
CRYPTANALYTIC STUDY OF
PROPERTY-PRESERVING ENCRYPTION

BY FATMA BETÜL DURAK

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

David Cash

and approved by

New Brunswick, New Jersey

October, 2017

ABSTRACT OF THE DISSERTATION

Cryptanalytic Study of Property-Preserving Encryption

by Fatma Betül Durak

Dissertation Director: David Cash

Property-preserving encryption (PPE) provides accessible methods to encrypt the databases

in an efficient way by preserving specific fuctionalities of databases. PPE as an impact-

ful research area accommodates deterministic encryption, order-revealing encryption

(ORE) and format-preserving encryption (FPE). Although the simplicity and compati-

bility of PPE makes it demanding in real world systems, the security of these primitives

has been unclear since their invention. In this work, we study and explore the range

of threats in ORE and FPE established with a Feistel network as the elementary unit.

We take system- and theory-centric approach to address the issues in ORE, FPE, and

Feistel networks which form building blocks of some particular FPE schemes (and po-

tentially many other constructions) of our interest.

We start with ORE where the ordering relation of messages is preserved (and re-

vealed) on corresponding after encryption. In our work, we demonstrate two issues in

ORE: firstly, we show that when multiple columns of correlated data are encrypted with

ORE, attacks can use the encrypted columns together to reveal more information than

prior attacks could extract from the columns individually. Secondly, we apply known

attacks, and develop new attacks, to show that the leakage of concrete ORE schemes

on non-uniform data leads to more accurate plaintext recovery than is suggested by the

security theorems which only deal with uniform inputs.

ii

We then consider the recently published FPE standards: FF1 and FF3, by The

National Institute of Standards and Technology (NIST) . Particularly, FF1 and FF3

are both tweakable block cipher based on Feistel network (FN). Feistel network in FPE

is an iterative cipher that are composed of multiple rounds to encrypt the plaintext

by breaking it into left and right branches. Each iteration, called round, consists of a

secret round function (i.e. a keyed pseudo-random function) and modular addition. In

each round, one half of the input is evaluated with a round function and then applied

by modular addition with the other half (which is preserved for the next round). The

outputs are permuted and then input to the next round. The security of FN hinges

on the security of its round functions and the number of iterations (more iteratitions

assure stronger security at the cost of efficiency). In the NIST standards, FF1 and

FF3 are AES-based modes of operation composed with 10-round and 8-round Feistel

network respectively. FPE is specifically designed for small domain sizes when N2 > 10

where N is the branch size of Feistel network.

In this work, we investigate the security of Feistel network thoroughly since its

security has not yet been understood well with already existing theoretical analyses

to integrate with small domains. We develop a set of new generic attacks for Feistel

network that have direct effect on FF1 and FF3. First, we give a generic known-

plaintext attack to a 4-round Feistel network that reconstructs the entire tables for all

round functions. It requires a data complexity of N
3
2

(
N
2

) 1
6 known plaintexts and time

complexity of O(N3). Our 4-round attack can be easily extended to five or more rounds

with complexity N(r−5)N+o(N). We continue further to explore more generic attacks on

arbitrary number of rounds that covers 8-round and 10-round Feistel network. In that

direction, our ideas are developed around exhaustive search on the round functions

by using an early abort that eliminates as many candidates as possible during the

reconstruction phase of round function. We conclude that neither FF1 when N 6 11

nor FF3 when N 6 14 offers 128-bit security.

Finally, we give a new total break attack to the FF3 scheme by exploiting the bad

domain separation in its design. It is practical when the domain size is small. Our

attack is not generic and enables slide attack due to its weak design. Luckily, we can

iii

provide an easy and intuitive fix to prevent the FF3 scheme from our attack. A follow-

up work after the slide attack to the FF3, we develop a new generic attacks on Feistel

networks (without restricting ourselves to any of its system design). Unfortunately, our

research indicates that the security assurance of FF3 is still not viable even with our

suggested patch when the domain size is tiny.

iv

Acknowledgements

Starting a Ph.D. in the USA was a turning point in my life. Succeeding it was the most

stimulating, mentally reinforcing and satisfying experience overall. It was not easy. I

had to pass through many challenging paths. Nevertheless, I tried to produce great

work, collaborated with many people, have met many smart researchers, and made a

lot of friends. Sometimes, I was alone in this journey, sometimes not; there were times I

was fully satisfied, while at the same time questioning where I am and what I am doing.

At the end, given the fact that I am writing these lines, I feel that I have fulfilled one

of the big dreams of my life. So far!

I would like to thank my adviser, Prof. David Cash, for being very helpful, kind,

and present for me to succeed my thesis. I would like to heartily thank Prof. Serge

Vaudenay to have opened his opportunities and his great projects to me. Without our

coffee times and lengthy discussions, I wouldn’t have been able to keep my excitement in

my work, I wouldn’t have been able to pursue my dream, and I wouldn’t have been able

to feel confident enough in my job. I also would like to thank my committee members

Rebecca Wright, Shubhangi Saraf, Thomas Ristenpart and all my collaborators with

whom I have worked. It is my pleasure to thank Berra Beyoglu and Hülya Bicer with

whom I have shared a significant amount of my time during last few years together.

Finally, I thank my family for encouraging me in every decision of my life with

full support. Biggest thank you to my mother, Emine Durak, for her genuine and

loving care for me; my father, Muharrem Durak, for his support to keep my dreams;

my brother, Haci Veli Durak, for his belief in me and making my life more fun. More

thanks to my beloved cousins Hamide Arslan, Adnan Arslan, and Mustafa Güven; who

helped me to become who I am, who did more than they should have for me to lead

me where I wanted to be.

v

Dedication

I proudly dedicate my dissertation to my grandmother, Hafize Cangüven, for being the

greatest person in my entire life, for her unconditional love and genuine care, and for

being a unique person in every respect. Grandmother, you are my lifetime idol with all

your humanitarian values that you instilled in me. You will be sorely missed. Rest in

peace.

vi

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vi

1. Introduction . 1

1.1. Terminology . 2

1.2. Our Contribution . 7

2. What Else is Revealed By Order-Revealing Encryption? 12

2.1. Order-Revealing Encryption . 13

2.2. Security of Order-Revealing Encryption 13

2.2.1. Existing Attacks . 16

2.2.1.1. Theoretical Result on Leakage Profiles 16

2.2.1.2. Attacks on Leakage Profiles 16

2.2.2. Datasets and Implementations 18

2.3. Inter-Column Correlation . 19

2.3.1. Sort Attack on Location Datasets 22

2.3.2. Sort Attack Accuracy with Bounds 25

2.4. Leakage-Enabled Attacks . 26

2.4.1. MSDB on Random Globe Points 28

2.4.2. ROPF on Real Locations . 28

2.4.3. ROPF on Small and Large Messages 29

2.4.4. MSDB on Real Locations: The Distance Minimization Attack . 30

2.4.5. Combined Attacks on MtR and RtM. 34

2.4.6. RtM on timestamp data . 35

vii

2.4.7. Modular ORE on Real Locations 38

2.5. Conclusions and Recommendations . 39

3. Format-Preserving Encryption and Feistel Network 40

3.1. Format-Preserving Encryption . 40

3.2. Tweakable Encryption . 41

3.3. Feistel Network . 42

3.3.1. Feistel-based Tweakable Format-Preserving Encryption 43

3.3.2. The FF3 Standard . 45

3.3.3. The FF1 Standard . 46

4. Generic Attacks On Feistel Network . 47

4.1. Existing Security Results of Feistel Network 47

4.1.1. Generic Round-Function-Recovery Attack with Guess and Deter-

mine Method [BLP16] . 50

4.1.2. Meet-In-The-Middle (MITM) Attack 51

4.1.3. Improved MITM . 52

4.1.4. Message Recovery Attack [BHT16] 55

4.2. Our Generic Attacks on Feistel Network 55

4.2.1. Round-Function-Recovery on 3-Round Feistel Scheme 56

4.2.2. Round-Function-Recovery on 4-Round Feistel Scheme 57

4.2.3. Round-Function-Recovery on 5-Round Feistel Scheme and More 73

4.2.4. Round-Function-Recovery by Partial Exhaustive Search 74

4.2.4.1. Random Partial Exhaustive Search 74

4.2.4.2. Approximation. 76

4.2.4.3. Chosen plaintext extension. 77

4.2.4.4. Optimization with larger q. 77

4.2.4.5. Discussion. 78

4.2.4.6. Improvement. 78

4.2.4.7. Iterative Partial Exhaustive Search 78

viii

4.2.4.8. On the validity of Eq. (4.10). 80

4.2.4.9. Approximation. 81

4.2.4.10. Chosen plaintext extension. 82

4.2.4.11. Discussion. 82

4.2.4.12. Optimization with larger q. 82

4.2.4.13. Variants of Iter and Iter∗ 82

4.2.4.14. Experimental Results 83

4.3. Applications . 85

4.4. Conclusions . 88

5. Breaking the FF3 Format-Preserving Encryption Standard Over Small

Domains . 91

5.1. The Variant of FF3 with XOR . 91

5.2. Slide Attack on FF3 . 92

5.3. Repairing FF3 . 99

5.4. Conclusion . 99

References . 100

ix

1

Chapter 1

Introduction

An increasing amount of sensitive and private data are being collected and stored in

databases by enterprises and government agencies. These databases are either kept

local or outsourced to third parties in order to reduce the burden of data management

and maintenance cost. Despite its prevalence and merits of such systems, unprotected

databases result in severe security and privacy issues. Indeed, data breaches such as

hacking of Cellebrite, the world famous iPhone and device cracker, caused the break-in

of 900 GB of sensitive corporate data to be compromised. This includes the list of

companies which bought phone cracking technology, various types of technical data

and databases. This occurrence and extensive compromises of systems made security

a primary concern of the design processes of every commodity database management

system (DBMS). The possible hedge against compromises with the DBMS has been

suggested with encrypted databases so that the data is protected from the attacker.

Standard encryption with a key held by the client could only offer protection from

the damages caused by the compromised server to some extent. However, encrypting the

data to secure it causes some major drawbacks to the existing services. In a single client-

server settings, for instance, configuring and deploying standard encryption prevents the

client from performing basic operations such as keyword search or range queries over

the encrypted data (the client must either provide the decryption key or dump the

entire database). This mitigates the most significant advantage of the systems and

makes the access cumbersome for the data owner. Moreover, encrypting legacy systems

in order to secure it is not possible without making considerable costly modifications to

the existing databases. A database created decades ago could be processing a 9-digit

of social security number (SSN). This particular system can only accommodate 9-digits

2

of SSN and simply cannot handle larger data which would be generated with standard

encryption, i.e. 128-bit AES algorithm. Moreover, the applications built on top of these

databases expect the data in the form of the messages (i.e. 9-digits of decimal strings

from the set of valid SSNs), whereas the encrypted data could be any binary string

with special characters or letters.

A specific and efficient class of encryption methods has been developed to deal with

this riddle. These methods fall into the category of so-called property-preserving en-

cryption (PPE) [PRZB11,GHH+14] (such as deterministic encryption, order-revealing

encryption, format-preserving encryption) and have been increasingly marketed and de-

ployed in many systems. Due to its compatibility with the real world database systems,

PPE-based encrypted databases look like a seeming solution to the problems created

by standard encryption on databases. The main intuition behind PPE is to allow a

server to execute its part of functionality on encrypted data and preserve the certain

properties of plain data so that the data can be encrypted preserving those properties.

PPE allows for the least amount of changes to the legacy systems, as it allows applica-

tions to operate on encrypted data in the same way that they would on plain data. It

lets the systems take advantage of all the optimization techniques of standard database

management systems that makes the query processing quite fast. However, the design

of encryption methods in PPE exposes some information called leakage which poses

a lot of risks. In fact, those risks could be devastating even for the designs that are

admitting the amount of leakage (the leakage supported with strong claims by means

of “provable security”).

In the present work, we study the security of PPE-based methods and their building

blocks.

1.1 Terminology

In this section, we overview the basic concepts that we will need throughout this work.

We then concretely explain our contributions.

Relational databases. Relational database is a set of data items organized in tables

3

where each row corresponds to a unique instance of an individual (e.g. an employee

or a customer of a corporation), and each column corresponds to a category associated

with a row (name, date of birth, address, etc). In general, we would be interested in

encrypting a given column of data using PPE techniques so that certain properties of

the columns are preserved.

Deterministic encryption. It was first formally defined by Bellare, Boldyreva, and

O’Neill in [BBO07] along with a few instantiations of the primitive and its security

definitions/analysis. Briefly, a symmetric deterministic encryption (DTE) scheme is

a 3-tuple (Gen(·),Enc(·, ·),Dec(·, ·)) where Enc(·, ·) takes two inputs as a secret key

K generated by Gen(·) algorithm and a plaintext to map the plaintext into a unique

ciphertext under the secret key K. Dec is the inverse of Enc function. DTE is not

a randomized encryption scheme, hence the equality of two messages encrypted under

the same key will be preserved and also revealed to the adversary.

Searchable encryption. It allows a data owner to encrypt his/her documents along

with a keyword index to outsource. The data owner can later interact with an untrusted

server to securely search on the encrypted documents. Searchable encryption (SE) has

been a popular field of research initiated with Song, Perrig, and Wagner [SWP00a].

Briefly, a static SE scheme consists of a tuple (SetUp(·), Token(·, ·),Search(·, ·, ·),

Token(·),Dec(·, ·)) which defines an interactive protocol between a client and a server

for keyword search operation. In this tuple, SetUp(·) takes a document collection as in-

put and outputs a private state for the client and an encrypted index. Token(·, ·) is an

algorithm run by the client. It inputs a secret key and a keyword, outputs an encoded

keyword for Search algorithm. Search(·, ·, ·) is an interactive protocol which inputs an

encrypted index, an encoded keyword token, a private client state and outputs a set of

identifiers that correspond to the documents containing the queried keyword (returned

by the server). Dec(·, ·) returns the plaintext of document identifiers and updates the

client state. SE can be defined in dynamic setting by allowing Update protocol that

enables addition or deletion of non-existing documents.

The security of SE primitive is defined with the concept of information leakage to the

service provider that holds the encrypted documents in order to perform search (under

4

the honest-but-curious adversarial model). For instance, all the SE constructions leak

the hashes of keywords that reveals the keyword search repetition (called search pattern)

and identifiers of the documents returned by each search (called access pattern). There

exist many construction of SE in both static and dynamic setting that target different

security levels [NPG14, KPR12, CJJ+14, SPS14]. There have been many studies of

the information leakage through access and search patterns [CGPR15,PW16, ZKP16].

Statistical inference attack even reveal information about encrypted queries and files

accessed by the query [IKK12].

Oblivious random access memory (ORAM) introduced by Goldreich and Ostrovsky

[GO96, SSS11, SvDS+13] can hide access pattern, therefore can prevent most of the

information leakage in SE. However, all known ORAM constructions in [SCSL11] are

more complicated and less efficient than SE. In particular, they require many round

trips between the client and the server with significantly larger memory complexity

spent on the server. Therefore, ORAM techniques for SE suffer from inefficiency and

are in practice not preferred.

Order-preserving encryption. Order-preserving encryption (OPE) enables an un-

trusted database service provider to process range queries on a column in relational

databases without completely revealing the numerical values in that column. Briefly, a

symmetric OPE scheme has four algorithms (Gen(·),Enc(·, ·),Compare(·, ·),Dec(·, ·))

with the following property: if m1 > m2, then Compare(Enc(K,m1),Enc(K,m2)) = 1

under the same secret key K indicating that the first message is greater than the second

message (similarly, if m1 < m2, then Compare(Enc(K,m1),Enc(K,m2)) = −1 under

the same secret key K). Simply put, the comparison relation on plaintexts is preserved

across the corresponding ciphertexts.

OPE in practice is very intuitive to apply in relational databases. In a single client-

server model with a proxy which holds the client’s secret key, the client (with its proxy)

encrypts the individual columns of its interest to query a range (under different keys

for each column) and outsources it to the server. When the client processes a range

query with an interval [x,y], the proxy encrypts x and y with a key corresponding to

the column and sends encrpyted end points to the server. Then, the server looks for

5

the values in between Enc(K, x) and Enc(K,y) to return it to the proxy. The proxy

then decrypts them and sends to the client as a result. Hence, small modifications to

the existing services would be enough to upgrade the security of the databases (the

server requires inconsequential changes). Among the practical OPE schemes, some

are blockcipher based whereas some are interactive protocols [PLZ13, KS14, Ker15],

maintaining the security definitions.

Order-revealing encryption which is a generalized form of OPE with some distinc-

tions. In particular, the Compare algorithm in OPE is a standard comparison oper-

ation on numerical values, whereas Compare algorithm in ORE works with any form

of ciphertexts along with numerical values. The distinctions are not important for this

work, hence we refer to only ORE which subsumes OPE for the rest of this work.

Several practical ORE constructions are available [BCLO09, CLWW16]. By the

definition of the ORE primitive, it has a weaker security than standard encryption

even when it is used in a randomized manner. In particular, an adversary that has

been given chosen-plaintext power breaks any ORE construction with enough number

of queries (due to the binary search). ORE schemes have been proven secure under

some cryptographic assumptions. The security of ORE was first studied by Naveed et

al. as in [NKW15]. In their work, Naveed et al. showed various practical attacks on

ideal ORE construction where the information leaked by the ORE scheme was “only”

the ordering relation of messages (there are certain practical OPE and ORE schemes

which leaks additional information such as plaintext bits or statistical information).

Their attacks work under the assumption that the attacker obtains the encryption of

almost the entire message domain or the adversary has given some auxiliary information

such as statistical information to enable frequency analysis. Their attack has been

applied on medical dataset collected from hospitals to show its accuracy and impact.

An independent and concurrent work by Grubbs et al. in [GSB+17] defines improved

attacks against both ideal and non-ideal ORE instantiations. Their work introduces

a new bipartite graph structure, and uses dynamic programming algorithms in their

framework to make attacks effective beyond the dense domains attacked by Naveed et

al. Along with our work, these constitute the first empirical analysis of non-ideal ORE.

6

Format-preserving encryption. It provides a way to encrypt a message of a spe-

cific “format” into the same “format”, meaning that if a message is 16-digit credit

card number (CCN) with a valid checksum, the ciphertext is also a valid 16-digit of

CCN. Similarly, if messages are formed as a 6-digit of passcodes, the encryption algo-

rithm maps them to the ciphertexts of the same domain. Brightwell and Smith [BS97]

introduced the first known format-preserving encryption schemes.

An FPE is a deterministic symmetric key encryption with a tuple defined as (Gen(·),

Enc(·, ·, ·),Dec(·, ·)). Enc(·, ·, ·) function takes a key K, a format F and a message X

from a domain D to return a ciphertext Y which is an element of D. There is a

corresponding decryption function Dec(·, ·) such that Dec is an inverse of Enc, i.e.

they are permutations over domain D.

FPE is specifically designed for short messages (i.e. smaller than 128-bit message

length) which are not necessarily in binary form. The National Institute of Stan-

dards (NIST) published a specification for practical FPE constructions accepting three

important schemes [NIS16]. NIST motivated its standard with the following words

“FPE has emerged as a useful cryptographic tool, whose applications include financial-

information security, data sanitization1, and the transparent encryption of fields in

legacy databases.”.

The FPE schemes in NIST standards assert security claims which are supported

by crytanalytic techniques, and there has been no proofs of the security of the con-

structions. In this work, we focus on two specific FPE standards called FF1 and FF3

and analyze their security with new and sophisticated techniques which are practical

when the domain size is sufficiently small. There already existed a recent attack by

Bellare et al. in [BHT16] which studied the FF1 and FF3 by exploiting the weakness

of underlying building block which is a Feistel network. Another weakness explored by

Patarin and enchanced by Bellare et al. is a bias that is introduced due to the non-

invertable round functions used in the Feistel network. The query complexity of the

attack exceeds the domain size with many tweaks. It is interesting when the adversary

1The sanitization of personally identifiable information in a database -whether by FPE or other
methods- does not necessarily provide strong assurance that individuals cannot be re-identified

7

can make known-plaintext queries under multiple tweaks.

Given all these PPE-based primitives, one fundamental research direction is under-

standing the security of these primitives in practice by cryptanalysis of these methods.

Even though all of the OPE and SE constructions are provably secure under widely be-

lieved cryptographic assumptions, there is a gap between what theory suggests and how

they achieve security in practice. This gap is mostly due to the unrealistic assumptions,

such as uniform data distribution rather than any cryptographic assumption itself, and

due to the fact there is not enough theory studied for the underlying building blocks

(specifically in the NIST standards). Throughout this work, we will study the prim-

itives used in practice, their security claims, and the meaning of security in practice

under given various novel cryptanalysis techniques.

In our work, we will explicitly focus on Feistel networks which have been used in the

FF1 and FF3 FPE standards. Feistel Network is an iterative cipher that generates a se-

cure pseudo-random permutation defined on larger domain from secure pseudo-random

function or pseudo-random permutation over a smaller domain. Each iteration called a

round consists of an uninvertable round function which makes the Feistel network in-

teresting. We are convinced that there has been no thorough analysis of this primitive

and its legitimate security in practice has been overlooked.

1.2 Our Contribution

This work categorically focuses on order-revealing encryption, format-preserving en-

cryption and Feistel networks. In Chapter 2, we present a collection of observations,

experiments, and attacks dealing with the use of ORE on data that will be encountered

in practice. We point out some overlooked properties of leakage profiles, perform ex-

periments to measure the security of ORE against known attacks but on non-uniform

data, and give new attacks showing that ORE is less secure than theory indicates.

We first identify new properties of datasets that can cause information to be leaked,

even when an ideal ORE is used. Then, we turn to analyzing the leakage of concrete

(non-ideal) instantiations of ORE.

8

In a database table with multiple columns, PPE-based systems use ORE to encrypt

each column independently under different keys. Using a different key for each column

prevents direct comparison of ciphertexts across columns, thus leaking less information.

The first part of the work investigates the security of ideal ORE on multiple columns.

We observe that columns of data in a table are usually correlated because a row of a

table usually corresponds to an individual record. We study the effect of correlation

using simple multi-column versions of attacks by [NKW15] on ideal ORE. We analyze

our attacks using visualizations and measurements of the attack accuracy on geographic

datasets (described with more details in Chapter 2) where latitude and longitude were

correlated.

The attacks in the first part of our work apply to any ORE that reveals order, but

most ORE schemes reveal more. In the second part of our work, we try to understand

the leakage allowed by these concrete ORE instantiations [BCLO09,BCO11,CLWW16].

In practice, the data in a column are generally not uniformly random and inde-

pendent, therefore the one-wayness proofs by [BCO11, CLWW16] do not apply. That

means the information leaked by these constructions may be greater than the theorems

suggest. We show the effect of the leakage caused by non-uniformity of data (techni-

cally violating the assumptions of the theorems). We start by measuring the amount

of information that can be directly inferred from leakage profiles of existing ORE con-

structions on different types of data, including synthetic and real location datasets and

timestamps for mobile phone usage. This measurement consists of running simple at-

tacks and in some cases composing them, to produce guesses of plaintexts which are

then evaluated for accuracy depending on the context.

We found that the security gap guaranteed by one-wayness theorems were not al-

ways applicable on real data. Concretely, we consider the construction of Chenette et

al. [CLWW16], which was proved to be one-way in a quantitatively stronger sense than

the prior work of Boldyreva et al. [BCLO09,BCO11]. But by simulating the Chenette

et al. and Boldyreva et al. leakage profiles on a real dataset of 2000 latitude-longitude

pairs, we found that essentially the same number of plaintext bits (about 50%) were ex-

plicitly leaked by both schemes. On larger datasets Chenette et al. may leak even more.

9

More precisely, we took a closer look at the Boldyreva et al. scheme [BCO11]. The-

oretical results [BCLO09] suggested that this construction “leaks the most-significant

half of the plaintext bits,” but our experiments showed that this conclusion was too

generous: simple attacks recover more.

Our results above show that the Chenette et al. construction can leak the same

number of bits as Boldyreva et al., despite the one-wayness gap. We go further in at-

tacking the Chenette et al. construction, showing how to infer additional plaintext bits

beyond those explicitly leaked. Our attack against the Chenette et al. construction was

able to predict almost every point in a location dataset of California road intersections

to within 5km (and most to within 0.5km), while the leakage profile did not explicitly

leak the location of any plaintext to within less than 400 km. We note that our quan-

titative claim depends on the attacker determining the two most significant bits of the

longitudes by hand, since the ORE construction did not leak these explicitly. (This

amounts to putting a California-shaped blob of points in one of four possible places on

the globe.)

In Chapter 3, we introduced the format-preserving encryption and Feistel network

(FN) primitives before investigating the security in the following chapters. We did not

provide any contribution in this chapter. In Chapter 4, we developed a set of attacks

for various number of rounds of Feistel networks with specific design (two branches and

modular addition) that was used to construct FPE schemes. We showed a new generic

known-plaintext attack on 4-round Feistel networks (we insert this attack in our slide

attack to break the FF3 construction). Our techniques to develop a 4-round attack is

novel and different from any previously known attack on Feistel networks. In our attack,

we fully recover the round functions with N
3
2

(
N
2

) 1
2L known plaintext and with a time

complexity O(N2+ 3
L) for four rounds. Furthermore, we utilized our 4-round FN attack

to extend the round function recovery to more rounds. Due to the generic and known

plaintext nature of our 4-round FN attack, we easily adapted it to a chosen-plaintext

attack to apply it on five and more rounds Feistel structures.

We continued our studies to strengthen the attack to five or more rounds. We ex-

plored Feistel networks with two branches, random functions, and any arbitrary number

10

r of rounds further with known generic exhaustive search attack. We started with a

brief survey of different types of attacks on FN and presented their complexities and

then proposed improved attacks. For small number of rounds, the best attack is an im-

provement of Meet-In-The-Middle (MITM) attack. However, we found a better attack

for larger number of rounds based on partial exhaustive search. This attack for Feistel

network with arbitrary number of rounds over small domains show that both FF1 and

FF3 do not provide the intended security over tiny domains. Our attack shows that

neither FF1 with N = 11 nor FF3 with N 6 14 (even with our fix to the FF3 attack)

offer 128-bit security.

In Chapter 5, we gave a total practical break to 8-round Feistel network based FF3

FPE standard over a small domain. In this part, rather than generic attacks on 8-

rounds FF3, our attack exploited the “bad domain separation” in FF3. Namely, the

specific design choice of FF3 allows us to permute the round functions by changing the

tweak and it leads us to develop a slide attack (using only two tweaks). The attack

works with chosen plaintexts and tweaks when the message domain is small. It requires

O(N
7
4+

1
4L) chosen plaintexts and two tweaks, with time complexity O(N5), where N2

is input domain size to the Feistel network and L is a parameter in our attack which

is typically set to 3 in experimental results. Luckily, the fix to prevent FF3 against

our attack is quick and easy to incorporate without changing the main structure of the

scheme.

The author’s series of publications are listed below.

• Circular Security Reconsidered by F. Betül Durak, Serge Vaudenay (2016). Pub-

lished in Innovative Security Solutions for Information Technology and Commu-

nications, SECITC 2016, Lecture Notes in Computer Science, vol 10006, Springer

[BDV16]. (Not covered in this dissertation.)

• What Else is Revealed by Order-Revealing Encryption? by F. Betül Durak,

Thomas M. DuBuisson, and David Cash (2016). Published in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2016 [DDC16]. (Covered in Chapter 2)

11

• Patent Application. Method for Multi-Server Searchable Symmetric Encryption

with Fully Oblivious Search Pattern by Guajardo Merchan Jorge, Jain Shalabh,

Hoang Thang, F. Betül Durak. Application date: 14/11/2016. Application Num-

ber: 62/421579. (Not covered in this dissertation.)

• Breaking the FF3 Format-Preserving Encryption Standard over Small Domains

by F. Betül Durak, Serge Vaudenay (2017). Published in Advances in Cryptol-

ogy, CRYPTO 2017, International Association for Cryptologic Research, Lecture

Notes in Computer Science, vol 10402, Springer [DVb]. (Covered in Chapter 4,

5)

• Breaking the FF3 Format-Preserving Encryption Standard over Small Domains

by F. Betül Durak, Serge Vaudenay (2017). Published in Proceedings of Early

Symmetric Crypto, ESC 2017 [DVa]. (Covered in Chapter 4, 5)

• Practical Oblivious Dynamic Searchable Encryption via Distributed PIR and

ORAM by Thang Hoang, Jorge Guajardo, Attila Altay Yavuz, F. Betül Du-

rak. Submitted to Annual Computer Security Applications Conference (ACSAC)

2017. (Not covered in this dissertation.)

• Cryptanalysis of Generic Feistel Network by F. Betül Durak, Serge Vaudenay.

(Covered in Chapter 4)

12

Chapter 2

What Else is Revealed By Order-Revealing Encryption?

Property-preserving encryption (PPE) encrypts data in a way that certain func-

tionalities that we have with plaintexts can be computable on ciphertexts by someone

without the key. PPE flavors include searchable encryption [SWP00b] for keyword

searching in text, deterministic encryption, where the equality of two plaintexts are

preserved, and order-revealing encryption (ORE) [AKSX04,BCLO09], where the order

of two plaintexts can be detected from corresponding ciphertexts without decrypting.

PPE in general achieves weaker security than traditional encryption because, by the

definition of the primitives, they inherently leak information about plaintexts. On the

other hand, PPE enables efficient encrypted database applications [PRZB11,GHH+14,

enc15,ABE+13].

This chapter investigates the security of ORE in real world applications. An ORE

scheme is an encryption algorithm E that takes numbers from some domain as input

such that, given two ciphertexts EK(x), EK(y), anyone can tell if x < y without the

secret key K. ORE is a very useful primitive for encrypted databases. Namely, columns

in a database table that are encrypted with ORE allow range queries. In a single

client/server model, in order to issue a query for the range (a,b) the client encrypts a

and b and sends the ciphertexts to the server that holds the ORE encrypted columns in

its tables. The server can then find all rows with values between the encrypted endpoints

without decrypting them. Hence, ORE provides a way to upgrade the security of a

database while keeping the functionality.

In this chapter, we present a collection of observations, experiments, and attacks

dealing with the use of ORE on data that will be encountered in practice. We point out

13

overlooked fundamental properties of ORE security, perform experiments to measure

the security of ORE against known attacks but on non-uniform data, and give new

attacks showing that ORE is less secure than theory indicated.

This work is a joint work with David Cash from Rutgers University and Thomas Du-

Biusson from Galois Inc. published in the proceedings of 2016 Conference on Computer

and Communications Security (CCS 2016) [DDC16].

2.1 Order-Revealing Encryption

An ORE scheme consists of three algorithms Π = (K,E,C) for key generation, encryp-

tion, and comparison respectively. The key generation algorithm outputs a key K. The

encryption algorithm may be randomized, takes an input message x from an associated

ordered plaintext space, and emits a ciphertext y. The comparison algorithm takes two

ciphertexts y0,y1 as input and outputs a bit b indicating that the message in yb is

larger (or ⊥ if the messages are equal). When the algorithm C is a canonical numeri-

cal comparison operator 1, the scheme is called an order-preserving encryption (OPE)

scheme, although this distinction is not important for our attacks. Therefore, we will

analyse the security of the the OPE construction given by Boldyreva et al. [BCO11]

under the general security results of ORE.

2.2 Security of Order-Revealing Encryption

Starting with Boldyreva et al. [BCLO09], ORE schemes have been proven secure with

respect to mostly incomparable definitions. We follow Chenette et al. [CLWW16] in

defining ORE security with a parameter called a leakage profile L. Formally, L can

be any function on vectors of messages. Intuitively, an ORE scheme must leak the

order of the plaintexts, but it may also be allowed to leak more. The formal definition

requires that an adversary cannot win a game requiring it to compute more information

than is output by L. Theoretical properties, like one-wayness, were identified for some

1or equivalently, if C defines a total order in the output space of E (in ORE, it only defines a total
order on the subset of values which have a preimage).

14

definitions and used to compare leakage profiles. The proofs of one-wayness for ORE

assume that data are uniformly distributed over the message space, but this does not

appear to be the case in any application we could think of. Thus, it is not clear what

the theoretical security results of ORE mean in practice. We proceed informally as our

attacks do not depend on the details of the definition, but rather only on the leakage

profile.

Five leakage profiles have been considered in the literature. We term them Ideal,

ROPF, MSDB, RtM, MtR. The first two were introduced by Boldyreva et al. [BCLO09],

who constructed an ROPF-secure ORE. Later, Boldyreva et al. [BCO11] proved that

ROPF-security requires an ORE to roughly reveal half the plaintext bits under the

assumption that data to encrypt is picked uniformly at random. Later, Chenette et

al [CLWW16] defined profiles MSDB, RtM, MtR and built ORE schemes achieving

them. They proved a result showing that these profiles leak fewer bits on uniform data.

We review them in more detail now.

Ideal. The ideal leakage profile only reveals the ordering relation of the cipher-

texts. This profile, for instance, hides any statistical information about the mes-

sages. The profile is achievable using (currently impractical) theoretical tools [BLR+15]

or by interactive variants of ORE where encryption is a protocol between two par-

ties [PLZ13,KS14,Ker15]. We consider these protocols in-scope for this work, and will

treat them as ORE. We note that [Ker15] actually achieves stronger-than-ideal security

by hiding the frequency of plaintexts in the column. Some of our attacks will still apply

to this construction.

ROPF. The random order-preserving function profile [BCLO09] is defined with respect

to a plaintext space and range. Given a column of data d with n rows, the leakage

profile chooses a random order-preserving function f from the plaintext space to the

range, and outputs f(d[1]), . . . , f(d[n]), i.e. the function applied component-wise to the

dataset.

The ROPF profile was later shown to reveal approximately the most-significant

half of the plaintext bits [BCO11] of a random message, and also to hide roughly the

other half. The selection of the range set is a parameter to be set when configuring the

15

instantiation.

MSDB. The most-significant-differing bit profile [CLWW16], on a column d with n

entries, will output the order of the plaintexts in d along with, for all 1 6 i < j 6 n, a

number diffi,j that indicates the index of the most significant bit where the plaintexts

d[i] and d[j] differ, along with the values of the bits at that position. Equivalently,

diffi,j is the length of the longest common prefix of d[i] and d[j], plus one.

For example, if the plaintexts are 0000, 0001, 1000, the MSDB profile would allow

one to infer the first most significant bit of all three plaintexts, and the last most

significant bit of the first two plaintexts, along with equality of appropriate prefixes.

For this example, an adversary would learn that the plaintexts must be of the form

0uw0, 0uw1, 1xyz, where u,w, x,y, z are variables for bits that are not explicitly leaked.

RtM and MtR. We consider two more profiles that are induced by composing multiple

ORE schemes as suggested by Chenette et al. [CLWW16]. RtM stands for “ROPF

then MSDB” and MtR stands for “MSDB then ropf”. The former, RtM, is induced

by first applying the leakage profile ROPF to get a vector (f(d[1]), . . . , f(d(n))), and

then applying MSDB to this vector (treating it as if it was a plaintext). That is, the

profile leaks the index of the most significant differing bit of f(d[i]) and f(d[j]) for each

i < j.

The profile MtR will be scheme-dependent. The scheme is defined by composing

some MSDB-secure OPE scheme with an ROPF-secure ORE scheme. The leakage is

defined by the output of the composed scheme. Note that we must assume that the

MSDB scheme here is OPE, not just ORE, in order to define the compare algorithm

for this version. Indeed, in [CLWW16], Chenette et al. showed how to convert their

ORE scheme into an OPE scheme.

The two profiles MtR, RtM were originally introduced without distinction, but we

observe that they provide practically different security.

16

2.2.1 Existing Attacks

2.2.1.1 Theoretical Result on Leakage Profiles

One-wayness of ROPF. Boldyreva et al. [BCO11] introduced the notion of window-

one-wayness (WOW) for ORE. An ORE is L-WOW if given EK(xi) for several uniformly

random strings xi ∈ {0, 1}m, it is infeasible to determine an interval of size L containing

some xi. To make our experiments easier to compare, we consider an alternative version

that we call `-bit-WOW, which says that it should be infeasible to compute the `-bit

prefix of some xi.

Boldyreva et al. [BCO11] also proved that any ROPF-secure OPE with plaintext

space {0, 1}m is L-WOW secure for L approximately 2m/2, meaning that it is hard to

compute the lower m/2 bits of a uniformly random plaintext.

One-wayness of MSDB. Chenette et al. [CLWW16] proved that MSDB-secure

OREs have stronger WOW security. That work proved `-bit-WOW security for MSDB

schemes, for a much smaller ` of about ` ≈ 1/ log ε, where ε is the desired bound on

the success probability of the adversary. (A smaller ` means the result is stronger, and

it is hard to guess even a smaller prefix of the plaintext.) A closely matching attack

against `-bit-WOW of MSDB is almost immediate, as one can show that the MSDB

leakage profile will provide roughly the same number of bits of a plaintext prefix.

Security of RtM and MtR. Composed ORE schemes were suggested in [CLWW16]

to combine the security of ROPF and MSDB. It was proven that the composition of

individual OREs will result in a construction that inherits both security notions. We

remark that this is only a lower bound on the quality of security achieved, and that the

composition may be strictly more secure than ROPF or MSDB.

2.2.1.2 Attacks on Leakage Profiles

Scaling attack against ROPF. Boldyreva et al. [BCO11] introduced what we term

the scaling attack and denote ScalingAtk against the WOW security of an ROPF. It

works as follows: to attack an ORE with plaintext space {0, . . . ,M} and range {0, . . . ,N},

one maps a ciphertext y for an unknown plaintext x to x ′ = dyM/(N + 1)e. It was

17

proved that this estimate will satisfy |x− x ′| < 8
√
M with high probability.

We observe that when M = 2m and N = 2n are powers of two, this can be approxi-

mated by a simple bitshift: x ′ ≈ y� (n−m) i.e. the right-shift of y until it is the same

bit-length as a plaintext. The estimate for these parameters becomes |x−x ′| < 2m/2+3.

This now implies that for most x, approximately the upper half of the bits of x ′ will

match those of x. We omit a formal analysis of the variation due to high-order bit

rollovers.

Sort attack against Ideal. Recent work by Naveed et al. gave attacks on Ideal-

secure ORE schemes (and thus on all of the other profiles except that of [Ker15]). The

first was the sort attack, denoted SortAtk below, which we recall in detail for use later.

The attack assumes knowledge of a plaintext space that we denote as {1, 2, . . . ,M},

and attempts to guess the plaintexts used to generate a vector of ciphertexts c that it

takes as input. The attack sorts the vector c (using the ORE comparison algorithm),

and then guesses that the smallest unique ciphertext corresponds to 1, that the second

smallest ciphertext corresponds to 2, and so on. Formally, it is defined as follows. Let

c1, c2, . . . be the ciphertexts in c in sorted order. SortAtk(c) outputs a mapping α from

ciphertexts to {1, . . . ,M}, where

α(c) =


i if c ∈ c, c = ci

⊥ otherwise

.

The sort attack was shown to correctly invert a large fraction of ciphertexts in a sim-

ulated attack. However, it required that the plaintexts were “dense” in the message

space, meaning that almost all possible plaintexts in {1, . . . ,M} are encrypted in c. This

was true for several columns in certain hospital databases, like age (years), length-of-

stay (0-365), and others.

Cumulative attack against Ideal. Naveed et al. gave a second attack, called the

cumulative attack and denoted CumulativeAtk that works when plaintexts are not dense

in the message space. This attack also takes as input a vector of ciphertexts c, but

additionally requires a training vector z of data which should be drawn from the same

18

distribution as the plaintexts in c.

The cumulative attack outputs a map α from ciphertexts in c to plaintexts in z.

The map α is computed via a linear program that minimizes the error in frequencies

and in the cumulative distribution (i.e., the fraction of plaintexts less than a given

plaintext in z versus c). We omit further details, but we note that the training input z

is essential for two reasons: First, the map α will only output plaintexts in z, and thus if

a plaintext has not been seen, then CumulativeAtk(c, z) will never guess it. Second, the

guesses are entirely dependent on using z as a “typical” distribution with frequencies

that correspond to the target data.

Other attacks. It was observed by Boldreva et al. [BCLO09] that chosen-plaintext

attacks allowed the easy extraction of plaintexts. This, and attacks that observe queries,

are not considered in this work but are likely to further diminish security in practice.

2.2.2 Datasets and Implementations

We use two real geographic datasets Cal, SpitzLoc, one synthetic geographic distribu-

tion Globe, and one real time-stamp dataset SpitzTime.

The dataset Cal represents the latitude and longitude of about 21,000 intersections

in the California road network (also used by Mavroforakis et al. [MCO+15] in their

ORE work). 2 Latitudes are numbers between −90 and 90 and longitude are numbers

between −180 and 180, both given to six decimal digits. The latitudes are all between

32.541302 and 42.017231, and longitudes were between −124.389343 and −114.294258.

We encode a given latitude x as 106(x+90)/180 in binary, and a longitude y as 106(x+

180)/360 in binary. Encoded latitude is represented in 27 bits, and similarly longitude

is represented in 28 bits.

The dataset SpitzLoc consists of latitude and longitude coordinates tracking the

movement of German Green party politician Malte Spitz over six months. The dataset

records the location of towers used for voice calls and text messages, as well as times

(which we used for the SpitzTime dataset below). The data were provided by Deutsche

2Dataset obtained from http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

19

Telecom and posted publicly as an example of highly sensitive information recorded by

service providers. 3 The dataset consists of about 36,000 rows, with many locations

missing. We extracted from this 1,477 non-repeating (latitude, longitude) pairs in

Germany that we call SpitzLoc. The points were available up to 8 decimal digits of

accuracy, but we encoded them as 28- and 29-bit strings as in Cal.

The SpitzTime dataset consists of 30,492 time-stamps represented as seconds from

an epoch of January 1, 2000. The actual range is between 2009-08-31 to 2010-02-27

and mostly daylight hours. Concretely, the timestamps were integer values between

305,020,620 and 320,629,560.

Finally, we select a distribution Globe to represent the latitude and longitude of a

uniformly random points on Earth. We encode the points as bitstrings of length 32,

using the same method as before. We chose this distribution because it does not result

in uniform samples of pairs from {0, 1}32, but it may model the distribution of some

datasets.

All experiments were performed on recent Mac laptops. Our experiments were

written in Python and used the ROPF implementation from CryptDB [PRZB11]. The

other leakage profiles could be simulated exactly without full implementations.

2.3 Inter-Column Correlation

The sort- and cumulative-attacks [NKW15] showed that the ciphertexts (produced

with Ideal-secure ORE that only leaks order and frequency) in an individual encrypted

column could sometimes be inverted, but required at least one of the following condi-

tions to be met:

• The plaintext data present in the column is dense in the plaintext space, meaning

that most or all of the possible plaintext values encrypted at least once.

• The plaintext data has low entropy, meaning that most of the possible plaintexts

appear frequently, and particularly that a training set will have many plaintexts

in common with the column under attack.

3The data is downloadable at http://www.zeit.de/datenschutz/malte-spitz-data-retention

http://www.zeit.de/datenschutz/malte-spitz-data-retention

20

We add to this another condition: when two or more encrypted columns hold data

that are correlated. We show that information may be leaked even when the data in

the column is the encryption of small subset of huge domain, when all encrypted values

are unique (and without any training data), and an Ideal-secure ORE is used. We call

this inter-column correlation, and hereafter we experiment with applying the sorting

attack on multiple columns at once.

2-D Sort attack. We consider applying the sort attack to two columns at once. Recall

that, given a ciphertext vector c, SortAtk(c) outputs a mapping α from ciphertexts to

the set {1, . . . ,M}, where M is the number of unique ciphertexts in c.

We simply apply this attack to two columns independently. That is, we define the

attack 2DimSortAtk(c1, c2) to output (α1,α2) given by αi ← SortAtk(ci) for i = 1, 2. In

other words, this attack independently sorts each ciphertext vector, and emits guesses

about the plaintext vectors using the same technique as SortAtk. Below, we argue that

this attack should be interpreted differently from the original single-column attack.

Visual example. We start with an example. In Figure 2.1 (a), we plot an image,

which is formally a set of approximately 106 points in {1, . . . , 2000}× {1, . . . , 2000} (the

black points correspond to points in the set). In 2.1 (b), we select a random subset of

only 300 points from the set, conditioned on none of the coordinates repeating (that is,

none of the chosen points have the same x or the same y value).

We model the chosen subset as a dataset d = (dx, dy) consisting of a pair of columns

dx and dy each with 300 cells, where each row represents the location of a black point

in the image. We selected the data in this way to ensure that prior attacks against the

two individual columns would not be effective. As all points in each column are unique,

the frequency information is trivial. Moreover, each column only consists of 300 out of

2000 possible plaintext values, so the columns are not dense in the plaintext space.

Despite the prior attacks failing to recover the plaintexts in d, we show that infor-

mation can be recovered by considering the columns together via the 2-D sort attack.

The results of our attack are plotted in 2.1 (c), where the rough features of d are still

visible.

Our multi-dimensional sorting attack does not guess any point correctly – The

21

(a) source image (b) 300 random points

(c) sort attack output (d) sort attack with
scaling

Figure 2.1: Visualization of the 2-D sort attack on an image dataset encrypted with
Ideal ORE.

original points are in {1, . . . , 2000} but the sort attack only emits guesses in {1, . . . , 300}.

Thus, by the metrics of [NKW15], the attack does not work. But it is clear that a

significant portion of the structure of the image is recovered, including relatively fine

details like the arrangement of points from the penguin’s foot in the lower right. (By

scaling the plot in 2.1 (d) it resembles the plaintext points more strongly.)

This experiment suggests that we expand our consideration of the leakage of ORE in

two senses. First, even when individual encrypted columns are useless for an adversary,

the leakage from correlated encrypted columns may combine to reveal a harmful level

of information, even to an adversary with no training data to help its analysis. Second,

even when an attack does not recover plaintexts correctly, it may still be plausibly

considered successful since it recovers partial information.

22

2.3.1 Sort Attack on Location Datasets

We experimented with the 2-dimensional sort attack on two location datasets: Cal and

SpitzLoc (see Section 2.2.2 for details).

Cal Dataset visualization. For the Cal dataset, we selected a subset of 2,000 random

points and ran 2DimSortAtk on the ideal leakage for that subset. In Figure 2.2, we

plot the plaintext points and the output of 2DimSortAtk (the colors are used to track

plaintexts between the two plots). We observed that the shape of California was still

clearly visible, and some other features like western protrusion one third of the way up

were also visible (several other runs on random points were similar). Below we return

to this attack and try to evaluate it quantitatively.

(a) 2,000 plaintext points (b) 2DimSortAtk output

Figure 2.2: Visualization of 2DimSortAtk on a subset of the Cal dataset.

SpitzLoc Dataset visualization. The database we worked with includes the com-

plete road network data for California with 21K intersection points. However, we did

not always have a complete road network of a state or country, but what we had was

a subset of geographical data in a state/country. For an example, personal location

data which map providers, such as Google maps or Apple, keep track of, from their

customers, in order to provide better service is stored in the cloud in a way that shows

the trips of an individual with time-stamps. For a person who lives in a specific city or

travels around this particular city during a period of time, a map provider stores the

locations of the person with a fixed frequency during these trips. When an application

wants to secure this type of data so that range queries are enabled on the dataset, Ideal

security is likely to be preferable due to its ideal leakage. However, as in California data

23

leakage with Ideal schemes, it is not clear what an adversary learns from a set of points

that forms a trip from a start point to an end point. This trip can be visualized as

interpolating the consecutive points in the database for both the plaintexts in a map

and their orderings in ciphertexts in a 2D grid.

To explore further in this direction, we use a dataset of German Green party politi-

cian Malte Spits. We take his trips in the month of October in 2009 and considered

investigating his trips in a single day, in a single week, and in a complete month. We

order the ciphertexts based on only his provided locations stored in the database (in

Germany) instead of the complete geographical location of the country. Then, we plot

both the locations as plaintexts on Google maps for his daily, weekly and monthly trips

and the ordering leakage for ciphertexts in 2D grid. The results are shown in 2.3 for his

one day trip in October first, for his complete trip in the first week of October, and for

his complete trip in the entire month October in 2009. The results noticeably indicate

the nature of the trips such as if it is taken at walking distance in a small area, or if it

coordinates are from south to north.

Discussions. The authors initially investigated the security of ORE for two projects.

The first required encrypting a database that included locations of naval vessels, and

second considered encrypting personal mobile phone GPS histories for location-based

queries. Our experiments above showed that even the best possible leakage (Ideal)

would still result in a concerning loss in secrecy.

We conjecture that the security in practice may be much worse. This is because

we generated the plots above without any training data or side information. An attack

which knows that Cal points are taken from California, or that SpitzLoc points are

taken from the movements of a German citizen, can use side information like the shape

of the movement zone and the distribution of cities and other points of interest when

generating guesses at the plaintext data.

Moreover, our attacks are on relatively small amounts of data. For instance, a

column with 2,000 rows could be downloaded and searched locally in most scenarios,

24

(a.1) October 1 (b.1) Attack output on (a.1)

(a.2) October 1–7 (b.2) Attack output on (a.2)

(a.3) October 1–31 (b.3) Attack output on (a.3)

Figure 2.3: Visualization of subsets of the 2DimSortAtk output on the SpitzLoc dataset.

25

meaning that ORE may be unnecessary there. On larger datasets, such as years of

location movements, the guesses might be even more accurate.

Figure 2.4: Histogram of 2DimSortAtk output on subsets of 25 up to 20,000 points
(non-uniform step sizes). Distances in km from the correct plaintext point.

2.3.2 Sort Attack Accuracy with Bounds

We now consider extending the 2-D sort attack to use the additional hint of bounds

on the possible plaintexts and generate guesses on the plaintexts that can be quantita-

tively evaluated. Concretely, we consider the following variant of 2DimSortAtk, denoted

Bnd2DimSortAtk. In addition to the encrypted columns (c1, c2), the attack also takes

as input pairs of numbers (a1,b1) and (a2,b2). First, it runs the original 2DimSortAtk

twice to generate mappings (α1,α2) from the ciphertexts to {1, . . . ,M}. We then com-

pose these mappings with functions f1, f2 that evenly space the guesses within the given

bounds, resulting in the following attack:

Bnd2DimSortAtk(c1, c2,a1,b1,a2,b2)

01 Compute (α1,α2)← 2DimSortAtk(c1, c2)

02 Define the function f1 by f1(i) := (i− 1) · b1−a1
|c1|

+ a1

03 Define the function f2 by f2(i) := (i− 1) · b2−a2
|c2|

+ a2

04 Output (f1 ◦ α1, f2 ◦ α2).

In the algorithm, |c| denotes the number of ciphertexts in the encrypted column |c|.

26

Cal Dataset attack with bounds. We used random subsets of 25, 50, ..., 2000 points

from the Cal dataset to evaluate Bnd2DimSortAtk. The results are plotted in Figure 2.4.

In each case we gave the attack the same bounds, which were set to the greatest and

smallest latitudes/longitudes in California and in particular, they were not the maxes

and mins over the actual subset under attack. We plotted the quality of guesses as

stacked histograms in Figure 2.4 (each bar reports on a different run, showing the

proportion of points that were guessed to within different accuracies on that run).

The maximum error in any of the experiments was around 140 km while the min-

imum was about 2 km. We note that our plot reveals that the quality of guesses was

not improving with the number of points, which is interesting because we expected a

dense set of points to reveal more ordering information. The explanation (which we

found via inspection and plotting the guesses) is that bad guesses tend to stay bad,

even with many points, and good guesses tend to stay good. We stress however that

an attack, with, for example, a training set of points in California could likely do much

better than this simple attack.

Discussion. Strictly speaking, this attack no longer exploits inter-column correlation

because Bnd2DimSortAtk could be adapted to run on individual columns, and it would

generate the same guesses for the latitude and longitude columns independently. How-

ever, we suggest it as a technique for evaluating the confidentiality of Ideal ORE on

geographic data.

2.4 Leakage-Enabled Attacks

This section contains evaluations of known attacks on ORE but with non-uniform data

(sections 2.4.1, 2.4.2, 2.4.3), showing that in some cases leakage is much worse than

on uniform data. Then new attacks are presented (sections 2.4.4, 2.4.5, 2.4.6), and we

also present our observations regrading modular order-revealing encryption (MORE)

in Section 2.4.7.

27

0
100
200
300
400
500
600
700
800
900

1000

40 80 120
160
200
240
280
320
360
400
440
480
520
560
600

M
ed

ia
n

er
ro

r
o
f

g
u

es
se

s
(k

m
)

Size of dataset

(a) median line

0

20

40

60

80

100
40 80 120
160
200
240
280
320
360
400
440
480
520
560
600

%
of

gu
es

se
s

w
it

h
in

d
is

ta
n

ce

Size of dataset

10km
50km
100km
500km
1000km
5000km

(b) histogram

Figure 2.5: Accuracy for MSDB leakage on random globe points.

28

2.4.1 MSDB on Random Globe Points

We evaluated MSDB leakage on the Globe dataset. Recall that MSDB allows one to

infer some bits explicitly but keeps others hidden. In order to quantitatively compare

the leakage to the plaintext values, we filled in all unknown bits arbitrarily.

The accuracy of our guesses is evaluated in Figure 2.5. The MSDB leakage profile

tends to leak more information on larger datasets (it is monotonic in the sense that it

will never leak less when a subset of data is included in a larger set). We note that

after 600 points, we found that over half the points could be guessed within 10km, and

the other half could be guessed within 50km. Thus, even on a tiny dataset of random

values, the geometric meaning of this leakage (which is limited mostly to high-order

bits) reveals significant information about the dataset.

It is a fair observation that the Globe dataset is geographically uniform and nu-

merically non-uniform, which undoubtedly impacts the quality of the attack. The same

attack on numerically uniform data, which has a geographic distribution biased towards

the poles, results in a slight improvement in the mean attack accuracy without taking

advantage of the known distribution. We did not analyze datasets with encodings that

maintain numeric and geographic uniformity.

2.4.2 ROPF on Real Locations

Boldyreva et al. [BCO11] proved that any ROPF-secure ORE with plaintext space

{0, 1}m is L-WOW (see Section 2.2.1.1) for L ≈ 2m/2. This roughly implies that it is

hard to guess more than m/2 of the most significant bits of a random plaintext. Their

result was involved, and generalizing it to other plaintext distributions does not seem

easy. Moreover, real data may not obey the distribution assumed in a proof anyway.

Thus, we instead evaluated how the ScalingAtk (see Section 2.2.1.2) performed on

our datasets. We encrypted subsets of Cal using an ROPF-secure ORE of [BCLO09],

and recorded the length of the plaintext prefix that appears in the corresponding cipher-

text. The average number of bits preserved between the plaintexts and corresponding

ciphertexts over the entire longitude column of Cal is 15 bits out of 27. This result

29

matches the theory for uniform data. Moreover, Boldyreva et al. [BCO11] also showed

that increasing the ciphertext length by more than few bits beyond the plaintext length

does not have any effect on the security for uniform data. We also experimented with

varying ciphertext lengths, and the average number of preserved bits remained around

15 bits for larger output sizes.

We have no theoretical framework to explain if and how this experiment will gen-

eralize to other data. It seems prudent (and easy) for practitioners to simulate this

attack on test data before deployment.

2.4.3 ROPF on Small and Large Messages

Boldreva et al. proved roughly that an ROPF-secure ORE will leak half of the bits of

a random input message, but not much more, even when the output space is only one

bit longer than the input space. Here, we experimentally show that this result does

not apply when encrypting messages that are close to the minimum and maximum

elements of the message space. That is, for small and large messages, the Boldyreva et

al. construction leaks far more.

We performed the following experiment. We fixed the message space of the Boldyreva

et al. ORE to {0, 1}64, and output space to either {0, 1}65 or {0, 1}128 in two indepen-

dent runs. We encrypted the plaintexts x = 20, 21, . . . , 263 to generate ciphertexts

c0, c1, . . . , c63, and computed x ′i ← ScalingAtk(ci) for each i. We computed the error

ei ← |xi−x
′
i| for each i, and averaged the ei over 10 independent runs (i.e. we selected

a new key each time).

Note that the largest message in our experiment is x = 263, the midpoint of the

message space. By symmetry, similar results would be obtained for the large messages

near 264, so we did plot these results.

In Figure 2.6, we plot the logarithms (base 2) of the errors ei compared to i, the

logarithm (base 2) of the message. We find that the scaling attack performs much

better on small messages than on random messages, which can be guessed to within

a distance of about 231. The ciphertext for x = 1 was predicted exactly in every run.

Ciphertexts up to 24 were recovered to with distance 2 on every run. The rest of the

30

guesses were much more accurate than 231, until we reach larger messages. There was

no significant variation when we changed the output length of the cipher.

Let n be the input length. The trend is that an input x ≈ 2i or x ≈ 2n − 2i can be

predicted to within about 2i/2 accuracy. This can be stated alternatively as a new rule

of thumb: An ROPF-secure ORE leaks all of the leading zeros (or ones) of a message,

and additionally the most-significant half of the remaining bits.

0

4

8

12

16

20

24

28

32

0 8 16 24 32 40 48 56 64
lo

g(
—

at
k

-
m

sg
—

)

log(msg)

Ciphertext size
65-bit

128-bit

Figure 2.6: Accuracy of ScalingAtk against ROPF on small messages.

2.4.4 MSDB on Real Locations: The Distance Minimization Attack

A stronger one-wayness result was proved for the MSDB profile. When random data

are encrypted, the proof showed that only the k most significant bits will be leaked,

except with probability about |d|/2k. Again, a detailed result on general distributions

seems difficult to derive and may not be useful in practice anyway. Intuitively, the result

follows because two random plaintexts will have the same k-bit prefix with probability

1/2k, and if this does not happen then no bits beyond the k-th will be leaked.

We evaluated this profile on the Cal dataset. AS points are not uniformly random,

the location of differing bits between pairs will depend strongly on the distribution.

Moreover, by exploiting properties of the distribution, even more bits may be inferred,

as we show below.

31

Intuition. We first visualize MSDB leakage on the Cal dataset. Recall that this

leakage profile explicitly leaks some bits of the plaintexts and keeps other bits hidden

(see Section 2.2). In order to visualize the geometry of the leakage on Cal, we pretend

that the unknown bits are the average of their possible values – that is, instead of one

or zero, they are actually “0.5”. After filling in these values, we plot the result in Fig.

2.7. The large groups of points are separated from the main group when a relatively

Figure 2.7: Visualization of MSDB leakage on Cal dataset.

high-order bit is hidden. There are also many other low-order bits hidden, but their

effect is harder to see. Our intuition is that the large groups are trivial to move to the

correct location by hand, and thus some of the hidden bits are easy to guess.

We give an attack to automate this, called the distance minimization attack, which

is described and evaluated below. This attack will consider an individual encrypted

column, and create guesses for every plaintext bit by moving the points to possible

locations and seeing which is “closer” to the aggregate group, with the intuition being

that correlated data will not often exhibit behavior like the irregular groups in Fig.

2.7.

The attack. The attack is given in pseudocode here, and a description follows.

DistMinAtk(c)

01 Initialize an empty guess vector g

02 Foreach c[i] ∈ c

32

03 Set g[i] ∈ {0, 1,⊥}m using MSDB leakage

04 Reset g[i] ∈ {0, 1, 0.5}m by replacing ⊥ with 0.5

05 For j = m down to 1

06 Foreach g[i] with j-th bit unresolved (i.e. set to 0.5)

07 Try assigning j-th bit of g[i] to 0 and 1

08 For each setting, compute S =
∑
k |g[i] − g[k]|.

09 Set j-th bit of g[i] to minimize S.

The distance minimization attack is given a column c of ciphertexts encrypted with

an MSDB-secure ORE. It first initializes a guess vector g using MSDB leakage naively

(line 03). That is, it starts with all bits unknown. Then, for every pair of ciphertexts

g[i], g[j], it performs the comparison to learn their differing bit, and then fills in that

bit in the entries of g[i] and g[j].

After this initial stage, the guesses are strings in {0, 1,⊥}m, where ⊥ represents that

a bit was not leaked. The rest of the algorithm will assign every ⊥ entry to either zero

or one. The algorithm will need to interpret the guesses g[i] as numbers, even when

it has unknown bits. We will temporarily set g[i] to the “average” of all the possible

values that it could be. Concretely, we convert each g[i] into a vector over {0, 1, 0.5} by

replacing ⊥ with 0.5. Now when we need to consider g[i] as a number, we can compute

its value using the binary expansion formula, but with values 0, 1, 0.5 instead of just

0, 1.

Starting on line 05, the attack begins to resolve the 0.5 entries in the guesses to

either 0 or 1. It begins with the most significant bits, and considers the guesses with

most significant bit unknown individually. When considering the guess g[i], the attack

tries setting the unknown bit of g[i] to 0 and 1. For each setting it measures the sum of

absolute differences between the resulting point and all of the points in the guess set (it

is at this point that we are considering the guesses as numbers, to compute differences).

The attack selects the bit setting that results in a smaller sum, and moves on to the

next guess.

33

0

20

40

60

80

100

25 50 75 100
200
300
400
500
600
700
800
900
1000
1250
1500
1750
2000

%
o
f

gu
es

se
s

w
it

h
in

d
is

ta
n

ce
(k

m
)

Size of dataset

0.5
0.6
0.7
0.8
0.9
1
1.2
1.5
1.8
2.0
2.2
2.5
5
10
20

Figure 2.8: Accuracy of DistMinAtk against MSDB on Cal.

Evaluation. We evaluated this attack on random subsets of the Cal dataset of varying

size. In Cal, the two most significant bits of longitude never change, so the attack cannot

automatically infer these bits. This is exactly the sort of information that MSDB is

designed to protect, but we assert that these can sometimes be guessed. In our setting,

and attacker can run the attack without guessing these bits, notice that the shape of

California appearing, and then fill in the missing significant bits by selecting one of four

possible positions on the globe.

We evaluated the accuracy of our algorithm assuming the two most significant bits

of longitude were given. In Fig. 2.8, we measure accuracy on subsets of sizes 25 to 2000.

The figure reflects the improvement on the accuracy of guesses as the size of the dataset

grows. On a dataset of 2,000 points, the algorithm guesses 95% of the plaintexts to

within 2 km, and has average error 0.6 km. We note that no location was leaked to

within less than 400km explicitly, and the improvement comes from the attack inferring

hidden bits.

Discussion. For this particular example, leakage and correlation allowed accurate

estimation of essentially every plaintext. More generally, use of any ORE scheme on

any dataset that contains correlations should be viewed with a healthy dose of caution.

34

Limiting databases to small datasets might not offer meaningful protection and anyway

negates the benefits of off-loading computation, which is a primary motivation for ORE.

Practitioners desire simple rules for determining if property-preserving encryption and

leaks inherent to the selected mechanism are acceptable, but no such rules have been

proposed while examples of dangerous uses continue to mount.

2.4.5 Combined Attacks on MtR and RtM.

In this section, we consider how prior attacks can be combined to extract information

from the composed leakage profiles MtR and RtM defined in Section 2.2. We start by

describing how each can be attacked, and then evaluate the attacks.

In this section, let Er be the ROPF-secure ORE from [BCLO09] and Em be the

MSDB-secure ORE from [CLWW16]. We will specify the appropriate domains and

ranges for Er,Em as needed below.

MtR. This profile describes the security of the following ORE scheme: It uses two

random keys Km,Kr. To encrypt a plaintext x, it computes

cin ← Em
Km(x); cout ← Er

Kr(cin)

and outputs cout. Note that we have assumed that the range of Em is contained in the

domain of Er. In order for the scheme to be correct (i.e. order-preserving), we need that

Em is an OPE scheme, not just an ORE scheme, as the composition prevents running

a general comparison algorithm on cin.

Now, suppose we are given a column c of ciphertexts encrypted with the above

construction. We apply the scaling attack to each ciphertext c[i] by running y[i] ←

ScalingAtk(c[i]) (see Section 2.2.1.2). According to the WOW-security results on ROPF,

we expect approximately the most significant half of y[i] to match the bits of the cor-

responding MSDB-secure ciphertext produced as an intermediate ciphertext.

Next, we simply treat the column y as ciphertexts emitted by the [CLWW16]

MSDB-secure construction. We carry out all of the pair-wise comparisons, record-

ing when the differing bits are revealed in a vector of guesses g. We can then interpret

35

the vector g as we did when attacking MSDB alone.

RtM. This attack simply reverses the steps, so we sketch the important differences.

The outer encryption is now MSDB-secure, so one can compute the differing bits on

those ciphertexts to get a vector of guesses g (that will have known and unknown bits

recorded). Then, we can apply the scale attack to the entries of g (we leave the unknown

bits in place, and bit-shift the string as before). The result will issue guesses for some

known bits which we can use as the attack output. We can also replace the unknown

bits with 0.5 as in the DistMinAtk to quantitatively approximate the plaintexts.

Selecting a combined scheme. We remark that the constructions achieving MtR

and RtM might not provide equivalent security. (The proof only shows that they

achieve at least MSDB and ROPF security separately, but the combined modes might

be strictly stronger.) It was unclear which will be better in practice.

There is, however, an efficiency difference between the existing instantiations of

MtR and RtM. In [CLWW16], MSDB-secure ORE is constructed with relatively

short ciphertexts (about 1.58 times the size of a plaintext), but the OPE version of

their scheme has much longer ciphertexts (it expands the plaintext by a factor λ which

corresponds to the “security parameter” and may be set to 80 or much larger). Thus

RtM, which does not require the MSDB-secure part to be OPE, results in a much

more efficient construction, and it is the one we evaluate below.

Evaluation. In Fig. 2.9, we plot the performance of the combined attack on RtM

encryption. The results are similar to Fig. 2.8 so we conclude that, on this type of data,

MSDB and RtM provide similar security.

2.4.6 RtM on timestamp data

We now turn to less dispersed data encrypted under RtM. We randomly draw time-

stamps from the SpitzTime dataset, which are distributed over a several-month period.

Our attack first encrypts this data using ROPF then models the MSDB leakage. From

this model we then generate our guesses and compare these values to the plaintext data.

The analysis of time-stamp data can not be performed with distances between the

36

0

20

40

60

80

100

50 75 100
200
300
400
500
600
700
800
900
1000
1250
1500
1750
2000

%
o
f

gu
es

se
s

w
it

h
in

d
is

ta
n

ce
(k

m
)

Size of dataset

0.5
0.6
0.7
0.8
0.9
1
1.2
1.5
1.8
2.0
2.2
2.5
5
10
20

Figure 2.9: Accuracy of DistMinAtk against RtM on Cal.

guessed and actual values, as done for the random locations. This is because the plain-

texts are concentrated in a narrow portion of the domain, resulting in all ciphertexts

sharing a significant matching prefix. Instead of a direct difference, our analysis and

attack are a form of distance windowed one-wayness adversary [BCO11]. Informally,

we compare the guessed distance between each pair of ciphertext (in order) with the

distance between the plaintext data. More formally, for the sorted vector of guessed

values, g, and matching plaintexts, p, the metric of interest is |(gi−gi−1)−(pi−pi−1)|.

Now, we describe the setup, attack, and results. First, SpitzTime data beginning

times are parsed into a 32 bit number of seconds starting at an epoch of January 1,

2000. All data is OPE encrypted and shifted as with the scaling attack. Then the

MSDB leaks are modeled and inferences are made. Finally, we generate the guessed

data set for comparison.

The results of the attack are shown in Fig. 2.10. Even for extremely small databases,

many time-stamp differences are accurately guessed to within one-hour. The vast ma-

jority of guesses were correct to within two days.

37

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

80 160

240

320

400

480

560

640M
ed

ia
n

er
ro

r
o
f

gu
es

se
s

(h
ou

rs
)

Size of dataset

(a) median line

0

20

40

60

80

100
80 160

240

320

400

480

560

640

%
of

gu
es

se
s

w
it

h
in

ti
m

e

Size of dataset

1hour
9hr
18hr
36hr
72hr

(b) histogram

Figure 2.10: Accuracy of RtM leakage on SpitzTime.

38

2.4.7 Modular ORE on Real Locations

Modular ORE (MORE) was suggested by Boldyreva et al. [BCO11] to address the leak-

age of ROPF-secure ORE. When an adversary sees a column of data encrypted with

ROPF, it can extract about half of the plaintext via their scaling attack. Thus, they

suggest modifying an ROPF-secure ORE Er as follows: In addition to the usual key K,

store another string j, chosen at random from the plaintext space {0, 1}m. Then define

Emod
(K,j)(x) := Er

K(x + j), where the addition x + j is computed modulo 2m. The con-

struction Emod is no longer strictly speaking an ORE scheme, since the addition wraps

sometimes. It was shown that efficient range queries are still possible (see [BCO11]).

The scaling attack fails completely against Emod because it recovers the higher-order

bits of x + j mod 2m, which are independent of x. Recent work [MCO+15] devel-

oped query protocols to hide the shift value but left the actual encryption algorithm as

defined above.

We took the Cal dataset, which Mavroforakis et al. used in testing their MORE

algorithms, and applied their MORE construction to the latitude and longitude columns

independently (with different keys and different “shifts” for each columns). Then, we

applied the scaling attack to the ciphertexts and plotted the results in Fig. 2.11.

Figure 2.11: Visualization of MORE on the Cal dataset.

We observe that the fine details of the data are preserved (as expected, because

ROPF-OPE was used), but it is also obvious how to correct both shifts by hand. We

did not explore a quantitative or automated way to remove the shift. The general issue

appears to be that for some distributions, shifting by a random value still preserves

enough structure so that the shift is easily corrected.

39

2.5 Conclusions and Recommendations

This work shows that the conclusions of one-wayness theorems about ORE security

should not be assumed to hold on real data. But, in practice, we expect attacks to

recover even more information than our experiments did. Our datasets are relatively

small, and leakage gets worse as the dataset grows. In this section, we highlight the

performance of attacks on specific datasets, but these numbers should not be taken

as “typical” numbers to inform deployment decisions. This is especially true because

the relationship between the semantics of data and its encoding will affect the attacks.

Instead, we recommend that one runs our attacks, which are all simple to implement

and ran in a few minutes on our datasets, on test data (similar to production data for

the intended use-case) before using ORE.

Some of the work in this sections grew out of exactly this approach, where the

authors were considering ORE to store personal location histories. While we could

not quantify the attacks theoretically, the plots in Figure 2.3 convinced us that ORE

provide inadequate security, especially against adversaries with side information on the

individual.

40

Chapter 3

Format-Preserving Encryption and Feistel Network

This chapter introduces two important concepts that will be analyzed cryptograph-

ically in the following chapters. The chapter is not intended to be equipped with any

contribution, therefore it only provides a set of cryptographic tools and their security

results. We briefly define what format-preserving encryption (FPE) and Feistel network

is. A Feistel network is basically the main building block of some specific instantiations

of FPE and it turns out that the meaning of its security is not well understood yet.

In the following chapters, we will cryptanalyse this primitive along with Feistel-based

FPE.

3.1 Format-Preserving Encryption

Format-preserving encryption (FPE) provides a method to encrypt data in a specific

format into a ciphertext of the same format. A format in FPE schemes refers to a

finite set of characters such as the decimal (or binary) numerals or alpha-numerals

along with the length of the sequence of the characters that form the plaintexts. FPE

has been staging in applied cryptography community due to the desirable functionality.

It secures data while keeping the database scheme or communication protocols intact.

For instance, given a legacy database system, upgrading the database security requires

a way for encrypting credit card numbers (CCN) or social security numbers (SSN) in

a way transparent to its applications.

Brightwell and Smith [BS97] introduced a first known format-preserving encryp-

tion which was termed as data-type preserving encryption in 1997. They wanted to

encrypt an existing database to let all the applications access encrypted data just as

41

they accessed non-encrypted data. Their solution for this was reduced to preserve

the particular datatype of entries in the databases. The term format-preserving en-

cryption is due to Terence Spies from Voltage Security [Spi08]. Though FPE dates

back to late 90’s, the demand to make FPE-based databases has created an active

area of research during last few years. There have been many techniques proposed

to build FPE schemes such as prefix cipher, cycle walking, Feistel network, Feistel

modes [AB96, BRRS09, BRS, BR02, Luc96, Spi08, SK96]. The complete list of FPE

schemes for small domain size along with their description and their security level can

be found in a synopsis by Rogaway [Rog, p. 6,7]. In his list, Rogaway considers the

schemes that are built with pseudorandom functions (that itself might be constructed

from block ciphers).

FPE is specifically designed to work on small domain sizes such as four-digit PIN

codes (with domain size 104) or nine-digit decimals of SSNs (with domain size 109 ≈ 230)

or CCN (with domain size 1016 ≈ 254). In these cases, conventional block ciphers such

as AES are somewhat rigid to use because of the small domain size which is typically

smaller than the set of 128-bit blocks. Additionally, FPE with small domain sizes are

vulnerable to dictionary attacks as encrypting the same message twice will generate

the same ciphertext under the same secret key. Tweakable encryption has been used

to avoid dictionary attacks in FPE.

3.2 Tweakable Encryption

A tweakable block cipher (TBC) is a tuple (Gen(K),EK(·, ·),DK(·, ·)) formed of three

algorithms for key generation, encryption, and decryption with a key K; all efficiently

computable algorithms. A TBC is defined over a key space K, a message space X, and

tweak space T. Namely, for every key K ∈ K, and every tweak T ∈ T, the algorithms

EK(T , ·),DK(T , ·) are inverse permutations over the domain X.

In the standard model, the tweakable block ciphers [LRW11, BRRS09] are used to

construct tweakable format-preserving encryption schemes since tweakable encryptions

provide better resistance to dictionary attacks.

42

A Tweakable Format-Preserving Encryption (TFPE) scheme is a block cipher that

preserves the format of the domain in the output. A TFPE function E : K×T×X 7→ X

is defined from a key space K, a tweak space T, and a domain X to the same domain X

where the domain is defined with format F (it is specified with set of characters and the

length of messages formed with these characters). A decryption function is the inverse

of the TFPE function E under the same key K and tweak T .

The security of TFPE varies under the situations when the adversary is given chosen-

plaintext (CPA), chosen-ciphertext (CCA), or chosen-plaintext and ciphertext (CPCA)

power. The aim of the adversary is typically to be able to decrypt a challenge message

without querying it to the decryption oracle in the case of CCA and CPCA.

One way to construct TFPE is to use a Feistel network with tweakable round func-

tions. In the next section, we will describe Feistel networks along with two Feistel-based

TFPE schemes that are NIST and ANSI approved standards.

3.3 Feistel Network

A common way to construct a family of cryptographically secure functions consists of

iterating over a relatively simple function r times. Each iteration is called a round and

the resulting system is called an r-round cipher. Most widely used iterating systems

are Substitution-Permutation-Networks (SPN) and Feistel Networks (FN). The focus

of this chapter is Feistel networks that have been used in constructing many block

ciphers such as DES [DES], FEAL [SM88], Blowfish [Sch94], BEAR and LION [AB96],

RC5 [Riv95], Camellia [AIK+00], and Twofish [Fer99].

The Feistel network was named after Dr. Horst Feistel in IBM labs in 1973. The

classical FN gives a way to construct a permutation over {0, 1}2n with round functions

over {0, 1}n. We call it a balanced Feistel network. The internal round functions do

not have to be invertible, yet the decryption of Feistel network can still be defined.

Fig. 3.1 (a) represents a 4-round FN with modular addition. Other well known types

of Feistel networks are unbalanced FN, alternating between contracting and expanding

round functions. An unbalanced Feistel network uses a random round function from

43

nl bits to nr bits and from nr bits to nl bits in order to obtain a permutation from

nl +nr bits to nl +nr bits. One of the famous unbalanced FN construction was given

in BEAR and LION [AB96] by Anderson and Biham.

As we will not necessarily assume messages in binary, we use the notation Nl ,Nr

as the domain size of the round functions. We are specifically interested in the Feistel

network with the following properties: two branches with domain size Nl and Nr , with

modular addition modulo Nl and Nr , secret random round functions which are bal-

anced (N = Nl = Nr) or unbalanced but with Nl ≈ Nr . Moreover, we are interested

in small domain size. The FN we consider in this work are typically (assumed to be)

indistinguishable from a truly random function. More precisely, we investigate the FN

when the round function is entirely unknown instead of a publicly known round func-

tion that mixes the input with a secret key (i.e. round function is Fi = fi(ki, .), where

ki is the round key in ith round). We do not assume that round functions are bijec-

tive. The Feistel networks with these properties are used to build various tweakable

format-preserving encryption schemes [BRRS09, BRS, BPS]. Among these construc-

tions, FF1 [BRS] by Bellare et al. and FF3 [BPS] by Brier et al. were standardized

by NIST published in March, 2016 [NIS16]. Furthermore, the AEZ authenticated en-

cryption [HKR17] includes modes with very small domains based on FN with these

properties, as well.

3.3.1 Feistel-based Tweakable Format-Preserving Encryption

Probably, it is natural to build FPE schemes based on a Feistel network since it can be

used with already existing conventional block ciphers, such as AES [AES01].

We are particularly interested in the TFPE schemes named FF1 and FF3 in NIST

standards. Their designs are based on the Feistel network depicted in Fig. 3.1 (a).

We use the following notations for the rest of the work. The domain X consists

of strings of characters; s represents the cardinality of the set S of characters and b

represents the length of the messages in the domain X whose size is sb. For example,

the credit card numbers (CCNs) consists of 16 digits of decimal numerals with S =

{0, 1, . . . , 9}, s = 10 and b = 16 where we have 1016 ∼= 254 possible distinct numeral

44

F0

F1

F2

F3

L0 R0

R4L4

(a) Feistel Network

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

L0 R0

R4L4

(b) FF3 Encryption

Figure 3.1: 4-round Feistel Network and FF3 Encryption

strings. We set the minimum length of the message blockminlen = 2 and the maximum

length of the message block to maxlen < 232 in FF1 and maxlen = blogs(2
f−32)c in

FF3, where f is the input/output size of the round function used in Feistel scheme

(typically, f = 128). Both in FF1 and FF3, we set the lower bound sb > 100. We

represent the number of rounds in the scheme with w .

Unlike standard Feistel schemes which use the exclusive or (XOR) (denoted by ⊕),

FF1 and FF3 use the modular addition that is denoted by �.

We define the following notations for three functions:

STRb
s : a function that maps an integer x where 0 6 x < sb to a string of length b in

base s with most significant character first, e.g. STR412(554) = 03A2.

NUMs : a function that maps a string X to an integer x such that STRbs (x) = X. For

instance, NUM2(00011010) = 26.

REV(X) : a function that reverses the order of the characters of string X.

PRFK(X) : Cipher Block Chaining Encryption mode on the input string X and returns

the final block of the ciphertext.

The length of string X is denoted by |X|. The concatenation of strings is denoted by

||. The first (left-most) character of string X is X[0]. The ith one is X[i− 1]. We denote

X[i · · · j] the substring of X formed with X[i]X[i+ 1] · · ·X[j].

45

3.3.2 The FF3 Standard

The FF3 uses a tweakable block cipher as a round function, FK(T ,X) = Y with X, Y ∈

{0, 1, . . . , 2f − 1} and T ∈ {0, 1}32, where K is a key and T is one half of the FF3 tweak

with an offset. The FF3 encryption algorithm is given in Algorithm 1.

Algorithm 1: FF3 Encryption

Input : string X in base s of length b such that b ∈ [minlen · · ·maxlen], a
tweak bit string T such that |T | = 64.

Output: string Y such that |Y| = b
1 Let ` = db2 e; r = b− `.
2 Let L0 = NUMs(REV[X[1 · · · `]]) and R0 = NUMs(REV[X[`+ 1 · · ·b]])
3 Let TL = T [0 · · · 31] and TR = T [32 · · · 63]
4 foreach i = 0 · · ·w− 1 do
5 if i is even then
6 Li+1 = Li � FK(TR ⊕ STR322 (i),Ri) (mod s`)
7 Ri+1 = Ri
8 end
9 else

10 Ri+1 = Ri � FK(TL ⊕ STR322 (i),Li) (mod sr)
11 Li+1 = Li
12 end

13 end
14 return REV[STR`s(Lw)]||REV[STR

r
s(Rw)]

In lines 1-2, the encryption algorithm splits the input X into two substrings L0 and

R0. In lines 5-8 (respectively in lines 10-12), the algorithm first takes the tweak TR

(respectively TL) XORed with the encoded round index i and Ri (respectively Li) to

input tweakable PRF FK. Second, it applies modular addition of the output of FK to

Li (respectively Ri).

For simplicity and by abuse of notations, we say that FF3 encrypts the plaintext

(L0,R0) into the ciphertext (Lw ,Rw) with tweak (TL, TR), so that we only concentrate

on lines 4-14. We illustrate the 4-round FF3 scheme in Fig. 3.1 (b).

In the concrete proposal, w = 8, f = 128 and

FK(T ,X) = NUM2(AESK(T || STR
f−32
2 (X)))

where AES maps an f -bit bitstring to an f -bit bitstring [NIS16].

46

The FF3 construction is an 8-round FN that uses a tweak XORed with a round

counter as an input to the block cipher. The XOR operation guarantees that round

functions are pairwise different. This is usually called “domain separation”. The se-

curity of FF3 asserts that it achieves several cryptographic goals including chosen-

plaintext security or even pseudo-random-permutation (PRP) security against an adap-

tive chosen-plaintext and ciphertext attack under the assumption that the underlying

round function is a good pseudorandom function (PRF). In Chapter 5, we show that its

security goal has not been met even when the round functions are replaced by secure

PRFs and we give a round-function-recovery attack on FF3.

3.3.3 The FF1 Standard

We present the FF1 tweakable FPE standard in Algorithm 2 with the same notation

as in FF3. In this standard, w = 10.

Algorithm 2: FF1 Encryption

Input : string X in base s of length b such that b ∈ [2 · · · 232 − 1], a tweak bit
string T such that |T | = t.

Output: string Y such that |Y| = b
1 Let ` = db2 e; r = b− `.
2 Let L0 = NUMs([X[1 · · · `]) and R0 = NUMs(X[`+ 1 · · ·b]).
3 Let format of domain be parameterized as frmt = s,b, t.
4 foreach i = 0 · · ·w− 1 do
5 if i is even then
6 Li+1 = Li �NUM2(PRFK(frmt, i, T ,Ri)) (mod s`)
7 Ri+1 = Ri
8 end
9 else

10 Ri+1 = Ri �NUM2(PRFK(frmt, i, T ,Li)) (mod sr)
11 Li+1 = Li
12 end

13 end
14 return STR`s(Lw)||STR

r
s(Rw).

47

Chapter 4

Generic Attacks On Feistel Network

In this chapter, we investigate the security of a generic Feistel Network. We consider

FN with truly random functions, balanced, with two branches, and a group operation

which is not necessarily the XOR. We start with already existing results in Section

4.1 and give our new generic attacks in Section 4.2 (on four rounds and more) and

Section 4.2.4 based on optimized bruteforce. Each section includes attacks: 1) for

FN with small number of rounds with “small” complexity and some of them have

straightforward extensions for larger number of rounds with much bigger complexity

2) for FN with arbitrary number of rounds when the complexity is exponential with

respect to the number of rounds. Given all these attacks on FN, our results conclude

that the FF1 and FF3 standards with very low parameters (i.e. the domain size) do

not offer the expected security.

All the work presented in this chapter has been done with Prof. Serge Vaudenay

from Ecole Polytechnique Fédérale de Lausanne. Part of the studies described here were

published in the proceedings ESC’17 [DVa], and the proceedings of Crypto’17 [DVb].

4.1 Existing Security Results of Feistel Network

Since its invention, Feistel networks and their security analysis have been studied

widely. Many cryptanalytic studies have been done to outline key-recovery, message-

recovery, round-function-recovery, and differential attacks on different types of Feistel

networks [BLP16,DDKS15,PNB06, IS13,HR10,NVP13].

The most famous security results which date back to late 80’s, are from Luby-

Rackoff [LR88]. Luby and Rackoff first show that a three round Feistel construction

48

is a pseudorandom permutation from 2n bits to 2n bits. In their seminal paper, Luby

and Rackoff showed that for more than three rounds FN, all generic CPA attacks on

Feistel schemes require q = Ω(2
n
2) queries where n is the input/output size to the

round function. Information theoretically, the number q of queries provides 2qn bits

of information. For r-round FN, we need rn2n bits of information to recover the round

functions (each round function can be represented with a string of size n2n). Therefore,

q = r
22n may be enough to reconstruct the round function, in theory. Patarin [Pat10]

further showed that for q� 2n, four rounds are secure against known-plaintext attacks

(the advantage would be bounded by 4q
2n + q2

2·2n for q 6 2n

67n), five rounds are secure

against chosen-plaintext attacks (the advantage would be bounded by 5q
2n + q2

2·2n for

q 6 2n

67n) and six rounds are secure against chosen-plaintext and ciphertext attacks

(the advantage would be bounded by 8q
2n + q2

2·2n for q 6 2n

128n). This suggests that there

exists no distinguisher with given bounds, hence there exists no stronger attack with

given bounds.

First of all, we observe that the round functions do not uniquely define the codebook.

That means we can find a set of equivalent round functions that gives the same codebook

as the“true” round functions. Namely, if the tables of a tuple (F0, . . . , Fr−1) maps entire

plaintext space to the corresponding ciphertext space, then we can construct tables of

a set of many other tuples that are equivalent to the tables of “true” round functions.

Indeed, for any set of values α0, . . . ,αr−1 such that α1+α3+α5+· · · = α0+α2+α4+· · · =

0, we can define

F ′j(u) = Fj(u− αj−1 − αj−3 − αj−5 − · · ·) + αj

for all j and u to obtain an equivalent tuple of round functions. As the “true” round

functions will always be defined up to α0, . . . ,αr−1, we can fix one point arbitrarily

in F0, . . . , Fr−3 when looking for recovery of tables for each round function. Therefore,

we define the round-function-recovery as recovering the tables of one of the equivalent

tuples of round functions in a Feistel network. It is enough to uniquely reconstruct the

entire codebook of the FN. We will exploit this in order to give round-function-recovery

49

attack method attack type/goal requirement time complexity T data complexity q ref

yo-yo known pt,
r = 3

O(N lnN) N lnN [DVb]

cycle finding known pt,
r = 4

O
(
N3
)

N
3
2 [DVb]

guess and
determine

chosen pt,
r = 4

O
(
N

3
2

)
N

3
2 [BLP16]

cycle finding chosen pt,
r = 5

O
(
N
√
N+3

)
N

3
2 [DVb]

integral attack chosen pt,
r = 5

F1 or F3 permutation O
(
N2.81

)
N2 [BLP16]

yo-yo full codebook,
r = 5

⊕-Feistel O
(
N2
)

N2 [BLP16]

guess and
determine

full codebook,
r = 5

O
(
NN

3
4
)

N2 [BLP16]

SAT solver full codebook,
r 6 5

not specified N2 [BP15]

yo-yo full codebook,
r = 6

⊕-Feistel O
(
N

1
2N
)

N2 [BLP16]

yo-yo full codebook,
r = 7

⊕-Feistel O
(
NN

)
N2 [BLP16]

cycle finding chosen pt O
(
N(r−5)N+

√
N+3

)
N

3
2 [DVb]

MITM known pt O
(
Nd

r
2eN

)
rN2 Eq. (4.1), Sec. 4.1.2

impr MITM chosen pt N
r−4
2 N(1+o(1)) rN2 Eq. (4.2), Sec. 4.1.3

random partial
exhst search

known pt N
r(r−2)
r−1 N(

N
q)

1
r−1 (β+o(1)) q < N2 Eq. (4.6), Sec. 4.2.4.1

random partial
exhst search

chosen pt N(r−1)N
1− 1
r−2 (β+o(1)) βN2− 1

r−2 Eq. (4.9), Sec. 4.2.4.1

random partial
exhst search

chosen pt N
r(r−2)
r−1 N(

N
q)

1
r−2 (β+o(1)) q < N2− 1

r−2 Eq. (4.7), Sec. 4.2.4.1

iterated partial
exhst search

known pt N(r−2)N(N lnN
q)

1
r−2 (β+o(1)) N lnN� q 6 N2 Eq. (4.12), Sec. 4.2.4.7

iterated partial
exhst search

chosen pt N(r−2)N
1− 1
r−2 (lnN)

1
r−2 (β+o(1)) βN2− 1

r−2 (lnN)
1
r−2 Eq. (4.15), Sec. 4.2.4.7

iterated partial
exhst search

chosen pt N
q
N−1+(r−3)N(N lnN

q)
1
r−3 (β+o(1)) N lnN� q 6 N2 Eq. (4.14), Sec. 4.2.4.7

Table 4.1: Function Recovery attacks against generic balanced 2-branch r-round FN
with N branch domain size. (All β are different constants such that β < 1.)

attack against generic Feistel network. Moreover, we aim to do it for query complexity

less than the domain size since it is trivial to reconstruct the codebook with the query

complexity equal to domain size.

We summarize the best function recovery attacks in Table 4.1.1 The complexities

are given in terms of number of encryption.

For the rest of this work, we define the Feistel network over a group of order N2.

Typically, this group is ZN × ZN. It is due to fact that Feistel-based tweakable FPE

can be defined over domains of integers. Without loss of generality, FPE schemes with

integral domains are relatively easier to construct and generalize to any domains due

1Table 4.1 only reports function recovery attacks. It does not include attacks applying with round
functions in a small space of N (instead of NN). It does not include distinguishers such as the ones
from Patarin [Pat08] either.

50

F0

F1

F2

x y

tz

c

(a) 3-round Feistel network

F0

F1

F2

F3

x y

tz

d

c

(b) 4-round Feistel network

Figure 4.1: 3-round and 4-round Feistel Schemes

to the ranking.

4.1.1 Generic Round-Function-Recovery Attack with Guess and De-

termine Method [BLP16]

In [BLP16], chosen-plaintext and ciphertext attacks are given for 4 and 5-round FN with

modular addition. Their attack is based on a distinguisher for a 3-round FN introduced

by Luby and Rackoff in [LR88]. For this distinguisher, refer to the Fig. 4.1 (a). Let the

adversary have access to both encryption and decryption oracle. The adversary selects

a δ, it queries the encryption oracle with arbitrary (x‖y) and (x + δ‖y), and obtains

(z‖t) and (z ′‖t ′) respectively. Then, the adversary queries (z+ δ‖t) to the decryption

oracle and obtains (x ′′‖y ′′). The distinguisher checks if t − y ′′ = t ′ − y to distinguish

3-round Feistel Network from a random permutation.

In 4-round attack given by Biryukov et al. (refer to the Fig. 4.1 (b)), consider a

type of plaintext/ciphertext of the form (xyzt), (x ′′y ′′(z + δ)t ′′), and ((x + δ)yz ′t ′)

with corresponding d,d,d ′ values in plaintexts/ciphertexts respectively. More precisely,

the attacker starts with one arbitrarily fixed value of F3 and one guessed value for F3

(meaning that it iterates N times what follows). He sets z and z + δ such that their

image by F3 is known. For each d, it sets t and t ′′. With the queries to the decryption

oracle for (z‖t) and (z+ δ‖t ′′), the attacker obtains (x‖y) and (x ′′‖y ′′). With a query

to the encryption oracle on (x+ δ‖y), it gets (z ′‖t ′). With all the obtained values, the

51

attacker can use the 3-round property of the above defined distinguisher and can find

an F3(z
′) = t ′ − d + y ′′ − y output of F3 for a new value. The adversary iterates on

d to get new outputs of F3 until it finds no conflict. On average, the conflicts occur

after O(
√
N) trials for d. The time complexity of this attack is O

(
N

3
2

)
with N

3
2 data

complexity.

The 5-round attack in Biryukov et al. is extended form of 3-round distinguisher

and 4-round attack with more guesses. Its time complexity is O
(
NN

3
4
)

with N2 data

complexity.

4.1.2 Meet-In-The-Middle (MITM) Attack

The MITM attack was introduced by Diffie and Hellman [DH77]. MITM is a generic

known-plaintext attack. More specifically, if the system includes multiple encryption

schemes with independent keys, we can decompose the system into two smaller parts

where we can attack separately and combine the results from each part. The idea is to

evaluate smaller systems that require less complexity, reducing the complexity of the

overall system dramatically. For instance, the MITM attack can recover the key for

iterating systems such as 3-DES.

Briefly, consider an r round encryption E1,E2, . . . ,Er and corresponding D1,D2, . . . ,

Dr decryption algorithms with keys K1,K2, . . . ,Kr of length k. Let P1,P2, . . . ,Pq be the

plaintexts of length n that we apply r-round encryption that produces C1,C2, . . . ,Cq.

Let the intermediate values after ith round be Pi1,P
i
2, . . . ,Piq for 1 6 i < r. The

adversary enumerates each possible combination of the keys K1,K2, . . . ,Ku for the

first u = br2c rounds and it computes the intermediate values for each plaintexts as

Pu1 ,Pu2 , . . . ,Puq until uth round. Then, these values along with their possible keys

are stored in a table (The memory complexity is 2uk). Then, the adversary partially

decrypts the ciphertext C1,C2, . . . ,Cq for each value of the keys Kr,Kr−1, . . . ,Ku+1

backward. Finally, the adversary looks for a match between the partially decrypted

values and the rows of the stored table. Each match (there is only one) suggests keys

for K1,K2, . . .Kr and the adversary recovers all the keys. The time complexity of the

MITM attack is 2(r−u)k and memory complexity is 2uk.

52

In order to improve the memory complexity of MITM attack, a new technique

called dissection attack has been introduced by Dinur et. al in [DDKS12]. The main

idea behind this new technique is to guess the appropriate middle values in order to

work from the middle towards the end points recursively (in MITM attack, we start

with the end points by partially encrypting and decrypting them). Unfortunately, the

time complexity goes worse than MITM attack when applied to Feistel networks since

in FN, we can simply ignore the middle round in MITM attack while in dissection we

still have to guess them. Later in 2015, Dinur et al. [DDKS15] showed a new technique

that combines MITM attack with dissection attack for FN.

We can apply the MITM attack to the Feistel networks with r rounds and q known

plaintext/ciphertext pairs. Since our domain size is much smaller than key size in

FN, we are interested in recovery of round functions instead of key recovery for round

functions. Therefore, the standard MITM attack is equivalent to setting k = N log2(N)

and the time complexity is N(r−u)N with same memory complexity. We label the time

complexity as follows:

TMITM = O
(
Nd

r
2eN

)
(4.1)

with q = rN
2 known plaintexts.

4.1.3 Improved MITM

In this section, we elaborate and extend the attack mentioned briefly in [DDKS12,

DDKS15] on r-round FN. We take u = dr2e − 1 and v = br2c − 1 so that r = u + v + 2

and u ≈ v. Consider the FN in Fig. 4.2 for r even (When r is odd, we can set u = br2c−1

so that r− u− 2 = dr2e− 1). We can split the (2u+ 2)- round FN in 4 parts: starting

with a single round F0; a u-round Feistel Network called G, whose output is an input

to (u + 2)th round function Fu+1, and finally another v-round Feistel Network called

H.

An intuitive attack works as follows. Fix a value M
(0)
R = a for a packet of N

plaintexts so that we need q
N values for a. We set the output of F0 for one value of a

53

arbitrarily. For all the values of M0
L, we query (M0

L‖a) and obtain N (CL‖CR) values.

We enumerate all the functions of H, and compute (M
(u+2)
L ‖M(u+2)

R) from (CL‖CR) by

decrypting. We set Z =M
(u+2)
L =M

(u+1)
L if u is even and set Z =M

(u+2)
R =M

(u+1)
R

if u is odd. We store each Z in a hash table. We then enumerate all the functions of G,

and compute (M
(u+1)
L ‖M(u+1)

R) from (M
(1)
L ‖M

(1)
R). For each of the computed values

of M
(u+1)
L (for u even) or M

(u+1)
R (for u odd), we look for a match in the hash table

for stored Z values (since they have to be equal). The complexity of this approach is

to enumerate NvN v-round functions with memory complexity vN log2(N) to store the

hash table.

We can make the attack better by only guessing the 1-bit of intermediate value Z.

The meet-in-the-middle is done only on one bit for each plaintext-ciphertext pair and

all others are recovered by a yo-yo attack on 3 rounds [DVb] with complexity O(N).

More precisely, the attack works with q = rN
2 known plaintext/ciphertext pairs. We

enumerate all the possible values for M
(0)
L and pick q

N = r
2 arbitrary M

(0)
R = a. Among

the r
2 possible M

(0)
R , we can fix one of them arbitrarily, therefore, we can guess only

r
2 − 1 outputs of F0. The complete attack is given in Algorithm 3.

In this attack, we have to guess N
q
N−1 values for F0, N

(u−1)(N−1) values for enu-

merating F1, F2, . . . , Fu−1 and 2N−1 values for Fu for a single bit (we guess

N(qN−1)+(u−1)(N−1)2(N−1) values in total). And, we guess N(v−1)(N−1) values for

enumerating Fu+3, Fu+4, . . . , Fr−1, 2N values for Fu+2 (we guess N(v−1)(N−1)2N in

total). Therefore, the complexity is O
(
N(qN−1)+(r2−2)(N−1)2N−1

)
for r is even and

O
(
N(r−1

2 −1)(N−1)2N−1
)

for r is odd. We label the time complexity for the attack as:

TMITM
∗

= O
(
N(r2−1)+(r2−2)(N−1)2N−1

)
, for r even (4.2)

TMITM
∗

= O
(
N(r−1

2 −1)(N−1)2N−1
)

, for r odd

with q = rN
2 chosen plaintexts.

54

Algorithm 3: Improved MITM round-function-recovery attack

1 Pick q
N arbitrary inputs a of F0 and consider the vector of q plaintexts of the

form (x||a).
2 Encrypt the plaintexts and get the vector of ciphertexts.
3 For the first plaintext-ciphertext, fix arbitrarily the output of each Fi round

function so that they match and remove this plaintext and ciphertext from the
vectors.

4 For the round function Fu+3, . . . , Fr−1 of H, guess the outputs of remaining

N− 1 inputs. (Loop of N(v−1)(N−1).)
5 For Fu+2 in H (that we did not enumerate), we guess only the first output bit

(out of log2N) of the output. (Loop of 2N−1.)
6 For each guess, compute the vector Z of q− 1 bits by partial decryption of v

rounds and store it in a hash table.

7 Guess the outputs of F0 for the remaining q
N − 1 values a. (Loop of N

q
N−1.)

8 For the round functions F1, F2, . . . , Fu−1 of G, guess the outputs of N− 1 unset

inputs of these functions. (Loop of N(u−1)(N−1).)
9 For Fu in G (that we did not enumerate), we guess only the first output bit (out

of log2N) of the output. (Loop of 2N−1.)
10 For each guess, compute the vector Z of q− 1 bits by partial encryption of u+ 1

rounds and check if it is in the hash table.
11 For each match, try to complete the tables of Fu, Fu+1, and Fu+2 by a yo-yo

attack on 3 rounds.

F0

G

Fu+1

H

M
(0)
L M

(0)
R

M
(1)
L M

(1)
R

M
(u+1)
L M

(u+1)
R

M
(u+2)
L M

(u+2)
R

M
(2u+2)
L M

(2u+2)
R

CRCL

Figure 4.2: (2u+2)-round Feistel Network (with u even on the picture)

55

4.1.4 Message Recovery Attack [BHT16]

In their recent work by Bellare et al. in [BHT16] on FFX FPE schemes, they consider

an FN scheme with round functions built as tweakable block ciphers. They gave a

message recovery attack with data complexity larger than the domain size by using

small number of messages per tweak. Basically, their attack is a differential attack that

exploits the bias introduced on the left/right part of the input in Feistel networks. The

idea of the bias they exploit was discovered by Patarin [Pat92]. Namely, consider two

messages M(0) = (M
(0)
L ,M

(0)
R) and M

′(0) = (M
′(0)
L ,M

(0)
R) as an input with same M

(0)
R

to the FN with modular addition under the same tweak. Let M
(i)
L (resp. M

′(i)
L) be the

output of left part of FN in ith round. Then, we can show that M
(i)
L −M

′(i)
L is most

likely to be M
(0)
L −M

′(0)
L .

In [BHT16], more specifically, the authors consider two messages M and M ′ en-

crypted under FN, where they share the same right that is known to the adversary.

In the attack, the adversary obtains the encryption of M and M ′ under q tweaks, the

entire message M ′ and the shared half of the messages. At the end, the adversary

outputs the unknown half of the message M with probability close to 1 by using a bias.

The bias simply works as the following: Consider q pairs (M,Ci) and (M ′,C ′i) for

each tweak. Apply modular subtraction to the left part of the Ci and C ′i and modular

addition to known left part under each tweak. The attack observes a value more likely

than the others, and outputs this value as the unknown half of the message. The data

complexity of the attack for an r round FN is q = 24(log(N) + 4)N(r−3), where N is

the input size of the right branch in FN. The time complexity is linear in q.

4.2 Our Generic Attacks on Feistel Network

The rest of the section is organized as follows: in Section 4.2.1, we give a heuristic

attack for 3-round FN and analyze its time complexity. We report the ratio of success

recovery in Fig. 4 with the parameters that the attack takes. In Section 4.2.2, we present

an attack for the 4-round FN that leverages our 3-round attack. The correctness and

56

further analysis is presented with formally stated lemmas. In Section 4.2.3, we expand

our attack for five rounds or more and derive the time complexities. Finally, in Section

4.2.4, we define an exhaustive search algorithm dealing with partial functions in order

to recover round functions for an arbitrary round number.

4.2.1 Round-Function-Recovery on 3-Round Feistel Scheme

Consider a 3-round Feistel Scheme with three round functions F0, F1, F2 and modular

addition. Given x and y in X, we define:

c = x+ F0(y),

t = y+ F1(c),

z = c+ F2(t).

(4.3)

Due to the symmetry of the set of solutions (F0, F1, F2) (as already observed), we

can fix F0 on one point arbitrarily. The idea of our attack is to concentrate on data

for which we know how to evaluate F0 so that we can deduce the output for the round

function F2. Then, we concentrate on data for which we know how to evaluate F2 and

we deduce more points in F0. We continue by alternating the deduction between F0 and

F2 until we recover them all. When we continue iterating as described, we can fully

recover the tables for all three round functions (F0, F1, F2). Our attack is presented in

Algorithm 4 in more detail.

We model our set S as a bipartite graph with two parties of N vertices (one for the

y’s and the other for the t’s) and edges for each (y, t) pair represented by tuples from S.

What our algorithm just does is to look for a connected component of a random starting

point y with complexity O(θN). Following the theory of random graphs [Sal95], we

need θN random edges so that the graph is likely to be fully connected when θ ≈ ln(N).

For a constant θ > 1, it is likely to have a giant connected component. This component

corresponds to a constant fraction of the tables of F0 and F2. Therefore, after logθN

iterations, we can reconstruct F0 and F2 which allow us to reconstruct F1. For any

random y, we can see that it does not appear in S with probability
(
1 − 1

N

)θN ≈ 1−e−θ.

57

Algorithm 4: (F0, F1, F2) Recovery Attack

1 Collect a set S of tuples (xyzt) of size θN.
2 Take a subset S1 ⊆ S of size θ such that y is constant in S1.
3 Fix F0(y) = 0 arbitrarily and deduce θ tuples (cyzt) in S1 by c = x+ F0(y). We

collect θ equations of the form F2(t) = z− c.
4 Take the subset S2 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S1 with t = t ′.

The expected size of S2 is θ2.
5 Using the θ points of F2, we deduce θ2 tuples (xyct) by c = z− F2(t). From

these tuples, we obtain θ2 equations of the form F0(y) = c− x.
6 Take the subset S3 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S2 with y = y ′.

The expected size of S3 is θ3.
7 Using the θ2 points of F0, we deduce from θ3 tuples (cyzt)...
8 We iterate through S1 ⊆ S3 ⊆ S5 ⊆ · · · ⊆ S and S2 ⊆ S4 ⊆ · · · ⊆ S to complete

the tables of F0 and F2.

Thus, we can only hope to recover a fraction 1−e−θ of the table of F0. The same holds

for F1 and F2. Therefore, with data and time complexity N, we recover a good

fraction of all tables. With data and time complexity N lnN, we recover the

full tables with good probability.

We implemented our attack. On Fig. 4.3, we plot the average fraction of recovered

F0 values depending on θ for several values of N. For this, we computed an average

over 10,000 independent runs. For θ = 1, the fraction is about 40%. We also plot

the fraction of the trials which fully recovered all functions. These two values can be

taken as an approximation of the expected fraction of recovered table for F0 and the

probability to fully recover all functions, respectively. As we can see, the first value does

not depend so much on N (we have a giant connected component for θ around 1), but

the second one jumps for θ proportional to lnN (the graph becomes fully connected).

For θ = lnN, the probability is roughly 1
3 .

4.2.2 Round-Function-Recovery on 4-Round Feistel Scheme

In this section, we present an attack to fully recover the round functions of a 4-round

Feistel scheme.

Consider a 4-round Feistel scheme with round functions F0, F1, F2, F3. Given x and

y in X, we define the following equations (see Fig. 4.4 (a)):

58

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
θ

N = 23

N = 25

N = 27

Figure 4.3: Fraction of recovered F0 depending on θ in the 3-round attack (in thin) and
fraction of experiments which fully recovered all functions (in bold) over 10,000 trials.
.

c = x+ F0(y),

d = y+ F1(c),

z = c+ F2(d),

t = d+ F3(z).

Assume that we collected M random pairwise different plaintext messages (xy). We

collect the pairs:

V = {(xy, x ′y ′) | z ′ = z, t ′ − y ′ = t− y, xy 6= x ′y ′}

and,

Vgood = {(xy, x ′y ′) | z ′ = z, c ′ = c, xy 6= x ′y ′}

where c,d, z, t (respectively c ′,d ′, z ′, t ′) are defined from (xy) (respectively form (x ′y ′))

as above. We define Label(xy, x ′y ′) = x− x ′.

We form a directed graph G = (V,E) with the vertex set V as defined above. We

take (x1y1x
′
1y
′
1, x2y2x

′
2y
′
2) ∈ E if y ′1 = y2 (i.e. a pair of tuples x1y1x

′
1y
′
1 is connected to

a pair x2y2x
′
2y
′
2 if the y2 in the second message in former tuple is same as in the first

message in latter tuple). Furthermore, we let Egood = (Vgood×Vgood)∩E and define

59

F0

F1

F2

F3

x y

tz

d

c

(a)

F0

F1

F2

F3

x ′ y ′ = y+ ∆

t ′ = t+ ∆z ′ = z

d ′

c ′ = c

(b)

Figure 4.4: 4-round Feistel Scheme Attack

the sub-graph Ggood = (Vgood,Egood).

Then, we have the following Lemma with four properties:

Lemma 1. Given a graph G with a vertex set V defined as above:

1. Vgood ⊆ V.

2. If (xy, x ′y ′) ∈ V, then y 6= y ′.

3. If (xy, x ′y ′) ∈ Vgood, then F0(y
′) − F0(y) = Label(xy, x ′y ′).

4. For all cycles v1v2 · · · vLv1 of Ggood,
∑L
i=1 Label(vi) = 0.2

Proof. The proofs are straightforward:

1. Clearly, z ′ = z and c ′ = c imply that t ′ − y ′ = t− y, hence Vgood ⊆ V.

2. If t ′ − y ′ = t − y and y ′ = y, then t ′ = t. If we further have z ′ = z, then we

deduce c ′ = c. If c ′ = c, then x ′ = x, thus xy = x ′y ′. Hence, we cannot have

(xy, x ′y ′) ∈ V.

3. If c ′ = c then F0(y
′) − F0(y) = x− x

′ = Label(xy, x ′y ′).

4. Let vi = (xiyi, x
′
iy
′
i). If vi ∈ Vgood then F0(y

′
i)− F0(yi) = Label(vi). If we have

a cycle then y ′i = yi+1 with yL+1 = y1. Hence,
∑
i Label(vi) = 0.

2Note that the cycle length notation L should not be confused with the subscript L indicating the
left part of a plaintext or a ciphertext.

60

The principle of our attack is as follows: if we get vertices in Vgood, the property 3

from Lemma 1 gives equations to characterize F0. One problem is that we can identify

vertices in V, but we cannot tell apart good and non-good (bad) ones. One way to

recognize good vertices is to use property 4 in Lemma 1: to find cycles with zero sum

of labels. For this, we will prove in Lemma 4 that this is a characteristic property of

good cycles, meaning that all the vertices in these cycles are good vertices with high

probability. First, we estimate the number of vertices and edges with the following two

Lemma.

Lemma 2. For x,y, x ′,y ′ random and F0, F1, F2, F3 random,

Pr[(xy, x ′y ′) ∈ Vgood | (xy, x ′y ′) ∈ V] = 1
2− 1

N

≈ 1
2 .

Proof. We compute the following probabilities:

Pr[xy, x ′y ′ ∈ Vgood] = Pr[z ′ = z, c ′ = c, x ′y ′ 6= xy]

= Pr[z ′ = z, c ′ = c,y ′ 6= y]

= Pr[y ′ 6= y]Pr[c ′ = c | y ′ 6= y]Pr[z ′ = z | c ′ = c,y ′ 6= y]

=

(
1 −

1

N

)
1

N2
. (4.4)

Pr[xy, x ′y ′ ∈ V \ Vgood] = Pr[z ′ = z, t ′ − y ′ = t− y, c ′ 6= c, xy 6= x ′y ′]

= Pr[z ′ = z,d ′ − y ′ = d− y, c ′ 6= c,y ′ 6= y]

= Pr[y ′ 6= y]Pr[c ′ 6= c | y ′ 6= y]

Pr[d ′ − y ′ = d− y | y ′ 6= y, c ′ 6= c]

Pr[z ′ = z | d ′ − y ′ = d− y,y ′ 6= y, c ′ 6= c]

=

(
1 −

1

N

)(
1 −

1

N

)(
1

N

)(
1

N

)
.

61

Hence,

Pr[xy, x ′y ′ ∈ Vgood | xyx ′y ′ ∈ V] =
Pr[xy, x ′y ′ ∈ Vgood]

Pr[xy, x ′y ′ ∈ V]

=
1

1 +
Pr[xy,x ′y ′∈V\Vgood]
Pr[xy,x ′y ′∈Vgood]

=
1

2 − 1
N

≈ 1

2
.

Lemma 3. The expected number of elements in Vgood is
M(M−1)(1− 1

N)
N2 ≈ M2

N2 .

Proof. We have M(M− 1) possible pair of tuples xy, x ′y ′ with xy 6= x ′y ′ to construct

Vgood. From Eq. (4.4), the probability of each vertex in Vgood is 1
N2

(
1 − 1

N

)
. Thus,

we expect to have
M(M−1)(1− 1

N)
N2 ≈ M2

N2 elements in Vgood.

We have the property that for each cycle v1v2 · · · vLv1 ∈ G, if v1, . . . , vL are all in

Vgood, then the sum of Label(vi) is zero due to Lemma 1, property 4. If one vertex is

not good, the sum may be random. This suggests that a way to find good vertices in

V is to look for long cycles in G with a zero sum of labels.

Lemma 4. (L = 2 case) If v1 = (x1y1, x
′
1y
′
1) we say that v1 and v2 are permuting if v2 =

(x ′1y
′
1, x1y1). If v1v2v1 is a cycle in G with zero sum of labels, and v1, v2 are not permut-

ing, then v1 and v2 are likely to be good. More precisely, for v1 = (x1y1x
′
1y
′
1) and v2 =

(x2y2x
′
2y
′
2) random, we have Pr[v1, v2 ∈ Vgood | v1v2v1 is a cycle, v1, v2 not permuting,∑2

i=1 Label(vi) = 0] > 1
1+ 10

N−5

.

Proof. Before we start computations, we state the following definitions:

[good]: the event that v1 and v2 are both in Vgood.

[bad]: the event that v1 and v2 are both in V but not both in Vgood.

[cyc]: the event that y ′1 = y2 and y ′2 = y1.

[perm]: the event that x1y1 = x
′
2y
′
2 and x ′1y

′
1 = x2y2.

[Σ = 0]: the event that Label(v1) + Label(v2) = 0.

[#{d} = 4]: the event that d1,d
′
1,d2,d

′
2 are pairwise different.

62

[#{d} = j]: the event that there are exactly j pairwise different values among d1,d
′
1,d2,d

′
2.

Let pgood = Pr[good, cyc,¬perm,Σ = 0].

Let pbad = Pr[bad, cyc,¬perm,Σ = 0].

We are interested in Pr[good | cyc,¬perm,Σ = 0] = 1
1+

pbad
pgood

.

We want to upper bound pbad
pgood

. And, we start with the probability pgood.

Note that if [good], we have [Σ = 0] and it is equivalent to [c1 = c ′1, c2 = c ′2,d1 6=

d ′1,d2 6= d ′2, z1 = z ′1, z2 = z ′2]. When [c1 = c
′
1, c2 = c

′
2, cyc] holds, [perm] is equivalent to

[c ′1 = c2]. When [c1 = c
′
1, c2 = c

′
2,y
′
1 = y2] holds, (d1−y1)−(d ′2−y

′
2) = F1(c1)−F1(c

′
2) =

F1(c
′
1) − F1(c2) = (d ′1 − y ′1) − (d2 − y2) = d ′1 − d2. So, y1 = y ′2 is equivalent to

d1 − d
′
2 = d

′
1 − d2.

We let A be the event [c1 = c
′
1 6= c2 = c ′2, #{d} = 4,d1+d2 = d

′
1+d

′
2] which consists

of only c and d. Picking the xy is equivalent to picking cd. So, A only depends on

the c,d. We have Pr[A] > 1
N3

(
1 − 1

N

)2 (
1 − 3

N

)
> 1
N3

(
1 − 5

N

)
(We first pick c1 and

d1, then c2 6= c1, d ′1 6= d1, and d2 /∈ {d1,d
′
1, 2d ′1 − d1}). When A holds, [y ′1 = y2] only

depends on F1 and occurs with probability 1
N . When A holds, [z1 = z ′1, z2 = z ′2] only

depends on F2 and occurs with probability 1
N2 . Therefore,

pgood = Pr[good, cyc,¬perm,Σ = 0]

= Pr[c1=c ′1 6=c2=c ′2,d1 6=d ′1,d2 6=d ′2,d1+d2=d
′
1+d

′
2,y
′
1=y2,z1=z

′
1,z2=z

′
2]

> Pr[c1=c ′1 6=c2=c ′2,#{d}=4,d1+d2=d
′
1+d

′
2,y
′
1=y2,z1=z

′
1,z2=z

′
2]

= Pr
c,d

[A]Pr
F1
[y ′1 = y2|A]Pr

F2
[z1 = z

′
1, z2 = z

′
2|A]

>
1

N6

(
1 −

5

N

)

Now, we compute the probability pbad.

We know that [bad] is equivalent to [c1 6= c ′1 or c2 6= c ′2, F1(c1) = F1(c
′
1), F1(c2) =

F1(c
′
2),d1 6= d ′1,d2 6= d ′2, z1 = z ′1, z2 = z ′2]. When [cyc] occurs, [¬perm] is equivalent to

[c ′1 6= c2 or c1 6= c ′2]. When [F1(c1) = F1(c
′
1), F1(c2) = F1(c

′
2)] holds, [cyc] is equivalent

to [d1+d2 = d
′
1+d

′
2,y
′
1 = y2]. When [cyc] holds, [Σ = 0] is equivalent to [c1+c2 = c

′
1+

63

c ′2]. So, when [cyc,Σ = 0] occurs, [c1 6= c ′1 or c2 6= c ′2] is equivalent to [c1 6= c ′1, c2 6= c ′2].

From symmetry, the [c ′1 6= c2 or c1 6= c ′2] case is at most twice the [c ′1 6= c2] case. Let

B be the event [c1 6= c ′1 6= c2 6= c ′2, c1+c2 = c ′1+c ′2,d1+d2 = d ′1+d ′2,d1 6= d ′1,d2 6= d ′2]

which consists of only c and d. When B holds, [F1(c1) = F1(c
′
1), F1(c2) = F1(c

′
2),y

′
1 = y2]

only depends on F1. Therefore,

pbad = Pr[bad, cyc,¬perm,Σ = 0]

= Pr[c1 6=c ′1,c2 6=c ′2,c ′1 6=c2 or c1 6=c ′2,c1+c2=c ′1+c ′2,F1(c1)=F1(c ′1),F1(c2)=F1(c ′2),

d1+d2=d
′
1+d

′
2,d1 6=d ′1,d2 6=d ′2,y ′1=y2,z1=z

′
1,z2=z

′
2]

6 2 Pr[c1 6=c ′1 6=c2 6=c ′2,c1+c2=c ′1+c ′2,F1(c1)=F1(c ′1),F1(c2)=F1(c ′2),d1+d2=d
′
1+d

′
2,

d1 6=d ′1,d2 6=d ′2,y ′1=y2,z1=z
′
1,z2=z

′
2]

= 2 Pr
c,d,F2

[B,z1=z ′1,z2=z ′2]Pr
F1
[F1(c1)=F1(c ′1),F1(c2)=F1(c ′2),y ′1=y2|B,z1=z

′
1,z2=z

′
2]

= 2 Pr
c,d,F2

[B, z1 = z
′
1, z2 = z

′
2]×

1

N3

We split B following the [#{d} = j] cases for j = 2, 3, 4. Each case is denoted

Bj. When we have [d1 6= d ′,d2 6= d ′2, #{d} = 2,d1 + d2 = d ′1 + d
′
2], we have either

[d1 = d ′2,d
′
1 = d2] or [d1 = d2,d

′
1 = d ′2,d

′
1 = d1 +

N
2]. When we have [d1 6= d ′1,d2 6=

d ′2, #{d} = 3], we have [d1 = d2 or d ′1 = d ′2] (If we have [d1 = d ′2 or d ′1 = d2], then

d1 +d2 = d
′
1 +d

′
2 and #{d} = 2 conflicts). When we have [d1 6= d ′1,d2 6= d ′2, #{d} = 4],

we have no equality of d’s. For B4,

Pr
c,d,F2

[B4, z1 = z
′
1, z2 = z

′
2]

= Pr
c,d

[B4]Pr
F2
[z1 = z

′
1, z2 = z

′
2|B4]

= Pr
c,d

[c1 6=c ′1 6=c2 6=c ′2,c1+c2=c ′1+c ′2,d1+d2=d
′
1+d

′
2,#{d}=4]Pr

F2
[z1 = z

′
1, z2 = z

′
2|B4]

6 Pr
c,d

[c1 + c2 = c
′
1 + c

′
2,d1 + d2 = d

′
1 + d

′
2]Pr
F2
[z1 = z

′
1, z2 = z

′
2|B4]

=
1

N4

For each of the two cases of B3, either z1 = z ′1 or z2 = z ′2 occurs with probability 1
N .

64

So,

Pr
c,d,F2

[B3, z1 = z
′
1, z2 = z

′
2]

6 2 Pr
c,d

[c1 + c2 = c
′
1 + c

′
2,d1 + d2 = d

′
1 + d

′
2,d1 = d2]Pr

F2
[z1 = z

′
1]|d1 6= d ′1]

=
2

N4

For B2,

Pr
c,d,F2

[B2, z1 = z
′
1, z2 = z

′
2]

6 Pr
c,d

[B2]

= Pr
c,d

[c1 6=c ′1 6=c2 6=c ′2,c1+c2=c ′1+c ′2,d1+d2=d
′
1+d

′
1,d1 6=d ′1,d2 6=d ′2,#{d}=2]

= Pr
c,d

[c1+c2=c ′1+c ′2,d1+d2=d
′
1+d

′
2,d1=d

′
2,d
′
1=d

′
2] +

Pr
c,d

[c1+c2=c ′1+c ′2,d1=d2,d
′
1+d

′
2,d
′
1=d1+

N
2]

=
2

N4

Therefore, Prc,d,F2 [B, z1 = z
′
1, z2 = z

′
2] 6

5
N4 and pbad 6

10
N7 .

Finally, pbad
pgood

6 10
N−5 . We deduce

Pr[good | cyc,¬perm,Σ = 0] >
1

1 + 10
N−5

We give an extended version of Lemma 4 as follows:

Lemma 5. If v1v2 · · · vi · · · vLv1 is a cycle of length L in G with zero sum of labels and

the vertices use no di or ci in common, then all vi are likely to be good. More precisely,

for vi = (xiyix
′
iy
′
i) random, we have

Pr [∀i,vi∈Vgood |v1···vi···vLv1 is a cycle,(#{c}=#{c ′}=L,∀i 6=j ci 6=c ′j),(#{d}=L,∀i,j di 6=d ′j),∑L
i=1 Label(vi)=0]] > 1

1+ 2L−1
N

.

Proof. We compute p = Pr[good | good∨ bad, cyc,¬repeatc,¬repeatd,Σ = 0], where

65

we use the same notation as in Lemma 4 with new [¬repeatc] and [¬repeatd] notations.

We define them as follows:

We note that when all vi are vertices (good or bad), since F1(c
′
i) = F1(ci), y

′
i+1 = yi

is equivalent to d ′i−di+1 = F1(ci)−F1(ci+1). We further note that when this holds, then∑
di =

∑
d ′. To be able to compute the probability of [cyc], we introduce a condition

on the non-repetition of the c and c ′, except for the possible equalities ci = c
′
i in good

vertices. Namely, we define

[¬repeatc] :
(
#{c} = #{c ′} = L , ∀i 6= j ci 6= c ′j

)
When [¬repeatc,

∑
d =

∑
d ′] holds and all vi are vertices, [cyc] occurs with probability

1
NL−1 . Therefore, Pr[cyc | good∨ bad,¬repeatc,Σd = Σd ′] = 1

NL−1

The event [∀i zi = z ′i] is equivalent to ci + F2(di) = c ′i + F2(d
′
i). To be able to

compute its probability, we introduce a condition on the non-repetition of the d and

d ′. Namely, we define

[¬repeatd] :
(
#{d} = L , ∀i, j di 6= d ′j

)
Hence, when [¬repeatd] occurs, [∀i zi = z ′i] occurs with probability 1

NL
: Pr[z ′ =

z | ¬repeatd] =
1
NL

. Finally, when [cyc] holds, [Σ = 0] is equivalent to Σ(c − c ′) = 0,

and [good∨ bad] is equivalent to [F1(c) = F1(c
′), z ′ = z].

We define

pgood = Pr[c=c ′,¬repeatc,cyc,¬repeatd,z
′=z]

pbad = Pr [¬(c=c ′),F1(c)=F1(c
′),

∑
(c−c ′)=0,¬repeatc,cyc,¬repeatd,z

′=z]

with obvious shorthands [c = c ′], [z ′ = z], [F1(c) = F1(c
′)], [

∑
(c− c ′) = 0].

We upper bound pbad
pgood

to compute p.

66

We have

pgood = Pr[c = c ′,¬repeatc, cyc,¬repeatd, z ′ = z]

= Pr
[
c = c ′,¬repeatc

∑
d =

∑
d ′, cyc,¬repeatd, z ′ = z

]
=

1

N2L−1
Pr[c = c ′,¬repeatc]Pr

[∑
d =

∑
d ′,¬repeatd

]
=

1

N3L−1

N(N− 1) · · · (N− L+ 1)

NL
Pr
[∑

d =
∑

d ′,¬repeatd

]

pbad = Pr [¬(c=c ′),F1(c)=F1(c
′),

∑
(c−c ′)=0,¬repeatc,cyc,¬repeatd,z

′=z]

= Pr [¬(c=c ′),F1(c)=F1(c
′),

∑
(c−c ′)=0,¬repeatc

∑
d=

∑
d ′,cyc,¬repeatd,z

′=z]

=
1

N2L−1
Pr[¬(c=c ′),F1(c)=F1(c

′),
∑

(c−c ′)=0,¬repeatc]Pr [
∑
d=

∑
d ′,¬repeatd]

So,

pbad
pgood

=
N2L

N(N− 1) · · · (N− L+ 1)
Pr [¬(c=c ′),F1(c)=F1(c

′),
∑

(c−c ′)=0,¬repeatc]

=
N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

Pr



¬repeatc

∀i 6∈I ci=c
′
i

∀i∈I ci 6=c ′i,F1(ci)=F1(c ′i)∑
i∈I(ci−c

′
i)=0



6
N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

Pr



¬repeatc except c ′max I

∀i 6∈I ci=c
′
i

∀i∈I\{max I} ci 6=c ′i,F1(ci)=F1(c ′i)∑
i∈I(ci−c

′
i)=0

F1(cmax I)=F1(c
′
max I)


=

N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

N(N− 1) · · · (N− L− #I)

N2L+#I

=
∑
I 6=∅

(N− L)(N− L− 1) · · · (N− L− #I)

N#I

67

6
∑
I 6=∅

1

N
=

2L − 1

N

where
[
¬repeatc except c ′max I

]
means


#{c} = L

#{c ′1, . . . , c ′max I−1, c
′
max I+1, . . . , c ′L} = L− 1

∀i∀j 6= max I i 6= j =⇒ ci 6= c ′j

By relaxing the constraints on c ′max I, we can compute the probability of Σ(c− c ′) = 0

conditioned to other events about c and c ′. This probability is 1
N .

Therefore,

pbad
pgood

6
2L − 1

N

and we have

1

1 + pbad
pgood

>
1

1 + 2L−1
N

We believe that Lemma 4 remains true for valid cycles of small length except in

trivial cases. In Lemma 5, we extend to L > 2 for cycles satisfying some special non-

repeating condition [¬repeat] on the c and d values to rule out many trivial cases.

However, this condition [¬repeat] cannot be checked by the adversary. Instead, we

could just avoid repetitions of any message throughout the cycle (as repeating messages

induce repeating c’s or d’s). We use the following conjecture (which is supported by

experiment for L = 3).

Conjecture 1. If v1v2 · · · vLv1 is a cycle of length L in G with zero sum of labels and

the vertices use no messages in common, then v1 · · · vLare all good with probability close

to 1.

For M known plaintexts, the expected number of valid cycles in Ggood of a given

length L is M
2L

N3L .

68

The aim of our attack is to collect as many F0 outputs as possible to reconstruct

a table of this function. Thus, we are interested in vertices whose labels are defined

as Label(vi) = F0(y) − F0(y
′),∀i ∈ {0, 1, . . . , |V |} and we generate another graph to

represent the collection of many independent equations for F0.

We have a valid cycle v1v2 · · · vLv1 of length L in G when vi ∈ V,

L∑
i=1

Label(vi) = 0

and vertices use no messages in common. Now, let us define an undirected graph

G ′ = (V ′,E ′), where V ′ = {0, 1, . . . ,N− 1} and E ′ is defined as follows: for each vertex

vi = (xy, x ′y ′) in a valid cycle v1v2 · · · vLv1 of length L, add {yi,y
′
i} as an edge in

E ′ with label set to Label(vi). The purpose of such a graph G ′ is to put y values

which are dependent on each other in a single connected component, and put apart

with independent y values in separate connected components.

When we model G ′ as a random graph, we can adjust M so that we can have a

large connected component in G ′. Given the vertex set size |V ′| = N and the edge

size |E ′| = m, m =
N(N−1)

2 p, where p is the probability that G ′ has an edge between

two vertices. From Erdős-Rényi model [ER59] on random graphs, we want Np > 1.

We know that Np ∼ 2mN . So, we want m > N
2 . We have M2L

L·N3L expected good cycles

(counted without repetition of their L circular rotations) of length L, thus m ∼ M2L

N3L .

Therefore, we need to set M = λN
3
2

(
N
2

) 1
2L for a constant λ > 1 to have a large

connected component in G ′. Our attack works with M = N
3
2+ε for ε > 0 small, with

complexity O(2LN(1+2ε)L) and a constant probability of success. If our attack recovers

at least
√
N points in F0 correctly (which is the case when we have a large connected

component in G ′), we obtain M ×
√
N
N � N samples to apply the attack on 3-rounds

so that it recovers a good fraction of F1, F2, F3. It is enough to bootstrap a yoyo attack

(Steps 9–18 of Algorithm 5), and our attack succeeds.

Now, we give the full algorithm of our attack to 4-round Feistel scheme.

Experimentally, we noticed that λ = 0.8 is too small to obtain a large enough

connected component for L = 3. Conversely, for λ = 2, G ′ is more connected but the

69

Algorithm 5: (F0, F1, F2, F3) Recovery Attack (Strategy S2)

1 Pick M known plaintexts and retrieve their ciphertext.
2 Create G = (V,E).
3 Find valid cycles of length 2, 3, . . . ,L and collect the vertices in these cycles.
4 Create G ′ from {y,y ′} from the collected vertices.
5 Find the largest connected component in G ′.
6 Assign one F0(y) value arbitrarily and deduce F0 on the connected component.
7 For all known plaintexts using y in the connected component, evaluate and

deduce a tuple for the 3-round Feistel scheme based on (F1, F2, F3).
8 Apply the attack on 3-round Feistel scheme from Section 4.2.1 to recover a

constant fraction of (F1, F2, F3).
9 while nothing more revealed do

10 foreach of the M plaintext/ciphertext pairs do
11 if F0 and F1 are known for this plaintext then
12 deduce one point for F2 and F3
13 end
14 if F2 and F3 are known for this ciphertext then
15 deduce one point for F0 and F1
16 end

17 end

18 end

giant component contains many bad edges that we want to avoid.

Let Ej be the event that the sizes of the j largest connected components sum

to greater than
√
N with no bad edges in G ′. Let E6j be the event that either of

E1,E2, . . . ,Ej occurs. We simulated the attack for various values of N and λ = 1, 2, 3

and report the numbers for E61,E62,E63 on Table 4.2. When we read the table, by

taking λ = 1 and j = 3, our attack recovers
√
N points of F0 with probability at least

23 %. In our attack, if we look at j connected components, we need to multiply the

complexity by Nj−1 (We can fix F0 on one point for free, then all values in its connected

components are inferred, but for each additional connected component, we must guess

one value of F0). It is likely that we can mitigate this Nj−1 factor by early abort during

the attack on 3-rounds.

In our experiments, we observe better success probability of our attack with λ = 1.

With λ larger, the attack hardly ever succeeds. It may look paradoxical to say that

if λ is too large, then the attack fails, but this is due to higher chances to collect

bad edges. However, when G ′ is heavily connected, we could propose algorithms to

70

N M(λ) #trials Pr[E61] Pr[E62] Pr[E63]

2 2(0.71) 5022 0.00 % 0.00 % 0.00 %
4 5(0.56) 7098 1.51 % 1.51 % 1.51 %
8 15(0.53) 7010 0.36 % 4.07 % 4.07 %

16 46(0.51) 6665 0.05 % 1.23 % 1.23 %
32 144(0.50) 6103 0.02 % 0.03 % 0.16 %
64 457(0.50) 7986 0.00 % 0.00 % 0.01 %

128 1449(0.50) 7460 0.00 % 0.00 % 0.00 %
256 4598(0.50) 6879 0.00 % 0.00 % 0.00 %
512 14597(0.50) 6094 0.00 % 0.00 % 0.00 %

2 3(1.06) 4316 0.00 % 0.00 % 0.00 %
4 8(0.89) 4153 15.19 % 15.19 % 15.19 %
8 23(0.81) 6703 5.83 % 18.54 % 18.54 %

16 73(0.81) 6886 4.57 % 13.87 % 13.87 %
32 230(0.80) 6952 2.52 % 7.12 % 10.98 %
64 730(0.80) 6568 1.40 % 5.65 % 9.18 %

128 2318(0.80) 6189 0.29 % 1.13 % 2.83 %
256 7357(0.80) 8054 0.02 % 0.30 % 0.86 %
512 23355(0.80) 626 0.00 % 0.00 % 0.00 %

2 3(1.06) 4352 0.00 % 0.00 % 0.00 %
4 9(1.00) 3864 23.08 % 23.08 % 23.08 %
8 29(1.02) 5791 15.59 % 35.02 % 35.02 %

16 91(1.01) 6585 16.20 % 29.90 % 29.90 %
32 288(1.00) 6814 14.66 % 27.09 % 31.67 %
64 913(1.00) 6981 18.16 % 34.69 % 40.87 %

128 2897(1.00) 6609 16.31 % 33.53 % 40.73 %
256 9196(1.00) 6176 16.27 % 36.90 % 46.50 %
512 29193(1.00) 486 11.73 % 32.10 % 44.86 %

8 58(2.03) 988 22.77 % 23.99 % 23.99 %
16 182(2.01) 2504 6.71 % 6.79 % 6.79 %
32 575(2.00) 3425 0.53 % 0.55 % 0.55 %
64 1825(2.00) 5727 0.02 % 0.02 % 0.02 %

128 5793(2.00) 1948 0.00 % 0.00 % 0.00 %
256 18391(2.00) 125 0.00 % 0.00 % 0.00 %
512 58386(2.00) 7 0.00 % 0.00 % 0.00 %

32 863(3.00) 1389 0.00 % 0.00 % 0.00 %
64 2737(3.00) 2666 0.00 % 0.00 % 0.00 %

128 8689(3.00) 167 0.00 % 0.00 % 0.00 %
256 27586(3.00) 9 0.00 % 0.00 % 0.00 %

Table 4.2: Experimental Pr[E6j] over several trials for various N, λ, and j;the number
of trials correspond to the successful runs of the whole attack on FF3 in the first step
out of 10 000 using L = 3.

71

eliminate inconsistencies in labels and get rid of bad edges. It means that we would

have a successful attack for any λ > 2. We let it as future work.

Therefore, we have a double phase transition. The first phase transition occurs

when we have enough data to be able to make the graph and find cycles. Our attack

quickly succeeds after this phase transition. The second phase transition occurs when

we start having bad edges in the collected cycles. Then, our attack must be enriched

to be able to work any longer. We did not do it on purpose as we noticed there is a

sufficient window in between these two phase transitions to break the scheme with good

probability of success without caring about possible bad edges.

In Table 4.3, we show the experimental results of success probability of the entire

attack for various strategies. Let Sj be an event with strategy j. In S1, we accumulate

the three largest connected components and abort, unless the accumulated size is at

least
√
N and they have no bad edges, i.e., S1 is exactly E63. In S2, we just look at the

largest connected component and fail unless it has no bad edges in G ′ (we remove the

condition on size of the connected component that is greater than
√
N). In S3 (and S4

resp.), we look at the two largest (three largest resp.) connected components that have

no bad edges. What we report in Table 4.3 includes the success probability Prsucc of

Si and we recover the entire tables for each round function. These various strategies

are considered for experimental purpose even though we have theoretical results that

suggests the condition on the size of the connected component.

The data complexity of our attack in Algorithm 5 is M = O(N
3
2+

1
2L). We

compute the time complexity for the algorithm based on the step 2, 3, 4, and 5, as the

other steps are much shorter. In step 2, creating our graph G is defined as forming

the vertices in G. This can be done in M log(M) time with collision detection for

M known plaintext/ciphertext pairs. In step 3, we look for the cycles of length L.

The cycles of length L in our graph can be found with multiplication in an adjacency

matrix (which is sparse). Matrix multiplication can be done in O(|V |2d) where d =
|E|
|V |

is the average degree of a vertex. Therefore, the complexity is O(|V ||E|). With the

Floyd-Warshall algorithm, we need (L − 1) multiplications by the adjacency matrix in

the max-plus algebra that leads us to a complexity O(L|V ||E|). With |E| ∼
|V |2

N , where

72

N M(λ) #trials Pr[succ,S1]–(Pr[S1]) Pr[succ,S2]–(Pr[S2]) Pr[succ,S3]–(Pr[S3]) Pr[succ,S4]–(Pr[S4])

2 2(0.71) 5022 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(49.70 %) 0.00 %–(49.70 %)
4 5(0.56) 7098 0.00 %–(1.51 %) 0.00 %–(99.42 %) 0.00 %–(36.97 %) 0.00 %–(36.97 %)
8 15(0.53) 7010 0.00 %–(4.07 %) 0.00 %–(98.49 %) 0.00 %–(36.01 %) 0.00 %–(36.01 %)

16 46(0.51) 6665 0.00 %–(1.23 %) 0.00 %–(97.99 %) 0.00 %–(38.86 %) 0.00 %–(38.84 %)
32 144(0.50) 6103 0.05 %–(0.16 %) 0.77 %–(98.33 %) 2.24 %–(45.55 %) 2.24 %–(45.53 %)
64 457(0.50) 7986 0.01 %–(0.01 %) 2.02 %–(98.32 %) 6.36 %–(53.72 %) 6.41 %–(53.72 %)

128 1449(0.50) 7460 0.00 %–(0.00 %) 2.01 %–(98.75 %) 7.02 %–(67.63 %) 7.67 %–(67.57 %)
256 4598(0.50) 6879 0.00 %–(0.00 %) 0.74 %–(98.92 %) 5.16 %–(80.23 %) 6.67 %–(80.20 %)
512 14597(0.50) 6094 0.00 %–(0.00 %) 0.31 %–(99.38 %) 3.02 %–(92.25 %) 5.07 %–(92.16 %)

2 3(1.06) 4316 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(76.90 %) 0.00 %–(76.90 %)
4 8(0.89) 4153 0.07 %–(15.19 %) 0.07 %–(93.74 %) 1.13 %–(59.64 %) 1.13 %–(59.64 %)
8 23(0.81) 6703 3.88 %–(18.54 %) 2.27 %–(90.23 %) 4.83 %–(57.72 %) 4.85 %–(57.69 %)

16 73(0.81) 6886 10.30 %–(13.87 %) 21.71 %–(87.71 %) 29.65 %–(67.25 %) 29.67 %–(67.14 %)
32 230(0.80) 6952 10.34 %–(10.98 %) 43.18 %–(88.62 %) 57.44 %–(79.67 %) 57.44 %–(78.88 %)
64 730(0.80) 6568 8.82 %–(9.18 %) 59.10 %–(91.21 %) 75.29 %–(88.78 %) 75.21 %–(87.62 %)

128 2318(0.80) 6189 2.70 %–(2.83 %) 65.89 %–(93.89 %) 84.15 %–(93.75 %) 84.15 %–(92.39 %)
256 7357(0.80) 8054 0.84 %–(0.86 %) 67.21 %–(96.52 %) 87.79 %–(96.52 %) 88.33 %–(95.49 %)
512 23355(0.80) 626 0.00 %–(0.00 %) 67.09 %–(98.24 %) 90.58 %–(98.24 %) 91.53 %–(97.76 %)

2 3(1.06) 4352 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(75.30 %) 0.00 %–(75.30 %)
4 9(1.00) 3864 3.03 %–(23.08 %) 3.60 %–(88.69 %) 7.27 %–(64.65 %) 7.27 %–(64.65 %)
8 29(1.02) 5791 27.65 %–(35.02 %) 29.11 %–(78.62 %) 34.31 %–(65.88 %) 34.31 %–(65.76 %)

16 91(1.01) 6585 28.44 %–(29.90 %) 49.83 %–(73.27 %) 54.08 %–(68.37 %) 54.08 %–(67.84 %)
32 288(1.00) 6814 30.69 %–(31.67 %) 62.91 %–(71.79 %) 65.17 %–(70.75 %) 65.10 %–(68.80 %)
64 913(1.00) 6981 39.52 %–(40.87 %) 73.80 %–(77.14 %) 73.24 %–(77.14 %) 72.87 %–(74.03 %)

128 2897(1.00) 6609 39.17 %–(40.73 %) 83.10 %–(83.83 %) 79.77 %–(83.83 %) 79.03 %–(79.89 %)
256 9196(1.00) 6176 45.16 %–(46.50 %) 88.52 %–(88.76 %) 85.80 %–(88.76 %) 85.01 %–(85.82 %)
512 29193(1.00) 486 44.03 %–(44.86 %) 93.21 %–(93.21 %) 90.95 %–(93.21 %) 89.92 %–(90.95 %)

8 58(2.03) 988 23.99 %–(23.99 %) 25.40 %–(25.40 %) 25.40 %–(25.40 %) 25.40 %–(25.40 %)
16 182(2.01) 2504 6.79 %–(6.79 %) 6.79 %–(6.79 %) 6.79 %–(6.79 %) 6.79 %–(6.79 %)
32 575(2.00) 3425 0.55 %–(0.55 %) 0.55 %–(0.55 %) 0.55 %–(0.55 %) 0.55 %–(0.55 %)
64 1825(2.00) 5727 0.02 %–(0.02 %) 0.02 %–(0.02 %) 0.02 %–(0.02 %) 0.02 %–(0.02 %)

128 5793(2.00) 1948 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
256 18391(2.00) 125 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
512 58386(2.00) 7 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

32 863(3.00) 1389 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
64 2737(3.00) 2666 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

128 8689(3.00) 167 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
256 27586(3.00) 9 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

Table 4.3: Experimental Pr[Sj] and success probability over many trials for various N
and j using L = 3.

73

|V | = 2M
2

N2 = 23−
1
LN1+ 1

L and L constant, we have O(|V |3

N) which is equal to O(N2+ 3
L).

Another method to find cycles is to enumerate all L-tuples of vertices in O(|V |L) which

is O(NL+1). Therefore, we compute the minimum between the two methods which is

O(N3) for any L and it is the complexity of step 3. (It can even be lower for L > 3.)

Step 4 takes N time and finally step 5 takes M
2L

N3L = N
2 . As the complexity is weighted

by step 3, we have time complexity of our algorithm as O(N3) for L = 3 and a

smaller O(N2+ 3
L) for L > 3. Instead of L− 1 multiplications with a sparse matrix in

the max-plus algebra, we could also use O(log L) general purpose matrix multiplications

over the integer with the Coppersmith-Winograd algorithm [CW90]. We would reach

a complexity of O(|V |2.38 log L) which is not better.

4.2.3 Round-Function-Recovery on 5-Round Feistel Scheme and More

Given the 4-round full recovery attack from Section 4.2.2, we can extend it to attack

5-round Feistel network. The attack for 5-round Feistel network is straightforward; it

uses chosen plaintexts and guess strategies. First of all, consider our 4-round attack and

the known plaintexts from this attack. We choose plaintexts for the 5-round so that

the right half of the messages have as little different values as possible, then guess the

corresponding images through F0. It means that for the right halves of the messages, we

generate all the possible partial tables of the first round function for these right values.

Then, we guess which table is consistent after running the attack on the next 4-round.

The data complexity of our 4-round attack is λN
3
2+ε, hence our time complexity for

5-round recovery with chosen plaintexts is O(NλN
1
2+ε+3

). The data complexity

is unchanged.

We can attack r−rounds similarly with complexity O(N(r−5)N+
√
N+3) by

guessing the round functions on the last (r − 5) rounds. The data complexity is un-

changed. We can apply this to FF1 (r = 10) and FF3 (r = 8). We obtain a complexity

lower than 2128 for FF1 withN = 7 and for FF3 with 7 6 N 6 10. (For lowerN, exhaus-

tive search on either the codebook or the round functions reaches the same conclusion.)

Hence, these instances of FF1 and FF3 do not offer 128-bit security.

74

4.2.4 Round-Function-Recovery by Partial Exhaustive Search

We consider exhaustive search algorithms dealing with partial functions. Normally, a

function Fi is defined by its set of all possible (z, Fi(z)) pairs. We call partial table any

subset of its table. The density of a partial table is the ratio θ of its cardinality by

N. For example, θ = 1
N corresponds to a partial table defined on a single point z and

θ = 1 corresponds to the full table. A partial table is an extension of another partial

table if the former is a superset of the latter. We deal with partial tables for each round

function. We define r-tuples T of partial tables in which Ti denotes the partial table of

Fi in T . We say T is homogeneous with density θ if for all i, Ti has density θ. Similarly,

a tuple T ′ is an extension of T if for each i, T ′i is an extension of Ti. An elementary tuple

is a homogeneous tuple of density 1
N . This means that each of its partial functions are

defined on a single point.

We say that a tuple T encrypts a plaintext M into a ciphertext C (or decrypts C

into M) if we can evaluate the FN on M with the partial information we have about

the round functions and if it gives C. We say that a pair (M,C) is computable except

for r ′ rounds for a tuple T if the partial functions are enough to encrypt M for up to i

rounds and to decrypt C for up to r− i− r ′ rounds.

We say a tuple T of partial tables is compatible with (M,C) if one of the following

conditions is satisfied: (i) T encrypts M into C; (ii) (M,C) is computable, except for

two rounds or more; (iii) (M,C) is computable, except for one round and the half of

the encryption of M that can be computed after i + 1 round matches the respective

half of the decryption of y after r − i − 1 rounds. Clearly, if T is not compatible with

(M,C), then no extension of T can encrypt M into C so we can prune an exhaustive

search.

4.2.4.1 Random Partial Exhaustive Search

Assume that q plaintext/ciphertext pairs are known to the adversary. Consider an

homogeneous r-tuple of partial functions F0, F1, . . . , Fr−1 of density θi (i.e. for each

round function, we know the fraction of θi of the table). Let Pooli be a set of such

75

tuples which are compatible with all pairs. Our aim is to start from θ0 = 1
N and to

reconstruct the tables with θ = 1 iteratively.

In Pooli, for each tuple we have two types of plaintext/ciphertext pairs. For a tuple,

it can either encrypt the pair with the partial tables it has, or it does not have complete

enough partial tables to compute a pair (starting from a known plaintext, some partial

tables do not contribute to verify the ciphertext). What we like to do is to extend

these partial tables on arbitrary new points, in a way that the compatibility with all q

pairs is preserved. We need to use some of q known plaintext/ciphertext pairs in order

to check the validity of a tuple T in Pooli. For each known plaintext/ciphertext pair

out of q pairs, we can compute the fraction θri pairs with Pooli, thus, we expect to

compute θriq pairs given a tuple in Pooli. Each fully computable pair is compatible

with probability 1
N2 . This decimates the pool of possible tuples by a factor N2θriq.

We can also compute, for all but one round, a fraction rθr−1
i (1 − θi) of pairs, which

are compatible with probability 1
N . This decimates the pool of tuples by a factor

Nrθ
r−1
i (1−θi)q. Partial functions are defined on θiN arbitrary points (i.e. not on any

possible set of θiN points). That means we have NrθiN possible tuples. Hence, among

all NrθiN possible r-tuples, we expect to have

|Pooli| ≈ NrθiN−rθr−1
i (1−θi)q−2θriq = NrθiN−rθr−1

i q+(r−2)θriq.

We can construct Pooli+1 from Pooli as shown in Algorithm 6, where θ0, θ1, . . . ,θw

are the parameters of the algorithm. Our aim is to reach θw = 1. For θ0 = 0, we have

|Pooli| = 1 (the tuple of empty tables), but we rather start with θ1 = 1
N . Indeed, we

can set Pool0 to an arbitrary tuple encrypting M1 into C1. This still keeps a solution.

If we do so, we have Pool0 = 1 which reduces the size of the other pools. We continue

decimating the consecutive pools with other q − 1 known plaintext/ciphertext pairs.

We obtain the formula

cns×NrθiN−rθr−1
i (q−1)+(r−2)θri(q−1)

76

with a constant cns such that |Pool0| = 1 hence cns ≈ N−r.

Algorithm 6: Random partial exhaustive search round-function-recovery attack

1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.

2 Get an arbitrary elementary tuple T which encrypts M1 to C1.

3 Initialize Pool0 = {T }.

4 foreach i = 1, . . . ,w do

5 foreach T ∈ Pooli−1 do

6 foreach homogeneous extension T ′ of T of density θi do

7 if all (M1,C1), . . . , (Mq,Cq) are compatible with T ′ then

8 Add T ′ in Pooli.

9 end

10 end

11 end

12 end

13 output: Poolw

The complexity of the algorithm is the number of tuples in Pooli−1 (Step 5) multi-

plied by the number of possible extensions (Step 6) and number of plaintext/ciphertext

pairs q (Step 7) summed over i ∈ {1, . . . ,w} (Step 4). We have

TPool =

w∑
i=1

q|Pooli−1|N
r(θiN−θi−1N) =

w∑
i=1

qNrθiN−rθr−1
i−1(q−1)+(r−2)θri−1(q−1)−r

(4.5)

One strategy consists of taking θi = θi−1+
1
N and w = N. In that case, we can compute

TPool with Eq. (4.5). The TPool sum is dominated by a maximal term corresponding

to a critical value θc of θ.

4.2.4.2 Approximation.

To simplify the analysis, we neglect θri−1 against θr−1
i−1 . If we substitute θi = θi−1+

1
N ,

Eq. (4.5) is a sum of terms in θi−1 only and the maximum of this function is reached

77

by θc =
(

N
(r−1)(q−1)

) 1
r−2

. We obtain the complexity of Algorithm 6 is

TPool ≈ qN
r(r−2)
r−1 N

(
N

(r−1)(q−1)

) 1
r−2

(4.6)

with q known plaintexts.

We checked experimentally that the values of Eq. (4.5) and Eq. (4.6) have a log-

arithm within the same order of magnitude (up to 20% difference), so we could use

Eq. (4.6) as an indicative estimate and Eq. (4.5) for a more precise value.

4.2.4.3 Chosen plaintext extension.

As an improvement, we can save one more round with a chosen plaintext attack by

guessing only q
N − 1 points in F0 and applying the Pool attack on the remaining r− 1

rounds. We obtain

TPool
∗
= N

q
N−1TPoolr−1 ≈ qN

q
N−1+

(r−1)(r−3)
r−2 N(N

(r−2)(q−1))
1
r−3

(4.7)

with q chosen plaintexts.

4.2.4.4 Optimization with larger q.

For q = N1+α and N→ +∞, we have TPool
∗
= NO(N

1− α
r−3) for 0 < α 6 1 − 1

r−2 and

TPool
∗
= NO(Nα) for 1 − 1

r−2 < α 6 1. Precisely, q makes the exponent of TPool
∗

minimal for

q =
r− 1

r− 2
(r− 1)−

1
r−2N2− 1

r−2

chosen plaintexts for which we obtain

TPool
∗ ≈ r− 1

r− 2
(r− 1)−

1
r−2N1− 1

r−2+(r−1)
1− 1
r−2N

1− 1
r−2

. (4.8)

To simplify, this is

TPool
∗ ≈ N(r−1)N

1− 1
r−2 (β+o(1)) (4.9)

78

for β = (r− 1)−
1
r−2 < 1 when N→ +∞, with q = r−1

r−2βN
2− 1

r−2 chosen plaintexts.

4.2.4.5 Discussion.

Eq. (4.9) makes this attack asymptotically better than an exhaustive search on a single

round function, i.e. NN+o(N) as N is large enough, hence a better complexity than

the MITM strategy which requires full exhaustive searches in each round. In fact,

N(r−1)βN
1− 1
r−2

< NN is equivalent to N > (β(r− 1))r−2, meaning that N > (r− 1)r−3

when β = (r− 1)−
1
r−2 < 1 is plugged. Hence, for N > (r− 1)r−3, our Pool∗ attack

is faster than exhaustive search on a single round function. For instance, with

r = 8 and N = 216, Eq. (4.8) gives TPool
∗
= 2835 939 while NN ≈ 21 048 576.

It is interesting to see for which q the complexities TPool
∗

and TMITM
∗

(with

q = rN2) become equal. For an arbitrary r, TPool
∗ ≈ TMITM∗ (meaning equality of the

higher terms in the exponents) for q = N
r−2

(
2 (r−1)(r−3)
(r−2)(r−4)

)r−3
∼ N2r−3

r−2 e2.

Using optimal complexity q = rN2 , the best round-function-recovery attack is

MITM∗ given in Sec. 4.1.3. With N2 > q > N2r−3

r−2 e2, our Pool∗ algorithm be-

comes better than MITM∗.

4.2.4.6 Improvement.

We can speed up the algorithm by adding more points in the tuples when we can

compute them. Concretely, if one plaintext/ciphertext pair can be “computed” except

in one or two rounds, we can deduce the values in the missing rounds and define them

in the tuple. Adding x points reduce the number of iterations to define the next pool

by Nx.

4.2.4.7 Iterative Partial Exhaustive Search

In this section, we improve the Pool strategy. Instead of considering random extensions

of partial tables, we only consider extensions that are able to encrypt one more pair.

We proceed as defined by Algorithm 7. More precisely, we start with an arbitrary

elementary tuple encrypting the first pair. At each iteration i, we extend each tuple

79

from Pooli−1 by each possible extension encrypting the ith pair while being compatible

with all others.

Algorithm 7: Iterative partial exhaustive search round-function-recovery attack

1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.
2 Get an arbitrary elementary tuple T1 which encrypts M1 to C1.
3 Initialize Pool1 = {T1}.
4 foreach i = 2, . . . ,q do
5 Initialize Pooli to empty.
6 foreach T ∈ Pooli−1 do
7 foreach elementary tuple T i which encrypts Mi to Ci do
8 Set T ′ with T ′j = Tj ∪ T ij , j = 0, . . . , r− 1. (Extend T with T i.)

9 if T ′ is a valid extension of T then
10 if all (Mi+1,Ci+1), . . . , (Mq,Cq) are compatible with T ′ then
11 Add T ′ in Pooli.
12 end

13 end

14 end

15 end

16 end
17 Output Poolq.

In practice, instead of enumerating all elementary tuples T i then checking compat-

ibility with T , we can limit ourselves to the enumeration of all compatible elementary

tuples. With an appropriate data structure, we can also avoid to retry to encrypt Mj

or decrypt Cj and directly go to the next computable round in every pair if any. This

saves the inner loop. With these algorithmic tricks, the complexity is expected to be

close to the size of the pools.

We can estimate |Pooli| with the same analysis as for the Pool algorithm. What

changes is that the first i pairs always decimate the pool and that random decimation

is based on the remaining q− i pairs. Essentially, we approximate the size of the pool

with NX−Y where X is the number of entries in the partial functions (i.e. the number of

defined points throughout all rounds) and Y is the number of equations over N-values

which a tuple must satisfy to be compatible. To treat the fact that we start with an

arbitrary elementary tuple, we subtract r to X (that is, we do not enumerate all tuples

in the first iteration) and we subtract 2 to Y (i.e., we consider that the taken tuple is

80

already decimated by the first pair). We obtain

|Pooli| ≈ cns×NrθiN−r−2(i−1)−rθr−1
i (1−θi)(q−i)−2θri(q−i) (4.10)

with cns such that |Pool1| = 1, so cns ≈ 1. To estimate θi, we can observe that at

each iteration we need to map one random input in each round function and it may be

either new or not. At each round i, with probability θi−1 the table Tj does not increase

(the input is not new), and with probability 1 − θi−1, it increases by one element (the

input is new). Therefore, on average we have

θi = θi−1
2 + (1 − θi−1)

(
θi−1 +

1

N

)
= θi−1

(
1 −

1

N

)
+

1

N
.

We deduce θi = 1 −
(
1 − 1

N

)i
. Then, the complexity is

T Iter =

N∑
i=1

NrθiN−2i−rθr−1
i (1−θi)(q−i)−2θri(q−i)−r+2 (4.11)

4.2.4.8 On the validity of Eq. (4.10).

In order to come up with Eq. (4.10), we modeled the behavior of Iter to construct

Pooli. For that, we realize that picking an elementary tuple encrypting one plaintext

(no matter what the ciphertext is) corresponds to picking a one random input for each

round function. We call this a trial. An input to one round function corresponds to

a ball with a number from 0 to N − 1. A round function is a bag of N balls. So,

we have r bags of balls and a trial consists of picking one ball in each bag. Balls are

replaced in their respective bags after picking them. We do q trials in total but the

first i and the last q − i play different roles. The balls which were picked during the

first i trials are called good balls. We estimate the random variable X as the total

number of good balls, to which we subtract r (because we enumerate all possibilities

in every trials but the first one). Then, we look at the number of good balls in each

trial (except the first one). The random variable Y is set to the number of trials with

r − 1 good balls plus twice the number of trials with r good balls (the first one does

81

not count but the next i− 1 ones always count, by construction). Clearly, conditioned

to a density of good balls of θj in round j, we have E(X) =
∑r
j=1 θjN − r and E(Y) =

2(i − 1) + (q − i)
∑r
j=1(1 − θj)

∏
j ′ 6=j θj + 2(q − i)

∏
j θj. All θj are random and

independent, with expected value θ. Thus, Eq. (4.10) corresponds to cns×NE(X−Y).

For r = 5, N = 8, q = 40, we computed X and Y in 10 000 such experiments. We

obtained an average for X−Y of 2.424 with a standard deviation of 1.522. The exponent

of Eq. (4.10) gives 2.442 with these figures. So, assuming that the above experiment

models well Iter, the expected value of log |Pooli| should match Eq. (4.10). However,

Eq. (4.10) cannot represent well the expected value of |Pooli| as exponential with bigger

exponents will have a huge impact on the average.

4.2.4.9 Approximation.

For i � N we can write θi = i
N . By neglecting θri against θr−1

i , the complexity is

approximated by the maximum of NrθN−2Nθ−rθr−1q−r+2. We can easily show that

the maximum is reached by θ = θc with

θc =

(
r− 2

r(r− 1)

) 1
r−2
(
N

q

) 1
r−2

We obtain the complexity

T Iter ≈ N
(r−2)2

r−1

(
r−2
r(r−1)

) 1
r−2
N(Nq)

1
r−2−r+2

(4.12)

with q known plaintexts.

The best complexity is reached with the full codebook q = N2 with

T Iter ≈ N
(r−2)2

r−1

(
r−2
r(r−1)

) 1
r−2
N

1− 1
r−2−r+2

(4.13)

which is T Iter = N
(r−2)2

r−1 (β+o(1))N
1− 1
r−2

for some β < 1.

82

4.2.4.10 Chosen plaintext extension.

Finally, if q is not too close to N2, a chosen plaintext attack variant consists of fixing

the right half of the plaintext as much as possible then guessing F0 on these points and

run the known-plaintext attack on r− 1 rounds to obtain

T Iter
∗
= N

q
N−1T Iterr−1 ≈ N

q
N−1+

(r−3)2

r−2

(
r−3

(r−1)(r−2)

) 1
r−3
N(Nq)

1
r−3−r+3

(4.14)

with q chosen plaintexts such that q 6 N2.

4.2.4.11 Discussion.

ForN2 > q > N r−3
(r−1)(r−2)

(
2 (r−3)2

(r−2)(r−4)

)r−3
∼ Ne3

r 2r−3, we have T Iter
∗
< N<fracqN−r+2+ r−4

N

so T Iter
∗
< TMITM

∗
, so Iter∗ becomes better than MITM∗. Also, for N > (r−3)r−2

r−1 ,

we have T Iter
∗
< NN−r+2 so Iter∗ is faster than exhaustive search on a single

round function.

4.2.4.12 Optimization with larger q.

We easily obtain that this is optimal with

T Iter
∗ ≈ N(r−3)N

1− 1
r−2 (1

r−1)
1
r−2−r+2 (4.15)

for

q =
r− 3

r− 2
N2− 1

r−2

(
1

r− 1

) 1
r−2

.

chosen plaintexts.

4.2.4.13 Variants of Iter and Iter∗

Optimized algorithm. We can speed up the algorithm by adding more points in

the tuples as soon as we can compute them. Concretely, if one plaintext/ciphertext

pair can be “computed” except in one or two rounds, we can deduce the values in the

missing rounds and define them in the tuple. Adding x points reduce the number of

iterations to define the next pool by Nx.

83

Abort strategy. Our complexity is not an average complexity but its logarithm has

a right average. To avoid having a too high average complexity, we may change the

algorithm to make it abort if the pool exceeds a threshold to be defined. For instance,

if our theoretical formula predicts a complexity Th, to make sure that the worst case

complexity does not exceed Th×Nx, we set this to the threshold value. This will affect

the success probability, which is 100% without the abort strategy, but may be lower for

any real number x.

Other improvements. We believe we could improve our algorithms in many ways.

For instance, we could take the (Mi,Ci) pairs in an optimized order so that we do not

have too many new values appearing in the first and last round functions. This would

decrease the number of tuples to consider.

4.2.4.14 Experimental Results

We implemented Algorithm 7 with known plaintext, r = 5, N = 8, q = 40. Our

algorithm always ended with a pool limited to a correct set of full tables.

With these parameters, Eq. (4.10) estimates Pool3 to be the largest with |Pool3| =

N2.49. We checked over ten executions, that logN |Pool3| has an average of 4.45 and a

standard deviation of 0.52. This is quite larger than predicted. More precisely, each

partial function in Pool3 has on average 2.81 defined entries, which is only a bit slightly

more than theNθ3 ≈ 2.64 predicted. But adjusting θ3 to 2.81
N in Eq. (4.10) is not enough

to explain the high |Pool3| which is observed. So, our model for the random variable

X may be correct but Y may be overestimated: Iter decimates less than expected.

Although we thought Pool3 would be the largest from our theory, the largest observed

pool during our experiment were Pool4 with logarithmic size with average 5.30. This

indicates that our model for Iter is not accurate. At this time, we believe this is mostly

due to our tested parameters being too low.

Nevertheless, assuming there is something more fundamental in the Feistel structure

which was overlooked in our theoretical analysis, we may wonder what to think of the

predicted complexity results. We can see that Eq. (4.11) anticipates a complexity of

T Iter = 262 for the above figures. If we change the algorithm to use the abort strategy

84

as soon as the pool becomes bigger than 262, we obtain no successful run of the attack

(after running it 10 000 times). Then, using the optimized variant, we could obtain 1.3%

of successful runs (over 10 000) with the anticipated complexity. So, we believe that our

anticipated complexities may be achievable with a good success probability.

However, finding a good model for decimation and for the improved algorithm remains

an open question.

Of course, using a slightly higher complexity still gives better success probability.

For instance, allowing the pools to become N times larger than expected with the

improved algorithm leads us to a success rate of 42% (over 100 runs). We summarize

our experiments in the table below.

r = 5, N = 8, q = 40

#runs success max |Pool| opt abort

100 100% Th×N2.79 no no

10 000 0% no Th

1 000 0% no Th×N

1 000 3% Th×N1.76 no Th×N2

100 100% Th×N0.93 yes no

10 000 1% Th×N−0.29 yes Th

100 42% Th×N0.59 yes Th×N

100 99% Th×N0.90 yes Th×N2

Here, Th designates the largest pool size as predicted by our theory. The column opt

tells whether we used the optimization trick. The abort column indicates when we used

the abort strategy, and with which bound. The max |Pool| column reports the average

(logarithmically) of the largest observed pool.3,4

We run tests with parameters r = 5, N = 10, and q = 40:

3The logarithm of this column is the maximum over each iteration of the average over the runs of
the logarithm of the pool size.

4The average is computed only includes successful runs, as unsuccessful ones are all on the abort
threshold.

85

r = 5, N = 10, q = 40

#runs success max |Pool| opt abort

10 000 0% no Th

1 000 0% no Th×N

100 0% no Th×N2

14 100% Th×N1.40 yes no

10 000 1% Th×N−0.31 yes Th

100 19% Th×N0.60 yes Th×N

19 68% Th×N1.25 yes Th×N2

4.3 Applications

In the standards, the supported domain size of messages in FF1 and FF3∗ is greater

than 100 (i.e. N2 > 100). For FF1 and FF3∗, the best attack is roughly Iter∗ for very

low N, then MITM∗, then Pool∗ for larger N. More precisely, we achieve the following

results:

r = 8 (FF3∗) r = 10 (FF1)

N TMITM
∗
[q] (4.2) T Iter

∗
[q] (4.15) N TMITM

∗
[q] (4.2) T Iter

∗
[q] (4.15)

21 26[22.0] 21[22.0] 21 28[22.0] 22[22.0]

22 221[24.0] 213[24.0] 22 229[24.0] 221[24.0]

23 258[25.0] 244[25.0] 23 282[25.3] 275[25.3]

24 2147[26.0] 2122[26.6] 24 2211[26.3] 2209[26.9]

25 2356[27.0] 2295[28.4] 25 2516[27.3] 2512[28.8]

26 2837[28.0] 2658[210.3] 26 21221[28.3] 21166[210.7]

27 21926[29.0] 21401[212.1] 27 22822[29.3] 22543[212.5]

28 24359[210.0] 22890[213.9] 28 26407[210.3] 25383[214.4]

(Note that the standard requires N > 10 so the first three rows are not appropriate in

practice.) We also did the computation without approximations, i.e. by using Eq. (4.11)

instead of Eq. (4.12) in Eq. (4.14):

86

r = 8 (FF3∗) r = 10 (FF1)

N TMITM
∗
[q] (4.2) T Iter

∗
[q] (4.15) N TMITM

∗
[q] (4.2) T Iter

∗
[q] (4.15)

21 26[22.0] 22[22.0] 21 28[22.0] 23[22.0]

22 221[24.0] 213[24.0] 22 229[24.0] 221[24.0]

23 258[25.0] 242[25.0] 23 282[25.3] 272[25.3]

24 2147[26.0] 2116[26.6] 24 2211[26.3] 2199[26.8]

25 2356[27.0] 2279[28.3] 25 2516[27.3] 2487[28.6]

26 2837[28.0] 2627[210.1] 26 21221[28.3] 21115[210.5]

27 21926[29.0] 21343[212.0] 27 22822[29.3] 22445[212.4]

28 24359[210.0] 22788[213.8] 28 26407[210.3] 25202[214.3]

As we can see, the values are not much different.

For instance, for FF3∗ with N = 23 (i.e., messages have 6 bits), MITM∗ uses q = 25

pairs (half of the codebook) and search on three points for F0, the entire (but one point)

F1 and F2, one bit of F3 in the encryption direction, and the entire (but one point) F7

and F6 and one bit of F5 in the decryption direction. This is N3+2(N−1) × 2N−1 = 258.

(With the same parameters, we have TDV = 289 with the algorithm from App ??.)

With Iter∗, we also use q = 25 and the pool reaches its critical density for θc ≈ 4.4
N .

The complexity is T Iter
∗
= 242.

We may wonder for which N the ciphers offer a 128-bit security. We notice that for

N 6 5, we have NrN � N2!, so FN is likely to be as good as the ideal cipher. However,

we have N2! < 2128 so exhaustive search on the codebook is faster than an exhaustive

search on 128 bits. For r = 8 and N < 7, we have NrN < 2128 so an exhaustive search

on the round functions already shows that we have no 128-bit security. Durak and

Vaudenay [DVc] extended it for FF3∗ with 7 6 N 6 10 and FF1 with N = 7. By doing

computations for Iter∗, we extend this to show that FF3∗ does not offer a 128-bit

security for N 6 17, and FF1 does not offer a 128-bit security for N 6 11.

The AEZ [HKR17] authenticated encryption method (which is one of the CAESAR

3rd round competitors) features an AEZ-tiny encryption to be used when the messages

are very small. AEZ-tiny is a Feistel scheme with AES4 round functions. The number

of rounds depends on N. In the table below, we report the four possible configurations

87

of AEZ-tiny and the best value for TPool
∗
.5 As we can see, the number of rounds

in AEZ-tiny is an overkill.

N r TMITM
∗
[q] (4.2) T Iter

∗
[q] (4.15)

N = 24 r = 24 2659[27.6] 2779[27.6]

N = 28 r = 16 212551[211.0] 214235[214.9]

28 < N < 264 r = 10 N3N+O(1)[5N] N
O
(
N

7
8

)
[N2− 1

8]

264 6 N < 2128 r = 8 N2N+O(1)[4N] N
O
(
N

5
6

)
[N2− 1

6]

(Note that the big-O notation has no mathematical sense here: it is only here to give

a rough estimate.)

It seems that we could reduce r and keep a good security at the same time. Gen-

uinely , we can compute the minimum ropt > 4 of the number of rounds for which

min(TMITM
∗
, T Iter

∗
) > 2s depending on s and N. To be on the safe page, we com-

puted without using our approximations (i.e., the complexity of the known plaintext

part of the attack was computed using Eq. (4.11)). For s = 128 and s = 256, we fetch

the following table.6

s = 128 s = 256

N ropt TMITM
∗
T Iter

∗
N ropt TMITM

∗
T Iter

∗

21 260 2258.0 2128.5 21 516 2514.0 2256.5

22 40 2149.0 2129.3 22 77 2225.0 2257.6

23 14 2130.0 2136.5 23 26 2274.0 2297.8

24 9 2195.0 2155.8 24 12 2275.0 2289.1

25 7 2341.0 2187.9 25 8 2356.0 2279.3

26 6 2453.0 2236.2 26 7 2819.0 2415.8

27 5 21016.0 2195.4 27 6 21030.0 2485.0

28 5 22295.0 2370.4 28 5 22295.0 2370.4

Even by adding a safety margin, this shows that we do not need many rounds to

safely encrypt a byte (that is, N = 24) with respect to our best attacks. However,

5Again, we computed without using our approximations, i.e. the complexity of the known plaintext
part of the attack was computed using Eq. (4.11).

6In this table, we computed the value of q suggested by our formulas but rounded in the
[
rN
2

,N2
]

interval.

88

with low r, we should care about other attacks as in Table 4.1. Indeed, for ⊕-FN, we

recommend never to take r 6 7 due to the yo-yo attack [BLP16]. For other FN, we

recommend never to take r 6 5.

Note that our results for N 6 22 must be taken with great care. Indeed, rN2 >

N2, meaning that we have no unicity of the round functions. In addition to this,

N2 log2N
2 < s i.e. the entropy of the full codebook is already less than the security

parameter s.

We plot on Fig. 4.5 the (r,N) parameters for which we have TPool
∗
= T Iter

∗
. As

we can see, for and constant N and a low r, Iter∗ is the best attack. The same figure

includes the curve corresponding to a 128-bit and a 256-bit security. In Fig. 4.6, we

plot complexities for r = 8 or r = 10 and various ranges of N. The regions for T Iter
∗

we plot have a minimum for the optimal q and a maximum for r = rN
2 . The region

corresponds to all complexities for q ∈ [rN2 ,N2].

Figure 4.5: Parameters for TPool
∗
= T Iter

∗

4.4 Conclusions

Standard Feistel Networks and its variations have created an active research area since

its invention and have been used in construction of many cryptographic systems to a

wide extent. The security of FN has been studied for so long and many interesting

results have been proposed for cryptanalysis purposes. In this chapter, we considered

a very specific type of FN with two branches, secure random round functions, and

89

(a) comparison of various attacks
N 6 26 and r = 8

(b) comparison of various attacks
N 6 29 and r = 8

(c) comparison of various attacks
N 6 26 and r = 10

(d) comparison for various
attacks N 6 29 and r = 10

Figure 4.6: Time complexity of attacks for different algorithms and various parameters.

modular addition to analyze its security. Additionally, we considered small domains.

We started with a brief survey on known and newly derived attacks on this specific

FN. Finally, we gave a full recovery of round functions with much smaller complexity

than the surveyed attacks. We have given a polynomial attack (in terms of N) on four

rounds and some optimized bruteforce attacks for any rounds.

This specific FN with the described properties have been used to build Format-

Preserving Encryption and perhaps will inspire many other constructions. However,

the security of FN with various properties is not clear (regardless of the significant

security analyses mentioned in earlier sections) and has to be investigated more. Our

work shows only that a caution should be taken in order to meet the desired security

level in the systems.

We give the cryptanalysis of the FF3 standard which is a Feistel-based FPE in the

90

following section.

91

Chapter 5

Breaking the FF3 Format-Preserving Encryption

Standard Over Small Domains

In the previous chapter, we have shown various attacks on generic Feistel Network

with two branches, secure random round functions, modular addition, and the small

domains. This specific type of FN is used to construct FPE schemes. Indeed, NIST and

ANSI published standards including two Feistel-based FPE construction. This chapter

gives a total break to FF3 standard over small domains. It is published in ESC’17 [DVa]

and the proceedings of Crypto’17 [DVb]. In reaction to this attack, NIST released the

following announcement stating that “NIST has concluded that FF3 is no longer suit-

able as a general-purpose FPE method.”:

https://beta.csrc.nist.gov/News/2017/Recent-Cryptanalysis-of-FF3. The same

FPE algorithm also appears in the ANSI X9.119 standard and ANSI is also working on

its update.

5.1 The Variant of FF3 with XOR

In order to illustrate the problem, for a variant of FF3 with ⊕ instead of �, we present

a trivial attack: Consider an FF3 encryption with a key K ∈ K, a tweak T = TL||TR ∈ T

and domain X. Each round i defines a random function Fi = FK(TR ⊕ STR322 (i), ·) for i

even (Fi = FK(TL⊕STR322 (i), ·) for i odd). We use the encryption with an input message

X = (L0,R0) and output ciphertext Y = (Lw ,Rw) with output Xi from each round in

Fig. 5.1 (a). We assume that b is even so that ` = r . Now, we take the ciphertext Y

from Fig. 5.1 (a) and reverse it into (L ′0,R
′
0) = (Rw ,Lw) to encrypt it with a new tweak

T ′ = TR ⊕ STR322 (w − 1)||TL ⊕ STR322 (w − 1) ∈ T. We show this encryption in Fig. 5.1

https://beta.csrc.nist.gov/News/2017/Recent-Cryptanalysis-of-FF3

92

F0

F1

F2

F3

F4

F5

F6

F7

L0 R0

R7L7

X2

X4

X6

X1

X3

X5

(a)

F7

F6

F5

F4

F3

F2

F1

F0

R7 L7

L0R0

X5

X3

X1

X6

X4

X2

(b)

Figure 5.1: Trivial Attack on 8-round FF3 Encryption with ⊕ instead of modular
addition �.

(b). We assume that w is a power of two (Fig. 5.1 uses w = 8). With given encryption,

we obtain the round functions F ′i = Fw−1−i as shown on Fig. 5.1 (a). More precisely,

the attack works as follows:

◦ Encrypt (L0,R0) with the tweak T to get (Lw ,Rw).

◦ Encrypt (Rw ,Lw) with the tweak T ′ to get (L ′,R ′).

◦ If L ′ = R0 and R ′ = L0, output 1. Otherwise, output 0.

The adversary always outputs 1 with EK. It outputs 1 with Π(·, ·) with probability 1
sb

.

Therefore, the advantage is 1 − 1
sb

.

5.2 Slide Attack on FF3

We developed an attack on 4-round Feistel network in Section 4.2.2 and deploy it as

a building block for our chosen-plaintext and chosen-tweak attack to FF3 scheme. Our

FF3 attack aims to reconstruct the entire codebook for a challenge tweak for a number

of queries which is lower than the size of the brute force codebook attack. The main

93

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

x y

tz

G

H

(a) FF3 Encryption

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

x y

tz

H

G

(b) Slided Encryption

Figure 5.2: FF3 encryption with sliding round functions

idea of the designed FF3 attack takes advantage of the flexibility to change the tweak

to permute the round functions.

Consider two functionsG andH, whereG is a 4-round Feistel scheme using tweakable

block cipher F with tweaks (TR⊕STR322 (0), TL⊕STR322 (1), TR⊕STR322 (2), TL⊕STR322 (3))

and H is a 4-round Feistel scheme using tweakable block cipher F with tweaks (TR ⊕

STR322 (4), TL ⊕ STR322 (5), TR ⊕ STR322 (6), TL ⊕ STR322 (7)). In Fig. 5.2, we show two runs

of FF3 encryption with tweak T = TL||TR in (a) and tweak T ′ = TL ⊕ STR322 (4)||TR ⊕

STR322 (4) in (b) on two distinct plaintext. We observe that FF3.E(K, T , ·) = H ◦ G

and FF3.E(K, T ′, ·) = G ◦ H. For simplicity, we do not explicitly write STR322 (·) any

longer. Given this permuting ability by setting the tweaks XORed with round functions,

we desire to form a “cyclic” behavior of plaintext/ciphertext pairs under two FF3

encryption with sliding G and H.

We pick at random two sets of messages X = {xy10, . . . , xyi0, . . . , xyA0 } and X =

{xy10, . . . , xyi0, . . . , xyA0 } of size A. For each message xyi0 in X, set xyij+1 = Enc(K, T , xyij)

with a fixed tweak T ∈ T and a fixed key K ∈ K. We repeat the chain encryption of

outputs B times for each message in X. Let XC be the set of chain encryption of elements

of X. It contains segments of length B of cycles of H ◦ G. Similarly, for each message

94

xyi
′

1

xyij+1xyi
′

0

xyij

xyi
′

j ′
. . .

G

H

G

H

H

Figure 5.3: Circular behavior of plaintext/ciphertext pairs.

xyi0 in X, set xyij+1 = Enc(K, T ′, xyij) with the fixed tweak T ′ ∈ T under the same

key K. Let XC be the set of chain encryption of elements of X. Apparently, we have

|XC| = AB and |XC| = AB. Given these 2 sets XC and XC, we attempt to find a collision

between XC and XC such that G(xyij) = xyi
′

0 or G(xyi0) = xyi
′

j ′ for 1 6 i, i ′ 6 A and

1 6 j, j ′ 6 B. (See Fig. 5.3.) Upon having a table with inputs to G and H, we can

apply the known-plaintext recovery attack on 4-round Feistel networks. The concrete

algorithm to collect plaintext/ciphertext pairs is given in Algorithm 8.

We now formally prove useful results for the analysis and success probability of the

attack in Algorithm 8.

Let Π be a random permutation on {0, . . . ,N2 − 1}. Let ck be the number of cycles

of length k in Π. The total number of elements in a cycle of length k (for all k) is equal

to N2, meaning that
∑N2

k=1(kck) = N2. It is well-known that the expected number of

cycles of length k over a random Π is EΠ(ck) = 1
k . 1

In what follows, we show two useful results.

Lemma 6. For a message xyi picked at random, let length(xyi) be the length of the

cycle that contains xyi. For two messages xyi and xyi
′

picked at random, let E0 be

an event that xyi and xyi
′

are in the same cycle. The expected value of length(xyi)

is Exyi,Π[length(xyi)] = N2+1
2 and the expected value of length(xyi) given E0 is

E[length(xyi)|E0] = 2N2+1
3 .

1The probability that a given point is in a cycle of length exactly k is (N2−1)···(N2−k+1)

N2(N2−1)···(N2−k+1)
= 1

N2 .

Hence, the expected number of points in a cycle of length k is 1 = EΠ(kck).

95

Algorithm 8: FF3 Attack

Input : a tweak bit string T such that |T | = 64, a key K

1 TL||TR ← T

2 T ′ ← TL ⊕ 4||TR ⊕ 4

3 foreach i = 1 · · ·A do

4 pick xyi0 and xyi0

5 foreach j = 1 · · ·B do

6 xyij = FF3.E(K, T , xyij−1)

7 xyij = FF3.E(K, T ′, xyij−1)

8 end

9 end

10 foreach i, i ′ = 1 · · ·A do

11 foreach j = 0 · · ·B−M− 1 do

12 // assume that G(xyij) = xy
i ′
0

13 run attack on G with samples G(xyij+k) = xy
i ′
k for k = 0 · · ·B− j

14 if succeeded, run attack on H with samples H(G(xyik)) = xy
i
k+1 for

k = 0 · · ·B− 1

15 end

16 foreach j = 0 · · ·B−M− 1 do

17 // assume that G(xyi0) = xy
i ′

j ′

18 run attack on G with samples G(xyik) = xy
i ′
j+k for k = 0 · · ·B− j

19 if succeeded, run attack on H with samples H(G(xyik)) = xy
i
k+1 for

k = 0 · · ·B− 1

20 end

21 end

Proof. We use the same notation for ck as above.

Exyi,Π[length(xy)] = Exyi,Π

N2∑
k=1

kck
k

N2

 =

N2∑
k=1

E[ck]
k2

N2
=

N2∑
k=1

k

N2
=
N2 + 1

2

96

We first observe that for any messages xyi and xyi
′
, being in the same cycle of

every possible length occurs with probability 1
2 . Then,

Pr[E0] = EΠ

N2∑
k=1

ck

(
k

N2

)2
 =

N2∑
k=1

k

N4
=

1

2
+

1

2N2
≈ 1

2

E[length(xyi)|E0] = EΠ

N2∑
k=1

kck

(
k2

N4

)
1

Pr(E0)

 =

∑N2

k=1
k2

N4

Pr(E0)

=
2N2

N2 + 1
× (N2 + 1)(2N2 + 1)

6N2
=

2N2 + 1

3

This means that if we pick xyi and xyi
′

at random and let xyj = G−1(xyi
′
) then

xyi and xyi
′

are in the same cycle with probability close to 1
2 and we will observe

Fig. 5.3. One problem is that the cycle is typically long, i.e. 2N2

3 as shown in Lemma

6, but we want that two segments of length B, starting from xyi and xyi
′
, intersect on

at least M points. Therefore, we need the probability of two segments overlapping in a

cycle of length k on at least M points.

Lemma 7. Let two segments xyi−Π(xyi)−Π2(xyi)−· · ·−ΠB(xyi) and xyi
′
−Π(xyi

′
)−

Π2(xyi
′
)− · · ·−ΠB(xyi ′) overlap in a given cycle of length k on at least M points be the

event Ek1 . Let E1 be the union of all Ek1 for every possible length of k. The probability

that E1 occurs is equivalent to 2(B−M)
N2 for M = o(N2).

Proof. We use the same notation for ck as above.

Pr[E1] = EΠ

 N2∑
k=M

ck Pr[Ek1]

 = EΠ

 N2∑
k=M

ck
k

N2

min{k, 2(B−M) + 1}

N2


∼

2(B−M)

N2
for M = o(N2)

97

The probability of success of our FF3 attack depends on Pr[E1] and on the success

probability of our 4-round recovery attack on Feistel network. More clearly,

psuccess =
(

1 − (1 − Pr[E1])
A2
)
pFeistelsuccess

which is equivalent to

(
1 − e

−2(B−M)A2

N2

)
pFeistelsuccess. Thus, we need A2(B −M) ≈ N2 to

obtain a constant psuccess. We can neglect the cost of the attack on H as we have

plenty of samples and we only run it once G is recovered.

Our attack has 2AB data complexity. The time complexity is A2B times the com-

plexity of 4-round recovery attack on Feistel network. To minimize the data complexity

2AB with A2(B −M) = N2 and B > M, we set B = 2M, then A = N√
M

. Therefore,

we have data complexity of FF3 attack as 4N
√
M and time complexity as

2N2 times the complexity of 4-round recovery attack on Feistel network and

psuccess ≈ 1 − e−p
Feistel
success.

We fully implemented the attack, but to test its success probability, we could skip

some parts of the running time we knew the attack would fail. Namely, in Algorithm

4, we can identify directly which segments overlap (using the key) and proceed directly

to the 4-round Feistel attack on the right pair of segments. We show on Table 5.1

the experimental probability of success of the whole attack following the strategies Sj,

j = 1, . . . , 4. The probability was computed for 10,000 executions. 2 We also took the

executions collecting less than M samples, as long as they succeed to recover all tables.

Curiously, the N 6 4 and λ = 1 cases seem to take M too low to be able to find cycles.

As we can see, the success probability is pretty good (18%–77% for 8 6 N 6 512) for

λ = 1 and the strategy S2 collecting the largest connected components in G ′.

We conclude that the full attack succeeds with good probability.

2Executions of the attack on the 4-round Feistel scheme which we used to fill our Tables 4.2, 4.3
from Chapter 4, are precisely those getting the M samples in this experiment. For some rows with M
too large, no experiments collected M pairwise different messages they are thus not reported in the
previous table. Nevertheless, our attack may still work, even though we collect less than M samples.
This is why they appear on Table 5.1.

98

N M λ A B #run Pr[succ,S1] Pr[succ,S2] Pr[succ,S3] Pr[succ,S4]

2 2 0.71 1 4 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 5 0.56 2 10 10000 0.00 % 0.00 % 0.00 % 0.00 %
8 15 0.53 2 30 10000 0.00 % 0.00 % 0.00 % 0.00 %

16 46 0.51 2 92 10000 0.00 % 0.00 % 0.00 % 0.00 %
32 144 0.50 2 288 10000 0.03 % 0.47 % 1.38 % 1.38 %
64 457 0.50 3 914 10000 0.01 % 1.61 % 5.08 % 5.12 %

128 1449 0.50 3 2898 10000 0.00 % 1.51 % 5.25 % 5.73 %
256 4598 0.50 3 9196 10000 0.00 % 0.52 % 3.55 % 4.59 %
512 14597 0.50 3 29194 9996 0.00 % 0.19 % 1.85 % 3.10 %

2 3 1.06 1 6 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 8 0.89 1 16 10000 0.03 % 0.03 % 0.48 % 0.48 %
8 23 0.81 2 46 10000 2.64 % 1.54 % 3.29 % 3.30 %

16 73 0.81 2 146 10000 7.32 % 15.34 % 21.04 % 21.05 %
32 230 0.80 2 460 10000 7.38 % 30.84 % 41.19 % 41.19 %
64 730 0.80 2 1460 10000 5.90 % 39.58 % 50.78 % 50.73 %

128 2318 0.80 2 4636 10000 1.69 % 41.36 % 53.14 % 53.16 %
256 7357 0.80 3 14714 10016 0.68 % 54.52 % 71.68 % 72.12 %
512 23355 0.80 3 46710 831 0.00 % 50.66 % 68.95 % 69.92 %

2 3 1.06 1 6 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 9 1.00 1 18 10000 1.18 % 1.40 % 2.84 % 2.84 %
8 29 1.02 2 58 10000 17.24 % 17.99 % 21.46 % 21.46 %

16 91 1.01 2 182 10000 20.15 % 35.35 % 38.85 % 38.85 %
32 288 1.00 2 576 10000 22.01 % 45.89 % 48.29 % 48.24 %
64 913 1.00 2 1826 10000 28.20 % 54.14 % 54.41 % 54.15 %

128 2897 1.00 2 5794 10000 26.24 % 56.85 % 55.14 % 54.65 %
256 9196 1.00 2 18392 10000 28.09 % 55.87 % 54.64 % 54.14 %
512 29193 1.00 3 58386 609 35.14 % 75.86 % 74.55 % 73.56 %

2 6 2.12 1 12 10000 12.20 % 12.20 % 12.20 % 12.20 %
4 18 2.00 1 36 10000 14.15 % 15.62 % 16.48 % 16.48 %
8 58 2.03 1 116 10000 12.96 % 13.92 % 14.40 % 14.40 %

16 182 2.01 1 364 10000 6.10 % 7.37 % 7.65 % 7.65 %
32 575 2.00 1 1150 10000 2.20 % 3.62 % 3.80 % 3.80 %
64 1825 2.00 2 3650 10000 2.80 % 5.59 % 6.34 % 6.32 %

128 5793 2.00 2 11586 2989 2.24 % 4.05 % 4.35 % 4.32 %
256 18391 2.00 2 36782 188 1.60 % 4.26 % 4.26 % 4.26 %
512 58386 2.00 2 116772 11 9.09 % 9.09 % 9.09 % 9.09 %

2 9 3.18 1 18 10000 12.38 % 12.38 % 12.38 % 12.38 %
4 27 3.01 1 54 10000 13.92 % 15.62 % 16.46 % 16.46 %
8 86 3.02 1 172 10000 12.79 % 13.95 % 14.31 % 14.31 %

16 272 3.01 1 544 10000 5.13 % 6.56 % 6.91 % 6.91 %
32 863 3.00 1 1726 10000 2.04 % 3.25 % 3.47 % 3.46 %
64 2737 3.00 1 5474 9561 1.22 % 2.20 % 2.42 % 2.43 %

128 8689 3.00 1 17378 439 0.23 % 0.68 % 0.91 % 0.91 %
256 27586 3.00 2 55172 11 0.00 % 0.00 % 0.00 % 0.00 %
512 87579 3.00 2 175158 2 0.00 % 0.00 % 0.00 % 0.00 %

Table 5.1: Experimental probability of success in the FF3 attack for various parameters
using strategy Sj

99

5.3 Repairing FF3

As a quick fix, we can suggest changing the length of the tweak in FF3 so that the

adversary has no longer control on what is XORed to the round index. The same

should hold if some other part of the tweak is XORed to a counter in a CBC mode, as

proposed by the authors of the construction [BPS]. We obtain a scheme with a shorter

tweak, to which we concatenate the round index instead of XORing it.

The original Luby-Rackoff results [LR88] was extended following this idea by Black

and Rogaway [BR02], but the obtained security result is quite weak as we can only prove

that for a number of queries q �
√
N, the cipher resists to chosen-plaintext attacks,

even with only three rounds. By similarly extending the results by Patarin [Pat10],

we can obtain that for q � N, the cipher resists to chosen-plaintext and ciphertext

attacks, even with only six rounds. However, this says nothing in the case q ∼ N
3
2

which is the case of our 4-round attack.

5.4 Conclusion

We took the NIST standard FF3 and investigated its security on small domain sizes. We

started exploiting that we can permute the round functions due to a bad domain sepa-

ration in the tweak scheme which uses an XOR with the round index. This permutation

leads us to develop a slide attack on FF3, based on our own design for 4-round Feistel

schemes attack that works with known plaintexts/ciphertexts. Our FF3 attack works

with chosen plaintexts and two tweaks. It improves the recent results from Bellare et

al. [BHT16] on data and time complexity to break FF3. Unlike the work by Bellare

et al., we focused on a more traditional approach to recover the decryption function

for FF3. Our results clearly show that the intended security of FF3 standard has not

met for 128-bit of security for small domains. ANSI X9.119 is currently considering

adopting FF3 with our proposed repair. NIST may update its standard.

100

References

[AB96] Ross Anderson and Eli Biham. Two practical and provably secure block
ciphers: Bear and lion. In Dieter Gollmann, editor, Fast Software En-
cryption: Third International Workshop Cambridge, UK, February 21–23
1996 Proceedings, volume 1029, pages 113–120, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[ABE+13] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Koss-
mann, Ravishankar Ramamurthy, and Ramarathnam Venkatesan. Orthog-
onal security with cipherbase. In CIDR, 2013.

[AES01] The Advanced Encryption Standard (AES). National Institute of Standards
and Technology, 2001.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui,
Shiho Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit
block cipher suitable for multiple platforms - design and analysis. In Dou-
glas R. Stinson and Stafford E. Tavares, editors, Selected Areas in Cryp-
tography: 7th Annual International Workshop, SAC 2000, Waterloo, On-
tario, Canada, August 14-15, 2000, Proceedings, volume 2012, pages 39–56.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Order preserving encryption for numeric data. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’04, pages 563–574. ACM, 2004.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
Efficiently Searchable Encryption, pages 535–552. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
Order-preserving symmetric encryption. pages 224–241, 2009.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-
preserving encryption revisited: Improved security analysis and alternative
solutions. pages 578–595, 2011.

[BDV16] F. Betül Durak and Serge Vaudenay. Circular Security Reconsidered, pages
3–19. Springer International Publishing, Cham, 2016.

[BHT16] Mihir Bellare, Viet Tung Hoang, and Stefano Tessaro. Message-recovery
attacks on Feistel-based Format Preserving Encryption. In 23th CCS Pro-
ceedings, 2016.

101

[BLP16] Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of feistel
networks with secret round functions. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography - SAC 2015: 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected
Papers, volume 9566, pages 102–121. Springer International Publishing,
2016.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation. pages 563–594,
2015.

[BP15] Alex Biryukov and Léo Perrin. On reverse-engineering S-boxes with hidden
design criteria or structure. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215, pages 116–140. Springer International Publishing,
2015.

[BPS] Eric Brier, Thomas Peyrin, and Jacques Stern. BPS: a Format-Preserving
Encryption Proposal. http://csrc.nist.gov/groups/ST/toolkit/BCM/

documents/proposedmodes/bps/bps-spec.pdf.

[BR02] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In
Bart Preneel, editor, Topics in Cryptology — CT-RSA 2002: The Cryptog-
raphers’ Track at the RSA Conference 2002 San Jose, CA, USA, February
18–22, 2002 Proceedings, volume 2271, pages 114–130, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[BRRS09] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.
Format-preserving encryption. In Michael J. Jacobson, Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography: 16th
Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, Au-
gust 13-14, 2009, Revised Selected Papers, volume 5867, pages 295–312.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[BRS] Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode
of operation for format-preserving encryption. Draft 1.1. Submission
to NIST, Feb. 2010. http://csrc.nist.gov/groups/ST/toolkit/BCM/

documents/proposedmodes/ffx/ffx-spec.pdf.

[BS97] Michael Brightwell and Harry E. Smith. Using Datatype-Preserving En-
cryption To Enchance Data Warehouse Security. Available at: http:

//csrc.nist.gov/nissc/1997/proceedings/141.pdf, 1997.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-
abuse attacks against searchable encryption. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 668–679. ACM, 2015.

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/nissc/1997/proceedings/141.pdf
http://csrc.nist.gov/nissc/1997/proceedings/141.pdf

102

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable
encryption in very-large databases: Data structures and implementation.
In NDSS, volume 14, pages 23–26, 2014.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Prac-
tical order-revealing encryption with limited leakage. In FSE, 2016. To
appear.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251 – 280, 1990.

[DDC16] F. Betül Durak, Thomas M. DuBuisson, and David Cash. What else is
revealed by order-revealing encryption? In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 1155–1166, New York, NY, USA, 2016. ACM.

[DDKS12] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dis-
section of composite problems, with applications to cryptanalysis, knap-
sacks, and combinatorial search problems. In Advances in Cryptology –
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417, pages 719–740, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[DDKS15] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks
on Feistel structures with improved memory complexities. In Rosario Gen-
naro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO
2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2015, Proceedings, Part I, volume 9215, pages 433–454, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[DES] Data Encryption Standard, National Bureau of Standards, NBS FIPS PUB
46, January 1977. National Bureau of Standards, U.S. Department of
Commerce.

[DH77] W. Diffie and M. E. Hellman. Special feature exhaustive cryptanalysis of
the NBS data encryption standard. Computer, 10(6):74–84, June 1977.

[DVa] F. Betül Durak and Serge Vaudenay. Breaking the FF3 format preserv-
ing encryption. Proceedings of ESC 2017: https://www.cryptolux.org/

mediawiki-esc2017/images/8/83/Proceedings_esc2017.pdf.

[DVb] F. Betül Durak and Serge Vaudenay. Breaking the FF3 format preserving
encryption standard over small domain. To appear in CRYPTO 2017.

[DVc] F. Betül Durak and Serge Vaudenay. Cryptanalysis of feistel networks. To
appear.

[enc15] encrypted-bigquery-client. https://github.com/google/

encrypted-bigquery-client, 2015.

[ER59] Paul Erdős and Alfred Renyi. On Random Graphs I, pages 290–297. Pub-
licationes Mathematicae, 1959.

https://www.cryptolux.org/mediawiki-esc2017/images/8/83/Proceedings_esc2017.pdf
https://www.cryptolux.org/mediawiki-esc2017/images/8/83/Proceedings_esc2017.pdf
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client

103

[Fer99] Bruce Schneier; John Kelsey; Doug Whiting; David Wagner; Chris
Hall; Niels Ferguson. The Twofish Encryption Algorithm: A 128-Bit Block
Cipher. John Wiley & Sons, New York City, 1999.

[GHH+14] Patrick Grofig, Isabelle Hang, Martin Härterich, Florian Kerschbaum,
Mathias Kohler, Andreas Schaad, Axel Schröpfer, and Walter Tighzert.
Privacy by encrypted databases. In Privacy Technologies and Policy - Sec-
ond Annual Privacy Forum, APF 2014, Athens, Greece, May 20-21, 2014.
Proceedings, pages 56–69, 2014.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious rams. J. ACM, 43(3):431–473, May 1996.

[GSB+17] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed,
and Thomas Ristenpart. Leakage-abuse attacks against order-revealing
encryption. In Security and Privacy (SP), 2017 IEEE Symposium on, pages
655–672. IEEE, 2017.

[HKR17] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ v5: Authenti-
cated encryption by enciphering, 2017.

[HR10] Viet Tung Hoang and Phillip Rogaway. On generalized Feistel networks. In
Advances in Cryptology – CRYPTO 2010: 30th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume
6223, pages 613–630, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Ac-
cess pattern disclosure on searchable encryption: Ramification, attack and
mitigation. In Ndss, volume 20, page 12, 2012.

[IS13] Takanori Isobe and Kyoji Shibutani. Generic key recovery attack on Feistel
scheme. In Advances in Cryptology - ASIACRYPT 2013: 19th Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part
I, volume 8269, pages 464–485, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[Ker15] Florian Kerschbaum. Frequency-hiding order-preserving encryption. pages
656–667, 2015.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS ’12, pages 965–976,
New York, NY, USA, 2012. ACM.

[KS14] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity
ideal-security order-preserving encryption. pages 275–286, 2014.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom per-
mutations from pseudorandom functions. SIAM J. Comput., 17(2):373–
386, April 1988.

104

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block
ciphers. Journal of Cryptology, 24(3):588–613, 2011.

[Luc96] Stefan Lucks. Faster luby-rackoff ciphers. In Dieter Gollmann, editor,
Fast Software Encryption: Third International Workshop Cambridge, UK,
February 21–23 1996 Proceedings, volume 1039, pages 189–203, Berlin, Hei-
delberg, 1996. Springer Berlin Heidelberg.

[MCO+15] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kol-
lios, and Ran Canetti. Modular order-preserving encryption, revisited. In
Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 763–777, 2015.

[NIS16] Recommendation for Block Cipher Modes of Operation: Methods for For-
mat Preserving Encryption. National Institute of Standards and Technol-
ogy, 2016.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference at-
tacks on property-preserving encrypted databases. pages 644–655, 2015.

[NPG14] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic
searchable encryption via blind storage. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, SP ’14, pages 639–654, Washington,
DC, USA, 2014. IEEE Computer Society.

[NVP13] Valérie Nachef, Emmanuel Volte, and Jacques Patarin. Differential attacks
on generalized Feistel schemes. In Cryptology and Network Security: 12th
International Conference, CANS 2013, Paraty, Brazil, November 20-22.
2013. Proceedings, volume 8257, pages 1–19. Springer International Pub-
lishing, 2013.

[Pat92] Jacques Patarin. New results on pseudorandom permutation generators
based on the DES scheme. In Advances in Cryptology — CRYPTO ’91:
Proceedings, volume 576, pages 301–312, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg.

[Pat08] Jacques Patarin. Generic attacks on Feistel schemes. http://eprint.

iacr.org/2008/036, 2008.

[Pat10] Jacques Patarin. Security of balanced and unbalanced feistel schemes with
linear non equalities. http://eprint.iacr.org/2010/293, 2010.

[PLZ13] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security
protocol for order-preserving encoding. pages 463–477, 2013.

[PNB06] Jacques Patarin, Valérie Nachef, and Côme Berbain. Generic attacks on
unbalanced Feistel schemes with contracting functions. In Advances in
Cryptology – ASIACRYPT 2006: 12th International Conference on the
Theory and Application of Cryptology and Information Security, Shang-
hai, China, December 3-7, 2006. Proceedings, volume 4284, pages 396–411,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

http://eprint.iacr.org/2008/036
http://eprint.iacr.org/2008/036

105

[PRZB11] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. Cryptdb: protecting confidentiality with encrypted query
processing. In Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011,
pages 85–100, 2011.

[PW16] David Pouliot and Charles V Wright. The shadow nemesis: Inference at-
tacks on efficiently deployable, efficiently searchable encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1341–1352. ACM, 2016.

[Riv95] Ronald L. Rivest. The RC5 encryption algorithm. In Fast Software En-
cryption: Second International Workshop Leuven, Belgium, December 14–
16, 1994 Proceedings, volume 1008, pages 86–96, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[Rog] Phillip Rogaway. A Synopsis of Format Preserving Encryption. http:

//web.cs.ucdavis.edu/~rogaway/papers/synopsis.pdf.

[Sal95] A. I. Saltykov. The number of components in a random bipartite graph.
Discrete Mathematics Applications, 5:515–523, 1995.

[Sch94] Bruce Schneier. Description of a new variable-length key, 64-bit block ci-
pher (Blowfish). In Fast Software Encryption: Cambridge Security Work-
shop Cambridge, U. K., December 9–11,1993 Proceedings, volume 809,
pages 191–204, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivi-
ous ram with o((logn)3) worst-case cost. In Proceedings of the 17th In-
ternational Conference on The Theory and Application of Cryptology and
Information Security, ASIACRYPT’11, pages 197–214, Berlin, Heidelberg,
2011. Springer-Verlag.

[SK96] Bruce Schneier and John Kelsey. Unbalanced feistel networks and block
cipher design. In Proceedings of the Third International Workshop on
Fast Software Encryption, volume 1039, pages 121–144, London, UK, 1996.
Springer-Verlag.

[SM88] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm
FEAL. In Advances in Cryptology — EUROCRYPT’ 87: Workshop on
the Theory and Application of Cryptographic Techniques Amsterdam, The
Netherlands, April 13–15, 1987 Proceedings, volume 304, pages 267–278,
Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[Spi08] Terence Spies. Format preserving encryption. Unpublished white pa-
per, available at: https://www.voltage.com/wp-content/uploads/

Voltage-Security-WhitePaper-Format-Preserving-Encryption.pdf,
2008.

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dy-
namic searchable encryption with small leakage. In NDSS, volume 14,
pages 23–26, 2014.

http://web.cs.ucdavis.edu/~rogaway/papers/synopsis.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/synopsis.pdf
https://www.voltage.com/wp-content/uploads/Voltage-Security-WhitePaper-Format-Preserving-Encryption.pdf
https://www.voltage.com/wp-content/uploads/Voltage-Security-WhitePaper-Format-Preserving-Encryption.pdf

106

[SSS11] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious
RAM. CoRR, abs/1106.3652, 2011.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: An extremely sim-
ple oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, CCS ’13, pages
299–310, New York, NY, USA, 2013. ACM.

[SWP00a] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, SP ’00, pages 44–, Washington, DC,
USA, 2000. IEEE Computer Society.

[SWP00b] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. pages 44–55, 2000.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your
queries are belong to us: The power of file-injection attacks on searchable
encryption. IACR Cryptology ePrint Archive, 2016:172, 2016.

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Terminology
	Our Contribution

	What Else is Revealed By Order-Revealing Encryption?
	Order-Revealing Encryption
	Security of Order-Revealing Encryption
	Existing Attacks
	Theoretical Result on Leakage Profiles
	Attacks on Leakage Profiles

	Datasets and Implementations

	Inter-Column Correlation
	Sort Attack on Location Datasets
	Sort Attack Accuracy with Bounds

	Leakage-Enabled Attacks
	MSDB on Random Globe Points
	ROPF on Real Locations
	ROPF on Small and Large Messages
	MSDB on Real Locations: The Distance Minimization Attack
	Combined Attacks on MtR and RtM.
	RtM on timestamp data
	Modular ORE on Real Locations

	Conclusions and Recommendations

	Format-Preserving Encryption and Feistel Network
	Format-Preserving Encryption
	Tweakable Encryption
	Feistel Network
	Feistel-based Tweakable Format-Preserving Encryption
	The FF3 Standard
	The FF1 Standard

	Generic Attacks On Feistel Network
	Existing Security Results of Feistel Network
	Generic Round-Function-Recovery Attack with Guess and Determine Method Biryukov2016
	Meet-In-The-Middle (MITM) Attack
	Improved MITM
	Message Recovery Attack BellareFPEattc

	Our Generic Attacks on Feistel Network
	Round-Function-Recovery on 3-Round Feistel Scheme
	Round-Function-Recovery on 4-Round Feistel Scheme
	Round-Function-Recovery on 5-Round Feistel Scheme and More
	Round-Function-Recovery by Partial Exhaustive Search
	Random Partial Exhaustive Search
	Approximation.
	Chosen plaintext extension.
	Optimization with larger q.
	Discussion.
	Improvement.
	Iterative Partial Exhaustive Search
	On the validity of Eq. (4.10).
	Approximation.
	Chosen plaintext extension.
	Discussion.
	Optimization with larger q.
	Variants of Iter and Iter*
	Experimental Results

	Applications
	Conclusions

	Breaking the FF3 Format-Preserving Encryption Standard Over Small Domains
	The Variant of FF3 with XOR
	Slide Attack on FF3
	Repairing FF3
	Conclusion

	References

