To improve the accuracy of aircraft fire detection, new smoke detectors have been produced to differentiate between what is a real fire and what is a false alarm. Nontoxic theatrical smoke machines are used to test these new false resistant smoke detectors in flight. This research is based on characterizing the smoke from the machines to understand what alerts different types of smoke detectors, and what would best be used for testing them. Two smoke detectors were utilized in testing. One was a Whittaker Model 601 smoke detector which is an optical beam smoke detector; the second is a Kidde Aerospace & Defense Smoke Detector Type II which is a prototype of the new false alarm resistant detector. Two smoke machines were also used: one using fluid that is oil-based (the Concept Smoke Systems Aviator UL 440) and one using fluid that is water-based (the Rosco 1700). The particle size and percent obscuration of the smoke from these machines have been determined and used to understand the requirements of alarm for the detectors. By using the Phase Doppler Particle Analyzer (PDPA) to measure the particle size of the smoke leaving each machine, it was found that the smoke from the Aviator UL had much smaller particles than that of the Rosco. Optical density meters were used to measure the percent obscuration per foot of the smoke entering the detectors. Along with the smaller particle sizes recorded, the Aviator UL also alarmed at a significantly lower percent obscuration per foot. It is hypothesized to be that because of this smaller particle size, the Aviator UL was able to alarm the “false alarm resistant” Kidde detector whereas the Rosco, with the larger particle sizes, was unable to force the alarm into detection until the level of obscuration was significantly higher than the Aviator UL.
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8319
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (x, 77 p. : ill.)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Fire detectors
Subject (authority = ETD-LCSH)
Topic
Smoke prevention
Subject (authority = ETD-LCSH)
Topic
Aircraft cabins--Fires and fire prevention
Note (type = statement of responsibility)
by Tina Emami
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.