degree Di, we apply Theorem 2.3 to construct a second partitioning

polynomial gi, co-prime with fi and of a large constant degree Ei ≥ Di. We assume

that every point of P0 is incident to exactly one of the zero sets Z(fi). If a point p ∈ P0

is incident to more than one such zero set, we arbitrarily choose one of these sets Z(fi)

and treat p as if it were incident only to Z(fi). Let P i0 denote the set of points of P0

contained in Z(fi) but not in Z(gi), and set P i0,0 = P ∩ Z(fi) ∩ Z(gi). We have

I(P0,Π) =
s∑
i=1

(
I(P i0,Π) + I(P i0,0,Π)

)
. (2.12)

Set m′′ =
∑s

i=1 |P i0| and m0,0 =
∑s

i=1 |P i0,0|. We again repeat the analysis from the

proof of Theorem 1.4. By replacing Lemma 2.11 with Lemma 2.10, we obtain

s∑
i=1

I(P i0,Π) ≤ α1

3
m4/5+εn3/5k2/5 + α2(nk/2 +m′′k). (2.13)

Similarly, by relying on the proof of Theorem 1.4 and replacing Lemma 2.12 with

Corollary 2.13, we obtain

s∑
i=1

I(P i0,0,Π) ≤ α2(m0k + n/2). (2.14)

Finally, the assertion of the theorem is immediately obtained by combining (2.10),

(2.11), (2.12), (2.13), and (2.14).

2.3 Intersections with Partitioning Polynomials

In this section we establish several claims that were made in the proofs of Theorems

1.4 and 1.7 concerning intersections of spheres and planes with zero sets of partitioning

polynomials. Some of these proofs are variants of proofs from [44].

Let ψ : R2 → R3 be the inverse stereographic projection given by

ψ(u, v) =

(
x0 +

2ur

u2 + v2 + 1
, y0 +

2vr

u2 + v2 + 1
, z0 +

r(u2 + v2 − 1)

u2 + v2 + 1

)
,
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for a given point (x0, y0, z0) and constant r. That is, ψ is a mapping from R2 to the

sphere in R3 whose center is (x0, y0, z0) and whose radius is r, excluding the top point

of the sphere. Since the following lemmas present asymptotic bounds, ignoring this

single point will not affect them.

Lemma 2.9. Let f ∈ R[x, y, z] be a polynomial of degree D ≥ 1 and let σ be a sphere

in R3. Then σ intersects at most c′D2 cells of R3 \Z(f), for some absolute constant c′.

Proof. If σ is contained in Z(f), then σ does not intersect any cells. We may thus

assume that σ is not contained in Z(f).

Let f̃ = (u2 + v2 + 1)D · (f ◦ψ), where ψ maps R2 to the sphere σ. It is not difficult

to verify that f̃ is a polynomial of degree at most 2D. The zero set Z(f̃) ⊂ R2 is the

image of a mapping of Z(f)∩σ to the plane. Every cell of R3 \Z(f) that is intersected

by σ corresponds to at least one cell of R2\Z(f̃) (i.e., the image of the planar cell under

ψ is contained in the three dimensional cell). Thus, the number of cells of R3 \ Z(f)

that σ intersects is upper bounded by the number of cells in R2 \ Z(f̃). According to

Theorem 2.2, this number is O(D2).

Lemma 2.10. Let f, g ∈ R[x, y, z] be co-prime polynomials of degrees D and E, re-

spectively, with D ≤ E. Let h be a plane in R3, such that h * Z(f). Then the number

of cells of R3 \Z(g) intersected by h∩Z(f) is at most c′DE for some absolute constant

c′.

Proof. We may assume that h is not contained in Z(g), since otherwise no cell of

R3 \ Z(g) is intersected by h. Set γf = h ∩ Z(f) and γg = h ∩ Z(g). Each three-

dimensional cell of R3\Z(g) that intersects h corresponds to a set of cells in h. Every cell

of R3 \Z(g) that is intersected by γf corresponds to at least one connected component

of γf \ γg ⊂ h. Thus, the number of cells intersected by h is upper bounded by the

number of connected components of γf \ γg. Each such connected component is either

a full connected component of γf or an open portion of γf whose closure meets γg.

According to Theorem 2.6, γf has O(D2) = O(DE) connected components. For every

irreducible component of γf that is also contained in γg, we can remove the component
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from γf . We denote by γ′f ⊂ h the curve that is obtained by removing these irreducible

components from γf . Notice that γg and γ′f do not have common components. By

Theorem 2.5, the number of intersection points between γ′f and γg is O(DE). This

implies that the number of connected components of Z(f̃)\Z(g̃) is O(DE), concluding

the proof of the lemma.

Lemma 2.11. Let f, g ∈ R[x, y, z] be co-prime polynomials of degrees D and E, re-

spectively, with D ≤ E. Let σ be a sphere in R3, such that σ * Z(f). Then the number

of cells of R3 \Z(g) intersected by σ∩Z(f) is at most c′DE for some absolute constant

c′.

Proof. As in the proof of Lemma 2.9, we set

f̃ = (u2 + v2 + 1)D · (f ◦ ψ) and g̃ = (u2 + v2 + 1)E · (g ◦ ψ),

where ψ maps R2 to the sphere σ. As before, f̃ is of a polynomial of degree at most

2D and g̃ is a polynomial of degree at most 2E. The zero set Z(g̃) ⊂ R2 is the image of

a mapping of Z(g) ∩ σ to the plane (i.e., each three-dimensional cell of R3 \ Z(g) that

intersects σ corresponds to a set of cells in R2). Every cell of R3\Z(g) that is intersected

by σ ∩ Z(f) corresponds to at least one connected component of
(
σ ∩ Z(f)

)
\ Z(g).

Thus, the number of cells intersected by σ is upper bounded by the number of connected

components of Z(f̃) \ Z(g̃). By repeating the corresponding analysis in the proof of

Lemma 2.10, we obtain that the number of such components is O(DE).

Lemma 2.12. Let f, g ∈ R[x, y, z] be co-prime polynomials of degrees D and E, re-

spectively, with D ≤ E. Let S be a k-non-degenerate set of n spheres and P be a set of

m points, both in R3, such that P ⊂ Z(f) ∩ Z(g). Then

I(P,S) = O(nDE +mkDE).

Proof. The number of spheres that are contained in Z(f) or in Z(g) is O(D +E), and

thus such spheres participate in O(m(D + E)) = O(mE) incidences. In the rest of the

analysis we consider only spheres that are contained neither in Z(f) nor in Z(g).
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As in Lemma 2.11, given a sphere σ ∈ S, we set

f̃σ = (u2 + v2 + 1)D · (f ◦ ψ) and g̃σ = (u2 + v2 + 1)E · (g ◦ ψ),

where ψ maps R2 to the sphere σ. As before, f̃σ is of degree at most 2D and g̃σ is of

degree at most 2E.

We first consider incidences between a sphere σ ∈ S and points of P that are not

on a one dimensional component of Z(f) ∩ Z(g) ∩ σ. The number of zero-dimensional

components of Z(f̃σ)∩Z(g̃σ) is an upper bound on the number of such incidences with

σ. By removing from f̃σ and g̃σ factors that are common to both of these polynomials,

Theorem 2.5 implies that the number of such points is O(DE). Now by Theorem 2.4,

the removed common components contain O(D2) = O(DE) connected components.

Thus, the overall number of incidences that are not on a one dimensional component

of Z(f) ∩ Z(g) ∩ σ is O(nDE).

We next consider incidences between a sphere σ ∈ S and points of P that are on a

one dimensional component of Z(f)∩Z(g)∩ σ. We consider a point p ∈ P, and bound

the number of such incidences that p can participate in. A curve that is contained in

more than one sphere of S is a circle. Since S is k-non-degenerate, at most k−1 spheres

of S can contain such a circle. In the following paragraph, we prove that Z(f) ∩ Z(g)

contains O(DE) irreducible components. Since each such curve is contained in at most

k − 1 spheres of S, then p is incident to O(kDE) spheres. Thus, there are O(mkDE)

incidences between a sphere σ ∈ S and points of P that are on a one dimensional

component of Z(f) ∩ Z(g) ∩ σ.

It remains to prove that Z(f) ∩ Z(g) contains O(DE) irreducible components. We

project Z(f)∩Z(g) on a generic plane by using a resultant (for some basic details about

resultants, see [38] and [24, Sections 3.5-3.6]). The projection is a two-dimensional

curve of degree O(DE), and thus contains O(DE) irreducible components. This in

turns implies that the original curve contains O(DE) irreducible components.

Corollary 2.13. Let f, g ∈ R[x, y, z] be co-prime polynomials of degrees D and E,

respectively, such that D ≤ E. Let Π be a k-non-degenerate set of n planes and let P
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be a set of m points, both in R3, such that P ⊂ Z(f) ∩ Z(g). Then

I(P,Π) = O(nDE +mkDE).

Proof. This follows immediately by applying a generic inversion transformation, trans-

forming the planes into spheres, and then applying Lemma 2.12 (such a transformation

at most doubles the degrees of f and g). A different approach would be to repeat the

proof of Lemma 2.12, but without using the inverse stereographic projection, and with

lines instead of circles.

2.4 Lower Bounds

The following lower bound is a simple variant of the lower bound constructions for the

planar Szemerédi-Trotter theorem (e.g., see [58]).

Theorem 2.14. (i) For any n,m, and 1 < k < n, there exist a set P of m points and a

k-non-degenerate set Π of n planes, both in R3, such that I(P,Π) = Θ(m2/3n2/3k1/3 +

n+mk).

(ii) For any n,m, and 1 < k < n, there exist a set P of m points and a k-non-degenerate

set S of n spheres, both in R3, such that I(P,S) = Θ(m2/3n2/3k1/3 + n+mk)).

Proof. We consider a planar set of m points and ` = n/(k− 1) lines with Θ(`2/3m2/3 +

` + m) point-line incidences (e.g., see [58, Section 2]). We embed this plane as the

xy-plane in R3, and pass k−1 distinct (and otherwise generic) planes through each line

of the planar configuration. Thus, the total number of planes is n = (k − 1)`, and the

number of point-plane incidences is

(k − 1) ·Θ(`2/3m2/3 + `+ n) = Θ
(
k
(

(n/k)2/3m2/3 + n/k +m
))

= Θ(m2/3n2/3k1/3 + n+mk).

This concludes the proof of part (i). Part (ii) is immediately obtained by applying an

inversion transformation.

Theorem 2.14 implies that Theorem 1.7 is tight when n = O(
√
mk2) and when

n = Ω(m2k).
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Chapter 3

Ordinary Lines in Complex Space

In this section we establish bounds on the number of ordinary lines determined by

points in complex space, i.e., we prove Theorems 1.15, 1.17 and 1.18. The starting

point for the proofs of these theorems is the method developed in [12, 29] which uses

rank bounds for design matrices — matrices in which the supports of different columns

do not intersect in too many positions. We augment the techniques in these papers in

several ways which give us more flexibility in analyzing the number of ordinary lines.

We devote Section 3.1 to an overview of the general framework (starting with [29]),

outlining the places where new ideas come into play. In Section 3.2 we develop the

necessary machinery for matrix scaling and Latin squares. In Section 3.3, we prove

some key lemmas that will be used in the proofs of our main results. Section 3.4

gives the proof of Theorems 1.15 and 1.18, which are considerably simpler than that of

Theorem 1.17. Section 3.5 is devoted to developing additional machinery. We present

the proof of Theorem 1.17 in Section 3.6.

3.1 Proof Overview

Let V = {v1, . . . , vn} be points in Cd and denote by V the n × (d + 1) matrix whose

ith row is the vector (vi, 1) ∈ Cd+1, i.e., the vector obtained by appending a 1 to the

vector vi. The dimension of the (complex affine) space spanned by the point set in Cd

can be seen to be equal to rank(V ) − 1. We would now like to argue that too many

collinearities in V (or too few ordinary lines) imply that all (or almost all) points of

V must be contained in a low-dimensional (complex) affine subspace, i.e., rank(V ) is

small. To do this, we construct a matrix A, encoding the dependencies in V, such that
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AV = 0. Then we must have

rank(V ) ≤ n− rank(A),

and so it suffices to lower bound the rank of A.

We construct the matrix A in the following manner, so that each row of A cor-

responds to a collinear triple in V. For any collinear triple {vi, vj , vk}, there exist

coefficients ai, aj , ak such that aivi + ajvj + akvk = 0. We can thus form a row of

A by taking these coefficients as the nonzero entries in the appropriate columns. By

carefully selecting the triples using constructions of Latin squares (see Lemma 3.11), we

can ensure that A is a design matrix. Roughly speaking, this means that the supports

of every two columns in A intersect in a small number of positions. Equivalently, every

pair of points appears together only in a small number of triples.

The proof in [29] now proceeds to establish a general rank lower bound on any such

design matrix. To understand the new ideas in our proof, we need to ‘open the box’

and see how the rank bound from [29] is actually proved. To provide some intuition,

suppose that A is a matrix with 0/1 entries. To bound the rank of A, we can consider

the matrix M = A∗A (where A∗ is the matrix A conjugated and transposed) and note

that rank(M) = rank(A). Since A is a design matrix, M has the property that the

diagonal entries are very large (since we can show that each point is in many collinear

triples) and that the off-diagonal elements are very small (since columns have small

intersections). Matrices with this property are called diagonal-dominant matrices, and

it is easy to lower bound their rank using trace inequalities (see Lemma 3.5).

However the matrix A that we construct could have entries of arbitrary magnitude

and so bounding the rank requires more work. To this end, we rely on matrix scaling

techniques. We are allowed to multiply each row and each column of A by a nonzero

scalar and would like to reduce to the case where the entries of A are ‘mostly balanced’

(see Theorem 3.3 and Corollary 3.4). Once scaled, we can consider M = A∗A as before

and use the bound for diagonal-dominant matrices.

Our proof introduces two new main ideas into this picture. The first idea has to do

with the conditions needed to scale A. It is known (see Corollary 3.4) that a matrix A
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has a good scaling if it does not contain a ‘too large’ zero submatrix. This is referred to

as having Property S (see Definition 3.2). The proof of [29] uses A to construct a new

matrix B, whose rows are the same as those of A but with some rows repeating more

than once. Then one shows that B has Property S and continues to scale B (which

has rank at most that of A) instead of A. This loses the control on the exact number

of rows in A which is crucial for bounding the number of ordinary lines. We instead

perform a more careful case analysis: If A has Property S then we scale A directly

and gain more information about the number of ordinary lines. If A does not have

Property S, then we carefully examine the large zero submatrix that violates Property

S. Such a zero submatrix corresponds to a set of points and a set of lines such that no

line passes through any of the points. We argue in Lemma 3.15 that such a submatrix

implies the existence of many ordinary lines. In fact, the conclusion is slightly more

delicate: Either there exist many ordinary lines (in which case we are done) or there

exists a point incident to many ordinary lines (but not enough to complete the proof).

In the second case, we need to perform an iterative argument which removes the point

we found and applies the same argument again to the remaining points.

The second new ingredient in our proof comes into play only in the proof of The-

orem 1.17. Here, our goal is to improve on the rank bound of [29] using the existence

of lines with four or more points. Recall that our goal is to give a good upper bound

on the off-diagonal entries of M = A∗A. Consider the (i, j)th entry of M , obtained by

taking the inner product of columns i and j in A. The ith column of A contains the

coefficients of vi in a set of collinear triples containing vi (we might not use all collinear

triples). In [29] this inner product is bounded using the Cauchy-Schwartz inequality,

and uses the fact that we picked our triple family carefully so that vi and vj appear

together in a small number of collinear triples. This does not use any information about

possible cancellations that may occur in the inner product (considering different signs

over the reals or angles of complex numbers). One of the key insights of our proof is

to notice that having more than three points on a line gives rise to such cancellations.

Furthermore, the number of such cancellations increase the more points we have on a

single line.
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To get a rough idea, we focus on a set of points in real space. Consider two points

v1, v2 on a line that has two more points v3, v4 on it. Suppose that v3 is between v1 and

v2 and that v4 is outside the interval v1, v2. Then, in the collinearity equation for the

triple v1, v2, v3 the signs of the coefficients of v1, v2 will both be the same. On the other

hand, in the collinearity equation for v1, v2, v4 the signs of the coefficients of v1, v2 will

be opposite. Thus, if both of these triples appear as rows of A, we will have non-trivial

cancellations! Of course, we need to also worry about the magnitudes of the coefficients

but, luckily, this is possible since, if the coefficients are of magnitudes that differ from

each other too much, we can still obtain a better bound. This again translates into a

better rank bound, see Lemma 3.23. To formalize the previous example, let v1, v2, v3, v4

be collinear points in Rd. Then there exist r, s, t ∈ R such that

r · v1 + (1− r) · v2 − v3 = 0,

s · v1 + (1− s) · v2 − v4 = 0,

and t · v1 + (1− t) · v3 − v4 = 0.

Now at least one of r(1−r), s(1−s) and t(1−t) must be negative, and at least one must

be positive. Without loss of generality, say r(1− r) is positive and s(1− s) is negative.

In order for the Cauchy-Schwarz inequality to be tight, we need r(1 − r) = s(1 − s),

which cannot happen because they have opposite signs. This phenomena is captured

in Lemma 3.20, which generalizes this idea to the complex numbers. The lemma only

analyzes the case of four points since we can bootstrap the lemma for lines with more

points by applying it to a random quadruple (see Item 4 of Lemma 3.21).

3.2 Preliminaries

3.2.1 Matrix scaling and rank bounds

One of the main ingredients in our proof is a technique for bounding the rank of design

matrices. These ideas were first used for incidence-type problems in [12] and improved

upon in [29].

We first set up some notation. For a complex matrix A, let A∗ denote the matrix
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conjugated and transposed. Let Aij denote the entry in the ith row and jth column of A.

For two complex vectors u, v ∈ Cd, we denote their inner product by 〈u, v〉 =
∑d

i=1 ui·vi.

We now introduce the notion of matrix scaling, which is central to obtaining the

rank bounds.

Definition 3.1 (Matrix Scaling). Let A be an m × n matrix over some field F. For

every ρ ∈ Fm, γ ∈ Fn with all entries nonzero, the matrix A′ with A′ij = Aij · ρi · γj

is referred to as a scaling of A. Note that two matrices that are scalings of each other

have the same rank.

We will be interested in scalings of matrices that control the row and column sums.

The following property provides a sufficient condition under which such scalings exist.

Definition 3.2 (Property S). Let A be an m× n matrix over some field. We say that

A satisfies Property S if for every zero submatrix of size a× b, we have

a

m
+
b

n
≤ 1.

We are interested in scalings of a matrix that normalize the row and column sums.

The following theorem (see [60]) shows that satisfying Property S is a sufficient condi-

tion for such a scaling to exist.

Theorem 3.3 (Matrix Scaling theorem). Let A be an m × n real matrix with non-

negative entries satisfying Property S. Then, for every ε > 0, there exists a scaling A′

of A such that the sum of every row of A′ is at most 1+ ε, and the sum of every column

of A′ is at least m/n−ε. Moreover, the scaling coefficients are all positive real numbers.

We may assume that the sum of every row of the scaling A′ is exactly 1 + ε. Oth-

erwise, we may scale each rows to make the sum 1 + ε, and note that the column sums

can only increase.

The following Corollary to Theorem 3.3 appeared in [12].

Corollary 3.4 (`2 scaling). Let A be an m× n complex matrix satisfying Property S.

Then, for every ε > 0, there exists a scaling A′ of A such that for every i ∈ [m]∑
j∈[n]

∣∣A′ij∣∣2 ≤ 1 + ε,
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and for every j ∈ [n] ∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε

Moreover, the scaling coefficients are all positive real numbers.

Corollary 3.4 follows from applying Theorem 3.3 to the matrix obtained by squaring

the absolute values of the entries of the matrix A. Once again, we may assume that∑
j∈[n]

∣∣∣A′ij∣∣∣2 = 1 + ε.

To bound the rank of a matrix A, we will bound the rank of M = A′∗A′, where A′

is a scaling of A. Clearly rank(A) = rank(A′) = rank(M). We use Corollary 3.4, along

with rank bounds for diagonal dominant matrices. The following lemma is a variant of

a folklore lemma on the rank of diagonal dominant matrices (see [6]) and appeared in

this form in [29].

Lemma 3.5. Let A be an n× n complex Hermitian matrix, such that |Aii| ≥ L for all

i ∈ n. Then

rank(A) ≥ n2L2

nL2 +
∑

i 6=j |Aij |2
.

The matrix scaling theorem allows us to control the `2 norms of the columns and

rows of A, which in turn allow us to bound the sums of squares of entries of M . For

this, we use a variation of a lemma from [29]. While the proof idea is the same, our

proof requires a somewhat more careful analysis. First, we need some definitions.

Definition 3.6. For an m× n matrix A with complex entries, define:

D(A) :=
∑
i 6=j

∑
k<k′

∣∣AkiAkj −Ak′iAk′j∣∣2 ,
and

E(A) :=

m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2
.

Note that both D(A) and E(A) are non-negative real numbers.

Lemma 3.7. Let A be an m × n matrix over C and M = A∗A. Suppose that each

row of A has `2 norm α, the supports of every two columns of A intersect in exactly t

locations, and the size of the support of every row is q. Then∑
i 6=j
|Mij |2 =

(
1− 1

q

)
tmα4 −

(
D(A) +

t

q
E(A)

)
.
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Proof. Note that ∑
i 6=j
|Mij |2 =

∑
i 6=j
|〈Ci, Cj〉|2

=
∑
i 6=j

∣∣∣∣∣
m∑
k=1

AkiAkj

∣∣∣∣∣
2

.

Since the supports of any two columns of A intersect in exactly t locations, the Cauchy-

Schwarz inequality implies that
∣∣∑m

k=1AkiAkj
∣∣2 ≤ t

∑m
k=1 |Aki|2|Akj |2. Our approach

requires somewhat more careful analysis, so we use the following equality:

∑
i 6=j

∣∣∣∣∣
m∑
k=1

AkiAkj

∣∣∣∣∣
2

=
∑
i 6=j

(
t
m∑
k=1

|Aki|2|Akj |2 −
∑
k<k′

∣∣AkiAkj −Ak′iAk′j∣∣2
)

= t
∑
i 6=j

m∑
k=1

|Aki|2|Akj |2 −D(A)

= t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t
m∑
k=1

(
n∑
i=1

|Aki|4
)
−D(A).

Since there are q nonzero entries for every row of A, the Cauchy-Schwarz inequal-

ity implies that
∑n

i=1 |Aki|4 ≥
1
q

(∑n
i=1 |Aki|2

)2
. Again, this turns out to be insuffi-

cient for our purpose and we consider the equality
∑n

i=1 |Aki|4 = 1
q

(∑n
i=1 |Aki|2

)2
+∑

i<j

(
|Aki|2 − |Akj |2

)2
, which gives:

∑
i 6=j
|Mij |2 =

(
1− 1

q

)
t

m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t

q

m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2 −D(A)

=

(
1− 1

q

)
t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t

q
E(A)−D(A)

=

(
1− 1

q

)
tmα4 −

(
D(A) +

t

q
E(A)

)
.

From Lemma 3.7, we obtain the following easy corollary.

Corollary 3.8. Let A be an m × n matrix over C and M = A∗A. Suppose that each

row of A has `2 norm α, the supports of every two columns of A intersect in at most t

locations, and the size of the support of every row is q. Then∑
i 6=j
|Mij |2 ≤

(
1− 1

q

)
tmα4.
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3.2.2 Latin squares

Latin squares were used in the construction of design-matrices in both [29] and [12].

In our proof they play a more central role and we use their design properties more

strongly.

Definition 3.9 (Latin square). An r × r Latin square is an r × r matrix L such that

Lij ∈ [r] for all i, j and every number in [r] appears exactly once in each row and

column.

If L is a Latin square and Lii = i for all i ∈ [r], we call it a diagonal Latin square.

Lemma 3.10. For every r ≥ 3, there exists an r× r diagonal Latin square. For r ≥ 4,

there exist diagonal Latin squares with the additional property that, for every i 6= j,

Lij 6= Lji.

Proof. For r ≥ 3, the existence of r×r diagonal Latin squares was proved by Hilton [42].

Therefore, we need only show the second part of the theorem. For this we rely on self-

orthogonal Latin squares.

Two Latin squares L and L′ are called orthogonal if every ordered pair (k, l) ∈ [r]2

occurs uniquely as (Lij , L
′
ij) for some i, j ∈ [r]. A Latin square is called self-orthogonal

if it is orthogonal to its transpose, denoted by LT . A theorem of Brayton, Coppersmith,

and Hoffman [22] proves the existence of r × r self-orthogonal Latin squares for r ∈ N,

r 6= 2, 3, 6. Let L be a self-orthogonal Latin square. Since Lii = LTii, the diagonal

entries give all pairs of the form (i, i) for every i ∈ [r], i.e., the diagonal entries must

be a permutation of [r]. Without loss of generality, we may assume that Lii = i and so

L is also a diagonal Latin square. Clearly a self-orthogonal Latin square satisfies the

property that Lij 6= Lji if i 6= j.

This leaves us only with the case r = 6, which requires separate treatment. It is

known that 6× 6 self-orthogonal Latin squares do not exist. Fortunately, the property

we require is weaker and we are able to give an explicit construction of a matrix that
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is sufficient for our needs. Let L be the following matrix

1 4 5 3 6 2

3 2 6 5 1 4

2 5 3 6 4 1

6 1 2 4 3 5

4 6 1 2 5 3

5 3 4 1 2 6


.

It is straightforward to verify that L has the required properties.

The following is a strengthening of a lemma from [12].

Lemma 3.11. Let r ≥ 3. Then there exists a set T ⊆ [r]3, referred to as a triple

system, of r2 − r triples that satisfies the following properties:

1. Each triple consists of three distinct elements.

2. For every pair i, j ∈ [r], i 6= j, there are exactly six triples containing both i and j.

3. If r ≥ 4, for every i, j ∈ [r], i 6= j, there are at least two triples containing i and

j such that the remaining elements are distinct.

Proof. Let L be a Latin square as in Lemma 3.10, and T be the set of triples (i, j, k) ⊆ [r]3

with i 6= j and k = Lij . Clearly the number of such triples is r2 − r. We verify that

the properties mentioned hold.

Recall that we have Lii = i for all i ∈ [r], and every value appears once in each row

and column. That is, Lij /∈ {i, j} for i 6= j ∈ [r], giving Property 1.

For Property 2, note that a pair i, j appears once as (i, j, Lij) and once as (j, i, Lji).

And since every element appears exactly once in every row and column, i must appear

once in the jth row, j must appear once in the ith row and the same for the columns. It

follows that each of (∗, j, i), (j, ∗, i), (∗, i, j) and (i, ∗, j) appears exactly once, where ∗

is some other element of [r]. This shows that every pair appears in exactly six triples.

Since Lij 6= Lji if r ≥ 4 and i 6= j, the triples (i, j, Lij) and (j, i, Lji) are sufficient

to satisfy Property 3.
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3.3 The Dependency Matrix

Let V = {v1, . . . , vn} be a set of n points in Cd. We will use dim(V) to denote the

dimension of the linear span of V and by affine-dim(V) the dimension of the affine

span of V (i.e., the minimum r such that points of V are contained in a shift of a

linear subspace of dimension r). We projectivize Cd and consider the set of vectors

V ′ = {v′1, . . . , v′n}, where v′i = (vi, 1) is the vector in Cd+1 obtained by appending a 1

to the vector vi. Let V be the n× (d+ 1) matrix whose ith row is the vector v′i. Now

note that

affine-dim(V) = dim(V ′)− 1 = rank(V )− 1.

We now construct a matrix A, which we refer to as the dependency matrix of V. Note

that the construction we give here is preliminary, but suffices to prove Theorems 1.15

and 1.18. A refined construction is given in Section 3.5, where we select the triples

more carefully. The rows of the matrix will consist of linear dependency coefficients,

which we define below.

Definition 3.12 (Linear dependency coefficients). Let v1, v2 and v3 be three distinct

collinear points in Cd, and let v′i = (vi, 1), i ∈ {1, 2, 3}, be vectors in Cd+1. There exist

nonzero coefficients a1, a2, a3 ∈ C such that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0.

We refer to the a1, a2 and a3 as the linear dependency coefficients between v1, v2, v3.

Note that the coefficients are determined up to scaling by a complex number. Throughout

our proof, the specific choice of coefficients does not matter, so we fix a canonical choice

by setting a3 = 1.

Definition 3.13 (Dependency Matrix). For every line l ∈ L≥3(V), let Vl denote the

points lying on l. Then |Vl| ≥ 3 and we assign each line a triple system Tl ⊆ V3l , the

existence of which is guaranteed by Lemma 3.11 (with r = |Vl|). Let A be the m × n

matrix obtained by going over every line l ∈ L≥3 and for each triple (i, j, k) ∈ Tl, adding

as a row of A the vector with three nonzero coefficients in positions i, j, k corresponding
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to the linear dependency coefficients among the points vi, vj , vk. We refer to A as the

dependency matrix for V.

Note that we have AV = 0. Every row of A has exactly three nonzero entries. By

Property 2 of Lemma 3.11, the supports of any two distinct columns intersect in exactly

six entries when the two corresponding points lie on a special line1, and 0 otherwise.

That is, the supports of any two distinct columns intersect in at most six entries.

We say a pair of points vi, vj , i 6= j, appears in the dependency matrix A if there

exists a row with nonzero entries in columns i and j. The number of times a pair

appears is the number of rows with nonzero entries in both columns i and j.

Every pair of points that lies on a special line appears exactly six times. The only

pairs not appearing in the matrix are pairs of points that determine ordinary lines.

There are
(
n
2

)
pairs of points, t2(V) of which determine ordinary lines, i.e., the number

of pairs appearing in A is
(
n
2

)
− t2. Since each pair appears six times, the total number

of times these pairs appear is 6
((
n
2

)
− t2

)
. Note that each row gives three distinct pairs

of points. It follows that the number of rows of A is

m = 6

((
n

2

)
− t2

)
/3 = n2 − n− 2t2(V). (3.1)

Note that m > 0, unless t2 =
(
n
2

)
, i.e., all lines are ordinary.

As mentioned in the proof overview, we will consider two cases: first when A satisfies

Property S and second when it does not. We now prove some facts dealing with the

two cases. The following lemma applies to the first case.

Lemma 3.14. Let V be a set of n points affinely spanning Cd, d ≥ 3, and let A be the

dependency matrix for V. If A satisfies Property S, then

t2(V) ≥ (d− 3)

2(d+ 1)
n2 +

3

2
n

Proof. Fix ε > 0. Since A satisfies Property S, Corollary 3.4 shows that there is a

scaling A′ such that the `2 norm of each row is at most
√

1 + ε and the `2 norm of each

1Note that while the triple system Tl consists of ordered triples, the supports of the rows of A are
unordered.
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column is at least
√

m
n − ε. Let M := A′∗A′. Then Mii ≥ m

n − ε for all i. Since every

row in A has support of size three, and the supports of any two columns intersect in

at most six locations, Corollary 3.8 implies that
∑
i 6=j
|Mij |2 ≤ 4m(1 + ε)2. Lemma 3.5

implies that,

rank(M) ≥
n2(mn − ε)

2

n(mn − ε)2 + 4m(1 + ε)2
.

Taking the limit as ε approaches 0, and combining with equation (3.1) gives

rank(A) = rank(A′) = rank(M) ≥
n2m

2

n2

nm
2

n2 + 4m
=

mn

m+ 4n

= n− 4n2

m+ 4n
= n− 4n2

n2 − n− 2t2(V) + 4n

= n− 4n2

n2 + 3n− 2t2(V)
.

Recall that affine-dim(V) = d = rank(V )−1. Since AV = 0, rank(V ) ≤ n−rank(A)

and it follows that

d+ 1 ≤ 4n2

n2 + 3n− 2t2(V)

i.e., t2(V) ≥ (d− 3)

2(d+ 1)
n2 +

3

2
n.

We now consider the case when Property S is not satisfied.

Lemma 3.15. Let V be a set of n points in Cd, and let A be the dependency matrix for

V. Suppose that A does not satisfy Property S. Then, for every integer b∗, 1 < b∗ <

2n/3, one of the following must hold:

1. There exists a point v ∈ V contained in at least 2
3(n+ 1)− b∗ ordinary lines;

2. t2(V) ≥ nb∗/2.

Proof. Since A violates Property S, there exists a zero submatrix supported on rows

U ⊆ [m] and columns W ⊆ [n] of A, where |U | = a, |W | = b and

a

m
+
b

n
> 1.
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Let X = [m] \U and Y = [n] \W and note that |X| = m− a and |Y | = n− b. Let the

violating columns correspond to the set V1 = {v1, . . . , vb} ⊂ V and V2 = V \ V1. We

may assume that U is maximal, so every row in the submatrix X ×W has at least one

nonzero entry. We consider two cases: when b < b∗, and when b ≥ b∗.

Case 1 (b < b∗). Partition the rows of X into three sets: Let X1, X2 and X3 be

rows with one, two and three nonzero entries in columns of W respectively. We will

obtain a lower bound on the number of ordinary lines containing exactly one point in

V1 and one point in V2 by bounding the number of pairs {v, w} ∈ V1 × V2 that lie on

special lines. Note that there are at most b(n− b) such pairs, and each pair that does

not lie on a special line determines an ordinary line.

Each row of X1 contributes two pairs of points {v, u}, {v, w} ∈ V1 × V2 that lie on

a special line. Each row of X2 contributes two pairs of points {v, w}, {u,w} ∈ V1 × V2

that lie on a special line. Rows of X3 have all zero entries in the submatrix supported on

X×Y and do not contribute any pairs. Recall that each pair of points on a special line

appears exactly six times in the matrix. This implies that the number of pairs that lie

on special lines with at least one point in V1 and one point in V\V1 is 2|X1|+2|X2|
6 ≤ 2|X|

6 .

Hence, the number of ordinary lines containing exactly one of v1, . . . , vb must be at least

b(n− b)− |X|3 .

Now recall that

1 <
a

m
+
b

n
=

(
1− |X|

m

)
+
b

n
.

Substituting m ≤ n2 − n, from equation (3.1). gives

|X| < bm

n
≤ b(n− 1).

This shows that the number of ordinary lines containing exactly one point in V1 is at

least

b(n− b)− |X|
3

>
2b

3
n− 3b2 − b

3
.

It follows that there exists v ∈ V1 such that the number of ordinary lines containing v

is at least ⌊
2

3
n− 3b− 1

3

⌋
≥
⌊

2

3
n− b∗ +

4

3

⌋
≥ 2

3
(n+ 1)− b∗.
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Case 2 (b ≥ b∗). We will determine a lower bound for t2(V) by counting the number

of nonzero pairs of entries Aij , Aij′ with j 6= j′, that appear in the submatrix U × Y .

There are
(
n−b
2

)
pairs of points in V2, each of which appears at most six times. Therefore

the number of pairs of such entries is at most 6
(
n−b
2

)
. Each row of U has three pairs of

nonzero entries, i.e., the number of pairs of entries equals 3a. It follows that

3a ≤ 6

(
n− b

2

)
. (3.2)

Recall equation (3.1) and that a
m + b

n > 1, which implies

a > m

(
1− b

n

)
=
(
n2 − n− 2t2(V)

)(
1− b

n

)
. (3.3)

Combining (3.2) and (3.3), we obtain

(
n2 − n− 2t2(V)

)(
1− b

n

)
< 2

(
n− b

2

)
.

Finally, solving for t2(V) yields

t2(V) >
nb

2
≥ nb∗

2
.

3.4 Proofs of Theorems 1.15 and 1.18

The proofs of both Theorems 1.15 and 1.18 rely on Lemmas 3.14 and 3.15. Together,

these lemmas imply that there must be a point with many ordinary lines containing

it, or there are many ordinary lines in total. As mentioned in the proof overview, the

theorems are then obtained by using an iterative argument where a point incident to

many ordinary lines is removed, and then the same argument is applied to the remaining

points.

Proof of Theorem 1.15

The following corollary follows easily from Lemma 3.14 and Lemma 3.15.

Corollary 3.16. Let V be a set of n points in Cd not contained in a plane. Then one

of the following holds:
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1. There exists a point v ∈ V contained in at least 2
3n−

7
3 ordinary lines.

2. t2(V) ≥ 3
2n.

Proof. Let A be the dependency matrix for V. If A satisfies Property S, then we are

done by Lemma 3.14. Otherwise, let b∗ = 3, and note that Lemma 3.15 gives us the

statement of the corollary when n ≥ 5. The statement holds trivially when n < 5.

We are now ready to prove Theorem 1.15. For convenience, we state the theorem

again.

Theorem 1.15. Let V be a set of n ≥ 24 points in C3 not contained in a (complex)

plane. Then V determines at least 3
2n ordinary lines, unless n−1 points are on a plane

in which case there are at least n− 1 ordinary lines.

Proof. We may assume, by Corollary 3.16, that there exists a point v1 incident to at

least 1
3(2n−7) ordinary lines and hence contained in at most 1

6(n+4) special lines. Let

V1 = V \{v1}. If V1 is planar, then there are exactly n− 1 ordinary lines containing v1.

We note here that this is the only case where there are fewer then 3
2n ordinary lines.

Suppose now that V1 is not planar. Again, by Corollary 3.16, there are either

3
2(n − 1) ordinary lines in V1 or there exists a point v2 ∈ V1 incident to at least

2
3(n − 1) − 7

3 = 1
3(2n − 9) ordinary lines. In the former case, there exist 3

2(n − 1)

ordinary lines in V1, at most 1
6(n + 4) of which could contain v1. This shows that the

total number of ordinary lines in V satisfies

t2(V) ≥ 3

2
(n− 1)− 1

6
(n+ 4) +

1

3
(2n− 7) =

1

2
(4n− 9).

If n ≥ 9, then t2(V) ≥ 3
2n.

In the latter case there exists a point v2 ∈ V1 incident to at least 1
3(2n−9) ordinary

lines in V1. Note that at most one of these could contain v1, so at least 1
3(2n − 7) +

1
3(2n − 9) − 1 = 1

3(4n − 19) ordinary lines containing either v1 or v2. The number of

special lines containing either v1 or v2 is at most 1
6(n+ 4) + 1

6(n+ 3) = 1
6(2n+ 7).

Let V2 = V1 \ {v2}. If V2 is contained in a plane, there are at least n − 3 ordinary

lines incident to each of v1 and v2 giving a total of 2n−6 ordinary lines in V. It follows

that when n ≥ 12, t2(V) ≥ 3,
2 n.



42

Otherwise, V2 is not contained in a plane, and again, Corollary 3.16 gives two cases.

If there are 3
2(n− 2) ordinary lines in V2, then the total number of ordinary lines is

t2(V) =
3

2
(n− 2)− 1

6
(2n+ 7) +

1

3
(4n− 19) =

1

2
(5n− 21).

If n ≥ 11, then t2(V) ≥ 3
2n.

Finally, if none of the above hold, there exists a point v3 incident to at least 2
3(n−

2)− 7
3 ordinary lines. At most two of these could contain one of v1 or v2, so there are

2
3(n− 2)− 7

3 − 2 = 1
3(2n− 17) ordinary lines through v3 in V. Summing up the number

of lines containing one of v1, v2 and v3, we obtain

t2(V) ≥ 1

3
(2n− 17) +

1

3
(4n− 19) = 2n− 12.

If n ≥ 24, t2(V) ≥ 3
2n completing the proof.

Proof of Theorem 1.18

The following corollary follows from Lemma 3.14 and Lemma 3.15.

Corollary 3.17. There exists a positive integer n0 such that the following holds. Let

V be a set of n ≥ n0 points in Cd not contained in a three-dimensional affine subspace.

Then one of the following must hold:

1. There exists a point incident to at least n
2 ordinary lines,

2. t2(V) ≥ 1
12n

2.

Proof. Let A be the dependency matrix of V. If A satisfies Property S, then we are

done by Lemma 3.14. Otherwise, let b∗ = n/6. Now, by Lemma 3.15, either the number

of ordinary lines

t2(V) ≥ n

2
b∗ ≥ 1

12
n2,

or there exists a point v ∈ V, such that the number of ordinary lines containing v is at

least

2

3
(n+ 1)− b∗ > 1

2
n.
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We are now ready to prove Theorem 1.18. For convenience, we state the theorem

again.

Theorem 1.18. There exists a positive integer n0 such that the following holds. Let

V be a set of n ≥ n0 points in C4 with at most 1
2n points contained in any three-

dimensional affine subspace. Then

t2(V) ≥ 1

16
n2.

Proof. The basic idea of the proof uses the following algorithm: We apply Corollary 3.17

and find a point incident to a large number of ordinary lines, “prune” this point, and

then repeat this on the smaller set of points. We stop when either we are unable to find

such a point, in which case Corollary 3.17 guarantees a large number of ordinary lines,

or when we have accumulated enough ordinary lines. Consider the following algorithm:

Let V0 := V and j = 0.

1. If Vj satisfies case (2) of Corollary 3.17, then stop.

2. Otherwise, there must exist a point vj+1 ∈ Vj incident to at least n−j
2 ordinary

lines. Let Vj+1 = Vj \ {vj+1}.

3. Set j = j + 1. If j = n/2, then stop. Otherwise go to Step 1.

Note that since no three-dimensional subspace contains more than n/2 points, the

algorithm will never stop because the configuration becomes three-dimensional; that is,

we can use Corollary 3.17 at every step of the algorithm.

We now analyze the two stopping conditions for the algorithm, and show that we

can always find enough ordinary lines by the time the algorithm stops.

Suppose the algorithm stops because Vj satisfies case (2) of Corollary 3.17 for some

1 ≤ j < n/2. From case (2) of Corollary 3.17, we have

t2(Vj) ≥
(n− j)2

12
. (3.4)

On the other hand, each pruned point vi, 1 ≤ i ≤ j, incident to at least n−i+1
2 > n−i

2

ordinary lines determined by Vi−1, and hence contained in at most (n− i− n−i+1
2 )/2 <



44

n−i
4 special lines. Note that an ordinary line in Vi might not be ordinary in Vi−1 if

it contains vi. Thus, in order to lower bound the total number of ordinary lines in

V, we can sum over the number of ordinary lines contributed by each of the pruned

points vi, 1 ≤ i ≤ j, and subtract from the count the number of potential lines that

could contain vi. The number of ordinary lines in V contributed by the pruned points

is at least

j∑
i=1

(
n− i

2
− n− i

4

)
=

1

4

j∑
i=1

(n− i) . (3.5)

Combining (3.4) and (3.5), we obtain

t2(V) ≥ 1

12
(n− j)2 +

1

4

j∑
i=1

(n− i)

=
1

24

(
−j2 + j(2n− 3) + 2n2

)
.

This is an increasing function for j < n− 1, implying that

t2(V) ≥ n2

12
.

We now consider the case when the algorithm stops because j = n/2. Note that

at this point, we will have pruned exactly j points. Each pruned point vi, 1 ≤ i ≤ j,

is incident to n−i+1
2 > n−i

2 ordinary lines determined by Vi−1. The only way such an

ordinary line is not ordinary in V is that it contains one of the previously pruned points.

At most i − 1 < i of the ordinary lines incident to vi contain other pruned points vk,

k < i. Therefore the total number of ordinary lines determined by V must satisfy

t2(V) ≥
j∑
i=1

n− i
2
−

j∑
i=1

i =
1

2

j∑
i=1

(n− 3i) =
n2 − 6n

16
.

It follows that for n large enough,

t2(V) ≥ 1

16
n2.

3.5 A Refined Dependency Matrix Construction

In this section we give a more careful construction for the dependency matrix of a point

set V. Recall from Definition 3.13 that we defined the dependency matrix to contain a
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row for each collinear triple from a triple system constructed on each special line. The

goal was to avoid having too many triples containing the same pair (as can happen when

there are many points on a single line). At the end of this section (Definition 3.24) we

will give a construction of a dependency matrix that will have an additional property

(captured in Item 4 of Lemma 3.21) which is used to obtain cancellations in the diagonal

dominant argument (as was outlined in the proof overview).

We denote the argument of a complex number z by arg (z). We use the convention

that for every complex number z, arg (z) ∈ (−π, π].

Definition 3.18 (angle between two complex numbers). We define the angle between

two complex numbers a and b to be the the absolute value of the argument of ab, denoted

by
∣∣arg

(
ab
)∣∣. Note that the angle between a and b equals the angle between b and a.

Definition 3.19 (co-factor). Let v1, v2 and v3 be three distinct collinear points in Cd,

and let a1, a2 and a3 be the linear dependency coefficients among the three points. Define

the co-factor of v3 with respect to (v1, v2), denoted by C(1,2)(3), to be a1a2
|a1||a2| . Notice

that this is well defined with respect to the points, and does not depend on the choice of

coefficients.

The next lemma will be used to show that cancellations must arise in a line con-

taining four points (as mentioned earlier in the proof overview). We will later use this

lemma as a black box to quantify the cancellations in lines with more than four points

by applying it to random quadruples on the line.

Lemma 3.20. Let v1, v2, v3, v4 be four distinct collinear points in Cd. Then at least

one of the following must hold:

1. The angle between C(1,2)(3) and C(1,2)(4) is at least π/3.

2. The angle between C(1,3)(4) and C(1,3)(2) is at least π/3.

3. The angle between C(1,4)(2) and C(1,4)(3) is at least π/3.

Proof. For i ∈ {1, 2, 3, 4}, let v′i = (vi, 1), i.e., the vector obtained by appending 1 to
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vi. Since v1, v2, v3, v4 are collinear, there exist a1, a2, a3 ∈ C such that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0 (3.6)

and b1, b2, b4 ∈ C such that

b1v
′
1 + b2v

′
2 + b4v

′
4 = 0. (3.7)

We may assume, without loss of generality, that a3 = b4 = 1. Equations (3.6) and (3.7)

show that C(1,2)(3) = a1a2
|a1||a2| , C(1,2)(4) = b1b2

|b1||b2| , C(1,3)(2) = a1
|a1| and C(1,4)(2) = b1

|b1| .

Combining equations (3.6) and (3.7), we obtain:

(b2a1 − b1a2)v′1 + b2v
′
3 − a2v′4 = 0. (3.8)

Equation (3.8) implies that C(1,3)(4) = (b2a1−b1a2)b2
|b2a1−b1a2||b2| and C(1,4)(3) = − (b2a1−b1a2)a2

|b2a1−b1a2||a2| . It

follows that the angle between C(1,2)(3) and C(1,2)(4) is∣∣∣∣arg

(
a1a2
|a1||a2|

b1b2
|b1||b2|

)∣∣∣∣ =
∣∣arg

(
a1a2b1b2

)∣∣ . (3.9)

Similarly, the angle between C(1,3)(4) and C(1,3)(2) is∣∣∣∣arg

(
(b2a1 − b1a2)b2
|b2a1 − b1a2||b2|

a1
|a1|

)∣∣∣∣ =
∣∣arg

(
a1b2(b2a1 − b1a2)

)∣∣ , (3.10)

and the angle between C(1,4)(2) and C(1,4)(3) is∣∣∣∣∣arg

(
− b1
|b1|

(b2a1 − b1a2)a2
|b2a1 − b1a2||a2|

)∣∣∣∣∣ =
∣∣∣arg

(
−b1a2(b2a1 − b1a2)

)∣∣∣ . (3.11)

Note that the product of expressions inside the arg functions in (3.9), (3.10) and

(3.11) is a negative real number, and so the sum of (3.9), (3.10) and (3.11) must be π.

It follows that one of the angles must be at least π/3.

Our final dependency matrix will be composed of submatrices given by the following

lemma. Roughly speaking, for each special line l we construct a matrix A(l), referred to

as dependency matrix of l. The rows in A(l) will be chosen carefully and will correspond

to triples that will eventually give non-trivial cancellations.

Lemma 3.21. Let l be a line in Cd and Vl = {v1, . . . vr} denote points on l with r ≥ 3

Then there exists an m× r matrix A = A(l), with m = r2 − r, such that the following

hold:
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1. AVl = 0, where Vl is the r × (d+ 1) matrix whose ith row is the vector (vi, 1).

2. Every row of A has support of size three;

3. The support of every two columns of A intersects in exactly six locations;

4. Let Rk denote the kth row of A and suppose supp(Rk) = {i, j, s}. If r ≥ 4 then

for at least 1/3 of choices of k ∈ [m], there exists k′ ∈ [m] such that supp(Rk′) =

{i, j, t} (t 6= s) and the angle between the co-factors C(i,j)(s) and C(i,j)(t) is at

least π/3.

Proof. Recall that Lemma 3.11 gives us a family of triples Tr on the set [r]3. Let Σ be

the set of all bijective maps from [r] to the points Vl. For every bijective map σ ∈ Σ,

construct a matrix Aσ in the following manner: Let Tl be the triple system on V3l
induced by composing σ and Tr. For each triple (vi, vj , vk) ∈ Tl, add a row with three

non-zero entries in positions i, j, k corresponding to the linear dependency coefficients

between vi, vj and vk.

Note that for every σ, Aσ has r2−r rows and r columns. Since the rows correspond

to linear dependency coefficients, clearly we have AσVl = 0, and Property 1 is satisfied.

Properties 2 and 3 follow from properties of the triple system from Lemma 3.11.

We use a probabilistic argument to show that there exists a matrix A that has

Property 4. Let σ ∈ Σ be a uniformly random element, and consider Aσ. Since every

pair of points occurs in at least two distinct triples, for every row Rk of Aσ, there exists

a row Rk′ such that the supports of Rk and Rk′ intersect in two entries. Suppose that

Rk and Rk′ have supports contained in {i, j, s, t}. Suppose that σ maps {vi, vj , vs, vt}

to {1, 2, 3, 4} and that (1, 2, 3) and (1, 2, 4) are triples in Tr. Without loss of generality,

assume vi maps to 1. Then by Lemma 3.20, the angle between at least one of the pairs

{C(i,j)(s), C(i,j)(t)}, {C(i,s)(j), C(i,s)(t)}, {C(i,t)(j), C(i,t)(s)} must be at least π/3. That

is, given that vi maps to 1, we have that the probability that Rk satisfies Property 4 is

at least 1/3. Then it is easy to see that

Pr(Rk satisfies Property 4) ≥ 1/3.
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Define the random variable X to be the number of rows satisfying Property 4, and

note that we have

E[X] ≥ (r2 − r)1

3
.

It follows that there exists a matrixA in which at least 1/3 of the rows satisfy Property 4.

To bound the sum the off diagonal entries of M , we use the following notion of

balanced rows. The main idea here is that if there are many rows that are balanced

then we can obtain an improved bound from cancellations that show up via the different

angles. On the other hand, if many rows are unbalanced then we obtain a better bound

by showing that the sum of entries squares must be far from the bound implied by

Cauchy-Schwarz inequality.

Definition 3.22 (η-balanced row). Given an m × n matrix A, we say a row Rk is

η-balanced for some constant η if
∣∣|Aki|2 − |Akj |2∣∣ ≤ η, for every i, j ∈ supp(Rk).

Otherwise we say that Rk is η-unbalanced. When η is clear from the context, we say

that the row is balanced/unbalanced.

Lemma 3.23. There exists an absolute constant c0 > 0 such that the following holds.

Let l be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 4. Let A = A(l) be

the dependency matrix for l, defined in Lemma 3.21, and A′ be a scaling of A such that

the `2 norm of every row is α. Let M = A′∗A′. Then∑
i 6=j
|Mij |2 ≤ 4(r2 − r)α4 − c0(r2 − r)α2.

Proof. Recall that A is an (r2 − r) × r matrix, that the support of every row has size

exactly three, and that the supports of any two distinct columns of A intersect in six

locations. Clearly, any scaling A′ of A will also satisfy these properties. Applying

Lemma 3.7 to A′ we have∑
i 6=j
|Mij |2 = 4(r2 − r)α4 −

(
D(A′) + 2E(A′)

)
. (3.12)

We can give a lower bound on D(A′) + 2E(A′) using Property 4 of Lemma 3.21. So

from here on, we focus on the rows mentioned in Property 4. Recall that there are at
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least (r2 − r)/3 such rows. For some η to be determined later, suppose that β fraction

of these rows are η-unbalanced. We will show that each such row contributes to either

D(A′) or E(A′).

If a row Rk is η-imbalanced, note that

∑
i<j

(
|A′ki|2 − |A′kj |2

)2
> η2.

Alternatively suppose that Rk is η-balanced. Recall that
∑n

i=1 |A′ki|2 = α and note

that we must have |A′ki|2 ∈ [α3 −
2η
3 ,

α
3 + 2η

3 ] for all i ∈ supp(Rk). Suppose that both Rk

and Rk′ have non-zero entries in columns i and j, but Rk has a third nonzero entry in

column s and Rk′ has a third nonzero entry in column t, s 6= t. Suppose further that

the angle θ between the co-factors C(i,j)(s) and C(i,j)(t) is at least π/3, i.e., cos θ ≤ 1/2.

This implies that∣∣∣A′kiA′kj −A′k′iA′k′j∣∣∣2 = |A′kiA′kj |
2 + |A′k′iA′k′j |

2 − 2|A′kiA′kj ||A
′
k′iA

′
k′j | cos θ

≥ |A′kiA′kj |
2 + |A′k′iA′k′j |

2 − |A′kiA′kj ||A
′
k′iA

′
k′j |.

For any positive real numbers a, b

a2 + b2 − ab =
(a

2
− b
)2

+
3

4
a2 ≥ 3

4
a2.

Substituting a = |A′kiA′kj | and b = |A′k′iA′k′j | gives

|A′kiA′kj |
2 + |A′k′iA′k′j |

2 − |A′kiA′kj ||A
′
k′iA

′
k′j | ≥

3

4
|A′kiA′kj |

2

≥ 3

4

(
α

3
− 2η

3

)2

=
1

12
(α− 2η)2 .

Summing over the η-unbalanced rows, we obtain

E(A′) ≥ β (r2 − r)
3

η2. (3.13)

Summing over all the η-balanced rows, we get

D(A′) =
∑
i 6=j

∑
k<k′

∣∣∣A′kiA′kj −A′k′iA′k′j∣∣∣2 =
1

2

∑
k 6=k′

∑
i 6=j

∣∣∣A′kiA′kj −A′k′iA′k′j∣∣∣2
≥ 1

2
· (1− β)

(r2 − r)
3

· 1

12
(α− 2η)2 = (1− β)

(r2 − r)
72

(α− 2η)2 . (3.14)
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Combining (3.14) and (3.13), and setting η = α/10 yields

D(A′) + 2E(A′) ≥ (1− β)
(r2 − r)

72
(α− 2η)2 + 2β

(r2 − r)
3

η2

= (r2 − r)

(
(1− β)

1

72

(
4

5
α

)2

+ β
2

3

(
1

10
α

)2
)

≥ c0(r2 − r)α2, (3.15)

for some absolute constant c0. Finally, the assertion of lemma now follows by combining

(3.12) and (3.15)

We are now ready to define the dependency matrix that will be used in the proof of

Theorem 1.17.

Definition 3.24 (Dependency Matrix, second construction). Let V = {v1, . . . vn} be a

set of n points in Cd and let V be the n × (d + 1) matrix whose ith row is the vector

(vi, 1). For each matrix A(l), l ∈ L≥3(V), adjoin n− r column vectors consisting of all

zeroes and having length r2− r in the column locations corresponding to points not in l.

This gives an (r2 − r)× n matrix. Let A be the matrix obtained by taking the union of

rows of these matrices for every l ∈ L≥3(V). We refer to A as the dependency matrix

of V.

Note that this construction is a special case of the one given in Definition 3.13 and

so it satisfies all the properties mentioned there. In particular, AV = 0 and the number

of rows in A is n2 − n− 2t2(V).

3.6 Proof of Theorem 1.17

We begin with some key lemmas. As before, there are two cases: first when the depen-

dency matrix A satisfies Property S and second when it does not. In the second case,

we rely on Lemma 3.15. The following lemma deals with the first case.

Lemma 3.25. There exists an absolute constant c1 > 0 such that the following holds.

Let V = {v1, v2, . . . , vn} be a set of points in Cd not contained in a plane. Let A be the
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m× n dependency matrix for V, and suppose that A satisfies Property S. Then

t2(V) ≥ 3

2
n+ c1

∑
r≥4

(r2 − r)tr(V).

Proof. By Corollary 3.4, for every ε > 0 there exists a scaling A′ of A such that

∀i ∈ [m]
∑
j∈[n]

∣∣A′ij∣∣2 = 1 + ε,

and

∀j ∈ [n]
∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε. (3.16)

Let Ci denote the ith column of A′, and let M = A′∗A′. From (3.16) it follows that

|Mii| = 〈Ci, Ci〉 ≥
(
m
n − ε

)
. To bound the sum of squares of the off-diagonal entries,

we go back to the construction of the dependency matrix. Recall that the matrix A

was obtained by taking the union of rows of matrices A(l), for each l ∈ L≥3. Thus, A′

is the union of scalings of the rows of the matrices A(l), for each l ∈ L≥3. Note that

|Mij | = 〈Ci, Cj〉 and that the intersection of the supports of any two distinct columns

in contained within a scaling of A(l), for some l ∈ L≥3. Therefore, to get a bound on∑
i 6=j |Mij |2, it suffices to consider these component matrices. Combining the bounds

obtained from Lemma 3.23 and writing α = 1 + ε gives

∑
i 6=j
|Mij |2 ≤

∑
l∈L3

4(r2 − r)α4 +
∑
l∈L≥4

(
4(r2 − r)α4 − c0(r2 − r)α2

)
=
∑
l∈L≥3

4(r2 − r)α4 −
∑
l∈L≥4

c0(r
2 − r)α2

= 4m(1 + ε)4 − (1 + ε)2c0
∑
r≥4

(r2 − r)tr.

Let F = c0
∑n

r≥4(r
2 − r)tr. Lemma 3.5 implies that

rank(M) ≥ n2L2

nL2 +
∑

i 6=j |Mij |2
≥

n2
(
m
n − ε

)2
n
(
m
n − ε

)2
+ 4m(1 + ε)4 − (1 + ε)2F

.

Taking the limit as ε approaches 0, we obtain

rank(M) ≥
n2
(
m
n

)2
n
(
m
n

)2
+ 4m− F

= n− 4n2m− n2F
m2 + 4mn− nF

.
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Note that

affine-dim(V) = rank(V )− 1 ≤ 4n2m− n2F
m2 + 4mn− nF

− 1.

It follows that if

4n2m− n2F
m2 + 4mn− nF

< 4,

then V must be contained in a plane, contradicting the assumption of the theorem.

Substituting m = n2 − n− 2t2(V) and simplifying yields

4t22(V)− (2n2 + 4n)t2(V) + 3n3 − 3n2 +
n2F

4
− nF > 0.

This holds when

t2(V) <
3n

2
+
F

8
=

3n

2
+
c0
8

n∑
r=4

(r2 − r)tr(V),

which completes the proof.

We now have the following easy corollary.

Corollary 3.26. There exists a positive integer n0 such that the following holds. Let c1

be the constant from Lemma 3.25 and V be a set of n ≥ n0 points in Cd not contained

in a plane. Then one of the following must hold:

1. There exists a point v ∈ V contained in at least n
2 ordinary lines

2. t2(V) ≥ 3
2n+ c1

∑
r≥4(r

2 − r)tr(V).

Proof. If A satisfies Property S, then we are done by Lemma 3.25. Otherwise, let b∗

be an integer such that

n

2
(b∗ − 1) <

3n

2
+ c1

∑
r≥4

(r2 − r)tr(V) ≤ n

2
b∗. (3.17)

Clearly b∗ > 1. Recall that
∑

r≥4(r
2 − r)tr(V) < n2, implying that if c1 is small

enough and n is large enough,

b∗ < 4 +
2c1
n

∑
r≥4

(r2 − r)tr(V) <
1

6
n. (3.18)
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Now by Lemma 3.15 and (3.17), either the number of ordinary lines

t2(V) ≥ n

2
b∗ ≥ 3n

2
+ c1

∑
r≥4

(r2 − r)tr(V),

or, using (3.18), there exists a point v ∈ V, such that the number of ordinary lines

containing v is at least

2

3
(n+ 1)− b∗ > 1

2
n.

The following lemma will be crucial for the proof of Theorem 1.17.

Lemma 3.27. Let V be a set of n points in Cd, and V ′ = V \ {v} for some v ∈ V.

Then ∑
r≥4

(r2 − r)tr(V ′) ≥
∑
r≥4

(r2 − r)tr(V)− 4(n− 1).

Proof. Note that when we remove v from the set V, we only affect lines incident to v.

In particular, ordinary lines through v are removed and the number of points on every

special line through v decreases by 1. All other lines remain unaffected and so it suffices

to consider only lines that contain the point v.

Consider the difference

K =
∑
r≥4

(r2 − r)tr(V)−
∑
r≥4

(r2 − r)tr(V ′).

We now determine the contribution of a line l determined by V to K.

Each line l ∈ L≥5(V) (i.e., a line that has r ≥ 5 points) that contains v contributes

r2 − r to the summation
∑

r≥4(r
2 − r)tr(V). In V ′, l has r − 1 points, and contributes

(r−1)2−(r−1) to the summation
∑

r≥4(r
2−r)tr(V ′). Therefore, l contributes 2(r−1)

to the difference K. We may charge this contribution to the points on l that are different

from v. There are r − 1 other points on l, so each point contributes 2 to K.

Each line l ∈ L4(V) that contains v contributes r2 − r = 12 to the summation∑
r≥4(r

2 − r)tr(V). These lines contain three points in V ′, and so do not contribute

anything in the
∑

r≥4(r
2 − r)tr(V ′) term. Once again, we charge this contribution to

the points lying on l that are different from v. Each such line has three points on it

other than v, so each point contributes 12/3 = 4 to K.
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There is a unique line through v and any other point, and each point either con-

tributes 0, 2 or 4 to K. This shows that

∑
r≥4

(r2 − r)tr(V)−
∑
r≥4

(r2 − r)tr(V ′) ≤ 4(n− 1).

Rearranging completes the proof.

We are now ready to prove our main result. For convenience, we repeat the state-

ment of the theorem again.

Theorem 1.17. There exists an absolute constant c > 0 and a positive integer n0 such

that the following holds. Let V be a set of n ≥ n0 points in C3 with at most 1
2n points

contained in any (complex) plane. Then

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).

Proof. The remainder of the proof is similar to the proof of Theorem 1.18, in that we

use Corollary 3.26 to find a point incident to a large number of ordinary lines, “prune”

this point, and then repeat this on the smaller set of points. We stop when either we are

unable to find such a point, in which case Corollary 3.26 guarantees a large number of

ordinary lines, or when we have accumulated enough ordinary lines. As before, consider

the following algorithm:

Let V0 := V and j = 0.

1. If Vj satisfies case (2) of Lemma 3.26, then stop.

2. Otherwise, there must exist a point vj+1 incident to at least n−j
2 ordinary lines.

Let Vj+1 = Vj \ {vj+1}.

3. Set j = j + 1. If j = n/2, then stop. Otherwise go to Step 1.

Note that since no plane contains more than n/2 points, the algorithm will never

stop because the configuration becomes planar; that is, we can use Corollary 3.26 at

every step of the algorithm.

We now analyze the two stopping conditions for the algorithm, and show that we

can always find enough ordinary lines by the time the algorithm stops.
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Suppose the algorithm stop because Vj satisfies case (2) of Corollary 3.26 for some

1 ≤ j < n/2. From case (2) of Lemma 3.26 and Lemma 3.27, we have

t2(Vj) ≥
3(n− j)

2
+ c1

∑
r≥4

(r2 − r)tr(Vj)

≥ 3(n− j)
2

+ c1

∑
r≥4

(r2 − r)tr(V)− 4

j∑
i=1

(n− i)

 . (3.19)

On the other hand, each pruned point vi, 1 ≤ i ≤ j, is incident to at least n−i+1
2 > n−i

2

ordinary lines determined by Vi−1, and hence is contained in at most (n−i− n−i+1
2 )/2 <

n−i
4 special lines. Note that an ordinary line in Vi might not be ordinary in Vi−1 if

contains vi. Thus, in order to lower bound the total number of ordinary lines in V,

we sum over the number of ordinary lines contributed by each of the pruned points vi,

1 ≤ i ≤ j, and subtract from the count the number of potential lines that could contain

vi. Therefore, the number of ordinary lines contributed by the pruned points is at least

j∑
i=1

(
n− i

2
− n− i

4

)
=

1

4

j∑
i=1

(n− i) . (3.20)

By combining (3.19) and (3.20), we obtain

t2(V) ≥ 3

2
(n− j) + c1

∑
r≥4

(r2 − r)tr(V)− 4

j∑
i=1

(n− i)

+
1

4

j∑
i=1

(n− i)

=
3

2
n+ c1

∑
r≥4

(r2 − r)tr(V) +

(
1

4
− 4c1

) j∑
i=1

(n− i)− 3

2
j.

For c1 small enough and n large, the term
(
1
4 − 4c1

)∑j
i=1(n− i)−

3
2j is positive. Thus,

there must exist an absolute constant c > 0 such that

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V).

We now consider the case when the algorithm stops because j = n/2. Note that

at this point, we will have pruned exactly j points. Each pruned point vi, 1 ≤ i ≤ j,

is incident to at least n−i+1
2 > n−i

2 ordinary lines determined by Vi−1. However, as

many as i − 1 < i ordinary lines through vi could contain other pruned points vk,

k < i, i.e., lines that could be special in V. Therefore the total number of ordinary lines



56

determined by V is at least

t2(V) ≥
j∑
i=1

n− i
2
−

j∑
i=1

i =
1

2

j∑
i=1

(n− 3i) =
n2 − 6n

16
.

Note that n2 >
∑

r≥4(r
2 − r)tr(V), which implies that

t2(V) ≥ 3

2
n+ c

∑
r≥4

r2tr(V)

for some absolute constant c > 0 and n large enough.



57

Chapter 4

Applications of Incidence Bounds

4.1 The k-Most-Frequent Distances

In this section we study the k most frequent distances problem that was described in the

introduction. For convenience, we reiterate the definition of the problem. Given a set

P of points in R3 and a set D of k distinct distances, we denote by f(P, D) the number

of pairs of points of P ⊂ R3 that span a distance in D. We set fk(m) = max f(P, D),

where the maximum is taken over all sets P of m points in R3 and all sets D of k distinct

distances. Notice that D can be any set of distinct distances, though the extremal case

occurs when D is the set of the most frequent distances.

Definition 4.1. Given a point set P, a set S of spheres, both in R3, and a positive

constant `, we say that an incidence between a point p ∈ P and a sphere σ ∈ S is

`-proper if there is no circle c such that

1. c is incident to p,

2. c is contained in σ,

3. c is contained in at least ` spheres of S.

To derive our bound for the k most frequent distances problem, we require the following

generalization of Theorem 1.4.

Theorem 4.2. Let P be a set of m points, let S be a set of n spheres, both in R3.

Let ` ∈ (1, n) be an integer. Then for every ε > 0, the number of `-proper incidences

between P and S is O(m3/4+εn3/4`1/4 + n+m`), where the constant of proportionality

depends on ε.
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Proof. It suffices to perform one minor change in the proof of Theorem 1.4 (after switch-

ing k with ` in the proof). The proof of Theorem 1.4 relied on the non-degeneracy of

S in two places, and we now verify that both remain valid:

• In obtaining the weaker bound in Lemma 2.7, we count the number of quadruples

(a, b, c, σ), where σ ∈ S and a, b, c ∈ P ∩ σ. In the current proof we only count

quadruples where each of the three points forms an `-proper incidence with the

sphere. Notice that each triple of points still gets counted at most ` − 1 times,

since if more than ` − 1 spheres contain a triple, none of these spheres form an

`-proper incidence with a point of the triple. The rest of the proof of Lemma 2.7

remains unchanged.

• In Lemma 2.12 we rely on the property that every circle is contained in at most k

spheres and use it to bound incidences on “one-dimensional intersections” with the

partitioning polynomials. Replacing the non-degeneracy with `-proper incidences

does not affect the analysis.

Theorem 1.9. For any ε > 0, fk(m) = O(m236/149+εk125/149) ≈ O(m1.58k0.84).

Proof. Let D be a set of k distances and P be a set of m points in R3 such that

fk(m) = f(P, D). For each point p ∈ P we generate k spheres with center p, each with

a distinct radius from D. Let S denote the resulting set of mk spheres, and notice that

fk(m) = f(P, D) = I(P,S)/2 (a pair of points with distance d corresponds to a pair

of incidences between P and S). Since the spheres of S have only k different radii,

every circle in R3 is contained in at most 2k spheres of S. However, applying Theorem

1.4 only implies the worse-than-trivial bound I(P,S) = O(m3/4+ε(mk)3/4k1/4 +mk) =

O(m3/2+εk).

To obtain a better bound we set ` = m50/149k53/149 and separately bound the

number of `-proper incidences and the number of non-`-proper incidences. According

to Theorem 4.2, the number of `-proper incidences between P and S is

O(m3/4+ε(mk)3/4`1/4 +mk +m`) = O(m236/149+εk125/149). (4.1)
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Now we bound the number of non-`-proper incidences. Consider a circle c that is

contained in a set of spheres, and notice that the centers of all of these spheres must be

collinear. Specifically, these centers are all on the line Lc that is incident to the center

of c and perpendicular to the plane that contains c; we will say that Lc is the line

corresponding to c. We rely on a bound for the number of lines that can contain many

points of P to bound the number of circles that are contained in many spheres, and

thus the number non-`-proper incidences. Specifically, we use the Szemerédi-Trotter

theorem (e.g., see [58, 72]) to bound the number of “heavy” lines.

Partition the circles that are contained in at least ` spheres of S into log2(m/`)

classes C1, C2, . . ., where Ci consists of the circles that are contained in at least 2i−1`

spheres of S, and fewer than 2i` such spheres.

We bound the maximum possible of circles Ci can have. For every 1 ≤ j ≤

log2(m/`) − i + 1, let L(i)j denote the set of lines that are incident to at least 2i+j−2`

points of P, and incident to at most 2i+j−1` such points. According to the Sze-

merédi-Trotter theorem, the number of lines that contain at least 2i+j−2` points of

P is O(m2/(2i+j−2`)3), i.e., |L(i)j | = O(m2/(2i+j−2`)3).

Consider a line L ∈ L(i)j and translate and rotate the space so that L becomes the x-

axis. Notice that every circle of Ci to which L corresponds must intersect the xy-plane

in a pair of points that are symmetric around L. Let PLxy denote the set of these points

that have a positive y-coordinate (i.e., one point out of every pair). Similarly, every

sphere whose center is incident to L intersects the xy-plane in a circle whose center

is incident to L. Let CLxy denote the set of these circles. There is a bijection between

circles of Ci to which L corresponds and points of PLxy that are incident to at least 2i−1`

circles of CLxy. Since every point of P that is incident to L corresponds to k spheres

of S, we have |CLxy| ≤ 2i+j−1`k. According to [2] and [10], the number of incidences

between a set of M points and a set of N circles, both in R2, is1

O∗
(
M2/3N2/3 +M6/11N9/11 +M +N

)
. (4.2)

This implies that the number of points of PLxy that are incident to at least 2i−1`

1Recall that the O∗(·)-notation hides sub-polynomial factors.
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circles of CLxy is O∗
(
22j−ik2/`+ 29j/5−2i/5k9/5/`2/5

)
. We thus have

|Ci| =
log2(m/`)−i∑

j=1

O∗

(
|L(i)j | ·

(
22j−ik2

`
+

29j/5−2i/5k9/5

`2/5

))

=

log2(m/`)−i∑
j=1

O∗

(
m2k2

24i+j`4
+

m2k9/5

`17/5217i/5+6j/5

)
= O∗

(
m2k2

24i`4
+

m2k9/5

`17/5217i/5

)

= O∗

(
m98/149k86/149

24i
+
m128/149k88/149

217i/5

)
= O∗

(
m128/149k88/149

217i/5

)
.

Now that we have established an upper bound on the cardinality of Ci we can bound

the number of incidences with the circles of this class. By [9], the point-circle incidence

bound (4.2) holds also in R3, and we obtain

I(P, Ci) = O∗

m2/3

(
m128/149k88/149

217i/5

)2/3

+m6/11

(
m128/149k88/149

217i/5

)9/11

+
m128/149k88/149

217i/5


= O∗

(
m554/447k176/447

234i/15
+
m186/149k72/149

2153i/55
+
m128/149k88/149

217i/5

)
.

Therefore, the number of incidences that are not `-proper due to circles of Ci is at most

2i` · I(P, Ci) = O∗

(
m704/447k335/447

219i/15
+
m236/149k125/149

298i/55
+
m178/149k141/149

212i/5

)
.

This implies that the number of non-`-proper incidences between P and S is

log2(m/`)∑
i=1

O∗

(
m704/447k335/447

219i/15
+
m236/149k125/149

298i/55
+
m178/149k141/149

212i/5

)

= O∗
(
m704/447k335/447 +m236/149k125/149 +m178/149k141/149

)
= O∗

(
m236/149k125/149

)
, (4.3)

where the final step holds since k ≤ m. Combining (4.1) and (4.3) yields the assertion

of the theorem. A somewhat more tedious analysis can show that the chosen value of

` is optimal.

4.2 Sum-Product Estimates

In this section we consider the sum-product estimates described in the introduction. In-

cidence bounds and other geometric ideas appear frequently when proving such bounds.
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Our contribution is in showing that some of these bounds extend from the real to the

complex setting.

A common theme in the proofs of Theorems 1.20 and 1.22 was the following. Given

a finite set A ⊂ R with all elements positive, consider the point set P = A × A ⊂

R2. Let L be the set of lines through the origin covering P. Now to prove a lower

bound on the size of the set in question, it suffices to consider the set P + P. A

key observation here is that if a1 = (x1, y1) ∈ l1 and a2 = (x2, y2) ∈ l2, the point

a1 +a2 = (x1 +x2, y1 +y2) ∈ (P+P)× (P+P) lies inside the wedge between l1 and l2

centered at the origin. For lines l1, l2, l3, l4, suppose that the wedge defined by l1, l2

does not overlap the wedge defined by l3, l4. Then for all a1 ∈ l1, b1 ∈ l2, a2 ∈ l3, b2 ∈ l4,

a1 + b1 6= a2 + b2, and it suffices to consider the points contained in the respective pairs

independently. On the other hand, if the wedges intersect, overlapping sums need to

be considered. In this case, incidence bounds are useful to show that there can not be

too many overlaps.

When incidence bounds are needed, we rely on the following results that generalize

classical incidence theorems to the complex plane.

Theorem 4.3 (The Complex Szemerédi-Trotter Theorem [74, 78]). Let P be a set of

m points and L a set of n lines, both in C2. Then the number of incidences between

points of P and lines of L is O(m2/3n2/3 +m+ n).

The following theorem can be considered a generalization of Theorem 4.3, where lines

are replaced with more general curves.

Theorem 4.4 (The Complex Pach-Sharir Theorem [66]). Let P be a set of m points

and Γ a set of n algebraic curves such that

1. any two distinct curves from Γ intersect in at most two points of P;

2. for any two points p, q ∈ P, there exist at most two curves in Γ which pass through

both p and q.

Then, for any ε > 0, the number of incidences between points of P and curves of Γ is

O(m2/3+εn2/3 +m+ n), where the constant of proportionality depends on ε.
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Note that Theorem 4.4 gives a slightly weaker bound, due to the addition of ε in the

exponent of m. This results in the loss of an ε in the exponent for the result stated in

Theorem 1.24.

In Section 4.2.1, we describe the main tools that we need for our theorems. In

Section 4.2.2, we present the proof of Theorem 1.23. We do not present the proof of

Theorem 1.24, but simply note that the proof in [53] can be extended similarly using

the ideas that are presented below.

4.2.1 Rhombi and graphs

Definition 4.5. For a fixed ε > 0 and points u, v ∈ R2, let Ru,v(ε) be the open rhombus

whose major diagonal is the segment uv, and whose minor diagonal has length ε|u− v|.

When ε is clear from the context, we use the abbreviated notation Ru,v.

We will require the following lemma of Konyagin and Rudnev [50].

Lemma 4.6. Let A be a subset of C \ {0} contained inside an angular sector S :=

{z ∈ C : | tan(2arg (z))| < ε} for some fixed ε > 0. Let u, v be two distinct elements

of the ratio set A/A ⊂ C ∼= R2 with realizations u = y1
x1

and v = y2
x2

. Then the

point w = y1+y2
x1+x2

∈ C ∼= R2 lies in the set Ru,v(ε).

Proof. Let t = x2/x1 and note that we may write

w =
y1 + y2
x1 + x2

= u
1

1 + t
+ v

t

1 + t
= v + (u− v)

1

1 + t
.

Since | tan(2arg (x1))| < ε and | tan(2arg (x2))| < ε, t lies in the angular sector Sε :=

{z ∈ C : | tan arg (z) | < ε}. Then 1
1+t lies in the image of Sε under the map f : z → 1

1+z ,

which we denote as Mε. The map f can be viewed as a translation by (1, 0), followed

by an inversion around the unit disk centered at the origin. It is not too hard to check

that f maps the lines {z ∈ C : tan arg (z) = ε} and {z ∈ C : tan arg (z) = −ε} to circles

going through the origin and (1, 0), such that the tangents to the circles at the origin

form an angle of ε and −ε respectively with the real axis. Then Mε is the meniscus

formed by the intersection of the two open disks bounded by these circles. Note that

Mε is contained within the open rhombus Rε whose major diagonal is the real line
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interval (0, 1) and whose minor diagonal is of length ε. Let the set Mu,v be the image

of Mε under a dilation by (u− v), and a translation by v, i.e.,

Mu,v = v + (u− v)Mε.

Clearly, w must lie within Mu,v. Finally, it is easily seen that Mu,v is contained in the

open rhombus Ru,v.

Definition 4.7. Let B be a finite set of points in R2. We say that v ∈ B is a K-nearest

neighbor of w ∈ B if there are at most K − 1 points in B that are closer to w than v

is. A K-nearest neighbor graph on B is a directed graph with out-degree exactly K,

such that each point v ∈ B is connected to its K-nearest neighbors and ties are broken

arbitrarily. An undirected K-nearest neighbor graph on B is a K-nearest neighbor graph

on B that ignores the direction of each edge.

A vertex may have arbitrarily many vertices at the same distance from it, but

will only have out-degree K in a K-nearest neighbors graph. Therefore, a K-nearest-

neighbors graph is not unique. For our result, we will need an upper bound on the

in-degree of a K-nearest-neighbor graph.

Lemma 4.8. The in-degree of a vertex in a K-nearest neighbor graph is at most 6K.

Proof. Let v be a vertex in the graph, and let W be a cone with vertex v and angle

π/3, so that the boundary of W contains no vertex other than v. Let u be the most

distant vertex in W such that v is a K-nearest neighbor of u. If w is a vertex in W

and v is a K-nearest neighbor of w, then w is closer to u than v is, and so must be

a K-nearest neighbor of u. Hence, W contains at most K vertices that have v as a

K-nearest neighbor. The lemma follows since we can cover the plane with six wedges

with vertex v and angle π/3.

The next lemma shows that if we consider the K-nearest-neighbor graph on a point

set where the edges are rhombi (instead of segments), then there are few intersections

between the edges.
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Lemma 4.9. Let ε > 0 be a sufficiently small constant, B be a set of points in R2, K an

integer in [1, B), and G be an undirected K-nearest neighbor graph on B. Then, for each

edge {u, v} ∈ G, there are at most 112K2 edges {p, q} ∈ G such that Ru,v(ε)∩Rp,q(ε) 6= ∅.

Proof. Let {u, v}, {p, q} ∈ G such that Ru,v ∩ Rp,q 6= ∅. We will show that either

{u, v}, {p, q} share a vertex, or are connected by an edge. Then the maximum number

of edges {p′, q′} where Ru,v ∩ Rp′,q′ 6= ∅ is less than the number of paths of length 1

plus the number of paths of length 2 from u and v. Using Lemma 4.8, this quantity is

easily seen to be at most 2(7K + (7K)2) ≤ 112K2.

We may assume that u, v, p, q are all distinct (i.e., {u, v} and {p, q} do not share a

vertex). Without loss of generality, suppose that v is a K-nearest neighbor of u and q

is a K-nearest neighbor of p. We show that at least one of {u, p}, {u, q}, {v, p} is an

edge in G, and this will complete the proof of the lemma.

Since Ru,v and Rp,q are open and have non-empty intersection, either one is con-

tained in the other or their boundaries must intersect at least two times. Suppose one

of the following holds: (i) one of the edges is contained in the other; (ii) one of the

intersections lies at u or at v; (iii) there are intersections between the boundaries of

Ru,v and Rp,q on both sides of the line connecting {u, v}. Then, either u or v is con-

tained in the closure of Rp,q, or the segments uv and pq cross. Therefore, it suffices to

consider three cases: 1) one of the vertices u, v is contained in the closure of Rp,q, or

vice-versa; 2) the segments cross properly; 3) all intersection points lie strictly between

the two segments, i.e., the intersection points lie on the same side of the line connecting

u, v and on the same side of the line connecting p, q.

For ε <
√

3, if u ∈ Rp,q, then ‖u− p‖ < ‖p− q‖, and since q is a K-nearest neighbor

of p, it follows that {u, p} ∈ G. The same argument applies when v ∈ Rp,q, and this

finishes the first case.

If the segments {u, v} and {p, q} cross properly, then {u, v, p, q} lie in convex po-

sition, and the point where {u, v} and {p, q} intersect is interior to their convex hull.

The triangle inequality implies that

‖u− v‖+ ‖p− q‖ > ‖u− q‖+ ‖v − p‖,
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so either ‖u− q‖ < ‖u− v‖ and {u, q} ∈ G, or else ‖v − p‖ < ‖p− q‖ and {v, p} ∈ G.

Now, suppose that all intersections betweenRu,v andRp,q lie between the edges {u, v}

and {p, q}. Without loss of generality, we suppose that ‖u−v‖ = 1 and ‖p−q‖ ≤ 1. Let

a and b be the points where the boundaries of Ru,v and Rp,q intersect. Suppose, again

without loss of generality, that a is closer than b to both u and q. Clearly ‖u− a‖ < 1

and ‖a − q‖ < 1. Write σ = tan−1 ε, and note that the angles ∠uav and ∠vaq are at

least π − 2σ, so the angle ∠qau is at most 4σ. Now, for ε small enough,

‖u− q‖2 = ‖u− a‖2 + ‖a− q‖2 − 2‖u− a‖‖a− q‖ cos (∠qau) < 1.

That is, ‖u− q‖ < ‖u− v‖ which implies that {u, q} ∈ G and completes the proof.

4.2.2 The sum-product problem

We now give an overview of the proof of Theorem 1.23. This closely follows the proof of

Theorem 1.20 (a statement established by Konyagin and Shkredov [52] in the context

of the reals) and we point out the changes where necessary. We begin by stating some

definitions and lemmas.

Preliminaries

The multiplicative energy of A is defined to be

E×(A) =
∣∣{(a1, a2, a3, a4) ∈ A4 : a1a2 = a3a4

}∣∣ .
For any x ∈ AA, let r×A(x) =

∣∣{(a1, a2) ∈ A2 : a1a2 = x
}∣∣. Since every pair in A × A

contributes once, it follows that
∑

x∈AA r
×
A(x) = |A|2. The Cauchy-Schwarz inequality

implies that

E×(A) =
∑
x∈AA

r×A(x)2 ≥
(∑

x r
×
A(x)

)2
|AA|

=
|A|4

|AA|
. (4.4)

For α ∈ C, define αA = {α · a : a ∈ A}. For A1, A2, A3 ⊂ C, define

σ(A1, A2, A3) = |{(a1, a2, a3) ∈ A1 ×A2 ×A3 : a1 + a2 + a3 = 0}| .

Given a finite set A and λ ∈ A/A, we denote Aλ = A ∩ (λA). For τ ∈ R, let

Sτ = {λ ∈ A/A : τ < |Aλ| ≤ 2τ} ⊆ A/A.



66

Our main contribution is the following lemma, which generalizes Lemma 10 in [51]

to the complex setting. While the statement of the lemma is essentially the same, the

proof relies on the additional machinery that we developed in Section 4.2.1.

Lemma 4.10. Consider a finite subset A of C\{0} contained inside an angular sector

{z ∈ C : | tan(2arg (z))| < ε} for a small enough constant ε > 0. Let τ and σ be positive

real numbers such that 32σ ≤ τ2 ≤ |A+A|
√
σ. Moreover, let S′τ ⊆ Sτ with the property

that for any nonzero α1, α2, α3 ∈ C and λ1, λ2, λ3 ∈ S′τ we have

σ(α1Aλ1 , α2Aλ2 , α3Aλ3) ≤ σ. (4.5)

Then

|A+A|2 ≥ |S′τ |
τ3

16
√

14σ
.

Proof. We consider the point set P = A×A and double count |P + P|. On one hand,

we have |P + P| = |(A + A) × (A + A)| = |A + A|2. We now derive a lower bound

for |P+P|, relying on several observations from the proof of Theorem 1.19. Specifically,

we consider lines that are incident to the origin and have a slope from A/A. Let lλ be the

line y = λx, where λ ∈ A/A. Clearly, a line lλ intersects P in the set {(x, λx) : x ∈ Aλ},

which we denote by Aλ.

Let K ∈ [1, |S′τ |) be an integer which we will set below. From Lemma 4.9, we obtain

a set G ⊂ S′τ × S′τ of size at least |S′τ |K/2. We consider each pair of slopes in G and

sum up the points that lie on the lines with those slopes. It is easy to check that

any two sets Aλ1 and Aλ2 contribute |Aλ1 | · |Aλ2 | distinct vector sums. Note that if

p ∈ Aλ1 , q ∈ Aλ2 , p′ ∈ Aλ3 , q′ ∈ Aλ4 satisfy p + q = p′ + q′, then Rλ1,λ2 ∩ Rλ3,λ4 6= ∅.

Equivalently, if Rλ1,λ2 ∩Rλ3,λ4 = ∅, then p+ q 6= p′ + q′.

Therefore

|P + P| ≥
∑

(λ1,λ2)∈G

τ2 − ∑
(λ3,λ4)∈G, Rλ1,λ2∩Rλ3,λ4 6=∅,

(λ1,λ2)6=(λ3,λ4)

|{z : z ∈ (Aλ1 +Aλ2) ∩ (Aλ3 +Aλ4)}|

 .

(4.6)

We will now bound the value of the inner summation. Consider one element of the

sum, fixing λ1, . . . , λ4. At least one of λ1, λ2, λ3, λ4 differs from the others. Say,
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λ4 /∈ {λ1, λ2, λ3}. Consider

z = (z1, z2) ∈ (Aλ1 +Aλ2) ∩ (Aλ3 +Aλ4).

Then for some a1 ∈ A1, . . . , a4 ∈ A4 we have z1 = a1 + a2 = a3 + a4 and z2 =

λ1a1 + λ2a2 = λ3a3 + λ4a4. This implies that

0 = λ1a1 + λ2a2 − λ3a3 − λ4a4 − λ4(a1 + a2 − a3 − a4)

= (λ1 − λ4)a1 + (λ2 − λ4)a2 − (λ3 − λ4)a3. (4.7)

Since λ4 /∈ {λ1, λ2, λ3}, none of the coefficients of ai, i ∈ {1, 2, 3}, is zero, so by (4.5)

there are at most σ solutions to (4.7). That is, |{z : z ∈ (Aλ1 +Aλ2)∩(Aλ3 +Aλ4)}| ≤ σ.

Combining this with (4.6), and recalling that every pair (λ1, λ2) in G intersects at most

112K2 other pairs in G, it follows that

|P + P| ≥
∑

(λ1,λ2)∈G

(
τ2 − 112K2σ

)
≥ |S

′
τ |K
2

(τ2 − 112K2σ) = |S′τ |
(
τ2K

2
− 56σK3

)
.

Set K =
⌈
τ/
√

224σ
⌉
. Since we assume that 32σ ≤ τ2, K ≥ 1. By combining this with

the trivial |P + P| = |A+A|2, we obtain

|A+A|2 ≥ |S′τ |
(
τ2K

2
− 56σK3

)
≥ |S′τ |

τ3

16
√

14σ
.

Notice that if K ≥ |S′τ |, we are not able to use Lemma 4.9. In this case, we assume

for contradiction that the assertion of the lemma fails. If true, we would have

|A+A|2 < |S′τ |
τ3

16
√

14σ
≤ K τ3

16
√

14σ
≤ τ4

896σ
,

but this contradicts the assumption τ2 ≤ |A+A|
√
σ and so completes the proof.

The next lemma generalizes Lemma 12 from [51] to the complex numbers. Aside

from the use of Lemma 4.10, the proof from [51] remains unchanged, so we omit the

proof here.

Lemma 4.11. Consider a finite subset A of C\{0} contained inside an angular sector

{z ∈ C : | tan(2arg (z))| < ε} for a small enough constant ε > 0. Let L ≥ 1 be a real

number such that |A + A|2|A/A| ≤ L|A|4. Then there exist τ > E×(A)/(2|A|2) and
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sets S′τ ⊂ Sτ ⊂ A/A such that |Sτ |τ2 = Ω(E×(A)/ lg |A|), |S′τ | ≥ |Sτ |/2, and for any

λ ∈ S′τ we have

|AλAλ| = Ω(τ2/L16 lg17 |Aλ|).

We now introduce some parameters of a finite set A ⊂ C that measure additive or

multiplicative properties. We say that A is of Szemerédi-Trotter type (abbreviated as

SzT-type) with parameter D := D(A) if for every B ⊂ C and integer τ ≥ 1

|{s ∈ A−B : |A ∩ (B + s)| ≥ τ}| ≤ D|A||B|2

τ3
.

For Q,R ⊂ C and integer t ≥ 1, let

Sym×t (Q,R) = {x : |Q ∩ xR−1| ≥ t},

where R−1 = {1/a : a ∈ R}. We are also interested in the following characteristic of A.

Let

d∗(A) = min
t≥1

min
∅6=Q,R⊂C\{0}

|Q|2|R|2

|A|t3
, (4.8)

where the second minimum in (4.8) is taken over Q,R such that A ⊂ Sym×t (Q,R) and

|A| ≤ max{|Q|, |R|}.

The following appears as Lemma 13 in [52], where it was proved for finite subsets of

the real numbers. As before, we note that the proof works as is for subsets of complex

numbers (aside from the use of Theorem 4.3) and leave out the proof in this thesis.

Lemma 4.12. Let A ⊂ C be a finite set. Then A is SzT-type with parameter O(d∗(A)).

Finally, we will require the following result of Shkredov [67]. Again, while the result

in [67] is stated for subsets of real numbers, the statement holds for subsets of complex

numbers without any changes in the proof.

Theorem 4.13. Let A be a finite set of complex numbers. Then

|A+A| = Ω
(
|A|58/37D(A)−21/37

)
. (4.9)

Proof of Theorem 1.23

We are now ready to prove Theorem 1.23. For convenience, we state it again.
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Theorem 1.23. Let A ⊂ C \ {0} be a finite set. Then for any c < 5/9813 we have2

max{|AA|, |A+A|} = Ω∗
(
|A|4/3+c

)
.

Proof. We may assume that the elements of A are contained in an angular sector

around the origin. More specifically, for a sufficiently small absolute constant σ > 0

(small enough to satisfy the conditions of Lemma 4.10), |arg (a)| < σ for every a ∈ A.

Otherwise, by the pigeonhole principle, there exists a subset A′ ⊆ A such for for every

a1, a2 ∈ A′, |arg (a1)− arg (a2)| < σ. There exists a complex number z such that

elements of zA′ have the required property. Note that it suffices to prove the statement

of the theorem for the set zA′, since |A′| ≥ |A|/σ, A′A′ ⊂ AA, A′ + A′ ⊂ A + A, and

the statement of the theorem is invariant under dilation. For the rest of the proof, to

simplify notation, we assume that A satisfies the required property.

We may assume that |A+A| = O(|A|3/4+c). Suppose that |A+A|2|AA| ≤ L|A|4 and

that |AA|3 ≤ L′|A|4 for some parameters L,L′ ∈ R. We now show that max{L,L′} =

Ω(|A|3c), which will complete the proof.

From Lemma 4.11, there exists a real number τ > E×(A)/(2|A|2) and a set S′τ ⊂

Sτ ⊂ A/A such that |Sτ |τ2 = Ω(E×(A)/ lg |A|), |S′τ | ≥ |Sτ |/2. Furthermore, for every

λ ∈ S′τ ,

t := |AλAλ| = Ω∗
(
τ2/L16

)
. (4.10)

The Katz-Koester inclusion (see [46]) states that for any λ ∈ A/A,

AλAλ ⊂ (AA) ∩ (λAA).

It follows that for any λ ∈ S′τ , |(AA) ∩ (λAA)| ≥ |AλAλ| ≥ t. In particular, S′τ ⊆

Sym×t (AA,AA). Since S′τ ⊂ Sτ , we have

∑
a∈A
|A ∩ aS′τ | =

∑
λ∈S′τ

|A ∩ λA| ≥ τ |S′τ |.

By the pigeonhole principle, there exists a ∈ A such that the set A′ = A∩ aS′τ satisfies

|A′| ≥ τ |S′τ |/|A|. From S′τ ⊂ Sym×t (AA,AA), we observe that A′ ⊂ Sym×t (AA,AA).

2Recall that the O∗(·)-notation hides sub-polynomial factors.
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Setting Q = aAA and R = AA in equation (4.8) gives

d∗(A
′) ≤ |AA|

4

|A′|t3
= O

(
|AA|4L48

|A′|τ6

)
= O

(
|AA|4|A|L48

|S′τ |τ7

)
. (4.11)

We are now set up to finish the proof, the remainder of which uses the lemmas and

observations stated so far. From Theorem 4.13 and equation (4.11) we obtain

|A+A| ≥ |A′ +A′| = Ω
(
|A′|58/37d∗(A′)−21/37

)
= Ω

((
τ |S′τ |
|A|

)58/37( |S′τ |τ7

L48|A||AA|4

)21/37
)

= Ω

(
|S′τ |79/37τ205/37

|A|79/37L1008/37|AA|84/37

)
.

Recall that |S′τ | ≥ Sτ/2, that |Sτ | = Ω∗(E×(A)/τ2) and that τ > E×(A)/(2|A|2). It

follows that

|A+A| = Ω∗

(
E×(A)79/37τ47/37

|A|79/37L1008/37|AA|84/37

)
= Ω∗

(
E×(A)126/37

|A|173/37L1008/37|AA|84/37

)
.

Combining this with (4.4) and the assumption that |AA|3 ≤ L′|A|4 yields

|A+A| = Ω∗

(
|A|331/37

r1008/37|AA|210/37

)
= Ω∗

(
|A|51/37

L1008/37L′70/37

)
. (4.12)

It is now straightforward to check that max{L,L′} = Ω(|A|3c).
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Chapter 5

Conclusion

In Chapter 2 of this thesis, we presented upper bounds on the number of point-plane

and point-sphere incidences in R3. These results were based on the polynomial method

introduced by Guth and Katz [39] in their solution of the Erdős distinct distances

problem. When dealing with incidences in R3, certain complications arise. Specifically,

all (or a large fraction) of the points and spheres could be contained in the zero set of

the partitioning polynomial. In general, the surface could be arbitrarily complicated,

and thus, hard to analyze. Our results are based on the following two techniques:

• The use of a constant-degree partitioning polynomial as introduced by Solymosi

and Tao [69]. This reduced the complexity of the partitioning surface and simpli-

fied the analysis at the cost of an ε factor in the exponent.

• Finding a second partitioning polynomial co-prime with the first polynomial, an

idea introduced independently by Zahl [77] and Kaplan, Matoušek, Safernová

and Sharir [44]. The intersection of the two partitioning polynomials is now one-

dimensional, simplifying the analysis considerably.

Much is still unknown about these techniques. One direction of future research is

to seek incidence bounds in higher dimensions. Perhaps the biggest challenge here is to

prove the existence of a sequence of partitioning polynomials, each of bounded degree,

and such that the polynomials do not share any common factors. Some progress was

made in this direction by Basu and Sombra [16] who proved the existence of a third

partitioning polynomial. It is likely that in Rd, one should be able to find d− 1 parti-

tioning polynomials such that the intersection of these polynomials is one dimensional.

The existence of such polynomials has so far proven to be difficult to establish.
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In most cases, there are large gaps between the known upper and lower bounds for

incidence problems. Some examples are: (i) point-circle incidences in R2; (ii) point-

sphere incidences in R3; (iii) point-plane incidences in R3. Finding better bounds for

incidences is a problem of considerable interest and they would have many interesting

implications. However, it is likely that this would require the introduction of new

techniques.

In Chapter 3, we used matrix scaling techniques that were introduced by Barak,

Dvir, Wigderson and Yehudayoff [12] in order to establish bounds on the number of

ordinary lines determined by point sets in complex space. These results helped make

progress towards understanding the structure of lines determined by point sets, but

there is still much to learn. For example, as far as we are aware, no non-trivial upper

bounds for the number of ordinary lines are known in R3. More specifically, it is not

known whether a sufficiently non-degenerate point set in C3 or R3 (i.e., a set with at

most a fraction of the points contained in a plane) can determine o(n2) ordinary lines.

We are currently exploring this question and hope to make progress on it.

The matrix scaling technique has been shown to have other applications in combina-

torial geometry. Dvir and Gopi [28], for example, established connections to incidence

problems, Dvir, Garg, Oliveira and Solymosi [27] showed applications to structural

(or graph) rigidity, and there are many other examples as well. The matrix scaling

technique is still in its infancy, and we believe there are many as yet undiscovered con-

nections. It is a promising direction of research to explore and further develop these

techniques.
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