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Abstract of the dissertation 
 

MICROWAVE ENABLED FABRICATION OF HIGHLY CONDUCTIVE 

GRAPHENE AND POROUS CARBON/METAL HYBRIDS FO R SUSTAINABLE 

CATALYSIS AND ENERGY STORAGE  

By Keerthi Savaram 

Dissertation Director:  Prof. Huixin He 

Carbon is the most abundant material next to oxygen in terms of sustainability. The 

potential of carbon based materials has been recognized in recent decades by the discovery 

of fullerene (1996 Nobel prize in chemistry), carbon nanotubes (2008 Kavli prize in 

nanoscience) and graphene (2010 Nobel prize in physics). The synthesis of carbon 

materials with well controlled morphologies lead to their exploration in both fundamental 

research and industrial applications. Graphene also commonly referred to as a wonder 

material has been under extensive research for more than a decade, due to its excellent 

electronic, optical, thermal and mechanical properties. However, the realization of these 

applications for practical purposes require its large scale synthesis. The common method 

of graphene synthesis involves reduction of graphene oxide. Nevertheless, complete 

restoration of intact graphene basal plane destroyed by oxidation cannot be achieved, 

limiting the application of as synthesized graphene in flexible macro electronics, 

mechanically and electronically reinforced composites etc. Hence, research was pursued 

in regards to achieve controlled oxidation, sufficient enough to overcome the Vander-

Waals forces and preserving the graphene domains. 
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One such approach reported by our group is the solution processable graphene achieved 

via controlled oxidation, by the use of nitronium oxidation approach. However, toxic NOx 

gases and byproducts generated during the synthesis, limits the scalability of this approach. 

In this thesis, for the first time, we reported the synergy of piranha etching solution with 

intercalated graphite for the controlled oxidation of graphite particles via microwave 

heating in chapter 2. The controlled oxidation leads to rapid (60 seconds) and direct 

generation of highly conductive, clean low oxygen containing graphene sheets without 

releasing any detectable toxic gases or aromatic by-products as demonstrated by gas 

chromatography-mass spectrometry. These highly conductive graphene sheets have unique 

molecular structures, different from both graphene oxide and pristine graphene sheets. 

They can be dispersed in both aqueous and common organic solvents without 

surfactants/stabilizers producing ñcleanò graphene sheets in solution phase. ñPaper-likeò 

graphene films are generated via simple filtration resulting in films with a conductivity of 

2.26 × 104 S m-1, the highest conductivity observed for graphene films assembled via 

vacuum filtration from solution processable graphene sheets to date. After 2-hour low 

temperature annealing at 300 C̄, the conductivity further increased to 7.44 × 104 S m-1. 

This eco-friendly and rapid approach for scalable production of highly conductive and 

ñcleanò solution-phase graphene sheets would enable a broad spectrum of applications at 

low cost. 

                  Irrespective of the vast applications of highly conductive graphene, it 

exhibits limited catalytic centers, is impervious, and limits the diffusion of ions. This 

inadequacy can be overcome by the hole generation on highly conductive graphene. 

Current approaches for large scale production of holey graphene require graphene oxide 
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(GO) or reduced GO (rGO) as starting materials. Thus generated holey graphene 

derivatives still contain a large number of defects on their basal planes, which not only 

complicates fundamental studies, but also influences certain practical applications due to 

their largely decreased conductivity, thermal and chemical stability. This work reports a 

novel scalable approach exploiting the wireless joule heating mechanism provided by 

microwave irradiation of partially oxidized graphite intercalation compounds in chapter 

3. The wireless joule heating mechanism affords region-selective heating, which not only 

enable fabrication of holey graphene materials with their basal plane nearly intact, but also 

engineers the edges associated with holes to be rich in zigzag geometry. The term pristine 

holey graphene was given, to differentiate from the holey graphene derivatives with basal 

plane defects, as reported in the literature. The pristine holey graphene with zigzag edges 

were studied and explored as a metal free catalyst for reduction reactions via hydrogen 

atom transfer mechanism. The pristine holey graphene nanoplatelets not only exhibited 

high catalytic activity and desired selectivity, but also provided excellent chemical stability 

for recyclability, which is very different from its counterpart holey graphene derivatives 

with basal plane defects. It was also reported that the reduction of nitrobenzene occurs via 

condensation pathway with this catalyst. 

To further provide insight into combustion of graphite in air with microwave irradiation, 

the stabilized intercalated graphene without point defects was used to generate holes in 

chapter 4. The co-intercalated O2 into graphite intercalated compound act as the internal 

oxidant, to oxidize the carbon, along with the surrounding air. High local temperatures 

were achieved via joule heating mechanism, hence promoting combustion of graphene to 

generate holes and edges.  We observed that in combination to hole generation, higher 
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conductivity was also observed in comparison to the holey graphene synthesized in 

chapter 3. The highly conductive holey graphene was tested for their electro-catalytic 

activity in the reduction of oxygen. The reduction of oxygen occurs via 2e- pathway, where 

peroxide with 90% yield was recorded. This opens path for onsite peroxide production in 

alkaline media, and therefore allowing its use in bleaching industries. 

In concern of carbon based materials being explored for catalysis, their high amount to 

facilitate the reaction, limits practicality of the catalyst for industrial applications. 

However, the immobilization of metal nanoparticles onto porous carbon supports, 

synthesized from sustainable and cheap biomass was widely pursued. It was widely 

reported that the doping of carbon support with N further improved their interaction with 

the metal and promoted higher catalytic activity. In chapter 5, for the first time, the 

influence of P doped carbon support on catalytic activity of Pd was reported. A single step 

microwave assisted fabrication of Pd embedded into porous phosphorous doped graphene 

like carbon was demonstrated. Structural characterization revealed that, the metal 

nanoparticles are in the range of 10nm with a surface area of 1133m2/g. The developed 

method is not only sustainable as it is synthesized from biomass and anti-nutrient molecule 

(phytic acid), but also energy efficient as microwave irradiation (50sec) is used for the 

catalyst synthesis. The as synthesized catalyst recorded 90% conversion with a TOF of 

23000h-1 for benzyl alcohol oxidation, which remained constant even after 8 recycles 

indicating the stability of catalyst. Different wt% of Pd onto PGC was tested for their 

alcohol oxidation capacity and found that the 3% Pd-PGc which activates O2 more towards 

4e- in ORR has the best conversion and selectivity.  
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The biomass molecule phytic acid used for the synthesis of phosphorous doped carbon 

support was also used as a phosphorous source in the synthesis of tin phosphides in chapter 

6. Current studies have shown that sodium, a low cost and naturally abundant metal, can 

act as a substituent for lithium in lithium ion batteries (LIB), hence, allowing their 

applications in real world.  This transition towards the use of sodium ion batteries (SIB) 

has entailed research to improve the cycle stability and energy density of battery by 

introducing tin phosphides as anodes for batteries. Tin phosphides exhibit a self-healing 

mechanism, hence decreases the capacity decay as observed in the case of Sn metal. 

However, it was reported that the self-healing mechanism is not completely reversible with 

partial pulverization observed. Therefore, we pursued a time efficient method to synthesize 

tin phosphide in a phosphorous doped carbon matrix (SnP@PGc) via microwave 

irradiation. The SnP@PGc formed when tested as anode for SIBs, demonstrated superior 

capacity of 515 mAh/g after 750 cycles at a charge and discharge current of 0.2 C. The 

superior cycle stability can be attributed to the protection against volume expansion by 

phosphorous doped porous carbon shell during battery charge and discharge process and 

hence mitigating the pulverization of tin phosphides.    
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Chapter 1: Introduction  
 

1.1 Carbon and its allotropes 

Carbon is the fourth most abundant element on earth and its various physical states as 

allotropes can be attributed to its disparate hybridized electron configurations (sp, sp2, sp3). 

These result in the formation of varying types of carbon-carbon bonds (single, double, 

triple, aromatic), which differ in strengths and spatial arrangements of electron orbitals, 

allowing their occurrence as allotropes. Based on their physical form, carbon is 

differentiated as either amorphous or crystalline carbon. The former carbon form consists 

of activated carbons whereas the latter exhibits a wide variety of allotropes. Fullerenes (0D 

with 3 carbons connected), carbon nanotubes (1D with 3 carbons connected), carbynes (1D 

with 2 carbons connected), graphite and graphene (2D with 3 carbons connected), diamond, 

londsdaleite, cold compressed graphite (3D with 4 carbons connected) are the different 

allotropes of crystalline carbon that exist in nature or can be synthesized (Figure 1.1).  
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Figure 1.1. Natural and synthesized carbon allotropes [1].  

1.1.1. Amorphous carbon 

Amorphous carbon lacks crystallinity and its low density makes it more susceptible to 

harsh oxidizing reagents.  Most amorphous carbons contain microscopic crystals of either 

graphite-like[2] or diamond-like[3] carbon. Commonly found amorphous carbon, such as 

carbon black, activated carbon and coal, are synthesized by pyrolysis. The presence of 

graphite-like domains in carbon black allows its use as a conductive filler in energy storage 

devices and fuel cells, whereas the high surface area of activated carbon promotes its use 

as a carbon support for metal nanoparticles which are used in catalysis.  Figure 1.1.1 

depicts the SEM images of various types of amorphous carbon. 
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Figure 1.1.1.  The SEM image of carbon black (a), activated carbon (b), coal (c) with its 

cross sectional view (d).  

1.1.2. Crystalline carbon 

As the name implies, carbon atoms are arranged in a crystal lattice. The most abundant 

naturally available crystalline carbon includes diamond and graphite. Diamond is known 

for its strong rigidness and is mostly used in cutting and grinding tools, whereas graphite 

is most commonly used as a lubricant due to the weak bonds between carbon layers, owing 

to its soft and slippery properties. The synthesized crystalline carbon allotropes include 

fullerenes, carbon fibers, carbon nanotubes and graphene (Figure 1.1.2). 
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Figure 1.1.2. SEM images of some of the crystalline allotropes such as, carbon fibers (a), 

single walled carbon nanotubes (b), graphite (c), with its cross sectional view (d). 
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1.2. Graphene 

 

Figure 1. 2. 1. Naturally occurring or synthesized 2D carbon allotropes [57].  

A single layer of sp2 hybridized carbon arranged in a honeycomb network is referred to as 

graphene. The stacks of graphene are held together by Vander Waals forces and is referred 

to as graphite which can occur either naturally or be synthesized (Figure 1.2.1.). Graphite 

has been known as mineral for more than 500 years. Synthesis of single-layer graphene can 

be achieved by overcoming Vander Waals attraction between the first and second carbon 

layers in graphite, without disrupting adjacent sheets.  In 2004, Geim and coworkers at 

Manchester University exfoliated a single graphene layer using a scotch tape method, 

which bestowed them the Nobel Prize in 2010[4]. It is the strongest material by weight, and 

exhibits superior properties such as (1) impermeability to ions and gases[5], (2) mechanical 

stiffness (youngôs modulus of 1TPa)[6], (3) strength (130 GPa)[6], (4) elasticity, (5) thermal 

conductivity (>3000WmK-1)[7], (6) electron  mobility (2.5105cm2v-1s-1)[8], (7) optical 
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transparency ( ~97.7%), (8) having large spring constant (1-5 Nm-1)[9], (9) sustaining high 

densities of electric current[10], (10) being chemically inert to various gases and (11) having 

high surface area (2630m2g-1)[11]. Graphene is a semi-metal with degenerate valence and 

conduction band at K point in the Brillouin zone (occurring only for special unit cell 

geometry and orientation relative to grapheneôs high axis symmetry)[12]. The unique 

properties of graphene allow its application in various fields such as electronics, photonics, 

energy storage and generator, super capacitors, catalysts etc. The properties of graphene 

with some of their applications are listed in Table 1.2.1.  

Table 1.2.1. The property of graphene and its respective applications.  

Graphene Property Application 

Transparency with electrical conductivity Flexible and optical electronics 

Electrical and thermal conductivity Graphene-based paints for conductive ink, 

in Li ion batteries as conductive filler to 

improve electrical conductivity and to help 

dissipate the generated heat via thermal 

conductivity. 

Large surface area Support for loading metal nanoparticles  

Large surface area + chemical purity + ease 

of functionalization 

Sensors for the detection of glucose, 

cholesterol, hemoglobin, drug delivery, 

etc. 

Large surface area + conductivity Super-capacitors 

Mechanical strength  Tissue engineering and regenerative 

medicine 
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The mentioned applications depend on reliability of producing high quality single-layer 

graphene in a scalable approach. The top-down or bottom-up approaches are two different 

strategies involved in graphene synthesis as shown in Figure 1.2.2.  

 

Figure 1. 2. 2. Different production and processing techniques of Graphene[13]. 

1.2.1. Bottom-up approach 

The bottom-up approach is achieved through organic synthesis of small molecule 

precursors such as hexa-peri-hexabenzocoronene[14], N,N -́bis(2,6-diisopropyphneyl)-

3,4,9,10-perylenetetracarboxylic diimide[15] and  polycyclic aromatic hydrocarbons 

(PAHs)[16]. Uniform single-layered graphene can be produced by this technique, however 

limited size range of starting molecule hinders the application of this technique for 
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synthesis of large graphene sheets. The use of large macromolecules can solve this 

problem, nonetheless they become insoluble in reaction media and also lead to unwanted 

side reactions, thereby degrading the quality of graphene sheets.  Substrate-assisted growth 

can be used as an alternative to generate single-layer graphene sheets up to several mm in 

lateral size. The substrate acts as a catalytically active solid support and aids in synthesis 

of single- layer graphene. This technique, Chemical Vapor Deposition (CVD), is used to 

synthesize high quality graphene for its use in various electronic and photonic applications. 

The cheap transition metals, such as Cu[17] and Ni[18], are most commonly used  substrates 

(Ru[19], Pt[20], Pd[21], etc., were also used). In this technique, hydrocarbon source 

decomposes and after nucleation, the conditions need to be carefully controlled to promote 

crystal growth and prevent growth of additional layers. Another technique involves the 

production of graphene from silicon carbide (SiC). It was reported as early as 1896 by 

Acheson[22] for lubrication purposes, and this technique is referred to as epitaxial growth. 

Graphene forms much faster on carbon surface rather than on silica surface, due to large 

mismatch between SiC and graphene [4b, 23]. 

The bottom-up approach facilitates the synthesis of graphene with controlled morphology 

[18c]. Besides high temperature demand, the use of substrates and lengthy synthesis 

procedures often limit the scalability of these approaches. 

1.2.2. Top-down approach 

The top-down approach of graphene synthesis involves the use of graphite as a precursor 

and its exfoliation. The mechanical exfoliation of graphite delivers high quality graphene, 

however, suffers from the drawback of high throughput and yield. Laser ablation[24] and 

photo exfoliation[25] techniques can also be pursued to achieve high quality graphene. 
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These techniques utilize laser pulses to exfoliate or ablate graphite flakes. The process is 

best implemented under inert and vacuum conditions. However, this technique is still in its 

infancy with further development needed. Hence, exploration to synthesize graphene in a 

scalable approach has been pursued. The most common way to synthesize graphene is 

through the reduction of graphene oxide. In 1859, Brodie[26] demonstrated that adding  

potassium chlorate (KClO3) in fuming nitric acid (HNO3) to graphite reaction mixture 

results in oxidation of graphite. Later in 1898, Staudenmaier[27] improved this protocol by 

adding sulfuric acid (H2SO4) in HNO3 and gradually incorporating KClO3 into graphite 

mixture to achieve oxidation of graphite. In 1958, Hummers [28] reported the addition of 

potassium permanganate (KMnO4) and sodium nitrate (NaNO3) in a mixture of H2SO4 and 

HNO3 to oxidize graphite. This method was further modified by decreasing NaNO3 and 

increasing KMnO4 amount.  The principle involves disruption of Vander Waals forces in 

graphite layers by their oxidation. The graphite oxide upon mild sonication or dispersion 

leads to their exfoliation to graphene oxide (GO), Figure 1.2.1. GO, nonetheless 

compromises the unique properties of graphene due to heavily oxidized groups at edges 

and on their surface. Hence, high temperature annealing[29] or reduction via chemical 

reagents, such as hydrazine[30], or both[31] are required. Other reducing agents such as 

NaBH4
[32], ascorbic acid[33], hydroiodic acid[34], etc., or microwave treatment of graphite 

oxide is necessary to restore the compromised properties in GO[35] and is referred to as 

reduced graphene oxide (rGO), Figure 1.2.1. Recently, Manish et al. developed a high 

quality graphene from microwave-assisted reduction of partially reduced GO[36]. The 

scalability of these approaches is not plausible, due to their low quality graphene in some 
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scenarios, lengthy reaction times, post treatment of product, extensive cleaning procedures, 

metal impurities trapped within the product during their synthesis, cost etc.  

Liquid phase exfoliation of graphite through sonication in either organic solvents or 

aqueous surfactant solutions was developed to yield single to few-layer graphene free from 

oxides and structural defects. Thin graphene films were fabricated by vacuum filtration of 

as prepared graphene dispersions, which exhibited superior conductivity. 

Graphene/polymer composites, which have application in microelectronic devices, can be 

synthesized by direct addition of polymer into graphene dispersion. Liquid phase 

exfoliation provides a simple and cost-effective way to fabricate moderate to high quality 

graphene sheets, without requirement of expensive substrates. The mechanism underlying 

liquid phase exfoliation can be elaborated from a thermodynamic point of view, as the 

enthalpy of mixing, combined with charge transfer between the carbon layers of graphite 

and solvent molecules [37]. Organic solvents with surface tensions and energies similar to 

that of graphene were found to be effective dissolution media using the expression[37a]  

Ў(

ὠ

ς

Ὕ
Ὁȟ Ὁȟ ᶮ  

Where Ў(   is enthalpy of mixing,  ὠ  is the volume of mixture, Ὕ  is the thickness 

of graphene sheet, Ὁȟ and Ὁȟ are the surface energies of solvent and graphene, and ᶮ  

is the volume of graphene dispersed. Good exfoliating solvents based on the above 

equation include 1-methyl-2-pyrrolidinone (NMP)[37a, 38], ortho-dichlorobenzene (o-

DCB)[39] and N,N-dimethylformamide (DMF)[40].  

The zeta potential and electrophoresis measurements of liquid exfoliated graphene 

indicates that the dispersed graphene is either positively or negatively charged. The actual 
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charge is dependent on solvent used, and hence preventing the exfoliated graphene 

aggregation in solvents. The charge transfer mechanism allows for exfoliation of graphite 

in solvents such as ionic liquids[41] and chlorosulphonic acid[42], due to their strong 

interactions with ˊ electrons of graphite/graphene owing to their ionicities. These liquids 

are costly and hence cannot be scaled up.  

Water is an ideal solvent for numerous biological applications, due to its biocompatibility 

and non-toxicity. The highly hydrophobic nature of graphite/graphene prevents its 

exfoliation and dispersion in water and other hydrophilic solvents. Hence, surfactants such 

as sodium cholate[43], sodium dodecyl benzenesulfonate[44], pluronic[45] or polymers such 

as polyvinyl pyrrolidone[46], pyrene derivatives[47], etc., were used for the exfoliation and 

stabilization of dispersed graphene.  

Nevertheless, water is not an ideal choice for graphene-based electronic devices because 

of the dielectrics at interface which enhances charge trapping phenomenon[48]. The use of 

surfactants to stabilize water-dispersed graphene reduces the electrical conductivity of as 

fabricated devices. NMP and DMF, commonly used solvents which aids in graphene 

exfoliation are toxic and irritants [49] [50]. Apart from toxicity, complete removal of these 

solvents is necessary for graphene to be used in electrical measurements. Residual solvents 

have a strong impact on the performance of these devices and thus dispersion of graphene 

in low boiling point solvents such as ethanol is preferred. Low boiling point solvents 

exhibit lower surface energies than that of graphite hence pose difficulties in regard to their 

exfoliation. Hence, a simple solvent exchange technique was reported to disperse the 

exfoliated graphene in NMP to ethanol, with a conductivity as high as 1130cm-1. A 
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summary with different approaches to synthesize graphene and its applications is listed in 

Table 1.2.2. 

Table 1.2.2. The property of graphene and its respective applications.  

Method Crystalli

ne size 

(µm) 

Sample 

size (mm) 

Charg

e 

carrier 

mobili

ty 

Application Quality 

of the 

graphen

e 

Disadvantage 

of this method 

Mechanica

l 

exfoliation[

4a] 

>1000 >1 >2  

105 

Research High Scalability 

Chemical 

exfoliation[

51] 

Ò0.1 Infinite as 

a layer of 

overlappi

ng flakes 

100 Coatings, 

paints, ink, 

composites, 

transparent, 

conductive 

layers, 

energy 

storage, bio 

applications 

Low-

moderat

e 

Toxic 

chemicals, 

need of large 

solvents to 

clean the 

synthesized 

product, 

unnecessary 

functionalizat

ion of 

graphene. 

Reduced  

GO[30a, c, 52] 

~100 Infinite as 

a layer of 

overlappi

ng flakes 

1 Coatings, 

paints, ink, 

composites, 

transparent, 

conductive 

layers, 

energy 

storage, bio 

applications 

Low-

moderat

e 

Strong 

oxidizing 

agents, need 

of large 

solvents to 

clean the 

synthesized 

product, need 

an additional 

heating step 

(high 

temperature) 

to restore the 

properties of 

graphene, 

lengthy 

reaction times 

CVD[17a, 

18a-d] 

1000 1000 10000 Photonics, 

nanoelectroni

cs, 

Moderat

e-high 

High 

temperature, 

transfer 
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transparent, 

conductive 

layers, 

sensors, bio 

applications  

process 

necessary, 

expensive 

owing to large 

energy 

consumption, 

removal of 

metal 

catalyst.  

SiC[53] 50 100 10000 High 

frequency 

transistors 

and other 

electronic 

devices 

Moderat

e-high 

High cost of 

SiC, high 

temperature 

(>10000C) 

not 

compatible 

with the Si 

electronics 

technology, 

small 

diameter 

wafers, 

elimination of 

terraces 

Liquid 

phase 

exfoliation 

   Electronics, 

Catalytic 

applications 

etc 

Moderat

e to high 

Large 

quantity of 

solvents  

 

After sonication of graphite flakes with respective solvents, the dispersion contains a 

mixture of graphite flakes with exfoliated graphene, which is separated by centrifugation. 

The yield of graphene is as low as 0.025mg/ml[54], indicating the inaccessibility of inner 

graphene layers by the solvent. The distance between graphene layers in pristine graphite 

is 0.34nm, which is too small to be accessed by most solvents. Hence, the interlayer 

distance can be increased by introduction of intercalants. The exfoliation of Graphite 

Intercalation Compound (GIC) can be achieved either by solvent-assisted exfoliation[55] or 

by thermal exfoliation[56]. In former case, the GICôs are sonicated with solvents, while in 

latter case, acid intercalated graphite is treated thermally or via microwave irradiation. In 
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either case, the graphene sheets need to be dispersed by either mild sonication or stirring.  

The thickness of as synthesized graphene sheets depends on intercalation stage and stability 

of GIC under atmospheric conditions. The use of stage 1 GIC (where every alternating 

layer is intercalated) leads to synthesis of single to few-layer graphene sheets.  

The GICôs can be synthesized by either solid, liquid or gaseous intercalants and can be 

achieved either via single or multiple steps (when direct intercalation is not possible). 

Donor intercalants such as alkali earth metals, metal alloys or acceptor intercalants such as 

metal chlorides, halogens, acidic oxides, etc., are commonly used to achieve intercalation 

of graphite.  The enlarged interlayer distance allows for the accessibility of inner graphitic 

layers and hence enhances the exfoliation process.  The intercalation of graphite can be 

obtained by using a mixture of H2SO4 and HNO3 (1:1 ratio)[58], H2SO4 and H2O2 (20:1 

ratio)[56, 59], FeCl3 via vapor transport technique[60], ammonium bicarbonate[61], using 

potassium or sodium potassium (NaK2) metal[62], etc. The as obtained intercalated product 

is sonicated via probe or ultra-sonication or stirring for a wide range of time intervals to 

attain single to few-layers of graphene in solution phase. These techniques make use of 

NMP or polar solvents to achieve their dispersion, with yields as high as 12wt%.  The use 

of acids such as HNO3 leads to generation of toxic NO2 gas whereas the use of FeCl3 

requires extensive cleaning to remove unreacted FeCl3 from reaction mixture. The alkali 

earth metals such as Na and K require careful handling in glove box, limiting their 

scalability. A list of some of the intercalating agents, along with their uses is listed in Table 

1.2.3.  
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Table 1.2.3. The summary of GICôs synthesized with intercalating agents and the use of 

exfoliated graphene. 

Graphite type Intercalating 

agents 

Use 

[63]Commercial 

expanded graphite 

(160-50N of 

Grafguard) 

Oleum, TBA In 

DMF 

 

To synthesize graphene in large scale in various 

solvents and to study various properties of 

graphene via Langmuir Blodgett films. 

[64]Mildly oxidized 

graphite  with 

unreacted graphite 

TBA in DMF Study of the ionic screening effect in graphene 

transistors  

[65]Natural flake 

graphite 400µm 

(grade 3061) and 

45 µm (grade 230) 

from Asbury 

carbons 

HNO3 + 

H2SO4+ KClO3 

(Staudenmaier 

method) 

 

The study of mechanism involved in thermal 

expansion and exfoliation of oxidized graphite 

[66]Graphite 

GTOSCh 

(Taiginka 

occurrence 

H2SO4, H3PO4, 

CH3COOH 

The study of various co-intercalants in the 

graphite nitrate intercalated compound is 

pursued. 

[67]Graphite Carboxylic acid, 

H2O2 

Synthesis of graphite platelets, nanoplatelets 

and flexible sheets was studied with the 

intercalated graphite. 
[56]Natural graphite 

80mesh 99wt% 

H2SO4 (98 wt%) 

and H2O2 

(30wt%)  

High quality graphene sheet synthesis by liquid 

face exfoliation is studied. 

[68]Natural graphite 

flakes (ABCR 

Karlsruhe, 

Germany) 

FeCl3 The characteristic features of few-layer 

graphene with a large lateral size is studied 

along with its application in lithium-ion 

batteries. 
[69]Expandable 

graphite from 

Carbone Lorraine 

Ammonia The characteristics of few-layer graphene 

synthesized from expanded graphite is studied. 

[62]Graphite from 

Cornerstone Inc. 

Potassium, 

Cesium 

The intercalation and exfoliation of graphite 

nanoplatelets was studied. 
[70]HOPG  Ammonium 

bicarbonate 

Simple and fast method for the synthesis of 

graphene that is used in field-effect transistors 
[71]HOPG SPI-3 

10 10 1 from 

SPI. 

Graphite powder 

from Asbury 

Graphite Mills 

LiClO4 + 

Propylene 

carbonate 

High yield synthesis of few-layer graphene 

through electrochemical expansion, conductive 

sheets developed by sonicating the expanded 

graphite in various solvents 
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[72]Graphite 

powder from Bay 

Carbon Inc (SP-1 

graphite powder) 

KCl:NaCl:ZnCl2 

(eutectic 

mixture) 

0.2:0.2:0.6 

Study of simple and cost-effective 

intercalation-based exfoliation for the synthesis 

of high quality graphene flakes 

[73]Graphite  

Source not 

mentioned 

FeCl3 + 

Nitromethane 

The study of a scalable method for high quality 

graphene synthesis via low temperature 

exfoliation of graphite under mild chemical 

conditions 
[74]Graphite foil  

(99.8% metal 

basis) thickness 

0.5mm  

Source not 

mentioned 

Bromine The suspension of high quality graphene via 

solution-based Br intercalation and mild sono 

chemical exfoliation is studied. 

[75]HOPG SPI, 

Grade SPI-2 

#466HP 

IBr, ICl are the 

ionic 

intercalants used 

The study of solution phase technique for 

production of large area, bilayer and trilayer 

graphene with controlled stacking was pursued. 
[76]Natural graphite 

from Aldrich, 

Expandable 

graphite (Nacional 

de Grafite, Brazil) 

K metal It was studied that the thermodynamics drive 

spontaneous dissolution of graphite compound 

in NMP to form stable solutions. 

[77]Graphite 

powder from 

fluka. Particle size 

<100µm 

1,1ô-Didodecyl-

4,4ô-

bipyridinium 

bis(triflimide) 

(ILC) 

Easy and cost-effective route for the mass 

production of graphene nanosheets was 

designed for real world applications  

[78]Natural graphite 

powder (SP-1 

Graphite, Bay 

carbon) 

KI + anhydrous 

dichlorobenzene  

High quality graphite flake synthesis without 

oxidation is pursued. 

 

        We recently developed a fast, scalable, and oxidative approach without involving 

metallic compounds to directly and controllably produce highly conductive graphene 

sheets that can be dispersed in both aqueous and organic solvents without the aid of 

surfactants.[79]  In the recent work reported by our group, KMnO4 (as is used in Hummers 

and Tourôs methods) was intentionally excluded while nitronium aromatic oxidation 

combined with microwave heating (fast and local heating) was exploited. The unique 

process leads to a controllable oxidation of randomly positioned carbon atoms across entire 
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graphene sheets, so that a low density of oxygen containing groups was observed and is 

shown to be sufficient enough for exfoliation and dispersion of graphene into aqueous 

solutions. The dispersed graphene sheets are highly conductive and do not require further 

reduction [80]. By adjusting the concentration of nitronium ions, size of graphene sheets can 

be controlled from a µm to nm range [81].  Unfortunately, the use of nitronium ions results 

in release of NO2, a potentially toxic gas, and generates toxic polycyclic aromatic 

hydrocarbons as a byproduct.  

In chapter 2, an eco-friendlier approach, which retains the merits of nitronium oxidation, 

and without releasing toxic gases or generating potentially toxic polycyclic aromatic 

hydrocarbons as a byproduct, was realized. This new approach replaces the mixture of 

H2SO4 and HNO3 and exploits carbon oxidation chemistry by utilizing piranha solution, a 

mixture of H2SO4 and H2O2. To gain access to the inner graphite layers, intercalation was 

pursued by ammonium persulfate and sulfuric acid. The obtained graphene can be 

exfoliated into water and other organic solvents with yields as high as 0.4mg/ml and 

conductivity as high as 2.3 × 104 S m-1, which further increased to 7.4 × 104 S m-1 upon 

thermal annealing at 300̄C. 

1.3. Edge Graphene  

 The disruption in aromaticity of ˊ-ˊ conjugation in graphene network alters the properties 

of graphene[82], creating edges. Edges generated at the disrupted sites, can be differentiated 

as zigzag edges or armchair edges based on their crystallographic orientation, Figure 1.3.1. 

The atoms come from same sub lattice in zigzag edges, whereas in the case of armchair 

edges, carbon atoms are from two sub lattice forming different boundaries. The atomic 

structure at the edges determines different chemical reactivity and electronic properties [83], 



 

18 
 

which differ from chemical reactivity of the basal plane[84]. Under an ideal vacuum 

condition, edges are di-radicals with unsaturated sp2 and pz orbitals [85]. A radical singlet is 

observed in the case of zigzag edges [86] (pz electrons on each outer carbon atom) and is 

commonly referred to as an edge state, whereas the electrons of an armchair edge form a 

triple bond between outer carbon atoms to reduce their energy[87]. The reconstruction of 

edge states in zigzag edges to either pentagonal or heptagonal structures is necessary to 

lower their energy.  

 

Figure 1.3.1. The schematic of edges in graphene, with macroscopic view of zigzag and 

armchair edge in graphene nanoribbons, as shown here. The resonance observed via Clarôs 

structures of respective edges are shown in the insets. 
































































































































































































































































































































































































