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ABSTRACT OF THE THESIS

On the Performance of Subspace SIMO Blind Channel

Identification Methods

by Kareem Y. Bonna

Thesis Director: Professor Predrag Spasojević

Channel Identification is an important part of wireless communication systems. Radio-

Frequency (RF) signals are subject to reflection, refraction, and diffraction, attenuation,

and other effects, that result in a distorted signal at a receiver, particularly over what

are known as frequency-selective channels. Traditionally, such distortion is estimated

using a “training sequence” which is a known reference signal used to estimate, and

then correct for, the distortion. However, use of training sequences is not always pos-

sible, for example in military applications where the source signal is not known, or

in broadcast environments where there is a high cost of transmitting a signal. One

potential solution is to estimate the channel blindly, that is, without knowledge of the

transmitted signal. Blind Channel Identification (BCI) and Equalization has been a

extensive topic of research since at least 1975.

One strategy in Blind Channel Identification is to use the structure of the received

signals in a Single Input Multiple Output (SIMO) system to estimate the channel. Re-

search has occurred on a number of methods that exploit this in the past several decades.

The subspace methods form the channel estimate in terms of a one-dimensional sub-

space constructed using the estimated second-order statistics of the received signals.

Additionally, the use of sparsity in signal estimation has been a topic of interest as well,
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and has recently been used in certain cases to improve the robustness of the subspace

methods in a number of works. In this thesis, the Cross-Relations and Noise-Subspace

methods, both of which are SIMO BCI methods, as well as their sparse variant, are

examined for a deterministic channel. The expected Normalized Projection Misalign-

ment (NPM) is analytically approximated for all considered methods. In addition, it

is compared to simulation results for a random source signal and several measured RF

channels from earlier literature. Finally, the sensitivity of the sparse variant of the sub-

space methods as a function of the regularization parameter is studied using simulation

for a set of measured RF channels from earlier literature.
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Chapter 1

Introduction

In wireless digital communication systems, channel estimation is typically required in

order to undo the effects of the communication channel on the source signal. Often,

the system is designed to transmit a known “training” signal that is used to estimate

the effects of the communication channel. Once the channel estimated, the effects of

the communication channel on the portion of the signal that carries information can

be undone, and the signal can be demodulated. Blind Channel Identification is the

process of estimating the unknown channel using the output signal from the channel,

under the assumption that the input signal is also unknown. There are several advan-

tages to being able to estimate the channel blindly; for example, one may be interested

in the type of source signal used or the information it carries but not have access to the

training sequence, say, because the source is an adversary. Training sequences also take

time and resources to transmit that could be used to transmit even more information.

BCI and Equalization has been a much studied area since the publishing of Y. Sato’s

paper in 1975 [1, 2] on training-less blind equalization of PAM-modulated signals over

Single Input Single Output (SISO) channels. Since then, significant advances have been

made in the area such as the proposed Constant Modulus Algorithm (CMA) method

by Treichler et al. in 1983 [3] and the SIMO BCI method proposed by Tong, Xu, and

Kailath in 1991 [4].

Much research has been published [5, 6, 7, 8, 9, 10, 11, 12] on SIMO BCI examin-

ing the identifiability conditions and performance of these methods. It is well known

that some of these methods, such as subspace methods, are sensitive to the channel

order, and will fail if the channel order is not selected properly. The use of sparsity and

`-1 regularization in these methods has also been investigated by Aı̈ssa-El-Bey et al.
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[13, 14, 15], Hayashi et al. [16], Lin et al. [17], and has been shown to potentially im-

prove the robustness of the subspace methods when the channel order is over-estimated.

This work examines the performance of two subspace-based BCI methods, the Cross-

Relations (CR) and Noise-Subspace (SS) methods, and confirms that theoretical ex-

pressions used to approximate their expected performance tend to match with results

obtained by simulating measured RF channels of interest. This work also examines the

different constraints used with the CR and SS methods, as well as sparsity, and notes

how their performance is affected differently when the channel order is over-estimated,

through the use of simulation of measured RF channels of interest.

The organization of this work is as follows. First, background on Channel Identifi-

cation and SIMO BCI is covered in Chapter 2. Next, in Chapter 3, the subspace-based

SIMO BCI problem and signal model are established. The CR and SS method are

detailed, along with quadratic and linear constraints. A sparse variant of the CR and

SS methods is defined, as well as a formula for the regularization parameter used. In

Chapter 4, the asymptotic performance of these methods, in terms of the NPM, is

approximated for an independent and identically distributed source signal and deter-

ministic channel. In Chapter 5, their approximate theoretical performance is compared

to simulation, under varying conditions and constraints, for several measured RF chan-

nels. The performance of a sparse variant of the CR and SS methods using a proposed

formula for the regularization parameter, is compared between different measured RF

channels. Finally, conclusions and future work are presented in Chapter 6.
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Chapter 2

Background

2.1 Non-blind Channel Identification

In wireless RF communications, an RF signal is transmitted from a source, and prop-

agates to the destination. Due to the signal being affected by the surrounding envi-

ronment through reflection, refraction, and diffraction, as well as movement, there may

be multiple time-delayed frequency shifted copies of the signal received at the destina-

tion, resulting in a distorted version of original signal. This is commonly referred to as

Multipath Propagation with an example illustrated in Fig. 2.1. Channel Identification

is the process of determining this distortion that occurs between the source and the

destination, or the ”channel”. It will be assumed that the channel(s) of interest are

slow-fading frequency-selective channels, and that they may be modeled by a Linear

Time-Invariant (LTI) Finite Impulse Response (FIR) filter. In training-based channel

identification, a known signal or ”training sequence” is transmitted so that the channel

may be estimated. The baseband, discrete-time model of a transmitted signal being

TX	

RX	

path	1	

path	2	

path	3	
Time	

Transmi*ed	Signal	

Time	

Received	Signal	

path	1	

path	2	
path	3	

Figure 2.1: Multipath Propagation
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Hi(z)	
(hi[0]	...	hi[L])	

Channel	
Iden*fica*on	

s[k]	
+	

xi[k]	

wi[k]	

yi[k]	 ĥi[0]	...	ĥi[L]	

Source	 Des*na*on	

Figure 2.2: Baseband Discrete-time Model, Identification

acted upon by a slow-fading frequency-selective channel and being received with addi-

tive noise (neglecting matched filtering), is illustrated in Fig. 2.2 and described by Eq.

2.1,

y[k] =

L∑
n=0

s[n]h[k − n] + w[k] = x[k] + w[k]. (2.1)

The observed signal at time k is y[k], while the transmitted signal is s[k], and the

channel coefficients are h[n], n = 0, 1, . . . L, with its Z-transform denoted as H(z). The

Additive White Gaussian Noise (AWGN) with 0 mean and variance σ2w is w[k]. All

variables take complex values. A common method of estimating the channel H(z) is

by minimizing the mean-square error between the received signal y[k] and the (known)

transmitted signal convolved with the channel estimate, s[k] ∗ ĥ[k].

2.2 Blind Channel Identification

Blind Channel Identification is the estimation of the channel coefficients h[n] without

the knowledge of the transmitted signal s[k], or a ”training sequence.” The baseband

discrete-time model of a transmitted signal being acted upon by a slow-fading frequency-

selective channel and being received with additive noise, is identical to Eq. 2.1 and Fig.

2.2, except that the signal s[k] is considered unknown, though perhaps with a known

probability distribution. It is desired to estimate the channel, that is determine H(z).

Equalization of the channel may also be performed, that is, determining the G(z) such

that H(z)G(z) = 1, and estimating the signal s[k]. A related problem is blind decon-

volution, but with the difference being that blind deconvolution is done off-line [1].

It was shown that in a SISO system, where there is only one channel between source and
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destination, use of only the second order statistics of the channel output to blindly iden-

tify the channel is not possible because phase information is lost. With such systems,

Higher-order Statistics (HOS) may be used, an example being the Constant-Modulus

Algorithm (CMA).

However, in SIMO systems, where there are multiple connections between the source

and destination, Second-order Statistics (SOS) may exclusively be used to obtain esti-

mates of the channels and to perform blind equalization.

2.2.1 SIMO Blind Channel Identification

SIMO Blind Channel Identification is the estimation of the channels of a SIMO system.

A number of of multichannel blind identification techniques exist, and are outlined in

Tong, Perreau [5] and Ding, Li [1]. The techniques vary in their

1. model for the channels

2. model for the source signal

3. destination signal statistics used in the estimation.

The model for the channels can be treated as deterministic, or modeled as a random

vector or process. The same can be said about how the input signal can be modeled.

The second order statistics of the output signal may be used in the estimate, or higher

order statistics may be used, as is the case in a SISO system. There are also required

conditions on the input signal, channel, and other parameters for different techniques,

elaborated on in [5], some of which are to be described in this paper.

A SIMO system might come to exist in practice in several ways. There may exist

multiple receivers or multiple antennas on a single receiver, each with its own channel,

that receive the source signal. A second way a SIMO system could exist is when a

digitally modulated source signal with symbol duration Tsym is received at a receiver

and is sampled at a positive integer multiple of the symbol rate. The positive integer

multiple is called the oversampling factor, and it determines the number of channels in

the SIMO system.
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Chapter 3

Deterministic SIMO Blind Channel Identification

3.1 Signal Model

3.1.1 Single Channel

The discrete-time baseband signal model for a slow-fading frequency-selective channel

at time k is given as,

yi[k] =
L∑
n=0

hi[n]s[k − n] + wi[k] = xi[k] + wi[k], (3.1)

and the definition of the model parameters and corresponding assumptions is given in

Table 3.1:

s[k] Source baseband signal that is treated as unknown

Hi(z) Z-transform of the communications channel, modeled as an FIR Filter
of order L (or length L+ 1): Hi(z) = hi[0] +hi[1]z−1 + · · ·+hi[L]z−L

xi[k] Received baseband signal (without noise)

wi[k] Additive White Gaussian Noise (AWGN) with 0-mean and variance
σ2w

yi[k] Baseband signal received through the communications channel, and
with additive noise

ĥi[0] . . . ĥi[L] Estimate of the channel coefficients hi[0] . . . hi[L].

Table 3.1: Signal Model Parameters

The signal model may be written in vector form for a block of N received signal

samples. The received signal, denoted yi(k), is

yi(k) = TN (hi)s(k) +wi(k)

= x(k) +wi(k).

(3.2)
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where

yi(k) ,
[
y[k] · · · y[k − (N − 1)]

]T
hi ,

[
hi[0] · · · hi[L]

]T
s(k) ,

[
s[k] · · · s[k − (N + L− 1)]

]T
wi(k) ,

[
wi[k] · · · wi[k − (N − 1)]

]T
wi[k] ∼ N (0, σ2w), IID,

wi[k] is independent and identically distributed (IID), and TN (hi) is the N × N + L

Toeplitz convolution matrix, formed from hi.

The function producing a Toeplitz convolution matrix for a vector

a =
[
a[0] · · · a[A− 1]

]T
of length A, and an integer D, D ≥ 1, will be defined as

TD(a) =



a[0] · · · a[A− 1] 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 a[0] · · · a[A− 1]


(3.3)

of dimension D ×D +A− 1.

The Hankel convolution matrix will also be required. The function producing a Hankel

convolution matrix for a vector b =
[
b[B − 1] · · · b[0]

]T
of length B, and an integer

D, B ≥ D ≥ 1, will also be defined, as

TD(b) =



b[B − 1] · · · b[D − 1]

b[B − 2] · · · b[D − 2]

...
...

b[B −D] · · · b[0]


(3.4)

of dimension D ×B −D + 1.

If the elements of a[·] and b[·] are all zero outside of the range of 0 . . . A − 1, and

0 . . . B − 1, respectively, A ≤ B and D = B −A+ 1, then

TD(a)b = TD(b)a =
[
c[B − 1] · · · c[A− 1]

]T
(3.5)
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where

c[k] =

A−1∑
n=0

a[n]b[k − n], (3.6)

that is, the portion of the convolution between a[·] and b[·] computed where the elements

of a completely overlap with the elements of b.

Some comments are required on the notation to be used in this work. The Kronecker

product will be denoted using ⊗, and the Kronecker delta function will be denoted as

δ(i), where the second argument j = 0. The pseudo-inverse of a matrix B will be

denoted B+. The trace of a matrix will be Tr{·}. The dimensions of certain matrices

and vectors such as the identity matrix I and zero matrix 0 may be denoted using

subscript. The `-a norm will be denoted ‖·‖a. The set of all real numbers is R. Lastly,

scalars will use standard typeface, while vectors will be in bold lowercase and matrices

in bold uppercase.

3.1.2 Multiple Channels

The discrete-time baseband signal model for a block of N received signal samples over

a single channel, defined in Eq. 3.2, may be extended to multiple channels by letting

index i ∈ {1, 2, . . . ,M}. The signal model is illustrated in Fig. 3.1. The model may be

described in vector form by stacking all of the received signal samples:
y1(k)

...

yM (k)


︸ ︷︷ ︸

y(k)

=


TN (h1)

...

TN (hM )


︸ ︷︷ ︸

H

s(k) +


w1(k)

...

wM (k)


︸ ︷︷ ︸

w(k)

y(k) = Hs(k) +w(k) = x(k) +w(k).

(3.7)

The vector of channel coefficients will be defined as h =
[
hT1 · · · hTM

]T
. The

indices (k) will be omitted unless otherwise needed. It will be assumed that all of

the noise present between channels at all time instances is independent and identically

distributed: w(k) ∼ N (0MN×1, σ
2
wIMN ).



9

H1(z)	
(h1[0]	...	h1[L])	

SIMO	
Channel	

Iden-fica-on	

s[k]	

+	
x1[k]	

w1[k]	

y1[k]	 ĥ1[0]	…	ĥ1[L]	

HM(z)	
(hM[0]	...	hM[L])	

+	
xM[k]	

wM[k]	

yM[k]	 ĥM[0]	…	ĥM[L]	

Source	 Des-na-on	

…
	

…
	

Figure 3.1: Baseband Discrete-time Multi-channel Model, Identification

3.1.3 Second-order Statistics

Some SIMO BCI estimators of interest will be a function of the estimated second-order

statistics (SOS) of the received signals. When N is the total number of received signal

samples available, the SOS may be estimated using blocks of T ≤ N samples; the accent

¯will be used to denote vectors that are defined identically to the signal model defined

previously in Eq. 3.7, but use a length T instead of length N in the definition:

ȳi(k) = TT (hi)s̄(k) + w̄i(k) ȳ(k) = H̄s̄(k) + w̄(k) (3.8)

ȳi(k) ,
[
yi[k] · · · yi[k − (T − 1)]

]T
s̄(k) ,

[
s[k] · · · s[k − (T + L− 1)]

]T
w̄i(k) ,

[
wi[k] · · · wi[k − (T − 1)]

]T
.

If the channel is deterministic and the source signal is random and wide-sense stationary

(WSS), then the SOS of the received signal for indices ≤ T is:

RT , E[ȳȳT ] = H̄E[s̄s̄T ]H̄
T

+ σ2wIMT . (3.9)

If the channels are coprime, E[s̄s̄T ] is assumed to be full rank, and T ≥ L, then from

Theorem 1 of [9], the first term is rank T + L (its column space will be a subspace of

RT ), whereas the second term is full rank (MT ).
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An estimate of the SOS is:

R̂T =


R̂1,1,T · · · R̂1,M,T

...
. . .

...

R̂M,1,T · · · R̂M,M,T

 =
1

N − T + 1

N−T∑
k=0

ȳ(k)ȳ(k)T , (3.10)

R̂i,j,T =
1

N − T + 1

N−T∑
k=0

ȳi(k)ȳj(k)T . (3.11)

3.2 Problem

Given MN destination signal samples y resulting from the previously defined multi-

channel signal model, it is desired to determine h, up to a multiplicative scalar α. Both

the source signal s, and the channel coefficients h, are treated as being deterministic,

and unknown. Certain conditions will be required involving both s and h in order to

uniquely identify h, even in the absence of noise; it will be assumed that these con-

ditions are met. In Subspace-based SIMO BCI, an estimate of h is formed using the

property that the signal and channel lie in a subspace of a matrix formed from R̂T ,

where T ≥ L+ 1. The estimate is a function of the estimated SOS:

ĥ = h̃(R̂T ). (3.12)

Often, the estimate takes the form

ĥ = arg min
h∈S

hT Q̂h. (3.13)

The matrix Q̂ is a positive semi-definite matrix (rank deficient by at most 1 if the

identifiability conditions are met) and is constructed from R̂T . The set that h is

constrained to, S, does not include the zero vector. Typical examples of S are the unit

sphere Sq = {h ∈ RM(L+1)×1 | ‖h‖2 = 1} (or unit energy constraint), and the plane

Sl = {h ∈ RM(L+1)×1 | hTe1 = 1}, where e1 =
[

1 0 · · · 0

]T
.

3.3 Identifiability Conditions

Certain conditions are required in order to be able to uniquely identify the channel

vector h, up to scalar constant α, in the multichannel model with unknown deterministic
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signal and channels, even when no noise is present [5, 6, 18, 10].

The follow are the necessary conditions for the unique identification of h: [18]

1. All channels H1(z), . . . ,HM (z) are Coprime

2. N > L+ d2L/(M − 1)e

3. Signal s has linear complexity > L+ 1

The following are the sufficient conditions for the unique identification of h: [18]

1. All channels H1(z), . . . ,HM (z) are Coprime

2. N > L+ 2(L+ 1)

3. Signal s has linear complexity > (L+ 1) + L

These conditions have important implications. For example, the channels cannot all

share leading or trailing zero coefficients, therefore L must be known. Also, the input

signal must be complex enough, and cannot be a single sinusoid.

3.4 Subspace-based Estimators

3.4.1 Cross-Relations

The Cross-Relation (CR) property [6] is the property that, in a 2-channel system,

convolving the first of the two noiseless channel outputs with the second channel in the

pair, yields an output that is equal to convolving the output of the second channel with

the first channel in the pair; this is illustrated in Fig. 3.2. When Ĥ1(z) = H1(z) and

Ĥ2(z) = H2(z), ε[k] = 0 ∀ k. The CR property can be used to ”blindly” estimate h1

and h2, and can be extended in the case where M > 2.

The CR property is described by

TN−L(ĥ1)x2 = TN−L(ĥ2)x1

= TN−L(x2)ĥ1 = TN−L(x1)ĥ2,

(3.14)
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H1(z)	
(h1[0]	...	h1[L])	

s[k]	

x1[k]	

H2(z)	
(h2[0]	...	h2[L])	

x2[k]	

+	
ε[k]	

+	

-	
Ĥ1(z)	

(ĥ1[0]	...	ĥ1[L])	

Ĥ2(z)	
(ĥ2[0]	...	ĥ2[L])	

Figure 3.2: Two-channel Cross-Relation

and can be defined in terms of ĥ:

[
−TN−L(x2) TN−L(x1)

]
︸ ︷︷ ︸

X

 ĥ1

ĥ2


︸ ︷︷ ︸

ĥ

= 02(L+1)×1. (3.15)

Summing the squares of the elements of Eq. 3.15, or the least squares form, yields a

criterion that must be met when the estimates of two channels are equal to the true

channels:

‖Xĥ‖2 = 0. (3.16)

In practice, x1 and x2 are not available, and instead, it is constructed using noisy data

y1 and y2:

‖
[
−TN−L(y2) TN−L(y1)

]
︸ ︷︷ ︸

Y

ĥ‖2 = ‖Y ĥ‖2 = ĥ
T

Y TY︸ ︷︷ ︸
(N−L)Q̂CR

ĥ = ‖ε‖2. (3.17)

The Cross-Relation error is the vector ε = Y h, and the CR estimate is given by:

ĥCR = arg min
h∈S

hT Q̂CRh. (3.18)

When M = 2 and ĥ = h, ε is a filtered Gaussian:

ε = TN−L(h2)x1 − TN−L(h1)x2

= TN−L(h2)w1 − TN−L(h1)w2.

(3.19)
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It should also be noted that the CR estimate ĥCR is function of R̂L+1, since the matrix

Q̂CR is a function of R̂L+1:

Q̂CR =
1

N − L

 TN−L(y2)
TTN−L(y2) −TN−L(y2)

TTN−L(y1)

−TN−L(y1)
TTN−L(y2) TN−L(y1)

TTN−L(y1)


=

 R̂2,2,L+1 −R̂2,1,L+1

−R̂1,2,L+1 R̂1,1,L+1

 ,
(3.20)

where R̂i,j,k was defined in Eq. 3.11.

When M > 2, the Cross-Relations between all (M + 1)M/2 pairs of channels may be

stacked into the matrix Y :

Y =



−TN−L(y2) TN−L(y1)

...

−TN−L(yM ) TN−L(y1)

...

...

−TN−L(yM−1) TN−L(yM )


(3.21)

For M ≥ 2, the CR matrix can be also be expressed as in [7]:

Q̂CR = T (IM(M−1)/2 ⊗ R̂L+1)T
T (3.22)

T =
[
T 1,2 · · · T 1,M · · · TM−1,M

]
⊗ IL+1

The matrix T i,j is of dimension M ×M with a 1 in the (i, j)th position and a −1 in

the (j, i)th position.

3.4.2 Noise-Subspace

The Noise-Subspace (SS) method [9] may also be used to estimate the channel vector

h. Recall that the SOS of the received signal for a window of length T ≤ N under

the assumption that the source signal is a random process and WSS, is (from Eq. 3.9)

RT = H̄E[s̄s̄T ]H̄
T

+ σ2wIMT . Assuming that the identifiability conditions are met for

the channels, and T ≥ L, then H̄ is full column rank [9]. If it is assumed that E[s̄s̄T ]

is full rank as well, then the first term of Eq. 3.9 is rank T + L.
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Taking the eigendecomposition of RT and separating out the eigenvalues due to the

signal + noise (Λs+w) and those due to only the noise (Λw) results in:

RT = UΛs+wU
T + V ΛwV

T . (3.23)

The Noise-Subspace V is orthogonal to the Signal-Subspace spanned by H̄, and there-

fore

(V V T )H̄ = 0MT×T+L (3.24)

is true. The Noise-Subspace Method uses this fact, which means that the sum of the

squared norms of the projections of H̄ onto each of the Noise-Subspace eigenvectors vi

is also 0:

Tr(H̄
T
V V T H̄) =

MT−T−L∑
i=1

Tr(H̄
T
viv

T
i H̄) = 0. (3.25)

For the case of M = 2, the eigenvector vi can be split into two vectors of length T ,

vi =
[
vTi,1 vTi,2

]T
, and exchanging the vectors used in the stacked convolution matrix

H̄ yields

vTi H̄ =
[
vTi,1 vTi,2

] TT (h1)

TT (h2)


=
[
hT1 hT2

]
︸ ︷︷ ︸

h

 TL+1(vi,1)

TL+1(vi,2)


︸ ︷︷ ︸

Vi

.

(3.26)

Making this substitution in Eq. 3.25 results in the expression (again, for 2 channels)

2T−T−L∑
i=1

Tr(VTi hhTVi) = hT

(
2T−T−L∑
i=1

ViVTi

)
︸ ︷︷ ︸

QSS

h = 0. (3.27)

Here, QSS is constructed using the true correlation matrix RT ; however, in the case

of a deterministic signal s(k), the estimate R̂T is used, constructed using y1(k) and

y2(k); Q̂SS will correspond to that construction. The Noise-Subspace estimate of h

minimizes Eq. 3.27 where the true QSS has been swapped out with the one constructed

using the estimated SOS, Q̂SS, in the same manner as the CR estimate, to produce the

Noise-Subspace estimate of h:

ĥSS = arg min
h∈S

hT Q̂SSh (3.28)
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Note that both the Noise-Subspace Method and Cross-Relations Method produce the

same estimate for the case of M = 2 channels [7].

When M ≥ 2, QSS (and its estimate) can be constructed as follows, where V is the

orthonomal basis of the noise subspace of RT :

QSS =
MT−T−L∑

i=1

ViVTi (3.29)

Vi =


TL+1

(
(eT1 ⊗ IT )V ei

)
...

TL+1

(
(eTM ⊗ IT )V ei

)
 . (3.30)

3.5 Estimator Objective Functions and Constraints

3.5.1 Quadratic Constraint

The objective functions for both the CR and SS estimators have the same Quadratic

form. The matrix Q will be used to denote the matrix corresponding to either the CR

construction QCR or SS construction QSS. The goal is to minimize the `-2 norm of the

error
√
Qĥ while avoiding the trivial solution ĥ = 0M(L+1)×1

Frequently, ĥ is constrained to the set Sq = {h ∈ RM(L+1)×1 | ‖h‖2 = 1} in order to

fix the total energy of the channels, which gives the estimate

ĥq = arg min
h
hTQh subject to ‖h‖2 = 1. (3.31)

The solution is the eigenvector corresponding to the minimum eigenvalue of Q.

3.5.2 Linear Constraint

An alternative to the quadratic constraint is the set for the linear constraint Sl = {h ∈

RM(L+1)×1 | ATh = b}. Typically A = ei where ei is the unit vector with a 1 in the

ith position and b = [1]. The estimator is

ĥl = arg min
h
hTQh subject to ATh = b. (3.32)
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It is a Quadratic Program (QP). It is assumed that Q is Symmetric Positive Semi-

Definite. The Lagrangian of the estimator may be written as:

Ll(h,µ) = hTQh+ µT (ATh− b) (3.33)

Taking the derivative of the Lagrangian and setting it equal to zero, and combining the

resulting equation with the constraint gives the KKT conditions [19]: 2Q A

AT 0


︸ ︷︷ ︸

K

 h
µ

 =

 0

b

 (3.34)

It will be assumed that K is invertible and therefore there is a unique solution.

The resulting linear estimate is then

ĥl =
[
IM(L+1) 0

]
K−1

 0

b

 . (3.35)

3.5.3 Sparse Objective with Linear Constraint

The CR and SS objective functions can be altered to include an `-1 regularization term

in order to promote sparsity in ĥ. This has been shown, in certain cases, to reduce the

sensitivity of the CR and SS estimates to the estimated channel order L̂ [15, 16, 17].

The sparse objective function with quadratic constraint is

ĥS-q = arg min
h
hTQh+ λ‖h‖1 subject to ‖h‖2 = 1. (3.36)

However, this minimization problem is not convex; the set that h is constrained to is

the unit sphere, and finding the global minimum is not straightforward.

The sparse objective function with a linear constraint is (from [17])

ĥS-l = arg min
h
hTQh+ λ‖h‖1 subject to ATh = b. (3.37)

Since Q is positive semi-definite, hTQh is convex. ‖·‖1 is convex, and since λ ≥ 0,

the objective function is a non-negative sum of convex functions which is convex. The

constraint, ATh = b is affine, and therefore the problem is convex [19]. A Convex
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Solver (such as CVX) may be used to find the global minimum, and thus ĥS-l.

If the signs of the elements of ĥS-l are known, a closed form solution for ĥS-l may be

obtained. If any elements of ĥS-l are known to be exactly 0, these may be included into

the linear constraint. The new linear constraint with the known zero elements will be

defined as AT
Sh = bS. The Sparse Objective function with known signs and zeros is

then

ĥ∼S-l = arg min
h
hTQh+ λsign(ĥS-l)

Th subject to AT
Sh = bS. (3.38)

The closed-form solution of Eq. 3.38 will be derived, for this case, and will be useful in

determining the asymptotic variance of the estimator under the assumption that the 0

elements of ĥS-l are known.

The Lagrangian of Eq. 3.38 is

L∼S-l(h,µ) = hTQh+ λsign(ĥS-l)
Th+ µT (AT

Sh− bS). (3.39)

Taking the derivative and setting to zero, and combining with the linear constraint

yields the KKT conditions and estimate, respectively, 2Q AS

AT
S 0


︸ ︷︷ ︸

KS

 h
µ

+

 λsign(ĥS-l)

0

 =

 0

bS

 , (3.40)

ĥ∼S-l =
[
IM(L+1) 0

]
K−1S

 −λsign(ĥS-l)

bS

 . (3.41)

3.6 Sparse Linear Parameter Selection

The sparse objective function with linear constraint contains a regularization parameter

λ which controls the amount of sparsity in the channel estimate. However, the value to

be used for this parameter is not specified. A Bayesian approach with Laplacian prior

is proposed by Lin et al. [17], in order to select a value for λ.

Assume that

1

N − L
Y TY = P TP = Q̂, (3.42)



18

If the assumption is made that the error ε has an iid normal distribution,

Ph|h ∼ N (0, σ2l I), (3.43)

and h is random and has a Laplacian distribution,

h ∼ Laplace(0, λ′), (3.44)

then a Maximum A Posteriori (MAP) Estimate may be formed, and is proposed by Lin

et al. [17]. This estimate is

ĥS-l = arg min
h∈Sl

hT Q̂h+ λ‖h‖1

λ =
2

N − L
σ2λ′ σ2l ≈ σ2w‖h‖22 λ′ =

M(L+ 1)

‖h‖1
(CR).

If h is normalized to 1, then the regularization parameter is

λMAP =
2M(L+ 1)σ2w
(N − L)‖h‖1

. (3.45)

This promotes a sparse estimate of h, and is more robust when the assumed channel

order L̂ is greater than L. This parameter selection yields good results for acoustic

room impulse responses with the above parameters estimated using the EM method

[17].

3.7 Performance Measure

The Normalized Projection Misalignment (NPM) [10, 20] can be used to measure the

error between the channel estimate and the true channel, and is sometimes also termed

the Normalized Mean Square Error (NMSE) [16, 15, 13]. For K estimates ĥ(k), k ∈

{1, 2, . . . ,K} of h, the average NPM will be defined as

NPM(h, {ĥ(1), . . . , ĥ(K)})

=
1

K

K∑
k=1

min
α(k)

(
‖α(k)ĥ(k) − h‖22

‖h‖22

)
, α(k) ∈ R

=
1

K

K∑
k=1

1−

 ‖ĥT(k)h‖2
‖ĥ(k)‖2‖h‖2

2 , α(k) min =
ĥ
T

(k)h

ĥ
T

(k)ĥ(k)

,

(3.46)
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where α(k) represents the scalar amplitude and phase difference between ĥ(k) and h.

The NPM of each estimate takes a value between 0 and 1; it is 0 when ĥ(k) and h differ

by only a scalar factor, and 1 when they are orthogonal.
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Chapter 4

Subspace SIMO BCI Asymptotic Performance

It is desired to determine the expected NPM of the Cross-Relations and Noise-Subspace

channel estimates with the standard objective function with quadratic and linear con-

straints, and with the sparse objective function with linear constraint. Specifically, the

case to be examined will be for a received sequence of IID symbols s[k], and a de-

terministic set of channels h. Since there is no closed-form expression, an asymptotic

approximation of the expected NPM will be determined, valid for “large” N , following

the steps and process in Abed-Meraim et al. [8], where the AMSE was determined for

the SS method. The estimate of the channels will simply be denoted ĥ and will repre-

sent either of the estimate methods or constraints. It should be noted that portions of

this chapter have been published in Bonna et al. [11]. It will be assumed that:

• s[k] IID ∀ k

• E
[
s[k]
]

= 0

• E
[
s[k]2

]
and E

[
s[k]4

]
are known, specified

• wi[k] ∼ N (0, σ2w) IID ∀ i, k. σ2w is specified

• h is deterministic, specified

• M and L are specified

• Identifiability Conditions are met for the channels and any realization of s[k]

The three steps to determining the asymptotic variance of ĥ for the CR and SS methods

are

1. Show that r̂, constructed from the elements of R̂T , is asymptotically Normal.
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ũ

ũ h̃P

h̃P

h̃P

h̃P

h̃P

h̃P

R̃

Q̃CR

K̃

K̃

˜V V
T

r̂

h̃CR-q

h̃SS-q

Q̃SS

h̃CR-l

h̃SS-l

h̃SS⇠Sl

h̃CR⇠Sl

Figure 4.1: Composition of Mappings for the Expected NPM

2. Show that h̃(·), the mapping from r̂ to ĥ ( ie. ĥ = h̃(r̂) ), is differentiable at the

true SOS, r, and find the first-order approximation of this mapping.

3. Show that ĥ is also asymptotically Normal based on the use of Theorems from [8,

21], applying differentiable mappings to asymptotically Normal random variables.

A final fourth step is needed to extend the asymptotic variance to an asymptotic ap-

proximation of the NPM:

4. Show that ĥP , the projection of h onto normalized ĥ, is also a random vector

that is asymptotically Normal.

A tilde ( ˜ ) will be used to denote each mapping; the relationship of the mappings

that compose the CR and SS estimates under the various constraints is illustrated in

Fig. 4.1, where the subscripts for each of the estimate mappings correspond to their

combination of method (“CR” or “SS”) and constraint (“q” for quadratic, “l” for linear,

and “∼Sl” for sparse and linear). In the figure, the symbols R̃, Q̃CR, and K̃ correspond

to linear mappings, ˜V V
T

to the noise subspace projector mapping, ũ to the minimum

eigenvector mapping, and the remainder are compositions of mappings.
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4.1 SOS Estimate Distribution

The correlation between two received signal samples is

ri,j(m) = E
[
yi[k]yj [k −m]

]
. (4.1)

Note that the following holds true due to the received signal being WSS:

ri,j(0) = rj,i(0) ri,j(m) = rj,i(−m). (4.2)

The true SOS RT takes a block-Toeplitz form due to the above properties. In addition

to the estimate R̂T (given previously in Eq. 3.10), another estimate R̂
′
T can be used

that forces the block-Toeplitz structure of the true SOS. This estimate will be used for

determining the asymptotic variance, and is formed as

R̂
′
T =


R̂
′
1,1,T · · · R̂

′
1,M,T

...
. . .

...

R̂
′
M,1,T · · · R̂′M,M,T

 , (4.3)

R̂
′
i,j,T =



r̂i,j(0) · · · r̂i,j(L) 0 · · · 0

...
. . .

. . .
...

r̂i,j(L)
. . .

. . . 0

0
. . .

. . . r̂i,j(L)

...
. . .

. . .
...

0 · · · 0 r̂i,j(L) · · · r̂i,j(0)





T,

r̂i,j(m) =
1

N −m

N−m−1∑
k=0

yi[k]yj [k −m]. (4.4)

The correlation coefficients may be put into vector form as in [22],

r =
[
rT1,1 · · · rT1,M · · · rTM,1 · · · rTM,M

]T
ri,j =

[
ri,j(0) · · · ri,j(L)

]T
, i ≤ j

ri,j =
[
ri,j(1) · · · ri,j(L)

]T
, i > j

(4.5)

where r is Nr×1, Nr = M2(L+ 1)−M(M −1)/2, and the estimates of the correlation

coefficients r using Eq. 4.4 will be denoted r̂.
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A mapping to the index of the elements of r will also be defined:

indr(i, j,m) = index of element ri,j(m) in r. (4.6)

As per the Multivariate L-dependent Central Limit Theorem (CLT), the random vector

converges in distribution as N goes to infinity [8],

√
N(r̂ − r)

N→∞−−−−→ N (0,Σr),

and the element of Σr in row indr(i, j,m), column indr(k, l, n), is defined in terms of

Σi,j,k,l(m,n):

Σi,j,k,l(m,n) =

b∑
τ=a

ri,l(m+ τ)rk,j(n− τ) +

d∑
τ=c

ri,k(m+ τ)rj,l(n+ τ) + κi,j,k,l(m,n), (4.7)

a = max(−m− L, n− L), b = min(L−m,n+ L),

c = max(−m− L,−n− L), d = min(L−m,L− n),

κi,j,k,l(m,n) = κ(ri,j(m)− δ(m)σ2w)(rk,l(n)− δ(n)σ2w),

κ = E
[
s[k]4

]
− 3E

[
s[k]2

]2
.

4.2 Mappings

4.2.1 Linear Mappings

To obtain the overall mapping from r̂ to ĥ, and its first-order approximation, the

mapping is decomposed into sub-mappings, as illustrated in Fig. 4.1. The initial

mapping R̃T (·) is defined as the map from r̂ to R̂
′
T as in Equations 4.3, 4.4, and 4.5:

R̂
′
T = R̃T (r̂). (4.8)

The mapping from matrix R̂T to Q̂CR as in Eq. 3.22, is

Q̃CR(R̂T ) = T (IM(M−1)/2 ⊗ R̂T )T T , (4.9)

where again, T =
[
T 1,2 · · · T 1,M · · · TM−1,M

]
⊗ IT and the matrix T i,j is of

dimension M ×M with a 1 in the (i, j)th position and a −1 in the (j, i)th position. The
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mapping for the term containing the first order change in Q̃CR(·) will be defined as

˜δQCR(R, δR) = Q̃CR(δR). (4.10)

Also note that when T > L + 1, the CR mapping will be altered to use a smaller

matrix R ∈ RM(L+1)×M(L+1). For estimates using a linear constraint, the mapping

from matrix Q (corresponding to either the CR or SS construction) and matrix A, to

matrix K, as in Eq. 3.34, is defined:

K̃(Q,A) =

 Q A

AT 0

 . (4.11)

4.2.2 Noise-Subspace and Eigenvector Mappings

From Theorem 6 of [8], for a matrix B that has eigenvalue λ0 of some multiplicity, the

first order taylor expansion of the mapping from B to ˜V V
T
λ0(B), the orthogonal basis

of the eigenvectors associated with λ0, is given by:

˜V V
T
λ0(B + δB) = ˜V V

T
λ0(B)− ˜V V

T
λ0(B)δB(B − λ0I)+

−(B − λ0I)+δB ˜V V
T
λ0(B) + o(δB)

(4.12)

The term containing the first order change will be defined as

˜δV V
T
λ0(B, δB) = − ˜V V

T
λ0(B)δB(B − λ0I)+ − (B − λ0I)+δB ˜V V

T
λ0(B) (4.13)

From Theorem 7 of [8], for a matrix B that has eigenvalue λ0 of multiplicity one,

the first order taylor expansion of the mapping from B to ũλ0(B), the eigenvector

corresponding to λ0, is given by:

ũλ0(B + δB) = ũλ0(B)− (B − λ0I)+δBũλ0(B) + o(δB). (4.14)

4.2.3 SS Matrix Mapping

The mapping from matrixRT toQSS can be determined by first expressingQSS directly

in terms of V V T , and then using the mapping ˜V V
T
λmin

(RT ), where λmin corresponds to

the minimum eigenvalue of the input to the map. Starting from the previous expression
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in Eq. 3.29 and 3.30,

QSS =

MT−T−L∑
i=1

ViVTi =

MT−T−L∑
i=1

T+L∑
j=1

ViejeTj VTi , (4.15)

where it is recalled that

Vi =


TL+1

(
(eT1 ⊗ IT )V ei

)
...

TL+1

(
(eTM ⊗ IT )V ei

)
 . (4.16)

Noting that the block-convolution matrices Vi can be exchanged with block-convolution

matrices using the elements of ej results in:

QSS =

T+L∑
j=1

(
IM ⊗ TL+1(ej)

)


(eT
1 ⊗ IT )

...

(eT
M ⊗ IT )


︸ ︷︷ ︸

I

V
(MT−T−L∑

i=1

eie
T
i

)
︸ ︷︷ ︸

I

·V T


(eT

1 ⊗ IT )

...

(eT
M ⊗ IT )


T

︸ ︷︷ ︸
I

(
IM ⊗ TL+1(ej)

)T

=

T+L∑
j=1

(
IM ⊗ TL+1(ej)

)
V V T

(
IM ⊗ TL+1(ej)

)T
. (4.17)

Thus, the mapping Q̃SS(·) is

Q̃SS(R) =

T+L∑
j=1

(
IM ⊗ TL+1(ej)

)
˜V V

T
λmin

(R)
(
IM ⊗ TL+1(ej)

)T
, (4.18)

and the first order change will be defined by the mapping

˜δQSS(R, δR) =

T+L∑
j=1

(
IM ⊗ TL+1(ej)

)
˜δV V

T
λmin

(R, δR)
(
IM ⊗ TL+1(ej)

)T
. (4.19)

4.2.4 Estimate with Quadratic Constraint

The mapping from vector r̂ to the estimate using the quadratic objective function, is

the composition of the mappings R̃(·), Q̃(·), and ũλmin
(·):

h̃q(r̂) = ũλmin

(
Q̃
(
R̃ (r̂)

))
. (4.20)

The Jacobian at the true statistics r is given as Jq =
∂h̃q(r)
∂r

∣∣∣
r=r

and may be defined

as:

Jq =
[
J

(1)
q · · · J (Nr)

q

]
(4.21)
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where column i is defined as

J (i)
q = −(Q− λminI)+ ˜δQ

(
R̃(r), R̃(ei)

)
ũλmin

(Q) (4.22)

and Q = Q̃
(
R̃(r)

)
.

4.2.5 Estimate with Linear Constraint

For the linear CR and SS estimate, the (un-normalized) estimate when the output of

K̃(·) is full rank is

h̃l(r̂) =
[
IM(L+1) 0

]
K̃
(
Q̃
(
R̃(r̂)

)
,A
)−1  0

b

 (4.23)

The Jacobian at the true statistics r is desired, J l = ∂h̃l(r)
∂r

∣∣∣
r=r

. For a matrix D that

is a function of θ, its derivative is given by:

∂D−1

∂θ
= −D−1∂D

∂θ
D−1 (4.24)

Using the derivative of the matrix inverse, the ith column of J l, denoted J
(i)
l is given

by

J
(i)
l = −

[
IM(L+1) 0

]
K−1K̃

(
˜δQ
(
R̃(r), R̃(ei)

)
,0
)
K−1

 0

b

 . (4.25)

and K = K̃ (Q,A).

4.2.6 Estimate with Sparse Objective Function and Linear Constraint

For the CR and SS estimate with sparse objective function and a linear constraint, the

(un-normalized) estimate when the output of K̃(·) is full rank is

h̃∼Sl(r̂) =
[
IM(L+1) 0

]
K̃
(
Q̃
(
R̃(r̂)

)
,AS

)−1  −λsign
(
h̃Sl (r)

)
bS

 , (4.26)

where h̃Sl(·) matches the estimate in Eq. 3.37:

h̃Sl(r) = arg min
h
hT Q̃

(
R̃(r)

)
h+ λ‖h‖1 subject to ATh = b. (4.27)
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The use of the estimate with known signs and zeros included in the linear constraint

means that the mapping will be differentiable (unlike the original one using the `-1

norm), but leaves unresolved the handling of the non-differentiable points of the original

estimate.

The Jacobian at the true statistics r is required, J∼Sl = ∂h̃∼Sl(r)
∂r

∣∣∣
r=r

. Using the

derivative of the matrix inverse, the ith column of J∼Sl, denoted J
(i)
∼Sl is given by

J
(i)
∼Sl =

−
[
IM(L+1) 0

]
K−1S K̃

(
˜δQ
(
R̃(r), R̃(ei)

)
,0
)
K−1S

 −λsign
(
h̃Sl(r)

)
bS

 , (4.28)

and KS = K̃ (Q,AS).

4.3 Composition of Mappings

Since the estimate of the SOS, r̂, is asymptotically normal, and the mappings are

differentiable at the true value of the SOS, then from [8] and Sec. 3.3, Theorem A,

Serfling [21], the distribution of h̃(r̂) is asymptotically normal:

√
N
(
h̃(r̂)− h̃(r)

)
N→∞−−−−→ N (0,Σ) Σ = JΣrJ

T J =
∂h̃(r)

∂r

∣∣∣∣∣
r=r

.

Here, (h̃(r) − h) is the asymptotic bias of the estimate, and Σ is the asymptotic co-

variance of the estimate. The Jacobian J is replaced by one of the matrices defined

previously corresponding to the desired combination of objective function and con-

straint.

4.4 Approximation of the Expected NPM

The expected mean-square error (MSE) of the estimate is

E
[
MSE(h, ĥ)

]
= E

[
‖ĥ− h‖22

]
= E

[
‖ĥ− E[ĥ]‖22

]
︸ ︷︷ ︸

Tr{Cov(ĥ)}

+ ‖E[ĥ]− h‖22︸ ︷︷ ︸
‖Bias(h,ĥ)‖22

, (4.29)



28

however, this has no closed-form solution. Instead, the asymptotic mean-square error

(AMSE) or asymptotic normalized mean-square error (ANMSE) [8, 5, 22] are used to

approximate it. The channel estimate ĥNs and the SOS estimate r̂Ns are expressed as

being dependent on the number of samples Ns, instead of N , used previously. The limit

of Ns times the expected MSE of ĥNs is taken as Ns →∞; the result is approximately

equal to the actual number of samples used in the channel estimate ĥ, N , times the

expected value of the MSE, when N is large:

ANMSE(h, ĥ) = lim
Ns→∞

NsE
[
‖ĥNs − h‖22

]
≈ NE

[
MSE(h, ĥ)

]
, (4.30)

where the ‖ĥ‖2 = ‖ĥNs‖2 = ‖h‖2 = 1, and the phase ambiguity between h and ĥNs

has been resolved by some method - for example, by matching the signs between an

element of h and an element of ĥNs . If the estimator not asymptotically consistent,

then Eq. 4.30 is undefined, since the bias multiplied by Ns goes to infinity.

An Asymptotic Approximation of the Expected MSE (AAMSE) will be defined instead,

where the covariance and bias terms of the MSE have been explicitly separated, the

covariance term has been divided by N , and the limits have been evaluated using the

mappings defined previously:

AAMSE(h, ĥ) =

1

N
lim

Ns→∞
NsE

[
‖h̃(r̂Ns)− h̃(r)‖22

]
+ lim
Ns→∞

E
[
‖h̃(r)− h‖22

]
=

1

N
Tr{Σ}+ ‖h̃(r)− h‖22

≈ E
[
MSE(h, ĥ)

]
.

(4.31)

The expected NPM, which unlike the NMSE, also resolves the phase ambiguity, is,

E
[
NPM(h, ĥ)

]
= E

[‖αminĥ− h‖22
‖h‖22

]
=

1

‖h‖22
E
[
‖ĥP − h‖22

]
, (4.32)

where

ĥP = αminĥ =
(ĥ

T
h)

‖ĥ‖22
ĥ. (4.33)

This also has no closed form. The mapping from SOS estimate r̂ to the projection of

h onto normalized ĥ will be defined as

h̃P(r̂) =
(
hT h̃(r̂)

) h̃(r̂)

‖h̃(r̂)‖22
. (4.34)
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The random variable ĥP is also asymptotically Normal since it is a mapping of r̂ to

ĥ, which was shown to be asymptotically Normal, and then from ĥ to ĥP which is

differentiable. It has distribution

√
N
(
h̃P(r̂)− h̃P(r)

)
N→∞−−−−→ N (0,ΣP) ΣP = JPΣrJ

T
P, (4.35)

where JP is

JP =
∂h̃P(r)

∂r

∣∣∣∣∣
r=r

=
1

‖h̃(r)‖22

{(
hT h̃(r)

)
IM(L+1) +

(
1− 2

hT h̃(r)

‖h̃(r)‖22

)
h̃(r)h̃(r)T

}
J

(4.36)

and J is the Jacobian determined for h̃(·) at the true SOS r, determined previously,

for the desired combination of objective function and constraint.

The asymptotic approximation of the Expected NPM (AANPM) will then defined as:

AANPM(h, ĥ) =
1

‖h‖22
AAMSE(h, ĥP)

=
1

‖h‖22

{
1

N
Tr{ΣP}+ ‖h̃P(r)− h‖22

}
≈E
[
NPM(h, ĥ)

]
.

(4.37)

This is the final expression used to approximate the expected NPM, where the mapping

h̃P(·) is composed using the combination of method (CR or SS), objective function

(standard or sparse), and constraint (quadratic or linear).
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Chapter 5

Experiments

5.1 Asymptotic Performance on RF Channels

In this section, the asymptotic performance of the CR and SS methods for M = 2

channels is compared with simulation to verify an agreement with the theoretical results.

Simulations used the real part of previously collected microwave channel measurements

from [23] and [24]. The measurements were oversampled by 2 to obtain M = 2 channels,

and the central portion of the channel measurement containing 99.5% of the total energy

in the measurement was used so that the channel did not appear to be over-modeled.

The symbol rate used was Tsym = 30MS/s for channel measurements 1 and 3, and

Tsym = 22.5MS/s for channel 2. The signal s used was an IID BPSK +/- 1 signal,

with N = 1000 received symbols, and a window size of T = L+1 for the SS method. The

SNR is defined per-sample, that is, SNR = E
[
s[k]2

]
/σ2w. A total of 200 iterations were

performed, where the random signal was generated and filtered through the channels,

followed by AWGN, and then BCI. The linear constraint used was A = ei∗ , b = [h1[i
∗]],

and i∗ = arg max
j
|h1[j]|. It should be noted that this constraint is expected to provide

a performance advantage over other methods at lower SNR, since it is chosen to be

aligned to the largest channel coefficient; however, this may not be as impractical

as it seems, as [17] notes that the one in the unit vector tends to align on its own

with the largest channel coefficient. For the Sparse CR and Sparse SS estimates, the

regularization parameter λ = 0.005, which had better performance for the low SNR

region. For plots with varying SNR, the SNR was varied from 0 to 60 dB, while the

plots with fixed SNR had SNR = 40 dB.

The Best Linear Unbiased Estimate (BLUE) [25], which is also the least-squares

estimate, is included under the assumption that s is known. The maximum NPM
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allowed is NPMmax = 1. In the plots labeled “NPM vs SNR”, the average NPM and

asymptotic approximation of the NPM are plotted for the CR and SS estimators over

varying SNR. In the plots labeled “NPM vs Overmodeling”, here ”overmodeling” is

scaling hi[L], i = 1, 2 by 0.1, 0.2, . . . 1; the last term is reduced to make the channel

appear as if the true L is one less than it is being modeled as. Lastly, in the plots

labeled “NPM vs N”, here the average NPM and asymptotic approximation of the

NPM are plotted for the CR and SS estimators over a varying number of received

samples N . The channels obtained from each of the channel measurements are plotted

in Figs. 5.1, 5.2, and 5.3. The results for NPM vs SNR, NPM vs Overmodeling, and

NPM vs N are given in Figs. 5.4, 5.5, 5.6, for the channels obtained from Channel

Measurement 1, 2, and 3, respectively. It should be noted that results for Channel 3

Measurement 3, also appear in Bonna, et al. [11].

Note that the approximation of the expected NPM frequently matches the average

NPM for all channels; it tends to deviate when N is low, or when the average NPM

is near 1. This suggests that the approximation is accurate for some cases. The CR

and SS plots with quadratic constraint also match one another, which is expected since

they are equivalent for the M = 2 case [22]. Additionally, the CR estimates with

linear constraint, and SS estimate with linear constraint and `-1 regularization appear

to be more robust to overmodeling for these channels. The plots also show that the

average NPM can vary significantly depending on the estimator and given channel, and

that a higher L does not necessarily mean worse estimates. Furthermore, the effect of

decreasing N on both performance and the approximation are as expected, since the

performance decreases and the approximation becomes worse. Lastly, there does not

appear to be a significant performance improvement when using `-1 regularization for

these estimators, with the exception of the relative improvement using the SS estimate.
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Figure 5.1: Channels obtained from Channel Measurement 1
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Figure 5.2: Channels obtained from Channel Measurement 2
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Figure 5.3: Channels obtained from Channel Measurement 3
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Figure 5.4: Channel Measurement 1 Results
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Figure 5.5: Channel Measurement 2 Results
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Figure 5.6: Channel Measurement 3 Results
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5.2 Performance of Sparse CR and Sparse SS on RF Channels

The sensitivity of the selection of the regularization parameter λMAP was examined

for several measured microwave RF channels (again from [23]), as well as the artificial

channel used in [17]. For the measured RF channels, Tsym = 30MS/s for channels 1,

3, and 7, while Tsym = 22.5MS/s for channel 2. The channels were constructed in a

similar manner as the previous section, by downsampling the real part of the measured

channel by 2. Then, the channels were reduced to length L+ 1 = 30 by taking the 30

contiguous coefficients with the largest energy; the number of contiguous coefficients

containing 99.5% of the energy in the channel measurement was 4, 5, 29, and 15 for

channels 1, 2, 3 and 7, respectively. Other simulation settings such as the distribution

of s, the number of samples N , the linear constraint A and b, the window length T ,

the definition of SNR, the number of iterations, and the range that the SNR is varied,

are identical to the simulations of the previous section. The key difference is that the

regularization parameter used is now λ = βλMAP, where β is varied in the range of +20

to −20 dB. For plots with fixed λ, β = 1.

The channels obtained from the measured RF channels are plotted in Fig. 5.12,

where the circle corresponds to channel 1 and the cross corresponds to channel 2. The

average NPM vs SNR for the CR and SS estimates and quadratic and linear constraints

is plotted in Fig. 5.8 for the measured RF channels. The effect of varying β on the

average NPM is plotted in Figs. 5.9, 5.10, 5.11, for the SNRs of 10, 30, and 50 dB,

respectively, again for the measured RF channels. Results for all channel measurements

for the SNR = 10 dB case also appear in Bonna, Spasojević [12].

The artificial channel is plotted in Fig. 5.7. The average NPM over varying SNR

for the CR estimate with quadratic constraint, CR estimate with linear constraint, and

sparse CR estimate with linear constraint, is plotted in Figs. 5.13, 5.14, and 5.15.

Finally, the effect of varying β on the average NPM for the artificial channel is plotted

in Figs. 5.16, 5.17, 5.18, for the SNRs of 10, 30, and 50 dB, respectively.

The results for varying β on the measured channels suggest that the expression for

λMAP, where the true values are used in the MAP parameterization λMAP, is somewhat
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accurate at selecting a λ that minimizes the average NPM, even for the SS estimator.

However, the results for varying β for the artificial channel used in [17] suggest that the

CR estimate with `-1 regularization has the ability to result in a significant drop in the

average NPM compared to the other CR estimators for this particular channel, though

using a different λ. This also supports the observations made by the authors [17] that

the CR estimate with `-1 regularization and linear constraint can perform significantly

better than the CR estimate with only linear constraint.
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Figure 5.7: Channel Measurements, Sub-channels
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Figure 5.8: NPM vs SNR
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Figure 5.9: NPM vs β for SNR = 10 dB
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Figure 5.10: NPM vs β for SNR = 30 dB
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Figure 5.11: NPM vs β for SNR = 50 dB
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Figure 5.12: Artificial Channel
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Figure 5.13: NPM vs SNR, Artificial Channel, CR Estimate with Quadratic Constraint
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Figure 5.14: NPM vs SNR, Artificial Channel, CR Estimate with Linear Constraint
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Figure 5.15: NPM vs SNR, Artificial Channel, Sparse CR Estimate with Linear Con-
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Figure 5.16: NPM vs β, Artificial Channel, for SNR = 10 dB
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Figure 5.17: NPM vs β, Artificial Channel, for SNR = 30 dB
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Figure 5.18: NPM vs β, Artificial Channel, for SNR = 50 dB
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Chapter 6

Conclusions and Future Work

In this thesis, Subspace-based SIMO BCI methods were explored, particularly the

Cross-Relations and Noise-Subspace methods. Their performance measured using the

NPM, for a specified channel, was approximated in theory and supported through the

use of simulation, for a number of variations of the estimation methods. The approx-

imation assumed an independent and identically distributed input signal with known

second and fourth moments. The channels examined in the experiments had been ob-

tained through practical RF measurements in previous work. The results also suggest

some scenarios where the use of a linear constraint, or `-1 regularization and a linear

constraint, improved the robustness of the SIMO BCI methods when the channel order

was over-estimated. Additionally, the performance of the sparse variant of the CR and

SS methods using a proposed formula for the regularization parameter was also exam-

ined through simulation for several measured RF channels. The resulting performance

at and around the proposed value of the regularization parameter suggest that the use

of the proposed value does yield improved performance but does not capture all of the

potential performance gains. Furthermore, the results suggest that a significant per-

formance improvement is possible for some channels, provided that a suitable value is

chosen for the regularization parameter.

Many potential areas remain unexplored and are ripe for future work. One such

area is, how to more thoroughly describe in theory the connection between the use of

`-1 regularization and linear constraint, and the robustness of the channel estimation

method to an incorrectly selected channel order. Additionally, the appropriate selection

of linear constraint remains unresolved. The non-differentiable points of the sparse es-

timate mapping need to be addressed, and the required number of samples in order for
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the approximations to be valid needs to be determined. Lastly, the potential improve-

ment of the subspace methods using `-1 regularization suggest additional modifications

to the subspace methods could improve their robustness in practice.
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