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Carbonaceous nanoparticles (NPs), which are intentionally manufactured or originate 

from incomplete combustion, reach aqueous environments continuously through direct 

input, surface runoff, wastewater treatment plants, and atmospheric deposition. Upon 

release into aqueous environments, carbonaceous NPs will likely undergo aggregation 

and adsorption processes depending on the local solution chemistries and ambient species. 

Understanding the physiochemical interactions governing these two fundamental 

processes of carbonaceous NPs is crucial for evaluating their fate, transport, and potential 

applications in aqueous environments. 
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The first part of this work focused on the aggregation and adsorption behaviors of a 

new class of manufactured carbonaceous NPs, nanosized activated carbons (NACs), in an 

effort to evaluate the applicability of NACs as adsorbents to be injected into groundwater 

systems for remediation purpose. Investigation on aggregation kinetics of four types of 

NACs demonstrated that, under solution chemistries typical of freshwater environments, 

NACs should remain stable as dispersed NPs with diameter below 200 nm. Such strong 

colloidal stability of NACs may enable long distance travel of these NPs to reach target 

pollutants when injected into groundwater systems. Study on the adsorption processes of 

NACs for two model aromatic pollutants, 4-chlorophenol (4-CP) and aniline, showed 

rapid removal of contaminants from water. More importantly, the equilibrium adsorption 

indicated that the adsorption capacities of NACs were 10-100 times greater than other 

nanosized adsorbents. The combined strong colloidal stability and adsorption capacity of 

NACs suggested their potential application as superior adsorbents for groundwater 

remediation. 

The second part of this dissertation investigated the aggregation process of soot NPs 

in aqueous environments. These carbonaceous NPs are produced unintentionally from 

incomplete combustion, are ubiquitously distributed, and are of serious environmental 

concerns. Results showed that aggregation kinetics of soot NPs were strongly influenced 

by solution chemistries including electrolyte compositions and concentrations as well as 

pH. The presence of macromolecules such as humic acid and proteins significantly 

enhance the colloidal stability of soot NPs. The aggregation behavior of soot NPs could 

be predicted by the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory using 

the Hamaker constant determined in this study. Soot NPs should remain stable against 
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aggregation in typical freshwater environments and neutral rain droplets, but are likely to 

aggregate under saline (e.g., estuaries and oceans) and/or acidic (e.g., acid rain droplets) 

conditions. 

Results from this work imply that NACs with strong colloidal stability and high 

adsorption capacities may enable benign NP design and applications, whereas the toxic 

soot NPs having such high colloidal stability they could endanger human and 

environment health. In summary, this dissertation has furthered our understanding of the 

aggregation and adsorption processes of carbonaceous NPs, which may facilitate the 

prediction of their fate and transport in aqueous environments.  
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1. CHAPTER I. INTRODUCTION 

1.1. Background Information  

1.1.1. Carbonaceous Nanoparticles 

Nanotechnology is the study and manipulation of materials at atomic, molecular, and 

macromolecular scales [1]. Nanoparticles (NPs) defined as particles with at least one 

dimension less than 100 nanometers are considered to be the building blocks for 

nanotechnology [2]. Carbonaceous nanomaterials composed entirely or mainly of carbon 

atoms are one of the seven major classes of NPs, drawing exclusive awareness in the era 

of nanotechnology [3-6]. Carbonaceous nanomaterials could be divided into two 

operationally defined categories, depending on their sources and origin [7]. Intentionally 

produced (engineered, manufactured) carbonaceous NPs originate from industrial 

activities with well-controlled properties for specific applications; whereas 

unintentionally produced (or incidental) carbonaceous NPs originate from incomplete 

combustion of biomass and fossil fuels as undesired byproducts [8]. 

Carbonôs unique hybridization and tunable properties allow for tailored manipulation 

into a variety of engineered carbonaceous nanomaterials in different dimensions. The 

manufactured carbon-based NPs include nanosized activated carbons (NACs), carbon 

nanotubes (single-walled, SWCNTs or multi-walled, MWCNTs), fullerene (C60), 

graphene and derivatives (graphene oxides, GO or reduced graphene oxides, RGO), 

nanodiamond, carbon nanofibers, and amorphous carbonaceous composites [3-5, 9, 10]. 

Owing to their size-endowed unique physiochemical features, manufactured 

carbonaceous NPs find use in a variety of scientific and industrial areas, such as 
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environmental, electronic, energy, pharmaceutical, catalytic, agricultural, and materials 

applications [3, 9, 11]. Manufactured carbonaceous NPs have been cited as one of the top 

50 industrial chemicals manufactured worldwide, with 9.8 million tons of production in 

2008 [8]. The growing production and use of engineered carbonaceous NPs will lead to 

their increased exposure to the environment [2, 6, 12]. These nanomaterials are 

sometimes deliberately introduced into the environment, such as by direct injection of 

NPs into the sub-surface for remediation purpose [9, 13]. Another entry route for the 

engineered carbonaceous NPs to the environment could be accidental release during the 

manufacturing process. 

In contrast to manufactured nanomaterials with well-controlled properties, 

carbonaceous NPs such as soot may be produced unintentionally from incomplete 

combustion of fuels and biomass. Soot NPs are produced as undesired byproduct each 

year at approximately 8 million tons from combustion [14]. The massive production of 

soot from numerous burning sources as well as the global cycling of these carbonaceous 

NPs have resulted in their ubiquitous distribution in the environment and their routine 

exposure to human [8]. 

Due to the ubiquity and special nano-dimension features of carbonaceous NPs, 

environmental researchers are actively exploring the environmental and health concerns 

of these NPs as contaminants of emerging concerns [6, 11, 15, 16]. Numerous previous 

studies have demonstrated the toxic potentials of carbonaceous NPs during interactions 

with biological systems [1, 15-19]. Recent studies also indicated that the presence of 

carbonaceous NPs such as soot NPs in the environment could significantly impact the 

marine ecosystems and the global carbon cycle [20, 21]. Although carbonaceous NPs find 
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use in a variety of applications, their potential impacts to human health and the 

environment have also raised serious public and scientific concerns. Therefore, the broad 

applications and environmental concerns of carbonaceous NPs necessitate a systematic 

understanding of their fate and transport in the environment. 

 

1.1.2. Aggregation and Adsorption Processes of Nanoparticles 

To optimize applications of carbonaceous NPs as well as to gain better understanding 

of their potential environmental hazards, it is crucial to study the fundamental 

physiochemical processes that these NPs may undergo as they enter the environment. 

Upon release into aqueous systems, carbonaceous NPs will likely exist in various 

aggregation states and adsorb to chemicals depending on the solution chemistries and 

ambient species [22]. Both aggregation and adsorption processes of NPs governed by 

physiochemical interactions may alter their size and surface properties, which could 

strongly influence the fate and transport of these NPs in the environment. 

Carbonaceous NPs entering aqueous environments will exist in various aggregation 

states. The ability of NPs to remain stable against aggregation in aqueous systems is 

termed colloidal stability, which is typically governed by the interplay between 

electrostatic repulsion and van der Waals attraction according to the classic Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory [23, 24]. It is known that for most colloidal 

NPs, variation of solution chemistries including electrolyte composition or concentration 

and pH condition will have strong influence on surface properties of NPs, and thus, their 

colloidal stability [24, 25]. Meanwhile, the presence of environmental macromolecules 
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(e.g., natural organic matter, NOM) and biological macromolecules (e.g., proteins and 

polysaccharides) may impact the aggregation behavior of NPs [26, 27]. Study of effects 

from these environmental factors on colloidal stability of NPs is critical for elucidation 

and prediction of their fate and transport in aqueous environments. 

Carbonaceous NPs typically are highly adsorptive towards organic molecules that are 

prevalent in the environment. This is because carbonaceous NPs characteristically have 

exceptionally high specific surface area (SSA), and the surfaces of these carbonaceous 

materials are inherently hydrophobic. Therefore, these NPs can be functionalized as ideal 

candidates for adsorption of target pollutant in aqueous environment [9, 28, 29]. On the 

other hand, environmental (macro)molecules (e.g., NOM) [30], bacteria and viruses [20, 

31, 32], and toxic pollutants [33-35] may passively adsorb onto hydrophobic carbon 

particles such as black carbon. The adsorbed species onto NPs can modify their surface 

properties and travel along with the mobile NPs in the environment. Toxic chemicals 

associated with carbonaceous NPs may be released during the interactions of NPs with 

aquatic organisms and cause biological damage. Understanding the adsorption behavior 

of carbonaceous NPs is hence critical for evaluation of their applicability as adsorbents as 

well as understanding their impact on aquatic environments. 

Two types of carbonaceous NPs are selected for study of their aggregation and 

adsorption processes: nanosized activated carbons (NACs) as a new class of engineered 

NPs and soot NPs as a ubiquitous contaminant in the environment. Despite of the great 

importance of these two types of carbonaceous NPs in the environment, their aggregation 

processes in aqueous systems have never been quantitatively studied. In addition, there 
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have been no studies to date that systematically investigate the adsorption behavior of 

NACs, which may be ideal candidates for adsorption of pollutants in contaminated water. 

 

1.1.3. Nanosized Activated Carbons 

There have been a number of studies focusing on the fate and transport of several 

manufactured carbonaceous nanomaterials such as fullerenes [36-38], carbon nanotubes 

[39-41], and graphene oxide [42] in aquatic systems. However, such information is less 

available for NACs, which are a new class of manufactured carbonaceous nanomaterials. 

Compared to conventional activated carbon (AC) as its bulk counterpart, NAC possesses 

unique nano-dimension feature along with enormous porosity and great SSA as well as 

insignificant cytotoxicity [43, 44]. Therefore, NACs are potential candidates for catalyst 

support [45], drug carriers [43], disease tracers [46], and adsorbents for water reclamation 

[47]. A key step for evaluating the fate, transport, and applicability of NACs will be 

determining their colloidal stability in aqueous solutions, as it indicates the mobility of 

NPs once they enter natural or engineered aquatic systems. Study of the adsorption 

behavior of NACs will also be of great importance to predict their removal efficiencies 

when used as water remediation agents and to design their carrying capacity when used 

as drug carriers. 

One scenario for the application of NACs in environmental remediation is to be 

injected into groundwater systems as superior nanosized adsorbent for in situ removal of 

organic pollutants. So far other manufactured nanomaterials such as CNTs [48-52] and 

nano zero valent iron (nZVI) have been proposed for achieving such purpose [13, 53], 
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however, they are prevented from practical applications due to some major roadblocks. 

For example, CNTs have low adsorption affinity attributed to their low SSA, and more 

importantly, they are prone to aggregation because of the strong hydrophobic surfaces 

leading to mutual attraction [52, 54-56]; although nZVI is highly reactive, it has very 

limited mobility beyond a few centimeters because it readily forms aggregates in water 

[57]. Clearly, injected NPs for groundwater remediation must not only be highly reactive, 

but also must remain suspended and mobile in polluted aquifers over days [57, 58]. We 

propose NACs as a new class of manufactured NPs meeting such criteria for applications 

in groundwater remediation. Questions to be examined experimentally include whether 

NACs are both highly adsorptive towards organic pollutants as well as highly stable 

against aggregation under solution conditions typical of groundwater systems. Study of 

the aggregation kinetics as well as adsorption behavior of NACs in aquatic environments 

is critical for both filling the knowledge gap in colloidal science and evaluating the 

technical applicability of NACs for groundwater remediation. 

 

1.1.4. Soot Nanoparticles 

In addition to the manufactured NAC nanomaterials, soot NPs produced from 

incomplete combustion of fuels and biomass constitute of a major portion of the 

unintentionally produced carbonaceous NPs in the environment. Upon release to the 

atmosphere, soot NPs have been identified as contributing to various adverse effects on 

human health [17, 19, 59, 60], visibility reduction [61], soiling of buildings [62], 

agricultural productivity [63], and global climate change [64-66]. Soot NPs may 
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eventually reach water bodies via atmospheric dry and wet deposition or fluvial discharge 

[67-69], resulting in strong impacts on the aquatic ecosystems [20, 21] and global carbon 

cycle [68]. 

To evaluate the environmental fate and transport of these soot NPs and their potential 

interactions with the ambient environment, it is crucial to understand the factors 

governing their aggregation behavior under both atmospheric and aquatic conditions, 

which controls their size and interactions with the ambient environment [22]. Most 

studies to date have focused on the aggregation behavior of manufactured carbonaceous 

NPs (e.g., CNTs, fullerenes, and graphene) in aquatic environments. However, the 

fundamental aggregation kinetics of soot particles in aqueous phase is poorly 

characterized, despite the fact that the concentration of black carbon (i.e., soot) NPs is 

indeed 10
4
 to 10

7
 times higher than MCNPs in the water column and aquatic sediments 

[7]. Due to the great significance of soot NPs in the atmosphere, there are numerous 

studies on their aggregation behavior under dry [70-73] and humid [74-76] atmospheric 

conditions. However, there have been no studies to date that focus systematically on the 

aggregation kinetics and colloidal stability of soot NPs under aqueous conditions where 

water is the dominant phase. Such study may have significant implications for fate, 

transport, and toxicity of soot NPs in wet environments, which include cloud water, rain 

droplets, and aquatic environments, where soot NPs are ubiquitously distributed. 

 

1.2. Research Objectives and Hypotheses 
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The overarching goal of this dissertation is to investigate the aggregation and 

adsorption processes of carbonaceous NPs for understanding their fate, transport, and 

applications in aqueous environments. Factors influencing the colloidal stability of NACs 

and soot NPs against aggregation under aqueous conditions are the major focuses of this 

study. In addition, the adsorption behavior of NACs for organic pollutants will be 

investigated with the aim to evaluate the potential application of injecting NACs as 

mobile nano-adsorbents for groundwater remediation purpose. 

Specifically, NACs as a new class of manufactured carbonaceous NPs and soot NPs 

as a prevalent group of unintentionally produced carbonaceous NPs are selected for study. 

The major objectives are to quantify and predict the colloidal stability of NACs and soot 

NPs against aggregation under various solution chemistry conditions and in the presence 

of different environmental and biological macromolecules. The experimental aggregation 

kinetics data will be collected using time-resolved dynamic light scattering (TRDLS) 

technique to construct stability curves based on the attachment efficiency data, allowing 

for determination of their critical coagulation concentrations (CCC). The experimental 

results are compared with the classic DLVO theory to derive physiochemical parameters 

including the Hamaker constants for the tested NPs. The characterized properties of 

nanomaterials coupled with computational fitting practices are employed to elucidate and 

predict the aggregation mechanisms and charge acquisition of NPs based on fundamental 

theories involving intermolecular forces and particle interaction energies. In addition, the 

adsorption behavior of NACs towards typical organic pollutants will be characterized 

using high performance liquid chromatography (HPLC) for evaluation of their 
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applicability as superior adsorbents to be injected into groundwater systems for in situ 

water remediation. 

There are two major hypotheses for this thesis work: (1) NACs possess both high 

colloidal stability and strong adsorbability that could be utilized as nanosized adsorbents 

for in situ groundwater remediation; (2) diesel soot NPs are potentially hazardous 

nanomaterials that could remain relatively stable against aggregation in typical wet 

environments such as freshwater and rain droplets. 

 

1.3. Organization of This Dissertation 

This dissertation is composed of an overall introduction (Chapter 1), four independent 

papers each presented in one chapter (Chapters 2 to 5), and a final chapter on major 

conclusions and future work (Chapter 6). 

In Chapter 1, the background information of nanotechnology and the crucial needs for 

understanding NPs colloidal stability and adsorption behavior on evaluating their fate and 

transport as well as applications in aqueous environments are briefly introduced. 

Research objectives, organization of the dissertation, and important contributions are also 

outlined. 

In Chapter 2, the influence of solution chemistries on the colloidal stability of NACs 

was investigated. Four types of NACs manufactured from different plant materials were 

obtained for this study. Effects of background electrolytes and pH on the aggregation 

kinetics of NACs were quantified and compared with the DLVO theory. The derived 

Hamaker constants for each NAC nanomaterial have important implications for 
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prediction of colloidal stability of NACs as well as interfacial interactions involving AC 

materials such as adsorption processes. Results demonstrated NACs have strong colloidal 

stability against aggregation under solution conditions typical of freshwater environments. 

In Chapter 3, four types of NACs from Chapter 2 and one commercial powdered 

activated carbon (PAC) as comparison were used to study their adsorption behavior for 

two model aromatic pollutants, 4-chlorophenol (4-CP) and aniline in aqueous solution. 

The pore structures, adsorption rates, adsorption equilibrium isotherms, and adsorption 

mechanisms were characterized for the NAC adsorbents. More importantly, comparisons 

showed that the adsorption capacities of NACs were 10-100 times greater than other 

reported nanosized carbonaceous adsorbents (e.g., CNTs, graphene, and fullerene), and 

were similar with conventional AC adsorbents (e.g., PAC and granular AC, GAC). 

Results from this chapter indicated that NACs possess much strong adsorption capacity 

compared to other potential nanosized adsorbents. Coupled with results from Chapter 2 

which demonstrated the high colloidal stability of NACs, results from these two chapters 

confirmed the hypothesis that NACs are superior nanosized adsorbents simultaneously 

having high mobility and strong adsorptivity to be injected into groundwater systems for 

in situ remediation of organic pollutants. 

In Chapter 4, a standard reference soot particulate matter collected from diesel engine 

was employed for studying the aggregation kinetics influenced by electrolyte 

composition and concentration and pH conditions typically present in wet environments 

such as cloud water, rain droplets, and aquatic environments. Comparison of the 

experimental aggregation kinetics data with the classic DLVO theory demonstrated that 

soot NPs aggregate similarly with other common colloidal particles, with the Hamaker 
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constants derived for the first time for soot NPs in aqueous medium. Results indicated 

that soot NPs may be stable against self-aggregation in typical freshwater environments, 

but should aggregate and settle in solutions with high salinity (e.g., marines and estuaries) 

or low pH (e.g., acid rain droplets) or both. In particular, the observation of a distinct 

crossover from the reaction- (high concentrations of single soot NP) to the diffusion- 

(high concentrations of soot aggregates) limited aggregation regimes with decrease in 

solution pH should not be overlooked. 

In Chapter 5, the influence of presence of environmental and biological 

macromolecules on the colloidal stability of soot NPs in aqueous systems are examined. 

The same soot sample from Chapter 4 was studied here. Five macromolecules were 

employed in this study, including two natural organic matter (NOM) [Suwannee River 

humic acid (HA) and fulvic acid (FA)], a polysaccharide (sodium alginate), a protein 

[bovine serum albumin (BSA)], and a microbial culture medium [Luria-Bertani (LB) 

broth]. Results indicated that the presence of all macromolecules retarded the aggregation 

rates of soot NPs, with BSA protein showing the strongest effect, followed by HA, 

alginate, LB, and FA. Alginate enhanced soot stability in the presence of NaCl salt, but 

promoted soot aggregation in the presence of high concentrations of Ca
2+

 cations due to 

alginate bridging effect. The aggregation mechanisms of soot NPs in the presence of each 

macromolecules were elucidated, which suggested that the stability and hence mobility of 

soot NPs may be enhanced by macromolecules in aqueous systems. 

In Chapter 6, the major findings of this dissertation and recommended future research 

needs in relevant directions to facilitate understandings in the fate, transport, and 

application of NACs and soot NPs in aqueous environment are summarized. Further 
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development of NACs as treatment agents being injected into groundwater systems for 

remediation will require column studies and field assessments. Meanwhile, the ubiquity 

and significant impact of soot NPs in aqueous environments necessitates more systematic 

studies on their aggregation behavior under a variety of solution conditions and in 

heterogeneous systems where soot NPs interact with environmental colloids and aquatic 

organisms.  
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2. CHAPTER II. COLLOIDAL STABILITY OF NANOSIZED 

ACTIVATED CARBONS AGAINST AGGREGATION IN 

AQUEOUS ENVIRONMENTS 

 

PROJECT TITLE: AGGREGATION KINETICS OF NANOSIZED ACTIVATED 

CARBONS IN AQUATIC ENVIRONMENTS  

The work in this chapter has been published in the title of ñAggregation Kinetics of 

Nanosized Activated Carbons in Aquatic Environmentsò in Chemical Engineering 

Journal (Volume 313, Pages 882-889) on April 1, 2017. 

 

Abstract 

Nanosized activated carbons (NACs) are emerging as a new class of manufactured 

nanomaterials, but their colloidal stability governing the fate and transport in aquatic 

environments has not yet been evaluated. We have characterized four representative NAC 

materials and examined their colloidal stability and early-stage aggregation kinetics under 
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various water chemistry conditions.  The results showed that these NAC particles had 

intensity-weighted hydrodynamic diameters (Dh) and number-weighted averaged 

diameters (Dn) of approximately 200 and 100 nm, respectively, and that their aggregation 

kinetics exhibited both reaction- and diffusion-limited regimes in the presence of 

monovalent (NaCl) or divalent (CaCl2) salt with distinct critical coagulation 

concentrations (CCC), indicating that their colloidal stability under the tested aqueous 

conditions was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) 

theory. The fitting of the aggregation kinetics with predictions based on DLVO theory 

yielded the Hamaker constant of 2.1-2.7 ³ 10
-20 

J (ACWC, aqueous medium). The study 

demonstrated that NACs may be relatively stable under typical freshwater chemistry 

conditions, suggesting their potential applications as reactive agents for remedy of 

contaminated water and soil systems where long-time suspension of introduced particles 

is desired.  The observed strong colloidal stability may also indicate high possibility of 

NACs being nanosized pollutants in natural and engineered environmental systems. 

 

2.1. Introduction  

Nanosized activated carbons (NACs) are recently developed nanomaterials with 

major reactivities such as adsorbability similar to traditional granular and powdered 

activated carbon (GAC and PAC) materials [10, 77]. The unique nano-size feature of 

NAC, along with its enormous porosity and great specific surface area (SSA), makes it 

potential candidates for catalyst support [45], drug carriers [43], disease tracers [46], and 

adsorbents for water reclamation [47]. The anticipated growth in production and use of 



15 
 

 

NACs will inevitably lead to their release into natural or engineered aquatic systems [11]. 

Although limited studies have demonstrated insignificant cytotoxicity after short-term 

exposure to NACs [43, 44], their potential impact on human and the environment remains 

unknown. Indeed, the increasing public concern over manufactured nanomaterials as 

emerging environmental pollutants involves not only their inherent toxicity but also how 

they may interact with each other or with environmental solids [15]. Upon release to 

aquatic environments, potential risks from exposure to nanoparticles may be largely 

dependent on their fate and transport processes, which are strongly influenced by their 

aggregation tendency under different aquatic conditions [12]. It is therefore of particular 

interest to investigate the colloidal stability of NACs against aggregation in various 

aquatic systems. 

Prior studies focused on the fate and transport of several important carbonaceous 

nanoparticles such as fullerenes [36-38], carbon nanotubes [39-41], and graphene oxide 

[42] in aquatic systems, but little is known for NACs. One goal of this study was to 

quantitatively investigate the colloidal stability of well-characterized NACs using various 

state-of-art instruments and the theories of particle-particle interactions. In prior studies, 

time-resolved dynamic light scattering (TRDLS) has been widely used to measure the 

aggregation kinetics of colloidal particles (fullerenes, carbon nanotubes, and graphene) 

under the influence of different solution chemistry [36, 41, 42].  The early-stage 

aggregation rates at different electrolyte concentrations were used to construct the 

attachment efficiency profiles, which often exhibited a reaction- (slow) and diffusion-

limited (fast) aggregation regimes. The critical coagulation concentrations (CCC) were 

determined by extrapolating from both the fast and slow aggregation regimes.  These 
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studies showed that the aggregation behavior of fullerenes, carbon nanotubes, and 

graphene nanoparticles generally followed the predictions from the classic Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory with strong effects from background 

electrolytes [25, 42]. 

The second goal of this study was to derive the Hamaker constant for general 

activated carbon (AC) materials from the colloidal stability measurements made directly 

for NACs. The Hamaker constant, which is highly dependent on both the external surface 

properties of interacting bodies and the intervening medium, provides a means for 

assessing the relative strength of van der Waals attractive interactions [78]. It is a key 

physicochemical parameter for predicting interactions of surfaces and interfaces 

involving particles of various sizes. For example, with the Hamaker constant, the 

adsorption equilibria of organic contaminants on ACs could be predicted [79] and the 

colloidal stability and aggregation process of nanoparticles in aquatic environments could 

be simulated [80, 81]. The currently available Hamaker constant data for ACs, however, 

were either estimated from surrogate materials (e.g., carbon fibers, 5.2-6.2 × 10
-20

 J [82]) 

[79] using the contact angle method or calculated from adsorption data (5.0-7.8 × 10
-20

 J) 

[83].  However, inaccuracy could be expected for these published data. For instance, AC 

has high surface roughness and is not suitable for the contact angle method.  Surrogate 

materials such as carbon fibers used in contact angle measurements may have surface 

chemistry properties that are not well representative of AC.  Meanwhile, the Hamaker 

constant calculated from adsorption data was presumably representative of the dispersive 

interactions at the external surfaces, but the measured adsorption data were indeed 

averaged from overall adsorption at both internal and external surfaces of AC.  Hence, 
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the Hamaker constant derived from direct measurements is much needed for better 

predicting particle-particle and particle-molecule interactions for AC materials.   

In this study, four NACs derived from different biogenic materials were chosen for 

investigating their colloidal stability under various aquatic chemistry conditions. Their 

aggregation kinetics and electrophoretic mobilities (EPMs) were measured over a wide 

range of solution chemistry conditions, and their CCC values were quantified accordingly. 

The measured aggregation kinetics agreed with DLVO predictions, and the Hamaker 

constant was derived. The study provided insight to the aggregation mechanism of NACs 

and suggested the potential application of NACs as reactive agents for contaminated 

environmental systems.  The strong colloidal stability observed for NACs also draws 

attention to their potential adverse environmental effects as an emerging nanosized 

pollutant. 

 

2.2. Materials and Methods 

2.2.1. Preparation of NACs 

The four types of NACs (purity > 95%) with high SSA were purchased from US 

Research Nanomaterials, Inc. (Houston, TX) and assigned as NAC1, NAC2, NAC3, and 

NAC4.  They were analyzed for elemental compositions and examined with a scanning 

electron microscope (SEM). The aqueous NAC suspensions were prepared following a 

published procedure [36]. In brief, the NACs were weighed into double deionized water 

(DDI) (resistivity > 18 MÝĀcm) and the suspensions were mixed for 30 d then allowed to 

settle for 7 d.  Aliquots of 20 mL were collected at 2 cm below the suspension surface 
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and combined to form a 200-mL stock suspension for each sample. The stock 

suspensions after 24-h sonication were monitored to remain thermodynamically stable 

over the experimental time period. 

 

2.2.2. Characterization of Aqueous NAC Suspensions 

The concentrations of NACs in stock suspension (0.1-mL samples) were measured 

gravimetrically using an ultramicro-balance (Sartorius M2P, Goettingen, Germany). To 

examine the NACs on a transmission electron microscope (TEM), a drop of sonicated 

NAC stock suspension was placed on 200 mesh carbon coated copper grids and left to 

adsorb for 5 min. Then the samples were observed with a Topcon 002B (Topcon Corp., 

Tokyo, Japan) operating at 200 kV. 

Potentiometric titration was conducted to identify titratable functional groups of the 

NACs. In brief, a 100-mL stirred suspension prior to gravitational settling was retained 

for potentiometric titration, which contained 1 g/L of NACs. The suspension was purged 

with nitrogen gas (N2) for 15 min to remove dissolved CO2 before HCl was added to 

lower the solution pH to 3. The suspension was subsequently kept in a nitrogen 

atmosphere as being titrated with 0.1 M NaOH to pH 10 with an autotitrator (702 SM 

Titrino, Metrohm, Herisau, Switzerland). The amount of NaOH required to raise the pH 

from 3 to 10 of each NAC suspension was compared to that required to raise the pH of a 

blank solution to identify the presence of titratable functional groups on the given NAC. 

The EPMs of the NAC suspensions were measured at 25ºC using a Zetasizer Nano 

ZS (Malvern Instruments, Worcestershire, UK) which employs phase analysis light 
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scattering (PALS). Electrolyte stock solutions were prepared by dissolving ACS grade 

NaCl or CaCl2 in DDI and filtered through 0.1-µm filters (Puradisc 25 TF, Whatman), 

with desired final solution pH adjusted with HCl and NaOH. The NAC concentration was 

diluted to 10 mg/L for each EPM measurement. For a given solution condition, three 

independent samples of the same NAC were each measured 10 times for EPM values 

which were converted to zeta (z) potentials using the Smoluchowski approximation [36]. 

 

2.2.3. Dynamic Light Scattering Measurements 

The effective particle sizes of NAC suspensions were measured on a Brookhaven 

90Plus Dynamic Light Scattering (DLS) instrument (Holtsville, NY), which employed a 

35-mW solid state laser operated at a wavelength of 635 nm and was calibrated with 

NIST-certified standards (Fisher Scientific). Prior to aggregation test, the intensity 

averaged hydrodynamic diameter (Dh) was determined as the initial Dh0 (t = 0) using the 

scattered light intensity which was scanned for 15 s with a photo-detector positioned at 

90°. Here the scanned data was fitted with autocorrelation to a second-order cumulant 

analysis (MAS software) and Dh0 was determined with a polydispersity index (PDI). The 

Non-Negatively constrained Least Squares (NNLS) algorithm was used to generate the 

intensity-weighted size distribution. With the Mie scattering coefficient, the results were 

also converted to number-weighted size distribution with a number-weighted mean 

diameter (Dn0). 

The aggregation kinetics at t > 0 was measured with TRDLS at 25 ºC and under 

different solution conditions by recording the Dh values over time. For each aggregation 
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experiment, an aliquot of 2-mL NAC suspension at 20 mg/L was introduced into a pre-

cleaned glass vial (VWR, Chester, PA), followed by addition of 2 mL of a given 

electrolyte solution to induce NAC aggregation. After vortexed for 1 s (Vortex Genie, 

Fisher Scientific), the vial was immediately inserted into the DLS instrument to start the 

measurement. Each autocorrelation function was accumulated for 10 s, and the 

measurements lasted between 20 to 480 min. This measurement was run in triplicates for 

each aggregation test. 

The equation below depicts the dependence of the initial aggregation rate constant (k) 

upon initial rate of linear increase and initial particle concentration (N0) [39]: 

Ὧᶿ
ᴼ

    (2.1) 

where the initial rate of linear increase was determined from the slope up to the point 

where Dh had increased to 1.25Dh0. In cases where the linear regime ends before reaching 

1.25Dh0, the slope of the linear regime was approximated similarly. The fitted line was 

verified to intercept the y axis no more than 5% from Dh0 for all aggregation experiments.  

The aggregation attachment efficiency (a, equivalent to the inverse stability ratio) 

ranging from 0 to 1 was used to quantify the aggregation kinetics under different solution 

conditions. Assuming N0 = 10 mg/L, a was calculated by normalizing the initial slope of 

aggregation under different solution conditions to the slope obtained under diffusion-

limited (fast) aggregation conditions [39, 41]: 

‌ ᴼ

ᴼ ȟ

ᴼ

ᴼ ȟ

  (2.2) 
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2.2.4. DLVO Calculations 

According to the DLVO theory, the attachment efficiency can be predicted for 

spherical particles having both colloidal and hydrodynamic interactions using the 

following equation [37, 38, 84]: 

a
᷿

᷿

     (2.3) 

where h is the surface-to-surface separation distance [m] between two particles having 

identical radius (R [m]), and kB and T are the Boltzmann constant (1.38 × 10
-23

 [m
2
 kg s

-2
 

K
-1

]) and the absolute temperature [K], respectively. The total colloidal interaction 

potential energy between two particles, VT(h) in [1/kBT], is the sum of the van der Waals 

attraction potential energy, VA(h), and the electrical double layer (EDL) repulsion 

potential energy, VR(h): 

ὠ Ὤ ὠ Ὤ ὠ Ὤ    (2.4) 

The hydrodynamic interaction between two approaching particles, which causes 

slower motion of the two particles due to restricted removal of the liquid between two 

rigid interfaces, is corrected with the dimensionless function b(h) according to Honig, 

Roeberse and Wiersema [85]: 

‍Ὤ      (2.5) 
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VA(h) is calculated using the expression proposed by Gregory [86] that accounts for 

the electromagnetic retardation effect between two spherical particles of the same size: 

ὠ Ὤ ρ ÌÎρ    (2.6) 

where ACWC is the Hamaker constant [J] between the interacting carbon nanoparticles 

through water, b = 5.32 and l is the ñcharacteristic wavelengthò of the interaction often 

assumed to be about 100 nm [24]. 

VR(h) is calculated using the constant potential approximation (CPA) expression [81, 

87] between two spherical particles of the same size and surface potential both in the 

fitting procedure and DLVO interaction energy profiles: 

ὠ Ὤ ὰὲ ὰὲρ Ὡὼὴ‖Ὤ  (2.7) 

where n¤ is the bulk number density of ions [m
-3

] given by: 

ὲ ρπππὔὅ      (2.8) 

where NA is the Avogadroôs constant (6.02 Ĭ 10
23

 [mol
-1
]) and CS is the electrolyte molar 

concentration [mol dm
-3
]; F is the reduced potential [V] given by: 

  ᾀὩ•ȾὯὝ      (2.9) 

where j is the surface potential [V] of NACs, and is assumed as the z potential [V] 

obtained from experiment changing as a function of NaCl concentration as shown in 

Figure 2.8; e is the elementary charge (1.602 × 10
-19

 [C]); and k is the Debye-Hückel 
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parameter or the inverse Debye length [m
-1

] which in aqueous solutions at 25 °C was 

approximated as [24]: 

‖ ςȢσςρπВὧᾀ         (2.10) 

Other than the CPA expression, the linear superposition approximation (LSA) and 

constant charge approximation (CCA) expressions are also commonly employed to 

calculate VR(h) between two spherical particles of the same size and surface potential. 

The LSA expression is given by [88]: 

ὠ Ὤ ‎Ὡὼὴ‖Ὤ    (2.11) 

where ‎ ὸὥὲὬ . 

The CCA expression is given by [89, 90]: 

ὠ Ὤ ὰὲ ὰὲρ Ὡὼὴ‖Ὤ  (2.12) 

The Poisson-Boltzmann equation is solved at the boundary condition of the 

maintenance of surface-chemical equilibrium for the CPA expression, and at the 

boundary condition of a fixed surface charge density during particle approach for the 

CCA expression; whereas the LSA expression assumes that the contributions of the 

potential from each interacting surface can be added towards the overall potential [24, 91]. 

The Derjaguin integration method (DIM) [92] of interacting spheres is applied 

throughout. The DLVO predictions were calculated with MATLAB R2014a software 

(MathWorks, Natick, MA). 



24 
 

 

 

2.3. Results and Discussion 

2.3.1. Physical Characteristics 

The four pristine NAC samples as received were characterized for pore size 

distributions (Table 2.1), elemental compositions (Table 2.2), and SEM (Figure 2.1) 

presented below. The pore structures of NACs will be discussed in Chapter III to 

correlate with their adsorption behavior. The NAC elemental compositions will be 

discussed later in this chapter when the pH effects on the aggregation kinetics are studied. 

The SEM images demonstrated that the pristine NACs had very polydispersed (non-

uniformed) size distributions, with some particle sizes in nano-dimension and others 

around one micron. The pristine NACs particles were irregular and angular, which could 

be attributed to the arbitary grinding process during manufacturing. 

After extended stirring, gravitational settling, and sonication processes, the NACs in 

stock suspensions had much decreased particle according to results obtained by TEM and 

DLS. As shown in Table 2.3 and Figures 2.2a and b, the four NACs in stock suspensions 

had similar Dh0 values of 200 nm and Dn0 of 100 nm. The large difference between Dh0 

and Dn0 is expected for colloids with high PDI since larger particles scatter more light 

[93]. The TEM images shown in Figures 2.2c to f confirmed that the NACs were 

irregular yet roughly spherical in shape with diameters mostly ~100 nm. It appears that 

Dn0 may be a better approximation for the actual particle size of NACs compared to Dh0. 

Note that the major properties listed in Table 2.3 did not change over the experimental 

time period, indicating that the suspensions were kinetically stable. Overall, the first three 
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NAC samples exhibited very similar characteristics on the SSA (Table 2.1), elemental 

compositions (Table 2.2), and z potentials (Table 2.3) that were different from NAC4. 
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Table 2.1 Material properties, surface area and pore size distributions for the pristine NACs as received from the 

manufacturer
a
. 

a
 The specific surface area and pore volume distribution were determined from the adsorption-desorption isotherm of N2 at 

77 K (TriStar II 3020, Micromeritics Instrument Corp., Norcross, GA). 

b 
From the manufacturer. 

 

Sample Raw Material
b
 

Particle 

Density
b

 

Specific 

Surface 

Area 

 

Total 

Pore 

Volume 

 

Average Pore 

Radius 

 

Surface Area Distribution 

<20Å           20-100Å         >100Å 

 
(g/cm

3
) (m

2
/g) (cm

3
/g) (Å)  (%) (%) (%) 

NAC1 

perennial mountain 

bamboo and holly 

trees 

0.44 909 0.482 19.92 87.33 11.75 0.92 

NAC2 

perennial mountain 

bamboo and holly 

trees 

0.46 879 0.448 19.86 87.05 12.08 0.87 

NAC3 
Indonesian coconut 

shell charcoal 
0.42 933 0.473 17.08 87.56 11.72 0.72 

NAC4 bamboo charcoal 0.43 307 0.180 20.37 79.80 17.68 2.53 
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Table 2.2 Elemental compositions of the pristine NAC materials determined by energy dispersive X-ray (EDX), X-ray 

photoelectron spectroscopy (XPS), and elemental analysis (EA). 

a 
Determined by scanning electron microscope (SEM) equipped with EDX (MERLIN, Zeiss, Oberkochen, Germany). 

b
 Thermo Fisher K-Alpha. 

c
 Vario EL III Element Analyzer. 

 

Sample 

EDX
a 
(weight %)

 

 

XPS
b
 (atomic %) 

 

EA
c
 (weight %) 

 

C O Al  Si K Ca Fe Total C O Total C O H Total 

NAC1 85.86 11.77  0.92 0.47 0.57 0.42 100 93.22 6.78 100 74.8 11.4 3.7 89.9 

NAC2 87.21 11.84  0.23 0.44 0.27  100 93.39 6.61 100 79.5 11.7 2.51 93.7 

NAC3 88.77 9.38  0.46 1.39   100 93.38 6.62 100 79.9 11.6 2.66 94.2 

NAC4 87.65 9.28 0.27 0.62 0.62 1.28 0.27 100 91.11 8.89 100 78.6 9.83 2.27 90.7 
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Figure 2.1 Representative scanning electron microscope (SEM) images of (a) NAC1, (b) 

NAC2, (c) NAC3, and (d) NAC4 pristine samples as received from the manufacturer. 

The images were acquired by a MERLIN SEM instrument (Zeiss, Oberkochen, 

Germany). 

 

(a) (b) 

(c) (d) 
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Table 2.3 Summary of major parameters determined for the four NACs. 

Sample 

 

Stock Suspension 

 

 

CCC 

 

Hamaker 

constant 

 

Isoelectric 

Point 

 

CNAC
a,b 

Dh0
b
 PDI Dn0

b
 z potential

c NaCl CaCl2 ratio
d 

ACWC ACC pI
e 

(mg/L) (nm)  (nm) (mV) (mM) (mM)  [(³ 10
-20

),
 
J]  

NAC1 217 ° 12 203 ° 3 0.219 113 ° 5 -44.4 ± 0.7 69.1 3.7 z
-4.23

 2.6 12.5 1.82 ° 0.07 

NAC2 246 ° 15 211 ° 4 0.136 133 ° 8 -45.8 ± 0.7 76.2 4.5 z
-4.10

 2.1 11.4 1.83 ° 0.06 

NAC3 196 ° 6 184 ° 2 0.169 108 ° 5 -43.3 ± 0.5 66.4 3.3 z
-4.32

 2.7 12.7 1.97 ° 0.07 

NAC4 188 ° 5 204 ° 3 0.216 115 ° 3 -30.6 ± 0.4 42.4 2.6 z
-4.05

 2.5 12.3 2.12 ° 0.05 

a
 Concentration of NACs in stock suspensions.

  

b
 Mean ° standard deviation from three measurements at pH 6.  

c
 Mean ° standard deviation from 10 measurements in the presence of 1 mM NaCl and at pH 6.  

d
 z = 2 for the valence of calcium cation.  

e 
Mean ° 95% confidence limits for pI, which was extrapolated at the point where the z potential = 0. 
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Figure 2.2 Size distributions of (a) intensity-weighted hydrodynamic diameter (Dh), and 

(b) number-weighted diameter (Dn) for the NACs determined by DLS; and representative 

(a) (b) 

(c) (d) 

(e) (f) 




























































































































































































































































































































































































