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Schizophrenia is a complex idiopathic neuropsychiatric illness that affects 

approximately 1% of the general population.  Family, twin, and adoption studies indicate 

a high heritability and strong genetic element to the disease with first degree relatives 

demonstrating an increased risk of about 10% and monozygotic concordance rates as 

high as 50%.  These values represent the probability of developing schizophrenia based 

on the presence of genetic components.  The high heritability has led to individual studies 

and meta-analyses being able to produce significant evidence of linkage to specific 

locations, but studies that used large number of pedigrees have failed to produce 

statistically significant linkage results.  Genome Wide Association Studies of 

schizophrenia have also produced similarly mixed results.  One interpretation of these 

mixed linkage and association results is that factors such as small effect size and 

uncontrolled phenotypic variation require very large samples to overcome.  This thesis 

focuses on a different interpretation: genuine genetic differences between definable 
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subsets can mask both linkage and association, and that this problem is worsened in 

studies that use large samples where the entire sample is analyzed as if it were a 

genetically homogenous group. 

The work presented herein begins with linkage studies performed on 22 medium-

sized Canadian pedigrees (n=304 individuals) of German or Celtic descent initially 

recruited if at least three subjects with schizophrenia were available for study.  

Association studies were conducted on an expanded sample of 30 pedigrees (n=573).  

Subjects in this sample have been followed for up to 20 years allowing for continued 

observation of diagnostic stability.  We have identified linkage disequilibrium between 

schizophrenia and single nucleotide polymorphisms (SNPs) from six discrete genomic 

regions located under linkage peaks within this sample.  We hypothesize that SNPs that 

generated compelling evidence of association (PPLD|L >= 0.2) produce these scores 

because they either are, or are in, high LD (r2 >= 0.8) with functional variants that 

increase susceptibility to schizophrenia.  To that end, whole genome sequencing data 

from ten individuals within this study (n=10) was analyzed to generate a list of variants 

within 500 kb upstream and downstream of each risk SNP.  A pipeline was created to 

determine whether or not each SNP in this list was a candidate for further analysis by 

assessing its LD to the risk SNPs identified by the association studies described above.  

SNPs determined to be candidates were then genotyped in the entire sample (n=378) so 

that association could be accurately assessed.  Finally, association scores were compared 

between risk SNPs and candidate SNPs, with variants having higher PPLD|L scores than 

the referring SNP identified as potential functional candidates.  Six SNPs from one 

genomic region produced higher PPLD|L scores than the referring SNP and so will 
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replace the referring SNP as candidates for further functional analysis.  These six SNPs 

first will be evaluated for additional candidate SNPs 500 kb up- and down-stream in 

order to determine the best SNP in the region according to the PPLD|L. Additional SNPs 

have also been identified in some of the other genomic regions that need to be assessed 

for LD in the full sample.  The SNP or SNPs producing the strongest LD signal in each 

region will need to be further assessed by functional assays to determine their potential 

role in schizophrenia susceptibility. 
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Chapter 1: Schizophrenia 

 

General Background 

Schizophrenia is a complex idiopathic neurological disorder that was first 

described by Emil Kraepelin, a German psychiatrist, in 1899.  Kraepelin referred to the 

disorder as ‘dementia praecox’ and formally separated it from manic depression due to 

the observation that it led to the irreversible loss of cognitive function [1].  Paul Eugen 

Bleuler renamed the disease at a conference in 1908, arguing that neither dementia nor 

precociousness was involved and that splitting of the psychic functioning was a more 

accurate description of the symptomology [2]. 

Schizophrenia often presents in the mid-teens to mid-twenties, with a slightly 

earlier onset in males compared to females [3]. There is no laboratory test that can 

definitively identify schizophrenia.  A diagnosis is made by a licensed clinician based on 

criteria outlined by the Diagnostic and Statistical Manual of Mental Disorders (DSM). 

Classification by this diagnostic tool created by the American Psychiatric Association 

(APA) determines treatment recommendations, reimbursement to healthcare providers, 

and assistance (if any) provided to the patient.  The DSM underwent its largest revision in 

nearly 20 years when it moved from DSM-4, published in 1994, to the current edition 

DSM-5, published in 2013. One of the most significant changes was the deletion of the 

subtypes of schizophrenia due to the fact that that they did not adequately explain the 

heterogeneity of symptoms [4].   

The DSM-5 provides a detailed list of criteria that allows for the diagnosis of 

schizophrenia to be made when symptoms have existed for at least six months.  
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Symptoms of schizophrenia include positive symptoms such as hallucinations, delusions, 

disorganized speech, and disorganized behavior.  Delusions are firmly held false beliefs, 

distinct from false or incomplete information.  Hallucinations are sensory experiences 

that do not exist outside of the mind.  Hallucinations can affect any of the five senses 

(sight, hearing, taste, smell, or touch), but the most common type observed in 

schizophrenia are auditory hallucinations [5].  There are also negative symptoms which 

include a diminished range of emotions (flattened affect), poverty of speech (alogia), 

anhedonia (inability to feel pleasure), and lack of motivation to execute daily tasks such 

as work/school (avolition).   

In addition to the clinical symptoms associated with schizophrenia, cognitive 

impairment is also prevalent, which often has a detrimental impact on both quality of life 

and functional outcome.  Multiple cognitive domains can be affected, such as attention, 

executive function, memory, social cognition, and language, though deficits will vary by 

individual [6].  These symptoms are likely caused by structural and functional 

abnormalities of the brain, which can be caused by: schizophrenia itself, epiphenomena 

resulting from schizophrenia, or antipsychotics used to treat the disease [7].    

Structural changes within the brain are extensively described in schizophrenia 

throughout all stages of the disease.  The most consistent findings are lateral ventricle 

enlargement, and grey matter volume reduction in prefrontal, temporal, and subcortical 

regions, as well as decreased white matter fractional anisotropy (a marker for white 

matter microstructure) providing connectivity between these regions.  Though many 

studies have connected these changes to anti-psychotic interventions, the same 

abnormalities have been identified in untreated individuals.  Substance abuse is often 
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comorbid in schizophrenia, with 50% of individuals with schizophrenia demonstrating 

alcohol or illicit drug use, and more than 70% having nicotine dependence [8].  While 

substance abuse could also be responsible for the observed structural changes to the 

brain, these changes are still seen in individuals with schizophrenia and little or no 

substance abuse.  This evidence indicates that structural abnormalities frequently seen in 

individuals diagnosed with schizophrenia are part of the primary disease process 

(reviewed in [9]). 

 

Cost to Society 

 Although schizophrenia carries a low lifetime prevalence compared to many 

disabilities, it is ranked 11th  among all disabilities with respect to years lived with 

disability (YLDs) by the World Health Organization (WHO) [10].  Due to the early onset, 

the health, social and economic burden related to schizophrenia has been significant, not 

simply for those affected by the disease, but by their families, caregivers, and society as a 

whole [11].  There are three types of schizophrenia-related costs: direct cost, indirect 

cost, and intangible cost.  Direct costs refer mainly to the treatment aspect costs of the 

disease and it includes: hospitalization (both short-term and long-term), outpatient 

follow-up, residential and day care, medication, laboratory testing, and social security 

payments.  Indirect costs usually affect the income of the individual with the disease, as 

well as any familial caregivers who provide care at no cost to the patient.  Intangible 

costs are non-financial in nature, and include side-effects of the medications and stress or 

anxiety caused by the disorder and/or the treatment process [12].  The total economic 

burden in the United States alone was estimated to be approximately $64 billion in 2002, 
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split evenly between direct and indirect costs, but this did not take into account the costs 

of the untreated, uninsured individuals with the disease who undoubtedly add additional 

economic burdens to society [13].   

 Though assessing economic burden is a tedious endeavor, it can be quantified 

because it is based on numbers. The intangible costs associated with the disease burden 

of schizophrenia should not be overlooked because they cannot be similarly tallied, yet 

often they are.  In 1996, the publication of the results from the Global Burden of Disease 

Study finally revealed the disabling results of diseases in a comparative framework, 

demonstrating that mental health disorders should be a major public health concern.  The 

Global Burden of Disease included “disability” in the equation, calculating Disability 

Adjusted Life Years (DALYs), and this led to mental health disorders ranking near to 

cardiovascular and respiratory diseases, and to mental health disorders exceeding all 

forms of cancer and HIV.  The Global Burden of Disease Study also determined that the 

disability caused by major depression was found to be similar to that of blindness or 

paraplegia, and that disability caused by active psychosis as seen in schizophrenia was 

found to be somewhere between paraplegia and quadriplegia (as reviewed in [14]).  It is 

therefore not surprising that while schizophrenia is not directly fatal, suicide incidence in 

those affected with the disease is 10%, which is 12x higher than seen in the general 

population [15].  Up to 50% of individuals with schizophrenia demonstrate alcohol or 

illicit drug addiction, and more than 70% are smokers resulting from chronic stress 

associated with the disease and/or patient attempts to self-medicate aspects of the illness 

that are not effectively treated by prescribed antipsychotics [8].   
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Neurobiology 

Though the fundamental processes associated with schizophrenia remain 

uncertain, changes in various neurotransmitter systems have been implicated in the 

pathophysiological processes that culminate into the presentation of schizophrenia.  Two 

of the most influential hypotheses regarding the neurobiology responsible for the disease 

involve dopamine and glutamate.  Evidence for both hypotheses dates back more than 

half a century, but new evidence stemming from in vivo imaging studies and preclinical 

data on the role these neurotransmitters has clarified the understanding of dopamine and 

glutamate dysfunction in schizophrenia (reviewed in[16]). 

 The dopamine hypothesis originally resulted from several indirect sources of 

evidence beginning in the 1950s.  The primary support came from evidence 

demonstrating that compounds which elevate extracellular levels of dopamine can cause 

psychotic symptoms similar to those exhibited in schizophrenia (reviewed in [17]).  It 

was supported by studies demonstrating that drugs which reduce the level of dopamine 

also reduce those same psychotic symptoms [18].  Observations that the clinical 

effectiveness of antipsychotic medications was directly related to their ability to bind to 

dopamine receptors were made towards the end of the 1970s [19-21].  Though 

compelling, the evidence was nonspecific for two reasons: 1) some of the compounds 

such as amphetamine and reserpine are demonstrated to affect other brain monoamines 

besides dopamine and 2) dopamine is a non-specific treatment for any form of psychosis 

and not a specific treatment for schizophrenia, which in any case it does not fully 

eradicate (reviewed in [22]).  Post-mortem studies beginning in the 1980s continuing to 
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present day have provided the anatomical and biochemical detail necessary to form more 

specific links between dopamine and schizophrenia, but these studies are limited by the 

fact that there is difficulty discerning if presynaptic and postsynaptic changes are due to 

disease pathology or if these observed changes are iatrogenic in etiology (reviewed in 

[16]).  Imaging techniques such as Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT) have provided important details of 

various elements of dopamine function in the brain through in vivo quantification, such as 

dopamine synthesis, the degree of dopamine release in response to stimuli, and the 

availability of post-synaptic dopamine receptors and transporters.  PET/SPECT over the 

past two decades has allowed major aspects of the dopamine hypothesis to be examined 

(reviewed in [23]).  Through the above outlined techniques, research has indicated that 

there is a link between dopamine and schizophrenia, and more specifically it is localized 

to presynaptic dysfunction, which leads to the symptoms of schizophrenia [16].  There 

are limitations to the evidence accumulated.  First, there is documented treatment 

resistance in patients who do not respond to medications that address dopaminergic 

excess indicative of a clinical sub-type of the disease that does not stem from dopamine 

at all [24-26].  Second, direct causality between dopamine dysfunction and negative and 

cognitive symptoms has yet to be demonstrated [27].  And lastly, in the case of comorbid 

substance abuse and psychosis, other pathways may be indicated [28-30]. 

 The glutamate hypothesis dates back as far as 1949 when patients diagnosed with 

schizophrenia were treated with glutamic acid [31].  In the 1980s a report was published 

demonstrating reduced cerebrospinal fluid (CSF) glutamate levels in patients with 

schizophrenia, though later studies were unable to reproduce this finding [32-34].  
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Glutamate has long been an attractive candidate in the underlying neurobiology of 

schizophrenia because 60-80% of total brain metabolic activity is utilized by 

glutamatergic neurons [35].  Neurotransmission handled by these neurons utilizes 

metabotropic and ionotropic glutamate receptors, with individual receptors classified into 

one of three groups.   Metabotropic glutamate receptors are divided into two distinct 

groups based on whether they are postsynaptic (Group I) or presynaptic and modulate 

neurotransmitter release (Group 2).  Ionotropic receptors (Group 3) are named after the 

antagonists originally discovered to selectively activate them (reviewed in [36]).  Though 

the original hypothesis generalized glutamate’s role in schizophrenia as being a simple 

deficit in glutamatergic neurotransmission, it has evolved over time to the prevailing 

hypothesis of N-methyl-D-aspartate (NMDA) receptor dysfunction (reviewed in [37]).  

Similar to the historical evolution of the dopamine hypothesis, post-mortem studies 

provided the first detailed evidence in support of glutamatergic function alteration in 

schizophrenia, but results have been inconsistent with respect to the causal role of 

NMDA receptor (NMDAR) density ([38], reviewed in [39]).  New evidence suggests that 

neurobiological abnormalities in schizophrenia may not result from an overall deficit, but 

instead may be tied to abnormal glutamate receptor localization resulting from changes in 

glutamate receptor trafficking molecules [40, 41].  Additional support for the NMDAR 

hypothesis has come from observations that several non-competitive NMDAR 

antagonists (PCP, MK-801, and ketamine) lead to the acute onset of psychological effects 

mimicking both the positive and negative symptoms that manifest in schizophrenia ([42], 

reviewed in [43, 44]).  In vivo studies began much later compared to studies of the 

dopaminergic system but still provide significant insight specifically with respect to the 
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effects of ketamine on brain function in healthy volunteers versus individuals with first 

episode psychosis with a diagnosis of schizophrenia [16].  SPECT studies showed a 

deficit in the left hippocampus in unmedicated patients with schizophrenia [45].  Proton 

Magnetic Resonance Spectroscopy Studies (1H-MRS) have been successfully used to 

quantify glutamate and glutamine levels in chronic schizophrenia (reviewed in [46]).  The 

areas of the brain demonstrating evidence of involvement include the anterior cingulate 

cortex and the caudate nucleus, but further studies are needed to conclusively 

demonstrate that these observations are the result of disease pathology rather than 

treatment resistance (reviewed in [47, 48]).  Limitations persist regarding the role of 

glutamate in schizophrenia with respect to 1H-MRS being unable to discriminate 

between intra and extracellular compartments, making it difficult to localize alterations 

[49].  It also remains unclear what exactly NMDA hypofunction means at a molecular 

level, and with no glutamatergic medications on the market for schizophrenia and no 

conclusive evidence from clinical trials of glutamatergic treatments, there is still much 

research to be done in order to elucidate the full details of glutamate hypothesis 

(reviewed in [16]). 

Current research indicates that dysfunction of dopamine systems in schizophrenia 

may be the result of a decrease in NMDAR function, known as the NMDAR 

hypofunction hypothesis. Additionally, it has been demonstrated that dopamine has a 

regulatory role on glutamate performance, which in turn could affect NMDAR function.  

Limitations to this combined hypothesis include that specific brain circuits or regions 

have not been implicated and that dopamine changes have not been demonstrated to 

account for negative and cognitive symptoms (reviewed in [16]).  In order to provide 
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further refinement to the NMDAR hypofunction hypothesis, GABAergic, opioid, 

cholinergic, and serotonergic systems have been investigated through treatment studies, 

animal models, and genetics [50-52]. 

 

Diagnosis 

Phenotypic expression of the disease can vary significantly between affected 

individuals.  The DSM-5 outlines multiple groups of symptoms that are indicative of 

schizophrenia: 1) delusions, 2) hallucinations, 3) disorganized speech, 4) 

disorganized/catatonic behavior, and 5) negative symptoms.  Diagnosis of schizophrenia 

requires that two of these five symptoms be present for a minimum of one month, with at 

least one of the two symptoms being one of the first three symptoms listed [4].  

Additionally, for a significant portion since the onset of symptoms, level of functioning 

in major areas, such as work, interpersonal relations, or self-care is demonstrably lower 

than prior to onset.  Continuous elements of the disturbance must persist for at least six 

months (less if successfully treated), but do not need to include all of the elements 

originally observed.  Substance abuse must be ruled out as the catalyst for the change in 

behavior.  Other disorders must have been successfully ruled out, in particular, 

schizoaffective disorder and depressive or bipolar disorder with psychotic features, and if 

the patient was diagnosed with autism spectrum disorder or communication disorder, the 

additional diagnosis of schizophrenia requires that delusions or hallucinations be 

prominently featured [53].  These diseases share a significant portion of symptomology 

with schizophrenia, and therefore likely share some underlying neurobiology as well.  
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Distinguishing between these similar diseases is a necessary component if there is to be 

any hope of successful treatment [4, 54].  

A key component to genetic studies and treatment is a reliable and valid 

diagnosis.  Despite changing definitions, under DSM-IV criteria schizophrenia is reliably 

diagnosed, with 80-90% of those initially diagnosed with the disease retaining that 

diagnosis up to ten years later [55].  The DSM-IV construct has fair validity, as 

evidenced by precursors such as familial aggregation and environmental risk factors, as 

well as corroborating factors such as diagnostic stability, course of illness, and treatment 

response [56].  Overall schizophrenia as defined in the DSM-IV conveys useful clinical 

information resulting in that definition being largely retained in DSM-5.  Most 

individuals diagnosed with schizophrenia under DSM-IV continue to meet the DSM-5 

criteria, and those who did not meet the criteria in the earlier version, do not meet it in the 

new one [4].  Clinical manifestation can vary extensively and the DSM-IV clinical 

subtypes did not adequately address this variability.  Subtypes also have low diagnostic 

stability, do not demonstrate specific patterns of treatment response, and are not heritable, 

ultimately leading to their removal under DSM-5 (reviewed in [57]).  Psychopathological 

dimensions were introduced to better account for the phenotypic heterogeneity of 

schizophrenia with the aim to increase validity and clinical applicability, as well as to 

improve measurement-based treatment [58].  In the case of complex disease such as 

schizophrenia, symptomology may initially mimic other neuropsychiatric disorders, such 

as bipolar disorder, psychotic depression, or substance abuse.  To more effectively 

counter these areas of overlap the DSM-5 specifiers of course of illness were introduced 

to allow clinicians the ability to document both the current status and the previous course 
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up to the present observation [54].  To assist efforts in determining etiology of complex 

disorders such as schizophrenia, linked conditions, including specific symptoms and 

traits, are often grouped together into spectrum disorders [59-62].  Under DSM-5 several 

different spectrum disorders share much of their symptomology with a diagnosis of 

schizophrenia, but important details delineate these diseases from the narrow definition of 

the disorder.  

Schizoaffective disorder is a psychotic illness that shares many features with 

schizophrenia, but is marked by a predominating mood component.  Schizoaffective 

disorder is usually diagnosed during the period of psychotic illness.  Only the first set of 

criteria for schizophrenia must be met; two or more of the required five symptoms 

(delusions, hallucinations, disorganized speech, catatonic behavior, and negative 

symptoms), with one being from the first three. Symptoms that meet criteria for a major 

mood disorder must be present for most of the total duration of the acute and chronic 

periods of the overall illness and if these symptoms are depressive in nature, avolition 

and anhedonia must be ruled out.  Delusions or hallucinations must be present for two or 

more weeks in the absence of a major mood episode in order to rule out depressive or 

bipolar disorder with psychotic features [53].  It is speculated that greater attention to the 

longitudinal course and increased specificity regarding mood disorder requirements 

compared to DSM-IV will lead to a reduction of individuals diagnosed with 

schizoaffective disorder [4].   

Delusional disorder is a psychotic illness marked by delusions, which are also 

present in schizophrenia.  A diagnosis of Delusional disorder therefore requires that the 

individual has never met the other diagnostic criteria for schizophrenia.  If hallucinations 
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are present, they must not be prominent and must be related directly to the delusional 

theme.  Functioning should not be demonstrably impaired, and the symptoms should not 

be attributed to substance abuse or medication.  Additionally, if manic or depressive 

episodes have occurred, they have been brief in comparison to the delusional episodes.  

The criterion for delusional disorder has been further clarified to exclude body 

dysmorphic disorder and obsessive-compulsive disorder.   

Brief psychotic disorder differs from schizophrenia in that diagnostic criteria only 

contains the first four symptoms outlined above (delusions, hallucinations, disorganized 

speech, and catatonic behavior), but not negative symptoms.  It also features a sudden 

onset (from a nonpsychotic state to a clearly psychotic state in two weeks), and lasts at 

least 1 day, but less than one month.  Afterwards, the individual eventually returns to 

normal level of functioning. 

Schizophreniform disorder follows the same diagnostic criteria as schizophrenia, 

with the only difference being duration of at least one month, but less than six months.  In 

order for an individual to receive this diagnosis, he or she must already have recovered 

from the symptoms and returned to normal functionality.  If an individual is still 

symptomatic, but the duration is less than six months, this diagnosis is given under a 

provisional status until symptoms either resolve prior to six months elapsing.  At that 

point if the patient is fully recovered the provisional status is removed, or if 

symptomology remains ongoing the individual is then diagnosed with schizophrenia. 

Catatonia remains part of the diagnostic criteria for schizophrenia and other 

psychotic diagnoses, and it can now be indicated as a specifier for other psychiatric 

illnesses, or be diagnosed as unspecified if the comorbid disease is not apparent at the 
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time of evaluation [63].  Catatonia is determined if three of the following criteria are met: 

stupor, catalepsy, waxy flexibility, mutism, negativism, posturing, mannerism, 

stereotypy, agitation (not influenced by external stimulus), grimacing, echolalia, and 

echopraxia [53]. 

Schizotypal personality disorder, schizoid personality disorder, and paranoid 

personality disorder are all classified under personality disorders.  Schizotypal 

personality disorder features a pattern of acute discomfort in close relationships, a 

reduced ability to maintain close relationships, cognitive/perceptual distortions of 

behavior, and is marked by eccentricity.  Schizoid personality disorder features a repeated 

pattern of detachment from social relationships and a limited range of emotions expressed 

in interpersonal settings.  Paranoid personality disorder features a pattern of distrust and 

suspiciousness.  Individuals suffering from paranoid personality disorder often believe 

that others’ motives are malevolent in nature.  For any of the personality disorders to be 

diagnosed, symptoms cannot occur exclusively during the course of schizophrenia, or any 

other related psychiatric disorder, such as bipolar or depressive disorder with psychotic 

features, any other psychotic disorder, or autism spectrum disorder [53].   

 

Treatment Options 

 Preventative measures are difficult to define when the etiology of schizophrenia 

remains largely unspecified.  Though the disease is believed to be caused when the 

combination of genetic and environmental risk factors exceeds a certain threshold, 

without knowing what those risk factors are it is impossible to qualify or quantify what 

that threshold might be.  The focus, at present, is on early identification of severe mental 
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health symptoms in the effort to allow for intervention in earlier stages of the disorder 

since it is believed that this may help avoid any lasting cognitive dysfunction [64]. 

Drug therapies have been the cornerstone of treatment for schizophrenia for half a 

century and have played an instrumental role in refining the underlying neurobiology.  

The common target of medications prescribed are dopamine receptors, but no particular 

type has been shown to be more effective than another, and as mentioned earlier, 

dopamine targeting does not address the full disease profile of schizophrenia, just the 

symptom of psychosis [65].  There has been proof of reduction in acute onset of positive 

symptoms (hallucinations, delusions, etc.).  However, reduction of negative symptoms 

(alogia, avolition, etc.) is less effective [16, 52, 66, 67].  Current prescription treatment of 

schizophrenia includes first, second, and third generation antipsychotic drugs.   

First generation antipsychotics (FGAs), often termed conventional or typical, are 

high-affinity antagonists of dopamine D2 receptors that have a high association with 

extrapyramidal symptoms (EPS), such as dystonia, akathisia (motor restlessness), 

parkinsonism (characteristic symptoms such as rigidity, bradykinesia, and tremor), and 

tardive dyskinesia (irregular movements), that paired with inefficacy often lead to 

discontinuation of treatment, either by the patient or by the clinician (reviewed in [68]).  

FGAs are classified as either low or high potency medications, corresponding to their 

affinity for D2 receptors [69].  On the basis of chemical structure, FGAs are subdivided 

into three distinct groups: butyrophenones (ex. haloperidol), phenothiazines (ex. 

chlorpromazine), and a heterogenous third group (reviewed in [70]). 

Second generation antipsychotics (SGAs) and third generation antipsychotics 

(TGAs) are considered atypical, and are often grouped under the broad heading of new-
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generation antipsychotics (NGAs).  The first SGA, Clozapine, was found to be effective 

against psychosis without producing the side effect of EPS.  It also demonstrated 

superiority to chlorpromazine in treatment-resistant schizophrenia.  Unfortunately, it was 

also correlated to an increased risk of hematotoxicity, which can be fatal [71].  As a 

result, other drugs were developed to pursue the efficacy of clozapine without this side 

effect, such as risperidone, olanzapine, quetiapine, and ziprasidone, but termination rates 

remained high due to inefficacy and side effects associated with treatment [68].  

Additional SGAs such as paliperidone, asenapine, iloperidone, and lurasidone and the 

TGA aripiprazole, have been approved by the United States Food and Drug 

Administration (USFDA), but comparative effectiveness to FGAs has yet to be 

conclusively determined [72]. 

Many FGAs carry EPS side effects that, depending on the patient, may rival the 

symptoms of schizophrenia.  Though rare, these antipsychotic drugs can also cause 

neuroleptic malignant syndrome which carries a mortality rate of 20%.  For these 

reasons, it is often suggested that maintenance doses be tapered down to the lowest 

therapeutic dose possible, and if multiple drugs are administered, that some be eliminated 

when the acute episode is over.  NGAs, though lacking EPS side effects, are observed to 

carry an increased risk of weight gain, as well as disturbances in glucose and lipid 

metabolism, compared to FGAs (reviewed in [70]).  Understanding the underlying 

genetic architecture of schizophrenia may allow for novel drug interventions to be created 

and may also facilitate identification of off-target medications (medications not 

intentionally designed for schizophrenia, but target the same pathways) [64, 73, 74]. 
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Complex Genetic Architecture 

Schizophrenia is a complex idiopathic neuropsychiatric illness that affects 

approximately 1% of the general population, but the risk of developing schizophrenia 

increases in proportion with the amount of DNA shared between an affected individual 

and his/her relative.  The prevalence in third-degree relatives, such as first cousins, who 

share 12.5% of DNA, increases to 2%.  The risk in second-degree relatives, such as half-

siblings, who share 25% of their DNA, climbs to 6%.  Most first-degree relatives, such as 

siblings or parents, share about 50% of their DNA, and carry a risk of 9%-13% 

(depending on the exact relationship between the affected individual and family 

member).  Monozygotic twins share 100% of their DNA, and have a concordance rate of 

50%.  These increases in risk are present in the specific diagnosis of schizophrenia, but 

often relatives suffer from schizophrenia spectrum disorders or other neuropsychiatric 

disorders at higher rates than are seen for those diseases in the general population.  

Family studies demonstrating increased prevalence among relatives are not enough to 

conclude a genetic component to schizophrenia risk since related individuals share 

environments as well as genes.  Twin and adoption studies, however, have shown that 

when biological children of patients with schizophrenia are adopted, and therefore grow 

up in an entirely different environment, they develop schizophrenia at the elevated rates 

that are seen in first-degree relatives in family studies.  Estimates of the heritability of 

schizophrenia vary across studies but they have been demonstrated to range anywhere 

from 70% to as high as 86% (as reviewed in [75]).  In some cases, spectrum disorders can 
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be as severe as the disease itself, but it is not always the case.  Some spectrum disorders 

are mild, and do not involve psychosis.  In the case of family studies investigating 

schizophrenia, adding a broad definition to include unspecified schizophrenia spectrum 

(previously nonaffective psychotic disorder under DSM-IV), schizotypal personality 

disorder, and paranoid personality disorder in first-degree relatives can provide additional 

analytic power, and produce superior results compared to labeling these individuals as 

unaffected [76].  Individuals diagnosed with unspecified schizophrenia spectrum exhibit 

the symptoms associated with the narrow definition of schizophrenia, but lack the 

quantity or severity to qualify for that diagnosis.  These individuals also exhibit these 

symptoms for too long of a period to be diagnosed with Brief Psychotic Disorder.  

Personality disorders are broadly defined to include impairments in personality (self and 

interpersonal) and the presence of pathological personality traits.  Schizotypal personality 

disorder and paranoid personality disorder exhibit both positive and negative 

symptomology that mimic the narrow definition of schizophrenia, but paranoid 

personality disorder has the primary feature of pervasive distrust and schizotypal 

personality disorder is marked by eccentricities of behavior [77]. 

Despite the high heritability, there are complexities underlying the assumption 

that schizophrenia is strictly a genetic disease, the most obvious being the lack of 100% 

concordance in monozygotic twins.  Additionally, all first-degree relatives of individuals 

diagnosed with schizophrenia would exhibit consistent increased risk concomitant to their 

shared DNA, but instead parents carry a 6% risk, siblings 9%, children 13%, and 

dizygotic twins 17%.  The lower risk for parents of affected children may be because 

affected parents exhibit lower fitness, and are therefore less likely to reproduce.  Second 
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degree relatives would be expected to drop precipitously in terms of risk, but instead 

range from 2% for uncles/aunts up to 6% in half-siblings (the same as parents, who are 

first degree relatives and as a result share more DNA with the affected individual) [78].  

Therefore, it has been widely accepted that a complex interaction between genetic and 

environmental factors is responsible for the etiology and overall development of 

schizophrenia. 

 Schizophrenia susceptibility is likely linked to multiple genetic factors, as 

evidenced by the fact that patterns of transmission do not match established Mendelian 

inheritance patterns of single locus disorders, as well as mounting support for a polygenic 

component [67], [79].  This complexity, along with phenotypic variation, explains why 

the search for ‘schizophrenia genes’ remains ongoing to present day.  Conflicting 

evidence continues to accumulate, with candidate genes being identified in some studies, 

and later questioned or disputed in others (reviewed in [80, 81]).  It remains clear, 

however, that support is present for many different genetic factors playing a role in the 

predisposition to schizophrenia, including microdeletions (such as is present in the 

disease 22q11.2 Deletion Syndrome), microduplications, single nucleotide 

polymorphisms (SNPs), and copy number variations (CNVs) [82, 83]. 

 CNVs are defined as a gain or loss of a segment of DNA greater than 1 kilobase 

in size, but in rare cases can be more than 100kb in size.  Depending on size and location, 

CNVs can affect multiple genes and/or regulatory regions (reviewed in [84]).  Support for 

the hypothesis that CNVs are a significant genetic risk factor has accumulated since 

2008, with recurrent CNVs identified and replicated at the following locations: 1q21.1, 

3q29, 7q11.2, 15q11.2, 15q11.2-13.1, 15q13.3, 16p11.2, 16p13, 17p12, 17q12, and 
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22q11 (reviewed in [85-87]).  Due to shared symptomology between many neurological 

disorders, these same CNVs produce significant results in other disorders.  The CNV 

located at 16p11.2 was found in bipolar affective disorder [88].  CNVs at 1q21.1, 3q29, 

7q11.23, 16p11.2, 15q11.2-13, and 22q11.2 have been found and confirmed in subjects 

with autism spectrum disorder [89].  A nominal association was found between 

Alzheimer’s Disease and a duplication of 15q11.2 [90].  As discussed in the Diagnosis 

section of this chapter, many neuropsychiatric diseases share a vast measure of 

symptomology, and therefore finding shared genetic architecture is not unexpected. 

Identification of causal variants in complex disorders, such as schizophrenia and 

other neurological disorders, can be difficult due to the fact that the underlying biology is 

not completely understood at present.  As such, methods such as linkage analysis and 

genome-wide association studies (GWAS) can be powerful tools for localizing genetic 

susceptibility to an inherited disease or symptom to particular regions of chromosomes or 

genes [91, 92].  Both linkage analysis and GWAS are discussed in greater detail in 

Chapter 2. 

The premise of linkage analysis is based on the observation that regions of the 

genome that reside physically close remain linked and transmitted together during 

meiosis.  Alfred Sturtevant developed the first linkage map in 1913 while working on 

Drosophila under Thomas Morgan.  The first linkage study in psychiatry was published 

in 1969 [93].  Since that time many individual studies and meta-analyses have produced 

significant evidence of linkage between schizophrenia, bipolar disorder, or psychosis to 

regions of every autosome [94-107].  Studies that used very large numbers of pedigrees 

(>400) for linkage analysis in these same disorders failed to produce statistically 
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significant results [108-110].  This may indicate that larger sample sizes are not 

necessarily better.  With larger samples it can be more difficult to control for genetic 

background and phenotypic variation, especially if one is only considering the narrow 

diagnosis of schizophrenia and ignoring spectrum disorders present in nonpsychotic first-

degree relatives. 

 Another powerful method for causal gene detection in complex disorders is 

Genome-Wide Association Studies (GWAS).  GWAS compares genetic variants among 

individuals with varying phenotypes of either a trait or disease, but individuals do not 

have to have any known relationship.  For association analysis to work, individuals being 

assessed must share a common ancestor, so while although a known relationship is not 

required, genetically homogenous samples are more likely to produce significant results.  

GWAS can provide insights where linkage analysis fails to for common disorders 

because the underlying genetic mechanisms differ from rare disorders, which tend to 

have consistent results across various linkage studies [92, 111].  Despite this, GWAS 

studies of schizophrenia have produced inconsistent results, similar to linkage analysis.   

Some GWAS have reached genome-wide significance for a very limited number 

of loci, whereas others have failed to produce significant results despite extremely large 

sample sizes [79, 112-118].  Gene-wide analysis of two European ancestry GWAS 

datasets, one schizophrenia (479 cases and 2,937 controls) and one bipolar disorder 

(1,868 cases and 2,938 controls), demonstrated evidence for association across disorders 

to genes reported in other datasets: CACNA1C, CSF2RB, and DGK1 was observed for 

both disorders [114].  Meta-analysis of 7,308 schizophrenia cases and 12,834 controls of 

European ancestry demonstrated strong evidence of association to ZNF804A, and was 
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additionally strengthened by inclusion of bipolar disorder to the affected phenotype 

[119].  A two-stage GWAS of schizophrenia in the Han Chinese (stage 1: 4,384 cases and 

5,770 controls; stage 2: 4,339 cases and 7,043 controls) demonstrated genome-wide 

significant associations in an exon of VRK2, and exon of GABBR1, and an intron of ARL3 

[120].  A GWAS of schizophrenia using 871 cases and 863 controls failed to produce 

significant findings, nor could it reproduce findings from four independent European 

cohorts comprised of 1,460 cases and 12,995 controls [115].  A GWAS of the Molecular 

Genetics in Schizophrenia (MGS) European case-control sample (2,681 cases and 2,653 

controls) failed to achieve genome-wide significance, but a meta-analysis of European-

ancestry subjects (8,008 cases and 19,077 controls) demonstrated a significant association 

with schizophrenia in a region of linkage disequilibrium on 6p22.1 [116].  GWAS of 

schizophrenia (738 cases and 733 controls) in a United States population did not provide 

any evidence of involvement for any genomic region with schizophrenia [118].  

Following mixed results in GWAS concerning schizophrenia, the Psychiatric Genetics 

Consortium (PGC) conducted a large GWAS in 2014 with 36,989 cases and 113,075 

controls from 49 studies (46 of European ancestry and three of Asian ancestry).  128 

independent association signals across 108 distinct loci achieved genome-wide 

significance.  83 of those associations have not been previously identified.  These 

findings were supported by the fact that many were within genes expressed in the brain, 

as well as previously identified genes such as DRD2 and others known to be involved in 

glutamatergic pathways consistent with current hypotheses for the neurobiology 

underlying schizophrenia.   Additionally, association signals were detected in genes 

expressed in tissues that play an important role in immunity, adding to growing evidence 
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for a link between the immune system and schizophrenia [83].  Similar to linkage 

analysis of large samples, inconsistency with respect to producing significant results 

could be due to factors such as small effect size and uncontrolled phenotypic variation.  

The PGC study may have succeeded because it was sufficiently large to overcome these 

factors [121].   

 

A Hypothesis for Determining Risk Alleles in Schizophrenia 

One interpretation of the inconsistent results observed in both linkage and 

association analyses is that due to factors such as small effect size and uncontrolled 

phenotypic variation, larger and larger samples will need to be recruited in order for 

additional susceptibility genes to be discovered [121].  The work performed by the PGC 

described above demonstrates that this is one potential approach to solving the problem.  

This thesis focuses on a different interpretation: genuine genetic differences between 

definable subsets can mask both linkage and association, and that this problem can be 

worsened in studies that use large samples where the entire sample is analyzed as if it 

were a genetically homogenous group.  We believe that by correcting for this issue and 

by focusing analysis on regions where linkage and association overlap, which indicates 

that disease susceptibility in those regions is driving both signals, we can leverage whole 

genome sequencing to identify risk alleles for susceptibility to schizophrenia using a 

substantially smaller sample. 

The work presented herein begins with 22 medium-sized Canadian families, 

originally selected for study due to the fact that multiple relatives were clinically 

diagnosed with schizophrenia.  Over time, the sample has grown to include 573 
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individuals across 30 large Canadian pedigrees of German or Celtic descent initially 

recruited if at least three subjects with schizophrenia were available for study, the disease 

appeared to be segregating in a unilineal autosomal dominant pattern with the aim of 

reducing the number of risk alleles, and minimal severe affective disease to ensure that 

psychosis results from schizophrenia as opposed to bipolar disorder.  Two main 

advantages to this sample are that these subjects have been followed for up to 20 years 

allowing for continued observation of diagnostic stability, and the pedigrees are large in 

size making it possible for the sample to demonstrate statistically significant linkage and 

association results.  Additionally, all individuals were adults at the time of recruitment, 

past the typical age of onset for schizophrenia, making it unlikely that affected status 

would change at a later date.    

This thesis attempts to identify risk alleles for susceptibility to schizophrenia with 

the hope of contributing to the elucidation of the molecular pathways involved in the 

underlying neurobiology of this complex neurological disorder.  We believe that greater 

understanding will lead to objective diagnostic methods and improved treatment options 

including personalized medicine.  Chapter 2 describes the history and methodology of 

both linkage and association analyses.  It places particular emphasis on how different 

traditional methods work and why they may fail to ascertain statistically significant 

results.  Chapter 2 concludes by describing a novel statistical method for both linkage and 

association analyses that incorporates the most powerful methodologies and discards 

those aspects most likely to cause problems in complex disorders such as schizophrenia, 

with the added benefit of reducing signal-to-noise ratio over traditional methods.  Chapter 

3 discusses the details of our well-characterized sample, nearly two decades of 
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preliminary findings tied to that sample, and how those data were leveraged to form a 

series of analyses to uncover new candidates for susceptibility to schizophrenia.  Chapter 

3 also covers the full bioinformatics analysis of whole genome sequencing performed on 

a portion of the sample.  Chapter 4 covers harmonization of the data, including the steps 

necessary to include later individuals to the sample and the subsequent re-analysis of all 

of the preliminary data described in Chapter 3.  Chapter 5 describes the identification of 

risk SNPs (n=12) from areas where statistically significant linkage and association 

signals overlap, and how those SNPs were used to search flanking regions for novel 

candidate variants.  It further describes how candidate pools were subjected to a filtering 

pipeline in order to prune down to 101 SNPs most likely to play a casual role in the 

etiology of schizophrenia for genotyping.  Finally, it describes the results of a 

comparative analysis between the risk SNPs and the selected candidate SNPs, which 

shows six SNPs in strong LD with rs7419214 that scored higher than rs7419214 on the 

PPLD|L and are candidates for further evaluation for a causal role in susceptibility to 

schizophrenia.  Lastly, Chapter 6 describes future directions for the work presented 

herein. 
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Chapter 2: Linkage and Association 

 

Linkage 

 Ever since Gregor Mendel discovered the basic laws of inheritance by studying 

thousands of pea plants in the mid-1800s, the identification of the underlying genetics 

responsible for disease, as well as the variation in quantitative traits, such as height, has 

been the foundation of human and medical genetics.  Mendel conducted studies for nearly 

a decade, growing more than 10,000 pea plants, before publishing his observations in 

1865.  Mendel’s Laws of Heredity remain a staple of biology education more than a 

century after his death.  When Mendel made his observations regarding the independent 

assortment of traits, he happened to select characteristics that were not located on the 

same chromosome, otherwise, he may have drawn different conclusions from his 

experiments.  Later studies showed that many genes are linked, and that in those cases, 

the traits encoded by those genes do not sort or segregate independently, but are instead 

inherited together [91]. 

Linkage analysis is a powerful method for localizing genetic susceptibility to a 

shared disease or trait to regions of the human genome.  Linkage is the tendency of two 

or more loci that are physically close on a chromosome to be transmitted together from 

parents to offspring during meiosis, in violation of Mendel’s Law of Independent 

Assortment.   Linkage analysis was developed to detect this excess co-segregation of 

alleles underlying a phenotype or trait with the alleles at a marker locus in families.  In 

practice, linkage analysis pertains to a group of statistical methods that when used allow 

for a gene to be mapped to the chromosome region in which it is located.  Since there are 
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many more genes than there are chromosomes, genes are often transmitted together 

[122].  During meiosis, a pairing of duplicated homologous chromosomes occurs and a 

physical exchange of material occurs between them.  These exchanges, called chiasmata, 

lead to a ‘crossover’ of DNA between the two homologues.  Though these exchanges are 

frequent, the presence of one decreases the chances of another occurring close by.  This 

phenomenon, known as interference, makes it unlikely for double crossovers to occur 

when two locus are proximate to each other [123].  Therefore, the probability that 

crossovers will occur between two loci on the same chromosome is dependent on the 

distance between them [124, 125].  When an odd number of crossovers between two loci 

occurs, it can be observed by analyzing the genotypes of the parents and the offspring.  In 

this case, the alleles at these loci are transmitted to the offspring in a new combination.  

When an even number of crossover events occurs, the resulting genotype of the offspring 

is comprised of the original alleles for each loci.  Therefore, two loci that are very far 

apart on the same chromosome experience observable recombination 50% of the time, 

giving the appearance of independent assortment (reviewed in [126]).   

The recombination fraction, often represented as θ, measures the ratio of 

recombination events detected between two loci in a group of offspring.  It is estimated 

by counting the number of offspring who show recombination for a given pair of loci, 

divided by the total number of offspring.  Recombination fractions range from 0 to 0.5, 

with values <0.5 indicating some degree of linkage.  Recombination fractions are often 

converted into map distances in the unit Morgan.  The centiMorgan is a unit of 

recombinant frequency that implies distance along a chromosome taking into account 

how often recombination occurs within a given region.  For small values of θ, map 
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distance is approximately equal to recombination fraction, but for larger genetic 

distances, for which all distances have θ ≈ 0.5, mapping functions are used.  The two 

most common mapping functions are Kosambi and Haldane, which are based in different 

formulas, with most genetic maps using Kosambi cM.  The Haldane function does not 

allow for genetic interference (described above), while the Kosambi function models 

interference. 

Once the detection of DNA polymorphisms became possible the study of genetic 

linkage flourished because analyses were no longer limited to the comparatively rare 

protein polymorphisms [127].   Restriction fragment length polymorphisms (RFLPs) 

were first used as a tool for genetic analysis in 1974 when linkage of temperature-

sensitive mutations of adenovirus were utilized to locate mutations on a physical map, 

which measures distances in DNA base pairs [128].  Initially, maps were drawn by hand 

using RFLPs. This changed following the advent of polymerase chain reaction (PCR) in 

1983 and its commercial availability beginning in 1987, which ultimately led to the 

discovery of a novel class of short tandem repeat (STR) polymorphisms.  STRs are 

dinucleotide, trinucleotide, or tetranucleotide repeats that are multiallelic, typically 

supplying sufficient heterozygosity permitting maternal and paternal contributions to be 

distinguished from one another [129].  The discovery of STRs made it possible to create a 

large number of markers and genetic linkage analysis led to the generation of a genetic 

map, which measures distance using the centiMorgan (cM).   

STRs, also known as microsatellites or MSATs, have limited ability to be scaled 

up to high-throughput typing because electrophoretic separation must be conducted to 

properly determine fragment sizes.  MSATs occupy 3% of the human genome.   Tri- and 
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hexa-nucleotide repeats have greater abundance in exons, whereas other repeats are more 

abundant in non-coding regions, making it difficult to construct a map with markers of 

even genomic distribution while maintaining high heterozygosity (reviewed in [130]).  

By the late 1990s researchers turned their attention towards SNPs, which are an excellent 

candidate for comparatively lower cost very-high-throughput genotyping, due to their 

abundant nature in the genomes of humans and many other organisms.  SNPs carry a 

maximum heterozygosity of 0.5 (due to their biallelic nature), and therefore lack the 

informativeness of STRs.   However, SNPs carry several benefits in addition to 

abundance including: global genomic distribution, and perhaps most importantly, the 

adaptability to massively parallel genotyping allowing for denser maps with more 

markers.  The information content (IC) for an individual SNP is based on its minor allele 

frequency (MAF), the frequency of the less common allele.  The higher the value, the 

more informative the SNP.  Denser maps allow SNPs to surpass the IC available from 

STRs, which are typically spaced ~10 cM apart due to their inability to be scaled up to 

high throughput [131].   

As genotyping technology has evolved so too has the search for an efficient 

computational algorithm to calculate the evidence for linkage between two loci. 

Recursive analysis on a simple extended pedigree was pioneered by Elston and Stewart in 

1971, and is commonly referred to as the Elston-Stewart algorithm.  It allows for 

decreased penetrance and quantitative traits [132].  Under the Elston-Stewart model the 

basic assumption is that the phenotype of each individual only depends on its own 

genotype (reviewed in [133]).  Expansion by others has led to its ability to handle more 

complex data structures [134-136].  Computational time for the Elston-Stewart algorithm 
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can be prohibitive in multipoint linkage analyses because while it scales linearly with the 

number of meiosis, it scales exponentially with the number of marker loci, such that large 

pedigrees cannot be evaluated with a large number of markers (reviewed in [126]).  The 

next major development was made by Lander and Green in 1987.  Referred to as the 

Lander-Green algorithm, it is able to rapidly compute maximum-likelihood multi-locus 

linkage [137, 138].  For this algorithm, the computational time scales linearly with the 

number of markers, but exponentially with meiosis, and so it is not suitable for use with 

large pedigrees.  Neither the Elston-Stewart, nor the Lander-Green algorithms are 

computationally feasible for large extended pedigrees and dense marker maps, such as 

those that would be needed when using SNPs rather than STRs.  Large pedigrees (>25 

individuals) are of great value in linkage analysis because these pedigrees are capable of 

producing strong evidence of linkage on their own with the greatest chance of being 

genetically homogenous.  Trimming pedigrees to circumvent the limitations present in 

the Lander-Green algorithm can lead to reduction in power, loss of information, and 

erroneous results.  Two commonly employed approaches to bypassing the computational 

problems presented by large pedigrees are 1) to utilize statistical methods that avoid 

computation of the full pedigree likelihood (ex. variance-components), and 2) to use 

Markov chain Monte Carlo (MCMC).  MCMC supports utilization of the full likelihood, 

but complexities arise in the optimization of performance of samplers, which in turn 

limits the adaptability in handling the trait model (reviewed in [139]). 

Linkage analysis in humans carries challenges not present in experimental 

organisms such as family size, the inability to do test crosses, significantly longer 

generation times, and inability to discern the parentage of alleles when both parents are 
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identically heterozygous and have the same genotype as their offspring at the locus being 

studied.  Many approaches have been utilized to query directly or indirectly for lower 

than expected observed recombination between two loci.  These statistical methods fall 

into two basic categories: parametric and non-parametric [126]. 

 

Parametric Linkage Analysis 

Parametric (or model-based) linkage analysis, as the name suggests, requires the 

specification of parameters, which must be known at the time of analysis.  For qualitative 

traits assumed values must be provided for allele frequencies at the trait and marker loci, 

and penetrance (the relationships between genotypes and phenotypes).  For quantitative 

traits assumed values must be provided for allele frequencies at the trait and marker loci, 

the means and variances of the phenotype for each genotype.  Definitive recombinants 

can only be defined for qualitative parametric linkage analysis.  This is due to the fact 

that normal probability densities are used to model the genotypic distributions in 

quantitative linkage analysis.  As these densities asymptotically approach zero in both 

tails, but never reach it, every individual has a non-zero probability for having each 

genotype.  In order to mitigate this problem, which effects the identification of 

recombination events that assist in the localization of candidate regions, methods have 

been developed over time to classify individuals based on their most likely genotype 

[140]. 

One measure for the likelihood of linkage is the logarithm of the odds score 

(LOD).  LOD score analysis is parametric, and as such requires the assumption of precise 

genetic models, including penetrance, disease gene frequency, and affection status for the 
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individuals being tested.  The LOD score Z is the logarithm of the odds that the loci are 

linked divided by the odds that the loci are not linked.  Expression of the likelihood as a 

logarithm allows for summation of the likelihood of linkage observed across different 

pedigrees [141].  Because the true genetic distance between two loci is often unknown, 

the LOD score is calculated for several recombination fractions and from there a 

maximum likelihood estimate (MLE) for the recombination fraction (θmax) at which the 

greatest LOD score (Zmax) is observed can be made.  For families in which all of the 

necessary information is known, a LOD score calculation can be done by hand, but for 

complex datasets computer programs are, in reality, a necessity to produce timely results 

[142].  A LOD score of 3.0 is required for evidence of linkage, with a 5% chance of Type 

I error, which would correspond to a p-value = 0.05.  A LOD score of 3.0 corresponds to 

1000:1 odds in support of linkage.  Because it is improbable that two loci, chosen at 

random, would be linked, a rigorous standard is applied to demonstrate evidence.  

Humans have 22 pairs of autosomes, making it unlikely for two randomly chosen loci to 

be present on the same chromosome, and they would also need to be physically close to 

one another in order to be linked.  The likelihood that two randomly selected loci should 

be linked (known as the prior probability of linkage) has been debated, but estimates of 1 

in 50 are generally accepted.  Therefore, using Bayesian calculations, if one multiplies 

the prior probability (1/50) by the conditional probability (LOD score of 3.0, 1000:1 odds 

in favor of linkage), the result is a joint probability of 20.  Odds of 20:1 correspond to the 

conventional threshold of statistical significance, p = 0.05.  A LOD score below -2 is 

accepted as evidence against linkage [126].   
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Locus heterogeneity, where alleles at more than one locus lead to the same 

phenotype, occurs in complex traits and can have a negative effect on the power of 

linkage analysis if not considered at the time of analysis [143].  Smith first proposed the 

mixture model in 1963 [144].  Under this model’s framework there are two approaches 

that may be employed; one may test for homogeneity given linkage or test for linkage 

allowing for heterogeneity by a likelihood ratio test [145, 146].  The LOD score 

calculated under the hypothesis of heterogeneity is called a heterogeneity LOD (HLOD), 

and it is never lower than the LOD score.  As such, the threshold for significance for a 

HLOD score is greater than for a LOD score, with the consensus on that threshold being 

3.3 [147].  HLOD scores are particularly useful in a sample comprised of a mixture of 

families, some linked to a given locus, and others not.  ‘Unlinked families’ is an inclusive 

term that refers to families linked to a different locus, families misdiagnosed with the 

disease being investigated, and/or families that contain phenocopies of the disease in 

question.  Using homogeneity LOD scores evidence for linkage may be overlooked 

because unlinked families will have negative LOD scores, and linked families will have 

positive LOD score, which may lead to the result failing to meet the threshold for 

significance when the two are summed.  Heterogeneity can also cause a distortion in the 

estimate of theta calculated under the assumption of homogeneity which can lead to a 

significant LOD score being reported at an incorrect position. The parameter α is the 

proportion of families linked to a specific locus.  In complex disorders fixed genetic 

parameters may be unknown and this can lead to inaccurate estimates of α, but overall the 

HLOD will still be a more useful statistic than the homogeneity or simple LOD score in 

the analysis of complex disorders [148]. 
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MOD scores were later introduced to address the case of linkage studies for 

diseases with an unknown mode of inheritance.  This analysis method uses variables for 

both recombination fraction and disease model parameters.  Maximizing the MOD score 

function over all parameters is mathematically equivalent to maximizing the probability 

of marker data conditional on the affection status (reviewed in [149]).  When there is no 

linkage, the MOD score adheres to a chi-square distribution, with greater degrees of 

freedom compared to the LOD score [150].  By ignoring the information produced by 

disease segregation and linkage disequilibrium between marker alleles and functional 

disease alleles, mod scores are a weaker tool to distinguish between genetic models 

[151]. 

 

Non-Parametric Linkage Analysis 

Non-parametric or model-free linkage methods do not require the specification of 

parameters for the disease inheritance or disease allele frequencies and disease genotypes.  

Being able to search for evidence of linkage without knowing the mode of inheritance is 

of particular use when examining complex diseases where it is often unclear.  This is 

especially important because parametric linkage can produce erroneous results when the 

linkage model is incorrect specified [152].   These methods are based on assessing 

whether relatives with similar trait phenotypes are also more genotypically similar than 

expected at a specific marker [126].  Early methods based on Penrose’s affected-sib-pair 

(ASP) test for qualitative and quantitative traits focused on when two individuals share an 

allele at a specific locus and required pedigrees to be broken up into nuclear families 

which resulted in the waste of a lot of inheritance information contained in the pedigree 
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structure [153].  In order to rectify this, Weeks and Lange developed the affected-

pedigree-member method (APM) [154, 155].  APM is not truly a linkage method because 

it does not trace the inheritance pattern within a pedigree, but instead simply focuses on 

whether two alleles are shared at the same locus.  This concept, known as identical-by-

state (IBS) does not guarantee that the shared allele is inherited from a common ancestor 

as defined by Wright’s work on the coefficients of relationships termed identical-by-

descent (IBD) (reviewed in [156]).  The APM approach does not take into account 

genotype information from additional members in a pedigree in order to distinguish 

between IBS and IBD, and by failing to extract full inheritance information, it is subject 

to inaccurate results (reviewed in [138]).  Later methods took full advantage of pedigree 

information in order to discriminate between IBS and IBD [138, 157]. 

Nonparametric linkage analysis ultimately seeks to determine whether relatives 

share more marker alleles IBD than expected under the null hypothesis (no linkage).  

Though several IBD statistics have been suggested, two of the most commonly employed 

are Tpairs and Tall [154, 158-161].  Tpairs reflects IBD sharing in pairs, which counts 

pairwise allele sharing among affected relatives.  Tall represents IBD sharing in larger 

sets, which in turn increases statistical power by considering larger sets of affected 

relatives [138]. These two methods have been compared in simulation studies with 

evidence that Tall has greater power than Tpairs when assessing linkage in dominant and 

additive disease in nuclear families, and the reverse being true for recessive diseases 

[158, 160].  Later studies replicated these findings in three-generation pedigrees [138, 

161, 162].   

 



35 
 

 

Posterior Probability of Linkage (PPL) 

 Both parametric and nonparametric methods have their merits.  Parametric 

linkage analysis is decidedly more powerful and easily applied to diseases caused by 

single and usually rare variants [138].  Complex diseases such as schizophrenia are 

believed to be caused by multiple variants, at least some of which may be common, and 

therefore dependence on a specific model can greatly inhibit discovery.  Furthermore, 

attempts to try all models may be too time-consuming and multiple statistical corrections 

may be needed to interpret results.  In these cases, non-parametric linkage analysis may 

yield better results, but will lack the power of parametric linkage studies since it only 

uses a portion of available data [163].  

 The issue that remains with both parametric and nonparametric linkage methods 

is that neither directly measures the probability that there is linkage, called the posterior 

probability of linkage (PPL), which is the precise reason why these analyses are 

performed [164].  Smith first proposed a Bayesian approach to linkage analysis in 1959, 

but the idea never gained traction despite that probability has a direct meaning, and does 

not need to be qualified like a significance level [165].  The PPL carries the additional 

benefit of being model-free, which means that no parameters (allele frequencies, 

penetrance, admixture) are required to be specified in order to assess for linkage.  The 

parameters that are required for parametric linkage calculations are integrated out of 

likelihood removing the need to correct for multiple testing as is the case with methods 

that use maximization.  Though seemingly similar to nonparametric linkage analysis, the 

PPL allows for all available data to be used, making its power to detect similar to 

parametric linkage analysis [164, 166].   
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The PPL framework is implemented in the software package Kelvin and was 

created with the goal of accumulating evidence both for and against linkage.  Results are 

reported on the probability scale and are interpreted as the probability of a trait being 

linked to the given locus [167].   The PPL assumes a prior probability of linkage in the 

absence of data of 2%, based on the number and length of human chromosomes [168].    

The 2% value becomes the “prior probability of linkage” when no data is available, 

meaning that there is a 2% chance of linkage between a specific disease and a random 

marker.  Once any amount of data has been evaluated, the “posterior probability of 

linkage” can be used to leverage the conditional probability based on prior evidence and 

allows for additional information to be evaluated with no need to correct for multiple 

testing.  When new data becomes available, the “posterior probability of linkage” 

becomes the new “prior probability of linkage”, replacing the 2% value with one more 

illustrative of the existing data.  This allows for evidence either for, or against, linkage to 

be accumulated across several subsets of pedigree data that may have somewhat different 

inheritance model parameters (e.g. different values of alpha) that are necessary to 

perform computations, but are not otherwise important [164, 167]. 

Kelvin supports two-point (trait-marker or marker-marker) and multipoint linkage 

analysis based on either sex-averaged or sex-specific genetic maps, and includes the 

option to allow for imprinting.  It has the ability to handle dichotomous trait, quantitative 

trait, and quantitative trait threshold models, as well as specific types of gene-gene 

interactions and covariate effects.  The original version of Kelvin employs the Elston-

Stewart algorithm, which permits analysis of large pedigrees with the ability to handle 

loops.  Multipoint analyses are performed automatically by traversing down each 
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chromosome following a user-defined number of markers in each calculation performed 

at user-specified intervals.  Kelvin is able to handle mixtures of varying pedigree 

structures including cases/controls, trios, sib-pairs, nuclear families, and extended 

pedigrees.  It is accompanied by the custom graphing program Kelviz, which allows for 

results generated by Kelvin to be visualized.  Not only does the PPL avoid the issues with 

maximization, it also offers a better signal-to-noise ratio for observing linkage (Figure 1) 

[169]. 
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Figure 1: Comparison between HLOD linkage analysis and the PPL (originally 

published in [169]).   

Figure 1 illustrates a comparison between HLOD linkage analysis conducted in 2000 

[106] and re-analysis of the same data performed using the PPL in 2005 [169].  There 

is a significantly improved signal-to-noise ratio using the PPL without loss of 

statistically significant linkage signals detected by using HLOD analysis. 
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As mentioned earlier, when high-throughput genotyping techniques became 

affordable denser marker maps composed of SNPs became ubiquitous.  This evolution 

brought new attention to the issue of how to handle large pedigrees along with the dense 

marker maps needed for SNPs to match/exceed the information content (IC) of STRs 

[170].  But, the standard algorithms employed in recursive linkage analysis are unable to 

simultaneously handle both large pedigrees and dense marker sets.  The Elston-Stewart 

algorithm scales linearly with meioses, but exponentially with the number of markers.  

The Lander-Green algorithm scales linearly with the number of markers, but 

exponentially with the number of meioses.  As discussed earlier, one approach to 

circumventing this issue is to use Markov chain Monte Carlo (MCMC) methods, which 

supports use of the full likelihood.  The issue with this approach is that samplers tend to 

limit the flexibility in handling the trait model.  This presents a specific challenge to 

adaption of MCMC in the context of Kelvin, which handles the trait model by integrating 

trait parameters out of the likelihood.  This flexibility permits new trait models or 

additional trait parameters to be added to the calculations with ease [139].  The difficulty 

lies in the order of operations.  Kelvin averages the likelihood ratio across pedigrees, 

calculating at one position at a time as it traverses the chromosome [167].  MCMC 

performs calculations on a per-pedigree basis for each chromosome, one at a time, in its 

entirety.   The likelihoods are then averaged across iterations.  This conflict requires both 

processes to be redefined with careful tracking at each step and then reconstructed so that 

first, repeated MCMC marker-sample generation for each pedigree across the 

chromosome is performed, and then repeated (adaptive) trait-space sampling across 



40 
 

 

pedigrees at each position on each chromosome takes place, conditioned on the marker 

data from the MCMC runs and the trait data [139]. 

Ultimately, the newest version of Kelvin takes the approach of combining marker 

data generated by MCMC with the trait-model integration implemented in Kelvin.  To do 

this, the graphical-model-based MCMC approach of Thomas et al. for the marker data is 

combined with the flexible numerical integration algorithm of Seok et al. for the trait data 

[171, 172].  This allows for the power of MCMC to be employed in the context of the 

PPL framework [139, 164, 167]. 

 

Association 

 Genome-wide association studies (GWAS) measure and analyze DNA sequence 

variants across the human genome with the intent of identification of genetic risk factors 

for common, complex diseases such as schizophrenia.  The eventual goal is to use these 

risk factors in a predictive manner to ascertain who is at risk and elucidate the underlying 

biology responsible for disease susceptibility.  This information will play a crucial role in 

developing new prevention and treatment strategies [92].  As mentioned earlier, 

association analyses depend on the presence of common ancestral variants in the 

individuals being assessed. 

 One of the early successes of GWAS was the identification of the Complement 

Factor H gene as a major risk factor for age-related macular degeneration.  GWAS not 

only identified the DNA sequence variations in the gene associated with the disease, but 

also the underlying biological basis responsible for the effect, opening the door for the 

development of new pharmacological interventions [173-175].  Understanding the 
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complexities of human disease is not the sole focus of human genetics, and as such 

techniques are often applied to other disciplines.  One of the most successful of these 

applications is that of GWAS to pharmacology.  Pharmacogenetics seeks to identify 

DNA sequence variations that are associated with drug metabolism and efficacy, as well 

potential harmful side effects resulting from administration of medications.  GWAS 

uncovered variations in several genes that have a substantial influence on the dosing of 

warfarin, a blood-thinning medication that prevents the formation of clots [176].  This 

discovery (and subsequent validations that followed) paved the way for genetic tests that 

allowed clinicians to tailor warfarin dosage by individual, in order to maximize efficacy 

and minimum adverse side effects.  This type of individualized treatment represents the 

field of ‘personalized medicine’, which aims to leverage an individual’s genetic 

background and biological features in the establishment of a treatment plan with a greater 

likelihood of success compared to more generalized approaches (reviewed in [92]).   

 Rare genetic disorders can be caused by multiple different genetic variants within 

a single gene and because the effect is so strong inheritance can often be deduced by 

studying the inheritance pattern in families affected by them.  Linkage analysis fares well 

in rare diseases such as cystic fibrosis and Huntington’s Disease, where genetic markers 

segregate with the disease across multiple families [177, 178].  Conversely, linkage 

analysis has not performed as well when applied to common disorders, such as heart 

disease or cancer.  The implication is that the genetic mechanisms responsible for 

common disorders differ from those that cause rare disorders [111].  Further support for 

this idea came from the identification of disease susceptibility SNPs for common diseases 

with high minor allele frequencies [179, 180].  This ultimately led to the common 
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disease/common variant hypothesis, which states that common disorders/diseases are 

likely caused by genetic variation that is common in the population [181].  Two major 

concepts tied to this hypothesis are: 1) if common genetic variants increase susceptibility 

to a disease, the effect size (penetrance) for an individual variant must be low compared 

to rare disorders, and 2) given the first condition (if penetrance is low), and heritability is 

high, then multiple variants must be necessary to increase disease susceptibility 

(reviewed in [92]). 

 

Linkage Disequilibrium 

 Association is ascertained by evaluating linkage disequilibrium (LD), which is a 

property of SNPs within the same genome region that represents how often an allele of 

one SNP is inherited or correlated with an allele of another SNP.  It is similar to linkage, 

where two markers on a chromosome remain physically joined through generations of a 

family, except that LD refers to an entire population instead of a single family/pedigree.   

The opposite of LD, linkage equilibrium, is the result of recombination events over many 

generations that break apart regions of a chromosome until eventually all combinations of 

alleles in a given population are inherited together in the ratio expected by chance.   

 The rate of LD decay depends on several factors, such as population size, the 

number of founding chromosomes in the population, and the number of generations that 

the population has existed.  Different populations therefore have different patterns of LD, 

making population matching a critical component when assessing LD.  African 

populations are the oldest, and therefore have smaller regions of LD due to an 

aggregation of recombination events.  European and Asian populations split off from the 
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African population approximately 100,000 years ago, taking only a small subset of the 

available genetic variation with them.  These populations were created by founder events 

originating from the African population, which in turn changed all of the factors that 

affect the rate of LD decay.  These populations tend to have larger regions of LD 

compared to those of African descent [182]. 

 There are many ways to measure LD and all of them are derived from the 

difference between the observed frequency of co-occurrence for two alleles and the 

expected frequency if the alleles are independent [183, 184].  The two most commonly 

employed measurements are r2 and D’ [182-184].  Values for D’ range from 0 to 1, with 

0 representing linkage equilibrium, and 1 indicating ‘complete LD’ (which represents no 

recombination between the two markers within a given population).  In genetic analysis 

LD is usually reported as r2, which is the statistical measure reflecting the correlation 

between two SNPs and is also measured on a scale of 0 to 1.  The two measures are 

therefore related in the following manner: r2 takes into account the allele frequencies for 

each SNP and can only be high when D’ is also high.  When r2 is 1 two SNPs are said to 

be in ‘perfect LD’ and genotyping for one SNP will provide full genotype information for 

the second SNP.   

 Due to the related nature of linkage and association, the presence of LD between 

markers can lead to false positive results when assessing linkage.  This is of great concern 

as linkage analysis shifts away from STRs and is performed using SNPs.  SNPs are a 

common source of genetic variation and LD between SNPs, especially those in close 

proximity on the genome, is not uncommon.  Inter-marker LD should therefore be 

assessed prior to conducting linkage studies using SNPs, with D’ being a better indicator 
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of inflation when allele frequencies are similar, and r2 being a better predictor when they 

are disparate [185]. 

 

Testing for Association 

 When LD is detected it still must be determined if the allele producing the signal 

is causal.  In such cases the SNP producing the LD signal is responsible for the trait being 

assessed, meaning that the phenotype in some manner of statistical measurement is the 

result of that particular genotype.  To assess whether this is the case, additional studies 

must be conducted to determine if the SNP is functional with respect to the observed 

phenotype, such as a luciferase assay to assess a sequence for effects on the regulation of 

gene expression [186].  In a carefully constructed study that properly accounts for 

population stratification, if the allele is not causal, then the identified association is the 

result of the LD signal being produced by a SNP that is in LD with the causal SNP, such 

that signal is being referred.  To rule out a referred signal, additional studies may be 

necessary to further pinpoint the exact location of the causal SNP, such as fine-mapping 

[187]. 

 The standard assessment of genome-wide association is single-locus statistic tests, 

which assess each SNP one at a time for association to the provided phenotype.  

Quantitative traits are usually analyzed using generalized linear model (GLM), the most 

common of which is the analysis of variance (ANOVA).  ANOVA is similar to linear 

regression and uses genotype classes as the predictor variable.  Dichotomous case/control 

traits are usually analyzed using contingency table methods or logistic regression.  The 

most common form of the contingency table test is the chi-square test and Fischer’s exact 
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test.  Logistic regression is an extension of linear regression and is preferred because it 

allows for adjustments based on clinical covariates and allows for interrogation of the 

effect size.   

The statistical power of a test is affected by how the genotype data is shaped for 

analysis because degrees of freedom are dictated by how the data are encoded.  Allelic 

association tests assess the association between one allele of a given SNP and the 

phenotype.  Genotypic association tests assess the association between 

genotypes/genotype classes and the phenotype.  Similar to linkage, models can be defined 

such as dominant, recessive, multiplicative, or additive [188].  Because the general 

practice of GWAS is to examine additive models only, since the additive model has 

enough power to test for both additive and dominant effects, it can lead to recessive 

effects being missed [189].  In addition to model misspecification, association analysis 

suffers other similar hurdles to those seen in linkage analysis leading to loss of power and 

a subsequent masking of positive findings, such as population stratification and 

corrections for multiple testing [190-192]. 

 

Posterior Probability of Linkage Disequilibrium (PPLD) 

The PPLD is a variation of the LD-PPL (posterior probability of linkage allowing 

for LD); and both are variations of the PPL, described above.  Inclusion of a linkage 

disequilibrium parameter in the underlying PPL likelihood allows for assessment of trait-

marker linkage disequilibrium.  This allows for rescaling of the LD-PPL by using linkage 

as a condition while modeling linkage disequilibrium, which provides a means for 

separating LD evidence from underlying linkage evidence at any given locus.  This is of 
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critical importance when the multipoint PPL value approaches 1 [169].  If linkage and 

LD were unable to be disaggregated, a PPLD score might appear high due to linkage 

when LD may not be present.  The PPLD, similar to the PPL, integrates over trait 

parameters and allows for full use of all pedigree data.  The prior probability of LD given 

linkage (PPLD|L) is also set to 2% because evidence of linkage indicates a strong 

possibility of LD given the related nature of the two measurements.  In regions where 

there is no linkage the prior probability of LD (PPLD(L)) is set to 0.04%, requiring more 

evidence to provide a posterior probability in support of a hypothesis of association.  This 

is because the vast majority of the human genome will not exhibit linkage to a given 

disease, so much greater evidence of co-segregation of a SNP allele and a disease 

phenotype is required in any unlinked region to overcome the greater initial skepticism 

that any specific SNP is likely to be in LD with the disease.  The PPLD is single locus, 

and is therefore calculated for one SNP at a time and measures the evidence for or against 

LD to that SNP.  The software package Kelvin also allows for assessment of marker-to-

marker LD, making it a great tool for assessing SNPs when creating dense marker maps 

for use in linkage analysis [167]. 

 

Interpreting the PPL and PPLD|L 

In order to determine what PPL and PPLD|L values are worth pursuing, 

simulation studies were conducted using the structure and phenotypes present in the 

Canadian sample used in this thesis (discussed in detail in Chapter 3).  SLINK [193] was 

used to simulate datasets with no underlying linkage or linkage disequilibrium or with 

linkage but no linkage disequilibrium.  Three marker types were modeled with 2,500 
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replicates each; a microsatellite with five alleles of equal frequency, a SNP with 

MAF=0.5, and a SNP with MAF=0.25.  No linkage/no LD replicates with each marker 

type were analyzed for linkage.  Across all replicates, 81% produced scores <2%, 

demonstrating evidence against linkage.  PPL scores >10% occurred 0.6% of the time 

and scores >25% appeared only 0.13% of the time.  Results were similar for the PPLD|L 

analysis of the SNP markers generated under linkage, but no LD; 88% of replicates 

produced PPLD|L scores <2%, indicating evidence against association.   PPLD|L scores 

>10% occurred 0.8% of the time, and scores >25% only occurred 0.2% of the time.  Note 

that evidence for LD was low, despite that these replicates were all simulated with a 

strong linkage signal, highlighting the performance of the PPLD|L in separating evidence 

for LD from evidence for linkage.  As a result, scores over 25%, and even those over 

10%, seem worth pursuing, especially if multiple scores of these magnitudes are observed 

with a discrete genomic region.  It seems highly unlikely for all or even most of them to 

be due to chance. 
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Chapter 3: Preliminary Data 

 

Sample Details 

 Recruitment for the sample used for analysis in this thesis began in the early 

1990s and was first described in 1993, when 72 members of five families of Celtic origin 

from a rural Canadian region were assessed using the Positive and Negative Syndrome 

Sale (PANSS) to demonstrate the validity of positive and negative symptom measures as 

independent dimensions in familial schizophrenia [194].  More than 20 years later, 

following ongoing recruitment and reassessment, the sample now consists of 30 

pedigrees and is comprised of 573 individuals.  Families were selected for enrollment if 

they had an extended family of two or more generations of adults, with a proband and at 

least one other relative having a diagnosis of chronic schizophrenia.  Schizophrenia and 

other generally related disorders (as discussed in Chapter 1) were required to have the 

appearance of segregating in a unilineal autosomal dominant-like inheritance pattern.  

Families with prevailing bipolar affective disorder, known organic or physical 

disturbances causing psychiatric illness, or a bilineal segregation of schizophrenia were 

excluded.   

 Families were ascertained in their entirety, allowing for proband status to be 

assigned to all affected subjects, and therefore no subjects were excluded from analysis.  

Family histories were obtained for each subject from three or more family members and 

genealogical records were used for confirmation of birth and death dates.  Originally, 

subject families originated in and rarely moved from the same rural island region in 

Canada where only one psychiatric hospital was available until the 1980s.  
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Comprehensive records by file-card system documenting admissions allowed for 

searching of medical records back to 1866 and provided virtually complete ascertainment 

of psychiatric hospitalization.  Records were collected for all subjects with a history of 

psychiatric evaluation, living subjects were interviewed by a psychiatrist, and diagnostic 

folders were reviewed independently by two psychiatrists, one of whom was blind to the 

pedigree structures [195]. 

 The affected individuals were placed into two groups based on a proposed 

diagnostic hierarchy for genetic studies and sample size considerations.  Schizophrenia 

and schizoaffective disorders were combined into one group, called ‘narrow’, due to their 

extensively shared clinical presentation and diagnostic requirements.  Psychosis not 

otherwise specified, schizotypal and paranoid personality disorders were added to the 

‘narrow’ diagnoses into a second group, called ‘broad’, because these schizophrenia 

spectrum disorders share similar, but not exact, symptomology with schizophrenia 

suggesting some extent of shared underlying neurobiology.   The remaining participants 

were assigned to either the ‘unaffected’ or ‘unknown’ groups, depending on what 

phenotypic data were available [195]. 

As mentioned above, the first study published using this sample was conducted in 

1993.  Individuals were assessed using the Positive and Negative Syndrome Scale 

(PANSS) to demonstrate the validity of positive and negative symptom measures as 

independent dimensions in familial schizophrenia [194].  In 1994 the sample was used to 

demonstrate that more subjects were diagnosed with psychiatric illness at progressively 

earlier ages across generations, providing evidence of anticipation in familial 

schizophrenia [195].  Several confirmatory studies have been performed using this 
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sample.  In those cases, affected status for each individual was determined based on the 

study replication being attempted and the patient’s diagnosis with respect to the current 

version of the DSM.  In 1997 the sample was analyzed in an attempt to replicate previous 

reports of a schizophrenia susceptibility locus on chromosome 6p.  Though parametric 

linkage analysis using narrow and broad definitions of schizophrenia and sib-pair 

analysis using categorical disease definitions both failed to provide significant evidence 

of linkage, sib-pair analysis using positive-symptom (psychotic), negative-symptom 

(deficit), and general psychopathology-symptom scales as quantitative traits suggested a 

schizophrenia susceptibility locus on chromosome 6p related to the severity of psychotic 

symptoms.  The results also suggested that assessment of behavioral quantitative traits 

may provide increased power compared to conventional methods for the detection of 

linkage in complex psychiatric disorders [196].  In 1999, results generated using this 

sample provided independent confirmation of significant evidence of linkage of 

schizophrenia susceptibility locus to microsatellite markers on 13q32 and support for the 

presence of a second susceptibility locus on 8p21 [107].  In 2005, this sample was used to 

replicate linkage of schizophrenia spectrum disorders to chromosome 1q44.  The results 

also demonstrated that simulation studies are critical in determining the significance of 

results obtained with newer statistical methods, when multiple, but not independent, tests 

are performed and when sample stratification is employed to lessen the impact of 

heterogeneity or assess the interaction between loci [197]. 

Beginning in 2000 this sample was used in discovery analysis.  At this time, the 

sample included 22 medium-sized Canadian families of Celtic and German descent 

recruited using the same criterion described above.  On average 13.8 individuals 
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participated per family, but the five largest families had 20-29 participants.  Subjects (n = 

304) were again divided into three groups: narrow, broad, and unaffected, as described 

above.  Within each family there was an average of 3.6 individuals in the narrow 

diagnostic group (according to DSM-IV criteria), with 15 affected individuals in the 

largest family.  On average, two additional participating family members were diagnosed 

with schizophrenia-related disorders in the broad diagnostic group.  Family members 

diagnosed as affected spanned three generations in 27% of families, and individuals 

reported by history to be affected spanned three or four generations in 45% of families.  

DNA on 288 subjects was available for this study.  A genome-wide scan for 

schizophrenia susceptibility loci produced highly significant evidence of linkage to 

markers on chromosome 1q21-q22, with a maximum HLOD score of 6.5 [106] (under the 

narrow phenotype).  This same sample was used in 2002 to conduct fine mapping of this 

locus using 15 genetic markers spanning ~15 cM.  Parametric linkage analysis provided a 

maximum multipoint HLOD score of 6.50 with a Zmax-1 support interval of < 3cM 

[187].  The data from the 2000 genome scan was later reanalyzed with the PPL 

(methodology described in detail in Chapter 2) in 2006 and yielded a multipoint PPL of 

99.7% in the same location on chromosome 1q.  There was also support for two 

additional loci under the broad diagnostic criteria; a second peak on chromosome 1p13 

with a multipoint PPL of 70% and on chromosome 17q25 with a multipoint PPL of 44% 

[169].  In 2004 an enlarged sample of 24 families was used for an association mapping 

study under the chromosome 1q peak. As the PPL method was not yet available, LD was 

assessed with the program PSEUDOMARKER, an Elston-Stewart based parametric 

analysis method for joint analysis of linkage and LD in family data [198, 199].  Since the 
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linkage finding in the region was under the narrow phenotype, only that phenotype was 

analyzed.  In this study 330 subjects were phenotypically evaluated with 85 coded as 

affected (schizophrenia or chronic schizoaffective disorder), 232 as unaffected, and 24 

coded as unknown.  Fourteen microsatellites and 15 SNPs from the 5.4 Mb region 

between D1S1653 and D1S1677 were analyzed, and 2 microsatellites and 6 SNPs 

produced significant evidence of LD (p < 0.05) with schizophrenia.  All of these markers 

fall within the genomic extent of NOS1AP (formerly CAPON), discussed in further detail 

later in this Chapter [200].   

The sample now consists of 30 pedigrees and is comprised of 573 individuals.  

Recruitment criteria as well as diagnostic groupings remain unchanged from what is 

described above.  In this sample 105 individuals are coded as affected under the narrow 

diagnostic scheme, an addition 56 are coded as affected under the broad diagnostic 

scheme, 105 lack phenotypical assessment and are coded as unknown.  The remaining 

231 individuals are classified as unaffected.  Subjects in this sample have been followed 

for up to 20 years allowing for continued observation of diagnostic stability.   

Microsatellite data are available for the original 22 families in the sample 

comprised of 304 samples, of which 288 had DNA available.  These markers consisted of 

379 simple tandem repeat markers with an average heterozygosity of 0.76 and an average 

marker density of 9 cM.  Markers were specifically chosen to be informative, equally 

spaced, and far apart enough to minimize the chance that they would be in LD with one 

another [106].    

SNP data are now available for all 30 families, with genotyping using Affymetrix 

6.0 arrays previously completed at The Center for Applied Genomics at the University of 
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Toronto (TCAG), with an average completion rate of 99.0% across all SNPs, genome-

wide.  Genotype cleaning was previously performed using PLINK v1.07 [201, 202] and 

included removal of SNPs with <98% completion rates, monomorphic SNPs, or SNPs 

with >1% rate of Mendel Errors.  All SNPs had Hardy-Weinberg p-values > 0.001.  

Custom software was then used to identify and remove genotypes causing Mendel errors.  

After removing these SNPs, 98.8% of attempted genotypes were available.   Additionally, 

custom software using a pattern-based algorithm was used to predict SNPs that alter 

microRNA binding sites [203].  This generated a panel of 48 candidate SNPs, which were 

genotyped using bead-based oligonucleotide ligation, and data were cleaned using the 

same protocols outlined above [204]. 

DNA is currently available for 376 individuals, though some of the pedigrees 

have individuals present that serve as linkers for whom no DNA is available either 

because the patient was unavailable, refused participation, or is deceased.  In a small 

number of cases without cell lines generation of SNP and microsatellite data exhausted 

the available DNA.   

Whole Genome Sequencing (WGS) of 10 affected samples (7 female, 3 male) 

was performed by Knome Inc. in 2012 using paired end sequencing array by Illumina and 

Illumina’s propriety software the Consensus Assessment of Sequence and Variation 

(CASAVA) pipeline version 1.9.1  [205].  Individuals were selected for sequencing based 

on three criteria: 1) coming from the core portion of one of the larger pedigrees, 2) being 

a patient with a ‘typical’ case of schizophrenia, featuring diagnostic stability and 

phenotypic homogeneity with other sample subjects, and 3) having high quality DNA 

available to send out for sequencing.  For the work described in this thesis, BAM files 
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generated by Knome Inc. were shuffled using SAMtools (v1.3.1) sort, reverted to fastq 

using bedtools (v2.25.0) bamtofastq, and then aligned to 1000Genomes build 37 of the 

human genome using BWA-MEM (v0.7.15) [206-209].  Newly aligned BAM files were 

sorted, indexed, and duplicates removed using SAMtools.  Base recalibration and variant 

discovery were performed using the Genome Analysis Toolkit (GATK) v3.7 [210-212].  

Functional annotation and prediction were performed using SnpEff and SnpSift, using 

dbSNP database v138 for build 37 [213-215]. 

 

Linkage Analysis 

 A genome scan was performed using all available microsatellite data from the 

original sample (22 families) under both the narrow and broad diagnostic schemes 

(defined in the Sample Details section above) from 2000, using the PPL (Kelvin version 

2.4.0).  The newer version allows for easier multipoint analyses and has other 

computational enhancements compared to published work described earlier [169].  

Three-point analysis across the whole genome revealed PPL values >20% in six 

locations: one on chromosome 1, two on chromosome 2, one on chromosome 8, one on 

chromosome 11, and one on chromosome 17 (Figure 2).   
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Figure 2: PPL data for original 22 Canadian families, generated in 2012 

(unpublished).   

Red indicates results for individuals diagnosed under the broad definition, and blue 

indicates results for individuals diagnosed under the narrow definition as described in 

the Sample Details section of this Chapter. 
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Linkage peaks of interest were determined in two ways: 1) All PPL scores => 

20%, and 2) PPL scores >= 5% that overlapped with regions of interest determined by 

recalculating results from a large-scale meta-analysis [216], focusing on samples of 

European ancestry but excluding the results from the Canadian linkage sample.  Linkage 

regions were defined surrounding the linkage peaks using custom software (Table 1).  

Linkage results generated by Kelvin 2.4.0 were parsed for the first location preceding 

each peak with a PPL score >= 2%, and for the last location with a PPL score >= 2 % 

following the peak. 

 

Chrom Phenotype LP PPL Score LR Start (cM) LR End (cM) 

1 Broad 0.67 123.0 181.0 

1 Narrow 0.94 123.0 182.0 

2 Broad 0.45 2.0 59.0 

2 Broad 0.21 120.0 167.0 

3 Narrow 0.06 0.0 56.0 

8 Broad 0.21 24.0 54.0 

8 Narrow 0.06 25.0 69.0 

11 Narrow 0.22 74.0 115.0 

17 Broad 0.53 114.0 137.0 

 

Table 1: Linkage regions for further investigation. 

Linkage regions selected for further evaluation based on criteria outlined 

above.  (Chrom = chromosome, LP = Linkage Peak, LR = Linkage 

Region) 

 

 

 

Association Analysis 

 A GWAS was conducted using the PPLD in 2013 on the expanded sample of 30 

pedigrees using the genotype data described above.  Results were parsed via Python 
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script for SNPs with PPLD|L scores => 20% within the linkage regions defined in Table 

1 (Table 2).  SNPs of interest were identified in five genes, further described below. 

 

Chromosome Phenotype SNP PPLD|L Gene 

1 Narrow rs7419214 0.35 None 

1 Narrow rs17477236 0.28 VAV3 

1 Narrow rs641227 0.23 None 

1 Narrow rs465310 0.22 None 

1 Narrow rs12725553 0.27 NOS1AP 

1 Narrow rs4411117 0.27 NOS1AP 

2 Broad rs12991828 0.21 DPYSL5 

2 Broad rs486582 0.2 DPYSL5 

2 Broad rs7578749 0.28 None 

3 Narrow rs12494654 0.21 GRM7 

11 Narrow rs17631231 0.35 None 

17 Broad rs1060120 0.21 H3F3B 

 

Table 2: Risk SNPs identified by GWAS. 

GWAS SNPs with a PPLD|L score => 20% and the gene (if applicable) each 

SNP is located in according to dbSNP. 

 

 

 

Genes of Interest 

VAV3 

VAV3 is located on chromosome 1p13.3 and is a member of the VAV family of 

proteins.  VAV proteins (VAV1, VAV2, and VAV3) are guanine nucleotide exchange 

factors for Rho family GTPases, which cycle between an inactive GDP-bound state and 

an active GTP-bound state.  They play critical roles in the control of the cytoskeleton, 

cell motility, gene expression, cell proliferation, cell transformation, and oncogenesis.  

VAV proteins are differentially expressed, with VAV1 restricted to expression in 
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hematopoietic cells, whereas VAV2 and VAV3 both demonstrate broader expression 

profiles.  All VAV family members have a zinc finger domain (reviewed in [217]).   

VAV3 is closely related to the axon guidance pathways, which have also been 

identified as playing a role in schizophrenia [218].  During axon guidance when ephrin 

binds to Ephs the event triggers VAV-dependent endocytosis of the ligand-receptor 

complex, which changes an attraction interaction into a repulsive one.  In the absence of 

VAV proteins, ephrin-Eph endocytosis cannot occur, leading to defects in growth cone 

collapse in vitro and also in the ipsilateral retinogeniculate projections in vivo [219].  

GABAergic neurons from the hippocampus were used as a model to investigate the 

specific implication of VAV3 in axonal development.  Growth cone collapse was 

measured in wild-type and VAV3-deficient hippocampal neurons following stimulation 

with a ligand for EphA receptors.  VAV3-deficient cells were less responsive than wild-

type cells, indicating that VAV3 is critical for the regulation of axon branching and 

growth cone morphology, as well as for Ephrin-dependent axon collapsing responses in 

GABAergic cells [220].   VAV3 has been found to be expressed at high levels in Purkinje 

and granule cells.   Primary neuronal cultures were used to demonstrate that VAV3 is 

important for dendrite branching in these regions, indicating that VAV3 contributes to the 

timely developmental progression of the cerebellum [221]. 

A genome-wide linkage analysis of 236 Japanese families produced significant 

evidence of linkage (LOD = 3.39) at rs2048839 and 95% CI includes the VAV3 locus 

[222].  A GWAS based on meta-analysis for a Japanese sample produced evidence 

suggestive of association between schizophrenia and rs1410403, which is in the region of 

VAV3 [223].    
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Based on these results, voxel-based morphometry (VBM) was performed (100 cases, 264 

healthy controls) and demonstrated rs1410403 might affect volume of the left superior 

and middle temporal gyri, which were reduced in patients with schizophrenia compared 

to healthy controls.  Additionally, mutation screening of VAV3 was performed and four 

missense variants were detected.  These mutations were then followed up in a large 

independent sample.  One of those variants was associated with schizophrenia (P = 0.02) 

[224]. 

 

NOS1AP 

NOS1AP (nitric oxide synthase 1 (neuronal) adaptor protein, formerly known as 

CAPON) is located on chromosome 1q23.3 was first identified in the rat as a neuronal 

nitric oxide synthase (nNOS) binding protein with the ability to disrupt the association of 

nNOS with post-synaptic density scaffolding proteins [225].  This association plays a 

crucial role in targeting nNOS to the post-synaptic N-methyl-D-aspartate receptor 

(NMDAR), which allows for activation of the NMDAR and nNOS, which in turn 

generates NMDAR-mediated NO release into synaptic structures [226, 227].  The 

NMDA receptor channel, a subtype of the glutamate-gated cation channels, was first 

linked to the neurobiology of schizophrenia in the 1980s and is discussed in detail in 

Chapter 1.  Glycine/D-serine control the ability of L-glutamate to open the NMDAR 

channel, which is believed to play a dominant regulatory role in neuroplasticity (reviewed 

in [228]).    

  Three variants of NOS1AP have been identified in humans.  The first isoform is 

501 amino acids long, made from all 10 exons of the gene, and contains two functional 
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domains: one N-terminal phosphotyrosine-binding (PTB) domain and one C-terminal 

PDZ binding domain.  The second isoform is shortened and only contains the last two 

exons of NOS1AP and produces a truncated protein of 210 amino acids containing only 

the PDZ domain [229].  The third isoform has a unique 5’ exon and transcriptional start 

site, and it is predicted to be ~18kD.  Like the second isoform, it is a truncated version of 

the full-length variant, but includes a carboxyl-terminal PDZ-binding domain [230]. The 

first 180 amino acids of the full-length isoform have been previously shown to be 

required for the binding of the N-terminal targets Dexras1 and Synapsin [231, 232].  

Increased expression of the full-length variant has been linked to the reduction of both the 

number and branching of dendrites in the hippocampal neurons [233].  The truncated 

isoforms have not been shown to have this functional effect.  However, previous work 

has shown that the terminal 125 amino acids of the full-length protein are enough to bind 

the PDZ-domain of nNOS and interfere with the binding of nNOS and PSD93/PSD95, 

which could result in competitive inhibition against the binding of other ligands [225].  

Two of the three isoforms, NOS1AP-L and NOS1AP-S were examined in individuals 

with schizophrenia and healthy controls.  A significant change in expression was 

established for the short isoform. [234].  NOS1AP levels have been demonstrated to 

modulate cortical neuron migration, resulting in aberrant neuronal connectivity, which 

could play a role in schizophrenia [235]. 

  A highly significant linkage finding (HLOD score of 6.5; p <0.0002) of 

schizophrenia to chromosome 1q22 was initially found using a smaller subset of the 

Canadian sample described above [106].  This study showed evidence of a susceptibility 

gene within 6 Mb of DNA.  It was followed up by a fine-map linkage study with the 
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same sample and narrowed the target area to 3 Mb, an area containing approximately 50 

protein coding genes [187].  Other independent studies have reported linkage to 

schizophrenia in this region, whereas some have not [108, 110, 236-238].  There are 

several reasons why linkage analysis may produce inconsistent results, and they are 

discussed in greater detail in Chapter 2. 

 An initial association study was conducted with 15 SNPs in the subset of the 

Canadian sample described above.  Three SNPs located within NOS1AP were found to 

be significantly associated with schizophrenia [200].  Association to schizophrenia has 

been reported in this area in a Han Chinese sample, but to different SNPs than those 

identified in the Canadian sample subset [239].  Two additional studies (Spanish and 

Colombian ancestry) have produced strong evidence of association to schizophrenia for 

D1S1679, which is located within 25kb of NOS1AP [240, 241].  Further genotyping of 

24 SNPs in the Colombian sample from within NOS1AP detected significant association 

to 8 SNPs, including two that were present in our Canadian sample [242].  

  Functional studies have been conducted that support a role for NOS1AP in 

schizophrenia.  Increased expression of NOS1AP was observed in post-mortem samples 

from the dorsolateral prefrontal cortex of patients diagnosed with schizophrenia 

compared to normal controls in patients from several locations within the United States 

[234].  In order to confirm that these findings point to causality, the DNA changes were 

assessed in these samples, regardless of whether a there was an established diagnosis of 

schizophrenia.  All three SNPs previously identified in the Canadian association study 

described above produced a significant correlation with NOS1AP expression.  In all three 

cases, the sequence variant that led to higher expression in the United States sample was 
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the sequence variant associated with schizophrenia in the Canadian sample.  A 

schizophrenia-associated noncoding variant, rs12742393, was identified first by the 

PPLD, with gene expression functionality confirmed by luciferase reporter assay, and 

further assessed for binding of nuclear proteins by electrophoretic mobility shift assay 

[186].   

 

DPYSL5 

 Dihydropyrmidinase-like 5 (DPYSL5, formerly known as CRMP5) located on 

chromosome 2p23.3 is a member of the CRMP family, whose members are believed to 

play a role in growth cone guidance during neural development.  A synaptosomal 

proteomic study on rats treated with MK-801 (a specific NMDAR antagonist that induces 

NMDAR hypofunction and schizophrenia-like symptoms in rodents) demonstrated 

altered expression in CRMP5 in cases compared to controls.  Differential expression was 

confirmed by western blot assay [243].  CRMP5 has also been found to regulate neurite 

outgrowth inhibition and to induce mitophagy, regulating mitochondrion numbers in 

dendrites [244, 245].  These results provide compelling evidence for DPYSL5 as a 

candidate gene for schizophrenia susceptibility. 

 

GRM7 

GRM7 (glutamate receptor, metabotropic 7) is located on chromosome 3p26.1 

and is a metabotropic glutamate receptor, which are divided into three groups based on 

sequence homology, putative signal transduction mechanisms, and pharmacologic 

properties.  GRM7 belongs to MGluR group III, which are linked to the inhibition of the 
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cAMP cascade.  GRM7 is activated by L-glutamate, the major excitatory 

neurotransmitter of the central nervous system and is an important presynaptic regulator 

of neurotransmission [246, 247]. 

GRM7 was first associated with schizophrenia in 2008 in a population of Japanese 

ancestry (cases = 2293, controls = 2382).  The sample was screened for mutations in all 

exons, exon/intron junctions, and promoter regions of the GRM7 gene.  A synonymous 

mutation in exon 1 showed potential association (allelic p = 0.009) with schizophrenia.  

Dual-luciferase assay demonstrated suppression of transcription activity by exon 1 and a 

statistically significant difference in the promoter activity between the T and C alleles 

[248].  Another study selected 43 common SNPs within GRM7 and scanned for 

association with schizophrenia in 100 case-control pairs of Japanese subjects.  Two SNPs 

in GRM7 demonstrated highly significant haplotype association, and these results were 

confirmed in an expanded sample (404 cases, 420 controls) [249].  Significant genome-

wide linkage to chromosome 3p was followed by a nominally significant association 

finding in intron 1 of GRM7 in 124 Indonesian sib-pair families [250].  Evidence of 

strong association between GRM7 and schizophrenia was demonstrated in a meta-

analysis of an Indo-European and Dravidian population, and replicated in a meta-analysis 

of that sample and data from the PGC [251].  Investigation of GRM7 in the Han Chinese 

population yielded significant association to two SNPs and schizophrenia, as well as to 3 

different SNPs and major depressive disorder [252].  These studies collectively 

demonstrate strong support for a role for GRM7 as a candidate gene for schizophrenia 

susceptibility and its associated biological mechanisms fit well within the proposed 

underlying neurobiology for the disease.  
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H3F3B 

H3F3B (H3 histone, family 3B) is located on chromosome 17q25.1 and belongs 

to one of the five classes of histone genes that have been reported, all of which are 

involved in chromosome structure.  The SNP originating from this gene is in the 3’ UTR 

region, a microRNA (miRNA) binding site.  miRNAs are ~21 nucleotide single-stranded 

molecules that negatively regulate the expression of 20-30% of human genes.  Variations 

in miRNA binding sites have been found to have profound biological consequences [253, 

254].  Reduced expression of miRNAs has been tied to both schizophrenia and bipolar 

disorder [255].  Changes to the interaction between the miRNA and its binding site would 

lead to a decrease of H3F3B, which in turn could impact the function of histones and 

their epigenetic modifications.  Both have been demonstrated as playing a role in the 

development of schizophrenia, as well as other neuropsychiatric disorders [256-258]. 
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Chapter 4: Harmonization of the Data 

 

Updating Previous Analyses 

 One of the major advantages of the Canadian linkage sample is how long it has 

been maintained, but that also means that technology has advanced since earlier studies 

were conducted on this sample.  Prior to beginning the bulk of the work described in this 

thesis, it was necessary to bring all analyses up-to-date with respect to version of the 

human genome used to ensure consistency. Since the whole genome sequencing was 

analyzed using build 37 of the human genome, that version was used to update previous 

analyses. 

The first analysis to be updated was the linkage analysis using the PPL, performed 

on 22 Canadian families of Celtic and German descent. As described in Chapter 3, the 

original analysis utilized 379 simple tandem repeat (STR) markers with an average 

heterozygosity of 0.76 and average marker density of 9 cM with positions determined 

using build 36 of the human genome. A python script was used to pull all available sex-

averaged map positions from The Rutgers Maps v.3, which uses dbSNP Build 137 

reference SNPs and UniSTS markers from Build 37.3 (GRCh37.p5) [259]. This allowed 

for direct conversion of 324 of the STR markers to build 37, leaving 55 remaining STR 

markers to be converted. A python script was used to pull the build 36 base-pair positions 

for these markers from The Rutgers Maps v.2 [260]. The UCSC LiftOver tool was then 

used to batch convert the values on this list to build 37 base-pair positions [261]. Finally, 

a python script was used to pull build 37 sex-averaged map positions in cM, 
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corresponding to the build 37 base-pair positions (female-averaged map positions were 

used for chromosome 23). 

After the 379 microsatellites had been assigned b37 sex-averaged map positions, a 

quality control python script was run to assess 1) whether the order of markers had 

changes as a result of converting the positional values, and 2) how much change had 

occurred between the two builds.  The order of the markers was confirmed to be 

unchanged, which had been expected given the fact that their average spacing was ~9cM, 

making it highly unlikely that any two markers so far apart would change relative 

positions.  The minimum change observed between the two builds was 0 cM, the 

maximum change was determined to be 2.42 cM, and the average change across 379 

markers was 0.16 cM (Table 3). 

 

Change Between Builds Number of Markers 

0 cM 27 

< 1 cM 344 

1-2 cM 6 

> 2 cM 2 

Total 379 

 

Table 3: Breakdown of positional changes between builds. 

Break down of position changes when converting microsatellite markers from build 36 to 

build 37.  Number of markers that changed position by the defined range are indicated. 

 

A genome scan was performed using the PPL and build 37 marker positions on 

the same 22 families.  Results were graphed using Kelviz and then compared to build 36 

genome scan results (Figure 3). 
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Figure 3: Comparison between build 36 and build 37 genome scans. 

Both scans use the same data (family pedigrees, affected status, marker frequencies, 

genotype data) with the exception of marker positions.  Red indicates results for 

individuals diagnosed under the broad definition, and blue indicates results for 

individuals diagnosed under the narrow definition as described in the Sample Details 

section of this Chapter. 

 



68 
 

 

The new linkage results were analyzed for linkage regions using the custom script 

described above and compared to the results generated using build 36 STR positions 

(Table 4). 

 

  Build 36 Genome Scan Build 37 Genome Scan 

Chr Pheno PPLmax LRstart LRend PPLmax LRstart LRend 

1 Broad 0.67 123.0 181.0 0.67 123.0 181.0 

1 Narrow 0.94 123.0 182.0 0.94 123.0 182.0 

2 Broad 0.45 2.0 59.0 0.45 2.0 59.0 

2 Broad 0.21 120.0 167.0 0.21 120.0 167.0 

3 Narrow 0.06 0.0 56.0 0.06 0.0 56.0 

8 Broad 0.21 24.0 54.0 0.21 26.0 54.0 

8 Narrow 0.06 25.0 69.0 0.06 26.0 66.0 

11 Narrow 0.22 74.0 115.0 0.22 74.0 115.0 

17 Broad 0.53 114.0 137.0 0.55 114.0 137.0 

 

Table 4: Comparison of linkage regions between builds. 

Comparison of linkage regions between build 36 and build 37 genome scans.  Most of 

the peaks and linkage regions remain the same, with two exceptions (which are 

highlighted): 1) slight narrowing of the linkage region on chromosome 8 under the 

narrow and broad phenotypes, and 2) a slight increase to the maximum PPL value for 

the peak on chromosome 17 under the broad phenotype. 

 

  

Most of the linkage peaks and regions remained the same following conversion 

from build 36 to build 37 for the microsatellite marker positions, and only minimal 

changes were observed anywhere.  The linkage regions on chromosome 8, under both the 

narrow and broad phenotypes, were slightly narrowed.  This was not surprising given that 

marker D8S1130 was located at 22.62 cM under build 36, and at 24.76 cM under build 

37, yielding a change of 2.14 cM.  The peak on chromosome 17 under the broad 

phenotype increased from 0.53 to 0.55.  This change was also not surprising, since the 

peak occurred at 129 cM under both builds, and marker D17S784 was located at 129.9 
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cM under build 36 and 129.43 cM under build 37, with a total change in position of 0.47 

cM.   

The 2013 GWAS was conducted using Kelvin 2.4.0 and did not need to be 

reanalyzed because (as described in Chapter 2) the PPLD is currently implemented as a 

two-point (marker vs. disease) analysis, and is therefore calculated for one SNP at a time 

and measures the evidence for or against LD between schizophrenia and that SNP.  As 

such, map positions have no bearing on the results generated.   

The map positions from the 2013 GWAS were updated to build 37 positions for 

two reasons: 1) later analysis described in Chapter 5 require positions for these SNPs for 

work done on the sequence data, which is aligned to build 37, and 2) the development of 

Kelvin-LKS allows for SNP-based linkage analysis to be performed using many SNPs in 

large families.  Positions for these SNPs were converted in a similar manner to how the 

microsatellites were converted.  A python script was used to match rs identification 

numbers for all SNPs previously genotyped and retrieve their sex-averaged map positions 

under build 37 using the Rutgers Maps v.3 (female-averaged map positions were used for 

chromosome 23).  In the case that a SNP was not found on the same chromosome as it 

was assigned to under build 36, it was removed from the pedigree and map file for that 

chromosome using PLINK v1.07.  Most SNPs were able to be converted (Table 5). 
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Chromosome SNP Total (build 36) SNP Total (build 37) SNPs Removed 

1 53771 53542 229 

2 56507 56385 122 

3 46752 46655 97 

4 42938 42868 70 

5 43838 43705 133 

6 43976 43751 225 

7 36646 36447 199 

8 37457 37292 165 

9 32189 32120 69 

10 37021 36888 133 

11 34014 33947 67 

12 32888 32822 66 

13 26295 26049 246 

14 21646 21609 37 

15 19912 19846 66 

16 20937 20839 98 

17 15675 15611 64 

18 20159 20108 51 

19 9098 9012 86 

20 17446 17433 13 

21 9754 9724 30 

22 8711 8639 72 

23 (X) 25462 25339 123 

Total 693092 690631 2461 

 

Table 5: SNP position conversion between builds. 

SNP position conversion between builds 36 and build 37 using the Rutgers Maps v.3.   

99.6% of the SNPs genotyped were available for cM position retrieval from The 

Rutgers Maps. 

   

The newly-generated build 37 pedigree and map files were used along with the 

frequency files (derived using Mendel v13.2 [262] on the family SNP data) from the 

2013 GWAS to create a data set for linkage analysis by Kelvin-LKS (discussed in detail 

in Chapter 2), subsequently conducted by the Vieland Lab.  First a python script was used 

to find and generate a list of all SNPs with a MAF >= 0.3.  PLINK v1.07 was then used 

to extract these SNPs from the existing pedigree files, to ensure that only the most 

informative SNPs were considered for further analysis.  Next, a custom python script 
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called PLINK’s LD-based pruning method, which prunes based on the variance influence 

factor (1/(1-r2)), recursively removing SNPs within a sliding window and generates a 

‘prune.in’ file and a ‘prune.out’ file.  A second PLINK call was then made to reduce the 

pedigree file to include only the SNPs present in the ‘prune.in’ file.  This method was 

applied recursively by the python script using an r2 threshold of 0.2, checking three 

consecutive SNPs at a time against each other, until no SNPs were in LD (the ‘prune.out’ 

file was empty).  Then a custom python script was used to assess the distance between 

SNPs on each map to ensure that none were >= 3 cM.  The data set was then double-

checked for marker-to-marker LD using Kelvin 2.4.0.  Kelvin uses offspring genotypes to 

reconstruct missing genotypes of parents, whereas PLINK does not, so this step ensured 

that any remaining marker-to-marker LD was identified.  A custom python script then 

removed all SNPs identified by Kelvin as having an r2 > 0.4, and Kelvin marker-to-

marker LD was reassessed to ensure no remaining LD existed.  The full file sets 

necessary to run Kelvin-LKS were generated by python script, verified by quality control 

scripts, and sent out to the Vieland Lab (Figure 4).  Minor allele frequencies were 

analyzed in the finalized data set.  The minimum MAF was 0.3, the maximum MAF was 

0.5, and the average MAF was 0.39.  Inter-marker distance was computed for the 

finalized data set (Table 6). 
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Figure 4: Build 37 SNP-based PPL genome scan.   

This analysis used the expanded sample of 30 pedigrees (bottom), compared to the 

microsatellite scan above which was conducted on 22 pedigrees (top).  Red indicates 

results for individuals diagnosed under the broad definition, and blue indicates results 

for individuals diagnosed under the narrow definition as described in the Sample Details 

section of Chapter 3. 
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Gap Size Number of Markers 

< 1 cM 30,160 

1 – 2 cM 90 

> 2 cM 5 

Total Markers 30,255 

 

Table 6: Breakdown of inter-marker distances in final data set.   

The minimum inter-marker distance was 0.00001 cM, the maximum inter-marker distance 

was 2.5748 cM, and the average inter-marker distance was 0.125 cM. 

 

 

The new SNP-based linkage results were analyzed for linkage regions using the 

custom script described above and compared to the results generated using microsatellite 

markers (Table 7).   

 

  MSAT Genome Scan SNP Genome Scan 

Chr Pheno PPLmax LRstart LRend PPLmax LRstart LRend 

1 Broad 0.67 123.0 181.0 0.57 122.0 174.0 

1 Narrow 0.94 123.0 182.0 0.79 120.0 180.0 

2p Broad 0.45 2.0 59.0 0.10 14.0 38.0 

2q Broad 0.21 120.0 167.0 0.35 126.0 180.0 

3p Narrow 0.06 0.0 56.0 0.15 14.0 54.0 

8p Broad 0.21 26.0 54.0 0.18 36.0 50.0 

8p Narrow 0.06 26.0 66.0 0.08 36.0 72.0 

11q Narrow 0.22 74.0 115.0 0.05 74.0 86.0 

17q Broad 0.55 114.0 137.0 0.06 118.0 136.0 

 

Table 7: Comparing MSAT and SNP genome scans.   

Comparison of linkage regions from build 37 microsatellite genome scan to results 

from build 37 SNP genome scan.  Three peaks with a PPL >= 20% on the 

microsatellite scan are reduced below 20% on the SNP scan.  The second peak on 

chromosome 2 under the broad phenotype and the peak on chromosome 3 under the 

narrow phenotype increased on the SNP scan compared to the microsatellite scan.  In 

most cases the interval of the linkage region is smaller compared to the microsatellite 

scan.  This was not surprising given the uniformity and ubiquitous nature of SNP 

markers compared to microsatellite markers. 
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 Three peaks are observed to have a large decrease with respect to their maximum 

PPL score; chromosomes 2p and 17q under the broad phenotype, and chromosome 11q 

under the narrow phenotype.  Though all three peaks still produce evidence of linkage 

(PPL > 2%), the marked reduction makes them less compelling than previous results.  

One reason for these changes may be that one of the microsatellite markers used in the 

original analyses produced spurious genotypes.  In order to investigate this hypothesis 

further, all three chromosomes were re-analyzed, removing one of the two markers 

responsible for the original peak at a time.  In the re-analysis, a four-point analysis was 

conducted, to reduce the likelihood that observed changes were due to loss of 

informativeness (Table 8). 

 

Peak PPLmax Position Marker 1 Marker 2 Drop M1 Drop M2 

2p 0.45 28.0 DS1400 DS1360 0.36 0.11 

11 0.22 85.0 D11S2371 D11S2002 0.03 0.19 

17 0.55 129.0 D17S1301 D17S784 0.20 0.11 

 

Table 8: Re-analysis of changed linkage peaks. 

Re-analysis of three linkage regions, dropping one microsatellite marker from analysis 

at a time.  Dropping either marker on chromosome 2p under the broad phenotype 

reduces the peak by >50%.  Dropping the first marker responsible for the peak on 

chromosome 11 under the narrow phenotype reduces the PPL score to 0.03.  Dropping 

the second marker responsible for the peak on chromosome 17 under the broad 

phenotype reduces the PPL score by more than 66%. 

 

 

 The reduced scores for all three peaks are much closer to the scores generated by 

the SNP genome scan.  The differences that remain may be the result of adding more 

families and more individuals from the families used in the microsatellite genome scan.  

In addition to the changes in linkage regions, new linkage regions were identified on the 

SNP scan (Table 9). 
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Chromosome Phenotype PPLmax LRstart LRend 

1 Broad 0.28 36.0 74.0 

6 Broad 0.29 0 14.0 

6 Narrow 0.49 0 14.0 

7 Broad 0.41 2.0 86.0 

10 Broad 0.32 118.0 144.0 

15 Broad 0.55 72.0 98.0 

15 Narrow 0.37 74.0 100.0 

19 Broad 0.29 44.0 62.0 

 

Table 9: New linkage regions identified SNP-based genome scan.   

Eight new linkage regions with a PPLmax >= 0.2 were identified in the new analysis.  

The region on chromosome 7 under the broad phenotype is large due to the fact that 

there are two local maxima (PPL = 0.26 at 40 cM and PPL = 0.41 at 80 cM) and the 

PPL scores in that region do not go below 2%. 

 

 

 The discovery of new linkage regions with a maximum PPL >= 0.2 was not 

entirely unexpected.  The genome scan using SNPs allowed for finer mapping and also 

included 8 new families, as well as new individuals from the original 22 families.  Of the 

eight new regions identified in Table 9, six are present on the build 37 microsatellite 

scan: chromosome 1, chromosome 7, chromosome 10, chromosome 15, chromosome 19 

under the broad phenotype, and chromosome 15 under the narrow phenotype had 

findings suggestive of linkage (PPL > 2%), but now are observed to have demonstrably 

larger peaks at those locations.  The peaks on chromosome 6 under both the broad and 

narrow phenotype are entirely new, and as such may be driven by the new families and 

the new individuals in the original families.   
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Compatibility with Reference Populations 

 The hypothesis of this thesis includes examining all variants identified by whole 

genome sequencing that reside 500 kb up-stream and down-stream from the risk SNPs 

identified in Table 2 in order to identify those in high LD with the risk SNPs.  Given that 

only 10 individuals from the Canadian linkage sample were sequenced, using a larger 

data set, such as 1000 Genomes, will provide more power to make the LD assessments.   

Additionally, marker-to-marker LD by population has already been calculated for many 

of the variants we expect to discover, allowing for a simple filter to be applied as part of 

our downstream analysis. Before using this resource, the similarity of the genetic 

background of the Canadian linkage sample and the populations of 1000 Genomes 

needed to be determined. 

 In order to assess the ancestry of our sample principal components analysis (PCA) 

was performed using EIGENSTRAT v6.14 [192].  To prepare for this analysis, HapMap 

release 23 data was obtained in PLINK format [263].  The pedigree and map files from 

our 2013 GWAS were merged for chromosomes 1-22.  The HapMap map file and our 

sample map file were compared by Python script.  SNPs occurring in both data sets were 

extracted in each set individually using PLINK v1.07.  Strand orientations in our sample 

were corrected using data derived from Affymetrix releases for the 6.0 array.  PLINK 

was used to merge the HapMap data with our data into a single pedigree/map file set.  

Because marker-to-marker LD can lead to principal components that are artifacts, PLINK 

was used to assess LD on the merged file set using the --indep method, with a window of 

50 SNPs, a sliding window of 5, and a VIF of 2.  SNPs in the prune.in output were 

extracted.  PLINK analysis for LD was run twice more (for a total of 3 runs).  PLINK 
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was then used to assess LD again, this time using the --indep method, with a window of 

100 SNPs, a sliding window of 5, and a VIF of 2.  SNPs in the prune.in output were 

extracted.  PLINK analysis for LD was run once more (for a total of 2 additional runs) to 

verify that regions known to contain long-range LD were fully examined [264].  After all 

pruning, 72,045 SNPs remained on chromosomes 1-22 for analysis.  From this LD-

pruned file set, two file sets were generated for EIGENSTRAT analysis.  In our subset of 

10 individuals who were sequenced in two cases, two individuals are from the same 

pedigree.  Because related individuals can influence the results of PCA, these individuals 

must be separated (Table 10).   

 

EIGENSTRAT Run #1 EIGENSTRAT Run #2 

001.0026 001.0000 

002.0000 002.0000 

011.0012 011.0012 

029.A038 029.A038 

101.0000 101.0000 

102.0005 102.0073 

105.0000 105.0000 

206.0001 206.0001 

All of the HapMap Individuals All of the HapMap Individuals 

 

Table 10: Composition of merged data runs for EIGENSTRAT.   

Values listed indicate the pedigree and individual separated by a period for our sample.  

Two individuals from pedigrees 001 and 102 were sequenced and were subsequently 

separated for EIGENSTRAT analysis. 

 

 The first two eigenvectors from the two PCA returned significant components in 

the analyses performed using EIGENSTRAT, and were subsequently plotted using R, with 

separate colors assigned by population (Figure 5).  Our sequenced individuals are tightly 

clustered within the CEU population. 
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Figure 5: EIGENSTRAT analysis plots. 

Run #1 All Populations (top left), Run #1 CEU and Our Sample (top right), Run #2 

All Populations (bottom left), Run #2 CEU and Our Sample (bottom right).  Red = 

YRI, Blue = JPT, Purple = CHB, Black = CEU, Green = Sequenced individuals from 

our sample.  Individuals used in each run are described in Table 10. 
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Chapter 5: Using Risk SNPs from GWAS to Identify Candidate SNVs 

 

Identification of Risk SNPs and Search Parameters 

 The annotated gvcf file generated by the pipeline described in Chapter 3 was 

parsed by python script to extract the physical position of each risk SNP identified in 

Table 2.  The script then created a search region of 500 kb upstream and downstream 

from those physical positions (Table 11).   

  

Chrom SNP Location (bp) Search Start Search End #Variants 

1p21.1 rs7419214 101,859,288 101,359,288 102,359,288 2848 

1p13.3 rs17477236 108,124,480 107,624,480 108,624,480 2525 

1p13.3 rs641227 111,040,055 110,540,055 111,540,055 2529 

1q23.3 rs4656310 161,496,900 160,996,900 161,996,900 3418 

1q23.3 rs12725553 162,168,116 161,668,116 162,668,116 3165 

1q23.3 rs4411117 162,184,521 161,684,521 162,684,521 3164 

2p23.3 rs12991828 27,082,559 26,582,559 27,582,559 2168 

2p23.3 rs486582 27,104,131 26,604,131 27,604,131 2153 

2q22.3 rs7578749 148,321,813 147,821,813 148,821,813 2018 

3p26.1 rs12494654 7,533,393 7,033,393 8,033,393 3798 

11q14.1 rs17631231 79,789,629 79,289,629 80,289,629 2647 

17q25.1 rs1060120 73,773,000 73,273,000 74,273,000 2707 

    TOTAL 33,140 

 

Table 11: Risk SNPS to be analyzed. 

List of Risk SNPs, their build 37 physical location, the search area for candidate 

SNPs to be further investigated, and the number of variants within that region to be 

analyzed.  Risk SNP locations were extracted from sequence data, and the search 

area for candidate SNPs was defined to include 500 kb upstream and downstream 

from each SNP in order to capture any candidate variants in LD with the risk SNPs. 

 

  

Some of the search regions overlap, and so the total number of variants (n = 

33,140) includes duplicates.  Additionally, rs12725553 and rs4411117 are in perfect LD 

(r2 = 1), so the candidate variants that are generated for both need only be evaluated once.  



80 
 

 

Nonetheless, even accounting for these duplicates, there are still far too many candidate 

variants (n = 26,916) to assess them all directly.  Variants of interest should be in high 

LD with the listed risk SNPs.  As discussed in Chapter 4, since we only have 10 people 

genotyped for both the risk SNPs and the candidate variants LD, estimates based purely 

on our data may be strongly influenced by sampling variation and therefore potentially 

inaccurate.  Since PCA shows high correlation between our sample and the CEU 

population, we can use that data to draw conclusions about marker to marker LD that 

should be in applicable to our sample. 

The list of 12 risk SNPs was submitted to the rAggr website [265] in order to 

obtain candidate SNPs 500 kb upstream and downstream from the risk SNPs along with 

their LD within the CEU population.  Though this does not account for all of the variants 

in our sequenced individuals, for each risk SNP it allowed for evaluation of 82%-93% of 

the candidates in the designated search region.  rAggr is a web-based software for finding 

SNPs and indels that are in LD with a provided set of markers, using the 1000 Genomes 

Project and Hapmap genotype databases.  It uses an expectation-maximization algorithm 

adapted from Haploview software [266] to calculate r2 on the fly in real time by the web 

server.  The results were parsed by python script and cross-referenced against the 

sequence data by matching chromosome, position, reference (REF) allele, and alternative 

(ALT) allele.  If the marker-to-marker LD was below an r2 of 0.8, the marker was culled 

from further analysis.  If the candidate marker was in high LD with the risk SNP (r2 >= 

0.8), the SNP was cross-referenced against the Affymetrix 6.0 Array SNPs used in the 

2013 GWAS.  If a SNP had been previously evaluated by the 2013 GWAS, it was also 
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culled from further analysis.  Remaining variants in high LD with risk SNPs (n = 101) 

were set aside for genotyping (Table 12). 

 

Risk SNP Original Variants For Genotyping Culled Remaining 

rs7419214 2848 12 2625 211 

rs17477236 2525 0 2166 359 

rs641227 2529 0 2297 232 

rs4656310 3418 7 2773 638 

rs12725553 3165 2 2688 475 

rs4411117 3164 2 2676 486 

rs12991828 2168 35 1769 364 

rs486582 2153 19 1769 365 

rs7578749 2018 11 1664 343 

rs12494654 3798 8 3512 278 

rs17631231 2647 17 2467 163 

rs1060120 2707 0 2387 320 

Total 33,140 113 28,793 4234 

 

Table 12: Summary of candidate SNP LD analysis.  

All variants obtained from original parsing of sequence data were assessed for LD 

within the CEU population against the risk SNPs using rAggr.  Candidate variants 

were culled if they were not in high LD (r2 < 0.8), or were in high LD (r2 >= 0.8), but 

had already been assessed in the 2013 GWAS described in Chapter 3. 

 

 Next, the remaining variants were scanned for monomorphic SNPs.  Since our 

sample correlates to the CEU population, it is expected that population-specific 

monomorphic sites would result from low mutation rates or positive natural selection.  

Additionally, given that our sample is comprised of large pedigrees of related individuals 

from a geographically limited region, it was expected that some of the sequenced variants 

would be monomorphic in nature.  A Python script was used to parse the sequence data 

and count the occurrences of each allele (REF and ALT) of each SNP.  Heterozygotes 

were counted for both.  In the event that a variant had a count of 20 for one allele, and a 

count of 0 for the other allele, it was added to a list of potentially monomorphic SNPs 
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(variants with counts below 20 were not subject to this filter, even if all counts were for a 

single allele).  With a sample size of 10, this alone was not enough to definitively call 

these SNPs monomorphic.  These SNPs were submitted to the rAggr website, as 

described above, and queried against the CEU population.  rAggr will not perform 

analyses if the MAF is 0, and will provide this reason back to the user.  Any candidate 

SNPs with only one allele present in all 10 sequenced individuals that was also found to 

be monomorphic in the CEU population was culled from further analysis.  For each risk 

SNP, between 11%-55% of the remaining variants were determined to be monomorphic 

(Table 13).  Due to the nature of our sample, discussed above, it is likely that some of the 

SNPs appearing to be monomorphic in our sample, but not in the CEU population, are in 

fact monomorphic in our entire expanded sample.  We therefore expected that some of 

our genotyped candidate variants may ultimately be uninformative. 

  

Risk SNP Variants to be Classified SNPs Culled Remaining Variants 

rs7419214 211 44 167 

rs17477236 359 198 161 

rs641227 232 83 149 

rs4656310 638 62 576 

rs12725553 475 164 311 

rs4411117 486 168 318 

rs12991828 364 175 189 

rs486582 365 145 220 

rs7578749 343 148 195 

rs12494654 278 68 210 

rs17631231 163 18 145 

rs1060120 320 85 235 

Total 4234 1358 2876 

 

Table 13: Summary of analysis for monomorphic SNPs using rAggr.   

SNPs with only one allele present in the sequence data were cross-referenced 

against a list of SNPs known to be monomorphic in the CEU population.  These 

SNPs were removed from further analysis due to being uninformative. 
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While LD between the remaining variants and the original risk SNPs could be 

calculated from the set of 10 sequenced individuals, the small sample size would be 

expected to produce imprecise estimates of LD due to sampling variation.  To address 

this concern, simulations were run in order to determine a 95% CI for the r2 estimates 

calculated from a sample size of 10.  100,000 simulation runs were performed for each of 

six representative minor allele frequencies (0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) using 

parameters that would generate an r2 of 0.8 in the population, from which 10 random 

individuals were drawn to create a sample size of 10.  The 95% CI extended to a r2 of 

0.4444.  Genotypes were collected for the remaining variants in Table 13 and r2 

computed between those variants and the risk SNPs that referred them.  Variants were 

pruned from further analysis if they produced an r2 outside of the 95% CI and collected 

for a later round of genotyping if they produced an r2 within the 95% CI (Table 14). 

 

Risk SNP Variants To Be Classified Genotyping Culled Remaining 

rs7419214 167 7 160 0 

rs17477236 161 5 156 0 

rs641227 149 8 141 0 

rs4656310 576 29 547 0 

rs12725553 311 7 304 0 

rs4411117 318 7 311 0 

rs12991828 189 5 184 0 

rs486582 220 3 217 0 

rs7578749 195 10 185 0 

rs12494654 210 8 202 0 

rs17631231 145 4 141 0 

rs1060120 235 0 235 0 

Total 2876 93 2783 0 

 

Table 14: Summary of candidate SNP LD analysis by simulation studies.   

All remaining variants were assessed for LD against the risk SNPs using the PPLD.  

Candidate variants were culled if they were not in moderate LD (r2 < 0.4444).  If they 

were in moderate LD (r2 >= 0.4444), they were set aside for genotyping at a later date.   
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Genotyping and PPLD|L Analyses 

Primers were designed for the 101 SNPs of interest found to be in high LD with 

the risk SNPs within the CEU population and genotyping was completed on 87 of the 101 

SNPs of interest (following the methods described in Chapter 3) at the time of this thesis.  

Data were cleaned by custom software [267] that computes background and normalizes 

raw Luminex signals.  It then identifies and eliminates ambiguous data points and 

computes the ratio of corrected median fluorescent intensity (MFI) values between 

alleles.  It then clusters and assigns genotypes to each sample, allowing for real-time 

viewing and correction.  Finally, it combines pedigree and genotype data for error 

analysis.  Resulting genotypes were cleaned as described in Chapter 3.  The PPLD|L was 

reanalyzed, comparing candidate SNPs to risk SNPs.  For each candidate SNP/risk SNP 

comparison, only individuals with a genotype for both SNPs were evaluated, all other 

genotypes were zeroed out to avoid bias in the results.   Six candidate SNPs produced 

PPLD|L signals of at least 0.1 greater than the risk SNP that referred them (Table 15).  

All six SNPs exhibited strong marker to marker LD to each other, and to the risk SNP 

(rs7419214) in our sample (r2 of 0.923-0.999).  LINC01307, a ncRNA, is the closest 

RefSeq gene to these SNPs and is located ~50,000 bp away using build 37 coordinates.  
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Risk SNP PPLD|L Candidate SNP PPLD|L Score Change 

rs7419214 0.22 rs4279870 0.74 0.52 

rs7419214 0.33 rs12085470 0.80 0.47 

rs7419214 0.19 rs59687522 0.43 0.24 

rs7419214 0.22 rs12085471 0.38 0.16 

rs7419214 0.15 rs10874484 0.29 0.14 

rs7419214 0.18 rs12073824 0.28 0.10 

 

Table 15: Six candidate SNPs identified by the PPLD|L. 

Six candidate SNPs with stronger PPLD|L scores than the referring risk SNP.  

All six candidate SNPs and the risk SNP are under the linkage region on 

chromosome 1p, under the narrow phenotype.   
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Chapter 6: Conclusions 

Concluding Remarks 

 Schizophrenia is a complex idiopathic neuropsychiatric illness that affects 

approximately 1% of the general population.  Family, twin, and adoption studies indicate 

a high heritability and strong genetic element to the disease with first degree relatives 

demonstrating an increased risk of about 10% and monozygotic concordance rates as 

high as 50%.  Schizophrenia susceptibility is likely linked to multiple genetic factors, as 

evidenced by the fact that patterns of transmission do not match established Mendelian 

inheritance patterns for single locus disorders, as well as mounting support for a 

polygenic component [67], [79].  This complexity, along with phenotypic variation, 

explain why the search for ‘schizophrenia genes’ remains ongoing to present day.  

Conflicting evidence continues to accumulate, with candidate genes being identified in 

some studies, and later questioned or disputed in others (reviewed in [80, 81]).  It remains 

clear, however, that support is present for many different genetic factors playing a role in 

the predisposition to schizophrenia. 

 One interpretation of the inconsistent results observed in both linkage and 

association analyses is that due to factors such as small effect size and uncontrolled 

phenotypic variation, larger and larger samples will need to be recruited in order for 

additional susceptibility genes to be discovered [121].  Though studies using extremely 

large GWAS samples, such as the 2014 study performed by the PGC, have demonstrated 

that this approach works, we believed that by using a very homogenous sample (in terms 

of genetic background), and by focusing analysis on regions where linkage and 

association overlap, which indicates that disease susceptibility in those regions is driving 
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both signals, we could leverage whole genome sequencing data to identify risk alleles for 

susceptibility to schizophrenia using a substantially smaller sample. 

The work herein identified 12 risk SNPs from areas where strong evidence of 

linkage and association overlap, and describes how those SNPs were used to search 

flanking regions for novel candidate variants.  Candidate variant pools were subjected to 

a filtering pipeline which resulted in only 184 variants from 10.7 Mb of sequence 

analyzed being retained as candidates for further evaluation.  Initial genotyping results 

have identified six SNPs on chromosome 1p under the narrow phenotype, referred by 

rs7419214, that scored higher on the PPLD|L.  Further evaluation is needed to determine 

the exact role these SNPs play with respect to schizophrenia susceptibility. 

Linkage analysis of our sample using SNP markers instead of microsatellites 

produced six additional regions to be examined, which in turn produced 27 risk SNPs 

from six discrete genomic regions.  These risk SNPs will be evaluated using the 

procedures described in Chapter 5 to determine if any new candidate SNPs should be 

pursued.   

 

Future Work 

Analyze New Risk SNPs identified by SNP PPL 

 Linkage regions determined from analysis of the build 37 SNP Genome Scan 

were examined for PPLD|L scores >= 0.2 in the 2013 GWAS in order to identify 

additional risk SNPs, in the same manner the microsatellite Genome Scan was used to 

produce the first group of risk SNPs examined in Chapter 5 (Table 16). 

  



88 
 

 

Chrom Phenotype PPLmax Risk_SNP PPLD|L Gene 

1 b 0.28 rs12040131 0.45 None 

1 b 0.28 rs6600275 0.24 None 

1 b 0.28 rs7530233 0.36 None 

1 b 0.28 rs7523169 0.39 None 

1 b 0.28 rs7534508 0.42 None 

1 b 0.28 rs11586139 0.39 None 

1 b 0.28 rs11588364 0.39 None 

1 b 0.28 rs945338 0.39 None 

1 b 0.28 rs2256090 0.39 None 

1 b 0.28 rs4660469 0.4 KCNQ4 

1 n 0.79 rs6428604 0.31 None 

1 n 0.79 rs681589 0.45 HFM1 

1 n 0.79 rs7417055 0.81 HFM1 

1 n 0.79 rs281979 0.35 HFM1 

1 n 0.79 rs281935 0.28 HFM1 

1 n 0.79 rs17131417 0.28 HFM1 

1 n 0.79 rs4658221 0.33 HFM1 

7 b 0.41 rs10807764 0.2 None 

7 b 0.41 rs10260665 0.27 None 

7 b 0.41 rs7784685 0.47 None 

7 b 0.41 rs12154666 0.3 None 

10 b 0.32 rs12764660 0.53 RBM20 

10 b 0.32 rs12414939 0.22 RBM20 

10 b 0.32 rs1341053 0.33 None 

15 b 0.55 rs11259948 0.2 FSD2 

15 b 0.55 rs17273206 0.23 BLM 

19 b 0.29 rs1030687 0.22 ZNF536 

 

Table 16:  New risk SNPs identified from the SNP PPL Scan.   

New risk SNPs identified by searching under the linkage regions identified by the SNP 

PPL for GWAS SNPs with a PPLD|L => 20% and the gene (if applicable) each SNP is 

located in according to dbSNP. 

 

Additional Genes of Interest 

KCNQ4 

KCNQ4 (potassium channel, voltage-gated, subfamily Q, member 4) is located on 

chromosome 1p34.2 and is one of five voltage-dependent potassium channels composed 

of homo- and heterotetrameric complexes of five KCNQ subunits.  KCNQ channels (with 
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the exception of KCNQ1), are broadly expressed in neuronal tissue, including neocortex 

and hippocampus [268].  Activation of the KCNQ channels is responsible for the 

initiation of the M current, which inhibits the K+ current that modulates neuronal 

excitability [269].  Reduction in KCNQ channel activity as a result of genetic mutation 

has been implicated in epilepsy, progressive hearing loss, and bipolar disorder [268, 270].  

Due to their important role in controlling neuronal excitability, KCNQ channels have 

become attractive targets for treatment of neurological disorders linked to 

hyperexcitability and compounds have been proposed for therapeutic potential for the 

both cognitive and positive symptoms of schizophrenia [271].  Additionally, 

dopaminergic neurons in the ventral tegmental area express KCNQ4 channels.  As 

discussed in Chapter 1, psychotic symptoms have been shown to be associated with an 

increased excitability of dopamine cells, and as a result, treatments with KCNQ channel 

openers may serve as a potential new class of antipsychotics [272].  KCNQ4 is an 

attractive candidate for susceptibility to schizophrenia.    

 

HFM1 

 HFM1 (helicase family member 1) is located on chromosome 1p22.2 and is 

expressed in germline cells, where it is believed to play a role in genome integrity.  

Formation of most crossover events requires the help of a group of proteins known as 

ZMM, and HFM1 is in this group.  HFM1 is required for normal evolution of 

homologous recombination and proper synapsis between homologous chromosomes in a 

number of model organisms (reviewed in [273]).  A de novo variant in HFM1 was 
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identified in Chinese schizophrenic patients during prenatal development, making it a 

possible candidate for susceptibility to schizophrenia [274].    

 

RMB20  

RMB20 (RNA binding motif protein 20) is located on chromosome 10q25.  It 

binds RNA and regulates splicing, and is highly expressed in the heart.   

 

FSD2  

FSD2 (fibronectin type III and SPRY containing domain 2) is located on 

chromosome 15q25.2 and it encodes a protein in the FN3/SPRY family.  Alternate 

splicing leads to multiple transcript variants.  A TRIM-related protein minispryn encoded 

by FSD2 has been demonstrated to exhibit extensive sequence similarity with the C-

terminus of myospryn [275].  Myospryn is encoded by CMYA5, which has been 

identified as a possible risk gene for schizophrenia and major depressive disorder [276, 

277].  CMYA5 and FSD2 seem to have originated from chromosome duplication and 

located within evolutionarily-conserved gene clusters on different chromosomes [275].  

Myospryn has also been demonstrated to be a binding partner for Dysbindin in muscle 

[278].  Dysbindin has been extensively investigated with respect to schizophrenia 

(reviewed in [279]).  Though there is no literature directly linking FSD2 and 

schizophrenia, the similarities between this gene and CMYA5 warrant further 

investigation. 
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BLM 

BLM (Bloom symdrome RecQ like helicase) is located on chromosome 15q26.1 

and is related to the RecQ subset of DExH box-containing DNA helicases.  Mutations 

causing Bloom syndrome have been shown to delete or alter helicase motifs and may 

disable the 3'-5' helicase activity. The normal protein is believed to suppress 

inappropriate recombination.  Bloom Syndrome is one of a limited number of rare 

hereditary diseases marked by genetic defects of DNA repair mechanisms.  Though these 

disorders may present differently, there is overlap in clinical features such as neurological 

disorders (reviewed in [280]).  As such, genes that cause these rare hereditary disorders 

may play a role in neurological disorders, such as schizophrenia. 

 

ZNF536  

ZNF536 (zinc finger protein 536) is located on chromosome 19q12 and encodes a 

high conserved zinc finger protein.  The protein is most abundant in the brain where it 

negatively regulates neuronal differentiation, which makes ZNF536 an attractive 

candidate susceptibility gene for schizophrenia.   

 

Identification of Causal SNPs 

In each linkage region, we are interested in identifying the variants that produce the 

strongest evidence for LD with the disease phenotype. Finishing this work includes: 

1. Genotyping the remaining 14 SNPs from the first batch of 101 candidate SNPS. 

• The 101 SNPs identified in Chapter 5 have been completed preliminary 

genotyping, with 87 passing data cleaning as described in Chapter 3.  The 
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remaining SNPs are currently being re-processed, and will be assessed 

using the PPLD|L when completed.   

2. Genotyping the unique candidate (n=83) variants that could not be excluded by r2 

simulations identified in Table 14.  

• The 83 additional candidate variants identified for genotyping will be 

analyzed as a second batch.  We will follow the same procedures 

described in Chapter 5 for the first batch, which includes primer design, 

genotyping, cleaning of genotype data, and re-analysis by the PPLD|L. 

3. Conduct recursive analysis on the 6 new SNPs, and any others of interest 

determine from steps 1 and 2, above. 

• As discussed at the end of Chapter 5, six SNPs produced higher PPLD|L 

scores than the risk SNP that referred them that lie within linkage regions 

identified using microsatellite markers.  In order to further investigate 

these new SNPs and any others that produce higher PPLD|L scores that 

are generated by the additional analyses described in steps 1 and 2 above, 

we will first perform recursive analysis using the methods described in 

Chapter 5 to search 500 kb up-stream and down-stream from these 

locations to rule out additional candidates, which will add approximately 

4,000 bp to our original search criteria.  We will also perform this analysis 

on the new risk SNPs that lie within linkage regions identified by the 

genome scan conducted with the SNP markers. 
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Next, we need to construct a set of candidate variants for further evaluation. This set will 

include: 

1. Original risk SNPs where no variants with stronger LD was found 

2. New variants that produce about the same PPLD as the risk SNPs (the 0 to 0.1 

increase in PPLD group) 

3. New variants that are even better than the original risk SNPs (and replace the 

original SNP) 

 

All of these may be candidates for functional evaluation. Before we proceed to 

laboratory evaluation of function, we can perform some bioinformatics work to help 

prioritize these candidates.  

We can use information generated by Kelvin to build a profile of what a causal 

variant might look like.  Because Kelvin retains many aspects of parametric linkage 

analysis in the course of its computation, examination of the penetrance vectors produced 

in the calculations for the PPLD|L can be used to construct an expected inheritance model 

which then can be compared to the pattern of segregation of the candidate variant in our 

sample.  We can also look at the Disease Gene Frequency (DGF) generated by Kelvin 

and compare it to our candidate SNP minor allele frequency.  If they are not similar this 

may indicate that our candidate SNPs are not causal. 

We will also look at evolutionary conservation with the aim of determining if any 

work on model organisms can help guide prioritization of these candidates.  The initial 

six new candidates are outside of coding regions, in relative ‘gene deserts’.  These areas 

can be particularly prone to long-range LD spanning greater than 500kb, so we may need 
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to expand our search to include a much larger region.  If we discover additional candidate 

variants the specific laboratory analyses that would need to be done would be tailored to 

the potential function of the variants, e.g. a variant that causes a missense mutation in a 

coding region might be tested for nonsense mediated decay or, if a product is made, loss 

of specific protein function, whereas a variant that is predicted to alter an enhancer 

sequence might be analyzed for the potential to alter gene expression using a luciferase 

assay.  Testing multiple functional variants using multiple different methods will be 

costly, but since the cost of sequencing has significantly declined, it will be likely be 

more economical to first sequence additional individuals to obtain additional data that 

should help further cull the list of potential candidates.   

 

Sequencing More Individuals 

 Initial sequencing for this project was performed in 2012.  At that time, the cost to 

sequence a single genome was fairly high, but it has since decreased dramatically, 

allowing for more individuals from our sample to be sequenced (Figure 6). 

 



95 
 

 

 
 

Figure 6: NHGRI cost per enome for individual whole genome sequencing.   

The precipitous drop in cost that occurred between 2007 and 2008 was the result of 

major technological advances.  These advances not only reduced the cost, but also 

significantly improved the turn-around time for results. 

  

 As discussed in Chapter 3, initially individuals were selected for sequencing 

based on three criteria: 1) coming from the core portion of one of the larger pedigrees, 2) 

being a patient with a ‘typical’ case of schizophrenia, featuring diagnostic stability and 

phenotypic homogeneity with other sample subjects, and 3) having high quality DNA 

available to send out for sequencing.  New individuals to sequence were selected under 

the following criterion: 1) At least one sequenced individual in family, 2) Affected under 

the phenotype tested, 3) Individual contributes to the peak in the same way that the 

previously sequenced individual does, and 4) DNA is available for analysis.  
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 To identify candidate individuals for sequencing, the original 22 pedigrees for 

which microsatellite data were available was first divided into the individual pedigrees, 

and each family was analyzed by itself to assess its contribution to the largest peak on 

Chromosome 1, using the Build 37 Microsatellite Genome Scan, to determine if enough 

power exists within that pedigree to reach a PPL score indicative of linkage.  

 For example, each of the eight families with sequenced individuals were analyzed 

for the interval 167-171 cM on chromosome 1, under the narrow phenotype.  Pedigrees 

001 and 102 each produced PPL scores >= 10% when analyzed by themselves (Table 

17). 

 

Pedigree 001 002 011 029 101 102 105 206 

Position PPL 

167 0.09 0.04 0.016 0.019 0.018 0.13 0.016 0.03 

168 0.09 0.04 0.016 0.023 0.017 0.14 0.016 0.03 

169 0.16 0.03 0.016 0.03 0.019 0.10 0.016 0.03 

170 0.16 0.022 0.016 0.05 0.018 0.09 0.016 0.03 

171 0.03 0.017 0.017 0.09 0.018 0.024 0.017 0.03 

 

Table 17: Chromosome 1 results by family under the narrow phenotype.  

Pedigrees 001 and 102 are the only families that achieved a PPL score >= 10% when 

analyzed by themselves, demonstrating that they have the power to produce strong 

linkage signals.   

 

 Pedigree 001 has 37 individuals with 14 coded as affected under the narrow 

phenotype.  Pedigree 102 has 21 individuals with 4 coded as affected under the narrow 

phenotype.   

 The by-family microsatellite Genome Scan was performed using build 37 

positions and the results were analyzed by Python script.  Any location where a single 

family generated a PPL score >= 10% was further evaluated.  In the additional analysis, 
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each individual’s affection status was sequentially set to zero and the family score was re-

evaluated.  If a family PPL score increased with the removal of an individual he or she 

was determined to be providing evidence against linkage, whereas if the family PPL 

score decreased with the removal of an individual here or she was determined to be 

providing evidence for linkage.  For each peak by family the affected individual most 

closely trending with the previously sequenced individual was selected as a possible 

candidate for sequencing (Table 18).  Peaks present on the SNP Genome Scan described 

in Chapter 4 were given priority when determining sequence candidates.  It will also be 

necessary to sequence strategically selected unaffected individuals from these families.  

This will help us to quickly identify variants that may be monomorphic within our 

sample.  It will also prevent classifying a variant as potentially causal if it is seen in many 

unaffected individuals. 
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Peak Pos (cM) Ped Family Score After Drop Change Candidate 

ch01n 170 001 0.16 0.09 0.07 001.0115 

ch01n 168 102 0.14 0.06 0.08 102.0073 

ch02b 17 029 0.19 0.11 0.08 029.A039 

ch03n 24 102 0.15 0.07 0.08 102.0073 

ch05b 99 029 0.13 0.08 0.05 029.1029 

ch05n 10 102 0.11 0.06 0.05 102.0073 

ch06b 85 102 0.1 0.06 0.04 102.0079 

ch07b 21 029 0.32 0.20 0.12 029.1029 

ch07n 50 102 0.14 0.06 0.08 102.0073 

ch08b 42 029 0.15 0.07 0.08 029.0060 

ch10b 137 105 0.17 0.08 0.09 105.1067 

ch13b 112 206 0.21 0.10 0.11 206.0004 

ch13n 112 206 0.21 0.10 0.11 206.0004 

ch14b 85 011 0.17 0.09 0.08 011.0020 

ch17b 136 011 0.12 0.07 0.05 011.0018 

ch18b 5 105 0.11 0.05 0.06 105.1000 

ch21b 11 029 0.13 0.05 0.08 029.0000 

ch23b 132 105 0.13 0.05 0.08 105.0001 

ch23n 130 105 0.18 0.09 0.09 105.1090 

 

Table 18: Results of analysis of family peaks. 

Results of analysis of family peaks with a PPL >= 10% following sequentially 

zeroing out affected status to ascertain the best sequence targets using criteria 

described above.  Peak includes chromosome and phenotype, where n = narrow and 

b = broad.  Position in cM for PPL max is given, along with the pedigree number 

generating the Family Score in the following column.  After Drop indicates the new 

score when the Candidate is zeroed out.  The Change column indicates the 

difference between the family score with the individual included and excluded, 

demonstrating these individuals are contributing to the peaks they have been 

selected for.  Candidate 102.0073 is in bold italics because that individual has 

already been sequenced. 

 

 Another option for additional sequencing targets would be to simply sequence an 

entire pedigree.  In this case, Pedigree 102 is an attractive candidate.  Pedigree 102 was 

able to produce five separate PPL scores >=10%, four of which occur under the narrow 

phenotype allowing for better homogeneity with respect to diagnosis.  Additionally, 

Pedigree 102 has an uncommon event in it:  Two brothers from one nuclear family 
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married two sisters from another nuclear family.  As a result, though their offspring are 

technically cousins, genetically they are closer to siblings in terms of relatedness. 

 Sequencing more individuals will benefit many areas of the remaining work to be 

done, including: recursive analyses where LD is evaluated, functional analyses of 

proposed candidate variants, and the collection of information on unaffected family 

members so that direct comparisons can be between individuals with shared genetic 

backgrounds. 

 Schizophrenia is a complex mental health disorder that has yielded conflicting 

results in both linkage and association analysis.  This thesis has demonstrated an 

approach that can be successful using smaller samples.  The identification of such an 

approach holds promise for greater understanding of the complex genetic architecture 

underlying this devastating disease. 
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