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ABSTRACT OF THE DISSERTATION

A load-cell based in-bed body motion detection and

classification system

by Musaab Adil Alaziz

Dissertation Director:

Yanyong Zhang

The basic necessity of sleep in our life is critically important to ensure our well-

being. Sufficient sleep of good quality is highly desired in order to have enough energy

to live. One of the main factors to measure sleep quality is the amount of body mo-

tion during sleep. In-bed motion detection is an important technique that can enable

an array of applications, among which are sleep monitoring and abnormal movement

detection. When detection is combined with classification, it can be used to detect,

notify, and recognize specific events, enabling us to focus on critical tasks.

In this study, we present a low-cost, low-overhead, and highly robust system for

in-bed movement detection and classification that uses low-end load cells. By observ-

ing the forces sensed by the load cells, placed under each bed leg, we can detect many

different types of movements, and further classify them as big or small depending on

magnitude of the force changes on the load cells. We have designed three different

features, which we refer to as Log-Peak, Energy-Peak, and ZeroX-Valley, that can ef-

fectively extract body movement signals from load cell data that is collected through
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wireless links in an energy-efficient manner. After establishing feature values, we em-

ploy a simple threshold-based algorithm to detect and classify movements. We have

conducted a thorough evaluation, that involves collecting data from 30 subjects who

perform 27 pre-defined movements in an experiment. By comparing our detection and

classification results against the ground truth captured by a video camera, we show

the Log-Peak strategy can detect these 27 types of movements at an error rate of 6.3%

while classifying them as big or small movements at an error rate of 4.2%.

In the second part of this dissertation, we set out to achieve much finer body motion

classification. Towards this goal, we define 9 classes of movements, and design a

machine learning algorithm using Support Vector Machine (SVM) and Random Forest

techniques to classify a movement into one of these 9 classes. In this way, we can

find out which body parts are involved in every movement. For every movement, we

have extracted 24 features and used them in our model. This movement classification

system was evaluated on data collected from 40 subjects who performed 35 predefined

movements in each experiment. The accuracy of our model is not the same for all

classes of movements. On average, it correctly classifies 90% of movements. This

model can be used conveniently for long-term home monitoring.

To improve the classification accuracy, we investigate more machine learning tech-

niques. We use Random Forest and XGBoost as additional classification tools. We

apply multiple tree topologies for each technique to reach their best results. After ex-

amining various combinations, we achieve the final classification accuracy of 91.5%.

Lastly, another in-bed motion detection system is built. We use a geophone sensor

to detect body motions in bed, which we call MotionPhone. MotionPhone is more ac-

curate in detecting motion but not efficient for classification purposes. We thus believe

combining these two systems can give us better results. Both systems are unobtrusive,

low-cost, and private, which can thus enable a large array of important applications.
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Chapter 1

Introduction

In-bed mobility measurement is a very important factor when monitoring patients or

people during sleep is required. Monitoring a person’s body movements during sleep

can also enable an array of applications, ranging from sleep monitoring to abnormal

body movements detection, such as restless legs.

A large fraction of a person’s life is spent resting and sleeping. We generally con-

sider times when we are not awake to be safe periods, free from danger and health

risks. Actuality, this is not true: every year, roughly one in eight human deaths occur

while people are sleeping. Many of these deaths are related to chronic health condi-

tions, often unknown to the person. Movement during sleep can be a sign of disrupted

sleep since it is associated wakefulness that effects on sleep quality. As less motion

or movement during sleep, as better quality of sleep because its associated with sleep

depth [2]. People may still feel fatigue and cannot concentrate even if they sleep for a

good amount of time. This can be caused by a bad quality of sleep, such as having fre-

quent periods of wakefulness during sleep. Changes in the pattern of motion activities

in bed can reflect various abnormal physiological and neurological conditions. Some

motor disturbances are triggered by sleep such as restless legs syndrome (RLS) and

periodic limb movements during sleep (PLMS). Detecting these movements can help

as a diagnostic tool. Therefore, the assessment of body movement is used as important

indicator of sleep quality and depth [3].

When mobility detection is mixed with motion classification algorithms it yields

to further monitoring to some particular events detection, notification and recognition.
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Motion classification system can enable focusing on more critical tasks, especially at

hospitals or clinics. The need for smart systems that provide monitoring options is

increasing year over year as the cost of health care continues. Especially when these

systems can be used at homes as well as hospitals. As a result, we believe unobtrusive,

low-cost, wireless, and easy to install sensor system is the best approach for in-bed

body motion detection and classification. In this dissertation, our goal is to provide a

system that can accurately detect and classify any motion during sleep or in-bed resting

time.

1.1 In-Bed Movement

Sleep state is highly connected to the major changes in motor activity [4, 5]. As lower

motor activity level, as deeper sleeping state. Intermittent wakefulness during sleep is

related to high activity levels and arousal that are associated with movement [6]. For

that, sleep quality can be reduced by increasing mobility in bed, which can be a sign of

disrupted sleep [7].

Movement in bed, by itself, can be considered as an indicator of health problems.

Many illnesses, like flu, depression, or pain, can be reflected by the pattern or amount

of motor activity [4,5]. Depressed patients, according to [8,9], show increased motion

activity at night. Patients of sleep apnea also have shown an increased in motor activity

at night resulting from disrupted sleep [10]. Also, abnormal movements during day and

nighttime, that may adversely affect sleep, can present many neurological disorders [5,

7]. For example, in Parkinson’s disease, normal body movements may be repressed by

motor daytime symptoms that persist during sleep, such as a decreased ability to start

and continue movements, and impaired ability to adjust body position. Sleep quality

is worsen by these symptoms, and can cause discomfort and pain [7, 11]. Restless legs

syndrome (RLS) and periodic limb movements during sleep (PLMS) are also another

examples of motor disturbances that are triggered by sleep. With restless leg syndrome
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(RLS), patients report feelings of discomfort in the legs, and they feel compelled to

move (for example, tossing and turning in bed) to relief the discomfort [12]. Sleep is

disrupted by such symptoms and they cause daytime tiredness and sleepiness [7]. At

least 80% of patients with RLS have PLMS and may provoke frequent arousal or even

awakenings. PLMS are involuntary, repetitive movements, and most typically seen in

the lower limbs but sometimes seen in the arms [7,12]. These motor disturbances, most

of the time, are ignored by the sleeping patient for a long time. According to that, the

need of monitoring in-bed movement during sleep or resting time is increasing year

over year.

1.2 Techniques for Evaluating Motor Activity

Activity monitoring, or actigraphy, is the simplest means of measuring movement. It

is the most direct and specific technique for quantifying and recording movements [5].

Other ways of activity monitoring are performed through obtaining information about

the nature of the movement from the patient or overnight polysomnograph record-

ing [7]. Understanding the nature of the movements is the main factor to do the assess-

ment of nocturnal motor disturbances. Diagnostic, in general, is based on information

provided by patients. The main factors used for evaluating motor activities are the type

of movements, frequency, and duration [13, 14].

Additional techniques may include overnight polysomnograph recording. The gold

standard to evaluate and study abnormal motor events occurring during sleep is Video-

polysomnography (VPSG) [5, 7]. It combines simultaneous audiovisual monitoring

and recording with the traditional PSG recording of the patient in the sleep labo-

ratory. Continuous recordings of several physiological measures should be done in

PSG, including brain waves (electroencephalography), electrical activity of muscles,

eye movement (electro-oculogram), breathing rate, blood pressure, blood oxygen sat-

uration, and heart rhythm. Application of additional leads is required to other parts
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of the body (for example,arms and legs) if there is a specific motor complaint [5, 7].

It requires at least a full nights stay in a sleep laboratory attended by properly trained

technicians [7, 15].

Expensive techniques are required for long-term assessment and behavior therapy.

Most of these techniques are inconvenient in the way that they need some equipment

or devices to be attached to a person’s body. Moreover, additional information should

be provided by patients to make more accurate evaluation. Therefore, more convenient

ways are highly required to match the improvement in technology in nowadays.

1.3 Proposed Work

We propose an accurate, robust, low-cost, and easy-to-use in-bed body movement mon-

itoring system, which is centered around low-end load cell sensors. The system con-

sists of both hardware and software components. Its hardware components include

load cell sensors, an amplifier, a power control circuit, and a wireless communication

unit (which consists of an A-to-D converter); software components involve interpola-

tion, normalization, filtration, feature extraction, and detection and classification. Our

system can detect many different types of body movements, ranging from turning over

to tiny hand movement, and can classify these movements. It can simultaneously detect

and classify movements into 9 classes: turning/rolling right, turning/rolling left, right

hand, right leg, left hand, left leg, legs, head, and combined motions. Our classifier

model is a multilevel binary decision tree that uses SVM model in each decision step

to classify motions into the right branch. 24 features are extracted from each motion to

be used for training and testing purposes. Random Forest technique has been used to

compute feature importance in each level and select the best features. We added two

machine learning techniques to improve the classification accuracy. These techniques

are Random Forest and XGBoost. All three techniques are combined in a logical way

to have one final result at the end.
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1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we summa-

rize the existing bed-mounted body movement monitoring systems, and compare their

pros and cons. In Chapter 3, we describe the hardware system design of MotionScale

system, and its signal processing algorithms. We also present our evaluation setup and

experimental results. In Chapter 4, we describe our classifier system, which we call

MotionTree. we describe MotionTree’s signal processing algorithms with the classifier

construction. We present our evaluation setup and experimental results in Section 4.4.

In Chapter 4 we also describe the using of Random Forest and XGBoost as another

classification tools. We also present a combination algorithm to have one final result

from all techniques at the end. In Chapter 5 we introduce another system that uses a

geophone sensor to detect in-bed movements. Finally, Chapter 6 concludes the disser-

tation and proposes the future steps.
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Chapter 2

Related Work

In the past years, many bed motion sensing systems have been developed. Most of these

systems used high-cost sensors, complicated signal processing techniques, and wired

communication. Also, many of them are only focused on the movements detection

without movements discrimination. Moreover, some of these systems require special

mattress which may reduce their wide use. In this section, we describe some of the

existing in-bed motion detection systems.

2.1 Movements Detection Systems:

Kortelainen et al. [16] proposed a movement detection system, including heartbeat and

respiration, using a foil pressure sensor placed inside the mattress. It requires special

mattress with wired communication and it does not classify the type of movements.

Watanabe et al. [17] developed a noninvasive pneumatics-based system that uses an

air cushion and a pressure sensor. The air cushion is placed under the mattress while

the pressure sensor detects the change of the pressure due to body movements, respi-

ration, and heartbeat. This system needs special cushion with wired communication.

Aubert et al. [18] proposed to use an electric foil pressure sensor to detect three vital

signs during sleep, namely, heartbeat, respiration, and activity index related to body

movements. This sensor needs specific technical installation to be placed in the thorax

region under a thin mattress. Nukaya et al. [19] proposed a bed sensing system by

using piezoceramic bonded to stainless steel plate sandwiched between the floor and

bed legs. This system can sense many human bio-signal, including body movements.
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It needs high-cost sensor and it does not classify movements. Yamana et al. [20] devel-

oped a non-constraint cardiac vibration, respiration, and body movement monitoring

system. It has a 40-kHz ultrasound transmitter and receiver pair. The transmitted sig-

nal is reflected on the mattress under-surface, and the received signal is processed to

know the information about human vital signs, including body movements. Special,

hard, installation is required for this system. Brink et al. [21] proposed a non-contact

sensing system of in-bed heartbeat, respiration, and body movement. This system uses

four sensors, one in each corner of the bed. Each sensor is composed of two aluminum

plates and reflex light barrier in between. The reflex light barrier senses the distance

between the plates. This distance changes with the amount of applied force. There is

no movement classification in this study and it uses wired communication. Harada et

al. [22] proposed a human’s body in-bed movement sensing system. It can detect hu-

man’s existence, posture, articular movement, and respiration. This system uses a spe-

cial, high-cost, sheet with 210 pressure sensors. Joned et al. [23] proposed a movement

Identification system using pressure sensor array. This system needs special handling

of bedding and it cannot classify the type of movements. Tamura et al. [24], and [25]

proposed systems to detect body movements during sleep by temperature monitoring.

The proposed systems consist of 16 temperature sensors. Each system requires spe-

cial installation for these sensors in the mattress. Hoque et al. [3] proposed a Wireless

Identification and Sensing Platform system (WISPs) for monitoring body position and

movements during sleep. The WISP tags are attached to the bed mattress to collect

accelerometer data from them. Movement and body position can be detected. This

system does not give any information about movement’s type. Walsh et al. [26] pro-

posed a system composed of a grid of 24 fiber optic based pressure sensors integrated

into a foam mat. The proposed system can detect movements without classification.

Adami et al. [27] proposed a system to detect and classify in-bed movements. It uses

load cell sensors, one under each of the bed’s legs. This system is very close to our

system but it uses wired communication with complex signal processing techniques.
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In [2], [28], and [29], load cell sensor is used to detect movements. All these systems

don’t give any movement classifications and use wired communication. Spillman et

al. [30] proposed a fiber optic system for monitoring patient respiration, heart rate, and

movements without classification. Nishyama et al [31] developed a system to monitor

respiration and body motions. Pressure sensors based on hetro-core fiber optics are

used in this proposed system. This is high-cost system and requires special installa-

tion. Hao et al. [32] proposed a system for sleep quality monitoring. This system uses

a smart phone with an app called iSleep and the phone should be placed somewhere

close to the bed. The built in microphone in the smart-phone is used to detect the

required activities such as body movement, couch, and snore. The proposed system

does not classify the type of movements. Rofouei et al. [33] proposed non-invasive,

wearable neck-cuff system capable of real-time monitoring and visualization of phys-

iological signals. This system is used for sleep quality purposes. It has many sensors

housed in a soft neck-worn collar and the data send by Bluetooth to a cell phone which

stores the data. It uses accelerometer sensor for body movement detection. This system

cannot classify movements and requires some intrusive system to attached to human

body. Kaartinen et al. [34] proposed a system for long-term monitoring of movements

in bed using static charge sensitive bed (SCSB) sensors. This system can detect body

movements, respiratory movements and heartbeat. It does not classify movements and

uses wired communication.

2.2 Movements Detection and Classification Systems:

Lu et al. [35] and [36] temperature sensors, thermistors, systems are proposed for in-

bed movement detection. These systems detect torso and legs movements by using

two arrays of 16 thermistors placed under the waist and under the legs. The proposed

systems cannot detect head or hand movements. Also, they cannot distinguish the type
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of movements. Cheng et al. [37] developed a physical activity detecting Mat (PAD-

Mat) system. It has three conductive mats placed under the chest, hip, and legs. These

conductive mats are made of conductive fabric to detect physical activities as electrical

resistance changes. It can detect upper limit, legs, and body motions without classi-

fication. Adami et al. [27] proposed a system uses load cell sensors, one under each

of bed’s legs to detect and classify in-bed movements. This system can classify move-

ments into big and small only. Adami et al. [38, 39] developed the previous system

to have a Gaussian mixture model (GMM) as a classification method. It can classify

movements into three classes: major posture shift, small and medium amplitude move-

ments, and legs movements. In [40], load cells are used for periodic leg movements

detection. King et al. [41] proposed a system for the measurement of periodic leg

movements in sleep. It uses the Actiwatch, a wireless actigraphy device, that has a

uni-axial accelerometer as sensing element. This sensor is place on the foot at the base

of big toe using a tape to monitor leg’s movement. Shino et al. [42] developed a system

that can detect body movements and scratching motion in bed. Piezoceramic sensor

sensors are employed in this system. This sensor is bounded on a stainless steel plate

with a washer under the plate. Four devices are used to be put under each bed leg. It

can detect turning and sitting up motions. Accelerometer sensor, angular velocity sen-

sor, ceramic sheet, strain gauge, and microphone are attached to the hand for scratching

motion detection. Ren et al. [43] proposed a system based on a pressure sensitive mat

of 72 fiber optic pressure sensors to detect in bed movements. The system analyzes the

center of pressure progression because of movement to provide prior alarm of falling.

It can detect turning movements without classification. Bustamante et al. [44] pre-

sented a system that can detect movements and a fall before it happens. Shock sensor,

accelerometers on X and Y axes, extensometric gauge, 8 plain pressure sensors, and

camera with motion detection option are used. This system can detect three modes, lain

down (patient position), seated (bed exist), and exit (out of bed). It can also give infor-

mation about the position of the patient in which side of the bed. It can predict if the
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patient is about to fall from the bed. Aronoff et al. [45] proposed a system for patients

movement classification. It uses 6-axis accelerometer that is attached to the patients

hospital bed. Frequency-series analysis is used to extract relevant patterns for patient

movement and train a classifier to identify patients movement patterns. 12 events can

be classified in this system.

We improved a system based on a wireless load cell sensor, that can detect and

classify any in-bed motion from all body’s parts. It is low-cost, low-overhead, highly

robust, and unobtrusive system. It does not need any special designed mattress and can

be easily installed at hospital or home without any subject’s complain requirements.
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Chapter 3

MotionScale

3.1 Introduction

The ability to accurately monitor a person’s body movements during sleep can en-

able an array of applications, ranging from sleep monitoring to abnormal body move-

ments detection, such as restless legs. A number of bed-mounted sensing systems have

been proposed for this purpose, including pressure sensors [16, 22], temperature sen-

sors [36], ultrasound sensors [20], load cell sensors [27] and custom-made sensors [21].

Among these sensors, load cells have been shown to provide a viable solution for sev-

eral reasons. Firstly, load cells are very affordable and readily available. Secondly,

deploying a load cell based system can be very conveniently done, without interfering

with the bed or how it is currently used. Thirdly, load cells (when placed under the

bed legs) can easily capture the changes in body weight distribution caused by move-

ments, especially when the movements are rather noticeable. As a result, we believe

that load cells could potentially offer a practical approach to on-bed body movement

monitoring.

Even though earlier studies point out that low-end load cells can be integrated to

beds to detect some large body movements, whether they are able to accurately detect

both large and small movements at the same time still remain a question, especially

due to their limited sensitivity. In this study, we set out to fill this void by designing

and developing an accurate and robust body movement monitoring system based upon

low-cost load cells (around $.70 per unit). We refer to this system as MotionScale as

it can “weigh” the motions on a bed. Moreover, the entire system is considered as a
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low-cost system for a big quantity.

With MotionScale, we can simultaneously detect both large and small movements

and classify these movements. We address these challenges through the following

techniques. As far as the hardware design is concerned, we have carefully designed

the amplifier circuit so that the circuit can handle a wide range of movements – as

large as the whole-body roll over while as small as hand movements. We have also

made great effort to minimize the power consumption of the system by turning off the

system when it is not needed, e.g., during the daytime. As far as the software design

is concerned, we have adopted several signal processing algorithms that can efficiently

extract body movement signals. Firstly, we have designed algorithms to deal with

frequent packet losses due to wireless interference in the environment. Secondly, our

detection and classification algorithms work across different body weights, adopting a

uniform threshold value regardless of the user’s body weight. Thirdly, we devise three

types of features that leverage the redundancy between multiple load cells to infer

different in-bed movements. Through these optimization techniques, our experimental

results that involve 30 subjects show that we can detect 27 types of body movements

with an error rate of 6.3%, and can classify these 27 types of movements into big and

small movements with an error rate of 4.2%.

To summarize, we have made the following contributions in this study:

1. We have developed an accurate, robust, low-cost, and easy-to-use in-bed body

movement monitoring system, which is centered around low-end load cell sen-

sors. The system consists of both hardware and software components. Its hard-

ware components include load cell sensors, an amplifier, a power control circuit,

and a wireless communication unit (which consists of an A-to-D converter); soft-

ware components involve interpolation, normalization, filtration, feature extrac-

tion, and detection and classification.

2. We have built a prototype and used it to instrument an experimental bed. We
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have used the experimental bed to collect load cell signals from 30 subjects who

make 27 different body movements during each experiment. We have compared

the detected body movements against the ground truth observed captured by a

video camera, and found that the average error rate is 6.3%.

3. We have also used the same data to classify these 27 body movements into big

movements (those that involve the entire body) and small movements (those that

only involve one part of the body). We compare the classification results against

the ground truth observed by a video camera, and found that the average error

rate is 4.2%.

The remainder of the chapter is organized as follows. In Section 3.2, we describe

the hardware system design of MotionScale, and in Section 3.3, we describe Motion-

Scale’s signal processing algorithms. We present our evaluation setup and experimental

results in Section 3.4. Finally, we provide concluding remarks in Section 3.5.

3.2 System Overview

In-bed body motion detection can facilitate a variety of research in Human Computer

Interactions (HCI), smart home, and health-care, such as home environment control,

sleep monitoring, etc. Our main goal is to detect in-bed body motions by utilizing low-

cost, low-overhead sensing techniques. Toward this end, we devise a motion detection

system based on low-cost load cell sensors. The system can be easily integrated to an

existing bed by placing the load cell sensors under each bed leg. The basic idea is to

observe the electrical resistance changes on each load cell to infer possible body mo-

tions on the bed. Intuitively, when a body motion occurs, the body weight distribution

changes, causing each load cell’s resistance to change accordingly.

In this work, we also focus on utilizing the relative load cell resistance changes

to discriminate two types of body movements: Big Movements and Small Movements.

Big Movements usually happen when there is a motion in the body’s torso, such as
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turning to the left or right, and Small Movements happen when just a small part of the

body moves, such as re-positioning the arm or head. Since our system can accurately

detect in-bed body motions using load cell sensors, we refer to it as MotionScale.

As illustrated in Figure 3.1, in MotionScale, each load cell sends its data using

a PIP-Tag (the wireless communication protocol described in Section 3.2.2) with a

sampling rate of 30 Hz. The base station, which is connected to the USB port of a

laptop, conducts the following processing after receiving the data:

1. Data Interpolation. We first interpolate the data by applying the spline interpo-

lation technique.

2. Data Normalization. We normalize the data by using subject’s weight. Weight is

also computed by our system. Because the system aims to detect motions, it just

focuses on the segment of data that contains large changes or oscillations. To

achieve this, the system performs Local Mean Removal to remove the constant

value in the load cell data by using a sliding window. we determine the segment

of data only contains large changes and oscillations.

3. Data Filtration. We filter the data by low pass filter with 10 Hz as a cutoff

frequency. We remove the high frequency spikes or noise by this filtration.

4. Feature Extraction. We investigate three different features in this study, i.e.,

peaks in log-scaled sum of the square of the data (Log-Peak), peaks in the energy

of the sum of the data (Energy-Peak), and valleys in zero crossing of the sum of

the data (ZeroX-Valley).

5. Motion Detection and Classification. Using these features, we detect body move-

ments and classify these movements as big or small movements using a simple

thread-based scheme.
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Figure 3.1: Overview of system flow

3.2.1 Design Challenges

Building MotionScale involves a number of challenges in design and implementation:

Load Cell Installation. Installing load cells under bed legs requires some careful

consideration; direct installation may cause imbalance in pressure distribution on the

surface. To address this challenge, we have designed a docking station for each load

cell. This docking station consists of a washer that is placed under the load cell and a

metal disk that is placed above with some pasting and cutting operations to get it fit.

Power Supplies. Each amplifier circuit need +3V, 0, and -3V. That could be something

difficult because we use four load cells. We built 2 power sources with 3V and connect

them together to provide all required voltages. We used these 2 power sources to

feed all the four amplifier circuits. This cannot be done easily on different places

and different beds. We, probably, need separate power supplies for each circuit in a
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different environment.

Packet loss. Using wireless communication to transmit signal can lead to packet losses

due to interference in the environment. For example, in our system, we observe an

average packet loss rate of 10%. To address this challenge, we take into consideration

the fact that we have multiple load cells in the system and there is sufficient redundancy

in the data. Therefore, we use interpolation techniques to overcome the missing data

problem, which will be explained in detail in Section 3.3. Moreover, we strive to

minimize the packet losses through careful placement of the system, especially the

base station.

3.2.2 MotionScale Hardware Design

Our MotionScale system consists of four major components: a load cell circuit, a dif-

ferential amplifier circuit, a power switch circuit, and a wireless communication com-

ponent. The load cell measures the voltage change due to motion. Because the raw

voltage change values are usually very small, it is hard to accurately measure them

directly. In order to capture such small changes in voltage, we design a differential

amplifier circuit to amplify the raw voltage measurements for subsequent processing.

In order to reduce its power consumption, our system exploits a power switch circuit

that can switch the load cell and amplifier on or off, depending on a control signal from

the communication component. In addition, we leverage a RF Transmitter (referred to

as PIP-Tag, designed in our group [46]) that converts analog voltage signals to digital

values, and sends the digital values to the basestation Unit through low-energy wireless

communications. The basestation is connected to a laptop through a USB port, from

which we receive data for subsequent processing.

1) Load Cell Circuit: Our load cell circuit uses a half Wheatstone bridge, as shown in

Figure 3.2 [47]. Specifically, it has two fixed-value resistors (the two resistors on the
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Figure 3.2: Half bridge strain gauge circuit.

left-hand side of the bridge in the figure) and a three-wire load cell (shown on the right-

hand side of the bridge in the figure). The voltage between the connection of two fixed

resistors and the ground is a fixed value with/ without stress. The three-wire load cell

is made of two single strain gauges in series. When the three-wire load cell is stressed,

one of the strain gauges is compressed and results in a decreased resistance, and at the

same time the other strain gauge is stretched and leads to an increased resistance. Thus,

the voltage between the connection of these two strain gauges and the ground increases

as a response to the introduction of the external weight.

The output of the load cell circuit is thus the voltage between these two connections,

which is linear to the weight value

Vin = V +
in − V −

in = (
R3

R3 −R4

− R2

R1 −R2

) ∗ (Vcc − Vss). (3.1)

In our system, we use Generic YZC-161B load cells with a nominal load of 50 kg,

as shown in Figure 3.3, which costs around $.70 and is generally used as a weighing

scale.

2) Differential Amplifier Circuit: In general, the output of such a load cell is rather

small – the maximum voltage change of the load cell is less than 6 mV under stress
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Figure 3.3: The Load Cell.

corresponding to the gravity of 50 kg object/subject (its capacity). This makes it dif-

ficult to get the accurate value from the A/D converter. Thus, we use a Differential

Amplifier circuit to enhance the signal that we get from the strain gauge. The amplifier

model that we use in our project is INA126 [48].

Vout = G ∗ Vin = (5 +
80kΩ

Rg

) (3.2)

3) Power Switch Circuit: We also use a power switch circuit to turn on/off the power

supply, which is a simple p-MOS FET and n-MOS FET circuit. The switch is con-

trolled by the transmitter tag, which uses a pin to pull down to the ground to turn off

the circuit or pull up to 3V to turn on the circuit. In this way, we can conserve a

significant amount of energy when the measurement is not needed.

The whole circuit is shown in Figure 3.4.

4) Wireless Communication Component: We use a wireless communication system

developed in our group (details can be found in [46, 49]) to convert the analog signal

to digital values and then transmit them through wireless links. The system consists a

transmitter that we refer to as PIP-Tags which contains a 10-bit A/D converter with the

range of 0 to 1.5V. It is low-cost, low-power, and easy to program. The PIP tag has
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Load	Cell	Circuit	

Power	Switch	Circuit	

Figure 3.4: The whole electrical circuit

its own processor and radio transceiver. The basestation has the same hardware as the

PIP-Tags, with a tuned 900 MHz monopole antenna attached. The basestation is also

equipped with a standard USB connection for data transfer to the laptop which runs

the signal processing algorithms. In fact, we could have used the Blue-tooth devices in

our system, but we would not get the low power consuming system like what we have.

Moreover, PIP-Tags work reliably in a system with hundreds of sensors in small space

with large number of small packets.

5) Assembling a MotionScale System: Our MotionScale system consists of four load

cells, with each load cell placed under a leg of our experimental bed. We have 2 power

supplies to provide the +3, 0, and -3V for all of the circuits. There is only one receiver

that can be connected to any USB port in a laptop. This receiver collects all the data

from the four load cells and transfer the data to a processing unit.
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Figure 3.5: The general overview of our system.

3.3 MotionScale System Design

In this section, we explain how our system is designed to process the data from load

cells to mitigate noise and further detect in-bed motions. The detection results can not

only detect motions, distinguish big and small motions, but also can determine when

the user lies on the bed, leaves the bed, and moves on the bed, which can facilitate a

variety of applications in smart home and health-care.

3.3.1 Data Pre-processing

After raw data are collected from load cells, our system first performs a sequence of

preprocessing steps to remove noise and determine the important segments that contain

the data corresponding to motions on the bed. The Data Pre-processing is in three

steps. First, the received data are interpolated to balance the samples that are unevenly

distributed in time due to packet losses. Second, we normalize the data by estimating

the body weight of the user and remove this constant bias from the data. Third, the

system drops the local mean in the data and apply filtration with low pass filter to

further remove the high-frequency noise.

Data Interpolation. In our work, multiple load cells use PIP-Tags to transmit
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the measured data in real time through wireless communications. Due to the high-

noise nature of wireless communications, it is common to find that some data may

be missing or have large errors when data packets from different load cells collide or

corrupt with each other. To illustrate this, we conduct an experiment by collecting

data from four load cells placed under the legs of a bed when a participant is asked

to lie on the bed and perform some movements, such as turning left/right. Although

the sampling rates are set to the same value on each of the load cells, the total number

of data measurements received from four load cells are different. For example, when

the sampling rate on load cells is set to 30 Hz, we find that about 10% of the total

measurements from four load cells are missing in a time period of 3 minutes because of

packet collisions. Such inconsistency in data from different load cells would severely

impact the motion detection because the data cannot reflect the weight variation on

different load cells during the same time period that has the same motion. In order

to align the data from different load cells, we apply the spline interpolation technique

to the data from different load cells to make sure the data from different load cells

have the same length. From our experiments, we find that the frequency of most body

movements is less than 4 Hz [2], and therefore, even after losing about 10% of the

packets, we still have sufficient data samples for body movements according to the

Nyquist Theorem [50]. Figure 3.6 presents the three-minute data measurements before

and after the interpolation. In the original data, we can see that the data from the third

row, for example, has about 5200 samples, which is more than others, and the variations

caused by the user’s movements are not properly aligned between different rows. After

the interpolation, we have equal length and aligned activities in all rows.

Calibration and Weight Estimation. Each load cell circuit and amplifier circuit

has a voltage regulator to adjust the amplified voltage. However, that regulator is not

exactly the same to all circuits. We propose to use calibration equations to determine

the relationship between voltage values and corresponding weight values. Calibration

was done separately to each load cell. We applied some known weight to each load
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cell and observe the corresponding output voltage, from which we derive the weight

calculation parameters for each load cells. This step is a one-time effort, and the de-

rived parameter values can be applied to all subsequent experiments. Our system can

estimate the body weight with resolution of about 200 g.

In the experiment, we first collect weight measurements from the empty bed for 10

seconds, and then ask the participants to get in the bed and record the weight measure-

ments. Intuitively, to determine the weight of a participant on the bed, we first need to

remove the weight of the bed and find the mean of the raw weight data.
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(a) The data before Interpolation

(b) The data after Interpolation

Figure 3.6: The four raw of data before and after doing the interpolation on the data of

3 minutes experiment with some movements of a subject on the bed.

Mean Removal and Filtration.

We find that when in-bed movements happen, the weight measurements from load

cells have oscillations. However, the oscillations are not obvious in the raw data. After
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we remove the local mean from the raw data, the oscillation associated with every

movement become more noticeable. In particular, we calculate the mean values in

a moving time window of 50 samples. Figure 3.7 shows the weight measurements

before and after removing the local means, where the data is collected from one of

our participants with 27 in-bed movements. We can see that local mean removal can

amplify the oscillation to improve the movement detection.

(a) The data before removing the local mean

(b) The data after removing the local mean

Figure 3.7: The raw of data with their summation before and after removing the local

mean. Local means 50 samples.
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After that, the data is filtered using a low pass filter of a 10 Hz of cutoff frequency.

3.3.2 Feature Extraction

Next, we extract features from the preprocessed data and adopt a simple threshold-

based detection/classification strategy. Below, we describe the three features we have

explored and the corresponding detection schemes one by one.

Log-Peak Feature Extraction: Log-Peak uses the logarithm of a physical quan-

tity instead of the quantity itself, which has the potential to have a good view to show

both small values and large ones. Moreover, we find a way to merge the four signals

into one and supply it to the log scaling to simplify the further processing. Specifically,

we first square every raw data signal collected from each load cell sensor and sum them

up to create a new merged signal, which is the summation of their squares. To make

the system applicable for all people or subjects, we normalize the merged signal by di-

viding by the subject’s weight. Log (i.e., natural log where log to the base e) is applied

to the merged signal. The output of log scaling is very messy and doesn’t reflect any

good information, therefore we apply a low pass filter with a cutoff frequency 0.2 Hz

to the log’s output. We get an observable pattern with a clear peak whenever there is an

in-bed body movement. Figure 3.8 shows the squares of the four raw signals and their

summation in the bottom line. Figure 3.9 shows the log output of the normalized sum-

mation result before and after filtration. Threshold is applied to find peaks, which also

means to find movements. Also, another threshold is applied to classify these move-

ments as big and small. More details about thresholds and movements classification

will be discussed in 3.4.

Energy-Peak Feature Extraction: We observe that there exists stronger oscilla-

tion with high amplitude in the collected load cell readings if an in-bed movement is

performed. It means that signal has more energy in that portion of oscillation. Similar

with log-peak feature extraction, we first sum the four collected load cell signals up

to create a new merged signal, and use a low pass filter to remove the un-relative high
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Figure 3.8: (a) Square of the data from load cell 1. (b) Square of the data from load
cell 2. (c) Square of the data from load cell 3. (d) Square of the data from load cell 4.
(e) The summation of all squares.

frequency components. Then we extract the energy in every 2 seconds window. That

window size came from the fact that body’s motion cannot be more than 2-3 Hz. So

we just pick a size that can cover all possible movements. Extracted energy features

will give a peak whenever there is a movement. The height of the peak depends on

the strength of movement. The stronger movement results in higher energy peak. All

energy widows are normalized with highest value window. Peak detection is applied

with some threshold values to find all movements in the data. Also, another threshold

is used to classify movements as big or small. Figure 3.10 shows the filtered summa-

tion signal and its energy graph for 2 seconds window. We can see the peaks whenever

we have movements.

Zero-Crossing (ZeroX-Valley) Feature Extraction: We use the same input signal

used in the Energy-Peak feature extraction, which is the filtered summation of load

cells’ readings with local mean removal. There is stronger oscillation in the signal

with high amplitude if any in-bed movement is performed.
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Figure 3.9: (a) The Normalized summation of the squares. (b) The log result of the nor-
malized summation before filtration. (c) The log result of the normalized summation
after filtration (using 0.2 Hz low pass filter).

This portion will cross the zero axis less than the surrounding low amplitude parts

of signal. So, we use the same size of 2 seconds window used before, and compute

the ZX rate in each one. As a result, we see that low value ZX rate window is always

connected to the part where we have motion. We used that to get a graph for ZX and

try to find valleys. Thresholds also applied here to find these valleys, which also means

find movements. Another threshold is applied to distinguish between movements, big

or small. As previous, more about choosing these threshold and movement classifica-

tion will be explained in 3.4. Figure 3.11 shows the input filtered summation signal

(after removing the local mean) with its ZX rate graph per 2 seconds window. We have

Valley with every movement.

3.4 Performance Evaluation

In this section, we first describe the experimental methodology, and then present the

evaluation results. In this study, we have carefully evaluated MotionScale for its per-

formance in body motion detection and classification.
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Figure 3.10: (a) The summation of load cells data after dropping the local mean and
filtered with 10 Hz low pass filter. (b) The Energy for signal (a) computed for 2 seconds
window.

3.4.1 Experimental Methodology

The experiments are conducted on a twin size bed in a university laboratory with 30

healthy subjects (22 males and 8 females, age ranging from 22 to 42 years old) over a

three-month time period 1. A common innerspring mattress with dimension of 90cm

(width)×185cm (length)×20cm (height) is on the bed, and the MotionScale prototype

is mounted under the four legs. During the experiments, we ask each subject to perform

27 pre-defined in-bed movements with 20 seconds quiet period after each movement.

Among all 27 pre-defined movements, there are 8 large movements involving the en-

tire body (e.g., getting in/off bed, turning left, turning right or rolling over), and 19

small movements that only involve parts of the body (e.g., head, arms and legs). More

specifically, 6 of the 19 small movements are leg movements, and the rest are arm and

head movements.

We record all the data using the same prototype and laptop to avoid any possible

bias in readings. A camera is mounted on a tripod 1.5 meter away from the bed to

1Our studies were approved by the Institutional Review Board (IRB) of our institution.
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Figure 3.11: (a) The summation of load cells data after dropping the local mean and
filtration with 10 Hz low pass filter. (b) The ZX rate computed for 2 seconds window.

record videos for the ground truth recording. In order to select a suitable threshold

for motion detection and classification, as we discussed in Section 3.3, we randomly

choose 10 subjects’ data-sets for the training purpose. Additionally, we repeat this

process 100 times to find the most suitable threshold.

3.4.2 Performance of Motion Detection

Comparison of Three Features: We first compare the performance of the three fea-

tures extracted from the collected load cell data, i.e., Log Peak, Energy Peak, and

Zero-X Valley. In order to conduct a fair comparison, we report each feature’s per-

formance using the best threshold value for that feature. From our experiments, we

observe that each feature presents an obvious peak or valley whenever there is a mo-

tion. These peaks/valleys are very different in amplitudes and widths (even for the



30

same movement) among the three features, which suggests that we need to find a gen-

eral threshold (i.e., height of peak) to detect the 27 performed in-bed movements2 [51].

In order to find the best threshold value for each feature, we apply different threshold

values on data collected from 10 randomly selected subjects for a total of 100 times

and choose the one that gives the best performance. Specifically, we identify a range

of values for each feature’s threshold – the peak value threshold for Log-Peak is varied

from -12 to 0 in 30 steps, the peak value threshold in Energy-Peak is varied from 0.01

to 0.31 in 30 steps, and the valley value threshold for ZeroX-Valley is varied from 3 to

18 in 30 steps.

We have a total of 30 subjects, and for each of the 100 tests, we randomly choose

10 subjects as training subjects and use the remaining 20 subjects as test subjects.

For each test subject, our detection algorithm detects n movements, and the detection

error rate is thus calculated as
∣∣27−n

27

∣∣ where 27 is the number of known movements in

each experiment. Figure 5.11 reports the detection error rate distribution of the 100

experiments for each feature. It is very clear that Log-Peak is the best among the three

features, delivering a detection error rate of 6%. We therefore believe that MotionScale

is a viable movement detection system during sleep.

2To prevent the inference from other noise, we apply a threshold to the minimum distance between
two neighboring peaks based on the time interval between each two consecutive movements. Specifi-
cally, since there is a 20 second quiet period between two consecutive movements in our experiments,
we set the threshold of the minimum distance between two neighboring peaks as 20 seconds as well. In
real life we can use different periods, such as 5 or 10 seconds.
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Figure 3.12: The error rate for testing phase.

Study of the Impact of Parameters: We next study the impact of threshold values

on the performance of different detection strategies, and report the results in Fig-

ures 5.12(a)-(c) respectively. All three curves exhibit a “U” shape, meaning that there

is an optimal value for each threshold. When the threshold is properly chosen (around

the optimal value), the corresponding strategy only detects the peaks/valleys caused

by valid body motions and ignores the peaks/valleys caused by noise. In this way, we

achieve the lowest error rate. When the threshold is too small (starting from the left

hand to the bottom area of the U shape), the corresponding strategy detects noise in the

environment as body motions, leading to a higher error rate. When the threshold is too

large, the corresponding strategy misses legitimate body motions by treating them as

noise, resulting in a higher error rate as well. This suggests that by having a suitable

training dataset, we are able to learn the optimal threshold values that can minimize the

detection error rate for MotionScale.

3.4.3 Performance of Movement Classification

In the second part of the evaluation, we attempt to classify each detected movement as

either a big movement or a small movement. In the experiments, we ask the subjects
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to perform both big and small movements. In a big movement, the subject moves her

entire body from one position to another, or moves the most part of the body; while

in a small movement the subject moves only one part of her body, such as arms, legs,

or head. The rationale behind discriminating these two types of movements is that big

movements normally possess higher energy and longer duration than small ones. We

thus, expect higher peaks (or lower valleys) for these motions in our peak detection

system. Figure 3.14 shows all the movements that are detected for a subject using the

three strategies. In the figure, we label all the big movements using red dashed circles.

Figure 3.15 shows the classification error rate distribution over 100 experiments,

and in each experiment we randomly choose 10 subjects’ data as training data and use

the remaining as test data. Here, we vary the threshold value for Log-Peak threshold

from -5 to -1, the threshold for Energy-Peak from 0.1 to 10, the threshold is from -10

to -5, each in 80 steps. It is obvious from Figure 3.15 that Log-Peak is the best strategy

to distinguish between small and big movements, with a mean classification error rate

of 4.27%. Across all the data, we find that Log-Peak exhibits the largest gap between

small and big movements.
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(a) The error rate of variation the threshold in Log Peak strategy

(b) The error rate of variation the threshold in Energy Peak strategy

(c) The error rate of variation the threshold in ZX strategy

Figure 3.13: The error rate of the three strategies when we varied the threshold. All the

30 subjects are tested here.
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(a) The Log scale of the data with big movements on red circles

(b) The Energy of the data with big movements on red circles

(c) The Zero-Crossing of the data with big movements on red circles

Figure 3.14: Data with big movements.
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Figure 3.15: The Cross-Validation error rates for the three strategies: Log, Energy, and
ZX.

Figure 3.16 shows the ROC curves of the three strategies in classifying big and

small movements. We obtain the ROC curves with the threshold value that gives the

same false positive rate and false negative rate. These results also indicate that Log-

Peak has the best classification performance.

Figure 3.17 shows how Log-Peak’s classification algorithm fares with varying thresh-

old values. The results show that Log-Peak reaches the minimum classification error

of 5% when the threshold is -2.9. Finally, Table 3.1 summarizes the results with best

threshold values and error rates.

Strategy
Movement Detection Movement Classification

Best Threshold Error Rate Best Threshold Error Rate

Log -7.6 6.3% -3.16 4.2%

Energy 0.0445 12.4% 2.2 11.5%

ZX 11 18.1% 2.99 12.2%

Table 3.1: Best Thresholds and their associated error rate to detect all movements and

the big and small movements.
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Figure 3.16: The ROC curve for the three strategies applied on 30 subjects.

Figure 3.17: The error rate of Log Peak applied on 30 subjects.

3.5 Concluding Remarks

In this chapter, we propose a low-cost, low-overhead, and highly robust system for in-

bed movement detection and classification, the MotionScale, which can facilitate many

smart home and health-care applications. This system utilizes four low-end load cell

sensors installed under the legs of a bed to capture the weight distribution on the bed

and further accurately determine movements on bed. Compared to existing solutions,

MotionScale can use more low-cost hardware to achieve comparable results, and it is

very easy to apply in our lives unobtrusively. By utilizing the load cell based system,
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MotionScale can detect different types of in-bed body movements with different scales,

ranging from parts of body (e.g., arm, head) movements to whole body movements

(e.g., turn over, get off bed). To evaluate our system, we build a prototype with off-

the-shelf low-cost load cells and PIP-tags and extensively experiment the prototype

with 30 participants over three-month time period. The results show that by utilizing

our three main strategies, Log-Peak, Energy-Peak, and ZeroX-Valley, the MotionScale

can effectively extract body movement signals from load cell data and detect in-bed

movements with a low error rate of 6.3%, and classify them to big or small movements

with an error rate of 4.2%. We have fond that these features are really distinguishable

and we got very good results with thresholds.
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Chapter 4

MotionTree

4.1 Introduction

Body motion measurement during sleep is an important consideration for a person’s

well-being. In fact, in-bed body movements monitoring can enable many applications,

such as sleep monitoring, abnormal body movements detection, etc. In-bed motions

can be sensed using different kinds of sensors; e.g., temperature sensors [36], pressure

sensors [43], accelerometer sensors [41], load cell sensors [39, 40, 52], geophone sen-

sors [53], and custom-made sensors [37,42]. When motion detection is combined with

motion classification, it can be used to detect, notify, and recognize specific events,

enabling us to focus on critical tasks. The need for smart systems that provide moni-

toring capabilities is increasing year over year as the cost of health care continues to

rise, especially when these systems can be used at homes as well as hospitals. As a

result, we believe unobtrusive, low-cost, wireless, and easy to install sensor system is

the best approach for in-bed body motion detection and classification. In this study, our

goal is to provide a system that can accurately detect and classify any motion during

sleep or in-bed resting time.

Among all proposed sensors, load cells have been noticed to achieve efficient solu-

tions for several reasons. Firstly, load cells are low-cost off-the-shelf, very affordable,

and readily available. Secondly, easily to be deployed in a very convenient, and un-

obtrusive way without any subject’s complain requirements. Thirdly, load cell can be

placed under bed legs to easily capture the change in the distribution of the weight on

the bed that caused by any motion. Fourthly, a set of features can be extracted from
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load cells signals to be used for efficient motion classification approach. For that, in

our earlier work [52] we used load cell as sensing unit in building a system that can

detect in-bed body motions and classify them into big or small movements only. In this

study we improved the previous system (that we call MotionScale) to offer a practical

approach to much finer in-bed body motion classification. So, in addition to the load

cell sensor, we have to have a good classifier model that can use the set of extracted

features to give the right class for each movement.

In this study, we try to have a mixture of low-cost, unobtrusive, robust, easy to in-

stall hardware device with an efficient and accurate classifier to have a practical in-bed

movement classification system. We developed a system based on low-cost wireless

load cell sensors and a binary decision tree based on Support Vector Machine as a

classifier. We refer to this system as MotionTree as it can classify movements using a

binary decision tree.

With MotionTree, we can simultaneously detect and classify movements into 9

classes – turning/rolling right, turning/rolling left, right hand, right leg, left hand, left

leg, legs, head, and combined motions. We tried to cover all possible in-bed motions

ranging from large ones like the whole-body roll/turn to small ones like hand move-

ments. Our classifier model is a multilevel binary decision tree that uses SVM model

in each decision step to classify motions into the right branch. Twenty four features are

extracted from each motion to be used for training and testing purposes. We have also

made a great effort to boost the overall accuracy of our system by selecting the best

features that can be used for each classification step. The Random Forest technique has

been used to compute feature importance in each level. This system can work across

different body weights and does not require additional training when a new subject is

introduced. Through these techniques, our experimental results that involve 40 sub-

jects show that we can classify in-bed motions into 9-classes of movements with an

average accuracy rate of 90%.

In addition to our SVM tree, we use here two more techniques: Random Forest,
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and XGBoost. In this chapter, we apply Random Forest in the same way we did for

SVM, using similar tree design in MotionTree but with RF as classifier instead of SVM.

Moreover, we use XGboost as another classifier. We then combine all the above tech-

niques, in one final result. So, whenever we have a movement, we have 3 output from

the above 3 techniques: SVM, RF, and XGBoost. We try here to combine all these 3

outputs in one decision to improve the final accuracy of our system.

To summarize, we have made the following contributions in this study:

1. We have built a MotionTree prototype and used it to instrument an experimen-

tal bed. We have used the experimental bed to collect load cell signals from 40

subjects who make 35 pre-defined different body movements during each ex-

periment. We have detected all motions with the beginning and end moments

for each one. 24 features have been extracted from each motion to be used in

training and testing phase.

2. We have used the extracted features to train all SVM models used in the binary

decision tree. We select the best features for each model by applying Random

Forest technique. We classify the collected motions into 9-classes that cover all

possible in-bed movements. We compare the classification results against the

ground truth observed by a video camera, and found that the average accuracy

rate is 90%.

3. We have designed a binary decision tree that uses 8 SVM classification mod-

els instead of using one step multi-class SVM classifier. This step improves the

whole accuracy from 65% (in the flat SVM classifier) to 90% (in our Motion-

Tree).

4. We have used Random Forest in the same way we used SVM to have another

classifier. Three tree topologies were used: Flat, Small-Tree, and RF MotionTree.

We achieved the average classification accuracy of 90.9%.
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5. XGBoost is used as another classifier in this chapter. We use flat topology only

to achieve a classification accuracy of 90.5%.

6. To have one result, we combine all previous techniques using a logical combina-

tion algorithm. We achieve the final classification accuracy of 91.5%.

The remainder of the chapter is organized as follows. In Section 4.2, we describe

the hardware system design of MotionTree, and in Section 4.3, we describe Motion-

Tree’s signal processing algorithms with the classifier construction. We present our

evaluation setup and experimental results in Section 4.4. In Section 4.5, we describe

our classifier that is based on Random Forest technique, and in Section 4.6, we describe

the classifier that is based on using XGBoost technique. We present our combinational

results in Section 4.7. Finally, we provide concluding remarks in Section 4.8.

4.2 Overview of MotionTree

In-bed body motion classification is of great importance that can enable a large array

of applications in domains such as Human Computer Interactions (HCI), remote mon-

itoring, health-care, sleep monitoring, smart home, etc. With the ability to detect and

classify body motions, many critical health issues can be detected at an early stage to

prevent serious health problems. The main goal here, in our system, is to detect in-bed

body motions and classify them by using a low-cost, non-invasive sensing system and

the machine learning algorithm.

4.2.1 Hardware Design

Figure 4.1 shows a load cell under bed leg with amplifier circuit and the wireless trans-

mitter. We collect the data through the base station that has the same hardware as the

transmitter, with a tuned 900 MHz monopole antenna attached. The base station is

connected to USB port to the dedicated laptop that runs all required data processing
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Figure 4.1: Load cell under bed leg with amplifier and transmitter devices

steps. More details about Hardware are described in Section 3.2.2.

4.2.2 System Overview

For the purpose of classifying each motion, we first establish the problem design space

by defining 9 classes of in-bed body movements: (1) turning/rolling right, (2) turn-

ing/rolling left, (3) right hand, (4) right leg, (5) left hand, (6) left leg, (7) legs, (8) head,

and (9) combined motions. We define this design space because it almost covers all

possible in-bed movements. Also, some movements that cannot be clearly defined, we

included them in some of our defined classes. For example, rolling over is very hard to

be distinguished from turning to one side of the body, and therefore we lump these two

motions together.

As illustrated in Figure 4.2, we collect the measurements from the base station, and

conduct the following data processing techniques:

1. Data Pre-Processing. Prior to motion classification, we conduct several signal
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processing steps. We first interpolate the collected data using the spline interpo-

lation method [54,55]. Since our system focuses on the portion of the data when

there is a motion, we try to identify those segments with high oscillation values.

Towards this end, we apply local mean removal to remove the constant values

in load cells data by utilizing a sliding window. All these steps are explained in

Section 3.3.

2. Movement Detection. We compute the energy for each load cell data and add

them up to have one merged signal that is normalized by using the body weight.

To detect motions, we apply the log scale on the merged signal and find peaks

which means detecting the movements (Section 3.3).

3. Feature Extraction. For each motion, we extract 24 different features – the

change of the weight in each load cell (4 features), the change of the center of

mass in both x and y axes (2 features), the change of the center of mass around

its mean in both x and y axes (2 features), the motion trajectory length, the Eu-

clidean distance between the centers of mass before and after the motion, the

log peak value (as defined in section 3.3.2), summation for the real, absolute,

and square values of the change in the body center of mass on both axes during

the movement (6 features), summation for the real, absolute, and square values

of the change in the body center of mass on both axes from its initial point (6

features), and movement’s duration.

4. MotionTree Construction. Considering the inefficiency of using one-level clas-

sifiers to discriminate among nine classes1, we have designed a binary decision

tree with multiple levels for accurate motion classification, which we refer to as

MotionTree. With a total of 9 classes we could have constructed trees with many

different topologies, and we have chosen a topology that is intuitive and leads to

1We have tried to classify among the 9 classes in parallel and got very low accuracy rates, e.g., 65%,
because many movements have mixed features and it is very difficult to have them classified with SVM.
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Figure 4.2: Overview of system flow

good classification results.

MotionTree adopts multilevel classification where each layer uses Support Vector

Machine (SVM) technique [56–59], and a subset of features that are important

for that layer. Specifically, we evaluate each feature’s importance at every layer

using Random Forest technique [60–65].

5. Motion Classification. In classification phase, we use the features calculated

from the test motion and walk through the MotionTree to arrive at the correct

motion type.



45

4.3 Motion Classification through MotionTree

In this section, we explain how our MotionTree model takes the data from load cells

and detects and classifies body motions accordingly. The entire process consists of

the following steps: motion detection, feature extraction, training and MotionTree con-

struction, and classification.

4.3.1 Movement Detection

The four output signals from the pre-processing step are used as input to movement

detection. We calculate the energy for every raw data signal and sum them up to create

a new merged signal, which is the summation of their energy. We have to make our

system applicable for a large range of people/subjects, and therefore the merged signal

is normalized by dividing by the subject’s weight. Our goal here is to find data seg-

ments that contain motions (i.e. high energy). Moreover, to successfully detect both

big and small movements, we find that the linear view/scale is a poor fit, but the log

scale works much better as it can simultaneously show both small and large values. We

then apply natural log to the merged signal and apply a low-pass filter of a cutoff fre-

quency 0.2 Hz to the log output to have clear signal. As a result, we can observe clear

peaks whenever there is a motion. We then apply suitable thresholds to locate the peaks

which correspond to body movements. We assume the beginning of the motion starts

at a small time window (e.g., 20 seconds) before the peak, and the end of the motion is

at time window of 20 seconds after the peak. So, we select the minimum points during

these windows to represent the beginning and the end of the motion. We believe that

the duration of 40 seconds covers most of the common body movements. Figure 4.3

shows the log output of a portion of the merged signal, where we use red triangles to

mark the detected peaks, orange squares to mark the beginning of the motion, and red

stars to mark the end of every motion.
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Figure 4.3: Normalized summation of four load cells signals’ energy and its log re-
sult after filtration (using 0.2 Hz low-pass filter). Red triangles to show the detected
movements. Orange squares and red stars to show the beginning and end of every
movement

4.3.2 Feature Extraction

From the signals during a detected movement period (between the beginning and end

of a movement) – which we refer to as motion data or motion signal – we calculate 24

features to characterize the movement.

First, we use raw load cell signals to estimate the exact location of the body’s

center of mass. Figure 4.4 shows how we represent the positions of the load cells

and the subject in the Cartesian system. Using this representation, we can calculate

the following features that depend on the distribution of body weight on the four load

cells.

1. The change of the weight on load cell i, i ∈ [1− 4], ∆Wi. This feature represents

the change in the weight on load cell i, from the beginning and the end of a

motion.

∆Wi = Wi(tend)−Wi(t0), (4.1)

where Wi(tend) and Wi(t0) correspond to the measurements from load cell i, at

the end of the movement, and at the beginning of the movement, respectively.
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Figure 4.4: The bed coordinates representation in a Cartesian system.

2. The change of the location of the body center mass, given by ∆Xcm and ∆Ycm.

This set of features reflect how much the center of mass moves after each move-

ment in both directions (the left-right direction denoted by x-axis, and up-down

direction by y-axis). To calculate this set of features we use the law of levers to

find the coordinates of the body center of mass at a given time:

Xcm(t) = Xmax(
∆W2 + ∆W3

4∑
i=1

∆Wi

), (4.2)

Ycm(t) = Ymax(
∆W3 + ∆W4

4∑
i=1

∆Wi

). (4.3)

where Xmax and Ymax are the maximum width and length of the bed – 90cm and

180cm in Figure 4.4.
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As a result, we calculate this set of features as follows:

∆Xcm = Xcm(tend)−Xcm(t0), (4.4)

and

∆Ycm = Ycm(tend)− Ycm(t0). (4.5)

3. The change of the body center of mass from its mean on both axes, which we refer

to as X variance Xvar and Y variance Yvar. This set of features measure how the

center of mass changes from its mean value during the motion. They reflect how

big the movement is and how it is concerned on some spot or location on bed.

Xvar is useful to help our system in discriminating movements involving left or

right body sides, for example this feature has bigger value for left leg motion than

left hand. In the same way, Yvar helps to distinguish motions involving upper and

lower parts. They can be calculated as follows:

Xvar =

N∑
i=1

(Xcm(i)−Xcm(mean))2

N
, (4.6)

and

Yvar =

N∑
i=1

(Ycm(i)− Ycm(mean))2

N
, (4.7)

where Xcm(mean) and Ycm(mean) denote the estimated mean of the change on

the x and y axes over the interval of a movement.

4. Movement Trajectory length (TL). This feature measures the length of the tra-

jectory traveled by the body center of mass during a movement. The value is

estimated by summing the distance between the body center of mass locations

for subsequent samples during the movement. Figure 4.5 shows such an example

trajectory for a turning-left movement. This feature reflects how big the move-

ment is and how much the body center of mass has moved spatially. Usually its

value is small for movements that involve only one body part such as an arm or
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Figure 4.5: The trajectory of the body center of mass during a turn left movement. The
positions of the body center of mass at the beginning and at the end are given.

the head, but large for big movements that involve mu body parts or the whole

body. TL is calculated as the following:

TL =
N−1∑
i=0

√
(Xcm(i + 1)−Xcm(i))2 + (Ycm(i + 1)− Ycm(i))2, (4.8)

where N is the number of samples collected during a body movement.

5. The Euclidean distance between the beginning and end points of the body center

of mass (D). This feature depicts the displacement of the body center of mass due

to a body movement, whose value is usually directly affected by the magnitude

of the movement. D is calculated as:

D =
√

(Xcm(tend)−Xcm(t0))2 + (Ycm(tend)− Ycm(t0))2. (4.9)

6. Log-Peak value (Vpeak). In our movement detection phase, we use the presence of

log peaks to detect body motions, as shown in Figure 4.3. Here, we use the peak

value as a feature to describe the movement – higher peaks always associated

with bigger movements.

7. The real summation of each change of center of mass (from the previous CoM

position) on both axes during the movement, (RSXcm and RSYcm). These two
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features reflect how much the center of mass changes from its previous location.

The summation of all these changes or differences are computed here for both

axes during the entire movement. They can be calculated as follows:

RSXcm =

N∑
i=1

(Xcm(i + 1)−Xcm(i))

N
, (4.10)

and

RSYcm =

N∑
i=1

(Ycm(i + 1)− Ycm(i))

N
, (4.11)

where N is the number of samples collected during a body movement.

8. The real summation of each change of center of mass (from the initial CoM

position) on both axes during the movement, (RSXBcm and RSY Bcm). These

two features reflect how much the center of mass changes from its initial location.

The summation of all these changes or differences are computed here for both

axes during the entire movement. They can be calculated as follows:

RSXBcm =

N∑
i=1

(Xcm(i)−Xcm(t0))

N
, (4.12)

and

RSY Bcm =

N∑
i=1

(Ycm(i)− Ycm(t0))

N
, (4.13)

9. Summation for the Absolute values in the changes of the body center of mass on

both axes during the movement, (ASXcm and ASYcm). The summation of all

absolute differences between the current and previous value are computed here

for both axes during the entire movement. They can be calculated as follows:

ASXcm =

N∑
i=1

|(Xcm(i + 1)−Xcm(i))|

N
, (4.14)

and

ASYcm =

N∑
i=1

|(Ycm(i + 1)− Ycm(i))|

N
, (4.15)
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10. Summation for the Absolute values in the changes of the body center of mass from

its initial point on both axes during the movement, (ASXBcm and ASY Bcm).

They can be calculated as follows:

ASXBcm =

N∑
i=1

|(Xcm(i)−Xcm(t0))|

N
, (4.16)

and

ASY Bcm =

N∑
i=1

|(Ycm(i)− Ycm(t0))|

N
, (4.17)

11. Summation for the Square values of the changes in the body center of mass on

both axes during the movement, (SSXcm and SSYcm). The summation of all

absolute differences between the current and previous value are computed here

for both axes during the entire movement. They can be calculated as follows:

SSXcm =

N∑
i=1

(Xcm(i + 1)−Xcm(i))2

N
, (4.18)

and

SSYcm =

N∑
i=1

(Ycm(i + 1)− Ycm(i))2

N
, (4.19)

12. Summation for the Square values of the changes in the body center of mass from

its initial point on both axes during the movement, (SSXBcm and SSY Bcm).

They can be calculated as follows:

SSXBcm =

N∑
i=1

(Xcm(i)−Xcm(t0))
2

N
, (4.20)

and

SSY Bcm =

N∑
i=1

(Ycm(i)− Ycm(t0))
2

N
, (4.21)

13. Duration of the Movement, (N ). The value of this feature is the number of sam-

ples observed during the movement.
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4.3.3 MotionTree Construction

The purpose of this study is to build a classification model that uses the above features

to classify unknown motions into one of the pre-defined movement classes. We first

define the following 9 classes of common body motions: (1) turning/rolling right, (2)

turning/rolling left, (3) right hand, (4) right leg, (5) left hand, (6) left leg, (7) both legs,

(8) head, and (9) combined motions.

In this study, our main idea is to build a binary decision tree based on Support Vec-

tor Machine (SVM). Even though SVM is good for binary classification, as discussed

in [66, 67], a flat multi-class SVM classifier yields poor classification results when the

number of classes becomes large such as in our case. We have tried to classify among

the 9 classes in parallel and got very low classification accuracy rates, 65%, because

many movements have mixed features and it is very difficult to have them classified

with SVM. To improve this accuracy, we construct a binary classification tree, and at

each intermediate tree node, we run a SVM-based binary classification. This tree de-

sign moves the classification accuracy from 65% (of the flat classifier) to about 90%

(as will see in section (Sec 4.4)).

Our 9 classes come from human body shape and its motion during sleep. Legs,

hands and head are 5 classes. Two hands together is another class. The same for two

legs together when they move to have one more class. Moving the entire body is a very

common motion during sleep. We put that in 2 classes to have turning/rolling right, and

turning/rolling left. Based on that, we have tried to design a decision tree that gives the

best accuracy and covers all possibilities of body’s motions.

The first classification decision (at the root level) is to categorize all the movements

into two classes: big movements and small movements. Usually the first two classes

of movements (i.e., turning/rolling right and turning/rolling left) are considered as big

movements because the entire body is involved. After the first binary classification, we

got big and small movements. Further classifying big movements only involves one
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more level of binary classification: is the movement turning/rolling left or right. On the

other hand, we have more types of small movements (in our design space, seven classes

of movements belong to small movements), and several levels of binary classification

are required to effectively differentiate among them. First, we use a binary classifier

to check if it’s a leg movement. If it is a leg movement, then we use two binary

classifiers to determine which leg has moved or both (classes 4, 6, and 7). If it is not a

leg movement, then we use a binary classifier to check whether it is a head movement

(class 8), or a hand movement. We treat the classification of a hand movement in a

similar way as the classification of a leg movement – we use three levels of binary

classifiers to determine which hand has moved or both (classes 3, 5, and 9). Figure 4.6

shows the structure of the binary decision tree we have designed.

To boost the accuracy for each binary classification step, we select the best features

for that step from the entire feature set. To determine the importance of features for

each classifier, we use the Random Forest technique in our study. This step helps

boost the overall classification accuracy, as we will demonstrate in the performance

evaluation section (Sec 4.4). In Section 4.4.3, we also discuss the rationale behind our

tree structure, and compare its classification accuracy with several different structures.

4.4 Performance Evaluation

In this section, we carefully evaluate how well MotionTree can classify in-bed body

motions. We first describe our experimental methodology, and then present detailed

experimental results.

4.4.1 Experimental Methodology

We have conducted experiments in a university laboratory setting on a twin size bed

with 40 healthy subjects (26 males and 14 females, age ranging from 22 to 42 years
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Figure 4.6: Our Binary Decision Tree design that based on SVM to classify motions
into 9 classes.

old) over a four-month time period, with 70 experiments2. Each of the four load cells is

mounted under a leg of the bed with a common innerspring mattress of 90cm (width)

× 185cm (length) × 20cm (height). During each experiment, we asked the subject

to perform 35 pre-defined in-bed movements with a 20-second quiet period following

each movement. We have designed these movements to cover a large array of possi-

ble in-bed movements ranging from big turning or rolling movements that involve the

entire body to small movements that only involve a hand or the head. Table 4.1 shows

the group of movements, in our experiments, that associated to each class. Table 4.1

shows the group of movements, in our experiments, that associated to each class.

The same prototype and laptop are uses to record all the data to avoid any possible

bias in readings. We used a camera that is mounted on a tripod 1.5 meter away from

the bed to record videos for the ground truth recording.

2Our studies were approved by the Institutional Review Board (IRB) of our institution.
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Class Number Class Name Group of Movements

I
Turning/Rolling

Turn from back to right.

Right Turn from left to back.

Roll over from right side.

II
Turning/Rolling

Turn from back to left.

Left Turn from right to back.

Roll over from left side.

III Right hand

Straighten right arm.

Put right hand on chest.

Put right hand on head.

Put right hand close to head.

IV Right Leg
Straighten right leg.

Bend right leg.

V Left Hand

Straighten left arm.

Put left hand on chest.

Put left hand on head.

Put left hand close to head.

VI Left Leg
Straighten left leg.

Bend left leg.

VII Both Legs

Straighten legs.

Cross right leg on left leg.

Cross left leg on right leg.

VIII Head

Turn head to the left.

Turn head to the right.

Turn head from left to the right.

Turn head from right to the left.

Turn head from right to normal position.

Turn head from left to normal position.

IX
Combined

Put both hands on chest.

Motions Straighten both hands.

Move both hands with legs.

Table 4.1: The set of body movements chosen for the study that associated to each

class.
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4.4.2 Performance of Motion Classification

As mentioned in Section 4.3, we have a model of a binary decision tree that based on

SVM. In each decision step, we have a SVM model that classifies movements accord-

ing to that level. Each level depends on the results from the upper one. Each SVM

model is trained separately with the portion of data suitable to that level. Also, each

SVM model is trained using the best features to achieve the best accuracy. So, we don’t

need to use the 24 features in each SVM model. As in Figure 4.6, each decision step,

or rhombus, is an SVM model. We have eight models to be trained. We used 60% of

the data that is associated to each model for training and 40% for testing. For example,

all data is used in the highest level SVM model, to classify as big or small. While in

the model below, that classify turn/roll left from turn/roll right, we used the data that

belongs to big family only to train that model. For feature selection, we used Random

Forest technique to select the best features for the associated level. To know feature’s

importance, Random Forest permutes the values of this feature across every observa-

tion in the data set and measures how much worse the Mean Square Error becomes

after the permutation. This is repeated for each feature. The Mean Square Error aver-

aged over all trees, in the Random Forest model, and divided by the standard deviation

taken over the trees, for each variable. The larger this value, the more important the

variable [60, 68]. In our model, we choose all features with value 0.2 and above to be

the best features for training.

To evaluate our system, 500 tests have been done with cross validation of randomly

60% of the data for each level selected for training and 40% for testing. In each itera-

tion, we have never used any portion of the data that picked for training in the testing

phase. We calculate the average value of classification accuracy for each decision, i.e.

SVM model. Table 4.2 shows the eight decision steps, or SVM models, and their aver-

age accuracy with all features and with reduced set of features. We list all features that

are not used in each level (according to Random Forest). All other features described

in 4.3 and are not listed in the table are used for the associated level. SVM model
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names are from the decision steps in the MotionTree in Figure 4.6.

Since we are dealing with classification problem, we computed three factors for

each class to have a complete evaluation of the efficiency in our system. The three

factors are: Recall (sensitivity), Precision, and Accuracy. Recall is the ratio of the

number of relevant records retrieved to the total number of relevant records in the

database. Precision is the ratio of the number of relevant records retrieved to the total

number of irrelevant and relevant records retrieved. Accuracy is the sum of correct

classifications divided by the total number of classifications [69].

Recall = (
Tp

Tp + Fn

), (4.22)

Precision = (
Tp

Tp + Fp

), (4.23)

Accuracy = (
Tp + Tn

Tp + Tn + Fp + Fn

), (4.24)

where Tp is the number of true positives, Tn is the number of true negatives, Fp is

the number of false positives, and Fn is the number of false negatives [70].

Table 4.3 shows the average Recall and the Precision for each class by using our

MotionTree system. It also shows the recall for each class with flat SVM. This table

includes the accuracy of the entire tree (MotionTree), which is the accuracy of our

system, and the accuracy of flat SVM topology.

We can see that classes VII and IX, motions generated by many body parts at the

same time, like head and hands or both legs, have lower accuracy because they have

close features values with other classes that have motions for the same body parts.

That can make their recognition harder than other classes. Moreover, it is very clear

that MotionTree is better than flat SVM classifier (multi-classes SVM).
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SVM Model
Average

Accuracy Features Not Used
Average

Accuracy
Name with All

Features
According to RF with Reduced

Features
Big? 86.8% ∆Ycm, RSXcm, RSYcm, RSY Bcm 99.5%

Right
Turn/Roll?

85%
∆Ycm, Yvar, Vpeak, ASXcm, SSXcm,
RSYcm, ASYcm, SSYcm, RSY Bcm,

ASY Bcm, SSY Bcm, N
93.4%

Legs? 95.8% - 95.8%

Right Leg? 93%

TL, Vpeak, RSXcm, ASXcm, SSXcm,
RSXBcm, ASXBcm, SSXBcm,

ASYcm, SSYcm, ASY Bcm, SSY Bcm,
N

96.9%

Left Leg? 93.8%

TL, Vpeak, RSXcm, ASXcm, SSXcm,
RSXBcm, ASXBcm, SSXBcm,

RSYcm, ASYcm, SSYcm, RSY Bcm,
ASY Bcm, SSY Bcm, N

95.3%

Head? 92% RSXcm, RSXBcm, SSYcm, N 95.2%

Right Hand? 93.1% TL, ASXcm, SSXcm, ASYcm,
SSYcm, N

95.3%

Left Hand? 88% RSXcm, SSXcm, SSYcm, N 92.6%

Table 4.2: SVM models with features that are not used according to feature importance
and the average of accuracy for each model.

4.4.3 Different Tree Structures

To get the best tree structure, with better accuracy, we should start with the best clas-

sifier and make all possible paths as short as possible. Longer paths have more classi-

fication decisions, so we expect higher classification errors that will impact the whole

accuracy. In order to show that we have the best tree design, we have tested many other

structures and evaluated their performance. Figures 4.7, 4.8 and 4.9 show 3 examples

of these structures. The tree in Figure 4.7 starts with the ’leg or not’ classification.

Since this binary classification has less accuracy than ’big or not’, this tree has much

lower overall accuracy (about 78%). The tree in Figure 4.8 has a different decision

sequence, which leads to longer paths in the left side than what we have in our tree
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Class
Number Class Name Recall Using

MotionTree
Precision with

MotionTree
Recall Using Flat

SVM

I
Turning/Rolling

Right 91.2% 92.3% 18%

II
Turning/Rolling

Left
94% 91% 14.7%

III Right hand 91% 96% 87%
IV Right Leg 90% 95% 75%
V Left Hand 89% 96.3% 72%
VI Left Leg 91% 88% 79.3%
VII Both Legs 86% 72% 81.2%
VIII Head 90% 84% 69%

IX
Combined
Motions

79% 78.2% 17%

The Whole Tree Accuracy 90%
Flat SVM Accuracy 65%

Table 4.3: Recall and precision for each class with the whole accuracy for the entire
system using both our tree (MotionTree) and flat SVM classifier.

(Figure 4.6). This structure impacts the entire accuracy of the system badly. It has

more questions to some portion of the data and therefore more error happens with each

decision (about 80% as classification accuracy). The tree in Figure 4.9 is very similar

to our tree. The only difference is switching the leg’s decision part with hand’s part.

Here the problem is the behavior of body’s movements. Usually it’s easier to differen-

tiate the motions of the lower half of human body from those of the upper half. That is

what we have done in our tree. In many times, with using the current set of features,

the process of classification mixes between hands and head motions because they are

close to each other. So, asking about hands movements in some high decision node

would increase the propagation error for the entire system. Therefor the classification

accuracy for this tree would go to around 82%. We can see from above examples that

our tree (Figure 4.6) can achieve the best possible classification accuracy. Table 4.4

summarizes the accuracy difference among the above structures.
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Tree Structure Accuracy
Tree in Figure 4.7 78%
Tree in Figure 4.8 80%
Tree in Figure 4.9 82%

MotionTree in Figure 4.6 90%

Table 4.4: The Accuracy difference among different tree structures.

Figure 4.7: A tree starts with legs classification.

Figure 4.9: A tree with hands before legs as a decision.
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Figure 4.8: A tree with longer paths.

4.5 Random Forest

We mentioned Random Forest technique in Section 4.4 but we used it as a feature

selection tool only. In this section, we use Random Forest as a classification tool.

Random Forest is better than SVM in multi-class classification, so, we apply it in 3

different topologies to see which one is the best. We start with flat topology, where we

have one level of classification to classify all movements to 9 classes. Then we apply

RF in the same tree design we have for MotionTree. Lastly, we apply RF in another

tree design, that is smaller than MotionTree.

4.5.1 Flat Topology

Random Forest is a very useful tool for multi-class classification. We use it here to

classify in-bed motions into one of the predefined 9 classes. Figure 4.10 shows the

flow of data in the flat topology design. Here, we use the same data, with the same

24 features, in section 4.3.2. In this case, we have one classifier to be trained, instead

of 8 in MotionTree. To evaluate this classifier, 500 tests have been done with cross
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Movement	

One	Level	Classifier	(Flat)

Class	I

Class	II

Class	V

Class	VI

Class	III

Class	IV

Class	VII

Class	VIII

Class	IX

Figure 4.10: One level classifier, Flat Classifier.

validation of randomly 60% of the data for each level selected for training and 40%

for testing. This Flat model classifier was able to classify the detected movements into

9 classes with average accuracy of 90.8%. Table 4.5 shows the average recall and the

average precision for each class with the whole accuracy to this topology.

Class
Number Class Name Recall Using Flat

RF
Precision with

Flat RF
I Turning/Rolling Right 92.3% 91.3%
II Turning/Rolling Left 91.2% 91.1%
III Right hand 93.7% 94.8%
IV Right Leg 90% 96%
V Left Hand 93.3% 93.6%
VI Left Leg 88.2% 92%
VII Both Legs 82.3% 75.7%
VIII Head 93% 88%
IX Combined Motions 79% 90.6%

Flat RF Accuracy 90.8%

Table 4.5: Recall and precision for each class with the whole accuracy for the entire
system using Flat RF.
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4.5.2 MotionTree Topology

We apply Random Forest in the tree design for MotionTree in Figure 4.6 instead of

SVM classifiers. We have here 8 Random Forest classifiers. We use the same data

with the same cross validation strategy (500 tests with cross validation of randomly

60% of the data for each classifier selected for training and 40% for testing). The

same features in Table 4.2 were not used in the same way described in section 4.4.2.

Table 4.6 shows the recognition accuracy for each Random Forest classifier and the

accuracy of the entire tree, which is 89.3%. Table 4.7 shows the average recall and the

average precision for each class with the whole accuracy for the entire system using RF

MotionTree. We can see that MotionTree design has better accuracy for SVM models.

At the same time, the flat topology is much better in Random Forest than in SVM

(90.8% in RF to 65% in SVM).

RF Model Name Average Accuracy

Big? 99.4%

Right Turn/Roll? 92.48%

Legs? 96.1%

Right Leg? 95.8%

Left Leg? 93%

Head? 95.6%

Right Hand? 96%

Left Hand? 93.8%

Whole Tree Accuracy 89.3%

Table 4.6: Random Forest models’ accuracy and the whole tree accuracy (the tree in

Figure 4.6).
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Class

Number
Class Name

Recall Using RF

MotionTree

Precision with RF

MotionTree
I Turning/Rolling Right 92.1% 91.3%

II Turning/Rolling Left 91.6% 91.8%

III Right hand 93.4% 95%

IV Right Leg 89% 96%

V Left Hand 93% 89%

VI Left Leg 89% 87.5%

VII Both Legs 72% 75.2%

VIII Head 90% 88%

IX Combined Motions 77% 87%

RF MotionTree Accuracy 89.3%

Table 4.7: Recall and precision for each class with the whole accuracy for the entire

system using RF MotionTree.

4.5.3 Two Level Tree Topology

From the previous two topologies, we can see that Flat, or one level, classification is

better in Random Forest than using multi-level tree, like MotionTree. That gives us an

idea of using another topology in between the previous two. We use here another tree

topology but with two levels only. We keep the right side of the tree in MotionTree

as is and put all the classifiers in the left side in one flat classifier. In this tree we

have 3 classifiers. We start first by classifying motions into two large families, big and

small. The right side is used to classify big motions into (1) turning/rolling right or

(2) turning/rolling left. On the left side, we have one classifier to classify all small

motions into the remaining 7 classes: (3) right hand, (4) right leg, (5) left hand, (6) left

leg, (7) both legs, (8) head, and (9) combined motions. Figure 4.11 shows the 2-level

tree that we improved for Random Forest. To evaluate this new tree design, we use the

same data with the same cross validation strategy (500 tests with cross validation of



65

randomly 60% of the data for each classifier selected for training and 40% for testing).

Table 4.8 shows the recognition accuracy for each Random Forest classifier and the

accuracy of the entire small tree. We name this tree as RF-Small-Tree. This tree has

a slightly better recognition accuracy with 90.9%. Table 4.9 shows the average recall

and the average precision for each class with the whole accuracy for the entire system

using RF-Small-Tree.

Figure 4.11: Two levels tree for Random Forest.

RF Model Name Average Accuracy

Big? 99.4%

Right Turn/Roll? 92.48%

Small-Motions-Classifier? 90.8%
Whole Small Tree

Accuracy
90.9%

Table 4.8: Random Forest models’ accuracy and the whole accuracy of the 2-levels

tree, we call it RF-Small-Tree
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Class

Number
Class Name

Recall Using

RF-Small-Tree

Precision with

RF-Small-Tree
I Turning/Rolling Right 92.1% 91.3%

II Turning/Rolling Left 91.7% 92%

III Right hand 93.69% 94.7%

IV Right Leg 90% 97%

V Left Hand 93.3% 93.7%

VI Left Leg 87.7% 91.8%

VII Both Legs 82.5% 77%

VIII Head 92.8% 87.2%

IX Combined Motions 78.4% 90.6%

RF-Small-Tree Accuracy 90.9%

Table 4.9: Recall and precision for each class with the whole accuracy for the entire

system using RF-Small-Tree.

4.6 XGBoost

Gradient Tree Boosting [71] is one of the machine learning techniques that shines in

many applications. In this section, we describe XGBoost, a scalable end to-end tree

boosting system [72]. XGBoost is short for Extreme Gradient Boosting. XGBoost

is an optimized distributed gradient boosting system designed to be highly efficient,

flexible and portable. It runs ten times faster than existing popular solutions on a single

machine and scales to billions of examples in distributed or memory-limited settings

[72]. Several important systems and algorithmic optimizations are reasons for this

scalability. XGBoost includes: a novel tree learning algorithm for handling sparse data,

a theoretically justified weighted quantile sketch procedure, which enables handling

instance weights in approximate tree learning, and fast learning due to parallel and

distributed computing, which enables quicker model exploration. XGBoost combines

these techniques to make an end-to-end system that scales to even larger data with
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the least amount of cluster resources [72]. More details about XGBoost can be found

in [73].

4.6.1 Applying XGBoost in our System

To apply XGBoost technique in our system for classifying in-bed movements, we use

the flat topology. We use the same data we have for the same set of features. We have

24 features, which represent every detected motion. XGBoost is capable of finding the

best features it needs for its tree. To review, we have the following 24 features: the

change of the weight in each load cell (4 features), the change of the center of mass in

both x and y axes (2 features), the change of the center of mass around its mean in both

x and y axes (2 features), the motion trajectory length, the Euclidean distance between

the centers of mass before and after the motion, the log peak value (as defined in section

3.3.2), summation for the real, absolute, and square values of the change in the body

center of mass on both axes during the movement (6 features), summation for the real,

absolute, and square values of the change in the body center of mass on both axes from

its initial point (6 features), and the movement’s duration. We explain all these features

in section 4.3.2. To show how XGBoost works in our system, we pick randomly 60%

of the given data for training and the 40% for testing. XGBoost gives the importance

for each feature (of the 24) as shown in Figure 4.12. This is a metric that simply sums

up how many times each feature is split on. Depending on this importance, XGBoost

updates its features weight on its internal tree with every iteration. We use 250 times

as number of rounds the XGBoost tunes its internal weights depending on previous

errors.

To evaluate this technique, XGBoost, in our system, we use the same data with

same cross validation strategy (500 tests with cross validation of randomly 60% of the

data for each classifier selected for training and 40% for testing). The average accuracy

for all these 500 trials was 90.5%. Table 4.10 shows the average recall and the average

precision for each class with the whole accuracy for the entire system using XGBoost.
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Figure 4.12: Features importance according to XGBoost

Class

Number
Class Name Recall Using XGBoost Precision with XGBoost

I Turning/Rolling Right 90.6% 90%

II Turning/Rolling Left 91% 90.7%

III Right hand 93.6% 94%

IV Right Leg 90% 94%

V Left Hand 93.5% 94%

VI Left Leg 87% 88%

VII Both Legs 80% 78%

VIII Head 92.6% 87.8%

IX Combined Motions 77.3% 89.2%

XGBoost Accuracy 90.5%

Table 4.10: Recall and precision for each class with the whole accuracy for the entire

system using XGBoost.
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4.7 Logical Combination Approach

In this study, we use three machine learning techniques to classify all in-bed motions

into the predefined 9 classes. We have used all these techniques separately. We try here

to have a final decision by combining all the previous 3 techniques, SVM, Random

Forest, and XGBoost, together. This combination is done in a logical way. Basically,

it says:” If we have 2 out of three with the same result, we choose that result as a

final decision.” Figure 4.13 shows the main idea of this logical combination. We take

MotionTree, RF-Small-Tree, and XGBoost outputs for each test and do logical OR

relation for them. If 2 or more are the same, then we choose that same output as the

final result. In case all the 3 previous techniques are different, we take the output from

the RF-Flat topology, since it has a very good recognition accuracy. The idea behind

that, is to have an accuracy that is better than all of them. Algorithm 1 explains the

logical combination.

In order to evaluate this combination algorithm, we use the same data with same

cross validation strategy (500 tests with cross validation of randomly 60% of the data

for each classifier selected for training and 40% for testing). Every single element is

tested by the four techniques we have. We combine the four outputs as explained in

the algorithm. The average accuracy for the combination algorithm is 91.5%, which

is better than using any of the previous techniques separately. Table 4.11 shows the

average recall and the average precision for each class with the whole accuracy for the

entire system using the combination algorithm.
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Figure 4.13: The logical combination of all techniques.

Read Data Element
initialization;
SVM-Output = MotionTree (Data Element);
RF-Tree-Output = RF-Small-Tree(Data Element);
XGBoost-Output = XGBoost(Data Element);
RF-Flat-Output = RF-Flat(Data Element);
if RF-Tree-Output = XGBoost-Output then

Result = RF-Tree-Output;
else

if RF-Tree-Output = SVM-Output then
Result = RF-Tree-Output;

else
if XGBoost-Output = SVM-Output then

Result = XGBoost-Output;
else

Result = RF-Flat-Output;
end

end
end

Algorithm 1: Combination algorithm
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Class

Number
Class Name

Recall Using

Combination

Algorithm

Precision with

Combination

Algorithm

I Turning/Rolling Right 92.3% 91%

II Turning/Rolling Left 91.5% 92%

III Right hand 94.2% 95.7%

IV Right Leg 90.6% 97.2%

V Left Hand 93.8% 95%

VI Left Leg 89% 93%

VII Both Legs 85.4% 78.6%

VIII Head 93.4% 87.8%

IX Combined Motions 79% 91%

Combination Algorithm Accuracy 91.5%

Table 4.11: Recall and precision for each class with the whole accuracy for the entire

system using Combination Algorithm.

4.8 Concluding Remarks

In this chapter, we have described the design, implementation, and evaluation of Mo-

tionTree. It is a low-cost, low-overhead, and highly robust system for in-bed body

movement detection and classification that uses low-end load cells and special designed

decision tree. Compared to other existing solutions, MotionTree uses affordable hard-

ware, and it is very easy to apply in our lives unobtrusively. MotionTree uses load cell

sensor to detect different kinds of in-bed body movements. It classifies in-bed motions

into 9-classes: turning/rolling right, turning/rolling left, right hand, right leg, left hand,

left leg, legs, head, and combined motions. 24 features are extracted from each mo-

tion to be used for training and testing a special designed binary decision tree based
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on SVM. It is a multilevel classification tree to classify the predefined 9-classes. We

select the best features for each decision level by applying Random Forest technique

to boost the overall classification accuracy. We have built a MotionTree prototype and

evaluated it extensively in experiments that involved 40 subjects. Each subject has been

asked to do 35 different type movements. Our results show that MotionTree can detect

movements and classify them into 9-classes with an average accuracy of 90%.

In addition, we have described the implementation, and evaluation of using another

two machine learning techniques in our system. They are Random Forest and XG-

Boost. We have used Random Forest in three topologies: Flat, multi-level tree (Mo-

tionTree), and 2-level tree (RF-Small-Tree). XGBoost has been applied in one topol-

ogy only which is the flat (one-level) topology. All these techniques have been used

separately to classify in-bed motions into the predefined 9-classes. We have applied a

combination algorithm to combine all results from the previous explained techniques

to have our final results. Table 4.12 shows the classification accuracy for all techniques

we have used. It also shows that the accuracy of the combination algorithm (91.5%) is

better than all of the rest.

Technique’s Name Average Accuracy

Flat SVM 65%

SVM MotionTree 90%

Flat RF 90.8%

RF MotionTree 89.3%

RF-Small-Tree 90.9%

XGBoost 90.5%

Combination Algorithm 91.5%

Table 4.12: The average accuracy for all machine learning techniques we have used

with the combination algorithm accuracy
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Chapter 5

MotionPhone

5.1 Introduction

In the recent years, personal well-being management using smart sensors has received

a great deal of attention in both academia and industry. As far as one’s well being

is concerned, an important aspect is the ability to continuously monitor a person’s

mobility during sleep. Due to that, we introduce another system for in-bed motion

detection and classification and try to compare it with our MotionScale system. Among

the array of motion sensing techniques, sensing bed vibrations caused by movements

presents a promising approach because of its accuracy and ease to use, in which the

sensor can be attached to any position in the bed without worrying about the subject’s

sleeping position/posture, as shown in the recent study [53].

The vibration based approach, however, still faces several significant challenges

before it can serve as a reliable at-home in-bed motion sensing/monitoring technique.

Some of these challenges are accuracy, installation, and cost. Towards this end, we

seek to fill this void by proposing a system that is accurate, robust, low cost, and easy

to use. Our solution involves the use of a commercial off-the-shelf analog geophone

under the mattress to detect and monitor the user’s motions during sleep. Just like a

geophone can detect pressure waves (i.e. “sounds) in the earth (e.g., [74, 75]), our

system can detect the vibration of motions that are propagated through a mattress.

Therefore, we refer to this system as MotionPhone. Compared to other sensors, the

geophone sensor has several advantages, which make it a suitable choice for motion
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detection1. Firstly, it is highly sensitive to tiny motions – geophones are often used to

detect distant motions (such as earthquakes), and can generate a noticeable response to

body movements (after going through a normal mattress). Secondly, it is commercially

available and rather affordable. Thirdly, deploying a geophone-based system can be

very conveniently done, without interfering with the bed or how it is used. As a result,

we believe that MotionPhone offers a very practical solution to at-home in-bed motion

detection during sleep.

With MotionPhone, we can simultaneously detect both large and small movements

and classify these movements (as in MotionScale). We tried to keep the wireless man-

ner that we had in MotionScale. We have designed other amplifier circuit that can

handle a wide range of movements. As far as the software design is concerned, we

have applied the same signal processing algorithms that we used in MotionScale to ex-

tract body movements. Through these techniques, our experimental results that involve

15 subjects show that we can detect 35 types of body movements with an error rate of

2%, and can classify these 35 types of movements into big and small movements with

an error rate of 8%.

To summarize, we have made the following contributions in this study:

1. We have developed an accurate, robust, low-cost, and easy-to-use in-bed motion

detection system MotionPhone, which is centered around a commercial off-the-

shelf analog geophone. The MotionPhone system consists of both hardware and

software components. Its hardware components include a geophone, an amplifier

and a wireless communication unit (which consists of an A-to-D converter); soft-

ware components involve filtration, feature extraction, and detection and classi-

fication.

2. We have built a MotionPhone prototype and used it to instrument an experimen-

tal bed. We have used the experimental bed to collect the signals of 2 geophone

1In this study, we use the term geophone to refer to the analog geophone.
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sensors, one at the upper half of the bed and the other at the lower half, from

15 subjects, with 30 experiments. Each subject should make 35 different body

movements during each experiment. We have compared the detected body move-

ments against the ground truth observed captured by a video camera, and found

that the average error rate is 2%.

3. We have also used the same data to classify these 35 body movements into big

movements and small movements Also, we tried to classify movements as big,

legs, and hands/head movements. We compare the classification results against

the ground truth observed by a video camera, and found that the average error

rate is 15%.

The remainder of the chapter is organized as follows. In Section 5.2, we describe

the hardware system design of MotionPhone, and in Section 5.3, we describe Motion-

Phone’s signal processing algorithms. We present our evaluation setup and experimen-

tal results in Section 5.4. Finally, we provide concluding remarks in Section 5.5.

5.2 MotionPhone System Design

We show the overview of MotionPhonein Figure 5.1. In MotionPhone, we place two

analog geophones under a mattress to capture movements in the environment. We first

amplify the raw geophone response, and then convert it to a digital signal. Next, we

transmit the digital geophone signal in a wireless manner to the receiver. A series

of signal processing steps are done for the received signal to detect movements from

the signal. The outcome from the MotionPhone system includes detection of body

movements during sleep, and classify these movement as big or small.

In this section, we first present the hardware design of MotionPhone. Then we

discuss the unique challenges we have faced in designing the MotionPhone system.
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Figure 5.1: Overview of the MotionPhone system. An analog geophone is placed
under a mattress. The raw geophone signal goes through amplification and A/D con-
version to generate a digital signal that is suitable for subsequent signal processing. A
series of signal processing methods will then be applied to detect motions in the signal.

5.2.1 MotionPhone Hardware Design and Prototype

The MotionPhone system is centered around the use of a geophone sensor. As shown

in Figure 5.2, a geophone consists of a spring-mounted magnet that moves within a

wire coil to generate a voltage, which can thus measure the speed of a movement at

different frequencies. The use of a powerful magnet and a differentially wound coil

gives it low noise and high sensitivity at frequencies 7Hz and above, while being less

sensitive to movements with lower frequencies. In our MotionTree prototype, we use

the SM-24 Geophone Element [76], whose natural frequency is at 10Hz.

The raw geophone signal is first filtered by a hardware bandpass filter in the range

from 0.25 to 10kHz, which is then fed to a TI LMV358 amplifier circuit [77]. We have

carefully configured the amplifier circuit to ensure the MotionPhone is able to sense

all different kind of body’s movement (ranging from finger’s tapping to whole body

rolling). For this purpose, we configured the amplification circuit such that the motion
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Figure 5.2: The geophone consists of a spring-mounted magnet that is moving within
a wire coil to generate electrical signals that measure movements in the environment.

signal’s amplitude falls within 0-3V, which is a range determined by the resolution of

our ADC.

Figure 5.3 shows the resulting double-stage amplification circuit. Both the first-

stage and second-stage amplifying circuit have a RC bandpass filter in the range from

0.25Hz to 10kHz. The gain of the first-stage amplifier is 4 so that we can reduce some

noise from the circuit itself. The maximum gain of the second-stage amplifier circuit is

20 and the gain is adjustable by tuning the adjustable resistor R7 shown in Figure 5.3.

In total, the maximum gain of this circuit is 80. The amplified signal is based on 3.3V

and quantized to 1024 levels (10 bits) using the A/D converter [46] in the PIP-Tag. Our

sampling frequency is 30 Hz. For that, we have 30 packets per second to be send from

each geophone.

In Figure 5.4, we show the picture of our prototype MotionPhone system. We at-

tached the geophone to a piece of wooden lumber and insert the wood under a memory-

foam mattress. Lying down on the bed, the user does not feel the geophone at all, and

user’s sleep will not be interfered in any way.
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Figure 5.3: The AC amplifier circuit design.

5.2.2 Understanding Unique Challenges of the Geophone

Using the geophone to detect a body’s movement that propagates through a mattress

poses serious challenges to the underlying system design. Below we discuss these

challenges.

Noises Caused by Other Movements. The first challenge lies in the high sensitivity

of the geophone sensor, which is also the very reason why we choose this sensor in the

first place. The geophone responds to tiny motions or vibrations in the environment –

when placed under the mattress, its response signal shows fluctuation when someone

walks in the room or someone closes the door. Thus, we need to differentiate in-bed

body’s movements from other movements. Examples include other people walking

around while the subject is in sleep, fans in the room, pets moving on the bed, etc.

In order to address this challenge, we need to carefully adjust our amplifier to do

not amplify the very tiny and weak ones, and extract the right features that reflect the

real in-bed movements.

Insensitivity to Low Frequency Movements. Secondly, we note that the geophone

sensor is only sensitive to signals that are higher than a certain frequency (7Hz in our
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Figure 5.4: The picture of our MotionPhone prototype, where the geophone, the ampli-
fier, and the PIP-Tag are attached to a wooden board that is inserted between mattress
and bed frame.

case). This can be explained as follows. As Figure 5.5 shows, the geophone response

increases quadratically with frequency when the frequency varies within the range from

1Hz to 12Hz if the movement speed is fixed. For example, let us consider a movement

at 1m/s, the geophone generates a voltage about 20V when the frequency is at 10Hz,

and a voltage of .2V when the frequency is 1Hz, resulting in a 100 times response

increase. Hence, the geophone itself works as a second-order high-pass filter, which is

hard to detect responses to low-frequency movements.

The fundamental frequency range of body motion signal falls between 0.2Hz and

4Hz. As explained above, the geophone response to movements at 10Hz would be 100

times as strong as the response to movements at 1Hz. After taking a closer look at the

body motion signal and the corresponding geophone responses, we notice that on-bed

movements have multiple harmonic frequencies and they are strong enough to oscillate

the geophone in a very sufficient way to cover all possible movements.
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Figure 5.5: Geophone response curve from the data sheet of Geophone SM-24 [1].

5.3 MotionPhone System Design

In this section, we explain how our system is designed to process the data from the two

geophones to mitigate noise and further detect in-bed motions. Motions detection and

classification are the main goals for this system. We basically, used the same steps we

have used in Chapter 3

5.3.1 Data Pre-processing

After raw data are collected from geophones, our system first performs a sequence of

preprocessing steps. We interpolate the collected data using the spline interpolation to

have all collected signal in the same volume. Then we drop the local mean of the signal

because our set of features, as will be explained later, requires a signal that oscillate

around the zero axis. In particular, we calculate the mean values in a moving time

window of 50 samples. That also helps to focus on the portion of data when we have a

motion, as explained in Chapter 3. After that, the data is filtered using a low pass filter

of a 10 Hz of cutoff frequency. Figure 5.6 shows the collected data, before and after

interpolation. Figure 5.7 shows the data raw for geophone1, before and after removing
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the local mean.

(a) Geophones 1 and 2 data before Interpolation

(b) Geophones 1 and 2 data after Interpolation

Figure 5.6: Geophones raw of data before and after doing the interpolation on the data

of 10 minutes experiment with some movements of a subject on the bed.
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Figure 5.7: The data of geophone1 before and after removing the local mean. Local

mean is 50 samples.

5.3.2 Feature Extraction

We extract the same features we have in Chapter 3 from the preprocessed data and

adopt a simple threshold-based detection/classification strategy. All following opera-

tions are done on the two signal from geophones 1 and 2. We will show the graphs

and explain the extraction from geophone1’s signal only. It is exactly the same for

geophone2’s signal.

Energy-Peak Feature Extraction: We observe that whenever an in-bed movement

is performed, there exists stronger oscillation with high amplitude in the collected geo-

phone readings. It means that signal in that portion of oscillation has more energy.

We extract the energy in every 2 seconds window (the same strategy we have in Sec-

tion 3.3.2). We will have a peak whenever we have a movement. Its height depends on

the strength of movement. The stronger movement results in higher energy peak. All

energy widows are normalized with highest value window. Peak detection is applied

with some threshold values to find all movements in the data. Figure 5.8 shows the sig-

nal from geophone and its energy graph for 2 seconds window. We can see the peaks
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Figure 5.8: The signal from geophone1 and its energy computed for 2 seconds window,
or 60 samples.

whenever we have movements.

Log-Peak Feature Extraction: To have a good view to show both small and large

values, we use Log-Peak. It uses the logarithm of a physical quantity instead of the

quantity itself. Specifically, we first square raw data signal collected from each geo-

phone sensor, then log (i.e., natural log where log to the base e) is applied to the squared

signal. We then apply a low pass filter with a cutoff frequency 0.2 Hz to the log’s out-

put to make it smoother. We notice that we have a clear peak whenever there is an

in-bed body movement. Figure 5.9 shows geophone1’s signal, its square, and its log

output after filtration. Threshold is applied to find peaks, which also means to find

movements.

Zero-Crossing (ZeroX-Valley) Feature Extraction: Here we tried to find the

zero-crossing rate for geophone’s signal using the same 2 seconds window. We tried

here to repeat the same idea we had in Chapter 3 but the results are not the same. We

noticed that geophone signal does not reflect the same behavior, like what we have

for load cell, and extracting Zero-Crossing feature would not help for further steps.

Figure 5.10 shows geophone1’s signal (after removing the local mean) with its ZX rate

graph per 2 seconds window. We can see that this feature is not useful here. We can
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Figure 5.9: (a) Geophone1’s signal. (b) Square of the data from geophone 1. (c)The
log result of the squared value after filtration (using 0.2 Hz low pass filter).

not see clear valleys or peaks whenever we have movements. So we will not use it as a

feature in our detection and classification steps.

Figure 5.10: (a) Geophone1’s signal (b) The ZX rate computed for 2 seconds window,
or 60 samples.
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5.4 Performance Evaluation

In this section, we describe the experimental methodology, and then present the evalu-

ation results for both movement detection and classification.

5.4.1 Experimental Methodology

The experiments are conducted on a twin size bed in a university laboratory with 15

healthy subjects (11 males and 4 females, age ranging from 20 to 43 years old) 2. A

common innerspring mattress with dimension of 95cm (width)×190cm (length)×20cm

(height) is on the bed. During the experiments, we ask each subject to perform 35 pre-

defined in-bed movements with 15 seconds quiet period after each movement. Among

all 35 pre-defined movements, there are 8 large movements involving the entire body

(e.g., getting in/off bed, turning left, turning right or rolling over), and 27 small move-

ments that only involve parts of the body (e.g., head, arms and legs). More specifically,

8 of the 27 small movements are leg movements, and the rest are arm and head move-

ments.

We record all the data using the same prototype and laptop to avoid any possible

bias in readings. Two geophones have been used, geophone1 in the upper half (close

to head) and geophone2 in the lower half (close to legs). A camera is mounted on a

tripod 1.5 meter away from the bed to record videos for the ground truth recording.

5.4.2 Motion Detection

As we mentioned in Section 5.3 about the set of features we use for movement detec-

tion, we use only Log-Peak and Energy-Peak to detect motions. In order to conduct a

fair comparison, we report each feature’s performance using the best threshold value

2Our studies were approved by the Institutional Review Board (IRB) of our institution.
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for that feature. From our experiments, we observe that each feature presents an obvi-

ous peak whenever there is a motion. These peaks are very different in amplitudes and

widths, which suggests that we need to find a general threshold (i.e., height of peak)

to detect the 35 performed in-bed movements. In order to find the best threshold value

for each feature, we apply different threshold values on randomly 50% selected from

the collected data for a total of 100 times and choose the one that gives the best perfor-

mance. The peak value threshold for Log-Peak is varied from -1 to 9 in 100 steps, the

peak value threshold in Energy-Peak is varied from 0 to 5 in 100 steps.

We have a total of 15 subjects who did 30 experiments, and for each of the 100

tests, we randomly choose 50% of the data for training and 50% for testing. For each

test subject, our detection algorithm detects n movements, and the detection error rate

is thus calculated as
∣∣35−n

35

∣∣where 35 is the number of known movements in each exper-

iment. Figure 5.11 reports the detection error rate distribution of the 100 experiments

for each feature. It is very clear that Log-Peak is better than Energy-Peak, delivering a

detection error rate of 2%.

Figure 5.11: The error rate for testing phase.
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(a) The error rate of variation the threshold in Log Peak strategy

(b) The error rate of variation the threshold in Energy Peak strategy

Figure 5.12: The error rate of the two strategies when we varied the threshold. All the

15 subjects are tested here.

We next try to find the best threshold values on the performance of different detec-

tion strategies, and report the results in Figures 5.12(a)-(b) respectively. These curves

exhibit a “U” shape, meaning that there is an optimal value for each threshold. choos-

ing the proper threshold (around the optimal value) helps the corresponding strategy to

detect peaks caused by valid body motions and we achieve the lowest error rate. This

is the same way that we used in Chapter 3. Figure 5.13 shows the ROC curves of the

two strategies in movements detection. This ROC curve shows that Log-Peak has the

best detection performance. Table 5.1 shows the detection accuracy for both strategies.
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Figure 5.13: The ROC curve for the two strategies applied on 15 subjects.

Strategy
Movement Detection

Best Threshold Error rate

Log 0.6 2%

Energy 0.05 6%

Table 5.1: Best Thresholds and their associated error rate to detect all movements.

5.4.3 Performance of Movement Classification

Big or Small: In the second part of the evaluation, we start with classifying each

detected movement as either a big movement or a small movement. The definition of

big and small is the same that we mentioned in Section 3.4. For that purpose, we use

the data from geophones 1 and 2, and apply Log-Peak strategy to detect motions (since

it is the best). For each detected motion, we have four features:

1. Peak1V al; the value of the log peak from geophone1.

2. D1; the duration of motion from geophone 1.

3. Peak2V al; the value of the log peak from geophone2.

4. D2; the duration of motion from geophone2.
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The rationale behind these features is that big movements normally possess higher

energy and longer duration than small ones, so we expect higher peaks for big ones.

Moreover, as a classifier tool, we use Random Forest technique here. To evaluate our

system, 100 tests have been done with cross validation of randomly 50% of the data

for training and 50% for testing. In each iteration, we have never used any portion of

the data that picked for training in the testing phase. We found that the average value

of classification accuracy (Big vs Small) is 98.5%.

Big, legs, or hands/head: We try here to classify our 35 movements into 3 classes:

big, legs, or hands/heads movements. In other words, we try to classify movements

into a big class, which covers motions of the entire body, a legs class, which includes

lower half body’s movements that are usually from legs, and a head/hands class, which

covers upper half body’s movements that are from heads or hands. We could not have

more classes with deeper meaning like those had in MotionTree because the sensor

here is very different and does not provide any information about body center of mass.

Therefore, we cannot have more features than the four features we explained before.

For these three classes: Big, Legs, and Hands/Head, we use Random Forest clas-

sifier with the same four features. We have repeated the same strategy of 100 tests

with cross validation of randomly 50% of the data for training and 50% for testing.

The average value of recognition accuracy for the above 3 classes is 88%. Table 5.2

shows the classification accuracy for our Random Forest classifier, for both 2 classes

recognition (Big or Small), and for 3 classes recognition (Big, Legs, or Hands/Head).

Recognition Size Classification Accuracy

2 classes 98.5%

3 classes 88%

Table 5.2: Classification accuracy using RF for 2 classes (Big or Small), and for 3

classes ( Big, Legs, or Hands/Head movements)
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As a result, we can see that MotionPhone system has a better accuracy in detect-

ing movements than MotionScale, with 98% for MotionPhone versus 93.8% for Mo-

tionScale. On the other hand, MotionPhone does not provide the same classification

accuracy for multiple classes like what we have in MotionTree and the combination al-

gorithm, 88% in MotionPhone for 3 classes versus 91.5% in the combination algorithm

for 9 classes.

5.5 Concluding Remarks

In this chapter, we have developed unobtrusive, low-overhead, and highly robust sys-

tem for in-bed movement detection and classification system. This system, Motion-

Phone, utilizes geophone sensors to capture any in-bed movements. Compared to exist-

ing solutions, MotionPhone is very sensitive and can use low-cost hardware to achieve

comparable results, and it is very easy to apply in our lives unobtrusively. By utilizing

geophone sensor, MotionPhone can detect different types of in-bed body movements

with different scales, ranging from fingers movements to whole body movements (e.g.,

turn over, get off bed). To evaluate our system, we build a prototype with two geophone

sensors, one close to the head and the other close to feet, and PIP-tags to provide wire-

less connection. We extensively experiment the prototype with 15 participants over

two-month time period. The results show that by utilizing our two main strategies,

Log-Peak and Energy-Peak, MotionPhone can effectively extract body movement sig-

nals from geophone data and detect in-bed movements with a low error rate of 2%.

We have built a classification approach using Random Forest technique and 4 features

were extracted from every detected movements. Our system can classify movements

to big or small movements with an error rate of 1.5%. In particular, this study provides

the first, strong evidence that geophones can be used as a low-cost solution for at-home

sleep monitoring.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In conclusion, we propose a system that can efficiently detect and classify in-bed move-

ments. Specifically, we have made the following contributions:

• MotionScale: We have proposed an in-bed movements detection system that is

based on a wireless load cell as sensing unit. It is a low-cost, unobtrusive, robust

and easy to install system. Almost all body motions that happen on a bed can

be detected. The results show that by utilizing our three main strategies, Log-

Peak, Energy-Peak, and ZeroX-Valley, MotionScale can effectively extract body

movement signals from load cell data and detect in-bed movements with a low

error rate of 6.3%, and classify them as big or small movements with an error

rate of 4.2%.

• MotionTree: We have developed a system that classifies in-bed motions into 9-

classes: turning/rolling right, turning/rolling left, right hand, right leg, left hand,

left leg, legs, head, and combined motions. 24 features are extracted from each

movement to be used for training and testing a special designed binary decision

tree based on SVM. This system has an average classification rate of 90%.

• More Machine Learning Techniques: We have implemented and evaluated an-

other two machine learning techniques in our system. They are Random Forest

and XGBoost. We have evaluated these techniques using the same data and

features we have in MotionTree and classify movements into the 9 predefined
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classes. We use three topologies for Random Forest: flat, multi-level tree (Mo-

tionTree), and 2-level tree (RF-Small-Tree). They have the following average

recognition accuracy respectively: 90.8%, 89.3%, and 90.9%. We have used

only flat topology for XGBoost to have 90.5% as a classification accuracy. We

have applied a combination algorithm to combine all results from the previously

explained techniques to have our final results and final accuracy of 91.5%. The

combination algorithm has a better accuracy than using any of the previously

explained techniques separately.

• MotionPhone: We have developed another unobtrusive, low-overhead, and highly

robust system for in-bed movement detection and classification system using a

geophone sensor. It can detect different types of in-bed body movements with

different scales. We have evaluated this system by doing 30 experiments with 15

participants over a two-month time period. Each experiment has 35 movements.

By utilizing our two main strategies, Log-Peak and Energy-Peak, MotionPhone

can effectively detect in-bed movements with a low error rate of 2%. We have

used Random Forest technique for classification and 4 features were extracted

from every detected movement. Our system can classify movements as big or

small movements with an error rate of 1.5%.

6.2 Future Work

We have evaluated the performance of our proposed methods using controlled experi-

ments. In the future, we would like to re-evaluate our proposed research methodology

in more practical systems and applications. Our system can be tested in monitoring

kids ’or toddlers’ in-bed movements. It can help to know that a toddler is moving

and some action is required to have a better sleep position. Our system can also be

evaluated to monitor in-bed movements of the elderly.
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As another future step, geophone sensor can be used in parallel with load cell sen-

sor in one system. Since the geophone is perfect in movements detection, it can be

added to load cell system to improve the detection accuracy. Moreover, the features

that are extracted from geophone sensors can be added to the list of features that are

extracted from load cell sensor. This can help machine learning techniques to improve

the classification accuracy. In addition, these features can be used to classify in-bed

movements into more than the nine classes that we have so far.
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