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Scholars have long studied the complexity of knowledge in innovation. More recently, 

research has begun to focus attention on the role of knowledge recombination as a way to 

understand knowledge complexity, knowledge growth, and evolutionary search. Yet little 

is known about knowledge complexity in the broad context of globalization. We build on 

knowledge recombination patterns in global innovation activities to develop our theory of 

the relationship through which earlier contributions to knowledge become inputs to 

subsequent knowledge building that generates more or less complex knowledge artifacts. 

We propose that knowledge complexity rises when recombined elements are sourced 

across two dimensions of distance, characterized by combining sources taken from 

disparate knowledge fields and distinct geographical locations. The study draws upon and 

compares three alternative ways of measuring the complexity of technological knowledge 

through patent data. 
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 This dissertation establishes two new methods for measuring complexity and 

adapts a third measure for wider applicability in research. Study 1 results show there no 

clear relationship between technological distance and complexity as measured through 

either co-classification or cross-classification data. We establish the growth of the ICT 

era has also facilitated increases in knowledge complexity while the turbulence from ICT 

is indirectly increasing knowledge complexity. We end this study with a direct 

comparison of two measures for knowledge complexity to establish which aspects of 

complexity each best reflects.  In study 2, we find increasing knowledge complexity also 

increases locational complexity. Digging deeper we see there are divergent effects from 

the use of both knowledge complexity measures when investigating locational 

complexity which further establishes the uniqueness of each knowledge complexity 

measure. We further assess the representative distinguishing characteristics of each 

complexity measure. We also establish here that ICT is contributing to increasing 

locational complexity as ICT is a connector of both technology fields and geographic 

locations. In study 3 we examine the outliers of the relationships examined for each 

complexity measure.  
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CHAPTER 1: INTRODUCTION 

 

 During the mechanization era lasting from 1770-1870 (Anderson, 2001; Vertova, 

1998; 2002), considered the first technological innovation paradigm, Karl Benz built and 

patented his Benz Patent Motorwagen.  Having built three copies
1
 of the same model 

petroleum-powered automobile
2
 in 1885-6, this is widely considered to be the birth of 

mass-production in the automobile industry.  An innovation paradigm serves as “carrier 

branch” for innovations to occur along (Anderson, 2001; Kuhn, 1962). By definition, the 

three core or primary systems an automobile needs is an engine, a drivetrain, and a 

steering mechanism anything else is considered a secondary system.  A thick streak of 

perfectionism and a penchant for depression made Karl believe his invention should not 

be promoted until it was tinkered to perfection.  Karl’s moneyed wife Bertha Benz was of 

a different opinion as revealed when she slipped away unannounced one morning leaving 

a note on the kitchen counter
3
 informing her husband she took the three-wheeled car (not 

road tested!) and her two teenage sons to visit her mother
4
 some 60 miles away but will 

be back in a few days (Lienhard, n.d.)
5
.  This trip served two other purposes – to reassure 

Karl his invention worked for distances greater than one kilometer, and as a live 

marketing stunt to attract further investors and buyers.  Automobile historians point to 

this event as the beginnings of the automobile industry. Being the first road trip in a 

personal automobile, there was nothing resembling modern highways and zero gas 

stations along the way. Bertha had to stop along the drive at various pharmacies to pick 

                                                 
1
 One of these three automobiles is still running today.  

2
 Prior to this, vehicles and extended transport were designed for multiple passengers in a steam-powered 

bus. 
3
 She also sent a telegram upon reaching her mother’s house the same day announcing their safe arrival. 

4
 Bertha’s family provided funding for Karl’s research and prototypes.  

5
 As a point of reference, a horse-driven carriage on good roads could cover 50 miles in 6-7 hours in the 

early 1800’s (Austen & Shapard, 2004).  
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up some “fuel
6
” from the chemist. An innovator herself she had to use her hat pin to de-

clog a fuel line in the carburetor along the way, used her garter to reinsulate a faulty wire 

cover
7
, improved the braking system by having a cobbler apply leather to the brakes

8
, and 

had a blacksmith repair the drive chain.   

The automobile represents a complex system because it contains a series of 

artifacts or parts working together as a whole. Complexity can be measured in several 

different ways. First it can be measured in terms of the output characteristics (e.g. 

steering wheel, seating, engine, brakes), second in terms of where Karl sourced the 

various antecedent or contributing characteristics from (e.g. horse-drawn carriages, 

bicycles, and likely train technologies). Because knowledge has the tendency to “stick” in 

an area, some geographic locations become known for specific types of specialized 

knowledge.  Therefore a third way in which complexity can be measured is in terms of 

the geographic location(s) from where those characteristics (e.g. bicycle manufacturers) 

were drawn upon or sourced from.  

 Continuing with our example of the automobile, further improvements were made 

to it during the following Chemical Engineering innovation paradigm lasting from 1870-

1970 (Anderson, 2001), these additional chemical innovations were layered onto the 

existing mechanical engineering platform.  Originally car tires were made from iron bars 

bent into a circle (this is the case in the Benz Patent Motorwagen). Looking to add 

comfort to the passenger’s ride, self-taught chemist Robert William Thomson stepped 

                                                 
6
 The fuel was a form of distilled petroleum called ligroin; also commonly used as a cleaning agent at the 

time. 
7
 At the time, electrical wires were insulated with fabric instead of today’s zero-conductivity rubber.  

8
 This is considered to be the first prototype brake pads.  
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into the picture and developed pneumatic rubber ties to replace the unforgiving iron bars
9
 

(Johnson, 2008). This tire was re-invented 40 years later for the same reason
10

 by John 

Lloyd Dunlop (“History of the Passenger Tire,” n.d.).  These first tires were white as that 

is the natural color of rubber. Drivers found the tires did not have much durability, were 

prone to bursting, and looked dirty very quickly. Chemists continued to work on this and 

eventually determined that adding the inert chemical element carbon
11

 would increase the 

distance traversed 100 fold, increased tensile
12

 strength 1008%, and had the added bonus 

of changing the color of the tires to black thus hiding the dirt and grime of travel (Hiskey, 

2011)
13

. This represents an increase in the complexity of automobile because it now 

includes mechanical engineering elements and chemical engineering elements that have 

been recombined into a single output.  

 Carrying our example of the automobile even further, during the current era of 

Electronic Engineering the automobiles are becoming wired and filled with sensors that 

report back various statistics to the on-board electronic control module – thus electronic 

innovations are layered onto the existing chemical and mechanical engineering 

technologies. Sticking with our tire example, during this era electronic engineers 

integrated sensors into the wheels which feedback information on the tire pressure, 

automatic braking system (ABS), and cruise control. This represents a further increase in 

complexity as the automobile now contains elements of mechanical engineering, 

                                                 
9
 This was not a commercial success; some believe this tire was ahead of its time.  

10
 Dunlop invented the air-filled tire to ease his son’s headaches from bicycling and claimed no knowledge 

of Robert William Thomson earlier invention.  
11

 The company Binney & Smith approached the Goodrich Tire Company with this solution in the early 

1900’s (Hiskey, 2011). Binney & Smith is now known as Crayola Crayons.  
12

 The amount of force needed to make an object burst or break.  
13

 Modern vehicle tires with “white walls” are a vestige from the time when tires were all white. In the 

modern era the effect of white walls is superficial and purely cosmetic thus not a potential durability 

concern. 
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chemical engineering, and electrical engineering. This dissertation seeks to examine what 

is driving this increase in complexity and what aspects of complexity each of the three 

methods of measurement (output characteristics, contributing parent characteristics, and 

the location sourcing characteristics) best reveals.  

Scholars have long studied innovation and the complexity thereof in knowledge 

building as a key source of competitive advantage and value creation (Fleming & 

Sorenson, 2001; Frenken, 2006; Nightingale, 1998; Trajtenberg, Henderson, and Jaffe, 

1997; Celo, Nebus, & Wang, 2015).  Innovation is a socially intensive process of 

recursive problem solving whereby functional answers are sought piecemeal through 

knowledge’s amorphous and recipe-like nature from core and supporting technologies 

(Arthur, 2007; Nahapiet & Ghoshal, 1998; Nelson & Winter, 1982; Rugman & Verbeke, 

2001).  We define complex knowledge as that which relies upon rich interactions and 

interdependences and in which the configuration is of great importance (Baumann & 

Siggelkow, 2013; Ganco, 2015; Kauffman, 1993; Simon, 1962). The extant literature 

suggests the act of knowledge recombination is a mechanism through which novel 

knowledge may be created.  In this process, knowledge grows in part through the 

blending of antecedent knowledge streams in novel forms through trial and error 

processes which may result in an artifact with greater complexity (Arthur, 2007; 

Hagarden, 1998; Olsson & Frey, 2002; Weitzman, 1998).  The recombination literature 

therefore provides a useful lens for examining complex knowledge building and the 

structure of it as this framework accounts for both the characteristics and historical 

development of knowledge building (Fleming, 2001; Olsson & Frey, 2002; Weitzman, 

1996; 1998).  Extant research emphasizes global value creation by connecting distant 
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knowledge sources for innovation (Antonelli, Krafft, & Quatraro, 2010; Cano-Kollmann, 

Cantwell, Hannigan, Mudambi, & Song, 2016; Cantwell & Noonan, 2004; Fleming & 

Sorenson, 2001; Trajtenberg et al., 1997; Vagnani, 2012; Yayavasram & Chen, 2015).  

Knowledge is a complex system (Ganco, 2013, 2015; Simon, 1962), we focus on the 

mechanisms forging distant connections acting on that system as a means of value 

creation for global firms 

 Traditionally, the complexity of distant knowledge recombinations has been 

studied within a single industry or knowledge field (Fleming & Sorenson, 2001; Ganco, 

2013; Kaplan & Vakili, 2015; Vagnani, 2012). Studies find technologically distant 

knowledge recombinations can produce complex, value-creating innovations (Fleming & 

Sorenson, 2001; Kaplan & Vakili, 2015).  However, research shows specialized fields of 

knowledge and industries cluster in specific geographic locations (Marshall, 1920; 

Saxenian, 1994; Tallman, Jenkins, Henry, & Pinch, 2004).  For example, San Francisco is 

known as Silicon Valley in the USA, London is known for its financial center, and the 

Port wine cluster has a long-established presence in Portugal.  Congregating thusly often 

brings these firms locational advantages, access to knowledge spillovers, a targeted labor 

pool, with complementary services and suppliers nearby (Krugman, 1991; Porter, 1990). 

Taking a practical approach, reaching across technology fields to recombine knowledge 

suggests a simultaneous reaching to distinct geographic clusters and therefore a systemic 

increase in the complexity of the technological knowledge system.  This is why we must 

examine both technology field and geographic location together. 

 In the present context of globalization, the singular use of a technological 

knowledge field or industry to measure knowledge complexity in the knowledge 
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recombination literature does not directly address the additional geographic complexity 

element contributed from traversing physical distances to achieve said recombination. It 

is important to jointly understand the contributions of these two knowledge building 

inputs through which global innovation connections are made to encourage the 

facilitation of value creation and capture likelihood by firms. 

 This dissertation sets out to outline and assess the properties of complex 

knowledge through the joint consideration of technology fields and geographic locations 

as two knowledge building inputs during periods of globalization.  To do so, we propose 

to shift the approach so as to examine the complexity of novel knowledge artifacts when 

they are recombined across both these conditions: technology field and geographic 

location.  A goal of this research is to establish the uniqueness of the three measures of 

complexity developed here – knowledge artifact complexity, knowledge sourcing 

complexity, and location sourcing complexity – all of which are built using the 

information on a given focal patent with the intention of revealing that firms access 

different types of knowledge expertise and hence different types of distributed knowledge 

systems.  In this approach we expand the parameters to envelop all possible technological 

knowledge fields without industry constraints; likewise we do not limit the potential 

geographic locations.  It is reasonable to expect bridging technology field disciplines 

normally implies that a physical distance must also have been traversed in some way, 

given that locations are specialized in their activity.  The implications for this work 

extends to firms seeking to appropriate rents from innovative activities – particularly 

breakthrough innovations, public policy makers to encourage firms to locate within a 
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relevant cluster, and influential managers deciding how to facilitate and support the 

process of novel knowledge development.   

 The dissertation is organized as follows. In constructing our position, we first 

suggest that which facilitates knowledge complexity in global innovation and examine 

two proposed determinants of knowledge complexity. Study one examines how 

technological knowledge is changing in complexity across technology fields while 

comparing and contrasting two alternative measures of this phenomenon with one being 

novel to the literature.  Study two then builds on this base by layering location 

complexity onto the model and is another novel measure contributed to the literature. 

Study three is a case study of the joint knowledge complexity and locational complexity 

relationship from the prior study, exploring when this joint consideration results in 

outlying behavior.  

 

   

 

 

 

 

  



8 

 

 

 

CHAPTER 2: LITERATURE REVIEW  

2.0 Fragmentation of Global Value Chains 

Fragmentation of production systems suggests both labor and geography are 

fragmented between firms and across geographic space (Gereffi, Humphrey, Sturgeon, 

2005; Ietto-Gillies, 2014). The fragmentation of production systems has shown a steady 

increase in the trade of components and services and away from the trade of final goods 

(Grossman & Rossi-Hansberg, 2008; Johnson & Noguera, 2012; Schmitt, & Van 

Biesebroeck, 2013; Sturgeon, Van Biesebroeck, & Gereffi, 2008) highlighting changes in 

the global value chains. Global value chains (GVCs) (Gereffi, 1994) and Global 

Production Networks (GPNs) (Yeung & Coe, 2014) are composed of a global lead firm 

which capitalizes on the high rent activities (e.g. innovation, R&D, marketing, branding) 

while outsourcing and offshoring the low return functions (e.g. manufacturing, repair) 

(Azmeh & Nadvi, 2014; Gereffi, 1999; Gereffi & Korzeniewicz, 1994). In doing so, these 

global leader firms are becoming more assembly-oriented when expanding the niches for 

labor-intensive activities. This international fragmentation of labor, a prominent trend 

beginning in the 1970’s, permits producers in different countries and likely with diverse 

ownership structures to form systems of production for subparts and components (Arndt 

& Kierzkowski, 2001; Gereffi, 2005).  Filling that niche is considered a success by local 

producers but is demanding as these suppliers must meet the established demands of the 

lead firms in terms of price, delivery times, and compliance with labor, environment, and 

quality standards (Kaplinsky, 2005; Nadvi, 2008).  While the global economy is 

becoming more integrated, production systems have become more disintegrated 
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(Feenstra, 1998) which implies and has led to the international trade in components and 

services to grow in proportion (Yeats, 2001; Hummels, Rapoport, & Yi, 1998).  

This fragmentation in production systems implies products are becoming more 

complex. We can think of fragmentation (or simplification) and complexity as being the 

two extremes of a spectrum. Movement along this spectrum with regards to the flow for a 

related collection of knowledge artifacts may be mediated by the degree of 

modularization. A complex system may exhibit modularity if the components can be 

designed and innovated upon independently but are compatible and can work together in 

support of a unified whole (Baldwin & Clark, 2000; 2006). Modularity is built upon the 

premise of a hierarchy of primary and supporting technologies and the near-

decomposability such that modular product architecture is one where the product taken as 

a whole can be decomposed into unique and stable subparts (Baldwin & Clark, 2000; 

Ethiraj & Levinthal, 2008; Henderson & Clark, 1990; Parnas, 1972; Simon, 1962). The 

basic design principle of modularity is to encapsulate interdependencies into stand-alone 

units (thus fragmenting it) and to minimize any reciprocal interdependencies between the 

modularized units of a whole (thus illustrating the hierarchical nature). As the size of the 

system increases, the nonlinearity and nonadditive nature of complexity is revealed as the 

interdependencies disrupt the design process growing in scale faster than proportionate. 

Modularization bounds the design complexity of the whole product while encouraging 

incremental and localized innovation. Modularity permits an architectural structure to 

achieve economies of scale in a global market by drawing on production capabilities 

external to the traditional boundaries of the firm (Langlois 2007, Sturgeon 2002).  
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Advances in ICT, an increasing sophistication in logistic capabilities, and greater 

flows through global economic openness is enabling this modularization or “fine-slicing” 

of various firm activities which also encourages firms to relocate aspects of the value 

chain to explore diverse knowledge streams, exploit more fruitful foreign markets, and 

access efficient lower cost locations (Andersson & Pedersen, 2010; Buckley, 2009, 2011; 

Contractor, Kumar, Kundu, & Pederson, 2010; Dunning, 1993). At a global scale, fine-

slicing is a function of innovation which disaggregates value chain activities into 

subsystems (Andersson & Pedersen, 2010). These constituent pieces can be allocated 

“offshore” for geographic fine-slicing and “outsourced” for organizational fine-slicing 

(Contractor, et al., 2010).  Firms can appropriate innovation rents by allowing external 

cooperating and competing actor’s access to their technology particularly in globalized 

and more spatially dispersed environments; in doing so modularization is encouraging 

both a vertical and horizontal disaggregation of the production system (Langlois & 

Robertson, 1992; Rezk, Srai, & Williamson, 2016; Sturgeon, 2002; Contractor, et al., 

2010) and in the process we expect a gradual dispersion of the knowledge base.  

 Kodama illustrates how innovation in many high-tech industries comes from a 

process of technology fusion (1986; 1995) or convergence (2014) where hybrid 

technologies are developed by recombining existing disparate technologies. Thus, 

technological diversification is increasingly stemming from the growing interrelatedness 

of formerly unconnected technologies (Cantwell & Piscitello, 2000). The uptake of 

information and communications technology (ICT) as an innovation paradigm has proven 

to be a prime example of this type of fusing technology which is connecting the 

historically unconnected technologies. At the same time, ICT has also lowered the cost of 
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communication and coordination of activities in disaggregated and dispersed R&D 

settings thus also connecting historically difficult to connect geographic locations 

(Andersson & Pedersen, 2010; Gooris & Peeters, 2016; Larsen & Pedersen, 2009; 

Roberts, 2000). This two-pronged connecting property of ICT has encouraged advances 

in ICT to enable firms to fragment their various systems to decouple, disperse, and shift 

towards a globalized production configuration (Andersson, Forsgren, & Holm, 2007; 

Azmeh & Nadvi, 2014; Rezk, Srai, & Williamson, 2016; Yamin, & Sinkovics, 2010).  

Multi-technology systems may be brought together in part by ICT where these firms may 

choose to locate in centers of excellence for industries other than their own for the 

development of fields outside their primary interest in the ICT sectors. The firm’s 

attraction to different and locationally distinct potential inputs may be driven by the 

complexity of recombination necessary for high-tech and cutting-edge technology 

development which is associated with risk, uncertainty, high R&D costs, the need to 

cooperate with other firms in the area, all the while increasing the flow of knowledge 

within MNEs across political boundaries (Cantwell & Santangelo, 2002).  

The multi-technology firm (Granstrand & Oskarsson, 1994; Granstrand, Patel, & 

Pavitt, 1997; Patel & Pavitt, 1997) thus has developed out of technology characteristics 

becoming increasingly complex in nature as the characteristics exhibit increasing 

interrelatedness and a degree of fusion from technologies that were historically separate 

(Kodama, 1992). This model permits the firm to adapt to changing techno-socioeconomic 

conditions characterized by innovation opportunities stemming from technological 

diversification.  As such the range of technologies the firm must be familiar with is wider 

than its product offerings, reflecting the conditions of the current innovation paradigm 
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where the development of a wide range of technological capabilities is essential to exploit 

prospective technology recombinations thus facilitating fruitful output.  The core reason 

behind this is the increasing number of technologies drawn upon during the production of 

a single product.  

While the environment is rapidly changing exhibiting increasing technological 

relatedness and growing knowledge complexity, firms increasingly draw on a more 

diversified knowledge base relative to their respective extent of product or market 

diversification by engaging in technologically-motivated inter-firm alliances and locating 

in clusters of complementary skills (Cantwell, 2008; Madhok & Phene, 2003). Essentially 

multi-technology firms can be thought of as those taking advantage of the increasing 

technological relatedness.  

 When MNEs locate some part of their R&D or production in a complementary or 

alternative center of innovation from its industry the firm is able to gain access to novel 

and potentially useful avenues for development which, given time, it may integrate into 

its exiting activities and lines. Modern multi-technology firms inherently require a 

broader diversity of technological expertise (than those historically c.f. Cantwell & Fai, 

1999) in order to produce its given product line, this provides a strong incentive to 

capitalize on centers of innovation for the different fields of expertise in which they are 

located (Cantwell, 2008; Brusoni, Prencipe, Pavitt, 2001). Bayer provides an excellent 

example of a multi-technology firm. Its primary output field is in chemicals but it is also 

actively sourcing in mechanical engineering, information technology, instruments, and so 

forth from locations revealing those respective innovation strengths. 
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2.1 Facilitators of Knowledge Complexity   

Globalization has enabled firms to access and source distant knowledge with 

comparatively greater ease than yesteryear.  Specialized forms of knowledge congregate 

in specific areas (Marshall, 1920; Porter, 1990).  Knowledge has a degree of tacitness to 

it that helps it to stick in an area (Nightingale, 1998; Searle, 1995).  Firms initially search 

for new knowledge locally, then search more distantly forging connections when the 

sought knowledge is not found in the local area (Ethiraj & Levinthal, 2004; Fleming, 

2001; Gavetti & Levinthal, 2000).  To innovate using this specialized knowledge, a firm 

must travel to and interact with the target location.  Firms may interact by recombining its 

extant knowledge with that of the specialized location to form knowledge artifacts or 

patents.  This act of recombination is twofold, disparate technology fields are being 

joined as is the tacit knowledge from each location, with the knowledge artifact likely 

becoming more complex.  To explain this further, we first focus on the factors facilitating 

knowledge complexity – globalization, the clustering of knowledge, innovation, and 

recombination; then we expand upon that which we propose to develop through distant 

recombinations – technology field and geographic location.   

 

2.1.1 Globalization  

Through globalization, the world has become more interdependent, interconnected, and 

yet spread out (Berry, Guillén, Hendi, 2014; Fernandes, 2011; Goerzen, Asmussen, 

Nielsen, 2013).  In doing so, globalization has been playing a critical role in the 

development of a more complex structure for technological knowledge building. Above 

and beyond individual firms engaging in knowledge sourcing behaviors, there is a 
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systematic trend towards globalization as both general business and the world is 

becoming interconnected on a daily basis making knowledge based connections are more 

common.   

In searching for novel innovation solutions, it becomes more likely that firms 

explore outside their geographic area and so firms extend outside the immediate vicinity.  

International businesses are particularly well positioned to be sensitive to the distinct 

locations of specific knowledge as they have established international knowledge-

sourcing patterns in place.  MNC units are more likely to seek advice with partner units 

elsewhere. Partner units can be in contact with other multinational firms, diaspora, 

international research centers, and university programs (Lorenzen & Mudambi, 2013; 

Thomas, 2016; Yusuf, 2008). 

 

2.1.2 Innovation 

Innovation outputs are sought as a source of future returns for firms around the globe. 

Innovation is a social practice of recursive problem-solving as useful solutions are sought 

through piece-meal knowledge recombinations from a hierarchy of core and supporting 

fields (Arthur, 2007; Henderson & Clark, 1990; Nahapiet & Ghoshal, 1998; Schumpeter, 

1950; Simon, 1962). Innovative solutions can be sought and applied along the length and 

breadth of the value chain. Innovating firms engage in complex problem solving, often 

requiring novel combinations of knowledge. Because of its amorphous nature (Rugman 

& Verbeke, 2001), knowledge can be partially used and incorporated in knowledge 

building activities in addition to existing knowledge becoming relevant to the innovation 

activities and processes undertaken by the firm. Often times it is a variety of subproblems 
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in the supporting technologies, more than the focal problem of the primary core 

technologies where most of the work needs to be done for the envisioned idea to function 

(Arthur, 2007; Simon, 1962). Solving this hierarchy of problems suggests the firm has to 

tap into various forms of specialized knowledge within and beyond its own traditional 

borders in the system (Rothaermel & Alexandre, 2009; Weigelt & Miller, 2013) and 

potentially from innovation patterns in different knowledge fields.  

Firms operating in a single industry may co-locate in a geographically proximate 

area, which may over time development into a cluster reflecting the local knowledge 

specialization (Krugman, 1991; Porter, 1998; Shaver, 1998).  Agglomeration economies 

may emerge when related firms specialize in various factor inputs of intermediate product 

or process supply (Marshall, 1920; Porter, 1990).  Learning the uncodified aspects of 

knowledge occurs through informal ties effectually encouraging the confinement of 

knowledge to the area (Miller, Zhao, & Calantone, 2006).  Operating in these zones may 

augment competitive advantages of the clustering firms.  However partially because of 

this local specialization, no one geographic area can have the entire range of expertise 

that comes to be needed.   

Commonly search is localized until a point at which it is determined a functional 

answer is not found, then search extends more distantly to find potential solutions for 

problem solving (Vernon, 1966; Nelson & Winter, 1982; March 1991).  Knowledge 

applications that are derived from incremental and localized search are easier to find and 

therefore associated with more competition, and represent less of a competitive advantage 

(Ethiraj & Levinthal, 2004; Fleming, 2001; Gavetti & Levinthal, 2000).  They are in and 

of themselves less likely to be radical because it is an incremental extension.  
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Successfully recombined radical knowledge may be harder to develop because search 

occurs over a diverse assortment of distant fields.  This novelty however represents a 

greater competitive advantage and the breakthrough knowledge is associated with less 

immediate competition.    

 

2.1.3 Recombination  

Knowledge recombination, the process of trial and error whereby antecedent knowledge 

is combined with other antecedent knowledge, can lead to new knowledge generation as a 

form of innovation (Arthur, 2007; Olsson, 2000; Olsson & Frey, 2002; Weitzman, 1996, 

1998). Some literature on knowledge complexity (c.f. Arthur, 2007; Fleming, 2001; 

Frenken, 2006; Sorenson, Rivkin, & Fleming, 2006, Ganco, 2015) suggests that more 

complex knowledge development is supported by an even larger knowledge base (that is 

eventually used), which is developed through a series of trial attempts. This suggests that 

recombining selected components of knowledge in some novel fashion tends to be 

associated with an increase in the complexity of that knowledge. It is suggested that 

while a wide variety of forms of recombinant knowledge may potentially be envisaged 

(Weitzman, 1996; 1998), what becomes critical is the process through which specific 

combinations can be realized and brought to fruition within a reasonable time horizon. 

This combinatorial process is generally designed to address problem-solving concerns in 

ways that are achievable and deliverable. Workable solutions may often depend upon 

having access to a very large body of supporting or complementary functional 

knowledge. It has been argued that when particularly distant articles of knowledge are 
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brought together, the outcome may be both numerous qualified recombinatorial failures 

and a select few novel innovations (Arthur, 2007; Fleming, 2001; Weitzman, 1998). 

As time progresses, natural limitations to recombination emerge. The knowledge 

recombination process may become increasingly expensive exhibiting increasing costs, 

diminishing returns to creativity (Olsson, 2000), decreasing growth rates, technical 

imbalances (Rosenberg, 1976), intra-context friction (Weitzman, 1998), and reverse 

salients (Hughes, 1987) may emerge.  The scope of innovation can become confined 

which encourages the discovery and development of alternative routes to achieving 

functional answers to problem-solving. As innovation patterns becomes naturally 

hindered, at some point less expensive alternatives emerge and become an emergent new 

innovation pattern (Dosi, 1982; Freeman, 1991; Kuhn, 1962; Olsson, 2000; Von 

Tunzelmann, Malerba, Nightingale, & Metcalfe, 2008).  

These shifts are identified when the distance between knowledge fields are 

brought closer together over time through mutual learning via problem-solving. For 

example, the intellectual distance between the chemistry field and the biology field was 

shortened by the establishment of the intermediary field of chemical biology which share 

antecedent knowledge of both chemistry and biology (Schreiber & Nicolaou, 1994a, 

1994b). In developing such intermediary fields, overtime there is less distinction and 

separation between the fields of study. This suggests an increase in complexity as the 

knowledge field crossovers are jointly creating recombined knowledge and are exhibiting 

greater cross-field associations.  

Even though reliability decreases and uncertainty increases during recombination 

in periods of innovation pattern shifting (Grant, 1996; Katila & Ahuja, 2002; Takeishi, 
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2002), more distant combinations may also be associated with a greater scope for novelty 

(Ahuja & Lampert, 2001; Guilford, 1967). Here, technological change arises from the 

distinctive knowledge recombination approaches inherently available to each firm. 

During periods of innovation pattern change, new routines are sought through the act of 

problem-solving and knowledge field borders are crossed. Prior innovation patterns are 

commonly partially integrated into the following predominant pattern when alternatives 

emerge from various problem-solving recombination efforts. 

In the current innovation era guided by ICT (Andersen, 2001; Kodama, 1992; 

Kuhn, 1962), it itself makes connections between areas of knowledge that were 

previously quite separate from one another and is a classic example of an effect of 

globalization. ICT has encouraged the rapid codification of knowledge and facilitated its 

diffusion across knowledge fields and across geographic space. Global value chains have 

encouraged the development of ICT applications relevant to the specific specialization of 

activity in each location (Kumar, 2001; Chopra & Meindl, 2012).  

 

2.1.4 Paradigm Change  

A paradigm, conceptualized as a historical epoch, represents an established path 

of knowledge accumulation that has become familiar to firms in a given industry or 

context (Anderson, 2001; Dosi, 1982; Kuhn, 1962). If there is an established paradigm 

for knowledge search and recombination in a given context or industry, such that 

innovation becomes more path-dependent, then new knowledge recombinations can then 

be developed through a relatively greater reliance upon established sourcing methods.  
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It is suggested that while a wide variety of forms of recombinant knowledge may 

potentially be envisaged (Weitzman, 1998), what becomes critical is the process through 

which specific combinations can be realized and brought to fruition within a reasonable 

time horizon. This combinatorial process is generally designed to address problem-

solving concerns in ways that are achievable and deliverable. Workable solutions may 

often depend upon having access to a very large body of supporting or complementary 

functional knowledge (Brusoni, Prencipe, Pavitt, 2001).  This leads us to suggest that for 

an enterprise to access complementary knowledge outside its core paradigm, a search is 

conducted over a wider array of established paradigms than those in which the firm has 

some significant prior experience.  Even though reliability decreases and uncertainty 

increases during recombination across paradigms, more distant combinations may also be 

associated with a greater scope for novelty. 

A paradigmatic shift is identified when the distance between either clusters or 

closely related fields are brought closer together over time through mutual learning via 

problem-solving (Anderson, 2001; Kuhn, 1962). If one were to take a cross-section of a 

paradigm before and after a shift, there would be less distinction and separation between 

the fields of study afterwards. This suggests an increase in complexity as the clusters 

crossovers are jointly creating recombined knowledge and are exhibiting greater cross-

field associations. During periods of paradigmatic change, new innovation routines are 

sought through the act of problem-solving and paradigm borders are crossed. The search 

for problem-solving knowledge in a different field or cluster than a focus firm’s core 

area(s) may be sought by increasing the firm’s cross-field associations. These 

associations may initially be made peripherally. These cross-field associations, we 
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suggest can begin more openly, particularly during nebulous paradigmatic change. 

Attempting to borrow from and blend two disparate paradigms suggests an unstable 

linking of both knowledge and the network, therefore suggesting an increase in the 

complexity of both relative to pre-paradigmatic change contexts. As a new predominant 

paradigm is attempting to establish, formally locking into an unknown and untested 

direction for search and development is inappropriate. During these periods of unstable 

paradigmatic shifting the broadening of cross-field associations in an attempt to link 

distinct technology fields may be done via the use of informal and indirect ties to 

complement the continued existence of formal ties for intra-paradigm development. 

Compared to a formal tie indicated when firms have contractually outlined obligations to 

one another (see Lincoln, 1982, a review), an informal tie is identified when firms 

exchange reciprocally and trust emerges over time without legally-based obligations 

(Arthur, 2007; Baldwin & von Hippel, 2011; Olsson, 2000; Pavitt, 2002).  Firms can also 

source knowledge indirectly from non-immediate and community-based pools of which 

the firm is an attendant.  

It has been suggested that these informal and indirect networks critically enhance 

the paradigm transition process (Arthur, 2007) by serving several purposes. They help 

identify good ideas by providing early access to a spectrum of potentially useful 

knowledge fragments (Winter, 1984), offer diverse and contradictory knowledge (Burt, 

2004), and alerting the actor to previous efforts (Arthur, 2007). Rather the mutual 

exchange of knowledge between two parties informally can assist in trial and error search 

for functional answers to problems. Opportunities engendered by regular informal and 

indirect exchanges could develop into a growing openness in the collaborative 
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knowledge-seeking networks of firms that are engaged in this process (Brusoni, Prencipe, 

& Pavitt, 2001; Grigoriou & Rothaermel, 2014; Hobday, Davies, & Prencipe, 2005; 

Langlois, 2003). This broadening of the firm’s network alters the composition of the 

knowledge network and its configuration while new routines and patterns for innovation 

are being developed and complexity is increasing.  

 

2.2 Determinants of Knowledge Complexity  

A complex system, one such as knowledge, is one that cannot be easily broken down into 

the contributing building blocks because each piece is expected to interact in a 

nonadditive and nonlinear manner (Ganco, 2015; Simon, 1962).  As such, we focus on 

one aspect of the contributors to the complexity of knowledge – that of distance. We 

expect the recombinations of distant knowledge to lead to more complex knowledge 

artifacts.  We begin by assessing distance in terms of theoretical space, then in terms of 

geographic space.  

The expected complexity level of local and distant search contains a debate.  

Some authors indicate local search can foster incremental complexity growth (Taylor & 

Greve, 2006; Weisberg, 1999) while others expect high complexity levels to emerge in 

distant search (Ahuja & Lampert, 2001; Guilford, 1967; Hargadon & Sutton, 1997).  We 

follow with the expectation that local search produces more incremental development and 

distant search expecting to produce more breakthroughs. We assess knowledge 

complexity by investigating the underlying structure of knowledge building inputs – i.e. 

the pattern of knowledge artifact development in theoretical and physical space.  We do 

so by investigating the architecture of each knowledge artifact – by that we mean the 
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pattern of knowledge domains used and the originality of that pattern, for both the 

theoretical space attributes and physical space contributions of each knowledge artifact in 

the entire structure.  

 

2.2.1 Theoretical Space: Technology Field Distance  

Novel knowledge may be considered distant when the antecedent knowledge drawn upon 

stems from distinct and unconnected technology fields (Antonelli, Krafft, & Quatraro, 

2010; Cano-Kollmann, Cantwell, Hannigan, Mudambi, & Song, 2016; Fleming & 

Sorenson, 2001; Kodama, 1992; Trajtenberg et al., 1997).  Here knowledge complexity 

has risen from innovators recombining the available core knowledge field with 

supporting, peripheral, or unconnected knowledge fields. Knowledge may become more 

complex through the act of innovative problem-solving when its recombined antecedents 

were dispersed across distinct technology knowledge fields. With this progression of 

integration, knowledge has experienced a growing level of complexity.  An example of 

this would be the knowledge recombination of photography equipment with medical 

equipment resulting in endoscopic cameras. 

 

2.2.2 Physical Space: Geographic Distance  

The systematic trend towards globalization and its epistemic communities are 

making knowledge based connections are more common.  The world is becoming more 

interconnected with knowledge based connections becoming more common as people 

travel and move more. For example, people move more and bring their indigenous 

knowledge with them to the new geographic location and typically exhibit greater 



23 

 

 

 

knowledge recombinatorial abilities in innovation (Bäker, 2015; Franzoni, Scellato, & 

Stephan, 2014; Scellato, Franzoni, & Stephan, 2015). 

Accessing a different knowledge domain from the firm’s core knowledge field(s), 

suggests the intentional establishment of cross-field associations. Put simply, increasing 

complexity may occur when antecedent knowledge is sourced from distinct geographic 

locations for recombination. This in turn suggests geographically, and likely 

internationally, dispersed connections are inherently necessary for cross-field 

associations to be purposefully established for recombining available knowledge to a 

greater degree of complexity in the search for solving problems in innovation along the 

value chain.  
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CHAPTER 3: DATA 

 

The primary research question places several demands on the data. Initially, the 

data must cover a broad range of technologies. Secondly, it must track both the 

antecedent contributions in recombination as well as the final characteristics of the 

artifact.  Thirdly, the data must have a long time horizon so as to be able to distinguish 

original from common recombination patterns.  In order to satisfy these demands, I 

analyze every knowledge artifact in selected fields of origin in the global population of 

granted USPTO (United States Patent and Trademark Office) patents between 1976 to 

2014 (n = 1,340,799). A patent secures exclusive rights to the inventor(s) from 

unauthorized usage of the knowledge artifact for a given length of time. By USPTO 

definition, a granted patent is an original contribution whereby it must be novel and 

nonobvious.   

Patents are rich with standardized information resulting in an attractive data 

source for researchers.  Any given patent has a title, brief abstract, a complete description 

of the knowledge artifact so as to provide an individual record of the knowledge frontier, 

along with the application and grant dates. The legal owner of the patent, termed 

assignee, and contributing inventor(s) are listed by name along with the city and country 

of residence.  This information may be used as a basis for investigations into geographic 

considerations. Each patent is assigned a minimum of one technology class, most have 

multiple technology class assignments, used to categorically indicate the genre of the 

knowledge artifact.  Adding to the allure of patent data research, all prior granted patents 

are reclassified when the USPTO office determines a new technology class is warranted, 

ensuring a historically consistent classification scheme back to the first patent in 1790.  
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These patent technology classes indicate the characteristics of the knowledge artifact.  

Patents include citations to antecedent patents and appropriate scientific publications 

facilitating a method to trace the parental roots of the resulting technological knowledge 

development.  All patents cite at least one antecedent patent and many cite several 

antecedent patents.  Computerized access to this data is publically available from 1963 to 

the present and from 1975 onward for patent citations.  This database contains systemized 

and detailed information on long-term innovation patterns, consequently it is able to 

support micro-, mezo-, and macro-level analysis.   

Despite being flush with information, so long as there has been research using 

patents there has been a tandem debate regarding the appropriateness from large-scale 

economic patent data researchers (c.f. Scherer, 1965; Schmookler, 1966). Patent data may 

be an imperfect source when commonly voiced concerns acknowledge not all innovations 

are patented or patentable, patenting propensity varies across nations, industries, and 

firms and the relationship between firm size and innovativeness has been questioned 

(Levin, Klevorick, Nelson, & Winter, 1987; Pavitt, 1988; Griliches, 1988; Kleinknect & 

Reinders, 2012).  Those recommending the use of Research and Development (R&D) 

instead are presented with Pavitt’s 1988 work which denotes how this too is a biased 

innovation measure for similar reasons of the relative importance of measured R&D, 

variations across technologies and sectors, and unaccounted informal R&D occurring 

outside the established purview.  Mansfield’s 1986 survey showed when patenting is 

unimportant a firm still applies for 66% of all their patentable inventions; where 

patenting is important that ratio rises to 84% (Cantwell, 2006).  Assuaging one limitation, 

there are several established methods for handling proposed patenting propensity data 
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limitations.  A common method, known for its power, is the construction and 

normalization of indices for patent propensity variations.  This method is represented as a 

revealed technology advantage (RTA) index (Soete, 1981), the index of 

internationalization (Cantwell, 1995), or the corporate technological competitiveness 

index (Cantwell & Sanna-Randaccio, 1993).  Studies have found large firms are more 

inclined to patent regardless of immediate usability over smaller firms (Acs & Audretsch, 

1989; Cantwell, 2006; Pavitt, 1988).  Patents have also been shown to correlate with 

additional measures of technological knowledge activity and innovation performance 

(Pavitt, Robson, & Townsend, 1987).  Altogether with an awareness of propensities and 

multiple methods for managing debates, patents serve as a robust proxy for innovation, 

while better so for large over small firms (Cantwell, 2006; Griliches, 1990; Basberg, 

1987; Acs & Audretsch, 1989).   

 

3.1 Data Descriptives 

The data covers the period 1976-2014, it has been divided into three equal time 

periods of 13 years which has been used to demonstrate its ability to answer the 

dissertation questions. The first time period is 1976 – 1988 and contains 158,426 unique 

patents, the second time period is 1989 – 2001 and contains 383,308 patents, the third 

time period is 2002 – 2014 and contains 799,720 patents.  For the purposes of 

demonstrating the ability of the data to answer the dissertation questions in the proposal, 

the patents from eight Tech56 fields, with two from each CEMTO industry field, were 

chosen for interesting cross-field variation.  The CEMTO industry fields are a high level 

of patent data aggregation representing Chemical, Electrical, Mechanical, Transport, and 
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Other.  The Other sector represents Tech56 fields that do not fit easily into one of the 

main four categories; only four Tech56 fields fall into this category.  If a pairing were to 

link two of the CEMT fields (e.g. C and E), then this represents crossing broad macro 

area bounds and thus represents bridging a large and unusual distance. The primary 

subclass of the patent indicates which technology field or industry sector it is categorized 

into. Tech56 fields 8 and 12 were selected to indicate that which pertains to chemicals 

and pharmaceuticals (Chemical), Tech56 fields 16 and 29 indicate mechanical 

engineering (Mechanical), Tech56 fields 40 and 41 indicate information and 

communications technologies (Electrical), and Tech56 fields 42 and 43 represent 

transportation equipment (Transport).  These eight fields total 1,340,799 patents of the 

more than 6 million patents of the final database, or approximately 20%.  To be clear, 

complexity is calculated for every patent without limitation on what field or sector it is 

identified as, the aggregating schemes are only used to make the results more 

understandable by collecting all related patents into a common framework. 

There are many other methods that can be used to show a change in knowledge 

complexity or location complexity.  The basic model of the NK complexity measure is 

how it benchmarks against the observed likelihood of coincidence of a pair of subclasses. 

With regards to calculating knowledge complexity, the relatedness of activities can be 

used to show if a pairing is within or across technology fields; with regards to location 

complexity, the relatedness of locations and the distance in miles between the capital 

cities of referencing and referenced locations are commonly used.  As study 1 and study 2 

are exploratory in nature, it is important to include here how an established model may be 

used to depict complexity in addition to the adapted NK models used here. The 
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relatedness between any two technologies or locations can be calculated by both simple 

and sophisticated means. In the simple calculation (Technological Diversification 

measure) the objective is to determine if the paired technologies indicate an intra-

CEMTO or inter-CEMTO pairing (c.f. Cantwell & Zhang, 2011). In the sophisticated 

calculation (Technological Diversification measure) the pattern of patenting activity is 

used to determine the perception of complementarity between pairs of technologies (c.f. 

Cantwell & Noonan, 2004). As the NK method of complexity used here is uncommon in 

the international business literature, I have also included the simple method that clearly 

indicates if a pairing crosses the broad macro CEMTO areas or Continents as a way to 

corroborate the expected increase in complexity as measured by the NK model.    

 

3.1.1 Cross-Classifications or Knowledge Artifact Complexity (KAC) 

Complexity as measured by cross-classifications subclasses is the first of three methods 

we will investigate to examine the changing levels of complexity over time. Some patents 

only list a single subclass and while it is believed the knowledge artifact was developed 

through a process of recombination the measure cannot accommodate this therefore these 

patents have been controlled for and represent 10% of the data (Table A1).  Overall the 

number of unique primary and secondary subclass codes has increased over time for both 

the primary and secondary subclasses, this casually suggests complexity may be 

increasing.   

Table A2 shows a simple model of complexity where the pairs of primary to 

secondary subclasses as aggregated to CEMTO levels. The pairs are restricted to that of 

the primary CEMT field. Overall there appears to be an increase in intraCEMTO pairings 
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which suggests a decrease in complexity. However when we look closer, CC and MM 

both decrease in intraCEMTO pairings thus suggesting an increase in complexity, EE and 

TT both increase in intra CEMTO pairings thus suggesting a decrease in complexity.  

The calculation for complexity by subclasses is made by dividing the number of 

subclasses on a given patent by a weight.  The number of subclasses is a simple count of 

all the subclasses on a given patent.  The weight is calculated by dividing the count of 

subclasses previously recombined with primary subclass i by the total count of patents 

that reference subclass i. The weight is cumulative over the three periods thus 

encompassing the entire database by the final time period.  More explicitly, for a given 

primary subclass, step 2 counts the number of unique subclasses it has been paired with 

and step 3 counts all of the patents that have a listing for subclass i. Table 1 (below) 

shows the three stages to the complexity calculation. 

As an example of how to read the chart, in time period 1976-1988, any given 

citing patent in Tech56 field 8 has an average of 5.890 subclasses listed. For any given 

subclass in Tech56 field 8, the given subclass has been also been observed as paired with 

an average of 49.452 other unique subclasses.  Next we count all of the unique patents in 

the prior and given time period(s) (in the case of first period – we only have the given 

period) that reference the given subclass, for Tech56 file 8 that is an average of 37.458 

patents.  If we were to then compute (5.890 / (49.452 / 37.458)), we would arrive at the 

average complexity value for any given Tech56 field 8 patent, 4.500. 
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Table 1: The three stages of the subclass complexity calculation, and results 

Average 1976-1988 1989-2001 2002-2014 

Step 1:  

Number of 

subclasses on a 

given patent 

tech56 | average 

----------+------------- 

  8 |       5.889881 

12 |       5.720942 

16 |       4.605391 

29 |       3.789493 

40 |       4.516428 

41 |       3.379128 

42 |       3.344211 

43 |       3.455925 

tech56 | average 

----------+--------------- 

        8 |       6.108823 

       12 |       6.802399 

       16 |         5.2521 

       29 |       3.824852 

       40 |       4.486499 

       41 |       3.966817 

       42 |       2.873669 

       43 |       3.520608 

tech56 | average 

----------+-----------   

 8 |       7.065013 

12 |       5.724588 

16 |       5.743612 

29 |       4.003815 

40 |       4.908166 

41 |       4.081229 

42 |       3.178002 

43 |       3.339278 

Step 2:  

Count of 

subclasses 

previously 

recombined with 

primary subclass i 

tech56 | average 

----------+------------- 

 8 |        49.5625 

12 |    230.141525 

16 |    75.2690887 

29 |    93.2691955 

40 |      105.21595 

41 |    117.475074 

42 |    113.214683 

43 |     76.154899 

tech56 | average 

----------+--------------- 

        8 |    231.289215 

       12 |    622.911390 

       16 |    193.619635 

       29 |    203.555056 

       40 |    153.320791 

       41 |    277.110248 

       42 |    236.456167 

       43 |    189.788783 

tech56 | average 

----------+----------- 

  8 |    609.408896 

12 |    1104.00403 

16 |    355.199530 

29 |    330.455760 

40 |    474.900312 

41 |    533.980389 

42 |    512.586979 

43 |    420.631572 

Step 3:  

Total count of 

patents that 

reference subclass 

i. 

 

tech56 | average 

----------+------------- 

 8 |    37.4583333 

12 |    320.881655 

16 |    79.2915040 

29 |    144.013793 

40 |    290.735189 

41 |    245.949002 

42 |    302.029700 

43 |    81.0744330 

tech56 | average 

----------+--------------- 

        8 |     222.404902 

       12 |    1709.60797 

       16 |    272.894853 

       29 |    345.435757 

       40 |    382.645704 

       41 |    898.410794 

       42 |    768.775829 

       43 |    284.873838 

tech56 | average 

----------+----------- 

  8 |    574.542343 

12 |    4202.95545 

16 |    570.842153 

29 |    608.674384 

40 |    1427.95905 

41 |    2548.17969 

42 |    2082.81248 

43 |    966.644240 

Subclass Complexity Results 

 

 

1976-1988 1989-2001 2002-2014 

Subclass  

Complexity 

tech56|complexity(avg) 

  8 |       4.500946 

12 |       6.623147 

16 |       4.333273 

29 |       4.757893 

40 |       10.89805 

41 |        6.25737 

42 |       7.880091 

43 |       3.570292 

tech56|complexity(avg) 

        8 |       5.495304 

       12 |        15.0358 

       16 |       6.468287 

       29 |       5.335217 

       40 |       9.398081 

       41 |       10.62334 

       42 |       7.373808 

       43 |       5.138704 

tech56|complexity(avg) 

        8 |       6.538764 

       12 |        22.9347 

       16 |       7.274913 

       29 |       5.881689 

       40 |       13.68053 

       41 |       15.42614 

       42 |       9.804443 

       43 |       6.972797 
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Co-classification Results and Conclusions: 

When calculating complexity via subclasses, we see complexity is increasing, Table 1. 

Tech56 fields 40 and 42 both decrease slightly but all eight fields rise to level above their 

respective starting points in the final period.  Overall the table shows how all the Tech56 

fields are rising in complexity using the subclass measure.  

When we examine the slow overall trend of increasing intra-CEMTO pairings and 

decreasing inter-CEMTO pairings (Table A2) we may anticipate a slow change such that 

complexity is decreasing over time according to the subclass model.  Or more 

specifically, we expect CC and MM to show increasing complexity by not EE and TT. 

However upon examining subclass complexity over the time period (Table A3), we see 

that in fact all Tech56 fields are increasing in complexity. Why does this divergence 

occur? It may be that there is spurious diversity in the subclass classification scheme 

because there are so many subclasses to choose from and may be similar in nature. Thus, 

the simple model may be showing the unsatisfactory movement of subclasses and thus a 

lot of spurious noise. Relatedly, it may the CEMTO level is too broad for the purpose of 

examining complexity at this micro level, as was also found to be the case for subclasses 

in Cantwell & Zhang (2011). It may also be that inter-Tech56 field pairings are occurring 

within the CEMTO fields but this level of aggregation is too high to adequately 

demonstrate.   
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3.1.2 Cross-classification or Knowledge Sourcing Complexity (KSC) 

Complexity as measured by patent co-classification is the second of three methods we 

will investigate to examine the changing levels of complexity over time.  Overall the 

number of unique citing (the focal patent) and cited (the antecedent patents of the focal 

patent) citations is increasing over time (Table A3), this again casually suggests 

complexity may be increasing.  

Table A5 outlines the percentage of citing and cited fields by Tech56 field and by 

year.  In the 1976-1988 timeframe, Tech56 field 8 cites a total of 35 unique citing 

subclasses.  Tech56 field 8 also references 403 cited subclasses from across the 56 

Tech56 fields. Overall, the eight Tech56 fields cite all 56 fields.   

Table A6 shows the simple measure of complexity where the percentage of pairs 

as a citing patent is paired with a cited patent is aggregated to the CEMTO level. Of note 

is the overall 5.67 percentage point increase of interCEMTO pairings suggesting 

knowledge is growing in complexity over time.  This is quite different from Appendix 0 

Table 2 where in cross-classifications aggregated to CEMTO levels there was a 2.38 

percentage point decrease of interCEMTO pairings. Here fields CC, MM, and TT all 

show decreasing intraCEMTO pairs thus suggesting an increase in complexity. Paired 

field EE shows an increase then plateauing of intraCEMTO pairs, but overall suggests a 

decrease in complexity.  

The calculation for complexity by citations is made by dividing the number of 

cited patents on a given citing patent by a weight.  The weight is calculated by dividing 

the count of citations previously recombined with citation i by the total count of patents 

that reference citation i. The weight is cumulative over the three periods thus 
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encompassing the entire database by the final time period.  More explicitly, for a given 

primary citation, step 2 counts the number of unique citations it has been paired with, 

while step 3 counts all of the patents that have a listing for citation i.  Table 2 (below) 

shows the three stages to the complexity calculation.  

 As an example of how to read the chart, in time period 1976-1988, any given 

citing patent in Tech56 field 8 has 4.968 cited patents listed. For any given citation in 

Tech56 field 8, the given citation has been also been observed as paired with 31.518 

other unique citations.  Then we count all of the unique patents in the prior and given (in 

the case of first period – we only have the given period) time period(s) that reference the 

given citation.  If we were to then calculate (4.968 / (31.518 / 20.792)), we would arrive 

at the average complexity for any given Tech56 field 8 patent, 3.106.  
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Table 2: The three stages of the citation complexity calculation, and results  

 1976-1988 1989-2001 2002-2014 

Step 1: 

Number of 

cited patents 

on a given 

citing patent 

tech56 | average 

----------+-------------- 

        8 |       4.968128 

       12 |       3.939234 

       16 |       3.947664 

       29 |        3.94604 

       40 |       4.459687 

       41 |       5.131822 

       42 |       4.666504 

       43 |       3.617509 

tech56 | average 

----------+-------------- 

        8 |       10.33502 

       12 |       7.429368 

       16 |       8.699477 

       29 |       7.267243 

       40 |       8.217237 

       41 |       9.604885 

       42 |       8.037944 

       43 |       7.707064 

tech56 | average 

----------+--------------- 

        8 |       20.65722 

       12 |       15.59686 

       16 |       18.33418 

       29 |       12.75643 

       40 |       15.89453 

       41 |       17.65533 

       42 |       11.17674 

       43 |       14.67904 

Step 2:  

Count of 

citations 

previously 

recombined 

with primary 

citation i 

tech56 | average 

----------+--------------- 

   8 |    31.5179290 

12 |    86.7718658       

16 |    40.6412696 

 29 |    60.1949958 

 40 |     85.378219 

 41 |    137.473602 

 42 |    99.7463989 

 43 |    39.8360748 

tech56 | average 

----------+--------------- 

        8 |    297.486842 

       12 |    547.601314 

       16 |    248.805533 

       29 |    238.966408 

       40 |    265.342227 

       41 |    611.680449 

       42 |    366.465218 

       43 |    232.442314 

tech56 | average 

----------+--------------- 

        8 |    1224.42869 

       12 |    1724.34069 

       16 |    779.381761 

       29 |     650.41017 

       40 |    1219.60479 

       41 |    1715.72985 

       42 |    1102.04127 

       43 |    1041.96769 

Step 3: 

Total count of 

patents that 

reference  

citation i 

tech56 | average 

----------+--------------- 

   8 |    20.7928286 

 12 |    192.263193 

  16 |    42.9928253 

  29 |    109.347228 

  40 |    188.308197 

  41 |    263.096892 

  42 |    265.909601 

  43 |    55.9245005 

tech56 | average 

----------+--------------- 

        8 |    217.875506 

       12 |    1372.49782 

       16 |    264.976898 

       29 |    352.212954 

       40 |    533.833553 

       41 |    1851.69503 

       42 |    864.013458 

       43 |     302.98824 

tech56 | average 

----------+--------------- 

        8 |    832.270618 

       12 |    5445.79922 

       16 |    760.992541 

       29 |    837.548950 

       40 |    1977.41275 

       41 |    4994.72632 

       42 |    2745.89297 

       43 |    1334.73072 

Citation Complexity Results 

 1976-1988 1989-2001 2002-2014 

Citation 

Complexity 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       3.106263 

       12 |       6.115171 

       16 |       3.657164 

       29 |        5.68054 

       40 |       8.179387 

       41 |       7.914577 

       42 |       9.911439 

       43 |       4.791656 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       7.315406 

       12 |       12.96697 

       16 |       7.574245 

       29 |       8.931501 

       40 |       10.43254 

       41 |       17.43078 

       42 |       15.21351 

       43 |       9.626425 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       13.31857 

       12 |       37.48836 

       16 |         13.455 

       29 |       13.39928 

       40 |       23.59896 

       41 |       38.29422 

       42 |       21.18359 

       43 |       18.32828 
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Citation Results and Conclusions:  

When calculating complexity via citations, we see complexity is increasing, Table 

2. All eight Tech56 fields rise to level above their respective starting points in the final 

period. Thus the table shows how all the Tech56 fields are rising in complexity using the 

citation measure. Both the simple model of CEMTO paired technologies and the citation 

complexity calculation indicate all Tech56 fields are increasing in complexity.  

Consistent with observations comparing KAC and KSC, modularity may play a 

role in mediating fragmentation and complexity. In this case, modularity may imply KAC 

does not rise or even decreases while KSC values increases substantially.  In such a 

situation, complexity is bore by the unified production system but not by the contributing 

individual knowledge artifacts per se. With regards to the decrease in fields 40 and 42 in 

KAC period 2 (See above Table 1), this may be because of a field-wide increase in 

modularity from the first period to the second period. The KSC values for those two 

fields (See above Table 2) increase which adds suggestive confirmation what modularity 

is playing a part in complexity.  This will be examined further in future research.     

 

 

3.1.3 Location Connectivity or Location Sourcing Complexity (LSC) 

Complexity as measured by locations is the last of three methods we will 

investigate to examine the changing levels of complexity over time.  Important to note is 

the relatively low count of citing and cited countries as compared to either subclasses or 

citations. In addition 95% of the data is made up by a small number of countries (n = 9 – 

13) and reference countries (n = 10 – 19).  There is a wider diversity of meaningful 

categories in subclass and citation data than in location data.  Because of this it was 
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necessary to aggregate the country-level data to continent-level, which also maintains 

alignment with the aforementioned aggregating scheme such that continents are 

approximating the CEMTO aggregation level. 

In Appendix A0 Table 8, I show the simple model of complexity where the pairs 

of primary to secondary location are aggregated to the continent level.  There is 

comparatively greater activity across continents than there is across CEMT sectors. We 

also see there is an overall decrease in intracontinent pairing thus suggesting an increase 

in overall complexity. When self-paired Africa, Europe, and South America all show a 

decrease of intracontinent pairings, thus suggesting an increase in complexity.  Two 

continents show mixed results where Asia shows a slight increase in intracontinent 

pairings and Australia
14

 a slight decrease. North America shows an increase in 

intracontinent pairing and thus suggests a decrease in complexity.  

This complexity measure was originally framed to handle tens of thousands of 

subclass codes but because of the relatively small count of countries (approximately 200) 

to possible subclass codes (approximately 80,000) this measure had to be modified.  It is 

these intracontinent and intercontinent weights which were used to calculate locational 

complexity in order to produce values that represent the intention of the original 

complexity measure.  The calculation for complexity by locations is made by dividing the 

number of cited locations patents on a given citing location patent by a weight (Table 11).  

Secondarily, this also suggests this original complexity measure has limitations making it 

specific to certain contexts.  The weight was calculated by determining the percentage of 

number of times the citing continent was paired with a cited continent over the entire 

time period where the weight is cumulative over the three periods (Table 10).  

                                                 
14

 Australia also includes patents from Oceania.  
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To exemplify, in the 1976-1988 time period, Tech56 field 8 has an average of 

5.068 pairwise locations per patent. Each pairwise combination is then divided by the 

weight of step 2 in which the percentage of the citing continent of a given patent in 

Tech56 field 8 has been paired with 0.217 (21.7%) other cited continents, averaged 

across all pairwise combinations. The average complexity for a patent given of each 

location in Tech56 field 8 is 29.097. This final complexity value is averaged for all the 

pairwise combinations in step 2, Note: A simple division of step 1 to step 2 results in 

Simpson’s Paradox (Simpson, 1951) for the final complexity value; i.e. this will calculate 

an average of averages without accounting for differences in the various frequencies 

associated with each contributing average. To prevent this inaccurate descriptive statistic, 

the final location complexity value shown here is weighted by the number of pairwise 

continent:rcontinent combinations to prevent confounding and counter-intuitive results. 
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Table 3: Steps to Location Complexity  

Average 1976-1988 1989-2001 2002-2014 

Step 1: 

Number of 

citing and 

cited 

locations 

tech56 | average 

----------+--------------- 

        8 |       5.067857 

       12 |       4.174273 

       16 |       4.067032 

       29 |        4.06529 

       40 |       4.620563 

       41 |       5.701122 

       42 |       4.849125 

       43 |         3.7723 

tech56 | average 

----------+--------------- 

        8 |       10.92727 

       12 |       7.950888 

       16 |       9.157815 

       29 |       7.614947 

       40 |       8.526991 

       41 |       10.83852 

       42 |       8.674921 

       43 |       8.200159 

tech56 | average 

----------+-------------           

  8 |       21.69914 

12 |       16.34115 

16 |       19.12959 

29 |       13.38361 

40 |       16.30152 

41 |       18.99685 

42 |       12.12163 

43 |       15.46583 

Step 2:  

Weight: 

Frequency of 

citing 

continent: 

cited 

continent 

pairings, 

averaged by 

n time 

period 

patents 

tech56 | average 

----------+--------------- 

        8 |        .217447 

       12 |        .176784 

       16 |        .190071 

       29 |        .197547 

       40 |         .17434 

       41 |        .172384 

       42 |        .132071 

       43 |        .175608 

tech56 | average 

----------+--------------- 

        8 |        .196671 

       12 |        .180875 

       16 |        .168237 

       29 |        .162592 

       40 |        .155046 

       41 |         .17734 

       42 |        .130042 

       43 |        .163286 

tech56 | average 

----------+-------------     

  8 |        .194254 

12 |        .184525 

16 |       .1626725 

29 |       .1529048 

40 |       .1460445 

41 |       .1914234 

42 |       .1323335 

43 |       .1553333 

Location Complexity Results  

 1976-1988 1989-2001 2002-2014 

Location 

Complexity  

 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       29.09668 

       12 |       67.70354 

       16 |       93.59246 

       29 |       83.98908 

       40 |       47.26549 

       41 |       54.10012 

       42 |       89.44292 

       43 |       62.61966 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       209.1063 

       12 |        119.392 

       16 |       196.7498 

       29 |        158.927 

       40 |       66.59346 

       41 |       95.24223 

       42 |       186.0097 

       43 |       115.3215 

tech56 | 

complexity(avg) 

----------+-------------        

  8 |       252.8576 

12 |       240.6965 

16 |       370.0665 

29 |       239.8846 

40 |       131.7363 

41 |       201.7026 

42 |       195.5729 

43 |       175.8323 
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It is possible to calculate the location complexity for a single country. By 

normalizing the citing country, I can stabilize the Tech56 fields to the citing country. This 

controls for any effect being specific to the country of origin and controls for variations 

in the proportion of citing patents associated with a given country. In order, the top three 

patenting countries are United States, Japan, Germany and they hold this order across all 

three periods, see Appendix A0 Table 9.  These three countries may also be used to 

represent the three main patenting continents of North America, Asia, and Europe, see 

Appendix A0 Table 10.  Beyond the top three countries small number problems begin to 

again influence the usability of the results; although small number problems begin to 

appear in Germany’s calculations.  

 

Location Conclusions:  

Both the simple model of CEMTO paired continent locations and the location complexity 

calculation indicate all Tech56 fields are increasing in complexity from the first period.  

 

General Conclusions 

Table 4: Summary table of complexity output by measure 

 1976-1988 1989-2001 2002-2014 

Subclass  

Complexity 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       4.500946 

       12 |       6.623147 

       16 |       4.333273 

       29 |       4.757893 

       40 |       10.89805 

       41 |        6.25737 

       42 |       7.880091 

       43 |       3.570292 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       5.495304 

       12 |        15.0358 

       16 |       6.468287 

       29 |       5.335217 

       40 |       9.398081 

       41 |       10.62334 

       42 |       7.373808 

       43 |       5.138704 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       6.538764 

       12 |        22.9347 

       16 |       7.274913 

       29 |       5.881689 

       40 |       13.68053 

       41 |       15.42614 

       42 |       9.804443 

       43 |       6.972797 
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Citation 

Complexity 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       3.106263 

       12 |       6.115171 

       16 |       3.657164 

       29 |        5.68054 

       40 |       8.179387 

       41 |       7.914577 

       42 |       9.911439 

       43 |       4.791656 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       7.315406 

       12 |       12.96697 

       16 |       7.574245 

       29 |       8.931501 

       40 |       10.43254 

       41 |       17.43078 

       42 |       15.21351 

       43 |       9.626425 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       13.31857 

       12 |       37.48836 

       16 |         13.455 

       29 |       13.39928 

       40 |       23.59896 

       41 |       38.29422 

       42 |       21.18359 

       43 |       18.32828 

Location 

Complexity  

 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       29.09668 

       12 |       67.70354 

       16 |       93.59246 

       29 |       83.98908 

       40 |       47.26549 

       41 |       54.10012 

       42 |       89.44292 

       43 |       62.61966 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       209.1063 

       12 |        119.392 

       16 |       196.7498 

       29 |        158.927 

       40 |       66.59346 

       41 |       95.24223 

       42 |       186.0097 

       43 |       115.3215 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       252.8576 

       12 |       240.6965 

       16 |       370.0665 

       29 |       239.8846 

       40 |       131.7363 

       41 |       201.7026 

       42 |       195.5729 

       43 |       175.8323 

 

From the abridged dataset sampling all major fields, our basic assumption that 

knowledge complexity and location complexity are rising overtime is confirmed.  The 

use of these three methods (subclasses, citations, and locations) are interesting because 

they do in fact reflect different aspects of knowledge complexity and locational 

complexity, as they grow in different rates, show different patterns of development, and 

how this can be used to inform methodological choices in future studies.  

 Comparing subclasses and citations we can see how the measures are positively 

but not strongly related. The complexity values vary in growth rate by period and vary in 

the outcome value.  Cross-classifications showed mixed trends when comparing the 

number of codes, the simple complexity calculation, and the NK method for complexity, 

whereas Co-classification data was uniformly supportive. This may suggest cross-
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classification data is more random or chaotic in nature than co-classification data which 

is why the cross-classification results seem to be dampened compared to co-classification 

results.  Although location complexity is not directly comparable, we can see it shows the 

greatest rate of increase.   
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CHAPTER 4: STUDY 1 

4.1 Introduction 

It is commonly understood how knowledge building can be achieved through 

recombination (trial and error) whereby novel knowledge can emerge (Antonelli, 2009; 

Fleming, 2001; Sorenson, Rivkin, & Fleming, 2006; Ganco, 2015). From this body of 

work, we know a lot about the complexity of knowledge via industry or classification 

recombination (Fleming & Sorenson, 2001; Ganco, 2015; Kaplan & Vakili, 2015; 

Vagnani, 2012) but relatively little about the architecture of individual knowledge 

artifacts composing the underlying structure.  In other words we know less about the 

pattern of the technological knowledge domains utilized and the originality of that 

recombination pattern in global innovation.  Complexity through knowledge 

recombination has frequently been studied within a single industry or knowledge field 

(Fleming & Sorenson, 2001; Ganco, 2013; Kaplan & Vakili, 2015; Vagnani, 2012). As a 

result of this body of work, we know a lot about industry/classification recombination, 

complexity of knowledge, and historic innovation pattern but relatively little about the 

global pattern of the technological knowledge domains of expertise utilized and the 

originality of that recombination pattern, i.e. the knowledge inputs of the underlying 

structure.  In this context, the architecture of knowledge building artifacts which 

contribute to the structure of global knowledge building. 

 The recombination framework provides a useful lens for examining the individual 

artifacts of novel knowledge building and their composition (Celo, Nebus, & Wang, 

2015; Fleming & Sorenson, 2001; Ganco, 2015). This literature accounts for the 

characteristics and development of knowledge building for knowledge complexity. We 
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argue that the more dispersed the underlying structure is for the knowledge search 

domain, more complex knowledge will be produced regardless of the measure used. This 

research therefore has a nested contribution: (1) to determine if the structure of 

knowledge building is associated with a rise in technological knowledge complexity, (2) 

to compare the trends revealed by the common knowledge complexity measurement 

approaches, and (3) illustrate the different types of distributed knowledge systems firms 

draw upon to build a knowledge artifact.   

Technological knowledge complexity is commonly calculated through the use of 

patents, briefly because of the demands of the research question(s) and the stability of the 

patent coding system over time. By recognizing two key approaches
15

 for calculating 

technological knowledge complexity (patent characteristic / co-classification and citation 

/ cross-classification data, respectively reflecting an outcome and pathway measure), we 

can produce an independent validity test for each measure and establish the trends each 

measure is more inclined to indicate at a finer level of analysis. Having identified an 

outcome measure (Fleming and Sorenson, 2001) that calculates the complexity of novel 

technological knowledge admitting for the spread of knowledge domain and the 

originality of the recombination pattern, we then build an equivalent methodological 

construction for a pathway measure. Both measures of complex technological knowledge 

used here calculate the complexity of knowledge but each represents different aspects 

they potentially therefore may be measuring different traits.  

                                                 
15

 A third measure is that of the co-occurrence of key words in the patent texts (c.f. Engelsman and van 

Raan, 1991; Kaplan & Vakili, 2015; Bhattacharya & Basu, 1998).  Key words are known to exhibit 

polysemy and to evolve in meaning (Chang et al., 2009).  These factors lead to a definitional instability 

(Mei, Shen, & Zhai, 2007) and present unreliability for a measure applied over a longer time horizon, 

therefore an assessment of them is outside the scope of this research but presents fallow ground for future 

research.   
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Co-classification data has been shown to reflect product relatedness as 

represented by the technology characteristics of the artifact (Cantwell & Piscitello, 2000, 

2004; Piscitello 2004). Thus we define product (or business) relatedness as the increase in 

a corporation’s technological base by a varied assortment of technological competencies 

(Piscitello, 2004; Cantwell et al, 2004).  We propose complexity measured in this method 

represents Knowledge Artifact Complexity (KAC) where the higher the KAC value, the 

more likely the Tech56 field is associated with interrelated applications. 

Cross-classification data has been shown to reflect how generalizable 

(specialized) a technology field is (Hall, Jaffe, Trajtenberg, 2001; Hall & Trajtenberg, 

2004; Trajtenberg, Jaffe, Henderson, 1997). We propose complexity measured in this 

second methods represents Knowledge Sourcing Complexity (KSC) where the higher the 

KSC value, the more likely the Tech56 field is associated with generalizable applications. 

This work promotes new hypotheses regarding the underlying structure of 

innovation and direct methodological comparisons assessed on a global population data 

set. The results are expected to show how both measures can reflect the underlying 

structure of knowledge building and the increase in technological knowledge complexity 

and the distinct methodological contributions of each measure.   

  

4.2 Hypothesis Development 

Innovating firms are commonly in search of novel combinations of knowledge for 

problem-solving.  Knowledge can grow incrementally as well as in leaps and bounds 

(Baumann & Siggelkow, 2013; Kauffman 1993).  While envisioning a wide variety of 

innovative artifacts is possible (Weitzman 1996; 1998), what becomes a critical factor is 



45 

 

    

 

the process of blending specific knowledge artifacts for a potentially fruitful contribution 

in a reasonable time horizon.  Workable and potential solutions may therefore depend on 

the ability to tap into a larger source of complementary and or supporting functional 

knowledge with varying forms of specialized knowledge (Brusoni, Prencipe, Pavitt, 

2001; Kapoor & Adner, 2012). These alternative routes emerge or are sought when 

potential solutions cannot be reasonably discovered within the current constraints and 

context (Hughes, 1987; Olsson & Frey, 2002; Weitzman, 1998).  

The scope for novelty is greater in recombining previously unconnected or more 

technologically distant antecedent knowledge streams, even if there is greater uncertainty 

and lower reliability present (Grant, 1996; Katila & Ahuja, 2002). It has been argued 

when notably distant prior knowledge artifacts are recombined the result may be both 

numerous qualified failures and a select few novel innovations (Arthur, 2007; Fleming, 

2001; Weitzman, 1998). Stated alternatively, the merging of two distinct technology 

fields represents a comparatively more complex knowledge stream than if each were to 

continue unaffected by the other.  

When the architecture of the knowledge artifact draws on particularly novel or 

distant knowledge domains, the result is expected to register as more complex that its 

antecedents. Measures for complex technological knowledge have a dual mandate in 

assessing the architecture of each knowledge artifact; they must to calculate the difficulty 

(ease) of recombining knowledge to build said artifact, while accounting for the 

originality (commonality) of the pattern of the recombined knowledge streams relied 

upon to arrive at the knowledge artifact. Unbounded by a single empiric definition of 

technological knowledge, two methods emerged as powerful indicators of novel 
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knowledge that we can apply to measuring the complexity of knowledge – that of patent 

subclasses (Antonelli, Krafft, & Quatraro, 2010; Breschi, Lissoni, & Malerba, 2004; 

Fleming & Sorenson, 2001; Vagnani, 2012; Yayavasram & Chen, 2015) and patent 

citations (Trajtenberg, Henderson, & Jaffe, 1997; Cantwell & Noonan, 2004; Engelsman 

& van Raan, 1991; Engelsman & van Raan, 1994; Zhang, Jiang, Cantwell, 2015). 

The first method, KAC, follows the perspective of patent classification data when 

each individual patent is associated with multiple USPTO classes (Fleming & Sorenson, 

2001; Yayavasram & Chen, 2015; Vagnani, 2012; Antontelli, Krafft, & Quatraro, 2010) 

which reflect a description of the endpoint characteristics of an artifact.  Using this 

method reflects a description of the outcome characteristics of the knowledge artifact. 

As recombination is an act of construction from prior knowledge, complex 

technological knowledge can also been calculated using patent citation data (Cantwell & 

Noonan, 2004; Engelsman & van Raan, 1991; Trajtenberg et al, 1997) which reflects 

some key aspects of the flow of knowledge that was directly antecedent to the 

development of an artifact.  Using this method, KSC, reflects the pathway of 

development along which portions of antecedent knowledge were utilized to build the 

final knowledge artifact iteration.  This second method was developed for this 

dissertation to illustrate and measure a second type of knowledge expertise utilized by 

innovating firms.  

Additionally, because these measures are similar but distinct it is likely each will 

pick up different trends within that underlying structure. Both measures of complex 

technological knowledge used here calculate the complexity of knowledge but each 

represents different aspects they potentially therefore may be measuring different traits. 
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This presents an interesting opportunity novel to the literature, for what is the result of a 

direct and equivocal comparison of characteristics to pathway data for the measurement 

of knowledge complexity? By using the same data set to investigate whether the structure 

of knowledge building is associated with a rise in complexity, I compare the trends 

revealed by each measure matched to each patent.  These two methods are likely 

positively correlated but may not have a straightforward or direct correlation.  A second 

objective therefore is to more clearly ascertain the properties of these measures and the 

aspects of complexity each best reveal.   

What are the drivers of complexity? Complexity literature indicates that more 

interconnections present in the system, the greater is the complexity (Kauffman, 1993; 

Fleming & Sorenson, 2001; Ganco, 2015). When technologies become interconnected by 

linking distant and previously unsuccessfully recombined technologies in novel ways, we 

can expect complexity to increase because the more distance technologies are being 

recombined into a single knowledge artifact.  With regards to product relatedness, if a 

range of products are produced by common firms across international space, then we can 

supposed there is some commonality underlying the knowledge artifact characteristics 

which is then reflected in the technologies they represent. Technology relatedness here is 

here defined by linkages between the technology classes and thus frequently co-occurring 

(Bell & Pavitt, 1993; Patel & Pavitt, 1994; Piscitello, 2004). Thus we expect that as the 

degree of technology distance rises, so too do both of the complexity measures.   

Hypothesis 1: As the degree of technology distance between technology fields 

increase, knowledge complexity will increase.  
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Secondly, knowledge complexity may also be facilitated by paradigm change. An 

existing paradigm represents an established path of knowledge accumulation that can 

become familiar to firms in a given context (Anderson, 2001; Kuhn, 1962). Paradigms 

also reflect the way value is represented – in the Information Age value is more 

intangible because it is based on the complex knowledge system (Langlois, 2003). 

Commonly through combinatorial efforts the previous paradigm becomes partially 

integrated into the following predominant paradigm. General purpose technologies 

(GPTs) provide a conduit along with formerly unconnected technologies may be 

recombined such that rising technological interrelatedness enables actors to recombine 

knowledge in a useful manner (Dosi, 1984; Perez, 1985; Freeman, 1987; Freeman & 

Perez, 1988; Freeman & Louça, 2001). Information and Communication Technologies 

(ICTs) are recognized as a type of GPT and currently are the leading innovation paradigm 

(Hagedoorn & Schakenraad, 1992; Santangelo, 2002). The ICT era developed 

opportunities to fuse together technologies previously unrelated (Kodama, 1992) and thus 

we expect an increase in knowledge complexity.  

If there is continuity in the knowledge building pattern then actors are continuing 

in a paradigm such that the pattern of problem solving is predictable and well-established. 

However once a disruption occurs in the pattern of knowledge recombination, we expect 

different knowledge connections to be made regardless of an affiliation with ICT. We call 

this turbulence - the degree of change or flux. Having controlled for ICT (i.e. the direct 

effect of ICT on complexity), what are the effects of ICT-based turbulence on 

complexity? In other words, is ICT also indirectly affecting complexity through the 
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turbulence it causes across the technology fields? As ICT is the conduit for system-wide 

change, ICT-based turbulence is expected to increase complexity. 

Hypothesis 2a: As the spread of ICT increases, knowledge complexity will 

increase.  

Hypothesis 2b: As ICT-based turbulence increases, knowledge complexity will 

increase. 

 

 

4.3 Research data and design 

4.3.1 Data 

 I analyze every knowledge artifact in selected fields of origin in the global 

population of granted USPTO patents from 1976 – 2014 (n = 1,340,799).  The majority 

of the dataset was derived from the US patent database of John Cantwell at Rutgers 

University - Newark, currently being updated and extended with the help of Salma 

Zaman. Primarily I use the patent number, year of grant, citations, and classifications of 

each patent.   

 Complexity data is expected to reveal non-normal results. Thus we are 

encouraged to normalize the data by taking the logarithm of KAC and KSC complexity 

values. Plotting the data confirms this supposition.  

 It is likely that KAC and KSC reflect parts of the intellectual structure such that 

they are complementary measures.  Co-classifications and cross-classifications have a 

consistent meaning across the entire database which brings some stability to the 

definitional meaning.  As each measure pertains to a single unique patent there is likely to 
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be some confluence of knowledge themes although fundamentally each measure is 

independent. Thus we expect the two measures, KAC and KSC, to be positively but not 

strongly correlated.  A simple correlation matrix inclusive of all three time periods 

reveals the correlation of KAC and KSC to be 0.1919 and the normalized correlation of 

KAC and KSC to be 0.4771. Thus in either instance we find a pattern of confirmation 

that the designed measures support our expectations.  

 Firms know more than they make (Brusoni, Prencipe, Pavitt, 2001), thus we can 

expect the sourcing pattern will be greater than the characteristics present.  In other 

words, KSC will have greater complexity values than KAC.  Sourcing patterns of 

innovation show greater breadth because problem solving requires innovation in core and 

supporting fields with much of the development focused on the supporting fields (Arthur, 

2007).  This may be because citation data can reflect a bias towards the social networks 

and relationships of the inventor(s) when they disclose the patents that influenced the 

development of the focal knowledge artifact (Alcacer & Gittelman, 2006; Engelsman & 

van Raan, 1991).  Comparatively, classification data may represent narrower themes of 

the knowledge field and the identifying characteristics of the knowledge artifact. 

 

4.3.2 Variables 

The innovativeness of each knowledge artifact is commonly measured by its degree of 

technological knowledge complexity via the interdependence of the contributing 

antecedent knowledge (Fleming & Sorenson, 2001).  This measure has been used 

repeatedly in the literature for the purpose of calculating the complexity of knowledge 

embodied in a patent using the historical ease (difficulty) of recombining the constituting 
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elements (c.f. Antonelli, Krafft, & Quatraro, 2010; Breschi, Lissoni, & Malerba, 2004; 

Fleming & Sorenson, 2001; Vagnani, 2012; Yayavasram & Chen, 2015).  Using Fleming 

and Sorenson’s (2001) measure we can calculate the difficulty of recombination for the 

architecture of each knowledge artifact.  KAC reflects the extent to which knowledge 

characteristics are spreading across subclasses. We can measure this by observing both 

the spread of technology domains and the commonality or originality of the knowledge 

building pattern used to construct the knowledge artifact.  The intuition behind the metric 

is fairly straightforward: if an artifact has knowledge attributes that are commonly and 

easily recombined across different technology domains then the complexity of that 

artifact is low.  But when the knowledge attributes have either hardly or never been 

successfully recombined then the level of complexity is high.  The logic is, if an artifact 

embodies attributes that have been recombined with a wide variety of technology 

domains, then the artifact components all together are not particularly complex.  

Conversely, when the artifact attributes are only capable of being recombined with a 

small and select set or are completely novel in their recombination, then we can presume 

those attributes are highly complex in arrangement.  

   

4.3.2.1 Measure 1: Knowledge Artifact Complexity  

Subclass references are used by the USPTO to indicate the technology characteristics of 

the artifact. All patents are assigned at least one technology subclass with many having 

several subclasses.   In the denominator equation, we first assess the commonality of each 

contributing subclass.  The denominator focuses on the commonality (inverse of 

originality) of technology domains, in this measure via subclasses i in patent l.  We begin 
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by identifying every iteration of subclass i in every patent of the dataset.  The numerator 

of the denominator equation is arrived at by tallying the different subclasses which 

appear alongside subclass i on all previous patents. These are repeated for as many times 

as there are subclasses on the focal patent.  The full expression of the denominator in the 

lower equation is achieved by summing the results of all previous uses of that subclass.  

This equation captures the ease of recombination and is indicated with an increased value 

when a particular subclass is recombined with a variety of technology domains, while 

controlling for all the applications in that subclass.  To measure the spread of knowledge 

characteristics used for the entire artifact, we average the count of subclasses of that 

particular patent by the sum of the contributing subclasses commonality. 

 

Dependent Variable 1: Knowledge Artifact Complexity =  

                                               Count of subclasses on patent l      

                  =============================================== 

         Count of subclasses previously recombined with primary subclass i 

  ∑lϵi           Total count of patents that reference subclass I, accumulating by periods  

 

 

The use of co-classifications to calculate the complexity of a knowledge artifact is a very 

specific measure which does not capture all of what we think of with regards to 

complexity. To illuminate our understanding we turn to the use of patent citations which 

have also frequently been used in the literature for the purpose of calculating the 

complexity of the knowledge artifact – although not in this fashion. Cross-classifications 

are used to reflect the extent to which knowledge characteristics are spreading across 
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technology fields.  This measure is based on the path of knowledge building according to 

the inventors assessment. 

 

Measure 2: Knowledge Sourcing Complexity 

As this measure is intended to be as direct and as equivocal as possible we follow 

the precedent established in Fleming and Sorenson (2001).  The number of cited patent 

primary classifications on a patent is the measure for the number of pathway attributes of 

that knowledge artifact. Citations are used by the inventor(s) to indicate which antecedent 

knowledge was used to build the focal artifact. This second method focuses on the 

commonality of technology domains utilized, in this measure via cited patent primary 

classifications in patent l. We identify the primary classification of cited patent i on citing 

patents from 1976-2014.  The numerator of the denominator equation is arrived at by 

counting the different cited patent primary classifications which were used to build the 

focal patent on all previous patents.  The denominator of the denominator equation is 

achieved by summing the previous uses of that primary classification cited patent.  To 

measure the technological knowledge spread of the entire artifact, we average the count 

of citations on that particular patent over the sum of the commonality values for each 

contributing classification.  

 

Dependent Variable 2: Knowledge Sourcing Complexity =  

                                Count of primary classification citations on patent l      

               ===================================================== 

          Count of citations previously recombined with primary citation i 

   ∑lϵi            Total count of patents that reference citation i, accumulating by period  
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4.3.2.2 Independent Variables   

Measures of interconnectedness reflecting distance must incorporate artifact relatedness 

and knowledge sourcing diversity. Interconnectedness is operationalized by two 

variables.   

 

Technological Diversification 

The first method is done using technology diversification via the proportion of 

technologies per knowledge artifact (Cantwell, 2004; Cantwell & Zhang, 2011; Zhang, 

2010). This variable captures the proportion of citations at the patent level that are within 

or across Tech56 fields. The diversification ratio is defined in the following manner:  

DIVi = µi / σi 

Such that DIVi for KSC is the ratio of the knowledge cited by the focal patent i; µi 

indicates the mean shares of cited patents of citing patent i from all Tech56 fields, and σi 

denotes the standard deviation of shares of the cited patents again across all Tech56 fields 

for each citing patent i.  

 

Technological Distinctiveness  

The second method is technology relatedness (Breshci et al., 1998; Noonan, 2002; Teece 

et al., 1994) which we invert to technology distinctiveness (Cantwell, Noonan, & Zhang, 

2008).  This variable captures the relatedness of technology within each paired Tech56 

field by computing:  

Rij = (nij – µij) / σij 
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In which is nij the actual number of linkages between technology i and j; is the anticipated 

number of linkages between technology i and j; and σij is the standard deviation of the 

expectation.  

 To invert technology relatedness into technology distinctiveness,  

Dij = max(R) – Rij 

 Where Dij is the technological distinctiveness for a pair of citing and cited knowledge 

artifacts in fields i and j, Max(R) is the maximum value of R for any possible 

combination of fields (12 in this case), and Rij is the relatedness for any combination of 

technology fields represented as i paired with j.  

 

Change in share of ICT  

The amount of ICT is operationalized as the percentage of ICT classes in a given Tech56 

field.  We follow precedent and use the six Tech56 fields that are commonly considered 

to be ICT-oriented (Santangelo, 2001). This will alert us to the uptake of the ICT 

innovation paradigm.  

 

Turbulence 

Turbulence is measured as the correlation in technology field profiles from the first 

period to the third and last period.   
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4.3.2.3 Controls 

Single class dummy 

On average, 10% of the patents in this database are composed of only one subclass. 

Although it is likely these artifacts are developed through a process of recombination, 

these measures cannot adequately observe the process. Thus, we include a dummy to 

control for outcomes that may interfere with the analysis.  

 

Time dummy control  

We also hold with the received trend – and common sense – that as time goes by, 

complexity will increase. For this reason, we also include a dummy variable for each time 

frame.  

 

Number of subclasses 

Historically complexity has been measured as the number of components in a knowledge 

artifact (c.f. Ghosh, Martin, Pennings, & Wezel, 2013; Marengo, Pasquali, Valente, & 

Dosi, 2012). Commonly results from this measure are mixed. In the attempt to build a 

more accurate representation of complexity, some measures include a second calculation 

for the number of components as distinct from the interactions between the components. 

We include this value here as a crude measure of complexity.  

 

Number of citations 

We measure the number of citations to parent patents each focal patent lists. This also 

serves as a crude measure of complexity.  



57 

 

    

 

Number of Unique Tech56 Classes via Citations 

We measure the number of unique Tech56 classes are preset on a patent. We do so 

because it is expected that the greater the number of unique Tech56 classes, the greater 

the anticipated complexity.  

 

Number of trials 

We measure the number of times knowledge artifacts utilize the exact same set of 

subclasses to have a count of the commonality of certain patterns. This helps to control 

for the effect of exhausting local search opportunities (Fleming, 2001; Olsson, 2000). 

This can occur when an inventor finds a useful set of components and recombines them 

repeatedly; at the same time the potential to find additional functional recombinations 

declines.   

 

Degree of Technology Field Connectivity  

We also include the inverse of the probability that a given Tech56 field cites another 

given Tech56 field through the use of subclasses. This helps to capture any residual 

information on the commonality of a pairwise set of combinations.  

 

4.4 Discussion  

This study proposes to explore the properties of each knowledge complexity measure and 

unravel the aspects of complexity each best reveals.  The results of this study are 

expected to contribute to complexity theory by addressing the various emerging 

underlying structures of knowledge building.  The results of this study are also expected 



58 

 

    

 

to assist in explaining how globalization has facilitated the increased complexity of 

knowledge, and in particular the complexity and diversity of knowledge recombinations.  
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CHAPTER 5: STUDY 2 

5.1. Introduction  

With innovation being a social practice of recursive problem-solving where useful 

solutions are sought through piece-meal knowledge contributions from a hierarchy of 

core and supporting fields (Arthur, 2007; Nahapiet & Ghoshal, 1998; Simon, 1962), 

innovation is likely to draw on multiple areas of expertise.  Some of these areas of 

expertise may be core to the firm while others may be supporting or periphery.  Industries 

aggregate in specific geographic regions (e.g. Boston’s Route 128, Port wine in Portugal, 

Finance in London, Silicon Valley in San Francisco), which suggests to access this 

knowledge a firm must traverse a given geographic distance.  Commonly search for 

innovative solutions begins near the firm’s home base but when a satisfying solution is 

not found nearby the search organically extends further outside its industry cluster and 

therefore likely stretches outside its immediate geographic area particularly for 

supporting knowledge solutions (Ethiraj & Levinthal, 2004; Fleming, 2001; Gavetti & 

Levinthal, 2000).  International businesses are better positioned to search outside their 

immediate vicinity because they already have subsidiary units, partners, and access to 

diaspora-based relationships elsewhere (Lorenzen & Mudambi, 2013; Thomas, 2016; 

Yusuf, 2008). 

This importance of geography for innovation have been touted repeatedly in the 

innovation literature spanning topics such as clusters (Marshall, 1920; Porter, 1990), 

knowledge spillovers (Griliches, 1992, 1998; Mansfield, 1988, 1991), knowledge 

tacitness (Nightingale, 1998; Searle, 1995), and economic geography (Krugman, 1991; 

Lorenzen & Mudambi, 2013; Storper & Walker, 1989).  Commonly in the context of 
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technological knowledge complexity, distant knowledge recombination has been 

considered implicitly if not explicitly to be defined solely through the lens of distant 

technology knowledge fields (c.f. Fleming & Sorenson, 2001; Trajtenberg et al, 1997, 

Weitzman, 1998).  In the present context of globalization where connectivity between 

areas is systematically rising, this approach does not directly address the additional 

locational complexity resulting from traversing geographic distances in achieving 

knowledge recombination – in other words, less attention has been paid to the changes in 

knowledge complexity unfettered by a single definition of distance.  This presents the 

question, how does the relationship between the knowledge building components of 

technology field and geographic location affect the knowledge building structural 

complexity of the knowledge artifact? 

 Commonly international business studies incorporate distance between locations 

as a measure for spatial variation (c.f. Dunning & Lundan, 2008; Rugman, 1981, 2005) – 

e.g. administration, culture, economic, institution, language, and religious distances (c.f. 

Berry, Guillén, Zhou, 2010; Zaheer, Schomaker, & Nachum, 2012) location decisions 

(Berry, et al., 2010), exports (Beugelsdijk, Hennart, & Slangen, 2011) – and yet there has 

been little done to incorporate geographic distance into our understanding of the 

complexity of any given recombined knowledge artifact and the underlying structure to 

which it comprises.  As location data represents the degree of international connectivity 

of the places (Cantwell & Iammarino, 1998; Cantwell & Iammarino, 2000; Cantwell, 

Iammarino, & Noonan, 2001), we expect this represents the third and final form of 

complexity examined here, that of Location Sourcing Complexity (LSC).  When a 

Tech56 field is more reliant on cross-locational linkages, this implies it is the type of 
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knowledge that relies more on international knowledge-based communities. Whereas 

Tech56 fields that exhibit less locational complexity, are those for which the relevant 

knowledge communities tend to be more geographically independent, specialized, and 

internally more self-sufficient.  To exemplify, on one end of the spectrum is a globally 

mobile community in which every cluster depends on its relationships with others. On the 

other end of the spectrum are low complexity locations reflecting Marshallian clusters 

(1920) in which activities depend on local connections.  Here we investigate the 

geographic origins of every knowledge artifact antecedent(s) in order to trace the degree 

of international connectivity of the locations with the intent of discovering how each 

artifact adds to our understanding of the underlying structure and drivers of complex 

technological knowledge building. 

 To be clear, locational complexity is distinct from geographic distance (Allen, 

1977; Funk, 2014; Whittington, Owen-Smith, & Powell, 2009) or locational diversity 

(Amin & Cohendet, 2004; Dunning, 1970). Although we expect geographic distance or 

proximity to influence the pattern of knowledge building, rather we measure the extent 

and likelihood of knowledge interactions between any given pair of locations.  This is 

likely to be related to the pure physical distance between those locations and indeed many 

studies in international business interpret geographic distance as a physical distance 

commonly measured in miles or travel time. Thus we include measures of geographic 

distance and locational diversity as controls. And indeed in this literature and the 

economic geography literature there is a greater tendency to think of geography in wider  

terms likely encompassing barriers or constraints to cultural and institutional distances 

(c.f. Beugelsdijk, McCann, & Mudambi, 2010; Song, 2014).  
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5.2 Hypothesis Development  

The knowledge base is becoming more interconnected as particularly complex 

technological knowledge is built in which it draws on multiple domains of expertise.  

Following similar logic as recombining technological knowledge fields, the scope for 

novelty in recombining knowledge from different locations is greater even if it is less 

reliable and more uncertain (Grant, 1996; Katila & Ahuja, 2002; Takeishi, 2002).  

Because knowledge is socially constructed, it has a degree of tacitness that embeds and 

ties it to the geographic region in which it was developed or taught (Nightingale, 1998; 

Searle, 1995).  Blending geographically dispersed knowledge is expected to result in a 

more complex knowledge artifact.  The links forged between previously difficult to 

connect locations have been facilitated by decreases in the cost of connecting and 

decreases in the cost of transferring information; as such globalization has encouraged the 

world to become more spread out but interconnected.  Although complex knowledge is 

difficult to transfer across great distances ties to distant collaborators can still facilitate 

the development of complex knowledge artifacts (Bell & Zaheer, 2007; Whittington, 

Owen-Smith, & Powell, 2009).  Overall, the merging of distinct innovation patterns may 

result in a greater degree of locational complexity.  Location Sourcing Complexity (LSC) 

reflects the extent to which a technology field relies on separate autonomous knowledge 

communities or internationally connected knowledge communities, revealing cross-

country complexity. Thus the higher the LSC, the more likely the field relies upon 

internationally connected knowledge communities.  

  We now look at the extent to which the specialization of fields and locations align 

historically, to the extent they do not is indicative of complexity.  In this situation, the 
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underlying structure of knowledge building is becoming more dispersed across 

technology fields but also likely across geographic locations. Taking this into account we 

anticipate along with a change in the knowledge complexity comparing the antecedents to 

the artifact, we also anticipate greater geographic distance will produce an artifact with 

greater locational complexity.  A wider knowledge base may indicate a wider geographic 

base and even though correlated, they are not the same.  We expect a correlation between 

the recombination of technological field dispersion and geographic dispersion such that 

data points representing the joint consideration of knowledge complexity and geographic 

complexity are expected to fall along the diagonal.  We expect a high but not perfect 

correlation of an artifact’s locational complexity as it related to its technological field 

complexity.  In study 1 we expect to establish that KAC and KSC represent different 

aspects of complexity and here we need to assess their relationship with LSC jointly. 

Therefore we make various assumptions about the relationship among LSC, KAC, and 

KSC. First that all three are generally positively related, and secondly that LSC is more 

related to KSC than KAC because they both formed from cross-classification data.  

 

Hypothesis 3a: As KAC and KSC rise, LSC will rise. 

Hypothesis 3b: As LSC and KSC rise, KAC will rise. 

Hypothesis 3c: As LSC and KAC rise, KSC will rise. 

 

Location complexity may also be facilitated by paradigm change. Information and 

Communication Technologies (ICTs) are recognized as a type of GPT and currently are 

the leading innovation paradigm (Hagedoorn & Schakenraad, 1992; Santangelo, 2002). 
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The ICT era developed opportunities to fuse together technologies previously unrelated 

(Kodama, 1992) and locations previously unconnected. Because ICT inherent connects 

both technology fields and locations, we anticipate location complexity will rise.  

If there is continuity in the knowledge building pattern then actors are continuing in a 

paradigm such that the pattern of problem solving is predictable and well-established. 

However once a disruption occurs in the pattern of knowledge recombination, we expect 

different knowledge connections to be made regardless of an affiliation with ICT. We call 

this turbulence - the degree of change or flux. Having controlled for ICT, what are the 

effects of turbulence on complexity?  As ICT is the conduit for system-wide change, 

turbulence is expected to increase complexity but not as rapidly as ICT.  Lastly, there 

may be a modifying effect of ICT and KC combined that are causing an increase in 

complexity. We also test this.  

Hypothesis 4a: As the spread of ICT increases, LSC will increase.  

Hypothesis 4b: As the spread of ICT increases, KSC will increase.  

Hypothesis 4c: As the spread of ICT increases, KAC will increase.  

 

Hypothesis 5a: ICT interacted with KAC and KSC cause an increase in 

complexity.  

Hypothesis 5b: ICT interacted with LSC and KAC cause an increase in 

complexity.  

Hypothesis 5c: ICT interacted with LSC and KSC cause an increase in 

complexity.  
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5.3 Research Data and Design  

5.3.1. Data  

The research question exerts several demands the data must satisfy.  The data must cover 

a broad range of technologies.  It must track antecedent and finalized knowledge artifact 

information.  It must have a long time horizon to establish trends. Lastly, it must also 

reveal the geographic locations of the various antecedent artifacts inventor(s).  To satisfy 

these demands, I analyze every knowledge artifact in selected fields of origin in the 

global population of granted USPTO patents from 1976 – 2014 (n = 1,340,799). The 

geographic location of the primary inventor is expected to represent the place where the 

innovation occurred.  

Again, complexity data is expected to reveal non-normal results. Thus we are 

encouraged to normalize the data by taking the logarithm of LSC complexity values. 

Plotting the data confirms this supposition.  
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It is reasonable to suppose LSC will become higher the longer the time horizon.  

Knowledge stickiness is expected to decline as time passes because the actors become 

more familiar with a wider set of sources, thus becoming more apparently connected 

(Markusen, 1996).  Indeed, in Table 11 (Chapter 3) we see the longer the time horizon, 

the higher the value of LSC.  

 

5.3.2 Variables  

Study 1 establishes if knowledge artifact co-classification and knowledge artifact cross-

classifications are distinctly useful in measuring different but related aspects of 

technological knowledge complexity.  The results of that study dictate which method or 

methods to use in future studies concerned with technological knowledge complexity – 

including this second study. If both methods are distinctly useful, then both methods will 

be used; if the methods yield similar results, then I will choose one method.  

 In order to maintain parallelism between calculating the degree of technological 

knowledge complexity and the degree of locational complexity, we built an equivalent 

measure for the geographic distance between recombined antecedent knowledge sources.  

In other words, here we are calculating the dispersion of locations for knowledge building 

instead of dispersion of technology fields for knowledge building. We must move beyond 

a simple count measure of utilized locations because they do not reflect all that a complex 

system is – “rich interactions and interdependencies such that the configuration is of great 

importance” (Chapter 1 – Introduction).  In other words, in keeping with the definition of 

complexity, it is not just a count of the number of links involved but also the structure of 

the pattern of those linkages.  
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5.3.2.1 Measure 3 – Locational Sourcing Complexity 

 This measure continues to reflect the precedent established in Fleming and 

Sorenson (2001) for technological knowledge complexity.  All patents cite at least one 

antecedent patent and many cite several antecedent patents.  From each knowledge 

artifact we extract the primary classes and the geographic location of each first named 

inventor from each cited patent (i.e. the key contributing field and location from each 

contributing antecedent patent).  This is expected to reflect the overall sum and density of 

the knowledge building links with more distant linkages weighed more heavily.  This 

calculation focuses on the nearness of geographic locations used, in this measure via the 

location of the first named inventor of every citing patent listed on patent l.  Again to add 

clarity, we only use the location of each first named inventor.  We identify the location of 

the primary inventor of cited patent i on citing patents from 1976 – 2014.  The numerator 

of the denominator equation is arrived at by counting the different cited patent primary 

inventor locations which was used to build the focal patent on all previous patents.  The 

denominator of the denominator equation is achieved by summing the previous uses of 

that first named inventor location.  To measure the locational spread of the entire artifact, 

we average the count of locations of the cited patents over the sum of the nearness values 

for each contributing first named inventor location.   

 

Dependent Variable 3: Locational Sourcing Complexity = 

                                          Count of locations on the cited patents      

          ∑lϵi         Frequency of citing continent: cited continent pairings, averaged by n      

                             time period patents, accumulating by period  

 

5.3.2.2 Independent Variables =  
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KAC, KSC  

Having shown in Study 1 that both KAC and KSC are distinctly useful for 

measuring knowledge complexity, here we include both as possible drivers for increasing 

locational complexity.  

 

Change in share of ICT 

The amount of ICT is operationalized as the percentage of ICT classes in a Tech56 field.   

 

5.3.2.3 Controls   

Country Distance 

Geographic distance has been shown to be a factor in innovation practices, thus we 

control for it (Berry, 2014; Cantwell, Iammarino, Noonan, 2001; Cantwell & Vertova, 

2004). Distance between locations is measured in miles and calculated via great circle 

distance between those two points – more commonly known as “As the crow flies.” We 

measure this in two ways – the average of all pairwise combinations from the primary 

location to secondary locations and the sum of the pairwise combinations. This distance 

is taken in miles between the capital city of each country and subsequently logged.  
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Degree of Country Connectivity  

We also include the probability that a given country cites another given country. This 

helps to capture any residual information on the commonality of a pairwise set of 

combinations.   

 

Number of location citations 

To maintain as many parallels are possible we continue the trend from study 1 to include 

the number of location citations present as a simple measure of complexity.  

 

Number of subclasses 

Historically complexity has been measured as the number of components in a knowledge 

artifact. Commonly results from this measure are mixed. In the attempt to build a more 

accurate representation of complexity, some measures include a second calculation for 

the number of components as distinct from the interactions between the components. We 

include this value here as a simple measure of complexity.  

 

5.4 Discussion  

This study attempts to examine the changes in dispersion of location(s) used for new 

knowledge creation over time.  The results of this study are expected to contribute to 

complexity theory by expanding the definition of distance to that of the joint 

consideration of technology field and geography.  The results of this study are expected 

to add to the literature on the role of location in international innovation.  
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CHAPTER 6: STUDY 3 

6.1 Introduction  

To add greater depth to our understanding of recombination in this context, I next assess 

the data points that are uncorrelated – particularly those data points that are outliers.  

Outliers are expected to occur when the recombination of technology fields or geographic 

locations occurs.  In other words, I focus on the conditions under which technology field 

complexity and locational complexity are not related.  In doing so, I expect to 

demonstrate some boundaries of the anticipated relationship; i.e. that which hinders or 

constrains the joint complexity of knowledge and geography.  

 

6.2 Hypothesis Development & Methods  

Although stemming from the statistics, the patents collected here are examined in 

a case study model. The primary mode of identifying these outliers is by examining the 

residuals of the full KAC regression and the full KSC regression from Study 2. We 

expect they will be collected in terms of two characteristics – that which have high 

knowledge complexity values in either KAC or KSC and low locational complexity; and 

those with high locational complexity and low knowledge complexity. Within those two 

general groups the outliers have been further collected into cases typified by 

distinguishing characteristics.  

 

Hypothesis 6: Two sets of complexity outliers are expected – one with 

recombinations of positive residuals and one set in negative residuals.  
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6.3.1. Data  

The research question exerts several demands the data must satisfy.  The data must cover 

a broad range of technologies.  It must track antecedent and finalized knowledge artifact 

information.  It must have a long time horizon to establish trends. Lastly, it must also 

reveal the geographic locations of the various antecedent artifacts inventor(s).  To satisfy 

these demands, I analyze every knowledge artifact in selected fields of origin in the 

global population of granted USPTO patents from 1976 – 2014 (n = 1,340,799). The 

geographic location of the primary inventor is expected to represent the place where the 

innovation occurred.  

 As the purpose here is to assess the outliers, it is only those patents which fall 

outside the relationship between knowledge complexity and locational complexity that 

are examined here.  

   

6.4 Discussion  

The results of this study are also expected to elucidate some of the limitations on the joint 

consideration of technology field and geography. 

  



72 

 

    

 

CHAPTER 7: EMPIRICAL RESULTS 

7.1 Hypotheses Testing – Study 1
16

 

 By examining KAC and KSC in tandem we are able to examine the relationship 

between them and where key distinguishing differences emerge as we wish to establish 

first that these measures are distinct and second which characteristics of complexity each 

best reveals. At the same time we examine several drivers of complexity.  

 

7.1.1 Knowledge Artifact Complexity  

Below, the results of the regression for Knowledge Artifact Complexity for time 

period 1 (1976-1988) are reported in model 1; time period 2 (1989-2001) in model 2; and 

time period 3 (2002-2014) in model 3 on A1 Table 10 using the Technological 

Diversification measure.
17

 A1 Tables 4-6
18

 present the descriptive statistics for periods 1, 

2, and 3 for Knowledge Artifact Complexity (KAC).  A1 Tables 7-9 present the two-

tailed correlations for periods 1, 2, and 3 of the relevant variables for Knowledge Artifact 

Complexity using the Technological Diversification measure.
19

  There are no problematic 

correlations observed among the variables.
20

  Both the regressions and models are 

statistically significant. The dependent variable and the relevant controls are all 

significantly different from zero. All three independent variables Technological 

                                                 
16

 Supporting Tables, Graphs, and Figures for this study are located in Appendix A1.  
17

 The results of the regression for Knowledge Artifact Complexity in time period 1, time period 2, and 

time period 3 in models 1, 2, and 3 respectively are located on A1 Table 14 using the Technological 

Distinctiveness measure. 
18

 All descriptive statistics and correlation tables are located in the Appendix.  
19

 A1 Tables 11 to 13 present the two-tailed correlations for periods 1, 2, and 3 of the relevant variables for 

Knowledge Artifact Complexity using the Technological Distinctiveness measure. 
20

 There was some concern that the Technological Diversification and Technological Distinctiveness 

measures may be endogenous to both complexity measures KAC and KSC as they are conceptually similar 

both reflecting artifact relatedness and sourcing diversity albeit in different ways. Correlation results show 

endogeneity is not a concern, A1 Tables 26-27, as the relevant correlations range from 0.1200-0.1544.  
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Diversification measure, the squared term of the Technological Diversification, and 

ICT_SharePerField are all significantly different from zero.  

 The core purpose here is to establish increasing technological field distance is a 

driver of knowledge complexity.  Hypothesis 1 receives mixed support and no clear 

determination can be made. This may be because of the double edged nature of 

recombination such that once a distance is linked it automatically becomes less of a 

distance for the following occasions in which it is used because it has become more 

familiar. The regressions show the relationship to be nonlinear such that it is generally 

inverse-U shaped. Using the Technological Diversification weight, we see in periods 1 

and 2 an inverse-U shape to the relationship of technological distance and KAC
21

. We 

observe a change in period 3 where the relationship between KAC and both of the 

weights invert becoming U shaped.
22

  

 

7.1.2 Knowledge Sourcing Complexity  

A1 Tables 15-17 present the descriptive statistics for periods 1, 2, and 3 for 

Knowledge Sourcing Complexity (KSC). Tables A1-18 to 20 present the two-tailed 

correlations for periods 1, 2, and 3 of the relevant variables for Knowledge Artifact 

Complexity using the Technological Diversification measure
23

.  There are no problematic 

                                                 
21

 Results for periods 1-3 are mirrored using the Technological Distinctiveness measure and thus this 

second measure serves to both confirm and function as a robustness check.  
22

 This unexpected inversion in period 3 prompted running the Akaike’s Information Criterion (AIC) test 

and the Schwarz’s Bayesian Information Criteria (BIC) test in order to compare the linear and nonlinear 

model to determine which is more accurate. The results of both tests determined the nonlinear form to be 

more accurate, understood by the model with smaller AIC and BIC values, however the difference was 

small.  As there is no clear difference between the two models in addition to there being no clear reason 

why the model would invert from period 2 to 3, the results were graphed. When graphed (see A1 Graph 28-

30), the results show the predominant effect to be a slightly negative linear trend for all three periods. 
23

 A1 Tables 22-24 present the two-tailed correlations for periods 1, 2, and 3 of the relevant variables for 

Knowledge Sourcing Complexity using the Technological Distinctiveness measure. 
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correlations observed among the variables.  The results of the regression for Knowledge 

Sourcing Complexity using the Technological Diversification measure in time period 1, 

2, and 3 are reported in A1 Table 21 in models 1, 2, and 3 respectively
24

.  Both the 

regressions and models are statistically significant. The dependent variable and the 

relevant controls are all significantly different from zero
25

. The three independent 

variables Technological Diversification measures in linear and squared formats, and 

ICT_SharePerField all of which are significantly different from zero.  

 As with before, the main goal here is to establish increasing technological field 

distance is a driver of knowledge complexity.  Once again the result for Hypothesis 1 is 

mixed and unclear. During period 1, the relationship between complexity and distance is 

U shaped but in periods 2 and 3 for the Technological Diversification
26

 measure, results 

again show an inverted U-shape.
27

   

                                                 
24

 The results of the regression for Knowledge Sourcing Complexity using the Technological 

Distinctiveness weight in time period 1, 2, and 3 are reported in A1 Table 25 in models 1, 2, and 3 

respectively. 
25

 In addressing the use of count models (e.g. the number of subclasses or the number of citations) for 

indicating complexity, we can use any given KAC regression to see the best number of subclasses 

coefficient ranges between 0.08 to 0.15 while for any given KSC regression the coefficient for citations 

ranges begin around 0.16 and drop to 0.01 by period 3. Said differently, the use of count models do a poor 

job of indicating the knowledge complexity of a given patent. This is further confirmed in assessing the 

count model output from the specialty repressions on Tables 3-4, these results also indicates pure count 

models are not good measures for complexity, nor are count models able to distinguish KAC from KSC as 

each as they shows various degrees of self-inflation and unreliability over time. 
26

 Also true for the Technological Distinctiveness weight. 
27

 The Akaike’s Information Criterion (AIC) test and the Schwarz’s Bayesian Information Criteria (BIC) 

test were run to compare the pure linear form of the model with the parabolic model. These tests compare 

the linear and nonlinear model to determine which is more accurate. The results of both tests determined 

the nonlinear form to be more accurate, understood by the model with smaller AIC and BIC values, once 

more however the difference was small but more distinct than KAC results.  As the difference between the 

models was still fairly narrow, the results were graphed. When graphed (see A1 Graphs 28-30), the results 

show the predominant effect to be a slightly negative linear trend although the vague inverse-U shape is 

more pronounced. 
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 We also examined these relationships with a second measure of distance, that of 

Technological Distinctiveness. Without fail, results show they are matched to that of 

Technological Diversification
28

. 

 

7.1.3 ICT and Turbulence  

 The central purpose here is to examine if the uptake of the ICT paradigm is a 

second driver of increasing knowledge complexity. Hypothesis 2 is confirmed for both 

KAC and KSC. KAC results for Hypothesis 2 show increasing ICT has a positive effect 

on KAC
29

, thus ICT above and beyond the technological distance between subclasses is a 

driver of increasing complexity.  KSC results for Hypothesis 2 also confirm increasing 

ICT has a positive effect on KSC
30

, thus ICT above and beyond the technological 

distance between citations is also a driver of increasing complexity.  This suggests that 

connectivity between technological areas is systematically rising as the knowledge base 

is becoming more interconnected.   

                                                 
28

 A brief aside: while the results of KAC and KSC are consistent when comparing the Technological 

Diversification and Technological Distinctiveness weight, it is of interest to note the Technological 

Diversification measure demonstrates the effects of increasing complexity and increasing ICT better than 

using the Technological Distinctiveness measure as indicated by the larger coefficients with a reasonable 

amount of influence. This is not the result we expected as we anticipated the Technological Distinctiveness 

measure would better capture the effect of complexity from connecting technological distances. The effect 

size of the Technological Distinctiveness measure is essentially negligible for both KSC and KAC.  

Although the sign of the results are the same and indicate consistency, the effect size is marginal at best 

when using the Technological Distinctiveness weight. This indicates the simpler Technological 

Diversification weight is better able to capture the increase of complexity through connecting distant 

technologies than the more sophisticated Technological Distinctiveness weight. 

 To illustrate: using the Technological Distinctiveness weight KSC, TechDistinctivness_Cross-

class (A1 Table 25) in time period 1 a 1% increase in linear technological distance, is expected to increase 

KSC by by 0.008 units. At the same time, using the parallel Technological Diversification weight KSC 

TechDiversification_Cross-class (A1 Table 21) in time period 1 a 1% increase in the linear technological 

distance, is expected to increase KSC by 0.929 units.  
29

 To understand the meaningfulness of the correlations particularly with a large number of data points the 

results can be interpreted as follows. In time period 1 using KAC, TechDiversification_Co-class if we 

increase the share of ICT by 1%, KAC is expected to increase by 0.579% units.   
30

 To understand the meaningfulness of the correlations particularly with a large number of data points the 

results can be interpreted as follows. In time period 1 using KSC, TechDiversification_Cross-class, if we 

increase the share of ICT by 1%, KSC is expected to increase by 0.406% units.   
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Hypothesis 2b examines if turbulence across the Tech56 fields from the uptake of 

the ICT paradigm is also associated with an increase in knowledge complexity. To 

determine this we examine the shares of each Tech56 field comparing the distribution of 

them in the third time period to the distribution of them in the first time period.  Results 

indicate ICT is responsible for 42% turbulence
31

 reflecting an indirect effect.  Thus, ICT 

is a driver of complexity two-fold through both direct and indirect effects.  

 

7.1.4 Distinguishing KAC and KSC 

In this next section we seek to distinguish KAC from KSC first at a broader level 

and then at an individual patent level. In establishing that KAC and KSC are reflecting 

different characteristics of knowledge complexity, we must discuss the factors that 

distinguish these two measures. Although both are used to describe a single focal patent, 

they do so in different manners and thus becomes a starting point for investigation.  

We see time is an important distinguishing characteristic of KAC and KSC 

because of the time period in which the shape of the parabola flips which indicates these 

two different types of knowledge expertise are indeed distinct. Examining the inversion 

present in the regression results for KAC period 3 and in KSC period 1, we first establish 

                                                 
31

 To reach this conclusion we first determine the regression (A1 Table 53) is statistically significant and 

the t-statistic of the independent variable is significantly different from zero and so the test confirms there 

is the possibility for turbulence to also be a driver of increasing complexity. In order to confirm this 

hypothesis we must take a second step and determine if the coefficient of the independent variable is also 

significantly different from one (see mobility effect or regression effect; c.f. Cantwell, 1989, 1991; 

Foreman-Peck, 1986).  If it is also significantly different from one then Hypothesis 2b can be confirmed in 

that turbulence stemming indirectly from the effect of ICT connecting distant and as yet previously 

unsuccessfully connected technology fields to result in greater mobility. 

Applying the same metric as a standard t-test but with the intention of determining if the result is 

statistically different from one (instead of zero) we calculate the significance of the turbulence effect: ((1 – 

Coefficient)/ Standard Error) = ((1 – 0.7197639)/ 0.1381266) = 2.02884. With 55 degree of freedom, this 

value is decided to be statistically different from one as well. Thus, the turbulence from time period 1 to 3 

is different from one. To determine the exact value of turbulence, we calculate 1-r, taking the square root of 

r-squared and subtracting that result from one. This results in 42% turbulence.   
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that the inversion is not dramatic and second we suggest a driver behind the inversion. 

Beginning with KAC, we graph the data points for all three periods (A1 Graphs 28 to 30) 

using the TechDiversification measure because of its stronger results (see footnote 28). 

The clearest message from these graphs is a slight negative trend rather than an 

inversion
32

.   

 It is likely that the “tipping point” from which the prior chemical driven paradigm 

shifted to the ICT driven paradigm is witnessed in the regression inversions first in KSC 

and later is KAC – which is also reflective of how firms know more than they do (c.f. 

Brusoni, Principe, & Pavitt, 2001). ICT complexity values are consistently the highest 

while interacting with the greatest diversity of fields.  It is likely that the current ICT 

paradigm first began to appear in KSC where it reached a tipping point, thus inverting the 

regression; only to be later followed by KAC.  This aligns with sources that suggest the 

current ICT paradigm began in the 1970’s (c.f. Anderson, 2001).    

Because firms know more than they do we expect KAC will be more narrowly 

focused while KSC will have a more broad purview. This is seen to be true not from the 

                                                 
32

 Examining this more closely, the general shape of all three period graphs can be described as follows: it 

opens with the widest range of complexity results
32

 before narrowing in a funnel-like fashion to a consistent 

band of data points (approximately 80% of the data) until the tail where changes occur. In period 1 the tail 

of the graph is unstable (identified by the myriad of densities present as compared to datapoints west) but 

shows a general downward direction, period 2 shows the tail still pointing downward but with a partial 

increase, and in period 3 the tail has nearly leveled off with that of the middle band of data with the except 

of the very tip of the tail. The mouth of the data, also being the widest part of the data, demonstrates 

increasingly complex values as time passes although there is very little technological distance crossed. 

While the mouth of the data is progressively increasing in complexity with very little distance and the tail 

of the data is progressively increasing in complexity while at the highest levels of distance, taken together 

this may explain the mechanics behind the “flip” in the results.  These graphs illustrate how the flip may be 

a function of changes at either end of the spectrum – those at very low technological distance and those at 

very high technological distance – rather than any fundamental changes within the entirety of the results.  

The results for KSC follow a similar pattern when graphed (A1 Graphs 31-33) for their density 

graphs show a funnel-like effect for all three periods although the “band” across the middle of the data 

(approximately 60% of the data) is clear and noticeably wider than the KAC results. This aligns with earlier 

suggestions that sourcing distance can have a wider influence on the complexity value of the patent than its 

characteristic distance. 

 



78 

 

    

 

regressions but rather from the complexity values in and of themselves. Basic graphs of 

KAC complexity values and KSC complexity values by period and sourcing field are 

located below on Graphs 1 and 2, respectively. Comparing these graphs, we see the scale 

of the KSC (Graph 2) values is almost double those of the KAC (Graph 1). This also may 

indicate how knowledge boundary regions are first sampled by cross-classification data 

(as identified by the higher complexity values indicating unusual or distant 

recombinations) rather than by co-classification data.  This indicates cross-classification 

data show more chaos or randomness than co-classification data, because cross-

classification data is inherently showing the direction of influence (Engelsman & van 

Raan, 1991; Olsson, 2000). Coupled with the time difference with KSC leading and KAC 

following, that cross-classification direction of influence is actually appearing long 

before that influence is reflected in the co-classification data outcome. Historically cross-

classification data is thought to lag behind co-classification data (c.f. Alcacer & 

Gittelman, 2006; Engelsman & van Raan, 1991), however in the case of complexity the 

novel ideas appear to be germinating long before they are realized as a characteristic. 

With regards to structural changes of innovation (e.g. the uptake of the ICT era and 

illustrated in Hypothesis 2), the inversion appearing first in KSC then later in KAC data 

illustrates again how co-classification data lags behind cross-classification data.   
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Graph 1: Basic plot of KAC by period and sourcing field across all time periods 
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Graph 2: Basic plot of KSC by period and sourcing field across all time periods 
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We include regressions on Table 3 (for time periods 1-3, respectively) to examine 

the specific differences between the knowledge complexity constructs beginning with 

KAC as the dependent variable 
33

 at the level of individual patents or artifacts and 

illustrate again their different respective types of knowledge expertise revealed. Without 

changing any variables, the high and increasing explanatory power of the model, of 

which the high but rather stable significance of the coefficient on KSC is just one part, 

can be used to help decompose the explanation of KAC, and its decrease over time. This 

indicates these two complexity measures, while they are related, each has distinctive 

features, and they are becoming progressively more distinctive from one another over 

time.  The overall correlation of 0.4771
34

 (see A1 Table 34) again confirms KAC and 

KSC are capturing different complexity characteristics in describing the same patent and 

thus are distinct measures unto themselves although they are conceptually quite similar. 

We use six variables capturing basic patent characteristics to explain the influences on 

KAC after we control for any of its commonality with KSC
35

.  Across all three periods, 

N_Subclasses are included but represent a crude measure of KAC or KSC, respectively, 

and thus can be thought of as a control
36

. Overall, the Share of Mechanical Engineering 

remains negative while growing more largely negative. As anticipated the Share of ICT is 

                                                 
33

 Correlation charts (A1 Tables 35-37) and descriptive statistics (A1 Tables 38-40) do not present 

problems. All models and the KSC variable are statistically significant and different from zero.   
34

 The overall correlation of 0.4771 represents all three periods. When taken period by period, the 

correlation drops from 0.3646, 0.2670, to 0.1675 from periods 1-3, respectively. This is further suggestive 

of KAC and KSC capturing different characteristics of complexity.  
35

 We examine the number of citations (N_Citations), the number of subclasses (N_Subclasses), a dummy 

indicating if the patent is from an Engineering field – Tech56 fields 16, 29, 42, and 43 

(EngineeringDummy), the number of times the exact set of subclasses has been utilized repeatedly on other 

patents (Control_NumberOfTrials_Subclass), the number of unique Tech56 classes the subclasses represent 

(Ctrl_NumUniqueClasses_Subclass), the number of unique Tech56 classes the citations represent 

(Ctrl_NumUniqueClasses_Citation), the probability citation field A will cite citation field B 

(Ctrl_ProbFieldAcitesB_Citation), and the probability cited country A will cite cited country B 

(DegreeofCountryConnectivity). 
36

 Across all three periods the count of subclasses are significant and show strong effects, as we would 

expect. N_Subclasses remains positive and grows stronger as time passes. 
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positive across all three periods and reflects the uptake of the ICT era is having a positive 

effect on KAC. Another crude form of complexity is the number of unique major patent 

classes which having more would suggest a particularly complex artifact as it contains 

characteristics from  multiple technological areas. In this case, 

Ctrl_NumUniqueClasses_Citation is negative across all three periods although fairly 

stable suggesting the more patent citations from different major technology classes will 

have a limiting effect on the complexity of the output characteristics. In essence, the 

sourcing pattern is narrow for a more complex KAC pattern.  The two measures for the 

Probability Field A will cite Field B reflects Technological Relatedness measured either 

through subclass or citation patterns.  In the case of the former the results indicate 

positive coefficients, while the latter revealing negative coefficients.  With the case of 

KAC, it was found the technological relatedness measured via citation pattern was 

particularly revealing.  
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Table 3: KAC as DV, period 1, 2, 3 

 

 

 

 
 

 

The Share of Mechanical Engineering is particularly interesting. As we progress 

from period 1 to period 3, this measure is remains significant and becomes progressively 

negative. This is likely because mechanical engineering devices are commonly known to 

be modularized and thus represent parts of a complex engineering system (e.g. planes, 

trains, and automobiles). Given this patenting pattern, complexity is more likely to 

emerge from interactions between the various devices or parts of the whole.  When these 

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                            

f                                                           

R-sq                0.490           0.518           0.567   

N                   94931          329288          657021   

                                                            

                 (106.93)        (152.28)        (238.09)   

_cons               0.748***        0.709***        0.819***

                  (83.35)         (77.46)        (133.72)   

ICT_ShareP~d        0.676***        0.361***        0.449***

                  (-4.40)        (-45.39)        (-88.31)   

MechEng_Sh~d      -0.0214***       -0.162***       -0.284***

                   (2.32)         (63.97)         (65.67)   

Ctrl_ProbF~s       0.0642*          1.213***        0.936***

                 (-39.20)        (-63.06)        (-65.02)   

Ctrl_ProbF~n       -0.767***       -0.778***       -0.570***

                 (-64.88)       (-153.60)       (-318.25)   

Ctrl_NumUn~n       -0.116***       -0.117***       -0.125***

                 (196.10)        (388.45)        (633.99)   

N_Subclasses       0.0922***        0.103***        0.139***

                 (203.51)        (361.18)        (516.55)   

KnowledgeS~y        0.432***        0.395***        0.349***

                                                            

             KnowledgeA~y    KnowledgeA~y    KnowledgeA~y   

                      (1)             (2)             (3)   
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devices are considered in isolation and not as a complete system, the components reflect 

more specialized parts and thus show lower KAC complexity values.  

The Technological Relatedness via citations is also an interesting case and results 

again clearly indicate firms have different types of knowledge expertise and different 

types of distributed knowledge systems. Here we would presume, when more 

technologically related knowledge sources (KSC) have been recombined to produce a 

new knowledge artifact, it implies the resultant knowledge artifact will be less complex 

and thus we will see a negative effect on KAC – which we find to be the case in periods 1 

and 3
37

. This is an especially important finding in distinguishing the aspects of 

complexity KAC and KSC reveal, as this finding suggests more complex knowledge 

artifacts (those with higher KAC) are more likely to rely on those more distant 

technological knowledge domains where there is little opportunity for interaction 

between these given areas of knowledge characteristics themselves and thus less 

possibility for distant knowledge sourcing (KSC).   

The coefficient of KSC explaining KAC decreases over time. These results 

indicate as time goes by, KSC explains less and less of KAC.  This may be because of the 

fundamentally different pursuits of each measure.  KAC is becoming narrower over time 

and thus shows a more focused selection whereas KSC is showing as drawing upon a 

wider array of fields. Meanwhile the citation pattern for KSC indicates that overall these 

more diverse citation patterns are becoming more familiar. At the same time the 

explanatory power of the regression is increasing, suggesting the variables increase in 

explanatory power as time progresses. Overall these two measures are not substitutive but 

                                                 
37

 This potentially reflects exploitation behavior of the firm. 
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rather complementary and indicate two different types of knowledge expertise firms 

integrate to build a single patent.  

 

Table 4: KSC as DV, period 1, 2, 3 

 

 

With KSC as the dependent variable, the explanatory power of the model is 

falling as time progresses. The coefficient on KAC slowly increases suggesting it is a 

driver of a higher sourcing pattern – this is interesting because we previously observed 

how higher KAC patterns limit KSC patterns. The number of citations, a crude measure 

of KSC, and shows with greater clarity how it is a poor measure of complexity as it falls 

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                            

f                                                           

R-sq                0.566           0.466           0.482   

N                   94931          329288          657021   

                                                            

                  (88.15)        (123.23)        (172.76)   

_cons               1.117***        1.259***        1.652***

                 (-54.14)        (-30.24)        (-86.21)   

Engineerin~y       -0.368***       -0.159***       -0.446***

                 (-49.73)        (-69.48)       (-117.49)   

ICT_ShareP~d       -0.508***       -0.490***       -0.741***

                 (-16.37)         (24.23)        (137.61)   

DegreeofCo~y      -0.0910***        0.109***        0.583***

                 (-70.49)        (-86.95)        (-93.42)   

Ctrl_ProbF~s       -2.822***       -2.981***       -2.893***

                  (61.89)        (106.58)        (109.35)   

Ctrl_ProbF~n        1.384***        1.905***        1.734***

                 (-92.76)       (-106.02)       (-147.72)   

Ctrl_NumUn~s       -0.213***       -0.219***       -0.295***

                 (243.06)        (359.86)        (550.56)   

N_Citations         0.146***       0.0448***       0.0170***

                 (191.95)        (345.62)        (430.23)   

KnowledgeA~y        0.494***        0.562***        0.574***

                                                            

             KnowledgeS~y    KnowledgeS~y    KnowledgeS~y   

                      (1)             (2)             (3)   



86 

 

    

 

to almost a zero coefficient by period 3. The second crude measure, the number of unique 

subclasses, is also negative and consistent.  The engineering dummy aligns with the 

results of KAC in that it is statistically significant and negative. In conjunction with this 

result however, it suggests that not only are the characteristics of mechanical engineering 

becoming simpler but also the sourced technologies used to put them together are 

becoming simpler. The Share of ICT is statistically significant but negative across all 

three periods. The sign of the coefficient is the opposite of the KAC results and 

represents an interesting point of comparison.  In the case of KSC as the share of ICT 

increases the complexity of the sourcing pattern decreases sizably.  This may again 

reflect the double edged blade of distant recombination where once a path for sourcing is 

established the path is no longer quite as distant as it once was. Evidence of this behavior 

was observed earlier in this study where no clear result could be determined when 

examining if increasing technological distance is a driver of complexity. Although this 

coefficient is stable across periods 1 and 2 it increases 50% in period 3 – this may reflect 

how both KAC and KSC have reached the “tipping point” for the uptake of the ICT era 

and this ICT is very widespread and thus very common. The degree of country 

connectivity is interesting in that during period 1 it is negative but becomes positive for 

periods 2 and 3. This may be reflecting the same pattern of how KSC reached its ICT 

tipping point from period 1 to 2 – as ICT connects both technology fields and geographic 

locations, we would naturally expect the degree of connectivity to be positive and 

increasing as time passes. Again, also reflecting how both KAC and KSC have surpassed 

their respective ICT tipping points in period 3, the coefficient of this variable grows 
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dramatically in the third period indicating how the degree of country connectivity has 

increased but also how it is increasing the KSC patterns.  

 

7.1.5 Discussion 

This study puts forth the novel contributions of (1) adapting the existing complex 

knowledge calculation (see Fleming & Sorenson, 2001, K calculation) to be utilized 

across all Tech56 fields – KAC, and integrating the asymmetry of primary and secondary 

classification ranking to reflect the inherent importance of the primary classification, (2) 

identifying the uptake of ICT as a direct and indirect driver of increasing knowledge 

complexity, (3) building a new measure of knowledge complexity – that of KSC, and (4) 

examining the characteristics revealed by KAC and KSC which have previously not been 

compared.  

We use these contributions to establish firms draw upon different types of 

knowledge expertise (KAC and KSC) and use different types of distributed knowledge 

systems during innovation. In essence, KAC reflects the present moment in that the 

complexity of the outcome characteristics of the focal patent is calculated.  KSC is 

interesting in that the measure is built to reflect the antecedent (past contributing) 

characteristics but appears to lead the direction KAC will later progress towards. This is 

exemplified through various trends: KSC shows overall higher complexity levels, KSC 

shows greater diversity in sourcing patterns, and the regression inversion first occurs in 

KSC then KAC. The results suggest the outcome of knowledge building for KAC is 

narrower than the wider process of knowledge building (KSC) over time. Particularly 

with reference to the inversion, it should be no surprise that it occurs first in KSC then 
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later in KAC. Thus while both are used to explain the same patent, there is a natural and 

inherent lag between the nature of the information it represents. Thus trends may be 

identified first in knowledge sourcing data then later observed in the characteristics of 

knowledge artifact data.   

These results offer another way to distinguish KAC and KSC. KAC appears to 

reflect relatively more of the complexity from individual knowledge artifacts or 

component parts as well as engineering or production systems. KSC appears to provide 

the wider picture, reflecting the complexity of the knowledge base from which inventors 

drew upon to compose those individual knowledge artifacts and production systems 

while also appearing to reflect the fundamental underlying connections with scientific 

knowledge. This establishes how KAC and KSC are different measures and behave 

differently representing different types of knowledge expertise.  
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7.2 Hypotheses Testing – Study 2  

7.2.1 Location Sourcing Complexity
38

 

A2 Tables 2 and 3 present the descriptive statistics and the two-tailed correlations 

of the relevant variables for Location Sourcing Complexity, across the data set. There are 

no problematic correlations observed among the variables. For comparison to KSC and 

KAC values by period, a basic graph of LSC complexity values by period and sourcing 

field are located below on Graph 1. For this study it was determined the three periods 

were not a necessary divisor, as such the regressions are for the data as a whole
39

.  

 

                                                 
38

 Supporting Tables, Graphs, and Figures for this study are located in Appendix A2. 
39

 That said, the complexity values are still calculated in 13 year periods, with latter periods building on the 

results of the former periods – as is the format of Study 1.  
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Graph 1: Basic plot of LSC by period and sourcing field across all time periods 
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Here the main purpose is to examine whether the joint consideration of two 

constructs of complexity increase the third form: beginning with testing if KAC and KSC 

increase LSC and if the take-up of the ICT paradigm is again a driver of increasing LSC. 

Secondly, we examine the distinguishing characteristics revealed by each of the three 

complexity constructs.  The results of the regression for Location Sourcing Complexity 

(LSC) are presented below in Table 2.  Both the regression and the models are 

statistically significant. Model 1 includes the dependent variable and the relevant controls 

of which all are significantly different from zero.  Model 2 adds the independent variable 

Knowledge Artifact Complexity (KAC) and it is significantly different from zero; this is 

the first independent variable included because it was first used in the established 

literature and it represents the most obvious measure of complexity that of the 

characteristics of the outcome. Model 3 incorporates Knowledge Sourcing Complexity 

(KSC) and is statistically significantly different from zero; this is the second independent 

variable included because it is the next measure of complexity illustrating the 

contributing input characteristics from the antecedent patents. Model 4 includes the final 

independent variable Share of ICT which is shown to be significantly different from zero; 

this is included last because we expect the most influence on LSC will stem from the 

complexity of the outcome characteristics (KAC) and the input of the parent 

characteristics (KSC) rather than from a more generic knowledge building pattern. Model 

5 incorporates the interaction effects pertaining to the Share of ICT interacted with KAC 

and KSC distinctly of which the results are significantly different from zero. 
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Table 2: LSC as DV  

 

 
 

The results show when both KSC and KAC are applied to the model (see Model 

5), KAC is negative; thus there is an offsetting effect suggesting increasing KSC is 

associated with increasing LSC but increasing KAC decreases LSC. Overall this is mixed 

support for Hypothesis 3a.  Although mixed this does follow in the path established in 

Study 1 in that these two measures of knowledge complexity are determinedly different. 

While in study 1 we examined the individual effects of KAC and KSC, here in study 2 

we examine them as acting jointly.  The results further drive home the contribution that 

these two measures truly represent different types of knowledge expertise.  

Having controlled for increasing complexity via KAC and KSC, hypothesis 4a is 

still shown support as the effect of ICT on LSC is positive and statistically significant. 

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                                                            

f                                                                                           

R-sq                0.277           0.303           0.357           0.299           0.380   

N                 1081240         1081240         1081240         1081240         1081240   

                                                                                            

                 (474.87)        (328.97)        (365.33)        (422.86)        (248.89)   

_cons               2.609***        2.023***        1.990***        2.360***        1.619***

                                                                                (-105.79)   

Inter~SCxICT                                                                       -0.321***

                                                                                 (-28.50)   

Inter~ACxICT                                                                       -0.118***

                                                                 (181.99)        (164.88)   

ICT_ShareP~d                                                        0.607***        1.479***

                                                 (366.80)                        (315.28)   

KnowledgeS~y                                        0.529***                        0.735***

                                 (198.44)                                        (-43.23)   

KnowledgeA~y                        0.376***                                       -0.127***

                (-165.01)       (-171.14)       (-236.31)       (-179.83)       (-259.99)   

DegreeofCo~y       -0.915***       -0.933***       -1.255***       -0.985***       -1.374***

                  (29.68)        (-64.75)         (32.71)         (55.25)         (79.50)   

N_Subclasses       0.0126***      -0.0305***       0.0131***       0.0234***       0.0394***

                 (322.75)        (316.29)        (147.21)        (317.09)        (139.71)   

N_Location~n       0.0163***       0.0157***      0.00780***       0.0158***      0.00759***

                 (420.20)        (432.86)        (342.47)        (414.95)        (318.03)   

CountryDis~e        0.166***        0.168***        0.132***        0.162***        0.124***

                                                                                            

             LocationSo~y    LocationSo~y    LocationSo~y    LocationSo~y    LocationSo~y   

                      (1)             (2)             (3)             (4)             (5)   
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Model 5 provides evidence that ICT in and of itself is increasing complexity, but not 

because of KAC or KSC in LSC
40

.  Thus increasing ICT has a positive and significant 

effect on location complexity above and beyond knowledge complexity; and ICT as a 

GPT is also a driver of increasing the complexity through interconnecting international 

knowledge sourcing origins.  This is likely because ICT is not merely a connector of 

technology fields but also a connector of locations. These results reveal the Information 

Age is encouraging and facilitating the exchange of information and knowledge across 

technological fields (Study 1) and geographic space (Study 2).  And thus, we also have 

further verification that while the world in which we live is growing more interdependent 

and interconnected it is also more spread out. Hypothesis 5a overall does not receive 

support in that there is not shown to be a moderating effect of ICT and knowledge 

complexity on LSC
41

.  

While the distance between countries increases has a positive effect on LSC, the 

degree to which those countries are connected has a negative effect. This suggests the 

further away and more disconnected a country is, the greater the effect will be on LSC. 

The number of locations cited and the number of subclasses also has a positive effect of 

LSC. This might not have been expected given the results of study one in which KAC 

and KSC revealed diverging effects.  

  

 

                                                 
40

 To understand the meaningfulness of the correlations particularly with a large number of data points the 

results can be interpreted as follows. In time period 1 using Model 5, increasing KAC by 1%, is expected to 

decrease LSC by 0.127%.  
41

 The correlation between KSC and KAC is 0.4771 across all three periods. To confirm that this is not 

causing a multicollinearity problem and thus adversely influencing the results of Hypothesis 5, the Variable 

Factor Inflation test was run for all three time periods. Results are not concerning, see A2 Table 4. 
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7.2.2 Knowledge Artifact Complexity 

A2 Tables 5 and 6 present the descriptive statistics and the two-tailed correlations 

of the relevant variables for KAC, across the data set. There are no problematic 

correlations observed among the variables.  

The results of the regression for KAC are presented below in Table 3.  Both the 

regression and the models are statistically significant. Model 1 includes the dependent 

variable and the relevant controls of which all are significantly different from zero.  

Model 2 adds the independent variable LSC and it is significantly different from zero. 

Model 3 adds Knowledge Sourcing Complexity (KSC) and is statistically significantly 

different from zero. Model 4 includes the final independent variable Share of ICT which 

is shown to be significantly different from zero. Model 5 incorporates the interaction 

effects pertaining to the Share of ICT interacted with LSC and KSC distinctly of which 

both are significantly different from zero. 
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Table 3: KAC as DV 

 

 These results vary in important ways from LSC as a dependent variable. Here 

with KAC as the dependent variable, LSC becomes negative in the final model and KSC 

remains positive. Thus Hypothesis 3b received mixed results, as LSC and KSC taken 

together reveals only KSC and not LSC positively influences KAC. Hypothesis 4b is 

fully supported as ICT has a positive effect on KAC. Again, Hypothesis 5b is not 

supported by either interaction effect.  

 These results reveal an interesting result is distinguishing the constructs. LSC and 

KSC are both measures of sourcing complexity and so naturally
42

 we might expect the 

results to align but in fact once again the results diverge.  Examined individually, each 

measure of sourcing complexity has a positive effect on KAC. When taken together, we 

                                                 
42

As in study 1 – where we measured two forms of knowledge complexity. 

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                                                            

f                                                                                           

R-sq                0.109           0.129           0.336           0.140           0.350   

N                 1081240         1081240         1081240         1081240         1081240   

                                                                                            

                 (348.64)        (283.32)        (217.61)        (292.87)        (170.56)   

_cons               1.145***        0.972***        0.662***        1.001***        0.565***

                                                                                 (-50.28)   

Inte~KSCxICT                                                                      -0.0746***

                                                                                 (-46.53)   

Inte~LSCxICT                                                                      -0.0506***

                                                                 (117.08)        (134.31)   

ICT_ShareP~d                                                        0.242***        0.578***

                                                 (580.76)                        (446.72)   

KnowledgeS~y                                        0.412***                        0.456***

                                 (156.70)        (-21.62)        (145.36)         (-9.12)   

LocationSo~y                       0.0738***     -0.00941***       0.0683***     -0.00463***

                 (360.64)        (335.31)        (238.64)        (237.22)        (153.16)   

Ctrl_ProbF~s        2.626***        2.445***        1.562***        1.970***        1.127***

                 (-20.12)        (-79.89)       (-272.68)        (-85.25)       (-274.77)   

Ctrl_NumUn~n     -0.00882***      -0.0376***       -0.118***      -0.0399***       -0.118***

                 (138.81)        (155.26)        (234.49)        (162.59)        (241.63)   

Ctrl_NumUn~s        0.172***        0.191***        0.253***        0.199***        0.258***

                                                                                            

             KnowledgeA~y    KnowledgeA~y    KnowledgeA~y    KnowledgeA~y    KnowledgeA~y   

                      (1)             (2)             (3)             (4)             (5)   
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consistently see (Models 3 and 5) an offsetting effect. Here LSC when used without KSC 

appears to proxy for KSC, we are reassured of this by the scale change in the LSC values 

when KSC is jointly included. We also see confirmation of the results from Study 1 in 

that the number of unique subclass classes and the technological relatedness of the 

subclasses both have a positive effect on KAC, while the number of unique citation 

classes has a negative effect on KAC.  

 

7.2.3 Knowledge Sourcing Complexity 

A2 Tables 8 and 9 present the descriptive statistics and the two-tailed correlations 

of the relevant variables for KSC, across the data set. There are no problematic 

correlations observed among the variables.  

The results of the regression for KSC are presented below in Table 4.  Both the 

regression and the models are statistically significant. Model 1 includes the dependent 

variable and the relevant controls of which all are significantly different from zero.  

Model 2 adds the independent variable LSC and it is significantly different from zero. 

Model 3 adds Knowledge Artifact Complexity (KAC) and is statistically significantly 

different from zero. Model 4 includes the final independent variable Share of ICT which 

is shown to be significantly different from zero. Model 5 includes all variables expect the 

interaction effects. Model 6 incorporates the interaction effects pertaining to the Share of 

ICT interacted with LSC and KAC distinctly of which both are significantly different 

from zero. 
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Table 4: KSC as DV 

 *
 
p
<
0
.
0
5
,
 
*
*
 
p
<
0
.
0
1
,
 
*
*
*
 
p
<
0
.
0
0
1

t
 
s
t
a
t
i
s
t
i
c
s
 
i
n
 
p
a
r
e
n
t
h
e
s
e
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R
-
s
q
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
1
9
5
 
 
 
 
 
 
 
 
 
 
 
0
.
3
2
3
 
 
 
 
 
 
 
 
 
 
 
0
.
5
0
5
 
 
 
 
 
 
 
 
 
 
 
0
.
3
3
2
 
 
 
 
 
 
 
 
 
 
 
0
.
5
0
5
 
 
 
 
 
 
 
 
 
 
 
0
.
5
2
8
 
 
 

N
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 
 
 
 
 
 
 
1
0
8
1
2
4
0
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
5
2
7
.
1
4
)
 
 
 
 
 
 
 
 
(
2
0
2
.
5
7
)
 
 
 
 
 
 
 
 
(
-
3
0
.
6
0
)
 
 
 
 
 
 
 
 
(
1
7
3
.
7
0
)
 
 
 
 
 
 
 
 
(
-
2
9
.
3
1
)
 
 
 
 
 
 
 
 
 
(
4
7
.
8
1
)
 
 
 

_
c
o
n
s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
.
8
3
1
*
*
*
 
 
 
 
 
 
 
 
0
.
7
9
5
*
*
*
 
 
 
 
 
 
 
-
0
.
1
1
2
*
*
*
 
 
 
 
 
 
 
 
0
.
6
9
3
*
*
*
 
 
 
 
 
 
 
-
0
.
1
0
8
*
*
*
 
 
 
 
 
 
 
 
0
.
1
8
5
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
1
9
8
.
9
4
)
 
 
 

I
n
t
e
~
L
S
C
x
I
C
T
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
2
1
8
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
8
9
.
7
6
)
 
 
 

I
n
t
e
r
~
A
C
x
I
C
T
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
1
8
6
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
1
1
9
.
5
7
)
 
 
 
 
 
 
 
 
(
-
1
0
.
0
6
)
 
 
 
 
 
 
 
(
-
2
0
5
.
8
8
)
 
 
 

I
C
T
_
S
h
a
r
e
P
~
d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
2
5
7
*
*
*
 
 
 
 
 
 
-
0
.
0
1
9
1
*
*
*
 
 
 
 
 
 
 
-
1
.
2
3
0
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
6
2
9
.
6
7
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
6
1
4
.
2
8
)
 
 
 
 
 
 
 
 
(
4
0
7
.
6
0
)
 
 
 

K
n
o
w
l
e
d
g
e
A
~
y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
5
8
6
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
5
8
8
*
*
*
 
 
 
 
 
 
 
 
0
.
5
1
0
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
4
5
1
.
9
9
)
 
 
 
 
 
 
 
 
(
3
8
7
.
4
9
)
 
 
 
 
 
 
 
 
(
4
2
5
.
7
7
)
 
 
 
 
 
 
 
 
(
3
8
5
.
3
4
)
 
 
 
 
 
 
 
 
(
2
5
3
.
1
0
)
 
 
 

L
o
c
a
t
i
o
n
S
o
~
y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
2
5
5
*
*
*
 
 
 
 
 
 
 
 
0
.
1
9
1
*
*
*
 
 
 
 
 
 
 
 
0
.
2
4
2
*
*
*
 
 
 
 
 
 
 
 
0
.
1
9
2
*
*
*
 
 
 
 
 
 
 
 
0
.
1
4
1
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
-
2
1
7
.
0
8
)
 
 
 
 
 
 
 
(
-
1
5
9
.
1
0
)
 
 
 
 
 
 
 
(
-
2
2
7
.
2
9
)
 
 
 
 
 
 
 
(
-
1
3
5
.
7
0
)
 
 
 
 
 
 
 
(
-
2
2
4
.
6
5
)
 
 
 
 
 
 
 
(
-
2
1
6
.
6
0
)
 
 
 

C
t
r
l
_
N
u
m
U
n
~
s
 
 
 
 
 
 
 
-
0
.
3
2
7
*
*
*
 
 
 
 
 
 
 
-
0
.
2
2
3
*
*
*
 
 
 
 
 
 
 
-
0
.
2
7
3
*
*
*
 
 
 
 
 
 
 
-
0
.
1
9
2
*
*
*
 
 
 
 
 
 
 
-
0
.
2
7
6
*
*
*
 
 
 
 
 
 
 
-
0
.
2
6
0
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
4
4
9
.
5
3
)
 
 
 
 
 
 
 
 
(
2
6
3
.
2
0
)
 
 
 
 
 
 
 
 
(
3
8
4
.
8
2
)
 
 
 
 
 
 
 
 
(
2
6
9
.
6
8
)
 
 
 
 
 
 
 
 
(
3
8
4
.
6
9
)
 
 
 
 
 
 
 
 
(
3
6
0
.
0
7
)
 
 
 

C
t
r
l
_
N
u
m
U
n
~
n
 
 
 
 
 
 
 
 
0
.
2
5
4
*
*
*
 
 
 
 
 
 
 
 
0
.
1
4
9
*
*
*
 
 
 
 
 
 
 
 
0
.
1
8
8
*
*
*
 
 
 
 
 
 
 
 
0
.
1
5
2
*
*
*
 
 
 
 
 
 
 
 
0
.
1
8
8
*
*
*
 
 
 
 
 
 
 
 
0
.
1
7
4
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
1
4
4
.
7
9
)
 
 
 
 
 
 
 
 
(
2
5
1
.
9
2
)
 
 
 
 
 
 
 
 
(
2
3
6
.
2
5
)
 
 
 
 
 
 
 
 
(
2
4
0
.
6
2
)
 
 
 
 
 
 
 
 
(
2
3
6
.
3
2
)
 
 
 
 
 
 
 
 
(
2
5
9
.
2
1
)
 
 
 

D
e
g
r
e
e
o
f
C
o
~
y
 
 
 
 
 
 
 
 
0
.
5
3
7
*
*
*
 
 
 
 
 
 
 
 
0
.
8
7
7
*
*
*
 
 
 
 
 
 
 
 
0
.
7
0
7
*
*
*
 
 
 
 
 
 
 
 
0
.
8
3
7
*
*
*
 
 
 
 
 
 
 
 
0
.
7
0
9
*
*
*
 
 
 
 
 
 
 
 
0
.
7
6
3
*
*
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 
 
K
n
o
w
l
e
d
g
e
S
~
y
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
1
)
 
 
 
 
 
 
 
 
 
 
 
 
 
(
2
)
 
 
 
 
 
 
 
 
 
 
 
 
 
(
3
)
 
 
 
 
 
 
 
 
 
 
 
 
 
(
4
)
 
 
 
 
 
 
 
 
 
 
 
 
 
(
5
)
 
 
 
 
 
 
 
 
 
 
 
 
 
(
6
)
 
 
 



98 

 

    

 

 These results reveal the only time when two measures of complexity jointly 

considered, have a positive effect on the third complexity measure. Hypothesis 3c is 

supported in that KAC and LSC have a positive effect on KSC. Hypothesis 4c is not 

supported in that increasing ICT has a negative effect on KSC
43

. This may again be 

because of the double edged blade of connecting distances in that once the distance is 

connected it is no longer considered as novel when it is utilized in successive turns
44

. 

Given that the uptake of information age is being tested, it may be that the patterns of 

ICT connections are becoming well known and highly utilized. Hence, the connections of 

ICT have been effectively made with other technology fields. When the measure is taking 

this into account, these distances are determined to have a lower weight because they 

have become commonly observed
45

.  Hypothesis 5c is supported in the combined effect 

of ICT and LSC or KAC, respectively, has a positive effect on KSC. This is also the first 

time this hypothesis is supported. The interaction of KAC and ICT is supported, and the 

interaction of LSC and ICT is supported. This is an interesting result as ICT by itself 

decreases KSC, but as part of an interaction effect it unanimously increases KSC. The 

sign change of ICT from model 4 versus models 5 and 6 is also interesting. ICT may be 

again be revealing the doubled-edged nature of recombination in the sense that 

                                                 
43

 The results of model 5 were rerun without the interaction effects to see if the negative result of ICT was 

generated by the interactions. The results remained unchanged.  
44

 ICT does change to a negative effect in this regression not because of the correlation and not because of 

the interactions present in the final model as evidenced by the negative ICT coefficient in Model 5.  The 

magnitude of the ICT coefficient in the final model is driven by the interaction effects. Overall, this result 

aligns with the results of study 1 where increasing technological distance has a negative effect when 

graphed.  
45

 Two other possible explanations exist. The first being that ICT fields may be connecting primarily with 

itself and thus this measure might not be adequately reflecting the share of ICT with other fields. Second, it 

may be that ICT is proxying for KAC as an output characteristic pattern in model 4 because the share of 

ICT is so prominent during this period of its uptake. When they are taken together in Model 5 and 6, the 

joint effect shows a divergence. This aligns with the results of Hypothesis 3a and 3b where one complexity 

construct is positive, while the second complexity construct is negative.  
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connecting the distant technologies has become more familiar and thus is no longer 

considered complex past some point in this time horizon.   

 The degree of country connectivity has a positive effect on KSC. Technological 

relatedness in terms of unique subclass classes reveals a limited effect on the citation 

based KSC measure, which represents another distinguishing factor in what the 

constructs reveal.  

 

7.2.4 Discussion 

Further illustrating the uniqueness of KAC and KSC, let us examine the changes 

KAC undergoes comparing Models 2 to Models 5 in Table 2. With LSC as dependent 

variable, KAC is positive in Model 2 but changes to negative in Model 5. It seems likely 

in Model 2, KAC is in part acting as a proxy for KSC because in Model 5 the coefficient 

of KAC increases enormously from its starting point in Model 2. Thus, including only 

KAC in Model 2 is representing a more generic knowledge complexity measure in the 

sense that it is reflecting knowledge artifact complexity but it is simultaneously trying to 

proxy for KSC. The negative effect of what KAC is capturing (the narrowing focus on 

outcome characteristics of knowledge building) is so strong it is beginning to dominate 

the results of the Model 5 results. Having a negative sign on the coefficient of KAC in 

Model 5 indicates that it is not distant interdependencies between very different 

technology fields that increases locational complexity across knowledge sourcing places 

but rather the proximity between them when we consider the combined effects KAC and 

KSC taken together (as their distinctive features constitute separate but complementary 

effects on locational knowledge sourcing complexity, viewed as a whole).  This 
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explanation is entirely consistent with the findings of Study 1 where we directly 

compared KAC and KSC independently considered, finding that as pools of knowledge 

sourcing become more related and so more likely to mutually exchange ideas (KSC 

increases), artifacts tend to be less complex devices (KAC decreases); and so the places 

from which knowledge is sourced are also more likely to mutually exchange ideas, 

although the resulting products or devices reflect a very different type of distributed 

knowledge system, with little knowledge exchange between technologically distinct sub-

components of a product, or between the primary places from which knowledge in each 

of those fields of technological expertise is sourced.   

Here, when considering KAC and KSC jointly, we see distinct effects. As KAC 

increases one unit, LSC is expected to decrease; meanwhile as KSC increases one unit, 

LSC is expected to increase. This reflects how as artifact complexity increases, the 

technologies being recombined are not necessarily synthesized and they may instead be 

“bolted together” to make some piece of equipment or a workable device as evidenced by 

the decrease in LSC. Thus we see co-development in sourcing the knowledge but a 

consistent degree of individualized myopic focus with regards to the knowledge artifact 

characteristics. Within a given single patent, there are different degrees of knowledge 

synergy and complementarity from the distinct measures of knowledge complexity. Once 

again, this aligns with the theme that these are distinct measures for knowledge 

complexity and how firms are utilizing different types of distributed knowledge systems 

to build a single knowledge artifact.  

In addition, when this change of KAC is paired with KSC and LSC it suggests 

that firms know more than they do in two different arenas. First, of course, it confirms 
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that firms have to pay more attention to a diverse set of underlying technologies that are 

used in the design of any given product, while they may be becoming more focused on 

core products for their business. Second, and of much greater interest and novelty, it 

shows that knowing more has two aspects: a firm knows of a much wider range of 

technological fields and this implies that it knows of a wider range of specialized 

geographic origins from which knowledge can be sourced, so as to be able to bring the 

relevant ideas together in some form of combination. This illustrates again how firms are 

utilizing three types of knowledge expertise (KAC, KSC, and LSC) from different types 

of distributed knowledge systems (those of product or artifact characteristics, those of 

knowledge sourcing characteristics, and those of sourcing from across countries 

knowledge found in different clusters of geographically bounded innovation centers). As 

the products of the firm become more focused, the firm must access specialized places to 

obtain and bring these knowledge characteristics together.  

Effectively KAC and KSC are working in an opposite direction to one another. 

KAC is demonstrating centrifugal characteristics whereas KSC is demonstrating 

centripetal forces and therefore reflects how the objective of knowledge sourcing is 

different from that of artifact coherence. What may be happening is firms are looking to 

other sources to find new ways of rearranging existing characteristics. Suggesting 

innovators may be searching the different types of distributed knowledge systems for new 

ways of reapplying or reimaging existing characteristics.  

Just as the knowledge complexity constructs work is opposite directions when 

considered jointly, so too do the sourcing complexity constructs. When taken together in 

KAC as dependent variable, reveals KSC has a positive effect while LSC has a negative 
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effect. This suggests while the knowledge sourcing pattern becomes more complex, the 

location sourcing pattern is becoming narrower. Said alternatively, the location sourcing 

patterns are becoming simpler.  This also emphasizes a third pattern for a distributed 

knowledge system for which firms have a third type of expertise. Although KSC and 

LSC reveal diverging trends, the coefficient of LSC is very small and almost effectively 

zero. This may indicate an effect of ICT where it is connecting the locations and thus 

making it easier to communicate and conduct R&D across dispersed and highly complex 

locations patterns, even in light of the positive effect of increasing country distance. This 

reveals how the world is becoming more interconnected and yet spread out.  

When considering KSC and LSC together we are also presented with diverging 

sourcing complexity patterns. In Table 3 we see how when they are taken together reveal 

how increasing the location sourcing pattern will hinder KAC growth while increasing 

the knowledge sourcing pattern will encourage KAC growth. This suggests these two 

measures of sourcing complexity are distinct.  
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7.3 Hypotheses Testing – Study 3 
46

 

In study 3 the main purpose is to examine the outliers of the full regression from 

each complexity measure in study 2 in an attempt to learn more about what each measure 

is capturing and reflecting. To determine the outliers from each complexity measure as 

dependent variable, we examine the histogram for each set of residuals. We consider the 

outliers to be at the tails of the distribution, where the results level off to nearly zero. 

When LSC is the dependent variable we determine outliers to exist beyond +/- 7 residual 

units; the outliers for KSC and KAC exist beyond +/- 3 residual units. In almost every 

instance the plots of the residuals lie along the zero residual mark. This suggests with 

given a complexity construct as the dependent variable, the other two complexity 

constructs are unremarkable indicating there are no clear association for those high 

complexity values to exist – we examine this deeper to determine there are some 

instances where the other two complexity variables show specific trends. All three 

complexity measures show normal residuals to occur on all six patenting continents. A3 

Table 30 presents the patenting percentage continent makes up in the data.  Originally we 

predicted there would be two groups of outliers – one with high positive outlier 

complexity values and a second grouping of high negative outlier complexity; this 

manifests.  

We would expect engineering technologies (particularly Mechanical Engineering, 

secondly Chemical Engineering) to compose the majority of the outlier patenting because 

engineering is the most traditionally mature technology which has also been diffused 

widely (Kuhn, 1962; Vertova, 1998; 2002). It is possible the Electrical Engineering 

Tech56 fields of ICT may appear as outliers as it was establishing as the next major 
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 Supporting Tables, Graphs, and Figures for this study are located in Appendix A3. 
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innovation paradigm in time period 1 and the “tipping point” was reached by both KAC 

and KSC measures by time period 3 (see Study 1).  

 

7.3.1 Empirical Findings and Critical Analysis of LSC Outliers  

In Appendix A3, Table 1 simply restates the results of the LSC full regression 

from Study 2 for easy reference. Graph 2 is the histogram of the results for those 

residuals, Graph 3 shows plotted LSC residuals by KAC, Graph 4 shows plotted LSC 

residuals by KSC. Table 5 illustrates the descriptive statistics of the normal range of 

residuals, Table 6 the descriptives for the negative outlier residuals, Table 7 for the 

positive outlier residuals. Table 8 presents descriptives on the patenting continents by 

Tech56 field for the normal range of data points, Table 9 for the negative outlier 

residuals, Table 10 for the positive outlier residuals.  

Across the data these outliers account for less than 0.01% of the data but two 

distinct trends become apparent with investigation. LSC values in the normal range (A3 

Table 5) of data averages 3.57, LSC negative outliers (A3 Table 6) average 6.60, and 

LSC positive outliers (A3 Table 7) average 10.20; indicating the values for both sets of 

LSC outliers are two to three times higher than the mean. The negative residual KSC 

patterns are approximately twice that of the normal residuals, possibly reflecting the 

shared sourcing pattern activities, while the positive residual KSC pattern is one-quarter 

that of the normal residual pattern. KAC values for positive and negative residuals are 

close to that of the normal residuals. The average positive residuals for the share of ICT 

is negligible while the normal and negative values are nearly the same at approximately 

0.48. This is an unexpectedly large difference particularly in light of ICT being the 
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current innovation paradigm. When investigated further (see A3 Table 10), we find with 

one exception all of the 128 positive LSC residuals stem from the three least-common 

patenting continents (Table 30) – Australia, South America, Africa. The results show 

Chemical and Mechanical Engineering fields dominate the majority of these positive 

LSC residuals.  Concurrent to this, it may be a lack of ICT-oriented infrastructure driving 

this trend in the southern hemisphere and a barrier in the form of time zone changes from 

North America (the top patenting continent) to Australia
47

. In general, the patenting style 

for negative LSC residuals depends upon connecting a very great number of locations. 

Most of these patents cite an average between 750 – 1847 locations and stem from the 

most common patenting continent
48

.  In the case of novel patterns (positive residuals), it 

may be the MNE calling upon diaspora which is increasing the sourcing complexity 

levels.   

LSC outliers are primarily from complex location sourcing patterns and not 

necessarily associated with equally high KSC patterns, nor the more distantly related 

KAC patterns. The frequent occurrence of rare and unusual patenting continents distant 

locations are becoming more accessed and drawn upon as outliers suggest these locations 

are becoming “normalized” into the data. At the same time established locations are 

becoming more and more interconnected with unusual locations for sourcing knowledge. 

This trend suggests established patenting locations are searching for material at greater 

distances to integrate with their established patterns. Most of this activity is carried on the 

branch of those accessing and collaborating with Australian-based inventors, with a 

                                                 
47

 There is a 14 hour time difference between the capital of the United States (the largest patenting country) 

and the capital of Australia.  
48

 The only exception is Chemical Engineering patents coming out of Europe where they become outliers 

not because of the high number of locations but rather because of the high number of subclasses associated 

with a moderately unusual patenting location. 
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distant second and third to South America and Africa. This may indicate that Australia is 

becoming both a more reliable location with which to innovate as well as a historically 

underutilized resource that is beginning to come to the fore.  

What appears to be happening under LSC outliers is the common patenting 

locations are being paired with only a few but rare secondary locations; meanwhile the 

rare patenting locations are not limited in pairing with either other rare locations or with a 

great number of secondary locations. These results help to additionally illustrate the role 

of LSC as a third and distinct type of knowledge expertise as driving sourcing patterns 

beyond that of knowledge sourcing or knowledge characteristic patterns. 

 

7.3.2 Empirical Findings and Critical Analysis of KSC Outliers  

In Appendix A3, Table 11 simply restates the results of the LSC full regression 

from Study 2 for easy reference. Graph 12 is the histogram of the results for those 

residuals, Graph 13 shows plotted KSC residuals by KAC, Graph 14 shows plotted KSC 

residuals by LSC. Table 15 illustrates the descriptive statistics of the normal range of 

residuals, Table 16 the descriptives for the negative outlier residuals, Table 17 for the 

positive outlier residuals. Table 18 presents descriptives on the patenting continents by 

Tech56 field for the normal range of data points, Table 19 for the negative outlier 

residuals, Table 20 for the positive outlier residuals.  

Across the data these outliers account for less than 0.08% of the data.  With 

regards to the negative KSC residuals, the average is negative (where the normal 

residuals are positive) but the LSC residuals are larger than the average. With regards to 

the positive KSC residuals, both KSC and LSC residuals are higher than the normal 
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residuals. Across all three groups, KAC residuals are nearly the same. The unaltered 

KAC residuals suggest the artifact characteristic complexity of outliers is unconnected 

with the sourcing pattern. Thus both novel and well-worn sourcing patterns have no clear 

link to KAC patterns and indicate other forces at work. Chemical Engineering is present 

in negative residuals but it is dominated by patents from Mechanical Engineering and 

Electrical Engineering. Unsurprisingly, the North American based patents show the 

highest average number of citing locations. Positive KSC residuals are entirely from the 

top 3 patenting continents (North America, Asia, Europe – in this order). The Tech56 

fields 12 (Chemicals), 29 (Mechanical), and 41 (Electrical) receive a lot of patenting 

attention. The share of ICT patenting falls slightly from its high in normal KSC residuals 

to negative residuals but falls more dramatically for the positive residuals.  

KSC and LSC reveal inverted outlier patterns. Positive KSC outliers are more 

associated with the top three patenting locations whereas positive LSC outliers are more 

associated with the three rare patenting locations. This may help explain the results of the 

regression in Study 2 when using both sourcing complexity measures as independent 

variables revealed how they work in opposite directions. The same is not apparent for 

revealing another difference between KAC and KSC. Rather they exhibit a similar 

tendency in that their positive residuals show similar patterns with Australia becoming 

more commonly introduced for KAC patterns. Instead the difference between these two 

constructs appears in the number of locations listed – KSC shows more while KAC 

shows far less. Supplemental to this, the positive KSC residuals have very few average 

subclasses listed whereas the positive KAC residuals have many subclasses listed. Taken 
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together this aligns and further reinforces the precedent established in Study 1 where the 

sourcing pattern narrowed for artifact characteristic complexity to grow.  

 

7.3.3 Empirical Findings and Critical Analysis of KAC Outliers  

In Appendix A3, Table 21 simply restates the results of the LSC full regression 

from Study 2 for easy reference. Graph 22 is the histogram of the results for those 

residuals, Graph 23 shows plotted KAC residuals by KSC, Graph 24 shows plotted KAC 

residuals by LSC. Table 25 illustrates the descriptive statistics of the normal range of 

residuals, Table 26 the descriptives for the negative outlier residuals, Table 27 for the 

positive outlier residuals. Table 28 presents descriptives on the patenting continents by 

Tech56 field for the normal range of data points, Table 29 for the negative outlier 

residuals, Table 30 for the positive outlier residuals.  

Across the data these outliers account for approximately 0.04% of the data.  From 

the starting point of the normal residuals, the negative KAC residuals have an average 

much lower than the normal and are negative, and positive residual outliers average 1.5 

times larger than their norm. KSC is similar between the normal and positive residuals 

while the negative residuals are approximately 50% higher. LSC is similar between 

normal and negative residuals but falls almost 50% for positive residuals. This is 

interesting because it suggests KAC will produce negative outliers when only the 

knowledge scouring pattern becomes more complex but will produce more positive 

outliers when only the LSC pattern becomes less complex. This suggests the distinction 

between the two sourcing patterns influences the residual outcome of the KAC pattern in 

addition to the characteristics themselves. Thus while output characteristics are the 
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primary influence on KAC patterns, secondarily whether it is a high characteristic 

sourcing pattern or a low location sourcing pattern can also influence the outliers. ICT 

patterns in the outlier zones falls to nearly zero suggesting no major influence here while 

also being a deviation from the norm. This suggests ICT characteristics are not prevalent 

nor particularly influential in the outliers.  

 

7.3.4 Discussion  

There are considered to be two general models to knowledge building. First: 

digging deeper within a paradigm – which becomes increasingly expensive, and can 

reveal diminished returns to creativity (Olsson, 2000), as well as intra-context friction 

(Weitzman, 1998); or secondly: accessing knowledge from another field and recombining 

it with the core field – which is considered to be more uncertain and less reliable but has 

a wider scope for novelty. Patenting Tech56 field 12 is omnipresent in negative residuals 

across all three complexity measures which are also associated with having a great 

number of geographic locations listed. This may indicate this field is “digging deep” in 

order to discover new knowledge and exhausting the more readily discoverable 

knowledge. There is some verification behind this as innovation in the pharmaceuticals 

has become increasingly expensive (Choi, 2015) suggesting a paradigm change is 

eminent (c.f. Olsson, 2000).  The positive residuals are more associated with fewer 

locations
49

 suggesting MNEs are reaching across the knowledge clusters to access tacit 

knowledge. These patents may be offering novel updates to existing ideas or 

redeveloping existing ideas in or for a new context which may be associated with 

                                                 
49

 The exception being KSC. 
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Nonaka’s (1994) expectation of circular learning where there is nothing new under the 

sun and the knowledge is simply being reimagined and rediscovered in new territory. 

The earliest paradigm is considered to be Mechanical Engineering lasting 

approximately from 1770’s to 1870’s and as the most mature innovation paradigm it is 

greatly geographically spread (Vertova, 1998; 2002). Thus the information is well 

known, codified, and is comparatively easier to disseminate. In this case, innovating in a 

mature paradigm may drive firms to search in truly novel locations to advance their novel 

knowledge building. Mechanical Engineering fields appear as positive residuals which 

may add justification to this explanation. Mechanical Engineering patenting emerges as 

an outlier only in the sourcing pattern complexity measures and never in KAC. This is an 

interesting phenomenon and may be explained by the age of this innovation paradigm. 

Being the oldest innovation paradigm, having no KAC outliers but a consistent presence 

in sourcing complexity outliers suggests this industry has exhausted particularly distant 

characteristic patterns but can still produce highly unusual innovations from more exotic 

sourcing patterns. Thus innovation is not limited by the first time it is discovered, but 

rather novel iterations can be developed in new locations. This may also suggest how 

codified and thus geographically spread out this knowledge pattern is around the world. 

Chemical Engineering being the second oldest innovation paradigm lasting from 

1870’s to 1970’s may explain the presence of Tech56 field 12 in the outliers.  More 

consistently this field appears in the negative residual range indicating a great many 

locations fed prior knowledge into developing the focal patent. As anticipated, the 

Electrical Engineering ICT fields register outliers in all but one set of outliers. This may 

be explained because of the two-fold effect ICT has as compared to the more traditional 
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Mechanical or Chemical Engineering technologies in that ICT connects technological 

fields and geographic locations (rather than just technological fields) simultaneously. 

The findings also suggest the knowledge fields of Electrical Engineering are 

diffusing across geographic locations quite rapidly
50

 and thus suggests an increase in 

LSC, which the other more mature Mechanical Engineering is not leading but is still 

present.  Chemical Engineering is the other more common outlier which may reflect its 

dominance as the previous leading innovation paradigm. Drawing back our point of view, 

we may be observing a life cycle of complexity as has been theorized such that there is a 

slow oscillation between simple and complex, e.g. Gall’s Law
51

 (Gall, 1975). The ICT 

fields in Electrical Engineering are on the rise and their outlier pattern suggests ICT is in 

uptake where it is expected to be comparatively easier to make novel connections with 

other fields. Chemical Engineering being the prior innovation paradigm may be 

approaching a critical juncture where it is becoming more and more difficult to make 

complex artifacts within the traditional boundaries of the industry.  Mechanical 

engineering, the oldest innovation paradigm, seems to have surpassed the crux of too-

much-complexity and has become simpler in its knowledge building patterns.  It will be 

worth watching in the future if Chemical Engineering also follows this pattern. Transport 

emerges infrequently in the outliers – once in positive KAC, in positive LSC, and 

negative KSC this may be the results of containing the lowest overall number of patents. 

Transport seems to be following a similar path to Mechanical Engineering albeit a more 

specialized engineering field. 

                                                 
50

 As the 1970’s is stated to be the uptake of the ICT era and this dataset starts in 1976 lasting 39 years.  
51

 “A complex system that works is invariably found to have evolved from a simple system that worked. A 

complex system designed from scratch never works and cannot be patched up to make it work. You have to 

start over with a working simple system.” (Gall, 1975, p71).  
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A second reason for this fundamental complexity difference between Mechanical 

Engineering and Chemical Engineering may be differences in the patenting styles 

because of modularity differences. Traditionally, the Mechanical Engineering industry is 

considered more complex than Chemical Engineering because of the additive nature of 

integrating a great many number of devices or parts for a single outcome (e.g. again: 

planes, trains, and automobiles). There is a fundamental difference in the patenting styles 

of Mechanical Engineering versus Chemical Engineering.  Chemical patents are required 

to list every single molecule that is present on the development whereas mechanical 

patents are not hindered by this limitation and have organically evolved into patenting 

small individualized parts or components of a whole development (by USPTO 

definition).  Thus it may be that the level of aggregation is contributing to a division in 

the results for both complexity and for the resulting outliers.  

Much of the technological knowledge in South America and Africa remains 

geographically bound but highly influential in terms of determining complexity. There is 

a degree of the staying power associated with distant location sourcing as a driver of 

complex knowledge building. Gaining more regular access to distant and unusual 

locations is in fact not weakening the power unusual locations have in developing 

complex technological knowledge but in fact driving and carrying on this trend allowing 

these rarely used locations to contribute to the global knowledge building arena as 

identified by their presence in both the normal range and as outliers.  It may be that these 

unusual locations paving the way for more unusual combinations. Here we see some 

equalizing in the trends between common patenting and rare patenting locations such that 

they are not limited in pairing with either other rare locations or with a great number of 
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secondary locations.  Both have the opportunity to contribute in a highly complex way to 

the global knowledge environment.  
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CHAPTER 8: DISCUSSION AND CONCLUSION  

8.0 Summary of Studies 

We use USPTO patent data to investigate if the distance between technology 

fields and geographic locations leads to an increase in knowledge complexity and 

location complexity in global patenting activity. We utilized two representative 

technology fields from each of the four major global industries of Chemical, Electrical, 

Mechanical, and Transport to examine multiple measures of complexity over a long time 

horizon; this study is the first of its kind to apply the measure to this wide of a global 

base and revise the base measure for its scalability across different patenting contexts 

while emphasizing the inherent asymmetry between primary and secondary locations. In 

the first study, we examined the results of knowledge complexity as measured through 

subclass characteristics; Knowledge Artifact Complexity (KAC), this measure of 

knowledge complexity examines the difficulty in recombining the patent characteristics 

(co-classifications) and the commonality of those characteristics involved in producing 

the final patent outcome.  

Next we introduce a new measure for knowledge complexity to the literature 

developed for this study based on the underlying principles of the initial KAC measure. 

This new measure examines knowledge complexity through the contributing cross-

classification characteristics. Named, Knowledge Sourcing Complexity (KSC) this 

examines the difficulty of recombining the contributing source parent patent 

characteristics along with the commonality of that pattern. We determine that these two 

measures although related are fundamentally distinct and reveal different trends. KSC is 

becoming more varied as time passes while KAC is reflecting the narrowing focus of 
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patent characteristics. KSC appears to lead and KAC appears to lag in revealing trends 

across time and thus as their name suggests input sourcing precedes output 

characteristics. This aligns with the evidence that firms know more than they do but adds 

to this notion in two fundamental ways. First, not only do firms know more than they do 

but firms know more than they do well in advance of doing it (as evidenced by KSC 

preceding KAC). Second, “knowing more” encompasses two aspects – that of knowing 

more of the available sourcing inputs and knowing the geographic locations to search for 

those inputs so the firm will be able to bring together and recombine relevant innovation 

ideas. Firms thus are utilizing two types of knowledge expertise from two different 

distributed knowledge systems. Because KAC and KSC are in fact different measures, 

they were named to reflect the patent properties they reflect. The effect of increasing 

distance was not found to have a clear effect on complexity for both KAC and KSC 

measures.  

Concluding the first study, we examined if a second driver for increasing 

complexity stemmed from the uptake of a new paradigm – the rise of the Information Era 

as ICT is a GPT connecting new or previously unsuccessfully connected fields. We find 

this driver to be true of both KAC and KSC. Then we further examined ICT to determine 

that it has a two-fold effect. First that ICT itself is directly connecting fields but secondly 

that the turbulence from ICT is indirectly connecting fields that had not been before.  

This indicates ICT is contributing to an increase in knowledge complexity through both 

direct and indirect means.  

 KAC and KSC were next jointly examined as to their relationship with a third 

measure of complexity – that of the recombination of the antecedent cited locations from 
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which the contributing information was sourced (LSC). This third measure of complexity 

is also new to the literature and developed for this second study – it is built to reflect the 

difficulty and commonality for the international connectivity sourcing patterns of 

patenting locations derived from the antecedent sourced parent characteristics. This 

revealed the relative international connectivity (or lack of) of the inhabitable continents 

through cross-country complexity. These three complexity measures were derived for 

each patent examined and thus we had matched data. Study 2 revealed that when taken 

together to explain LSC, the KSC and KAC measures worked in opposite directions such 

that KSC exhibits centripetal forces and KAC exhibits centrifugal forces. This aligns with 

the results of the first study and further distinguishes the two measures. Said 

alternatively, this trend suggests that while KSC becomes more diverse when LSC rises, 

when KAC rises LSC becomes more narrowly focused. With KAC as the DV, the 

sourcing patterns mirror the aforementioned results in that KSC shows centripetal forces 

and KAC shows centrifugal forces. With KSC as the DV, both LSC and KAC exhibit 

centripetal forces although this is the one context in which ICT exhibits a negative effect.  

This provided further evidence of how these complexity measures are distinct and 

represents different aspects of knowledge expertise and distributed knowledge systems. 

Again here, we tested if the rise of the Information Era is not only connecting new 

or previously unsuccessfully connected fields because of the GPT nature of ICT but also 

because ICT in and of itself is simultaneously connecting new or previously 

unsuccessfully connected geographic locations with greater speed and reliability. This 

driver holds true here as well.  
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In the third and final study we examine the outliers of the relationship between 

LSC, KAC, and KSC. Here we find the outliers of the joint relationship reflecting high 

LSC independent of knowledge complexity.  Within this we discover the types of outliers 

for each complexity measures – those with extremely high positive and negative 

residuals. Digging down further we find within the abnormally large LSC values, the 

outliers can be explained with one of two patterns: either there are a few rare locations 

being recombined or there are a great number of locations listed but from common 

locations. Extreme outliers are driven by either extremely high citation location counts or 

by extremely rare citation location patterns and not necessarily by high knowledge 

complexity values. LSC also shows the reader how it is a distinct third type of knowledge 

expertise and its own distributed knowledge system as the upper cloud of outliers is 

encouraging more complex knowledge building across time. In the case of KSC outliers, 

they reveal the opposite of LSC outliers in that the positive residuals are more associated 

with the top three patenting continents and the negative residuals with the three unusual 

patenting continents. KAC outliers align with the LSC patterns.  

 

8.1 Contributions  

This dissertation puts forth several contributions to the international business 

literature through the development and testing of technological knowledge complexity 

and location complexity in innovation.  With regards to theory, we theorized the 

existence of two other forms of complexity (KSC and LSC) beyond the established mode 

(KAC). In support of this, we next provide an empirical contribution via testing the 

existence of these three forms of complexity and determined them to each show unique 



118 

 

    

 

patterns and characteristics. This work also contributes to managers as it provides 

guidelines for the underlying structural principles or methods to increase or decrease 

complexity thus implying the relative difficulty or ease of recombining selected 

knowledge and sourcing elements in patenting activity – thus potentially influencing the 

speed at which the knowledge artifact can be patented.  

 

8.2 Implications  

This body of work contributes to government policy in that greater access to the 

rare and unusual locations provides important novel routes for patenting activity. 

Concurrent to this, those rare locations represent potential contributions to highly 

impactful complexity changes which are suggestive of a greater degree of value in the 

global knowledge arena. To facilitate this process, governments can reduce the 

complexity of the physical distance by connecting knowledge clusters. The process can 

also be facilitated by encouraging the use and development of ICT-oriented applications 

as it has the mapping effect of connecting previously difficult to connect knowledge 

streams and locations. Greater connections forged with other governments have been 

shown to decrease inter-country conflict
52

 and thus facilitate economic growth.  

Implications for technology policy may include, influencing the competitiveness 

of national (or corporate) patterns of innovation but may have to be moderated for the 

industry as a blanket approach may not benefit industries appropriately. To exemplify, we 

found how the differences in the patenting style of chemical engineering and mechanical 

engineering reflect different complexity patterns (of increasing complexity or increasing 

                                                 
52

 This is a fundamental reason behind the formation of the European Union after 3 major land wars 

stretching from the late 1800’s to mid-1900’s.  
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simplicity, respectively) but suggest this may be attributed to the differences in 

modularization activities of the two industries. This illustrates an implication for 

technology policy such that the modularity of the final product has an impact on the 

complexity of the contributing components (be they characteristics or sources). 

 Practical implications exist such that increasing the knowledge artifact complexity 

sourcing pattern is likely to limit the knowledge sourcing complexity pattern; in much the 

same way increasing the knowledge sourcing pattern is likely to limit the location 

sourcing pattern suggesting in both cases there is a trade-off that must be considered 

when seeking novel innovations. A second practical implication exists in that time is an 

important component of increasing complexity (and thus patent novelty) in the sense that 

many fields must be sourced from to both build a knowledge artifact and for those 

sourced characteristics to (later) appear as outcome characteristics. Thus there appears to 

be a gestation period in which alternative characteristic approaches are sampled before 

they become an output.  

 

8.3 Limitations  

Given the double-edged nature of connecting distant technologies
53

, in the future 

scholars are encouraged to take a shorter time horizon when calculating the length of 

distances crossed during a given time period. Doing so may bring greater clarity to the 

impact of connecting distant technologies. With regards to industries, it may also be 

beneficial to examine the complexity of the entirety of the USPTO patenting from 1976 – 

2014. This may help to further elucidate the transportation industry and add the 

                                                 
53

 See results for Study 1 in which technological distance has no clear impact on complexity and Study 2 

results for ICT under the LSC as DV.   
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complementary electrical engineering patents not a part of the ICT fields to tease apart 

additional difference within the electrical fields. Although impractical, it would be 

fascinating to examine the complexity of the mechanical engineering patents from the 

take up of that innovation era with the intention of witnessing the vacillation of the 

industry from increasing complexity to subsequent increasing simplicity (as regularly 

implied by the results).  

 

8.4 Future Research  

This research also provides the opportunity to perform a critique of the original 

KAC measure while adding the modifications utilized here and the extensions to sourcing 

patterns for future methodological application. It also provides the opportunity to 

examine how these three established forms of complexity plays out across firms and 

industries in the global knowledge arena.  Foundations are outlined for the development 

of complexity matrices for use by researchers and managers in innovation contexts. This 

work also provides further empirical validation of complexity theory and a boundary 

condition for application (that being suggested use of a shorter time horizon during 

calculation). Future research stemming from this body of work includes examining the 

role informal and indirect knowledge connections serve in increasing complexity during 

times of innovation testing. As the three measures do represent different aspects of 

complexity, it may be possible to examine those patents not examined here
54

 in terms of 

another complexity measure for further insight into complementary analysis. Finally, the 

                                                 
54

 As stated earlier, this is because they contained only one subclass, citation, or location which causes the 

complexity calculation to fail.  
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role of modularization as a mediating effect between fragmentation and complexity can 

be examined in the future.  
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APPENDIX A0 – DATA OVERVIEW 
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Table 1: Subclass descriptives by primary Tech56 field 

 

Subclasses 1976-1988 

 

Tech56 CEMT 
count 

patents 

Average 

count 

patents  

# of 

single 

subclass 

patents 

% of 

single 

subclasses  

# of 

unique 

primary 

sub-

classes 

Average 

number 

of 

unique 

primary 

sub-

classes  

# of 

unique 

secondary 

subclasses  

Average # 

of unique 

secondary 

subclasses  

Average # 

of sub-

classes per 

patent 

8 C 336 0.23% 0 0.00% 39 0.116 584 1.74 5.89 

12 C 26,482 18.35% 3,418 12.91% 1,507 0.057 8,267 0.31 5.72 

16 M 29,979 20.78% 1,528 5.10% 3,422 0.114 16,701 0.56 4.61 

29 M 44,730 31.00% 2,915 6.52% 4,407 0.099 16,103 0.36 3.79 

40 E 8,187 5.67% 68 0.83% 333 0.041 2,111 0.26 4.52 

41 E 18,197 12.61% 4,830 26.54% 1,015 0.056 6,332 0.35 3.38 

42 T 10,909 7.56% 873 8.00% 487 0.045 2,796 0.26 3.34 

43 T 5,468 3.79% 506 9.25% 408 0.075 3,771 0.69 3.46 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
144,288 12.50% 14138 8.64% 11618 0.075 56665 0.56 4.34 
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Subclasses 1989-2001 

Tech56 CEMT 
count 

patents 

Average 

count 

patents  

# of 

single 

subclass 

patents 

% of 

single 

subclasses  

# of 

unique 

primary 

sub-

classes 

Average 

number 

of 

unique 

primary 

sub-

classes  

# of 

unique 

secondary 

subclasses  

Average # 

of unique 

secondary 

subclasses  

Average # 

of sub-

classes per 

patent 

8 C 1,020 0.29% 0 0.00% 40 0.039 1,535 1.50 6.11 

12 C 95,283 26.68% 4,717 4.95% 2,118 0.022 16,188 0.17 6.80 

16 M 46,069 12.90% 1,221 2.65% 4,081 0.089 21,636 0.47 5.25 

29 M 56,061 15.70% 2,622 4.68% 4,639 0.083 17,628 0.31 3.82 

40 E 28,146 7.88% 333 1.18% 1,169 0.042 5,734 0.20 4.49 

41 E 108,609 30.41% 14,261 13.13% 3,420 0.031 18,281 0.17 3.97 

42 T 12,776 3.58% 2,425 18.98% 475 0.037 2,777 0.22 2.87 

43 T 9,147 2.56% 618 6.76% 449 0.049 4,432 0.48 3.52 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  357,111 12.50% 26,197 6.54% 16,391 0.049 88,211 0.44 4.60 
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Subclasses 2002-2014 

Tech56 CEMT 
count 

patents 

Average 

count 

patents  

# of 

single 

subclass 

patents 

% of 

single 

subclasses  

# of 

unique 

primary 

sub-

classes 

Average 

number 

of 

unique 

primary 

sub-

classes  

# of 

unique 

secondary 

subclasses  

Average # 

of unique 

secondary 

subclasses  

Average # 

of sub-

classes per 

patent 

8 C 1,169 0.15% 0 0.00% 40 0.034 2,043 1.75 7.07 

12 C 151,996 19.01% 13,752 9.05% 2,053 0.014 15,594 0.10 5.72 

16 M 53,368 6.67% 2,293 4.30% 3,720 0.070 22,662 0.42 5.74 

29 M 61,713 7.72% 4,830 7.83% 4,363 0.071 17,190 0.28 4.00 

40 E 80,649 10.08% 2,976 3.69% 937 0.012 7,684 0.10 4.91 

41 E 412,480 51.58% 66,127 16.03% 3,452 0.008 27,314 0.07 4.08 

42 T 19,376 2.42% 2,556 13.19% 435 0.022 3,259 0.17 3.18 

43 T 18,969 2.37% 2,708 14.28% 443 0.023 4,737 0.25 3.34 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

 
CEMT 799,720 12.50% 95242 8.54% 15443 0.032 100,483 0.39 4.76 
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Table 2: Primary Subclass CEMT : Secondary Subclass CEMTO 

Subclasses table 4 

1976-1988 1989-2001 2002-2014 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents 

per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents 

per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents 

per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

CC 120,902 126,327 95.71% CC 527,960 557,713 94.67% CC 620,810 658,035 94.34% 

CE 173 126,327 0.14% CE 1,595 557,713 0.29% CE 3,158 658,035 0.48% 

CM 4,926 126,327 3.90% CM 25,212 557,713 4.52% CM 32,549 658,035 4.95% 

CO 199 126,327 0.16% CO 1,797 557,713 0.32% CO 838 658,035 0.13% 

CT 127 126,327 0.10% CT 1,149 557,713 0.21% CT 680 658,035 0.10% 

            EC 713 71,832 0.99% EC 1,598 419,958 0.38% EC 6,535 1349853 0.48% 

EE 60,202 71,832 83.81% EE 386,419 419,958 92.01% EE 1259040 1349853 93.27% 

EM 9,545 71,832 13.29% EM 23,589 419,958 5.62% EM 54,631 1349853 4.05% 

EO 313 71,832 0.44% EO 2,936 419,958 0.70% EO 13,452 1349853 1.00% 

ET 1,059 71,832 1.47% ET 5,416 419,958 1.29% ET 16,195 1349853 1.20% 

            MC 18,317 231,543 7.91% MC 32,403 353,997 9.15% MC 45,527 411,583 11.06% 

ME 7,398 231,543 3.20% ME 10,980 353,997 3.10% ME 17,132 411,583 4.16% 

MM 201,518 231,543 87.03% MM 304,044 353,997 85.89% MM 341,379 411,583 82.94% 

MO 874 231,543 0.38% MO 1,558 353,997 0.44% MO 1,557 411,583 0.38% 

MT 3,436 231,543 1.48% MT 5,012 353,997 1.42% MT 5,988 411,583 1.45% 

            TC 163 38,880 0.42% TC 209 46,970 0.44% TC 191 74,143 0.26% 

TE 1,994 38,880 5.13% TE 2,583 46,970 5.50% TE 4,626 74,143 6.24% 

TM 10,777 38,880 27.72% TM 12,397 46,970 26.39% TM 15,333 74,143 20.68% 

TO 370 38,880 0.95% TO 678 46,970 1.44% TO 1,128 74,143 1.52% 
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TT 25,576 38,880 65.78% TT 31,103 46,970 66.22% TT 52,865 74,143 71.30% 

            IntraCEMTO 

 

83.08% 

   

84.70% 

   

85.46% 

InterCEMTO 

 

16.92% 

   

15.30% 

   

14.54% 
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Table 3: Citation descriptives by primary Tech56 field 

 

Citations 1976-1988 

 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

citation 

patents 

% of 

single 

citations  

# of 

unique 

primary 

citations 

Average 

number of 

unique 

primary 

citations  

# of 

unique 

secondary 

citations 

Average # 

of unique 

secondary 

citations  

Average 

# of 

citations 

per 

patent 

8 C 251 0.26% 51 20.32% 35 0.139 403 1.61 4.97 

12 C 16,144 16.95% 5,919 36.66% 1,364 0.084 3,792 0.23 3.94 

16 M 17,980 18.87% 6,180 34.37% 2,911 0.162 9,154 0.51 3.95 

29 M 27,780 29.16% 9,423 33.92% 3,628 0.131 9,573 0.34 3.95 

40 E 5,941 6.24% 1,409 23.72% 308 0.052 1,664 0.28 4.46 

41 E 15,574 16.35% 3,045 19.55% 952 0.061 5,742 0.37 5.13 

42 T 8,186 8.59% 1,760 21.50% 457 0.056 1,824 0.22 4.67 

43 T 3,404 3.57% 1,230 36.13% 354 0.104 1,770 0.52 3.62 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
         

95,260  12.50% 

         

29,017  28.27% 

         

10,009  0.099 

         

33,922  0.51 4.33 
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Citations 1989-2002 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

citation 

patents 

% of 

single 

citations  

# of 

unique 

primary 

citations 

Average 

number of 

unique 

primary 

citations  

# of 

unique 

secondary 

citations 

Average # 

of unique 

secondary 

citations  

Average 

# of 

citations 

per 

patent 

8 C 988 0.30% 63 6.38% 40 0.040 2,271 2.30 10.34 

12 C 77,600 23.53% 16,081 20.72% 2,069 0.027 14,935 0.19 7.43 

16 M 43,807 13.28% 4,238 9.67% 4,000 0.091 25,342 0.58 8.70 

29 M 53,049 16.09% 5,664 10.68% 4,524 0.085 21,648 0.41 7.27 

40 E 27,210 8.25% 2,464 9.06% 1,163 0.043 8,027 0.30 8.22 

41 E 106,002 32.15% 6,449 6.08% 3,399 0.032 22,842 0.22 9.60 

42 T 12,334 3.74% 810 6.57% 469 0.038 4,549 0.37 8.04 

43 T 8,763 2.66% 799 9.12% 443 0.051 5,927 0.68 7.71 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
      

329,753  12.50% 

         

36,568  9.78% 

         

16,107  0.051 

      

105,541  0.63 8.41 
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Citations 2002-2014 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

citation 

patents 

% of 

single 

citations  

# of 

unique 

primary 

citations 

Average 

number of 

unique 

primary 

citations  

# of 

unique 

secondary 

citations 

Average # 

of unique 

secondary 

citations  

Average 

# of 

citations 

per 

patent 

8 C 1,164 0.16% 89 7.65% 40 0.034 4,822 4.14 20.66 

12 C 127,449 17.32% 19,584 15.37% 2,027 0.016 25,073 0.20 15.60 

16 M 51,485 7.00% 2,862 5.56% 3,714 0.072 38,510 0.75 18.33 

29 M 59,499 8.09% 3,145 5.29% 4,375 0.074 32,893 0.55 12.76 

40 E 74,637 10.14% 8,188 10.97% 934 0.013 17,297 0.23 15.89 

41 E 385,422 52.37% 29,856 7.75% 3,502 0.009 44,212 0.11 17.66 

42 T 17,930 2.44% 1,488 8.30% 437 0.024 8,129 0.45 11.18 

43 T 18,323 2.49% 789 4.31% 445 0.024 13,636 0.74 14.68 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
      

735,909  12.50% 

         

66,001  8.15% 

         

15,474  0.033 

      

184,572  0.90 15.84 
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Table 4: Citing and Cited Patents by Tech56 

 

Citing Patents by Primary Tech56 Field 

 

 

1976-1988 1989-2001 2002-2014 

tech56 N(_freq) N(_freq) N(_freq) 

8 35 40 40 

12 1,364 2,069 2,027 

16 2,911 4,000 3,714 

29 3,628 4,524 4,375 

40 308 1,163 934 

41 952 3,399 3,502 

42 457 469 437 

43 354 443 445 

 

Cited Patents by Primary Tech56 Field 

 

 

1976-1988 1989-2001 2002-2014 

tech56 N(_freq) N(_freq) N(_freq) 

8 403 2,271 4,822 

12 3,792 14,935 25,073 

16 9,154 25,342 38,510 

29 9,573 21,648 32,893 

40 1,664 8,027 17,297 

41 5,742 22,842 44,212 

42 1,824 4,549 8,129 

43 1,770 5,927 13,636 
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Table 5: Citing subclass CEMT : Cited subclass CEMTO 

 

Citations table 4 

 

1976-1988 1989-2001 2002-2014 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents 

per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents 

per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

 

Total 

CEMTO: 

reference  

CEMTO 

pairs 

Total 

patents per 

CEMTO 

field 

Average 

per 

CEMTO 

field 

CC 44,325 48,447 91.49% CC 437,562 508,142 86.11% CC 1575613 1883236 83.67% 

CE 235 48,447 0.49% CE 5,856 508,142 1.15% CE 38,794 1883236 2.06% 

CM 3,670 48,447 7.58% CM 59,916 508,142 11.79% CM 255,262 1883236 13.55% 

CO 101 48,447 0.21% CO 1,994 508,142 0.39% CO 5,660 1883236 0.30% 

CT 116 48,447 0.24% CT 2,814 508,142 0.55% CT 7,907 1883236 0.42% 

            EC 1,015 84,903 1.20% EC 12,812 1108513 1.16% EC 112,470 7530896 1.49% 

EE 65,402 84,903 77.03% EE 968,199 1108513 87.34% EE 6620323 7530896 87.91% 

EM 16,074 84,903 18.93% EM 95,870 1108513 8.65% EM 554,641 7530896 7.36% 

EO 348 84,903 0.41% EO 18,477 1108513 1.67% EO 188,586 7530896 2.50% 

ET 2,064 84,903 2.43% ET 13,155 1108513 1.19% ET 54,876 7530896 0.73% 

            MC 18,061 134,840 13.39% MC 97,492 669,762 14.56% MC 274,619 1591946 17.25% 

ME 5,733 134,840 4.25% ME 37,961 669,762 5.67% ME 152,377 1591946 9.57% 

MM 107,555 134,840 79.76% MM 513,131 669,762 76.61% MM 1109781 1591946 69.71% 

MO 416 134,840 0.31% MO 3,520 669,762 0.53% MO 10,665 1591946 0.67% 

MT 3,075 134,840 2.28% MT 17,658 669,762 2.64% MT 44,504 1591946 2.80% 

            TC 229 38,924 0.59% TC 1,131 669,762 0.17% TC 5,230 1591946 0.33% 

TE 1,966 38,924 5.05% TE 8,666 145,580 5.95% TE 37,976 433,110 8.77% 

TM 5,370 38,924 13.80% TM 28,088 145,580 19.29% TM 102,417 433,110 23.65% 



 

 

 

 

1
5
0

 

TO 159 38,924 0.41% TO 1,390 145,580 0.95% TO 8,241 433,110 1.90% 

TT 31,200 38,924 80.16% TT 106,305 145,580 73.02% TT 279,246 433,110 64.47% 

            IntraCEMTO 

 

82.11% 

   

80.77% 

   

76.44% 

InterCEMTO 

 

17.89% 

   

19.08% 

   

23.34% 

 

  



 

 

 

 

1
5
1

 

Table 6: Location descriptives by primary Tech56 field 

 

1976-1988 

 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

location 

patents 

% of 

single 

location 

patents  

# of 

unique 

primary 

locations 

Average 

number of 

unique 

primary 

locations  

# of 

unique 

secondary 

locations  

Average 

# of 

unique 

secondary 

locations  

Average 

# of 

locations 

per 

patent 

8 C 280 0.28% 63 22.50% 15 0.054 20 0.071 5.07 

12 C 17,157 17.44% 5,784 33.71% 48 0.003 59 0.003 4.17 

16 M 18,603 18.91% 6,147 33.04% 57 0.003 67 0.004 4.07 

29 M 28,335 28.80% 9,231 32.58% 64 0.002 75 0.003 4.07 

40 E 6,001 6.10% 1,345 22.41% 26 0.004 35 0.006 4.62 

41 E 16,224 16.49% 2,582 15.91% 46 0.003 52 0.003 5.70 

42 T 8,285 8.42% 1,689 20.39% 43 0.005 40 0.005 4.85 

43 T 3,509 3.57% 1,186 33.80% 29 0.008 36 0.010 3.77 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
     

98,394  12.50% 

     

28,027  26.79% 

           

328  0.010 

           

384  0.013 4.54 
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1989-2001 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

location 

patents 

% of 

single 

location 

patents  

# of 

unique 

primary 

locations 

Average 

number of 

unique 

primary 

locations  

# of 

unique 

secondary 

locations  

Average 

# of 

unique 

secondary 

locations  

Average 

# of 

locations 

per 

patent 

8 C 990 0.30% 48 4.85% 25 0.025 42 0.042 10.93 

12 C 78,963 23.71% 15,109 19.13% 92 0.001 97 0.001 7.95 

16 M 44,077 13.24% 3,845 8.72% 76 0.002 101 0.002 9.16 

29 M 53,416 16.04% 5,147 9.64% 79 0.001 92 0.002 7.61 

40 E 27,287 8.19% 2,289 8.39% 43 0.002 61 0.002 8.53 

41 E 107,042 32.15% 4,630 4.33% 73 0.001 93 0.001 10.84 

42 T 12,397 3.72% 664 5.36% 54 0.004 66 0.005 8.67 

43 T 8,823 2.65% 677 7.67% 38 0.004 55 0.006 8.20 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
   

332,995  12.50% 

     

32,409  8.51% 

           

480  0.005 

           

607  0.008 8.99 
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2002-2014 

Tech56 CEMT 
count 

patents 

Average 

count 

patents 

# of 

single 

location 

patents 

% of 

single 

location 

patents  

# of 

unique 

primary 

locations 

Average 

number of 

unique 

primary 

locations  

# of 

unique 

secondary 

locations  

Average 

# of 

unique 

secondary 

locations  

Average 

# of 

locations 

per 

patent 

8 C 1,170 0.16% 82 7.01% 33 0.028 51 0.044 21.70 

12 C 128,393 17.36% 18,960 14.77% 110 0.001 128 0.001 16.34 

16 M 51,617 6.98% 2,697 5.23% 78 0.002 126 0.002 19.13 

29 M 59,655 8.07% 2,777 4.66% 81 0.001 124 0.002 13.38 

40 E 74,855 10.12% 7,986 10.67% 59 0.001 82 0.001 16.30 

41 E 387,392 52.39% 26,970 6.96% 112 0.000 139 0.000 19.00 

42 T 18,047 2.44% 1,279 7.09% 60 0.003 85 0.005 12.12 

43 T 18,363 2.48% 699 3.81% 53 0.003 78 0.004 15.47 

           

Aggregate CEMT Sum Average Sum Average Sum Average Sum Average Average 

  
   

739,492  12.50% 

     

61,450  7.52% 

           

586  0.005 

           

813  0.007 16.68 
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Table 7: Continent : referenceContinent 

Locations 

 

1976-1988 1989-2001 2002-2014 

Continent: 

reference - 

Continent 

Total 

Continent: 

reference-  

Continent 

pairs 

Total 

patents 

per 

Continent 

field 

Average 

per 

Continent 

Total 

Continent: 

reference-  

Continent 

pairs 

Total 

patents 

per 

Continent 

field 

Average 

per 

Continent 

Total 

Continent: 

reference-  

Continent 

pairs 

Total 

patents 

per 

Continent 

field 

Average 

per 

Continent 

AfricaAfrica 38 361 10.53% 95 1,430 6.64% 302 5,370 5.62% 

AfricaAsia 26 361 7.20% 143 1,430 10.00% 488 5,370 9.09% 

AfricaAustralia 6 361 1.66% 18 1,430 1.26% 79 5,370 1.47% 

AfricaEurope 66 361 18.28% 301 1,430 21.05% 605 5,370 11.27% 

Africa - North 

America 221 361 61.22% 868 1,430 60.70% 3,893 5,370 72.50% 

Africa - South 

America 4 361 1.11% 5 1,430 0.35% 3 5,370 0.06% 

          AsiaAfrica 34 72,521 0.05% 115 519,809 0.02% 528 1688031 0.03% 

AsiaAsia 31,925 72,521 44.02% 256,381 519,809 49.32% 760,973 1688031 45.08% 

AsiaAustralia 116 72,521 0.16% 885 519,809 0.17% 4,327 1688031 0.26% 

AsiaEurope 12,633 72,521 17.42% 55,755 519,809 10.73% 132,367 1688031 7.84% 

Asia - North  

America 27,785 72,521 38.31% 206,512 519,809 39.73% 789,309 1688031 46.76% 

Asia - South  

America 28 72,521 0.04% 161 519,809 0.03% 527 1688031 0.03% 

          AustraliaAfrica 6 1,394 0.43% 30 10,260 0.29% 65 72,447 0.09% 

AustraliaAsia 113 1,394 8.11% 1,358 10,260 13.24% 7,351 72,447 10.15% 

Australia - 

Australia 107 1,394 7.68% 522 10,260 5.09% 4,774 72,447 6.59% 

AustraliaEurope 282 1,394 20.23% 1,741 10,260 16.97% 8,283 72,447 11.43% 

AustraliaNorth 

America 886 1,394 63.56% 6,583 10,260 64.16% 51,891 72,447 71.63% 
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AustraliaSouth 

America 0 1,394 0.00% 26 10,260 0.25% 83 72,447 0.11% 

          Europe Africa 82 70,427 0.12% 219 314,551 0.07% 528 1044538 0.05% 

Europe Asia 9,250 70,427 13.13% 54,894 314,551 17.45% 155,620 1044538 14.90% 

Europe 

Australia 214 70,427 0.30% 1,079 314,551 0.34% 4,723 1044538 0.45% 

Europe Europe 29,513 70,427 41.91% 106,268 314,551 33.78% 252,601 1044538 24.18% 

Europe North 

America 31,323 70,427 44.48% 151,906 314,551 48.29% 630,281 1044538 60.34% 

Europe South 

America 45 70,427 0.06% 185 314,551 0.06% 785 1044538 0.08% 

          North America 

Africa 148 194,157 0.08% 1,179 1840698 0.06% 4,477 9434034 0.05% 

North America 

Asia 19,423 194,157 10.00% 261,501 1840698 14.21% 1136366 9434034 12.05% 

North America 

Australia 628 194,157 0.32% 6,224 1840698 0.34% 39,464 9434034 0.42% 

North America 

Europe 30,393 194,157 15.65% 216,398 1840698 11.76% 830,939 9434034 8.81% 

North America 

North America 143,443 194,157 73.88% 1354487 1840698 73.59% 7417638 9434034 78.63% 

North America 

South America 122 194,157 0.06% 909 1840698 0.05% 5,150 9434034 0.05% 

          South America 

Africa 0 267 0.00% 7 2,056 0.34% 15 7,611 0.20% 

South America 

Asia 25 267 9.36% 277 2,056 13.47% 810 7,611 10.64% 

South America 

Australia 1 267 0.37% 15 2,056 0.73% 91 7,611 1.20% 

South America 

Europe 42 267 15.73% 423 2,056 20.57% 1,160 7,611 15.24% 

South America 

North America 181 267 67.79% 1,261 2,056 61.33% 5,314 7,611 69.82% 

South America 18 267 6.74% 73 2,056 3.55% 221 7,611 2.90% 
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South America 

          IntraContinent 

  

30.79% 

  

28.66% 

  

27.17% 

InterContinent 

  

69.21% 

  

71.34% 

  

72.83% 
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Table 8: Weights of Continent to Reference Continent  

Paired Continents 

continent_rcontinent 

1976-

1988 

1989-

2001 

2002-

2014 

AfricaAfrica 0.0209% 0.0076% 0.0077% 

AfricaAsia 0.0105% 0.0134% 0.0132% 

AfricaAustralia 0.0039% 0.0022% 0.0027% 

AfricaEurope 0.0301% 0.0220% 0.0159% 

AfricaNorth America 0.0608% 0.0334% 0.0303% 

AfricaSouth America 0.0026% 0.0008% 0.0002% 

AsiaAfrica 0.0216% 0.0169% 0.0266% 

AsiaAsia 8.9131% 11.1508% 10.5271% 

AsiaAustralia 0.0719% 0.1237% 0.2076% 

AsiaEurope 5.1246% 4.8696% 4.2492% 

AsiaNorth America 8.4099% 9.7581% 9.9472% 

AsiaSouth America 0.0183% 0.0226% 0.0308% 

AustraliaAfrica 0.0039% 0.0034% 0.0036% 

AustraliaAsia 0.0503% 0.0841% 0.1386% 

AustraliaAustralia 0.0497% 0.0544% 0.1051% 

AustraliaEurope 0.1202% 0.1214% 0.1655% 

AustraliaNorth America 0.2346% 0.2130% 0.2798% 

AustraliaSouth America 0.0000% 0.0039% 0.0048% 

Europe Africa 0.0523% 0.0312% 0.0330% 

Europe Asia 3.8884% 3.7438% 3.4391% 

Europe Australia 0.1353% 0.1513% 0.2487% 

Europe Europe 10.3022% 6.2156% 4.7527% 

Europe North America 9.9716% 6.6824% 6.0113% 

Europe South America 0.0294% 0.0266% 0.0428% 

North America Africa 0.0895% 0.1580% 0.2394% 

North America Asia 7.9330% 13.9997% 15.5862% 

North America Australia 0.3914% 0.7937% 1.7269% 

North America Europe 12.5427% 13.7431% 14.0258% 

North America North 

America 31.3496% 27.7121% 27.7572% 

North America South 

America 0.0751% 0.1272% 0.2635% 

South AmericaAfrica 0.0000% 0.0011% 0.0005% 

South America Asia 0.0118% 0.0213% 0.0238% 

South America Australia 0.0007% 0.0022% 0.0026% 

South America Europe 0.0196% 0.0311% 0.0299% 

South America North 0.0510% 0.0489% 0.0508% 



158 

 

 

 

America 

South America South 

America 0.0098% 0.0097% 0.0099% 

    Aggregate 

Intracontinent 50.645% 45.150% 43.160% 

Intercontinent 49.355% 54.860% 56.840% 
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Table 9: Top five patenting countries per time period 

 1976-1988 1989-2001 2002-2014 

5 France 3.447% Great Britain 2.607% Taiwan 2.727% 

4 Great Britain 4.046% France 2.627% South Korea 3.897% 

3 Germany 10.121% Germany 6.468% Germany 5.534% 

2 Japan 19.981% Japan 22.805% Japan 17.124% 

1 United States 52.624% United States 54.196% United States 55.740% 
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Table 10: Location Complexity by Citing Country  

 1976-1988 1989-2001 2002-2014 

United 

States 

 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       21.18628 

       12 |       20.09301 

       16 |       21.13675 

       29 |        18.8006 

       40 |       21.71449 

       41 |       25.57295 

       42 |       27.96604 

       43 |       18.69941 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       51.42715 

       12 |       40.01593 

       16 |       48.09929 

       29 |       39.35887 

       40 |        48.0844 

       41 |       54.34984 

       42 |       54.89087 

       43 |       43.32477 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       111.3237 

       12 |       83.02827 

       16 |       113.9007 

       29 |       81.22353 

       40 |       109.3514 

       41 |       95.39241 

       42 |       88.47143 

       43 |       92.51512 

Japan tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       48.09307 

       12 |       53.16281 

       16 |       60.44552 

       29 |       63.31183 

       40 |        56.4829 

       41 |       66.34336 

       42 |       66.92973 

       43 |       51.73136 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       69.21205 

       12 |       56.62749 

       16 |        73.7872 

       29 |       70.60284 

       40 |       63.80584 

       41 |       76.91763 

       42 |       77.43723 

       43 |       69.36327 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       58.88881 

       12 |       76.65489 

       16 |       98.56763 

       29 |       85.31982 

       40 |       104.3226 

       41 |       88.57243 

       42 |       82.55505 

       43 |        105.122 

Germany tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       40.35498 

       12 |       47.52963 

       16 |       47.83872 

       29 |       54.04876 

       40 |       51.01471 

       41 |       66.05443 

       42 |       58.35785 

       43 |       38.99068 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       129.3386 

       12 |       94.39323 

       16 |       107.8882 

       29 |       102.7194 

       40 |       107.9108 

       41 |       168.7566 

       42 |       129.4775 

       43 |       109.2649 

tech56 | 

complexity(avg) 

----------+--------------- 

        8 |       124.0534 

       12 |       188.1478 

       16 |        195.379 

       29 |       160.1532 

       40 |       220.2325 

       41 |       225.9482 

       42 |       156.5494 

       43 |       199.2178 
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APPENDIX A1 – STUDY 1 

 

Reference for Variable Names and Definitions 

Table 1: Complete List of Variable Names and Definitions 

 

Variable Name  Definition  DV, 

IV, 

Control  

 

Knowledge Artifact Complexity Logged degree of technological 

complexity via co-classifications.  

DV 

Knowledge Sourcing Complexity Logged degree of technological 

complexity via cross-classifications.  

DV 

Location Sourcing Complexity Logged degree of technological 

complexity via location cross-

classifications.  

DV 

Complexity_KAC Degree of technological complexity via 

co-classifications. 

DV 

Complexity_KSC Degree of technological complexity via 

cross-classifications. 

DV 

Complexity_LSC Degree of technological complexity via 

location cross-classifications. 

DV 

 

TechDiversification_CoClass A simple measure of technological 

diversification as a proportion of 

technologies per patent, calculated from 

co-classification (subclass) data. 

IV 

TechDiversificationSqd_CoClas Squared, simple measure of technological 

diversification as a proportion of 

technologies per patent, calculated from 

co-classification data. 

IV 

TechDistinctiveness_CoClass A sophisticated measure of technological 

distinctiveness via the likelihood of 

linkages between technology i and j, 

calculated from co-classification data. 

IV 

TechDistinctivenessSqd_CoClass Squared, sophisticated measure of 

technological distinctiveness via the 

likelihood of linkages between 

technology i and j, calculated from co-

classification data. 

IV 

TechDiversification_CrossClas A simple measure of technological 

diversification as a proportion of 

technologies per patent, calculated from 

cross-classification (citation) data. 

IV 

TechDiversificationSqd_CrossClas Squared, simple measure of technological IV 
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diversification as a proportion of 

technologies per patent, calculated from 

cross-classification data. 

TechDistinctiveness _CrossClas A sophisticated measure of technological 

distinctiveness via the likelihood of 

linkages between technology i and j, 

calculated from cross-classification data. 

IV 

TechDistinctivenessSqd 

_CrossClas 

Squared, sophisticated measure of 

technological distinctiveness via the 

likelihood of linkages between 

technology i and j, calculated from cross-

classification data. 

IV 

ICT_sharePerField  The percentage of ICT classes in a given 

Tech56 field 

IV 

Interaction KACxICT The interaction of Knowledge Artifact 

Complexity (logged form) and 

ICT_sharePerField.  

IV 

Interaction KSCxICT The interaction of Knowledge Sourcing 

Complexity (logged form) and 

ICT_sharePerField. 

IV 

 

N_Subclasses  Number of subclasses on focal patent  Control 

N_Citations Number of parent patents, for subclasses  Control 

N_LocationCitation  Number of parent patents, for locations  Control 

Ctrl_NumUniqueClasses_Citation 

 

A count of the number of unique Tech56 

patent classes per patent from cross-

classification data.  

Control 

Ctrl_NumUniqueClasses_Subclass 

 

A count of the number of unique Tech56 

patent classes per patent from co-

classification data. 

Control 

Control_NumofTrials_Subclass 

 

The number of times the same set of 

subclasses has appeared on other patents 

in the database.  

Control 

Ctrl_ProbFieldAcitesB_Subclass Probability Tech56 Field A will cite 

Tech56 Field B.  

Control 

Degree of Country Connectivity  Probability citing Country A cites cited 

location Country B.  

Control 

Country Distance  Log of the sum of the miles from citing to 

cited countries between capital cities. 

Control 

T1 Dummy indicating time period 1, 1976-

1988 

Control  

T2 Dummy indicating time period 2, 1989-

2001 

Control 

T3 Dummy indicating time period 3, 2002-

2014 

Control  
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Graph 2: Raw KAC Data vs Normalized KAC data 

 

 

Graph 3: Raw KSC Data vs Normalized KSC data 
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Table 4: KAC Descriptive Statistics, Period 1  

 

 
 

 

 

 

  

Ctrl_ProbF~s       94931    .1991886    .1006449   .0037681   .3983796

                                                                      

Ctrl_NumUn~n       94931    1.781673     .902079          1         12

Control_Nu~s       94931    3.116843    13.50072          1        749

 N_Citations       94931     4.22845    2.813293          2         98

ICT_ShareP~d       94931    .1848164    .3355027          0   .8528234

TechDistin..       94931    16.70024    29.35331          0     222.01

                                                                      

Te~s_CoClass       94931    2.587912    3.162761          0       14.9

N_Subclasses       94931    4.371533    3.430617          2        215

TechDivers..       94931    .1085484    .1990324   .0018442   .9979903

Te~n_CoClass       94931    .2426053    .2229162   .0429441   .9989946

KnowledgeA~y       94931    1.560074    .6727414  -1.358123   4.727853

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass

> oClass ICT_SharePerField N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniq

> tionSqd_CoClass N_Subclasses TechDistinctiveness_CoClass TechDistinctivenessSqd_C

. summarize KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversifica
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Table 5: KAC Descriptive Statistics, Period 2  

 

 
 

 

 

 

 

Table 6: KAC Descriptive Statistics, Period 3  

 

 
 

  

Ctrl_ProbF~s      329288    .2576448    .1128716   .0033211   .3983796

                                                                      

Ctrl_NumUn~n      329288    2.188039    1.390765          1         31

Control_Nu~s      329288     6.67366    34.99919          1        634

 N_Citations      329288    8.377114    10.10707          2        634

ICT_ShareP~d      329288    .3682409    .4418591    .000408   .9114777

TechDistin..      329288     11.5443    25.72533          0     240.25

                                                                      

Te~s_CoClass      329288    1.840482    2.856037          0       15.5

N_Subclasses      329288    4.803843    3.898909          2        208

TechDivers..      329288    .0795867    .1952841    .002846   .9958839

Te~n_CoClass      329288    .1818846    .2156498   .0533482   .9979398

KnowledgeA~y      329288    1.908707    .8136922  -1.403389   5.750908

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass

> oClass ICT_SharePerField N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniq

> tionSqd_CoClass N_Subclasses TechDistinctiveness_CoClass TechDistinctivenessSqd_C

. summarize KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversifica

Ctrl_ProbF~s      657021    .2904507    .1137086   .0033197   .3983796

                                                                      

Ctrl_NumUn~n      657021    2.626972    2.120079          1         43

Control_Nu~s      657021    16.14812    97.40364          1       1452

 N_Citations      657021    16.54789     36.1849          2       5322

ICT_ShareP~d      657021    .5592496    .4411181   .0017501    .925244

TechDistin..      657021    9.351874    23.79525          0     240.25

                                                                      

Te~s_CoClass      657021    1.500094    2.664883          0       15.5

N_Subclasses      657021    4.552115    3.338053          2        177

TechDivers..      657021    .0681805     .193726   .0032002   .9979343

Te~n_CoClass      657021    .1556963    .2096168   .0565699   .9989666

KnowledgeA~y      657021    2.264086    .8855995   -1.94591   6.574169

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass

> oClass ICT_SharePerField N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniq

> tionSqd_CoClass N_Subclasses TechDistinctiveness_CoClass TechDistinctivenessSqd_C

. summarize KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversifica
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Table 7: KAC Correlation Table, Period 1, Technological Diversification – Co-

classification 

 

 
 

Table 8: KAC Correlation Table, Period 2, Technological Diversification – Co-

classification 

 

 
 

Table 9: KAC Correlation Table, Period 3, Technological Diversification – Co-

classification 

 

  

Ctrl_ProbF~s     0.0407  -0.3517  -0.2519   0.4389   0.0738   0.0464  -0.0121   0.0678   1.0000

Ctrl_NumUn~n     0.0027   0.1951   0.1882   0.1639   0.1039   0.4968  -0.0530   1.0000

Control_Nu~s     0.0213  -0.0195  -0.0146  -0.0271  -0.0996  -0.0139   1.0000

 N_Citations     0.1230   0.0829   0.0747   0.1369   0.0586   1.0000

N_Subclasses     0.4101  -0.0577  -0.0484  -0.0978   1.0000

ICT_ShareP~d     0.2093   0.0786   0.0445   1.0000

TechDivers..    -0.0307   0.9615   1.0000

Te~n_CoClass     0.0092   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=94931)

> ion Ctrl_ProbFieldAcitesB_Subclass

> harePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citat

. corr KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversificationSqd_CoClass ICT_S

Ctrl_ProbF~s     0.2640  -0.4156  -0.2866   0.4889   0.0655   0.0377   0.0060  -0.1424   1.0000

Ctrl_NumUn~n    -0.0473   0.2122   0.2007  -0.0054   0.0726   0.5633  -0.0575   1.0000

Control_Nu~s     0.0702  -0.0024  -0.0138   0.0379  -0.0980  -0.0032   1.0000

 N_Citations     0.0307   0.0350   0.0474   0.0777   0.0370   1.0000

N_Subclasses     0.4913  -0.0318  -0.0329  -0.1569   1.0000

ICT_ShareP~d     0.1376  -0.1345  -0.0647   1.0000

TechDivers..    -0.0835   0.9669   1.0000

Te~n_CoClass    -0.1036   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=329288)

> ion Ctrl_ProbFieldAcitesB_Subclass

> harePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citat

. corr KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversificationSqd_CoClass ICT_S

Ctrl_ProbF~s     0.2816  -0.4086  -0.2874   0.5071  -0.0462   0.0280   0.0782  -0.1894   1.0000

Ctrl_NumUn~n    -0.0897   0.1874   0.1762  -0.0677   0.0828   0.6412  -0.0427   1.0000

Control_Nu~s     0.1307  -0.0458  -0.0399   0.0608  -0.0872   0.0041   1.0000

 N_Citations     0.0210   0.0065   0.0221   0.0327   0.0241   1.0000

N_Subclasses     0.4892   0.0397   0.0099  -0.1333   1.0000

ICT_ShareP~d     0.2225  -0.2070  -0.1098   1.0000

TechDivers..    -0.1247   0.9698   1.0000

Te~n_CoClass    -0.1601   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=657021)

> ion Ctrl_ProbFieldAcitesB_Subclass

> harePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citat

. corr KnowledgeArtifactComplexity TechDiversification_CoClass TechDiversificationSqd_CoClass ICT_S
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Table 10:  

Knowledge Artifact Complexity regressions, 

Technological Diversification in time period 1, 2, and 3 

 

 

 
 

 

 

 

 

 

  

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses
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Table 11: KAC Correlation Table, Period 1 Technological Distinctiveness – Co-

Classification 

 

 
Table 12: KAC Correlation Table, Period 2, Technological Distinctiveness – Co-

Classification 

 

 
 

Table 13: KAC Correlation Table, Period 3, Technological Distinctiveness – Co-

Classification 

 

 
 

Ctrl_ProbF~s     0.0407  -0.2421  -0.2458   0.4389   0.0738   0.0464  -0.0121   0.0678   1.0000

Ctrl_NumUn~n     0.0027   0.3017   0.2364   0.1639   0.1039   0.4968  -0.0530   1.0000

Control_Nu~s     0.0213  -0.0485  -0.0362  -0.0271  -0.0996  -0.0139   1.0000

 N_Citations     0.1230   0.0379   0.0259   0.1369   0.0586   1.0000

N_Subclasses     0.4101   0.0571  -0.0199  -0.0978   1.0000

ICT_ShareP~d     0.2093   0.0103   0.0083   1.0000

TechDistin..    -0.0886   0.9349   1.0000

Te~s_CoClass    -0.0549   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=94931)

> n Ctrl_ProbFieldAcitesB_Subclass

> rePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citatio

. corr KnowledgeArtifactComplexity TechDistinctiveness_CoClas TechDistinctivenessSqd_CoClas ICT_Sha

Ctrl_ProbF~s     0.2640  -0.3779  -0.3301   0.4889   0.0655   0.0377   0.0060  -0.1424   1.0000

Ctrl_NumUn~n    -0.0473   0.2818   0.2343  -0.0054   0.0726   0.5633  -0.0575   1.0000

Control_Nu~s     0.0702  -0.0720  -0.0457   0.0379  -0.0980  -0.0032   1.0000

 N_Citations     0.0307   0.0291   0.0261   0.0777   0.0370   1.0000

N_Subclasses     0.4913   0.0655  -0.0101  -0.1569   1.0000

ICT_ShareP~d     0.1376  -0.1312  -0.0886   1.0000

TechDistin..    -0.1026   0.9341   1.0000

Te~s_CoClass    -0.0765   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=329288)

> n Ctrl_ProbFieldAcitesB_Subclass

> rePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citatio

. corr KnowledgeArtifactComplexity TechDistinctiveness_CoClas TechDistinctivenessSqd_CoClas ICT_Sha

Ctrl_ProbF~s     0.2816  -0.4217  -0.3488   0.5071  -0.0462   0.0280   0.0782  -0.1894   1.0000

Ctrl_NumUn~n    -0.0897   0.2227   0.1895  -0.0677   0.0828   0.6412  -0.0427   1.0000

Control_Nu~s     0.1307  -0.0751  -0.0532   0.0608  -0.0872   0.0041   1.0000

 N_Citations     0.0210   0.0099   0.0092   0.0327   0.0241   1.0000

N_Subclasses     0.4892   0.1087   0.0234  -0.1333   1.0000

ICT_ShareP~d     0.2225  -0.1547  -0.1113   1.0000

TechDistin..    -0.1477   0.9325   1.0000

Te~s_CoClass    -0.1318   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~n Ctrl_P~s

(obs=657021)

> n Ctrl_ProbFieldAcitesB_Subclass

> rePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Citatio

. corr KnowledgeArtifactComplexity TechDistinctiveness_CoClas TechDistinctivenessSqd_CoClas ICT_Sha
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Table 14: Knowledge Artifact Complexity regressions, 

using Technological Distinctiveness measure in time period 1, 2, and 3. 

 

 

 
 

 

 

  

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                            

f                                                           

R-sq                0.278           0.326           0.393   

N                   94931          329288          657021   

                                                            

                 (215.71)        (261.78)        (349.21)   

_cons               1.316***        1.078***        1.169***

                 (-48.58)         (81.39)        (117.19)   

Ctrl_ProbF~s       -1.054***        1.060***        1.138***

                 (-36.17)        (-42.62)        (-92.66)   

Ctrl_NumUn~n      -0.0928***      -0.0461***      -0.0515***

                  (23.89)         (76.74)        (149.76)   

Control_Nu~s      0.00331***      0.00258***      0.00132***

                  (38.17)         (22.70)         (59.35)   

N_Citations        0.0294***      0.00323***      0.00187***

                 (160.81)        (340.06)        (547.29)   

N_Subclasses       0.0912***        0.108***        0.146***

                 (103.97)         (82.46)        (170.09)   

ICT_ShareP~d        0.662***        0.257***        0.386***

                 (-10.95)        (-13.62)          (1.60)   

TechDistin..     -0.00201***     -0.00178***     0.000164   

                  (-0.59)         (10.54)        (-23.18)   

Te~s_CoClass     -0.00103          0.0129***      -0.0222***

                                                            

             KnowledgeA~y    KnowledgeA~y    KnowledgeA~y   

                      (1)             (2)             (3)   
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Table 15: KSC Descriptive Statistics, Period 1 

 

 
 

 

 

 

  

Ctrl_ProbF~s       94931    .1991886    .1006449   .0037681   .3983796

                                                                      

Ctrl_NumUn~s       94931    1.693841     .782093          1         10

Control_Nu~s       94931    3.116843    13.50072          1        749

 N_Citations       94931     4.22845    2.813293          2         98

N_Subclasses       94931    4.371533    3.430617          2        215

ICT_ShareP~d       94931    .1848164    .3355027          0   .8528234

                                                                      

TechDistin..       94931    21.19627    35.24185          0     240.25

~s_CrossClas       94931    2.932281    3.549385          0       15.5

TechDiver~as       94931     .141825    .2224223   .0072391   .9958349

TechD~sClass       94931    .3018705    .2251659   .0850827   .9979153

KnowledgeS~y       94931    1.504951    .7715607  -1.446919   5.225226

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> tesB_Subclass

> NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAci

> ivenessSqd_CrossClas ICT_SharePerField N_Subclasses N_Citations Control_

> hDiversificationSqd_CrossClas TechDistinctiveness_CrossClas TechDistinct

. summarize KnowledgeSourcingComplexity TechDiversification_CrossClass Tec
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Table 16: KSC Descriptive Statistics, Period 2 

 

 
 

  

Ctrl_ProbF~s      329288    .2576448    .1128716   .0033211   .3983796

                                                                      

Ctrl_NumUn~s      329288    1.528188    .7067478          1          9

Control_Nu~s      329288     6.67366    34.99919          1        634

 N_Citations      329288    8.377114    10.10707          2        634

N_Subclasses      329288    4.803843    3.898909          2        208

ICT_ShareP~d      329288    .3682409    .4418591    .000408   .9114777

                                                                      

TechDistin..      329288    15.78833    27.89377          0     246.49

~s_CrossClas      329288    2.579088    3.022692          0       15.7

TechDiver~as      329288    .1111922    .1757841   .0160221   .9966255

TechD~sClass      329288    .2702486    .1953408   .1265786   .9983113

KnowledgeS~y      329288    2.045397    .9705723   -1.89712   7.333428

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> tesB_Subclass

> NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAci

> ivenessSqd_CrossClas ICT_SharePerField N_Subclasses N_Citations Control_

> hDiversificationSqd_CrossClas TechDistinctiveness_CrossClas TechDistinct

. summarize KnowledgeSourcingComplexity TechDiversification_CrossClass Tec
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Table 17: KSC Descriptive Statistics, Period 3 

 

 
 

  

Ctrl_ProbF~s      657021    .2904507    .1137086   .0033197   .3983796

                                                                      

Ctrl_NumUn~s      657021    1.428531    .6598886          1         13

Control_Nu~s      657021    16.14812    97.40364          1       1452

 N_Citations      657021    16.54789     36.1849          2       5322

N_Subclasses      657021    4.552115    3.338053          2        177

ICT_ShareP~d      657021    .5592496    .4411181   .0017501    .925244

                                                                      

TechDistin..      657021    15.14239    26.86581          0     246.49

~s_CrossClas      657021    2.550265    2.939142          0       15.7

TechDiver~as      657021    .1077855    .1750843   .0146196   .9939982

TechD~sClass      657021    .2609819    .1991833   .1209117   .9969946

KnowledgeS~y      657021    2.560702    1.240508  -3.912023   8.421334

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> tesB_Subclass

> NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAci

> ivenessSqd_CrossClas ICT_SharePerField N_Subclasses N_Citations Control_

> hDiversificationSqd_CrossClas TechDistinctiveness_CrossClas TechDistinct

. summarize KnowledgeSourcingComplexity TechDiversification_CrossClass Tec
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Table 18: KSC Correlation Table, Period 1, Technological Diversification – Cross-

classification 

 

 
 

 

Table 19: KSC Correlation Table, Period 2, Technological Diversification – Cross-

classification 

 

 
 

Table 20: KSC Correlation Table, Period 3, Technological Diversification – Cross-

classification 

 

  

Ctrl_ProbF~s     0.0447  -0.1567  -0.1096   0.4389   0.0738   0.0464  -0.0121  -0.1247   1.0000

Ctrl_NumUn~s    -0.0837   0.2057   0.2127  -0.0101   0.2933   0.0582  -0.0626   1.0000

Control_Nu~s     0.1411  -0.0578  -0.0477  -0.0271  -0.0996  -0.0139   1.0000

 N_Citations     0.5831   0.0945   0.0332   0.1369   0.0586   1.0000

N_Subclasses    -0.0506  -0.0270   0.0094  -0.0978   1.0000

ICT_ShareP~d     0.1904   0.1254   0.0542   1.0000

TechDiver~as    -0.1094   0.9743   1.0000

TechD~sClass    -0.0663   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y T~sClass TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=94931)

> ubclass Ctrl_ProbFieldAcitesB_Subclass

> ICT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_S

. corr KnowledgeSourcingComplexity TechDiversification_CrossClass TechDiversificationSqd_CrossClas  

Ctrl_ProbF~s     0.1722  -0.3915  -0.2843   0.4889   0.0655   0.0377   0.0060  -0.2713   1.0000

Ctrl_NumUn~s    -0.0497   0.2777   0.2615  -0.1893   0.3006   0.0296  -0.0955   1.0000

Control_Nu~s     0.1427  -0.0370  -0.0369   0.0379  -0.0980  -0.0032   1.0000

 N_Citations     0.4853   0.0655   0.0328   0.0777   0.0370   1.0000

N_Subclasses     0.0216  -0.0103   0.0059  -0.1569   1.0000

ICT_ShareP~d     0.1599  -0.2231  -0.1439   1.0000

TechDiver~as    -0.0946   0.9676   1.0000

TechD~sClass    -0.0774   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y T~sClass TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=329288)

> ubclass Ctrl_ProbFieldAcitesB_Subclass

> ICT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_S

. corr KnowledgeSourcingComplexity TechDiversification_CrossClass TechDiversificationSqd_CrossClas  

Ctrl_ProbF~s     0.2094  -0.4595  -0.3552   0.5071  -0.0462   0.0280   0.0782  -0.3429   1.0000

Ctrl_NumUn~s    -0.0957   0.3009   0.2811  -0.2078   0.3596   0.0152  -0.0872   1.0000

Control_Nu~s     0.1264  -0.0580  -0.0477   0.0608  -0.0872   0.0041   1.0000

 N_Citations     0.5179   0.0407   0.0173   0.0327   0.0241   1.0000

N_Subclasses     0.0167   0.0493   0.0451  -0.1333   1.0000

ICT_ShareP~d     0.1194  -0.3526  -0.2310   1.0000

TechDiver~as    -0.1554   0.9649   1.0000

TechD~sClass    -0.1433   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y T~sClass TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=657021)

> ubclass Ctrl_ProbFieldAcitesB_Subclass

> ICT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_S

. corr KnowledgeSourcingComplexity TechDiversification_CrossClass TechDiversificationSqd_CrossClas  
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Table 21:  

Knowledge Sourcing Complexity regressions, 

Technological Diversification in time period 1, 2, and 3. 

 

 

 

 
  

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses
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Table 22: KSC Correlation Table, Period 1, Technological Distinctiveness – Cross-

Classification 

 

 
Table 23: KSC Correlation Table, Period 2, Technological Distinctiveness – Cross-

Classification 

 

 
 

Table 24: KSC Correlation Table, Period 3, Technological Distinctiveness – Cross-

Classification 

 

 

Ctrl_ProbF~s     0.0447  -0.0411  -0.0620   0.4389   0.0738   0.0464  -0.0121  -0.1247   1.0000

Ctrl_NumUn~s    -0.0837   0.3575   0.3089  -0.0101   0.2933   0.0582  -0.0626   1.0000

Control_Nu~s     0.1411  -0.0662  -0.0591  -0.0271  -0.0996  -0.0139   1.0000

 N_Citations     0.5831   0.0799  -0.0078   0.1369   0.0586   1.0000

N_Subclasses    -0.0506   0.0627   0.0476  -0.0978   1.0000

ICT_ShareP~d     0.1904   0.0773   0.0262   1.0000

TechDistin..    -0.2104   0.9476   1.0000

~s_CrossClas    -0.1512   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=94931)

> bclass Ctrl_ProbFieldAcitesB_Subclass

> CT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Su

. corr KnowledgeSourcingComplexity TechDistinctiveness_CrossClas TechDistinctivenessSqd_CrossClas  I

Ctrl_ProbF~s     0.1722  -0.2904  -0.2493   0.4889   0.0655   0.0377   0.0060  -0.2713   1.0000

Ctrl_NumUn~s    -0.0497   0.3770   0.3336  -0.1893   0.3006   0.0296  -0.0955   1.0000

Control_Nu~s     0.1427  -0.0672  -0.0545   0.0379  -0.0980  -0.0032   1.0000

 N_Citations     0.4853   0.1051   0.0445   0.0777   0.0370   1.0000

N_Subclasses     0.0216   0.0365   0.0340  -0.1569   1.0000

ICT_ShareP~d     0.1599  -0.0843  -0.1047   1.0000

TechDistin..    -0.1335   0.9355   1.0000

~s_CrossClas    -0.0852   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=329288)

> bclass Ctrl_ProbFieldAcitesB_Subclass

> CT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Su

. corr KnowledgeSourcingComplexity TechDistinctiveness_CrossClas TechDistinctivenessSqd_CrossClas  I

Ctrl_ProbF~s     0.2094  -0.4074  -0.3382   0.5071  -0.0462   0.0280   0.0782  -0.3429   1.0000

Ctrl_NumUn~s    -0.0957   0.3601   0.3214  -0.2078   0.3596   0.0152  -0.0872   1.0000

Control_Nu~s     0.1264  -0.0727  -0.0564   0.0608  -0.0872   0.0041   1.0000

 N_Citations     0.5179   0.0803   0.0391   0.0327   0.0241   1.0000

N_Subclasses     0.0167   0.0789   0.0701  -0.1333   1.0000

ICT_ShareP~d     0.1194  -0.1094  -0.1171   1.0000

TechDistin..    -0.1713   0.9358   1.0000

~s_CrossClas    -0.1292   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y TechDi.. TechDi.. ICT_Sh~d N_Subc~s N_Cita~s Contro~s Ctrl_N~s Ctrl_P~s

(obs=657021)

> bclass Ctrl_ProbFieldAcitesB_Subclass

> CT_SharePerField N_Subclasses N_Citations Control_NumberOfTrials_Subclass Ctrl_NumUniqueClasses_Su

. corr KnowledgeSourcingComplexity TechDistinctiveness_CrossClas TechDistinctivenessSqd_CrossClas  I
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Table 25: Knowledge Sourcing Complexity regressions, 

using Technological Distinctiveness measure in time period 1, 2, and 3. 

 

 

 
 

 

 

 

 

  

. 

* p<0.05, ** p<0.01, *** p<0.001

t statistics in parentheses

                                                            

f                                                           

R-sq                0.422           0.298           0.341   

N                   94931          329288          657021   

                                                            

                 (151.32)        (233.63)        (308.61)   

_cons               1.042***        1.329***        1.762***

                 (-20.68)         (58.01)        (116.57)   

Ctrl_ProbF~s       -0.447***        0.907***        1.685***

                 (-15.94)          (9.04)        (-21.28)   

Ctrl_NumUn~s      -0.0442***       0.0212***      -0.0474***

                  (54.27)         (95.17)        (109.02)   

Control_Nu~s      0.00771***      0.00389***      0.00140***

                 (222.27)        (316.94)        (501.51)   

N_Citations         0.157***       0.0455***       0.0174***

                 (-11.13)         (11.83)         (33.72)   

N_Subclasses     -0.00664***      0.00469***       0.0136***

                  (50.92)         (33.24)          (2.13)   

ICT_ShareP~d        0.333***        0.127***      0.00713*  

                 (-19.25)        (-56.73)       (-111.10)   

TechDistin..     -0.00341***     -0.00835***      -0.0149***

                  (-4.35)         (29.23)         (68.85)   

~s_CrossClas     -0.00783***       0.0411***       0.0886***

                                                            

             KnowledgeS~y    KnowledgeS~y    KnowledgeS~y   

                      (1)             (2)             (3)   
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Table 26: Correlation Table, KAC, TechDiversification and TechDistinctiveness  

in Co-classification, All time periods 

 

 
 

 

Table 27: Correlation Table KSC, TechDiversification and TechDistinctiveness  

in Cross-classification, All time periods 

 

 

 
 

 

 

Graph 28: KAC data points in period 1 

 
 

 KAC TechDiversificationSquared_Co-class 

Mean 1.560074 0.1085484 

Median 1.539584 0.0168152 

 

  

TechDivers~s    -0.1544   0.7136   1.0000

TechDistin~s    -0.1322   1.0000

KnowledgeA~y     1.0000

                                         

               Knowle~y T~stin~s T~vers~s

(obs=1081240)

. corr KnowledgeArtifactComplexity TechDistinctiveness_CoClass TechDiversification_CoClass

TechDiver~as    -0.1294   0.7330   1.0000

TechDisti~as    -0.1200   1.0000

KnowledgeS~y     1.0000

                                         

               K~Sour~y TechDi.. TechDi..

(obs=1081240)

. corr KnowledgeSourcingComplexity TechDistinctiveness_CrossClas TechDiversification_CrossClas
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Graph 29: KAC data points in period 2 

 
 

 KAC TechDiversificationSquared_Co-class 

Mean 1.908707 0 .0795867 

Median 1.837505 0 .0063781 

 

 

 

Graph 30: KAC data points in period 3 

 
 

 KAC TechDiversificationSquared_Co-

class 

Mean 2.264086 0.0681805 

Median 2.223637 0.0045261 

Graph 31: KSC data points in period 1 
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 KSC TechDiversificationSquared_Cross-

class 

Mean 1.504951 0.141825 

Median 1.44322 0.0409459 

 

 

 

Graph 32: KSC data points in period 2 

 
 KSC TechDiversificationSquared_Cross-class 

Mean 2.045397 0.1111922 

Median 2.010449 0 .0537298 

Graph 33: KSC data points in period 3 
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 KSC TechDiversificationSquared_Cross-

class 

Mean 2.560702 0.1077855 

Median 2.480552 0.0266826 
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Table 34: Correlation Table KAC, KSC, and LSC, for All Periods  

 

 
 

 

Table 35: Correlation Table KAC as DV, Period 1  

 

 
 

 

Table 36: Correlation Table KAC as DV, Period 2  

 

 
 

 

Table 37: Correlation Table KAC as DV, Period 3  

 

 

LocationSo~y     0.1602   0.4593   1.0000

KnowledgeS~y     0.4771   1.0000

KnowledgeA~y     1.0000

                                         

               K~Arti~y K~Sour~y Locati~y

(obs=1081240)

> ty LocationSourcingComplexity

. corr KnowledgeArtifactComplexity KnowledgeSourcingComplexi

ICT_ShareP~d     0.2093   0.1904  -0.0978   0.1639   0.7521   0.4389  -0.5445   1.0000

MechEng_Sh~d    -0.2213  -0.2458  -0.0417  -0.0811  -0.5018  -0.4263   1.0000

Ctrl_ProbF~s     0.0407   0.0447   0.0738   0.0678   0.7823   1.0000

Ctrl_ProbF~n     0.0780   0.1450  -0.0602   0.1135   1.0000

Ctrl_NumUn~n     0.0027   0.1542   0.1039   1.0000

N_Subclasses     0.4101  -0.0506   1.0000

KnowledgeS~y     0.4849   1.0000

KnowledgeA~y     1.0000

                                                                                      

               K~Arti~y K~Sour~y N_Subc~s Ctrl_N~n Ctrl_P~n Ctrl_P~s MechEn~d ICT_Sh~d

(obs=94931)

>  Ctrl_ProbFieldAcitesB_Citation Ctrl_ProbFieldAcitesB_Subclass MechEng_SharePerField ICT_SharePerField

. corr KnowledgeArtifactComplexity KnowledgeSourcingComplexity N_Subclasses Ctrl_NumUniqueClasses_Citation

ICT_ShareP~d     0.1376   0.1599  -0.1569  -0.0054   0.8005   0.4889  -0.5491   1.0000

MechEng_Sh~d    -0.2925  -0.1886  -0.0681   0.0812  -0.5526  -0.5728   1.0000

Ctrl_ProbF~s     0.2640   0.1722   0.0655  -0.1424   0.8158   1.0000

Ctrl_ProbF~n     0.1865   0.2049  -0.0841  -0.1109   1.0000

Ctrl_NumUn~n    -0.0473   0.2600   0.0726   1.0000

N_Subclasses     0.4913   0.0216   1.0000

KnowledgeS~y     0.4579   1.0000

KnowledgeA~y     1.0000

                                                                                      

               K~Arti~y K~Sour~y N_Subc~s Ctrl_N~n Ctrl_P~n Ctrl_P~s MechEn~d ICT_Sh~d

ICT_ShareP~d     0.2225   0.1194  -0.1333  -0.0677   0.7852   0.5071  -0.5742   1.0000

MechEng_Sh~d    -0.3314  -0.2137   0.0250   0.1271  -0.5205  -0.5054   1.0000

Ctrl_ProbF~s     0.2816   0.2094  -0.0462  -0.1894   0.8437   1.0000

Ctrl_ProbF~n     0.2451   0.1846  -0.1229  -0.1760   1.0000

Ctrl_NumUn~n    -0.0897   0.3864   0.0828   1.0000

N_Subclasses     0.4892   0.0167   1.0000

KnowledgeS~y     0.4243   1.0000

KnowledgeA~y     1.0000

                                                                                      

               K~Arti~y K~Sour~y N_Subc~s Ctrl_N~n Ctrl_P~n Ctrl_P~s MechEn~d ICT_Sh~d
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Table 38: Descriptive Statistics of KAC as DV, Period 1  

 

 
 

 

 

 

 

 

Table 39: Descriptive Statistics of KAC as DV, Period 2  

 

 
 

 

  

ICT_ShareP~d       94931    .1848164    .3355027          0   .8528234

MechEng_Sh~d       94931    .4346675     .403792    .013065   .8845263

Ctrl_ProbF~s       94931    .1991886    .1006449   .0037681   .3983796

                                                                      

Ctrl_ProbF~n       94931    .2141308    .1891629   .0032201   .6940107

Ctrl_NumUn~n       94931    1.781673     .902079          1         12

N_Subclasses       94931    4.371533    3.430617          2        215

KnowledgeS~y       94931    1.504951    .7715607  -1.446919   5.225226

KnowledgeA~y       94931    1.560074    .6727414  -1.358123   4.727853

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> trl_ProbFieldAcitesB_Subclass MechEng_SharePerField ICT_SharePerField

> classes Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Citation C

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity N_Sub

ICT_ShareP~d      329288    .3682409    .4418591    .000408   .9114777

MechEng_Sh~d      329288    .2632403    .3766023   .0034161   .8991429

Ctrl_ProbF~s      329288    .2576448    .1128716   .0033211   .3983796

                                                                      

Ctrl_ProbF~n      329288     .318821     .237012   .0031081   .6940107

Ctrl_NumUn~n      329288    2.188039    1.390765          1         31

N_Subclasses      329288    4.803843    3.898909          2        208

KnowledgeS~y      329288    2.045397    .9705723   -1.89712   7.333428

KnowledgeA~y      329288    1.908707    .8136922  -1.403389   5.750908

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> trl_ProbFieldAcitesB_Subclass MechEng_SharePerField ICT_SharePerField

> classes Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Citation C

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity N_Sub
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Table 40: Descriptive Statistics of KAC as DV, Period 3  

 

 
 

 

  

ICT_ShareP~d      657021    .5592496    .4411181   .0017501    .925244

MechEng_Sh~d      657021    .1475586    .3009121   .0028396   .8916817

Ctrl_ProbF~s      657021    .2904507    .1137086   .0033197   .3983796

                                                                      

Ctrl_ProbF~n      657021    .4091731    .2499718   .0023668   .6940107

Ctrl_NumUn~n      657021    2.626972    2.120079          1         43

N_Subclasses      657021    4.552115    3.338053          2        177

KnowledgeS~y      657021    2.560702    1.240508  -3.912023   8.421334

KnowledgeA~y      657021    2.264086    .8855995   -1.94591   6.574169

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> trl_ProbFieldAcitesB_Subclass MechEng_SharePerField ICT_SharePerField

> classes Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Citation C

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity N_Sub
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Table 41: VIF Testing for KAC as DV in T1 

 

 
 

 

 

 

 

Table 42: VIF Testing for KAC as DV in T2 

 

 
 

 

 

 

 

Table 43: VIF Testing for KAC as DV in T3 

 

 
 

  

    Mean VIF        2.39

                                    

Ctrl_NumUn~n        1.06    0.939493

N_Subclasses        1.07    0.935050

KnowledgeS~y        1.11    0.904530

MechEng_Sh~d        1.59    0.628747

ICT_ShareP~d        3.05    0.328148

Ctrl_ProbF~s        3.20    0.312794

Ctrl_ProbF~n        5.63    0.177492

                                    

    Variable         VIF       1/VIF  

    Mean VIF        3.31

                                    

N_Subclasses        1.09    0.916332

Ctrl_NumUn~n        1.15    0.869363

KnowledgeS~y        1.16    0.861542

MechEng_Sh~d        1.87    0.533794

ICT_ShareP~d        4.37    0.228703

Ctrl_ProbF~s        4.72    0.211740

Ctrl_ProbF~n        8.81    0.113490

                                    

    Variable         VIF       1/VIF  

    Mean VIF        3.45

                                    

N_Subclasses        1.04    0.966016

Ctrl_NumUn~n        1.35    0.742344

KnowledgeS~y        1.36    0.736894

MechEng_Sh~d        1.81    0.552163

ICT_ShareP~d        4.24    0.235982

Ctrl_ProbF~s        5.08    0.196870

Ctrl_ProbF~n        9.27    0.107891

                                    

    Variable         VIF       1/VIF  
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Table 44: Correlations for KSC as DV, Period 1 

 

 
 

 

 

Table 45: Correlations for KSC as DV, Period 2 

 

 
 

 

 

Table 46: Correlations for KSC as DV, Period 3 

 

 
 

  

Engineerin~y    -0.1595  -0.1801  -0.0853  -0.0483  -0.6980  -0.7553   0.0204  -0.6600   1.0000

ICT_ShareP~d     0.1904   0.2093   0.1369  -0.0101   0.7521   0.4389   0.0409   1.0000

DegreeofCo~y    -0.0468  -0.0452   0.0679   0.0431   0.0145   0.0259   1.0000

Ctrl_ProbF~s     0.0447   0.0407   0.0464  -0.1247   0.7823   1.0000

Ctrl_ProbF~n     0.1450   0.0780   0.1235   0.0083   1.0000

Ctrl_NumUn~s    -0.0837   0.0940   0.0582   1.0000

 N_Citations     0.5831   0.1230   1.0000

KnowledgeA~y     0.4849   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y K~Arti~y N_Cita~s Ctrl_N~s Ctrl_P~n Ctrl_P~s Degree~y ICT_Sh~d Engine~y

(obs=94931)

> ield EngineeringDummy

> Ctrl_ProbFieldAcitesB_Citation Ctrl_ProbFieldAcitesB_Subclass  DegreeofCountryConnectivity ICT_SharePerF

. corr KnowledgeSourcingComplexity KnowledgeArtifactComplexity N_Citations Ctrl_NumUniqueClasses_Subclass 

Engineerin~y    -0.1587  -0.3025  -0.0343   0.0799  -0.6558  -0.7578  -0.0789  -0.6097   1.0000

ICT_ShareP~d     0.1599   0.1376   0.0777  -0.1893   0.8005   0.4889   0.0239   1.0000

DegreeofCo~y     0.1046   0.0098   0.1676   0.0215   0.0672   0.1114   1.0000

Ctrl_ProbF~s     0.1722   0.2640   0.0377  -0.2713   0.8158   1.0000

Ctrl_ProbF~n     0.2049   0.1865   0.0668  -0.1775   1.0000

Ctrl_NumUn~s    -0.0497   0.1019   0.0296   1.0000

 N_Citations     0.4853   0.0307   1.0000

KnowledgeA~y     0.4579   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y K~Arti~y N_Cita~s Ctrl_N~s Ctrl_P~n Ctrl_P~s Degree~y ICT_Sh~d Engine~y

Engineerin~y    -0.1974  -0.3393  -0.0240   0.1168  -0.6209  -0.6912  -0.1277  -0.6374   1.0000

ICT_ShareP~d     0.1194   0.2225   0.0327  -0.2078   0.7852   0.5071   0.0775   1.0000

DegreeofCo~y     0.2361   0.0479   0.1525  -0.0407   0.1988   0.2290   1.0000

Ctrl_ProbF~s     0.2094   0.2816   0.0280  -0.3429   0.8437   1.0000

Ctrl_ProbF~n     0.1846   0.2451   0.0268  -0.2297   1.0000

Ctrl_NumUn~s    -0.0957   0.0256   0.0152   1.0000

 N_Citations     0.5179   0.0210   1.0000

KnowledgeA~y     0.4243   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y K~Arti~y N_Cita~s Ctrl_N~s Ctrl_P~n Ctrl_P~s Degree~y ICT_Sh~d Engine~y
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Table 47: Descriptive Stats for KSC as DV, Period 1 

 

 
 

 

 

Table 48: Descriptive Stats for KSC as DV, Period 2 

 

 
 

  

Engineerin~y       94931    .6021215    .4894627          0          1

ICT_ShareP~d       94931    .1848164    .3355027          0   .8528234

DegreeofCo~y       94931    .6311336    .3019074   .0000309    .916511

Ctrl_ProbF~s       94931    .1991886    .1006449   .0037681   .3983796

                                                                      

Ctrl_ProbF~n       94931    .2141308    .1891629   .0032201   .6940107

Ctrl_NumUn~s       94931    1.693841     .782093          1         10

 N_Citations       94931     4.22845    2.813293          2         98

KnowledgeA~y       94931    1.560074    .6727414  -1.358123   4.727853

KnowledgeS~y       94931    1.504951    .7715607  -1.446919   5.225226

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eld EngineeringDummy

> rl_ProbFieldAcitesB_Subclass DegreeofCountryConnectivity ICT_SharePerFi

> ations Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAcitesB_Citation Ct

. summarize KnowledgeSourcingComplexity KnowledgeArtifactComplexity N_Cit

Engineerin~y      329288    .3577264    .4793317          0          1

ICT_ShareP~d      329288    .3682409    .4418591    .000408   .9114777

DegreeofCo~y      329288    .6449825    .2803273   .0000288    .916511

Ctrl_ProbF~s      329288    .2576448    .1128716   .0033211   .3983796

                                                                      

Ctrl_ProbF~n      329288     .318821     .237012   .0031081   .6940107

Ctrl_NumUn~s      329288    1.528188    .7067478          1          9

 N_Citations      329288    8.377114    10.10707          2        634

KnowledgeA~y      329288    1.908707    .8136922  -1.403389   5.750908

KnowledgeS~y      329288    2.045397    .9705723   -1.89712   7.333428

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eld EngineeringDummy

> rl_ProbFieldAcitesB_Subclass DegreeofCountryConnectivity ICT_SharePerFi

> ations Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAcitesB_Citation Ct

. summarize KnowledgeSourcingComplexity KnowledgeArtifactComplexity N_Cit
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Table 49: Descriptive Stats for KSC as DV, Period 3 

 

 
 

 

  

Engineerin~y      657021    .2092962    .4068065          0          1

ICT_ShareP~d      657021    .5592496    .4411181   .0017501    .925244

DegreeofCo~y      657021    .6646314    .2714147   1.19e-06    .916511

Ctrl_ProbF~s      657021    .2904507    .1137086   .0033197   .3983796

                                                                      

Ctrl_ProbF~n      657021    .4091731    .2499718   .0023668   .6940107

Ctrl_NumUn~s      657021    1.428531    .6598886          1         13

 N_Citations      657021    16.54789     36.1849          2       5322

KnowledgeA~y      657021    2.264086    .8855995   -1.94591   6.574169

KnowledgeS~y      657021    2.560702    1.240508  -3.912023   8.421334

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eld EngineeringDummy

> rl_ProbFieldAcitesB_Subclass DegreeofCountryConnectivity ICT_SharePerFi

> ations Ctrl_NumUniqueClasses_Subclass Ctrl_ProbFieldAcitesB_Citation Ct

. summarize KnowledgeSourcingComplexity KnowledgeArtifactComplexity N_Cit
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Table 50: VIF Testing for KAC as DV in T1 

 

 
 

 

 

 

Table 51: VIF Testing for KAC as DV in T2 

 

 
 

 

 

 

Table 52: VIF Testing for KAC as DV in T3 

 

 
 

  

    Mean VIF        3.16

                                    

DegreeofCo~y        1.03    0.966224

 N_Citations        1.04    0.959452

KnowledgeA~y        1.10    0.906737

Ctrl_NumUn~s        1.18    0.844649

Engineerin~y        4.06    0.246495

ICT_ShareP~d        4.31    0.232111

Ctrl_ProbF~s        5.97    0.167636

Ctrl_ProbF~n        6.58    0.152077

                                    

    Variable         VIF       1/VIF  

    Mean VIF        4.58

                                    

 N_Citations        1.04    0.963007

DegreeofCo~y        1.05    0.953848

KnowledgeA~y        1.15    0.872457

Ctrl_NumUn~s        1.40    0.715234

Engineerin~y        4.16    0.240665

ICT_ShareP~d        6.35    0.157590

Ctrl_ProbF~s        9.80    0.102027

Ctrl_ProbF~n       11.75    0.085131

                                    

    Variable         VIF       1/VIF  

    Mean VIF        4.74

                                    

 N_Citations        1.03    0.973428

DegreeofCo~y        1.09    0.918066

KnowledgeA~y        1.15    0.868279

Ctrl_NumUn~s        1.43    0.698532

Engineerin~y        3.65    0.274003

ICT_ShareP~d        6.39    0.156562

Ctrl_ProbF~s       10.22    0.097824

Ctrl_ProbF~n       12.95    0.077191

                                    

    Variable         VIF       1/VIF  
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Table 53: Turbulence with ICT 

 

 

 
 

 

 

 

  

                                                                              

       _cons     .5004216   .7142492     0.70   0.487    -.9315619    1.932405

      block1     .7197639   .1381266     5.21   0.000     .4428368     .996691

                                                                              

      block3        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    2041.94819    55  37.1263308           Root MSE      =  5.0161

                                                       Adj R-squared =  0.3223

    Residual      1358.724    54  25.1615556           R-squared     =  0.3346

       Model    683.224191     1  683.224191           Prob > F      =  0.0000

                                                       F(  1,    54) =   27.15

      Source         SS       df       MS              Number of obs =      56

. regress block3 block1
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APPENDIX A2 – STUDY 2 

 

 

Graph 1: Raw LSC Data vs Normalized LSC data 
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Table 2: LSC as DV: Descriptive Statistics, all periods 

 

 
 

 

Table 3: LSC as DV: Correlation Table, all periods 

 

 
 

Table 4: LSC as DV: VIF, all periods 

 

 

DegreeofCo~y     1081240    .6557063    .2771908   1.19e-06    .916511

N_Subclasses     1081240    4.612923    3.528763          2        215

N_Location~n     1081240    13.88387    31.18193          2       5784

CountryDis~e     1081240    7.712113    3.974151          0   15.81663

Inte~KSCxICT     1081240    1.188928    1.396714  -2.413817   7.791789

                                                                      

Inter~ACxICT     1081240    1.080811    1.162463  -.6413302    6.08271

ICT_ShareP~d     1081240     .468204    .4502376          0    .925244

KnowledgeS~y     1081240    2.311074    1.179264  -3.912023   8.421334

KnowledgeA~y     1081240    2.094046    .8780738   -1.94591   6.574169

LocationSo~y     1081240    3.574587    1.835641  -2.752054   14.02869

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ntryConnectivity

> on_KSCxICT CountryDistance N_LocationCitation N_Subclasses DegreeofCou

> edgeSourcingComplexity ICT_SharePerField Interaction_KACxICT Interacti

. summarize LocationSourcingComplexity KnowledgeArtifactComplexity Knowl

DegreeofCo~y    -0.1431   0.0392   0.1834   0.0668   0.0428   0.1158  -0.1237   0.1403   0.0304   1.0000

N_Subclasses     0.0283   0.4618   0.0114  -0.1351   0.0002  -0.1053   0.0088   0.0182   1.0000

N_Location~n     0.3479   0.0592   0.5010   0.0799   0.0860   0.3102   0.2499   1.0000

CountryDis~e     0.4463  -0.0084   0.3070   0.0660   0.0622   0.1822   1.0000

Inter~SCxICT     0.3003   0.3722   0.5816   0.8256   0.8548   1.0000

Inter~ACxICT     0.1856   0.5073   0.3271   0.8997   1.0000

ICT_ShareP~d     0.1775   0.2539   0.2013   1.0000

KnowledgeS~y     0.4593   0.4771   1.0000

KnowledgeA~y     0.1602   1.0000

LocationSo~y     1.0000

                                                                                                        

               Locati~y K~Arti~y K~Sour~y ICT_Sh~d I~ACxICT I~SCxICT Countr~e N_Loca~n N_Subc~s Degree~y

(obs=1081240)

> yConnectivity

> d Interaction_KACxICT Interaction_KSCxICT CountryDistance N_LocationCitation N_Subclasses DegreeofCountr

. corr LocationSourcingComplexity KnowledgeArtifactComplexity KnowledgeSourcingComplexity ICT_SharePerFiel

    Mean VIF        4.72

                                    

DegreeofCo~y        1.11    0.900193

CountryDis~e        1.23    0.810127

N_Location~n        1.49    0.672019

N_Subclasses        1.59    0.629914

KnowledgeA~y        3.44    0.290858

KnowledgeS~y        3.91    0.255550

ICT_ShareP~d        8.45    0.118397

Inte~KSCxICT        9.28    0.107704

Inter~ACxICT       12.00    0.083346

                                    

    Variable         VIF       1/VIF  
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Table 5: KAC as DV: Descriptive Statistics, all periods 

 
 

Table 6: KAC as DV: Correlation Table, all periods 

 
 

 

Table 7: KAC as DV: VIF, all periods 

 
 

  

Ctrl_ProbF~s     1081240    .2724471    .1155893   .0033197   .3983796

Ctrl_NumUn~n     1081240    2.419081    1.862778          1         43

Ctrl_NumUn~s     1081240    1.482175    .6904734          1         13

Inte~KSCxICT     1081240    1.188928    1.396714  -2.413817   7.791789

                                                                      

Inte~LSCxICT     1081240    1.820369    1.973125  -2.347016   12.97996

ICT_ShareP~d     1081240     .468204    .4502376          0    .925244

LocationSo~y     1081240    3.574587    1.835641  -2.752054   14.02869

KnowledgeS~y     1081240    2.311074    1.179264  -3.912023   8.421334

KnowledgeA~y     1081240    2.094046    .8780738   -1.94591   6.574169

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> on Ctrl_ProbFieldAcitesB_Subclass

> on_KSCxICT Ctrl_NumUniqueClasses_Subclass Ctrl_NumUniqueClasses_Citati

> tionSourcingComplexity ICT_SharePerField Interaction_LSCxICT Interacti

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity Loca

Ctrl_ProbF~s     0.3053   0.2429   0.1364   0.5275   0.4830   0.4925  -0.3163  -0.1235   1.0000

Ctrl_NumUn~n    -0.0330   0.3774   0.3565  -0.0009   0.1324   0.1535   0.2101   1.0000

Ctrl_NumUn~s     0.0218  -0.1096  -0.0633  -0.2079  -0.1910  -0.2080   1.0000

Inte~KSCxICT     0.3722   0.5816   0.3003   0.8256   0.8686   1.0000

Inte~LSCxICT     0.2583   0.3494   0.4034   0.8970   1.0000

ICT_ShareP~d     0.2539   0.2013   0.1775   1.0000

LocationSo~y     0.1602   0.4593   1.0000

KnowledgeS~y     0.4771   1.0000

KnowledgeA~y     1.0000

                                                                                               

               K~Arti~y K~Sour~y Locati~y ICT_Sh~d I~LSCx~T ~KSCxICT Ctrl_N~s Ctrl_N~n Ctrl_P~s

    Mean VIF        4.55

                                    

Ctrl_NumUn~s        1.18    0.850357

Ctrl_NumUn~n        1.39    0.718542

Ctrl_ProbF~s        1.56    0.640379

LocationSo~y        1.88    0.532492

KnowledgeS~y        3.12    0.320477

ICT_ShareP~d        8.09    0.123589

Inte~KSCxICT        9.27    0.107894

Inte~LSCxICT        9.94    0.100575

                                    

    Variable         VIF       1/VIF  
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Table 8: KSC as DV: Descriptive Statistics, all periods 

 
 

Table 9: KSC as DV: Correlation Table, all periods 

 
 

Table 10: KSC as DV: VIF, all periods 

 

Ctrl_NumUn~s     1081240    1.482175    .6904734          1         13

Ctrl_NumUn~n     1081240    2.419081    1.862778          1         43

DegreeofCo~y     1081240    .6557063    .2771908   1.19e-06    .916511

Inte~LSCxICT     1081240    1.820369    1.973125  -2.347016   12.97996

                                                                      

Inter~ACxICT     1081240    1.080811    1.162463  -.6413302    6.08271

ICT_ShareP~d     1081240     .468204    .4502376          0    .925244

KnowledgeA~y     1081240    2.094046    .8780738   -1.94591   6.574169

LocationSo~y     1081240    3.574587    1.835641  -2.752054   14.02869

KnowledgeS~y     1081240    2.311074    1.179264  -3.912023   8.421334

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> tion Ctrl_NumUniqueClasses_Subclass

> ction_LSCxICT  DegreeofCountryConnectivity Ctrl_NumUniqueClasses_Cita

> ledgeArtifactComplexity  ICT_SharePerField Interaction_KACxICT Intera

. summarize KnowledgeSourcingComplexity LocationSourcingComplexity Know

Ctrl_NumUn~s    -0.1096  -0.0633   0.0218  -0.2079  -0.1862  -0.1910  -0.0164   0.2101   1.0000

Ctrl_NumUn~n     0.3774   0.3565  -0.0330  -0.0009  -0.0176   0.1324   0.1350   1.0000

DegreeofCo~y     0.1834  -0.1431   0.0392   0.0668   0.0428   0.0124   1.0000

Inte~LSCxICT     0.3494   0.4034   0.2583   0.8970   0.8274   1.0000

Inter~ACxICT     0.3271   0.1856   0.5073   0.8997   1.0000

ICT_ShareP~d     0.2013   0.1775   0.2539   1.0000

KnowledgeA~y     0.4771   0.1602   1.0000

LocationSo~y     0.4593   1.0000

KnowledgeS~y     1.0000

                                                                                               

               K~Sour~y Locati~y K~Arti~y ICT_Sh~d I~ACxICT I~LSCx~T Degree~y Ctrl_N~n Ctrl_N~s

(obs=1081240)

> Classes_Citation Ctrl_NumUniqueClasses_Subclass

> arePerField Interaction_KACxICT Interaction_LSCxICT  DegreeofCountryConnectivity Ctrl_NumUnique

. corr KnowledgeSourcingComplexity LocationSourcingComplexity KnowledgeArtifactComplexity  ICT_Sh

    Mean VIF        4.55

                                    

DegreeofCo~y        1.10    0.912207

Ctrl_NumUn~s        1.13    0.881091

Ctrl_NumUn~n        1.33    0.753326

LocationSo~y        1.71    0.583905

KnowledgeA~y        1.98    0.504187

Inte~LSCxICT        7.71    0.129636

Inter~ACxICT        9.54    0.104839

ICT_ShareP~d       11.92    0.083903

                                    

    Variable         VIF       1/VIF  
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APPENDIX A3 – STUDY 3 

 

Table 1: LSC as DV Full Regression (Model 5)  

 
Graph 2: Histogram of LSC Residuals  

  
 

Graph 3: Graph of LSC Residuals by KAC    Graph 4: Graph of LSC Residuals by KSC 

 

      

. twoway scatter residuals KnowledgeArtifactComplexity

                                                                                             

                      _cons     1.618861   .0065043   248.89   0.000     1.606112    1.631609

DegreeofCountryConnectivity     -1.37364   .0052834  -259.99   0.000    -1.383995   -1.363285

               N_Subclasses     .0394424   .0004961    79.50   0.000       .03847    .0404148

         N_LocationCitation     .0075942   .0000544   139.71   0.000     .0074877    .0077008

            CountryDistance     .1235417   .0003885   318.03   0.000     .1227804    .1243031

        Interaction_KSCxICT    -.3206777   .0030313  -105.79   0.000    -.3266191   -.3147364

        Interaction_KACxICT    -.1179875   .0041403   -28.50   0.000    -.1261024   -.1098725

          ICT_SharePerField     1.478834   .0089691   164.88   0.000     1.461254    1.496413

KnowledgeSourcingComplexity     .7348574   .0023308   315.28   0.000     .7302891    .7394258

KnowledgeArtifactComplexity    -.1268554   .0029342   -43.23   0.000    -.1326063   -.1211044

                                                                                             

 LocationSourcingComplexity        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                             

       Total    3643320.091081239  3.36957887           Root MSE      =  1.4448

                                                       Adj R-squared =  0.3805

    Residual    2257146.261081230  2.08757273           R-squared     =  0.3805

       Model    1386173.82     9  154019.314           Prob > F      =  0.0000

                                                       F(  9,1081230) =73779.14

      Source         SS       df       MS              Number of obs = 1081240
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Table 5: Descriptives of LSC Normal Residuals  

 
 

Table 6: Descriptives of LSC Negative Residual Outliers 

 
 

Table 7: Descriptives of LSC Positive Residual Outliers 

 
  

Inte~KSCxICT     1081084     1.18901    1.396617  -2.413817    7.67268

Inter~ACxICT     1081084     1.08094    1.162478  -.6413302    6.08271

DegreeofCo~y     1081084    .6557389     .277176   .0000255    .916511

N_Subclasses     1081084    4.612272    3.516222          2        208

N_Location~n     1081084    13.85079    29.95792          2       1122

                                                                      

CountryDis~e     1081084    7.711886    3.974051          0   15.15303

ICT_ShareP~d     1081084    .4682572    .4502359          0    .925244

KnowledgeA~y     1081084     2.09413    .8780352   -1.94591   6.574169

KnowledgeS~y     1081084    2.311182    1.178981  -3.912023   8.292603

LocationSo~y     1081084    3.573725    1.834153  -2.752054   14.02869

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eraction_KSCxICT

> ation N_Subclasses DegreeofCountryConnectivity Interaction_KACxICT Int

> edgeArtifactComplexity ICT_SharePerField CountryDistance N_LocationCit

. summarize LocationSourcingComplexity KnowledgeSourcingComplexity Knowl

Inte~KSCxICT          28    3.360441    3.237311   .0001239   7.791789

Inter~ACxICT          28    .9808184    1.009126   .0005842   3.195497

DegreeofCo~y          28    .7937512    .2150259   .1303003    .916511

N_Subclasses          28    29.28571    54.24421          2        215

N_Location~n          28    1315.071    1116.066          2       5784

                                                                      

CountryDis~e          28    12.83266    4.168714          0   15.81663

ICT_ShareP~d          28    .4940992    .4660652    .000172    .925244

KnowledgeA~y          28    2.442424    .9166489   1.067262   4.443154

KnowledgeS~y          28    5.785041    2.505992   .7205462   8.421334

LocationSo~y          28    6.585361    4.282881  -2.752054   10.04992

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eraction_KSCxICT

> ation N_Subclasses DegreeofCountryConnectivity Interaction_KACxICT Int

> edgeArtifactComplexity ICT_SharePerField CountryDistance N_LocationCit

. summarize LocationSourcingComplexity KnowledgeSourcingComplexity Knowl

Inte~KSCxICT         128    .0206672    .1985698  -.0113671   2.248932

Inter~ACxICT         128    .0168963    .1182705  -.0045939    1.34293

DegreeofCo~y         128    .3503254     .237231   1.19e-06   .6910384

N_Subclasses         128    4.710938    2.755531          2         16

N_Location~n         128    8.617188    10.04958          2         69

                                                                      

CountryDis~e         128    8.504746    4.012353          0   13.18701

ICT_ShareP~d         128    .0128149    .0813948    .000408    .925244

KnowledgeA~y         128    1.303806    .8302609  -.7396672   4.098377

KnowledgeS~y         128    .6443403    .7740527  -1.830226   2.430637

LocationSo~y         128    10.19195    .7784857   8.278176   12.72807

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> eraction_KSCxICT

> ation N_Subclasses DegreeofCountryConnectivity Interaction_KACxICT Int

> edgeArtifactComplexity ICT_SharePerField CountryDistance N_LocationCit

. summarize LocationSourcingComplexity KnowledgeSourcingComplexity Knowl
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Table 8: Normal LSC, Location Descriptives 

tech56 
Primary 
Continent 

Average # of 
Locations 

Average # 
of 
Subclasses _freq 

8 Africa 6.2 6.6 5 

8 Asia 7.081633 7.897959 198 

8 Australia 8.25 6 20 

8 Europe 11.63314 9.189349 441 

8 North America 35.72274 8.735675 1691 

8 South America 5.6 6.8 5 

12 Africa 9.125 6.6875 156 

12 Asia 37.14654 15.05263 25068 

12 Australia 23.56477 8.238342 2014 

12 Europe 42.81807 16.23537 48629 

12 North America 93.82921 15.27495 134496 

12 South America 11.56589 7.356589 332 

16 Africa 10.82955 5.443182 194 

16 Asia 33.77121 11.26786 24013 

16 Australia 39.34842 7.936652 789 

16 Europe 35.41259 10.89277 24078 

16 North America 93.58113 10.77523 61939 

16 South America 10.97 6.74 207 

29 Africa 7.457627 4.932203 133 

29 Asia 25 7.795918 28866 

29 Australia 19.86735 5.627551 927 

29 Europe 29.06195 7.842478 33490 

29 North America 84.26217 7.637897 72666 

29 South America 12.78261 4.880435 295 

40 Africa 6.4375 5.5625 17 

40 Asia 72.17748 9.286896 53988 

40 Australia 15.4375 5.640625 79 

40 Europe 37.26154 8.702564 9162 

40 North America 112.6153 7.973917 42038 

40 South America 4 3.714286 7 

41 Africa 23.32381 4.809524 189 

41 Asia 69.01104 9.629399 130122 

41 Australia 46.94978 6.305677 1845 

41 Europe 85.04357 8.084329 43867 

41 North America 187.836 8.970702 274135 

41 South America 16.99123 5.175438 214 

42 Africa 9.555555 2.888889 11 

42 Asia 24.97378 5.573034 13955 
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42 Australia 10.90541 3.878378 243 

42 Europe 19.53419 5.277778 8893 

42 North America 64.33488 5.178295 13548 

42 South America 11.30769 4 59 

43 Africa 6.571429 3.714286 17 

43 Asia 25.27723 5.452145 8355 

43 Australia 10.48387 3.903226 104 

43 Europe 19.93061 5.342857 5454 

43 North America 61.29508 5.400273 14105 

43 South America 9.625 3.416667 25 

 

 

Table 9: Negative LSC, Location Descriptives  

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # 
of 
Subclasses _freq 

12 Europe 5.25 103.5 4 

12 
North 
America 749.75 81.25 4 

16 
North 
America 1282.25 3.5 5 

40 
North 
America 1474 3 1 

41 
North 
America 1847.07 4.35714 14 

 

 

Table 10: Positive LSC, Location Descriptives 

Tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

12 Africa 6 4.357143 18 

12 
South 
America 6 5.777778 13 

16 Africa 9.555555 5.259259 31 

16 Europe 2 7 1 

16 
South 
America 11.10345 5.241379 31 

29 Africa 10.10526 3.263158 19 

29 
South 
America 5.888889 4.222222 11 

41 Africa 69 3 1 

42 Africa 4 2 1 

43 Africa 7 10 1 

43 Australia 2 3 1 
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Table 11: KSC as DV Full Regression (Model 5) 

 
 

Graph 12: Histogram of KSC Residuals 

 

 
 

Graph 13: Graph of KSC Residuals by KAC  Graph 14: Graph of KSC Residuals by LSC 

 

         
 

  

                         _cons     .1849587   .0038687    47.81   0.000     .1773761    .1925413

Ctrl_NumUniqueClasses_Subclass    -.2604873   .0012026  -216.60   0.000    -.2628444   -.2581302

Ctrl_NumUniqueClasses_Citation     .1735882   .0004821   360.07   0.000     .1726433    .1745331

   DegreeofCountryConnectivity     .7631554   .0029441   259.21   0.000      .757385    .7689258

           Interaction_LSCxICT     .2182697   .0010971   198.94   0.000     .2161193    .2204201

           Interaction_KACxICT     .1858726   .0020708    89.76   0.000     .1818139    .1899313

             ICT_SharePerField    -1.230466   .0059766  -205.88   0.000     -1.24218   -1.218752

   KnowledgeArtifactComplexity     .5095466   .0012501   407.60   0.000     .5070964    .5119968

    LocationSourcingComplexity     .1406441   .0005557   253.10   0.000      .139555    .1417332

                                                                                                

   KnowledgeSourcingComplexity        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                                

       Total    1503640.051081239   1.3906639           Root MSE      =  .81048

                                                       Adj R-squared =  0.5277

    Residual    710237.1691081231  .656878289           R-squared     =  0.5277

       Model    793402.877     8  99175.3596           Prob > F      =  0.0000

                                                       F(  8,1081231) =       .

      Source         SS       df       MS              Number of obs = 1081240
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Table 15: Descriptives of KSC Normal Residuals  

 
 

Table 16: Descriptives of KSC Negative Residual Outliers 

 
 

Table 17: Descriptives of KSC Positive Residual Outliers 

 
 

 

  

Inte~LSCxICT     1080412    1.820397    1.972365  -2.347016   12.97996

Inter~ACxICT     1080412    1.081037    1.162446  -.6413302   5.462739

Ctrl_NumUn~s     1080412    1.482043    .6903185          1         13

Ctrl_NumUn~n     1080412    2.417689    1.856235          1         36

                                                                      

DegreeofCo~y     1080412    .6556897    .2772194   1.19e-06    .916511

ICT_ShareP~d     1080412    .4683085    .4502319          0    .925244

KnowledgeA~y     1080412    2.094048    .8779352   -1.94591   6.505368

LocationSo~y     1080412    3.573585    1.834894  -2.752054   14.02869

KnowledgeS~y     1080412    2.312393    1.176454  -2.515678   8.421334

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> on_KACxICT Interaction_LSCxICT

> trl_NumUniqueClasses_Citation Ctrl_NumUniqueClasses_Subclass Interacti

> edgeArtifactComplexity ICT_SharePerField DegreeofCountryConnectivity C

. summarize KnowledgeSourcingComplexity LocationSourcingComplexity Knowl

Inte~LSCxICT         694    1.995043    2.887499   .0008064   11.51995

Inter~ACxICT         694    .8731838    1.193237  -.0049593    6.08271

Ctrl_NumUn~s         694    1.635447     .904349          1          7

Ctrl_NumUn~n         694    4.409222    6.123522          1         43

                                                                      

DegreeofCo~y         694    .6695491    .2335763   .0034276    .916511

ICT_ShareP~d         694    .3643693    .4465498    .000408    .925244

KnowledgeA~y         694    2.096435    1.064771  -.7985078   6.574169

LocationSo~y         694    4.697198    2.285596   1.974822   12.45072

KnowledgeS~y         694   -.4391304    1.294595  -3.912023    7.31718

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> on_KACxICT Interaction_LSCxICT

> trl_NumUniqueClasses_Citation Ctrl_NumUniqueClasses_Subclass Interacti

> edgeArtifactComplexity ICT_SharePerField DegreeofCountryConnectivity C

. summarize KnowledgeSourcingComplexity LocationSourcingComplexity Knowl

Inte~LSCxICT         134    .6878997     1.92155  -.4974305   7.074971

Inter~ACxICT         134    .3356967    .7308676  -.0000865   2.355221

Ctrl_NumUn~s         134    1.753731    .4971583          1          4

Ctrl_NumUn~n         134    3.335821    1.536249          1          9

                                                                      

DegreeofCo~y         134    .7178768     .245207   .0736254    .916511

ICT_ShareP~d         134    .1627733    .3386604    .000172    .925244

KnowledgeA~y         134    2.065447    .9326264  -.5031036   4.326877

LocationSo~y         134    5.833288    2.077846  -1.142616   8.353377

KnowledgeS~y         134    5.920385    1.042183   3.061534   7.728779

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> on_KACxICT Interaction_LSCxICT

> trl_NumUniqueClasses_Citation Ctrl_NumUniqueClasses_Subclass Interacti

> edgeArtifactComplexity ICT_SharePerField DegreeofCountryConnectivity C

. summarize KnowledgeSourcingComplexity LocationSourcingComplexity Knowl
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Table 18: Normal KSC 

 

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

8 Africa 6.2 6.6 5 

8 Asia 7.081633 7.897959 198 

8 Australia 8.25 6 20 

8 Europe 11.63314 9.189349 441 

8 
North 

America 35.72274 8.735675 1691 

8 
South 

America 5.6 6.8 5 

12 Africa 9.259259 6.444445 173 

12 Asia 37.11054 15.06612 25061 

12 Australia 23.56477 8.238342 2010 

12 Europe 42.2707 16.49745 48604 

12 
North 

America 93.72511 15.4215 134387 

12 
South 

America 11.53383 7.360902 345 

16 Africa 11.30303 5.515152 223 

16 Asia 33.90583 11.18386 23935 

16 Australia 38.83256 7.190698 775 

16 Europe 35.10668 10.85698 24005 

16 
North 

America 94.24951 10.68027 61788 

16 
South 

America 11.25455 6.654545 233 

29 Africa 7.939394 4.818182 151 

29 Asia 23.77823 7.829569 28855 

29 Australia 19.86735 5.627551 926 

29 Europe 29.06195 7.842478 33484 

29 
North 

America 83.62915 7.625895 72643 

29 
South 

America 12.57447 4.925532 306 

40 Africa 6.615385 5.230769 14 

40 Asia 72.17748 9.286896 53981 

40 Australia 15.63492 5.555555 78 

40 Europe 37.26712 8.702055 9161 

40 
North 

America 113.2491 7.971601 42037 

40 
South 

America 4 3.714286 7 
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41 Africa 24.79167 4.479167 165 

41 Asia 69.07538 9.612724 130070 

41 Australia 47.73942 5.792873 1805 

41 Europe 85.04357 8.084329 43819 

41 
North 

America 191.5367 8.952576 274050 

41 
South 

America 16.83809 4.971428 195 

42 Africa 9.555555 2.888889 12 

42 Asia 24.97378 5.573034 13954 

42 Australia 10.90541 3.878378 243 

42 Europe 19.53419 5.277778 8890 

42 
North 

America 63.95186 5.167702 13546 

42 
South 

America 11.30769 4 59 

43 Africa 6.6 4.133333 18 

43 Asia 25.27723 5.452145 8355 

43 Australia 10.48387 3.903226 105 

43 Europe 19.93061 5.342857 5454 

43 
North 

America 61.29508 5.400273 14105 

43 
South 

America 9.625 3.416667 25 

 

 

Table 19: Negative KSC 

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

12 Africa 6 28 1 

12 Asia 5 11.66667 3 

12 Australia 4.5 10.75 4 

12 Europe 3.333333 8.111111 10 

12 
North 
America 41.7037 10.7037 30 

16 Africa 2 8.5 2 

16 Asia 3.659091 9.818182 78 

16 Australia 31.16667 20.41667 14 

16 Europe 16.26415 9.716981 74 

16 
North 
America 78.51305 10.42609 156 

16 
South 
America 5.25 9 5 

29 Africa 47 4 1 
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29 Asia 60.9 4.7 10 

29 Australia 2 5 1 

29 Europe 7.6 4.2 6 

29 
North 
America 82.55 7.25 21 

40 Africa 5.666667 7 3 

40 Asia 6.142857 6.571429 7 

40 Australia 3 11 1 

40 Europe 34 9 1 

40 
North 
America 109.5 11 2 

41 Africa 6.217391 5.652174 25 

41 Asia 8.138889 8.138889 47 

41 Australia 6.6 13.33333 40 

41 Europe 5.558824 7.5 46 

41 
North 
America 156.7937 8.507936 81 

41 
South 
America 12.21053 5.736842 19 

42 Asia 5 8 1 

42 Europe 4 3.333333 3 

42 
North 
America 158 7 2 

 

 

 

Table 20: Positive KSC 

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

12 Asia 64 2.333333 4 

12 Europe 101.6842 3.631579 19 

12 
North 
America 157.2639 3.041667 83 

29 Asia 98 2 1 

29 
North 
America 31.5 2 2 

41 Asia 16.8 2.8 5 

41 Europe 10 2.5 2 

41 
North 
America 241.7778 2.333333 18 
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Table 21: KAC as DV Full Regression (Model 5) 

 
 

Graph 22: Histogram of KAC Residuals  

 

 
 

Graph 23: Graph of KAC Residuals by KSC  Graph 24: Graph of KAC Residuals by LSC 

 

      

                                                                                                

                         _cons     .6861145   .0035285   194.45   0.000     .6791988    .6930302

Ctrl_ProbFieldAcitesB_Subclass     1.257897   .0074523   168.79   0.000      1.24329    1.272503

Ctrl_NumUniqueClasses_Citation     -.110635   .0004369  -253.23   0.000    -.1114913   -.1097787

Ctrl_NumUniqueClasses_Subclass     .2589002   .0010647   243.18   0.000     .2568135    .2609869

   DegreeofCountryConnectivity    -.2574291   .0026666   -96.54   0.000    -.2626556   -.2522026

           Interaction_KSCxICT     -.077458   .0014778   -52.41   0.000    -.0803545   -.0745614

           Interaction_LSCxICT    -.0582302   .0010862   -53.61   0.000    -.0603591   -.0561014

             ICT_SharePerField     .6080385   .0042942   141.59   0.000      .599622    .6164551

    LocationSourcingComplexity    -.0161313   .0005199   -31.03   0.000    -.0171503   -.0151124

   KnowledgeSourcingComplexity      .471204   .0010283   458.25   0.000     .4691887    .4732194

                                                                                                

   KnowledgeArtifactComplexity        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                                

       Total    833650.0241081239  .771013646           Root MSE      =  .70487

                                                       Adj R-squared =  0.3556

    Residual    537202.5851081230  .496843951           R-squared     =  0.3556

       Model    296447.439     9  32938.6043           Prob > F      =  0.0000

                                                       F(  9,1081230) =66295.67

      Source         SS       df       MS              Number of obs = 1081240
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Table 25: Descriptives of KAC Normal Residuals  

 
 

Table 26: Descriptives of KAC Negative Residual Outliers   

 
 

Table 27: Descriptives of KAC Positive Residual Outliers  

 
 

  

Inte~LSCxICT     1080777    1.821124    1.973183  -2.347016   12.97996

ICT_ShareP~d     1080777    .4683989    .4502308          0    .925244

Ctrl_ProbF~s     1080777     .272421    .1156049   .0033197   .3983796

Ctrl_NumUn~n     1080777    2.419412    1.862556          1         43

                                                                      

Ctrl_NumUn~s     1080777    1.482143    .6905269          1         13

CountryDis~e     1080777    7.713711    3.973176          0   15.81663

LocationSo~y     1080777    3.574859    1.835816  -2.752054   14.02869

KnowledgeS~y     1080777    2.311176    1.179323  -3.912023   8.421334

KnowledgeA~y     1080777     2.09273    .8756745   -1.94591   6.041676

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ePerField Interaction_LSCxICT

> Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass ICT_Shar

> tionSourcingComplexity CountryDistance Ctrl_NumUniqueClasses_Subclass 

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity Loca

Inte~LSCxICT          13    .0046803    .0055462  -.0003541   .0121786

ICT_ShareP~d          13    .0008153    .0007737    .000172   .0017501

Ctrl_ProbF~s          13    .2811902    .0271264   .2273428   .3497039

Ctrl_NumUn~n          13    2.461538    1.198289          1          4

                                                                      

Ctrl_NumUn~s          13    1.923077    .2773501          1          2

CountryDis~e          13    9.629912    4.613576          0   13.80248

LocationSo~y          13    3.333904    3.246436  -2.058907   6.958786

KnowledgeS~y          13    3.255229    1.617182   .6931472   5.589104

KnowledgeA~y          13   -.5852912    .5943401  -1.403389   .3022808

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ePerField Interaction_LSCxICT

> Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass ICT_Shar

> tionSourcingComplexity CountryDistance Ctrl_NumUniqueClasses_Subclass 

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity Loca

Inte~LSCxICT         450    .0588682    .5035487   .0008064   7.507423

ICT_ShareP~d         450    .0135826    .1015873    .000408    .925244

Ctrl_ProbF~s         450    .3349943    .0338984     .03585   .3983796

Ctrl_NumUn~n         450    1.622222    2.212426          1         30

                                                                      

Ctrl_NumUn~s         450    1.546667    .5493872          1          4

CountryDis~e         450    3.817502    4.366336          0    13.5496

LocationSo~y         450    2.926808    1.106238   1.974822   10.42102

KnowledgeS~y         450    2.041047    .9658013  -1.143564   6.984927

KnowledgeA~y         450    5.331803    .4423981   3.306704   6.574169

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

> ePerField Interaction_LSCxICT

> Ctrl_NumUniqueClasses_Citation Ctrl_ProbFieldAcitesB_Subclass ICT_Shar

> tionSourcingComplexity CountryDistance Ctrl_NumUniqueClasses_Subclass 

. summarize KnowledgeArtifactComplexity KnowledgeSourcingComplexity Loca
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Table 28: Normal KAC 

tech56 Primary Continent 
Average # of 
Locations  

Average # of 
Subclasses _freq 

8 Africa 6.2 6.6 5 

8 Asia 7.081633 7.897959 198 

8 Australia 8.25 6 20 

8 Europe 11.63314 9.189349 441 

8 North America 35.72274 8.735675 1691 

8 South America 5.6 6.8 5 

12 Africa 9.219512 6.707317 174 

12 Asia 37.18285 14.90186 25048 

12 Australia 23.61559 8.2 2007 

12 Europe 42.79911 16.26319 48568 

12 North America 94.56042 15.26647 134150 

12 South America 11.53383 7.360902 345 

16 Africa 11.21 5.56 225 

16 Asia 33.8757 11.20605 24010 

16 Australia 39.15454 7.740909 788 

16 Europe 35.45158 10.87748 24077 

16 North America 95.644 10.70424 61936 

16 South America 11.19643 6.741071 238 

29 Africa 8.522388 4.80597 152 

29 Asia 25 7.795918 28866 

29 Australia 19.86735 5.627551 927 

29 Europe 29.06195 7.842478 33490 

29 North America 84.26217 7.637897 72666 

29 South America 12.57447 4.925532 306 

40 Africa 6.4375 5.5625 17 

40 Asia 72.21515 9.251432 53987 

40 Australia 15.4375 5.640625 79 

40 Europe 37.31849 8.660959 9161 

40 North America 113.2491 7.971601 42038 

40 South America 4 3.714286 7 

41 Africa 23.32381 4.809524 190 

41 Asia 69.01104 9.629399 130122 

41 Australia 47.03501 5.932166 1844 

41 Europe 85.04357 8.084329 43867 

41 North America 193.1767 8.942696 274147 

41 South America 16.99123 5.175438 214 

42 Africa 9.555555 2.888889 12 

42 Asia 25.05639 5.454887 13954 

42 Australia 10.90541 3.878378 243 
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42 Europe 19.53419 5.277778 8893 

42 North America 64.33488 5.178295 13548 

42 South America 11.30769 4 59 

43 Africa 6.6 4.133333 18 

43 Asia 25.27723 5.452145 8355 

43 Australia 10.48387 3.903226 105 

43 Europe 19.93061 5.342857 5454 

43 North America 61.29508 5.400273 14105 

43 South America 9.625 3.416667 25 

 

 

 

Table 29: Negative KAC 

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

12 Asia 24.5 2 46 

12 Europe 34.6 2.2 40 

12 
North 
America 74.4 2 490 

 

 

 

Table 30: Positive KAC 

tech56 
Primary 
Continent 

Average # of 
Locations  

Average # of 
Subclasses _freq 

12 Asia 2.8 20.6 30 

12 Australia 5.8 13.2 26 

12 Europe 3.27907 24.30233 115 

12 
North 
America 7.801802 17.42342 1486 

16 Asia 2.666667 29.66667 5 

16 Australia 82 51 81 

16 Europe 2 18.5 2 

16 
North 
America 14.375 31.125 107 

40 Asia 13 65 12 

40 Europe 4 33 3 

40 
North 
America 6 23 5 

41 Australia 8 177 7 

41 
North 
America 13 38.5 24 

42 Asia 3 37 2 
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Table 30: Patenting Percentage by Continent 

continent _freq Average  

Africa 6997 0.046% 

Asia 2242366 14.856% 

Australia 83409 0.553% 

Europe 1396400 9.251% 

North 
America 11354899 75.228% 

South 
America 9809 0.065% 

Total 15093880 100% 

 

 

 


