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ABSTRACT OF THE DISSERTATION

Mobile Recommender Systems With Business Effective Strategies

By MENG QU

Dissertation Director: Dr. Hui Xiong

Recommender systems aim to provide personalized suggestions to users based on their

backgrounds and interests. The suggestions can be made in a variety of application

areas, such as movies, music, news, books, and products. Recommender systems are

primarily developed for individuals who lack of the sufficient personal experiences or

competence to evaluate an overwhelming number of alternatives. Therefore, recom-

mender systems are usually personalized, and face substantial challenges in coping

with information overloaded environments.

This dissertation focuses on building mobile recommender systems with business

effective strategies. Due to the explosive growth of GPS trajectory and urban geo-

graphical data, mobile recommender systems have been extensively utilized to offer

various types of recommendation services. Indeed, recent efforts have been made to

develop mobile recommender systems for taxi drivers based on the analysis of taxi

GPS traces. In general, there are three ways to provide such recommendation ser-

vices. The first is to focus on choosing the fastest driving route from the current

location to the destination. The second is to provide a sequence of pick-up points for

taxi drivers. The goal of this approach is to allow the taxi driver to find a customer

within the shortest driving distance. Finally, the third method attempts to strike a

balance between the needs of taxi drivers and passengers. However, in the real world,
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the income of a taxi driver is strongly related to effective driving hours than to the

actual driving distance.

To this end, in this dissertation, we aim to address the challenges involved in

providing business effective recommendations in mobile environments from both the-

oretical and practical perspectives. Specifically, we first develop a cost-effective mobile

recommender system that is capable of recommending an entire driving route for taxi

drivers and helping them to find a passenger with the highest possible net profit.

Experiments based on real-world data demonstrate the efficiency and effectiveness of

our systems. Moreover, we develop a virtual station waiting strategy which suggests

the right waiting time and locations for taxi drivers in a business effective way. Then,

we design an enhanced recommender system by combining the virtual waiting and

driving route search strategies. In this enhanced system, we provide a joint learning

framework to evaluate the potential profits derived from different strategies and find

the optimal solution. Also, we exploit a recursive algorithm to efficiently generate

optimal driving route recommendations. Meanwhile, we introduce Top-K route rec-

ommendations and a dynamic maximum Net Profit strategy to provide better load

balance for recommendations happened at the same location. Finally, the experi-

mental results clearly validate the effectiveness of the enhanced recommender system

for taxi drivers, and show that our recommender system can help to substantially

increase the income of inexperienced taxi drivers.
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CHAPTER 1

INTRODUCTION

1.1 Background and Preliminaries

Our world has never been changed so much by the evolution of technology. Around

the globe, there are hundreds of millions of people taking photos, creating videos,

and sending texts every single day, and the deluge of data is growing rapidly. About

2.5 quintillion bytes of data are created every day, which is equivalent to 530,000,000

million songs, 250,000 libraries of congress, and 90 years of HD videos. Indeed, 90% of

data in the world today has been created in the last two years alone. These data come

from everywhere- sensors used to obtain public transportation information, pictures

posted on Facebook, and location traces on Twitter. There were 4.4 zettabytes of

data in the world in 2013, and this is expected increase tenfold, to 44 zettabytes, by

2020. There is no doubt that the increasing speed at which data is being created is

due to the increasing popularity of Internet usage via various mobile devices as well

as the increasing number of individuals who wants to join the digital world.

Fortunately, with recent developments in information technology, it is now easier

to collect, retain, and analyze enormous amounts of data. More and more organiza-

tions and companies have begun to realize the importance of data and thus to store

retail transaction records, stock price histories, credit card information, search logs,
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mobile service trajectories, on-line browsing history data, and so on. We use the term

”big data” to describe those extremely large data sets that can be analyzed computa-

tionally to reveal patterns, trends, and associations, especially those data related to

human behaviors and interactions. Those data sets are so overwhelming and complex

that commonly used software can not capture, store, analyze, visualize, and process

them within a tolerable time period.

Therefore, data mining aims to discover hidden but often useful information to

help in decision making. Data mining involves artificial intelligence, machine learning,

statistics, and database systems (Chakrabarti et al., 2006). The main goal of data

mining is to investigate data and extract understandable information from it for

further uses. For example, once we have a good understandings of the users who are

looking at a website, we could display the most relevant advertisements on these pages

and encourage the users to click on those links. In general, data mining is the process

of the ”knowledge discovery in databases” process (Fayyad, Piatetsky-Shapiro, &

Smyth, 1996).

1.2 Traditional Recommender Systems

Based on the information we collect and analyze using data mining techniques, we

were able to understand our users more clearly and develop recommender systems.

In traditional recommender systems, there are two classes of entities users and items.

A recommender system is an information system which is capable of providing the

”rating” or ”preference” that a user would assign to an item. If we use C to represent

the set of all users and let S be the set of all possible recommendable items, we can
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then use u as an utility function measuring the usefulness of item s to user c. For

each user c ∈ C, we want to choose the item s ∈ S that maximizes u. The utility is

usually represented by a rating, but it could also be any function. The relationship

can be represented by the following equation:

∀c ∈ C, s’c = argmax(u(c, s)), s ∈ S (1.1)

For example, Amazon is one of the most famous companies to use recommender

systems to provide web pages with advertisements for products that are geared to-

ward specific users. Other companies, such as Netflix, Facebook and Apple, also use

similar recommender systems to suggest movies, music, and other products to their

users. The recommended items are retrieved according to the rules set by computer

algorithms. Depending on the requirements, those systems usually suggest the top K

items relevant to users. Recently, recommender systems have been widely adopted in

industry, and helping to increase sales, include a diversity of items, and increase user

satisfaction and loyalty

1.3 Mobile Recommender Systems

While traditional recommender systems are widely used in several fields, such as,

health care, market basket analysis, education, manufacturing, engineering, customer

relationship management, fraud detection, customer segmentation, and criminal in-

vestigation, my research aims to address the unique challenges involved in providing

recommendations in mobile environments from both theoretical and practical per-

spectives and design recommender systems that can provide mobile users access to
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personalized recommendations anytime and anywhere.

With the rapid development in mobile technology, mobile recommender systems

have been a growing area of research. There are 4.6 billion mobile-phone subscriptions

worldwide, and between one and two billion people have access to the Internet through

other mobile devices. Vavious methods of collecting all useful mobility data have been

developed. In general terms, there are two types of mobile data, human mobility data

and urban geography data.

• Human mobility data represents people’s movement trajectories, which can be

phone traces, trajectories of driving routes, or a sequence of posts including

geographical information, such as geo-tweets, geo-tagged photos,or check-ins.

These data can be indoor traces or outdoor traces.

• Urban geography data is data sets including geographic characteristics of a

city. Those data may include but not limited to city road networks data, public

transportations data, places of interest (POIs) data and regional functions data.

Because of the abundant availability of these data, the advanced development

of mobile devices, and the urgent demand for mobile applications, such as driving

route recommendation, mobile tourist guides and personal location-based shopping,

mobile recommender systems have become a promising field. Given the availability of

the GPS, Wi-Fi, and mobile phone data, we can collect Human Mobility and Urban

Geography data and meet the urgent demands for better business applications.

Existing researches have already developed many applications related to mobile

recommendations in both industry and academics. For example, a mobile restaurant



- 5 -

recommender system can analyze customers’ previous dining records and the current

time of a day; and then make personal recommendations for a particular user at a

certain location.

1.4 Research Motivation

Traditional recommendation systems have existed for many years (Hofmann, 1999;

Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994). For instance, Netflix had a

famous $1,000,000 competition from 2006 to 2009 attracted over 45,000 contestants

from 180 countries. In both industry and academics, many projects have already

developed new approaches to recommender systems in the past. Most traditional

recommender systems take either of two basic approaches: collaborative filtering

or content-based filtering. Collaborative filtering is based on a model of prior user

behavior. This can involve only a single user’s behavior or the behaviors of many

users who have similar traits.

For instance, suppose there is a website that recommends movies. By using the

information gathered from the many users who subscribe to this website to watch

movies, we can group those users based on their movie preferences. Then, we are

able to identify the most popular movies in various categories, such as, romance,

adventure, mystery, comedy and adventure, and recommend the most popular movies

in a specific category to the users who have not yet watched them. In table 1.1, a set

of movies forms the rows, and the columns define the users.

By clustering the users based on their movie preferences, we can see two clusters

of two users each-Mary and Ada are in Cluster 1 and Bob and Michael are in Cluster
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Table 1.1. An Example of Item-User Movie Watching Matrix

Mary Bob Ada Micheal

Romance 13 0 11 1

Adventure 0 8 0 13

Mystery 0 6 0 24

Comedy 18 0 8 0

a
Note: 0 indicates no movie has been watched in this category.

2. The users in Cluster 1 prefer romance and comedy movies, while the users in

Cluster 2 prefer adventure and mystery movies. Then, whenever we discover that

there is a high rated movie in one of these categories, we can make recommendations

to other users in the appropriate cluster. This method requires minimal knowledge

engineering efforts. However, it requires a large number of reliable user feedback data

to begin with.

Content-based filtering chooses a recommendation based on potential items to

recommend rather than other users’ opinions. The content to be filtered may be

the explicit attributes or characteristics of the items. These recommender systems

attempt to recommend items that are similar to those a given user has rated highly

in the past. For example, we may use the user’s online shopping history, such as

which shopping websites the user has logged on to and which products he or she

has purchased. If a user buys baby products regularly, content-based filtering can

use this history to identify and recommend other popular baby products. Instead of

relying on the behaviors of other users in the system, this approach solely relies on
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the content that a single user can access. Therefore, the content-based approach does

not require data on other users and can make recommendations to users with unique

tastes. However, it requires the content to be encoded so as to identify products’

meaningful features, and the users’ tastes must also be represented as a learnable

function of these content features.

In addition to collaborative filtering and content-based filtering, there is also a

hybrid approach that combines these two methods. Having the advantages of both

methods, this hybrid system can provide more accurate recommendations. For ex-

ample, Netflix makes recommendations by comparing the watching and the searching

habits of a group of similar users and also by offering movies that share characteristics

with the films that a given user has rated highly.

However, mobile recommender systems are different than traditional recommender

systems because of their unique location-aware capabilities. The development of per-

sonalized mobile recommender systems is also much more challenging than developing

traditional recommender systems. Indeed, the challenge of developing a mobile rec-

ommendation system is inherit in mobile data. These mobile data are usually spatial,

with unclear roles for context-aware information and lack of user rating information.

Mobile data are typically heterogeneous and exhibit a spatial and temporal auto-

correlation, which means that nearby things have more impact than distant things

and their noise levels are also high. For validation, unlike traditional recommender

systems such as movie recommendation systems, which typically used previously pro-

vided ratings for the movie, we do not have this kind of rating data available in the

mobile domain. Therefore, when we develop this kind of recommender systems, the
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validation may be a problem because the rating data is not available. In general, if we

already developed a recommender system for movie recommendation, the technique

is suitable for the movie recommendation is most likely not suitable in the mobile rec-

ommendation domain. Because of this general problem, we can not easily adapt the

techniques developed in traditional application domain to the mobile environment.

Moreover, mobile recommendation has cost constraints in terms of both time and

price. For example, when we recommend a travel package to potential customers,

we must consider the length of time they want to stay on a vacation and how much

they can afford. If the customers only have three days of vacation, it is senseless to

recommend a seven days vacation with a good price and a great itinerary. Mobile

recommendation systems also facing a life cycle problem. They are unlike a traditional

movie recommender, which likely has more long term value. In a mobile scenario,

if you recommend a driving route today, the same recommendation might not work

after three month, due to road constructions or changes in driving patterns. Moreover,

regarding travel recommendations, travel patterns during the summer and winter are

also quite different due to changing weather conditions. Thus, the life cycle for such

travel recommender systems may be very short.

Based on the above prospective on mobile data, it will be very difficult for us

to apply the traditional techniques to a mobile recommender. That is why there

is a need for us to develop mobile recommender systems that use business effective

strategies.
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1.5 Related Work

In the literature, many efforts have been devoted to building personalized recom-

mender systems, such as content-based recommendation (Mooney & Roy, 1999),

collaborative filtering based recommendation (Su & Khoshgoftaar, 2009) as well as

the hybrid recommendation (Pazzani, 1999). Furthermore, some recommender sys-

tems (Adomavicius & Tuzhilin, 2005) also aim to address the information overloaded

problem by identifying user interests and providing personalized suggestions. How-

ever, those traditional recommender systems (Bell & Koren, 2007; Deshpande &

Karypis, 2004; Koren, 2008) are more focused on recommendation of online informa-

tion, such as online movie, article, book or webpage. In most of the cases, the research

data are based on user ratings, which are very different from the data collected in

mobile environment.

Developing personalized recommender systems in mobile and pervasive environ-

ments is much more challenging than developing recommender systems in traditional

domains due to the complexity of spatial data and intrinsic spatio-temporal rela-

tionships, the unclear roles of context-aware information (Zhu et al., 2012), and the

increasing availability of environment sensing capabilities. Those unique challenges

are actually inherit in the mobile data we have. Indeed, recommender systems in

the mobile environments have been studied before (Abowd, Atkeson, & al, 1997;

Averjanova, Ricci, & Nguyen, 2008; Cena, Console, & al, 2006; Cheverst, Davies,

& al, 2000; Miller, Albert, & al, 2003; Tveit, 2001; Heijden, Kotsis, & Kronsteiner,

2005). For instance, the works in (Abowd et al., 1997; Cena et al., 2006) target at
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the development of mobile tourist guides. Zhu et al. proposed a uniform framework

of personalized context-aware recommendation for mobile users. The framework can

discover users’ personal context-aware preferences by mining the context logs of many

mobile users. Heijden et al. have discussed some technological opportunities associ-

ated with mobile recommendation systems (Heijden et al., 2005). Averjanova et al.

have developed a map-based mobile recommender system that can provide users with

some personalized recommendations (Averjanova et al., 2008). However, the above

prior works are mostly based on user ratings or interactions, and corresponding rec-

ommender systems are developed for smart mobile devices, such as mobile phones.

Indeed, the problem of building mobile recommender systems for taxi business re-

mains pretty much open.

Recently, the abundant availability of Taxi GPS traces has enabled new ways

of doing taxi business. Plenty efforts have been made on developing mobile rec-

ommender systems for taxi drivers by using Taxi GPS traces. These systems can

extract energy-efficient transportation patterns from historical location traces and

recommending potential pick-up points for taxi drivers. For example, Ge et al. (Ge,

Xiong, Tuzhilin, et al., 2010) defined a novel problem of mobile sequential recom-

mendation by leveraging the historical GPS data from taxi drivers. By solving this

problem, a novel energy-efficient mobile recommender system has been developed.

This system can provide an optimal sequence of pick-up points for taxi drivers. Also,

Powell et al. (Powell, Huang, Bastani, & Ji, 2011) proposed a grid-based method to

suggest the profit locations for taxi drivers by constructing a spatio-temporal prof-

itability map. In addition, Yuan et al. (Yuan, Zheng, Xie, & Sun, 2013; Yuan et al.,
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2010; Yuan, Zheng, Zhang, Xie, & Sun, 2011) have carried out a series of studies on

mobile intelligence by leveraging taxi trajectories, such as pick-up points detection

based on probabilistic models, and location recommendation for both the taxi drivers

and customers. Siyuan liu et al. (S. Liu, Wang, Liu, & Krishnan, 2015) focus on

recommending series of pick-up locations to taxi drivers by proposing a frame work

including a series of models to study how a taxi driver gathers and learns informa-

tion in an uncertain environment through the use of their social network. Moreover, a

comprehensive study is carried out by Tong Xu et al (T. Xu et al., 2016) to reveal how

the social propagation affects for better prediction of cab drivers’ future behaviors.

Daqing Zhang et al. (D. Zhang et al., 2015) predicted and improved the revenue of

taxi drivers through analyzing three perspectives of their service strategies. Jianbin

Huang et al. (Huang et al., 2015) challenged the high computational complexity

with mobile sequential recommendation by proposing a dynamic programing based

method with off line processing stage and on line searching stage. Huigui Rong et

al (Rong, Zhou, Yang, Shafiq, & Liu, 2016) investigated how to increase the taxi

drivers income in each one-hour time slot by modeling the passenger seeking process

as a Markov Decision Process. Yong Ge et al also developed a taxi driving fraud

detection system, which is able to systematically investigate taxi driving fraud (Ge,

Xiong, Liu, & Zhou, 2011). They further worked on taxi business intelligence system

and explored the massive taxi location traces from different business perspectives

with various data mining functions (Ge, Liu, Xiong, & Chen, 2011). Shiyou Qian

et al (Qian, Cao, Mouël, Sahel, & Li, 2015) proposed a sharing considered route as-

signment mechanism and aimed to provide recommendation fairness for a group of
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competing taxi drivers, without sacrificing driving efficiency. Fei Miao et al presented

a receding horizon control framework to dispatch taxis and match spatiotemporal

ratio between demand and supply for taxi service quality with minimum current and

anticipated future taxi idle driving distance (Miao et al., 2016).

Different from the above studies, in this dissertation, we propose to develop a

novel cost effective recommender system (Qu, Zhu, Liu, Liu, & Xiong, 2014). This

recommender system can provide an entire driving route to taxi drivers and the

drivers are able to find a customer with the largest potential profit by following this

route. A summary of this work has been published in the Twentieth ACM SIGKDD

Int’l Conf. on Knowledge Discovery and Data Mining (KDD 2014). Then we de-

veloped this recommender system with two different strategies and also propose two

methods to solve the load unbalance problem. A summary of this work has been

submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE). A

large amount of researches based on the works in this dissertation have been ob-

served. Such as, Chenyi Zhang el al’s work on personalized trip recommendation by

incorporating POIs availability, uncertain traveling time and diversity of the POIs

constraints (C. Zhang, Liang, Wang, & Sun, 2015; C. Zhang, Liang, & Wang, 2016).

Dongxu Shao el al’s research on estimating taxi demand supply level by using taxi

trajectory data stream (Shao, Wu, Xiang, & Lu, 2015). Guoyang Qin el al discover

the factors that may affect the income level of taxi drivers and compute the elasticity

for the significant factors (Qin et al., 2017). Moreover, Zeyang Ye el al investigate

the performance of simulated annealing in mobile recommendation problems with a

focus on identifying the optimal cooling schedule method (Ye, Xiao, & Deng, 2015).
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1.6 Research Contributions

In this dissertation, we investigate the unique characteristics of mobile recommender

systems and demonstrate how to develop mobile recommender systems that use effec-

tive business strategies. The proposed research has the following major contributions:

• Developed a cost-effective recommender system for taxi drivers. This recom-

mender system can maximize taxi drivers’ profits when drivers follow the rec-

ommended routes to find passengers. Specifically, instead of recommending a

sequence of pick-up points, our recommender system is capable of providing the

complete driving route with the largest potential profit.

• Proposed a net profit objective function for evaluating the potential profits of

driving routes. This objective function is capable of evaluating the potential

net profit of a candidate route based on our road network.

• Developed a graph representation of road networks that contains all possible

routes by mining historical taxi GPS traces and generated an optimal driving

route to recommend.

• Presented a novel recursion strategy based on the special form of the net profit

function for efficiently searching optimal candidate routes. This recursion strat-

egy decreased the computational cost of the graph based approach.

• Developed an enhancing recommender system with business effective strategies

for taxi drivers. The design goal is to maximize the taxi drivers’ profits when
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they adopt the proposed route searching strategy or virtual station waiting

strategy.

• Discovered four basic properties of virtual stations, such as, high customer de-

mand, high pick-up earnings, stop & waiting and dynamic properties. Inves-

tigated those properties and found potential virtual stations and their active

regions during different time slots.

• Proposed a virtual station waiting strategy, which recommends that taxi drivers

drive directly to a waiting spot and wait for the next customer in line. Compared

the potential net profit from this waiting strategy with the profit from previous

route searching strategy and recommended the strategy with highest net profit

to the taxi drivers.

• Provided two strategies to create a better load balance for recommendations

that occur at the same location, including Top-K route recommendations and

dynamic Maximum Net Profit strategy.

• Conducted extensive experiments using real-world data sets collected from Bei-

jing and the San Francisco Bay area. The experimental results clearly validated

the effectiveness of the proposed recommender systems.

1.7 Overview

Chapter 2 introduces A Cost-Effective Recommender System for Taxi Drivers. In-

stead of recommending a sequence of pick-up points and letting the driver decide how

to get to those points, this recommender system is capable of providing an entire
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driving route, and the drivers are able to find customers that will result in the largest

potential profit by following the recommendations. This chapter also addresses the

computational challenge embedded in making mobile recommendations using GPS

trajectory data. A novel recursion strategy that are capable to efficiently search the

optimal drive route and recommend it to users is introduced.

Chapter 3 presents an Enhancing Recommender System for Taxi Drivers with

Business Effective Strategies. Because taxi drivers do not always want to drive around

to find their next passenger, they may pick up a passenger more quickly by waiting

in line at a hot pick-up spot. We call these hot spots virtual stations and take those

virtual stations into consideration in developing recommendation strategies that are

intended to maximize taxi drivers’ profits. This chapter also introduces two strategies

intended to create a better load balance for recommendations occurring at the same

location.
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CHAPTER 2

A COST-EFFECTIVE RECOMMENDER SYSTEM FOR TAXI DRIVERS

The GPS technology and new forms of urban geography have changed the paradigm

for mobile services. As such, the abundant availability of GPS traces has enabled new

ways of doing taxi business. Indeed, recent efforts have been made on developing mo-

bile recommender systems for taxi drivers using Taxi GPS traces. These systems can

recommend a sequence of pick-up points for the purpose of maximizing the probabil-

ity of identifying a customer with the shortest driving distance. However, in the real

world, the income of taxi drivers is strongly correlated with the effective driving hours.

In other words, it is more critical for taxi drivers to know the actual driving routes to

minimize the driving time before finding a customer. To this end, in this chapter, we

propose to develop a cost-effective recommender system for taxi drivers. The design

goal is to maximize their profits when following the recommended routes for finding

passengers. Specifically, we first design a net profit objective function for evaluating

the potential profits of the driving routes. Then, we develop a graph representation

of road networks by mining the historical taxi GPS traces and provide a Brute-Force

strategy to generate optimal driving route for recommendation. However, a critical

challenge along this line is the high computational cost of the graph based approach.

Therefore, we develop a novel recursion strategy based on the special form of the net

profit function for searching optimal candidate routes efficiently. Particularly, instead
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of recommending a sequence of pick-up points and letting the driver decide how to

get to those points, our recommender system is capable of providing an entire driving

route, and the drivers are able to find a customer for the largest potential profit by

following the recommendations. This makes our recommender system more practi-

cal and profitable than other existing recommender systems. Finally, we carry out

extensive experiments on a real-world data set collected from the San Francisco Bay

area and the experimental results clearly validate the effectiveness of the proposed

recommender system.

2.1 Introduction

Recent years have witnessed the rapid development of wireless sensor technologies in

mobile environments, such as GPS, Wi-Fi and RFID. The advances of such technolo-

gies indicate the possibility to change radically the existing methods of doing taxi

business. Indeed, recent efforts have been made on providing personalized mobile

services to taxi drivers through the analysis of Taxi GPS traces. In general, there

are three existing ways to provide such services. The first way is to focus on the

development of the fastest driving route (Yuan et al., 2010, 2011; Zheng, Yuan, Xie,

Xie, & Sun, 2010; Zheng, Liu, Yuan, & Xie, 2011; Nagy & Salhi, 2005), which shows

the fastest driving route from the current location to the destination. The second

way is to provide a sequence of pick-up points for taxi drivers. The goal is to allow

the taxi driver to find a customer within the shortest driving distance (Ge, Xiong,

Tuzhilin, et al., 2010). Finally, an alternative service is to strike a balance between

the needs of taxi drivers and passengers (Yuan et al., 2013).
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Indeed, most of the existing mobile recommender systems for taxi business are

focused on extracting energy-efficient transportation patterns from historical location

traces and recommending a sequence of potential pick-up points for taxi drivers (Yuan

et al., 2010, 2011; Ge, Xiong, Tuzhilin, et al., 2010). However, in the real world, the

income of taxi drivers is strongly correlated with the effective driving hours which

may not necessarily lead to energy-efficiency. In other words, it is more critical for

taxi drivers to know the actual driving routes to minimize the driving time before

finding a customer. Taxi drivers usually rent their cabs from taxi companies for a

fixed time period. There is a fixed per-hour cost associated with gas usage and the

rental fee. The profit of a taxi driver really depends on how much money the driver

can make per hour; that is, how effectively the drivers can make use of their driving

time.

To that end, in this chapter, we propose to develop a cost-effective recommender

system for taxi drivers. The design goal is to maximize their profits when following

the recommended routes for finding passages. In particular, the proposed system

can provide an entire driving route rather than just recommending a sequence of

discrete pick-up points and letting the driver decide how to get to those points, and

the drivers are able to find a customer with the largest potential profit by following

the recommended route. This makes our recommender system more practical and

profitable than other existing mobile recommender systems (Ge, Xiong, Tuzhilin, et

al., 2010).

To achieve the design goal and recommend an entire driving route which allows the

taxi drivers to maximize their profits by following the recommended route, there are
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several factors to be considered. First, it is necessary to know the pick-up probabilities

along the route. Second, it should be able to compute the profit that drivers can make

after picking up a customer somewhere on the route. Third, the potential driving time

on the route should be estimated. Indeed, all these issues can be solved by mining

the historical Taxi GPS traces. However, a key challenge is how to combine the

impact of all these factors. Indeed, in this research, we develop a net profit objective

function to collectively integrate the impact of the above factors. The net profit

objective function can be used for evaluating the potential profit of the driving routes.

Then, we develop a graph representation of road networks and provide a Brute-Force

strategy to generate optimal driving route for finding passengers. In addition, the

search for candidate driving routes is essential a combinatorial search problem. The

computational cost is prohibited. Therefore, we further develop a pruning strategy to

reduce the search space and improve the computational performances. In particular,

we first change the graph representation of road networks to a new structure, namely

a recursion tree, based on the special form of the net profit function. Then, we design

a novel recursion strategy based on the recursion tree for searching optimal candidate

routes in an efficient way.

When recommending the driving routes to the taxi drivers, we also provide a

strategy for making a better load balance for the recommendations happening at the

same location. Specifically, we exploit a minimum redundant strategy. For each target

location, we transform each candidate route in the recommended list associated with

this location into a direction vector. Then, we are able to calculate the correlations

among this candidate route in terms of their directions. If there are several requests
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happening at the same location within a short time period, this minimum redundant

strategy can provide recommendations in a load balanced way.

Finally, we carry out extensive experiments on a real-world data set collected

from the San Francisco Bay area and the experimental results clearly validate both

the effectiveness and efficiency of the proposed recommender system.

Overview. The remainder of this chapter is organized as follows. Section 2.2 for-

mulates the problem of cost-effective recommendations for taxi drivers and introduce

some preliminaries. Section 2.3 provides a detailed description of our recommender

system. In Section 2.4, we report the experimental results. Finally, Section 2.5 con-

cludes this work.

2.2 Problem Formulation

In this section, we first introduce some preliminaries, and then formally define the

problem of Maximum Net Profit (MNP) recommendation for taxi drivers.

2.2.1 Preliminaries

Here, we first introduce some basic concepts used throughout this dissertation.

Road Network Formulation

Definition 1 (Road Segment) A long street can be separated into several road seg-

ments r by its crossroads. Specifically, each segment r is associated with a start point

r.s and an end point r.e. Moreover, each segment r also has several adjacent segments

forming a set r.next[], which satisfies ∀ri ∈ r.next[] iff. r.e = ri.s.

Definition 2 (Route) A route R is a sequence of connected road segments, i.e.,
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Figure 2.1. An example of a route segment network.

R = (r1 → r2 → · · · → rM), where rk+1.s = rk.e (1 ≤ k < M). The start point and

the end point of a route R can be represented as R.s = r1.s and R.e = rn.e.

Definition 3 (Road Segment Network) The road segment network G can be rep-

resented by a graph G =< V,E >, where V = {ri} is the node set that consists of all

road segments and E is the edge set, which satisfies ∃eij ∈ E iff. rj ∈ ri.next[].

Figure 2.1 demonstrates an example of the road segment network. In this graph,

each node represents for a road segment. Note that, each edge only has one direction.

This is because we do not allow taxi drivers to drive back and forth in the same single

road segment, which is not recommended in real life and has a high potential to result

in traffic jam and accidents. However, taxi drivers can take a loop through three road

segments, such as nodes r1, r3 and r7, which can form a loop for drivers.
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Calculation of Net Profit

For each segment r, the net profit g(r) consists of two components, namely potential

earning and potential cost. Specifically, we define the potential earnings of segment

r as e(r), which can be computed by

e(r) =

∑Nr

i=1 Fee(i; r)

Nr

P (r), (2.1)

where Nr is the number of picking-up passengers in segment r during a given time

period, Fee(i; r) is the earning from the i-th pick-up passenger and P (r) is the pick-

up possibility in segment r, which will be introduced in Section 2.3. Meanwhile, the

potential cost of segment r, i.e., c(r), can be computed by

c(r) = (1− P (r))(L(r) ·Gas+ T (r) · CompanyFee), (2.2)

where L(r) is the length of segment r, Gas is the price of gas per unite distance

(e.g., per mile), T (r) is the traveling time through segment r and CompanyFee is

the opportunity cost per unit time (e.g., per minute). Indeed, T (r) is sensitive to

the real-time traffic conditions. For example, a traffic jam will result in a high T (r),

and thus bring a high cost of T (r) · CompanyFee. In this case, the segment will not

recommended by our model. Therefore, the net profit of segment r, i.e., g(r), can be

computed by

g(r) = e(r)− c(r). (2.3)

Based on the above, we can further define the net profit for each route R. Specif-

ically, given a route R = (r1 → r2 → · · · → rM) starting from r1, its total net profit
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can be computed by

G(R, r1,M) = g(r1) +
M∑
i=2

g(ri)
i−1∏
j=1

(
1− P (rj)

)
. (2.4)

Intuitively, the net profit of route R is the sum of the net profit of road segments {ri}

contained in R, which is weighted by the possibility of not picking up any passenger

in previous segments (i.e., r1 to ri−1).

Indeed, with the possibility weights in net profit, the taxi driver will not consider

the segments which are far away from her current location because the expected profit

there is very low. To be more specific, we can define the average increasing rate of net

profit as τ = <G(R,ri,M+1)>−<G(R,ri,M)>
<G(R,ri,M+1)>

to indicate the profit increase when increasing

one more road segment in the route. Figure 2.2 shows the trend of the increasing rate

with respect to different numbers of increased road segments and different pick-up

possibilities. We can observe that the increasing rate is less than 10% after increasing

more than 5 road segments. Indeed, the average pick-up probability of each road

segment in our experiments is always less than 0.1, therefore it is possible for us

to set an upper bound Λ for route length M in Equation 2.4. Based on the above

definitions, we can formally define the MNP recommendation problem as follows.

Definition 4 (Problem Statement) Given the current location LCab ∈ r of a

taxi driver, a fixed cruising length M , and a set of route candidates R, where ∀R ∈ R

satisfies R starts from r. The MNP recommendation problem is to recommend a route

R∗ ∈ R, which has the maximum net profit, i.e.,

R∗ = argmax
R∈R

{
G(R, r,M)

}
. (2.5)
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Figure 2.2. The average increase rate of net profit with respect to different number

of increased road segment and the different fixed pick up possibility (i.e., P (r) = 0.1,

P (r) = 0.2, P (r) = 0.3).

Different from other existing recommender systems for taxi drivers, which mainly

focus on extracting energy-efficient transportation patterns based on traveling time/length

and recommending a sequence of potential pick-up points for taxi drivers (Yuan et al.,

2010, 2011; Ge, Xiong, Tuzhilin, et al., 2010), the MNP recommendation problem fo-

cuses on providing an entire driving route with maximum net profits for a taxi driver.

Along this line, there are two major challenges for solving the MNP recommendation

problem. First, how to calculate the parameters g(r), P (r) of each segment r from

the historical pick-up data. Second, how to efficiently search an optimal route from

the complex directed-cyclic route segmentation network. In the following section, we

will introduce our solutions for the above two challenges, respectively.
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2.3 Maximum Net Profit (MNP) Recommendation

In this section, we introduce the technical details of our solutions for the MNP rec-

ommendation problem.

2.3.1 Parameter Estimation with Road Buffer

To accurately obtain the taxi driver’s current location and the parameters for esti-

mating net profit, i.e., P (r) and g(r), we exploit the road buffer estimation for each

road segment. Specifically, in geographic information systems, a buffer is a zone of

specified distance around the spatial object. The boundary of the buffer is the solid

line of equal distance to the edge of the object. Figure 2.3(a) is an illustration of

different buffer operations, such as buffers on a point, three line segments and a poly-

gon (Xiong et al., 2004). Intuitively, people would like to wait for taxis at road side

instead of in the middle of road, and the pick-up points of taxis are always around the

road side. Therefore, when calculating for the number of historical pick-up events, we

need to build a buffer around each road segment for obtaining the new boundaries of

the road. This road buffer usually looks like a rectangle surrounding the road, which

is similar with the buffer operation of three line segments. Particularly, the size of

the buffer depends on the demands of different real-world problems.

To build the road buffer, we need to define the vertical road and the horizontal

road first. To be specific, by using the longitude and the latitude of the starting and

the ending points of each road segment, we can calculate the tangent value of this

road segment. If the absolute value of the tangent is greater than 1, then we regard

the corresponding road as vertical road, otherwise it is a horizontal road. For each
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(a) Different buffer operations

(b) Buffer operations on road segments

Figure 2.3. Buffer Operations
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vertical road, we keep the longitudes of its starting and ending points and extend

the corresponding latitudes to west and east. For each horizontal road, we keep the

latitudes of its starting and ending points and extend the corresponding longitudes

to north and south. The above buffer operation results in new boundaries formed by

four vertex coordinates. For example, Figure 2.3(b) shows the buffer operations on

vertical and horizontal road segments.

Given the historical pick-up data and the road buffers, we are able to calculate the

total number of pick-up events in each road segment r, which indicates how frequently

a pick-up event can happen when cabs travel across each road segment. Let N0
r denote

the number of times that taxis are vacant in the buffer of road segment r, and and

N∗
r denote the number of times that taxis had pick-up events in the buffer of segment

r. Thus, the probability of pick-up event for each road segment r, i.e., P (r), can be

estimated as

P (r) =
N∗

r

N0
r +N∗

r

. (2.6)

From the i-th historical pick-up event in segment r, we can also obtain the earnings

Fee(i; r) in Equation 2.1. Furthermore, the road length L(r) and real-time traveling

time T (r) can be estimated from the historical data or some external resources, such

as Google Map. Therefore, the net profit of g(r) can be calculated by Equation 3.3.

Particularly, the value T (r), g(r) and P (r) of each road segment r can be pre-stored

in corresponding node of the road segment network (e.g., Figure 2.1).
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2.3.2 MNP Route Recommendation

In this subsection, we introduce how to solve the problem of NMP recommendation

by different strategies.

Brute-Force Recommendation Strategy

After obtaining the road segment network, we can leverage it for generating route

candidates can MNP recommendation. To this end, we first propose a Brute-Force

strategy for this task based on the Breadth-First search. Specifically, the recommen-

dation algorithm is shown in Algorithm 1. In this algorithm, we keep a route queue

Q for generating a set of route candidates C, and the function MNP (C) in Step 5

is used for finding the optimal route with maximum net profit in candidate set C.

However, such Brute-Force method for searching the MNP route is not efficient, since

it has to check all possible routes with length M in G.

Lemma 1 Given a fixed cruising length M and the road segment network G =

{V,E}, where |V | = N , the computational complexity of searching an optimal MNP

route by Brute-Force algorithm is O(MNM−1)

Proof Obviously, the total number of route candidates in road segment network G

is ≤ NM−1, and computing the net profit for each route needs M operations. Thus,

the complexity of searching optimal MNP route is O(MNM−1)

Intuitively, the computational complexity of the Brute-Force algorithm is too high

to satisfy the needs of real-world applications. There are some algorithm can save

the reaching time of freeway travel in real world. To this end, we further propose
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Algorithm 1 Brute-Force based MNP Recommendation
Input 1: road segment network G = {V,E};

Input 2: the cruising length M ;

Input 3: taxi driver’s current segment r1;

Output: the MNP route R∗;

Initialization: A route queue Q = {R0}, where R0 = {r1};

1: C = ∅;

2: //get route from queue Q;

3: R = Q.del();

4: if (R = ∅) do

5: return R∗ = MNP (C);

6: else if (|R| == M) do

7: C = C ∪R;

8: else if (|R| < M) do

9: //rk is the last road segment in R;

10: for each (ri ∈ V , ∃eki ∈ E) do

11: //add route from queue Q;

12: Q.add(R ∪ {ri});

13: go to Step 3;
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another recommendation strategy based on the recursive characteristic of the net

profit function.

Recursive Recommendation Strategy

By observing the form of the net profit of routes, we can re-write the Equation 2.4

as follows.

G(R, r1,M) = g(r1) +
(
1− P (r1)

)
G(R− r1, r2,M − 1), (2.7)

where R = (r1 → r2 → · · · → rM). Indeed, the special form of total net profit

can be realized by a recursion algorithm. To this end, for each road segment r1, we

can denote all the route candidates starting from r1 as a recursion tree structure.

Specifically, the recursion tree of a road segment can be defined as follows.

Definition 5 [Recursion Tree] The recursion tree Υr1 of a road segment r1 is a tree,

where each node represents a road segment and the root node is r1. Moreover, for

each node ri in the recursion tree, it has a children node set that equals to ri.next[].

For example, Figure 2.4 shows an example of the recursion tree of road segment

A. In this dissertation, we propose a method RTree(r,M) for building a M -depth

recursion tree Υr for r, which is shown in Algorithm 2. Particularly, the tree Υr

obtained by our algorithm will hold M node sets Υr.level[i] (1 ≤ i ≤ M), which

represents the nodes in the i-th level of the tree. With this structure, the MNP rec-

ommendation from segment r1 can be separated into several simpler MNP recommen-

dation tasks recursively. Take Figure 2.4 as an example, we can develop a bottom-up

method to compute the MNP route with length 3, of which the net profit is de-

noted as G(A, 3). Specifically, according to the definition of net profit, we can obtain
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Algorithm 2 RTree(r,M)
Input 1: road segment r1 as root node;

Input 2: the depth M of recursion tree;

Output: a M -depth recursion tree Υr;

Initialization: Depth = 1; Υr.level[i] = ∅ (1 ≤ i ≤ M);

1: Υr.root = r; Υr.level[1] = {r};

2: if (Depth ≥ M) do

3: return Υr;

4: else

5: for each (rcur ∈ Υ.r.level[Depth]) do

6: Υr.level[Depth+ 1]∪ = rcur.next[];

7: Depth+ = 1;

8: go to Step 2;
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G(A, 3) = g(A)+(1−P (A))×max{G(B; 2), G(C; 2), G(F ; 2);G(E; 2)}, where the net

profit of each MNP route with length 2 can also be computed by the profit of their sub-

routes. For example, we have G(B; 2) = g(B)+ (1−P (B))×max{G(D; 1), G(I; 1)},

and the profit of each individual segment (i.e., leaf nodes of the tree) can be directly

computed by its profit, e.g., g(D). Therefore, given a recursion tree of r, we can

obtain the MNP route with length M by recursing M − 1 times. Specifically, in this

research we develop a recursion algorithm rNMP (r,K) for MNP recommendation,

which is shown in Algorithm 3. By implementing our algorithm with parameters

r = r1 and K = M , the MNP route starting from road segment r1 with length M

and corresponding MNP value will be obtained.

Figure 2.4. The recursion tree representation of route network. We can calculate the

MNP G(R,A, 3) from the leaf nodes of the tree.

Lemma 2 Given a M-depth recursion tree Υ, where ∀r ∈ Υ, |r.next[]| ≤ N , the

complexity of searching an optimal MNP route by the recursion method is O(NM−1)
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Algorithm 3 rMNP(r,K)
Input 1: recursion tree of Υr;

Input 2: the depth M of recursion tree;

Output: the MNP value and route stating from r;

1: Depth = M −K + 1;

2: if (Depth == M) do

3: Profit = ∅;

4: Route = ∅;

5: for each (ri ∈ Υr.level[Depth]) do

6: Profit[i] = g(r);

7: Route[i] = ri;

8: return (Max(Profit),Max(Route));

9: else

10: Profit = ∅;

11: Route = ∅;

12: for each (ri ∈ Υr.level[Depth]) do

13: (Profit∗, Route∗) = rMNP (ri,K − 1);

14: Newroute[i] = ri ∪Route∗

15: Profit[i] = g(ri) + (1− p(ri)) · Profit∗;

16: return (Max(Profit),Max(Route));
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Proof Assume that the computational cost of finding G(R, r1,M) is T (M), obvi-

ously we have T (M) ≤ NT (M − 1) + 1. Moreover ∀r satisfies |r.next[]| = N , the

computation can be separated into N sub-problems. Particularly, for route with only

one segment, we have T (1) = 1. Meanwhile, after recursing M − 1 times, we have

T (M) ≤ NM−1T (1) + NM−1

N−1
. Therefore, the computational complexity of searching

optimal MNP route by recursing tree is O(NM−1)

Although the recursion tree can achieve more efficient recommendation than the

Brute-Force method, the computational cost increases significantly as M becomes

larger. According to the discussion in Section 2.2, we can set an upper bond Λ for M ,

since the average increasing rate of the net profit is very low after M > 5. Therefore,

we set Λ = 5 in our experiments.

2.3.3 Top-K Route Recommendation

Based on the above algorithms, our recommender system can recommend an optimal

MNP route for a single taxi driver. However, in real life, an ideal recommender

system must be capable of recommending multiple taxi drivers in the same area

simultaneously. In this section, we address this problem and introduce a minimum

redundant strategy for the recommendation process in the real world.

Intuitively, a straightforward recommendation strategy is to recommend the op-

timal driving route to all available drivers. However, if we recommend the same

route to too many drivers at the same time, it will cause an overloaded problem and

degrade the performance of the recommender system. The overloaded problem is

a classic problem which has been widely studied. For example, the load balancing
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mechanism distributes requests among web servers in order to minimize the execution

time (Z. Xu & Huang, CS213 Univ. of California,Riverside; Grosu & Chronopoulos,

2004). In our problem, we can treat multiple empty cabs as jobs and multiple optimal

drive routes as computers. Instead of solving this overloaded problem by exploiting

existing load balancing algorithm, we want to focus on the direction characteristics

in the mobile recommender system and exploit a direction-based clustering (DEN)

method (Zhou et al., 2010) to distribute the empty cabs by following the top-K op-

timal drive routes (Ge, Xiong, Zhou, et al., 2010; Yuan, Sun, Tian, Chen, & Liu,

2009).

(a) (b)

Figure 2.5. (a) Direction-based clustering; (b) Top-K route Recommendation.

Before recommending driving routes to taxi drivers, we first rank all the route

candidates according to their net profits and obtain the top-K driving routes. After

recommending the top ranked route to the first taxi driver, we need to calculate
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the correlation between this route and all other K − 1 candidate routes, and then

recommend the route with the lowest correlationship (Tang et al., 2011) to the second

driver.

In order to calculate the correlation between those candidate routes, we first par-

tition the space into grids and turn the movement statistics in each grid into a vector

which represents the probabilities of moving directions within the grid. Then, we

transform the direction information of the taxis’ movement into the same data for-

mat, and further partition each small grid into 8 direction bins. For example, in

Figure 2.5(a) the angle of each bin has a range of π/4. Next, we transform each

grid into a direction vector g = (p1, p2, p3, ..., p8), where each pi is the probability of

moving towards direction i within this grid and pi = fi/
∑8

k=1fk , where fi is the

frequency of moving objects that have passed this grid and has the direction along

the direction i.

For instance, as shown in Figure 2.5(b), we first recommend route A to the first

taxi driver, route B, C and D are other candidate routes at the same time and

same location. Then we divide the space into small grids and get the direction

vectors for each grid. A driving route candidate which has lowest correlation with

the previous recommending route is usually the one with a different driving direction

in the beginning. Therefore, we only need to analyze the first n grids to decide the

driving directions. We combine the direction vectors in n grids together and get a

vector with 8n elements for each candidate route. For example, the vector for route

A is g(A) = (p11, p12, ....pn7, pn8). Then, we calculate the correlation of those vectors

for each pair of candidate routes. Thus, the correlation between route A and B can
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be computed by ρ(A,B) = Cov(g(A), g(B))/σg(A)σ(g(B). If route B has the lowest

correlation with route A, we will recommend route B for next coming empty cab.

2.4 Experimental Results

To validate the efficiency and effectiveness of the proposed recommender system,

extensive experiments are performed on real world data sets collected in the San

Francisco Bay Area in 30 days.

2.4.1 Experimental Data

Taxi GPS Traces. In the experiments, we use the real-world taxi GPS traces collected

by the Exploratorium-the museum of science, art and human perception through the

cabspotting project. The mobility traces are the records of the cabs’ driving states

in consecutive time, with each be represented as a tuple, (latitude, longitude, fare

identifier, time stamp). By cleaning the dataset, we obtained 89,897 pick-up and

drop-off activities in total. Generally, we assume that most drivers would follow

the suggested driving route provided by the Google Map, thus we can get the fare

related to the specific trip and the fare information can also be used to calculate the

profits concerning the trip. The following Figure 2.6 is an example of one hundred

taxi drivers’ pick-up points in 30 days in the San Francisco Bay Area, with each red

point representing one pick-up activity. Figure 2.7 is an heat map illustration of pick-

up probabilities. Here, different color and area of circles represent different pick-up

probabilities. This map shows there are lots of pick-up activities around the Market

Street of San Francisco, which is a very busy street with lots of shopping places

and museums. Other pick-up hot spots including Fisherman’s Wharf, Divisadero St,
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Figure 2.6. A demonstration of pick-up points in the dataset.

Cathedral Hill and Western Addition.

Road Network Data. Because the quality of existing road networks in San Fran-

cisco is not sufficient. We build the road network dataset of San Francisco by using

google API. First, we searched for all the street names in San Francisco. Second,

we run the google API to find out if there is an intersection between two streets.

We keep a record of each intersection point. Figure 2.8(a) is an illustration of our

intersection points. Then, we use each intersection point to search the nearest points

in four different directions and connect those 5 points together. Therefore, we can

obtain four different connected road segments with starting points and ending points.

However, as the yellow line in Figure 2.8(b), we may accidentally connect two inter-

sections with no road between them. To solve this problem, we calculate the distance

of those two intersections by using coordinates and compare it with the driving dis-

tance measured by the Google map. If there is a road between those two points, those

two distances should be very close to each other. If the distances are not close to
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Figure 2.7. The heat map of pick-up probabilities in San Francisco bay area.

each other, it means there is no road between those two intersections and we delete

this road segment from the road network dataset.

The road network dataset contains 5391 roads in the San Francisco Bay Area,

with each consisting of the ID, starting points, ending points and we also calculate

the historical pick-up probability and net profit associate with each road segment.

For each road, several coordinates of the intermediate points may be recorded and

there are also some noise points. After removing the noise points, we selected 2,149

roads with high pick-up probability for our experiment. Then, we can build road

buffer with the starting points and the ending points in those road segments.

By matching the pick-up coordinates of the Road Network Dataset with the Taxi

Dataset, we are able to get 87,688 valid pick-up activities which can be located in the

road segments, therefore the two data sets are combined together with each pick-up
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Figure 2.8. (a) Intersections; (b) Connected Road Segments.

point mapped to the constructed road buffer. To implement the proposed algorithm,

we also need to calculate the pick-up probability and the net profit for each road

segment in those road segments. This has already been presented in Section 2.3.

Finally, we get the coordinates of the starting and the ending points for each

road segment, along with the pick-up probability, the net profit and the average

driving time in this road segment. Note that the average driving time is estimated

as the distance of each road segment divided by the average driving speed in the San

Francisco Bay Area.

2.4.2 Empirical Studies on Recommendations

Here, we provide two case studies. One case study is on cost effective route recom-

mendations. Another case study is on top-K recommendations.

A Case Study on Cost-Effective Route Recommendations

Here, we show two examples of MNP route recommended by our approach and com-

pare it with the suggested route by the Google map. Specifically, in Figure 2.9 and

Figure 2.10, we plot the optimal driving route suggested by our recommender system

at a randomly selected initial location of the target cab. We also assumed that the
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Figure 2.9. Cost-Effective Route Recommendation Case Study (a)

driver’s expected cruising length is 5, and after every 5 road segments, the system will

use the current location as the new starting point for search and restart the recom-

mendation process. In order to do the comparison, we calculate the real driving time

of each trip of taxi drivers and restart our recommendation system until the total

driving time in those MNP routes is equal to the real driving time of each trip. Then,

we connect those MNP routes together and this is the entire driving route that should

be recommended to the drivers. In those figures, the left figures are the driving route

recommended by the MNP recommender system and the right figures are the route

suggested by the Google Map based on the shortest driving distance. However, this

driving route suggested by the Google map cannot maximize taxi drivers’ net profit.

Recently, most recommender system can only suggest a sequence of hot spots to

taxi drivers. There is no such recommendation system that can suggest an entire

driving route. If taxi drivers do not know how to drive to the nearest hot spot, he or

she has to follow the driving route provided by the Google map. However, both the

pick-up probability and the potential net profit may be very low along those routes.
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Figure 2.10. Cost-Effective Route Recommendation Case Study (b)

The drivers have a high probability of losing money until they reach the next hot spot.

Our recommender system can improve potential net profits for taxi drivers compared

to the routes suggested by the Google map.

A Case Study on Top-K Recommendations

In Section 2.3, we introduced a minimum redundant strategy to recommend the Top-

K driving routes and solved the overloaded problem. In figure 2.4.2, we demonstrate

the top K driving routes starting from the same location, where K equals to 4 in

this case. The figure shows that each route has different driving directions and the

correlations between those driving distances are very small. Therefore, the minimum

redundant strategy can improve the performance of our recommender system.

2.4.3 Route Recommendation for Inexperienced Taxi Drivers

Given one specific location, our proposed algorithm can recommend several routes

with high expected utility for drivers. The algorithm is especially applicable for

inexperienced drivers, since they lack of knowledge about the roadmap and the local

driving routes that can make profits. To validate the effectiveness of the proposed
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Figure 2.11. The top 4 driving routes starting from the same location (longitude:

-122.4376221 and latitude: 37.77407074)
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algorithm, we firstly divide all the drivers into two categories based on their average

net profits. The top 10% drivers in the dataset are treated as ’experienced’ drivers,

while the others are ’inexperienced’. Therefore, the driving routes of the experienced

drivers are used as training set and we recommend driving routes for the inexperienced

drivers.

We define driver’s event e as a consecutive sequence of ‘roam → pick up → drop

off’, by extracting the pick-up and drop-off activities of each user, we can reconstruct

each event. For each driver, we define the location where the driver starts to search for

potential pick-ups as l0, and after roaming in ∆t time, the driver picks up passengers

at location l1 and drive for ∆t′ and drop off at l2. Let ri,j denotes the road segment

between location li and lj, then event e can be represented with (r0,1,∆t, r1,2,∆t′),

and the unit time profit of the event can be calculated as pe = pr12
∆t+∆t′

. Thus, the

proposed algorithm starts with the location l′ which is neareset to l0, and return a

sequence of recommended potential pick-up points and road segments.

The performance of the recommended driving route is measured by the average

net profit per unit time pr, and it is compared with the average unit net profit of the

inexperienced drivers, i.e., pd =
∑

pe
|e| .

The statistical experiment results for recommended driving routes for inexperi-

enced drivers are shown in Table 2.1, the average net profits per unit time outperforms

the real profit of the inexperienced drivers.

We first plot the distribution for the net profit per unit time, i.e., the number

of events for specific profit values, as shown in Figure 2.12. The net profit per unit

time of our recommended route is compared with the inexperienced taxi drivers’
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Table 2.1. Net Profits per Unit Time

Recommender System Inexperienced Drivers

Mean 0.038148 0.024162

SD 0.017815 0.018455

performance based on statistical histogram. The blue bar of the histogram shows the

net profits from our recommendation results and the red bar shows the profits from

the inexperienced taxi drivers. As we can see from the figure, the recommendation

events mostly positioned on bigger values. This indicates that our recommender

systems provide higher profit routes than the real routes by inexperienced drivers.

To further investigate the performance of the recommender system, we also study

the difference of net profit per unit time between the recommended routes and the

drivers’ real routes for each event, i.e. pr − pe. As shown in Figure 2.13, the X axis is

the difference between the profits of the recommended results and the inexperienced

taxi drivers’ profits. We can see that most of dot points are positioned to the right of

X = 0, meaning that the profits of our recommended routes outperform the profits

of the routes by the inexperienced drivers.

Then, we evaluated the performance of the Brute-Force recommendation strategy

and the performance of the recursive recommendation strategy. This experiment

was conducted across 1000 randomly picked starting points. We only compared the

running time for five road segments, because the increasing rate of pick-up probability

in Equation 4 is less than 10% after increasing more than 5 road segments. As shown

in Figure 2.14, the red line is the running time for the Brute-Force recommendation
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Figure 2.12. Net Profit Statistics. The blue bar represents the potential profits of our

optimized routes and the orange bar represents the profits of taxi drivers’ traditional

routes ranked below top 10%

strategy and the black line is the running time of the recursive Strategy. We can see

that the recursive strategy can lead to better efficiency compared to the Brute-Force

strategy. Note that all the experiments were conducted on a Windows 7 with Intel(R)

Core(TM)i5-3210 CPU and 6.0 GB RAM.

To sum up, the experiments showed that the cost-effective recommender system

could help inexperienced taxi drivers find better routes so as to maximize their po-

tential profits. Also, the recursive strategy can help to efficiently identify the recom-

mended optimal routes.
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Figure 2.13. Profit Difference. X axis is Net Profit Difference between our optimized

routes and taxi drivers’ traditional routes ranked below top 10%. Y axis is the number

of events

2.5 Concluding Remarks

In this chapter, we proposed a cost-effective recommender system for taxi drivers

to maximize their profits by providing profitable driving routes. To be specific, we

first provided a net profit objective function for evaluating the driving routes before

finding a customer. Then, we proposed a graph based approach to efficiently generate

candidate driving routes for finding passengers. As a result, we can use the net profit

objective function to rank each candidate route and make recommendations to taxi

drivers in a cost-effective way. An unique perspective of our recommender system

is that it can recommend an entire driving route instead of only recommending a
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Figure 2.14. A Comparison of the Running Time. The red line represents the running

time of the Brute-Force strategy and the black line represents the running time of the

Recursive strategy

sequence of discrete pick-up points. Also, the drivers are able to maximize their

profits within the fixed time period by following the recommended driving routes.

Finally, the extensive experiments on a real-world data set collected from the San

Francisco Bay area clearly validated the effectiveness of the proposed recommender

system.
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CHAPTER 3

ENHANCING RECOMMENDER SYSTEM FOR TAXI DRIVERS WITH

BUSINESS EFFECTIVE STRATEGIES

Nowadays, the development of GPS technology and the collection of abundant taxi

transaction records bring the key to a more effective mobile recommender system

for taxi drivers. Indeed, recent efforts have been made on recommending a sequence

of pick-up points for the purpose of minimizing the distance for searching next cus-

tomer. However, in the real world, the profits of taxi drivers are strongly related to

multiple factors such as the effective driving hours, the driving distances, and the po-

tential earnings from passengers. Moreover, these recommender systems suffer from

taxi overload problem which dramatically reduce the potential earnings of the taxi

drivers who follow the same recommended strategy but come lately. To address these

challenges, in this chapter, we propose an enhancing recommender system for taxi

drivers with business effective strategies. The goal is to maximize their profits by

following the recommended next-customer searching strategies. Specifically, for each

taxi driver, we first dynamically estimate the pick-up possibility of each road segment

according to its surrounding taxi activities during previous time periods. With the

considerations of pick-up possibility, driving distance and potential earnings from the

next passenger, a net profit objective function for evaluating the potential profits of

route candidates is constructed and optimized by solving a maximum net profit route
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searching problem. Then, this maximum net profit from our route searching strategy

is compared with a virtual station waiting strategy, which recommends taxi drivers to

wait in a specific area (usually near hot spots like station exits, shopping malls, etc.)

instead of searching driving routes. In the end, we recommend the strategy with the

maximum net profit to taxi drivers. We also carry out extensive experiments on real-

world data collected from Beijing City and San Francisco Bay area. The experimental

results clearly validate the efficiency and the effectiveness our propose recommender

system.

3.1 Introduction

In our earlier work (Qu et al., 2014) in Chapter 2, we presented a cost-effective

recommender system for taxi drivers. The goal of this recommender system is to

maximize their profits when following the recommended routes for finding passengers.

Particularly, instead of recommending a sequence of pick-up points and letting the

driver decide how to get to those points, this recommender system is capable of

providing an entire driving route.

While the cost-effective recommender system in chapter 2 can efficiently recom-

mend an entire driving route to taxi drivers. In this chapter, we further developed an

enhanced recommender system with business effective strategies for taxi drivers. This

approach is motivated by the following observation: taxi drivers do not always want

to drive around to find their next passenger. Indeed, they may pick up a passenger

faster just by waiting in line at a hot pick-up spot, i.e., virtual station, such as a

hotel, a restaurant, a movie theater, a train station, or any other popular places that
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have abundant passengers waiting for taxis. Therefore, it is necessary to take those

virtual stations into consideration in developing recommendation strategies for maxi-

mizing taxi drivers’ profits. As we stated in the previous chapter, the incomes of taxi

drivers are strongly correlated with their effective driving hours. In this chapter, we

developed the previous cost-effective recommender system and provide two different

recommendation strategies. First of all, we remain the previous cost effective recom-

mender strategy and rename it as route searching strategy. Secondly, based on our

real life observation, we provided another strategy which can recommend a hot pick-

up spot to taxi drivers and let them wait in line. We call this type of recommendation

strategy as virtual station waiting strategy.

The design goal is to maximize taxi drivers’ profits in unit time when following the

recommended strategies for finding passengers. Specifically, we design a joint learning

algorithm to evaluate the potential profits of different strategies. Those strategies

could be routing around a neighborhood by following a route with the maximum

profit or waiting at a virtual station with the highest ratio of the potential profit over

the waiting time depending on the given time period and the current location of the

driver. Take the route searching strategy, and the virtual station waiting strategy into

consideration, the enhanced recommender will effectively compute and recommend

the most profitable strategy.

To achieve the design goal and recommend the most profitable strategy which al-

lows the taxi drivers to maximize their profits by following the recommended strategy,

there are several factors to be considered. First, it is necessary to know the pick-up

probabilities along the route and the virtual station. Second, it should be able to
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compute the potential profit of picking a customer at a given location. Third, the

potential driving time/waiting time on the route or at a virtual station should be

estimated. Indeed, all these issues can be solved by mining the historical Taxi GPS

traces. However, a key challenge is to combine the impacts of all these factors. In this

chapter, we develop a joint learning strategy to collectively integrate the impacts of

the above factors. This joint learning strategy can be used for evaluating the potential

net profits of the driving strategies. Then, we develop a graph representation of road

networks and provide a Brute-Force strategy to generate all optimal driving route

for finding passengers. In addition, the search for candidate route searching strategy

is essential a combinatorial search problem. The computational cost is prohibited.

Therefore, we further develop a pruning strategy to reduce the search space and im-

prove the computational performances. As mentioned in Chapter 2, we first change

the graph representation of road networks to a new structure, namely a recursion

tree, based on the special form of the net profit function. Then, we design a novel

recursion strategy based on the recursion tree for searching optimal candidate routes

in an efficient way.

When recommending driving routes to taxi drivers, we also provide two strategies

for making a better load balance for the recommendations happening at the same

location. Specifically, we provide Top-K route recommendation and a novel dynamic

MNP strategy to solve this load unbalance problem.

Finally, to validate the efficiency and the effectiveness of the proposed recom-

mender system, extensive experiments are performed on real world data sets collected

from Beijing and San Francisco. These data sets include the historical records of the
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cab’s pick up and drop off events (with latitude, longitude, vendor id, rate code, and

time stamp for each event). We also mutually labeled 50 famous virtual stations in

Beijing. Then we use those virtual stations as the training set and define other virtual

stations from our data sets. In the end, the experimental results clearly validate both

the effectiveness and the efficiency of the proposed recommender system.

Overview. The remainder of this chapter is organized as follows. In Section 3.2,

we formulate the problem of enhancing recommender system with business effective

strategies for taxi drivers and introduce some preliminaries. Section 3.3 provides

a detailed description of our recommender system. In Section 3.4, we report the

experimental results. Finally, Section 3.5 concludes this work.

3.2 Problem Formulation

In this section, we first introduce some preliminaries that provide the platform for our

enhancing recommender system and then formally define the problem of Maximum

Net Profit (MNP) recommendation for taxi drivers.

3.2.1 Preliminaries

In order to provide an exact searching route, we first decompose the original trajec-

tories into a sequence of road segments, which are the basic units of taxi searching

route and road network. Moreover, we pay special attention to some road segments

with special properties, i.e., high frequent region or taxi pick-up stops, and regard

them as ”virtual station candidates”.
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Road Network Structure

A road segment is the specific representation of a portion of a road with uniform

properties. The start and end points are decided by an intersection, a roundabout or

a dead end. A route is a sequence of adjacent road segments following which a taxi

driver can search for new customers. A road segment network is a graph structure

that contains all possible searching routes and is centered by a taxi driver’s start

searching location. Formally, the road network structure is defined as follows.

Definition 6 (Road Segment) A road segment r is the representation of a road

portion associated with a start point r.s and an end point r.e. A road segment has

several static properties including one-way indicator and segment length. If the one

way attribute r.one = 1, r can only be traveled from r.s to r.e. Each segment r has

several adjacent segments that are reachable directly from r. The adjacent segments

form a segment set r.next, which satisfies ∀ri ∈ r.next iff. r.e = ri.s.

Definition 7 (Route) A route R of length n is a sequence of n connected road

segments that a taxi driver can follow to search for next customer, i.e., R = (r1 →

r2 → · · · → rn), where rk+1.s = rk.e (1 ≤ k < n). The start point and the end point

of a route R can be represented as R.s = r1.s and R.e = rn.e.

Definition 8 (Road Segment Network) A road segment network G can be repre-

sented by a directed graph G =< V,E >, where V = {ri} is the node set that consists

of all road segments, and E is the edge set, which satisfies ∃eij = (ri, rj) ∈ E iff.

rj ∈ ri.next.
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Virtual Station

Virtual stations are hot spots in certain road segments associated with lots of pick-up

events. In real life, we can discover two types of potential virtual stations. The first

type is real taxi stations regulated by city governments. Most of those official taxi

stations are in busy traffic areas. For example, there are several taxi stations near

JFK airport and also Penn Station in New York City. Because they are regulated

by the city government, there can be a lineup area for taxis and a waiting space

for passengers. However, even waiting at some official taxi stations may most likely

outperform the route searching strategy, drivers may still have a chance to gain a

lower profit in certain time slots. For instance, waiting at a taxi station in JFK

airport at 6 PM maybe not a good idea on a work day, because it is very easy to

find a passenger in Manhattan and drivers do not need to waste gas and time for

waiting. Therefore, we need to prune out those low profit official virtual stations and

treat the rest as the candidates of virtual stations when developing recommendation

algorithms.

The second type of potential virtual stations are located in those areas with no

official taxi station. It may be near a restaurant, an attraction or just a road segment

near some residential building. Even though, the city government does not regulate

those area as an official taxi station, taxi drivers can still find some places in the

nearby road segments and wait for passengers in line. In this case, we can leverage

the taxi drivers’ historical driving trajectories to identify those virtual stations.

In general, we define virtual station V as a subset of road segments S with taxi
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stands functions. Taxi drivers searching for customers in these areas will have to stop

and wait in a line to pickup next customer. Typically, virtual stations are located

within some high frequency regions, for example, business districts, station exits,

hotels entrances, etc. Different from other segments where taxi drivers can pickup

a passenger without waiting, virtual stations have some distinct properties including

high demand, high profit, stop & wait and temporality that need to be considered

independently.

• High Customer Demand. Similar to a hot taxi stand, virtual stations located

in an area of high customer densities, such that customers usually stay in a line

waiting for taxis. As a result, the customer pick-up in a virtual station is

guaranteed.

• High Pickup Earnings. Long distance travelers are more willing to wait in

line for a taxi. Thus, the earning associated with the pick-up events at a virtual

station should be relatively high.

• Stop & Waiting. Even though there may be no taxi waiting in line at a

virtual station for a certain time, it is just a special case and rarely happen.

Most likely, taxi drivers need to stop at a virtual station and spend some time

waiting in line. Therefore, the average waiting time associated with trips start

from virtual station should be longer than regular trips.

• Dynamic Properties. The traffic patterns of modern cities keep changing

during the day. Typically, the traffic flow at a virtual station varies over the
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daytime. For instance, some road segments are identified as virtual stations

during rush hours while being treated as a passing search segment at other

times. Therefore, virtual stations are not static.

3.2.2 Route Searching vs Virtual Station Waiting Strategies

According to the distinct properties of these two kinds of road segments (searching

segment and virtual station), taxi drivers usually take two different strategies for next-

customer searching: route searching strategy and virtual station waiting strategy.

Route searching strategy

Route searching strategy recommends taxi drivers to look for next-customer by search-

ing along a route. Since pick-up is not guaranteed by following a recommended route,

the net profits of taxi drivers with route searching strategy will be weighted by the

pick-up possibilities.

For each taxi driver driving through segment r, the net profit g(r) consists of two

components, namely potential earning e(r) and potential cost c(r). Specifically, we

define the potential earnings e(r) as the expected earnings of searching for a passenger

in segment r, which is computed by

es(r) =

∑Nr

i=1 Fee(i; r)

Nr

Ps(r), (3.1)

where Nr is the number of pick-up events in segment r during a given time period,

Fee(i; r) is the earning from the i-th pick-up event and Ps(r) is the pick-up possibility

in segment r. Meanwhile, the potential cost cs(r) is defined as the cost of passing
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through segment r without any pickups, i.e.,

cs(r) =
(
1− Ps(r)

)(
L(r) ·Gas+ T (r) · CF

)
, (3.2)

where L(r) is the length of segment r, Gas is the price of gas per unit distance (e.g.,

per mile), T (r) is the traveling time through segment r and CF is short for Company

Fee that is the opportunity cost per unit time (e.g., per minute). Indeed, T (r) is

sensitive to the real-time traffic conditions. For example, a traffic jam will result in a

high T (r), and thus bring a high cost of T (r) ·CF . In this case, the segment will not

be recommended by our model. In particular, because route searching taxi drivers

will drive through the virtual stations without any pickups, the pickup possibility

Ps(r) equals to 0. Therefore, the potential earnings of a virtual station located in a

searching route equals 0, and the potential cost of Equation 3.2 is then modified to

cs(r) = L(r) ·Gas+ T (r) · CF .

Furthermore, the net profit of segment r of our route searching strategy is com-

puted by

gs(r) = es(r)− cs(r). (3.3)

Based on the definitions above, we can further define the net profit for each search-

ing route R. Specifically, given a route R = (r1 → r2 → · · · → rM) starting from r1,

its total net profit can be computed by

Gs(R, r1,M) = gs(r1) +
M∑
i=2

gs(ri)
i−1∏
j=1

(
1− Ps(rj)

)
. (3.4)

Intuitively, the net profit of route R is the sum of the net profit of road segments {ri}

contained in R, which is weighted by the possibility of not picking up any passenger

in previous segments (i.e., r1 to ri−1).
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As we already proved and showed in Chapter 2 Figure 2.2 with the possibility

weights in net profit, the route searching taxi drivers will not consider the segments

which are far away from her current location because the expected profit there is very

low. To be more specific, we can define the average increasing rate of net profit as

τ = <G(R,ri,M+1)>−<G(R,ri,M)>
<G(R,ri,M+1)>

to indicate the profit increase when increasing one more

road segment in the route. We can observe that the increasing rate is less than 10%

after increasing more than 5 road segments. Indeed, the average pick-up probability

of each road segment in our experiments is always less than 0.1, therefore it is possible

for us to set an upper bound Λ for route length M in Equation (3.4).

3.2.3 Parameter Estimation with Road Buffer

We also exploit the road buffer estimation for each road segment by using the same

method as we already described in Chapter 2. Then we can calculated the total

number of pick-up events in each road segment r and the probability of pick-up event

in this road segment can be calculated by

P (r) =
N∗

r

N0
r +N∗

r

. (3.5)

We obtain the earnings Fee(i; r) in Equation 3.1, the road length L(r) and real-

time traveling time T (r) as described in chapter 2. Therefore, the net profit of g(r)

can be calculated by Equation 3.3. The value T (r), g(r) and P (r) of each road

segment r can also be pre-stored in corresponding node of the road segment network.
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Virtual Station Waiting Strategy

The virtual station waiting strategy recommends taxi drivers to drive directly to a

virtual station and wait for next customer. Compared to the route searching strategy,

taxi drivers will pay extra waiting time as penalty for a guaranteed pick-up. Therefore,

given a route R starting from r1 to a virtual station rM , the potential net profit is

calculated as

Gw(R, r1,M) = ew − cw, (3.6)

where ew is the average earning of a pickup event in virtual station rM , which can

be computed in the similar way of Equation 3.1. In particular, the cost of searching

VS rM , i.e., cw, should include the gas and the time penalty of driving to the specific

virtual station, which can be computed by

cw(R, r1,M) =
M∑
i=1

(
L(ri) ·Gas+ Ts(ri) · CF

)
+ Tw(rM) · CF, (3.7)

where the definition of Gas and CF are the same with Equation 3.2. Tw(rM) is the

average waiting time in virtual station rM .

3.2.4 Problem Definition

After introducing the difference between the route searching strategy and the virtual

station waiting strategy, here we propose a Maximum Net Profit (MNP) recommen-

dation problem to help taxi drivers decide the strategy (i.e., route searching or VS

waiting) and the optimal route, which can help to maximize their net profit per unit

time. Specifically, the MNP problem is formally defined as follows.

Definition 9 (Problem Statement) Given the current location LCab ∈ r1 of a
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taxi driver, a set the nearby virtual stations V = {vs1, vs2, ...vsn}, a fixed cruising

length M , and a set of route candidates R, the MNP recommendation problem is to

recommend a strategy i and a route R∗ ∈ R, which has the maximum net profit.

R∗ = argmax
i∈{s,w},R∈R

Gi(R, r,M). (3.8)

Different from other existing recommender systems for taxi drivers, which mainly fo-

cus on extracting energy-efficient transportation patterns based on traveling time/length

and recommending a sequence of potential pick-up points for taxi drivers (Yuan et

al., 2010, 2011; Ge, Xiong, Tuzhilin, et al., 2010), the MNP recommendation focuses

on providing an entire driving route with maximum net profits for a taxi driver or

discovering a nearby virtual station with high earnings and low opportunity cost.

Along this line, there are two major challenges for solving the MNP recommendation

problem. First, how to calculate the net profit of each segment r from the historical

taxi transaction data. Second, how to efficiently search an optimal route from the

complex directed-cyclic route segmentation network. In the following section, we will

introduce our solutions for the above two challenges, respectively.

3.3 MNP Recommendation with Business Effective Strategies

In this section, we formally define the problem of enhancing recommender system

for taxi drivers with business effective strategies and introduce our joint learning

algorithm.
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3.3.1 Maximum Net Profit Recommendation Strategy for Joint Learning Algo-

rithm

In this subsection, we introduce how to implement NMP recommendation with respect

to different strategies. Generally, there are three steps to recommend the best business

effective strategies to taxi drivers. First, we need to get the net profit from route

searching strategy. Second, we calculate the net profit from virtual station waiting

strategy. Third, we compare those two profits and choose the strategy that can

maximize our net profit. In the end, we can integrate the above two strategies into a

joint learning framework.

Recursive Algorithm for Route Searching Strategy

As we mentioned in Chapter 2, by observing the form of the net profit of routes, we

can re-write the Equation (3.4) as follows.

G(R, r1,M) = g(r1) +
(
1− P (r1)

)
G(R− r1, r2,M − 1), (3.9)

where R = (r1 → r2 → · · · → rM). Indeed, the special form of total net profit can be

realized by a recursion algorithm. To this end, for each road segment r1, we can denote

all the route candidates starting from r1 as a recursion tree structure. Specifically, the

recursion tree of a road segment can be defined as same as Definition 5 in chapter 2.

However, the computational cost for recursion increases significantly as M be-

comes larger. According to the discussion in the end of Section 3.2.2, we can set an

upper bond Λ for M , since the average increasing rate of the net profit is very low

after M > 5. Therefore, we set Λ = 5 in our experiments.



- 63 -

MNP Route Recommendation with Virtual Station Waiting Strategy

After obtaining the maximum net profit from routing strategy, we need to calculate

the maximum net profit from virtual station waiting strategy. We have a set of all N

virtual stations’ longitude and latitude, the average profit and the waiting time for

each virtual station from historical data and the taxi drivers’ starting road segment.

Then we calculate the cost of gas and company fee by using the shortest driving route

from the taxi driver’s current location to this virtual station. We also take the waiting

time penalty in this virtual station into consideration. In the end, we use the profit

minus the cost for those virtual stations and get the final net profit from each virtual

station of different starting points. The largest value is the the maximum net profit

from our virtual station waiting strategy and this virtual station is the best station

that we need to recommend to taxi drivers with the waiting strategy.

3.3.2 Load Unbalance Problem

Based on the above strategy, our recommender system can recommend an optimal

MNP route for a single taxi driver. However, in real life, an ideal recommender

system must be capable of recommending multiple taxi drivers in the same area

simultaneously. To this end, in this subsection, instead of Top-K route recommenda-

tion strategies in chapter 2, we further address this problem by introducing a novel

dynamic MNP recommendation load lalance strategy.

Dynamic MNP Strategy

Although the top-K route recommendation can alleviate the load unbalance problem,

it still has limited capability in heavy traffic area. Therefore, we further introduce
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another method, i.e., dynamic MNP recommendation strategy, for solving this prob-

lem.

In real life, as long as the road segment is not a virtual station, the pick up prob-

ability keeps changing after each pick-up event in this road segment and in its nearby

road segments. Let us recall that in MNP route searching strategy, we use the aver-

age pick-up probability Ps(r) to estimate the potential net profit of road segment r.

Since Ps(r) is a static value learned from historical pick-up events, the calculation for

this strategy is very efficient. However, if we keep doing recommendation by using

this static probability, we may accidentally send all the taxi drivers to the same road

segment for searching next customer. To address this problem, we propose to leverage

another dynamic pick-up probability P 0
sd(r, t) to replace Ps(r). Specifically, we sepa-

rate a time period to several small time slots, each time slot may be a couple minutes.

Then we represent the current dynamic pick-up probability P 0
sd(r, t) as an integration

of the pick-up probability in this road segment and also in its nearby road segments

in time slot t− 1. Based on the historical data, we can run regression functions and

analyze the relationship between the target road segment pick-up probability P 0
sd(r, t)

at time t and the previous pick-up probability P k(r, t−1) (k > 0) for the k-th directly

conjuncted road segments of target road segment.

By using the above regression functions, we can rewrite Equation (3.4) as follow-

ing:

Gs(R, r1, t,M) = gs(r1, t) +
M∑
i=2

gs(ri, t)
i−1∏
j=1

(
1− P 0

sd(rj, t)
)
. (3.10)

Intuitively, by using the above objective function, our model is more realistic and
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it can solve the load unbalance problem with a context-aware manner. Particularly, in

real applications, the DEN based top-K route recommendation and the dynamic MNP

recommendation can be implemented as complementary strategies. For example, the

system can first use dynamic strategies to generate context-aware route candidates,

and then use the DEN method to conduct top-K route recommendation.

3.4 Experiments

In this section, we evaluate the performances of enhancing recommender systems for

taxi drivers with effective strategies by using real-word taxi trajectory data in Beijing

and San Francisco Bay area.

3.4.1 The Experimental Data

Taxi GPS Traces. In the experiments, we used two sets of real-world taxi GPS

traces collected in San Francisco Bay area and Beijing. The mobility traces are the

records of cabs’ driving states in consecutive time, with each represented as a tuple,

(latitude, longitude, fare identifier, time stamp). We use 536 taxi drivers data in

San Francisco and obtained 89,897 pick-up and drop-off activities in a 30-day period.

Moreover, we calculated the taxi fare related to each pick-up and drop-off pair by

using a taxi fare calculator online (San Francisco Taxi Fare Calculator , n.d.). For

the data set in Beijing, we chose 3,258 most active taxi drivers and selected their

driving trajectories in a 7-day peroid. In the end, we obtained 1,345,560 pick-up and

drop-off activities in total for Beijing.

Figure 3.1 shows an example of one hundred taxi drivers’ pick-up points in a 30-

day peroid in San Francisco Bay Area, with each red point representing one pick-up
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Figure 3.1. Pick-up Events in San Francisco Bay Area

activity. Figure 3.2 is the heat map illustration of corresponding pick-up probabilities.

Here, different color and area of circles represent different pick-up probabilities. As

we mentioned in Chapter 2, this map shows there are lots of pick-up activities around

Market Street of San Francisco, which is a very busy street with lots of shopping

places and museums. In addition, other pick-up hot spots include Fisherman’s Wharf,

Divisadero St, Cathedral Hill and Western Addition.

Beijing Road Network Data. The high quality road network data of Beijing

is provided by (Beijing Road Network Data, n.d.), which includes two parts. The

first part includes vertices data, including the ID numbers, the starting points and

the ending points’ geographic data for each road segment. The second document

includes the edges data, where if two road segments are connected to each other,
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Figure 3.2. Pick-up Heat Map in San Francisco Bay Area

we kept their road segment IDs and gave an edge ID to this connection. In our

experiments, we mainly focused on the road segments inside the third ring road of

Beijing due to the urban area distribution. In the end, we obtained 18,301 road

segments in Beijing.

San Francisco Road Network Data. Because the quality of existing road

networks in San Francisco is not sufficient. We built the road network data set of San

Francisco by using Google API as described in Chapter 2.

3.4.2 Data Preprocessing

Beijing Data Set. The traffic pattern in Beijing has temporal differences during the

day. Those differences will highly affect the associated pick-up probability, the net

profit and the average driving time for each road segment. Therefore, we investigated
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taxi drivers’ behaviors in three different time slots, 8-11 am, 13-15 pm and 17-20 pm,

respectively. The above three time slots include morning, evening traffic hours and

also a non traffic time interval. Moreover, the taxi’s driving speed in the same road

segment for different time slots are also different. Therefore, we used the average

historical driving data of each road segment in different time slot as the average driv-

ing speed of corresponding road segment. Then, we matched the taxi trajectories in

Beijing taxi data set into the Beijing road network, and calculated the corresponding

pick-up probabilities and the net profits. In the end, we obtained the coordinates of

the starting and the ending points for each road segment in Beijing, along with the

pick-up probability, the net profit and the average driving time in this road segment

for different time slots.

San Francisco Data Set. By matching the pick-up coordinates of road network

data with the trajectories, we finally obtained 87,688 valid pick-up activities which

can be located in the road segments, therefore the two data sets in San Francisco

are combined together with each pick-up point mapped to the corresponding road

segment. To implement the proposed algorithm, we also need to calculate the pick-

up probability and the net profit for each road segment. In the end, we got the

coordinates of the starting and the ending points for each road segment, along with

the pick-up probability, the net profit and the average driving time in this road

segment. Note that the average driving time is estimated as the distance of each

road segment divided by the average driving speed in San Francisco. Different from

Beijing data set, we did not split the data into different time slots due to the quality

of data collection.
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Figure 3.3. Three types of status identifier sequence

Virtual Station. The main challenge for our research is how to find those virtual

stations defined in section 3.2. Indeed, virtual stations should have four properties,

which are high customer demand, high pick up earnings, long waiting time and dy-

namic properties. Therefore, it is necessary for us to look at the taxis’ trajectory data

and prune out those locations, which can satisfy the properties of virtual stations.

Indeed, the taxi trajectories data includes 4 elements for each record, i.e., (latitude,

longitude, status identifier, time stamp). Note that, the status identifier are the cur-

rent status of occupation. If there are customers in the cab by that time, the identifier

equals to 1. Otherwise, this value should equals to 0. Specifically, there are three

types of status identifier sequence in one small road segment. The first type is all

0s, which means a passing by event of a vacant taxi. Because there should be high
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Figure 3.4. Median waiting time in road segments in San Francisco Bay Area

customer demands near a virtual station, those passing by events can not contribute

to a virtual station. The second type is couple 0s followed by a 1. This is a pick

up event because the status identifier changed from vacant to occupied. However,

because the number of 0s are not large, it is more likely that the taxi did not wait in

a line before they picking up a customer. Those type of events also cannot contribute

to a virtual station. Instead of that, those patterns are more like a pick up event by

using routing strategy. The third type of status identifier is lots of 0s followed by a

1. Lots of 0s means the cab wait in line for a relatively long time and the 1 means a

pick up event. This accords with the property of virtual station. Therefore, if there

are lots of type III status identifier sequence around a point in a time slot, this point

is a virtual station. Some examples of status sequence are showed in Figure 3.3.
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Figure 3.5. Virtual Station

In order to find out those virtual stations in different time slots. We should

look at taxi driver’s behaviors first. Here, we choose 2 minutes as the threshold. If

a taxi stayed in one location for more than 2 minutes with no traffic jam in that

road segment, we identify it as a waiting event. We can recognize that there are

more passing events than waiting events, however, some drivers will choose waiting

strategy if it is necessary. We further calculated the median waiting time for each road

segment in San Francisco Bay Area and plotted it in Figure 3.4. The bigger the blue

dots indicate longer median waiting time in this road segment. After further looked

into those road segments, we found out that the roads with large median waiting time

usually have big super markets, hotels or universities. However, because of the terrain

of San Francisco, lots of road segments are up and down. It is not very convenience
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for taxi drivers to park and wait in a line. Therefore, the waiting behavior is not

very obvious. We used the same method to find the waiting events in Beijing and the

road segments with potential virtual stations. Since the terrain of Beijing is flat, it is

much more easier for taxi drivers to choose waiting strategy. After investigating the

properties of virtual station and the corresponding taxi drivers’ trajectories, we find

around 90 virtual stations inside the third ring road of Beijing as showed in Figure 3.5.

Most of those virtual stations are near hospitals, museums, hotels and sports centers.

Those places are consistence with our prediction on the potential virtual stations.

3.4.3 The Active Region of Visual Station

Waiting in the line of a virtual station can bring more profit in unit time than cruising

in some case, especially when the current location of a taxi is already near a virtual

station. However, if the current location is far away from any virtual station, the taxi

driver will waste lots of gas and time to drive to a virtual station. In those cases, the

waiting strategy cannot always win the route searching strategy. In the real world, we

should suggest taxi drivers to employ waiting strategy only if their current locations

are within in a certain distance of a virtual station. We call these locations the active

region of virtual station. Moreover, depending on different travel patterns in different

time slots in a day, those active region of each virtual station should be different.

In this research, we calculated the profit Gw(R, r1,M) from waiting strategy as-

sociated to each road segment near a virtual station and compare this profit to the

profit Gs(R, r1,M) of route searching strategy. If the profit from waiting is higher

than the profit from route searching strategy, then we say this road segment is in the
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Figure 3.6. Base Map

active region of the virtual station. Figure 3.6 is a base map of Beijing road network

in third ring road and Figure 3.7, 3.8, 3.9 shows the different active ranges of virtual

stations in three different time slots in Beijing, where active regions of different vir-

tual stations are showed in different color. From the results, we can find that both

virtual stations and their active region changed from time to time.

3.4.4 Recommendation for Inexperienced Taxi Drivers

Given one specific location, our proposed joint learning algorithm can recommend

several routes with high expected profits for drivers. This algorithm is especially

applicable for inexperienced drivers, since they are usually lack of knowledge about

the road map and the local driving routes/vitual stations that can make high profits.
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Figure 3.7. Virtual Stations Active Regions from 8 to 11

To validate the effectiveness of the proposed algorithm, we firstly divide all the drivers

into two categories based on their average net profits. The top 10% drivers in the

data set are treated as “experienced” drivers, while the others are “inexperienced”.

Therefore, the driving routes of experienced drivers are used as training set and we

recommend driving routes for the inexperienced drivers.

In route searching strategy, we define driver’s event e as a consecutive sequence

of “roam → pick up → drop off”. By extracting the pick-up and drop-off activities

of each driver, we can reconstruct each event. For each driver, we define the location

where the driver starts to search for potential pick-ups as l0, and after roaming in

∆t time, the driver picks up a passenger at location l1 and drive for ∆t′ and drop
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Figure 3.8. Virtual Stations Active Regions from 13 to 15

off at l2. Let ri,j denotes the road segment between location li and lj, then event

e can be represented with (r0,1,∆t, r1,2,∆t′), and the unit time profit of the event

can be calculated as pre = pr12
∆t+∆t′

, where pr12 is the total profit during the trip.

Thus, the proposed algorithm starts with location l′ which is neareset to l0, and

return a sequence of recommended potential pick-up points and road segments. The

performance of the recommended driving route is measured by the average net profit

per unit time prs =
∑

pe
|e| .

We then compare the average net profit per unit time prs from routing strategy

to the average net profit per unit time prw from the waiting strategy. In order to

calculate prw, we need to construct a waiting event. For each driver’s event e, there



- 76 -

Figure 3.9. Virtual Stations Active Regions from 17 to 20

is a consecutive sequence of “driving to virtual station → waiting in virtual station

→ pick up → drop off”. For each driver, we define the location where the driver

starts driving to a virtual station as l0. Then the drive spends ∆td time to arrive a

virtual station and spend ∆tw to wait for a customer in line. Then the driver picks

up passengers at this virtual station VS and drive for ∆t′ and drop off at l2. Event

e can be represented with (r0,V S,∆td,∆tw, rV S,2,∆t′), and the unit time profit of the

event can be calculated as pe =
prV S,2

∆td+∆tw+∆t′
. Similarly, we have prw =

∑
pe

|e| .

If prs >prw, our recommender system should recommend route searching strategy

with an entire driving route to the inexperienced taxi drivers. Otherwise, the rec-

ommender system should recommend a virtual station that the driver can wait for
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Table 3.1. Net Profits per Unit Time

Recommender System Inexperienced Drivers

8-11am Mean 0.66179 0.36957

13-15pm Mean 0.65899 0.37571

17-20pm Mean 0.63606 0.36778

next customer in line. Table 3.1 shows the statistical results of net profit between

recommended routes/virtual stations and the choices of inexperienced drivers. Note

that, due to the data quality, here we only conducted experiments based on Beijing

data set. From the results, we can observe that the average net profits per unit time

of recommendations clearly outperform the real profit of the inexperienced drivers,

which validates the effectiveness of our recommendation strategies.

To further investigate the performance of the recommender system, we also study

the difference of net profit per unit time between the recommended strategies and the

drivers’ real net profit for each event, i.e. pr−pe. As shown in Figure 3.10, the X axis

is the difference between the profits of the recommended results and the inexperienced

taxi drivers’ profits. We can see that most of dot points are positioned to the right

of X = 0, meaning that the profits of our recommended strategies outperform the

profits of the strategies chosen by the inexperienced drivers.

3.4.5 Empirical Studies on Recommendations

Here, we provide some empirically studies to validate the effectiveness of our recom-

mendation system.
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Figure 3.10. Profit Difference. X axis is the Net Profit Difference between our strategy

and taxi drivers’ traditional strategies ranked below top 10%, Y axis is the number

of events
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Figure 3.11. Enhancing Recommender System Case Study (a)

Figure 3.12. Enhancing Recommender System Case Study (b)

Case Study on Driving Route Recommendation

Indeed, different from previous studies that focus on recommending a sequence of

pick-up points and letting the driver decide how to get to those points, our rec-

ommender system is capable of providing an entire driving route for taxi drivers.

Therefore, here we first provide a case study on route searching strategy. Specifically,

we show two examples of route searching strategy by our approach and compare it

with the suggested route by the Google map. In Figure 3.11 and Figure 3.12, we

plot the optimal driving route suggested by our recommender system at a randomly

selected initial location of the target cab in San Francisco and Beijing separatively.
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We also assumed that the driver’s expected cruising length is 5, and after every 5

road segments, the system will use the current location as the new starting point for

search and restart the recommendation process in this case study. The total searching

time of our recommender system equals to the real searching time of the taxi drivers.

In those Figures, the left figures are the driving routes recommended by the MNP

recommender system and the right figures are the routes suggested by the Google

Map based on the shortest driving distance. In both cases, our recommender system

attends to suggest the drive to cruising around a neighborhood. Meanwhile, google

map suggests to choose the shortest driving distance. However, the driving routes

suggested by the Google map cannot maximize taxi drivers’ net profit.

Recently, most recommender system can only suggest a sequence of hot spots to

taxi drivers. There is no such recommendation system that can suggest an entire

driving route. If taxi drivers do not know how to drive to the nearest hot spot, he or

she has to follow the driving route provided by the Google map. However, both the

pick-up probability and the potential net profit may be very low along those routes.

The drivers have a high probability of losing money until they reach the next hot

spot. Our recommender system can improve the potential net profits for taxi drivers

compared to the routes suggested by the Google map.

Case Study on Top-K recommendation

In Section 3.2, we introduced a top-K driving strategy for addressing the overloaded

problem. In figure 2.4.2 in Chapter 2, we demonstrate the top-K driving routes

starting from the same location in San Francisco Bay Area, where K equals to 4 in
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Figure 3.13. The performance of regression models

this case. The figure shows that each route has different driving directions and the

correlations between those driving distances are very small. Therefore, the top-K

strategy can improve the performance of our recommender system.

Case Study on Dynamic MNP strategy

The experiments showed that the joint learning algorithm recommender system could

help inexperienced taxi drivers find better business effective strategies so as to max-

imize their potential profits. However, as we already discussed in Section 3.3, using

the average pick-up probability for a road segment in a certain time slot may cause

overload problem. In order to find the relationship between the pick-up probability

of target road segment and the pick-up probabilities of its first, second, third con-
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Figure 3.14. Driving route suggested with static pick-up probability

Figure 3.15. Driving route suggested with dynamic pick-up probability in the 4th

time slot
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Figure 3.16. Driving route suggested with dynamic pick up probability in the 14th

time slot

juncted road segments and also the pick-up probability of this target road segment

in the previous time slots, we conduct experiments to compare several regression

models, including Linear Regression, Gradient Boosted Tree, and Historical

Mean (i.e., using the average pick-up probability in each time period as prediction

value without considering the pick-up event in nearby neighborhood). Specifically,

we use the data in Beijing from 7:30am to 11:30am in one day as our experimental

data and separated this 4-hour time period to 24 small time slots, i.e., each time

slot contains 10 minutes. Then we calculated the pick-up probability in each target

road segment in time slot t, t − 1 and the average pick-up probabilities of its first,

second and third directly conjuncted road segments in time slot t − 1. Note that,

we pruned out those road segments with all pick-up probabilities equals to 0. In

the experiments, we randomly select 80 percent data as the training set and test our

models with another 20 percent data. Figure 3.13 shows the performance of above
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three models, where we can see that the gradient boosted tree regression outperforms

other baselines.

Moreover, we demonstrate a case study between 7:30am and 11:30am in Beijing

by using gradient boosted tree regression with a random start searching point. Fig-

ure 3.14 3.15 3.16 show the driving routes for static pick-up probability and dynamic

pick-up probabilities in the 4th and 14th time slots. We can see that the pick-up

probability in a long time period are not always the same and the changing of this

probability may also change the suggested driving routes.

3.5 Concluding Remarks

In this chapter, we proposed an enhancing recommender system with business effective

strategies for taxi drivers to maximize their profits by providing profitable driving

strategies. Specifically, we first designed a joint learning framework to evaluate the

potential profits of different strategies. Those strategies could be routing around the

neighborhood by following a route with the maximum net profit or waiting at a virtual

station with the highest ratio of the potential profit over the waiting time depending

on the given time period and the location of the driver. Then, by mining the historical

taxi GPS traces, we developed a recursive algorithm for efficiently generating optimal

driving route for route searching recommendation strategy. As a result, we can use the

net profit objective function to rank each candidate route and make recommendations

to taxi drivers in a cost-effective way. Furthermore, we also provided two strategies to

make a better load balance for the recommendations happening at the same location.

An unique perspective of our recommender system is that it can recommend an entire
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driving route instead of only recommending a sequence of discrete pick-up points.

Also, the drivers are able to maximize their profits within the fixed time period

by following the recommended driving strategies. Finally, we conducted extensive

experiments on real-world data sets collected from Beijing and the San Francisco Bay

area, and the experimental results clearly validated the effectiveness of the proposed

recommender system.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude the dissertation with an overall review and a general

discussion about future work.

4.1 Review of Disseration

In this dissertation, we addressed the differences between mobile recommender sys-

tems and traditional recommender systems, and developed mobile recommender sys-

tems with business effective strategies. In the following, we briefly summarize the

contributions we made on the mobile recommendation domains:

• In CHAPTER 2, we proposed a Cost-Effective Recommender System for Taxi

Drivers based on the analysis of taxi GPS traces. This recommender system

can provide an entire driving route that maximizes taxi drivers’ net profits in-

stead of recommend a sequence of pick-up points. We calculated the weight for

each small road segment and use a novel recursive tree algorithm to generate

candidate driving route efficiently. Then we developed a MNP objective func-

tion and evaluate the profit for each candidate route. Finally, we exploit top-K

recommendation strategy to solve the load unbalance problem.

• In CHAPTER 3, we further developed an Enhancing Recommender System for

Taxi Drivers with Business Effective. In this work, we enhanced the previous
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Cost Effective Recommender System with business effective strategies, such

as route searching strategy and virtual station waiting strategy. We firstly

defined several virtual stations based on their special properties in different time

slots. Then we calculated the potential net profit in unit time for each virtual

station based on historical data. We also designed a joint learning framework

with a special net profit objective function to evaluate the potential profits for

both strategies and recommend the one can provide maximum potential net

profit. Instead of Top K recommendation strategy, we provided a dynamic

MNP strategy to make better load balance for recommendations happening at

the same location.

4.2 Future Research Directions

With the success of developing mobile recommender systems for taxi drivers with

business effective strategies, it is worthwhile to extend its usage in other domains.

Indeed, there are lots of existing works in mobile recommender system (J. Liu et al.,

2015; J. Liu, Sun, Chen, & Xiong, 2016), POIs (Sun et al., 2015; Yao, Fu, Liu, Liu,

& Xiong, 2016; Y. Liu, Liu, Liu, Qu, & Xiong, 2016) and urban computing (Niu,

Liu, Fu, Liu, & Lang, 2016; Y. Liu et al., 2014; J. Liu et al., 2017). In general, my

long-term research objective is to make efforts to connect those areas such as data

mining, mobile recommender system, and urban computing in a coherent way.

• There has been a huge amount of taxi trajectory, public transportation and road

network data accumulated. My current research is to establish a recommender

system for taxi drivers by using taxi trajectory and road network data. It
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will be more interesting to extend this idea to combine public transportation

data and urban computing for smart transportation management. Indeed, by

observing daily taxi and public transportation data, I can identify the locations

with higher chance of severe traffic congestion. Then, it is possible to improve

the road networks based on the identified time and location sensitive patterns

and provide suggestions to local governments by developing effective big data

solutions for urban planning and intelligent transportation management.

• In addition to taxi trajectory data, there are also a rich supply of points of

interest and real estate data nowadays. It would be interesting to combine the

use of such data together with human mobility data and public transportation

data to discover the function areas of cities, such as working zones, living zones

and recreation zones. It is also possible to build a real estate recommender

system to meet the commuting needs of residents.

• Finally, the taxi route optimization problem is a dynamic routing problem with

stochastic outcomes. A driver can abort a recommended route early if a cus-

tomer is picked up at any of the road segments. This type of sequential decision

making problems with stochastic outcomes can be formulated as finite-time

Markov Decision Processes (MDPs) and can be solved by using the backward

induction algorithm. Equivalently, a linear programming model can also be con-

structed to solve the aforementioned MDP model. I believe that by implying

the new model we are capable to design an efficient and scalable algorithm and

solve the recommendation problem within the shortest possible time.
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