
COMPACT REPRESENTATIONS FOR
EFFICIENT ROBOT MOTION PLANNING WITH

FORMAL GUARANTEES

BY

ANDREW DOBSON

A dissertation submitted to the

School of Graduate Studies—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Kostas E. Bekris

and approved by

New Brunswick, New Jersey

October, 2017

ABSTRACT OF THE DISSERTATION

Compact Representations for

Efficient Robot Motion Planning with

Formal Guarantees

by Andrew Dobson

Dissertation Director: Kostas E. Bekris

This work provides compact representations for single- and multi-robot motion planning

in the context of prehensile robot manipulation. First, the asymptotic near-optimality

and probabilistic near-optimality properties of sampling-based motion planners are de-

fined and discussed. Probabilistic near-optimality is leveraged to provide practical

and grounded stopping criteria for these methods which probabilistically guarantee the

methods return high-quality paths. It is also shown how these methods can be leveraged

to produce a compact planning representation, which is a lightweight structure that is

quick to query and easy to store. The work also outlines a compact representation for

solving multi-arm manipulation tasks, and integrates a scalable, asymptotically opti-

mal multi-robot motion planning method to provide scalable, globally asymptotically

optimal task and motion planning in object transfer prehensile manipulation domains.

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Kostas E. Bekris, who took a

chance on me as an undergrad and helped mold my work into the rigorous scientific

study it is today. Though he is at times strict, he is ever forward-thinking, and I am

grateful for his vigilance and dedication, even through late nights. I would also like to

thank each and every PRACSYS lab member I have worked with. Alexis Oyama, Ilias

Apostolopoulos, Athanasios Krontiris, Yanbo Li, James Marble, Ryan Luna, Andrew

Kimmel, Zakary Littlefield, Rahul Shome, Justin Cardoza, Colin Rennie, Shaojun Zhu,

Zacharias Psarakis, Hristian Courtev, I would not have had the mettle to survive the

long deadlines nor the powerful coding skills and robust code base to support my work

if it were not for each and every one of you.

I would also like to thank my external collaborators, Professor Alberto DeSouza for

reminding me that life is about discovery and finding your passion, Professor George

Moustakides for his patient guidance and imparting some of his formidable mathemat-

ical knowledge, and Professor Dan Halperin for treating me as one of his own students

and working diligently to integrate our ideas into collaborative work. I extend my thanks

to Kiril Solovey and Oren Salzman for being stalwart collaborators and freely sharing

research ideas and theoretical knowledge. I would like to thank the DHS CCICADA

Center of Excellence at Rutgers University for their generous financial and intellectual

support. I would especially like to thank the CCICADA director Fred Roberts for his

sage advice and tireless efforts on our joint projects, as well as thanking all members

of CCICADA who made weekly project meetings productive and thought-provoking,

and especially to Brian Ricks for his dedication to the project. I also extend thanks to

the promising undergraduate researchers I had the opportunity to work with over these

years, Robert Kolchmeyer, Meera Murti, Poorva Sampat, and Andrew Wells.

iii

I also thank my parents for giving me a stable platform to start my college career as

an undergrad, and to my entire family for their support and belief that I could become

the first Ph.D. recipient of the family. Thank you to the various administrative staffs

of UNR and Rutgers for your unrelenting service though piles of paperwork and travel

reimbursement forms. And finally, I would like to thank each my committee members,

William Steiger, Jingjin Yu, and Devin Balkcom, for dedicating their time to the review

and consideration of this work.

iv

Dedication

This work is dedicated to my grandfather, Toney Brown, who remains a stalwart cham-

pion of education and pushing the limits of human knowledge.

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . v

1. Introduction . 1

1.1. Objective . 2

1.1.1. Formal Guarantees on Path Quality 3

1.1.2. Compact Representations . 3

1.2. Dissertation Overview and Contributions 4

2. Foundations of Robot Task, Motion, and Manipulation Planning . . 7

2.1. Sampling-based Motion Planning . 9

2.1.1. Sampling-based Planning Primitives 10

2.1.2. Probabilistic Roadmap Methods 11

2.1.3. Random Tree Methods . 14

2.2. Properties of Sampling-based Planners 15

2.2.1. Contributions Relative to the State-of-the-art 17

2.3. Multi-Robot Motion Planning . 19

2.3.1. Contributions Relative to the State-of-the-art 21

2.4. Task Planning and Robot Manipulation 22

2.4.1. Contributions Relative to the State-of-the-art 25

3. Probabilistic Near-Optimality after Finite Computation 26

3.1. Problem Setup . 26

3.2. Probabilistic Near-Optimality for Sampling-Based Planners 29

vi

3.2.1. Deriving PRM* Connectivity Constants 29

3.2.2. Probability of Path Coverage . 33

3.2.3. Bounding Path Quality . 34

A bound in terms of mean and variance 34

Approximation of E[In] in Rd . 36

Computation of the Variance of In in Rd 44

Finalizing the PNO guarantee of PRM* 50

3.3. Using PNO properties in practice . 51

3.3.1. Online Prediction of I*
δn

. 51

3.3.2. Deriving probabilistic stopping criteria 53

3.4. Indications from Simulation . 55

3.5. Discussion . 56

4. Asymptotic Near-Optimality with Compact Representations 58

4.1. Problem Setup and Objectives . 58

4.1.1. Sparse Roadmap Spanner Notation 60

4.2. Sparse Roadmap Spanner Methods . 62

4.2.1. Using PRM* to Find Shortest Cfree Paths 66

4.2.2. Alternative to Storing a Dense Graph 70

4.3. Sparse Roadmap Spanner Analysis . 74

4.3.1. Probabilistic Completeness . 74

4.3.2. Path Quality . 77

4.3.3. Rate of Node Addition . 81

4.3.4. Space Requirements . 83

4.4. Simulations, and Experimental Validation 84

4.4.1. Experimental Setup . 84

4.4.2. Query Success Ratio . 86

4.4.3. Path Quality . 88

4.4.4. Offline Memory Requirements . 94

vii

4.4.5. Online Memory Requirements . 94

4.4.6. Graph Nodes and Edges . 95

4.4.7. Query Resolution Time . 95

4.4.8. Effects of Smoothing . 95

4.4.9. Maximum Consecutive Failures 99

4.4.10. Average Node Valence . 99

4.4.11. Online Memory Use vs. Path Quality 101

4.4.12. Query Time vs. Path Quality . 101

4.4.13. Problem of Increasing Complexity 101

4.4.14. Types of Nodes Added over Time 109

4.5. Discussion . 111

5. Compact and Scalable Multi-robot Motion Planning 113

5.1. Problem Setup and Notation . 113

5.2. Methods for Composite Space Planning 114

5.3. Asypmtotic Optimality of dRRT* . 117

5.3.1. Optimal Convergence of Ĝ . 118

5.3.2. Asymptotic Optimality of dRRT* 121

5.4. Experimental Validation . 122

5.5. Discussion . 125

6. Compact Representations for Multi-arm Manipulation Search 128

6.1. The N-Arm Manipulation Problem . 128

6.2. A Compact Multi-Arm Manipulation Representation 131

6.3. Pre-processing and Searchng GMAM . 134

6.3.1. Preprocessing . 134

Automaton Generation . 134

Arm Path Precomputation . 135

6.3.2. Online GMAM Search . 135

6.4. Analysis: Asymptotic Optimality . 138

viii

6.5. Experimental Evaluation . 140

6.6. Discussion . 142

7. Conclusions . 143

7.1. Statement of Contributions . 143

7.2. Important Open Questions . 147

7.3. Concluding Remarks . 149

Vita . 150

References . 151

ix

1

Chapter 1

Introduction

An important step in creating efficient, automated robotic processing centers is per-

forming long-horizon motion and task planning in an efficient and scalable manner.

Typically, a robotic system has a series of actuators that allow it to interact with the

world, a set of sensors to observe the state of the world, and an internal model of its en-

vironment, allowing it to reason about the effects of motion in the environment. There

is a wide range of fascinating and computationally difficult problems to solve in order

to achieve the wide deployment of robots in everyday workspaces. Robot vision and

perception, hardware design, controller modulation, model learning, feedback control,

and long-horizon motion and task planning are just some of the problems that have

to be solved in order to make a functioning robotic system. This has led robotics to

be highly multidisciplinary with an interesting mix of ideas constantly innovating these

subareas.

Figure 1.1: The motivating problem of this work. (Left) objects begin coming down
the conveyor belt and need to be sorted into their appropriate bins, i.e., the bottles
should go to the brown bin. (Right) As the conveyor belt moves, some arms might have
to pick up objects for which they cannot access the bin. In this case, the robots should
perform hand-off of the objects to other robots who do have access to the appropriate
bin.

This work is specifically motivated by the problem of multi-robot task and motion

2

planning to solve object transfer manipulation tasks. For instance, consider a related

motivating challenge shown in Figure 1, which corresponds to an automated recycling

problem. This is an object transfer task where the objective is to move every object to

a desired target region based on its class, i.e., bottles should be moved to the brown

bin, aluminum cans should be moved to the silver bin, and so on. This problem is

of particular interest as it represents a less-structured environment relative to those

handled by current automation systems. That is, most manufacturing plants assume

a highly structured environment where motion plans for moving a particular part can

be computed a single time in an offline fashion, since the starting state of the object

to transfer is always the same. In this problem, this will generally not be the case,

and often the object to be manipulated will not have a known, predefined shape during

preprocessing, making these traditional approaches to the problem poorly suited to the

task.

The task and motion planning aspects of the problem are addressed in this work,

motivated by solving these problems quickly given no prior knowledge of where objects

will be in the scene. Solutions are presented that are able to provide formal guarantees

in terms of overall path quality for the given task and motion planning problem. The

key contribution and overall theme of this work is developing compact planning rep-

resentations that are efficient to query while also providing formal guarantees on the

length of solutions returned by the method. This work will generally assume solutions

to other subproblems, such as robot vision and perception, grasp planning, and feed-

back control, and will therefore focus more on the motion planning and task reasoning

aspects of the problem.

1.1 Objective

This work seeks to develop methods for efficiently solving the object transfer manipula-

tion task. Specifically, it focuses on providing formal guarantees on path quality using

compact planning representations. The objective is to provide methods that can be

deployed in multi-arm object transfer manipulation problems like the automated recy-

cling center example and provide high throughput by employing provably near-optimal

3

solutions. This section continues by discussing these two objectives, which are at times

in opposition, in greater detail.

1.1.1 Formal Guarantees on Path Quality

Throughout this work, sampling-based motion planning is heavily used and forms the

backbone of the final search method proposed in chapter 6 [73, 90]. These methods

were originally introduced as a means to overcome the difficulty of performing motion

planning for high-dimensional systems, but gave up on traditional guarantees, such

as completeness and optimality. Analysis showed that these methods could provide

asymptotic properties instead, i.e., formal guarantees, generally in terms of returning

paths and relating the quality of those paths, which hold as the algorithm is run to an

infinite iteration limit [85, 68]. Prior work showed that these methods can provide prob-

abilistic completeness [71], asymptotic optimality [68], and asymptotic near-optimality

[103], which are concepts expanded upon in chapters 2-4. In theory, it would be de-

sirable to be able to create an oracle function that would take as input any start and

goal pair for the motion planning problem and returns the optimal sequence of controls

for the robot to achieve this. This oracle could for example correspond to an infinitely

dense planning structure, over which an optimal discrete search could be performed.

1.1.2 Compact Representations

In general, sampling-based planners construct a planning structure in the form of a

tree or a graph that is used to solve motion planning queries, i.e., for providing long-

term control sequences to bring the robotic system from some start configuration to

a goal configuration. Ideally, such a planning structure is lightweight and can quickly

be queried for a solution. The proposed concept of an oracle presented in the pre-

vious subsection runs counter to this idea, as it was posed as a solution to providing

optimal solutions, which in the general case may require that the underlying data struc-

ture is dense. Instead, this work will show that compact representations can provide

near-optimality guarantees while maintaining a relatively sparse data structure, having

orders of magnitude fewer nodes and edges than competing methods which provide

4

asymptotic optimality guarantees. Furthermore, this work presents compact represen-

tations for performing the multi-robot object transfer manipulation task, providing

minimal representations to speed up online search.

1.2 Dissertation Overview and Contributions

The outline and contributions of this work are now described in further detail. The

manuscript is divided into two high-level sections. The first section is comprised of

chapters 3 and 4 and focuses on the problem of single-robot motion planning, both

extending the types of formal guarantees that can be provided with sampling-based

planners, as well as introducing a compact representation for efficient motion planning.

The second section is comprised of chapters 5 and 6 and focuses on the multi-robot

and task planning aspects of the problem, first by extending formal guarantees to

efficient multi-robot sampling-based motion planning, and then by presenting a compact

representation for solving object transfer manipulation tasks. Note that most of the

work presented here is taken directly from related publications. Large portions of

chapters 3, 4, 6, and 5 are taken directly from the referenced publications by the

author.

Chapter 2 introduces the basic concepts and foundational work in the areas of al-

gorithmic motion planning, robot task planning, and manipulation planning. It begins

by reviewing algorithmic motion planning, giving an overview of the types of the gen-

erally leveraged in this work. These are known as sampling-based planners, and gain

practical efficiency by having lightweight modules for quickly validating or invalidating

individual configurations for a robotic system. The chapter spends time illustrating

the state-of-the-art and giving the basic framework upon which much of this disserta-

tion’s work is founded: the Probabilistic Roadmap Method (PRM) [73]. The chapter

also introduces the basic concepts and terminology of multi-robot task, motion, and

manipulation planning. It discusses the current state-of-the-art in these directions and

gives a general overview of the types of approaches taken to solve task and motion

planning problems. It also outlines assumptions about the problem to be solved and

presents the object transfer task studied in this work.

5

Chapter 3 discusses the properties of sampling-based motion planners and pro-

poses that the asymptotically optimal variants of these approaches have finite-time

near optimality properties which formally guarantee that the methods return paths of

bounded length relative to clearance-robust optimal paths. This joint work with George

V. Moustakides formalizes the notion of probabilistic near-optimality [27], proving

that a variant of the PRM* method [68] exhibits these properties. It draws bounds and

leverages them to provide practical tools for generating principled stopping criteria for

these methods, as well as for estimating solution non-existence probability. It proba-

bilistically guarantees that the length of the solution returned by PRM* is within a finite

bound of a clearance-robust optimal path after a finite amount of computation, which

is a novel kind of property for these kinds of methods. Furthermore, as part of the proof

presented in chapter 3, a novel approximation to an unsolved variant of the ball-line

picking problem [129] is drawn, which may have relevance to other fields beyond this

work. Experimental validation shows that this bound accurately reflects the actual

execution of sampling-based planners, but also re-captures the curse of dimensionality,

showing that it requires exponentially many samples to provide path quality guarantees

for higher dimensional systems.

Chapter 4 attempts to reconcile the need for exponentially many nodes in the

planning structure by relaxing optimality constraints. Instead, it develops planners

that exhibit asymptotic near-optimality properties [103], and does so by formal-

izing a method to create a sparse roadmap spanner (SPARS) [31]. A sparse roadmap

spanner is a compact planning representation containing orders of magnitude fewer

nodes and edges than asymptotically optimal roadmap methods while still providing

high-quality paths in practice. The methods provide formal near-optimality guaran-

tees, asymptotically guaranteeing that the method converges to returning paths within

a bound of the optimal solution. In addition to these guarantees, the method is shown

to be asymptotically sparse, which guarantees that the probability of growing the struc-

ture as the method runs to infinity tends to 0. Experimental validation shows these

approaches quickly provide paths, which are of much higher quality than theoretical

bounds suggest.

6

Chapter 5 contains the collaborative contributions in the direction of multi-robot

motion planning. This work which was coauthored by Kiril Solovey, Rahul Shome,

and Dan Halperin extends the efficient dRRT framework [139] to be asymptotically

optimal [33], and shows that with practical speed-ups, the method quickly provides

high-quality solutions to multi-robot motion planning problems even for a large number

of robotic systems. Furthermore, this is all accomplished without explicitly constructing

a roadmap in the composite configuration space of the robots. Instead, it defines

a tensor product roadmap implicitly, which makes this a different kind of compact

representation. The method then extends an explicit planning tree over this structure

to perform online search. Experimental results show that the method is scalable to

planning for several high-dimensional robotic systems while quickly returning initial

solutions of low cost.

Chapter 6 addresses the object transfer manipulation task, incorporating the re-

sults from the previous chapters. It outlines both appropriate preprocessing and online

search methods for performing this task. The precomputation begins by constructing a

compact representation of the many arm manipulation task topology that was gen-

eralized from prior work for dual-arm manipulation problems [52, 30]. It then constructs

roadmaps for each robot arm and employs the multi-arm motion planning framework

dRRT* detailed in the previous chapter, and by integrating this method, it provides

formal proof showing the method is globally asymptotically optimal. That is, not

only does the approach asymptotically converge to returning optimal motion plans for

the arms involved in the task, but it also converges to returning the optimal sequence

of actions, object grasps, and placements for solving the task. Experimental results

show that the approach is scalable to several robot manipulators and quickly generates

initial solutions.

Finally, chapter 7 restates the key contributions of the work and summarizes open

questions and interesting directions for future investigation. Furthermore, it cites the

potential for this work to inform future investigation of these methods.

7

Chapter 2

Foundations of Robot Task, Motion, and Manipulation

Planning

This chapter begins by introducing the concept of single-system Robot Motion Plan-

ning, which remains the general theme of this work through the first half of the work.

These concepts are primarily detailed by chapters 3 and 4. Informally, motion planning

is the process by which a robot system uses an internal representation of its environment

to compute a sequence of controls to actuate the system, so as to move the robot system

from an initial position to a target position while remaining safe, i.e., avoiding collisions

and maintaining constraints, such as keeping balanced. The canonical version of the

problem is known as the Piano Mover’s Problem, which is posed for a collection of

kinematic, polyhedral rigid bodies in a polyhedral workspace. Even this simple version

of the problem is PSPACE− HARD [122]. This initial work showed that the difficulty of

the problem scales exponentially with the number of degrees of freedom of the robotic

system.

A complete algorithm for solving the Piano Mover’s Problem was presented in the

thesis of Canny that directly shows this exponential complexity [17]. This algorithm

operates in the robotic system’s configuration space (C), where a point in this space

is called a configuration. A configuration is the parameterization of a robotic system’s

degrees of freedom, where this set of parameters fully specifies the location of every

rigid body geometry of the robotic system. Many of the approaches examined in this

chapter partition this space into two sets: the invalid or obstacle set Cinv where the

robotic system is violating constraints of the problem (most commonly collisions with

static geometry in the scene), and Cfree where the robotic system’s configuration is valid

and safe. These partitions cover the whole space, i.e., C = Cfree ∪ Cinv.

8

The algorithm posed by Canny introduced the concept of a roadmap, a one dimen-

sional subspace of Cfree that captures its connectivity, which is generally represented by

a graph data structure. The algorithm however is impractical, similar to other early

methods that attempted to leverage Cfree approximations [14, 101, 67].

Other approaches not explored in this work approach the problem from different

directions. Some approaches apply a grid discretization over the configuration space

and perform discrete search directly [144]. Another paradigm designed to solve these

problems is based on artificial potential fields [75, 61, 42], though complete versions

of this methodological approach are difficult to apply in general configuration spaces

[77, 123]. A similar technique that solved difficult problems took a stochastic approach

to avoid local minima [6, 88]. The difficulties faced by these methods and the advent

of efficient collision checking primitives would motivate the development of sampling-

based motion-planning approaches, which will largely be the focus of this dissertation.

The principle ideas behind sampling-based planners are explored in Section 2.1. An-

other approach to the problem is to directly produce minimum-cost trajectories via

optimization methods [9, 164].

Ideally, efficient motion planners would be able to quickly identify compact graphical

representations that nearly approximate the free configuration space, similar to the orig-

inal roadmap concept. This is the primary objective behind sampling-based roadmap

planners, which will be explored in more detail in Section 2.1.2 [73, 72]. Ideally, such

a roadmap is quick to return results to shortest-path queries [89, 1]. Furthermore, it

would be beneficial to provide guarantees on the length of paths returned by such a

roadmap, bounded by the length of the true optimal path through Cfree.

In the second half of this dissertation, the focus shifts to more challenging practical

problems and the motivating application of automated recycling, outlined in chapters 5

and 6. To this end, it begins exploring robotic applications that require multiple robot

manipulators with fixed bases operating within the same workspace. These robots will

be centrally coordinated in order perform manipulation tasks, and planned for in a

coupled fashion in order to provide formal guarantees.

A näıve approach to solving the motion planning problem for these systems would

9

be to construct a sampling-based roadmap or tree for all of the robots simultaneously.

That is, the method would operate directly in the composite configuration space of R

robot arms simultaneously. While this theoretically provides asymptotic optimality (or

asymptotic near-optimality) for the multi-robot problem, it does not scale due to the

exponential memory dependence on the problem’s dimensionality. In such a setup, the

dimensionality of the problem increases very quickly with the number of robots, R. In

the motivating example, each robot manipulator typically has around seven degrees of

freedom, quickly making this approach infeasible for more than two arms.

Beyond the problem of achieving simultaneous motion for these robot systems, this

work also proposes methods for performing manipulation task planning in order to ad-

dress the target recycling application. This requires finding a sequence of high-level

plans that allow the robot arms to manipulate a target object, placing it in an appro-

priate target location. This requires both finding appropriate subsets of arms Rtask ⊂ R

to manipulate the object with and finding a sequence of such sets of arms that accom-

plishes the given task. Even given an appropriate sequence of arm sets, the method

must also leverage appropriate multi-robot motion planning to achieve these actions.

Näıvely enumerating these sequences is obviously infeasible. The motion planning as-

pect of this problem is further complicated by the need to perform manipulation tasks.

Due to these manipulation tasks, these methods will generally require specialized sam-

pling methods in order to correctly plan for manipulation, as the set of configurations

that correspond to object grasping configurations are a lower-dimensional manifold of

the entire configuration space. This means that a sampling scheme which näıvely sam-

ples in the whole configuration space will find such a transition point with probability

zero.

2.1 Sampling-based Motion Planning

Sampling-based motion planning techniques provide efficient solutions in practice, even

for high-dimensional, geometrically complex problems [89, 91, 22]. Two primary families

of planners have emerged. Probabilistic Roadmap Methods (PRMs) preprocess a robot

configuration space (C -space) to create a multi-query structure [73, 72]. Tree-based

10

planners, such as the Rapidly-exploring Random Tree (RRT) are suited to rapid single-

query planning, especially for dynamic systems [90, 92]. There are also methods that

lie somewhere between, in order to reap the advantages of both algorithmic approaches

[117, 2]. In general, these methods rely on several primitives to construct a planning

structure in the configuration space, which are detailed next.

2.1.1 Sampling-based Planning Primitives

As implied by the name, these methods employ some sampling method to generate

free configurations in the configuration space. There has been success in the field

with several approaches to sampling, though most commonly these methods are lever-

aged using uniform random samplers. Another approach that has good properties

in terms of low sample dispersion is quasi-random deterministic sampling sequences

[13, 124, 157, 64, 63, 65], and there exist comparative studies on the subject [43]. An-

other approach is to attempt to leverage C-space projections to produce samples on the

medial axis, so as to create paths with maximum clearance from obstacles [160, 51]. As

approximating invalid regions in the configuration space is difficult, other approaches

adapt sampling strategies and leverage information from invalid samples to appropri-

ately generate samples within narrow free passages within the C-space [57]. Others yet

have shown the merits of sampling using non-uniform distributions [12].

Traditionally, these approaches are applied to find shortest paths through the con-

figuration space according to a distance function.

Definition 1 (Distance Function). The distance function d(·, ·) takes two configurations

in C and returns a real value, i.e., d(qi, qj)→ R, which expresses the distance of the two

configurations in the absence of obstacles and generally satisfies metric or pseudometric

properties.

In order to construct the planning structure in Cfree, sampling-based methods rely on

being able to accept or reject samples based on whether a configuration is safe. That is,

the approach leverages a method which determines whether configuration q lies within

Cfree or Cinv . Prototypically, these methods rely on the availability of a collision

11

checker to determine the validity of samples, but the general term for such a module is

a validity checker.

Definition 2 (Validity Checker). Given an individual configuration q, a validity checker

returns whether q lies within Cfree or Cinv.

The following section will outline Probabilistic Roadmap Methods, which produce

a planning structure that is a graph. Samples drawn within Cfree will be added as

nodes, but in order to build the planning structure, the sampled configurations must

be connected by edges. This is typically accomplished with the aid of a local planner.

Definition 3 (Local Planner). Given configurations qbegin, qend, a local planner L(·, ·)

returns the optimal path between the configurations in the absence of obstacles, i.e.,

L(qbegin, qend) → πL, where πL(t) → C and t ∈ [0, 1], satisfying πL(0) = qbegin and

πL(1) = qend.

Typically, a straight line between qbegin and qend in C is used for local planning,

especially in the canonical Piano Mover’s Problem. In order to add local paths as edges

in the planning structure, it must be that for all q ∈ L(qbegin, qend), q ∈ Cfree. While

there exist efficient and complete methods for checking if an entire path lies entirely

within Cfree [135], a sampling-based process is commonly used as an approximation.

2.1.2 Probabilistic Roadmap Methods

One of the first popular sampling-based motion planning methods in order to construct

a roadmap in Cfree was the Probabilistic Roadmap Method (PRM) [73]. The high-

level operations of PRM are outlined in Algorithm 1. For a set number of iterations

n (Line 2), the algorithm samples a configuration in Cfree (Line 3) and adds it as a

node to the roadmap (Line 4). It then tries to connect it with a local path to a set of

k-closest neighbors among the existing nodes (k-PRM) or those within a δ-ball (δ-PRM)

(Lines 5,6). If any local path lies entirely within Cfree (Line 8), an edge is added to the

roadmap (Line 9). The advantages of the method lie in its simplicity, and generality

while scaling to higher-dimensional problem instances than other competing methods

12

Algorithm 1: PRM(n)

1 V ← ∅;E ← ∅;
2 for i = 1 . . . n do
3 v ← SampleFree;
4 V ← V ∪ v;
5 ri ← CONNECT RADIUS(i);
6 U ← NEAR(V, v, ri);
7 for u ∈ U do
8 if L(v, u) ∈ Cfree then
9 E ← E ∪ {L(v, u)};

10 end

11 end

12 end
13 return G = (V,E);

were capable of. While strict completeness and path non-existence cannot typically be

proven for the PRM, probabilistic completeness can be provided instead.

Definition 4 (Probabilistic Completeness). Let (Cfree, qstart, qgoal) be a motion planning

problem that admits a continuous trajectory π : [0, 1] → Cfree subject to π(0) = qstart

and π(1) = qgoal. Then, an algorithm ALG that is run for n iterations is probabilistically

complete if the probability that ALG returns a solution to the motion planning problem

converges to 1 as n tends to infinity.

This was originally proven for d-dimensional manifolds [71, 58], for non-holonomic

robots [148], and then later for a broad class of problems [85].

Many early variants of PRM focused on providing solutions as quickly as possible

while addressing issues related to narrow passages [3]. Some approaches were tailored

to improve different criteria, such as returning high-clearance paths [160], and others

to return high quality solutions experimentally [21, 121]. While the types of plans

produced by these methods are open-loop and generally susceptible to noise or model

errors, they have been extended to address such problems; for instance, some methods

perform belief space planning for dealing with uncertainty [120, 15].

The efficiency of probabilistic roadmaps is dominated by the presence of “narrow

passages”, which require sampling from a low-measure subset of the configuration space

in order to discover them. In difficult problem instances, the optimal path that answers

13

a given query may be required to traverse one or more of these narrow passages, greatly

decreasing the probability that a sampling-based approach returns such a path. This

motivated the development of variations that appropriately sample configurations to

speed up the construction of sufficiently connected roadmaps [3, 58, 12, 160, 51, 11,

39, 57, 95, 117]. Furthermore, the PRM framework has been adapted so as to solve

a variety of different challenges beyond the basic Piano Mover’s Problem, involving

multiple robots [127], manipulation planning [109], assembly planning [147], planning

for flexible objects [87] and bioinformatics applications [4].

A variation of PRM closely related to the work presented in chapter 4 is the Visibility-

based PRM [137]. This prior work rejects specific samples while adding only those re-

quired for coverage and connectivity purposes. The combination of these two properties

is sufficient for probabilistic completeness. The resulting roadmaps are lightweight tree

structures, because two nodes are not connected if they belong to the same connected

component. Furthermore, the technique provides an automatic stopping criterion: when

M consecutive samples fail to be added to the roadmap, then a probabilistic estimation

of the percentage of free space not covered by the nodes of the data structure is 1
M .

Unfortunately, the path quality of paths returned by this method can be quite poor.

This led to work that aimed to identify “useful cycles”, which adds edges between

roadmap nodes if the existing path connecting the nodes is sufficiently lengthy [110].

The resulting structure is no longer a tree, but remains sparse and improves path quality.

The “useful cycles” criterion has been combined with the Reachability Roadmap variant

of PRM to return high clearance paths in 2D and 3D C-spaces [44]. One way to improve

path quality is through a post-processing, smoothing phase. Methods that reason

about path homotopy provide solutions that can be smoothed to optimal ones [62,

133]. Hybridization graphs can be seen as a smoothing process that combines multiple

solutions into a single, better quality one [121]. While such smoothing-based approaches

are valid alternatives in certain cases, they construct relatively dense roadmaps and

increase the online query resolution time. The proposed SPARS framework addresses

these issues, creating a compact planning representation that is very quick to query,

while providing path quality guarantees and practically returning paths of low cost.

14

2.1.3 Random Tree Methods

An extremely popular alternative to roadmap-based methods explore the C-space by

incrementally propagating from existing nodes in the planning structure to grow a

tree. One such common and popular method is the Rapidly-exploring Random Tree

(RRT) approach [93]. This method is commonly employed due to the inherent “Voronoi

Bias” it exhibits. That is, the tree is automatically biased toward quickly growing

toward unexplored regions of the space. Around the same time, a similar tree-based

approach was proposed that probabilistically biases the expansion of these trees toward

unexplored regions of the space [59, 60].

These methods tend to be more efficient in quickly answering individual motion

queries and they can be easily applied to problems involving robot dynamics because

they do not depend on the existence of a steering method that exactly connects two

configurations of the system. Such a steering function is typically required in the

construction of a roadmap. Furthermore, by definition they already return sparse data

structures, as a tree is minimally sparse; however, it does not ensure that the number

of nodes in this tree remain low.

Nevertheless, tree-based approaches do not provide the same properties in terms of

preprocessing the entire free configuration space in order to be able to answer multiple,

unknown queries. Moreover, the basic RRT approach has been shown to almost certainly

converge to suboptimal solutions [108]. It can be extended, however, to an asymp-

totically optimal variant, known as RRT* [68], which however does require a steering

method. Further work in this direction has proven that by employing random controls,

asymptotic optimality can be ensured for these types of methods without the need for a

steering function [98]. These tree-based methods can also benefit from sparse roadmaps

that can quickly return C-space distances among obstacles [97]. Another approach fo-

cusing on practical applications incorporates feedback control policies directly into a

rapidly-exploring tree structure [151].

15

2.2 Properties of Sampling-based Planners

Formal analysis showed that sampling-based planners provide probabilistic complete-

ness, which guarantees that if the provided problem instance has a solution, the methods

solve the problem with probability asymptotically approaching 1 [58, 71, 85, 18]. While

many approaches adopt a quasi-random sampling scheme [13], much of the body of

analysis has focused on uniform random sampling. This is aided by a body of literature

that supports such uniform processes, such as studies into concentration of measure

[36]. Furthermore, in the absence of obstacles in the configuration space, roadmap-

based methods return random geometric graphs [141], which have been extensively

studied in other contexts [116]. Further work showed that solution non-existence can

be detected under certain conditions [107] or that a solution is guaranteed to exist under

others [99].

Important recent work has provided the conditions under which sampling-based

methods are asymptotically optimal [68, 69].

Definition 5 (Asymptotic Optimality). Let (Cfree, qstart, qgoal) be a robustly feasible

motion planning problem that admits a continuous trajectory π : [0, 1] → Cfree subject

to π(0) = qstart and π(1) = qgoal. Then, an algorithm ALG that is run for n iterations

is asymptotically optimal if the probability that ALG returns a solution of minimum cost

to the motion planning problem converges to 1 as n tends to infinity.

The analysis indicates that for the PRM methods, the critical algorithmic requirement

for asymptotic optimality is the number of neighbors that each new sample should be

connected to. Table 2.1 briefly gives an overview of different PRM-based approaches

and their asymptotic properties. A simple PRM that connects samples to neighbors

within a δ-ball is asymptotically optimal, but results in a very dense roadmap. The

roadmap’s density can be reduced by considering the k-nearest neighbors of the sam-

ple, but this version is not asymptotically optimal. PRM* and k− PRM* rectify this by

selecting the minimum number of neighbors required for asymptotic optimality, which

is a logarithmic function of the number of nodes already in the planning structure

[68, 69]. Nevertheless, all samples are added as nodes, resulting in a large graph and

16

the resulting structure can still be relatively slow to query. Roadmaps with asymptotic

optimality properties have large memory requirements and take longer to query than

other approaches focusing on sparsity.

algorithm edges optimal?

δ-PRM O(n2) asymptotically optimal
k-PRM O(kn) no

PRM* O(n logn) asymptotically optimal

k− PRM* O(n logn) asymptotically optimal

SRS O(an1+ 1
a) asymptotically near-optimal

IRS O(n logn) asymptotically near-optimal

Table 2.1: PRM variations and asymptotic optimality properties. The parameter n
corresponds to the number of nodes in the roadmap.

Note that these are asymptotic results, and can not be used to argue much about

the solution quality returned after a finite amount of computation, unlike the proper-

ties guaranteed in chapter 3. The results from that chapter show that asymptotically

optimal planners can however provide good quality paths when halted after finite com-

putation, even if strict asymptotic optimality constraints are relaxed [103, 126, 32].

An approach to returning sparser, high-quality roadmaps is to relax the optimality

guarantees by utilizing graph spanners [114]. Spanners are subgraphs, where the short-

est path between two nodes on the subgraph is no longer than t times the shortest path

on the original graph, where t is called the stretch factor of the spanner. Applying an

efficient spanner [8] on the output of k− PRM* resulted in a Sequential Roadmap Span-

ner (SRS) [105], which reduces the expected number of edges and provides asymptotic

near-optimality, i.e., as more time is spent on constructing the roadmap, the quality of

solutions converges to a value at most t times the optimal. An incremental integration

of spanners with k− PRM* (IRS) has been experimentally shown to provide even bet-

ter results [104]. The path quality degradation with these methods is quite smaller in

practice than the theoretical guarantees.

These spanners, however, only remove edges, and the resulting roadmaps, similar

to asymptotically optimal solutions, still need to include every C -space sample drawn

as a node to achieve this property. An initial attempt towards not including all nodes

was a simple extension of the IRS approach but did not provide any theoretical guar-

antees [106]. Chapter 4 introduces the SPARS approach, which was the first method to

17

provide formal asymptotic near-optimality guarantees where the probability of adding

new nodes to the roadmap tends to zero [31]. An updated version of the approach,

SPARS2, achieves the same objectives while reducing the memory requirements upon

construction [28].

2.2.1 Contributions Relative to the State-of-the-art

Chapter 3 formalizes Probabilistic Near-Optimality (PNO) for efficient sampling-based

roadmap methods using limited assumptions. A previous contribution of the author

highlighted PNO properties for a PRM variant that asymptotically converges to a dense

planning structure, relying on Monte Carlo experiments to draw bounds on path length

[27]. That chapter formally shows the following contributions:

• The probabilistic near-optimality of PRM* is shown, which allows for intelligent stop-

ping criteria and probabilistic bounds on solution non-existence for general setups.

• To the best of the author’s knowledge, this chapter provides a novel approximation

to a previously unsolved problem in geometric probability to draw closed-form path

length guarantees.

• The analysis works for a variant of PRM* constructing O(n log n) edges (equivalent

to the asymptotically optimal), as opposed to the previously considered PNO-PRM*,

which creates O(n2) edges [27].

This guarantee is similar to Probably Approximately Correct (PAC) solutions in the

machine learning literature [153]. Such properties can significantly impact the practical

application of these methods. For example, in robot task planning, a higher-level

planner often queries a motion planner to determine if a solution exists to perform

some action [55]. PNO guarantees can inform a high-level task planner of expected path

degradation relative to the optimal path along a homotopic class, as well as provide a

probabilistic bound on solution non-existence, which can be used to prune away certain

actions with a high confidence that it is infeasible. This further results in automated

stopping criteria that are informed on solution quality and the progress of the sampling

process rather than the common practice of using an arbitrary, ad hoc stopping criterion.

18

PNO properties imply that solutions will very often be within a known bound of the

optimal. Such a bound can be used to provide many practical benefits. This work

formally provides PNO properties for PRM*, reasoning over a theoretical construction

of hyper-balls in the C -space tiled along a clearance-robust optimal path. It is also

shown how to apply these properties in practice to ensure high-quality paths, and

experimental validation of the bounds is provided. Due to the difficulty of the motion

planning problem, PNO properties often require many samples to provide near-optimal

paths with high confidence; however, this bound also provides error and confidence

bounds for a budget of algorithm iterations.

Based on this paper, it is now possible to estimate in an informed manner the

number of iterations needed for PRM* to return with high probability a path within a

desired bound of the optimum for different planning challenges. In practice, it will

be seen that for sufficiently high-dimensional problems, the exponential dependency

on problem dimensionality is recovered. To this end, the following chapter proposes

methods for providing formal path quality guarantees while retaining asymptotically

sparse planning structures.

Chapter 4 describes how to generate compact planning structures, which return

high-quality paths. Specifically, it proposes the sparse roadmap spanner (SPARS) frame-

work. This framework constructs sparse roadmap spanner over the free configuration

space Cfree , and it is shown that these structures asymptotically converge to return-

ing near-optimal paths while guaranteeing the probability of node addition tends to 0.

These structures are practical and can be constructed in a time and memory efficient

manner. Examples of these sparse roadmaps constructed with this framework can be

seen in Figure 2.1

In particular, the planners for constructing sparse roadmap spanners presented in

this chapter have the following properties:

• probabilistic completeness

• asymptotic near-optimality with additive cost

• asymptotic sparsity: the probability of growing the roadmap asymptotically tends

19

Figure 2.1: A roadmap spanner in the SE(3) “Beam Site” environment, loaded in the
OMPL software package [24]. Configurations for a table moving along a solution path
are highlighted.

to 0.

The resulting roadmap can probabilistically guarantee that it can answer any path

planning query in the C with paths of length bounded by:

t · I*
δn + 4 ·∆, (2.1)

where t and ∆ are input parameters to the algorithm, and I*
δn

is the cost of the optimum

path in the free configuration space, if one exists. This framework indicates that finite-

sized data structures with this property should be possible to algorithmically construct,

though it is unclear what the properties of the space should be in order to guarantee

this. The framework is grounded in a concrete implementation, originally called the

SPARS method, which constructs two graphs in parallel. In addition to the spanner, the

method also constructs an asymptotically optimal dense graph using PRM* that includes

all C -space samples. The use of the dense graph is a significant limitation of this original

approach. For this reason, a second implementation of the framework, SPARS2, is also

presented that provides the same theoretical guarantees without explicitly maintaining

the dense graph.

2.3 Multi-Robot Motion Planning

This section reviews related work in the field of multi-robot motion planning problems.

Specifically, the focus is on simultaneous motion of R robots {A1,A2, . . . ,AR}, each

operating in their own configuration space CAi It is straightforward to treat all of

20

Figure 2.2: Simultaneous planning for multiple high-dimensional systems is a difficult,
motivating challenge for this work.

these systems as a single robot by operating in the composite configuration space C =

CA1 × · · · × CAR , which is the Cartesian product of these configuration spaces. Early

attempts at multi-robot motion planning quickly discovered the difficulty of näıvely

planning in the composite robot configuration space.

Directly solving the problem in this fashion is referred to as coupled multi-robot

planning. There is a great deal of literature on multi-robot planning for pebble motion

style problems where simple, low dimensional systems are coordinated on a shared mo-

tion graph [162, 163, 84]. There have been a variety of planners developed to address

the challenge for higher dimensional systems [128]; however, coupled methods often do

not scale well, though they have completeness guarantees. The motivating challenge in

Figure 2.2 remains especially challenging due to the relatively high number of degrees

of freedom for each robot. The alternative to coupled planning is decoupled planing,

where paths for robots are computed individually and then coordinated online to avoid

robot-to-robot collision [94], which scales much better. Decoupled methods typically

lack completeness and optimality guarantees; however, hybrid approaches can achieve

optimal decoupling to retain guarantees [155], even for complex, high-dimensional sys-

tems [159].

Other early attempts focused on finding proper methods for composing several

roadmaps constructed for each of the robots in an intelligent manner. These approaches

created a super-graph over these roadmaps [48, 47], but a more modern approach known

21

as the discrete RRT (dRRT) method [139] provides scalability by searching over the im-

plicit tensor product [149] of the single-robot roadmaps. This inspired a recent exten-

sion, which is detailed further in chapter 5 known as dRRT*, which achieves asymptotic

optimality as well as improved performance through an informed search process [33].

Other work focuses on many of the complicating factors of practical planning, such as

dealing with complex kinodynamic constraints [115], while others focus on coordinated

manipulation [134]. There exist control-based methods that have the advantage that

they scale to hundreds or thousands of robots, but generally lack global guarantees and

only perform local, reactive collision avoidance rather than long-horizon planning [154,

150]. Many efforts in this domain focus on dealing with a large number of objects, such

as in the context of rearrangement planning [112, 83] and navigation [156, 19, 96, 145]

or manipulation among movable objects [146]. This work assumes objects are directly

reachable so that rearrangement is not needed but it can potentially be integrated with

such solutions when this is not the case.

2.3.1 Contributions Relative to the State-of-the-art

Chapter 5 outlines the dRRT* method, which is an extension of the prior dRRT method.

It achieves asymptotic optimality for the multi-robot motion planning problem with-

out requiring explicitly representing the entire planning structure in memory, making

it a practically efficient approach that quickly generates initial solutions. Formally,

chapter 5 sets up the multi-robot motion planning problem, and provides the following

contributions:

• Outlines modifications to the dRRT method to speed up its practical performance.

• Proves the updated dRRT* method is asymptotically optimal for the multi-robot

motion planning problem.

• Outlines simulated verification of the method that shows it scales well to a large

number of robots.

22

This represents significant progress in terms of extending asymptotic optimality to

practical multi-robot methods. It also suggests that explicitly representing large, dense

planning structures is not necessary to obtain optimal path quality guarantees for high-

dimensional systems, which was a practical limitation of the finite time properties of

motion planners outlined in chapter 3.

2.4 Task Planning and Robot Manipulation

While motion planning focuses on computing controls to move robotic systems from

a known start configuration to a known goal configuration, task planning focuses on

determining a sequence of high-level, often abstract actions to change the state of the

world. While both motion and task planning have many roots in traditional artificial

intelligence work [53, 125, 89, 91], task planning often focused on traditional logic-

based approaches. The high-level reasoning employed simple predicate logic [37], while

eventually moving on to more expressive languages, such as linear temporal logic (LTL)

[119], and to one of many flavors of planning domain definition languages (PDDL)

[46, 80].

Traditionally, to solve integrated task and motion planning problems, a hierarchical

scheme was employed that first found a sequence of actions that would logically solve

the problem specification, and then attempted to use a motion planner to determine

how to physically perform each action [111]. If the motion planner fails to produce a

solution, then a new sequence of actions must be determined, and this ends up being

an inefficient solution to the problem. Instead, more advanced techniques attempt to

perform integrated task and motion planning, where both the task planner and motion

planner are informed about constraints in each other to allow direct computation of

motion plans that perform high-level actions [16, 54, 66, 41, 118].

There are also incremental task and motion planning methods, which solve the

problem in an iteratively deepening fashion [26]. This related approach, like several

others, casts the task planning problem as a constraint satisfaction problem. Related

approaches determine a high-level plan skeleton and then directly use incremental CSP

23

solvers over discretely sampled object grasps and placements [102, 41]. This prior work

attempts to factor the problem into smaller, independent sets of state and control, much

like the proposed work reasons over multiple robotic systems. The prior work, while

efficiently solving complex problem instances, does not provide asymptotic optimality

guarantees.

Figure 2.3: An example with n = 4 arms. In this setup, no arm can reach both the object’s
starting pose and the target region.

A particularly interesting task planning problem is that of robot manipulation: using

a robotic system with a manipulator in order to interact with the physical geometry

around it. Many such manipulation tasks have general interest in a wide variety of

applications, and even relatively simple tasks, such as the object transfer problem

illustrated Figure 2.3 prove to be challenging problems.

There are many efforts to perform integrated task and motion planning for manip-

ulation [16], several of which are hierarchical in nature [161, 7], with extensions that

interleave planning and execution, but require reversible plans [66]. Others attempt to

leave the task and motion planning as black boxes, instead developing an intermediate

layer to coordinate off-the-shelf planners [143]. An effective technique for improving the

practical performance of these methods is to defer resolution of geometric constraints

arising from motion planning for as long as possible [35]. The current work shares

this objective through a similar lazy evaluation procedure. To increase the chances of

motion plans being found for specified high-level actions, some sampling-based motion

planners for manipulation planning directly plan in task-constrained manifolds, such as

keeping an end-effector level with a table [10] or for folding clothes [86]. There is work

that focuses on leveraging information about an arm’s reachability to more efficiently

24

search for planning solutions [45, 152].

The current work performs a forward search, and is compared against a similar

forward search approach [55]. other methods similarly perform forward search and a

related work [40] incorporates the FF heuristic [56] into a task-level specification, allow-

ing geometric constraints to be encoded into the heuristic. This prior work preprocesses

object poses and grasp information during the construction of roadmaps for the robots.

This limits the applicability of the approach to a small set of predefined objects, which

the current work aims to avoid.

There is also work that explicitly reasons about the multi-modal nature of multi-

arm manipulation [79, 78]. Early efforts provided the “manipulation graph” abstrac-

tion, which formally reasons about robot-object contacts [25], and a formalization of

constraint manifolds, which correspond to object grasps and stable pose states, was

developed for single-arm manipulation [136]. While there has been extensive work on

dual-arm manipulation problems [138], formally identifying the topology of dual-arm

manipulation was not done until recently [52]. This was then extended to the general

multi-arm case [30]. For multi-arm manipulation, a method proposed the computa-

tion of a trajectory for the movable object as a heuristic guidance for computing the

manipulation action of multiple arms along the object path [23].

A closely related recent work has shown that asymptotically optimal manipulation

task planning can be performed with sampling-based approaches [158]. Unfortunately,

the corresponding approach suffered from lack of scalability. While sharing the theoret-

ical asymptotic optimality properties of the prior approach, the current work introduces

scalable preprocessing primitives, which generalize to many types of objects, and per-

forms an informed online search that is scalable for several robot manipulators. Further

work in this direction [132] showed that a previously proposed practical approach [54]

can achieve asymptotic optimality by preprocessing a set of roadmaps, one for each of

a finite set of object contacts, which are then merged. Such an approach is limited

in that the preprocessing assumes a single, known object, and does not scale to novel

objects or novel object poses.

25

2.4.1 Contributions Relative to the State-of-the-art

In chapter 6 a compact representation of multi-arm manipulation is formalized that is

sufficient to solve complex object transfer tasks using fixed-base manipulators perform-

ing hand-offs. The chapter also formalizes how to perform adequate offline preprocessing

over the representation, which provides helpful search heuristics [40] as well as efficient

online search to quickly produce solutions. The search integrates the dRRT* method

from chapter 5 for scalable multi-arm motion planning within the framework in such

a way that the desirable asymptotic optimality guarantees [158] are achieved but in a

computationally efficient manner. Formally, chapter 6 sets up the R-arm object transfer

manipulation problem, providing the following contributions:

• A minimal topology for prehensile multi-arm manipulation problems is codified,

generalizing the “manipulation graph” of prior work for single-arm manipulation

[136, 79, 78, 25].

• A framework for appropriately preprocessing over this topology and performing

efficient online search to quickly produce solutions to the object transfer problem.

• A proof for the asymptotic optimality of the method for the integrated task and

motion planning for the object transfer problem.

• Experimental validation of the method that shows scalability and practical effi-

ciency of the approach.

This means this work automatically identifies which arms are required and in what

order to solve the object transfer problem, including the sequence of hand-offs and

required grasps to achieve them. The provided topology is a “multi-arm manipulation

graph” (GMAM), which has high-level states corresponding to stable object poses and

hand-offs, restricting these modes based on the spatial interaction of the robots.

26

Chapter 3

Probabilistic Near-Optimality after Finite Computation

This chapter outlines a fundamental property of sampling-based planners that has been

investigated only recently. These planners exhibit Probabilistic Near-Optimality in

finite time; that is, by examining the rate of convergence of these methods to returning

near optimal solutions, it is possible to have tight probabilistic bounds on the quality

of the path returned by such a method. Previously the literature focused on asymp-

totic properties, which can only indicate how the algorithms behave in a hypothetical

infinite-horizon planning setup. While asymptotic properties have proven useful for

guaranteeing some amount of robustness for these methods, they are often lacking in

practical guarantees for actually running these methods with, necessarily, a finite time

budget.

3.1 Problem Setup

This chapter will reason over the configuration space C as a metric space, using

the Euclidean L2-norm as a distance metric. For robustly feasible motion planning

problems, there exists a set of δ-robust paths that answer a query (qstart, qgoal), of

which, the path of minimum length from that set is denoted as π*
δn

with length I*
δn

.

Such a path is known as a robust-feasible path:

Definition 6 (Robust Feasible Path). A path, πδ, is δ-robust if πδ has strong δ-

clearance from Cinv of at least δ.

Formally, this chapter focuses on methods solving the following problem:

Definition 7 (Robustly Feasible Motion Planning). For a Robustly Feasible Motion

27

Planning (RFMP) Problem, (C, qstart, qgoal, δ0), and a clearance value δ0 so that a δ0-

robust path πδ0 exists, πδ0(0) = qstart and πδ0(0) = qgoal, find a solution path πn(τ) →

Cfree so that π(0) = qstart and π(1) = qgoal.

Traditionally, sampling-based motion planners that can solve this problem offer no

insight into the probability that an answer is returned, nor if such an answer will be

close to optimal. The analysis takes a volumetric reasoning over the δn-robust optimal

path, π*
δn

. Note that this reasoning does not necessarily consider a specific optimal

path, but rather any such optimal path of length I*
δn

and clearance δn.

This chapter examines a variant of PRM*, which is an asymptotically sparser ap-

proach than the PNO-PRM* method proposed in some of the initial work in this direction

[27]. The high-level operations of PRM* are outlined in Algorithm 1, in Section 2.1.2.

The difference between PRM, PNO-PRM*, and PRM* is the connection radius used (Line 5).

While the original PRM method and PNO-PRM* were proposed using a fixed constant for

the connection radius, the new PRM* variant use a radius that decreases over time, while

still maintaining the necesssary connectivity for asymptotic optimality. Both methods

use as input a desired clearance, δ0. This clearance corresponds to the clearance for

the δ-robust optimal path the methods reason over. PNO-PRM* uses a fixed-radius for

CONNECT RADIUS of 3δ0
2 , producing an asymptotically dense data structure. The pro-

posed PRM* variant instead uses γPNO(
logn
n)

1
d , which produces an asymptotically sparser

structure. The analysis will show that the proposed variant of PRM* uses double the

connection radius of the original PRM*, leading to the following property:

Property 1 (Probabilistic Near-Optimality for RFMP). An algorithm ALG is proba-

bilistically near-optimal for an RFMP problem (C, qstart, qgoal, δ0), if for a finite iteration

n > n0 of ALG and an error threshold ε, there is a probability Psuccess such that a path

πn of length In exists in the planning structure computed by ALG and answers the query

such that:

P(|In − I*
δn | > ε · I*

δn) < 1− Psuccess

where I*
δn

is the length of the optimum δn-robust path π*
δn

for a value δn < δ0, and n0

is some minimum iteration threshold.

28

Figure 3.1: Hyperballs over an optimal path with radius βn and separation δn. Con-
secutive balls lie entirely within some clearance ball Bδn(π*

δn
(τt)).

A bound on n0 arises from the analysis, with an exact characterization provided by

Equation 3.6.

The analysis considers a theoretical construction of hyperballs as illustrated in

Figure 3.1. Consider Mn + 1 = d I
*
δn
δn
e + 1 balls, Bn centered along π*

δn
, i.e., Bn =

{Bβn(π*
δn

(τ0)), . . . ,Bβn(π*
δn

(τMn))}, having radius βn ≤ 1
2δn, where δn = 1

2rn, and where

rn is the connection radius used by this PRM* variant. The hyperball centers are δn dis-

tance apart from each other and are disjoint. Any pair of points that lie in consecutive

hyperballs will necessarily be tested for connection by PRM*. This construction is similar

to that provided in the original analysis of PRM*, when θ1 = 2 [69].

The early attempt at recovering these properties using PNO-PRM* used a fixed number

of hyperballs of decreasing radius [27], whereas the results derived here consider the

number of hyperballs, and the separation and radius of the hyperballs as functions over

the number of drawn samples, n. By considering such a set of hyperballs, it is also

the case that asymptotic optimality results can also be recovered by this approach.

Consider for each hyperball, the set of samples S generated by PRM*, which lie in this

hyperball. If |S| ≥ 1 for all of the hyperballs, then there must exist at least one path

through these hyperballs in the PRM* graph. The analysis considers the existence and

length In of this path in order to provide PNO guarantees.

29

To ensure this path is constructed, the connection radius rn must be derived. Fur-

thermore, an equivalent connection number is derived for the equivalent k− PRM* al-

gorithm. New algorithmic parameters, γPNO and kPNO, must be derived to ensure con-

nections within the new hyperball construction are attempted. These Lemmas and

derivations are stated throughout Section 3.2.

To aid the reader, the following summary of notation employed in this work is

provided for reference.

• I*
δn

: The length of the clearance robust optimal path answering some query at

iteration n.

• δ0: Desired clearance value for the clearance robust optimal path to cover.

• ε: A multiplicative bound with respect to optimal path length, ε ≥ 0.

• Psuccess: The probability of the algorithm returning a path within ε of the optimal:

Psuccess ∈ (0, 1).

• Mn = d I
*
δn
δn
e: The number of segments which comprise the path returned by the

algorithm.

3.2 Probabilistic Near-Optimality for Sampling-Based Planners

This section represents the bulk of the contribution for this chapter. At a high-level, it

is broken down into three steps. First, appropriate connectivity constants are derived

for the particular PRM* variants studied in this chapter. Then, a precise bound on the

probability of returning a covering path is provided in the following section. Lastly, by

analyzing a problem in geometric probability, a bound on the length of a covering path

is derived, and the results from the covering path probability are synthesized to create

the final bound on path length returned by the method.

3.2.1 Deriving PRM* Connectivity Constants

This section begins by examining the required connectivity constant of the given PRM*

variant, employing the same type of reasoning as the derivation for γPRM* in the literature

30

[69]. The objective is to leverage a bound on the probability that PRM* will fail to

produce a sample in each of the hyperballs over π*
δn

to derive an appropriate constant

for the connection radius. The section continues to prove the following:

Lemma 1 (Connectivity constant γPNO). To ensure PNO properties of PRM*, it suffices

to use γ parameter:

γPNO > 4

((
1 +

1

d

)(|Cfree|
Vd

)) 1
d

= 2 · γPRM*

Proof. Let the connection radius employed by the PRM* variant be rn = γPNO

(
lnn
n

) 1
d
.

Then, by construction, this connection radius is at least four times larger than the

radius of a hyperball, i.e., βn <
1
4γPNO

(
lnn
n

) 1
d
. Then,

|Bβn | = Vdβ
d
n < Vd

(rn
4

)d
= Vd ·

lnn

n

(γPNO
4

)d
,

where Vd = |B1| is the d-dimensional constant for the volume of a hyperball. Also by

construction, δn ≥ 1
2γPNO

(
lnn
n

) 1
d
. Then, the number of path segments constructed over

π*
δn

can be bounded by Mn ≤
I*δn
δn

=
2I*δn
γPNO

(
n

lnn

) 1
d
.

Then, in line with previous work in the literature [71, 69], the probability of failure

can be bounded using the probability that a single hyperball contains no sample. The

event that a single hyperball does not contain a sample is denoted as F , and has

probability:

P(F) =

(
1−
|Bβn |
|Cfree|

)n
<

(
1− Vd
|Cfree|

· lnn

n
·
(γPNO

4

)d)n
Then, since (1− x)t ≤ e−tx,

P(F) ≤ e−
Vd
|Cfree|

·lnn·
(
γPNO
4

)d
= n

− Vd
|Cfree|

·
(
γPNO
4

)d
(3.1)

Now, compute bounds on the event ΩC that at least one ball does not contain a

sample as:

P(ΩC) = P
(⋃
Mn

F
)
≤

Mn∑
i=1

P(F) = (Mn)P(F)

31

Substituting the computed value for Mn, and P(F) from Eq. 3.1:

P(ΩC) ≤
(

2I*
δn

γPNO

(n

lnn

) 1
d

)
n
− Vd
|Cfree|

·
(
γPNO
4

)d
=

(
2I*
δn

γPNO

1

(lnn)
1
d

)
n
−
(

Vd
|Cfree|

·
(
γPNO
4

)d
− 1
d

)

Now, if
∑∞

i=1 P(ΩC) is less than infinity, this implies by the Borel-Cantelli theorem that

P(lim supn→∞ΩC) = 0 [49]. Furthermore, by the Zero-one Law, P(lim supn→∞ΩC) =

0 ⇒ P(lim supn→∞Ωβ
n) = 1, meaning the probability of coverage converges to 1 in the

limit.

In order for the sum to be less than infinity, it is sufficient to show that the exponent,

Vd
|Cfree| ·

(γPNO
4

)d − 1
d < 1. The algorithm can ensure this by using an appropriate value of

γPNO. Solving the inequality for γPNO shows that it suffices that:

γPNO > 4

((
1 +

1

d

)(|Cfree|
Vd

)) 1
d

Next, the connectivity constant for the k-nearest neighbor variant of the algorithm is

provided. The high-level idea is that it will be shown that two events happen infinitely

often with the given k(n); the set of hyperballs each contain at least one sample, and

that each ball of radius δn has no more than k(n) samples inside it. From this, it is clear

that if k− PRM* attempts to connect each sample with k(n) neighbors, it will attempt

connections between samples in neighboring hyperballs. Then, this section continues

on to show the following Lemma:

Lemma 2 (Connectivity constant kPNO). To ensure PNO properties of k− PRM*, it suf-

fices to use:

kPNO = 2d

Proof. By using the computed value of γPNO from above,

Mn ≤
1

2
I*
δn

((Vd
|Cfree|

)(n

lnn

)(1

1 + 1
d

)) 1
d

, and

|B(δn)| ≤
(
Vd · 4d

)(1

2

)d(
1 +

1

d

)(|Cfree| lnn
nVd

)
= 2d

(
1 +

1

d

)(|Cfree| lnn
n

)

32

Let A be an indicator random variable that takes value 1 when there is a sample

in some arbitrary hyperball of radius δn. Then, E[A] = |B(δn)|
|Cfree| = 2d(1 + 1

d)(lnn
n). Since

each sample is drawn independently of the others, the number of samples in a ball can

be expressed as a random variable N , such that E[N] = nE[A] = 2d(1 + 1
d) lnn. Due to

A being a Bernoulli random variable, the Chernoff Bound can be employed to bound

the probability of N taking large values, namely:

P(N > (1 + t)E[N]) ≤
(

et

(1 + t)(1+t)

)E[N]

, t > 0

Then, let t = e− 1. Substituting this above yields:

P(N > eE[N]) ≤ e−E[N] = e−2d(1+ 1
d

) lnn = n−2d(1+ 1
d

)

Now, in order for the k(n) connections to attempt connections outside of a δn-ball, it

must be that:

k(n) = kPNOe
(

1 +
1

d

)
≥ 2de

(
1 +

1

d

)
= eE[N],

which clearly holds if kPNO = 2d. This implies that P(N > k(n)) ≤ n−2d(1+ 1
d

).

Finally, consider the event ζ that even one of the balls has more than k(n) samples:

P(ζ) = P
(⋃
Mn

P(N > k(n))
)
≤

M∑
n

P(N > k(n)) = MnP(N > k(n))

P(ζ) ≤
I*
δn

2

(
Vd

lnn|Cfree|(1 + 1
d)

) 1
d

n−2d(1+ 1
d

)+ 1
d

Then, it is clear that
∑∞

i=1 P(ζ) < ∞, which by the Borel-Cantelli Theorem implies

that P(lim supn→∞ ζ) = 0, and furthermore, P(lim supn→∞ ζ
C) = 1 via the Zero-one

Law, i.e., the number of samples in the δn-ball is almost certainly less than k(n).

Finally, using the result showing the convergence of P(Ωβ
n) to 1, and the above result

for P(ζC), it can be concluded that P(lim supn→∞(Ωβ
n ∩ ζC)) = 1, implying that for the

choice of k(n), k− PRM* attempts the appropriate connections.

33

3.2.2 Probability of Path Coverage

Foundational work on roadmap-based approaches sought to characterize how quickly

these methods return valid solutions [71]. An exponential bound on this probability

was derived as:

P(Ωβ
n) ≥ 1−

2I*
δn

δn
e
− π·δ2n·n

4|Cfree| (3.2)

Here, P(Ωβ
n) represents the probability that a path has been generated in a set of

hyperballs centered around a clearance-robust optimal path. This bound is sufficient to

show that these methods converge exponentially quickly to returning such a solution.

This bound is somewhat loose, so a tighter bound was derived for the PNO-PRM* approach

as a first attempt [27], while this work extends such an analysis to PRM*. As an example,

for a two-dimensional configuration space with |Cfree| = 100, I*
δn

= 10, δn = 1, and

for P(Ωβ
n) = 0.99, the derived bound accurately reports 97 samples are required as

opposed to nearly 980 with Equation 3.2. This bound follows from prior work in the

literature [71, 69, 27]. The derivation of γPNO also gives the value for the hyperballs’

radii, βn =
((

1 + 1
d

)(|Cfree|
Vd

)(
lnn
n

)) 1
d
, as well as the number of covering hyperballs,

Mn + 1 = d I
*
δn
δn
e + 1. Substituting these values into the existing coverage probability

results from related work yields:

P(Ωβ
n) ≈

(
1−

(
1− a

)n) 1
2
I*δn

(
b

)− 1
d

+1

where a =
Vd

(
d

√(
1+ 1

d

)(
|Cfree| lnn

nVd

))d
|Cfree| , b =

(
1 + 1

d

)(|Cfree| lnn
nVd

)
, and Vd is the d-dimensional

constant for the volume of a hyperball, i.e., |B(r)| = Vdr
d. The value of a arises from

the relative size of the hyperballs in the free space, while b is related to Mn. Simplifying

this expression yields the following Lemma:

Lemma 3 (Probability of Path Coverage). Let Ωβ
n be the event that for one execution

of PRM* there exists at least one sample in each of the Mn + 1 hyperballs of radius βn

34

over the clearance robust optimal path, π*
δn

, for a specific value of n > n0 and βn. Then,

P(Ωβ
n) ≈

(
1−

(
1− a

)n) 1
2
I*δn

(
b
)− 1

d+1

(3.3)

Where a =
(

1 + 1
d

)(
logn
n

)
and b = |Cfree|

Vd
a.

3.2.3 Bounding Path Quality

This section employs the result from Section 3.2.2 to determine path quality bounds

for PRM*. The high-level approach to determining this bound is done in four steps.

First, Chebyshev’s Inequality is leveraged to express this bound in terms of the mean

and variance of In, the length of PRM*’s returned path. Then, the expected value and

variance of In are derived. Finally, the results are combined to give the final bound.

A bound in terms of mean and variance

This section outlines the high-level idea behind applying the Chebyshev inequality to

create the probabilistic bound on In. Let ΩC be the event that there does not exist a

sample in each of the hyperballs covering a path, i.e., P(ΩC) = 1 − P(Ωβ
n). Then, the

value for P(|In − I*
δn
| > ε · I*

δn
) can be expressed as:

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
P(Ωβ

n) + P
(
|In − I*

δn | > ε · I*
δn | ΩC

)
P(ΩC)

It is assumed that the probability of a path being larger than δ is quite high if Ωβ
n

has not happened, i.e., P
(
|In−I*

δn
| > ε·I*

δn
| ΩC

)
is close to 1; therefore, this probability

can be upper bounded by 1.

Let y be a random variable identically distributed with In, but having 0 mean, i.e.,

y = In − E[In]. Then,

P(|In − I*
δn | > ε · I*

δn) =

P
(
E[In] + y − I*

δn > εI*
δn | Ωβ

n

)
+ P

(
E[In] + y − I*

δn < −εI
*
δn | Ωβ

n

)
,

35

Let ΩC be the event that there does not exist a sample in each of the hyperballs

covering a path, i.e., P(ΩC) = 1− P(Ωβ
n). Then, the value for P(|In− I*

δn
| > ε · I*

δn
) can

be expressed as:

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
P(Ωβ

n) + P
(
|In − I*

δn | > ε · I*
δn | ΩC

)
P(ΩC)

This is because the probability of returning a low quality path is expressed as a sum

of probabilities, when event Ωβ
n has occurred, and when Ωβ

n has not occurred. Since

P(ΩC) = 1−P(Ωβ
n), then via Lemma 3, both P(ΩC) and P(Ωβ

n) are known for known n

and β. It is assumed that the probability of a path being larger than ε is quite high if Ωβ
n

has not happened, i.e., P
(
|In−I*

δn
| > ε·I*

δn
| ΩC

)
is close to 1; therefore, this probability

can be upper bounded by 1. All that remains is to compute P
(
|In− I*

δn
| > ε · I*

δn
| Ωβ

n

)
.

Let y be a random variable identically distributed with In, but having 0 mean, i.e.,

y = In − E[In]. Then, let

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
= P

(
|E[In] + y − I*

δn | > ε · I*
δn | Ωβ

n

)
Then, the absolute value can be removed, as |X| > a ⇒ X > a or X < −a. Then,

the probability is equal to the sum:

P
(
E[In] + y − I*

δn > ε · I*
δn | Ωβ

n

)
+ P

(
E[In] + y − I*

δn < −ε · I*
δn | Ωβ

n

)
,

where due to symmetry,

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
= 2P

(
E[In] + y − I*

δn > ε · I*
δn | Ωβ

n

)
Rearranging the terms inside the probability yields:

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
= 2P

(
y > (ε + 1)I*

δn − E[In] | Ωβ
n

)

36

Figure 3.2: The differential over a lower-dimensional hyperball, illustrated for d = 3.

This probability will be bounded with Chebyshev’s Inequality, which states:

P(|X − E[X]| ≥ a) ≤ V ar(X)

a2

In order to employ this inequality, both E[In] and V ar(In) for the length of a path in

the PRM* planning structure, In are needed.

Approximation of E[In] in Rd

As required for the bound, this section derives a tight approximation of E[In]. Let,

E[In] =
∑M

m=1 E[Im], where Im is the length of a single segment between hyperballs.

Then, because all Im are I.I.D., E[In] = ME[I1]. Then, E[I1] is approximated via two

integrations over the endpoints of the segment, as outlined in Figure 3.3.

Let, E[In] =
∑M

m=1 E[Im], where Im is the length of a single segment between

two random samples in consecutive disjoint balls. Then, assuming all Im are I.I.D.,

E[In] = ME[I1]. Then, to compute E[In], E[I1] is computed. This requires the solution

to a unique ball-line picking problem variant. Computing this value requires integration

over the possible locations of the endpoints of the segment, as illustrated in Figure 3.3.

The integration is broken into two steps, and the first integral will be for the situation

depicted in Figure 3.3 (left). The objective is to get an expected value for the distance

between points x and x′. Here, x represents a random point within the first hyperball,

37

Figure 3.3: Illustrations in 3D of the mean calculation. (top) The first set of integrals is
performed over the left hyperball, averaging the distance between points (x1, x2, . . . , xd)
and (D, 0, . . . , 0). (bottom) Using the result from the first set of integrals, a second set
of integrals is performed over the second hyperball, yielding the expected value.

while x′ is some fixed point within the second hyperball, which has distance D from

the center of the first hyperball. Without loss of generality, x′ can be displaced along

only the first coordinate, x1. To get an expected value, this distance is integrated

over all points within the first hyperball, and then divided by the volume of the d-

dimensional hyperball. In this work, the volume of a d-dimensional hypersphere of

radius βn is denoted |Bβn | = Vdβ
d
n, where Vd is a constant dependent on the dimension

of the space. Taking the distance between x = (x1, x2, . . . , xd) and x′ = (D, 0, . . . , 0) to

be
√

(x1 −D)2 + x2
2 + . . .+ x2

d produces the following integral:

A =
1

Vdβdn

∫
· · ·
∫
x21+...+x2d≤β2

n

√
(x1 −D)2 + x2

2 + . . .+ x2
d dx1 . . . dxd,

This integral will be converted from a d-dimensional integral into a double integral

using substitution. First, let z2 = x2
2 + . . . + x2

d. This allows performing the integral

over only two variables, x1 and z; however, the form of the integral changes, as the

differential is adapted as illustrated in Figure 3.2. This differential, d|Bd−1(z)|, is taken

over a lower dimensional hypersphere, of dimension d − 1, as z is taking the place of

38

d− 1 coordinates. Then:

A =
1

Vdβdn

∫∫
x21+z2≤β2

n

√
(x1 −D)2 + z2 d|Bd−1

z (·)|dx1dz,

where d|Bd−1(z)| = d
dzVd−1z

d−1. Taking this derivative, d
dzVd−1z

d−1 = (d−1)Vd−1z
d−2,

and substituting into A yields:

A =
(d− 1)Vd−1

Vdβdn

∫∫
x21+z2≤β2

n

zd−2
√
x2

1 +D2 − 2Dx1 + z2 dx1dz

The integral can be represented in terms of polar coordinates, where x1 = r cos θ,

z = r sin θ, and dx1 dz = r dθ dr. This gives

A =
(d− 1)Vd−1

Vdβdn

∫ βn

0
r

∫ π

0
(r sin θ)d−2

√
r2 +D2 − 2Dr cos θ dθdr

A =
D(d− 1)Vd−1

Vdβdn

∫ βn

0
r

∫ π

0
(r sin θ)d−2

√
1 +

(r
D

)2 − 2
(r
D

)
cos θ dθdr

A second-order Taylor Approximation for the square root is taken. Let f(u) =
√

1 + u,

where u =
(
r
D

)2− 2
(
r
D

)
cos θ. The approximation will be taken about the point u = 0.

This is reasonable given that overall, βn is considered to be smaller than the separation

between consecutive hyperballs, δn. Take the second-order Taylor Approximation as:

f(u) ≈ f(0) + f ′(0) · u+
1

2!
f ′′(0) · u2.

Taking a derivative of f yields f ′(u) = 1
2(1 + u)−

1
2 and f ′′(u) = −1

4(1 + u)−
3
2 . Then,

f(u) ≈
√

1 +
1

2
(1)−

1
2 · u− 1

2
· 1

4
(1)−

3
2 · u2 = 1 +

1

2
u− 1

8
u2

substituting u =
(
r
D

)2 − 2
(
r
D

)
cos θ,

f(u) ≈ 1 +
1

2

((r
D

)2 − 2
(r
D

)
cos θ

)
− 1

8

((r
D

)2 − 2
(r
D

)
cos θ

)2

39

f(u) ≈ 1 +
1

2

((r
D

)2 − 2
(r
D

)
cos θ

)
− 1

8

((r
D

)4 − 4
(r
D

)3
cos θ + 4

(r
D

)2
cos2 θ

)
Then, as this is a second-order approximation, the third- and fourth-order terms are

considered negligible, and thus, the approximation results in:

f(u) ≈ 1 +
1

2

((r
D

)2 − 2
(r
D

)
cos θ

)
− 1

8

(
4
(r
D

)2
cos2 θ

)
Substituting the result:

A =
D(d− 1)Vd−1

Vdβdn

∫ βn

0
r

∫ π

0
(r sin θ)d−2

(
1 +

1

2

((r
D

)2
+ 2
(r
D

)
cos θ

)
− 1

8

(
4
(r
D

)2
cos2 θ

))
dθdr

Simplifying this integral requires the following Lemmas:

Lemma 4 (Value of
∫ π

0 (sin θ)ddθ). In terms of the hyperball volume constant, Vd,∫ π

0
(sin θ)d−2dθ = Sd−2 =

dVd
(d− 1)Vd−1

Proof. For simplicity, let
∫ π

0 sind(θ) dθ be denoted as Sd. Then:

|Bβ| = Vdβ
d,

where Vd = π
d
2

Γ(d
2

+1)
is a constant dependent on the dimension, d. Then, the volume

can be computed as an integral of the following form:

Vdβ
d =

∫∫
x21+ρ2≤β2

dx1 d(Vd−1ρ
d−1),

where the second differential is over a sphere of radius ρ of dimension d− 1. Then,

Vdβ
d =

∫∫
x21+ρ2≤β2

(d− 1)Vd−1ρ
d−2 dx1 dρ

Now, to simplify this integral, it will be converted to polar coordinates, using x1 =

r cos θ, ρ = r sin θ, and dx1 dρ = r dθ dr. Substituting these values yields:

40

Vdβ
d = (d− 1)Vd−1

∫ β

0

∫ π

0
rd−2(sin θ)d−2r dθ dr

Vdβ
d = (d− 1)Vd−1

∫ β

0
rd−1Sd−2 dθ dr

Vdβ
d = (d− 1)Vd−1Sd−2

βd

d
dθ dr

Sd−2 =
dVd

(d− 1)Vd−1

Lemma 5 (Recurrence relation of
∫ π

0 (sin θ)ddθ). For Sd =
∫ π

0 (sin θ)ddθ, the following

recurrence relation holds: ∫ π

0
(sin θ)ddθ = Sd =

d− 1

d
Sd−2

Proof.

To determine this recurrence, the following expression will be solved for x:

Sd = xSd−2

Substitute the result from Lemma 4, getting:

x =
(d+ 2)Vd+2

(d+ 1)Vd+1
· (d− 1)Vd−1

dVd
.

Then, substituting the value of Vd yields:

x =
(d− 1)(d+ 2)

d(d+ 1)

(Γ(d+2
2)

Γ(d+4
2)

)(Γ(d+3
2)

Γ(d+1
2)

)

x =
(d− 1)(d+ 2)

d(d+ 1)

(2

d+ 2

)(d+ 1

2

)

41

x =
d− 1

d

Applying these Lemmas:

A =
D(d− 1)Vd−1

Vdβd

∫ βn

0
r

(∫ π

0
(r sin θ)d−2

(
1 +

1

2

(r
D

)2)
dθ

+

∫ π

0
(r sin θ)d−2(cos θ)dθ − 1

2

(r
D

)2 ∫ π

0
(sinθ)d−2cos2θ dθ

)
dr

The second integral over θ will integrate to 0, due to the presence of cosine, while

the other terms leverage Lemmas 4 and 5:

A =
D(d− 1)Vd−1

Vdβdn

∫ βn

0
rd−1

(
Sd−2

(
1 +

1

2

(r
D

)2) − 1

2

(r
D

)2(
Sd−2 − Sd

))
dr

A =
D(d− 1)Vd−1

Vdβdn
Sd−2 ·

∫ βn

0
rd−1

((
1 +

d− 1

2d

(r
D

)2))
dr

A =
D(d− 1)Vd−1

Vdβdn
Sd−2 ·

∫ βn

0

(
rd−1 +

d− 1

2d

(rd+1

D2

))
dr

A =
D(d− 1)Vd−1

Vdβdn

dVd
(d− 1)Vd−1

·

(
βdn
d

+
d− 1

2d

(βd+2
n

(d+ 2)D2

))
= D +

(d− 1)β2
n

2(d+ 2)D

This is only an intermediate result, however, and it must be integrated over once

again to consider all possible placements of the point x′ in the second hyperball, as

illustrated in Figure 3.3(right). In order to do so, write D in terms of ε by tak-

ing the distance between x = (x1, x2, . . . , xd) and x′′ = (−δn, 0, . . . , 0). Then, D =√
(x1 + ε)2 + x2

2 + . . .+ x2
d, and E[I1] is computed as:

42

E[I1] =
1

Vdβdn

∫
· · ·
∫
x21+...+x2d≤β2

n

D +
(d− 1)β2

n

2(d+ 2)D
dx1 . . . dxd,

Steps similar to what was just taken to derive the intermediate result are used to

compute this integral. As a matter of simplicity, note that the second term inside the

integral is already a second-order term, which means taking the integral will result

in higher-order terms. Since D =
√

(x1 + δn)2 + x2
2 + . . .+ x2

d, the second term will

take only the constant term of the Taylor Approximation for D. Then, taking z2 =

x2
2 + . . .+ x2

d:

E[Im] =
1

Vdβdn

∫
· · ·
∫
x21+...+x2d≤β2

n√
(x1 + δn)2 + x2

2 + . . .+ x2
d +

(d− 1)β2
n

2(d+ 2)
√

(x1 + δn)2 + x2
2 + . . .+ x2

d

dx1 . . . dxd

E[Im] =
1

Vdβdn

∫∫
x21+z2≤β2

n

√
(x1 + δn)2 + z2 +

(d− 1)β2
n

2(d+ 2)
√

(x1 + δn)2 + z2
dx1 dz

Again, perform a polar coordinate transformation so as to take the integral:

E[Im] =
1

Vdβdn

∫ βn

0
r

∫ π

0

(√
r2 + δ2

n − 2δnr cos θ

+
(d− 1)β2

n

2(d+ 2)
√
r2 + δ2

n − 2δnr cos θ

)
d|Bd−1

r sin θ(·)| dθ dr

E[Im] =
(d− 1)Vd−1

Vdβdn

∫ βn

0
r

∫ π

0
(r sin θ)d−2

(√
r2 + δ2

n − 2δnr cos θ +
(d− 1)β2

n

2(d+ 2)
√
r2 + δ2

n − 2δnr cos θ

)
dθ dr

Now, to compute this integral, a Taylor Approximation will be taken. Again, recall

that because the second term in the integral is second order, a 0th-order approximation

is taken for that term:

43

E[Im] ≈ (d− 1)Vd−1

Vdβdn

∫ βn

0
r

∫ π

0
(r sin θ)d−2

(
δn

(
1 +

1

2

((r
δn

)2
+ 2
(r
δn

)
cos θ

)
− 1

8

(
4
(r
δn

)2
cos2 θ

))
+

(d− 1)β2
n

2(d+ 2)δn

)
dθ dr

Then, performing steps similar to above, rewrite in terms of Sd−2, as well as splitting

the last term into a separate integral:

E[Im] ≈ δn(d− 1)Vd−1

Vdβdn

∫ βn

0
rd−1

∫ π

0

(
(sin θ)d−2

+
r2

2δ2
n

(sin θ)d
)
dθ dr +

(d− 1)Vd−1

Vdβdn
·
∫ βn

0
rd−1

∫ π

0
(sin θ)d−2 (d− 1)β2

n

2(d+ 2)δn
dθ dr

E[Im] ≈ δn(d− 1)Vd−1

Vdβdn
Sd−2

∫ βn

0
rd−1

(
1

+
(d− 1)r2

2dδ2
n

)
dr +

δn(d− 1)Vd−1

Vdβdn
Sd−2

∫ βn

0
rd−1 (d− 1)β2

n

2(d+ 2)δ2
n

dr

E[Im] ≈ δn(d− 1)Vd−1

Vdβdn
Sd−2

(βdn
d

+
(d− 1)βd+2

n

2d(d+ 2)δ2
n

)
+
δn(d− 1)Vd−1

Vdβdn
Sd−2

((d− 1)βd+2
n

2d(d+ 2)δ2
n

)

E[Im] ≈ δn(d− 1)Vd−1

Vdβdn

dVd−1

(d− 1)Vd−1
·
(βdn
d

+
(d− 1)βd+2

n

2d(d+ 2)δ2
n

+
(d− 1)βd+2

n

2d(d+ 2)δ2
n

)

E[Im] ≈ δn +
(d− 1)β2

n

(d+ 2)δn

Now, using this result for the expected value of a single segment, Im, the expected

value of the entire path consisting of M such segments is:

E[In] ≈M
(
δn +

(d− 1)β2
n

(d+ 2)δn

)

44

Euclidean λn = 0.5 λn = 0.125

dimension % error % error

2 0.1730% 0.0050%
3 0.0473% 0.0205%
10 0.9413% 0.0128%
100 1.9147% 0.0129%

Figure 3.4: Simulation comparison for E[In], using 120,000 data points for each entry,

for differing λn = βn
δn

, where the error is 100 · |E[In]−In|
In

.

This result must be integrated over the second hypersphere to attain the value of E[In].

The steps taken will be very similar to the steps taken to reach the intermediate result,

as the form of the integral is not significantly different. After performing simplification,

the following Lemma arises:

Lemma 6 (Expected value of In). The path built over the set of Mn + 1 hyperballs

having radius βn has expected length:

E[In] ≈Mn

(
δn +

(d− 1)β2
n

(d+ 2)δn

)
To verify the approximation, Monte Carlo experiments were employed. The relative

error of the approximation to the simulated values are shown in Figure 3.4.

Computation of the Variance of In in Rd

At a high-level, the derivation goes as follows: to compute the V ar(In), leverage the

definition of the variance of a random variable, i.e., V ar(X) = E[X2]− (E[X])2:

V ar
(M∑
m=1

Im
)

= E[

M∑
m=1

I2
m] −

(
E[

M∑
m=1

Im]
)2

=

M∑
m=1

M∑
k=1

E[ImIk] −
(
E[

M∑
m=1

Im]
)2

The second term can be simplified due to the linearity of expectation:

V ar
(
E[ImIk]−M2

(
E[Im]

)2
Many of the terms of the double sum are independent, and only the variance terms

45

of each segment and the covariance between adjacent segments contribute to the sum.

This allows this variance to be simplified as:

V ar
(M∑
m=1

Im
)

= ME[I2
1] + (2M − 2)E[I1I2] + (2 − 3M)

(
E[I1]

)2
Both E[I2

1] and E[I1I2] are unknown. Therefore, this section contintues by deriving

these expressions.

Lemma 7 (Expected value of I2
1). For two consecutive hyperballs, the expected squared

distance between random points in those balls is

E[I2
1] = δ2

n +
2d

d+ 2
β2
n

Proof. The derivation of E[I2
1] follows the same general steps as the computation

of E[I1]; however, the form of the integral is simpler in this case. The integral over one

of the two balls is of the form:

A =
1

Vdβn
d

∫
· · ·
∫
x21+...+x2d≤βn

2

(√
(D − x1)2 + x2

2 + . . .+ x2
d

)2
dx1 . . . dxd,

A represents an intermediate result. Then, take z2 = x2
2 + . . . + x2

d. Substituting

these into the above integral yields:

1

Vdβn
d

∫∫
x21+z2≤βn2

(
(D − x1)2 + z2 d|Bd−1

z (·)|
)
dx1dz

=
1

Vdβn
d

∫∫
x21+z2≤βn2

Vd−1(d − 1)zd−2
(
(D − x1)2 + z2

)
dx1dz

Then, to compute this integral, perform the integration over polar coordinates:

Vd−1(d− 1)

Vdβn
d

∫ βn

0
r

∫ π

0
(r sin θ)d−2

(
(D − (r cos θ))2 + (r sin θ)2

)
dθ dr

46

=
Vd−1(d− 1)

Vdβn
d

∫ βn

0
rd−1

∫ π

0
(sin θ)d−2

(
D2 + r2 − 2Dr cos θ

)
dθ dr

Then, applying Lemmas 4 and 5:

Vd−1(d− 1)

Vdβn
d

∫ βn

0
rd−1

(
D2 + r2

)
Sd−2 dθ dr

=
Vd−1(d− 1)Sd−2

Vdβn
d

(
D2βn

d

d
+

dβn
d+2

d(d+ 2)

)
dθ dr

A = D2 +
d

d+ 2
βn

2

Now, this intermediate result is used to compute the final value of E[I2
1]. Begin

again by integrating over this value:

E[I2
1] =

1

Vdβn
d

∫
· · ·
∫
x21+...+x2d≤βn

2
D2 +

d

d+ 2
βn

2dx1 . . . dxd,

where now D is written in terms of δn as D =
√

(x1 + δn)2 + x2
2 + . . .+ x2

d. Again,

take z2 = x2
2 + . . .+ x2

d and substitute in to get:

1

Vdβn
d

∫∫
x21+z2≤βn2

(
((x1 + δn)2 + z2) +

d

d+ 2
βn

2
)
d|Bd−1

z (·)| dx1 dz

=
(d− 1)Vd−1

Vdβn
d

∫∫
x21+z2≤βn2

(
(r2 + δ2

n + 2x1δn) +
d

d+ 2
βn

2
)
zd−2 dx1 dz

Rewrite in polar coordinates and splitting the integral:

(d− 1)Vd−1

Vdβn
d

(∫ βn

0
r

∫ π

0
rd(sin θ)d−2 + (r sin θ)d−2δ2

n + 2δnr cos θdθ dr

+
d

d+ 2
βn

2

∫ βn

0
r

∫ π

0
(r sin θ)d−2 dθ dr

)

47

Figure 3.5: To compute E[I1I2], integration is performed over the common point deter-
mining I1 and I2.

=
(d− 1)Vd−1

Vdβn
d

(∫ βn

0
r
(
Sd−2(rd + δ2

nr
d−2)

)
dr +

d

d+ 2
βn

2

∫ βn

0
rd−1Sd−2dr

)

=
(d− 1)Vd−1

Vdβn
d

Sd−2

(
βn

d+2

d+ 2
+
δ2
nβn

d

d
+
dβn

2

d+ 2
+
βn

d

d

)

E[I2
1] = δ2

n +
2d

d+ 2
βn

2

Lemma 8 (Expected value of I1I2 in Rd). For three consecutive hyperballs, the expected

value of the product of the lengths of the segments connecting random samples inside

those balls is

E[I1I2] ≈ δ2
n +

(2d− 3

d+ 2

)
β2
n

Proof. To compute E[I1I2], a key observation is made. First, to retrieve this

value, the reasoning must consider three consecutive hyperballs, where the distance

between the samples of the first two balls, I1, and the distance between the samples of

the second and third balls, I2, depend on each other through their common endpoint

in the second ball. Consider, however, that if this second point is fixed, then the values

of I1 and I2 become independent. Using this fact, and the intermediate result of the

mean calculation, begin by simply multiplying these two means to get the intermediate

result:

A = (D1 +
Cdβ

2
n

2D1
)(D2 +

Cdβ
2
n

2D2
)

48

A = D1D2 +
Cdβ

2
n

2

(D1

D2
+
D2

D1

)
where the fourth-order term involving β4

n is negligible.

Now, to reintroduce the dependence of I1 and I2, integrate over the second ball.

For the ease of exposition, it is assumed that the centers of the three hyperballs are

collinear. Then, the integral to solve is the following:

E[I1I2] =
1

Vdβn
d

∫
· · ·
∫
x21+...+x2d≤βn

2
D1D2 +

(d− 1)βn
2

2(d+ 2)

(D2

D1
+
D1

D2

)
dx1 . . . dxd

Where D1 and D2 are expressed in relation to the center of the middle hyperball as

D1 =
√

(x1 − ε)2 + x2
2 + . . .+ x2

d and D2 =
√

(x1 + ε)2 + x2
2 + . . .+ x2

d. Again, taking

z2 = x2
2 + . . . x2

d and then, because the second term is already second-order, take a

0th-order approximation over only that term:

E[I1I2] ≈ 1

Vdβn
d

∫∫
x21+z2≤βn2(√

(x1 − δn)2 + z2
√

(x1 + δn)2 + z2 +
(d− 1)βn

2

2(d+ 2)

(δn
δn

+
δn
δn

))
d|Bd−1

z (·)| dx1dz

Again, convert this integral into polar coordinates:

E[I1I2] ≈ (d− 1)Vd−1

Vdβn
d

∫ βn

0
r

∫ π

0
(r sin θ)d−2(√

r2 + δ2
n − 2δnr cos θ

√
r2 + δ2

n + 2δnr cos θ +
(d− 1)βn

2

(d+ 2)

)
dθ dr

E[I1I2] ≈ δ2
n(d− 1)Vd−1

Vdβn
d

∫ βn

0
rd−1

∫ π

0
(sin θ)d−2(√

1 + 2
(r
δn

)2
− 4
(r
δn

)2
cos2 θ +

(d− 1)βn
2

(d+ 2)

)
dθ dr

Then, as the square root is prohibitive to integrate directly, a second-order Taylor

approximation is employed:

49

E[I1I2] ≈ δ2
n(d− 1)Vd−1

Vdβn
d

∫ βn

0
rd−1

∫ π

0
(sin θ)d−2(

1 +
(r
δn

)2
− 2
(r
δn

)2
cos2 θ +

(d− 1)βn
2

(d+ 2)

)
dθ dr

E[I1I2] ≈ δ2
n(d− 1)Vd−1

Vdβn
d

∫ βn

0
rd−1

∫ π

0
(sin θ)d−2(

1−
(r
δn

)2
+ 2
(r
δn

)2
sin2 θ +

(d− 1)βn
2

(d+ 2)

)
dθ dr

E[I1I2] ≈ δ2
n(d− 1)Vd−1

Vdβn
d

Sd−2

∫ βn

0
rd−1(

1−
(r
δn

)2
+

2(d− 1)

d

(r
δn

)2
+

(d− 1)βn
2

(d+ 2)

)
dr

E[I1I2] ≈ dδ2
n

βn
d

(
βn

d

d
− βn

d+2

δ2
n(d+ 2)

+
(2d− 2)βn

d+2

dδ2
n(d+ 2)

+
(d− 1)βn

2

(d+ 2)

)

E[I1I2] ≈ δ2
n +

(2d− 3

d+ 2

)
βn

2

Subsitute the values from Lemmas 6, 7, and 8 into the above form to get:

V ar
(M∑
m=1

Im
)
≈M

(
δ2
n +

2d

d+ 2
β2
)

+ (2M − 2)
(
δ2
n +

2d− 3

d+ 2
β2
)

+ (2− 3M)
(
δn +

(d− 1)β2

(d+ 2)δn

)2

After algebraic simplification, the following Lemma is reached:

Lemma 9 (Variance of In). In has variance:

V ar(In) ≈ 2β2
n

d+ 2

50

Euclidean λn = 0.5 λn = 0.125

dimension % error % error

2 6.0245% 0.5739%
3 9.7691% 1.0655%
10 19.0989% 2.1429%
100 23.7279% 2.8191%

Figure 3.6: Simulation comparison for V ar(In), using 120,000 data points for each

entry, where the error is 100 · |V ar(In)−V arMC |
V arMC .

Monte Carlo simulations are used to verify that the drawn approximation of the

variance characterizes the variance properly, as illustrated in Figure 3.6.

Finalizing the PNO guarantee of PRM*

Now that the mean and variance of In has been approximated, application of the

Chebyshev inequality results in the following theorem:

Theorem 1 (Probabilistic Near-Optimality of PRM*). For finite iterations n, PRM* is

probabilistically near-optimal, returning a path of length In such that

P
(
|In − I*

δn | ≥ ε · I*
δn

)
≤ 1 + P

(
Ωβ
n

)
(χ − 1),where χ =

4λ2nδ
2
n

d+2

I*
δn

2(
ε− (d−1)

(d+2)λ
2
n

)2 (3.4)

Proof. Now that the mean and variance of In have been approximated, the

derivation of the bound can continue. Recall that in Section 3.2.3, the bound was

manipulated into the following form:

P
(
|In − I*

δn | ≥ ε · I*
δn | Ωβ

n

)
= 2P

(
y > (ε + 1)I*

δn − E(In) | Ωβ
n

)
Now, substituting the computed values into this expression:

2P
(
y > (ε+ 1)Mnδn −Mn

(
δn +

(d− 1)β2
n

(d+ 2)δn

)
| Ωβ

n

)

= 2P
(
y > Mnδn

(
ε− (d− 1)β2

n

(d+ 2)δ2
n

)
| Ωβ

n

)
Recall that the inequality leveraged is Chebyshev’s Inequality:

51

P(|X − E[X]| ≥ a) ≤ V ar(X)

a2

then application of this inequality yields:

P
(
|In − I*

δn | > ε · I*
δn | Ωβ

n

)
≤ χ,where χ =

4λ2nδ
2
n

d+2

I*
δn

2(
ε− (d−1)

(d+2)λ
2
n

)2 ,
where λn = βn

δn
. Then, the unconditional probability can be bounded as:

P
(
|In − I*

δn | ≥ ε · I
*
δn

)
≤ χP(Ωβ

n) + (1− P(Ωβ
n))

P
(
|In − I*

δn | ≥ ε · I
*
δn

)
≤ 1 + P

(
Ωβ
n

)
(χ− 1)

3.3 Using PNO properties in practice

The PNO bound on PRM* can be leveraged in several ways, for instance, the length of the

clearance-robust optimal path in the same homotopic class as the currently returned

solution can be estimated during runtime. Also, a probabilistic stopping criterion is

proposed.

3.3.1 Online Prediction of I*δn

Here it is shown how to predict the length of the optimal path in the same homotopic

class as PRM*’s currently returned solution during execution within a confidence bound

Psuccess = P(|In − I*
δn
| < ε · I*

δn
). Estimate I*

δn
by considering the number of hyperballs

Mn + 1 to compute an estimate of the error, ε. Then, use the current returned path

length from the algorithm, In, and set I*
δn

= In
(ε+1) .

In Section 3.2.3, it was shown that:

P
(
|In − I*

δn | ≥ ε · I
*
δn

)
≤ 1 + P

(
Ωβ
n

)
(χ− 1)

52

Furthermore, it can be argued that:

P
(
|In − I*

δn | ≥ ε · I
*
δn

)
= 2P

(
In − I*

δn ≥ ε · I
*
δn

)
,

P
(
|In − I*

δn | ≥ ε · I
*
δn

)
≥ P

(
In − I*

δn ≥ ε · I
*
δn

)
,

and it must also be that:

P
(
In − I*

δn ≥ εn · I
*
δn

)
= P

(
I*
δn ≤

In
εn + 1

)
≤

P
(
|In − I*

δn | ≥ εn · I
*
δn

)
≤ 1 + P

(
Ωβ
n

)
(χ− 1)

Consider, however, that this result is only valid given that π*
δn

exists for the current

value of δn. Therefore, it is critical that the algorithm executes at least until δn ≤ δ0,

i.e., when n ≥ n0. Then all that remains is to solve the bound in terms of ε. It is known

that

P
(
I*
δn ≤

In
εn + 1

)
≤ 1 + P

(
Ωβ
n

)
(χ− 1) ≥ 1− Psuccess

Then, the goal is to solve for εn. Performing some algebraic manipulation:

χ ≥ 1− Psuccess
P(Ωβ

n)

Then, substituting the value for χ yields,

4λ2nδ
2
n

d+2

I*
δn

2(
εn − d−1

d+2λ
2
n

)2 ≥ 1− Psuccess
P(Ωβ

n)

4λ2
nδ

2
n

(1− Psuccess
P(Ωβn)

)(d+ 2)I*
δn

2 ≥
(
εn −

(d− 1)

(d+ 2)
λ2
n

)2
√√√√ 4λ2

nδ
2
n

(1− Psuccess
P(Ωβn)

)(d+ 2)I*
δn

2 +
(d− 1)

(d+ 2)
λ2
n ≥ εn

53

εn ≤
2λnδn

I*
δn

√√√√ 1

(d+ 2)(1− Psuccess
P(Ωβn)

)
+

(d− 1)

(d+ 2)
λ2
n

Finally, estimate I*
δn

as I*
δn
≈ In

(εn+1) . This leads to the following Lemma:

Lemma 10 (Multiplicative bound εn). After n > n0 iterations of PRM*, with probability

Psuccess, if π*
δn

exists, then PRM*contains a path εn-bounded by I*
δn

where:

εn ≤
2λnδn

I*
δn

√√√√ 1

(d+ 2)(1− Psuccess
P(Ωβn)

)
+

(d− 1)

(d+ 2)
λ2
n (3.5)

3.3.2 Deriving probabilistic stopping criteria

By settting a desired confidence probability PDES of returning a path within a desired

quality bound εDES , an iteration limit n0 can be derived. For input δ0, there may

exist some δ0-robust optimal path π0 of length I*
δ0

. It is possible to compute a required

iteration n0, such that a path π0 covering π*
0 has been computed, which has length I0

bounded by εDES with probability PDES . Let λn = 1
2 and then solve Equation 3.5 for

P(Ωβ
n) yields:

(d+ 2)
(
1− Psuccess

P(Ωβ
n)

)
≥ 1

M2
n

(
ε− 1

4
(d−1)
(d+2)

)2
Solving for P(Ωβ

n), the right hand side will be denoted as ψ:

P(Ωβ
n) ≥ 1

1
PDES ·

(
1− 1

M2
0 ·(d+2)

(
εDES− (d−1)

4(d+2)

)2) = ψ

Then, substituting the form of Equation 3.3 using β0, M0, and n0, and solving for

n0 yields:

n0 ≤

⌈
log (1− M0

√
ψ)

log (1− |Bβ0 |
|Cfree|)

⌉

Here, n0 represents a minimum number of samples PRM* must be run in order to guar-

antee PNO properties.

54

Small 3D: n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

100 0.0028 0.1424 0.7601 0.9362
1000 0.0666 0.5815 0.9330 0.9835

100000 0.7675 0.9635 0.9957 0.9990
10000000 0.9785 0.9977 0.9998 0.9999

Large 3D: n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

100 0.0000 0.0001 0.0016 0.0022
1000 0.0001 0.0009 0.0151 0.0206

100000 0.0064 0.1738 0.7675 0.9369
10000000 0.5567 0.8953 0.9847 0.9962

Small 6D: n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

500 0.0000 0.0033 0.6335 0.8235
5000 0.0000 0.0845 0.8584 0.9712

500000 0.0017 0.5884 0.9669 0.9934
50000000 0.5914 0.8856 0.9924 0.9985

Large 6D: n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

500 0.0000 0.0000 0.0533 0.0693
5000 0.0000 0.0058 0.6853 0.8908

500000 0.0004 0.3817 0.9383 0.9874
50000000 0.1828 0.8056 0.9856 0.9971

Figure 3.7: Probability of returning near-optimal paths for 3D and 6D collision-free
problem instances. Here, |Cfree| = 1000 (Small 3D), 1000000 (Large 3D), 216000 (Small
6D), and 1728000 (Large 6D).

Lemma 11 (PNO iteration limit for PRM*). For given εDES and PDES, the graph of PRM*

probabilistically contains a path π0 of length I0 with P
(
|I0−I*

δ0
| ≥ εDES ·I*

δ0

)
≤ 1−PDES

after n0 iterations, where

n0 ≤

⌈
log (1− M0

√
ψ)

log (1− |Bβ0 |
|Cfree|)

⌉
,where ψ =

1

1
PDES ·

(
1− 1

M2
0 ·(d+2)

(
εDES− (d−1)

4(d+2)

)2) (3.6)

The existence of the optimal path is not guaranteed. When the stopping criterion is

satisfied, if no path has been returned within the path length bound, with probability

P(Ωβ
n), no such optimal path exists. PRM* can still return paths in different homotopic

classes, and if users have knowledge of these alternate paths, then multiple criteria can

be checked for satisfaction. It is left to future work to determine the best approach for

reasoning over multiple homotopic classes.

The tables in Figure 3.7 provide an indication of the required iterations for different

55

problems of varying dimensionality. These values are given for collision-free environ-

ments, and the presence of obstacles can reduce the size of Cfree , increasing these

probabilities, but they can also reduce δn, which reduces these probabilities.

3.4 Indications from Simulation

To test the validity of the analysis, simulations were performed using the described PRM*

in four environments on the PRACSYS simulation software [76]. The specific parameters

of these environments can be found in Figure 3.10. Environments with obstacles are

shown in Figure 3.8. The automated stopping criterion was tested to ensure it stops

PRM* appropriately, such that the PNO properties are satisfied, i.e., the actual number

of times PRM* succesfully returns a path within the bound is higher than Psuccess.

Figure 3.8: The environments with obstacles used as part of testing PNO properties:
Barriers (Left), and Maze (Right)

For the desired path bound, the iteration limit n0 was computed. Then, out of 500

experimental trials, the actual probability of successfully generating a path through the

set of hyperballs over π0 is computed. The stopping criterion properly selects n0 so that

Psuccess is greater than the input threshold PDES , which was set to 0.9 for this set of

experiments. The probability of success for the algorithm over time is given in Figure 3.9

for the chosen environments. While the drawn bound on Psuccess becomes more loose

for paths that are relatively short compared to their clearance, the bound generally

performs very well, especially in environments with obstacles. Empty environments

naturally have large clearance, causing some discrepancy to arise. The cause is likely

due to simplifying assumptions of independence made during the approximation of the

expected value and variance of In.

56

Figure 3.9: Probability of returning a path within the bound εDES for PRM* over time.

Environment |Cfree| εDES δ0 I*
δ0

Maze 11150 0.2 5.0 240.0
Barriers 700 0.2 0.5 16.5

Empty (2D) 300 0.2 1.0 20.0
Empty (T 3) 248.0520 0.3 0.7 3.4641

Figure 3.10: Important parameters for the test environments used to validate the stop-
ping criterion.

3.5 Discussion

This work extends PNO properties to PRM*. It shows PNO properties using an asymptot-

ically sparse planning structure, and removes dependence on Monte Carlo simulations

[27]. The analysis provides tight bounds for path quality, which are validated through

simulation.

An important future work is to extend PNO properties to RRT*. Furthermore, these

methods still generate many samples; thus, extending PNO to methods that add few

nodes is important [29]. Path length bounds are drawn under the assumption of a

Euclidean distance metric; however, for many robotic systems, this metric is not ap-

propriate, so considering other cost metrics is fundamental.

57

Early versions of this work considered using lattice points instead of random samples.

This proved problematic as the analysis would have to carefully consider the shape of

the optimal path to attain reasonable estimates of path length. Also, as dimensionality

increases, uniform grids become progressively worse at covering the space. This would

require the identification of appropriate covering lattices in high-dimensions, and would

likely require exponentially many points.

Bounds should become tighter if the framework is appropriately extended to consider

multiple paths simultaneously. Further work will integrate PNO properties into task

planning frameworks to create more efficient search methods. The bound can also

be improved by finding analytical solutions where approximations were taken or by

considering the effect of multiple samples in hyperballs.

58

Chapter 4

Asymptotic Near-Optimality with Compact

Representations

In the prior chapter, it was shown that sampling-based motion planning approaches

exhibit properties in terms of path quality guarantees after a finite amount of computa-

tion; however, the experimental results recapture the so-called curse of dimensionality

inherent in the motion planning problem. That is, that to provide high-quality path

guarantees with a great deal of certainty, the method requires exponentially many sam-

ples with increasing problem dimension. To combat this problem, this Chapter focuses

on a different property called Asymptotic Near-Optimality, which guarantees a

method asymptoticall converges to returning a near-optimal solution. By giving up

on strict optimality requirements, much sparser planning structures can be created

requiring many fewer samples to return paths of provably high quality.

4.1 Problem Setup and Objectives

This Chapter focuses on solving the Robustly Feasible Path Planning Problem, re-

defined below by providing a discrete, graphical representation of the free configuration

space that can be stored efficiently and queried quickly while providing formal guaran-

tees. The results presented here are for planning problems involving rigid bodies (SE(2)

and SE(3)). Nevertheless, the method is applicable in any space where an appropriate

metric and sampling function exist.

Definition 8 (Robustly Feasible Motion Planning). For a Robustly Feasible Motion

Planning (RFMP) Problem, (C, qstart, qgoal, δ0), and a clearance value δ0 so that a δ0-

robust path πδ0 exists, πδ0(0) = qstart and πδ0(0) = qgoal, find a solution path πn(τ) →

Cfree so that π(0) = qstart and π(1) = qgoal.

59

A naive way to define a graphical representation of Cfree is by considering the im-

plicit, exhaustive graph G(V,E), where all the elements of Cfree are nodes and all

the collision free paths between them are edges. A compact data structure for an-

swering shortest-path queries in continuous spaces must be able to identify which C

points are not needed as roadmap nodes. Thus, a “roadmap spanner” is a subgraph

GS(VS ⊂ V,ES ⊂ E) of this implicit, exhaustive graph of the continuous space and

should satisfy the following properties:

1. All nodes in G are connected with a path in Cfree to a node on GS (coverage).

2. GS has as many connected components as G (connectivity).

3. All shortest paths on GS are no longer than t times the corresponding shortest

paths in G (spanner property).

These properties allow for (a) arbitrary query points to connect to the roadmap, (b)

paths to exist between any query points through GS that can be connected in Cfree, and

(c) asymptotic near-optimality for query points that lie on GS . The objective is to also

provide asymptotic near-optimality properties for query points that will not be lying

on GS . For such points, it is necessary to take into account the cost of connecting them

to GS , which gives rise to an additive term regarding the relative cost of the solution

path computed by the spanner GS and the optimum solution cost on G. Overall, the

objective is to guarantee the following property.

Definition 9 (Asympt. Near-Optimality with Additive Cost). An algorithm is asymp-

totically near-optimal with additive cost if, for a path planning problem (Cfree, qinit,

qgoal) and cost function c : Π → R≥0 with a cl-robust optimal path of finite cost c∗,

the probability it will find a path with cost c ≤ t · c∗ + ε, for a stretch factor t ≥ 1 and

additive error ε ≥ 0, converges to 1 as time approaches infinity.

This paper presents algorithms that asymptotically converge to sparse data struc-

tures with the above property.

60

4.1.1 Sparse Roadmap Spanner Notation

To describe the proposed algorithms it will be helpful to introduce some new terminol-

ogy. Every node in the sparse roadmap spanner GS will be selected so that it represents

its local neighborhood (i.e., spanner paths that initiate in the local neighborhood will

go through this node). The size of the neighborhood is limited by a visibility radius ∆,

i.e., a new sample will attempt to connect to nodes only within such a distance. This

visibility radius is introduced both for computational reasons (avoiding the collision

checking of long paths) and so as to provide near-optimality guarantees (i.e., bounding

the additive ε term that arises from the cost of connecting query points to the sparse

roadmap spanner). Then for any configuration q ∈ Cfree it is possible to compute its

representative among the existing nodes in GS as follows:

Definition 10 (Representative). Given the nodes VS of the sparse roadmap spanner

GS, a configuration q’s representative v ∈ VG satisfies the following properties:

• d(q, v) ≤ ∆ for the visibility range ∆,

• L(q, v) ⊂ Cfree,

• d(q, v) ≤ d(q, v′),∀ v′ ∈ VG so that L(q, v′) ⊂ Cfree.

The representative of a configuration will be denoted as rep(q). This notion gives

rise to the dual term of a visibility region.

Definition 11 (Visibility Region). The visibility region of a node v ∈ VG is vis(v) =

{q | q ∈ Cfree, rep(q) = v}.

The boundaries of a visibility region will arise from three separate conditions. The

first is that the region is bounded by ∆. Secondly, the region will be bounded by

obstacle and visibility constraints, and lastly, it will be bounded by intersections with

other visibility regions, called interfaces. An example of a visibility region can be seen

in Fig. 4.1.1.

Definition 12 (Interface). Given the set of nodes VG, an interface i(v, v′), between two

nodes v, v′ ∈ VG is the shared boundary of their visibility regions:

i(v, v′) = vis(v) ∩ vis(v′).

61

Figure 4.1: Visibility region of vi, i.e., the configurations connected to vi that have it
as their closest node. The figure ignores the effects of the visibility range ∆.

Figure 4.2: Two neighboring nodes v and v′ define an interface i(v, v′): the shared
boundary of their visibility regions.

Figure 4.2 illustrates how an interface arises between two nodes. Given the defini-

tion of an interface it is possible to also describe the notion of support, which is also

highlighted in the same figure.

Definition 13 (Support). Given the set of nodes VG, a configuration q supports the

interface i(v, v′) if the following is true:

• rep(q) = v,

• ∃ q′ ∈ B(q, δ) : rep(q′) = v′ ∧ L(q, q′) ∈ Cfree.

In the above definition, the term B(q, δ) corresponds to the δ-radius hyper-ball cen-

tered at q. It becomes apparent from the above definition that the set of configurations

62

Figure 4.3: The four types of samples ρ ∈ C that sparse roadmap spanners are consid-
ering for addition. Nodes may be added for coverage (guards), connectivity (bridges),
or to connect nodes that share an “interface” (interface nodes), or to satisfy near-
optimality constraints when efficient C paths (ρ to ρ′) are found (shortcuts).

that support an interface corresponds to all these C points that are within distance δ

from the interface. The notion of support is introduced because it is easier to discover

configurations through a sampling process that support an interface than the the con-

figurations along an interface, as the first set has positive measure, while the second

one has zero measure. Finally, the notion of midpoint will be also useful to describe

the properties of the proposed algorithms.

Definition 14 (Midpoint). The midpoint between two configurations v and v′ along

the local path L(v, v′) will be denoted as m(v, v′) and satisfies:

m(v, v′) ∈ L(v, v′) ∧ d(v, m(v, v′)) = d(m(v, v′), v′).

Note that if the local path L(v, v′) is obstacle-free, then the midpoint m(v, v′) lies

on the interface i(v, v′) between the two configurations, as shown in Figure 4.2.

4.2 Sparse Roadmap Spanner Methods

Algorithm 2 provides a high-level description of the proposed framework for the gen-

eration of sparse roadmap spanners. The approach constructs a graph GS(VS , ES) by

generating random valid samples in Cfree, evaluating whether these configurations sat-

isfy certain criteria to be added as nodes in VS and then connecting them with local

paths. There are four methods for promoting a configuration to the sparse roadmap

GS that are tested in order: “guards”, “bridges”, “interface nodes”, and “shortcuts”

as illustrated in Figure 4.3. A guard is added whenever a sample cannot be connected

to any node already in VS with a collision-free path of length ∆. A bridge is found

63

whenever a configuration can be connected to multiple nodes in VS that are in discon-

nected components of GS . Interface nodes are added when they reveal the existence of

an interface between two spanner nodes, which do not share an edge in ES . Shortcut

nodes are added when a path is discovered in Cfree that is significantly shorter than cor-

responding paths through GS . Two variations of the basic framework will be described

later on: SPARS (from SPArse Roadmap Spanner algorithm) and SPARS2, which differ on

how they implement the identification of shortcut nodes.

Algorithm 2: Sparse Roadmap Spanner(M, t, k, δ,∆)

1 failures← 0;
2 {GS , GD} ← Initialize Graphs();
3 while failures < M do
4 q ← Sample Configuration(δ,GD);
5 W ← Visible Guards(q,∆, GS);
6 if W == ∅ then
7 Add Guard(q,GS);
8 end
9 else if any two w ∈W not connected then

10 Add Connector(q,W,GS);
11 end
12 else
13 Add Interface Node(q,∆, GS);
14 end
15 if q /∈ V (GS) then
16 Add Shortcut(q, t, k, δ,∆, GS , GD);
17 end
18 if no change in GS then
19 failures++;
20 end

21 end
22 return GS ;

The framework receives five input parameters:

- M : Used for the termination criterion of the approach, similar to the Visibility-Based

PRM[137].

- t: Corresponds to the stretch factor of the spanner.

- k: A parameter used by the SPARS2 variation for sampling k configurations in the

local neighborhood B(q, δ).

- δ and ∆: The two distance thresholds in the C described in the previous section.

64

∆ corresponds to a “visibility” range for nodes in VS , while δ is the radius of a

local neighborhood for configurations in Cfree that defines the support of an interface.

Typically δ << ∆.

The method first samples a valid configuration q by employing the uniform random

sampler and the validity checker (line 4). Then the algorithm computes the set W of

existing nodes in GS that are within distance ∆ and with which q can be connected

(line 5), i.e.,

∀ w ∈W : L(q, w) ∈ Cfree.

Then, there are four possible reasons for which a newly sampled configuration can be

added to GS :

1. Coverage: The sample q is in a part of Cfree that is not covered by existing nodes

in VS , i.e., W = ∅ (lines 6-7). In this case, the sample q is added to the set of vertices:

VS = VS∪q. The nodes added for C-space coverage will be called “guards”. The purpose

of these nodes is to ensure that whenever a query is given, the algorithm can connect

the start and end query points to the sparse roadmap spanner with a collision-free local

path.

2. Connectivity: The sample q is able to connect to at least two nodes that are otherwise

disconnected: ∃ w1, w2 ∈ W so that there is no path in GS that connects w1 and w2

(lines 5,8-9). In this case, the sample q is added to the set of vertices: VS = VS ∪ q, and

connected to the nodes:

∀ w ∈W : ES = ES ∪ L(q, w).

3. Connecting Interfaces: The sample q reveals the existence of an interface between

two nodes that do not share an edge (lines 10-11). The analysis section will show that

it is necessary for all pairs of nodes that share an interface to also be connected with an

edge. The reasoning is that the algorithm compares paths between midpoints on the

roadmap spanner and their relationship with optimum paths in Cfree. If an interface

exists between two nodes but they do not share an edge, then the midpoint is not on

the roadmap spanner. Algorithm 3 details the steps that need to be taken in this case.

The algorithm Add Interface Node finds the two closest nodes v1 and v2 on the

65

Algorithm 3: Add Interface Node(q,∆, GS)

1 N ← Nearest Guards(q,∆, GS);
2 v1 ← arg minn∈N d(q, n);
3 v2 ← arg minn∈N,n6=v1 d(q, n);

4 if L(v1, q),L(q, v2) ∈ Cfree ∧ L(v1, v2) /∈ ES then
5 if L(v1, v2) ∈ Cfree then
6 ES ← ES ∪ L(v1, v2);
7 end
8 else
9 VS ← VS ∪ {q};

10 ES ← ES ∪ {L(v1, q),L(q, v2)};
11 end

12 end

graph GS that are within ∆ distance of the sample q ignoring obstacles(lines 1-3). Then

if q can be connected to v1 and v2 but these two nodes are not directly connected (line

4), then the method has discovered the existence of an interface between two nodes,

which do not share an edge. In this case, the method tries first to directly connect v1

and v2 (lines 5-6) and if this fails, then it adds q to VS and the local paths L(v1, q) and

L(v2, q) to ES (lines 7-9).

Note that the method for discovering the existence of an interface does not directly

correspond to the definition of the support of an interface as presented in the previous

section and differs from the original presentation of the SPARS algorithm [31]. A method

that would correspond to this definition would require to search the δ-sized hyper-

ball centered at q in order to identify whether there are configurations in B(q, δ) with

different representatives than q. While this is a valid approach to detect an interface and

will become necessary in the last part of the algorithm, it also more computationally

expensive and takes longer time for the algorithm to discover interfaces. The method

described here is a more efficient way to achieve the same objective that utilizes only

information from a single C sample as well as the sample’s connectivity properties with

nodes of the sparse roadmap spanner. The analysis section will provide a proof that

one sample is sufficient to reveal the existence of interfaces between nodes that do not

share edges.

4. Path Quality: The fourth criterion is evaluated if none of the other ones has succeeded

66

in augmenting the graph (line 12 of algorithm Sparse Roadmap Spanner). Its purpose

is to evaluate whether the new sample q reveals that there is a shortest path in Cfree

that is t times shorter or more than the path on the sparse roadmap spanner that

will be used to answer a similar query (line 13). This work describes two alternative

ways to implement this criterion, one that utilizes a dense graph GD of configuration

samples to estimate the shortest paths in Cfree (SPARS) and another one that avoids

the memory requirement of storing GD and follows a conservative approximation for

computing shortest paths in Cfree (SPARS2). The following sections will provide the

details of each variation.

If a sample fails all criteria, then it is not added to GS and the parameter failures

is incremented (lines 14-15). Should failures reach the threshold parameter M (line 3),

the algorithm terminates and returns the graph computed up to that point (line 16).

4.2.1 Using PRM* to Find Shortest Cfree Paths

The last criterion aims to guarantee that paths returned by the roadmap satisfy the

spanner property relative to optimum paths in Cfree. The challenge for function Add Shortcut

is to provide an algorithmic way for checking whether this is true. The idea in the pro-

posed framework is that to achieve this by reasoning locally within the visibility region

of each node v ∈ VS .

Figure 4.4: Configurations q and q′ support i(v, v′), while q′′ supports i(v, v′′). If the
optimum path on the dense graph π∗D(q, q′′) is t times shorter than the length of the
spanner paths πS(m(v′, v),m(v, v′′)) or πS(m(v′, v),m(v, x)), then configurations along
π∗D(q, q′′) are candidates for addition.

Consider the situation in Fig. 4.4 and a shortest path π∗(qbegin, qend) in Cfree that

67

goes through vis(v). Path π∗ can be partitioned into several segments, where each one

is the intersection of π∗ with the visibility region of a node. The roadmap will satisfy

the spanner property if it can provide a path πS(qbegin, qend) that is less than t times

the length of π∗(qbegin, qend). Construct then the following spanner path to achieve this

objective: replace each segment of the optimum path π∗ that goes through a visibility

region vis(v), with the spanner path πS (m(v′, v),m(v, v′′)) that connects the midpoints

of the spanner edges connecting v with the nodes from whose visibility regions the

optimum path enters and exits. For the first segment consider the path from qbegin to

its representative rep(qbegin) and then to the midpoint of the edge connecting rep(qbegin)

to the node that π∗ is crossing into its visibility region. Similarly for the last segment

and qend. It is then sufficient that each segment of the optimum path is no more than

t times shorter than the corresponding midpoint spanner path πS (m(v′, v),m(v, v′′)).

This is going to be certainly true, if the spanner path is shorter than t times the shortest

Cfree path between any two configurations on interfaces i(v′, v) and i(v, v′′).

The idea in SPARS is that it is possible to asymptotically compute all such shortest

paths between interfaces by building in parallel with the roadmap a dense, asymptotically-

optimal graph GD(VD, ED) using the PRM* algorithm. Every time that an interface path

through the dense graph is revealed to be significantly shorter than the corresponding

midpoint spanner path, the configurations along the interface path on the dense graph

become candidates for addition to the roadmap. Thus, the algorithm operates as fol-

lows: Upon initialization of the roadmap GS , it also initializes a dense graph GD (line 2

of routine Sparse Roadmap Spanner). Furthermore, every time that a configuration is

sampled, it is immediately added as a node in VD and attempts are made to connect it

to all nodes within a δ distance on the dense graph per the δ-PRM* algorithm [69] (line

4 of routine Sparse Roadmap Spanner). Consequently, the structure GD will asymp-

totically converge to optimal Cfree paths. The Add Shortcut function in SPARS uses

the dense graph GD to compute interface paths for the representative of the current

sampled configuration q.

Algorithm 4 first computes the representative of q (line 1) and then finds the set Q′

of all neighbors of q in the dense graph within distance δ and their representatives V ′

68

Algorithm 4: Add Shortcut(q, t, k, δ,∆, GS , GD)

1 v ← rep(q);
2 Q′ ← Adjacent Vertices(q, δ,GD);
3 V ′ ← {v′|∃ q′ ∈ Q′, so that v′ = rep(q′)};
4 for v′ ∈ V ′ \ v do
5 for v′′ ∈ VS : ∃ i(v′′, v) ∧
6 L(v′′, v) ∈ EG ∧ L(v′′, v′) /∈ EG do
7 πS ← Max Spanner Path(v, v′, v′′, GS);
8 Q′′ ← Interface Support(v, v′′);
9 π∗D ← argminq′′∈Q′′ |πD(q, q′′)|;

10 if t · |π∗D | < |πS | then
11 if L(v′, v′′) ∈ Cfree then
12 ES ← ES ∪ L(v′, v′′);
13 end
14 else
15 Add Path(GS , {v′ → π∗D → v′′});
16 end

17 end

18 end

19 end

(lines 2-3). If there is a node v′ ∈ V ′ that is different than the representative v of q,

then q supports an interface per the definition (line 4). Then the algorithm considers

all nodes v′′ in the roadmap spanner, which share an interface and an edge with v

but do not share an edge with v′ (lines 5-6). Note that it is possible for two nodes to

share an edge but not an interface, as the algorithm ends up including edges that cross

multiple visibility regions. The detection of an interface between two nodes v and v′′ in

this algorithm utilizes information from the underlying dense graph. In particular, the

algorithm detects if two configurations q and q′′, which share an edge in the dense graph

GD have different representatives, i.e., q ∈ vis(v) and q′′ ∈ vis(v′′), where v 6= v′′. This

means that there is an interface i(v, v′′). The situation is equivalent to what is displayed

in Figure 4.4. If the two sparse nodes v and v′′ are not already connected with an edge,

the third criterion will augment the roadmap spanner in order to bridge this interface.

In this process, it is not necessary to consider vertices v′′ that share an edge with v′.

This is because the edge L(v′, v′′) acts as a shortcut to the midpoint spanner path

πS (m(v′, v),m(v, v′′)). In this case there is no reason to compare against the interface

path from i(v′, v) to i(v, v′′).

69

Algorithm 5: Max Spanner Path(v, v′, v′′, GS)

1 ΠS ← { πS (m(v′, v), m(v, v′′)) };
2 for x : L(v, x),L(v′′, x) ∈ ES ∧ L(v′, x) /∈ ES do
3 if ∃i(x, v) then
4 ΠS ← ΠS ∪ { πS (m(v′, v), m(v, x)) };
5 end

6 end
7 return argmax∀π∈ΠS

|π|;

Then for such a set of vertices v, v′, v′′ (i.e., v connected to v′ and v′′ but no edge be-

tween v and v′′) the spanner path πS is computed by calling function Max Spanner Path

(line 6). Algorithm 5 provides the implementation for this procedure. Notice that the

spanner path πS ends up being the maximum length path among πS (m(v′, v),m(v, v′′))

and all paths of the form πS (m(v′, v),m(v, x)), where x are nodes that share an inter-

face and an edge with v, share an edge with v′′ but do not share with v′. In order to

keep the description brief, the reason for considering these additional vertices x will

become apparent during the analysis of the method.

Once the spanner path πS is found, function Add Shortcut proceeds to find the cor-

responding shortest path between the interfaces i(v′, v) and i(v, v′′) given the addition

of the new sample q that has been shown to support i(v′, v). The algorithm first finds

the set of configurations that supports the interface i(v, v′′) (line 8) and the shortest

path π∗D on the dense graph between q and these configurations (line 9). Then the

spanner property is checked between π∗D and πS (line 10). If it is violated, the algo-

rithm first attempts to add a direct edge between nodes v′ and v′′ (lines 11-12). If this

is not possible, then the entire path {v′ → π∗D → v′′} is considered for addition (lines

13-14). The implementation of Add Path adds two configurations along the input path

that support the interfaces i(v′, v) and i(v, v′′) and then tries to smooth the remaining

path as much as possible so as to minimize the number of nodes and edges added to

the sparse roadmap spanner. The addition of this path resolves the violation of the

spanner property as argued in the analysis section.

70

4.2.2 Alternative to Storing a Dense Graph

Maintaining the dense graph GD is very costly in terms of memory requirements for the

algorithm during the construction process of the sparse roadmap spanner. In order to

reduce the computational footprint of SPARS, a variant is presented that removes the re-

liance on the dense graph. SPARS2 accomplishes this by employing conservative approx-

imations of the shortest paths between interfaces i(v′, v) and i(v, v′′) and making use of

some alternative bookkeeping information stored on the nodes of the planning structure.

Note that a dense graph is no longer initialized by function Sparse Roadmap Spanner

and when a sample q is generated in SPARS2 it is no longer added to a dense graph

(lines 2 and 4 of Sparse Roadmap Spanner).

Algorithm 6: Add Shortcut2(q, t, k, δ,∆, GS)

1 v ← rep(q);
2 (Q′, V ′)← (∅, ∅);
3 for k iterations do
4 q′ ← Sample Near(q, δ);

5 if L(q, q′) ∈ Cfree then
6 v′ ← rep(q′);
7 if @ v′ then
8 Add Guard(q′, GS);
9 end

10 else if v′ 6= v then
11 Q′ ← Q′ ∪ q′, V ′ ← V ′ ∪ v′;
12 end

13 end

14 end
15 if V ′ 6= ∅ then
16 for each v′ ∈ V ′ and q′ ∈ Q′ do
17 Update Points(q, q′, v, v′, GS);
18 Update Points(q′, q, v′, v, GS);

19 end
20 Test Add Paths(v, GS);
21 for each v′ ∈ V ′ do
22 Test Add Paths(v′, GS);
23 end

24 end

The first use of the dense graph in SPARS was to detect samples that support an

interface (line 2 of Add Shortcut). Since the dense graph is no longer maintained, an

71

alternative method is needed to detect samples that support interfaces. Lines 2 - 10

of Algorithm 6 provide a sampling-based method to achieve this objective. Each time

a new configuration q is tested for the addition of a shortcut, k additional samples q′

are generated in its δ-radius hyper-ball B(q, δ) (lines 3-4). If the local path L(q, q′) is

free and the representative of q′ is different than that of q (lines 5-6,9-10), then the

requirements for identifying two configurations that support an interface have been

met. Note that in the case that q′ cannot be connected to any existing node, a new

“guard” has been discovered and needs to be added as such to the roadmap (lines 7-8).

Once it is detected that sample q supports an interface of its representative v, it is

necessary to check whether it reveals the existence of a new interface path that is not

covered by the corresponding spanner midpoint path. If the dense graph were available,

it would be possible to iterate over all configurations that support another interface of

v and compute shortest paths between them and q. While computing shortest paths

in Cfree is not possible without the dense graph, it is still possible to detect samples

that support interfaces as the previous paragraph indicated. Towards this objective,

SPARS2 maintains for each node v and for each pair of neighbors (v′, v′′) the following

information (this information is stored on each node v of the corresponding graph data

structure):

- A pair Pv(v
′, v′′) of configurations that support the corresponding interfaces i(v′, v)

and i(v, v′′), which both belong in vis(v), and define the shortest distance between

any such pair of configurations.

- And a corresponding pair Ξv(v
′, v′′) of configurations that support the interfaces

i(v′, v) and i(v, v′′), where the first belongs in vis(v′) and the second belongs in

vis(v′′), and are the samples that reveal that the configurations in Pv(v
′, v′′) are

supporting an interface.

Algorithm 7 is responsible for updating this bookkeeping information, and is illus-

trated by Figure 4.5. Given a configuration q that belongs in vis(v) and a configuration

q′ ∈ B(q, δ) that belongs in vis(v′) (both configurations support i(v, v′))) the algorithm

considers all vertices v′′, which share an interface and an edge with v but not an edge

v′ (lines 1-3). Then the algorithm retrieves the previously stored pair of configurations

72

Algorithm 7: Update Points(q, q′, v, v′, GS)

1 for v′′ ∈ VS \ v, v′ do
2 if ∃ i(v′′, v) then
3 if L(v, v′′) ∈ ES and L(v′, v′′) /∈ ES then
4 (ρ′, ρ′′)← Pv(v

′, v′′);
5 (ξ′, ξ′′)← Ξv(v

′, v′′);
6 if d(q, ρ′′) < d(ρ′, ρ′′) then
7 Pv(v

′, v′′) = (q, ρ′′);
8 Ξv(v

′, v′′) = (q′, ξ′′);

9 end

10 end

11 end

12 end

Figure 4.5: An example of the relative locations of the configurations used in the
Algorithm 7. In this example, the new sample q is closer to ρ′′ than ρ′ was, so the pair
of configurations for the connection between v′ and v′′ via v will be updated.

(ρ′, ρ′′) that support i(v′, v) and i(v, v′′) from the side of v, which correspond to the

shortest distance among all such configurations (line 4). The corresponding Ξv(v
′, v′′)

pair is also retrieved (line 5). If the new sample q is closer to the best representative

of the interface i(v, v′′) (line 6), then the bookkeeping information is being updated

with q and q′. Note that function Update Points is called to update not only the

information of v (line 13 of Add Shortcut2) but also for the neighboring node v′ of

whose interface configuration q supports (line 14). A notable concern is how large this

extra bookkeeping information becomes. It is expected that as the dimensionality of

a problem increases, the space requirements in order to maintain this information will

also increase significantly. It seems, however, that for problems up to 6 dimensions, the

73

memory requirements are quite manageable, as detailed in Section 4.4.

Once the bookkeeping information is updated, algorithm Add Shortcut2 proceeds to

check if the new sample q revealed two interfaces that are closer than the corresponding

spanner midpoint path by calling function Test Add Paths (lines 15-17). Note that this

function is called only if Update Points had to update the bookkeeping information.

Algorithm 8: Test Add Paths(v,GS)

1 for v′ ∈ VS : L(v, v′′) ∈ ES do
2 for v′′ ∈ VS : ∃ i(v′′, v) ∧
3 L(v, v′′) ∈ ES ∧ L(v′, v′′) /∈ ES do
4 (ρ′, ρ′′)← Pv(v

′, v′′);
5 (ξ′, ξ′′)← Ξv(v

′, v′′);
6 |π̂∗D| ← d(ρ′, ρ′′);
7 πS ← Max Spanner Path(v, v′, v′′, GS);
8 if t ∗ |π̂∗D| < |πS | then
9 if L(v′, v′′) ∈ Cfree then

10 ES ← ES ∪ L(v′, v′′);
11 end
12 else
13 Add Path(GS , {v′ → ξ′ → ρ′ → v → ρ′′ → ξ′′ → v′′});
14 end

15 end

16 end

17 end

Algorithm 8 provides the implementation of Test Add Paths and in many ways it is

similar to the second part of Add Shortcut from SPARS. It reasons again for all vertices

v′′, which share an interface and an edge with v but not an edge v′ (lines 1-3). For

each such vertex v′′ it retrieves from the bookkeeping information the shortest distance

between two configurations in vis(v) that support i(v′, v) and i(v, v′′) (lines 4-6). This

distance is a conservative approximation of the shortest path in Cfree between these two

interfaces, i.e., it will always converge over time to something shorter than the true

shortest path. The corresponding spanner midpoint path πS is computed as in SPARS

(line 7) and then the spanner property is evaluated (line 8). If violated, an attempt to

directly connect v′ and v′′ is made (lines 9-10). If this is not successful, then the entire

path {v′ → ξ′ → ρ′ → v → ρ′′ → ξ′′ → v′′} is considered for addition (lines 11-12). The

implementation of Add Path adds ξ′ and ξ′′ and then tries to smooth the remaining

74

path as much as possible so as to minimize the number of nodes and edges added to

the sparse roadmap spanner.

4.3 Sparse Roadmap Spanner Analysis

The discussion on the properties initially relates to the entire framework for the genera-

tion of sparse roadmap spanners and then focuses on the SPARS (Section 4.1) and SPARS2

(Section 4.2) variations. A series of lemmas argues the probabilistic completeness of

the method, that paths returned by the proposed approaches converge to near-optimal

planning structures and that the probability of adding nodes to the structure goes to

zero as time progresses.

4.3.1 Probabilistic Completeness

The approach is equivalent to Visibility-based PRM [137] with regards to coverage and

connectivity. From this equivalence, it is possible to argue that the framework achieves

probabilistic completeness.

Theorem 2 (Coverage). For all q ∈ Cfree : ∃ v ∈ VS so that L(q, v) ∈ Cfree with proba-

bility approaching 1 as M goes to infinity in the Sparse Roadmap Spanner algorithm.

The argument to support the above statement can be found in the presentation

of the Visibility-based PRM [137] as the framework adds all the nodes that would be

added by this method and follows a similar termination condition. At a high level,

each new guard inserted in GS increases the coverage of Cfree and the probability of

generating configurations in non-covered regions decreases over time. The algorithm is

then guaranteed to terminate for any finite input valueM . When it stops, a probabilistic

estimation of the percentage of free space not covered by spanner nodes is 1
M , given

uniform sampling. This means that future attempts to add spanner nodes will succeed

with probability (1 − 1
M). Consequently, as M goes to infinity, the resulting graph

covers the entire space.

Note that relative to the Visibility-based PRM, the probability (1 − 1
M) is more

conservative, as the methods for generating sparse roadmap spanners assume a visibility

75

range limit ∆ for graph nodes. The work on Visibility-based PRM has shown that even

for fairly complicated problems in SE(3), a relatively small number of guards is needed

to probabilistically cover the space. Connectivity properties of the resulting sparse

roadmap spanner can be argued in a similar manner.

Theorem 3 (Connectivity). For all v, v′ ∈ VS that are connected with a collision-free

path in Cfree , ∃ πS (v, v′) that connects them on GS with probability 1 as M goes to

infinity.

The framework explicitly handles checking for connectivity in lines 8-9 of Algorithm

2. The algorithm adds an edge or a node every time it detects there is a way to con-

nect two disconnected components. The probability of sampling a configuration that

will connect such disconnected components of the graph depends on the environment.

Narrow passages will make this connection more challenging. The probability of con-

necting any two disconnected components is 1, as the value of M goes to infinity, if the

following assumption is true:

Assumption 1. For any v, v′ ∈ Cfree, if the set Q of configurations q ∈ Q for which

the following properties hold is non-empty:

• L(q, v) ∈ Cfree, d(q, v) < ∆,

• L(q, v′) ∈ Cfree, d(q, v′) < ∆,

then Q has non-zero measure.

It can be argued that the above assumption relates to the definition of an expansive

space [60]. The combination of the last two theorems provides probabilistic complete-

ness, at least when the algorithm samples configurations q in a uniform way.

Figure 4.6: One sample can reveal interfaces.

76

In order to prove certain properties of the algorithm, it must be that all vertices in

the planning structure that share an interface must also share an edge on the roadmap.

The following theorem argues that this is indeed the case.

Theorem 4 (Connected Interfaces). For all v1, v2 ∈ VS that share an interface, then

L(v1, v2) ∈ ES with probability approaching 1 as M goes to infinity.

Figure 4.7: (left) All configurations along the optimal path π*
δn

(q0, qm) will be even-
tually covered by a node in GS . (right) A path between all spanner nodes covering
π*
δn

(q0, qm) will also be created. The figure shows the decomposition of path πS (q0, qm)
into “midpoint paths” Mi−1 that exist only in a single visibility region. Each Mi−1

covers the path π*
δn

(qi, qi+1).

Proof: In order for the algorithm to detect the existence of an interface between

two nodes it has to be that a sample q can connect to its two closest guards v1 and

v2 as in Figure 4.6 (lines 1-4 of Add Interface Node). If this is the case, then there

must be an interface between v1 and v2. Consider a moving configuration q∗ along the

local path from q to v2. Moving along this path guarantees that visibility with v2 is

maintained (i.e., L(q∗, v2) ∈ Cfree). There are two cases:

(a) either visibility with v1 is maintained until q∗ becomes equidistant with v1 and v2

or

(b) at some point visibility with v1 is lost before q∗ becomes equidistant.

In the first case, an interface exists at the point q∗ becomes equidistant with v1 and

v2. It cannot be than any other node v3 will be closer to q∗ than v1 and v2. If there

were, then some other node v3 would have been closer to q than v2, which is not true.

In the second case, the interface exists at the point where the visibility with v1 is lost.

For the same reasons, no other node v3 will be closer at this point than v1. In order

77

to be able to sample point q in the first place, it is sufficient that Assumption 1 holds.

The above discussion implies that the method is able through a sampling process to

detect all pairs of spanner nodes that share an edge but not an interface. The algorithm

will try to add an edge between nodes v1 and v2. If this fails, then q will be added

and will be connected to v1 and v2. The addition of q might introduce new interfaces

that are not intersected by edges. It will not be the case, however, that these newly

created interfaces will always have an obstacle preventing a direct connection between

the two vertices which impose it. At some point if vertices are added for this reason,

the spanner nodes will be closer than cl and connections between them are guaranteed

to be collision-free. In practice, most roadmap nodes will be connected before getting

as close as cl.

4.3.2 Path Quality

The following discussion focuses on showing asymptotic near-optimality properties.

Lemma 12 (Coverage of Optimal Paths by GS). Consider an optimal path π*
δn

(q0, qm)

in Cfree. The probability of having a sequence of nodes in S, Vπ = (v1, v2, ..., vn) with

the following properties approaches 1 as M goes to infinity:

• ∀q ∈ π∗cl(q0, qm), ∃ v ∈ Vπ : L(q, v) ∈ Cfree

• L(q0, v1) ∈ Cfree and L(qm, vn) ∈ Cfree

• ∀ vi, vi+1 ∈ Vπ,L(vi, vi+1) ∈ E.

The above lemma is a direct outcome of Theorems 2 and 4 regarding coverage

and connected interfaces. Consider now a decomposition of the path πS (q0, qm) on G

through Vπ into sub-paths {M0,M1, . . . ,Mm−1} as shown in Figure 4.7, where Mi is

the path between the midpoint m(vi, vi+1) and m(vi+1, vi+2), M0 connects q0 to v1 and

then m(v1, v2) and Mm−1 is the corresponding last segment. Then the following can be

shown:

Lemma 13 (Additive Connection Cost). The sum of the lengths of segments M0 and

Mm−1 for a path from q0 to qm through GS is upper bounded by 4 ·∆.

78

Figure 4.8: (left) The path from i(vi−1, vi) to i(vi, vi+1) via S must satisfy the spanner
property for path π*

δn
(qi−1, qi). (right) If there is a path between vi’s neighbors, then

the paths π(m(vi−2, vi−1), vi−1,m(vi−1, vi+1)) and π(m(vi+2, vi+1), vi+1,m(vi+1, vi−1))
must be checked against π*

δn
(qi−2, qi−1) and π*

δn
(qi, qi+1).

Proof: The cost for connecting samples to the spanner is at most ∆ for both the

start and final positions, as we know that q0 and qm lie in the visibility region of v1 and

vm respectively. Note that the remainder of segment M0 that connects v1 to v2 is at

most ∆ as two spanner nodes that share an interface cannot be further away than 2 ·∆

and M0 terminates at the midpoint between v1 and v2. The same is true for Mm−1,

which implies that each one of these two segments cannot be longer than 2 ·∆ and the

sum of their lengths is upper bounded by 4 ·∆.

An important property of the midpoint segments, Mi is that they satisfy the spanner

property for Cfree paths that go through the corresponding visibility region. Reasoning

about the spanner property at a local level allows for the properties to be shown globally.

Lemma 14 (Spanner Property of GS over Cfree). All segments Mi (i ∈ [1,m − 2])

have length bounded by t · |π*
δn

(qi−1, qi)|, where qi lies at the intersection of π*
δn

(q0, qm)

with interface i(vi, vi+1).

In order to prove this lemma, it must now be shown separately for SPARS and SPARS2

as they take different approaches to adding nodes for the sake of path quality. A proof

is provided first for the SPARS method.

Proof for SPARS: The following discussion relates to Figures 4.8 and 4.9. Given

Lemma 12, the edges L(vi−1, vi) and L(vi, vi+1) are in ES , at least as M goes to infinity.

Assuming π*
δn

travels through the region of node vi ∈ Vπ, there are three possible cases:

(a) L(vi−1, vi+1) /∈ ES (Figure 4.8(left)),

79

(b) L(vi−1, vi+1) ∈ ES , where L(vi−2, vi) /∈ ES and L(vi, vi+2) /∈ ES (Figure 4.8(right)),

and

(c) L(vi−1, vi+1) ∈ ES and L(vi−2, vi) ∈ ES or L(vi, vi+2) ∈ ES (Figure 4.9).

In the first case, the algorithm needs to check |Mi| against |π*
δn

(qi−1, qi)|. In the case

of SPARS, the optimal path π*
δn

(qi−1, qi) is asymptotically approximated by the dense

graph, so the shortest path through D is used for the true optimum, and is denoted as

πDcl (qi−1, qi). If it were found that |Mi| > t ·πDcl (qi−1, qi), the method would have passed

the check on line 10 of Algorithm 4, and a shortcut path would have been added to the

graph: either it would have added L(vi−1, vi+1) in which scenario the second or third

cases of this proof applies, or a dense path that includes samples from D would have

been included in GS . This means that the representative sequence Vπ would have been

different for this optimal path.

The second case requires a more careful examination. In particular, the algorithm

compares πDcl (qi−1, qi) not only with the segment Mi but also with all spanner paths

from m(vi−1, vi) to the interfaces of all neighbors of vi, which are not connected to

vi−1 but share an interface with vi+1. In the context of Figure 4.8(right) this allows to

check whether path π(m(vi−2, vi−1), vi−1,m(vi−1, vi+1)) satisfies the spanner property

for path πDδn(qi−2, qi−1) and that path π(m(vi+2, vi+1), vi+1,m(vi+1, vi−1)) satisfies the

spanner property for πDδn(qi, qi+1). If they do, then it does not matter if segment Mi−1

satisfies the spanner property for path πDδn(qi−1, qi), because π(m(vi−2, vi−1), vi−1,m(vi−1, vi+1))

and π(m(vi+2, vi+1), vi+1,m(vi+1, vi−1)) cover all three consecutive subpaths of the op-

timum path. Otherwise, the spanner must have been expanded.

The last case is illustrated by Figure 4.9, which has two subcases: the solution

returned by SPARS traveling from vi−2 to vi+2 does so through path πa,b,c or through

path πd,e,f . In the case that the path returned is πa,b,c, the situation is case 2 of the

proof and there is no concern. If however, the path returned is πd,e,f , then it is necessary

to show that

|πe| ≤ t · (|πDδn(qi−2, qi−1)|+ |πDδn(qi−1, qi)|+ |πDδn(qi, qi+1)|).

It is known that |πb| ≤ t · |πDδn(qi−2, qi−1)|+ |πDδn(qi, qi+1)| from case 2. It is also known

80

that |πd,e,f | ≤ |πa,b,c| or it would otherwise not have been returned by SPARS. Further-

more, the construction of these segments enforces that |πa| ≤ |πd| and |πc| ≤ |πf |, as

the endpoints are the intersections with i(vi−2, vi−1) for πa and πd, and i(vi+1, vi+2) for

πc and πf . By combining and substituting these inequalities, the following expression

arises:

|πe| ≤ |πa|+ |πb|+ |πc| − |πd| − |πf |.

Simplifying this result yields:

|πe| ≤ t · (|πDδn(qi−2, qi−1)|+ |πDδn(qi, qi+1)|) ≤

t · (|πDδn(qi−2, qi−1)|+ |πDδn(qi−1, qi)|+ |πDδn(qi, qi+1)|).
(4.1)

Consequently, this last case is not an issue for the relationship between spanner

paths and Cfree paths.

Proof for SPARS2: There are two points that must be addressed for SPARS2, as it no

longer has dense graph information. SPARS2 must (a) use a conservative approximation

for |π*
δn

(qi−1, qi)|, and (b) introduce configurations to approximate dense paths, which

would have otherwise been returned by the dense graph.

First, the approximation used for π*
δn

(qi−1, qi) must be an underestimation of the

true cost. SPARS2 employs d(qi−1, qi) as the approximation of this cost. It holds that

this will always be an underestimation of the true optimal path as given the absence

of obstacles, the true optimal paths are the local paths L(qi−1, qi). The presence of

obstacles will serve only to detour this path and make it longer. Whenever SPARS2

is checking a midpoint path Mi for the spanner property then, it will report that the

paths are violating the spanner property more often then they may actually be.

The construction of the approximate optimal paths may be considerably worse than

the optimal path that travels through the regions represented by the midpoint paths.

In this case, even with powerful smoothing techniques, the resulting path may still not

satisfy the spanner property given the conservative approximation of the true optimal

path. The argument is that this is not problematic, as the addition of this approximate

dense path will create new visibility regions through which new candidate midpoint

paths can be evaluated in future iterations of the algorithm. Eventually, the direct

81

Figure 4.9: In the case that vi depends on its neighbors for checking the spanner
property, for which these neighbors rely on vi, it must be that |πe| < |πb|.

connection between two interfaces will be collision free, and in this case, the conservative

approximation of the optimal path length is the true optimal path length. Furthermore,

because this path is collision-free, the smoothing operation can simply add L(qi−1, qi)

as a dense path.

From this reasoning, cases 1 and 2 from the previous proof still hold for SPARS2. Case

3 also holds for both algorithms without loss of generality, as it is a property inherent

to the planning structure and does not reason about optimal path information.

Given the above sequence of lemmas, it is then possible to combine them and argue

the following theorem:

Theorem 5 (Asymptotic Near-Optimality w/Additive Cost). As M goes to infinity:

∀ q0, qm ∈ Cfree : |πS (q0, qm)| < t · |π*
δn

(q0, qm)|+ 4 ·∆.

4.3.3 Rate of Node Addition

An important concern with sparse roadmap spanners is whether they will be adding

a significant number of nodes in the final data structure. An additional assumption

relates to the sampling process used by the algorithm, which is necessary for showing

that paths will not be infinitely added to GS .

Assumption 2. No sample q is within distance cl from obstacles. No roadmap node

v ∈ VS is within cl-distance from obstacles.

82

Figure 4.10: The four environments used for benchmarking the algorithms. From left
to right are the “Maze”, “Pegs”, “Abstract” and “Beam Site” environments. Planning
was performed in both SE(2) (“Maze”,“Pegs”) and SE(3) (“Abstract”,“Beam Site”)
on rigid body systems.

The following theorem argues that the rate of node addition decreases over time,

which allows for the reasonable termination criterion the proposed framework employs

in line 3 of Algorithm 2.

Theorem 6 (Rate of Node Addition). As the number of iterations increases in Algo-

rithm 2, the probability of adding a node to GS goes to 0.

Proof Sketch. This proof sketch will rely on Assumption 1, as in certain poorly-

behaved spaces, such as fractal spaces, it is impossible to even guarantee coverage with

a finite set of samples. There are four possible reasons for promoting nodes to GS ; thus,

it must be shown that all four of these criteria will eventually have no reason to add

nodes to the planning structure.

Nodes for coverage are added when a sample q lies outside the visibility range

of all existing nodes in V . Theorem 2 already argues that the probability of adding

guards diminishes to zero as the number of iterations increases.

83

Nodes for connectivity are added when a sample q connects two disconnected

components of the planning structure. Eventually, enough nodes for ensuring coverage

will be added in G, and thus, these nodes must be connected. As it is not possible for

there to be an infinite number of connected components of Cfree, the number of samples

needed to connect such disconnected components is finite and will be eventually added.

to v′.

Nodes for ensuring interfaces have edges are added when a sample reveals two

nodes in the planning structure share an interface but not an edge. It has already been

argued in Theorem 4 that the algorithm will connect all interfaces, thus nodes will stop

being added at some point for this purpose. The reader might argue that the addition

of nodes to reduce the number of interfaces, which do not share an edge, will actually

generate new interfaces that do not have edges. This is in fact the case; however, it will

not be the case that for all of these newly generated interfaces there will be an obstacle

preventing a direct connection from v.

Nodes for ensuring path quality are added when a sample q supports an inter-

face and reveals a path through Cfree that is significantly shorter than the corresponding

path in the planning structure. In the case of SPARS, these paths correspond to dense

paths through D , while in SPARS2, they are reconstructed paths. When adding such a

path to G, the framework will first try to smooth this path. In some cases, the path

cannot be smoothed, which will result in the addition of nodes to G. It is assumed,

however, that samples are drawn from the cl-interior of Cfree given Assumption 2. This

prevents paths from getting infinitely close to obstacles, and allows direct connections

to be made between vertices once they get close enough. Therefore, both methods will

eventually stop adding nodes in this fashion.

4.3.4 Space Requirements

It is important to reason about the space requirements of the proposed SPARS algo-

rithms upon construction. While the objective is to return a sparse data structure, this

should not take place at the expense of significantly increasing the space requirements

of the method during the construction process because of the book-keeping information

84

utilized by the approaches.

The next section will show that experimentally the algorithms seem to have rela-

tively low memory requirements, at least up to six dimensions. It is well understood

that as the dimensionality of a problem increases, the number of potential neighbors

for a node increases exponentially. This would indicate that the bookkeeping informa-

tion stored on the nodes in SPARS2 for detecting interfaces should increase significantly,

which would severely limit the practicality of the method in high dimensions. The

space requirements for the book-keeping information, however, is also a function of the

number of nodes. Since the resulting graphs are sparse by nature and contain a small

number of nodes, this does keep the space requirements for the book-keeping infor-

mation relatively low. This allows to identify a conservative bound on the number of

book-keepeing entries needed as O(n · log(n)2), where n is the number of nodes and each

is expected to be connected to O(log(n)) neighbors. This is because at worst, each of

the n nodes in the graph must potentially store interface information between each pair

of neighbors. This is obviously higher than the storage requirements for edges in PRM*,

which is O(n · log(n)). Neverhtheless, the number of nodes in the sparse representation

is significantly lower than in PRM*. Furthermore, the following section is going to show

that the average valence of the nodes in the sparse roadmaps is actually significantly

smaller than that of PRM*, which implies lower storage costs than O(n · log(n)2).

4.4 Simulations, and Experimental Validation

This section provides a series of experimental results, which validate the analysis and

the practicality of the proposed sparse roadmap spanners.

4.4.1 Experimental Setup

Experiments were performed on a cluster of the Computer Science department of Rut-

gers University, which is composed of IBM e-server xSeries 355 machines with 2.8 GHz

Intel Xeon quad-core processors and 2GB of memory each. The methods were tested

using the Open Motion Planning Library (OMPL) [24] and the environments “Maze”

85

Figure 4.11: The number of successful queries out of 1000 after {1, 2, 4, 8, 16, 32}minutes
of roadmap construction time. The expected trend is that as iterations increase, all
planners should be able to answer all 1000 queries.

86

(SE(2)), “Pegs” (SE(2)), “Abstract” (SE(3)) and “Beam Site” (SE(3)), shown in

Figure 4.10. Both variations of the proposed framework, SPARS (Section 4.1) and

SPARS2 (Section 4.2) were evaluated, and compared against PRM*. Runs were tested

with the parameters δ = 0.5, ∆ = 15 fixed, and for varying values of the stretch factor

t (2, 3, 5, 9). The parameter k was selected to be two times the dimensionality of the

C, e.g., 6 for the SE(2) challenges. The parameter M was removed so that it would be

possible to observe the behavior of the algorithms as a function of run time. Statistics

were collected after 1, 2, 4, 8, 16, and 32 minutes of construction time for the roadmap

spanner methods and compared to statistics collected by PRM*for the same time inter-

vals. An effort was made to extend these experiments up to 64 minutes but the space

requirements for PRM*did not allow lengthier experiments. If not otherwise specified,

the following graphs show results for a stretch factor t = 2. In general, the effects of

the stretch factor were small in the chosen environments as the first three criteria often

correspond to more than 75% of the nodes added in the roadmap. For each combination

of environment, algorithm and parameters, 20 experiments were performed and their

output was averaged in order to acquire the following statistics.

4.4.2 Query Success Ratio

It is first important to consider the success ratio of the algorithms over time. Given the

probabilistically complete nature of the methods, it is expected that they should be able

to eventually solve all problems. Figure 4.11 shows the number of successfully answered

queries out of 1000 as a function of construction time. It is expected that as construction

time increases, that the number of successful queries to increase to 1000. In general, the

algorithms tend to converge. Interestingly, the graphs for the “Maze” and “Abstract”

environments show that early in the execution of the algorithms, PRM* is unable to

answer many queries, while SPARS and SPARS2 answer more. The reason for this can

be that PRM* converges slower to a connected structure. This is reasonable as early

on SPARS and SPARS2 quickly add nodes for coverage and connectivity purposes with

an average iteration cost that is lower (edges are bounded by ∆, fewer connections are

attempted than with PRM* and no interfaces are detected early on). Nevertheless, this

87

Figure 4.12: Average path quality for solved queries relative to the best paths found by
PRM*after 32 minutes. As time increases, the returned path length should be decreasing.
The results for the “Beam Site” environment are affected by the lower success ratio of
the spanner algorithms.

88

is not a globally consistent behavior, as in the more complex “Beam Site” environment

SPARS and SPARS2 answer fewer queries than PRM*. A possible explanation is the choice

of parameters δ and ∆, as the effects of these parameters are still not clear. The path

quality statistics in the rest of this section are computed only over successfully solved

queries.

4.4.3 Path Quality

The proposed methods guarantee that solutions to queries are within a bound of the

optimal solution to these queries. The graphs in Figure 4.12 show the average path

quality returned by each of the planners relative to the best paths returned by PRM*

after 32 minutes of execution. In these graphs, a value of 1.0 represents a path that

has the same cost as the best PRM* path. The PRM* paths asymptotically converge to

the optimum, so they are used as a near approximation of the true optimal path cost.

Note that the average PRM* relative length after 32 minutes may still be higher than

1.0 and depends on the consistency of the algorithm in returning the best solution.

Interestingly, even after a few minutes of execution, the returned path quality by the

spanner algorithms is actually much better than what the theoretical bounds would

suggest. In the SE(2) environments the results are very consistent, as time increases

all planners return solution paths of decreasing length with PRM* closer to the optimum,

SPARS2 following and SPARS with a higher degradation. In certain environments, such

as the ”Abstract” environment, the spanner methods get to within 110% of the opti-

mal length, whereas the stated bounds are relaxed to as much as 200% or 900% for

these experiments. Note that for the same environment, the SPARS2 algorithm is more

consistent in returning better quality paths than the PRM* itself. Given the results of

Figure 4.11, the “Beam Site” environment had fewer answered queries, especially for

the SPARS algorithm. As new queries are answered, their path lengths are added to

the averages and in some cases the averages are shown to increase as construction time

increases. Nevertheless, even in this case the relative path length is lower than the

theoretical bounds.

89

Figure 4.13: The memory usage of the three algorithms while they are preprocessing
the space. Both SPARS and SPARS2 provide significant advantages in terms of memory
over PRM*.

90

Figure 4.14: The memory required to store the resulting roadmap. PRM* is omitted
as the memory requirements are the same as the offline ones (see previous figure) and
significantly higher compared to the spanner methods .

91

Figure 4.15: The number of nodes generated and stored for the final query structure of
the various methods in the four environments.

92

Figure 4.16: The number of edges stored for the final query structure of the various
methods in the four environments.

93

Figure 4.17: Query resolution time as a function of construction time. It is expected that
since the size of the planning structures increases, query resolution time also increases.

94

4.4.4 Offline Memory Requirements

Figure 4.13 provides a comparison of the amount of memory used during the roadmap

construction step. These results do include any extra bookkeeping information required

by the SPARS and SPARS2 algorithms, as well as the cost of maintaining the sparse and/or

dense graph. As expected, PRM* uses a significantly higher amount of memory. As was

also expected, however, SPARS uses more memory than SPARS2 during this process, as

it maintains the dense graph D . The encouraging result is the significant difference

in memory used between SPARS and PRM*. Note, however, that the duration of each

iteration in SPARS is much larger than each iteration of PRM*, and as such, the size of the

dense graph ends up being smaller than the resulting graph from PRM* given the same

amount of preprocessing time. One of the primary objectives of the SPARS2 approach

was to reduce the memory footprint during the preprocessing stage while maintaining

the guarantees on path quality, and in all cases, SPARS2 takes much less memory than

SPARS as the following table suggests:

Environment SPARS SPARS2

Maze 94,0373.4 51,125.0
Pegs 104,453.3 54,406.2

Abstract 332,673.9 52,634.6
Beam Site 386,662.6 91,605.6

s

Table 4.1: Memory requirements in bytes for each spanner method after 32 minutes of
computation.

4.4.5 Online Memory Requirements

After preprocessing the space, each algorithm returns a graph that is used for answering

queries. Larger graphs will have higher memory requirements for storage and trans-

mission. It is expected that as construction time increases, the size of the resulting

graphs will be larger. Typically, the larger the graph, the better the path quality. The

results shown in Figure 4.14 omit the graphs returned by PRM*. This is because the

memory requirements are the same as the offline process, and significantly higher than

the roadmaps returned by SPARS and SPARS2, which would render the comparison of

95

the last two methods impossible. It is important to note that in every case, SPARS2

is returning larger graphs than SPARS. Note that SPARS performs heavier computation

when considering adding nodes for path quality. Multiple A∗ searches are performed on

an increasingly larger dense graph, and representative information must be preserved

for every node in the dense graph.

4.4.6 Graph Nodes and Edges

The online memory requirements of the methods are a direct result of the number of

nodes and edges in the resulting graphs, shown in Figures 4.15 and 4.16 respectively.

Parallel to the online memory requirements, the SPARS and SPARS2 methods use orders

of magnitude less nodes and edges in their final query structure.

4.4.7 Query Resolution Time

The amount of time to resolve a query can be very important for certain applications.

The query resolution time is directly correlated to the size of the planning structure

being queried. Figure 4.17 shows resulting query times for the approaches, and cor-

relates with Figure 4.14. Both SPARS and SPARS2 return queries orders of magnitude

faster than querying the roadmap returned by PRM*. SPARS2 tends to return very high

quality paths relatively early; however, the query times tend to be higher than those

returned by SPARS.

4.4.8 Effects of Smoothing

Smoothing can have a significant effect on the resulting path quality. Figure 4.18

shows the average smoothed solution path length relative to the best smoothed path

returned by PRM*. In general, it is expected that PRM* will have less benefit from

smoothing than other methods as it already returns paths that are converging to the

true optimum. Smoothing provided a significant decrease in relative path length in both

SE(2) environments “Maze” and “Pegs”. Nevertheless, the effects are less pronounced

in the SE(3) environments. In the “Abstract” environment, the smoothing process was

advantageous for the PRM* method.

96

Figure 4.18: Path quality relative to the best smoothed paths from PRM*.

97

Figure 4.19: Time spent smoothing queries returned by the planning structure. Higher
smoothing times represent greater reductions in path length.

98

Figure 4.20: The average highest number of consecutive failures reached by the methods.
If parameter M were set to a value lower than the graphs, then the algorithms would
have automatically terminated.

99

Smoothing also introduces a time overhead as it involves collision checking, and

in certain application areas this overhead can be expensive. Figure 4.19 details the

amount of time spent on average for smoothing solutions to the ones shown in Figure

4.18. In general, all of the methods use roughly the same amount of time for smoothing

throughout their execution. The smoothing time is also reflective of how much the path

is able to improve relative to the original path cost. In the “Abstract” environment,

PRM* is shown to have much larger smoothing time than the other methods. This

suggests that the paths returned in this environment could be improved significantly

by smoothing. This is why in Figure 4.18, the relative path quality shown for SPARS

and SPARS2 appear worse than before smoothing. In the case of the “Beam Site”

environment, the smoothing time of paths returned by SPARS are very small, suggesting

that the smoothing was unable to refine these paths very much. This suggests that it

is returning poor quality paths in homotopic classes different than the optimum one.

It is apparent that the algorithm was still in the process of converging.

4.4.9 Maximum Consecutive Failures

The approach proposes an automated stopping criterion in the form of a threshold for

the maximum number of consecutive failures to add a node to the planning structure.

Figure 4.20 shows the rate of growth of the average maximum consecutive failures

reached by the methods as they run. As expected and as is desirable, the number

of maximum consecutive failures increases over time. In most cases, SPARS reaches a

higher number of consecutive failures than SPARS2. A possible explanation is that it is

more difficult for the method to identify the need to add dense paths using the dense

graph than through a focused sampling process. This correlates with the fact that

SPARS returns smaller planning structures than SPARS2.

4.4.10 Average Node Valence

An interesting aspect of the resulting planning structures to study is the average valence

of the nodes in the graph, which relates to the sparsity of the resulting data structure.

PRM* requires a certain number of attempts to connect to neighbors, which is a function

100

Figure 4.21: The average valence for the nodes in the resulting planning structure at
various points during construction.

101

of the number of nodes in the roadmap, which is reflected in the result. Figure 4.21

shows how the average valence increases for the methods over time and shows that PRM*

builds a much denser graph compared to both SPARS and SPARS2.

4.4.11 Online Memory Use vs. Path Quality

A direct correlation can be shown between the size of the resulting planning structure

and the path quality that is returned by the structure. Figure 4.22 shows this relation-

ship for SPARS and SPARS2 for stretch factors t = 2, 9 at 32 minutes of construction

time. The intuition is that larger structures should return better quality paths in gen-

eral, as they are a closer approximation of the underlying exhaustive graph of Cfree.

The results, especially in the “Maze” environment, demonstrate this trade-off between

memory use and path quality. Note that if these graphs were to include the PRM* algo-

rithm, the corresponding data point would appear orders of magnitude higher on the y

axis. For example, Figure 4.23, shows the online memory use over time for the methods,

including PRM*. Note that the SPARS techniques do not necessarily reach the same level

of path quality as PRM*, with the “Abstract” environment being the exception. Note

however that when SPARS and SPARS2 do approach the same relative path length, the

methods use far less memory than PRM*.

4.4.12 Query Time vs. Path Quality

Considering the correlation already drawn between resulting planning structure size

and query resolution time, it is expected that there would also be a correlation between

query time and path quality given the results shown in the previous subsection. The

results in Figure 4.24 show this correlation, which is very similar to that provided in

Figure 4.22.

4.4.13 Problem of Increasing Complexity

It is not straightforward from the above experiments to determine how well the SPARS

methods extend to more difficult problem instances. A straightforward method for

increasing problem difficulty is to increase the size of the robot (or equivalently grow

102

Figure 4.22: A comparison of online memory usage relative to the average returned
path quality for the resulting planning structures. Larger structures should return
better quality paths. Data points for PRM*are omitted for scaling reasons, but are
given as (1.0140, 11946512.8) (Maze), (1.0080, 47172614.4) (Pegs), (1.0467, 14198567.2)
(Abstract), and (1.0852, 21512684.8) (BeamSite).

103

Figure 4.23: A comparison of online memory used against returned path quality through
time for stretch factor t = 2. Values for the online memory use are highlighted for the
lowest memory cost PRM* graph and it’s closest neighbor from the SPARS algorithms.

the obstacles), so as to create a more constrained free space. This section examines

the “Abstract” environment using an increasingly larger L-shaped robot. Figures 4.25

- 4.28 show interesting aspects of the methods when increasing problem difficulty.

Figure 4.25 shows the relative path length of SPARS and SPARS2 compared to PRM*.

The figures indicate that as the problem difficulty increases, both the SPARS and SPARS2

methods show an increase in path length relative to PRM*. Figure 4.26 shows that

the offline memory requirements in more complex environments stays relatively the

same, with the SPARS methods using slightly more memory and PRM* using slightly less

memory as problem complexity increases. As the problem difficulty increases, there

are fewer collision-free configurations for PRM* to include in the roadmap. The sparse

roadmaps need to include a higher number of nodes to solve the problem. Nevertheless,

the difference is not significant over the various problem instances.

104

Figure 4.24: A comparison of query time against average path quality. It is expected
that paths of high quality take longer to query than those of low quality.

105

Figure 4.25: Relative path length to best path found for increasing problem difficulty
from top to bottom. It is surprising that SPARS2 may even return better path quality
than PRM* in easy problems. For harder instances, PRM* will be able to return better
paths for longer construction times as expected.

106

Figure 4.26: Memory usage during offline preprocessing for the various methods for
problems of increasing difficulty from left to right. Memory usage remains relatively
the same, though PRM* reduces its memory requirements, where SPARS and SPARS2

increase their memory requirements. Both results are expected.

107

Figure 4.27: Trade-off between online memory usage and path length for the various
methods for problems of increasing difficulty from left to right. Both memory usage
and path length increase as the problem becomes more difficult. Data points for PRM*

are omitted due to scaling issues. The data points for PRM* for the graphs from left to
right are (1.0467, 14198567.2), (1.0460, 13932344), and (1.0453, 13426218.4).

108

Figure 4.28: Successfully answered queries for the various methods for problems of
increasing difficulty from left to right. These graphs indicate the increase in difficulty
for solving the problem. In all cases, PRM* has the worst performance early on and then
converges to the success ratio of SPARS2.

109

Figure 4.27 shows the trade-off between memory use and path quality for increas-

ingly difficult problem instances. The trend shows the data points moving up and to the

right, indicating that more difficult problem instances require more memory while also

yielding lower-quality paths. Finally, Figure 4.28 indicates how many queries are an-

swered for varying difficulty of problems. As expected, the number of answered queries

decreases for more difficult problems. An interesting data point is the intersection be-

tween the PRM* graph and those of SPARS and SPARS2 methods. These data indicate

that the point of intersection may be coming later for more difficult problems, i.e., it

takes longer for PRM* to solve a larger percentage of queries.

4.4.14 Types of Nodes Added over Time

Both the SPARS and SPARS2 methods add nodes to the graph only if they satisfy one out

of four criteria. It is interesting to see what criteria are satisfied through the run of the

algorithm. Figure 4.29 shows averaged data for nodes added to SPARS2 over time. Note

that the algorithm starts by quickly covering and connecting the space, followed by a

reduction in node addition for these purposes as the sampling process works towards

enough sample saturation to begin detecting interfaces.

One question was whether the fourth criterion, which relates to path quality and

the spanner property, contributes significantly to the number of nodes added to the

roadmap. The graphs in Figure 4.29 indicate that this is indeed the case. Were these

types of nodes in fact rarely added to the graph, a simplified version of the algorithm

that omits this final, complicated criterion could be potentially sufficient to provide

the desired behavior, i.e., a sparse representation that can quickly answer queries with

path of sufficient quality. This simplified algorithm would not be providing the desired

theoretical properties, but potentially it could still be a practical solution as it would

reduce the amount of bookkeeping. The indication, however, from these graphs is that

because nodes for upholding the spanner property are a significant percentage of the

total number of nodes, removing this criterion would significantly affect path quality.

110

Figure 4.29: Average nodes added due to each criterion in the SPARS2 algorithm for the
Maze and Abstract environments. Left: cumulative node totals at given time intervals;
Right: node additions between intervals.

111

4.5 Discussion

A framework for generating sparse roadmap spanners is given in this chapter as a way

to solve path planning problems in continuous configuration spaces using compact data

structures, while providing the property of asymptotic near-optimality. Two variants of

this framework are highlighted, SPARS and SPARS2. The resulting planning structures

from both methods are orders of magnitude sparser and smaller than the corresponding

asymptotically optimal structures, while maintaining good quality paths. This results

in significantly shorter query resolution times. The resulting graph spanners are shown

to provide high quality paths that come much closer to optimal ones than what the the-

oretical bounds specify. SPARS2 also reduces memory requirements upon construction

of the roadmap versus SPARS while returning even better quality paths at the cost of a

small increase in the size of the final roadmap. It does so by removing the dependence

on maintaining an explicit, dense graph representation of the space. Instead, it relies on

properties of visibility that can be computed through localized sampling and smoothing

processes to provide the same guarantees.

There are many directions to investigate into the future on this topic: (i) It is inter-

esting to study similar near-optimality challenges in the context of graphs with directed

edges, which is a necessary requirement for systems with constraints in their motion.

The current line of reasoning relies on being able to directly connect configurations

using a bidirectional steering method, which is often unavailable for systems with dy-

namics. (ii) An important step for the work is to show whether the planning structure

converges to a finite-sized roadmap. Showing that the probability of adding nodes goes

to 0 is a step in this direction but does not guarantee that the desired properties are pro-

vided by finite graphs. (iii) An exciting development would be to compute a confidence

value representing what volume of the optimum paths in the space are covered by the

planning structure after a finite time execution instead of studying the asymptotic case.

This effort could lead to a stopping criterion for the algorithm that would allow the

computation in finite time of probably near-optimal paths with a confidence value. (iv)

As the method is able to return solutions within a bound of optimal paths, it would be

112

interesting to show whether the method can guarantee that it finds paths in important

homotopic classes of the space, and to see how it compares to methods that attempt

to identify these classes explicitly [62]. (v) It is unknown how to select parameters t

and ∆ to attain an expected average path degradation. Furthermore, it is interesting

to evaluate how the results depend on other parameters of the algorithm, such as δ and

M . (vi) Finally, many ideas can be exploited to improve computational efficiency, such

as using tools that return distance to obstacles to reduce collision-checking calls and

possibly quickly identifying nodes that should or should not be considered for addition

to the graph.

113

Chapter 5

Compact and Scalable Multi-robot Motion Planning

This chapter explores methods for performing multi-robot planning in such a way that

it is both computationally feasible, and ensures convergence to optimal solutions. Most

multi-robot planners sacrifice such guarantees, but in this chapter, an adaptation of an

efficient multirobot planning method is presented that provides such guarantees. While

this method does not handle the task-planning aspects of the problem, it does provide

configuration-to-configuration planning for an arbitrary set or robots.

5.1 Problem Setup and Notation

In this Chapter, the focus is planning for multiple robots in the composite configuration

space (C-space) of those arms where C =
∏R
i=1 CAi is the Cartesian product of each

robot’s C-space. A composite configuration Q = (q1, . . . , qR) ∈ C is an R-tuple of

robot configurations. For two distinct robots Ai,Aj , denote by Iji (qj) ⊂ CAi the set

of configurations where Ai and Aj collide. Then, the composite free space Cfree ⊂ C

consists of configurations Q = (q1, . . . , qR) subject to:

• qi ∈ Cfree
Ai for every 1 ≤ i ≤ R;

• qi 6∈ Iji (qj), qj 6∈ Iij(qi) for every 1 ≤ i < j ≤ R.

Each Q ∈ Cfree requires robots to not collide with obstacles, and each pair to not collide

with each other. The composite forbidden space is defined as Cinv = C \ Cfree.

Given S, T ∈ Cfree, where S = (s1, . . . , sR), T = (t1, . . . , tR), a trajectory Σ : [0, 1]→

Cfree is a continuous curve in Cfree, such that Σ(0) = S,Σ(1) = T , where the R robots

move simultaneously. Σ is an R-tuple (σ1, . . . , σR) of robot paths, such that σi : [0, 1]→

Cfree
Ai .

114

Figure 5.1: An illustration of a two-robot tensor product roadmap Ĝi,j between
roadmaps Gi and Gj . Two nodes in the tensor-product roadmap share an edge if
all the individual robot configurations share an edge in the individual robot roadmaps.

The objective is to find a trajectory that minimizes a cost function c(·). The anal-

ysis in this chapter assumes the cost is the sum of robot path lengths, i.e., c(Σ) =∑R
i=1 |σi|, where |σi| denotes the standard arc length of σi. The arguments also work

for maxi=1:R |σi|. 1 Section 5.3 shows sufficient conditions for the proposed dRRT*

method to converge to optimal trajectories over the cost function c.

5.2 Methods for Composite Space Planning

For a fixed n ∈ N+, define for every robot Ai the PRM roadmap Gi = (Vi, Ei)

constructed over Cfree
Ai , such that |Vi| = n with connection radius r(n). Then, Ĝ =

(V,E) = G1 × . . . × GR is the tensor product roadmap in space C (for an illustration,

see Figure 5.1). Formally, V = {(v1, v2, . . . , vR), ∀i, vi ∈ Vi} is the Cartesian product

of the nodes from each roadmap Gi. For two vertices V = (v1, . . . , vm) ∈ V, V ′ =

(v′1, . . . , v
′
m) ∈ V the edge set E contains edge (V, V ′) if for every i it is that vi = v′i or

(vi, v
′
i) ∈ Ei. 2

As shown in Algorithm 9, dRRT* grows a tree T over Ĝ, rooted at the start config-

uration S and initializes path πbest (line 1). The method stores the node added each

1The types of distances the arguments hold are more general, but proof for alternative metrics is
left as future work.

2Notice this slight difference from dRRT [139] so as to allow edges where some robots remain motion-
less while others move.

115

iteration V (Line 2), as part of an informed process to guide the expansion of T to-

wards the goal. The method iteratively expands T given a time budget (Line 3), as

detailed by Algorithm 10, storing the newly added node V (Line 4). After expansion,

the method traces the path that connects the source S with the target T (Line 5). If

such a path is found, it is stored in πbest if it improves upon the cost of the previous

solution (Lines 6, 7). Finally, the best path found πbest is returned (Line 8).

Algorithm 9: dRRT*(Ĝ, S, T)

1 πbest ← ∅, T.init(S);
2 V ← S;
3 while time.elapsed() < time limit do

4 V ← Expand dRRT*(Ĝ, T, V, T);
5 π ← Trace Path(T, S, T);
6 if π 6= ∅ and cost(π) < cost(πbest) then
7 πbest ← π;
8 end

9 end
10 return πbest

The expansion step is given in Alg. 10. The default initial step of the method

is given in Lines 1-4, i.e., when no vlast is passed (Line 1), which corresponds to an

exploration step similar to RRT: a random sample qrand is generated in C (Line 2), its

nearest neighbor vnear in T is found (Line 3) and the oracle function Od(·, ·) returns the

implicit graph node vnew that is a neighbor of vnearon the implicit graph in the direction

of qrand (Line 4). If a vlast, however, is provided (Line 5)—which happens when the

last iteration managed to generate a node closer to the goal relative to its parent—then

vnew is greedily generated so as to be a neighbor of vlast in the direction of the goal T

(Line 6).

In either case, the method next finds neighbors N , which are adjacent to vnew in

Ĝ and have also been added to T (Line 7). Among N , the best node vbest is chosen,

for which the local path L(vbest, vnew) is collision-free and that the total path cost to

vnew is minimized (Line 8). If no such parent can be found (Line 9), the expansion fails

and no node is returned (Line 10). Then, if vnew is not in T , it is added (Lines 11-13).

Otherwise, if it exists, the tree is rewired so as to contain edge (vbest, vnew), and the

116

cost of vnew’s sub-tree (if any) is updated (Lines 14, 15). Then, for all nodes in N

(Line 16), the method tests T should be rewired through vnew to reach this neighbor.

Given that L(vnew, v) is collision-free and is of lower cost than the existing path to v

(Line 17), the tree is rewired to make vnew be the parent of v (line 18).

Finally, if in this iteration the heuristic value of vnew is lower than its parent node

vbest (line 19), the method returns vnew (Line 20), causing the next iteration to greedily

expand vnew. Otherwise, NULL is returned so as to do an exploration step. Note that

the approach is implemented with helpful branch-and-bound pruning after an initial

solution is found, though this is not reflected in the algorithmics.

vnew is determined via an oracle function. Using this oracle function and a simple

rewiring scheme is sufficient for showing asymptotic optimality for dRRT* (see Sec-

tion 5.3). The oracle function Od for a two-robot case is illustrated in Figure 5.2.

First, let ρ(Q,Q′) be the ray from configuration Q terminating at Q′. Then, denote

∠Q(Q′, Q′′) as the minimum angle between ρ(Q,Q′) and ρ(Q,Q′′). When qrand is drawn

in C, its nearest neighbor vnear in T is found. Then, project the points qrand and vnear

into each robot space Ci, i.e., ignore the configurations of other robots.

Figure 5.2: (A) The method reasons over all neighbors q′ of q so as to minimize the angle
∠q(q′, q′′). (B) Od(·, ·) finds graph vertex vnewby minimizing angle ∠vnear(vnew, qrand).
(C,D) vnearand qrandare projected into each robot’s C-space so as to find nodes vnew

i

and vnew
j , respectively, which minimize angle ∠vnear

i/j
(vnew

i/j , q
rand
i/j).

The method separately searches the single-robot roadmaps to discover vnew. Denote

vnear = (v1, . . . , vR), qrand = (q̃1, . . . , q̃R). For every robot i, let Ni ⊂ Vi be the neigh-

borhood of vi ∈ Vi, and identify v′i = arg minv∈Ni ∠vi(q
rand
i , v). The oracle function

117

returns node vnew = (v′1, . . . , v
′
R).

Figure 5.3: (A) The Voronoi region Vor(V) of vertex V is shown where if qrand is drawn,
vertex V is selected for expansion. (B) When qrand lies in the directional Voronoi region
Vor′(V), the expand step expands to vnew. (C) Thus, when qrand is drawn within volume
Vol(V) = Vor(V) ∪Vor′(V), the method will generate vnew via V .

As in the standard RRT as well as in dRRT, the dRRT* approach has a Voronoi-bias

property [100]. It is, however, slightly more involved to observe as shown in Figure 5.3.

To generate an edge (V, V ′), random sample qrand must be drawn within the Voronoi

cell of V , denoted Vor(V) (A) and in the general direction of V ′, denoted Vor′(V) (B).

The intersection of these two volumes Vol(V) = Vor(V) ∩ Vor′(V) is the volume to be

sampled generate vnew via vnear.

5.3 Asypmtotic Optimality of dRRT*

In this section, the theoretical properties of dRRT* are examined, beginning with a study

of the asymptotic convergence of the implicit roadmap Ĝ to containing a path in Cfree

whose cost converges to the optimum. Then, it is shown dRRT* eventually discovers the

shortest path in Ĝ, and that the combination of these two facts proves the asymptotic

optimality of dRRT*.

For simplicity, the analysis is restricted to the setting of robots operating in Eu-

clidean space, i.e., Ci is a d-dimensional Euclidean hypercube [0, 1]d for fixed d ≥ 2. 3

Additionally, the analysis is restricted to the specific cost function of total distance, i.e.,

|Σ| :=
∑R

i=1 |σi|. Discussion on lifting these restrictions is provided in Section 5.5.

3For simplicity, it is assumed that all the robots have the same number of degrees of freedom d.

118

5.3.1 Optimal Convergence of Ĝ

For each robot, an asymptotically optimal PRM* roadmap Gi is constructed having n

samples and using a connection radius r(n) necessary for asymptotic convergence to the

optimum [69]. By the nature of sampling-based algorithms, each graph cannot converge

to the true optimum with finite computation, as such a solution may have clearance

of exactly 0. Instead, this work focuses on the notion of a robust optimum 4, showing

that the tensor product roamdap Ĝ converges to this value.

Definition 15. A trajectory Σ : [0, 1] → Cfree is robust if there exists a fixed δ > 0,

such that for every τ ∈ [0, 1], X ∈ Cinv it holds that ‖Σ(τ) − X‖2 ≥ δ, where ‖ · ‖2

denotes the standard Euclidean distance.

Definition 16. A value c > 0 denotes a path cost is robust if for every fixed ε > 0,

there exists a robust path Σ, such that |Σ| ≤ (1 + ε)c. The robust optimum c∗, is the

infimum over all such values.

For any fixed n ∈ N+, and a specific instance of Ĝ constructed from R roadmaps,

having n samples each, denote by Σ(n) the shortest path from S to T over Ĝ.

Definition 17. Ĝ is asymptotically optimal (AO) if for every fixed ε > 0 it holds that

|Σ(n)| ≤ (1 + ε)c∗ a.a.s.5, where the probability is over all the instantiations of Ĝ with

n samples for each PRM.

Using this definition, the following theorem is proven. Recall that d denotes the

dimension of a single-robot configuration space.

Theorem 7. Ĝ is AO when

r(n) ≥ r*(n) = (1 + η)2

(
1

d

) 1
d
(

log n

n

) 1
d

,

where η is any constant larger than 0.

4Note that the given definition of robust optimum is similar to that in previous work [142].

5Let A1, A2, . . . be random variables in some probability space and let B be an event depending on An.
We say that B occurs asymptotically almost surely (a.a.s.) if limn→∞ Pr[B(An)] = 1.

119

Remark. Note that r*(n) was developed in [65, Theorem 4.1], and guarantees AO

of PRM*for a single robot. The proof technique described in that work will be one of the

ingredients used to prove Theorem 7. 6

By the definition of c∗, for any given ε > 0 there exists a robust trajectory Σ :

[0, 1] → Cfree, and a fixed δ > 0, such that the cost of Σ is at most (1 + 1/2 · ε)c∗ and

for every X ∈ Cinv, τ ∈ [0, 1] it holds that ‖Σ(τ) − X‖ ≥ δ. Next, it is shown that Ĝ

contains a trajectory Σ(n) such that:

|Σ(n)| ≤ (1 + o(1)) · |Σ|, (5.1)

a.a.s.. This immediately implies that |Σ(n)| ≤ (1 + ε)c∗, which will finish the proof of

Theorem 7.

Thus, it remains to show that there exists a trajectory on Ĝ that satisfies Equa-

tion 5.1 a.a.s.. As a first step, it will be shown that the robustness of Σ = (σ1, . . . , σR)

in the composite space implies robustness in the single-robot setting, i.e., robustness

along σi.

For τ ∈ [0, 1] define the forbidden space parameterized by τ as

Cinv
i (τ) = Cinv

i ∪
R⋃

j=1,j 6=i
Iji (σj(τ)).

Claim 1. For every robot i, τ ∈ [0, 1], and qi ∈ Cinv
i (τ), ‖σi(τ)− qi‖2 ≥ δ.

Proof. Fix a robot i, and fix some τ ∈ [0, 1] and a configuration qi ∈ Cinv
i (τ). Next,

define the following composite configuration

Q = (σ1(τ), . . . , qi, . . . , σ
R(τ)).

Note that it differs from Σ(τ) only in the i-th robot’s configuration. By the robustness

of Σ it follows that

δ ≤ ‖Σ(τ)−Q‖2 =

‖σi(τ)− qi‖22 +

R∑
j=1,j 6=i

‖σj(τ)− σj(τ)‖22

 1
2

leq‖σi(τ)− qi‖2.

6Note that r*(n) can be refined to incorporate the proportion of Cfreei , which would reduce this
expression.

120

The result of claim 1 is that the paths σ1, . . . , σR are robust in the sense that there

is sufficient clearance for the individual robots to not collide with each other given a

fixed location of a single robot. A Lemma is derived using proof techniques from the

literature [65], and it implies every Gi contains a single-robot path σ
(n)
i that converges

to σi

Lemma 15. For every robot i, Gi constructed with n samples and a connection radius

r(n) ≥ r*(n) contains a path σ
(n)
i with the following attributes a.a.s.:

(i) σ
(n)
i (0) = si, σ

(n)
i (1) = ti;

(ii) |σ(n)
i | ≤ (1 + o(1))|σi|;

(iii) ∀q ∈ Im(σ
(n)
i), ∃τ ∈ [0, 1] s.t. ‖q − σi(τ)‖2 ≤ r*(n).

Proof. The first property (i) follows from the fact that si, ti are directly added to Gi.

The rest follows from the proof of Theorem 4.1 in [65], which is applicable here since

r(n) ≥ r*(n).

Lemma 15 also implies that Ĝ contains a path in C, that represents robot-to-obstacle

collision-free motions, and minimizes the multi-robot metric cost. In particular, define

Σ(n) = (σ
(n)
1 , . . . , σ

(n)
R), where σ

(n)
i are obtained from Lemma 15. Then

|Σ(n)| =
R∑
i=1

|σ(n)
i | ≤ (1 + o(1))

R∑
i=1

|σi| ≤ (1 + o(1))|Σ|.

However, it is not clear whether this ensures the existence of a path where robot-robot

collisions are avoided. That is, although Im(σ
(n)
i) ⊂ Cfree

i , it might be the case that

Im(Σ(n))∩Cinv 6= ∅. Next it is shown that σ
(n)
1 , . . . , σ

(n)
R can be reparametrized to induce

a composite-space path whose image is fully contained in Cfree, with length equivalent

to Σ(n).

For each robot i, denote by Vi = (v1
i , . . . , v

`i
i) the chain of Gi vertices traversed by

σ
(n)
i . For every vji ∈ Vi assign a timestamp τ ji of the closest configuration along σi, i.e.,

τ ji = arg min
τ∈[0,1]

‖vji − σi(τ)‖2.

121

Also, define Ti = (τ1
i , . . . , τ

`i
i) and denote by T the ordered list of

⋃R
i=1 Ti, according to

the timestamp values. Now, for every i, define a global timestamp function TSi : T →

Vi, which assigns to each global timestamp in T a single-robot configuration from Vi.

It thus specifies in which vertex robot i resides at time τ ∈ T . For τ ∈ T , let j be the

largest index such that τ ji ≤ τ . Then simply assign TSi(τ) = τ ji . From property (iii)

in Lemma 15 and Claim 1 it follows that no robot-robot collisions are induced by the

reparametrization, concluding the proof of Theorem 7.

5.3.2 Asymptotic Optimality of dRRT*

Finally, dRRT* is shown to be AO. Denote by m the time budget in Algorithm 9, i.e.,

the number of iterations of the loop. Denote by Σ(n,m) the solution returned by dRRT*

for n and m.

Theorem 8. If r(n) > r*(n) then for every fixed ε > 0 it holds that

lim
n,m→∞

Pr
[
|Σ(n,m)| ≤ (1 + ε)c∗

]
= 1.

Since Ĝ is AO (Theorem 7), it suffices to show that for any fixed n, and a fixed

instance of Ĝ, defined over R PRMs with n samples each, dRRT* eventually (as m

tends to infinity), finds the optimal trajectory over Ĝ. This can be shown using the

properties of a Markov chain with absorbing states [50, Theorem 11.3]. While a full

proof is omitted here, the idea is similar to what is presented in previous work [140,

Theorem 3], and examined in an extended version of this manuscript [33]. By restricting

the states of the Markov chain to being the graph vertices along the optimal path,

setting the target vertex to be an absorbing vertex, and showing that the probability of

transitioning along any edge in this path is nonzero (i.e., the probability is proportional

to µ(Vol(Vk))
µ(Cfree)

> 0), then the probability that this process does not reach the target

state along the optimal path converges to 0 as the number of dRRT* iterations tends to

infinity. The final step is to show that the above statements hold when both m and n

tend to ∞. A proof for this phenomenon can be found in [140, Theorem 6].

122

5.4 Experimental Validation

This section provides an experimental evaluation of dRRT* by demonstrating practical

convergence, scalability, and applicability to dual-arm manipulation. The approach and

alternatives are executed on a cluster with Intel(R) Xeon(R) CPU E5-4650 @ 2.70GHz

processors, and 128GB of RAM. 7

Figure 5.4: The 2D environment where the 2 disk robots operate.

2 Disk Robots among 2D Polygons: This base-case test involves 2 disks (Ci := R2)

of radius 0.2, in a 10.2× 10.2 region, as in Figure 5.4. The disks have to swap positions

between (0, 0) and (9, 9). This is a setup where it is possible to compute the explicit

roadmap, which is not practical in more involved scenarios. In particular, dRRT* is tested

against: a) running A* on the implicit tensor roadmap Ĝ (referred to as “Implicit A*”)

defined over the same individual roadmaps with N nodes each as those used by dRRT*;

and b) an explicitly constructed PRM* roadmap with N2 nodes in the composite space.

Results are shown in Figure 5.5. dRRT* converges to the optimal path over Ĝ, similar

to the one discovered by Implicit A*, while quickly finding an initial solution of high

quality. Furthermore, the implicit tensor product roadmap Ĝ is of comparable quality

to the explicitly constructed roadmap.

Table 5.1 presents running times. dRRT* and implicit A* construct 2N -sized roadmaps

7Additional data are provided in the appendices of an extended version of this paper [33] and the
accompanying video.

123

Figure 5.5: Average solution cost over iterations. Data averaged over 10 roadmap pairs.
dRRT* (solid line) converges to the optimal path through Ĝ (dashed line).

(row 3), which are faster to construct than the PRM* roadmap in C (row 1). PRM* be-

comes very costly as N increases. For N = 500, the explicit roadmap contains 250, 000

vertices, taking 1.7GB of RAM to store, which was the upper limit for the machine

used. When the roadmap can be constructed, it is quicker to query (row 2). dRRT*

quickly returns an initial solution (row 5), and converges within 5% of the optimum

length (row 6) well before Implicit A* returns a solution as N increases (row 4). The

next benchmark further emphasizes this point.

Many Disk Robots among 2D Polygons: In the same environment as above,

the number of robots R is increased to evaluate scalability. Each robot starts on the

perimeter of the environment and is tasked with reaching the opposite side. An N = 50

roadmap is constructed for every robot. It quickly becomes intractable to construct a

PRM* roadmap in the composite space of many robots.

Figure 5.6 shows the inability of alternatives to compete with dRRT* in scalability.

Solution costs are normalized by an optimistic estimate of the path cost for each case,

which is the sum of the optimal solutions for each robot, disregarding robot-robot

interactions. Implicit A* fails to return solutions even for 3 robots. Directly executing

RRT* in the composite space fails to do so for R ≥ 6. The original dRRT method (without

the informed search component) starts suffering in success ratio for R ≥ 5 and returns

worse solutions than dRRT*. The average solution times for dRRT may decrease as R

increases but this is due to the decreasing success ratio, i.e., dRRT begins to only succeed

at easy problems.

124

Figure 5.6: Data averaged over 10 runs. (Top): Relative solution cost and success ratio
of dRRT*, dRRT and RRT* for increasing R. dRRT*: average iteration and variance for
initial solution (top of box), and solution cost and variance after 100, 000 iterations
(bottom). Similar results for RRT*. Single data point for dRRT (no quality improvement
after first solution). (Bottom): Solution costs over time.

To emphasize the lack of scalability for alternate methods, additional experiments

were run in this setup using a minimal roadmap. The tests use a 9-node roadmap

for each robot as illustrated in Figure 5.9. Each roadmap is constructed with slight

perturbations to the nodes within the shaded regions indicated in the figure.

The data for this modified benchmark (shown in Figure 5.8) indicate that even using

a very small roadmap does not allow alternate methods to scale. While the methods

do scale better, it is still the case that Implict A* times out for R ≥ 5, and RRT* times

out for R ≥ 6.

Dual-arm manipulator: This test shows the benefits of dRRT* when planing for

two 7-dimensional arms. Figure 5.7 shows that RRT* fails to return solutions within

100K iterations. Using small roadmaps is also insufficient for this problem. Both

dRRT* and Implicit A* require larger roadmaps to begin succeeding. But with N ≥ 500,

Implicit A* always fails, while dRRT* maintains a 100% success ratio. As expected,

roadmaps of increasing size result in higher quality path. The informed nature of dRRT*

also allows to find initial solutions fast, which together with the branch-and-bound

primitive allows for good convergence. Additional data is presented in Figure 5.10.

Here, the data presented in Figure 5.7 is shown again over iterations instead of over

time.

125

Figure 5.7: (Top): dRRT* is run for a dual-arm manipulator to go from its home position
(above) to a reaching configuration (below) and achieves perfect success ratio as n
increases. (Bottom): dRRT* solution quality over time. Here, larger roadmaps provide
benefits in terms of running time and solution quality.

5.5 Discussion

The asymptotic optimality properties of implicitly defined planning structures for multi-

robot planning are studied in this work. This work shows that implicit planning struc-

tures for multi-robot planning maintain asymptotic optimality guarantees given appro-

priate consideration in the construction of individual robot roadmaps and appropriate

search of the tensor product roadmap.

The authors believe that the analysis can be extended to more complex settings, by

relying on recent work concerning sampling-based motion-planning with kinodynamic

constraints [131, 130]. Furthermore, the analysis should also be applicable to a variety

of cost functions other than the total distance, such as max1≤i≤R{|σi|}.

126

Figure 5.8: (Top): Convergence rate and success ratio over the minimal 9-node roadmap
(Bottom): Solution cost over time when using the minimal roadmap.

Figure 5.9: Minimal graph for the R-robot case.

Figure 5.10: Motoman benchmark solution quality over iterations.

127

Algorithm 10: Expand dRRT*(Ĝ, T, vlast, T)

1 if vlast == NULL then
2 qrand ← Random Sample();

3 vnear ← Nearest Neighbor(T, qrand);

4 vnew ← Od(v
near, qrand);

5 end
6 else
7 vnew ← Od(v

last, T);
8 end

9 N ← Adjacent(vnew, Ĝ) ∩ VT ;

10 V best ← arg minv∈Ns.t.L(v,vnew)⊂Cfree c(v) + c(L(v, vnew));

11 if V best == NULL then
12 return NULL;
13 end
14 if vnew /∈ T then
15 T.Add Vertex(vnew);

16 T.Add Edge(V best, vnew);

17 end
18 else
19 T.Rewire(V best, vnew);
20 end
21 for v ∈ N do
22 if c(vnew) + c(L(vnew, v) < c(v) and L(vnew, v) ⊂ Cfree then
23 T.Rewire(vnew, v);
24 end

25 end

26 if h(vnew) < h(V best) then
27 return vnew;
28 end
29 else
30 return NULL;
31 end

Table 5.1: Construction and query times (SECs) for 2 disk robots.

Number of nodes: N = 50 100 200
N2-PRM* construction 3.427 13.293 69.551
N2-PRM* query 0.002 0.004 0.023
2 N -size PRM* construction 0.1351 0.274 0.558

Implicit A* search over Ĝ 0.684 2.497 10.184

dRRT* over Ĝ (initial) 0.343 0.257 0.358

dRRT* over Ĝ (converged) 3.497 4.418 5.429

128

Chapter 6

Compact Representations for Multi-arm Manipulation

Search

In the previous chapter, the problem of planning motion for multiple robots moving

simultaneously was explored, and an efficient, asymptotically optimal method is pro-

vided. Using this method, this chapter focuses on solving a multi-arm manipulation

problem where multiple robot manipulators have to perform a series of manipulations,

including hand-offs, on a target object to bring it from its start position to an intended

target. The method provides a minimal search representation and quickly determines

a sequence of arm motions to plan for.

6.1 The N-Arm Manipulation Problem

As this work now shifts to focus on manipulation problems, let there be a single rigid-

body object, o, with its own configuration space Co ⊂ SE(3) in the workspace. Then,

the configuration space for the entire problem is:

C =

n∏
i=1

CAi × Co .

where CAi corresponds to the configuration of the i-th robot manipulator, Ai.

The collision-free subset Cfree ⊂ C includes two sets, which allow contacts:

a) stable configurations Cs: the object is at a stable pose, where o is in contact with

static obstacle geometry, and its pose does not change while no arm acts upon o;

b) grasping configurations Cg: these correspond to one or more arms grasping the

object.

Let k denote the number of arms required to move the object o, where 1 ≤ k ≤ n.

The value of k depends on the o; for instance, o may be heavy and require multiple

129

Figure 6.1: Single-arm manipulation graph [136]. Left: For the T set, the object is transferred
while grasped. For the M set, the arms move and the object rests at a stable pose. At the
intersection, the object is grasped at a stable pose. Right: Useful paths for manipulation bring
the object back to a stable grasp pose.

arms to be transferred. A valid path τ : [0, 1] → Cfree is a continuous sequence of

stable and grasping configurations, where transitions happen via stable poses or object

handoffs.

Definition 18 (Multi-Arm Manipulation Problem). Given an initial configuration

qinit ∈ Cs and a goal configuration qgoal ∈ Cs, compute a valid path τ : [0, 1] → Cfree,

such that τ(0) = qinit and τ(1) = qgoal.

The traditional representation for a single arm interacting with an object consists

of two modes:

a) transfer configurations T , where the manipulator is grasping and transferring the

object, and

b) move configurationsM , where the manipulator is moving through the space without

holding the object. While typically referred to as “transit” configurations, the term

moved is used to follow the M vs. T notation.

This gives rise to the graphs of Fig. 6.1, where a transfer is a trajectory through T

connecting different stable poses, and a regrasp goes through M from a stable pose to

itself.

This representation was only recently generalized for dual-arm robots [52], which

is shown in Fig. 6.2, given the notation used here. Reasoning about the topology of

130

Figure 6.2: The representation for dual-arm manipulation has four sets of configurations in
the general case. Note that MLMR and TLTR correspond directly to M and T for single-arm
manipulation (Figure 6.1 Left).

the problem allows to identify whether using both hands is helpful by integrating grasp

and object placement planners. In the n-arm case, the planning problem has 2n modes,

and each corresponds to different combinations of arms either moving or transferring.

For example, the mode MLMR corresponds to both arms moving without grasping the

object, while TLTR has both arms transferring the object simultaneously.

In the two arm case, a new mode corresponding to hand-offs arises. A hand-off is

a transition where the arm - or, in general, a set of arms - which grasps the object

changes while the object is not necessarily in a stable pose. This requires ensuring the

object is not dropped; however, this is a physics problem, which is not the focus of this

work. Next, this representation is generalized for n arms while pruning away redundant

modes.

This work assumes access to four primitives: (i) A stable pose generation module

provides reachable stable object configurations qo ∈ Co ; (ii) A hand-off generation

module returns object configurations where k arms can grasp the object simultaneously;

(iii) A spatial interaction module, which is a graph that indicates which subsets

of arms can simultaneously grasp an object. This graph is referred to as a Spatial

Interaction Graph (SIG), and is detailed in section 6.2; (iv) A grasping module, which

computes grasps to facilitate transfers and hand-offs.

131

6.2 A Compact Multi-Arm Manipulation Representation

This section presents the reduced representation of n-arm manipulation, providing an

algorithm to explicitly construct the graph with an appropriate topology for any n and

k. Unsurprisingly, the topology of the graph constructed with n and k is equivalent to

one where n′ = h =
(
n
k

)
and k′ = 1.

Assumption 3. There is a known, fixed number of arms, k, required to transfer the

object.

For n = 2, k can either be 1 or 2, as illustrated in Fig. 6.3, noting differences with

Fig. 6.2. For k = 1, it is unnecessary to have a state where both arms are transferring

the object. Conversely, for k = 2, single-arm transfer states are infeasible. Note that

for n = k = 2, the state representation is topologically equivalent to the single-arm case

of Fig. 6.1. A dual representation to that of Fig. 6.3 is shown in Fig. 6.4 below.

This representation is general, and Fig 6.5 illustrates the case of n = 3 and k = 2.

Figure 6.3: The manipulation graphs for k = 1 (left) and k = 2 (right) using 2 arms: a left
(L) and a right arm (R).

The general case has h =
(
n
k

)
stable grasp states, and from each pair of these states,

up to
(
h
2

)
handoff states. This results in a total of up to h+

(
h
2

)
states, with the following

edges connecting them:

i) Regrasp and Transfer self-edges for each stable grasp state (2h edges).

ii) Move edges between all pairs of stable grasp states (
(
h
2

)
edges).

132

iii) Transfer edges between handoffs and their corresponding stable grasp states (2
(
h
2

)
edges).

iv) Edges between pairs of handoff states that share a common subset of arms. That

is, each handoff state maintains sets of arms, Rin and Rout, and there exists an edge

between states that share a set (
(
h
2

)
(h− 2) edges).

v) Self-edges for each handoff state where (a) k arms keep the object stable and (b) k

other arms perform a regrasp (2
(
h
2

)
edges).

Figure 6.4: Top: an object requiring k = 1 arms, corresponding to Fig. 6.3 (left). Bottom:
k = 2, corresponding to Fig. 6.3 (right).

Figure 6.5: Example for n = 3 and k = 2 (topologically equivalent to n = 3 and k = 1). Hallow
lines represent self-transitions for stable states, light dashed lines are transitions between stable
states, dotted lines are passes between different handoffs, while solid lines are transitions between
stable and handoff states.

This representation significantly reduces the number of modes compared to the case

that allows all combinations of arms to grasp the object. In the exhaustive case, there

133

are 2n−1 stable grasp states. Then, there are
(

2n−1
2

)
handoff states, for a grand total of

(2n−1)+
(

2n−1
2

)
states. This complete representation would also have the same types of

edges as described before. This results in a grand total of 2(2n−1) + 5
(

2n−1
2

)
+
((2n−1

2)
2

)
edges/modes. The relative benefits of the reduced representation for certain choices of

n and k is provided in Fig. 6.6.

Figure 6.6: A comparison between the full representation and the upper bound for the provided
one. For different values of n and k, the provided graph results in considerably fewer modes.

Assumption 3 prunes away states; however, handoffs cannot always be achieved, so

another assumption is used:

Assumption 4. It is known which arms can potentially achieve a handoff and reach

the same stable object poses.

Figure 6.7: An example

SIG for n = 6 and k = 1.

Two input “Spatial Interaction Graphs” are assumed: a

SIGh for feasible handoffs and a SIGs for transitions between

stable grasps. A node in a SIG represents a set of k arms,

and an edge between two nodes in SIGh indicates a handoff is

possible, and an edge in SIGs indicates that there are stable

object poses reached by both sets of k arms.

An example SIG is shown in Fig. 6.7. Using the graph for both SIGs and SIGh with

n = 6 and k = 1, there will be 15 states and 60 edges, but without the SIGs, there

would be 21 states, and 117 edges, reducing the number of modes by nearly half. An

algorithm for constructing the appropriate graph is given in the next section.

134

6.3 Pre-processing and Searchng GMAM

Given the outlined representation, this work follows the methodology of prior work

[30]. At a high-level, there are two separate steps: a preproccessing phase, and then an

online search to answer manipulation queries. This section also details the multi-robot

motion planning approach leveraged.

6.3.1 Preprocessing

The preprocessing entails two separate steps.

Automaton Generation

First, the method constructs a high-level representation of the multi-modal task space

representation of the problem. This section briefly outlines the reduced representation

examined by prior work [30]. This representation is a graph denoted GMAM where nodes

correspond to high-level states, which represent transition configurations between ma-

nipulation modes, and edges between these nodes represent motion planning problems

which transition from one high-level state to another.

Given the number of armsR and the minimum number of arms needed to manipulate

an object k, the method first constructs stable grasp states for each set of k arms. Each

stable grasp state represents the set of k arms grasping the object while it rests stably

on some surface in the environment. These states have two self-edges which represent

re-grasp and transfer paths, and each pair of stable grasp states with shared reachability

also share an edge. Hand-off states are also generated for each pair of stable grasp states

which have shared reachability, and edges are added between the corresponding stable

grasp states and the hand-off state. Each hand-off state also has a self-transition which

corresponds to a re-grasp. This automaton is constructed given appropriate spatial

interaction graphs (SIGs) which are optimistic estimations for arm spatial interaction.

135

Arm Path Precomputation

The next step in preprocessing is generating a set of roadmaps in the configuration

space of each of the robot manipulators. For the purpose of analysis, it is assumed that

the roadmaps are constructed with the following stipulations:

• Each roadmap is constructed with the asymptotically optimal PRM* method, hav-

ing n samples.

• Roadmaps are constructed for a model of the robot with an optimisitic estimate

of end-effector geometry.

The second point diverges from conventional approaches to the problem and requires

the end-effector collision volume to be a subset of the end-effector’s true volume, regard-

less if it is grasping or at rest. As this work will show in Section 6.4, it is an important

detail for ensuring asymptotic optimality while maintaining practical efficiency.

These roadmaps must be queried in a lazy fashion to account for different ob-

ject grasps, end-effector configurations, and configurations of other robots and objects.

These roadmaps, denoted G, will be used while performing GMAM-search, as detailed

next.

6.3.2 Online GMAM Search

Algorithm 11: Solve MTP(G, R, o, n, qinit)
1 Ak ← Generate Automaton(R, o.k);
2 G ← Preprocess Roadmaps(G, R) ;
3 while Not Finished do
4 Π←GMAM Search(Ak, n, qinit,G);
5 G ← Preprocess Roadmaps(G, R) ;
6 n← 2 · n;

7 end
8 return Π;

This work performs an informed search over GMAM, which has similarities to both

discrete searches like A* and continuous motion planning methods such as EST. The

whole process, including the preprocessing is outlined in Algorithm 11. It begins by

136

constructing the an appropriate high-level representation (Line 1) and then performing

the roadmap precomputation as outlined in Section 6.3.1 (Line 2). The high-level alter-

nates between performing online search (Line 4) and refining the roadmap structures

(Line 5) until some pre-specified stopping criterion is satisfied (Line 3), and eventually

returns a path.

Algorithm 12: GMAM Search(Ak, n, qinit,G)

1 vs ← Free State(Ak); vs.states← {qinit};
2 O ← {vs}; Π← ∅; ΠG ← ∅;
3 while iterations < n do
4 vmin ← peek min(O);
5 Children, qselect ← expand(vmin, Ak);
6 for c ∈ Children do
7 Qtrans ← Get Transitions(vmin, c);
8 if Qtrans 6= ∅ then
9 Π← Find Paths(qselect, Qtrans,G);

10 if Π 6= ∅ then
11 Add Paths(Π, qselect, c);
12 if c /∈ O then
13 c.heuristic← h(c);
14 O.push(c);

15 end
16 if c == vs then
17 ΠG ← ΠG ∪ {Trace Path()};
18 end

19 end

20 end

21 end
22 vmin.heuristic← (1 + vmin.expansions) · h(vmin);
23 ++iterations;

24 end
25 return Minimum Cost(ΠG);

The GMAM Search method outlined in Algorithm 12 keeps track of the high-level free

state, vs (Line 1), which represents a specific set of configurations where all manipulators

have returned to their safe configuration and none of them are grasping an object. This

allows the search to start and end specifically within vs. The method will then initialize

the open set O with the free state for the initial configuration of the world qinit (Line 2).

The search continues much like a typical A* search, extracting the minimum node from

the open set and expanding from the corresponding automaton state to find neighboring

137

Algorithm 13: Get Transitions(q, c)

1 if c == vs and Object at Goal(q) == false then
2 return ∅;
3 end
4 Qgoal ← Generate Consistent Goals(c, q);
5 return Qgoal;

automaton nodes to extend toward (Lines 4, 5). Then, it attempts to do forward search

to find if there are feasible transitions (determined as shown in Algorithm 13) which

can be reached from the expanded configuration qselect. The method then attempts to

find paths to the generated configurations (Line 9, Algorithm 14) and then if any paths

are found, they are added to the planning structure (Line 10, Algorithm 15).

Algorithm 14: Find Paths(qstart, Qgoal,G)

1 Πfeas ← ∅;
2 for q ∈ Qgoal do
3 Πfeas ← Πfeas ∪ Compute Plan(qstart, q,G)
4 end
5 return Πfeas;

Note that the asymptotically optimal dRRT* framework from the previous chapter

is employed here. If the neighboring high-level node has not yet been visited by the

search, it will be added to the open set for future expansions (Lines 12-14). Then

if the neighboring high-level node c is the free state, then the object must be at its

target and all manipulators have returned to their safe state, so this search has been

successful, and all paths which result in the object resting at the goal pose are retained

(Lines 15, 16). The heuristic value for the expanded node vmin is then inflated (Line 17),

and the method eventually returns the minimum cost path to the goal which has been

discovered (Line 19).

Algorithm 15: Add Paths(Π, q, c)

1 for π ∈ Π do
2 qreached ← π(1);
3 qreached.cost = q.cost+ π.cost;
4 c.states← c.states ∪ {qreached};
5 end

138

6.4 Analysis: Asymptotic Optimality

This section aims to extend theoretical guarantees to the multi-arm manipulation search

GMAM-search. Here, analysis from related work showing the asymptotic optimality for

a task and motion planning framework under piecewise-analytic constraints [158]. For

clarity, the high-level idea of this analysis is reviewed here and then the applicability

of this proof to GMAM-search is shown. This analysis requires an extra step to show that

performing lazy search over the constructed roadmap still fulfills the requirements of

the proof.

The proof examines the path returned by the algorithm πn in relation to the

clearance-robust optimal path π*
δn

.

At a high-level, the proof operates by showing the probability of the approach

returning a path significantly longer than the optimal path is summable, i.e. that

∞∑
n=1

P(cn ≥ (1 + ε)c∗) <∞ (6.1)

This is done by showing that this probability is bound by the probability of a few

events. First, the method must be able to draw a sample in each of a set of hyperballs

at the intersection of modes, an event denoted by A∩,n. Second, the method must also

generate sufficient samples within each mode, an event denoted by An. Finally, the

method also must generate samples within an α fraction of small hyperballs, an event

denoted by An,α,β. The proof continues by showing that

P(cn ≥ (1 + ε)c∗) ≤ P(A∩,n) + P(An|A∩,n) + P(An,α,β|A∩,n)

and that each of the probabilities on the right-hand side are summable, i.e. that

∞∑
n=1

P(A∩,n) <∞,
∞∑
n=1

P(An|A∩,n) <∞,

∞∑
n=1

P(An,α,β|A∩,n) <∞.

Combining these results cleary implies the intended result shown in Equation 6.1. It

139

is simply a matter now of showing that the GMAM-search framework also ensures these

probabilities are summable.

This will be accomplished by showing an equivalence in the sampling between GMAM-

search and that of prior work. First, examining the probability P(A∩,n), the argument

simply requires the method to asmptotically sample infinitely often in the submanifold

corresponding to each intersection of modes. The preprocessing phase of GMAM-search

explicitly enumerates each such intersection and draws a number of samples from the

manifold, and thus it is clear that it will also satisfy the summability condition here.

What is less clear, however, is whether this is true for the other two events. Prior

work showed this by assuming for every orbit discovered during the search, the method

would construct a PRM* roadmap of n samples. Then as n tends to infinity, this is

sufficient to ensure that P(An|A∩,n) and P(An,α,β|A∩,n) are summable. Unlike the

related work, GMAM-search constructs PRM* roadmaps for each mode, and then evaluates

paths on each orbit through this graph lazily. This work makes the following claim:

Claim 2. As long as GMAM-search generates the PRM* roadmap for each mode of the

graph in a configuration space Cmode such that for any orbit through this mode, its free

configuration space Cfree
orbit ⊂ Cfree

mode, then

∞∑
n=1

P(An|A∩,n) <∞,
∞∑
n=1

P(An,α,β|A∩,n) <∞.

Proof sketch. Consider the roadmap Gi constructed for arm Ai. Given the as-

sumptions outlined earlier, when querying this roadmap for a solution, it will be subject

to the constraints of an arbitrary orbit such that Cfree
orbit ⊂ Cfree

mode. Then, consider the

subgraph G‘
i of Gi which corresponds to removing the set of vertices and edges which

are in collision given the new free space constraints Cfree
orbit. Let V ‘

i ⊂ Vi be the set of

vertices in this subgraph, and n > n̂ = card(Vi). Furthermore, let α ∈ (0, 1] be the

ratio of samples remaining in G‘
i after pruning for the new free space, i.e. n̂ = αn.

Given the robustly feasible nature of the problem, it is clear that as n tends to infinity,

so too does n̂.

Next, consider any arbitrary vertex v‘ ∈ V ‘. Now, if it were the case that G‘
i were

140

directly constructed using the same set of vertices in a PRM*-like fashion, then the

neighborhood set of vertex v‘ would contain the same or fewer possible neighbors than

the corresponding node in Gi. Then clearly, G‘
i satisfies the exact conditions required

by prior work for asymptotic optimality of the method, as it examined roadmaps which

also contain n̂ = αn vertices.

6.5 Experimental Evaluation

The proposed method greatly reduces the number of modes considered in search, and the

objective of this section is to highlight the computational and solution length benefits

of the proposed framework. The approach was tested in simulation using models of the

Baxter robot platform in two environments, and it was compared to a general framework

proposed in recent literature called Random-MMP [55]. Since Random-MMP also generates

a search tree through the multi-modal search space, the method seemed appropriate to

compare against. Another method in the literature performing multi-modal planning

could also be considered; however, this method focuses on single-arm problems and

does not address the combinatorial challenge that multi-arm manipulation poses [7].

Figure 6.8: The two setups used to evaluate the approach: Shelves environment with 2 arms
(left) and Table environment with 4 arms (right). In both setups, the objective is to place the
object on top of the yellow bin.

This paper examines two problem setups, seen in Figure 6.8, which are the Shelves

environment and the Table environment. For Shelves, n = 2 and for Table, n = 4, where

141

both setups use k = 1; furthermore, the input SIGs used in each setup are illustrated

in Figure 6.9.

Figure 6.9: The input SIGs used for the two problem setups. In the Shelves (left), the robot
cannot pass the object to the other arm through a stable pose (SIGs) but it can via a handoff
(SIGh). The Table (right) uses SIGs of the same topology; however, the two right arms of the
robots cannot interact.

In the Shelves environment, the arms can perform handoff, but cannot pass the

object through a stable pose. In the Table environment, all arms can interact except

for arms 1 and 3. The Shelves environment is inspired by applications such as the

Amazon Picking Challenge, where using both arms can potentially increase efficiency

of the method. The Table environment is used as a prototypical example requiring

multiple arm interactions.

The proposed search over GMAM was compared with Random-MMP, and it shows com-

petitive performance, as illustrated in Figure 6.10. Using comparable computation

time, the proposed method generates paths up to five times shorter than Random-MMP,

and significantly fewer state transitions. The A*-style search is able to appropriately

leverage the precomputed heuristics to bias search in such a way to avoid redundant

transitions.

Notably, the proposed method has a higher rate of timing out (after 15 minutes)

for the harder problem, even though on average it is faster than Random-MMP. This is

likely due to heuristics biasing the search into a local minimum, causing the method

to occasionally spend too much time exploring regions of the space which do not lend

themselves to a solution. This motivates potential future work to determine what

142

heuristics are appropriate in the context of multi-modal n-arm manipulation.

Method GMAM SEARCH Random-MMP

Environment Shelves Table Shelves Table

Search Time(s) 7.41s 321.45s 13.31s 379.44s
Expansions 31.12 142.43 38.78 271.45

Path Quality(s) 11.95s 17.08s 50.75s 75.09s
Transitions 4.39 5.70 10.00 14.28

Timeouts(%) 0% 9.82% 0% 1.72%

Figure 6.10: Average statistics for the methods for 350+ experiments, which were solved by
both methods. Search time is how long it took to find a path during online query resolution,
while path quality is the duration of the solution path. Transitions is the number of high-level
state transitions in the automaton. Timeout percentages are given over all attempted problem
instances in each environment.

6.6 Discussion

This work describes the topology of n-arm prehensile manipulation, generalizing state-

of-the-art results [136, 52]. The given representation prunes redundant modes and

yields a general search framework to solve multi-arm problem. A formal algorithm for

constructing a manipulation graph (GMAM) and useful preprocessing tools are provided,

and an online search method following a prior multi-modal motion planning framework

is provided [55].

An important future step is evaluating and improving practical performance when

k > 1. It is possible the greedy nature of the method causes issues with local minima,

which should also be addressed. A related issue is to rigorously study the best approach

to inflating heuristics in search to achieve good coverage of the search space. The

method could benefit from employing M*-style results to ensure planning for multiple

arms uses the optimal decoupling.

The framework would be improved by adapting it toward mobile manipulation and

non-prehensile manipulation primitives [34, 7]. Furthermore, the method could leverage

caging results to practically handle the k > 1 case [20, 38]. The approach also needs to

be made amenable to other practical issues, such as force control [113], grasp planning

[5], sensing [70, 74] and reasoning over uncertainty [82, 81].

143

Chapter 7

Conclusions

This work is presented as an approach toward solving complex multi-arm manipulation

tasks. The focus is on challenging applications where the shape and initial pose of

objects is unknown during precomputation, and determining methods for quickly per-

forming the object transfer task in this domain. This work makes contributions towards

fully automated recycling centers where the methods provide formal guarantees on the

quality of paths produced by the robot systems in order to maximize throughput. This

setup requires flexible online methods in order to deal with the unstructured nature

of the environment. The final result of this work is a scalable and flexible framework

which leverages compact planning representations to provide globally asymptotically

optimal task and motion planning in manipulation domains.

7.1 Statement of Contributions

The main contributions of this work are spread across chapters 3, 4, 5, and 6. It

begins with expanding the known boundaries regarding properties of sampling-based

motion planners, and ends with showing that it is possible to have efficient manipulation

planning with formal path quality guarantees for the task as a whole.

Beginning in chapter 3, this work sought out to expand upon the knowledge of what

properties sampling-based planners exhibit. It has been known since very early in the

field of study that these method exhibit probabilistic completeness (definition 4). This

property states that these methods return a solution to the motion planning problem,

if one exists, with probability approaching 1 as the method is run to infinity. Simi-

larly, recent related work showed that these methods also exhibit asymptotic optimality

(definition 5). This property states that the methods return the optimal solution with

144

probability approaching 1 as the method is run to infinity, given sufficient density of

the underlying planning structure.

These properties however, are asymptotic in nature. That is, they only truly hold in

a theoretical model where the planning is run over an infinite time horizon. This is the

motivation behind chapter 3, which formally presents the property of probabilistic near-

optimality (property 1). This property formally shows that there exists probabilistic

bounds on the length of a solution returned by these methods relative to the optimal

solution after a finite amount of computation. Formally, the main contributions of

chapter 3 can be summarized as follows:

• The probabilistic near-optimality of an asymptotically sparse variant of PRM* is

proven, and the drawn bounds are shown to hold closely to the actual results of

experimental trials.

• A probabilistic bound on solution quality is formulated, and a principled stop-

ping criterion is identified which probabilistically guarantees low-cost solutions

are returned.

• A novel approximation of a previously unsolved variant of the ball-line picking

problem is drawn, which may have relevance beyond this work.

The experimental results also recovered the known issue of the curse of dimensionality.

That is, in order to ensure with high confidence that PRM* returns a solution that is

near-optimal in higher-dimensional spaces, the method will require exponentially many

samples to be drawn. While this was a known result, it formally motivates the con-

tributions of the rest of this work, which focuses on providing compact representations

for planning.

In particular, chapter 4 seeks out ways to still provide formal path quality guarantees

for single-robot motion planning without requiring the exponentially large number of

samples required to ensure probabilistic near-optimality guarantees. This motivates

creating compact planning representations that can solve motion planning problems

efficiently. Such a compact representation should have a small memory footprint while

returning paths of high quality.

145

To this end, this chapter introduces the concept of a sparse roadmap spanner: a

compact representation of the free configuration space that requires orders of magnitude

fewer nodes than the asymptotically optimal PRM* approach and guarantees asymptotic

near-optimality (definition 9). Asymptotic near-optimality ensures that an algorithm

returns a solution to the motion planning problem of length bounded by the length of

the true optimal path with probability 1 as the method is run to infinity. Formally, the

main contributions of chapter 4 can be summarized as follows:

• It provides a method to construct a sparse roadmap spanner (SPARS), which is

proven to be asymptotically near-optimal.

• It proves this approach provides asymptotic sparsity: that the probability of

growing the structure tends to 0 as the method is run to infinity.

• It shows the practical speed-ups and orders of magnitude less memory required

by the method over asymptotically optimal PRM* graphs.

While directly proving probabilistic near-optimality for the SPARS framework is beyond

the scope of this work, it does show that practical sparse roadmap spanners can be

employed in practice for robot motion planning. The original problem posed, however,

requires the use of multiple robots to solve challenging object transfer tasks.

To this end, chapter 5 focuses on methods for effective multi-robot motion planning.

The effort is focused on centralized, coupled planning in order to ensure theoretical

properties. While the efforts of chapter 4 provide significant reductions in the memory

cost of storing a planning structure, using this compact representation still requires

a good deal of computational effort during construction for high-dimensional spaces.

This motivates the study of a new kind of compact representation for efficiently solving

multi-robot motion planning problems.

An asymptotically optimal variant of dRRT is formulated, which allows practically

efficient motion planning for multi-robot systems while maintaining formal guarantees

on path quality. Specifically, it ensures that the online search is asymptotically optimal.

This is especially challenging since the approach does not explicitly maintain the entire

146

planning structure in memory, but rather only expands a tree through an asymptotically

optimal implicit graph representation. Then, the main contributions of chapter 5 can

be summed up as:

• It formalizes the dRRT* method, an asymptotically optimal variant of dRRT with

several practical performance improvements.

• It shows asymptotic optimality guarantees can be provided without explicitly

constructing a dense graph in composite configuration space.

• It shows via simulated verification that the method scales well to a large number

of robots and quickly returns initial solutions of low cost.

This contribution reflects a significant milestone for high-dimensional motion planning

in that it is possible to provide formal path quality guarantees without directly con-

structing and maintaining a planning structure in the composite configuration space of

the set of robots being planned over. Furthermore, due to the nature of the method, i.e.,

it implicitly composes roadmaps for each of the robots, it is amenable to using both

probabilistically near-optimal PRM* roadmaps or asymptotically near-optimal sparse

roadmaps spanner (SPARS) roadmaps to gain the relative benefits of either of these

methods.

The original motivating problem however involves robot manipulation problems us-

ing multiple fixed-base robot manipulators. To this end, chapter 6 outlines a framework

for performing object transfer tasks using a set of robot manipulators. In line with the

theme of this dissertation, it sought out to find a minimal, compact representation for

the task planning problem and provide solutions to the problem while providing formal

guarantees.

A multi-arm manipulation graph (GMAM) is formulated, providing the minimal topol-

ogy for solving multi-arm manipulation problems involving hand-offs and stable-pose

object transfers. The chapter outlines useful preprocessing and shows how to perform

the high-level search over this topology in an efficient manner. Formally, chapter 6

provides the following contributions:

147

• It generalizes the dual-arm manipulation topology to the minimal topology for

prehensile multi-arm manipulation problems.

• It provides a preprocessing framework that uses scalable offline roadmap precom-

putation to adapt to novel objects and object poses.

• A formal proof of the asymptotic optimality for the task and motion planning

problem is provided, showing the method converges to returning the optimal

path over the optimal sequence of actions.

• Experiments using the approach demonstrate good scalability.

This final set of contributions represents the progress this paper posits toward provably

efficient automated recycling tasks in semi-unstructured environments. The flexibility

of this approach allows the method to handle novel object placements quickly while

performing the object transfer task with provably efficient paths.

7.2 Important Open Questions

While this work provides several contributions toward having compact representations

with formal guarantees, there are still many avenues of investigation and open questions

remaining unanswered. The general theme of the work includes compact graph repre-

sentations; however, there is a great body of work focusing on tree-based motion plan-

ning approaches. Mathematically, studying the properties of these approaches requires

different tools, but given the popularity of the methods, probabilistic near-optimality

for these approaches should be investigated. Furthermore, many of the models here,

including the dRRT* method for multi-robot planning work with undirected graphs,

and it would be interesting to investigate how the sparse roadmap spanner and dRRT*

frameworks can be adapted for systems without symmetric kinematics. This would

necessarily require directed graphs. This work would also in general benefit from fur-

ther efforts to test the methods in physical testbeds to determine practical needs and

concerns for the approaches. For instance, these methods may need to be integrated

148

with online feedback control in order to provide robust paths even under actuation

uncertainty.

Much of the work in chapter 3 is also limited in that it reasons over a single robust

optimal path, and this framework should be extended to reason over multiple homotopic

classes. Furthermore, the automated stopping criterion posed by this chapter suggests

a means for finding a principled scheme for performing random restarts, a practical but

often heuristic approach used to increase algorithm success rate. This lends itself to a

further optimization problem that could be investigated in future work.

There were also open questions left from chapter 4. Two of the most pressing and

difficult open questions remain unanswered: (i) can the finite-time properties discussed

in chapter 3 be extended to the construction of sparse roadmap spanners, and (ii)

under what conditions can the method be shown to truly converge to a finite-sized data

structure? It would be desirable to be able to directly drawn a bound on the path

length returned by the SPARS framework at any finite iteration n, and the fact that

the method converges to no longer growing the structure unfortunately does not imply

that the structure that is constructed is finite. Furthermore, the method would benefit

from finding better, or perhaps automated methods to select the algorithm parameters

such as the stretch factor t and the sparse visibility range ∆.

The work in chapter 5 is an important contribution; however, there were still open

questions here. Most notably, the proofs of asymptotic optimality of the method as-

sumed a somewhat restrictive class of cost functions, so a more general proof over a

wider range of cost metrics would be beneficial. Also, given the restrictions stated

above, an extension of this framework to scenes with dynamic obstacles or robots with

kinodynamic constraints would greatly improve its practical use for a wide range of

physical platforms.

Finally, the work presented in chapter 6 opens up a great deal of possible work di-

rections. The experimental results shown in this work are limited to the k = 1 case, as

complex manipulation primitives are required for k > 1, but the framework is already

designed to be amenable to this. It would be good to see if the method practically

scales under these conditions. Furthermore, the approach would benefit greatly from a

149

broader study of heuristics for performing the online search, and more rigorous admis-

sible heuristics should allow the method to quickly converge to the optimal sequence of

actions, reducing solution computation time. There are also many practical variations

on the problem that the framework currently does not directly address, such as non-

prehensile manipulation problems, and mobile manipulation. The results presented

are also simulation-based, and practical implementation could benefit by integrating

advanced grasping techniques, force control, sensing integration, and reasoning over

uncertainty.

7.3 Concluding Remarks

This work is focused on making progress towards solving complex, unstructured object

transfer manipulation tasks, and pushes in two directions that the field may bene-

fit from: using compact representations for planning problems, and providing formal

guarantees on the solution length of paths returned by these methods after finite com-

putation. The results of chapter 3 represent a principled approach to sampling-based

methods, allowing practitioners to make grounded statements about the performance

of sampling-based planners in practice. For many years, it was not possible to draw

meaningful conclusions if a PRM planner did not return a solution, but this framework

provides formal machinery to make educated statements about the solvability of the

problem. While the exact framework presented here may not end up being the most

practical approach for guaranteeing finite-time properties, the author believes these are

critical considerations for the advancement of the field.

Furthermore, the practical benefits of compact representations have been illustrated

in chapters 4 and 6. Even though the computational budget of computing systems

continues to increase, methods which operate over multiple robots simultaneously such

as the dRRT* approach in chapter 5 show the practical benefit of having compact and

efficient planning structures. By pursuing these directions, the future of automation

should be able to benefit from practical efficiency and have provably high-quality paths,

increasing throughput of these systems even for increasingly unstructured environments.

This should allow automated manufacture to push closer to maximum efficiency.

150

Vita

Andrew Dobson

2012-2017 Ph. D. in Computer Science, Rutgers University

2010-12 M. Sc. in Computer Science, University of Nevada, Reno

2006-10 B. Sc. in Computer Science, University of Nevada, Reno

2006 Graduated from Carson High School, Carson City, Nevada.

2017-2017 Graduate assistant, Department of Computer Science, Rutgers University

2015-2015 Lecturer, Department of Computer Science, Rutgers University

2013-2017 Research fellow, DIMACS, Rutgers University

2012-2013 Teaching assistant, Department of Computer Science, Rutgers University

151

References

[1] P. Agarwal. Compact Representations for Shortest-Path Queries. In IROS Work-
shop on Progress and Open Problems in Motion Planning, Sept. 2011.

[2] R. Alterovitz, S. Patil, and A. Derbakova. Rapidly-exploring roadmaps: Weighing
exploration vs. refinement in optimal motion planning. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), Shanghai, China, 2011.

[3] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: An
Obstacle-based PRM for 3D Workspaces. In WAFR, pages 155–168, 1998.

[4] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, J.-C. Latombe, and C. Varm.
Stochastic Roadmap Simulation: An Efficient Representation and Algorithm for
Analyzing Molecular Motion. Journal of Computational Biology, 10:257–281,
2003.

[5] B. Balaguer and S. Carpin. A learning method to determine how to approach
an unknown object to be grasped. International Journal of Humanoid Robotics,
8(3):579–606, 2011.

[6] J. Barraquand and J.-C. Latombe. Robot Motion Planning: A Distributed Rep-
resentation Approach. IJRR, 10(6):628–649, Dec. 1991.

[7] J. Barry, L. Kaelbling, and T. Lozano-Perez. A Hierarchical Approach to Ma-
nipulation with Diverse Actions. IEEE Internation Conference on Robotics and
Automation, 2013.

[8] S. Baswana and S. Sen. A simple and linear time randomized algorithm for com-
puting sparse spanners in weighted graphs. Random Structures and Algorithms,
30(4):532–563, July 2007.

[9] D. Berenson, H. Choset, and J. J. Kuffner. An Optimaztion Approach to Planning
for Mobile Manipulation. pages 1187–1192. IEEE International Conference on
Robotcis and Automation (ICRA), May 2008.

[10] D. Berenson, S. Srinivasa, and J. Kuffner. Task Space Regions: A Framework for
Pose-Constrained Manipulation Planning. 30(12):1435 – 1460, October 2011.

[11] R. Bohlin and L. Kavraki. Path Planning Using Lazy PRM. In IEEE Intl. Conf.
on Robotics and Automation (ICRA), volume 1, pages 521–528, San Francisco,
CA, Apr. 2000.

[12] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian Sampling
Strategy for Probabilistic Roadmap Planners. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 1018–1023, Detroit, MI, May 1999.

152

[13] M. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-Randomized Path
Planning. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1481–
1487, Seoul, Korea, May 2001.

[14] R. Brooks and T. Lozano-Pérez. A Subdivision Algorithm in Configuration Space
for Findpath with Rotation. In IJCAI, pages 799–803, 1983.

[15] A. Bry and N. Roy. Rapidly-exploring Random Belief Trees for Motion Planning
Under Uncertainty. IEEE International Conference on Robotcis and Automation
(ICRA), May 2011.

[16] S. Cambon, R. Alami, and F. Gravot. A Hybrid Approach to Intricate Motion,
Manipulation, and Task Planning. International Journal of Robotics Research,
28(1):104–126, 2009.

[17] J. Canny. The Complexity of Robot Motion Planning. PhD thesis, MIT, Cam-
bridge, MA, 1988.

[18] S. Chaudhuri and V. Koltun. Smoothed Analysis of Probabilistic Roadmaps.
Computational Geometry, 42(8):731 – 747, 2009.

[19] P. C. Chen and Y. K. Hwang. Practical Path Planning Among Movable Obstacles.
In Proc. of the IEEE Intern. Conf. on Robotics and Automation, pages 444–449,
1991.

[20] P. Cheng, J. Fink, and V. Kumar. “abstractions and algorithms for cooperative
multiple robot planar manipulation”. In Robotics: Science and Systems, 2008.

[21] H. Chitsaz, S. M. LaValle, D. Balkcom, and M. Mason. Minimum Wheel-Rotation
Paths for Differential-Drive Mobile Robots. IJRR, 28(1):66–80, 2009.

[22] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations. MIT Press, Boston, MA, 2005.

[23] J. B. Cohen, M. Phillips, and M. Likhachev. Planning Single-arm Manipulations
with n-Arm Robots. In Proceedings of Robotics: Science and Systems (RSS),
Berkeley, USA, July 2014.

[24] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 19(4):72–82, Dec. 2012.

[25] B. Dacre-Wright, J.-P. Laumond, and R. Alami. Motion Planning for a Robot and
a Movable Object Amidst Polygonal Obstacles. In IEEE International Conference
on Robotics and Automation, pages 2474–2480, 1992.

[26] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental
Task and Motion Planning: A Constraint-Based Approach. In Robotics: Science
and Systems, pages 1–6, 2016.

[27] A. Dobson and K. E. Bekris. A Study on the Finite-Time Near-Optimality Prop-
erties of Sampling-Based Motion Planners. Tokyo Big Sight, Tokyo, Japan, Nov.
2013. IROS.

153

[28] A. Dobson and K. E. Bekris. Improving Sparse Roadmap Spanners. In ICRA,
2013.

[29] A. Dobson and K. E. Bekris. Sparse Roadmap Spanners for Asymptotically Near-
Optimal Motion Planning. IJRR, 33, Jan. 2014.

[30] A. Dobson and K. E. Bekris. Planning Representations and Algorithms for Pre-
hensile Multi-Arm Manipulation. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2015.

[31] A. Dobson, T. D. Krontiris, and K. E. Bekris. Sparse Roadmap Spanners. In
WAFR, Cambridge, MA, June 2012.

[32] A. Dobson, G. Moustakides, and K. E. Bekris. Geometric Probability Results For
Bounding Path Quality In Sampling-Based Roadmaps After Finite Computation.
In IEEE Inter. Conf. on Robotics and Automation (ICRA), 2015.

[33] A. Dobson, K. Solovey, R. Shome, D. Halperin, and K. E. Bekris. Scalable
Asymptotically-Optimal Multi-Robot Motion Planning. Technical report, arXiv,
July 2017.

[34] M. R. Dogar and S. S. Srinivasa. A Framework for Push-Grasping in Clutter. In
Robotics: Science and Systems (RSS), 2011.

[35] C. Dornhege, A. Hertle, and B. Nebel. Lazy Evaluation and Subsubmption
Caching for Search-based Integrated Task and Motion Planning. In IROS Work-
shop on AI-based Robotics, 2013.

[36] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. 1998.

[37] R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. In Proceedings of the 2Nd International
Joint Conference on Artificial Intelligence, IJCAI’71, pages 608–620, San Fran-
cisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[38] J. Fink, M. Ani Hsieh, and V. Kumar. Multi-robot Manipulation via Caging in
Environments with Obstacles. In IEEE International Conference on Robotics and
Automation, 2008.

[39] M. Foskey, M. Garber, M. Lin, and D. Manocha. A Voronoi-based Hybrid Motion
Planner. In IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS),
2001.

[40] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. FFRob: An Efficient Heuris-
tic for Task and Motion Planning. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2014.

[41] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. Sample-Based Methods for
Factored Task and Motion Planning. In Robotics: Science and Systems (RSS),
2017.

154

[42] S. Ge and Y. Cui. Dynamic Motion Planning for Mobile Robots using Potential
Field Method. Autonomous Robots, 13:207–222, 2002.

[43] R. Geraerts and M. H. Overmars. A Comparative Study of Probabilistic Roadmap
Planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson,
editors, Algorithmic Foundations of Robotics V, pages 43–58. Springer-Verlag,
2003.

[44] R. Geraerts and M. H. Overmars. Creating High-Quality Roadmaps for Motion
Planning in Virtual Environments. In IROS, pages 4355–4361, Beijing, China,
Oct. 2006.

[45] R. Geraerts and M. H. Overmars. Reachability-based Analysis for Probabilis-
tic Roadmap Planners. Journal of Robotics and Autonomous Systems (RAS),
55:824–836, 2007.

[46] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. The Planning Domain Definition Language. Technical report,
Yale Center for Computational Vision and Control, Oct. 1998.

[47] M. Gharbi, J. Cortés, and T. Siméon. Roadmap Composition for Multi-Arm
Systems Path Planning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2009.

[48] F. Gravot and R. Alami. A Method for Handling Multiple Roadmaps and Its
Use for Complex Manipulation Planning. In IEEE Internation Conference on
Robotics and Automation (ICRA), 2003.

[49] G. Grimmet and D. Stirzaker. Probability and Random Processes. Oxford Uni-
versity Press, 2001.

[50] C. Grinstead and J. Snell. Introduction to Probability. American Mathmatical
Society, Providence, RI, 2012.

[51] L. J. Guibas, C. Holleman, and L. E. Kavraki. A Probabilistic Roadmap Planner
for Flexible Objects with a Workspace Medial-Axis-Based Sampling Approach.
In IROS, Oct. 1999.

[52] K. Harada, T. Tsuji, and J.-P. Laumond. A Manipulation Motion Planner for
Dual-Arm Industrial Manipulators. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 928–934, 2014.

[53] E. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 2:100–107, 1968.

[54] K. Hauser and J.-C. Latombe. Multi-modal Motion Planning in Non-Expansive
Spaces. In International Journal of Robotics Research (IJRR), volume 29, page 7,
2010.

[55] K. Hauser and V. Ng-Thow-Hing. Randomized Multi-Modal Motion Planning
for a Humanoid Robot Manipulation Task. International Journal of Robotics
Research, 30(6):678–698, Feb. 2011.

155

[56] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. J. Artif. Int. Res., 14(1):253–302, May 2001.

[57] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The Bridge Test for Sampling Narrow
Passages with Probabistic Roadmap Planners. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 4420–4426, Taipei, Taiwan, Sept. 2003.

[58] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. On Finding
Narrow Passages with Probabilistic Roadmap Planners. In WAFR, Houston,
TX, 1998.

[59] D. Hsu, J.-C. Latombe, and R. Motwani. Path Planning in Expansive Configura-
tion Spaces. In IEEE Intl. Conf. on Robotics and Automation (ICRA), volume 3,
pages 2719–2726, Albuquerque, NM, Apr. 1997.

[60] D. Hsu, J.-C. Latombe, and R. Motwani. Path Planning in Expansive Con-
figuration Spaces. Int. Journal of Computational Geometry and Applications,
9(4-5):495–512, 1999.

[61] Y. K. Hwang and N. Ahuja. A Potential Field Approach to Path Planning. TRA,
8(1):23–32, Feb. 1992.

[62] L. Jaillet and T. Simeon. Path Deformation Roadmaps. In WAFR, New York
City, NY, July 2006.

[63] L. Janson, A. Clark, and M. Pavone. Fast Marching Tree: a Fast March-
ing Sampling-Based Method for Optimal Motion Planning in Many Dimensions.
Technical report, arXiv, Apr. 2014.

[64] L. Janson and M. Pavone. Fast Marching Trees: a Fast Marching Sampling-
Based Method for Optimal Motion Planning in Many Dimensions. International
Symposium on Robotics Research, Dec. 2013.

[65] L. Janson, A. Schmerling, A. Clark, and M. Pavone. Fast Marching Tree: a
Fast marching Sampling-Based Method for Optimal Motion Planning in Many
Dimensions. International Journal of Robotics Research (IJRR), 34(7):883–921,
2015.

[66] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical Task and Motion Planning in
the Now. In IEEE International Conference on Robotics and Automation (ICRA),
2011.

[67] S. Kambhampati and L. S. Davis. Multiresolution Path Planning for Mobile
Robots. JRA, 2(3):135–145, Sept. 1986.

[68] S. Karaman and E. Frazzoli. Incremental Sampling-based Algorithms for Optimal
Motion Planning. In RSS, Zaragoza, Spain, 2010.

[69] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Motion
Planning. IJRR, 30(7):846–894, June 2011.

[70] D. Katz, A. Venkatraman, M. Kazemi, D. Bagnell, and A. Stentz. Perceiving,
Learning and Exploiting Object Affordances for Autonomous Pile Manipulation.
In Robotics: Science and Systems (RSS), 2013.

156

[71] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe. Analysis of Probabilistic
Roadmaps for Path Planning. IEEE TRA, 14(1):166–171, 1998.

[72] L. E. Kavraki and J.-C. Latombe. Probabilistic Roadmaps for Robot Path Plan-
ning, pages 33–53. John Wiley, 1998.

[73] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
TRA, 12(4):566–580, 1996.

[74] J. Kenney, T. Buckley, and O. Brock. Interactive Segmentation for Manipulation
in Unstructured Environments. In IEEE International Conference on Robotics
and Automation (ICRA), pages 1343–1348, 2009.

[75] O. Khatib. Real-time Obstacle Avoidance for Manipulators and Mobile Robots.
IJRR, 5(1):90–98, 1986.

[76] A. Kimmel, A. Dobson, Z. Littlefield, A. Krontiris, J. Marble, and K. E. Bekris.
PRACSYS: An Extensible Architecture for Composing Motion Controllers and
Planners. In SIMPAR, Tsukuba, Japan, 11/2012 2012.

[77] D. Koditschek. Robot Planning and Control via Potential Functions. In The
Robotics Review 1, pages 349–367. MIT Press, 1989.

[78] Y. Koga, K. Kondo, J. J. Kuffner, and J.-C. Latombe. Planning Motions with
Intentions. In Proc. of SIGGRAPH, pages 395–408, 1994.

[79] Y. Koga and J.-C. Latombe. On Multi-arm Manipulation Planning. In Prof. of
the IEEE Intern. Conference on Robotics and Automation (ICRA), 1994.

[80] G. Konidaris, L. Kaelbling, and T. Lozano-Perez. Constructing Symbolic Rep-
resentations for High-Level Planning. In Association for the Advancement of
Artificial Intelligence (AAAI) conference, 2014.

[81] M. Koval, N. Pollard, and S. S. Srinivasa. Pose Estimation for Cotact Manip-
ulation with Manifold Particle Filters. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013.

[82] M. Koval, N. Pollard, and S. S. Srinivasa. Pre- and Post-Contact Policy De-
composition for Planar Contact Manipulation Under Uncertainty. In Robotics:
Science and Systems (RSS), 2014.

[83] A. Krontiris and K. E. Bekris. Efficiently solving general rearrangement tasks:
A fast extension primitive for an incremental sampling-based planner. In Inter-
national Conference on Robotics and Automation (ICRA), Stockholm, Sweden,
05/2016 2016.

[84] A. Krontiris, R. Luna, and K. Bekris. From Feasibility Tests to Path Planners
for Multi-agent Pathfinding. pages 114–122, 01 2013.

[85] A. M. Ladd and L. E. Kavraki. Measure Theoretic Analysis of Probabilistic Path
Planning. IEEE TRA, 20(2):229–242, Apr. 2004.

157

[86] K. Lakshmanan, A. Sachdev, Z. Xie, D. Berenson, K. Goldberg, and P. Abbeel.
A Constraint-Aware Motion Planning Algorithm for Robotic Folding of Clothes,
pages 547–562. Springer International Publishing, Heidelberg, 2013.

[87] F. Lamiraux and L. E. Kavraki. Planning Paths for Elastic Objects Under Manip-
ulation Constraints. International Journal of Robotics Research, 20(3):188–208,
2001.

[88] F. Lamiraux and J.-P. Laumond. On the Expected Complexity of Random Path
Planning. In ICRA, pages 3306–3311, 1996.

[89] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

[90] S. LaValle. Rapidly-exploring random trees: A new tool for path planning, 1998.

[91] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[92] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. WAFR, 2000.

[93] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning. IJRR,
20:378–400, May 2001.

[94] S. Leroy, J. Laumond, and Siméon. Multiple Path Coordination for Mobile
Robots: A Geometric Algorithm. Barcelona, Catalonia, Spain, 1999. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

[95] P. Leven and S. Hutchinson. Using manipulability to bias sampling during the
construction of probabilistic roadmaps. IEEE Transactions on Robotics and Au-
tomation, 19(6):1020–1026, 2003.

[96] M. Levinh, J. Scholz, and M. Stilman. Hierarchical Decision Theoretic Plan-
ning for Navigation Among Movable Obstacles. In Proc. of the Workshop on the
Algorithmic Foundations of Robotics, 2012.

[97] Y. Li and K. E. Bekris. Learning Approximate Cost-to-Go Metrics To Improve
Sampling-based Motion Planning. In IEEE ICRA, Shanghai, China, 9-13 May
2011.

[98] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically Optimal Sampling-based
Kinodynamic Planning. International Journal of Robotics Research (IJRR),
35:528–564, 04/2016 2016.

[99] J.-M. Lien and Y. Lu. Planning Motion in Point-Represented Contact Spaces
Using Approximate Star-Shaped Decomposition. IROS, Oct. 2009.

[100] S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion by in-
creasing voronoi bias in rrts. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, ICRA 2004, April 26 - May 1, 2004,
New Orleans, LA, USA, pages 3251–3257, 2004.

[101] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers, pages 108–120, 1983.

158

[102] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based method for solving
sequential manipulation planning problems. 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3684–3691, 2014.

[103] J. Marble and K. E. Bekris. Asymptotically Near-Optimal Planning with Prob-
abilistic Roadmap Spanners. IEEE TRO, 29:432–444, 2013.

[104] J. D. Marble and K. E. Bekris. Asymptotically Near-Optimal is Good Enough
for Motion Planning. In ISRR, Flagstaff, AZ, Aug. 2011.

[105] J. D. Marble and K. E. Bekris. Computing Spanners of Asympotically Optimal
Probabilistic Roadmaps. In IEEE/RSJ IROS, San Francisco, CA, Sept. 2011.

[106] J. D. Marble and K. E. Bekris. Towards Small Asymptotically Near-Optimal
Roadmaps. In IEEE ICRA, Minnesota, MN, May 2012.

[107] Z. McCarthy, T. Bretl, and S. Hutchinson. Proving path non-existence using
sampling and alpha shapes. In ICRA, May 2012.

[108] O. Nechushtan, B. Raveh, and D. Halperin. Sampling-Diagrams Automata: a
Tool for Analyzing Path Quality in Tree Planners. In WAFR, Singapore, Dec.
2010.

[109] C. Nielsen and L. E. Kavraki. A Two-Level Fuzzy PRM for Manipulation Plan-
ning. In IEEE/RSJ IROS, pages 1716–1722, Japan, 2000.

[110] D. Nieuwenhuisen and M. H. Overmars. Using Cycles in Probabilistic Roadmap
Graphs. In IEEE ICRA, pages 446–452, 2004.

[111] N. Nilsson. Shakey the Robot. Technical Report 323, SRI International, 1984.

[112] J. Ota. Rearrangement Planning of Multiple Movable Objects. In Prof. of the
IEEE Intern. Conference on Robotics and Automation (ICRA), 2004.

[113] E. Paljug, T. Sugar, V. Kumar, and X. Yun. Important Considerations in Force
Control with Applications to Multi-Arm Manipulation. In IEEE International
Conference on Robotics and Automation, pages 1270–1275, 1992.

[114] D. Peleg and A. Schäffer. Graph Spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

[115] J. Peng and S. Akella. Coordinating Multiple Robots with Kinodynamic Con-
straints Along Specified Paths. The International Journal of Robotics Research,
24(4):295–310, 2005.

[116] M. Penrose. Random Geometric Graphs. 2003.

[117] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-
Based Roadmap of Trees for Parallel Motion Planning. IEEE TRA, 21(4):587–
608, 2005.

[118] E. Plaku and G. Hager. Sampling-based Motion Planning with Symbolic, Ge-
ometric, and Differential Constraints. In IEEE International Conference on
Robotics and Automation (ICRA), 2010.

159

[119] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society.

[120] S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Linear
POMDPs by Factoring the Covariance. International Symposium of Robotics
Research (ISRR), 2008.

[121] B. Raveh, A. Enosh, and D. Halperin. A Little More, a Lot Better: Improving
Path Quality by a Path-Merging Algorithm. IEEE TRO, 27(2):365–370, 2011.

[122] J. H. Reif. Complexity of the Generalized Mover’s Problem. In FOCS, pages
421–427, 1979.

[123] E. Rimon and D. Koditschek. Exact Robot Navigation Using Artificial Potential
Functions. IEEE Transactions on Robotics and Automation, 8(5):501–518, Oct.
1992.

[124] L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approxi-
mate distance oracles and spanners. In International Colloquim on Automata,
Languages and Programming (ICALP), pages 261–272. Springer, 2005.

[125] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

[126] O. Salzman and D. Halperin. Asymptotically Near-Optimal RRT for Fast, High-
quality Motion Planning. Hong Kong, China, June 2014. ICRA.

[127] G. Sánchez and J.-C. Latombe. On Delaying Collision Checking in PRM
Planning: Application to Multi-Robot Coordination. International Journal of
Robotics Research, 21(1):5–26, 2002.

[128] G. Sanchez and J.-C. Latombe. Using a PRM Planner to Compare Centralized
and Decoupled Planning for Multi-Robot Systems. In IEEE Inter. Conf. on
Robotics and Automation (ICRA), pages 2112–2119, 2002.

[129] L. A. Santalo. Integral Geometry and Geometric Probability, volume 1 of Encyclo-
pedia of Mathematics and its Applications. Addison-Wesley Publishing Company,
Reading, Massachusets, 1976.

[130] E. Schmerling, L. Janson, and M. Pavone. Optimal sampling-based motion plan-
ning under differential constraints: The drift case with linear affine dynamics.
In 54th IEEE Conference on Decision and Control, CDC 2015, Osaka, Japan,
December 15-18, 2015, pages 2574–2581, 2015.

[131] E. Schmerling, L. Janson, and M. Pavone. Optimal sampling-based motion plan-
ning under differential constraints: The driftless case. In IEEE International
Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30
May, 2015, pages 2368–2375, 2015.

[132] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and W. Bur-
gard. Optimal, Sampling-based Manipulation Planning. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on, pages 3426–3432. IEEE,
2017.

160

[133] E. Schmitzberger, J. L. Bouchet, M. Dufaut, D. Wolf, and R. Husson. Capture
of Homotopy Classes with Probabilistic Roadmap. In IEEE/RSJ IROS, pages
2317–2322, 2002.

[134] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: III. Coordinating
the Motion of Several Independent Bodies: The Special Case of Circular Bod-
ies Moving Amidst Polygonal Barriers. The International Journal of Robotics
Research, 2(3):46–75, 1983.

[135] F. Schwarzer, M. Saha, and J.-C. Latombe. Adaptive Dynamic Collision Checking
for Single and Multiple Articulated Robots in Complex Environments. IEEE
Transactions on Robotics, 21(3):338–353, 2005.

[136] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manipulation Planning
with Probabilistic Roadmaps. International Journal of Robotics Research (IJRR),
23(8):729–746, 2004.

[137] T. Simeon, J.-P. Laumond, and C. Nissoux. Visibility-based Probabilistic
Roadmaps for Motion Planning. Advanced Robotics Journal, 41(6):477–494, 2000.

[138] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas,
and D. Kragic. Dual-arm Manipulation: A Survey. In Robotics and Autonomous
Systems, volume 60, pages 1340–1353, 2012.

[139] K. Solovey, O. Salzman, and D. Halperin. Finding a needle in an exponential
haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot mo-
tion planning. I. J. Robotics Res., 35(5):501–513, 2016.

[140] K. Solovey, O. Salzman, and D. Halperin. Finding a needle in an exponential
haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot mo-
tion planning. I. J. Robotics Res., 35(5):501–513, 2016.

[141] K. Solovey, O. Salzman, and D. Halperin. New Perspective on Sampling-based
Motion Planning via Random Geometric Graphs. CoRR, abs/1602.05460, 2016.

[142] K. Solovey, O. Salzman, and D. Halperin. New Perspective on Sampling-based
Motion Planning via Random Geometric Graphs. In Robotics Science and Sys-
tems (RSS), 2016.

[143] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined
Task and Motion Planning through an Extensible Planner-Independent Interface
Layer. In IEEE International Conference on Robotics and Automation (ICRA),
2014.

[144] A. Stentz. The Focused D* Algorithm for Real-Time Replanning. 1995.

[145] M. Stilman and J. J. Kuffner. Planning Among Movable Obstacles with Artificial
Constraints. In Proc. of the Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2006.

[146] M. Stilman, J. Schamburek, J. J. Kuffner, and T. Asfour. Manipulation Planning
Among Movable Obstacles. In IEEE International Conference on Robotics and
Automation, 2007.

161

[147] S. Sundaram, I. Remmler, and N. M. Amato. Disassembly Sequencing Using a
Motion Planning Approach. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 1475–1480, Washington, D.C., May 2001.

[148] P. Švestka. Robot Motion Planning using Probabilistic Road Maps. PhD thesis,
Utrecht University, the Netherlands, 1997.

[149] P. Svestka and M. Overmars. Coordinated Path Planning for Multiple Robots.
Robotics and Autonomous Systems, 23:125–152, 1998.

[150] S. Tang and V. Kumar. A Complete Algorithm for Generating Safe Trajecto-
ries for Multi-Robot Teams. In International Symposium on Robotics Research
(ISRR), Sestri Levante, Italy, Sept. 2015.

[151] R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts. LQR-Trees: Feed-
back Motion Planning via Sums of Squares Verifcation. International Journal of
Robotics Research, pages 1038–1052, 2010.

[152] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann. Humanoid
Motion Planning for Dual-arm Manipulation and Re-grasping Tasks. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2464–2470, Oct 2009.

[153] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[154] J. Van Den Berg, S. Guy, M. Lin, and D. Manocha. Reciprocal n-body collision
avoidance, volume 70 of Springer Tracts in Advanced Robotics, pages 3–19. Star
edition, 2011.

[155] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized path plan-
ning for multiple robots: Optimal decoupling into sequential plans. In Robotics:
Science and Systems V, 2009.

[156] J. van den Berg, M. Stilman, J. J. Kuffner, M. Lin, and D. Manocha. Path
Planning Among Movable Obstacles: A Probabilistically Complete Approach. In
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2008.

[157] G. Varadhan and D. Manocha. Star-shaped Roadmaps: A Deterministic Sam-
pling Approach for Complete Motion Planning. RSS, 2005.

[158] W. Vega-Brown and N. Roy. Asymptotically Optimal Planning under Piecewise-
analytic Constraints. In Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2016.

[159] G. Wagner and H. Choset. Subdimensional Expansion for Multirobot Path Plan-
ning. Artificial Intelligence Journal, 219:1024, 2015.

[160] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A Probabilistic
Roadmap Planner with Sampling on the Medial Axis of the Free Space. In ICRA,
pages 1024–1031, Detroit, MI, May 1999.

162

[161] J. Wolfe, B. Marthi, and S. Russell. Combined Task and Motion Planning for
Mobile Manipulation. In Proceedings of the Twentieth International Conference
on International Conference on Automated Planning and Scheduling, ICAPS’10,
pages 254–257. AAAI Press, 2010.

[162] J. Yu and S. M. LaValle. Multi-agent Path Planning and Network Flow. In
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012.

[163] J. Yu and S. M. LaValle. Planning Optimal Paths for Multiple Robots on Graphs.
04 2012.

[164] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A.
Bagnell, and S. S. Srinivasa. CHOMP: Covariant Hamiltonian Optimization for
Motion Planning. International Journal of Robotics Research (IJRR), 2013.

