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ABSTRACT OF THE DISSERTATION

A Few Combinatorial Problems

by ROSS BERKOWITZ

Dissertation Director: Swastik Kopparty

This thesis studies three problems in combinatorics.

Our first result is a quantitative local limit theorem for the distribution of the

number of triangles in the Erdős-Renyi random graph G(n, p), for a fixed p ∈ (0, 1).

This proof is an extension of the previous work of Gilmer and Kopparty, who proved

that the local limit theorem held asymptotically for triangles. Our work gives bounds

on the `1 and `∞ distance of the triangle distribution from a suitable discrete normal.

In our second result we prove a stability version of a general result that bounds

the permanent of a matrix in terms of its operator norm. More specifically, suppose

A is an n × n matrix, and let P denote the set of n × n matrices that can be written

as a permutation matrix times a unitary diagonal matrix. Then it is known that the

permanent of A satisfies |per(A)| ≤ ‖A‖n2 with equality iff A/‖A‖2 ∈ P (where ‖A‖2

is the operator 2-norm of A). We show a stability version of this result asserting that

unless A is very close (in a particular sense) to one of these extremal matrices, its

permanent is exponentially smaller (as a function of n) than ‖A‖n2 . In particular, for

any fixed α, β > 0, we show that |per(A)| is exponentially smaller than ‖A‖n2 unless all

but at most αn rows contain entries of modulus at least ‖A‖2(1− β).

Finally, we construct large sequences with the property that the contents of any

small window determine the location of the window, robustly. Such objects have found
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many applications in practical settings, from positioning of wireless devices to smart

pens, and have recently gained some theoretical interest. In this context, we give the

first explicit constructions of sequences with high rate and constant relative distance.

Accompanying these efficient constructions, we also give efficient decoding algorithms,

which can determine the position of the window given its contents, even if a constant

fraction of the contents have been corrupted.
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Chapter 1

Introduction

Discrete mathematics and combinatorics form a growing and lively branch of mathe-

matics. The field addresses topics which are varied and broad in scope, as are the tools

needed to address them. In this thesis we will draw heavily from, among other tools,

probability theory, Fourier analysis, and the properties of low degree polynomials.

The particular problems we will address are

• A local limit theorem for triangles in random graphs.

• A stability result relating the permanent to the matrix norm.

• A sequence with good error correcting properties.

Each of these topics will be outlined in the following section.

1.1 Brief Outline of Results

1.1.1 Local limit theorems for subgraph counts

The random graph G(n, p), a model in which a graph on n vertices is selected by

including each edge independently with probability p, is an important object of study

in graph theory. We say that three vertices of G form a triangle if they are all pairwise

connected by edges. Questions of the form, “how many triangles (or any fixed subgraph)

do we see in a random graph” have been considered since the initial papers of Erdős

and Renyi introducing the topic [13]. Erdős and Renyi showed in 1960 that the number

of triangles in a graph is tightly concentrated about the expected value of p3
(
n
3

)
. One

question which received much attention in the ’80s concerned pinning down the limiting

distribution of subgraph counts in random graphs asymptotically as the number of
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vertices goes to infinity. This line of study eventually lead to the work of Ruciński,

which characterized when subgraph counts converged to a Gaussian [39].

In 2014, Gilmer and Kopparty showed a local limit theorem for the number of

triangles in a random graph in the regime where p is a fixed constant [16]. They gave a

qualitative result estimating the probability that a random graph in G(n, p) has exactly

k triangles. This should be contrasted with the previously shown central limit theorems,

which only gave a coarse description of the number of triangles. I improve upon this

result by proving a strong quantitative estimate for the distribution of triangles in

random graph. A consequence of Theorem 2 is that for k near the the mean µ,

Pr[T = k] =
1√
2πσ

exp

(
−(k − µ)2

2σ2

)(
1 +O(n−

1
2
−ε)
)

where T is the triangle counting function. Importantly, this strengthened result also

allows us to prove that the distribution of triangle counts in random graphs is close to a

discrete Gaussian in the `1 or total variation metric, a result which was previously out

of reach. Further, the methods used extend to showing local limit theorems for paths

of length 2 and providing bounds on the characteristic function of the random variables

given by any subgraph count.

The ingredients of the proof involve a careful analysis of the Fourier transform of the

subgraph count random variable, also known as its characteristic function. Characteris-

tic functions of sums of dependent random variables, however, are typically difficult to

analyze. To help with this difficulty, we decompose the triangle counting function using

the orthogonal Walsh basis, a discrete analog of the traditional Fourier transform. This

second transform helps reveal the underlying structure and low degree spectral concen-

tration of the counting function, which we are then able to exploit to understand why

these random variables are asymptotically normal. The results in this section were first

posted here [6]



3

1.1.2 A stability result using the matrix norm to bound the perma-

nent

The permanent of a square n× n matrix is defined to be

per(A) :=
∑
σ∈Sn

n∏
i=1

aiσ(i)

The permanent is a classical object of study with connections to computational com-

plexity and graph theory. Unlike the similarly defined determinant, the permanent is

notoriously difficult to compute. Valiant showed [43] that computing the permanent of

0-1 matrices is #P complete, and even approximating the permanent is still a difficult

problem.

In 2005 Leonid Gurvits [19] proved that the permanent of a matrix is upper bounded

by its L2 operator norm ‖A‖2 := sup‖x‖2=1 ‖Ax‖2. This bound is tight, with the

extremal case of a permutation matrix P which has per(P ) = ‖P‖2 = 1. Motivated by

an application to derandomizing permanent approximation, Aaronson and Hance asked

whether it was possible to categorize when the permanent of a unitary matrix was large

[2]. Aaronson and Nguyen later asked more formally if one could characterize n × n

matrices such that ‖A‖2 ≤ 1 , but with permanent at least as large as n−C for some

fixed constant C [3].

In a joint work with Patrick Devlin we resolve these questions by showing that unless

A is close to a permutation matrix, then per(A) is exponentially smaller than ‖A‖2.

The definition needed to define closeness is

h∞(A) =
1

n

n∑
i=1

max
j

(|aij |)

h∞(A) returns the average of the largest entry in each row. Note that permutation

matrices satisfy h∞(A) = 1. Conversely, matrices with ‖A‖2 = 1 and h∞(A) close to 1

must be nearly permutation matrices in that almost every row and column is dominated

by a single large entry. Formally stated, we proved that for a real n× n matrix A with
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‖A‖2 = 1 that

|per(A)| ≤ 2 exp
(
−n(1− h∞(A))2/105

)
For example, if we know that a matrix has every entry bounded above by |aij | < .999,

then we find that per(A) ≤ exp(−Ω(n)).

The proof proceeds by expressing per(A) as the expectation of a random variable,

then analyzing this random variable using various concentration inequalities including

Talagrand’s inequality and an extension of Khintchine’s inequality. This chapter is a

modified version of the draft [7], which is to appear in the Israel Journal of Mathematics.

1.1.3 Robust positioning patterns

Coding theory studies the error correcting properties of various forms of data subject

to models of noisy channels. The field began with the pioneering work of Claude

Shannon, and has since proven ripe for both application and theoretical study. One

interesting model that has recently received attention is that of the error correcting

sequence or torus. These are sequences of N symbols from some alphabet Σ with the

property that all windows of n contiguous entries are significantly different from one

another. Similarly, in the 2-dimensional setting, we study tori whose windows of n× n

contiguous squares form a code of good distance. In the noiseless regime, these objects

are the classical DeBruijn sequences and tori.

An illustrative application [1] of error correcting tori is simulating a touch screen

with a device capable only of display, for example a monitor or special notepad. To

do this, write an error correcting torus on the display and build a special stylus with

a camera in its tip. When the stylus is pressed to the display its camera can read

the window visible from its location on the screen and relay this information to the

computer. The computer can then use this window, even if much of the data was

corrupted by dirt or other text, to discover the location of the stylus.

The two important parameters measuring these objects are the rate R, which mea-

sures how large the sequence is relative to its theoretical maximum, and its relative

distance δ(S), which measures the fractional number of errors the sequence can correct.
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Kumar and Wei [29] showed that a random linear feedback shift register gives nearly

optimal trade-off between rate and distance in the regime where δ(S) = O(n−1/2). In

the 2-dimensional setting, Bruckstein, Etzion, Gordon, Holt, and Shuldiner [10] gave a

construction of an error correcting torus, which was robust to a constant fraction errors,

but had rate o(1).

In a joint work with Swastik Kopparty we give an explicit construction of error

correcting sequences with a near optimal trade-off between rate and distance. In par-

ticular, our construction yields sequences with constant rate and constant distance for

both the large and small alphabet regimes. The tools used to construct this sequence

included Reed-Solomon codes and a careful analysis of their structure, Gray codes, and

concatenation.

Additionally, the sequence has a natural decoding algorithm based on the Guruswami-

Sudan list decoding algorithm, which can recover position from a noisy window in

polynomial time. The results in this section were first presented at SODA16 [8].

1.2 Overview of Techniques

1.2.1 Triangle LLT

The main result of the first chapter of this thesis is the following local limit theorem

for the number of triangles in G(n, p)

Theorem 1. For any k ∈ N we have that

Pr[T = k] =
1√

2πσn
e
−(k−p3(n2))

2

2σ2
n +O(n−2.5+ε)

where σn is the variance of the triangle counting random variable T .

Our arguments are based on giving better bounds on the characteristic function of

T . The main improvements come from combining two different Fourier transforms, the

first being the characteristic function, and the second being the finite Fourier transform

of the triangle counting function. In particular, we will choose the p-biased Fourier

basis over {0, 1}(
[n]
2 ) with basis functions denoted χS where S ⊂

(
[n]
2

)
. That is, each
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basis element is a function depending on some subset of the possible edges in our graph.

The main mass of the triangle counting function will come from basis elements of the

form χe, where e is an edge in
(

[n]
2

)
. In other words, we will find that T is highly

concentrated on its weight 1 Fourier coefficients. This allows us to show that T may

be reasonably well approximated as simply a linear function of the number of edges in

the random graph. Informally, this follows the intuition that if one wanted to know

how many triangles are in a fixed graph G, a reasonable estimator would be to simply

ask how many edges are in the graph, and scale appropriately. This method is closely

related to the method employed by Janson and Nowicki in [23]. It also bears similarity

to the work of Friedgut [15] who gave an early and important example of the usefulness

of the p-biased Fourier transform in studying random graphs.

The actual estimation will be performed in two steps. First we will normalize T to

have mean 0 and variance 1 by defining Z := T −µ
σ . Then we will split Z up into two

pieces Z = X + Y , where X contains the weight 1 fourier terms which dominate Z,

and Y contains the higher order terms, which we will treat as error terms. We then

use as blunt a tool as the mean value theorem to estimate the characteristic function

by saying E[eitZ ] = E[eitX +O(|tY |)]. Since X is a sum of i.i.d. random variables and

Y is small this converges to the characteristic function of the normal distribution when

t is small.

For slightly larger t we adapt this method slightly by first revealing some k-regular

subgraph and then performing our estimates given this information. This will shrink

the size of Y by a factor of (k/n)2, but only shrink X by a factor of k/n. This gives

us a better error term, at the cost of only slightly shrinking our main term. For this

part of the argument we cannot give an exact main term for |ϕZ(t)|, as we could in

the first method. However for t large, because the normal has very small characteristic

function it suffices simply to show that |ϕZ(t)| is very small as well. As part of this

argument, we will need strong concentration of low degree functions (an application of

hypercontractivity theorems) to ensure that even after we reveal a large portion of the

edges, the randomness remaining in T is relatively well behaved.
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1.2.2 Permanent Bounds

This section is focused on proving a bound on the permanent of matrices of operator

norm at most 1. Recall that the L2 operator norm is defined to be

‖A‖2 := sup
‖x‖2=1

‖Ax‖2

Our first main result is (in an equivalent formulation of)

Theorem 2. Let A be an n× n matrix over C and ‖A‖2 ≤ 1. Then

|per(A)| ≤ 2 exp[−n(1− h∞(A))2/105]

The “distance” operator we have used is

h∞(A) =
1

n

n∑
i=1

max
j

(|aij |)

which can only be one in a matrix of operator norm 1 if A is essentially a permutation

matrix. Our starting point in proving this result is to use a reformulation of the Per-

manent as the expectation of a particular random variable. The specific form we use

is

per(A) = E[GX(A)] = E
X∈{−1,1}n

[
n∏
i=1

Xi(AX)i

]
,

By the AM-GM inequality we can bound this above by |per(A)| ≤ E
[(
‖AX‖1
n

)n]
.

The rest of the work is dedicated to analyzing the random variable ‖AX‖1. Appealing

to a result of König, Schütt, and Tomczak-Jaegermann[27] we are able to show that if

A is far from a permutation matrix, then E ‖AX‖1/n is noticeably smaller than 1. The

argument is then completed by bounding the probability of ‖AX‖1 deviating from its

mean. This is done in two different settings. The most general setting is accomplished

by using Talagrand’s Inequality [30]. This approach yields the result given in Theorem

2.

Additionally, when h∞(A) is very close to 1 and A is a real valued matrix, a tighter
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concentration bound for ‖Ax‖1 can be achieved by appealing to hypercontractivity

bounds. In particular, A is broken up into two submatrices: L the set of “little” rows

which do not have any entries larger than 1− λ for an appropriately chosen value of λ,

and B the set of “big” rows which are dominated by a single entry of size at least 1−λ.

For B the set of big rows, we will note that the sign of every row of Bx is with high

probability the sign of the dominating entry of that row. Therefore

‖Bx‖1 =

|B|∑
i=1

|Bx|i ≈
|B|∑
i=1

(Bx)ixij∗i

where j∗i is the index of the large entry in row i of B. The last term is simply a degree

2 polynomial with expectation Bij∗i and variance at most 2λ (recall the rows of B are

vectors of norm at most 1, and the entry Bij∗i has size ≥ 1− λ). Now an application of

a hypercontractivity concentration result due to Bonami [9] for low degree polynomials

showes that ‖Bx‖1 is well concentrated. For the set of little rows, L we again appeal to

Talagrand to ensure that they do not deviate substantively from their mean. Combining

these bounds we obtain our second main theorem

Theorem 3. Let A be an n× n matrix over R and ‖A‖2 ≤ T 6= 0. Then

|per(A)| ≤ Tn(n+ 6) exp

[
−
√
n(1− h∞/T )

400

]
.

1.2.3 Robust Positioning Patterns

A robust positioning pattern S for windows of length n with alphabet Σ is a sequence

in Σ∗. We say that the distance is the minimum over all distinct length n windows

(contiguous subwords of length n) of ∆(w1, w2), where ∆ is the usual Hamming Dis-

tance. The rate of the sequence is then defined to be R := log|Σ|(|S|). These notions

of rate and distance coincide exactly with the rate and distance of the code comprised

of all length n windows of S (we allow the windows to wrap around). In this chapter

we begin by describing a simple construction of a constant rate sequence over a large

alphabet with constant fraction distance. This simple construction only leads to codes

with rate R ≤ 1/3, and having rate R approaching 1 seems to require some significantly
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new ideas.

Let us also remark that there are several easy constructions of low rate sequences

(with rate < 1/2) with constant relative window-n distance using “markers”, but going

to high rate introduces significant conceptual obstacles (in particular, one really needs

to handle the overlap of the windows in the sequence).

Let C be the Reed-Solomon code of degree ≤ k polynomials over Fq. We will take

n = q − 1. Let us choose the sequence evaluation points for these polynomials to be

g, g2, . . . , gq−1, where g is a generator of F∗q . Thus the code is cyclic. That is every

codeword can be rotated by i places by replacing f(X) with f(giX).

Partition C into the equivalence classes, where two codewords are equivalent if they

are rotations of one another. Let c1, . . . , cM be a collection of codewords, one from each

equivalence class. Let Σ = Fq, let N = M · (q − 1) and let σ ∈ ΣN be the sequence

obtained by concatenating c1, c2, . . . , cM . Note that N ≈ qk+1.

We claim that σ has window-n distance at least n − 3k. Indeed, if we look at any

length n window of σ, it looks like the concatenation of a suffix of ci and a prefix of

ci+1. A moment’s inspection, using the fact that every rotation of ci is also a codeword

of C shows that every n-window of this sequence looks like the splicing together of two

codewords of C. Using this fact, it follows that the number of agreements between two

distinct n windows is at most 3 times the maximum number of agreements between two

codewords. Thus the distance between any two n-windows is at least n− 3k.

The above construction fails to do anything interesting if k > n/3. To go beyond, we

will exploit our ability to carefully choose the ordering of c1, . . . , cM . Our construction

ensures that many of the windows that straddle ci and ci+1 are (essentially) rotations

of ci (and in particular, they are essentially codewords of C). We do this using a Gray

code. The analysis of the distance is somewhat mysterious, and takes advantage of the

fact that windows now look like the gluing together of overlapping codewords. This

leads to a bound of (n − k)/3 for the window-n distance, and yields a construction of

efficiently decodable robust positioning patterns of any specified rate R ∈ (0, 1), or any

specified distance ∆ ∈ (0, 1) (possibly with a large alphabet size).

Our binary construction in the one dimensional case is based on a new “augmented”
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code concatenation scheme. This new scheme is based on two ideas: (1) using a low-

autocorrelation sequence as a “marker”, and (2) designing an inner code for the con-

catenation all of whose codewords are far away from all substrings of the marker.
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Chapter 2

A Quantitiative Local Limit Theorem for Triangles in

Random Graphs

2.1 Introduction

This chapter is concerned with the distribution of the number of triangles appearing

in an Erdős-Renyi random graph G(n, p) (a graph with n vertices where each edge is

present independently with probability p). Recently, [16] showed a local limit theorem

in this context which says that the distribution of the number of triangles approaches

the discrete normal. Our main results show quantitative bounds, both pointwise and

global, on how far the distribution of the number of triangles in a random graph can vary

from a normal distribution. In particular, if T is the random variable corresponding to

the number of triangles in G(n, p) we show that for all k ∈ Z and ε > 0,

Pr[T = k] =
1√
2πσ

exp

(
−(k − µ)2

2σ2

)
+O(n−2.5+ε)

where µ = E[T ] = p3
(
n
3

)
and σ = V ar(T ). From this we are also able to obtain a

quantitative bound on the `1 distance of T from a suitable discrete normal:

∑
k∈N

∣∣∣∣∣Pr(T = k)− 1√
2πσ

exp

(
−
(
k − p3

(
n
3

))2
2σ2

)∣∣∣∣∣ = O(n−.5+ε)

2.1.1 History

The study of subgraph counts dates back to the very beginning of random graphs, when

Erdős and Renyi proved in 1960 [13] that certain subgraph counts behaved in expected

ways by using the second moment method. In the 1980’s there were several papers

studying which subgraph counts obeyed a central limit theorem (see [26, 25, 35]). For
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example, in this period a central limit theorem was shown for the triangle counting

random variable T , which stated that for any real numbers a < b

Pr[T ∈ [µ+ aσn, µ+ bσn]] =
1√
2π

∫ b

a
e−t

2/2dt+ o(1)

This line of questioning eventually found a complete solution in the work of Ru-

ciński [39] who gave a characterization for when subgraph counts obeyed a central limit

theorem. In 1989 there was progress made on showing central limit theorems with

quantitative bounds in the work of Barbour, Karoński and Ruciński [5]. Slightly af-

terwards Janson and Nowicki [23] gave alternate arguments for central limit theorems

using the language of U-statistics and a good basis for functions on the probability

space of graphs.

If the edge probability p ∼ c/n for some constant c, then Erdős and Renyi [13]

showed that the number of triangles in G(n, p) converges to a Poisson distribution. This

result was a local limit theorem, as it estimated the pointwise probabilities Pr[T = k]

for k constant. Further, Röllin and Ross [38] showed a local limit theorem when p ∼ cnα

for α ∈ [−1,−1
2 ]. In this regime they showed that the triangle counting distribution

converges to a translated Poisson distribution (which is in turn close to a discrete

Gaussian) in both the `∞ and total variation metrics.

In 2014, Gilmer and Kopparty [16] proved a local limit theorem for triangle counts

for G(n, p) in the regime where p is a fixed constant. In particular they proved that

Pr[T = k] =
1√
2πσ

exp

(
−(k − µ)2

2σ2
n

)
± o(n−2)

It should be noted that this is largely a qualitative result, as the main term has size

Θ(n−2) while the error term is o(n−2). This type of result should also be contrasted

with the central limit theorem given above. This theorem gives an estimate for the

probability of having exactly k triangles or differing from the expected number of tri-

angles by exactly 17. The central limit theorems estimate the probability of having a

number of triangles in an interval of length proportional to the standard deviation.
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The proof in [16] proceeded by using the characteristic function. The main step

there was to show that |ϕ(t)− ϕn(t)| is small for t ∈ [−πσn, πσn], where ϕ represents

the characteristic function of the standard normal distribution, and ϕn represents the

characteristic function the triangle counting function T .

2.1.2 Our Results

We improve the result of Gilmer and Kopparty by adding a quantitative estimate for

the convergence of T to the normal. We strengthen their bound to give explicit distance

bounds. The main result of this part of the thesis is the following local limit theorem

for the number of triangles in G(n, p)

Theorem 2. For any k ∈ N we have that

Pr[T = k] =
1√

2πσn
e
−(k−p3(n2))

2

2σ2
n +O(n−2.5+ε)

For k = µn + O(σn) this shows that Pr[T = k] is within a (1 + O(n−
1
2

+ε)) mul-

tiplicative factor of 1√
2πσ

exp
(
− (k−µ)2

2σ2
n

)
, while the best known previous bound could

only show a factor of (1 + o(1)). A polynomial factor is also the best possible bound,

as even the binomial distribution of
(
n
3

)
i.i.d. summands differs from the normal by a

polynomial factor. As a consequence of Theorem 2 we also find a quantitative bound

on the `1 distance between T and the normal.

Theorem 3.

∑
t∈N

∣∣∣∣∣Pr(T = t)− 1√
2πσ

exp

(
−
(
t− p3

(
n
3

))2
2σ2

)∣∣∣∣∣ = O(n−0.5+ε)

The results in [16] were not enough to imply `1 distance bounds, so this is the first

result of this kind for triangle counts. Finally at the end of this chapter we highlight

that these proof techniques continue to give characteristic function bounds for counting

other subgraphs. While proving a local limit theorem for K4’s remains just out of reach,

we can use these arguments to prove quantitative central limit theorems in this setting.
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2.1.3 Organization of this Chapter

In section 2 we set up our notation and introduce some facts which will be necessary

for the later sections. Section 3 contains the statements and proofs of our main results,

modulo the main technical lemmas. In section 4 we examine the decomposition of T

with respect to the p-biased Fourier basis, and in section 5 we exploit this decomposition

to prove our main lemmas. Finally in section 6 we extend these arguments to a more

general setting to capture larger subgraph counts.

2.2 Preliminaries and Notation

We will be working with a random variable which is defined as a graph function applied

to an Erdős-Renyi random graph G(n, p). We will be working in the regime where our

probability p is a fixed constant, and n → ∞. We will realize our probability space as

drawing x ∈ {0, 1}(
n
2) where each coordinate of x is labelled by an edge e ∈

(
[n]
2

)
, and

we have that for all edges, xe is 0 with probability 1− p and 1 with probability p.
(

[n]
2

)
refers equivalently to either the set of all pairs of distinct elements from [n], or the set

of possible edges of a graph with vertex set [n].

Continuing our notation from the abstract, we use T : {0, 1}(
n
2) → N to denote the

triangle counting function, which returns the number of triangles in the graph with edge

set given by the indicator vector {0, 1}(
n
2). One might note that the random variable

T depends on both the probability p, and the size of the vertex set n in question. We

will often supress the dependence on n and p, as we will be considering p to be fixed

and our analysis will be done for a generic n, with limits only taken in the proof of the

main theorem.

2.2.1 p-Biased Fourier Basis

To apply our analysis we use the p-biased Fourier basis for functions on this probability

space. We define this as follows. For each edge e ∈
(

[n]
2

)
we define χe : {0, 1}(

n
2) → R as
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follows:

χe := χe(x) :=
xe − p√
p(1− p)

=


−
√

p
1−p if xe = 0√

1−p
p if xe = 1

This is just the transform of the bernoulli random variable xe so that it has mean

0 and variance 1. Now for an arbitrary set S ⊂ [n] we can define

χS := χS(x) :=
∏
e∈S

χe

We note that if we take our inner product of two functions f, g : {0, 1}(
n
2) → R to be

defined by E[fg], then {χS | S ⊂ [n]} is an orthonormal basis (see [36] chapter 10 for

more detail on this topic).

For any function f : {0, 1}(
n
2) → R, if we define the Fourier transform f̂ : {0, 1}(

n
2) →

R to be

f̂(S) := E[f(x)χS(x)]

then by orthonormality we have that

f(x) =
∑

S⊂([n]
2 )

f̂(S)χS(x)

The Fourier Expansion will serve to reveal some of the underlying properties of the

triangle counting random variable. For another work using the Fourier transform to

reveal such structure, see [15].

2.2.2 Probability Terminology and Notation

In proving limit theorems, it is convenient to normalize the family of random variables

to have mean 0 and variance 1, so throughout this chapter we will usually work with

the related random variable Z : {0, 1}(
[n]
2 ) → R

Z(x) := Zn(x) :=
T − µ
σ
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We will frequently refer to the characteristic function of Z as ϕZ(t) := E[eitZ ]. Most

of the work will be focused on studying ϕZ , and showing it is close to e−t
2/2.

We will also throughout the chapter label the variance of T as σ2 := σ2
n := E[T 2]−

E[T ]2. A consequence of orthonormality gives us the following result, sometimes called

Parseval’s Theorem:

σ2 := E[T 2]− E[T ]2 =

 ∑
S⊂([n]

2 )

T̂ (S)2

− T̂ (∅)2 =
∑
S 6=∅

T̂ (S)2 (2.1)

2.2.3 Some Graph Notation

Let G be a graph with vertex set [n] and edge set E ⊂
(

[n]
2

)
. Given a triangle 4 with

vertex set {v1, v2, v3} ⊂ [n] we will use the notation e ∈ 4 to denote that e is an edge in

the triangle 4 i.e. e ∈
({v1,v2,v3}

2

)
. Additionally we will occasionally identify a triangle

4 with its edge set. That is, if we have S ⊂
(

[n]
2

)
and we write S = 4, that means S

is the edge set of some triangle.

Also we will frequently need to refer to the case where e1 and e2 are two edges which

are incident to a common vertex (i.e. e1 = (v1, v2) and e2 = (v2, v3)). We will denote

this as e1 ∼ e2.

2.2.4 Notation for function restrictions

Often we will have a function f : {0, 1}(
n
2) → R, and we will want to refer to the

function obtained from f by restricting some input coordinates to have certain values.

In particular assume that we have H ⊂
(

[n]
2

)
some fixed subset of input variables. Then

for β ∈ {0, 1}Hc
we will define fβ : {0, 1}H → R by

fβ(α) = f(α, β)

.
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2.2.5 Ingredients for the Proof

In this section we cite some useful results from the literature. We will need the follow-

ing Hypercontractivity result which bounds the probability that a low degree Boolean

function deviates from its mean.

Theorem 4 ([36] Theorem 10.24). Let f : {0, 1}n → R be a polynomial of degree k,

and λ := min(p, 1−p). If x ∈ {0, 1}n is chosen by setting each coordinate independently

to be 1 with probability p and 0 with probability 1− p then for any t ≥
√

2e/λ
k
,

Pr(|f(x)| ≥ t‖f‖2) ≤ λk exp

(
− k

2e
λt

2
k

)

We will also use some of the existing bounds on the characteristic function of T ,

which were derived in Gilmer-Kopparty. We slightly modify their result to have a

different choice of numbers, but the proof remains unchanged.

Lemma 1 ( [16] Theorem 5). Fix ε > 0. If ϕn(t) is the characteristic function of

Z =
T −p3(n3)

σ , then for |t| ∈ [n.5+ε, πσn] it holds that |ϕn(t)| = O(|t|−50).

We will frequently deal with Bernoulli random variables, and so the following bound

on their characteristic function will be useful.

Lemma 2. Let X be the mean 0 variance 1 random variable taking the values

X :=


−
√

p
1−p with probability 1− p√

1−p
p with probability p

Then for |t| <
√
p(1− p)π we have that |E[eitX ]| < 1− 2t2

π2 .

Proof. Let Y be the random variable taking the value −1 with probability p and 1 with

probability 1 − p. Y has variance 4p(1 − p), and X = Y−E[Y ]

2
√
p(1−p)

. Define t̃ := t

2
√
p(1−p)

.

So we can compute that

|E[eitX ]|2 =
∣∣∣E[eit̃Y ]∣∣∣2 = |pe−it̃ + (1− p)eit̃|2 = ‖(cos(t̃), (1− 2p) sin(t̃))‖2

= 1− 4p(1− p) sin2(t̃) ≤ 1− 16p(1− p)
π2

t̃2 ≤ 1− 4t2

π2
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where we used the fact that | sin(t̃)| ≥ 2|t̃|
π for |t̃| ≤ π

2 . Lastly noticing that
√

1− x ≤

1− x
2 completes the proof.

2.3 Main Results

Here we give the high level proof of our main results, deferring the proofs of the impor-

tant lemmas to the next section. First, we need the following standard theorem from

probability.

2.3.1 Local Limit Theorem for T .

Theorem 5 (Fourier Inversion Formula for Lattices [14] XV.4 Theorem 4). Let X be

a random variable supported in b+hZ, and let ϕ(t) be the characteristic function of X.

Then for x ∈ b+ hZ

P(X = x) =
h

2π

∫ π
h

−π
h

e−itxϕX(t)dt

As a consequence of this lemma we can turn characteristic function bounds for

sequences of random variables into statements about their limiting distribution.

Lemma 3. Let Y be the standard normal distribution which has density N (x) =

1√
2π
e−

x2

2 and characteristic function ϕ(t) = e−
t2

2 . Let Xn be a sequence of random

variables supported in the lattices Ln = bn + hnZ. Then

|hnN (x)− P(Xn = x)| ≤ hn

(∫ π
hn

− π
hn

|ϕ(t)− ϕn(t)|dt+
1√
2πt

e−
t2

2

)

Proof. By the general (that is, not the lattice version above) inversion principle for

characteristic functions, we have N (x) = 1
2π

∫∞
−∞ e

−itxϕ(t)dt. By the above theorem we
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have that P(Xn = x) = hn
2π

∫ π
hn

− π
hn

e−itxϕn(t)dt. So we have that

|hnN (x)− P(Xn = x)| =

∣∣∣∣∣hn2π

∫ ∞
−∞

e−itxϕ(t)dt− hn
2π

∫ π
hn

− π
hn

e−itxϕn(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣hn2π

∫ π
hn

− π
hn

e−itx(ϕ(t)− ϕn(t))dt

∣∣∣∣∣+

∣∣∣∣∣hn2π

∫
|t|> π

hn

e−itxϕ(t)dt

∣∣∣∣∣
≤ hn

(∫ π
hn

− π
hn

|ϕ(t)− ϕn(t)|dt+
1√
2πt

e−
t2

2

)

The main calculation of this chapter is the following theorem, whose proof is given

in Section 5.

Theorem 6. Fix ε > 0. Let Z :=
T −p3(n3)

σ , and ϕZ(t) be the characteristic function of

Z. Then ∫ πσn

−πσn

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣ = Oε(n
−.5+ε)

We can now prove our main claim, Theorem 2, as it is elementarily equivalent to

the following corollary.

Corollary 1. Let Ln := 1
σn

(Z− p3
(
n
3

)
). Then for any x ∈ Ln we have that

∣∣∣∣P(Zn = x)− N (x)

σn

∣∣∣∣ = Oε

(
1

n2.5−ε

)

Proof. Apply Lemma 3 to Z, combined with the estimate for the characteristic function

of Z given by Theorem 7.

2.3.2 Bounds on the Statistical Distance of T from Normal

We give a lemma which will allow us to turn the L∞ bounds we obtain into bounds on

the statistical difference of T from the normal.

Lemma 4. Let N be the density of the standard normal and ϕ(t) its characteristic

function. Let Xn be a sequence of random variables supported in the lattice Ln :=

bn + hnZ, and with characteristic functions ϕn. Assume that the following hold:

1. supx∈Ln |Pr(Xn = x)− hnN (x)| < δnhn
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2. Pr(|Xn| > A) ≤ εn

Then
∑

x∈Ln |Pr(Xn = x)−N (x)| ≤ 2Aδn + εn + hn√
2πA

e
−A2

2 .

Proof. We directly compute that:

∑
x∈Ln

|Pr(Xn = x)− hnN (x)|

≤
∑
x∈Ln
|x|<A

|Pr(Xn = x)− hnN (x)|+
∑
x∈Ln
|x|≥A

|Pr(Xn = x)− hnN (x)|

≤
∑
x∈Ln
|x|<A

|Pr(Xn = x)− hnN (x)|+ Pr(Xn ≥ A) + hn

∫
|x|>A−1

N (x)dx

≤ 2A

hn
δnhn + εn +

hn√
2πA

e
−A2

2

We can now use this to give a proof that the statistical distance between triangle

counts and discrete normal variable is asymptotically small. We will pick A := log2(n).

By an application of hypercontractivity (Theorem 4) we find that

Pr(|Zn| > log2(n)) ≤ e−Ωp(log2(n)) = n−Ωp(log(n)) = o
(
n−.5

)
This bounds the εn term in the above theorem. We also have from Corollary 1 that

supx∈Ln |Pr(Xn = x) − hnN (x)| = Oε(n
−2.5+ε). Combining this with the calculation

that σn = Θ(n2) we obtain the following corollary, which is equivalent to Theorem 3:

Corollary 2. Fix ε > 0. Let Ln := 1
σn

(Z− p3
(
n
3

)
). Then

∑
x∈Ln

∣∣∣∣Pr(Z = x)− 1

σ
N (x)

∣∣∣∣ = Oε(n
−.5+ε)

Proof. In the above Lemma for Xn = Tn we have that hn = σn. We may take δn :=

n−.5+ ε
2 by Corollary 1, and we may fix A = log2(n) as above. Then as argued above

εn = O(n−.5) while e−
A2

2 is minuscule. Plugging these choices into the bound given by

Lemma 4 gives the desired estimate.
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2.4 Properties of the Triangle Counting Function

In this section we express the triangle counting function in the p-biased Fourier basis,

and compute some basic properties.

Given a particular triangle 4 with vertex set v1, v2, v3, we will use the notation

e ∈ 4 to denote that e is an edge in the given triangle 4. The indicator function of

this triangle’s presence given the graph with edge indicator vector x ∈ {0, 1}(
n
2) is given

by

14(x) =
∏
e∈4

xe =
∏
e∈4

(√
p(1− p)χe(x) + p

)
= p3 + p2

√
p(1− p)

∑
e∈4

χe + p2(1− p)
∑

e1 6=e2∈4
χ{e1,e2} + (p(1− p))

3
2χ{e1,e2,e3}

Given two edges every edge appears in n−2 triangles, and each pair of edges appear

in exactly 1 triangle iff they are incident to a common vertex (an event which we denote

by e1 ∼ e2) we find by summing over all possible triangles that

T = p3

(
n

3

)
+(n−2)

∑
e∈([n]

2 )

p2
√

(p)(1− p)χe+
∑
e1∼e2

p2(1−p)χ{e1,e2}+
∑
4
p

3
2 (1−p)

3
2χ4

Restated we have found the Fourier Transform of T and it has the form

T̂ (S) =



p3
(
n
3

)
if S = ∅

(n− 2)p2
√

(p)(1− p) if |S| = 1

p2(1− p) if S = {e1, e2}, e1 ∼ e2

p
3
2 (1− p)

3
2 if S = 4

0 else

(2.2)

We compute the variance of T using the orthonormality of our basis (or Parseval)
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to be

σ2 : = E[T 2]− E[T ]2 =
∑

S⊂([n]
2 )

S 6=∅

T̂ 2(S)

=
∑

e∈([n]
2 )

(
(n− 2)p2

√
(p)(1− p)

)2
+
∑
e1∼e2

(
p2(1− p)

)2
+
∑
4

(
p

3
2 (1− p)

3
2

)2

=

(
n

2

)
(n− 2)2p5(1− p) + 3

(
n

3

)
p4(1− p)2 +

(
n

3

)
p3(1− p)3

= Θ(n4)

(2.3)

It should be noted that asymptotically we have σ ∼ p5/2(1−p)1/2

2 n2. Also it is sig-

nificant that the main term in the above expansion of σ2 comes entirely from terms of

the form χe, for a singleton set containing one edge e. This shows that T has Fourier

spectrum highly concentrated on degree 1. In particular, if we define W 1 :=
∑

e T̂ 2(e)

then σ2 = W 1(1 +O( 1
n)).

Recall that we defined Z := T −µ
σ =

T −p3(n3)
σ . By construction Z has mean 0 and

variance 1. The Fourier decomposition of Z is just a normalized version of T . In

particular Ẑ(S) = T̂ (S)
σ if S 6= ∅, and Ẑ(∅) = 0.

2.5 Estimating the Characteristic Function of Z

2.5.1 Main Results of the Section

In this section we prove the following bound

Theorem 7. Let Z :=
T −p3(n3)

σ , and ϕZ(t) be the characteristic function of Z. Then

for any ε > 0 ∫ πσn

−πσn

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣ = Oε(n
.5−ε)

The work is done over 3 sections, each corresponding to different sizes of t. In

Section 2.5.2 we prove the following bound which, while true for all t, is most useful for

smaller values of t
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Lemma 5.

∣∣∣∣ϕZ(t)− e−
t2

2

∣∣∣∣ = O

 t3e− t23
n

+
t√
n


Subsequently in Section 2.5.3 we prove the result for “mid-sized” t that

Lemma 6. Fix 0 < ε < 1. Then

∫ n
1+ε

2

nε
|ϕZ(t)|dt ≤ Oε(n−.5+ε)

Lastly for |t| ≥ n
1+ε

2 we simply cite Lemma 1. Combining all these results immedi-

ately gives Thoerem 7. For completeness we give the proof.

Proof of Theorem 7.

∫ πσn

−πσn

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣ =

∫
|t|<n0.05

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣+

∫
n0.05<|t|<n.5+ ε

10

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣
+

∫
n.5+ ε

10<|t|<πσn

∣∣∣∣ϕZ(t)− e
−t2

2

∣∣∣∣
≤
∫
|t|<nε

O

 t3e− t23
n

+
t√
n

dt+Op,ε(n
−.5+ε) +O(n−50)

+ 2

∣∣∣∣∫ πσn

nε
e−

t2

2 dt

∣∣∣∣
= Oε(n

−0.5+2ε)

2.5.2 Bounds for small t

In this section we prove the following result

Lemma 5.

∣∣∣∣ϕZ(t)− e−
t2

2

∣∣∣∣ = O

 t3e− t23
n

+
t√
n


This shows that the characteristic function of Z is very close to that of N(0, 1) for

small t. In that regard this result is a generalization of a central limit theorem for T ,
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which is equivalent to the pointwise convergence of ϕZ(t) to e−t
2/2.

Proof. We can decompose Z into two parts, the dominant weight-1 part X, and a

smaller term corresponding to Fourier coefficients of weight ≥ 2. In particular let

Q :=
√

1

(n2)
. Then we define

X :=
∑

e∈([n]
2 )

Qχe Y :=
∑

e∈([n]
2 )

(Ẑ(e)−Q)χe +
∑
|S|≥2

Ẑ(S)χS

First we examine X. It is the mean 0 variance 1 sum of independent random

variables, and so by Berry-Esseen (see Petrov [37], Chapter V lemma 1) we know that

if

Ln :=

(
n

2

)
E[|Qχe|3] =

p2 + (1− p)2√(
n
2

)
p(1− p)

= Θp(1/n)

then for t ≤ 1
4Ln

we have that

∣∣∣∣E[eitX ]− e−
t2

2

∣∣∣∣ ≤ 16Ln|t|3e
−t2

3 (2.4)

Now we turn our attention to Y . Y is best thought of as an error term. It is where

the dependence of our random variable Z lives, and it will be always very small. In

particular, using Cauchy-Schwarz and the orthogonality of our basis we obtain

E |Y | ≤
√
E |Y |2 = var(Y ) =

∑
e

(Ẑ(e)−Q)2 +
∑
|S|≥2

Ẑ2(S)

We know from prior calculations that

∑
|S|≥2

Ẑ2(S) =
3
(
n
3

)
p4(1− p)2 +

(
n
3

)
p3(1− p)3

σ2
= O

(
1

n

)

Further we can estimate

(
n

2

)
σ2Ẑ2(e)− σ2 =

(
n

2

)
T̂ 2(e)− σ2 = O(n3) =⇒ Ẑ2(e)− 1(

n
2

) = O(n−3)

Therefore using the fact that (x− y) = (x2 − y2)/(x+ y) coupled with the observation
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that Ẑ(e) +Q = Θ
(

1
n

)
, we find that

|Ẑ(e)−Q| ≤

∣∣∣∣∣∣
Ẑ2(e)− 1

(n2)

Ẑ(e) +Q

∣∣∣∣∣∣ = O

(
1

n2

)

So as a result we can conclude that var(Y ) = O(1/n) and so E[|Y |] = O( 1√
n

). Now

we are ready for our characteristic function bound for Z. If |t| ≤ 1
4Ln

= Θp(n) then

combining the above with equation 2.10 yields.

∣∣∣∣ϕZ(t)− e−
t2

2

∣∣∣∣ =

∣∣∣∣E[eitZ]− e− t22 ∣∣∣∣ =

∣∣∣∣E[eit(X+Y )
]
− e−

t2

2

∣∣∣∣
≤
∣∣∣∣E[eitX]− e− t22 ∣∣∣∣+

∣∣E[eitX+Y
]
− E eitX

∣∣ ≤ 16Ln|t|3e
−t2

3 + E |tY |

= O

 t3e− t23
n

+
t√
n


The last inequality comes from simply applying the mean value theorem to the function

eitx. The first term in the error is dominated for any choice of t, and so we can simplify

the error to |ϕZ(t)− e−t2/2| = O(tn−1/2).

2.5.3 Bounds for slightly larger t

Here we perform the same operation as above, except we first reveal a fraction of the

edges. The intuition behind this is that revealing a q fraction of the edges will reduce the

number of edge variables over which we take our expectation by q, but it will reduce the

influence of larger sets by even more, namely by q|S| ≥ q2. Thus in the above estimate

when we decompose Z into X + Y we will find that Y will be significantly smaller,

allowing us to get a better estimate.

For any natural number k, we can take H to be a k-regular bipartite graph on n

vertices. Then it makes sense to talk about the restriction of Z to the variables in H.

That is we are revealing the edges in Hc to be some vector β ∈ {0, 1}Hc
, and consider

the function Zβ : {0, 1}H → R given by Zβ(α) = Z(α, β). First we note that by the
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law of total probability we have that

E[eitZ ] = E
β∈{0,1}Hc

E
α∈{0,1}H

[eitZβ(α)]

So now we turn our attention to examining the form Zβ takes for a typical restriction

β. First let us consider what happens to a generic basis function χS (for a general

consideration of how restriction interacts with Fourier bases , particularly in the case

of p = 1
2 , see [36] Chapter 3.3). If we split S as S = SH ∪ SHc where SH ⊂ H and

ScH ⊂ Hc then

(χS)β(x) = χSHc (β)χSH (x)

So we can use this to compute the Fourier transform of Zβ : {0, 1}H → R. For an

arbitrary S ⊂ H we will have that

Ẑβ(S) =
∑
T⊂Hc

χT (β)Ẑ(S ∪ T ) (2.5)

If we fix S, and think of β as an input, then Ẑβ(S) can be viewed as a function of

β, Ẑβ(S) : {0, 1}Hc → R.

Claim 1. Let A be the event (over the space of revelations β ∈ {0, 1}Hc
) that for every

edge e ∈ H we have that

|Ẑβ(e)− Ẑ(e)| <
√

3n0.6

σ

Let λ := min(p, 1− p). Then Pr(A) ≥ 1− n2λ2e−λn
.01

.

Claim 2. Assume β ∈ A. Then for t ≤ σπ
√
p(1− p)/2n = Θp(n)

| E
α⊂H

[eitZβ(α)]| ≤ exp

(
− kt

2n3

4π2σ2

)
+

4|t|n
(
k
2

)
σ2

Assuming these two claims we can prove the main result for this subsection.

Lemma 6. Fix 0 < ε < 1. Then

∫ n
1+ε

2

nε
|ϕZ(t)|dt ≤ Oε(n−.5+ε)
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Proof. Let A, as in Claim 4, be the event that for all e ∈ H we have that |Ẑβ(e)−Ẑ(e)| <
√

3n0.6

σ . We can break up {0, 1}Hc
into A and Ac and estimate

|ϕZ(t)| := E
(α,β)∈2(

n
2)

[eitZ(α,β)] ≤ E
β⊂Hc

| E
α⊂H

[eitZβ(α)]| ≤ Pr(A) + (1− Pr(A)) E
β∈Ac

∣∣∣E
α

[eitZβ ]
∣∣∣

Now combining Claims 4 and 2 we find that

Pr(Ac) + (Pr(A)) E
β∈A

∣∣∣E
α

[eitZβ ]
∣∣∣ ≤ λ2n2e−

λ
e
n0.1

+ exp

(
− kt

2n3

4π2σ2

)
+

2k|t|
√
n

σ

We may choose k to be an integer of size nd|t|−2+εe (which may be done for 0 <

|t| ≤ n
1+ε

2 ). Recalling that σ = Θ(n2) we find that

|ϕZ(t)| = O

(
n2e−

λ
e
n0.1

+ exp

(
−−t

εn4

4π2σ2

)
+

1

|t|1−ε
√
n

)

Using this we may make the following estimate

∫ n
1+ε

2

nε
|ϕZ(t)|dt ≤ O

n2+ 1+ε
2 e−

λ
e
n0.1

+ n
1+ε

2 exp(−nε) +

[
1

ε
tεn−.5

]n 1+ε
2

nε

 = Oε
(
n−.5+ε

)

Proof Of Claims 4 and 2

Claim 4. Let A be the event (over the space of revelations β ∈ {0, 1}Hc
) that for every

edge e ∈ H we have that

|Ẑβ(e)− Ẑ(e)| <
√

3n0.6

σ

Let λ := min(p, 1− p). Then Pr(A) ≥ 1− n2λ2e−λn
.01

.

We prove Claim 4 by noting that the formula for Ẑβ(S) (a coefficient in the polyno-

mial Zβ) is itself a low degree polynomial, and therefore may be shown to have tight

concentration by Theorem 4.
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Proof Of Claim 4. Recall equation 2.5 which states that

Ẑβ(e) =
∑
T⊂Hc

Ẑ(e ∪ T )χT (β)

Ẑβ(e) : {0, 1}Hc → R is a polynomial (in the functions χe), and we can began by

estimating its coefficients. First we see that

E[Ẑβ(e)] =
̂̂
Zβ(e)(∅) = Ẑ(e)

Also for any T ⊂ {0, 1}Hc
we know that Ẑ(e ∪ T ) 6= 0 iff e and T are in a common

triangle. There are at most 3(n − 2) choices of T (corresponding to completing the

n − 2 triangles containing the edge e). Therefore Combining this with the fact that

Ẑ(S′) ≤ σ−1 for all sets of size |S′| ≥ 2 we find that

varβ(Ẑβ(e)) =
∑
T⊂Hc

T 6=∅

Ẑ(e ∪ T )2 ≤ 3(n− 2)

σ2

Since Ẑβ(e) has degree 2, an application of Theorem 4 gives us that for any e ∈ H

if we set λ = min(p, 1− p) then

Pr

[∣∣∣Ẑβ(e)− Ẑ(e)
∣∣∣ ≥ √3n0.6

σ

]
< λ2 exp

(
−λn

0.1

e

)

Applying a union bound over all edges in H completes the proof.

Claim 2 is concerned with estimating |E[eitZβ ]|, given that β is a typical, well be-

haved revelation. When β is well behaved Zβ will be dominated by a sum of independent

monomials, and so the proof proceeds in a manner very similar to the arguments in

Section 2.5.2.

Claim 2. Recall A is the event in 2H
c

such that for all edges e ∈ H we have
∣∣∣Ẑβ(e)− Ẑ(e)

∣∣∣ ≤
√

3n.6 (that is, the set of all revelations of the edges of Hc which are well behaved).
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Assume β ∈ A. Then for t ≤ σπ
√
p(1− p)/2n = Θp(n)

| E
α⊂H

[eitZβ(α)]| ≤ exp

(
− kt

2n3

4π2σ2

)
+

2k|t|
√
n

σ

Proof of Claim 2. Assume that β ∈ A. Let X and Y be

X :=
∑

e∈([n]
2 )

Ẑβ(e)χe Y :=
∑
|S|≥2

Ẑβ(S)χS

then Zβ = X + Y , and we will be able to obtain bounds similar to our previous ones.

In particular X is the sum of indpendent random variables so if for each e we define

Qe := Ẑβ(e) then we will have because of our assumptions that n
2σ ≤ Ẑ(e) −

√
3n.6

σ ≤

Qe ≤ 2n
σ

because Ẑβ(e) ≤ 2n
σ and t ≤ σπ

√
p(1−p)
2n we can use Lemma 2 to show that

|E[eitẐβ(e)χe ]| ≤ 1− t2n2

2π2σ2
≤ exp

(
− t2n2

2π2σ2

)

So now we find that

E[eitX ] =
∏
e∈H

E[exp
(
itẐβ(e)χe

)
] ≤ exp

(
−
∑
e∈H

(tẐβ(e))2

)
≤ exp

(∑
e∈H
− t

2n2

π2σ2

)

= exp

(
− kt

2n3

4π2σ2

)

Now we turn our attention to Y . If |S| = 2 with S = {e1, e2} then Ẑ(S) is 0 unless

e1 ∼ e2, and therefore e1, e2 lie in a common triangle 4 = {e1, e2, e3}. However this is

the only triangle containing S, and so we can quickly compute using equation 2.5, and

the fact for |S| ≥ 2 we have |Ẑ(S)| ≤ 1
σ (see equation 2.2 and normalize to obtain Z)

that

Ẑβ(S) =
∑
T⊂Hc

χT (β)Ẑ(S ∪ T ) = χ∅(β)Ẑ(S) + χe3(β)Ẑ(4) ≤ 2

σ
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So we can compute, again using Cauchy Schwartz and the fact that H is k-regular that

E[|Y |]2 ≤ E[|Y |2] =
∑
e1∼e2
e1,e2∈H

Ẑβ
2
(S) ≤ n

(
k

2

)
4

σ2

Combining this information, we compute that

∣∣∣∣ E
α∈2H

[eitZβ(α)]

∣∣∣∣ =
∣∣∣E
α

[eit(X+Y )]
∣∣∣ ≤ ∣∣E[eitX + |tY |]

∣∣
≤ exp

(
− kt

2n3

2π2σ2

)
+ |t|

√(
k

2

)
n

(2)2

σ2

2.6 General Subgraph Counts in G(n, p)

In this section we take the arguments we have used so far in this chapter and extend

them to counting subgraphs other than triangles. We will be able to give good charac-

teristic function bounds for the corresponding random variables; however these results

as of yet do not yield any local limit theorems for any graphs on more than 3 vertices.

We will, however, be able to give a new proof of quantitative central limit theorems for

subgraph counts in G(n, p). Section 2.6.1 will introduce necessary notation and defini-

tions. Section 2.6.2 will contain the main results of this section. The remaining sections

will cover the properties of graph statistics and then the proofs of the theorems.

2.6.1 Definitions and Graph Statistics

Falling factorials will frequently appear in our analysis, and we will use the following

notation:

Definition 1. Let n, k ∈ N. We define (n) ↓k:=
∏k−1
i=0 (n − i). For the case k = 0 we

set (n) ↓0= 1.

Throughout this section we will be working with functions defined on graphs. To

capture subgraph counts we will need two graphs: our random graph G on a large
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growing vertex set of size n, and a second graph Γ on vertex sets of a fixed size k that

will define the subgraphs we are interested in counting.

Definition 2. Let SG := SG(n, k) denote the set of all labeled (with vertices distin-

guishable by their origin in [n], and given a labeling in [k]) induced subgraphs of the

graph G with k vertices. It will also be useful to denote this as the set of injections of

ψ : [k] ↪→ [n], with the map extended to edges in the obvious way.

Let’s denote the edge set in the big graph to be E =
(

[n]
2

)
and the edge set in

the small graph to be D :=
(

[k]
2

)
. Here we will give a standard notation to a slight

generalization of subgraph counts, which we will call graph statistics, and the rest of

this section will be concerned with analyzing such functions

Definition 3. Fix a graph function f : 2([k]
2 ) → R. For any n ≥ k we can define the

graph statistic Ff : 2([n]
2 ) → R (typically denoted simply as F ) for f to be

F (G) := Ff (G) :=
∑

Γ∈SG

f(Γ)

A function F (G) defined this way sums f as applied to all ordered subgraphs of size

k in G. In particular if f is the indicator of a fixed graph H (induced or otherwise), then

the graph statistic F (G) counts the number of copies of this graph inside G. To help

our study of the properties of F , it will be useful to have some notation aggregating

information about the base function f .

Definition 4. For a set T ⊂ E let

hT :=
∑

φ:supp(T )↪→D

f̂(ψ(T ))

where the summation is over all injections of supp(T ) into D =
(

[k]
2

)
.

Note the arrow here is reversed from the maps in the definition of SG. Also, hT

depends only on the isomorphism class of T , and importantly does not change as the
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parameter n changes. It will also be handy to define the largest such coefficient to be

h∗ := max
T
|hT | (2.6)

When analyzing the low weight spectral concentration of F , a better measure for esti-

mating F̂ (S) than simply |S|, will be the number of vertices incident to edges in S. We

call this set of vertices the support of S.

Definition 5. Given a set of edges S, define supp(S) := ∪e∈Se, the set of all vertices

incident to edges in S.

Our main theorems in the next section will be aimed at bounds on the characteristics

of subgraph counting random variables. However, our arguments will work in the

slightly more general setting of graph statistics which are edge dominated.

Definition 6. If f has the property that he =
∑

e∈([k]
2 ) f̂(e) 6= 0, then we say that F is

edge dominated.

A few examples to illustrate these definitions are in order.

Example 2.6.1. Consider |Γ| = 3, and so f : 2([3]
2 ) → R defined by

f(x) = x12x23 =
(√

p(1− p)χ(12)(x) + p
)(√

p(1− p)χ(23)(x) + p
)

Then f is the indicator of whether the input graph Γ contains the length 2 path from

1 to 3, but puts no condition on the edge between vertices 2 and 3. Ff will count all

ordered paths of length 2 in the graph and will be edge dominated for any p (as can be

seen by expanding out the above product).

Example 2.6.2. Again take |Γ| = 3, and so f : 2([3]
2 ) → R defined by

f(x) = x12x23(1− x13)

=
(√

p(1− p)χ(12)(x) + p
)(√

p(1− p)χ(23)(x) + p
)
·
(√

p(1− p)χ(13)(x) + p− 1
)

Then f is the indicator of whether the input graph Γ is exactly the length 2 path from

1 to 3, with edge (23) excluded. Ff will count all induced copies of P2 in the graph.
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We can compute he to be

he = 2
(
p(p− 1)

√
p(1− p)

)
+
√
p(1− p)p2 = p3/2(1− p)1/2(3p− 2)

So he 6= 0 and F is edge dominated so long as p 6= 2
3 . Note this condition is quite

logical, as 2
3 is the edge density of P2, and intuitively it is at this point that observing

an edge in our random graph gives us the least information about how many induced

copies of P2 we should expect.

In general, these above examples extend to the case of all homomorphic or induced

subgraph counts. In particular, if f checks for noninduced copies of a fixed grah H,

then Ff will always be edge dominated and obey the characteristic function bounds of

Theorems 8, 9, and 10 and the Central Limit Theorem of Theorem 11. Meanwhile if f

counts induced copies of H, then Ff will still be edge dominated so long as p 6= |E(H)|
(k2)

,

that is p is not exactly the edge density of H.

2.6.2 Characteristic Function Bounds for Subgraph Counts and an

Application

Our first main result will be showing that the characteristic function of a function/random

variable defined by applying an edge dominated graph statistic F to G(n, p) is close to

that of the Gaussian.

Theorem 8. Let F :
(

[n]
2

)
→ R be an edge dominated graph statistic defined from

f :
(

[k]
2

)
→ R be as in definition 3. Let Z := F−EF

σ , then

∣∣∣∣ϕZ(t)− e−
t2

2

∣∣∣∣ = O

 t3e− t23
n

+
t√
n


This result is always true, but useless for t >>

√
n. To address the situation as t

grows larger we prove the following result.
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Theorem 9. Fix ε > 0. For nε < t ≤ n
1
2

+ ε
4

|ϕZ(t)| ≤ O
(

1√
nt1−ε

)

Lastly we have one more case which covers yet more values of t.

Theorem 10. Fix ε > 0. For n
1
2

+ε ≤ t ≤ n1−ε we have that

|ϕZ(t)| ≤ O
(

1

tn1−ε

)

We then show an application of all of these characteristic function bounds in the

form of a quantitative central limit theorem for subgraph counts by the use of the

Esseen Smoothing Lemma. We restate an appropriate version of the smoothing result

(Lemma 2 of Chapter 16 in Feller [14] following a result of A.C. Berry).

Lemma 7. Assume Z has E[Z] = 0 and characteristic function ϕZ(t). Then if we let

N (x) := 1√
2π
e−x

2/2, the density of the normal, and ϕ := e−t
2/2 be the characteristic

function of the normal. Finally let Z be the cumulative distribution function of Z and

N the c.d.f. of the standard unit normal. Then for any x and T > 0

|Z(x)−N(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ϕZ(t)− ϕ(t)

t

∣∣∣∣dt+
24

π
√

2πT
(2.7)

We can now easily obtain the following quantitative central limit theorem for sub-

graph count like functions.

Theorem 11. Assume F :
(

[n]
2

)
→ R, a graph statistic defined from f :

(
[k]
2

)
→ R, is

edge dominated and Z = F−µ
σ . Then we have that for any a < b fixed constants and

ε > 0

Pr(Z ∈ (a, b)) =
1√
2π

∫ b

a
e−x

2/2dx+Oε

(
1

n
1
2
−ε

)
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Proof. Fix T =
√
n. For all t ≤

√
n we can apply either Theorem 8 or 9 to bound

1

π

∫ T

−T

∣∣∣∣ϕZ(t)− ϕ(t)

t

∣∣∣∣dt ≤ 2

∫ nε

0

1

t
O

 t3e− t23
n

+
t√
n

dt+ 2

∫ √n
nε

1

t
O

(
1√
nt1−ε

)
dt

= Oε

(
1

n
1
2
−ε

)

The result now follows immediately from Lemma 7

2.6.3 Properties of Graph Statistics

In this subsection we compute the Fourier Coefficients, variance and spectral concen-

tration of F , where F is a graph statistic defined from f as in Definition 3. Fix a set

T ⊂
(

[n]
2

)
. Note that a map ψ ∈ SG such that supp(T ) ⊂ ψ(D) can be determined as

follows: Pick an injection φ : supp(T ) ↪→ D, and for v ∈ φ(supp(T )) set ψ(v) = φ−1(v).

We can then extend ψ to a map on all of [k] it by specifying the image of ψ on φ(T )c

arbitrarily. An extension can be picked in (n−|supp(T )|) ↓k−|supp(T )| ways. So we have

that

F̂ (T ) =
∑
ψ∈SG

supp(T )⊂ψ(D)

f̂(ψ−1(T )) =
∑

φ:supp(T )↪→D

∑
ψ:[k]−ϕ(T )↪→[n]

f̂(ψ−1(T ))

= (n− |supp(T )|) ↓k−|supp(T )|
∑

ϕ:supp(T )↪→D

f̂(ψ−1(T ))

= (n− |supp(T )|) ↓k−|supp(T )| hT

(2.8)

Furthermore, this shows us that F̂ (T ) = Θ(nk−|supp(T )|), so long as we have that hT 6= 0.

It is of particular importance whether he = 0 were e is a set consisting of a single edge.

Using these estimates and Parseval’s 2.1 we can compute the variance of F to be

σ2 := V ar(F ) =

(
n

2

)
h2
e((n− 2) ↓k−2)2 +

k∑
i=3

((n− i) ↓k−i)2
∑

|supp(T )|=i

h2
T

=

(
n

2

)
h2
en

2k−2 +O

(
k∑
i=3

((n− i) ↓k−i)2

[(
n

i

)
max

|supp(T )=i|
h2
T

])

=
∑(

n

2

)
h2
en

2k−2 +O(n2k−3)

(2.9)
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So we see that if he 6= 0, that is f is edge dominated, then σ2−W 1(F ) = O(n2k−3). In

fact we have shown that more is true, and that for any j ≥ 1 we have that W j(F )/σ2 =

O(n−j+1)

2.6.4 Small values of t

The goal of this subsection is to prove Theorem 8, which we restate.

Theorem 8. Let F :
(

[n]
2

)
→ R be a graph statistic defined from f :

(
[k]
2

)
→ R be as

in Definition 3. Assume F is edge dominated, that is he =
∑

e∈([k]
2 ) f̂(e) 6= 0. Let

Z := F−EF
σ , then ∣∣∣∣ϕZ(t)− e−

t2

2

∣∣∣∣ = O

 t3e− t23
n

+
t√
n


Theorem 8 concerns Z, a normalized form of F with mean 0 and variance 1. We

can decompose Z into two parts, as we did in the triangle case, the dominant weight

one part X, and a smaller term Y corresponding to Fourier coefficients of weight ≥ 2.

Let Q :=
√

1

(n2)
and

X :=
∑

e∈([n]
2 )

Qχe Y :=
∑

e∈([n]
2 )

(Ẑ(e)−Q)χe +
∑
|S|≥2

Ẑ(S)χS

First we examine X. It is the mean 0 variance 1 sum of independent random variables,

and so by Berry-Esseen (see Petrov [37], Chapter V lemma 1) we know that if

Ln :=

(
n

2

)
E[|Qχe|3] =

p2 + (1− p)2√(
n
2

)
p(1− p)

= Θp(1/n)

then for t ≤ 1
4Ln

we have that

∣∣∣∣E[eitX ]− e−
t2

2

∣∣∣∣ ≤ 16Ln|t|3e
−t2

3 (2.10)

Next we examine Y . It is best considered as an error term, and we will show that E |Y |
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is small. We know from prior calculations 2.8 and 2.9

∑
|S|≥2

Ẑ2(S) = O

(
kn2k−3

σ2

)
= Ok

(
1

n

)

Further we can estimate

(
n

2

)
σ2Ẑ2(e)− σ2 =

(
n

2

)
F̂ 2(e)− σ2 = O(n2k−3) =⇒ Ẑ2(e)− 1(

n
2

) = O(n−3)

Therefore using the fact that (x− y) = (x2 − y2)/(x+ y) coupled with the observation

that Ẑ(e) +Q = Θ
(

1
n

)
, we find that

|Ẑ(e)−Q| ≤

∣∣∣∣∣∣
Ẑ2(e)− 1

(n2)

Ẑ(e) +Q

∣∣∣∣∣∣ = O

(
1

n2

)

So as a result we can conclude that var(Y ) = O(1/n) and so E[|Y |] = O( 1√
n

). Now

we are ready for our characteristic function bound for Z. If |t| ≤ 1
4Ln

= Θp(n) then

combining the above with equation 2.10 yields.

∣∣∣∣ϕZ(t)− e−
t2

2

∣∣∣∣ =

∣∣∣∣E[eitZ]− e− t22 ∣∣∣∣ =

∣∣∣∣E[eit(X+Y )
]
− e−

t2

2

∣∣∣∣
≤
∣∣∣∣E[eitX]− e− t22 ∣∣∣∣+

∣∣E[eitX+Y
]
− E eitX

∣∣ ≤ 16Ln|t|3e
−t2

3 + E |tY |

= O

 t3e− t23
n

+
t√
n


But this is exactly the statement of Theorem 8

2.6.5 Bounds for slightly larger t

The goal for this subsection is to prove

Theorem 9. Fix ε > 0. For nε < t ≤ n
1
2

+ ε
4

|ϕZ(t)| ≤ O
(

1√
nt−1+ε

)
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To prove this statement we will first need the following claims:

Claim 3. Fix ε > 0. For all sufficiently large n, we have that for any α ∈ (n−1+ε, 1)

there exists a set of edges H ⊂
(

[n]
2

)
with |H| ≥ αn

2 such that

∑
S∈H
|S|≥2

n2k−2|supp(S)| ≤ Cα2n2k−3

Where C is a fixed constant depending only on f .

Claim 4. Let A be the event (over the space of revelations β ∈ {0, 1}Hc
) that for every

edge e ∈ H we have that

|Ẑβ(e)− Ẑ(e)| < 1

n1.4

Let λ := min(p, 1− p). Then Pr(A) ≥ 1− n2λ2e
−Ω

(
λn

0.1
k2

)
.

Claim 5. Let B be the event (over the space of revelations β ∈ {0, 1}Hc
) that for every

set S ⊂ E with |S| ≥ 2

|Ẑβ(S)| ≤ Cnk−s

where C is the fixed constant C := h∗2
(k2) +1 and s = |supp(S)|. Let λ := min(p, 1−p).

Then Pr(B) ≥ 1−O

(
nke
−Ω

(
n

2
k2

))
Claim 6. Assume β ∈ A ∩B. Then for any α ∈ (n−1+ε, 1) and t = o(n)

E
x∈2H

[eitZβ ] ≤ exp

(
−αt

2

8π2

)
+O

(
|t|αnk−

3
2

)

Claim 7. For α ∈ (n−1+ε, 1)we have that

|ϕZ(t)| < exp

(
−αt

2

8π2

)
+O

(
α|t|nk−

3
2 + nke

−Ω

(
n

2
k2

)
+ n2e

−Ω

(
λn

0.1
k2

))

Theorem 9 now follows simply by making a good choice of α.

Proof of Theorem 9. We can now fix α to be of size t−2+ε, which is feasible for the

hypothesis of Claim 3 so long as we assure that nε < t < n
1
2

+ ε
4 , and so α > n−1+ε/2.

Plugging this choice of α into Claim 7 completes the proof.
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Proof of Claims

Proof Of Claim 3. Fix ` = bαnc. Let H be the subgraph given by taking the union of

bn` c disjoint cliques of size `, and the remaining vertices with no edges. The number of

edges in H is (
`

2

)
bn
`
c ≥ n(`− 1)

2
−
(
`

2

)
≥ αn2

2
− `2 − n

2

Meanwhile the number of subgraphs of H with support of size |supp(S)| = i is upper

bounded by

bn
`
c
((

`

i

)
2(i2)

)
≤ n`i−12i

2
= αi−1ni(2i

2
+O(

1

`
))

So we can see that the number of edges is at least αn
2 for n sufficiently large. Further

we can compute that

∑
S∈H
|S|≥2

n2k−2|supp(S)| ≤
k∑
i=3

∑
S∈H

|supp(S)|=i

n2k−2i ≤
k∑
i=3

(2i
2

+O(
1

`
))αi−1nin2k−2i

≤ (k +O(
1

`
))α2n2k−i = O(α2n2k−3)

Where the last inequality is justified by the assumption that ` ≥ h(n) where n→∞.

We prove Claim 4 by noting that the formula for Ẑβ(S) (a coefficient in the polyno-

mial Zβ) is itself a low degree polynomial, and therefore may be shown to have tight

concentration by hypercontractivity.

Proof Of Claim 4. Recall that

Ẑβ(e) =
∑
T⊂Hc

Ẑ(e ∪ T )χT (β)

So Ẑβ(e) : {0, 1}Hc → R is a polynomial (in the functions χe), and we can began by

estimating its coefficients. First we see that

E[Ẑβ(e)] =
̂̂
Zβ(e)(∅) = Ẑ(e)
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Also for any T ⊂ {0, 1}Hc
we know that Ẑ(e ∪ T ) 6= 0 only if |supp(e ∪ T )| ≤ k. So

we can compute:

V arβ(Ẑβ(e)) =
∑
T⊂Hc

T 6=∅

Ẑ(e ∪ T )2 =

k∑
i=3

∑
T⊂Hc

|supp(T∪e)|=i

Ẑ(e ∪ T )2

≤
k∑
i=3

∑
|supp(T∪e)|=i

Ẑ(e ∪ T )2 ≤
k∑
i=3

(
n− 2

i− 2

)
h2
∗n

2(k−i)

σ2
≤ kh2

∗
n2k−5

σ2

= O

(
1

n3

)

Since Ẑβ(e) has degree less than
(
k
2

)
, an application of Theorem 4 gives us that for

any e ∈ H if we set λ = min(p, 1− p) then

Pr

[∣∣∣Ẑβ(e)− Ẑ(e)
∣∣∣ ≥ 1

n1.4

]
< λ2 exp

(
−Ω

(
λn

0.1
k2

e

))

Applying a union bound over all edges in H completes the proof.

Proof of Claim 5. Again we use the decomposition

Ẑβ(S) =
∑
T⊂Hc

Ẑ(S ∪ T )χT (β)

So Ẑβ(S) : {0, 1}Hc → R is a polynomial (in the functions χe), and we can began

by estimating its coefficients. First we see that

E[Ẑβ(S)] =
̂̂
Zβ(S)(∅) = Ẑ(S)

Assume |supp(S)| = s. For any T ⊂ {0, 1}Hc
we know that Ẑ(S ∪ T ) 6= 0 iff

|supp(S ∪ T )| ≤ k. There are at most 2(`2)(n− s) ↓`−s≤ 2k
2
n`−s choices of T such that

|supp(S∪T )| = `. And further for each of these choices we know that Ẑ(S∪T ) ≤ h∗nk−`.
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Let g :=
∑

T⊂Hc

|supp(S∪T )|>s
Ẑ(S ∪ T )χT (β) So we can compute that

V ar(g) ≤
k∑

`=s+1

∑
|supp(S∪T )=`

(
Ẑ(S ∪ T )

)2
≤

k∑
`=s+1

2k
2
n`−s(h∗)

2n2k−2`

≤ k2k
2
(h∗)

2n2k−2s−1

Further we can see that g is a polynomial of degree at most 2(k2), and so by Hypercon-

tractivity 4 we see that

Pr
[
|g| ≥ nk−s

]
= Pr

[
g ≥ 1√

k2k2(h∗)2

√
n‖g‖2

]
≤ λ(k2) exp

(
−
(
k
2

)
2e
λ

(
t

k2k2(h∗)2

) 2

(k2)
)

= O(e−Ω(n
2
k2 ))

If |g| < nk−s then we can conclude that

Ẑ(S) =
∑

|supp(S∪T )|=s

Ẑ(S ∪ T )χT (β) + g(β) ≤ 2(s2)h∗n
k−s + nk−s

So for any S ⊂ H we find that |Ẑβ(S)| ≤ Cn2k−2s with probability at least 1 −

O(e−Ω(n
2
k2 )). Taking a union bound over all such S finishes the proof.

Proof of Claim 6. Assume that β ∈ A ∩B. Let X and Y be

X :=
∑

e∈([n]
2 )

Ẑβ(e)χe Y :=
∑
|S|≥2

Ẑβ(S)χS

then Zβ = X + Y , where X is an independent sum, and Y is likely small, so we will be

able to obtain bounds similar to our previous ones. Let Q =
√

1

(n2)
= (1 + O( 1

n))Ẑ(e),

and that Q ≈
√

2
n . Because of our assumption that β ∈ A we have that

Q

2
≤ Ẑ(e)− n−1.4 ≤ Ẑβ(e) ≤ Ẑ(e) + n−1.4 ≤ 3Q

2

Using our bound on Ẑβ(e) and the fact that t = o(1/Q) we may apply Lemma 2 to
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say that

|E[eitẐβ(e)χe ]| = 1− t2Q2

2π2
≤ exp

(
− t2

2n2π2

)
So now we find that

E[eitX ] =
∏
e∈H

E[exp
(
itẐβ(e)χe

)
] ≤ exp

(
−
∑
e∈H

(tẐβ(e))2

)
≤ exp

(∑
e∈H
− t2

2π2n2

)

= exp

(
−αn

2

4
· t2

2π2n2

)

Next we turn our attention to Y . We can use Cauchy Schwartz, the assumption

that β ∈ B and the fact that H satisfies the conditions of Claim 3 to bound

E[|Y |]2 ≤ E[|Y |2] =
∑
S⊂H
|S|≥2

Ẑβ
2
(S) ≤

∑
S⊂H
|S|≥2

C2n2k−2|supp(S)| ≤ O(α2n2k−3)

Finally we combine all of these estimates to bound EH [eitZβ ] and finish the proof of

Claim 6

∣∣∣∣ E
α∈2H

[eitZβ(α)]

∣∣∣∣ =
∣∣∣E
α

[eit(X+Y )]
∣∣∣ ≤ ∣∣E[eitX + |tY |]

∣∣
≤ exp

(
−αt

2

8π2

)
+O

(
|t|αnk−

3
2

)

Proof of Claim 7. Let A, and B be as defined in Claims 4 and 5. We can break up

{0, 1}Hc
into A ∩B and (A ∩B)c and estimate

|ϕZ(t)| := E
(α,β)∈2(

n
2)

[eitZ(α,β)] ≤ E
β⊂Hc

| E
α⊂H

[eitZβ(α)]|

≤ Pr[(A ∩B)c] + Pr[A ∩B] E
β∈(A∩B)c

∣∣∣E
α

[eitZβ ]
∣∣∣

Now combining Claims 4 and 5 we find that
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Pr[(A ∩B)c] + Pr[A ∩B] E
β∈A

∣∣∣E
α

[eitZβ ]
∣∣∣ ≤

exp

(
−αt

2

8π2

)
+O

(
α|t|nk−

3
2 + nke

−Ω

(
n

2
k2

)
+ n2e

−Ω

(
λn

0.1
k2

))

2.6.6 Middle values of t

This subsection does not have a direct analog in the triangle case, as the tighter Cauchy-

Schwarz bound given in [16] may be used in that case. The goal of this subsection is to

prove

Theorem 10. Fix ε > 0. For n
1
2

+ε ≤ t ≤ n1−ε we have that

|ϕZ(t)| ≤ O
(

1

tn1−ε

)

For t ≥ n
1
2

+ε we use a different choice of H, the subgraph whose complement we

reveal, from in the previous arguments. Here we take H to be a matching of size `.

Again let β ∈ 2H
c

be a revelation of all of the edges in Hc and look at

Zβ = Z(xH , β) = Xβ + Yβ

where

Xβ :=
∑
e∈H

Ẑβ(e)χe Yβ :=
∑
S⊂H
|S|≥2

Ẑβ(S)χS

Because H is a matching, any set S ⊂ H has support of size |supp(S)| = 2|S|. So

assuming that we are again in the event |A ∩ B| (i.e. all of the Fourier coefficients are

behaved nicely where A and B are as defined in Claims 4 and 5 respectively) we can
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compute that

E[|Yβ|]2 ≤ E[|Yβ|2] =
∑
S⊂H
|S|≥2

Ẑβ
2
(S) ≤

2∑̀
i=2

∑
S⊂H
|S|=i

C2

σ2
n2k−4i

≤
2∑̀
i=2

(
`

i

)
C2

σ2
n2k−4i ≤ 2`2

C2

σ2
n2k−8

So we have E[|Yβ|] = O(`n−3). Meanwhile so long as tẐβ(e) <
√
p(1− p)π we can use

Lemma 2 to compute

E[eitXβ ] =
∏
e∈H

E[exp
(
itẐβ(e)χe

)
] ≤ exp

(
−
∑
e∈H

(tẐβ(e))2

)

≤ exp

(
`
t2

2n2

)

So for n
1
2

+ε < t < n1−ε we can choose ` = bn2+ε

t2
c ∈ [n/2] (the size bound verifying that

there does exist a matching of size `) and then we find E[eitXβ ] ≤ exp(−nε). So then

in total we have that if β ∈ A ∩B then

E
H

[eitZβ ] = E[eit(Xβ+Yβ)] ≤ E[eitXβ + t|Yβ|] ≤ e−n
ε

+O

(
t`

n3

)
= e−n

ε
+O

(
1

tn1−ε

)

Also, arguing as we did in Claim 7, we can use Claims 4 and 5 to show that Pr[β ∈

(A ∩B)c] ≤ O
(

1
tn1−ε

)
. So we can now conclude that

E[eitZ ] = E
β
E
H
eitZ ≤ O

(
1

tn1−ε

)

Concluding the proof.
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Chapter 3

A Stability Result Using the Matrix Norm to Bound the

Permanent

3.1 Introduction

The permanent of an n×n matrix, A, has long been an important quantity in combina-

torics and computer science, and more recently it has also had applications to physics

and linear-optical quantum computing. It is defined as

per(A) :=
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where Sn denotes the set of permutations of [n] = {1, 2, . . . , n}. For instance, if A only

has entries in {0, 1} ⊆ R, then the permanent counts the number of perfect matchings

in the bipartite graph whose bipartite adjacency matrix is A.

The definition of the permanent is of course reminiscent of that for the determinant;

however, whereas the determinant is rich in algebraic and geometric meaning, the more

combinatorial permanent is notoriously difficult to understand. For example, computing

per(A) even for {0, 1}-matrices is the prototypical #P-complete problem (Valiant [43]).

On the other hand, the operator 2-norm (also called the operator norm) of a matrix is

a particularly nice parameter. For an n× n matrix A with entries in C, it is defined as

‖A‖2 = sup
‖~x‖2≤1, ~x∈Cn

‖A~x‖2,
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where ‖~v‖p is the usual lp norm (i.e., ‖~v‖pp =
∑

i |vi|p for p ∈ (0,∞), and ‖~v‖∞ =

max |vi|). The operator norm of a matrix has the advantages of being both algebraically

and analytically well-behaved as well as computationally easy to determine (as this

amounts to finding the largest singular value of A).

Considering how differently behaved the permanent and operator norm are, it is perhaps

strange to think that there would be much of a connection between them. Nonetheless,

they are related by the following extremal result, which is due to Gurvits [19] (see

also [2, 3]).

Theorem 1. Suppose A is an n× n matrix over C (resp. R), and let P denote the set

of n×n matrices over C (resp. R) that can be written as a permutation matrix times a

unitary diagonal matrix. Then |per(A)| ≤ ‖A‖n2 with equality iff A is a scalar multiple

of a matrix in P.

Note that this extremal set P is simply the set of matrices with exactly n non-zero

entries, each having modulus 1, and no two of which are in the same row or column.

Such a matrix P ∈ P has ‖P‖2 = |per(P )| = 1 and satisfies

‖AP‖2 = ‖PA‖2 = ‖A‖2, and |per(AP )| = |per(PA)| = |per(A)|

for all matrices A (which is equivalent to membership in P). Moreover, P is a subgroup

of the group of unitary matrices, and as a set, it has a very tractable topological

structure.

Motivated by algorithmic questions related to approximating the permanent, Aaronson

and Hance [2] asked whether one could prove a stability version of Theorem 1:
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Question A:

If |per(A)| is close to ‖A‖n2 , must A/‖A‖2 be ‘close’ to a matrix in P?

A somewhat more concrete version was suggested by Aaronson and Nguyen [3]:

Question B:

Characterize n × n matrices A such that ‖A‖2 ≤ 1 and there exists a constant C > 0

such that |per(A)| ≥ n−C .

Using techniques of inverse Littlewood-Offord theory, Aaronson and Nguyen gave a

substantial answer to an analogous question under the (stronger) assumptions that A

is orthogonal and that the intersection of the hypercube {±1}n with its image under A

is large. They also proved something like (actually slightly stronger than) our results

below for stochastic matrices. Further results in the direction of Question B were given

by Nguyen [34].

The two main results of the present paper are Theorems 2 and 3 below. The first

provides a positive answer to Question A for matrices over C (or R), and the second

is a more refined result that (depending on your philosophical views) at least partially

addresses Question B for matrices over R. More specifically, we bound per(A) in terms

of the following easily computed parameters.

Definition:

Let A be a matrix with rows r1, r2, . . . , rn, and p ∈ R∪{∞}. Then the parameter hp(A)

is defined as hp(A) = hp = 1
n

∑
i ‖ri‖p.
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We will only consider h∞ and h2. First note 0 ≤ h∞(A) ≤ h2(A) ≤ ‖A‖2. Moreover,

it is easy to show h2(A) = ‖A‖2 iff A/‖A‖2 is a unitary matrix, and h∞(A) = ‖A‖2 iff

A/‖A‖2 is in P. Thus, in some sense, the quantity 1 − h2(A)/‖A‖2 ∈ [0, 1] measures

how close A/‖A‖2 is to being unitary, and 1−h∞(A)/‖A‖2 ∈ [0, 1] measures how close

A/‖A‖2 is to being in P. Broadly speaking, h∞/‖A‖2 is close to 1 precisely when most

of the rows of A each have one entry of modulus close to ‖A‖2 and all the other entries

in that row are close to 0.

Before stating the first of our main results, notice that in addressing either of the above

questions, we lose no generality in assuming ‖A‖2 ≤ 1, since Question A is invariant

under scaling. However, to facilitate any application of our results, we state them in

the “more general” case that ‖A‖2 ≤ T .
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Theorem 2. Let A be an n× n matrix over C and ‖A‖2 ≤ T 6= 0. Then

(i) |per(A)| ≤ Tn exp

[
− 3n

(
1−

√
π

2 h2/T −
(

1−
√
π

2

)
h∞/T

)2
/100

]
,

(ii) |per(A)| ≤ Tn exp[−n(1− h∞/T )2/105].

As discussed above, this provides a positive answer to Question A by viewing h∞ (and

to a lesser extent h2) as a proxy for ‘closeness’ of a matrix A to those in P. As an easy

corollary, if α, β ≥ 0 satisfy |per(A)| ≥ 2Tn exp[−nα2β2/105], then all but at most αn

of the rows of A contain an entry whose modulus is at least T (1− β). And since the l2

norm of any row of A is at most ‖A‖2, no entry of A can have modulus larger than T .

Thus, entries of modulus T (1−β) are nearly as large as possible. Moreover, if a row (or

column) has an entry with very large modulus, then the remaining entries must have

very small moduli (again since its l2 norm is at most ‖A‖2). Thus, this theorem also

provides a qualitative stability result stating that matrices with large permanent must

have many very large entries, and a row (or column) containing a large entry must have

all its other entries small.

Note that Theorem 2 is only useful for values of h∞/T that are not very close to 1—

namely when 1 − h∞/T � n−1/2. Although this does well in many cases, we believe

that for large values of h∞/T , it is not optimal. For comparison, if A is δ times the

identity matrix, and δ ≈ 1, then |per(A)| ≈ e−n(1−δ) = e−n(1−h∞), and we conjecture

that this is essentially tight.

Conjecture 1. There is some constant C > 0 and some polynomial f(n) such that

the following holds. If A is an n × n matrix with complex entries and ‖A‖2 ≤ 1, then

|per(A)| ≤ f(n)e−Cn(1−h∞).



50

As a step in this direction, we are able to prove the following, which better addresses

Question B for matrices over R.

Theorem 3. Let A be an n× n matrix over R and ‖A‖2 ≤ T 6= 0. Then

|per(A)| ≤ Tn(n+ 6) exp

[
−
√
n(1− h∞/T )

400

]
.

As with Theorem 2, a result like Theorem 3 that involves h2 is also possible, and it

essentially falls out of our proof directly. Theorem 3 is an improvement over Theorem 2

when n−1/3 � 1−h∞/T and gives a meaningful bound provided 1−h∞/T � log(n)2/n.

Although this yields a quantitatively better understanding for matrices over R, we

cannot shake the belief that neither of our main results (i.e., Theorems 2 and 3) is best

possible, and we discuss this further in Section 5.2.

Structure of paper

The paper is devoted to proving Theorems 2 and 3, which goes roughly as follows.

First, we appeal to a result of Glynn [17] that allows us to convert the problem of

estimating the permanent into a problem about estimating the expected value of a

certain random variable (Section 3.2). We then use standard probabilistic tools to

show certain concentration results for the random variable of interest, which in turn

yield the estimates needed for our results. This is done for the complex-valued case in

Section 3.3, which proves Theorem 2. In Section 3.4, we consider the real-valued case,

where we analyze the corresponding random variable more carefully to obtain Theorem

3. We conclude in Section 5.2 with several open questions and conjectures, as well as a

discussion of Question B.
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3.2 Definitions and set-up with random variables

We will work over the field K, which will either be R or C. Given an n × n matrix A

over K and x ∈ Kn, set y = Ax, and define

Gx(A) =
n∏
i=1

xi ×
n∏
i=1

yi,

where z denotes the complex conjugate of z. Let X ∈ Kn be the random variable whose

coordinates are independently selected uniformly on |z| = 1, and let Y = AX (note:

if K = C, then each coordinate of X is distributed continuously over the unit circle,

whereas if K = R, then X is chosen uniformly from the discrete set {−1, 1}n). Then

per(A) = E[GX(A)] = E

[
n∏
i=1

XiYi

]
,

obtained simply by expanding out the product in GX(A) and using the fact that the Xi

are independent with mean 0 and variance 1 (for proofs of this fact, see [19, 17, 2, 3]).

Therefore, by convexity (which we are about to use twice), we have

|per(A)| ≤ E

[
n∏
i=1

|XiYi|

]
= E

[
n∏
i=1

|Yi|

]
≤ E

[(
1

n

n∑
i=1

|Yi|

)n]
= E

[(
‖AX‖1
n

)n]
.

Note that from here, we could say (by Cauchy-Schwartz)

‖AX‖1
n

≤ ‖AX‖2√
n

=
‖AX‖2
‖X‖2

≤ ‖A‖2,

thus obtaining the inequality |per(A)| ≤ ‖A‖n2 of Theorem 1 (the equality case follows

by considering equality in the above estimates).

Specializing to norm at most 1

Note that to prove our results, it suffices to prove them for the case ‖A‖2 ≤ 1. This

is because otherwise, we could simply scale the matrix by some α to have norm at

most 1, and because per(A) = αnper(A/α), our results would follow. As such, we will
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henceforth assume ‖A‖2 ≤ 1 (explicitly making note of when we do), but this choice is

simply for notational ease. We remark that the set-up thus far has also been employed

in several other papers [19, 2, 3]; however, the remainder of this paper deviates from

the previous literature.

3.3 Proof of Theorem 2 (K = C)

In the setting where ‖A‖2 ≤ 1, the permanent is always bounded above by 1 (as

shown above), and we want to conclude that under certain conditions, it must be

(exponentially) small. We know (since 0 ≤ ‖AX‖1/n ≤ ‖A‖2 ≤ 1) that for all ε ≥ 0

and all µ̃ ≥ 0,

|per(A)| ≤ E
[(
‖AX‖1
n

)n]
≤ (µ̃/n+ ε)n + P(‖AX‖1 ≥ µ̃+ εn).

We will pick µ̃ suitably small with µ̃ ≥ E[‖AX‖1] and then argue that ‖AX‖1 is tightly

concentrated about its mean, which will complete the proof.

The mean of ‖AX‖1

We appeal to a theorem of König, Schütt, and Tomczak-Jaegermann [27], which is a

variant of Khintchine’s inequality conveniently well-suited for our situation (in fact, X

was chosen in part so that we could apply this result directly).

Theorem 4 (König et al. [27], 1999). Let K be R or C. Suppose ~a = (a1, . . . , an) ∈ Kn

is fixed, and suppose each coordinate of ξ ∈ Kn is independently distributed uniformly

on |z| = 1. Then ∣∣∣∣∣E
[∣∣∣∣∣∑

i

aiξi

∣∣∣∣∣
]
− ΛK‖~a‖2

∣∣∣∣∣ ≤ (1− ΛK)‖~a‖∞,

where ΛR =
√

2/π and ΛC =
√
π/2.

Applying this to each row of A (and using linearity of expectation) gives
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Proposition 5. With A and X ∈ Cn as in Section 3.2, we have

E[‖AX‖1/n] ≤ 1

n

n∑
i=1

[√
π/2‖ri‖2 +

(
1−
√
π/2

)
‖ri‖∞

]
=

√
π

2
h2(A)+

(
1−
√
π

2

)
h∞(A).

Concentration about mean

To show concentration of ‖AX‖1 about its mean, we use a very general and useful result

of Talagrand (a form of “Talagrand’s inequality”), which can be found in chapter 1 of

his book [30].

Theorem 6 (Talagrand [30], 1991). Suppose f : Rn → R is such that |f(x)− f(y)| ≤

σ‖x−y‖2 for all x, y ∈ Rn, and define the random variable F = f(ξ1, ξ2, . . . , ξn), where

the ξi are independent standard normal random variables. Then for all t ≥ 0,

P(F > E[F ] + t) ≤ e−2t2/(πσ)2
.

We apply this result to our setting by way of a now standard trick that expresses

our random variable of interest as a function of standard Gaussians. In fact, this trick

is even discussed in [30], so we could have saved a few lines of the following argument

by simply citing a “more applicable” version of Theorem 6 (i.e., one for which this trick

has already been incorporated); however, the trick so nicely captures the usefulness of

Theorem 6, that we thought it worth recalling here.

Proposition 7. Suppose ‖A‖2 ≤ 1, and let X ∈ Cn be as in Section 3.2. Then for all

t ≥ 0,

P(‖AX‖1 > E[‖AX‖1] + tn) ≤ e−nt2/π3
.

Proof. To make use of Theorem 6, we need to define a suitable f : Rn → R, which we

do in pieces. First define Φ : R→ R via

Φ(u) =
1√
2π

∫ u

−∞
e−x

2/2 dx,

which is the probability that a standard Gaussian is at most u. Then define g : Rn → Cn
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as

g(x1, . . . , xn) =



e2πiΦ(x1)

e2πiΦ(x2)

...

e2πiΦ(xn)


,

and, finally, set f(x) = ‖Ag(x)‖1.

Notice that if ξ1, ξ2, . . . , ξn are independently sampled from the standard normal dis-

tribution, then each Φ(ξi) is distributed uniformly on [0, 1]. Therefore g(ξ1, . . . , ξn) has

the same distribution as X, and so F := f(ξ1, . . . , ξn) has the same distribution as

‖AX‖1.

Now let x, y ∈ Rn be arbitrary. Then we have

|f(x)− f(y)| =
∣∣∣‖Ag(x)‖1 − ‖Ag(y)‖1

∣∣∣ ≤ ‖Ag(x)−Ag(y)‖1 ≤
√
n‖A(g(x)− g(y))‖2

≤
√
n‖A‖2‖g(x)− g(y)‖2 ≤

√
n‖g(x)− g(y)‖2.

Using the fact that |eiα − 1| ≤ |α| for all α ∈ R, we further bound the above by

‖g(x)− g(y)‖22 =

n∑
j=1

|e2πiΦ(xj) − e2πiΦ(yj)|2 =

n∑
j=1

|e2πi(Φ(xj)−Φ(yj)) − 1|2

≤ (2π)2
n∑
j=1

|Φ(xj)− Φ(yj)|2 ≤ 2π
n∑
j=1

|xj − yj |2 = 2π‖x− y‖22.

Thus, |f(x) − f(y)| ≤
√

2πn‖x − y‖2, and appealing to Theorem 6 with σ =
√

2πn

yields

P(‖AX‖1 > E[‖AX‖1] + tn) = P(F > E[F ] + tn) ≤ e−2(nt)2/(π
√

2πn)2
= e−nt

2/π3
.
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Finishing the proof for K = C

Proposition 8. Let ‖A‖2 ≤ 1 and X ∈ Cn be as in Section 3.2. If E[‖AX‖1/n] = µ,

then

E[(‖AX‖1/n)n] ≤ 2 exp[−3n(1− µ)2/100].

Proof. Let L = tµ+ (1− t) with t ∈ [0, 1] to be determined. Since 0 ≤ ‖AX‖1/n ≤ 1,

we have (appealing to Proposition 7 for the last inequality)

E[(‖AX‖1/n)n] ≤ Ln + P(‖AX‖1/n > L)

≤ exp[−n(1− L)] + P(‖AX‖1/n− µ > (1− t)(1− µ))

≤ exp[−nt(1− µ)] + exp[−n(1− t)2(1− µ)2/π3],

We now take 2t(1 − µ) = π3 + 2 − 2µ − π3/2
√
π3 + 4− 4µ (for which t does lie in the

interval [0, 1]), so as to make the exponents equal. For this t, we obtain

E[(‖AX‖1/n)n] ≤ 2 exp
[
− n(2µ+ π3/2

√
π3 + 4− 4µ− π3 − 2)/2

]
.

Then appealing to the Taylor series at µ = 1, we see that for all µ ∈ [0, 1],

2µ+ π3/2
√
π3 + 4− 4µ− π3 − 2

2
≥ (1− µ)2

π3
−2(1− µ)3

π6
≥ (1−µ)2

(
1

π3
− 2

π6

)
≥ 3(1− µ)2

100
.

We then readily obtain Theorem 2 simply by combining Propositions 5 and 8 and using

the fact that if ‖A‖2 ≤ 1, then 0 ≤ h∞(A) ≤ h2(A) ≤ 1. A leading factor of 2

coming from Proposition 8 can be removed. More generally, any bound of the form

|per(A)| ≤ ‖A‖n exp[−nF (h∞) + o(n)] can immediately be improved to |per(A)| ≤

‖A‖n exp[−nF (h∞)] by a simple amplification trick (considering a block diagonal matrix

consisting of many copies of the matrix A).
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3.4 Proof of Theorem 3 (better results for K = R)

For matrices over R, our general strategy is the same as before, but we first partition

the rows of A into those that contain ‘big’ entries and those that do not. We show that

the contribution due to rows with large entries has small variance, and although the

rows without large entries may each contribute something of high variance, we benefit

from the fact that there simply aren’t that many such rows. In this way, we are able

to obtain better concentration of ‖AX‖1 about its mean, which in turn gives a better

bound on per(A).

We are not sure exactly how to adapt this argument when K = C, although we admit-

tedly didn’t try very hard to do so. We feel confident (especially in light of Theorem 3)

that Theorem 2 can be improved, but we do not think that Theorem 3 is best possible

either (which is why we haven’t worried so much about extending it to K = C). See

Section 5.2 for a discussion of several related conjectures (some perhaps more true than

others) and open problems.

Set-up for the real-valued case

As in Section 3.2, we let A be an n × n matrix over R with ‖A‖2 ≤ 1. Define t =

1− h∞(A). Then to prove Theorem 3, our goal is to show

|per(A)| ≤ (n+ 6) exp[−
√
nt/400].

Let ε > 0 and 1/10 > λ > 0 be parameters to be determined (we will end up choosing

ε = t/10 and λ = 64/
√
nt). We now partition the rows of A into “big rows” (those

containing an element of absolute value at least 1 − λ) and “small rows” (the rest).

Suppose there are b big rows and l = n− b small rows. Recall that because ‖A‖2 ≤ 1,

each row and column of A has l2-norm at most 1. Thus, ‘large’ entries (those of absolute
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value at least 1 − λ) must appear in different rows and columns. By multiplying A

by appropriate permutation matrices and the appropriate ±1-diagonal matrix (which

changes neither the norm, nor the absolute value of the permanent, nor the values of

t, b, or l), we can assume A is of the form:

A =

 B

L

,
where B is a b×n matrix, the (i, i)-entries of B are all positive with size at least 1−λ,

and all the rest of the entries in A have absolute value less than 1−λ. For convenience,

we will assume b > 0 and l > 0, for if not, our same argument would apply with only

superficial alterations.

We recall our earlier set-up as in the complex-case (but with X ∈ Rn now uniformly

distributed over {−1, 1}n). Then for all µ̃B, µ̃L ≥ 0, we have

|per(A)| ≤ E
X

[(
‖AX‖1
n

)n]
= E

X

[(
‖LX‖1 + ‖BX‖1

n

)n]
≤
(
µ̃L + µ̃B

n
+ 2ε

)n
+ P(‖LX‖1 ≥ µ̃L + εn) + P(‖BX‖1 ≥ µ̃B + εn),

(3.1)

where (as before) the last inequality is justified by the fact that the random variable

within the expected value is bounded above by 1.

We choose

µ̃B =
b∑
i=1

[√
2

π
+

(
1−

√
2

π

)
‖ri‖∞

]
=

b∑
i=1

[
1−

(
1−

√
2

π

)
(1− ‖ri‖∞)

]
, and

µ̃L =

n∑
i>b

[√
2

π
+

(
1−

√
2

π

)
‖ri‖∞

]
=

n∑
i>b

[
1−

(
1−

√
2

π

)
(1− ‖ri‖∞)

]
,
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where (again) ri is the ith row of A (note, ‖ri‖∞ = bi,i for all i ≤ b). Then by Theorem

4 (this time with K = R), we have µ̃L ≥ E[‖LX‖1] and µ̃B ≥ E[‖BX‖1], and by the

definitions

µ̃L + µ̃B
n

= 1−

(
1−

√
2

π

)
1

n

n∑
i=1

(
1− ‖ri‖∞

)
= 1−

(
1−

√
2

π

)
t. (3.2)

To take advantage of (3.1), we need only exhibit concentration bounds for ‖LX‖1 and

‖BX‖1.

Concentration of ‖LX‖1

To show concentration of ‖LX‖1 about its mean, we will again apply a version of

Talagrand’s inequality (but this time suited for the discrete distribution over {−1, 1}n).

Instead of showing the derivation of this from the corresponding general result in [30]

(as we did before), we will simply cite [4], in which the following statement appears as

Theorem 3.3.

Theorem 9. Suppose M is a k × n real-valued matrix such that ‖M~x‖1 ≤ σ‖~x‖2 for

all ~x ∈ Rn. Let ξ ∈ Rn be chosen uniformly from {−1, 1}n, and let m be a median of

‖Mξ‖1. Then for all γ ≥ 0, we have P(|‖Mξ‖1 −m| > γ) ≤ 4e−γ
2/(8σ2).

Lemma 10. With notation as before, if εn ≥ 16
√
nt log(n)/λ, then

P(‖LX‖1 ≥ µ̃L + εn) ≤ 4 exp

[
−ε2nλ

32t

]
.

Proof. Note that for all ~x ∈ Rn, we have ‖L~x‖1 ≤
√
l‖L~x‖2 ≤

√
l‖A~x‖2 ≤

√
l‖~x‖2.

Thus, if m is a median of ‖LX‖1, then by Theorem 9, we have

P(|‖LX‖1 −m| > γ) ≤ 4e−γ
2/(8l). (3.3)

From this, we see that ‖LX‖1 is tightly concentrated about its median. However, this
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also implies

m ≤ E[‖LX‖1] + 8
√
l log n, (3.4)

since otherwise, we would have

E[‖LX‖1] ≥
(
E[‖LX‖1] + 4

√
l log n

)
· P
(
|‖LX‖1 −m| ≤ 4

√
l log n

)
≥

(
E[‖LX‖1] + 4

√
l log n

)
· (1− 4/n2)

= E[‖LX‖1] + 4
√
l log n−

(
E[‖LX‖1] + 4

√
l log n

)
· 4/n2.

And subtracting E[‖LX‖1] from both sides and rearranging, we would obtain

n2 ≤ 4 +
E[‖LX‖1]√
l log n

≤ 4 +
n√

log n
,

which is a contradiction if n > 2 (whereas for n ≤ 2, the desired bound on m is implied

by m ≤ n [not that it matters]). Therefore, appealing to (3.4), we have

P(‖LX‖1 ≥ µ̃L + εn) ≤ P(‖LX‖1 ≥ E[‖LX‖1] + εn) ≤ P
(
‖LX‖1 ≥ m+ εn− 8

√
l log n

)
.

Furthermore, if εn ≥ 16
√
l log n, then we can combine this with (3.3) to obtain

if εn ≥ 16
√
l log n, then P(‖LX‖1 ≥ µ̃L + εn) ≤ 4 exp

[
−ε2n2

32l

]
. (3.5)

Finally, since nt ≥
∑n

i=b+1(1 − ‖ri‖∞) ≥ lλ, we know l ≤ nt/λ, completing the proof

by (3.5).

Concentration of ‖BX‖1

We now focus on getting an upper bound on P(‖BX‖1 ≥ µ̃B + εn). We first recall the

following classical concentration result.

Proposition 11 (Hoeffding’s inequality). Let a1, . . . , ak be real numbers (not all of

which are 0), and let ξ1, ξ2, . . . , ξk be independent each distributed uniformly on {−1, 1}.
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Then for all γ ≥ 0,

P

(
k∑
i=1

aiξi ≥ γ

)
≤ exp

[
−γ2

2
∑k

i=1 a
2
i

]
.

Let B̃ =

 B

0

 be the n×n matrix whose first b rows are given by B and the rest

are 0. Our key step here is replacing ‖BX‖1 with 〈X, B̃X〉, via the following lemma1.

Lemma 12. With notation as before, if λ < 0.1 then

P(‖BX‖1 ≥ µ̃B + εn) ≤ P(〈X, B̃X〉 ≥ µ̃B + εn) + ne−1/(5λ).

Proof. It suffices to show P(‖BX‖1 6= 〈X, B̃X〉) ≤ ne−1/(5λ). The idea is that since

each row of B is dominated by a single large entry (namely bi,i), each entry of BX is a

random sum dominated by a single large term (namely Xibi,i). Thus, it is very unlikely

that any entry of BX would have a different sign than Xibi,i. This is made rigorous as

follows.

Recall that we ordered the columns of B so that the (i, i)-entry is the largest in its row,

and that bi,i ≥ 1 − λ. Letting Yi be the ith coordinate of BX, we have, by a simple

union bound,

P(‖BX‖1 6= 〈X, B̃X〉) ≤
b∑
i=1

P(|Yi| 6= XiYi) =

b∑
i=1

P(XiYi < 0) =

b∑
i=1

P

 n∑
j=1

XiXjbi,j < 0


Using the fact that for any given i, the random vector (XiXj)j 6=i has the same joint

distribution as (Xj)j 6=i (and that X2
i = 1), we obtain by Proposition 11

b∑
i=1

P

 n∑
j=1

XiXjbi,j < 0

 =
b∑
i=1

P

bi,i < n∑
j 6=i

Xjbi,j

 ≤ b∑
i=1

exp

[
−b2i,i

2
∑

i 6=j b
2
i,j

]
.

1Extending this step is the main obstacle to applying the present argument when K = C.
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Since bi,i ≥ 1− λ and
∑

j b
2
i,j ≤ 1, this in turn is bounded by

b∑
i=1

exp

[
−b2i,i

2
∑

i 6=j b
2
i,j

]
≤ n exp

[
−(1− λ)2

2(1− (1− λ)2)

]
≤ ne−1/(5λ),

where the last inequality is justified because 0 < λ < 0.1.

We can now exploit the fact that 〈X, B̃X〉 is a degree two polynomial over {−1, 1}n,

allowing us to use any of a variety of concentration inequalities. We will use an inequality

of Bonami [9], which was the first hypercontractivity inequality of its type. A detailed

exposition of such results can be found in chapter 9 of O’Donnell’s book [36], and a

comparison of this to more recent polynomial concentration inequalities can be found

in [41].

Theorem 13 (Bonami [9], 1970). Let F : Rn → R be a degree k polynomial, and con-

sider the random variable Z = F (ξ1, ξ2, . . . , ξn), where the ξi are independent with

each distributed uniformly over {−1, 1}. Then for all q ≥ 2, we have E[|Z|q] ≤(
(q − 1)k E[Z2]

)q/2
.

Lemma 14. With notation as before, if εn ≥ 4e
√
nt, then

P(〈X, B̃X〉 ≥ µ̃B + εn) ≤ exp

(
−εn

2e
√
nt

)
.

Proof. For ~x ∈ Rn, define F (x1, x2, . . . , xn) = 〈~x, B̃~x〉 −
b∑
i=1

bi,i, and define the random

variable Z = F (X1, . . . , Xn). Then P(〈X, B̃X〉 ≥ µ̃B + εn) ≤ P(Z ≥ εn), since2

µ̃B ≥
∑

i≤b bi,i. Now F (x1, x2, . . . , xn) is a degree 2 polynomial, and moreover, by

expanding out the sums and using the fact that terms such as E[XiXj ] vanish when

2In fact, we could have simply taken µ̃B =
∑
i≤b bi,i, but we chose instead to define it similarly to

µ̃L, a change which only affects the constants in our end result.
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i 6= j, we obtain

E[Z2] = E

 b∑
i=1

−bi,i +
b∑

j=1

XiXjbi,j

+
b∑
i=1

n∑
j=b+1

XiXjbi,j

2
= E

 b∑
i=1

−bi,i +

b∑
j=1

XiXjbi,j

2+ E

 b∑
i=1

n∑
j=b+1

XiXjbi,j

2
=

b∑
i=1

∑
j<i

(bi,j + bj,i)
2 +

b∑
i=1

n∑
j=b+1

b2i,j ≤ 2
b∑
i=1

∑
j<i

(b2i,j + b2j,i) + 2
b∑
i=1

n∑
j=b+1

b2i,j

= 2

b∑
i=1

−b2i,i +

n∑
j=1

b2i,j

 ≤ 2

b∑
i=1

(1− b2i,i) ≤ 4

b∑
i=1

(1− bi,i) ≤ 4nt.

Applying Theorem 13 with q = εn/(2e
√
nt)—which is valid since by hypothesis this

ratio is at least 2—together with Markov’s inequality, we obtain

P(Z ≥ εn) ≤ P(|Z|q ≥ (εn)q) ≤ E[|Z|q]
(εn)q

≤
(

(q − 1)2
√
nt

εn

)q
≤ exp

(
−εn

2e
√
nt

)
.

Finishing the proof for K = R

We now need to pick ε and λ to optimize the tradeoffs between our various upper bounds.

We need the assumptions of Lemmas 10, 12, and 14—namely (i) εn ≥ 16
√
nt log(n)/λ,

(ii) λ < 0.1, and (iii) εn ≥ 4e
√
nt—in which case we can combine these lemmas with

(3.1) and (3.2) to obtain

|per(A)| ≤
(

2ε+
µ̃L + µ̃B

n

)n
+ P(‖LX‖1 ≥ µ̃L + εn) + P(‖BX‖1 ≥ µ̃B + εn)

≤

(
2ε+ 1−

(
1−

√
2

π

)
t

)n
+ 4 exp

[
−ε2nλ

32t

]
+ ne−1/(5λ) + exp

(
−εn

2e
√
nt

)
.

We will take ε = t/10 and λ = 64/
√
nt, for which we claim that conditions (i), (ii), and

(iii) are satisfied. Note that since our goal is to show |per(A)| ≤ (n+6) exp[−
√
nt/400],

we may assume
√
nt/ log(n + 6) ≥ 400 (or the bound we are trying for is worse than

the trivial bound of 1) (of course, in any case we are really more interested in large n).
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Notice that with ε and λ as above:

(i) εn ≥ 16
√
nt log(n)/λ is equivalent to

√
nt ≥ 400 log n;

(ii) λ < 0.1 is equivalent to
√
nt > 640; and

(iii) εn ≥ 4e
√
nt is equivalent to

√
nt ≥ 40e.

Thus, these choices of λ and ε allow us to appeal to the aforementioned results, obtaining

|per(A)| ≤

(
2ε+ 1−

(
1−

√
2

π

)
t

)n
+ 4 exp

[
−ε2nλ

32t

]
+ ne−1/(5λ) + exp

(
−εn

2e
√
nt

)
≤ exp

[
−nt

(
1−

√
2/π − 0.2

)]
+ 4 exp

[
−
√
nt

50

]
+ n exp

[
−
√
nt

320

]
+ exp

[
−
√
nt

20e

]
≤ (n+ 6) exp

[
−
√
nt

400

]
,

which completes the proof of Theorem 3.

3.5 Conclusion

Our most natural open question concerns the optimality of our main results. Namely, a

proof of Conjecture 1 as stated in Section 3.1 would be very interesting. The main bar-

rier preventing us from proving this conjecture is our reliance on Talagrand’s inequality.

For K = R, we partially mitigated the cost of using this inequality via Lemma 10, but

the application of Theorem 9 was still a crucial (though not the only) bottleneck. Our

argument could conceivably be pushed further either by a more careful analysis that

better uses (3.5) or by a more nuanced argument that splits the matrix A into more

than two pieces.

One could also try to avoid using Talagrand’s inequality altogether. It is possible that

some stronger inequality could replace it (by taking advantage of some aspects particular

to our situation), but a more likely “quick fix” of this sort would be a more direct

estimate of E[(‖AX‖1/n)n] (in the real case, AX is simply a vector-valued Rademacher
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sum, which is a well-studied random variable). On the other hand, it could be that the

convexity bounds on GX(A) already give away too much to recover anything stronger

than what we have.

An entirely different approach would be to determine among matrices with given norm

and h∞, which ones maximize |per(A)| (it does not seem impossible that this maximum

is always attained by a circulant matrix with all real entries). A characterization of

these extremal matrices would certainly be very appealing, and one might hope that

thinking along these lines would suggest a more combinatorial approach.

As far as Question B is concerned, we feel that there is still more to be said beyond

the present results. Namely, our results only provide a necessary condition for a matrix

to have a large permanent (i.e., h∞ must be large). But there is no clean converse to

this statement; consider for example a diagonal matrix with most of its diagonal entries

equal to 1 except for one of them equal to 0 (this has large h∞ and permanent 0).

To continue the spirit of the question, we state the following variation of Question B

(essentially echoing a question of [2]):

Problem B′:

Find a (deterministic) polynomial-time algorithm that takes an n×n matrix A of norm

1 and decides whether |per(A)| < n−100 or |per(A)| > n−10 (with the promise that the

input matrix will satisfy one of these inequalities).

We attempted this along the following lines: “if the matrix has large permanent, it must

have many rows each of which is dominated by a single large entry. If the matrix is of

this form, then [heuristic] hopefully that means the permanent is dominated by terms

that use at least most of these large entries. Since there are so many large entries, we
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can efficiently compute the exact contribution of these dominant terms.” However, our

current results do not allow us to conclude that there are enough rows with large entries

(we would like all but about log n of the rows but are limited to all but about log2 n

when K = R and
√
n log n when K = C). And in fact, even if we could improve our

result to the conjectured (and best possible) bound mentioned above, we still do not

quite see how to make this heuristic argument yield a polynomial-time algorithm. We

should note that Gurvits [19] found a randomized algorithm accomplishing the goal of

Problem B′, and in the deterministic setting, progress towards Problem B′ was made

in [2] which gives an algorithm in the case that the entries of A are non-negative.

Further remarks

• We note that there is a lot of freedom in choosing the random variable X ∈ Kn for

GX(A) (X just needs to have independent components each satisfying E[Xi] = 0

and E[|Xi|2] = 1). For example, when K = R, it is tempting to replace X ∈ Rn

with an n-dimensional Gaussian and bound the permanent by something like

|per(A)| =

∣∣∣∣∣E
[∏

i

XiYi

]∣∣∣∣∣ ≤ E

[∏
i

|XiYi|

]
≤ E

[(
1

n

∑
i

|XiYi|

)n]
.

But even if A is the identity matrix this is already (exponentially) larger than 1,

which illustrates the difficulty with this approach.

• Via an entirely different method, we were also able to get an upper bound on the

permanent for matrices having only non-negative real entries by appealing to the

results of [20]. Unfortunately, the bound we obtained is strictly weaker than the

results of the present paper, so it is omitted.

Acknowledgement: We thank Hoi Nguyen for introducing us to this problem and

sharing [34].
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Chapter 4

Robust Positioning Patterns

4.1 Introduction

A 1-dimensional “positioning pattern” is a sequence of N symbols from some alphabet,

with the property that any window of n consecutive elements from the sequence uniquely

determines the position of the window. Similarly, a 2-dimensional “positioning pattern”

is an N × N matrix of symbols from some alphabet, with the property that any n ×

n (contiguous) window of elements uniquely determines the position of the window.

Positioning patterns have been classically studied in combinatorics under various names:

de Bruijn sequences, perfect maps, pseudorandom sequences and arrays, etc. In recent

years, these objects have found a number of useful real-world applications, such as robot

localization [40], camera localization [42], the Echo Smartpen, and smart stylus’ [1].

To see the utility of positioning patterns, let us briefly describe the application

from [1]. We are given a display device (such as a monitor or a laptop screen) whose

sole capability is display (in particular, it cannot detect touch or the presence of a

stylus/pen). The smart stylus from [1] is based on a combination of software and

hardware, and converts any such display into one which can take input from the stylus.

The hardware component is a pen with a small camera at its nib, which when brought

near the screen of the display device can view a small n× n window of the screen. The

software component sets the lower order bits of the color attribute for each pixel on the

screen according to a positioning pattern. This ensures that the lower order bits for

any n× n window of the screen uniquely determines the position of the window: thus

one can use the image from the pen camera to determine the location of the pen, and

this is just as good as having a display that can detect the location of an associated

stylus.
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A “robust positioning pattern” is a sequence/matrix of symbols, which allows such

position determination by reading a small window from the pattern even if some errors

occur while reading the small window. Concretely, the sequence/matrix has the property

that the contents of the different windows should be far apart from each other in

Hamming distance. Algorithmically, we would like to be able to efficiently decode the

position of the window, given the corrupted contents of a window.

We are interested in constructing such robust positioning patterns and designing

associated decoding algorithms for them. Our motivation comes from both practice

and theory. Firstly, these problems are naturally motivated by the applications of

positioning patterns given above, which rely on physical devices and are thus prone to

error. Secondly, this topic presents interesting combinatorial and algorithmic challenges

at the confluence of error-correcting codes and combinatorial sequence design, both of

which are extensively studied and have highly developed theories.

Our main results give explicit constructions of robust positioning patterns, along

with associated decoding algorithms. These constructions are the first to achieve con-

stant rate while being robust to a constant fraction of errors, and are also the first to

achieve robustness to a constant number of errors with redundancy within a constant

factor of optimal.

4.1.1 Results

We begin with the 1 dimensional setting.

Let σ ∈ ΣN be a string. We let σ[i, j) denote the substring σiσi+1 . . . σj−1. We will

be interested in substrings of the form σ[i, i+ n), which we will also call the “windows

of length n”. We define the window-n distance of σ to equal the minimum, over distinct

i, j ∈ [N − n+ 1] of

∆(σ[i, i+ n), σ[j, j + n)),

where ∆ denotes the Hamming distance.

The basic combinatorial problem here is to determine the length of the longest

string with window-n distance at least d. The basic algorithmic problems here are: (1)



68

Encoding: to explicitly construct a long string with window-n distance at least d,

and (2) Decoding: for this sequence, given a “received string” r ∈ Σn which is within

distance e of some window σ[i, i+ n− 1], to find i.

It is sometimes convenient to use the following terminology. Define the window-n rate

of σ to equal logN
n log |Σ| . Define the window-n relative distance to be the window-n distance

divided by n.

It is clear that the length N of any sequence with window-n distance d cannot be

more than the size of the largest error-correcting code C ⊆ Σn with minimum distance

d (since the n-windows of the sequence form such an error-correcting code). Thus we

have the following rough upper bounds on the length of such a sequence:

1. for d = δn (with δ > 0 a constant), we have N ≤ |Σ|n(1−f(δ)), for some function

f(δ) that goes to 0 as δ goes to 0,

2. for d = O(1), |Σ| large, we have N ≤ |Σ|n
|Σ|Ω(d) ,

3. for d = O(1), |Σ| = 2, we have N ≤ 2n

nΩ(d) .

A simple application of the Lovász Local Lemma (suggested to us by Nathaniel Shar)

shows that the above upper bounds on N are essentially tight (nonconstructively); there

exist strings in ΣN matching the above bounds. A very nice result of Kumar and Wei [29]

shows that a random irreducible Linear Feedback Shift Register Sequence matches the

third of the above upper bounds with high probability (this result holds for all d ≤
√
n).

It is natural to ask if we can match these bounds with explicit constructions and efficient

decoding algorithms.

Our main results for 1-dimensional sequences give explicit constructions and efficient

decoding algorithms for sequences, essentially matching the above parameters1.

Theorem 12 (1-Dimension, Large Σ, constant δ). There exists an infinite sequence

of n and alphabets Σn (with |Σn| ≤ O(n)), such that for every R ∈ (0, 1), there is a

sequence σ ∈ ΣNn with:

1We require a widely believed number theoretic conjecture to attain the third set of parameters.
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1. the rate of σ is at least R,

2. the window-n relative distance of σ is at least max(1− 3R, (1−R)/3)− o(1),

3. the i’th coordinate of σ can be computed in time poly(n),

4. n-windows of σ can be decoded from a constant fraction of errors in poly(n) time.

This theorem follows from Theorem 16.

Theorem 13 (1-Dimension, |Σ| = 2, constant δ). There exists an infinite sequence of

n such that for every R ∈ (0, 1), there is a sequence σ ∈ {0, 1}Nn with:

1. the rate of σ is at least R,

2. the window-n relative distance of σ is at least h(R)− o(1), (where h(R) > 0 ),

3. the i’th coordinate of σ can be computed in time poly(n),

4. n-windows of σ can be decoded from a constant fraction of errors in poly(n) time.

This theorem follows from Corollary 5.

Theorem 14 (1-D, Large Σ, constant distance). There exists an infinite sequence of n

and alphabets Σn (with |Σn| = O(n)), such that for every constant d, there is a sequence

σ ∈ ΣNn
n with:

1. Nn ≥ |Σn|n
|Σn|O(d) ,

2. the window-n distance of σ is at least d,

3. the i’th coordinate of σ can be computed in time poly(n),

4. n-windows of σ can be decoded from Ω(d) errors in poly(n) time.

This theorem follows from Theorem 16.

Our result for constant distance binary codes depends on the existence of suitable

Mersenne-like primes. Such primes are widely believed to exist based on standard

number theoretic heuristics.
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Conjecture C: There exists a constant c and infinitely many n such that there exists

a prime between 2n − c · n and 2n − 1.

Note that this conjecture would be implied by the existence of infinitely many

Mersenne primes.

Theorem 15 (1-D, |Σ| = 2, constant distance). Assume conjecture C. There exists an

infinite sequence of n such that for every constant d, there is a sequence σ ∈ {0, 1}Nn

with:

1. Nn ≥ 2n

nO(d) ,

2. the window-n distance of σ is at least d,

3. the i’th coordinate of σ can be computed in time poly(n),

4. n-windows of σ can be decoded from Ω(d) errors in poly(n) time.

Our large alphabet constructions all use properties of polynomial-based error-correcting

codes (especially using their cyclicity when the evaluation set is special), in conjunction

with Gray codes.

Our binary constructions are based on a new “augmented” code concatenation

scheme. This new scheme is based on two ideas: (1) using a low-autocorrelation se-

quence as a “marker”, and (2) designing an inner code for the concatenation all of whose

codewords are far away from all substrings of the marker.

4.1.2 Related work

The classical notions of de Bruijn sequences and M sequences are the basic examples of

positioning patterns. The two-dimensional “de Bruijn torus” is the natural generaliza-

tion to two dimensions, and were first constructed by [31]. These found applications in

various practical settings for localization / positioning [42, 40, 1].

Efficiently decodable de Bruijn sequences and tori, which are extremely natural for

the positioning applications, were given by [33, 32, 11, 12].

The requirement for robustness in positioning patterns is very natural for real-world

applications where the positioning pattern is “measured” by a physical device. Indeed,
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several applied works encountered these problems (in applications such as wireless de-

vice localization, and markers for “augmented reality”) [28, 24, 22], and proposed ad

hoc solutions.

On the theoretical side, there were some important papers on robust positioning

such as [29, 10, 21]. [29] showed that a random linear feedback shift register sequence

provides a nearly optimal tradeoff between the window-n distance and the length of

the sequence (in the regime where the number of errors is less than
√
n). [10] gave

constructions of N ×N 2-dimensional robust positioning patterns (for n× n windows)

with N = 2O(n) (while there exist such patterns with N = 2O(n2)).

4.2 Preliminaries and Notation for 1 Dimensional Robust Positioning

Sequences

Some basic preliminaries. Throughout this chapter we will use [n] to refer to the first

n natural numbers with 0 included. That is

[n] := {0, 1, 2, . . . , n− 1}

We need some notation for expressing and accessing values of sequences.

Definition 7. Given a sequence S := (s1, . . . , sN ) we define S[i] to be the ith entry of

S, i.e. S[i] = si. Further if I := (i0, i2, . . . , in) then we define

S[I] := (S[i0], S[i1], . . . , S[in])

Furthermore for our robust positioning patterns we will denote them as a sequence

of length N , however we will frequently wish to consider the coordinates cyclically. To

that extent for a sequence S of length N we will say that for any integer m even if m

is negative or > N we have that S(m) := S(m mod N).

Also, we will frequently need to refer to intervals of integers, and so we use the

notation [m1,m2].

Definition 8. Given m1 < m2 define [m1,m2] := (m1,m1 + 1 . . . ,m2). We will use
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square brackets for inclusive and open brackets for open boundaries much like intervals

in R. For example (m1,m2] := (m1 + 1, . . . ,m2). Sometimes when more compact

notation is needed, we will use 〈m〉n to denote [m,m+ n).

For sequences S1, S2 ∈ Σn, we denote their Hamming distance by ∆(S1, S2), and

denote their agreement by agree(S1, S2). Thus ∆(S1, S2) + agree(S1, S2) = n.

For sequences S1, S2, . . . Sn, we will denote their concatenation by (S1, S2, . . . , Sn) .

We will frequently want to rotate sequences, cyclically permuting their entries. We

give special notation to this operation. We define ρ : Σn 7→ Σn be the coordinate

rotation map ρ((x1, . . . , xn)) = (x2, x3, . . . , xn, x1).

The following definitions caption the relationship of two sequences being almost the

same (i.e. differ in only one position) after a rotation.

Definition 9. Given two sequences S1, S2 ∈ Σn we write S1 ∼ S2 if there exists some

rotation ρj such that (.ρ
jS1, S2) ≤ 1. Similarly if T1 ∈ Σm and T2 ∈ Σn where m ≤ n

we write T1 . T2 if there is some i such that T1 ∼ T2[i, i+m− 1].

Finally we will need a way to quantify the error correcting properties of the sequences

we create. We borrow the terms rate, distance and relative distance from Coding Theory

as follows:

Definition 10. Given a q-ary sequence S of length N and an integer n (the window

length), we say that the rate of S is

R(S) := R :=
logq(N)

n
.

We define the distance of S to be min0≤i 6=j≤N (.S[i, i+n), S[j, j+n)). Finally we define

the relative distance of S to be

δS := min
0≤i 6=j≤N

(.S[i, i+ n), S[j, j + n))

n
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4.3 Robust Positioning Sequences Over Large Alphabets

4.3.1 Overview

In this section we’ll show an explicit construction of a robust positioning pattern over

large alphabets which is ”good”in the sense that it will acheive constant fraction distance

and constant rate. Further the construction is capable of acheiving any rate between 0

and 1, and any relative distance between 0 and 1 as well.

The positioning pattern itself is acheived by listing consecutively the entries of a

Reed-Solomon code, which has been suitably pruned so that no two codewords are

rotations of one another. Further we need to list the remaining codewords in a specific

order, namely in such a way that their prefixes form a q-ary gray code of length deg(p)

(See Figure 4.1). This ordering will ensure that windows which are slightly misaligned

and which see the end of some codeword Ci and the gray code prefix of its successor

codeword Ci+1 are tricked into believing they instead see a rotation of the first codeword

ρj(Ci) (see Remark 1 and the accompanying diagram Figure 4.2). But since we ensured

that our codewords were not rotations of eachother, any such rotated codewords will

be unique and distant and will allow us to recover the codeword Ci, while the rotation

will tell us exactly the location of the current window.

One more small remark is that ocasionally our window will not only see the gray

code bits of the subsequent Reed-Solomon codeword, but in such cases we may break

the window down into two subwindows which are small windows of rotated codewords,

and at a cost of losing some distance from the original Reed-Solomon code, we will be

able to decode one of these shortened subwindows.

4.3.2 Definitions and Construction

First in order to explicitly write down a Reed-Solomon codeword, we need to fix an

ordering of our underlying base field F. So to that aim fix g a generator of F×q , and we

will order the elments of F× as subsequent powers of g.

Definition 11. Fix n := |F×| = q− 1. Given the function f : [Fq]→ [Fq] we define the
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word Cf := C(f) ∈ Fnq by setting

C(f) := (f(g0), f(g1), . . . , f(gn−1))

Let C := {C(f) s.t. f ∈ F}.

Then let Σ be a q-ary gray code of length k. Our robust positioning pattern will be

built out of blocks consisting of encodings of a certain family of polynomials F given by

interpolating a polynomial with of degree k with prefix given by some σ ∈ Σ, and with

constant term 0, and coefficient of X fixed to be 1 (these last two properties will ensure

that the family of polynomials define words which are not rotations of one another).

Definition 12. Given σ ∈ Fk let fσ(X) ∈ F[X] be the unique interpolating polynomial

of degree k + 1 so that:

• coeffX(fσ) = 1

• coeff1(fσ) = 0

• for each i ∈ [0, k), fσ(gi) = σi

Further, define F := {fσ s.t. σ ∈ Fk}.

The first two conditions above are equivalent to saying fσ(X) := Xhσ(X) where

• hσ(0) = 1

• for each i ∈ [0, k − 1], hσ(gi) = σig
−i

Given a polynomial we will encode it in the following manner.

Definition 13. Given the function f : [Fq]→ [Fq] we define the word Cf := C(f) ∈ Fnq

by setting

C(f) := (f(g0), f(g1), . . . , f(gq−2))

Let C := {C(f) s.t. f ∈ F}.

We now are ready to present the definition of the robust positioning pattern we will

study:
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σ0 fσ0

n

σ1 fσ1

n

σ2 fσ2

n

Figure 4.1: A view of the beginning of the robust positioning pattern SΣ constructed
in Definition 14. σi represents the ith word in the Gray code Σ, and fσi is the rest of
the appropriate interpolated polynomial word so that the codeword C(fσi) has σi as a
prefix.

Definition 14. Let Σ = σ0, σ1, . . . , σq
k−1 be a q-ary gray code of window length k. For

convenience of notation we will often write fa for fσa and Ca for Cf
σa

. Then define

the sequence S to be

S := SΣ :=
(
Cf

σ1
, Cf

σ2
, . . . , Cf

σ
qk
)

:=
(
C0, C1, . . . , Cq

k−1
)

See Figure 4.1 for a depiction of part of this construction.

4.3.3 Proof of Distance of SΣ

The goal of this section is to prove the following distance result for S.

Theorem 16. The sequence S := SΣ = [Cf
1
, Cf

2
, . . . , Cf

qk

] defined in Definition 14 is

a q-ary sequence of rate k+1
q and distance max

(
q−k

3 − 3, q − 3k − 9
)

with window size

n := q − 1.

When considering a window w = S[m] := S[m,m + n) often the most important

identifying feature is m̄ = m mod n where 0 ≤ m̄ < n. This tells us which symbols

correspond to Gray code entries, and which are values of the interpolated polynomial

fσ. Larger values of m̄ indicate that the Gray code has been pushed leftward (wrapping

around) in our window.

Our first observation is that when m̄ is small, then we see almost exactly a rotation

of a copy of some codeword Ca.

Observation 1. Let w be a length n window of SΣ, w = SΣ〈m〉n := (S(m), S(m +

1), . . . , S(m + n − 1)) where m = an + m̄ and 0 ≤ m̄ < k. Then ρm̄Ca ∼ w,(i.e.
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σa[m̄, k) σa+1[0, m̄)fσa[k, n)

∼ ρm̄C(fσa)

∼ σa[0, m̄)

m̄

Figure 4.2: Accompanying diagram for Observation 1. Note how the size of m̄ affects
the position of the Gray code bits, and the fact that m̄ < k is important to ensuring
that the Gray code bits are a suffix.

∆(w, ρm̄Ca) ≤ 1).

Proof. For a depiction of the argument see Figure 4.2. If m = an+ m̄ then we see that

w = SΣ[aq + m̄] =
(
Ca[m̄, n), Ca+1[0, m̄)

)
=
(
σa[m̄, k), Ca[k, n), σa+1[0, m̄)

)
Therefore

w = ρm̄
(
σa+1[0, m̄), σa[m̄, k), Ca[k, n)

)
and from the definition

ρm̄Ca = ρm̄
(
σa[0, m̄), σa[m̄, k), Ca[k, n)

)
As Σ is a Gray code we have that ∆(σa, σa+1) = 1 so comparing the above two expres-

sions it follows immediately that ∆(w, ρm̄Ca) ≤ ∆(σa, σa+1) = 1

Second, we observe that when m̄ is larger, the situation isn’t as nice, but we can split

the window up into two overlapping parts which do look like subwindows of codewords.

Observation 2. Let w = S〈m〉n where m = an + m̄ and k < m̄ ≤ n. If we let

x1 = n− m̄ then w[0, x1 + k) . C(fa) and w[x1, n) . C(fa+1).

Proof. w[0, x1 + k− 1] ⊂ S〈m− m̄+ k〉n ∼ C(fa) by Observation 1. We also have that

w〈x1, q − 1〉n ⊂ S〈m+ (q − m̄)〉n = C(fa+1).
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fσa[m̄, n) σa+1 fσa+1[0..m̄− 1]

. fσa

. fσa+1

Figure 4.3: Accompanying figure for Observation 2

We combine these two observations into a single corollary.

Corollary 3. Let w1 6= w2 be windows of SΣ of length ` ≤ n. Assume that w1 = S〈m1〉n

and w2 = S〈m2〉n where for all i = 1, 2 we have either (k ≤ m̄i and m̄i + ` < n+ k) or

(0 ≤ m̄i < k). Then agree(w1, w2) ≤ min(`, k + 3).

Proof. Note that the congruence conditions are exactly the conditions we need to apply

the above observations. If k ≤ m̄i and ` < n− m̄i + k then by Observation 2 wi . Cai

for some ai. In the second case if 0 ≤ m̄i ≤ k then wi ⊂ S[mi,mi+n) . ρm̄iCai for some

ai by Observation 1. So by using triangle inequality, the fact that ρm̄1Ca1 6= ρm̄2Ca2 ,

and Lemma 15 we obtain that

agree(w1, w2) ≤ min(`, agree(C1, C2) + 3) ≤ min(`, k + 3)

Now we are ready to begin the proof of our main theorem. The basic strategy will

be as follows: Corollary 3 will allow us to break each window into two pieces, each

of which is a rotation of a subwindow of a codeword from C. Then we will break our

windows up into pieces based on these subwindows (a process which will require several

cases), analyze what distance and agreement bounds we can get on each piece, and then

recombine our answers for the final estimate.

Theorem 16 Let w1 6= w2 be windows of size q of SΣ. Then ∆(w1, w2) ≥ max(q−3k−

9, q−k
3 − 3).

Proof. Assume w1 = S〈m1〉n and w2 = S〈m2〉n. Let m1 ≡ m̄1, m2 ≡ m̄2 where
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fσa2 fσa2+1

fσa1 fσa1+1σa1+1

σa2+1

q − m̄1 q − m̄2 q − m̄1 + k
q − m̄2 + k

I1 I2 I3 I4 I5

w1 :

w2 :

Ca1 ∩ Ca2

Ca1+1 ∩ Ca2

Ca1+1 ∩ Ca2+1

Figure 4.4: The partition in Case 1. The decomposition of w1, w2 into the intersections
of rotations of codewords from C (shown by the curly brackets) is used to provide our
distance bounds.

0 ≤ m̄1, m̄2 < n. Assume without loss of generality that m̄2 ≤ m̄1. We proceed by

cases.

Case 1 First assume that m̄1 − m̄2 < k and k < m̄2. As a result we will have that

0 < n− m̄1 ≤ n− m̄2 < n− (m̄1 − k) ≤ n− m̄2 + k < n

Therefore we can partition the interval window [0, n) into 5 pieces by letting (see

Figure 4.4)

I1 := [0, n− m̄1)

I2 := [n− m̄1, n− m̄2)

I3 := [n− m̄2, n− m̄1 + k)

I4 := [n− (m̄1 − k), m̄2 + k)

I5 := [n− (m̄2 − k), n)

Note that it is possible that some of these intervals are empty (i.e. if m̄1 = m̄2) but

this will not affect our argument.

For each j let agreej := agree(w1[Ij ], w2[Ij ]). By Observation 2 for some a1, a2 we

have that w1[I1, I2, I3] . Ca1 and w1[I3, I4, I5] . Ca1+1. Similarly we also have that
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w2[I1, I2, I3, I4] . Ca2 and w2[I3, I4, I5] ∼ Ca2+1. Therefore by Corollary 3

agree1 + agree2 + agree3

= agree(w1[I1, I2, I3], w2[I1, I2, I3]) ≤ k + 3

agree2 + agree3 + agree4

= agree(w1[I2, I3, I4], w2[I2, I3, I4]) ≤ k + 3

agree3 + agree4 + agree5

= agree(w1[I3, I4, I5], w2[I3, I4, I5]) ≤ k + 3

Simply by noting that |I2|+ |I3| = |I3|+ |I4| = k we find that

agree1 + agree2 + agree5 ≤ n− |I2| − |I3| = n− k

agree1 + agree4 + agree5 ≤ n− |I3| − |I4| = n− k

Summing these five inequalities yields agree(w1, w2) =
∑

agreem ≤ 2n+k
3 + 3. Sum-

ming only the first and third inequalities we find that

agree(w1, w2) =
∑

agreej

≤ agree1 + 2agree2 + 2agree3 + 2agree4 + agree5

≤ 2k + 6

Therefore in this case we find that agree(w1, w2) ≤ min(2k + 6, 2n+k
3 + 3).

Case 2 Here assume again that m̄2 > k but now m̄1 − m̄2 ≥ k. Here we have to

partition slightly differently, as the Gray code bits will not overlap. Note that we have

0 < n− m̄1 ≤ n− m̄1 + k ≤ n− m̄2 ≤ n− m̄2 + k ≤ n
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fσa2 fσa2+1

fσa1 fσa1+1σa1+1

σa2+1

w1 :

w2 :

I1 I2 I3 I4 I5

Figure 4.5: The partition in Case 2

So therefore we can partition [0, n) as follows:

I1 := [0, n− m̄1)

I2 := [n− m̄1, n− m̄1 + k)

I3 := [n− m̄1 + k, n− m̄2)

I4 := [n− m̄2, n− m̄2 + k)

I5 := [n− m̄2 + k, n)

Here we will have by Observations 1 and 2 that for some a1, a2 that w1[I1, I2] . Ca1

and w1[I2, I3, I4, I5] . Ca1+1, while w2[I1, I2, I3, I4] . Ca2 and w2[I4, I5] . Ca2+1. So

again defining agreej := agree(w1[Ij ], w2[Ij ]) we can use Corollary 3 to compute that

agree1 + agree2 = agree(w1[I1, I2], w2[I1, I2]) ≤ k + 3

And again by similar reasoning applied on each pair of overlapping subwords

agree1 + agree2 ≤ k + 3

agree2 + agree3 + agree4 ≤ k + 3

agree4 + agree5 ≤ k + 3
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σa2 σa2+1

fσa1 fσa1+1σa1+1

fσa2

I1 I2 I3

w1 :

w2 :

Figure 4.6: The partition in Case 4

Also, simply by noting that |I2| = |I4| = k we find that

agree1 + agree2 + agree3 + agree5 ≤ q − |I2| = n− k

agree1 + agree3 + agree4 + agree5 ≤ q − |I4| = n− k

So summing all five inequalities we find that 3
∑

agreem ≤ 2q + k + 9. And so

agree(w1, w2) ≤ 2q+k
3 + 3. Also summing over only the first 3 inequalities we find that

agree(w1, w2) =
∑

agreej

≤ agree1 + 2agree2 + agree3 + 2agree4 + agree5

≤ 3k + 9

Therefore in this case we find that agree(w1, w2) ≤ min(3k + 9, 2q+k
3 + 3).

Case 3 In this case we assume that 0 ≤ m̄2 ≤ m̄1 ≤ k. By Lemma 1 we find that

for some ai wi ∼ Cai . So in this case we have by Corollary 3 that agree(w1, w2) ≤ k+3.

Case 4 The last case is when m̄2 ≤ k but m̄1 > k. In this case if we let

I1 := [0, n− m̄1 − 1]

I2 = [n− m̄1, q − m̄1 + d− 1]

I3 := [n− m̄1 + d, q − 1]
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Then we have again by Observation 1 that w2 ∼ Ca2 for some a2. By Observation

2 that for some a1, w1[I1, I2] . Ca1 and w1[I2, I3] . Ca1+1. If we define agreej :=

agree(w1[Ij ], w2(w2[Ij ]) then we will have that

agree1 + agree2 = agree(w1[I1, I2], w2[I1, I2]) ≤ k + 3

And due to similar reasoning to the above we will have that

agree1 + agree2 ≤ k + 3

agree2 + agree3 ≤ k + 3

Also, simply by noting that |I2| = k we find that

agree1 + agree3 ≤ n− k

So aggregating these inequalities we find that both 2
∑

agreem ≤ n + k + 6 and∑
agreem ≤ 2k + 6. As a result in this final case we get

agree(w1, w2) =
∑

agreej ≤ min

(
n+ k

2
+ 3, 2k + 6

)
≤ min

(
2n+ k

3
+ 3, 3k + 9

)

Corollary 4. For any 0 < R < 1 and δ < max(1−R
3 , 1− 3R), for large enough q there

exists a q-ary sequence of window length q, rate R and relative distance δ.

Proof. We can compute the rate of SΣ is

R =
logn(n · qk)

n
≥

logq(nq
k)

n
=
k + 1

n
− on(1)
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Figure 4.7: The Rate vs. Distance tradeoff of our construction as q →∞

And by Theorem 16 we have that the relative distance is

δ =
max

(
n− 3k, n−k

3

)
n

− on(1)

≥ max

(
1−R

3
, 1− 3R

)
− on(1)

Here we prove the useful fact that not only are any two codewords in C far apart,

but also any two rotations of codewords of C are also distant as well. This is crucial

for our analysis which routinely uses the fact that misaligned windows of the robust

positioning pattern SΣ still look like rotated codewords from C.

Lemma 15. For any i1, i2 ∈ [n] and any Ca1 , Ca2 ∈ C, so long as (a1, i1) 6≡ (a2, i2),

then (.ρ
i1(Ca1), ρi2(Ca2)) ≥ q−k−1 and therefore also agree(ρi1(Ca1), ρi2(Ca2)) ≤ k+1.

Proof. First, we note that

ρi`(Ca`) = (fa`(gi`), fa`(gi`+1), . . . , fa`(gi`−1))

But this is exactly the encoding C(p`) of the degree k+1 polynomial p`(X) = f im(gi`X).

Furthermore, we have that p1(0) = p2(0) = 0.

Therefore we will have that (.ρ
j2(Ci2), ρj2(Ci2)) ≥ q− deg(p2− p1) ≥ q− k− 1 if we
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can show that p2 − p1 6= 0.

But note that

coeffX(p1) = coeffX(fa1(gi1X)) = gi1

coeffX(p2) = coeffX(fa2(gi2X)) = gi2

Therefore p1 = p2 only if gi1 = gi2 , which occurs only if i1 ≡ i2 mod n.

If that is the case then p1 = p2 directly implies that fa1 = fa2 , contradicting our

assumption that (a1, i1) 6≡ (a2, i2).

4.4 Binary Positioning Sequences

4.4.1 Preliminaries

To concatenate down to binary we first need a marker to let us know the boundaries

between words. To this end we construct a suitable binary word Ψ so that any two

rotations of Ψ agree and differ in almost exactly half the coordinates.

Lemma 8. For any t ∈ N there exists a binary word Ψ of length 2t − 1 so that

for any two i, j, 0 ≤ i 6= j ≤ 2t − 1, the rotations ρi(Ψ), ρj(Ψ) have the property∣∣agree(ρi(Ψ), ρj(Ψ))− `
2

∣∣ ≤ 2
t
2
−1 ·O(t).

We sketch the construction. Let g be a generator of F×2t . Order the elements of F×2t

by xi := gi, and take ψ : F → {±1} to be a nontrivial additive character of F2t . Now

we can define Ψ̃ := [ψ(g0), ψ(g1), . . . , ψ(g2t−2)]. We will then let our codeword be the

binary verison of this string by replacing −1 with 0.

Next, in order to use this marker appopriately in our concatenation, we must have

a binary outer code which is also far from any window of Ψ.

Lemma 9. Given δ < 1
2 and R < 1−H2(δ) For sufficiently large n, and any word W

of length n, there exists a binary code C of block length n, relative distance δ and rate

R so that all codewords of C have distance at least δn
2 from any rotation of W .
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x x x x

x x x xβ0 β1

α0 α1

· · ·

w1: · · ·

w2:

αr1

βr2

αr1+1

βr2+1

· · · αr2+1· · ·

· · ·

P1

P2

I3 I3I1 I2

Figure 4.8: An illustration of the argument in Lemma 10. wi[I3] is a subset of a window
of S of length n−|P1∪P2|, and so contributes at least d−|P1∪P2| in distance. Meanwhile
there is additional contribution of |P1| + |P2| − 2|P1 ∩ P2| to the distance from I1 and
I2 where copies of x are compared to elements of Σ.

Proof. By the Gilbert-Varshamov bound, for sufficiently large n there exists a code C0

with block length n relative distance δ and rate R > 1 −H2(δ). Now we can define C

from C0 by simply removing any codeword which has distance less than δn
2 from any

rotation of W . Since C has distance greater than δn there can be at most one codeword

removed per rotation of W . Therefore |C| ≥ |C| − n and so the rate is asymptotically

unchanged. As the distance of C as at least the distance of C0, C satisfies the conditions

we need.

4.4.2 Augmented Sequences

First to build our binary sequence we will need to define a method of augmenting large

alphabet sequences to include marker symbols which will help us with alignment issues.

Definition 15. Let S be a positioning sequence over Σ with window length n. Fix

any x /∈ Σ and define the s-augmented sequence A := As(S) over the alphabet Σ∪ x of

window length n+ s by

A[a(n+ s) + b] :=


x if 0 ≤ b < s

S[an+ b− s] if s ≤ b < n+ s

Lemma 10. Let S be a positioning sequence and A the s-augmented sequence. If S has

distance d then A has distance at least min(d, 2s).
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Proof. Take w1 6= w2 to be arbitrary distinct length n + s windows of U where wi :=

U〈mi〉n+s. Now for each window we define Pi to be the places corresponding to the

copies of x. That is

Pi := {j ∈ [n+ s] s.t. mi + j mod (n+ s) < s}

Also define

I1 := P1 ∩ P c2 I2 := P c1 ∩ P2 I3 := (P1 ∪ P2)c

Because w1[I1] is a string of only the character x and w2[I1] contains no copies of x at

all, we have that ∆(w1[I1], w2[I1]) = |I1|. Similarly we find that ∆(w1[I2], w2[I2]) = |I2|

There are two cases to consider. First if P1 and P2 are disjoint then ∆(w1, w2) ≥ 2s

as |I1| = |I2| = s.

In the second case we have P1 ∩ P2 is nonempty. Therefore as the union of two

contiguous (on the circle) intervals of length s, P1 ∪ P2 is also such an interval but of

length ` := |P1∪P2|. There are two more subcases to consider. First if P1∪P2 = [a, a+`)

for some a ≤ n + s − ` or second if P1 ∪ P2 = [a, n + s) ∪ [0, ` − n − s + a) for some

a ≥ n + s − `. Define w̃i := wi[P
c
i ], and note that by the construction of A, w̃i is

a length n window of S and w̃1 6= w̃2 so ∆(w̃1, w̃2) ≥ d. Here we will have that

I3 := (P1 ∪ P2)c = [0, a) ∪ [a + `, n + s) and so for i = 1, 2 it can be seen that

wi[I3] = w̃i[I] where I = [0, a) ∪ [a + ` − s, n). Therefore as |I| = n + ` − s it follows

that

∆(w1, w2) ≥ ∆(w1[I1], w2[I1]) + ∆(w1[I2], w2[I2])

+ ∆(w1[I3], w2[I3])

≥ |I1|+ |I2|+ ∆(w̃1, w̃2)− (`− s)

= 3s− 2|P1 ∩ P2|+ d− |P1 ∪ P2|

≥ d
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· · · · · · · · ·

· · · · · ·

x x x x x· · · αnO−1 αnO

αnO−1 αnOα0

α0

α1

α1

α2

α2

· · · · · · · · ·ΨΨ Ψ ΨΨ· · · ϕ(αnO−1) ϕ(αnO)ϕ(α0)ϕ(α1)ϕ(α2)

s times s times

Figure 4.9: A view of the binary Robust Self Location Pattern T constructed in Section
4.4.3. Note that the sequence consists of a concatenation of the large alphabet sequence
S to binary, intermixed with a locator word Ψ, which will aid in making detecting where
a window lies in T modulo nI .

In the second subcase the argument is exactly the same, but here we will have

I3 := (P1 ∪ P2)c = [` − n − s + a, a) a contiguous interval of length n + s − `, and

so w1[I3] and w2[I3] are subwindows of S of length n + s − ` and so the proof follows

through using the same estimates as above.

4.4.3 Construction of the Binary Robust Positioning Sequence

Now we are ready to proceed with the construction of our binary robust positioning

pattern.

Fix some t ∈ N and let n := 2t − 1. Then take S to be a q-ary robust positioning

sequence with window length nO, rate RO and relative distance δO. Let Ψ be a word

of the form promised by Lemma 8 with length n = 2t − 1 and let C be a binary code

with q messages and block length n (and therefore rate RI := log q
n ), relative distance

δI > H−1
2 (1−RI) chosen as promised by Lemma 9 to have all windows distant from Ψ.

Take A to be an s-augmentation of the q-ary sequence S, then let ϕ : F ∪ {x} → C

to be an encoding of Fq to codewords of C with ϕ(x) := Ψ. Then we can define our

binary positioning pattern to be given by

T := [ϕ(A[1]), ϕ(A[2]), ϕ(A[3]), . . .]
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nI := |ϕ(α)|+ |Ψ| = ñI + u RI := log2 q
n

δI := H−1
2 (1− r)− η |Ψ| := 2t − 1 := n

N := n(nO + s) m̄ := m mod ?

Figure 4.10: Summary of Notation

Ψ Ψ Ψ Ψ

Ψ C0Ψ C1Ψ C2Ψ C3

〈a0〉n 〈a1〉n 〈a7〉n

ρxΨ ρxΨ ρxΨ

∆ ≥ δIn
2

· · ·

· · ·

P

Figure 4.11: An illustration of the argument in Lemma 11. The distance in the non-
aligned case comes from comparing rotations of the marker word Ψ to codewords of C
and other copies of Ψ.

In particular we can see that if m = aN + bn+ c with 0 ≤ b < N and 0 ≤ s < n then

T [m] = T [aN + bn+ c] :=


Ψ[c] if b < s

φ(T [anO + b])[c] if s ≤ b

4.4.4 Proof of Distance

We state our main result about the distance of T .

Theorem 17. T is a binary robust positoning pattern of block length (nO + s)nI and

distance at least

min

(
(min(nOδO − 1, 2s)δInI

2
, (s− 2)

δIn

2

)
and rate at least RORI

nO
nO+s

Lemma 11. Let w1 6= w2 be any two windows of T of the form wi := T 〈mi〉N . If

m1 6= m2 mod n then ∆(w1, w2) ≥ (s− 2) δn2 .
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Proof. Define

P1 := {i ∈ [N ] s.t. m1 + i =aN + bn+ c

where 0 ≤ c < n and 0 ≤ b < s}

That is to say that P1 is the set of indices corresponding to entries in w1 coming from

copies of Ψ. In particular if i ∈ P1 and i ≡ ī mod n then w1[i] = Ψ[̄i].

Now let

A2 := {i ∈ [N ] s.t. m2 + i ≡ 0 mod n}

Assume that m2 ≡ m̄2 mod n. If we consider the sequence of subwindows 〈in +

n−m2〉n.

So A2 is the set of beginnings of length n windows corresponding to either a copy

of Ψ or a codeword of C. Because P1 is a set of size sn consisting of at most 2 runs of

consecutive integers, it must contain at least s − 2 length n windows of the form 〈a〉n

where a ∈ A2. But for such a window we will have w2〈a〉n is either a codeword of C

or a copy of Ψ, while if x := m2 −m1 6≡ 0 mod n we will have that w1〈a〉n = ρxΨ.

So either by the construction of Ψ to have low autocorrelation (Lemma 8) or by the

distance of all codewords of C from all rotations of Ψ (Lemma 9) we will have that

∆(w1[〈a〉n], w2[〈a〉n]) ≥ min

(
δIn

2
, (1− o(1))

n

2

)
=
δIn

2

Because P1 contains s− 2 disjoint such windows, the result follows.

Next we cover the case when the codewords are aligned modulo n. Here we will

have that binary codewords and copies of Ψ will be compared to eachother and will get

our distance from the distance of the concatenation code combined with the distance

of the large alphabet positioning sequence.

Lemma 12. Let w1 6= w2 be any two windows of T of the form wi := T 〈mi〉N . If

m1 ≡ m2 mod n then ∆(w1, w2) ≥ (min(nOδO−1,2s)δInI
2 .

Proof. Let 0 ≤ m̄ < n such that m1 ≡ m2 ≡ m̄ mod n. Now for j ∈ [nO + s − 1]
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define Ij := 〈nj + n − m̄〉n. Then for any i, j wi[Ij ] corresponds to a codeword in C

or a copy of Ψ, and in fact it must be that u1 := {ϕ−1(w1[Ij ])}j∈[nO+s−1] and u2 :=

{ϕ−1(w2[Ij ])}j∈[nO+s−1] are distinct windows of A of length nO + s − 1. By Lemma

10 we know that these windows differ in at least min(nOδO, 2s) − 1 positions. Since

C ∪ {Ψ} forms a code of distance nδI
2 our result follows.

We are now ready to restate and prove our main result of this section:

Theorem 18. T is a binary robust positoning pattern of block length (nO + s)nI and

distance at least

min

(
(min(nOδO − 1, 2s)δInI

2
, (s− 2)

δIn

2

)
and rate at least RORI

nO
nO+s

Proof. The statement of distance is a combination of Lemmas 12 and 11. Meanwhile

the rate statement follows from the standard calculation

R =
log2 |T |

(nO + s)nI
≥ log2 |q| log2 |S|

(nO + s)nI
= RORI

nO
nO + s

We note that choosing s,RO and RI properly we can obtain the following corollary.

Corollary 5. For any 0 < R < 1 there is some δ(R) such that the above construction

yields binary positioning patterns of arbitrarily long block length, rate R and relative

distance δ(R).

4.5 Encoding/Decoding Over Large Alphabets

The following is an algorithm for encoding a window of S := SΣ as defined in Definition

14. Assume we wish to compute S[m] where 0 ≤ m ≤ qk − 1. Assume we are using

the Gray Code Σ given by the standard inductive construction, for which an efficient

method of encoding and decoding exists.
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Algorithm 1 Algorithm for Encoding our large alphabet pattern 14

Given m to compute S〈m〉n do:

1. Find 0 ≤ m̄ < q and a so that m = aq + m̄

2. Find σa and σa+1 (the ath and (a+ 1)st entries in the q-ary gray code Σ.

3. Interpolate the polynomials fa and fa+1 so that for j = 0, 1

(a) fa+j(0) = 0

(b) (fa+j)′(0) = 1

(c) fa+j(gi) = σa+j
i for 0 ≤ i ≤ k − 1

4. Output [(fa(gj))q−1
j=m̄, (fa(gj))m̄−1

j=0 ]

Theorem 19. Algorithm 2 for decoding received words of the window sequence S can

correct min(δn, q+k2 − 1 −
√
q(k + 1)) errors (where δn = max(q − 3k − 9, q−k

3 − 3)).

Furthermore the algorithm runs in time O(poly(q)).

Algorithm 2 Algorithm for Decoding our large alphabet pattern 14

Assume we receive a window w of length q. To decode do:

1. Run the Guruswami-Sudan list decoding algorithm [18] for Reed Solomon codes
on w, reuturning the list of degree k + 1 polynomials L := {p s.t. ∆(C(p), w) ≤
q −

√
q(k + 1)}.

2. For each polynomial p ∈ L do the following:

(a) For each i ∈ [q] find the index ai such that

ρi(Cp)[0, k − 1]

= (p(gi), p(gi+1), . . . , p(gi+k−1))

= Σ[ai, ai + k − 1)

where Σ is the q-ary Gray code in use.

(b) Make the guesses µ1
p = aiq + (q − i) and µ0

p = (ai − 1)q + (q − i)

(c) For each guess µip let wip = S〈µip〉n. If (.w,w
i
p) <

δq
2 = 1

2 max(q−3k−6, q−k
3 −

2) then return wip and its index µip

Proof. Assume that the sent window was u = S[m] with m = aq + m̄, so that (.u,w) ≤
q+k

2 − 1−
√
q(k + 1). Let x = q− m̄, and I0 = [0, x+ k− 1], I1 = [x, q− 1]. If m̄ < q−k

2
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then by either Observation 1 or 2 we will have that u[I0] ∼ ρm̄Ca[I0], and therefore

∆(u, ρm̄Ca) ≤ (q − |I0|) + (.u[I0], ρm̄Ca[I0])

≤ (q − |I0|) + 1

Similarly if m̄ ≥ q−k
2 then u[I1] ∼ Ca+1[0, k + m̄− 1] = ρm̄Ca+1[x, q − 1]. So

(.ρ
xu,Ca+1) = (.u, ρ

m̄Ca+1)

≤ (q − |I1|) + (.u[I1], ρm̄Ca+1[I1])

≤ (q − |I1|) + 1

Because |I0|+ |I1| = q + k for some j we must have |Ij | ≥ q+k
2 .

Therefore we can compute that

(.w, ρ
m̄Ca+j) ≤ (.w, u) + (.u, ρ

m̄Ca+j)

≤ q + k

2
− 1−

√
q(k + 1) + q − |Ij |+ 1

≤ q −
√
q(k + 1)

Therefore we see that the Guruswami-Sudan list decoding algorithm will place either

fa+j(x+ m̄) in its list L.

Therefore when step 2a tries p = fa+j(x + m̄) and i = q − m̄ we will have

ρiρm̄Ca+j [0, k − 1] = Ca+j [0, k − 1] = σa+j , and conseuqently the guesses µ1
p =

(a + j)q + m̄ and µ0
p = (a + j − 1)q + m̄ will be made. If j = 0 then the former

will be correct, and if j = 1 then the latter will be. Either way step c will check

µ = aq+m̄ = m, and because (.w, S〈m〉n) < δn
2 the algorithm will return m and S〈m〉n.

The only thing left to check is that the algorithm returns no false positives. But,

by Theorem ?? we know that all windows of S have distance at least δn := max(q −

3k − 9, q−k
3 − 3) from eachother. Therefore it follows that there is always at most

one window S〈µ〉n so that (.S〈µ〉n, w) ≤ δn
2 , for any window w, and therefore only the

correct window could ever be returned.
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To check the runtime claim we note that the Algorithm in step 1 runs in time poly(q)

and returns a list of size |L| ≤ q2. Furthermore each of the operation in steps 2a takes

time poly(q) by the decodability of Σ. The operations in step 2b take time O(1), and

each step in 2c runs in time poly(q) by the encoding algorithm of S given

4.5.1 Encoding/Decoding in Binary

Let T be a binary robust positioning sequence as constructed section 4.4.3. with window

length N = (nO + s)n and distance d.

First we comment on construction of the sequence. The only point of interest here

is to find the locator word Ψ its accompanying code C. Ψ is just a character over F2n

and so can be any multilinear polynomial. over F2[X1, . . . , Xn]. For C we may pick

any efficiently encodable and decodable good distance binary code of rate R, of which

numerous constructions exist. Then to pair it with Ψ we only have to remove the code-

word in C of distance less than d
2 from each rotation of Ψ, a process which takes at most

n calls to the decoding algorithm of C.

Now we discuss the decoding algorithm. Here the process proceeds in two steps.

First we find where in the window are the s copies of Ψ. Once we know that, we know

exactly which blocks of length n correspond to concatenated codewords, and can apply

usual decoding methods for concatenated words.

Assume that S has a decoder algorithm DO which given a window w ∈ ΣnO
O will

determine (if possible) the unique window S〈m〉nO so that (.S〈m〉nO , w) < d in time

poly(q). Assume also that we also have for the inner alphabet a decoding algorithm

DI so that for any received word w ∈ [2]n DI returns the unique letter α ∈ [q] so that

(.CI(α), w) < δIn
2 in time poly(q).

Theorem 20. Algorithm 3 runs in time poly(N) and given a window w ⊂ [2]N returns

(if it exists) the unique window u := T 〈m〉N such that (.u,w) < δOδI
(n−1)nO

4 in time

poly(N).
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Algorithm 3 Algorithm for decoding our binary pattern 4.4.3

For each i from 0 to N do

1. For each 0 ≤ j < nO decode (if possible) the length n window (ρiw)〈jn〉n to αj
using the decoder of C.

2. Let w̃i be the q-ary string (α0, . . . , αnO−1).

3. Run the decoder DO over large alphabets on w̃i (padded with an extra bit if
necessary) and return its index µ̃i

4. Let µ = nOµ̃− i.

5. If (.T [µ], w) < d
2 then return T [µ], µ.

The argument that this decoding works is very similar to decoding an ordinary

concatenated code. We can brute force through every rotation ρiw for i ∈ [N ] of the

received window w, and try decoding ρiw as we would any concatenated code of length

nOn (the algorithm will return when the unchecked sn entries correspond to the s copies

of Ψ). Since one of the rotations will correspond to us having a word which is n − 1

blocks of concatenated codewords (and possibly 1 junk block from the beginning and

end of the window), we will be able to decode at least a δONO fraction of these blocks

correctly, and the decoder for the large alphabet robust positioning sequence handles

decoding the resulting large alphabet sequence. In step 5 we use the fact that T has

good distance to eliminate any possible false positives.

4.6 Positioning Sequences with Constant Distance

In this section, we give a brief description of our construction of positioning sequences

with constant distance d.

Over large alphabets Σ, it follows by inspecting the parameters in Theorem 16 that

the construction there leads to sequences of length |Σ|n
|Σ|O(d) , which is essentially optimal

(upto the constant in the O(d)) by the Singleton bound.

Over the binary alphabet, we have to do something different. Here we are aiming

to get a sequence of length 2n

nO(d)
. The concatenation scheme described for the case of

constant relative distance codes is insufficient, since any nontrivial concatenation map
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leads to a drastic reduction in the length of the sequence. Instead, we will use a trivial

concatenation map, along with a simpler marker, at the cost of having to rely on an

unproven conjecture (Conjecture C from the introduction).

Assuming Conjecture C, for infinitely many r we can choose a prime q between

2r − cr and 2r − 1. We start with a large alphabet positioning sequence over the

alphabet Σ = Fq with distance d. Now choose a one-to-one map φ : Fq → {0, 1}r whose

image avoids the string 0r: this is possible since q ≤ 2r − 1. We will be using the map

φ to encode large alphabet symbols into sequences of binary symbols. The final binary

sequence is then obtained by taking the φ-encoding of each symbol of the large alphabet

sequence, along with the marker sequence (02r1r)3d. The goal of this marker sequence,

as in the case of the constant relative distance codes, is to ensure alignment. The fact

that the image of φ avoids 0r is what ensures that this marker sequence cannot have

too much agreement with any symbols outside the marker sequence. Finally, the fact

that q > 2r − cr ensures that the length of the sequence so constructed is as long as

2n

nO(d)
: encoding elements of Σ by φ did not make us lose too much in the rate.
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Chapter 5

Conclusion

We will conclude by highlighting some of the most important open questions left from

the work in this thesis.

5.1 Open Questions for Chapter 2

In Chapter 2 we proved a local limit theorem for triangle counts in the random graph

for the regime where p is a fixed constant. The most central and broadest open question

is

Question 1. Characterize when combinatorial random variables which obey central

limit theorems also obey local limit theorems.

This question is open ended, and I do not yet have a solid guess for what the right

criteria are. I suspect that there is much to be done here, and that that there may be

many subtle conditions which need to be considered beyond the low degree polynomials

and spectral concentration arguments in this chapter of the thesis. For example the

simple function E2 which counts the square of the number of edges in G(n, p) obeys

a central limit theorem for any fixed p ∈ (0, 1), and has very good weight 1 spectral

concentration (leading to good characteristic function bounds for small values of t).

However it is readily seen not to obey a local limit theorem as it is only supported

on square numbers. In the interim a more concrete question, which I believe to be

significantly more approachable is the following

Question 2. For which k do we have that for all p ∈ (0, 1) the number of complete

graphs of order k in G(n, p) obeys a local limit theorem?
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5.2 Open Questions for Chapter 3

Our most natural open question of this chapter concerns the optimality of our main re-

sults. Namely, a proof of Conjecture 1 as stated in Section 3.1 would be very interesting.

We restate this in the form of a specific question:

Question 3. Does there is some constant C > 0 such that the following holds. If A is

an n× n matrix with complex entries and ‖A‖2 ≤ 1, then |per(A)| ≤ e−Cn(1−h∞).

This would be a tight result, as it is acheived (wastefully) by the matrix αI, where

I is the identity matrix and α is an arbitrary constant less than 1.

We are also very interested in whether the results of this chapter can lead to a

polynomial time deterministic algorithm for approximating the permanent. We again

echo the question from [2] and ask:

Question 4. Find a (deterministic) polynomial-time algorithm that takes an n × n

matrix A of norm 1 and decides whether |per(A)| < n−100 or |per(A)| > n−10 (with the

understanding that the input matrix will satisfy one of these inequalities).

5.3 Open Questions for Chapter 4

The most natural question would be to determine the true rate-distance trade-off for

robust positioning patterns. Currently we have our construction, and an omitted argu-

ment using the Lovasz Local Lemma as lower bounds, but the only upper bounds are

those taken directly from standard coding theory. We state this as a question:

Question 5. For any fixed δ∗ ∈ (0, 1) what is the largest rate R∗ such that there exist

an infinite family of sequences {Si} all having rate at least R∗ and also relative distance

at least δ∗?

Also, it is worth noting that while we have a very natural construction of 2-

dimensional robust positioning patterns, the proof of distance for these constructions

remains somewhat thorny, and does not immediately extend to dimensions larger than

2. It would be interesting if a slick proof could show that our 2 dimensional construction

and its natural extensions to higher dimensions all have constant fraction distance.
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decomposable random variables with applications to random graphs. J. Combin.

Theory Ser. B, 47(2):125–145, 1989.

[6] Ross Berkowitz. A quantitative local limit theorem for triangles in random graphs,

2016.

[7] Ross Berkowitz and Pat Devlin. A stability result using the matrix norm to bound

the permanent, 2016.

[8] Ross Berkowitz and Swastik Kopparty. Robust positioning patterns. In Proceedings

of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1937–1951.

[9] Aline Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst.

Fourier (Grenoble), 20(fasc. 2):335–402 (1971), 1970.



99

[10] A.M. Bruckstein, T. Etzion, R. Giryes, N. Gordon, R.J. Holt, and D. Shuldiner.

Simple and robust binary self-location patterns. Information Theory, IEEE Trans-

actions on, 58(7):4884–4889, July 2012.

[11] John Burns and Chris J Mitchell. Coding schemes for two-dimensional position

sensing. In Institute of Mathematics and Its Applications Conference Series, vol-

ume 45, pages 31–31. Oxford University Press, 1993.

[12] ZD Dai, KM Martin, MJB Robshaw, and PR Wild. Orientable sequences. In

INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS CONFERENCE

SERIES, volume 45, pages 97–97. OXFORD UNIVERSITY PRESS, 1993.
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[38] Adrian Röllin and Nathan Ross. Local limit theorems via Landau-Kolmogorov

inequalities. Bernoulli, 21(2):851–880, 2015.
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