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THESIS ABSTRACT

Improving Educational Outcomes for Stem Students at Rutgers University-Camden:

A Machine Learning Approach

By ARTHUR P. PELULLO

Thesis Director:

Dr. Sunil Shende

The goal of this thesis is to demonstrate how machine-learning techniques can be used to

improve educational outcomes for STEM students at Rutgers University-Camden. The

three main areas of focus are: identifying changes in the academic landscape throughout

a 15-year period, identifying predictors of student success, and using these predictors to

develop a recommendation system to assist at-risk students. The data in the study con-

sists of student demographic and academic records from 2003-2017. Simple exploratory

data analysis is used to highlight changes in student performance over time. Next, a

deeper analysis is performed by training three classifiers - logistic regression with L1

penalty, logistic regression with L2 penalty, and a random forest model - to predict the

probability that students will graduate. Finally, the predictions of each classifier are

calibrated and combined to form a robust recommendation system which can be used

to alert advisers when a student is struggling.
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Chapter 1

Introduction

Higher education institutions cater to diverse groups of students with a great variety of

interests and backgrounds.The complex interplay between student behaviors, societal

and economic trends, and other external influences can make it very difficult for faculty

and administrators to track measures of student success. Within the last two decades,

this difficulty has been compounded by rapid changes in public perception and demand

for higher education services, particularly those in science, technology, engineering, and

mathematics (STEM) fields. The situation becomes even more confounding in light

of recent shifts in student population demographics and an overall decrease in public

funding that could be allocated for administrative support. Consequently, faculty and

staff have been turning to data analytics to assist with the increasingly daunting task

of assessing student performance and, ultimately, guiding students toward academic

success.

1.1 Design Summary

This paper proposes a machine learning approach to improving student outcomes, with

the goal of developing administrative tools that can quickly and accurately identify

predictors of student success, and provide an early warning system for advisers serving

large numbers of students. The proposed system employs a suite of machine learn-

ing classifiers to predict the probability that a student will graduate, given current

demographic and academic records. The probability is reported along with a simple

red-orange-yellow-green categorization scheme to facilitate ease of use on the adminis-

trative end, and timely interventions for students in need.

The remainder of the paper will systematically break down the construction of this
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system, spanning the following topics:

• Data processing: including data cleaning, data structuring, feature extraction,

and descriptive statistics generation

• Experimental Design: including classifier descriptions, and model selection, eval-

uation, and reliability

• Results: including interpretations of classifier output and reliability, and combin-

ing classifiers for robust recommendations

• Conclusion: including a high-level overview of the results, suggestions for future

studies, ethical considerations, and closing remarks
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Chapter 2

Data Processing

The data used in this study was provided by Rutgers University-Camden, and contains

anonymous demographic and academic records for all students who have attended the

university during the 15-year period between 2003 and 2017; the total number of stu-

dents is 11,834. All processing and subsequent analysis is conducted via Python, version

2.7.13, inside a sequence of Jupyter ipython notebook environments. The interactive

and inherently structured nature of ipython notebooks allows for immediate process-

ing validation, which is invaluable when working with complex data, and lends to the

creation organized, readable code. The Pandas library is used for data access, manage-

ment, table generation, and descriptive statistics; it is an excellent tool for intuitive and

efficient database-style operations. Finally, the scikit-learn machine learning library is

used for classifier training and evaluation.

2.1 Processing Structure

Data processing is split among many modules (ipython notebooks), with each mod-

ule serving a specific purpose. Modules are organized into several stages, with each

stage preparing the data for the next. Referring to figure 2.1, each processing stage is

represented as a row in the diagram:

• Row 1: Data management for extraction and subsequent exploratory analysis

• Row 2: Data refinement for classifier use

• Row 3: Model selection

• Row 4: Model evaluation
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Figure 2.1: Processing Flowchart

• Row 5: Final output

The processing modules shown in figure 2.1 are also grouped by color according to their

function, with the primary processing functions being data manipulation (red), descrip-

tive statistic generation (yellow), model selection (green), model evaluation (blue), and

recommendation system construction (violet).

2.2 Data Descriptions

For the purposes of this study, the data is organized according to two categories: mod-

els and student groups. A model refers to a distinct population described by a spe-

cialized dataset that is used to train a classifier. More precisely, each model attempts

to capture the behavior of students at different temporal stages in their academic ca-

reer. The models of interest in this study are designated as aggregate (all students,

all terms), freshman (freshman students, any term), sophomores, juniors, seniors,
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seqYear1 (students in their first year at Rutgers), seqYear2, seqYear3, seqYear4,

seqYear5, and seqYear6.

A student group refers to a sub-population of interest within each model. The

student groups of interest in this study are all students (which make up the original

models) and, of course, STEM students. Each combination of model and student

group is used to train three different classifiers; this results in 22 models, each with

three different classifiers capable of making predictions. The (model,student group)

combinations are highlighted below:

• aggregate: (all students, STEM students)

• freshman: (all freshman, STEM freshman)

• sophomores: (all sophomores, STEM sophomores)

• juniors: (all juniors, STEM juniors)

• seniors: (all seniors, STEM seniors)

• seqYear1: (all seqYear1, STEM seqYear1)

• seqYear2: (all seqYear2, STEM seqYear2)

• seqYear3: (all seqYear3, STEM seqYear3)

• seqYear4: (all seqYear4, STEM seqYear4)

• seqYear5: (all seqYear5, STEM seqYear5)

• seqYear6: (all seqYear6, STEM seqYear6)

The sections below describe the data at each stage of processing, moving from

unfiltered raw data to the (model, student group) specific data that is ready to be used

in classification.
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2.2.1 Raw Data

Raw data is data that was obtained directly from Rutgers University Camden. There

are four raw data files:

• precollege.csv: aggregate data, including ethnicity and high school records

– key = studyid

• degreedata.csv: aggregate data, including graduation status

– key = studyid

• termdata.csv: semester based data, including credit counts, GPA, major designa-

tion, STEM designation, etc.

– key = [studyid,semester]

• coursedata.csv: course based data, including course name/number, credits at-

tempted/earned, grades, etc

– key = [studyid,semester,course]

Operations performed on the raw data include null removal, renaming columns, dummy

encoding of categorical variables, time-frame selection, preliminary feature creation

(including current age, number of years attended Rutgers, number of major switches

total, number of major switches between STEM and non-STEM majors), stratification

of graduation status to also include a ”current student” designation, and extraction of

course codes and department codes. Finally, the four raw datasets are merged into one

large ”master” set containing all records and all features for every student in the study

period (see next section).

Note on graduation status and current students: Current students are defined as

those students who have not graduated but completed courses in the most recent

semester. These students were not included in the train/test sets due to the possi-

ble introduction of contradictory information. To be included, these students must be

designated as ”not graduate” regardless of their actual academic performance. This is

likely to negatively impact the ability of the classifier to learn meaningful features.
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2.2.2 Master Data

The master data, as mentioned above, contains all records and all features for every

student in the study period. The master data is the source of all feature engineering, fea-

ture extraction, and partial data partitioning for classification. Operations performed

on the master data include defining student and feature identifiers for data partition-

ing (STEM/non-STEM student ids, first-year/transfer student ids, STEM/non-STEM

major codes, course groupings (L100, L200, intro, lab, etc.), time delineations (inter-

vals, class years, sequence years, semesters), demographic feature groups, academic

feature groups), and 2-D course grade encoding (see subsection below)), feature engi-

neering (GPA’s (major courses, STEM/non-STEM courses, L100 courses, etc), feature

extraction (including aggregation and reformatting), and partial data partitioning for

classification. Final processing on the master data results in four partially partitioned

feature datasets that are ready for descriptive statistical analysis and final refinement

for classification.

2-D Course Grade Encoding

Encoding categorical course grades (A,B,C, etc.) numerically forces a decision between

a 1-D ordinal system (i.e. A=5, B=4, C=3, etc.) or a dummy encoding (course1-A,

course1-B, course1-C, etc.). A 1-D ordinal system imposes a ranking on students who

did not take a course by forcing a grade to be entered, usually the mean. According to

the classifier, this implies that students who did not take a given course are more similar

(spatially) to students who earned grades close to the mean than they are to students

who earned grades far from the mean; this is not necessarily true and can mislead the

classifier. The other conventional option, a dummy encoding of grades for each course,

may not mislead the classifier in the same sense, but will introduce thousands of sparse

features to the model (there are 3000+ courses total), likely deteriorating classification

quality.

As a solution, this study proposes and employs a 2-D course grade encoding system

centered on a unit circle as shown in figure 2.2 above. Each course is represented by
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Figure 2.2: Two Dimensional Grade Encoding

two features, ’course-x’ and ’course-y’, representing coordinated on the unit circle.

The coordinate for the center of the circle, (0,0), represent students who did not take

the course, and combinations of coordinates on the boundary of the fourth quadrant

of the circle represent possible grades. In this scheme, each possible grade has equal

distance (similarity) from the center of the circle, implying that students who did not

take the course are no more or less similar than students who did, regardless of the

grade they earned. Furthermore, distances between grades on the boundary of the

circle still capture an ordinal grading scale (i.e. ’A’ is closer to ’B’ than ’C’, ’A’ is closer

to ’C’ than ’D’, etc.), thus allowing for accurate comparisons among students who did

take the course. Further still, by restricting encoded values to the fourth quadrant,

we ensure that increases in either of the ’course-x’ or ’course-y’ feature values always
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correspond to higher grades. (Note: the original 2-D grade encoding mapped letter

grades to quadrants 1 and 4, rather than only quadrant 4, resulting in ambiguous

model coefficient interpretations)

2.2.3 Feature Data

As mentioned above, the feature datasets contain all the desired features for descriptive

statistical analysis and are appropriately formatted for final refinement and partitioning

for classification. There are four feature datasets:

• features-studyid.csv: aggregate data for all students included in the study - each

row represents a distinct student and each column represents a student feature

(aggregated for all terms)

– key = studyid

• features-studyidYear.csv: data by term year - each row represents a distinct stu-

dent in a distinct term year and each column represents a student feature (aggre-

gated for the current term year)

– key = [studyid,term year]

• features-studyidClass.csv: data by class year - each row represents a distinct

student in a distinct class year and each column represents a student feature

(aggregated for the current class year)

– key = [studyid,class year]

• features-studyidSemester.csv: data by semester - each row represents a distinct

student in a distinct semester and each column represents a student feature for

the current semester

– key = [studyid,semester] (Note: courses are listed as individual columns in

the feature datasets and are not needed as part of the key)

Table 2.1 below shows the dimensions of the feature datasets.
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Table 2.1: Feature Data Dimensions

2.2.4 Feature Statistics

Feature statistics are derived from 31 demographic and academic features present in

the feature data, and organized into a series of indexed tables. The index of each

table corresponds to one of 21 distinct groupings(coded as g1-g21), each defined over

two distinct time delineations (coded as t1 and t2), resulting in a total of 42 tables.

Groupings and time delineations for descriptive statistics are defined in table 2.2 below:

Table 2.2: Descriptive Statistics Table Format Guide

2.2.5 Refined Feature Data

The refined feature data represents the last stage of data processing before classification

begins. Operations performed on the refined feature data include renaming columns,
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imputing missing values (transfer status, credit counts, GPA values), optimizing en-

coding schemes, removing sparsely populated columns (high school data, GPAs for

level 500 and 600 courses, etc.), removing columns that leak future information into

the model (see note below), identifying variables to standardize, and final partitioning

of the feature data according to the (model,student group) structure referenced in

section 2.2 above. This final processing stage results in eleven refined feature datasets

ready to enter the classification pipeline. They are as follows:

• features-studyid-refined

• features-studyidFresh-refined

• features-studyidSoph-refined

• features-studyidJunior-refined

• features-studyidSenior-refined

• features-studyidSeq1-refined

• features-studyidSeq2-refined

• features-studyidSeq3-refined

• features-studyidSeq4-refined

• features-studyidSeq5-refined

• features-studyidSeq6-refined
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Chapter 3

Experimental Design

The goal of the experimental design is to develop a method of prediction that is reliable

under stable environmental conditions, but also robust to fluctuations in predictor

behavior. All classifiers have strengths and vulnerabilities that can be related to their

underlying mathematical or procedural foundations, and it is well known that individual

classifier performance can vary greatly depending on the nature of the data being used

and the sources of variation inherent in the process being modeled. Higher education

presents a very complex and dynamic environment that typically produces noisy, high-

dimensional, and often sparsely populated data. A single classifier, even a modern

ensemble method meant to handle such situations, will struggle to produce consistently

accurate predictions under all possible circumstances.

To cope with the complexities of the higher education landscape three distinct classi-

fiers are optimized and trained to predict the probability of student graduation: logistic

regression with L1 penalty, logistic regression with L2 penalty, and a random forest en-

semble classifier. The classifiers selected attempt to spread the ”risk” of poor prediction

by minimizing the overlap of vulnerabilities inherent in each classifier, under a variety of

unfavorable conditions. Combining the output of each classifier creates a considerably

more stable ensemble method of prediction in which the risk of incorrect classification is

minimized and often able to be anticipated. This level of stability must be interpreted

not only as preferable, but required for the ethical implementation of recommendation

systems that may lead to direct student intervention.

The sections that follow outline the general preprocessing, selection, and evaluation

procedures for each model (distinguished by classifier when necessary), along with a

brief overview of classifier.
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3.1 Preprocessing

The datasets corresponding to each model follow the same preprocessing routine. First,

a copy of the data is created to prevent corruption of the original set. All rows corre-

sponding to current students are removed and the feature to be classified, graduation

status, is extracted for use as the ’dependent variable’. The ’X’ and ’Y’ data is then

jointly divided at random into a training set and a validation set; the training set is used

to fit the model and the validation set is used to evaluate performance. Features in the

training set are mean centered and scaled by their standard deviations; features in the

validation set are also mean-centered and scaled, but by the corresponding training

set metrics, such that we can evaluate model performance on, theoretically, ”unseen”

data.

3.2 Classifiers

For each classifier, model selection entails the optimization of the model hyperparame-

ters, or those parameters set manually and not determined by the model itself. Different

strategies for hyperparameter optimization are employed for each classifier according

to classifier behavior

Model evaluation is generally the same for each classifier, and focuses on model

accuracy (in both training and validation), the distribution of model predictions, and

the identification of top features.

3.2.1 Logistic Regression - L1 Penalty

Logistic regression is an obvious baseline choice in most binary classification problems,

especially when we are seeking a ’soft’, or probability based classification. Logistic

regression estimates the odds outcome of the dependent variable given exposure to a

set of quantitative independent variables; this is known as the odds ratio.

In the context of this study, the dependent variable is student graduation status,
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and the ”set of quantitative independent variables” are the set of features describ-

ing each student. The odds of a binary dependent variable are defined as (probabil-

ity of success)/(probability of failure), or, in other words, (probability student gradu-

ates)/(probability student does not graduate). The odds ratio takes this a step further,

and is calculated as (odds student graduates given the set of student features)/(odds

student does not graduate given the set of student features). Coefficients of logistic

regression output are interpreted as the log of the odds ratio and can be exponentiated

to retrieve the odds ratio itself.

The ”L1 Penalty” in logistic regression is a regularization term based on the L1, or

”Manhattan distance”, that has the property of pushing model coefficients to 0. This

is particularly useful in high-dimensional datasets that include many sparse or noisy

features and thus is appealing for this application (there are 6000+ features following

2-D course encoding)

Model Selection

Feature elimination is intrinsic to logistic regression with L1 penalty and as such, no

feature reduction strategy need be employed. However, the hyperparameter, C, also

controls the ”freedom” of the model, with smaller values of C constraining the model

to fewer non-zero coefficients.

LogisticRegressionCV(), a cross validation strategy built into scikit learn, is em-

ployed to select the optimal C via k-fold cross validation on 100 different values for C

between 0.001 and 1000. Once the optimal value for C is identified, the model is fit()

an additional 10 times, with CVscores (on the training data), validation scores, class

predictions, probability predictions, and coefficient values compiled after each iteration

for future evaluation.

3.2.2 Logistic Regression - L2 Penalty

The logistic regression with L2 Penalty is interpreted in the same fashion as the L1

variant. However, the L2 regularization term does not have the same ”feature eliminat-

ing” properties inherent to L1 regularization. As such, a recursive feature elimination
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strategy is employed with nested cross validation for the optimal C value.

Model Selection

RFE(), a recursive feature elimination strategy built into scikit learn, is employed to

recursively eliminate model features according to a user defined step size, ’step’, and

stopping criteria, ’n-features-to-select’. In each iteration, the model is fit() on the

current ’n’ features, the ’step’ least important features are removed, and the process

repeats until n-features-to-select is acheived. This process has been further optimized by

conducting a cross validated search for the optimal C value, via LogisticRegressionCV(),

within each iteration of the RFE(). This ensures optimal feature pruning in each step.

3.2.3 Random Forest Classifier

The random forest classifier is itself an ensemble method of classification that combines

the predictions of many weak learners, in this case individual decision trees, to increase

overall prediction accuracy. Random forest models can perform well with sparse, high-

dimensional data, even in the presence of nonlinear relationships between predictors

and the dependent variable. Employing a large number of weak learners also reduces

the issue of over-fitting, which is common in simple decision tree learning.

However, the over-fitting problem still exists, especially in the presence of noisy

data; the random nature of feature selection for each underlying decision tree means

that the model can incorrectly identify noise as a signal, attributing importance to

meaningless features. On that note, it is also difficult to interpret the meaning of

”feature importances” with very high dimensional data due to the low probability that

any given feature, significant or not, will be selected frequently enough to strongly

influence to model. Furthermore, ”feature importances” are strictly positive, limiting

the sophistication of their interpretation.

Model Selection

The random forest classifier model selection is split into two stages: one solely for

grid search hyperparameter estimation, and one for repeated, cross-validated fitting to
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gather feature importances and other prediction for analysis. (Note that while overall

prediction quality stays relatively constant through each fit() of the model, feature

importances can vary widely with each iteration)

The first stage of model selection employs GridSearchCV(), a built in scikit learn

function to perform an exhaustive search on a user defined grid of hyperparamters.

The random forest classifier has a large number of parameters compared to the single C

value for logistic regression, thus necessitating a more thorough search of the parameter

space. The hyperparameters of interest are:

• n-estimators: this is the number of trees in the forest

• max-features: the number of features to randomly select from the model

• max-depth: the maximum permitted depth of each decision tree learner in the for-

est - large depths can improve prediction quality but increase the risk of capturing

noise and thus over-fitting

• min-samples-split: the minimum number of samples required for decision tree to

branch

The second stage of model selection, as mentioned above, performed repeated, cross-

validated fitting of the model (100 trials) to attempt to extract truly important features.

3.2.4 Voting Classifier

The voting classifier is the final stage in the experimental design. It calculates a

weighted average of the predicted probabilities for each associated classifier to calculate

an overall probability and final classification for each student.

Multiple models are applicable to individual students based on their current class

and STEM designation. For example, a freshman STEM student can be used as input

for the aggregate model for all students, the aggregate model for STEM students,

the freshman model for all students, and the freshman model for STEM students. A

custom function was written to identify all applicable models for each student, and

report the weighted average of the probabilities from each classifier for each model,
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along with an alert level corresponding to each probability value. Referring again to

the example above, the freshman STEM student would have four weighted probabilities

and associated alert levels for each applicable model.

Combining the results of multiple ensemble outputs further increases the reliability

and robustness of the system.

Weight Optimization

As mentioned above, the probability output of the voting classifier is a weighted av-

erage (with default weights of 1 for each classifier). A custom, brute force search was

implemented to identify the optimal weights in terms of overall prediction accuracy

3.3 Model Evaluation

The quality of each model is evaluated in context of accuracy, prediction distributions,

and top features.

3.3.1 Accuracy

Accuracy is reported by the mean CVscores and test scores calculated during successive

fits with the optimal value for C.

3.3.2 Prediction Distributions

Prediction distributions are evaluated using the following methods:

• Confusion matrices: color coded display of the distribution of true positives (tp),

false positives (fp), true negatives (tn), and false negatives (fn); the tn and tp

values are shown along the main diagonal, with the depth of color indicating the

frequency.

• Precision: tp/(tp+fp) - higher values of precision correspond to smaller numbers

of false positives
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• Recall: tp/(tp+fn) - higher values of recall correspond to smaller numbers of false

negatives

• Decision Thresholds: The probability value at which a classifier is forced to make

a decision for classification. The default threshold is 0.50. Altering the decision

threshold will alter the number of tp,fp,tn, and fn, sometimes in a non-intuitive

fashion:

– a model with many false positives may benefit from a higher threshold by

forcing larger numbers of negative classifications. However, this may also

reduce the number of true positives and, consequently, increasing the number

false negatives

• Precision-Recall Curves: a figure showing the trade-off between precision and

recall for different decision thresholds. If a particular metric, say precision, is

valued higher than recall, this chart demonstrates the cost in lost recall to increase

the model precision.

– A well performing model displays a precision-recall curve that maintains a

precision close to 1.0 as recall increases. Poor performing models will see

sharp declines in precision for modest increases in recall.

• ROC curves: a figure showing the trade-off between true positive rates and false

positive rates. Again, this can be interpreted as the cost in additional false posi-

tives to increase the number of true positives

– A well performing model displays a ROC curve that shows sharply increases

in y (true positives) for small increases in x (false positives), indicating the

model yields high numbers of true positives (correct classifications) for low

values of false positives. A poor performing model with show gradual in-

creases in y as increases.
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3.3.3 Top Features

Top Features are analyzed to attempt to identify strong predictors of student perfor-

mance that may be used to enhance early warning systems, influence course recommen-

dations, course creation, or university policies.

3.4 Recommendation System

As mentioned in the voting classifier section, multiple classifiers contribute to the

weighted probability average for each model, and multiple models can make classifi-

cation predictions for individual students. Each applicable model reports a weighted

probability average and an associated alert level. Alerts are based on a red-orange-

yellow-green system and are intended to add a layer of caution to recommendations

in the presence of imperfect classification predictions due to false positives and false

negatives. The colors in the system are defined as follows:

• GREEN: OK - probability of graduation ¿ 0.75

• Yellow: WATCH - 0.5 ¡ probability of graduation ¡= 0.75

• ORANGE: MEET - 0.25 ¡ probability of graduation ¡= 0.5

• RED: INTERVENE - 0.0 ¡ probability of graduation ¡= 0.25



20

Chapter 4

Results

Selected results of descriptive statistics analysis and classifier evaluation are shown

below. Additional tables and figures can be found in the included appendices.

4.1 Descriptive Statistics

Descriptive statistics are reported in tabular and graphical format, displaying aggregate

and yearly summary data.

Figure 4.1: STEM Population by Major, by Year
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Figure 4.2: Female STEM Population by Major, by Year

Figure 4.3: STEM Graduation Rates by Major, by Year
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4.2 Classifiers

Selected results for each classifier, comparisons across classifiers, and sample recommen-

dation system output can be found below. Classifier results are partitioned by accuracy,

analysis of prediction distributions, and overview of top features for each model.

4.2.1 Logistic Regression - L1 Penalty

Accuracy

Classifier accuracy is measured in terms of the number of correct classifications on the

validation set.

Figure 4.4: Logit-L1 Accuracy Scores: All Models, All Students
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Figure 4.5: Logit-L1 Accuracy Scores: All Models, STEM Students

Figure 4.6: Logit-L1 Accuracy Scores: All Models, All Students vs STEM Students
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Prediction Distributions

Prediction distributions are analyzed via confusion matrices, precision, recall, F-scores,

precision-recal curves, and ROC curves.

Confusion Matrices:

Figure 4.7: Logit-L1 Confusion Matrices: Aggregate Model
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Figure 4.8: Logit-L1 Confusion Matrices: Freshman Model

Figure 4.9: Logit-L1 Confusion Matrices: Sophomore Model
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Figure 4.10: Logit-L1 Confusion Matrices: Junior Model

Figure 4.11: Logit-L1 Confusion Matrices: Senior Model
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Precision, Recall, F-Scores

Figure 4.12: Logit-L1 Precision, Recall, and F-scores: All Models, All Students

Figure 4.13: Logit-L1 Precision, Recall, and F-scores: All Models, STEM Students
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Figure 4.14: Logit-L1 Precision and Recall: All Models, All Students vs STEM Students
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Precision-Recall Curves

Figure 4.15: Precision-Recall Curve: Aggregate Model

Figure 4.16: Precision-Recall Curve: Freshman Model
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Figure 4.17: Precision-Recall Curve: Sophomore Model

Figure 4.18: Precision-Recall Curve: Junior Model

Figure 4.19: Precision-Recall Curve: Senior Model



31

ROC Curves

Figure 4.20: ROC Curve: Aggregate Model

Figure 4.21: ROC Curve: Freshman Model
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Figure 4.22: ROC Curve: Sophomore Model

Figure 4.23: ROC Curve: Junior Model

Figure 4.24: ROC Curve: Senior Model
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Top Features

The top twenty-five features for each model are shown below; top features are de-

termined by the absolute value of the model coefficients, indicating features with the

strongest influence on final classification.

Top Features: Aggregate Model

Figure 4.25: Top Features: Aggregate Model, All Students

Figure 4.26: Top Features: Aggregate Model, STEM Students
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Top Features: Freshman Model

Figure 4.27: Top Features: Freshman Model, All Students

Figure 4.28: Top Features: Freshman Model, STEM Students
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Top Features: Sophomores Model

Figure 4.29: Top Features: Sophomores Model, All Students

Figure 4.30: Top Features: Sophomores Model, STEM Students
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Top Features: Juniors Model

Figure 4.31: Top Features: Juniors Model, All Students

Figure 4.32: Top Features: Juniors Model, STEM Students
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Top Features: Seniors Model

Figure 4.33: Top Features: Seniors Model, All Students

Figure 4.34: Top Features: Seniors Model, STEM Students
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4.2.2 Logistic Regression - L2 Penalty

Accuracy

Classifier accuracy is measured in terms of the number of correct classifications on the

validation set.

Figure 4.35: Logit-L2 Accuracy Scores: All Models, All Students
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Figure 4.36: Logit-L2 Accuracy Scores: All Models, STEM Students

Figure 4.37: Logit-L2 Accuracy Scores: All Models, All Students vs STEM Students
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Prediction Distributions

Prediction distributions are analyzed via confusion matrices, precision, recall, F-scores,

precision-recal curves, and ROC curves.

Confusion Matrices:

Figure 4.38: Logit-L2 Confusion Matrices: Aggregate Model
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Figure 4.39: Logit-L2 Confusion Matrices: Freshman Model

Figure 4.40: Logit-L2 Confusion Matrices: Sophomore Model
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Figure 4.41: Logit-L2 Confusion Matrices: Junior Model

Figure 4.42: Logit-L2 Confusion Matrices: Senior Model
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Precision, Recall, F-Scores

Figure 4.43: Logit-L2 Precision, Recall, and F-scores: All Models, All Students

Figure 4.44: Logit-L2 Precision, Recall, and F-scores: All Models, STEM Students
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Figure 4.45: Logit-L2 Precision and Recall: All Models, All Students vs STEM Students
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Precision-Recall Curves

Figure 4.46: Precision-Recall Curve: Aggregate Model

Figure 4.47: Precision-Recall Curve: Freshman Model
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Figure 4.48: Precision-Recall Curve: Sophomore Model

Figure 4.49: Precision-Recall Curve: Junior Model

Figure 4.50: Precision-Recall Curve: Senior Model
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ROC Curves

Figure 4.51: ROC Curve: Aggregate Model

Figure 4.52: ROC Curve: Freshman Model
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Figure 4.53: ROC Curve: Sophomore Model

Figure 4.54: ROC Curve: Junior Model

Figure 4.55: ROC Curve: Senior Model
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Top Features

The top twenty-five features for each model are shown below; top features are de-

termined by the absolute value of the model coefficients, indicating features with the

strongest influence on final classification.

Top Features: Aggregate Model

Figure 4.56: Top Features: Aggregate Model, All Students

Figure 4.57: Top Features: Aggregate Model, STEM Students
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Top Features: Freshman Model

Figure 4.58: Top Features: Freshman Model, All Students

Figure 4.59: Top Features: Freshman Model, STEM Students
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Top Features: Sophomores Model

Figure 4.60: Top Features: Sophomores Model, All Students

Figure 4.61: Top Features: Sophomores Model, STEM Students
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Top Features: Juniors Model

Figure 4.62: Top Features: Juniors Model, All Students

Figure 4.63: Top Features: Juniors Model, STEM Students
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Top Features: Seniors Model

Figure 4.64: Top Features: Seniors Model, All Students

Figure 4.65: Top Features: Seniors Model, STEM Students
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4.2.3 Random Forest Classifier

Accuracy

Classifier accuracy is measured in terms of the number of correct classifications on the

validation set.

Figure 4.66: RF Accuracy Scores: All Models, All Students
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Figure 4.67: RF Accuracy Scores: All Models, STEM Students

Figure 4.68: RF Accuracy Scores: All Models, All Students vs STEM Students
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Prediction Distributions

Prediction distributions are analyzed via confusion matrices, precision, recall, F-scores,

precision-recal curves, and ROC curves.

Confusion Matrices:

Figure 4.69: RF Confusion Matrices: Aggregate Model
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Figure 4.70: RF Confusion Matrices: Freshman Model

Figure 4.71: RF Confusion Matrices: Sophomore Model
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Figure 4.72: RF Confusion Matrices: Junior Model

Figure 4.73: RF Confusion Matrices: Senior Model
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Precision, Recall, F-Scores

Figure 4.74: RF Precision, Recall, and F-scores: All Models, All Students

Figure 4.75: RF Precision, Recall, and F-scores: All Models, STEM Students
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Figure 4.76: RF Precision and Recall: All Models, All Students vs STEM Students
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Precision-Recall Curves

Figure 4.77: Precision-Recall Curve: Aggregate Model

Figure 4.78: Precision-Recall Curve: Freshman Model
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Figure 4.79: Precision-Recall Curve: Sophomore Model

Figure 4.80: Precision-Recall Curve: Junior Model

Figure 4.81: Precision-Recall Curve: Senior Model
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ROC Curves

Figure 4.82: ROC Curve: Aggregate Model

Figure 4.83: ROC Curve: Freshman Model
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Figure 4.84: ROC Curve: Sophomore Model

Figure 4.85: ROC Curve: Junior Model

Figure 4.86: ROC Curve: Senior Model
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Top Features

The top twenty-five features for each model are shown below; top features are de-

termined by the absolute value of the model coefficients, indicating features with the

strongest influence on final classification.

Top Features: Aggregate Model

Figure 4.87: Top Features: Aggregate Model, All Students

Figure 4.88: Top Features: Aggregate Model, STEM Students
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Top Features: Freshman Model

Figure 4.89: Top Features: Freshman Model, All Students

Figure 4.90: Top Features: Freshman Model, STEM Students



67

Top Features: Sophomores Model

Figure 4.91: Top Features: Sophomores Model, All Students

Figure 4.92: Top Features: Sophomores Model, STEM Students
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Top Features: Juniors Model

Figure 4.93: Top Features: Juniors Model, All Students

Figure 4.94: Top Features: Juniors Model, STEM Students
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Top Features: Seniors Model

Figure 4.95: Top Features: Seniors Model, All Students

Figure 4.96: Top Features: Seniors Model, STEM Students
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4.2.4 Comparison Across Classifiers

Accuracy

Figure 4.97: CV Scores: Across Classifiers, All Students

Figure 4.98: CV Scores: Across Classifiers, STEM Students
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Figure 4.99: CV Scores: Across Classifiers, All Students vs STEM Students

Figure 4.100: Test Scores: Across Classifiers, All Students
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Figure 4.101: Test Scores: Across Classifiers, STEM Students

Figure 4.102: Test Scores: Across Classifiers, All Students vs STEM Students
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Prediction Distributions

Confusion Matrices:

Figure 4.103: Confusion Matrices: Aggregate Model
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Figure 4.104: Confusion Matrices: Freshman Model

Figure 4.105: Confusion Matrices: Sophomore Model
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Figure 4.106: Confusion Matrices: Junior Model

Figure 4.107: Confusion Matrices: Senior Model
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Precision and Recall

Figure 4.108: Precision and Recall: All Models, All Students

Figure 4.109: Precision and Recall: All Models, STEM Students
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Figure 4.110: Precision: All Models, All Students vs STEM Students

Figure 4.111: Recall: All Models, All Students vs STEM Students
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Precision-Recall Curves

Figure 4.112: Precision-Recall Curve: Aggregate Model

Figure 4.113: Precision-Recall Curve: Freshman Model
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Figure 4.114: Precision-Recall Curve: Sophomore Model

Figure 4.115: Precision-Recall Curve: Junior Model

Figure 4.116: Precision-Recall Curve: Senior Model
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ROC Curves

Figure 4.117: ROC Curve: Aggregate Model

Figure 4.118: ROC Curve: Freshman Model
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Figure 4.119: ROC Curve: Sophomore Model

Figure 4.120: ROC Curve: Junior Model

Figure 4.121: ROC Curve: Senior Model
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Probability Calibration

Probability Calibration: Aggregate Model

Figure 4.122: Probability Calibration: Aggregate Model, All Students

Figure 4.123: Probability Calibration: Aggregate Model, STEM Students
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Probability Calibration: Freshman Model

Figure 4.124: Probability Calibration: Freshman Model, All Students

Figure 4.125: Probability Calibration: Freshman Model, STEM Students
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Probability Calibration: Sophomores Model

Figure 4.126: Probability Calibration: Sophomores Model, All Students

Figure 4.127: Probability Calibration: Sophomores Model, STEM Students
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Probability Calibration: Juniors Model

Figure 4.128: Probability Calibration: Juniors Model, All Students

Figure 4.129: Probability Calibration: Juniors Model, STEM Students
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Probability Calibration: Seniors Model

Figure 4.130: Probability Calibration: Seniors Model, All Students

Figure 4.131: Probability Calibration: Seniors Model, STEM Students
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4.2.5 Voting Classifier

Weights

A table displaying the optimal weights to be applied to each classifier is shown below,

where w1 corresponds to logit-L1, w2 corresponds to logit-L2, w3 corresponds to the

ranom forest, and mean is the mean accuracy score of the voting classifier after the

given weights are applied.

Table 4.1: Voting Classifier: Optimal Weights and Mean Accuracy
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4.3 Recommendation System

Sample output from a proposed recommendation system designed for administrators

is shown below. A single non-STEM student and a single STEM student are chosen

at random, and their probabilities of graduating are assessed by all applicable models.

Tabular output shows the probability of graduating, and the associated alert level,

generated by each applicable model; average probability and alert level for the table

are displayed above the table itself.

Table 4.2: Recommendation Sample Output: Freshman Non-STEM and STEM Stu-
dents
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Table 4.3: Recommendation Sample Output: Sophomore Non-STEM and STEM Stu-
dents
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Table 4.4: Recommendation Sample Output: Junior Non-STEM and STEM Students
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Table 4.5: Recommendation Sample Output: Senior Non-STEM and STEM Students
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4.3.1 Model Performance by Student Group

The tables below compare the accuracy of each model for different groups of students

(i.e. the accuracy of the aggregate model for freshman students vs the accu-

racy of the freshman model for freshman students). Model performance varies

greatly by student group, with specialized models designed for specific sub-populations

almost always outperforming their more general counterparts. For example, for the

sub-population of freshman students, the freshman models (both freshman-all and

freshman-STEM) greatly outperform the aggregate models when predicting the proba-

bility of graduation. This indicates that, from a recommendation system design stand-

point, specialized models are preferable to generalized models in terms of prediction

accuracy.

('Average Probability: ', '0.957341094062') 

('Average Alert Level: ', 'GREEN') 

('Actual Graduation Status: ', 1) 

Probability of Graduation Alert Level

Model Students

Aggregate All Students 0.928574 GREEN

Senior All Students 0.986108 GREEN

Seniors: STEM Student

('Average Probability: ', '0.7423869624') 

('Average Alert Level: ', 'YELLOW') 

('Actual Graduation Status: ', 1) 

Probability of Graduation Alert Level

Model Students

Aggregate All Students 0.393552 ORANGE

STEM Students 0.726091 YELLOW

Senior All Students 0.985784 GREEN

STEM Students 0.864122 GREEN

Aggregate vs Specialized Model Performance

Freshman

Accuracy

Model Students

Aggregate All Students 0.43759

Freshman All Students 0.774749

Accuracy

Model Students

Aggregate All Students 0.454545

STEM Students 0.545455

Freshman All Students 0.690909

STEM Students 0.681818

Sophomores

Accuracy

Model Students

Aggregate All Students 0.483715

Sophomores All Students 0.814234

Accuracy

Model Students

Aggregate All Students 0.48

STEM Students 0.424

Sophomores All Students 0.792

STEM Students 0.784

Juniors

Accuracy

Model Students

Aggregate All Students 0.513435

Juniors All Students 0.884532

Table 4.6: Overall Model Accuracy: Freshman
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Accuracy

Model Students

Aggregate All Students 0.454545

STEM Students 0.545455

Freshman All Students 0.690909

STEM Students 0.681818

Sophomores

Accuracy

Model Students

Aggregate All Students 0.483715

Sophomores All Students 0.814234

Accuracy

Model Students

Aggregate All Students 0.48

STEM Students 0.424

Sophomores All Students 0.792

STEM Students 0.784

Juniors

Accuracy

Model Students

Aggregate All Students 0.513435

Juniors All Students 0.884532

Table 4.7: Overall Model Accuracy: Sophomores

Accuracy

Model Students

Aggregate All Students 0.454545

STEM Students 0.545455

Freshman All Students 0.690909

STEM Students 0.681818

Sophomores

Accuracy

Model Students

Aggregate All Students 0.483715

Sophomores All Students 0.814234

Accuracy

Model Students

Aggregate All Students 0.48

STEM Students 0.424

Sophomores All Students 0.792

STEM Students 0.784

Juniors

Accuracy

Model Students

Aggregate All Students 0.513435

Juniors All Students 0.884532

Accuracy

Model Students

Aggregate All Students 0.427746

STEM Students 0.410405

Juniors All Students 0.890173

STEM Students 0.872832

Seniors

Accuracy

Model Students

Aggregate All Students 0.875615

Seniors All Students 0.936051

Accuracy

Model Students

Aggregate All Students 0.820988

STEM Students 0.864198

Seniors All Students 0.932099

STEM Students 0.925926

Table 4.8: Overall Model Accuracy: Juniors
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Accuracy

Model Students

Aggregate All Students 0.427746

STEM Students 0.410405

Juniors All Students 0.890173

STEM Students 0.872832

Seniors

Accuracy

Model Students

Aggregate All Students 0.875615

Seniors All Students 0.936051

Accuracy

Model Students

Aggregate All Students 0.820988

STEM Students 0.864198

Seniors All Students 0.932099

STEM Students 0.925926

Table 4.9: Overall Model Accuracy: Seniors
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Chapter 5

Conclusion

Individual classifier accuracy is enough to warrant continued study and eventual imple-

mentation of such systems at Rutgers University-Camden and, hopefully, the greater

Rutgers community. Combining classifiers into an ensemble for prediction further im-

proves both reliability and robustness by spreading the ”risk” associated with each

classifier’s unique vulnerabilities, and thus reducing the chance of incorrect classifi-

cation. Class-specific ensembles perform particularly well, returning an accuracy of

roughly 77 percent for freshmen, 81 percent for sophomores, 88 percent for juniors, and

93 percent for seniors. These values are well above random chance (50 percent) and

present an opportunity to significantly improve student retention when combined with

the experience and intuition of dedicated advisers.

5.1 Future Studies

5.1.1 Extending the Current Models

The current models, while performing exceptionally well, should be seen as more of a

proof of concept than a rigorously tested system ready for implementation. Additional

classifiers should be analyzed and, if performance warrants, added to the ensemble

to further improve the reliability of predictions under stable environmental conditions

and robustness of predictions to (inevitable) environmental fluctuations. Furthermore,

a dynamic system that can automatically detect and respond to unusual behavior,

whether in the inputs or the outputs, is preferable to a static system. For example the

following two adaptations could improve the current system:

• a function to detect unusual input and temporarily exclude classifiers that are
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particularly vulnerable from participating in the ensemble

• a function to detect unusual prediction output from an individual classifier in the

ensemble (assuming normal inputs), such as low accuracy or high numbers of false

positives, and exclude that classifier from the communal decision making process.

Selection Metrics

Prediction accuracy, measured as the correct number of classifications, is not (and

should not) be the only metric used during model calibration and eventual selection.

There are many other selection metrics suitable to the application of this recommen-

dation system that, in combination with prediction accuracy, can be used to fine-tune

the selection of the ”best” performing model/parameters. For example, precision, a

measure of the frequency of false positives, is an excellent candidate to be added to

the scoring process. In the context of predicting student graduation, a false positive

represents a student who is predicted to graduate but, in reality, does not. In terms of

the design objective, false positive are extremely ”costly” as they represent the model’s

failure to detect and assist a student in need.

Recall, which is a measure of the frequency of false negatives, should also be con-

sidered as a scoring metric, but not necessarily with the same weight as precision. A

false negative represents a student who is predicted not to graduate, but in reality,

does graduate; the ”cost” associated with a false negative relates to the unnecessary

stress placed on a student due to misinformation. This is indeed a potential negative

impact of incorrect classification, but in context of the design objective not nearly as

detrimental as missing a struggling student completely.

It is recommended that the selection and weighting of scoring metrics be carefully

considered by individuals with both computational and pedagogical experience, as cer-

tain interpretations and ”cost” evaluations can quickly enter the realm of subjectivity.
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Enhancing Data Collection

Collecting additional data on student behavior has the potential to further improve

model performance by providing a more complete picture of a student’s experience at

the university. Some examples of useful student information include:

• historic and financial data: parent’s education, average income, financial aid,

tuition reimbursement, scholarship information, etc.

• tutoring center data: frequency of visits, length of stay, subject/class material

covered, etc.

• clubs and extracurricular activities: clubs attended, frequency of attendance, club

events, etc.

• fine grain course data: assignments given, assignments graded, ratio of number of

grades to number of assignments, class attendance, class meeting time, etc.

5.2 Ethical Considerations

Recommendation systems must be assessed and categorized by the degree to which

they influence human behavior and well-being; a system that recommends a song or

movie is not nearly as influential in this regard as one that recommends direct action

or intervention. In the context of this study, special attention must be paid to the pro-

portions of false positives and false negatives among the incorrectly classified samples,

as these situations could lead to action or inaction that has negative consequences for

the students involved. As stated above, it is highly recommended that these systems

be applied in combination with the experience and intuition of dedicated advisers to

ensure that their potential benefit is realized without causing unnecessary or avoidable

harm.



98

References

[1] National Science Foundation: Science and Engineering Indicators 2016,
https://www.nsf.gov/statistics/2016/nsb20161/

[2] New York Times: Will You Graduate? Ask Big Data,
https://www.nytimes.com/2017/02/02/education/edlife/will-you-graduate-ask-
big-data.html

[3] New York Times: When a Few Bucks Can Get Students to the Fin-
ish Line, https://www.nytimes.com/2017/03/14/opinion/when-a-few-bucks-can-
get-students-to-the-finish-line.html

[4] New York Times: What Can Stop Kids From Dropping Out,
https://www.nytimes.com/2016/05/01/opinion/sunday/what-can-stop-kids-
from-dropping-out.html

[5] New York Times: At College, A Guided Path on Which to Find
Oneslef, https://www.nytimes.com/2017/03/28/opinion/at-college-a-guided-path-
on-which-to-find-oneself.html

[6] Andrew Y. NG. Feature Selection, L1 vs L2 Regularization, and Rotation Invari-
ance http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-
and-rotational-invariance/


