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Abstract of the dissertation

MICROWAVE ENABLED FABRICATION OF HIGHLY CONDUCTIVE

GRAPHENE AND POROUS CARBON/METAL HYBRIDS FO R SUSTAINABLE

CATALYSIS AND ENERGY STORAGE

By Keerthi Savaram
Dissertation Director: Prof. Huixin He

Carbon is the most abundant material next to oxygen in terms of sustainability. The
potential of carbon based materials has been recognized in recatdgsibgdhe discovery
of fullerene (1996 Nobel prize in chemistry), carbon nanotubes (2008 Kavli prize in
nanoscience) and graphene (2010 Nobel prize in physics). The synthesis of carbon
materials with well controlled morphologies lead to their exploratidmoth fundamental
research and industrial applications. Graphene also commonly referred to as a wonder
material has been under extensive research for more than a decade, due to its excellent
electronic, optical, thermal and mechanical properties. Howdlverealization of these
applications for practical purposes require its large scale synthesis. The common method
of graphene synthesis involves reduction of graphene oxide. Nevertheless, complete
restoration of intact graphene basal plane destroyedxigiation cannot be achieved,
limiting the application of as synthesized graphene in flexible macro electronics,
mechanically and electronically reinforced composites etc. Hence, research was pursued
in regards to achieve controlled oxidation, sufficienbiegh to overcome the Vander

Waals forces and preserving the graphene domains.



One such approach reported by our group is the solution processable graphene achieved
via controlled oxidation, by the use of nitronium oxidation approach. However, toxic NO
gases and byproducts generated during the synthesis, limits the scalability of this approach.
In this thesis, for the first time, we reportéee synergy opiranha etching solutiowith
intercalatedgraphite for thecontrolled oxidation of graphite particlesa microwave
heatingin chapter 2. The controlled oxidation leads to rapid (60 seconds) and direct
generation of tghly conductive, clean low oxygen containintaghene sheets without
releasing any detectable toxic gases or aromatiprbgucts as demotrated by gas
chromatographynass spectrometry. Thesighly conductive graphene sheets have unique
molecular structuredifferent from both graphene oxide and pristine graphene sheets.
They can be dispersed in both aqueous and common organic solvehtutwit
surfactants/ stabilizers producing -ickean?o
graphene films are generated simple filtration resulting in films with a conductivity of
2.26 x 18 S m!, the highest conductivity observed for graphenmadilassembledia
vacuum filtration from solution processable graphene sheets to date. Aftemr 20w
temperature annealing at 300, the conductivity further increased to 7.44 ¥ $0ont.
This ecefriendly and rapid approach for scalable productiorhighly conductive and
i c | e an o-phase graphenecsimeets would enable a broad spectrum of applications at
low cost.

Irrespective of the vast applications of highly conductive graphene, it
exhibits limited catalytic centers, is impewus, and limits the diffusion of ions. This
inadequacy can be overcome by the hole generation on highly conductive graphene.

Current approaches ftarge scale production of holey grapheequiregraphene oxide



(GO) or reduced GO (rGOas starting materig Thus generated holey graphene
derivativesstill contain alarge number of defecien their basaplanes which not only
complicates fundamental studies, but also influeseeinpractical applications due to
thar largely decreased conductivity, theal and chemical stabilityThis workrepors a
novel scalable approackxploiting the wireless joule heating mechanism provided by
microwave irradiation of partially oxidized graphite intercalation compoundsapter

3. The wireless joule heating meciem affords regiorselective heating, which not only
enablefabrication ofholey graphene materials wither basal plan@early intactbut also
engineers the edges associated with holes to berkzaggeometry. The termristine
holey graphenwas given,to differentiatefrom the holey graphene derivwags with basal
planedefects as reported in the literatur€he pristine holey grapheméth zigzag edges
were studied and explored as a metal free catalyst for reduction reacgsidmgdrogen
atan transfer mechanisnThe pristine holey grapheneanoplateletsiot only exhibited
high catalytic activityand desired selectivity, but alpoovided excellent chemical stability
for recyclability,which is very different fromits counterpart holey graphederivatives
with basal planelefectsIt was also reported that the reduction of nitrobenzene ogiaurs

condensation pathway with this catalyst.

To further provide insight into combustion of graphite in air with microwave irradiation,
the stabilized irdrcalated graphene without point defects was used to generate holes in
chapter 4. The ceintercalated @into graphite intercalated compound act as the internal
oxidant, to oxidize the carbon, along with the surrounding air. High local temperatures
were abieved via joule heating mechanism, hence promoting combustion of graphene to

generate holes and edges. We observed that in combination to hole generation, higher



conductivity was also observed in comparison to the holey graphene synthesized in
chapter 3. The highly conductive holey graphene was tested for their eleatatytic
activity in the reduction of oxygen. The reduction of oxygen ocdar8e pathway, where
peroxide with 90% yield was recorded. This opens path for onsite peroxide production in

alkaline media, and therefore allowing its use in bleaching industries.

In concern of carbon based materials being explored for catalysis, their high amount to
facilitate the reaction, limits practicality of the catalyst for industrial applications.
Howeve, the immobilization of metal nanoparticles onto porous carbon supports,
synthesized from sustainable and cheap biomass was widely pursued. It was widely
reported that the doping of carbon support with N further improved their interaction with
the metal ad promoted higher catalytic activity. khapter 5, for the first time, the
influence of P doped carbon support on catalytic activity of Pd was repArsagle step
microwave assisted fabrication of Pd embedded into porous phosphorous doped graphene
like carbon was demonstrated. Structural characterization revéméd the metal
nanoparticlesarein the range oflOnm with a surface area of 1133#g. The developed
method is not only sustainable as it is synthesized from bicanassntinutrient molecle

(phytic acid),but also energy efficient as microwave irradiation (50secisex for the
catalyst synthesisThe as synthesized catalyst recor@ 886 conversion with a TOF of
23000h for benzyl alcohol oxidationwhich remained constant even after e&ycles
indicating thestability of catalyst. Different wt% of Pd onto PGC was tested for their
alcohol oxidation capacity and found that the 3%t which activates Onore towards

4e in ORR has the besbnversion and selectivity



The biomass molecellphytic acid used for the synthesis of phosphorous doped carbon
support was also used as a phosphorous source in the synthesis of tin phosphéagesrin

6. Current studies have shown that sodium, a low cost and naturally abundant metal, can
act as a dwstituent for lithium in lithium ion batteries (LIB), hence, allowitigeir
applications in real world This transition towards the use of sodium ion batteries (SIB)
has entailedesearchto improve the cycle stability and energy density of battery by
introducing tin phosphideas anodes fobpatteries.Tin phosphides exhibit a sdtkealing
mechanism, hence decreases the capacity decay as observed in the case of Sn metal.
However, it was reported that the sedaling mechanism is not completely reversyik

partial pulverization observedh@&refore, we pursued a time efficient method to synthesize

tin phosphide in a phosphorous doped carbon matrix (SnP@®&chicrowave
irradiation. The SnP@PGc formed whested as anode for S§Bdemonstrated superior
capacity of 515 mAh/g after 750 cycles at a charge and discharge current of 0.2 C. The
superior cycle stability can be attributedtb@ protection against volume expansion by
phosphorous doped porous carbon shell during battery charge anargesphocss and

hence mitigatinghe pulverization of tin phosphides.

Vi
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Chapter 1: Introduction

1.1 Carbon and its allotropes

Carbon is the fourth most abundant elemamtearth and its various physical states as
allotropes can be attributed to its disparate hybridized electron configurationg,(sp’)sp

These result in the formation of varying types of carbarbon bonds (single, double,
triple, aromatic), which diier in strengths and spatial arrangements of electron orbitals,
allowing their occurrence as allotropes. Based on their physical form, carbon is
differentiated as either amorphous or crystalline carbon. The former carbon form consists
of activated carbonshereas the latter exhibits a wide variety of allotropes. Fullerenes (0D
with 3 carbons connected), carbon nanotubes (1D with 3 carbons connected), carbynes (1D
with 2 carbons connected), graphite and graphene (2D with 3 carbons connected), diamond,
londdaleite, cold compressed graphite (3D with 4 carbons connected) are the different

allotropes of crystalline carbon that exist in nature or can be syntheSigad(1.1).



Diamond: sp? Graphite:sp? Fullerene: sp?

Carbon nanotube: sp?

Amorphous carbon: sp®

Graphene: sp? Graphdiyne:sp2+sp

Figure 1.1. Natural and synthesized carbon allotroBes

1.1.1.Amorphous carbon

Amorphous carbon lacks crystallinity and its low density makes it more susceptible to
harsh oxidizing reagents. Most amorphous casbmntain microscopic crystals of either
graphitelike!? or diamondlike®! carbon.Commonly found amorphous carbon, such as
carbon black, activated carbon and coal, are synthesized by pyrdlisigoresence of
graphitelike domains in carbon black allows its usesaconductive filler in energy storage
devices and fuel cells, whereas the high surface area of activated carbon promotes its use
as a carbon support for metal nanoparticles which are used in catafygige 1.1.1

depicts the SEM images of various tgpe# amorphous carbon.
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Figure 1.11. The SEM mage of carbon black (a), activated carbon (b), @akith its
cross sectional view (d).

1.1.2.Crystalline carbon

As the name implies, carbon atoms are arranged in a crysieg.ldthe most abundant
naturally available crystalline carbon includes diamond and graphite. Diamond is known
for its strong rigidness and is mostly used in cutting and grinding tools, whereas graphite
is most commonly used as a lubricant due to the wea#dbetween carbon layers, owing

to its soft and slippery properties. The synthesized crystalline carbon allotropes include

fullerenes, carbon fibers, carbon nanotubes and graphened 1.1.2.



3 g
00um $S4800 10.0kV x20.0k SE(M)

$4800 2.0kV x11.0k SE(M)

Figure 1.12. SEM image of some otthe crystalline allotropesuch ascarbon fibers (a),
single walled carbon nanotubes (b), graphitewih its cross sectional view (d).




1.2. Graphene

(d) Reduced graphene oxide (rGO) (e) Graphene oxide (GO)

Figure 1. 2.1. Naturally occurring or synthesized 2D carbolotabpes®7l.

A single layer o hybridized carbon arranged in a honeycomb network is referred to as
graphene. The stacks of graphene are held togetherue¥®aals forces and is referred

to as graphite which can occur either naturally or be synthedtmpaé 1.2.1). Graphite

has been known as mineral for more than 500 years. Synthesis oflayeglgraphene can

be achieved by overcoming Vander Wadtsaation between the first and second carbon
layers in graphite, without disrupting adjacent sheets. In 2004, Geim and coworkers at
Manchester University exfoliated a single graphene layer using a scotch tape method,
which bestowed them the Nobel Prine2010. It is the strongest material by weight, and
exhibits superior properties such as (1) impermeability to ions and¥g@snechanical
stiffness (vyounf@sstremphdldd GPE) (4)dastitity, Bpthermal

conductivity (>3000WmR) (6) electron mobility (2.510°cmPvist)®l (7) optical
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transparency ( ~97.7%), (8) having large spring consta®tNiT)®, (9) sustaining high

densities of electric currét, (10) being chemically inert to various gases and (11) having

high surface area (263Gigi")*Y. Graphene is a semmetal with degenerate valence and
conduction band at K point in the Brillouin zone (occurring only for special unit cell
geometry and orientation relative to grapre6s hi gh d%.iTee usigugenmet r y
properties of graphene allow its application in @as fields such as electronics, photonics,

energy storage and generator, super capacitors, catalysts etc. The properties of graphene

with some of their applications are listedTiable 1.2.1

Table 12.1. The property of grapene and its respective applications.

Graphene Property Application

Transparency with electrical conductivity Flexible and optical electronics

Electrical and thermal conductivity Graphenebased paints for conductive in
in Li ion batteries as conducavfiller to
improve electrical conductivity and to he
dissipate the generated heaa thermal

conductivity.

Large surface area Support for loading metal nanoparticles

Large surface area + chemical purity + e| Sensors for the dection of glucose

of functionalization cholesterol, hemoglobin, drug deliver
etc.

Large surface area + conductivity Supercapacitors

Mechanical strength Tissue engineering and regenerat
medicine




The mentioned applications depend on reliability of producing hightysingle-layer
graphene in a scalable approach. Thedown or bottorup approaches are two different

strategies involved in graphene synthesis as showigire 1.2.2

(a) Micromechanical (b) Anodic Bonding () Photoexfoliation
cleavage

Positive Electrode

Sticky tape

T

Substrate

Negative Eectrode + Heater AR
(d) Liquid phase (e) Growth on SiC (f) Precipitation from
exfoliation (0001) metal
B /' Ssi-Face

Dispersed
graphene Y'Y Y

fiakon 9% ansic
L S g gl

(‘70’00

b i e

Metal substrate

\¥_//\,Ultrasound
(®) Chemical Vapour () Molecular beam (i) Chemical synthesis

Deposition epitaxy
".,\;; . Hydrocarbon gas —) —)

Metal substrati Substrate

Figure 1. 2.2. Different production and procesg techniques of Graphehe.

1.2.1.Bottom-up approach

The bottoraup gproachis achievedthrough organic synthesisof small molecule
precursors such as heparihexabenzocoroneh#, N,N’-bis(2,6diisopropyphneyh
3,4,9,10perylenetetracarboxylic diimid& and polycyclic aromatic hydrocarbons
(PAHSs)*l. Uniform singlelayered graphene can be produced by this technique, however

limited size range of starting molecule hinders the application of this technique for



synthesis of large graphene sheets. The use of largeomalecules can solve this
problem, nonetheless they become insoluble in reaction media and also lead to unwanted
side reactions, thereby degrading the quality of graphene sheets. Stdssiisted growth

can be used as an alternative to generate siagge graphene sheets up to sevaralin

lateral size. The substrate acts as a catalytically active solid support and aids in synthesis
of single layer graphene. This technique, Chemical Vapor Deposition (CVD), is used to
synthesize high quality graphefog its use in various electronic and photonic applications.
The cheap transition metals, such a8 €and NI*®, are most commonly used substrates
(RU, PO pd?l etc., were also used). In this techmég hydrocarbon source
decomposes and after nucleation, the conditions need to be carefully controlled to promote
crystal growth and prevent growth of additional layers. Another technique involves the
production of graphene from silicon carbide (SiC). &sweported as early as 1896 by
Achesor?? for lubrication purposesind this technique is referred to as epitaxial growth.
Graphene forms much faster on carbon surface rather than on silica surface, due to large

mismatch between SiC and graph&fe?l

The bottoraup approach falitates the synthesis of graphene with controlled morphology
[18c]  Besides high temperature demand, the use of substrates and lengthy synthesis

procedures often limit the scalability of these approaches.

1.2.2. Top-down approach

The topdown approach of graphene synthesis involves the use of graphatprecursor

and its exfoliation. The mechanical exfoliation of graphite delivers high quality graphene,
however, suffers from the drawback of high throughput and yield. Laser aBfatoml

photo exfoliatiof® techniques can also be pursued to achieve high quality graphene.
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These techniquedilize laser pulses to exfoliate or ablate graphite flakes. The process is
best implemented under inert and vacuum conditions. However, this technique is still in its
infancy with further development needed. Hence, exploration to synthesize graphene in a
scalable approach has been pursued. The most common way to synthesize graphene is
through the reduction of graphene oxide. In 1859, Bidiéemonstrated that adding
potassium chlorate (KCKD in fuming nitric acid (HNG@) to graphite reaction mixture
results in oxidation of graphitéater in 1898, Staudenmdférimproved this protocol by
adding sulfuric acid (b6Qs) in HNOs and gradually incorporating KCHInto graphite
mixture to achieve oxidation of graphite. In 1958, Humnk&tseported the addition of
potassium permanganate (KMgy@nd sodium nitrate (NaNin a mixture of HSQs and
HNOsto oxidize graphite. This method was further modified by decreasing daNe®
increasng KMnOs; amount. The principle involves disruption of Vander Waals forces in
graphite layers by their oxidation. The graphite oxide upon mild sonication or dispersion
leads to their exfoliation to graphene oxide (G®)gure 1.2.1 GO, nonetheless
compronises the unique properties of graphene due to heavily oxidized groups at edges
and on their surface. Hence, high temperature ann&dling reductionvia chemical
reagents, such as hydraziffe or bott®! are required. Other reducing agents such as
NaBH4%2l, ascorbic acid®, hydroiodic aci®#*, etc., or microwave treatment of graphite
oxide is necessary to restore the compromised properties i3 @@ is referred to as
reduced graphene oxide (rG@jgure 1.2.1 Recently, Manish et ableveloped a high
quality graphene from microwasassisted reduction of partially reduced 80 The

scalability of these approaches is not plausible, due to their low quality graphene in some



scenarios, lengthy reaction times, post treatment of product, exdehsaning procedures,

metal impurities trapped within the product during their synthesis, cost etc.

Liquid phase exfoliation of graphite through sonication in either organic solvents or
agueous surfactant solutions was developed to yield single #@f@vgraphene free from
oxides and structural defects. Thin graphene films were fabricated by vacuum filtration of
as prepared graphene dispersions, which exhibited superior conductivity.
Graphene/polymer composites, which have application in microelecttenices, can be
synthesized by direct addition of polymer into graphene dispersion. Liquid phase
exfoliation provides a simple and castective way to fabricate moderate to high quality
graphene sheets, without requirement of expensive subsirheasechanism underlying
liquid phase exfoliation can be elaborated from a thermodynamic point of view, as the
enthalpy of mixingcombined with charge transfer between the carbon layers of graphite
and solvent moleculd®”). Organic solvents with surface tensions and energies similar to

that of graphene were found to be effective dissolution media using the exgt&sion

¥( ¢ —
— — ~ ~ J']
- ~ Oy On

Where¥( is enthalpy of mixing,w is the volume of nxture,”Y is the thickness
of graphene sheeQ andOy, are the surface energies of solvent and graphene', and
is the volume of graphene dispersed. Good exfoliating solvents based on the above

equation include -mmethyt2-pyrraidinone (NMP}"2 38 orthodichlorobenzene (o

DCB)% and N,Ndimethylformamide (DMF}°l.

The zeta potential and electrophoresis measurements of liquid exfoliated graphene
indicates that the dispersed graphene is either positivelygatinely charged. The actual
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charge is dependent on solvent used, and hence preventing the exfoliated graphene
aggregation in solvents. The charge transfer mechanism allows for exfoliation of graphite

in solvents such as ionic liquitf8 and chlorosulphonic adidl, due to their strong
interactions with °~ electrons of graphite/

are costly andénce cannot be scaled up.

Water is an ideal solvent for numerous biological applications, due to its biocompatibility
and nontoxicity. The highly hydrophobic nature of graphite/graphene prevents its
exfoliation and dispersion in water and other hydropkiblvents. Hence, surfactants such
as sodium chola®!, sodium dodecyl benzenesulfori#ie pluronié*® or polymers such

as polyvinyl pyrrolidoné®, pyrene derivativé¥], etc., were used for the exfoliation and

stablization of dispersed graphene.

Nevertheless, water is not an ideal choice for grapbased electronic devices because

of the dielectrics at interface which enhances charge trapping phendffleiitye use of
surfactants to stabilize watdispersed graphene reduces the electrical conductivity of as
fabricated devices. NMP and DMF, commonly used solvents which aids in graphene
exfoliation are toxic and irritanté® 5%, Apart from toxicity, complete removaf these

solvents is necessary for graphene to be used in electrical measurements. Residual solvents
have a strong impact on the performance of these devices and thus dispersion of graphene
in low boiling point solvents such as ethanol is preferred. Lovingopoint solvents

exhibit lower surface energies than that of graphite hence pose difficulties in regard to their
exfoliation. Hence, a simple solvent exchange technique was reported to disperse the

exfoliated graphene in NMP to ethanol, with a condifgtias high as 1130ct A
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summary with different approaches to synthesize graphene and its applications is listed in

Table 1.2.2

Table 1.22. The property of graphene and its respective applications.

Method Crystalli | Sample | Charg | Application | Quality | Disadvantage
ne size| size (mm)| e of the| of this method
(um) carrier graphen
mobili e
ty
Mechanica| >1000 | >1 >2 Research High Scalability
| 10°
exfoliatior!
4a]
Chemical |OO0 . 1 |Infiniteas| 100 | Coatings, Low- Toxic
exfoliatior! a layer of paints, ink,| moderat| chemicals,
51 overlappi composites, | e need of large
ng flakes transparent, solvents  to
conductive clean the
layers, synthesized
energy product,
storage, big unnecssary
applications functionalizat
ion of
graphene.
Reduced | ~100 Infinite as| 1 Coatings, Low- Strong
GQiEva ¢ 52 a layer of paints, ink,| moderat| oxidizing
overlappi composites, | e agents, nee
ng flakes transparent, of large
conductive solvents to
layers, clean the
energy synthesized
storage, big product, neeq
applications an additional
heating stey
(high
temperature)
to restore the
properties Of
graphene,
lengthy
reaction times
cvDlt’a 11000 1000 10000 | Photonics, | Moderat| High
18ad] nanoelectron| e-high | temperature,
CS, transfer
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transparent, process
conductive necessary,
layers, expensive
sensors, big owing to large
applications energy
consumption,
removal  of
metal
catalyst.
Sic®sl 50 100 10000 | High Moderat | High cost of
frequency e-high | SIC, high
transistors temperature
and  other (>1000°C)
electronic not
devices compatible
with the Si
electronics
technology,
small
diameter
wafers,
elimination of
terraces
Liquid Electronics, | Moderat| Large
phase Catalytic e to high| quantity  of
exfoliation applications solvents
etc

After sonication of graphite flakes with respective solvents, the dispersion contains a

mixture of graphite flakes with exfoliategtaphene, which is separated by centrifugation.
The vyield of graphene is as low as 0.025m§flindicating the inaccessibility of inner
graphene layers by the solvent. The distance between graphene layers in pristine graphite

is 0.34nm, which is too small to be accessed bytmoklvents. Hence, the interlayer

distance can be increased by introduction of intercalants. The exfoliation of Graphite

Intercalation Compound (GIC) can be achieved either by sehssisted exfoliatidr?! or
by thermal exfoliatiol®l.

latter case, acid intercalated graphite is treated thermaliya onicrowave irradiation. In

n

f or mer

13

case, t

he GI

Co s

ar

e



either case, the graphene sheets need to be dispersed by either mild sonication or stirring.
The thickness of as synthesized graphene sheets depends on intercalation stage and stability
of GIC under atmospheric conditions. Thee of stage 1 GIC (where every alternating

layer is intercalated) leads to synthesis of single telégwer graphene sheets.

The GI C6bs can be synthesized by either sol
achieved eithewia single or multiple ®ps (when direct intercalation is not possible).
Donor intercalants such as alkali earth metals, metal alloys or acceptor intercalants such as
metal chlorides, halogens, acidic oxides, etc., are commonly used to achieve intercalation
of graphite. The eatged interlayer distance allows for the accessibility of inner graphitic
layers and hence enhances the exfoliation proc€ks. intercalatiorof graphite can be
obtained by using a mixture of 280y and HNQ (1:1 ratio}®, H,SQ; and HO: (20:1

ratiof°® 5% FeC} via vapor transport techniqli®, ammonium bicarbonat®!, using
potassium osodium ptassiumNaKz) metal®?, etc. The as obtained intercalated product

is sonicaéd via probeor ultrasonicationor stirringfor awide range of time intervals to

attain single todw-layers of graphene in solution phase. These techniques make use of
NMP or polar solvents to achieve thdispersionwith yields as high as 12wt%d.heuse

of acids such as HN{deads to generation of toxic N@as whereas the use of FeCl
requires extensive cleaning to remowereacted FeGfrom reaction mixture. Thalkali

earth metalssuch as Na and Kequire careful handlingin glove box, limiting heir
scalability.A list of some of the intercalating agents, along with thegss listed inTable

1.23.
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Table 123. Thesummay of Gl C06s mtgredatihgeagentz andlthewsetoh
exfoliated graphene.
Graphte type Intercalating Use
agents
63ICommercial Oleum, TBA In | To synthesize graphene in large scale in var
expandedyraphite | DMF solvents andto study various properties
(160-50N of graphene via Langmuir Blodgett films.
Grafguard)
[64Mildly oxidized | TBA in DMF Study ofthe ionic screening effect igraphene

graphite with
unreacted graphite

transistors

H>O2

[5INatural flake HNOs3 + The study of mechanism involved thermal
graphite 400um | HoSQyt+ KCIO3 | expansion and exfoliation of oxidized graphi
(grade 3061) and | (Staudenmaier

45 ym(grade 230)| method)

from Asbury

carbons

[86lGraphite H.SQy HsPQs, | The study of various emtercalants in the
GTOSCh CH:COOH graphite nitate intercalated compound
(Taiginka pursued

occurence

[7lGraphite Carboxylic acid,| Synthesis of graphite platelets, nanoplate

and flexible sheets &g studied with the
intercalated graphite

SSINaturalgraphite | H2SQy (98 wi%e) | High quality graphene sheet synthesis by lig
80me$ 99wt% and RHO2 face exfoliation is studied
(30Wt%)

[8INatural graphite
flakes (ABCR

FeCk

The characteristic features ofew-layer
graphene witha large lateral size is studie

Graphite powder
from Asbury

GraphiteMills

Karlsruhe, along with its application inlithium-ion

Germany) batteries

[69Expandable Ammonia The characteristics of efwlayer grapheng

graphite from synthesized from expanded graphite is stud

Carbone Lorraine

[2lGraphite from | Potassium, The intercalation and exfoliation of graph

Cornerstone Inc | Cesium nanoplatelets was studied

["IHOPG Ammonium Simple and fast method for the synthesis
bicarlonate graphenahat isused in feld-effect transistors

["IHOPG SP43 LiClO4 + High yield syntlesis of &w-layer grapheng

10 10 1 from Propylene through electrochemical expansja@onductive

SPI. carbonate sheets developed by sonicating the expdr

graphite in various solvents
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["2Graphite KCI:NaCl:ZnChk | Study of simple and asteffective

powder from Bay | (eutectic intercalatiorbased exfoliation for the synthes

Carbon Inc (SPL | mixture) of high quality graphene flakes

graphite powder) | 0.2:0.2:06

["SlGraphite FeCk + The study ofiscalable method for high quali

Source not Nitromethane | graphene synthesis via low temperatu

mentioned exfoliation of graphite under mild chemic
conditions

["Graphite foil Bromine The suspension of high quality graphene

(99.8% metal solution-based Br intercalation and mild so

basis) thickness chemical exfoliation is studied.

0.5mm

Source not

mentioned

[IHOPG SPI, IBr, ICl are he | The study ofsolution phase technique f

Grade SRR lonic production of large area, bilayer and trilay

#466HP intercalants use( graphene with controlled stacking was pursy

["6INatural graphie | K metal It was studied tat the thermodynamics driv

from Aldrich, spontaneous dissolution of graphite compo

Expandable in NMP to form stable solutions.

graphite (Nacional
de Grafite, Brazil)

[""IGraphite
powder from
fluka. Particle size
<100pm

1 , -Didodecyt
4,-40
bipyridinium

bis(triflimide)
(ILC)

Easy and asteffective route for the mas
production of graphene nanosheets w
designed for real world applications

["8lNatural graphite
powder (SPL
Graphite, Bay

carbon)

Kl + anhydrous
dichlorobenzene

High quality graphite lake synthesis withou
oxidation is pursued.

We recentlydevdoped a fast, scalable, and oxidatagproach without involving
metallic compounds to directly and controllably produéghly conductive graphene
sheetsthat can be dispersed in botqueous and organic solvents without &hé of
surfactant$’® In the recent work reported by our groigMnOy (as is used in Hummer
and Tmathods)swas intentionally excluded while nitronium aromatic aiida

combined with microwave heating (fast and local heating} @xploited. The unique

process leads to a controllable oxidation of randomly positioned carbon atoms across entire
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graphene sheetso that dow density of oxygercontaining groups was obsed and is
shown to be sufficienénough forexfoliation and dispersion of graphene into aqueous
solutions.Thedispersed graphene sheate highly conductive and do not require further
reduction®®, By adjusting the concentration of nitronium ions, size of graphene sheets can
be controlled from a pm to nm ran§&. Unfortunately, the use afitronium ions results

in release of N@ a potentially toxicgas and generates toxic polycyclic aromatic
hydrocarbons as a bypnact

In chapter 2, an ecefriendlier approach, which retains the merits of nitronium oxidation,
and without releasing toxic gases or generating potentially toxic polycyclic aromatic
hydrocarbons as a byproduct, was realiZdus new approach replaces thaxture of
H>SQy andHNO3 andexploitscarbonoxidation chemistry bwtilizing piranha solution, a
mixture ofH>SQy andH20». To gain access to the inner graphite layers, intercalation was
pursued by ammonium persulfate and sulfuric acid. The obtaingthegra can be
exfoliated into water and other organic solvents with yields as high as 0.4mg/ml and
conductivity as high a2.3 x 10* S m, which further increased @4 x 10* S m upon

thermal annealing at 300.

1.3. Edge Graphene
The disruption in aromatii t v odonj ugation in graphene ne
of graphen€&?, creating edges. Edges generated at the disrupted sites, can be differentiated
as zigzag edges omachair edges based on their crystallographic orientatignye 1.3.1

The atoms come from same sub lattice in zigzag edges, whereas in the case of armchair
edges, carbon atoms are from two sub lattice forming different boundaries. The atomic

structure athe edges determines different chemical reactivity and electronic profgtties
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which differ from chemical reactivity of the basal pl&fle Under an ideal vacuum
condition, edges are-giadicals with unsaturated%and p orbitals®l. A radical singlet is
observed in the case of zigzag ed§gp; electrons on each outer carbon atom) and is
commonly referred to as an edge state, whereas the ekeofran armchair edge form a
triple bond between outer carbon atoms to reduce their éfférgye reconstruction of
edge states in zigzag edgesetther pentagonal or heptagonal structures is necessary to

lower their energy.

Figure 1.3.1. The schematic oédges in graphene, with macroscopic viewigzag and
armchair edge in graphene nanoribh@sshown herdhe r esonance observe
structuresof respective edgeare shown in the insets
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