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 Fire effects refer to the range of direct and indirect impacts wildland fire has on the 

biotic and abiotic components of the environment.  Monitoring fire effects is important for 

quantifying the results of management activities and identifying patterns of success that can 

help hone management strategy for the future.  Unfortunately, fire effects are usually poorly 

monitored, if at all, because of the large technical expenditure required to accomplish 

monitoring activities across broad enough spatial scales to accurately capture variability in 

effects.  However, relatively new approaches for deriving burn severity indices from field and 

multispectral data can accurately detect change in vegetation and soils reduction.  Further, a 

limited number of studies have recently found these data to also be correlated with changes in 

carbon pools, fuel loads, stand structure, and regeneration patterns, which are relevant for both 

risk and ecological management.  Of the studies presently available, all have been focused in 

western pyrogenic forests, which provide limited insight to effects in eastern pyrogenic forests, 

but do suggest the potential for research with an eastern forest focus.  I therefore conducted a 

series of studies using these approaches to quantify burn severity and identify correlations 

between burn severity and rates of fuel reduction and tree mortality in eastern pitch pine-oak 

forests of the New Jersey Pinelands National Reserve, which have the highest fire frequency and 
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most active fire management agency in the North Atlantic region.  I also investigated patterns of 

burn severity within fire types and timing using burn severity indices.  The results presented 

provide a directly applicable and rapidly deployable method to monitor general fire effects, in a 

way that can be easily archived for future reference.  These results can be incorporated into 

current burn strategy to maximize the effectiveness of activities intended to reduce fuels and 

thinning pitch pine stands, and provide a foundation for additional work in determining 

correlations between burn severity index data and other effects of interest to forest managers.  

Further, the results of this work suggests that burn severity can be used to predict these rates 

more accurately than simply knowing if a region burned or not, and identify key differences of 

fire of differing type and timing.   
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CHAPTER 1:  An introduction to field and remote sensing burn severity indices for monitoring 

fire effects in forest ecosystems 

Abstract 

Metrics that quantify the effects of wildland and prescribed fire are needed by 

managers and policy makers to support decisions that will impact public health, property, and 

natural resources. New remote sensing techniques for mapping burn severity, have enabled 

rapid quantification of wildland fire effects over broad spatial scales, opening the door to new 

research and monitoring opportunities for both scientists and managers.  Using these new 

techniques, effects relating to fuel loads, carbon sequestration, and population dynamics of 

flora and fauna have been better characterized, yielding better understanding from a 

management perspective.  Specialized remote sensing technology that is uncommon between 

these groups, however, and a review of the literature to synthesize the scope of work and 

considerations necessary to conduct burn severity studies, has limited the use of these methods 

as a whole.  The aim of this chapter, is to provide managers and researchers with an 

understanding of the (1) needs and challenges of monitoring fire effects, (3) advantages of using 

burn severity approaches to monitoring fire effects, and (3) a synthesis of the current 

knowledge and limitations for estimating fire effects with burn severity. 

Introduction: Why monitor fire effects? 

Resource managers and policy makers need consistent, reproducible metrics of fire 

effects to support planning, evaluate management efforts, and refine management policy 

(Mercer and Prestemon 2005).  Such information is useful for evaluating prior management 

activities, refining existing methods, justifying objectives, and characterizing wildfire and 

prescribed fire impacts across space and time (Key and Benson 2006).  The need to quantify 

management outcomes is especially important for prescribed fire activities, where the efficacy 



2 
 

 
 

of fuel treatments is poorly evaluated (Harden 2016, Penman et al. 2011).  Further, if fire effects 

were monitored over long periods of time and across landscapes, they could be compared to 

other long term datasets to assess how factors other than fire management, such as climate and 

social factors, influence wildland fires and their effects.  Overall, fire effects data provide the 

details needed describe the interactions between humans and their environment that are linked 

by fire.  

Fire effects refer, broadly, to the set of biotic and abiotic outcomes that result from fire, 

which are observable in minutes to years following a fire (Reinhardt, Keane and Brown 2001).  

The range of fire effects and their relative importance can be complex, and vary with time since 

fire.  Hence they are broadly grouped as first order fire effects and second order fire effects, 

which reflect the time frame in which they occur and their mechanistic origin.  First order fire 

effects are direct results of combustion, heat transfer, and associated chemical processes that 

occur during a fire event and are observable as an immediate consequence of fire (Reinhardt 

and Dickinson 2010, Reinhardt 2003).  Such effects include the injury and mortality of plants and 

animals, the alteration or consumption of forest organic material (e.g. woody debris, forest floor 

litter, standing dead material, and soil organic material), and changes in soil chemistry.  Second 

order fire effects happen in the hours to years following fire events, and are considered are 

indirect consequences of fire because additional processes are required to cause them.  These 

effects can include erosion, tree mortality or injury caused by infection or insect damage that 

arises after fire, falling trees, vegetation recovery, shifts in species diversity, particulate 

dispersal, and altered watershed function.   

Traditional recording of fire activity has often been limited to the delineation of fire 

perimeter and size, but may fall short of identifying the actual extent of burned area and degree 

of fire effects.  For example, Kolden et al. (2012) found that over a 25 year period, 
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approximately 19% of the area within reported fire perimeters in three national parks did not 

actually burn.  Furthermore, fire effects are not uniformly distributed across burn units, and 

typically reflect variation in topography, vegetation types, and weather, all of which can vary 

substantially across burn units; such effects are not directly proportional to fire size (Duffy et al. 

2007, Turner et al. 1994).  Specialized field methods can be employed to estimate specific fire 

effects, but those also have their limitations.  Using field methods to estimate fire effects, 

requires expertise in ecological measurement techniques and provides only estimates of change 

at points, as opposed to full wall-to-wall coverage.  Complex topography, access issues, and 

uncertainty of pre-burn conditions can also make post-fire surveys tedious and limit the 

interpretability of results (Escuin, Navarro and Fernandez 2008).  Further, the timing of post-fire 

surveys makes them inherently more dangerous due to multiple hazardous conditions.  Falling 

trees and tree material, for instance, are more common after fires when fire effects surveys 

would take place, and have accounted for over 50 serious injuries or deaths among wildland fire 

workers in the past ten years (NIFC 2016).  Additional exposure to high levels of airborne 

particulate matter during or shortly after fire are also linked to short term acute respiratory 

asthma (Dennekamp and Abramson 2011), diminished pulmonary function (Liu et al. 1992, 

Rothman et al. 1991), and systemic inflammatory responses, which can be life threatening and 

should not be encountered regularly (Swiston et al. 2008, van Eeden et al. 2005).  In summary, 

broad limitations on the abilities of management and research efforts to collect and adequately 

interpolate fire effects data across the scales required has hinders fire effects monitoring as a 

whole and the knowledge that it could provide.   

Burn severity as a surrogate for of fire effects 

Burn severity reflects many first order fire effects that are difficult to measure using 

traditional methods, making it a useful alternative for many research and monitoring 
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applications (De Santis and Chuvieco 2009, Perry et al. 2011).  Burn severity indices describe the 

magnitude of environmental change resulting from fire and is increasingly used to evaluate fire 

effects in a more general sense in the days to years following a fire event (Keeley 2009, Kolden, 

Smith and Abatzoglou 2015).  This differs from fire intensity, or the energetic properties of fire 

observed while it is burning (Byram 1959, Rothermel 1972).  Burn severity can also be 

differentiated from fire severity, which typically relates specifically to the effects of fire on the 

observed biomass (post-fire), although the latter is used inconsistently in the literature (Keeley 

2009).  Although it is easy to draw natural connections between burn severity, fire intensity, and 

fire severity, via the functions of combustion and heat transfer on biomass (Ryan and Noste 

1985, Cram, et al. 2006), the characteristics of fire that they describe, the way they are 

measured, and the time frame for which they are relevant are distinct (Lentile et al. 2006, 

Keeley 2009), and therefore draw a key distinction between the aim of this chapter and other 

work focused on fire behavior, energetics, and specific effects on biomass. 

Burn severity reflects overall environmental change and can also be useful for 

estimating a wide range of specific fire effects, such as: fuel consumption (Boby et al. 2010, 

Meigs et al. 2009), carbon emissions (Allen and Sorbel 2008, Rogers et al. 2014), changes in soil 

properties (Parson et al. 2010, Robichaud et al. 2007), stand composition change and 

regeneration patterns (Johnstone and Kasischke 2005, Johnstone and Chapin III 2006), changes 

in leaf area index (De Santis and Chuvieco 2009), altered productivity (Meigs et al. 2009, Rocha 

and Shaver 2011), and forest community dynamics (Bailey and Whitham 2002, Koivula and 

Schmiegelow 2007, Kotliar, Kennedy and Ferree 2007).  Burn severity has also proven useful for 

evaluating the role fuel treatments and previous wildfire events play in reducing impacts of 

subsequent fires (Prichard, Peterson and Jacobson 2010, Prichard and Kennedy 2014, Strom and 

Fulé 2007).  Post hoc multi-decadal burn severity monitoring can now be used to extrapolate as 
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far back as 1984 with archival remote sensing data, and has been used to evaluate long term 

patterns in fire activity for some regions of the United States (Dennison et al. 2014, Holden, 

Morgan and Hudak 2010a, Miller and Safford 2012, Picotte et al. 2016). 

The appropriateness of using burn severity to estimate fire effects varies greatly by 

region and vegetation type.  For instance, burn severity is highly correlated with fire effects in 

boreal forests (French et al. 2008, Kasischke et al. 2008), tundra (Allen and Sorbel 2008) and 

western temperate coniferous forests (Chen et al. 2011, Key and Benson 1999, Miller and Thode 

2007), but has been less correlated with fire effects in some sparse woodlands where trees are a 

less dominant than other types of vegetation (Allen and Sorbel 2008, Stambaugh, Hammer and 

Godfrey 2015).  Further, fire effect correlations with burn severity are often different between 

different forest cover types, and models used to estimate fire effects from burn severity in one 

environment may not directly transfer to another environment (Key and Benson 2006).  While 

substantial work has defined the use of burn severity in boreal forests, tundra, and temperate 

coniferous and deciduous forest types of the western United States and Canada, relatively little 

has been done with burn severity in forest types of the eastern United States. 

Initial vs. Extended Burn Severity Assessments 

Initial and extended assessments reflect the timing of burn severity studies, which is 

important for interpreting results.  Characteristics of burned areas are not static, and as time 

passes since fire, second order fire effects and recovery processes make differentiating first 

order fire effects more difficult.  Where initial assessments typically take place within days to 

months following fire, extended assessments take place in the following years (Key and Benson 

2006).  Whether to conduct an initial assessment or extended assessment depends on the goals 

of the assessment, the time frame over which it must be completed in, and the forest type being 

assessed.  Changes in reflectance, detected in satellite data used to estimate remotely sensed 
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burn indices, continue to change, following fire, as second-order effects and vegetation recovery 

begin to occur.  For instance, Burned Area Emergency Response (BAER) teams use initial 

assessments as a rough guide to areas within a fire perimeter that may need immediate 

restoration efforts aimed at managing post-fire erosion and water quality.  Ecological studies, 

however, tend to deploy long term assessments, because it is often difficult to conduct the 

required field work within days of a fire.  Correlations between field and remotely sensed burn 

indices have been found to be relatively similar within the first two years since fire for black 

spruce forests (Allen and Sorbel 2008), ponderosa pine (Chen et al. 2011), and eastern oak 

woodlands (Stambaugh et al. 2015).  In tundra, field and dNBR data are significantly more 

correlated in the second year than in the first (r2
2 = 0.81 > r1

2 = 0.43).  However, after the second 

year following a fire correlations between field and remotely sensed burn indices tend to 

weaken.  To summarize, correlations are consistently found in vegetated areas but can vary 

greatly with time since fire and vegetation type. 

Field Methods for Quantifying Burn Severity 

Burn severity is often quantified as a continuous index that is unitless and can be 

estimated using both field and remote sensing methods.  This index is often classified, based on 

thresholds, into four discrete severity classes: no effect, low severity, moderate severity, and 

high severity.  Field – derived measures of burn severity are useful for providing statistical 

estimates, and are also used to calibrate and validate remotely sensed indices to provide 

continuous estimates of burn severity across a landscape.  Field methods for measuring burn 

severity require technicians to work among post-fire hazards to obtain data, but can be 

conducted more rapidly than typical ecological survey methods, thereby reducing exposure.   

The primary field methods for gathering burn severity data are used to calculate 

Composite Burn Index (CBI) (Key and Benson 2006), and it’s variant, the Geometrically 
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Structured Composite Burn Index (GeoCBI) (De Santis and Chuvieco 2009).  CBI is calculated as 

the composite of 24 severity indicator scores (e.g., % crown scorch, amount of litter 

consumption, etc.).  These indicators are divided among 5 forest strata (substrates, low shrubs 

and herbs, tall shrubs and small trees, intermediate trees, and dominant trees), and 

observations of change within each of these strata are scored on a [0 – 3] scale (Key and Benson 

2006). Scoring is conducted according to guidelines outlined on the CBI field sheet, such that 

indicators with the highest degrees of change are ranked as 3, while indicators with are ranked 

as 0 when they have not been effected by fire. These criteria, are then summarized into a 

stratum-specific Burn Indices (BI) by adding values together, and are finally combined into 

Understory CBI, overstory CBI, and an overall Total CBI by averaging BI in lower strata, upper 

strata, and all strata (see Key and Benson (2006) for full description of methods).  Resultant CBI 

estimates have a continuous range of [0 – 3], but are oftentimes reclassified as “No Effect”, 

“Low Severity”, “Moderate Severity”, and “High Severity”, according to thresholds defined in the 

CBI methodology, to simplify descriptions of fire effects.  Weighting CBI estimates, based on 

density of cover, can improve estimates of change, and has been suggested to be more 

correlated with remote sensing data than raw CBI (De Santis and Chuvieco 2009, Cansler and 

McKenzie 2012, Soverel, Perrakis and Coops 2010).  One weighted variant of CBI is GeoCBI which 

weights BI estimates by leaf area index (See De Santis and Chuvieco (2009)). More recently, 

weighted composite burn index WCBI has been presented as a similar alternative, which uses  

ocular  estimates of percent cover to weight BI for each strata (Soverel et al. 2010, Cansler and 

McKenzie 2012).  Although both estimates have been shown to produce results that are more 

correlated with remote sensing data than CBI, CBI still remains the most commonly used 

method in current field work (Veraverbeke et al. 2010).    
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Other variants to CBI and its weighted variants may also be useful for providing coarse 

descriptions of burn severity.  In southern Appalachian pine and oak dominated forest, a  

simplified version of CBI that included only crown scorch and shrub damage was found to be 

well correlated with remotely sensed burn severity (Wimberly and Reilly 2007).  Similarly, 

Koivula et al. (2006) evaluated severity solely on scorch class for one study, which provided 

useful context for beetle population data they had observed.  Brewer et al. (2005) developed a 

mortality- based severity index for the Northern Rockies, calibrated on remotely sensed burn 

severity, to classify post-fire vegetative cover classes as Unburned Shrub, Unburned Tree, 

Unburned Grass, Lethal Tree, Burned Shrub, Burned Grass, and Mixed Lethal Tree, although 

substantial research suggests that relationships between vegetative mortality and remotely 

sensed indices varies among vegetation types.  In the Pacific Northwest, a scheme has been 

proposed to estimate burn severity from post-fire forest census plot data, such as that collected 

by FIA, which plots are classified into seven severity classes ranging from Unburned to Severe, 

based on tree mortality (Whittier and Gray 2016).   

When a field method for assessing burn severity has been chosen, a final step should be 

the selection of field plot locations.  This can be done in a few ways.  The most common method 

used in recent studies is a stratified random sampling scheme, in which a calibrated or 

uncalibrated remote sensing burn severity index is used to map of the burn unit to estimate 

regions of “No Effect”, “Low Severity”, “Moderate Severity”, and “High Severity”.  Plots are then 

typically centered within clusters of pixels that are believed to have similar burn severities, 

which minimizes the potential for edge effects that could occur due to spatial incongruence 

between field and remote sensing datasets (Chen et al. 2011, Cocke, Fulé and Crouse 2005, 

Holden et al. 2010b).  This type of method may be appropriate in topographically complex 

landscapes, where obtaining spatially precise estimates is difficult (Congalton and Green 2008).  
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However, complete random sampling, which does not involve stratifying samples, has also been 

used in a flat landscape to produce equally strong correlations between field and satellite data 

(Warner, Skowronski and Gallagher 2017).  

Remote Sensing Methods for Quantifying Burn Severity 

Fire also alters the spectral reflectance patterns of forest vegetation and soils (see 

Figure 2 in Pereira and Govaerts (2001)).  By identifying patterns of change at particular spectral 

wavelengths, it is possible to represent burn severity across broad spatial extents with the 

remote sensing data collected by specialized sensors on satellites or aircraft.  Remotely sensed 

burn severity indices represent deviations of post-fire reflectance from pre-fire reflectance.  

Calculations typically use near infrared (NIR; 750nm – 1400nm) and short wave infrared (SWIR; 

1400nm – 3000nm) wavelength data, which are highly sensitive to changes in chlorophyll 

content, leaf area, moisture conditions, and char (Warner et al. 2017).  Indices based on these 

bandwidths include the Normalized Burn Ratio (NBR), Differenced Normalized Burn Ratio 

(dNBR), Relative Differenced Normalized Burn Ratio (RdNBR), and the Relative Burn Ratio (RBR) 

(Parks, Dillon and Miller 2014).  Indices computed from other spectral bands have also been 

tested, and typically yield less reliable estimates, although they can be useful in cases where NIR 

and SWIR data are not available or perform poorly for a particular environment.   

Correlations between remotely sensed burn severity indices and field data have been 

found to vary greatly among forest types and cover densities, and therefore must be calibrated 

for novel environments, typically using some form of CBI.  Calibration is typically accomplished 

by fitting non-linear models to field data, which often produce a better fit than linear 

regressions (Chen et al. 2011, Miller and Thode 2007, Miller et al. 2009b).  Non-linear regression 

is considered to be sensible, because SWIR reflectance saturates and NIR reflectance 

approaches zero as burn severity increases (Chuvieco et al. 2006).  When thresholds are is used 
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to reclassify burn severity pixel values pixels into the four severity classes (No Effect, Low Effect, 

Moderate Effect, High Effect), a confusion matrix is often used to evaluate classification 

accuracies (Miller and Thode 2007).  Both regression and confusion matrix results can be used to 

compare calibrations and justify calibration selection, but either method may be more useful, 

depending on the goal of the calibration.  For instance, if classifying burned and unburned area 

is the primary goal of the study, then a calibration that accurately classifies “No Effect” pixels 

may have greater value than a calibration with a high linear regression coefficient or one that 

accurately distinguishes “Moderate Effect” and “High Effect” pixels.   

Normalized Burn Ratio (NBR) 

The normalized burn ratio (NBR) is perhaps the simplest burn severity index, and is an 

important pre-cursor in calculations of other more complex burn severity indices.  NBR is 

computed as follows, where NIR is the value of reflectance observed for a spectral band within 

the 750nm – 1400nm range and SWIR is the value of reflectance observed for a spectral band 

within the 1400nm – 3000nm: 

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
   (Key and Benson 1999) 

This is the simplest remote sensing strategy available, and does not require the same amount of 

normalization to remove atmospheric and phenological effects as other strategies (Veraverbeke 

et al. 2010, Verbyla, Kasischke and Hoy 2008).  Of course, single date observations have the 

obvious drawback of not being amenable to differentiation of pre- and post-burn conditions 

that would allow us to assess impacts of previous fires, drought, or insect damage, which are 

common in forest environments and some cases are correlated with fire activity.  NBR, used 

alone, is therefore most useful for quickly quantifying burn severity across individual burn units 

that do not need to be compared with other fires. 

Differenced Normalized Burn Ratio (dNBR)  
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 The differenced normalized burn ratio (dNBR) has emerged as a robust tool for 

evaluating burn severity across heterogeneous terrain and vegetation conditions, and has 

become the most widely used burn severity metric (Lutz et al. 2011, Sunderman and Weisberg 

2011, Miller et al. 2016).  This calculation uses pre- and post-fire NBR to account for the 

influence of pre-burn vegetation conditions, using the following equation: 

𝑑𝑁𝐵𝑅 = (𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡) ∗ 1000  (Key and Benson 2006) 

By using bi-temporal data, this method accounts for pre-fire vegetation characteristics, and 

provides results that are less likely to be influenced by disturbance effects that were present 

before the fire.  An optional offset in the equation for dNBR, calculated as an average value of 

unchanged forest in imagery, can be used to account for variation in phenology of imagery 

between fires (Key and Benson 2006, Miller and Thode 2007).  As an absolute measure of 

ecological change, however, the degree of severity reflected by dNBR is correlated to the 

amount of pre-burn vegetation present, and can result in misclassification of change (Miller and 

Thode 2007).  For instance, when two plots are burned with a similarly high severity, but one 

plot has approximately half of the pre-fire vegetation as the other, dNBR of the denser plot will 

be approximately double that of the other plot.  For this reason, dNBR may not be an effective 

calculation for comparing burn severity between areas with differing dominant vegetation types 

or vegetation density, however, this remains debated in the literature. 

Relative Differenced Normalized Burn Ratio (RdNBR) 

The Relative Differenced Normalized Burn Ratio (RdNBR) is a relative measure of burn 

severity, developed to allow for the comparison of burn severity of numerous fires across 

heterogeneous landscapes and through time.  As a relative measure of burn severity, RdNBR is 

normalized based on pre-burn NBR, and therefore, provides results that are not correlated with 

pre-burn vegetation conditions, unlike dNBR.  In calculating RdNBR, a square root 
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transformation is applied to the absolute value NBRpre in the denominator to better match the 

distributional form of field data.  The absolute value of NBRpre is used in the denominator, rather 

than its raw form, to avoid the problem of calculating a square root of negative NBRpre values 

(Miller and Thode 2007): 

  𝑅𝑑𝑁𝐵𝑅 =  𝑑𝑁𝐵𝑅/sqrt |
𝑁𝐵𝑅𝑝𝑟𝑒

1000
|  (Miller and Thode 2007) 

Although RdNBR may avoid bias associated with heterogeneity in pre-burn vegetation 

density that other indices do not avoid, the operations in the denominator of this equation also 

introduce other bias to results, albeit small, and allow for equation failure under certain 

circumstances.  For instance, bias is introduced when taking the absolute value of negative 

NBRpre values because the full variability of pre-burn vegetation conditions is obscured (Miller 

and Thode 2007, Parks et al. 2014).  Further, RdNBR calculations fail when NBRpre is equal to 

zero, resulting in a zero in the denominator.  This calculation can occasionally produce outlier 

results when NBRpre is very close to zero (Parks et al. 2014).   

 While RdNBR theoretically solves some of the problems associated with dNBR, the 

literature suggests that advantages of one method over another are regionally specific.  For 

instance, in a comparison of the two indices in mixed conifer forests of the Sierra Nevada, non-

linear regression found RdNBR to significantly outperform dNBR, however differences were less 

apparent among classified data (Miller and Thode 2007).  Soverel et al. (2010) found the 

opposite, in a comparison in Canadian boreal forest, in which regression correlation coefficients 

were not appreciably different, but dNBR had a substantially higher accuracy at thresholding.  

Minor inconsistencies in the methodologies of these studies exist, including different usage of 

bandwidths and timing of field data collection, making an objective comparison of results 

difficult.   
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Relativized Burn Ratio (RBR) 

 RBR is a relativized form of dNBR, described by Parks (2014), and may offer slight gains 

in results, when compared to dNBR and RdNBR, and is mathematically more robust.  In a study 

comparing dNBR, RdNBR, and RBR, Parks et al. found RBR performed slightly better on average, 

but that dNBR and RdNBR performed better for certain individual fires (Parks et al. 2014).  RBR is 

also attractive, when compared to dNBR, because it is less correlated with the variation of pre-

burn vegetation cover than dNBR and RdNBR, and is therefore provides more robust results 

across different levels of vegetation cover.  RBR also has mathematical advantages to dNBR and 

RdNBR in that the equation does not fail when NBRpre is zero.   

𝑅𝐵𝑅 = (
𝑑𝑁𝐵𝑅

𝑁𝐵𝑅𝑝𝑟𝑒+1.001
)    (Parks et al. 2014) 

Less common remote sensing indices used in burn severity studies 

Remote sensing indices of terrestrial conditions or change have also been tested.  

Generally, these indices have not performed as well as the indices described above but they 

may have merits in certain geographic areas, in cases where NIR or SWIR data are not available, 

or when effects cause reflectance changes in other bandwidths.  Indices that have traditionally 

been used for the monitoring of vegetation, such as the normalized difference vegetation index 

(NDVI) and the enhanced vegetation index (EVI), for instance, have also been used to estimate 

forest productivity following perturbation by wildfires (Chen et al. 2011, Rocha and Shaver 

2009).  Despite relatively little use in burn severity studies, and work suggesting that other 

bandwidths of reflectance are theoretically more correlated with forest change (Garcia and 

Caselles 1991), work suggests that indices based on reflectance in the NIR and visible spectrum 

(namely, normalized differenced burn index (NDVI) or the enhanced vegetation index (EVI)) can 

provide similarly useful results as NIR and SWIR based indices (Chen et al. 2011, Escuin et al. 

2008). 
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Burn Severity Index Selection 

Published correlations of linear regressions between field data and remotely sensed 

indices vary greatly among and within vegetation types.  For instance, correlations between field 

and dNBR values for various boreal forest vegetation types have ranged dramatically [r2 = 0.00 – 

0.91], but generally have stronger correlations where trees, particularly conifers, dominate (See 

Appendix C).  While results of Epting et al. (2005) suggest that single-date NBR outperforms bi-

temporal dNBR, in terms of predicting field observations of burn severity, most other studies in 

boreal vegetation types indicate otherwise (See Appendix C).  dNBR is the most widely used 

remotely sensed burn severity index, however, RdNBR is clearly the second most popular of this 

type of index.  The mathematical operations involved in computing RdNBR are in some ways 

stronger and in other ways weaker than dNBR, and while individual studies tend provide 

evidence for choosing one method over the other, a review of the published correlation 

coefficients (T) and classification accuracies (Table 1) fail to provide clear evidence for one 

method being superior.   

Data and Processing Considerations for Remote Sensing of Burn Severity   

Data Sources for Remote Sensing Burn Severity Indices 

Numerous satellites collect imagery that is useful for estimating burn severity.  Landsat 

4/5, Landsat 7, and Landsat 8, ASTER, MODIS, VIIRS, AVIRIS, and Worldview 3 all collect data in 

the VIS, NIR, and SWIR ranges needed to compute common burn severity indices.  Data from 

each of these sensors, with the exception of Worldview 3 and Quickbird, are in the public 

domain, and, therefore, can be retrieved online at no cost.  Each sensor produces data with 

different spatial and spectral resolutions (Table 2), however, which can yield in notably different 

indices produced within the similar vegetation types (Chen et al. 2011, Holden et al. 2010b).  

This suggests that unique correlations between field and remote sensing data for unique 
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vegetation types, however, many correlations have been provided for a variety of environments 

in existing publications (Table 1).  Availability of data also varies substantially among sensors.  

Most current satellites collect data with a flyover time of about 2 weeks, while other satellites 

only collect data when they are tasked to a capture a specific scene.  Similarly, some sensors 

have only become available in the past decade, while others that have provided useful historic 

data, as far back as the 1980s and 90s have been decommissioned (Table 2).  Since no single 

sensor is optimal for all environments or burn severity applications, selection of data source 

should be determined based on project goals, availability of data, and required spatial resolution 

of data.  

Landsat sensors are the most appropriate sensors currently available for the majority of 

burn severity monitoring and research applications.  Medium resolution, appropriateness of 

bandwidths, and data availability have made data from the Landsat sensors a popular choice for 

burn severity monitoring and research.  The Landsat program is the longest running satellite 

program to collect NIR and SWIR data, beginning in 1984 and continuing today, making Landsat 

a popular choice for historic, current, and multi-decadal studies of burn severity.  Thematic 

Mapper (TM) sensors of Landsat 4, 5, and 7 collect NIR and SWIR data as bands 4 and 7, and 

have nearly identical bandwidth specifications making them interchangeable (Table 1).  

Landsat’s 30m pixel resolution is considered to be relatively high, compared to other publicly 

available satellites, and therefore is useful for capturing burn severity across fires of most sizes 

and where environmental heterogeneity occurs on a relatively small spatial scale.  In addition, 

these spectral bands are the most sensitive bands to changes in reflectance, due to fire, while 

having low correlations with each other (see Figure 2 in Garcia and Caselles (1991)).  Despite the 

16 day revisit time of Landsat 4, 5, and 7 sensors, data availability can create challenges.  

Landsat 4 and 5 sensors have reached the ends of their service lives and were decommissioned 
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in 1987 and 2012, respectively, and irreparable damage to Landsat 7’s Thematic Mapper has 

resulted in large, regular swaths of missing data in all imagery since 2003 (Markham et al. 2004), 

which require addition processing for gap-filling (Howard and Lacasse 2004). 

Landsat 8’s Operational Land Manager Sensor (OLI) is the newest sensor of this 

program, and calibrations of its NIR and SWIR bands differs somewhat from those of previous 

Landsat sensors (Table 2).  NBR estimates have been found to be relatively similar, with less 

than 5% variation, in one study in Thailand, suggesting that NBR between the sensors is 

relatively comparable; however it is unclear 1) how well burn severity actually correlates with 

field observations in this environment and 2) if burn severity estimates were for isolated fire 

events, or were for the entire region, which contained substantial unburned area and may not 

accurately reflect the performance of these indices in burned vegetation (Li, Jiang and Feng 

2013).  Few other studies have compared burn severity estimates from differences in burn 

severity derived from data of Landsat 8 and previous Landsat satellites, however, bandwidth 

differences may confound the use of Landsat 8 data use with that of other Landsat satellites, 

and for this reason Landsat 7 remains the most common source for current remote sensing of 

burn severity.   

MODIS band 2 (NIR) and 7 (SWIR) data have been used to predict dNBR and rdNBR in 

areas with expansive fires, due to the relatively large pixel size of MODIS data (Table 2), such as 

in boreal forests of Central Siberia and sagebrush steppe of the Great Basin region of the US 

(Loboda, O'Neal and Csiszar 2007).  Boelman et al. found that the mismatch between pixel scale 

and scale of affected areas on the ground (100m2 and 1m2) was too great to yield adequate 

severity estimates, despite the fact that the overall fire size was over 1000km2 (Boelman, Rocha 

and Shaver 2011).  Likewise, MODIS under-predicted the total low severity area burned and the 

maximum burn severity Landsat, however it was able to provide adequate severity mapping. 
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Worldview3 is a commercial sensor that produces multiple different bands of NIR and 

SWIR data at a 7m spatial resolution.  With the exception of AVIRIS, Worldview3 has higher 

spectral resolution bandwidths than other available sensors that collect NIR and SWIR range 

data (Table 2).  Since the sensor was launched in 2014, very little fire data has been collected 

with Worldview3, in part due to the fact that it does not automatically collect regular data, and 

must be tasked to collect specific imagery.  However, Warner et al. tasked this satellite to 

capture pre- and post- fire imagery over prescribed fires and, incidentally, a wildfire, and 

compared dNBR results with field data in a pine-oak forest (Warner et al. 2017).  Strong 

correlations were found between dNBR computed with nearly all combinations of Worldview3 

NIR and SWIR bands and field data, although, bands 7 and 14 produced the best results for Total 

CBI (R2 = 0.84).  Interestingly, different band combinations produced higher R2 = values for 

Overstory and Understory CBI.  Since Worldview3 is not in the public domain and thus imagery is 

not free, nor does it collect with a predictable frequency necessary to opportunistic to capture 

wildfires as they occur, it may not be a practical sensor for assessing impacts of large scale 

wildfires; however, given that resultant dNBR is highly correlated with field data, this sensor 

may be an optimal choice for high value controlled burn projects. 

The hyperspectral Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has been 

used in a limited number of burn severity studies, but may also be a useful source of remotely 

sensed burn severity data.  AVIRIS data is collected by a high altitude aircraft and its data is 

attractive because it is available in numerous bandwidths at relatively high spatial resolution of 

2.4m (Table 2).  In a steep slope environment of mixed grass, shrubs, and trees in California, 

visible shortwave infrared bands of AVIRIS were used to produce a unique remote sensing burn 

severity index that was highly correlated with GeoCBI data [r2 = .86] (Veraverbeke, Stavros and 

Hook 2014).  Researchers also found that burn severity estimated using AVIRIS provided more 
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spatially accurate estimates of post fire tree damage, soil change, and ash cover than that 

estimated from Landsat TM data in a ponderosa pine dominated landscape of New Mexico 

(Kokaly et al. 2007).  Conversely, in the Sierra Nevada dNBR calculated from Landsat TM and 

AVIRIS had correlation coefficients of [r2 = 0.89] and [r2 = 0.85], respectively, suggesting that 

burn severity derived from Landsat TM may be as useful in that environment, despite the higher 

spatial resolution of burn severity derived from AVIRIS (Van Wagtendonk, Root and Key 2004).  

One explanation for this may be an asynchrony between in the spatial scale of variability of fire 

effects between these two landscapes and the spatial resolution of the best sensor available.  

While the relatively small pixel size of AVIRIS data is attractive, there are be many challenges to 

using this data for burn severity purposes.  Despite collecting high resolution narrow band 

reflectance data, AVIRIS does not collect continuous data, and must be tasked to collect for 

specific projects.  This limits the use of AVIRIS for burn severity, especially for wildfire; however, 

since AVIRIS, has the ability to collect much higher spectral resolution imagery, it has been 

useful for identifying specific wavelengths of maximum change following fire and validating the 

use of Landsat mid-IR and near-IR bands for estimating burn severity in the Sierra Nevada (Van 

Wagtendonk et al. 2004).  Likewise, combining actual AVIRIS data with simulated data from 

other sensors has yielded improved burned area estimates, with mapping results that were 

highly correlated with field observations at a large wildfire in California (Veraverbeke et al. 

2014). 

Quickbird2 also produced high resolution (2.4m) imagery between 2001 and 2014, but is 

no longer collecting new data.  Because this sensor collected NIR and VIS, but not SWIR data, 

this burn severity applications with this satellite were primarily based on EVI or NDVI, rather 

than NBR or NBR-like indices.  This satellite also required tasking (i.e. did not collect regular 

imagery) and therefore received limited attention for producing burn severity indices.  Still, 
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Holden et al. found that Quickbird2 based EVI maps were highly correlated with field observed 

burn severity (r2 = 0.84) (2010b).  More commonly, however, this imagery is has been used in 

conjunction with NIR and SWIR based estimates to improve accuracy of burn severity 

predictions (Huang et al. 2007, Mitchell and Yuan 2010). 

Data and Processing Considerations 

The spatial scale of imagery use to produce maps is of key importance.  Presently four 

scales of imagery are available (Table 1).  In areas where fires burn thousands of hectares, larger 

sized pixels may be sufficient to classify change, however, in areas where fires are frequent but 

relatively small, smaller pixels are more appropriate.  Spatial scale and bandwidth differences 

between sensors can drastically affect results in comparisons of field and remotely sensed data.  

Holden et al. (2010b), demonstrates this well in a study of burned areas in the Gila National 

Forest showing that three different remotely sensed burn severity indices had vastly different 

relationships with field data when computed at different scales using Quickbird, ASTER, Landsat, 

and MODIS data.  In this study, correlations between field data and remotely sensed data 

differed considerably for when these sensors were used to calculate dNBR (r2 = 0.78 - 0.84), 

dNDVI (r2 = 0.38 - 0.79), and dEVI (r2 = 0.03 – 0.82).  Timing of imagery, in relation to fires and 

seasonality is also a key consideration.  While many studies have used pre-and post-fire imagery 

from within a two week window of the fire, phenological differences associated with dormant, 

growing season, and transitional periods in temperate deciduous ecosystems may confound the 

meaning of results if this approach is used in those systems.  This effect has received little 

attention in the literature with respect to burn severity indices.  Raw satellite imagery will 

require processing to convert digitally stored numbers to top of atmosphere reflectance values, 

rectify atmospheric distortion, and normalize spectral inconsistencies related to phenology and 

atmospheric interference, although methods have been well established.  Cloud cover and 
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interannual variability of challenge the use of remotely sensed burn severity metrics (Key and 

Benson 2006, Verbyla et al. 2008).  Clouds obscure surface reflectance of NIR and SWIR 

bandwidths, and must be removed from imagery.  Mosaicking multi-temporal imagery, within a 

short time span, can be used to fill in areas in imagery where cloud covered areas have been 

omitted (Veraverbeke et al. 2011).     

Incorporation of burn severity indices in ecological research 

Carbon dynamics 

Field indicators of burn severity, such as vegetation and foliage, are highly correlated 

with changes in forest carbon pools and CO2 exchange processes in many forested landscapes, 

providing a means of estimating the impacts of fire on carbon dynamics.  Soil and terrestrial fuel 

consumption, for instance, is well correlated with field observed burn severity in boreal forest 

and tundra, which can be used with fuel-specific emissions factors and pre-burn fuel loading 

estimates to estimate total carbon emissions, in response to fires (Allen and Sorbel 2008, Boby 

et al. 2010).  In one study, field observed burn severity accounted for 61% of the variation in 

relative depth and percent change in mass of aboveground and belowground biomass pools in a 

boreal forest fire (Boby et al. 2010).  Rogers et al. (2014) demonstrated substantial improvement 

in emissions estimates when remotely sensed burn severity was calibrated with field observed 

burn severity.  Further, Campbell et al. (2007) and Meigs et al. (2009) have provided carbon 

emissions factors that can be used to estimate total wildfire emissions from burn severity maps 

(Appendix A), however it should also be noted that emissions factors are subject to error 

(Wiedinmyer and Neff 2007).  Burn severity can also be used to estimate variability in forest 

productivity and recovery rates following fire.  Meigs et al. (2009) used burn severity to scale 

changes observed in post-fire net ecosystem productivity (NEP) and net primary production 

(NPP) in ponderosa pine and mixed conifer forests over two years following fire, to estimate an 
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overall fire-wide loss in carbon and productivity.  Similarly, carbon and nutrient flux rates 

measured at flux towers in burned tundra have been scaled across a fire scar using remotely 

sensed burn severity, enabling the evaluation of the recovery of ecosystem productivity over  a 

five year post-fire period (Jiang et al. 2015, Rocha and Shaver 2011).  Burn severity may also be 

useful in improving regional and national scale carbon inventory estimates (e.g., those produced 

by the Forest Inventory and Analysis (FIA) program) by improving estimates of emissions and 

altered productivity in plots that are often missed in fire events (Williams et al. 2014).   

Wildfires and Fuel Treatments Moderate Subsequent Fires 

 Wildland fire dynamics can be modified by preceding wildland fires and fuel treatments, 

an effect that can be evaluated using field and remote sensing burn severity indices (Parks et al. 

2015, Prichard et al. 2010, Prichard and Kennedy 2014). Fuel reduction treatments include 

thinning, prescribed burning, mastication, and combinations of these techniques, and are used 

across the country, with varying degrees of effectiveness (Cochrane et al. 2013).  Stand density, 

for instance, has been linked to burn severity patterns in ponderosa pine dominated forests in 

New Mexico (Amato et al. 2013).  In mixed conifer forests, fuel reduction treatments have been 

found to substantially reduce burn severity of subsequent fires (Prichard et al. 2010) and can 

reduce emissions by more than 50% when removed biomass is converted to product that 

postpones its decomposition (North and Hurteau 2011).  Field surveys of burn severity have also 

been useful in northern Arizona, for linking transition zones of fire behavior (Kennedy and 

Johnson 2014) and reductions in tree mortality (Strom and Fulé 2007) with fuel treatments in 

mixed conifer forest.  Again, in a mixed conifer forest in Washington, field observations of burn 

severity were used to evaluate the efficacy of thin and burn treatments versus thin only 

treatments, and revealed that reductions in burn severity and mortality were greater in thin and 

burn treatments (Prichard et al. 2010, Prichard and Kennedy 2012).  However, thinning 
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treatments that leave substantial fuel on the forest floor, however may actually increase burn 

severity (Schoennagel, Veblen and Romme 2004).  Similar reductions in burn severity have been 

observed in fire scars (e.g. areas that have been burned recently enough to exhibit visible 

differences from surrounding areas) that reencounter wildfire, with severity of reburns 

increasing with time since fire  (Parks et al. 2013, Parks et al. 2015).  Parks et al. (2013) found in 

reburned conifer forest types of Idaho and New Mexico that reductions in burn severity were 

most evident shortly after fires, but could be seen for at least 22 years since fire.  Parks et al. 

(2013) and Holden et al. (2010a)  suggest, however, that scars with burn severities above a 

certain threshold may exhibit similar or increased burn severity in subsequent fires in the Gila 

National Forest of New Mexico.  Conversely, high severity fire drastically limited subsequent fire 

severity in the Sierra Nevada (Collins et al. 2009).  Collins et al. found that in this environment, 

successive adjacent fires that occurred within 9 years of each other were limited to the first 

fire’s edge, except under extreme weather conditions.  The recurrence of high burn severity in 

some environments but not others is poorly understood, but is believed to be linked to static, 

highly flammable vegetation types, conversion of vegetation types between fires, weather that 

favors high intensity fire, or factors that predispose some sites reflectance patterns to suggest 

high severity fire. 

Forest Stand Dynamics 

 Burn severity can be useful for estimating vegetation mortality rates and regeneration 

patterns following fire.  Burn severity, for instance, was positively correlated with mortality rates 

of aspen, ponderosa pine, limber pine, and Douglas fir within the first year after the fire (Cocke 

et al. 2005).  Numerous secondary stressors can make disentangling mortality rates difficult 

after the first post fire year, but fractions of dead stems were still positively related to burn 

severity for ponderosa pine, three years after fire (Lentile, Smith and Shepperd 2005).  Gamble 
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oak (Quercus kelloggii Newb.) mortality patterns were similarly linked to burn severity 12 years 

post-fire (Crotteau et al. 2015).  Moreover, burn severity is correlated with patterns of 

regeneration among woody forest species (See Appendix B) 2).  Johnstone (2005) found 

different patterns of seedling establishment of black spruce (Picea mariana (Mill.) BSP) and 

trembling aspen (Populus tremuloides Michx.), related to burn severity, in plots near fire edges 

in Alaskan boreal forest.  Distance from the edge of unburned or lesser burned areas into 

burned areas, however, is often also an important predictor of conifer regeneration.  For 

instance, multiple studies have found little to no regeneration of ponderosa pine more than 

30m into areas classified with high severity from edges of areas with lower severities (Chambers 

et al. 2016, Lentile et al. 2005).  Conversely, gamble oak has been found to sprout most 

prolifically in areas of high severity fire (Crotteau et al. 2015).   

Burn Severity and Wildlife 

 Wildfire can positively or negatively impact wildlife habitat, depending on species and 

the burn severity characteristics of the fire.  Following the Rodeo-Chedeski Fire, forage 

production in low severity areas was threefold of that in high severity areas (Schoennagel et al. 

2004).  In contrast, aspen ramet production is positively correlated with burn severity which elk 

have been observed to preferentially browse over ramets in lower and moderate severity areas 

(Bailey and Whitham 2002).   

 Changes in post-fire insect and arthropod populations have also been linked to burn 

severity.  For instance, abundances of the pyrophillus caribad beetles, Sericoda quadripuntata 

and S. bembidioides, for instance, have been found to be positively correlated with burn severity 

in forests in Finland (Koivula et al. 2006), as have saproxylic insect populations in Canadian 

boreal forest (Nappi et al. 2010).  In a mixed conifer forest, arthropod population diversity and 

abundance were strongest in moderate intensity fires, likely due to positive changes to their 
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habitats that were linked to aspen regeneration and elk activity that were also modulated by fire 

(Bailey and Whitham 2002).  In boreal forests however, strong negative correlations have been 

found between burn severity, abundances, and population recovery rates of soil arthropods 

(Colembola) (Malmström 2006).   

 Wildfire, particularly for a variety of bird species (Kotliar et al. 2002), is also an 

important contributor to habitat modification, and numerous studies have identified 

relationships between burn severity and bird usage of forested areas.  In a study in southeastern 

Arizona, burn severity was shown to be positively or negatively correlated with the abundances 

of most of the 97 bird species observed, with 73% having positive correlations with burn 

severity (Kirkpatrick, Conway and Jones 2006).  Similarly, a study in New Mexico found that the 

abundances of 71% of species observed were either positively or not related to burn severity, 

while abundances of other species were negatively related to burn severity (Kotliar et al. 2007). 

In boreal forests, burn severity has been positively correlated with increased population 

abundances of black-backed woodpeckers (Koivula and Schmiegelow 2007), while three toed 

woodpeckers and brown creeper abundance increases are linked to low severity fire (Nappi et 

al. 2010). Shifts in bat assemblages are have also been linked to burn severity, and are thought 

to be proportional to changes in vegetation density and insect prey, although a limited studies 

are available to verify this (Buchalski et al. 2013, Malison and Baxter 2010).  Post-fire bird and 

bat species occurrences are also related to severity (Rose et al. 2016, Malison and Baxter 2010).  

Spatial redistributions to avifaunal populations within burned areas may be linked to population 

shifts of insect prey and forest structure, also impacted differentially by burn severity.   

Publicly available burn severity products 

Currently, the USDA Forest Service’s Monitoring Trends in Burn Severity (MTBS) 

program is the only outlet for off the shelf burn severity products, serving initial assessment and 
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extended assessment burn severity map products for fires across the continental United States 

(www.mtbs.gov).  MTBS’s automatic system independently records burn severity of fires in the 

western US that are greater than 400 ha in extent and in the eastern US greater than 200ha in 

extent.  Burn severity products offered by this program include 30m resolution pdf and raster 

maps of NBR, dNBR, rdNBR, and BAER severity classes.  These data are frequently used by BAER 

teams to identify areas in urgent need of erosion mitigation and watershed protection after 

wildfires (Parson et al. 2010), and by researchers to deduce regional patterns in fire activity that 

have occurred since 1984 (Dennison et al. 2014, Picotte et al. 2016).   

Spectral and temporal inconsistencies in calculations complicate the use burn severity 

indices  for some research and monitoring applications (Kolden et al. 2015).  Likewise, the 

meanings of BAER classifications can be difficult to interpret between vegetation types because 

of inconsistent ranges of error between vegetation types, resulting in unclear classification 

accuracies (Kolden et al. 2012).  This is rooted in the fact that relationships, and their 

significance, between field and remote sensing burn severity data are variable and often 

unavailable across vegetation types (Eidenshink et al. 2007).   

Another challenge with using the MTBS products is the omission small fires, which 

despite seeming inconsequential, may make up a large proportion of fire activity and area 

burned in some regions.   In New Jersey, for instance, 1244 ± 493 (mean ± 1SD) wildfires and 

numerous prescribed fires have annually impacted forested land and have collectively burned 

approximately 76000 ha between 2005 and 2014, (New Jersey Department of the Treasury 

2006, 2008, 2010, 2012, 2014, 2016), however burn severity was only captured in less than 

14000 ha of the burned area (www.mtbs.gov).  Similarly, the Pennsylvania Forestry Commission 

reports a total of over 14000 ha have burned during the same timeframe, however MTBS 

recorded only recorded burn severity across fewer than 3300 ha (www.mtbs.gov, 

http://www.mtbs.gov/
http://www.mtbs.gov/
http://www.mtbs.gov/
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http://www.dcnr.state.pa.us/forestry/wildlandfire/firestatistics/index.htm).  A comprehensive 

discussion of the current limitations of MTBS data, and possible solutions, has been presented 

by Kolden et al. (2015).  MTBS products can be useful for a limited range of management 

purposes in certain regions, and have facilitated improvements to the national scale monitoring 

effort of wildland fire.  Users should be aware that MTBS products may not be suitable for 

research purposes, may have limited or inconsistent utility for predicting fire effects, and may 

represent only a limited selection of the actual fire activity in certain regions. 

Summary 

As challenges of managing wildland fire gain increased awareness from the perspectives 

of public health, spending, firefighter safety, wildlife, and forest health, predicting the outcomes 

of various management options remains challenging.  Lack of quantification of fire effects 

hinders the ability to objectively synthesize outcomes of many fires through time to adapt 

management and explain external factors affecting fire activity.  Over the past decade, remote 

sensing change detection methods have been used to estimate burn severity across broad 

spatial extents.  Remotely sensed burn severity indices allow for accurate estimation of burned 

area and also continuous estimates of fire severity that cannot be obtained by using field 

methods, and can be conducted more safely.  For instance, burn severity indices have been used 

to successfully estimate carbon emissions and recovery patterns, tree mortality and 

regeneration patterns, impacts of fuel treatments, and trends in wildlife population dynamics.  

Further, archival remote sensing data can be used to study fires days, months, or years, after 

they have happened, without prior planning.   

The selection of approaches should be based on study objectives.  Field based methods 

are available and useful for providing simple, course resolution estimates, that can be used to 

calibrate and evaluate remote sensing calibrations in specific vegetation types.  Both weighted 

http://www.dcnr.state.pa.us/forestry/wildlandfire/firestatistics/index.htm
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and unweighted field methods provide useful results, but should be interpreted as having 

slightly different meanings.  Few studies have evaluated weighted methods, and further 

research is required to objectively determine whether one weighted or unweighted methods 

are more appropriate.   Numerous options for remote sensing of burn severity are available and 

defendable as monitoring techniques, but methodological selection for monitoring purposes will 

determined by availability of field calibration data and the availability of suitable remote sensing 

data.  In most cases, indices derived from Landsat NIR and SWIR imagery (e.g. NBR, dNBR, 

RdNBR, or +) will be the most pragmatic approach, because of the multitude of existing 

calibrations, availability of archival data in the public domain, and suitability of the data’s 

medium spatial resolution for most applications.  However, special collections of higher 

resolution imagery can be scheduled with commercial satellelite operators if required.  Off the 

shelf MTBS products may be useful in monitoring efforts are only concerned with large fires, but 

will be limited where small fires make up a large proportion of the area burned and lack 

validation. 

While substantial literature is available to guide the implementation of monitoring and 

research in North American boreal, tundra, and western temperate coniferous and mixed forest 

types, there is an ongong need for more calibrations in coniferous, deciduous, and mixed forest 

types of the central and eastern United States.  One vegetation type where substantial success 

could be made are the widespread pitch pine, chestnut oak, and mixed pine-oak forests of the 

eastern us, such as those in Pennsylvania and New Jersey that burn frequently each year and are 

highly valued for public safety and habitat management.  Linking fuel consumption, silvicultural 

effects, and the influence of weather and seasonality on effects are key focuses that would aid 

management and be useful for informing ecological research with additional focuses.  Expanding 

applications of burn severity to additional forest types where fire once was, but has been has 
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been suppressed would also be helpful in developing management strategies to reverse 

mesophication, restore habitat for threatened and endangered species, and promote ecological 

resilience in northeastern forests. 

Finally, more research that examines the relationship between burn severity and fire 

behavior is needed.  While many indicators of burn severity demonstrate a link between burn 

severity and fire behavior, such as scorch height relating to flame height and intensity for 

specific environments (Alexander and Cruz 2012, Wagner 1973), correlations between burn 

severity and fire intensity have not been sufficiently evaluated (Heward et al. 2013).  Benefits of 

such correlations would allow managers to compare how fire behavior differed between treated 

and untreated areas, in different fuel types, and under different burning conditions.  Further, 

this link would help scientists developing physics-based fire behavior prediction models better 

understand the nature of fire behavior and intensity in large heterogeneous burn units. 

 Conclusions 

 Burn severity indices are useful and increasingly popular for monitoring fire effects for 

management and research applications.  Multiple field and remote sensing methods are 

available, however, not all methods will provide equivalent results or will be feasible for every 

monitoring goal, and, therefore, careful consideration of methods and monitoring goals is 

crucial to ensure a feasible and appropriate method is selected.  Ongoing research is 

continuously advancing the utility of burn severity indices, however, the focus of burn severity 

research has been variable between regions.  Additional research that produces more 

calibrations, especially in under-represented regions, and links burn severity to fuel 

consumption and fire intensity would be useful to management and research communities, 

interested in predicting fire behavior and outcomes of fuel treatments and wildland fire. 
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Table 1. Specifications of Sensors Useful for Calculating NIR (700 - 1400nm) and SWIR (1400 - 

2500) Based Burn Severity Indices 

Sensor NIR 
Band 

NIR 
band-
width 
(nm) 

Spatial 
Res. 

SWIR 
band 

SWIR 
band-
width 
(nm) 

Spatial 
Res. 

Revisit 
Cycle 

Domain Availability 

Terra 
MODIS 

2 841 - 
876 

250m 7 2105 - 
2155 

500m 16 days Public 12/18/99 - 
present  

Aqua 
MODIS 

2 841 - 
876 

250m 7 2105 - 
2155 

500m 16 days Public 5/4/02 - 
present 

Landsat 4 
TM 

4 760 - 
900 

30m 7 2080 - 
2650 

30m 18 days Public 7/16/82 - 
7/87 

Landsat 5 
TM 

4 760 - 
900 

30m 7 2080 - 
2650 

30m 18 days Public 4/1/84 - 
12/21/12 

Landsat 7 
ETM+ 

4 770 - 
900 

30m 7 2090 - 
2350 

30m 16 days Public 4/15/99 - 
present 

Landsat 8 5 850 - 
880 

30m 7 2110 - 
2290 

30m 16 days Public 2/2/11 - 
present 

ASTER 3N 760 - 
860 

15m 4 1600 - 
1700 

30m 16 days Public 12/18/99 - 
present  

  3B 701 - 
860 

30m 5 2145 - 
2185 

30m       

        6 2185 - 
2225 

30m       

        7 2235 - 
2285 

30m       

        8 2295 - 
2365 

30m       

        9 2360 - 
2430 

30m       

World-
view 3 

6 705 - 
745 

7ma 10 1550 - 
1590 

7mb By-
request 

Comm. 8/13/14 - 
present 

 
7 770 - 

895 
7ma 11 1640 - 

1680 
7mb 

   

 
8 860 -

1040 
7ma 12 1710 - 

1750 
7mb 

   

 
9 1195 

- 
1225 

7mb 13 2145 - 
2185 

7mb 
   

    
14 2185 - 

2225 
7mb 

   

    
15 2235 - 

2285 
7mb 

   

    
16 2295 - 

2365 
7mb 
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Quickbird 4 760 - 
900 

2.4m (no SWIR band) By-
request 

Comm. 10/15/01 - 
12/17/14 

AVIRIS 70 bands in 
10nm 
increments 
between 700 
- 1400nm 

2.4m 90 bands in 10nm 
increments 
between 1400 - 
2500nm 

Up to 
2.4m 

By-
request 

Public 1987 - 
present 

 

a Data is collected with a 1.24m  spatial resolution but served at a 7.00m resolution 
b Data is collected with a 3.40m  spatial resolution but served at a 7.00m resolution 
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CHAPTER 2: Evaluation of Field and Remote Sensing Burn Severity Indices in a Northeastern 

Pine-dominated Landscape 

Abstract 

Remotely sensed burn severity maps have become an important tool for fire ecologists 

and managers, enabling them to estimate variability in fire effects more rapidly, safely, and 

effectively than field methods alone permit.  The effectiveness of these maps, however is based 

on the strengths of relationships between the remotely sensed and field indices of burn severity 

from which they are derived.  Despite the breadth of work validating the use of remotely sensed 

burn severity, differences in field indices, remotely sensed indices, and sensor types used to 

derive these relationships has made rigorous comparison of these indices difficult.  This study 

evaluates the prediction of two field indices, CBI and WCBI, from a total of 15 candidate models 

each, varying by remote sensing index used as a predictor (NBR, dNBR, RdNBR, and RBR), and 

equation form (polynomial, exponential, and sigmoidal).  Models were ranked based on AIC and 

RRS, providing means to choose an optimal model for this environment.  Overall, the results of 

this study document strong relationships between field and remotely sensing burn severity 

indices derived from Landsat ETM+ data for the pitch pine dominated forests of New Jersey’s 

Pinelands National Reserve (PNR), and provide evidence to support the selection of specific a 

specific methodology for predicting field indices from remotely sensed data.  Models that 

predicted WCBI tended to have lower AICs and RSSs than those that predicted CBI, and the two 

highest ranking models predicted WCBI from single-date (post-fire) NBR, rather than indices 

generated from multi-temporal (pre- and post-fire) data. 

Introduction 

Remote sensing of burn severity can be used to monitor short and long term fire effects.  

Burn severity is defined as the magnitude of environmental change incurred and is measured 
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following fire, typically using satellite imagery that is calibrated to field data (Kolden, Smith and 

Abatzoglou 2015, Keeley 2009).  Burn severity differs from fire intensity, which describes 

energetic properties of active fire (Byram 1959, Rothermel 1972, Ryan and Noste 1985, Cram, 

Baker and Boren 2006), although both burn severity and fire intensity are theoretically linked 

through the combustion and heat transfer processes that cause fire effects, however, little is 

known about the exact relationship between burn severity and fire intensity (Heward et al. 

2013).  When remotely sensed burn severity estimates are calibrated with other field 

observations of burn severity, or other fire effects, relationships can be defined that enable 

researchers and managers to draw inferences about fire effects where only remote sensing data 

is available.  Not does this facilitate much faster analyses of fire effects than when only using 

field methods, but the spatial resolution and wall-to-wall coverage of remotely sensed burn 

severity data can provide highly comprehensive and spatially discrete maps of change resulting 

from fire (Chapter 1).   

One common use of remotely sensed burn severity maps has been to estimate fire 

perimeters, including unburned interior areas that traditional mapping methods often miss 

(Kolden et al. 2012), however it has also been used to identify the locations of specific fire 

effects that are of interest to fire managers, researchers, and policy makers.  For instance, a 

substantial breadth of research using burn severity has been conducted in boreal forest to be 

correlate fire activity with fuel consumption and emissions (Boby et al. 2010), mortality and 

regeneration patterns of dominant tree species (Johnstone and Kasischke 2005), post-fire avian 

occurrence (Rose et al. 2016, Latif et al. 2016), changes in soil hydraulics (Moody et al. 2016), 

the influence on vegetation characteristics and weather fire effects (Birch et al. 2015, Davies et 

al. 2016, Viedma et al. 2015), and patterns of vegetation recovery following fire (Crotteau et al. 
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2015, Chambers et al. 2016).  Hence this tool is useful in many aspects of forestry and wildlife 

research and management.   

The Composite Burn Index (CBI) is the most common field-based index for quantifying 

burn severity, and involves ranking burn severity indicators within specific forest strata at 

sample plots and summarizing them with a simple formula (Key and Benson 2006).  A total of 24 

vegetation and substrate indicators are ranked on a [0-3] scale on a field sheet, representing the 

range of “No Effect” to “High Effect” (Figure 1).  Ranks are then used in equations to summarize, 

overstory, and total Composite Burn Index (CBI) for each plot.  Several slight variants of this 

method have been introduced in the existing literature, which involve omitting indicators that 

are impractical to measure or are irrelevant in the sample plot.  For example, the GeoCBI variant 

uses a weighting factor based on leaf area index for each strata of vegetation when summarizing 

results and has gained increasing attention (De Santis and Chuvieco 2009).  Similarly, Weighted 

CBI (WCBI) uses a focal estimation of percent cover to weight burn index rankings in each 

stratum, before estimating Total CBI (Cansler and McKenzie 2012).  In southern Appalachian 

pine and oak dominated forest, a vastly simplified version of CBI that included only crown scorch 

and shrub damage was found to be well correlated with remotely sensed burn severity 

(Wimberly and Reilly 2007).  Similarly, Koivula et al. (2006) evaluated severity solely on scorch 

class in one study, which provided useful covariate for beetle population data. 

A variety of remotely sensed burn severity indices have been proposed and are typically 

validated and rescaled to predict CBI values, using regression equations.  This is necessary, 

because remotely sensed burn severity indices measure altered surface reflectance, and 

therefore indirectly estimates physical change to vegetation and substrates.  The most common 

methods for estimating burn severity are derived from near infrared (NIR) and short-wave infra-

red (SWIR) imagery, which is represented by the bandwidths of 700 – 1400nm and 1400 – 
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2500nm, respectively (Warner, Skowronski and Gallagher 2017).  The Near Burn Ratio (NBR) is 

the simplest of these indices and is a precursor in methods used to estimate other NIR and SWIR 

based indices.  NBR is typically calculated from Landsat Thematic Mapper bands 5 and 7 (Key 

and Benson 1999).  While multiple bands of Landsat data are available, these bands are less are 

the most sensitive to burned vegetation and soils while also being less correlated to each other 

than bands (Garcia and Caselles 1991).  NBR is calculated using single date imagery hence it is 

readily obtainable.  However this also means it is also unable to differentiate between burn 

severity and other forest disturbances that could have altered reflectance prior to burning.  This 

can be resolved, however, by differencing bi-temporal NBR images that represent pre- and post-

fire vegetation conditions, making it robust under a wide variety of forest conditions (Key and 

Benson 2006).  NBR and differenced NBR (dNBR) are both absolute measures of burn severity, 

however, meaning that they are subject to showing greater change where pre-burn vegetation 

is denser, even if a less dense area had greater consumption.  As a result, a relative form of 

dNBR (RdNBR) and the relative burn ratio (RBR) have been developed as NBR-based bi-temporal 

alternatives which are normalized to pre-burn vegetation reflectance (Miller and Thode 2007).  

Although theoretical arguments have been made in support of each one of these indices over 

the others, inconsistent differences in the strengths of correlations between field data and these 

indices have made it impossible to determine the superiority of an optimal index.  Thus the most 

appropriate method for any new site location should be selected based on a rigorous 

comparison with field data.   

Although multiple studies have compared various NIR and SWIR-based remote sensing 

indices with CBI and WCBI, few studies have evaluated the entire suite of these indices for 

optimization purposes.  Similarly, optimization should also consider the suite of sensors that 

collect NIR and SWIR data, which each have slightly different bandwidth specifications and 
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therefore will produce slightly different results.  For instance, in eastern pine-dominated forests, 

dNBR has been evaluated using Landsat TM, ETM+ (Wimberly and Reilly 2007, Picotte and 

Robertson 2011), and OLI sensors (Unger, Hung and Zhangb 2016), and Worldview 3 sensors 

(Warner et al. 2017), however, other NIR and SWIR based indices that may have had stronger 

correlations have not been tested.  For instance, one study in the southeast revealed that 

although dNBR frequently outperformed NBR (Picotte and Robertson 2011).  Likewise, in the 

Pacific Northwest, multiple studies reported that RdNBR consistently outperformed dNBR 

(Miller et al. 2009, Newcomer et al. 2009).  Still further, a separate study reported that RBR 

consistently outperformed both RdNBR and dNBR in mixed conifer forests of from southwestern 

US to the Northern Rockies (Parks, Dillon and Miller 2014).  However, none of these studies 

compare each remote sensing index, and some use different sensors, making it difficult to truly 

determine which is actually optimal. 

My study aims to evaluate the use of NBR, dNBR, RdNBR, and RBR for pine-oak 

vegetation, common to coastal plains and ridgetops of the eastern US.  We examine correlations 

between field and remotely sensed burn severity across 110 plots burned in prescribed and 

wildfires in the New Jersey PNR that occurred between 2013 and 2015.  In my examination, I 

evaluate which index is most correlated with field data and which index is most successful at 

differentiating burned from unburned area.  Finally, the results are summarized terms of their 

implications in pine-oak forests, as well as the broader context of remotely sensed burn severity 

indices. 

Methods 

Site Description 

Burn severity was studied within the New Jersey Forest Fire Service’s Central Division 

primary response area, in the New Jersey Pinelands ecological area.  The New Jersey Pinelands 
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experiences a higher frequency of fires than other areas in the northeastern US, and often 

experiences tens of thousands of burned hectares per year (Forman and Boerner 1981).  This 

area remains the locale of the majority of the state’s fire activity (La Puma 2012).  Its landscape 

is home to a variety of upland and wetland forest ecosystems, many of which are fire dependent 

and have experienced a high frequency of fire since before European settlement (Forman 2012).  

Of this landscape, 62% is comprised of upland forests (Lathrop and Kaplan 2004), which are 

subjected to the greatest amount of fire activity.  These upland forests are dominated by three 

major communities; 1) oak-dominated stands, consisting of black oak (Quercus velutina Lam.), 

chestnut oak (Q. prinus L.), white oak (Q. alba L.), pitch pine (Pinus rigida Mill.), and shortleaf 

pine (P. echinata Mill.), 2) mixed stands, with pitch pine and mixed oaks in the overstory, and 3) 

pitch pine-dominated stands, consisting of pitch pine with few overstory oaks and abundant 

scrub oaks (Q. marilandica Muenchh., Q. ilicifolia Wangenh.) in the understory (McCormick and 

Jones 1973).  Understory communities in these forests are dominated by varying mixes of 

ericaceous shrubs, shrub oaks, and associated species, such as lowbush blueberry (Vaccinium 

palladum Aiton and angustifolium Aiton), black huckleberry (Gaylussacia baccata (Wangenh.) K. 

Koch.), scrub oak (Q. ilicifolia), black jack oak (Q. marilandica), inkberry holly (Ilex glabra). 

Field data 

Field data were collected in 110 plots in burned and unburned conditions of upland 

forest, dominated by pines, between 2013 and 2015 (Figure 2).  77 plots were spread among 23 

prescribed burn units, 20 plots were spread across 5 wildfires, and 13 were located in 6 stands 

that did not burn (Table 1).  Three of the unburned plots, located at Jenkins (see Table 1), were 

prescribe burned two years prior to the study.  Plot locations were recorded using a Trimble 

GeoExplorer 6000 GPS unit, paired with a Tornado receiver (Trimble Inc., Sunnyvale, CA, USA). 
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Differential correction was performed on point data to estimate horizontal accuracy of 

measured coordinates to be within 3m or less of the actual field location.   

CBI and WCBI field factors were measured within a 15m radius of the GPS points.  In the 

New Jersey Pinelands, and other pitch pine barrens, overstory pines and the understory of 

predominantly deciduous shrubs senesce more than half of foliage for the dormant season, 

when prescribed burning is conducted.  Given that most factors assessed with the CBI and WCBI 

protocols are linked to the amount of foliage, and vegetation effects from dormant season 

burns are not necessarily visible until the growing season, this data was collected during the 

growing season (Table 1).   This timing differs somewhat from that described in other studies 

that have focused on growing season fire, however, few studies have included dormant season 

burning when both evergreen and deciduous foliage are factors.   

Sampling was conducted as an extended assessment, using a modified form of the 

Composite Burn Index method (Key and Benson 2006), which involved omitting 4 of the possible 

23 evaluation factors that did not apply to the Pinelands environment or were difficult to 

observe objectively.  For instance, ranking effects to downed heavy fuel with a diameter greater 

than 20.32cm was omitted because fuels of that class were not found in any of the survey plots.  

Likewise, “colonizers” and “species relative abundance” were deemed a poor metric of severity, 

since pre-fire species typically re-colonize following fire through sprouting of subsurface 

rhizomes during the growing season following fire (Matlack, Gibson and Good 1993).  Focally 

estimated percent cover of vegetation (FCOV), assessed for each strata as part of the CBI 

method, permitted calculation of WCBI. 

Image processing and generation of burn severity maps 

Maps of NBR, dNBR, RdNBR, and RBR were generated for each year, within the study 

area, as the results of a sequence of data processing steps (Figure 3).  Landsat 7 ETM+ scenes of 
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path 32-33 and row 13-14, acquired through the USGS GLOVIS database (Table 2).  Although 

many prior studies have based burn severity maps on data collected within ± 2 weeks of fires, to 

control for the amount of regeneration that occurs following fire, and to control for ambient 

pre- and post-fire reflectance, this approach does not control for seasonal variation in ambient 

reflectance that can occur between fires.  Further, regeneration following dormant season fire 

in temperate-deciduous and temperate-mixed forests does not initiate until the growing season, 

although substantial regeneration following growing season fire can occur within weeks, making 

it difficult to compare both types of fire when using the typical ± 2 week window.  Therefore the 

burn severity maps were generated data from the growing season following fire.  I further 

constrained the timing of imagery to the period between Julian dates 176 and 288, which 

correspond to the period of full leaf expansion (Clark et al. 2012).   

Standard raw image processing steps were necessary before imagery could be used to 

generate burn severity maps.  First, pixel values were converted from digital numbers to top of 

atmosphere reflectance values to normalize for natural variation in solar angle and the distance 

between the sun and the Earth (Chander, Markham and Helder 2009).  Next, pixels with 

incomplete information, which occur often at the edges of missing data swaths in SLC-off 

imagery, were selected and removed.  Next, clouds and cloud shadows that obscured areas 

burned by fires were manually masked.  Radiometric correction was then performed, by scaling 

reflectance values of regions dominated by evergreens that have little variation in reflectance 

between seasons and years under normal growing conditions (Isaacson, Serbin and Townsend 

2012).  For this purpose, Atlantic White Cedar (Chameacyparis thyoides) stands, present in all 

imagery, were chosen and used to calibrate all data to 2010 Landsat 5 TM imagery for being the 

clearest and most complete image of all years.  This provided a selection of multiple calibrated 

growing season images for each year of the study, but that did not completely cover the area of 
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interest due to SLC-off missing data or masked clouds.  I chose to fill gaps in data by mosaicking 

the calibrated imagery as necessary, to produce complete coverage of the fires monitored in 

this study (Veraverbeke et al. 2011).  Mosaicked images were then used to compute burn 

severity coverages for each year.  Burn severity indices were then computed as follows.   

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
,       (Key and Benson 1999) 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡,      (Key and Benson 2006) 

𝑅𝑑𝑁𝐵𝑅 =  
𝑑𝑁𝐵𝑅

√𝐴𝐵𝑆(
𝑁𝐵𝑅𝑝𝑟𝑒

1000
)

 ,      (Miller and Thode 2007) 

𝑅𝐵𝑅 =
𝑑𝑁𝐵𝑅

𝑁𝐵𝑅𝑝𝑟𝑒+1.001
       (Parks et al. 2014) 

  For each CBI plot location, I extracted values or each burn severity index for GPS point 

described in the previous section.  Since it is unlikely for CBI plots to be centered on Landsat 

pixels, due to horizontal error in GPS and Landsat datasets, it is common to extract indices either 

as an average of pixel values in a 3 x 3 window, surrounding the GPS point (Miller and Thode 

2007), or by using bilinear interpolation to derive an average of the four nearest pixels that is 

weighted based on the distances of pixel centroids from the GPS point (Cansler and McKenzie 

2012).  Given the size of the field plots (30m diameter) and the size of pixels (30 x 30m), a 3 x 3 

window would inevitably incorporate pixels that were not observed in the field, producing edge 

effects.  I therefore used bilinear interpolation, which incorporated pixels on a more appropriate 

spatial scale given my field plots. 

Evaluation of Remote Sensing Data with Field Data 

Twelve models were developed to predict CBI and WCBI.  Each model differed by the 

independent variable used (NBR, dNBR, RdNBR, and RBR) and the equation form (polynomial, 

exponential, sigmoidal).  Similar variation in models can be observed in previous studies (Chen 

et al. 2011, Warner et al. 2017, Wimberly and Reilly 2007, Picotte and Robertson 2011). The 
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polynomial (Eqn. 1), exponential (Eqn. 2), and sigmoidal equations (Eqn. 3) used in this study are 

given in the following equations, where x and y represent remotely sensed and field burn 

severity indices, respectively, and other symbols represent coefficients.   

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2        (Eqn. 1) 

𝑦 = 𝛽0 + 𝛽1(1 − 𝑒−𝛽2𝑥)       (Eqn. 2) 

𝑦 =  
𝛽0

1+𝑒−(𝛽1(𝑥−𝛽2))        (Eqn. 3) 

I used a two-step process to first identify the best models to predict CBI and WCBI, and 

second select which of those two resultant models was better.  To select the best CBI and WCBI 

models, I used a k-fold leave one out cross validation approach to calculate Residual Sum of 

Square (RSS) and Akaike’s Information Criterion (AIC) for each model and compared them within 

CBI and WCBI model groups.  In each iteration of the k-fold process, the data was ordinated by 

CBI and split into 5 quantiles, from which 80% of plots in each quantile were selected and 

combined into a training dataset, and the remaining 20% of data was reserved for testing.  This 

ensured that training and test data each represented the same range of the burn severity 

observed.  Outputs for each group models (i.e. CBI and WCBI) were then evaluated using RSS as 

a primary criterion and AIC as a secondary criterion, when RSS values were similar, to select the 

top CBI and WCBI models.  The two resulting models were then rerun using the entire dataset, 

and coefficient of determination and coefficient values were calculated for the observed values 

versus the model predicted values.   

Results 

 A total of 110 field plots were assessed using CBI and WCBI methods.  CBI values ranged 

from 0 – 2.68, representing 89% of the potential range of burn severity.  In contrast, WCBI 

ranged of 0 – 2.49, representing only 83% of the possible range of burn severity.  Mean CBI and 

WCBI across all plots were nearly identical, however, the variance of WCBI was much lower 
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(Table 3) and its distribution was much narrower (Figure 5).  FCOV was substantially higher in 

the bottom two forest strata for nearly all fires than in the top 3 strata, indicating that WCBI is 

influenced by effects in the lower strata much more so than in the upper strata (Table 3).   

Across all plots, ranges of NBR, dNBR, RdNBR, and RBR were [-7 – 799], [-6 – 760], [0 – 

914], and [-3 – 450], respectively, defining the range from no effect to a high degree of effect.  

Means for each index were 473, 187, 233, and 112.  Maps of remotely sensed burn severity are 

provided in Figure 6 to illustrate spatial of variability observed in prescribed fires and wildfires.   

RSS and AIC of each candidate model are provided in Table 4.  For models of the CBI 

group, those with polynomial and sigmoidal functions and tended to have more favorable RSS 

and AIC values than those with exponential functions.  This was similarly observed among WCBI 

which also tended to have more favorable RSS values when NBR was the independent variable 

rather than a bi-temporal index.  The best choice CBI model was that with a polynomial function 

and rdNBR as the independent variable, while the best choice WCBI model was the exponential 

model which used NBR as the independent variable.  Coefficient estimates for all candidate 

models are provided in Table 5.  Coefficients of determination of observed vs. predicted values 

for the top CBI and WCBI were 0.74 and 0.68, respectively, indicating the CBI model as the best 

choice model (Figure 7).  

Discussion 

This study evaluated the prediction of two field indices of burn severity, CBI and WCBI, 

in eastern pitch pine-dominated forests using commonly used NIR and SWIR-based burn severity 

indices and equation forms, to provide evidence for the selection of the optimal combination of 

field index, remote sensing index, and equation form.  The results of this study suggest that that 

despite the similarities of approaches used in previous studies, differences in the derivations of 

field and remote sensing indices and equation forms used to describe relationships can impact 
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the level of information predicted by calibration models, and may limit the comparability of 

studies that with varying approaches. 

On average, WCBI was more closely related to remote sensing indices of burn severity 

than CBI, as indicated by lower RRS and AIC values in Table 5.  This result differs from that of 

Cansler and McKenzie (2012), who found that CBI had somewhat stronger correlations with 

both dNBR and RdNBR than GeoCBI (similar to WCBI) did in temperate coniferous forests of the 

Cascade Range of the Pacific Northwest.  Interestingly, single date NBR was also a stronger 

independent variable for predicting WCBI than similar bi-temporal indices, thought to be more 

robust.  Despite these overall trends in WCBI models, the a CBI model which used a polynomial 

equation and rdNBR as the independent variable was found to be best over all other candidate 

models (Figure 7).   

The key difference between CBI and WCBI models is the inclusion of a forest density 

estimate used to weight severity data from each strata.  In the case of this study, WCBI was 

largely influenced by patterns in FCOV, which manifest as homogenously dense conditions in 

understory strata, below 1m, and substantially sparser conditions in the overstory.  This 

effectively diminishes the importance of the overstory strata in WCBI calculations, and 

augmenting those of the understory, to the extent that understory variability dwarfed that 

factors >1m in WCBI calculations (Table 3).  The consistency of this pattern across widely 

dispersed plots suggest this pattern is likely a landscape scale trend in the vegetation, which 

may diminish the value of WCBI in this environment, although it remains unclear whether this 

trend is natural, or due to historic or recent forest management strategies (such as even aged 

regeneration from previous landscape scale clear cutting or landscape scale fire activity).  

Similarly, FCOV is a ‘rough’ estimate of the vertical distribution of forest structure, given that is 

focally estimated, and, more rigorous evaluations of the connection between forest structure 
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and remotely sensed burn severity estimates, such as LiDAR, would produce better input data 

for WCBI estimates.  Although LiDAR data has historically been expensive and complicated to 

acquire, the advent of new, easier to use off-the shelf LiDAR devices may aid in FCOV estimation 

in the near future. 

It was also interesting that WCBI was best predicted by NBR in all cases.  Since NBR is a 

single-date index, and therefore not an estimate of change, one would expect that any of the bi-

temporal indices would have been more strongly related to field data.  For instance, bi-temporal 

indices account for pre-fire deviations in reflectance that NBR does not.  This finding challenges 

the convention that bi-temporal remote sensing indices of change, such as dNBR, rdNBR, and 

RBR, are implicitly better than the simpler NBR.  Although NBR was once used exclusively, few if 

any studies continue to present remotely sensed burn severity data in terms of NBR, in favor of 

bi-temporal indices which are expected to be more robust.  One explanation for why NBR was 

able to do this is because of the rapid recovery of leaf area within the first two years of 

disturbance that occurs in this environment after non-stand replacing events (Clark et al. 2012, 

Schafer et al. 2014).   

Finally, a key difference between this study and other similar studies is the use of 

mosaicked imagery, from the period of maximum leaf area to produce burn severity indices for 

multiple fires within a given year.  Compared to other studies, which have produced maps for 

individual fires using data from a ±2 week post-fire window of time for image acquisition.  While 

this convention may be sufficient for regions with discrete fire seasons which coincide with the 

growing season, this poses challenges for regions where fires are not constrained to the growing 

season or dormant season.  Seasonal variation in reflectance can confound the comparability of 

results between different fires (Kolden et al. 2015).  For instance, remotely sensed burn severity 

indices derived from dormant season don’t account for damage to deciduous plants, although 
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they make up an important part of the forest’s leave area during the growing season and are 

impacted by both dormant season and growing season fire.  If comparing fire effects throughout 

the year is important, then using the period with the greatest potential for spectral change and 

change of cues observable in the field is optimal (e.g. the growing season).  My approach 

demonstrates that using a more standardized baseline of reflectance, by using growing season 

only data, is a robust way to evaluate severity in a way that is consistent between both growing 

season and dormant season reflectance conditions.   

Conclusions  

This study evaluated different approaches to modeling field indices of burn severity 

from common remote sensing indices and provides a basis for using a polynomial equation to 

predict CBI, as a preferable field index of severity over WCBI, using rdNBR as a dependent 

variable.  However, WCBI provided still had a strong positive correlation with remote sensing 

data, particularly with simple, single-date NBR data.  The results of this study also suggest that 

landscape scale patterns in forest structure could strongly influence WCBI data, and that better 

techniques for acquiring forest structure data, such as LiDAR, should be used to better more 

rigorously examine WCBI.  Finally, this study also provides evidence for using growing season 

data to derive remotely sensed burn severity for both dormant and growing season fires. 

References 

Birch, D., P. Morgan, C. Kolden, J. Abatzoglou, G. Dillon, A. Hudak & A. Smith. 2015. Vegetation, 
topography and daily weather influenced burn severity in central Idaho and western 
Montana forests. Ecosphere 6 (1): 17. 

Boby, L. A., E. A. Schuur, M. C. Mack, D. Verbyla & J. F. Johnstone (2010) Quantifying fire 
severity, carbon, and nitrogen emissions in Alaska's boreal forest. Ecological 
Applications, 20, 1633-1647. 

Byram, G. M. (1959) Combustion of forest fuels. Forest fire: control and use, 1, 61-89. 
Cansler, C. A. & D. McKenzie (2012) How robust are burn severity indices when applied in a new 

region? Evaluation of alternate field-based and remote-sensing methods. Remote 
sensing, 4, 456-483. 



52 
 

 
 

Chambers, M. E., P. J. Fornwalt, S. L. Malone & M. A. Battaglia (2016) Patterns of conifer 
regeneration following high severity wildfire in ponderosa pine–dominated forests of 
the Colorado Front Range. Forest Ecology and Management, 378, 57-67. 

Chander, G., B. L. Markham & D. L. Helder (2009) Summary of current radiometric calibration 
coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of 
environment, 113, 893-903. 

Chen, X., J. E. Vogelmann, M. Rollins, D. Ohlen, C. H. Key, L. Yang, C. Huang & H. Shi (2011) 
Detecting post-fire burn severity and vegetation recovery using multitemporal remote 
sensing spectral indices and field-collected composite burn index data in a ponderosa 
pine forest. International Journal of Remote Sensing, 32, 7905-7927. 

Clark, K. L., N. Skowronski, M. Gallagher, H. Renninger & K. Schäfer (2012) Effects of invasive 
insects and fire on forest energy exchange and evapotranspiration in the New Jersey 
pinelands. Agricultural and Forest Meteorology, 166-167, 50-61. 

Cram, D. S., T. T. Baker & J. C. Boren (2006) Wildland fire effects in silviculturally treated vs. 
untreated stands of New Mexico and Arizona. 

Crotteau, J. S., M. W. Ritchie, J. M. Varner & J.-P. Berrill (2015) Quercus kelloggii (Newb.) sprout 
response to fire severity in northern California. 

Davies, G., R. Domenech-Jardi, A. Gray & P. Johnson (2016) Vegetation structure and fire 
weather influence variation in burn severity and fuel consumption during peatland 
wildfires. Biogeosciences, 12, 15737-15762. 

De Santis, A. & E. Chuvieco (2009) GeoCBI: A modified version of the Composite Burn Index for 
the initial assessment of the short-term burn severity from remotely sensed data. 
Remote Sensing of Environment, 113, 554-562. 

Forman, R. 2012. Pine Barrens: ecosystem and landscape. Elsevier. 
Forman, R. T. & R. E. Boerner (1981) Fire frequency and the pine barrens of New Jersey. Bulletin 

of the Torrey Botanical Club, 34-50. 
Garcia, M. L. & V. Caselles (1991) Mapping burns and natural reforestation using Thematic 

Mapper data. Geocarto International, 6, 31-37. 
Heward, H., A. M. S. Smith, D. P. Roy, W. T. Tinkham, C. M. Hoffman, P. Morgan & K. O. Lannom 

(2013) Is burn severity related to fire intensity? Observations from landscape scale 
remote sensing. International Journal of Wildland Fire, 22, 910. 

Isaacson, B. N., S. P. Serbin & P. A. Townsend (2012) Detection of relative differences in 
phenology of forest species using Landsat and MODIS. Landscape ecology, 27, 529-543. 

Johnstone, J. F. & E. S. Kasischke (2005) Stand-level effects of soil burn severity on postfire 
regeneration in a recently burned black spruce forest. Canadian Journal of Forest 
Research, 35, 2151-2163. 

Keeley, J. E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested 
usage. International Journal of Wildland Fire, 18, 116-126. 

Key, C. H. & N. C. Benson (1999) The Normalized Burn Ratio (NBR): A Landsat TM radiometric 
measure of burn severity. United States Geological Survey. 

Key, C. H. & N. C. Benson (2006) Landscape assessment (LA). FIREMON: Fire effects monitoring 
and inventory system. Gen. Tech. Rep. RMRS-GTR-164-CD, Fort Collins, CO: US 
Department of Agriculture, Forest Service, Rocky Mountain Research Station. 

Kolden, C. A., J. A. Lutz, C. H. Key, J. T. Kane & J. W. van Wagtendonk (2012) Mapped versus 
actual burned area within wildfire perimeters: characterizing the unburned. Forest 
Ecology and Management, 286, 38-47. 



53 
 

 
 

Kolden, C. A., A. M. Smith & J. T. Abatzoglou (2015) Limitations and utilisation of Monitoring 
Trends in Burn Severity products for assessing wildfire severity in the USA. International 
Journal of Wildland Fire, 24, 1023-1028. 

La Puma, I. P. 2012. Fire in the pines: a landscape perspective of human-induced ecological 
change in the pinelands of New Jersey. Rutgers University-Graduate School-New 
Brunswick. 

Lathrop, R. & M. Kaplan (2004) New Jersey land use/land cover update: 2000–2001. New Jersey 
Department of Environmental Protection, 35. 

Latif, Q. S., J. S. Sanderlin, V. A. Saab, W. M. Block & J. G. Dudley (2016) Avian relationships with 
wildfire at two dry forest locations with different historical fire regimes. Ecosphere, 7. 

Matlack, G., D. Gibson & R. Good (1993) Clonal propagation, local disturbance, and the structure 
of vegetation: ericaceous shrubs in the pine barrens of New Jersey. Biological 
Conservation, 63, 1-8. 

McCormick, J. & L. Jones. 1973. The Pine Barrens: Vegetation Geography. New Jersey State 
Museum. 

Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell, R. M. Creasy & J. W. Sherlock (2009) 
Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to 
three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, 
USA. Remote Sensing of Environment, 113, 645-656. 

Miller, J. D. & A. E. Thode (2007) Quantifying burn severity in a heterogeneous landscape with a 
relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of 
Environment, 109, 66-80. 

Moody, J. A., B. A. Ebel, P. Nyman, D. A. Martin, C. Stoof & R. McKinley (2016) Relations between 
soil hydraulic properties and burn severity. International Journal of Wildland Fire, 25, 
279-293. 

Newcomer, M., D. Delgado, C. Gantenbein, T. Wang, S. Prichard, C. Schmidt & J. Skiles. 2009. 
Burn severity assessment in the Okanogan-Wenatchee forest using NASA satellite 
missions. In Proceedings of the ASPRS Annual Conference. 

Parks, S., G. Dillon & C. Miller (2014) A New Metric for Quantifying Burn Severity: The Relativized 
Burn Ratio. Remote Sensing, 6, 1827-1844. 

Picotte, J. J. & K. M. Robertson (2011) Validation of remote sensing of burn severity in south-
eastern US ecosystems. International Journal of Wildland Fire, 20, 453-464. 

Rose, E. T., T. R. Simons, R. Klein & A. J. McKerrow (2016) Normalized burn ratios link fire 
severity with patterns of avian occurrence. Landscape Ecology, 1-14. 

Rothermel, R. C. (1972) A mathematical model for predicting fire spread in wildland fuels. 
Ryan, K. C. & N. V. Noste (1985) Evaluating prescribed fires. 
Schafer, K. V., H. J. Renninger, N. J. Carlo & D. W. Vanderklein (2014) Forest response and 

recovery following disturbance in upland forests of the Atlantic Coastal Plain. Front Plant 
Sci, 5, 294. 

Unger, D., I.-K. Hung & Y. Zhangb (2016) Landsat 8 OLI Imagery Classification Accuracy of 
Hardwood versus Pine Forest: A Cautionary Tale. Journal of Forestry, 201. 

Veraverbeke, S., S. Lhermitte, W. W. Verstraeten & R. Goossens (2011) A time-integrated MODIS 
burn severity assessment using the multi-temporal differenced normalized burn ratio 
(dNBRMT). International Journal of Applied Earth Observation and Geoinformation, 13, 
52-58. 

Viedma, O., J. Quesada, I. Torres, A. De Santis & J. M. Moreno (2015) Fire severity in a large fire 
in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, 
and topography. Ecosystems, 18, 237-250. 



54 
 

 
 

Warner, T. A., N. S. Skowronski & M. R. Gallagher (2017) High spatial resolution burn severity 
mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave 
infrared imagery. International Journal of Remote Sensing, 38, 598-616. 

Wimberly, M. & M. Reilly (2007) Assessment of fire severity and species diversity in the 
southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of 
Environment, 108, 189-197. 

 

  



55 
 

 
 

Table 1. Burned and unburned locations of 110 CBI and WCBI field plots.  A total of 77 plots 
were located in prescribed fires, 20 were located in wildfires, and 13 were located in unburned 
areas.  See also to Figure 2. 

Prescribed Fires  Date Fire 
Size 
(ha) 

Field 
Plots 
(n) 

 
Wildfires Date Fire 

Size 
(ha) 

Field 
Plots 
(n) 

AT&T Line  3/3/2013 29 3 
 

Crossroads 
Wildfire 

4/24/2014 81 3 

Dan's Bridge  3/5/2013 118 3 
 

 
   

Experiment 1  3/5/2013 7 12 
 

Continental 
Wildfire 

4/24/2014 128 3 

Fish & Wildlife  3/10/2013 103 1 
    

Cedar Bridge  3/15/2013 162 3 
 

Springers Brook 
Wildfire 

4/25/2014 104 3 

Dead Pheasant  3/15/2013 55 1 
    

Burnt 
Schoolhouse 

 3/6/2014 5 1 
 

Bodine Field 
Wildfire 

7/7/2014 11 3 

Experiment 2  3/11/2014 5 12 
 

Atsion Wildfire 5/7/2015 277 8 

Bulltown Road  3/14/2014 132 3 
     

Tylertown  3/14/2014 76 3 
 

Unburned 
Areas 

Most Recent 
Burn Date 

Field 
Plots 
(n) 

3 Foot Road  3/15/2014 78 3 
 

Carranza Skit  3/15/2014 53 3 
 

Brendan T. 
Byrne SF 

  
1 

East Sandy Ridge  3/15/2014 56 3 
    

Lacey  3/15/2014 89 3 
 

Butterworth Rd 
North 

  
3 

Rattler Rd North  3/15/2014 65 3 
    

Rattler Rd South  3/15/2014 76 1 
 

Butterworth Rd 
South 

  
3 

Snuffy's Turnpike  3/16/2014 62 1 
    

Whiting East  3/16/2014 14 3 
 

Jenkins 2011 
 

3 

Whiting Middle  3/16/2014 43 3 
 

Nugentown  1983 
 

3 

Whiting West  3/16/2014 67 3 
     

Burn Experiment  3/23/2014 2 3 
     

Bloody Ridge Rd  3/24/2014 58 3 
     

Bodine Field  3/24/2014 39 3 
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Table 2. Identification information about of Landsat scenes used to develop growing season 
mosaics. Data for 2012-2013 were calibrated to the 2010 data, which was the most complete 
and clear of growing season data available from 2010-2014. 

Year Date Path Row Image ID 

2010 28-Aug 14 32 lt50140322010240 

2012 2-Jul 13 32 le70130322012183 

 20-Sep 13 32 le70130322012263 

 3-Aug 13 32 le70130322012215 

2013 25-Jun 14 32 le70140322013176  

 5-Aug 13 32 le70130322013217 

 6-Sep 13 32 le70130322013249 

 15-Oct 14 32 le70140322013288 

2014 28-Jun 14 32 le70140322014179 

 7-Jul 13 32 le70130322014188 

 30-Jul 14 33 le70140332014211 

 30-Jul 14 33 le70140332014211 

 8-Aug 13 32 le70130322014220 

 15-Aug 14 32 le70140322014227 

2015 24-Jun 13 32 le70130322015175 

 17-Jul 14 32 le70140322015198 

 26-Jul 13 32 le70130322015207 

  18-Aug 14 32 le70140322015230 
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Table 3. Summary of field-based burn severity assessments (excluding unburned plots which 
had severities of 0) 

Forest Stratum 

Pre-Fire Percent 

Cover (Mean ± 1 
Standard Deviation) 

CBI WCBI 

Substrates 98 ± 4 

1.41 ± 0.46 1.40 ± 0.48 Low Shrubs, Herbs, Trees < 1m 90 ± 13 

Tall Shrubs and Trees 1 to 5m 23 ± 21 

    

Intermediate Trees 14 ± 11 
1.41 ± 0.83 1.41 ± 0.82 

Big Trees 19 ± 12 

    

Total 49 ± 5 1.41 ± 0.63 1.39 ± 0.50 
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Table 4. AIC and RSS for candidate models of CBI and WCBI.  Models were evaluated using 
residual sum of squares (RSS) as a primary criterion and Akaike’s Information Criterion (AIC) as a 
second criterion where RSS values were similar between models.  The best model of each group 
is indicated in bold.  Values were generated using a k-fold leave one out cross validation 
approach, in which data was ordinated by CBI and split into 5 quantiles, from which 80% of each 
quantile were randomly selected to populate a training dataset in each fold, while the remaining 
20% of data was reserved for cross validation.  AIC and RSS values represent averages across all 
models from the cross validation segment of each fold.   

Dependent Variable Eqn. Form Independent Variable RSS AIC 

CBI Pol NBR 4.4 87.6 

  dNBR 4.1 82.6 

  rdNBR 4.1 82.5 

  RBR 4.2 82.4 

 Exp NBR 4.4 87.5 

  dNBR 4.9 100.9 

  rdNBR 5.0 100.9 

  rbr 4.9 99.3 

 Sig NBR 4.2 80.9 

  dNBR 4.2 81.8 

  rbr 4.3 82.0 

  rdNBR 4.4 82.0 

   
  

WCBI Pol NBR 3.9 77.0 

  dNBR 4.0 79.7 

  rdNBR 4.1 79.3 

  RBR 4.0 79.5 

 Exp NBR 3.9 76.8 

  dNBR 4.8 95.3 

  rdNBR 4.8 95.3 

  rbr 4.7 94.1 

 Sig NBR 4.1 80.3 

  rbr 4.1 80.0 

  dNBR 4.2 79.8 

  rdNBR 4.3 80.3 
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Table 5. Maximum likelihood estimates and 2 standard errors (2 SE) for coefficients of models 
predictive of field indices of burn severity from remotely sensed indices of burn severity.  Values 
for the best choice model are given in bold. 

Predicted 
Index 
(Field) 

Eqn. 
Form 

Predictor 
Index 
(Remote 
Sensing) β0 2 SE β1 2 SE β2 2 SE 

CBI Pol NBR 1.242 0.005 -5.619 0.034 -1.152 0.017 

  dNBR 1.245 0.005 5.584 0.031 -1.648 0.02 

  rdNBR 1.24 0.006 5.536 0.03 -1.67 0.02 

  RBR 1.24 0.005 5.583 0.031 -1.568 0.02 

 Exp NBR 2.486 0.004 1 0.043 0.002 2.57E-05 

  dNBR 0.625 0.004 -161.448 1.667 2.07E-05 1.69E-07 

  rdNBR 0.607 0.005 -115.223 2.157 2.48E-05 2.89E-07 

  rbr 0.62 0.004 -185.639 1.978 3.03E-05 2.56E-07 

 Sig NBR 2.182 0.007 0.011 0.001 1.42E+02 1.02E+01 

  dNBR 2.358 0.007 0.01 9.59E-05 148.17 0.96 

  rbr 2.34 0.007 0.016 0 88.39 0.59 

  rdNBR 2.329 0.007 0.008 8.62E-05 179.40 1.18 

WCBI Pol NBR 1.234 0.005 -4.734 0.03 -1.165 0.019 

  dNBR 1.232 0.004 4.624 0.027 -1.528 0.021 

  rdNBR 1.229 0.005 4.62 0.028 -1.523 0.021 

  RBR 1.229 0.005 4.638 0.027 -1.439 0.02 

 Exp NBR 2.215 0.003 0.552 0.054 2.00E-03 2.99E-05 

  dNBR 0.72 0.004 -145.908 1.734 1.91E-05 1.92E-07 

  rdNBR 0.702 0.004 -111.658 2.507 2.18E-05 3.18E-07 

  rbr 0.713 0.005 -167.233 1.857 2.80E-05 2.44E-07 

 Sig NBR 2.17 0.006 0.11 0.001 143.49 10.48 

  rbr 2.166 0.006 0.014 1.53E-04 73.82 0.52 

  dNBR 2.161 0.006 0.009 9.51E-05 120.75 0.83 

  rdNBR 2.147 0.007 0.007 5.91E-05 150.25 1.06 
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Figure 1. The Composite Burn Index Field Sheet (Key and Benson 2006). 
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Figure 2. Data processing workflow used to generate NBR, dNBR, rdNBR, and RBR. 
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Figure 3. Histogram of the distribution of burn severity at research plots burned in prescribed 
fire and wildfire, using CBI and alternative form of CBI weighted by focally observed percent 
cover in each forest strata (WCBI). 
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Figure 4. Maps of depicting field survey locations and relative differenced normalized burn ratio 
(rdNBR) at the 2013 Dan’s Bridge Prescribed Fire, the 2014 Springers Brook Wildfire, and the 
2014 Bodine Field Wildfire. 
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Figure 5. Top candidate models from the CBI and WCBI groups were re-run using the entire 
dataset.  Coefficients of determination for observed vs. predicted values were calculated and 
used to select final model.  The resulting model used CBI as the dependent variable, rdNBR as 
the independent variable, and a polynomial equation form (given in Eqn.1). 
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CHAPTER 3: The Use of Forest Census and Remotely Sensed Burn Severity Data to Estimate 

Tree Mortality 

Abstract 

Current tools for predicting fire induced tree mortality rely on post fire field surveys that 

provide limited information on the spatial variability mortality rates, and are also costly, tedious, 

and dangerous to obtain.  Alternatively, rapid field and remote sensing approaches have proven 

useful for generating spatially comprehensive predictions of burn severity across burned forests, 

or the magnitude of ecological change, as well as other more nuanced ecological responses, but 

have not yet been incorporated into models of fire-induced tree mortality.  I developed three 

logistic regression models to determine whether burn severity data could be incorporated with 

pre-burn forest census data to improve predictions of mortality among pitch pine following 

prescribed fire and wildfire events, and, whether field or remotely sensed burn severity data 

provided the most improvement among predictions.  The first model incorporated only tree 

dimensions as parameters, while the second and third models also included field estimated burn 

severity and remotely sensed burn severity, respectively.  I found that while both models that 

included burn severity parameters produced substantially better results than the model which 

did not, the model that incorporated remotely sensed burn severity produced the best results.  I 

also provide an equation for estimating pitch pine (Pinus rigida Mill.) bark thickness, developed 

from an independent dataset, which I included in my models as it is a common parameter in other 

models of fire induced tree mortality.  I then discuss local management implications of the results, 

along with the broader implications for the improvement of fire induced tree mortality 

estimation. 
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Introduction 

Monitoring ecological impacts of fires is essential for evaluating net changes on forest 

ecosystem processes and the degree to which forest management goals are bolstered or set back 

by fire events.  Ecosystem processes of concern can include water and nutrient cycling, 

regeneration, and carbon storage, while goals may include impacting stand density to promote 

forest health, timber quality, or regeneration, or to reduce hazardous fuels.  A commonality 

among these processes and goals, are that they scale closely the attributes of the forest tree 

populations, and are therefore estimated from forest census data, collected at the tree-level 

through forest inventory programs, such as the US Forest Service’s Forest Inventory and Analysis 

Program (https://www.fia.fs.fed.us/).  Thus, evaluating fire impacts on forest tree populations, in 

a way that relates to inventory data is necessary to estimate broader stand-level changes in 

forests in relation to management objects.  Fire-induced tree mortality is among the most 

rudimentary of impacts to forest tree populations, relates directly to even the most basic forest 

inventories, and is therefore is an essential fire effect to capture with post-fire monitoring. 

Fire-induced tree mortality 

The mechanisms by which fire kills trees have been well studied, especially in the western 

United States. Physiologically, fire can cause immediate mortality in trees in three ways: through 

bole damage, crown damage, and root damage (Michaletz and Johnson 2007). Short of 

combustion, lethal damage to these tissues is believed to begin when tissues reach temperatures 

of 50-60®C, at which protein denaturation occurs (Michaletz and Johnson 2006, Rosenberg et al. 

1971, Van Wagner 1973). Girdling of the bole can impact the phloem and xylem, or just the 

phloem, which is exterior to the xylem. When only phloem is girdled, canopy growth can still 

continue, but the channel that enables nutrient and photosynthate flow between roots and the 

crown has been broken, postponing the death of crown and root tissues until they have expended 

https://www.fia.fs.fed.us/
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water and nutrient reserves(Michaletz and Johnson 2007). Bark provides insulation to the bole, 

slowing the rate of heat transfer to the cambium (Dickinson and Johnson 2004, Lawes et al. 2011). 

Bark thickness and density depend on species and tree size and explain differences in the rates of 

heat transfer to the cambium among different trees (Bauer et al. 2010, Hengst and Dawson 1994, 

Lawes et al. 2011). Crown damage, may occur from consumption of foliage and apical meristem 

tissue or damage to these tissues from heat transfer from the combustion of other nearby 

materials (Michaletz and Johnson 2007). Root damage can occur from flaming surface fire or 

smoldering combustion (flameless) of organic material within the soil. Damage from surface fire 

involves heat transfer from the fire environment to the soil surface, through the soil, and finally 

from soil to root bark, cambium, and meristem tissue (Michaletz and Johnson 2008). Through 

smoldering combustion, root material may be consumed or damaged through the transfer of heat 

from combusting subsurface materials (Stephens and Finney 2002, Watts 2013). 

While mechanisms of tree mortality are well understood, direct measurements of specific 

damages remain inadequate, and may be unnecessary when the objective is simply estimating 

mortality rates. Indirect estimates, such as percent crown damage or scorch height, are highly 

correlated with physiological damage for many species. Further, the characteristics of individual 

species, such as the insulating value of bark, carbon reserves available to recover from 

disturbance, ability to compartmentalize damage and resist decay, and the ability to re-sprout, 

are relatively well understood. Thus, by incorporating factors indicative of a tree’s ability to resist 

fire damage into logistic regression models, researchers have produced equations that accurately 

predict mortality and survival of individual trees which can be tailored to individual species (Ryan 

and Reinhardt 1988, Ryan and Amman 1994, Stephens and Finney 2002, Hood et al. 2008).   

Classic models of fire-induced tree mortality 
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In classic models of fire-induced tree mortality, individual tree size, bark thickness 

(typically based on species-specific height and diameter relationships), and species are used as 

base-level inputs.  These data can be gathered from pre-fire forest inventories, however 

commonly used models also incorporate post-fire damage surveys of individual trees to improve 

estimates.  The damage most commonly used in these predictions is some metric of crown scorch 

percentage. Patterns of mortality derived from such models, such as those from the Ryan - 

Amman model, have been incorporated into modeling tools, such as FVS, FOFEM and FARSITE, 

allowing managers to estimate the likely impacts of fuel treatments and wildfire on mortality rates 

(Reinhardt 2003, Reinhardt and Dickinson 2010). Hood et.al. (2008) conducted the first evaluation 

of many species-specific coefficients for the Ryan-Amman model and found modeled stand-level 

mortality to be within 20% of actual values for subalpine fir (Abies lasiocarpa (Hook.) Nutt.), white 

fir (A. concolor (Gord. & Glend.) Lindl.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), incense 

cedar (Calocedrus decurrens (Torr.) Florin), Engelmann spruce (Picea engelmannii Parry), 

whitebark pine (Pinus albicaulis Engelm.), lodgepole pine (P. contorta Dougl.), ponderosa pine (P. 

ponderosa Dougl. ex Laws.), Jeffrey pine (P. jeffreyi Balf.), and sugar pine (P. lambertiana Dougl.). 

While the Ryan-Amman model is the most widely used, Finney and Steven (2002) provided an 

alternate logistic regression form that also uses percent crown volume scorched and dbh to 

predict mortality of a similar suite of conifers of the western United States. This approach has 

been used in multiple subsequent studies to relate in fire-induced tree mortality to the degree of 

fire impacts on individual trees (Hély, Flannigan and Bergeron 2003, Kobziar, Moghaddas and 

Stephens 2006, Regelbrugge and Conard 1993).  

Remote Sensing Alternatives 

Remote sensing methods represent an alternative strategy for estimating fire effects, and 

offer the possibility of enhancing (or even changing) the way fire-induced tree mortality is 
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measured. Over the past decade, managers and researchers have begun to record and study the 

spatial distribution of fire effects, using methods of estimating burn severity, an index of the 

overall magnitude of ecological damage caused by wildland fire (Keeley 2009). Federal programs, 

such as Burned Area Emergency Response (BAER, http://www.fs.fed.us/eng/rsac/baer/), the 

Rapid Assessment of Vegetation Condition after Wildfire (RAVG, 

http://www.fs.fed.us/postfirevegcondition/index.shtml), and the Monitoring Trends in Burn 

Severity (MTBS, http://www.mtbs.gov/methods.html), now provide burn severity map products 

that are freely available to managers and the general public. These estimates are essentially 

measures of the change in reflectance of vegetation and soil that result from fire, as derived by 

differencing pre- and post-fire imagery, using selected bands of light, typically the mid-infrared 

(MIR) and near-infrared (NIR) bands. While data of many other bandwidths of light are also 

available, recent work by Warner, Skowronski, and Gallagher (2017) has further demonstrated 

the higher utility of MIR and NIR for detecting burn severity in a conifer dominated forest. While 

a variety of sensors can be used to collect these data, the most commonly used are the (freely 

available) imagery available through the US Geological Survey from Landsat 5, Landsat 7, and 

Landsat 8, which have a relatively high pixel resolution of 30 x 30m. While numerous indices of 

remotely sensed burn severity have been presented, those generated from NIR and MIR data, 

such as the Differenced Normalized Burn Ratio (dNBR) and Relative dNBR (rdNBR), have yielded 

the highest correlations with field observations (Chen et al. 2011, Key and Benson 2006, Miller 

and Thode 2007, Miller et al. 2009, Whittier and Gray 2016). Both dNBR and rdNBR are calculated 

from pre- and post-burn NIR and MIR imagery, such as bands 4 and 7 collected by Landsat 7. While 

dNBR has been used in more studies than rdNBR, the latter has mathematical and standardization 

merits that make it an attractive alternative (Miller and Thode 2007). 

http://www.fs.fed.us/eng/rsac/baer/
http://www.fs.fed.us/postfirevegcondition/index.shtml
http://www.mtbs.gov/methods.html
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Calibrating remote sensing indices with field observations is necessary to produce realistic 

estimates of surface change. In the western United States, the Composite Burn Index (CBI) and its 

geometrically structured form (GeoCBI) have been used extensively to translate raw  dNBR and 

rdNBR values into ecologically meaningful outputs (Chen et al. 2011, De Santis and Chuvieco 2009, 

Key and Benson 2006, Miller et al. 2009). CBI is an index of burn severity that is calculated as the 

composite of several severity indicators (e.g. % Crown scorch, amount of litter consumption, etc.) 

where each are scored   on a scale of [0 - 3] (Key and Benson 2006). Observations are ranked 

according to guidelines on the CBI field sheet, such that those with the highest degrees of change 

are ranked as 3, while those of no fire effect are ranked as 0. These criteria, are then summarized 

into stratum-specific Burn Indices (BI), and are finally combined to obtain an overall Composite 

Burn Index. These evaluation criteria are known to be correlated with altered reflectance, and 

include estimates of crown damage. As crown damage is known to be an indicator of stem 

mortality, these results suggest that dNBR or rdNBR values might provide suitable alternative to 

estimates of mortality model inputs of post-fire tree damage, providing broader spatial coverage, 

without the need to conduct costly and tedious post-fire field surveys, at least where pre-burn 

inventory data are available.  

Focus of this Study 

The focus of this study was to determine whether incorporating post-fire burn severity 

data with pre-fire inventory data in logistic regression models could yield accurate predictions of 

fire-induced tree mortality, using pitch pine (Pinus rigida Mill.) as a test species.  Further, I 

evaluated whether field or remote sensing estimates of burn severity produced the greatest 

improvement, as opposed to using pre-fire inventory alone.  With consideration of the 

physiological basis for tree mortality and existing models of fire-induced tree mortality, I included 

tree height, diameter, and bark thickness as model parameters for the first model.  I also included 
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CBI and rdNBR data as parameters in the second and third models, respectively.  Current models 

typically estimate bark thickness as a function of species, diameter, and height, however this 

function was not previously published for pitch pine.  Therefore, I provide a function to estimate 

pitch pine bark, which I evaluated from an independent dataset of pitch pines. I then used these 

functions to explore the question of whether post-fire rdNBR or CBI data could be used to develop 

accurate estimates of mortality from pre-fire inventory data. 

Methods 

Site description 

This research was conducted in Burlington and Ocean Counties, New Jersey, within the 

445,000 ha Pinelands National Reserve (PNR). The PNR is a landscape of upland forests dominated 

by oak and pine and lowland forests dominated by cedar, pine, and maple (Forman 2012, 

Robichaud and Anderson 1994). Upland forests account for approximately 62% of the forested 

area of the PNR and experience a high frequency of both wild and prescribed fire. They are made 

up of 3 distinct communities, all of which contain Pitch Pine (Pinus rigida): (1) oak-dominated 

stands, comprised of chestnut oak (Quercus. prinus L.), black oak (Q. velutina Lam.), white oak (Q. 

alba L.), scarlet oak (Q. coccinea Muenchh.), with scattered shortleaf pine (P. echinata Mill.) and 

Pitch Pine, (2) mixed pine-oak stands, with an overstory of pitch pine and mixed oaks, and (3) 

pitch pine-dominated stands, containing few overstory oaks, but with an understory of abundant 

scrub oaks (Q. marlandica Münchh and Q. ilicifolia Wangenh.) (Boerner and Forman 1982, Forman 

and Boerner 1981, Forman 2012, Lathrop and Kaplan 2004, Robichaud 1973). Of these species, 

pitch pine is likely the most adapted to resisting fire, with specialized thick, flakey bark, and the 

ability to sprout new growth rapidly (epicormic buds) after canopy consuming fires. Such 

adaptions make pitch pine a representative species to evaluate the candidate models over a range 

of fire conditions (Ledig and Little 1998, Little and Moore 1945, Little and Somes 1956). 
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Bark Thickness Model 

Height and dbh data were coupled with bark thickness obtained from basal transverse 

sections of the primary growth axis for 266 harvested pitch pines (e.g. stump slices). These data 

were collected via destructive harvest within five 400m2 forest plots between 2010-2012, 

originally measured for Joint Fire Sciences Program Project 10-1-02-14 The plots were split 

between two distinct management areas in the PNR, with three plots located in Stafford Forge 

Wildlife Management Area and two located in Brendan T. Byrne State Forest, approximately 25 

miles to the northwest. None of the plots had a history of prescribed burning within their 

immediate vicinities, but the plots in Stafford Forge Wildlife Management Area had experienced 

wildfires in 1971 and 2007, and those Brendan T. Byrne State Forest had burned in 1963.  

Height  and dbh’s of trees included in this segment of the study ranged from 2.5-18.5 m 

and 4.1-36.3 cm, respectively, representing the size class distribution of approximately 99% of the 

living pitch pine volume in New Jersey’s Ocean and Burlington Counties, as well as across the 

entire state (FIA 2015). Basal transverse sections were cut with a thickness of 2 – 4 cm, flush with 

the ground, and stored for later analysis. Of the 266 sections collected, 153 were suitable for 

analysis. Bark thickness was measured manually to the nearest millimeter at 5 random locations 

on each section, using a ruler.   

A linear regression model was developed to predict bark thickness (Eqn. 1). In this 

equation, Yi is the log transformed mean of basal bark thickness of tree i, and follows a normal 

distribution described by a mean, derived from regression model parameters, and a variance, 

described by tau, τ.  In the equation it assumed that x1i and x2i r the log height in meters and dbh 

in centimeters of tree i, (x1ix2i) represents an interactive term for log height and dbh, and e 

represents an error term,  

 Yi ~ Normal (β0 + β1x1i + β2x2i + β12x1ix2i + e , τ) (Eqn. 1) 
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Model coefficients are represented (β0, β1, β2 and β12).  Prediction accuracy was assessed using 

R2. 

Mortality Models and Model Selection 

 93 fixed area forest census plots were installed across 26 pitch pine dominated stands to 

collect tree mortality immediately following prescribed fire and wildfire events in 2013 and 

2014.  Plots burned in prescribed fires were surveyed prior to March burns, providing a 

preliminary determination of live and dead trees (pre- fire), as part of Joint Fire Sciences 

Program Project 12-1-03-11 (Skowronski et al. 2016). Mortality rates in wildfire plots, which 

burned during the period of April - July, were only surveyed following the fire, because it was 

impossible to predict and sample prior to wildfires.  For these plots, I assumed a background 

mortality rate of approximately 1.4% for pitch pine for the area of study (FIA 2015), given the 

absence of southern pine beetle damage, storm damage, or other indicators that there had 

been mortality prior to the wildfires. Census plots were circular in shape and had a radius of 

7.3m, to match that of a standard US Forest Service FIA subplot, yielding a total area of 167m2. 

Plot center locations were recorded, using a Trimble GeoExplorer 6000 GPS unit, paired with a 

Tornado receiver (Trimble Inc., Sunnyvale, CA, USA). Differential correction was performed on 

point data to estimate horizontal accuracy of measured coordinates to be within 3m or less of 

the actual field location. Height and dbh of all trees > 2m tall were measured using a 

hypsometer (Haglof VL400, Haglof Sweden AB, Langsele, Sweden) and a diameter tape. Bark 

thickness was estimated from tree height and diameter data with Eqn. 1.  

Satellite imagery was then used to estimate burn severity for all plots by calculating the 

relative differenced normalized burn ratio (rdNBR). The steps to estimate burn severity as rdNBR 

can be broken into four phases: (1) pre-processing of raw data, (2) generating Normalized Burn 

Ratio (NBR) coverages, (3) generating the differenced Normalized Burn Ratio (dNBR) coverages, 
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and finally (4) generating rdNBR coverages. In the pre-processing phase, pixel values are first 

converted from digital numbers to top of atmosphere reflectance and radiometric correction is 

performed. Clouds and cloud shadows which are frequently present even in relatively cloud-free 

data, are then masked. Finally, I accounted for scan line error gaps in the data (see Markham et 

al. 2004) and those caused by clouds by gap filling with error-free data from overlapping flight 

paths on the same or similar dates.  In the second phase, raw pre- and post-fire imagery is 

processed with an algorithm to produce normalized burn ratio (NBR) values.  

NBR = (NIR – MIR) / (NIR+MIR)     (Key and Benson 1999) 

In the third phase, NBR is used to calculate dNBR. 

 dNBR = (NBRpre-fire – NBRpost-fire)     (Key and Benson 2006) 

Finally, in the fourth phase rdNBR is calculated from dNBR. 

|NBR|)NBRNBR(1000rdNBR prepostpre    (Miller and Thode 2007) 

The New Jersey Pinelands conveniently falls at the intersection of multiple flight paths of 

this satellite. While no single image covers the entire extent of the area of interest of the study 

area, multiple paths overlap the core of the area. I therefore used Landsat 7 ETM+ data from paths 

13 and 14 and rows 32 and 33 collected between Julian dates 176 and 288 (Table 1). This reflects 

the period when leaf area is at an annual maximum. Digital reflectance values were converted to 

top of atmosphere reflectance and radiometric correction was performed for all data. Clouds 

were then manually masked, as done by Isaacson (2012). Multi-temporal imagery from different 

row/path combinations within growing seasons was then mosaicked to fill gaps and produce full 

coverage leaf-on datasets of NIR and MIR reflectance. Resulting data were then used to calculate 

normalized burn ratio (NBR) coverages for 2012, 2013 and 2014. Resultant NBR was used to 

calculate dNBR for 2013 and 2014, and finally rdNBR. I then extracted rdNBR for the field plot 
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coordinates, described earlier in this section.  Concurrent CBI data was collected in each plot using 

the CBI field sheet from the FIREMON manual (Key and Benson 2006). 

I developed a three logistic regression models for estimating tree mortality, using 

different combinations of pre-fire census plot data and post-fire burn severity estimates to 

explore the question of whether field or remotely sensed burn severity estimates produced better 

predictions than pre-fire census plot data alone.  The first model included only diameter at breast 

height, height, and basal bark thickness as parameters, while the second and third models also 

included CBI and rdNBR, respectively.  Each model was run in SAS and cross-validated using a k-

fold leave-one out approach, with plots as replicates. 

 Accuracies of the tree mortality predictions for each model were assessed using three 

methods, including overall accuracy, Akaike Information Criterion (AIC), and Saveland and 

Neuenschwander’s signal detection approach for evaluating tree mortality predictions (1990).  

Overall accuracy is simply calculated as the ratio of correct predictions to total predictions.  AIC 

is a system of ranking candidate model’s, based on the amount of information lost when they 

are used to predict data, and factors in the trade-off of added model complexity by penalizing 

models for the number of parameters it includes (Akaike 1974).  However, since AIC is provides 

a measure of model quality relative to other candidate models, but not an absolute description 

of quality, it is typically used in conjunction with other measures of model quality to improve the 

model selection process.  Finally, the signal detection is approach, described by Saveland and 

Neuenschwander, is useful for assessing the prediction of binary outcomes, in which the 

investigator is concerned with the probability of four types of possible outcomes: true-positive, 

true-negative, false-positive, and false-negative.  In the case of this study these are analogous to 

the outcomes: accurately predicted live, accurately predicted dead, falsely predicted live, and 

falsely predicted dead. In this framework, the problem is interpreted as having 3 parts, including 
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(1) the actual state of nature, (2) the response, and (3) the outcome. Whether the outcome 

results in a true-positive, true-negative, false-positive, false-negative, and can be visualized by 

drawing a (2 x 2) matrix of state of nature and response (Figure 1). Bayesian decision analysis is 

incorporated by combining the probabilities of the states of nature, with that of the response 

given the state of nature, to produce a posterior probability of each possible prediction 

outcome.    

Results 

Bark Thickness Model 

Bark thickness was positively correlated with both height and diameter. Average basal 

bark thickness ranged between 0.2 and 2.2cm for individual trees, while minimum and maximum 

thicknesses observed were 0.1 cm and 3.2 cm.  Estimates for Eqn. 1 coefficients were (β0 = 1.097), 

(β1 = 0.299), (β2 = 0.088), and (β12 = 0.026), and were all significant with a 95% credible interval.  

A regression of predicted basal bark thickness values and actual bark thickness values had an (r2 

= 0.52), indicating a moderate fit (Figure 2).   

Mortality Models and Model Selection 

The independent set of plot data used in this segment of the study included a total of 

2639 trees from 93 plots spread across 26 burn units. 17% of the stems died as a direct result of 

fire across the burned plots. Height and dbh ranged from 2 – 22.3m and 1.0 – 48.3cm, respectively. 

Average height and diameter were 7.8 ± 4.2m and 11.26 ± 7.7 cm (mean ± 1 standard deviation), 

respectively, reflecting over 99% of the size distribution of pitch pines in these counties as well as 

across the entire state (FIA 2015).  rdNBR ranged from 0 – 891 while CBI ranged from 0 – 2.68, 

representing ranges from no-effect to high severity according to both indices.  Overall accuracy, 

AIC, and posterior probabilities of prediction outcomes generated with Saveland and 

Neuenschwander’s signal detection method all agreed that the models that incorporated rdNBR 
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and CBI produced substantially better estimates than the model that only used pre-fire census 

data, and that the model that incorporated rdNBR produced slightly better results than that which 

incorporated CBI.  Overall classification accuracy of the severity exclusive model, the CBI inclusive 

model, and the rdNBR inclusive model were 0.82, 0.86, and 0.88, respectively, while posterior 

probabilities of correct predictions of mortality, generated using Saveland and Neuenschwander’s 

method were 0.57, 0.68, and 0.72 (Table 2).  Parameter estimates for each model are provided in 

Table 3. 

Discussion 

Estimating fuel treatment and wildfire use effectiveness remains a global challenge to fire 

managers.  The identification of relationships between fire effects and remote sensing indices of 

burn severity, however, have opened the door to improving upon evaluating the balance of 

positive and negative outcomes of operational fire management choices.  One goal of fire 

management is regulate the rates of tree mortality, either by limiting mortality to reduce effects, 

such as in mature timber stands, or to increase mortality, perhaps when reducing stand density 

or promoting certain types of habitat are management objectives.  Current tools that predict tree 

mortality require inputs from post-fire surveys of damages to individual trees, which put 

technicians directly in hazardous environments, are tedious to collect, and may be spatially 

limited by the number of plots that can be collected during a field campaign. 

The results of this study support that incorporating plot level post-fire burn severity 

estimates with pre-fire census data into logistic regression models produces substantially better 

results than when pre-fire census data is used alone in similar models.  The rates of correct 

predictions found in this study are comparable to published accuracies of more tedious and less 

spatially precise field assay methods, that are widely used today by fire managers for other conifer 

species (Hood et al. 2008). Further, this novel approach to tree mortality estimation provides 
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strong evidence for the utility of remotely sensed burn in a region where few studies have 

demonstrated its use (Stambaugh, Hammer and Godfrey 2015, Warner et al. 2017). Despite the 

broad use of burn severity estimates, few studies have conducted rigorous physical 

measurements of ecological change as they relate to rdNBR or dNBR (Kolden, Smith and 

Abatzoglou 2015, Morgan et al. 2014).  Finally, while previous studies have evaluated tree 

mortality primarily as an effect often exclusively in wildfires, the results of this study have been 

cross-validated using a combination of both prescribed and wildfire data, supporting the utility of 

this approach in either management scenario. 

I observed that when rdNBR was incorporated into the logistic regression models, 

prediction accuracies were slightly better than when CBI was incorporated.  This is interesting, 

because CBI is typically thought to be a more accurate and direct observation of burn severity 

than rdNBR, is therefore often used as a calibration standard for rdNBR data in new vegetation 

types, and therefore should be more effective at aiding in the prediction of tree mortality.  

However, CBI is also thought to be prone to observer bias and inconsistent reporting (Morgan et 

al. 2014).  Alternatively, rdNBR also has error stemming from mismatch in spatial resolution of 

reflectance data and fire effects, as well as positional mismatch between GPS locations of field 

plots and remote sensing datasets.  I used medium spatial resolution data collected by the publicly 

available Landsat TM and ETM+ sensor platforms to derive rdNBR, however, recent burn severity 

research with the new, commercially available high resolution data collected by the Worldview3 

platform is may produce even higher accuracy results (Warner et al. 2017).  Standards for 

evaluating error in CBI data remain to be agreed upon and therefore this error is unaccounted for, 

however, these results suggest that bias in CBI data likely outweighs error in rdNBR.  My study 

suggests that bias in CBI data should be further evaluated by the research community, and that 
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tree mortality rates or that other directly measurable fire effects may actually serve as better 

standards for evaluating burn severity.   

In addition to providing more accurate predictions of tree mortality and survivorship, 

rdNBR is safer, more spatially comprehensive, and less time consuming to obtain, making it an 

ideal input for fire effects models such as those aimed to estimate fire-induced tree mortality.  

However, rdNBR requires the investment of software, computational hardware, and technical 

expertise that may be beyond the means of some managers.  CBI data requires substantially less 

training to acquire, and adequate datasets can be collected quickly by field crews, therefore 

remains a suitable alternative when the use of rdNBR data is not practical. 

The results of this study can also be used as a basis by which to improve existing mortality 

models, particularly the Ryan and Amman model, used in the majority of fire management 

software packages that predict mortality, which have many similarities to the model I developed.  

The Ryan and Amman model incorporates the same pre-fire tree-level census plot data, a species 

specific coefficient, and a canopy damage parameter for each tree, assessed post-fire in the field.  

These models have traditionally been evaluated by their rates of accuracy, but report little data 

about the rates of false predictions among live and dead classes.  Future work could improve these 

studies by replacing the post-fire tree-level damage parameter with plot-level rdNBR data and 

include posterior probabilities of model prediction rates generated using Saveland and 

Neuenschwander’s approach, as done in this study.  

Conclusions 

This study demonstrates that rapid assessments of post-fire burn severity, either in the 

field or via remote sensing methods, can be incorporated with pre-fire census plot data to 

estimate tree mortality in prescribed fire and wildfire scenarios, and provide potentially more 

spatially comprehensive assessment of mortality without requiring the input of field data that is 
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dangerous to collect.  This study demonstrates this using pitch pine in the southern New Jersey 

Pine Barrens as a test species, with a dataset that represents 99% of the distribution of pitch pine 

in the state.  The results of this study suggest that while incorporating CBI into logistic regression 

models can provide good results, rdNBR can provide stronger results without the need for field 

work.  This finding was counterintuitive, and suggests that the observer bias in rdNBR data may 

produce more error than spatial inconsistencies in rdNBR data.  The results should be used in 

planning to identify the level of burn severity necessary to accomplish forest management goals 

in pitch pine dominated stand.  In the broader arena, this work should be used as a framework to 

parameterize fire-induced tree mortality models for additional species.  
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Table 1. Identification codes of Landsat imagery used to develop growing season mosaics. Data 
for 2012-2013 were calibrated to the 2010 data, which was the most complete and clear of 
growing season data available from 2010-2014. 

Year Landsat Image ID 

2010 lt50140322010240 

2012 le70130322012183, le70130322012263, le70130322012215  

2013 le70140322013288, le70130322013217, le70130322013249, 
le70140322013176 

2014 le70140332014211, le70130322014188, le70140332014211, 
le70140322014179, le70140322014227, le70130322014220 
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Table 2. Parameter coefficient estimates and standard errors (SE) for three candidate logistic 
regression models of fire-induced tree mortality.  The first model excludes a severity parameter, 
and only uses parameters sourced from pre-fire census plot, while the second two models 
incorporate a burn severity parameter, either CBI or rdNBR. 

  Severity exclusive model CBI inclusive model rdNBR inclusive model 

Parameter Estimate SE Estimate SE Estimate SE 

Intercept -0.6568 0.1299 2.6583 0.2211 0.8052 0.1626 

Height 0.1246 0.0317 0.1152 0.0379 0.1693 0.0401 

dbh 0.386 0.0343 0.6679 0.0466 0.6121 0.0463 
Bark 
thickness -2.9796 0.3106 -5.0474 0.3858 -4.571 0.3941 
Burn 
severity 
index - - -2.672 0.1434 -0.00849 0.000429 
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Table 3. Statistics for model fit of three candidate logistic regression models of fire-induced tree 
mortality.  The model that incorporated rdNBR had the best overall fit, the lowest AIC, and the 
lowest rate of both false negative and false positive predictions, making it the best model of the 
three. 

Statistic Severity exclusive 
model 

CBI inclusive 
model 

rdNBR inclusive 
model 

AIC 2197 1646 1545 

Overall fit 0.82 0.86 0.88 
Saveland and   
Neuenschwander’s 
Signal Detection 
Method    

     P(L|l) 0.91 0.93 0.94 

     P(D|l) 0.09 0.07 0.06 

     P(D|d) 0.57 0.68 0.72 

     P(D|l) 0.43 0.32 0.28 
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Figure 1. 2x2 matrix of illustrating the framework for predicting a state of nature given the 
actual state of nature, in this case tree survivorship, adapted from Saveland and 
Neuenschwander (1990). 

       

  State of Nature  

  Living (l) Dead (d)  

Response  

Living (L) 
True-Positive 

P(L|l) 
False-Positive 

P(L|d) 
 

Dead (D) 
False-Negative 

P(D|l) 
True-Negative 

P(D|d) 
 

     

  P(L|l)+ P(D|l) = 1.0  

  P(L|d) + P(D|d) = 1.0  
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Figure 2. Regression of average bark thickness vs. bark thickness predicted from using Eqn. 4 (r2 
= 0.52). 
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CHAPTER 4: Estimation fuel consumption with field and burn severity methods in the New 

Jersey Pinelands National Reserve 

Abstract  

 The fuels consumed by wildland fires and prescribed burns are proportional to both 

reduced risk and carbon emissions, and therefore, accurately estimating fuel consumption is 

essential to evaluate management options and their success rates.  Accurate estimates of fuel 

consumption are challenging, and often prohibitively tedious, and can be dangerous for field 

technicians working in post-fire conditions.  This study focused on the calibration and validation 

of surface fuel consumption in the New Jersey Pinelands National Reserve to estimates of field 

and remotely sensed burn severity, using the Composite Burn Index (CBI) and the Normalized 

Burn Ratio (NBR).  The results of this study suggest that absolute consumption cannot be 

directly predicted from burn severity data alone, however, relative consumption increases 

predictably with burn severity and can therefore be used to estimate absolute fuel consumption 

when pre-burn fuel loading is known.  This study provides equations for estimating the relative 

consumption of surface fuel types in the New Jersey Pinelands National Reserve, which can then 

be used in conjunction with pre-fire fuel loading data to estimate consumption.  This study tests 

the effectiveness of this method, by validating predictions generated using the approach 

presented in this manuscript at 6 independent prescribed burns with field estimates of 

consumption.  Finally, I compare consumption rates determined for the PNR with those 

observed in other conifer dominated forest types, where similar studies have been conducted. 

Introduction 

 Forest ecosystem processes play vital roles in the global carbon cycle, driving 

accumulation of carbon into pools of live and dead biomass, while simultaneously causing 

carbon release through natural decomposition and metabolic processes (Waring and Running 
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2010).  A breadth of research suggests that forest disturbances and extreme weather events 

that damage vegetation are occurring with increasing frequency and alter these processes, 

causing rapid, transient releases of stored carbon, and subsequent shifts of carbon accumulation 

rates (Dale et al. 2000, Nemani et al. 2003).  Among these disturbances is wildland fire, which 

releases broadly varying amounts of sequestered carbon into the atmosphere depending on fuel 

loads and fire characteristics, and causing short- to long-term effects on net ecosystem 

production.  While wildland fire may impact a relatively small percentage of the worlds 

landmass each year, the effects of fire have an appreciable impact of the global carbon cycle 

requires monitoring and proactive management to control (Schimel and Baker 2002). 

 The impacts of fire on ecosystem carbon exchange and aboveground carbon stocks have 

been studied in a broad range of vegetation types present in North America, including boreal 

forests (Boby et al. 2010, Bond-Lamberty et al. 2007), temperate coniferous, deciduous, and 

mixed forests (Campbell et al. 2007, Clark, Skowronski and Gallagher 2015, Hurteau et al. 2014, 

North and Hurteau 2011), and tundra (Jiang et al. 2015, Rocha and Shaver 2011); however, 

uncertainty about the spatial heterogeneity of fuels, the magnitude of fire effects, and the 

actual extent of area burned limits the accuracy of biomass consumption from fires and 

associated changes in the carbon cycle (Kolden et al. 2012, Meigs et al. 2009, Rogers et al. 2014).  

Overall, fire consumes biomass, modifies the vertical and horizontal distributions of biomass, 

redistributes the proportions of live and dead biomass, and alters the balance of carbon 

exchange with the atmosphere (Amiro et al. 2010, Waring and Running 2010).  Magnitude and 

duration of these impacts on the global C cycle, however, can vary greatly by vegetation types, 

level of fire intensity.  For instance, following wildfires, boreal and temperate coniferous forests 

are likely remain carbon sinks until about 10 years (Amiro et al. 2010), however, recovery 

following prescribed fires may only require 4-5 years (Clark et al. 2015).  Similarly, stand 
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replacing fire can substantially alter subsequent ecosystem processes linked to regeneration and 

carbon exchange rates in temperate forests, if fire effects include shifts in vegetation type 

(Kashian et al. 2006). 

 Traditional estimates of biomass consumption across individual fires are based on 

estimates of consumption rates multiplied by the estimated area burned.  Consumption rates 

are estimated by measuring pre- and post-burn load of specific fuel types and calculating the 

amount of fuel consumed.  However, sampling fuels before and after fire requires technical 

expertise, lab facilities, and dedication of technical personnel to the field for each fire, which 

most institutions cannot afford.  Further, adequate characterizations of pre-burn fuel conditions 

are rarely available for wildfires, limiting the applicability of this approach for a large proportion 

of fire events.  Inaccurate delineations of area burned and failure to incorporate heterogeneity 

in fire effects across burned areas can also lead to error in consumption estimates, and 

associated emissions estimates.  Inaccurate wildfire mapping may be more common than many 

researchers and managers believe.  For instance, Kolden et al. (2012) found that fire perimeters 

in Yosemite, Glacier, and Yukon-Charley National Parks overestimated actual area burned by 

37%, 17%, and 14%, respectively, mainly because they failed to exclude interior unburned area.   

Well calibrated remote sensing indices, however, can greatly improve the delineation of 

fire perimeters and unburnt interior areas, while also serving to map spatial variability in fire 

effects.  Recent studies have begun using a combination of biometric plots and remote sensing 

indices that account for spatial variability in the magnitude of fire effects, to produce more 

accurate estimates of carbon emissions from fire (Meigs et al. 2009, Rogers et al. 2014).  A 

specific class of remote sensing indices, known a burn severity indices, are sensitive to change in 

forest reflectance patterns and reflect the magnitude of change in photosynthetically active 

vegetation and soil conditions across burned areas as high resolution maps, and have been 
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found to be proportional to physical change in vegetation and consumption.  Meigs et al. (2009) 

and Rogers et al. (2014) used this approach to estimate carbon emissions in ponderosa pine, 

mixed conifer stands, and coniferous boreal forest in western North America by estimating 

emissions factors in the field for specific severity classes and then multiplying factors by the 

total number of pixels in each severity class.  Although both of these studies found that remote 

sensing indices of burn severity were most correlated with relative consumption (e.g. percent 

consumed), each also provides emissions factors in absolute form to be used with remotely 

sensing indices when pre-burn fuel conditions are not known.  The use of this technique remains 

geographically isolated to these two forest types, and has not been validated with independent 

data. 

Managed fire is crucial for the perpetuity of Pine Barrens ecosystems and the ecological 

diversity, environmental services, carbon storage, and natural beauty they provide (Forman 

2012, Ribic et al. 2016), however, the use of fire to preserve these environments, and many 

others, is increasingly challenged by a lack of monitoring required to evaluate outcomes (Harden 

2016, Loehman, Reinhardt and Riley 2014).  Carbon accumulation and recovery patterns related 

to fires have been well studied in Pine Barrens ecosystems (Clark, Skowronski and Gallagher 

2014) and the use of remotely sensed burn severity has shown much promise (Warner, 

Skowronski and Gallagher in press), however the two have not yet been incorporated in this 

forest type.  The scope of this study was to test the ability of remotely sensed data to predict 1) 

relative fuel consumption when pre-burn fuel loading was known, and 2) absolute consumption 

when pre-burn fuel loading was not known.  To accomplish this, fuel consumption was 

estimated using traditional, destructive sampling methods at 83 plots that burned in wildfires 

and prescribed fires, and relationships with remote sensing indices were evaluated.  The best 

resulting model was then validated with data from 6 prescribed burns, ranging from low to high 
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intensity, where pre- and post-burn fuel loading had been measured across burn units.  Model 

results were then compared to empirical estimates of consumption at the six burns, and the 

utility of this method for monitoring fuel consumption, is discussed. 

Methods 

Site Description 

The Pinelands National Reserve (PNR), located in southern New Jersey, represents 

approximately 450,000 ha of contiguous forest where fire management plays a key role in public 

safety, water and nutrient cycles, and the ecology of both common and endangered forest 

species.  This landscape is home to a variety of upland and wetland forest ecosystems, many of 

which are fire dependent (Forman 2012).  Of this landscape, 62% is comprised of upland forests 

(Lathrop and Kaplan 2004), which are subjected to the greatest amount of fire activity.  These 

upland forests are dominated by three major communities; 1) oak-dominated stands, consisting 

of black oak (Quercus velutina Lam.), chestnut oak (Q. prinus L.), white oak (Q. alba L.), pitch 

pine (Pinus rigida Mill.), and shortleaf pine (P. echinata Mill.), 2) mixed stands, with pitch pine 

and mixed oaks in the overstory, and 3) pitch pine-dominated stands, consisting of pitch pine 

with few overstory oaks and abundant scrub oaks (Q. marilandica Muenchh., Q. ilicifolia 

Wangenh.) in the understory (McCormick and Jones 1973).  Understory communities in these 

forests are dominated by varying mixes of ericaceous shrubs, shrub oaks, and associated 

species, such as lowbush blueberry (Vaccinium palladum Aiton and angustifolium Aiton), black 

huckleberry (Gaylussacia baccata (Wangenh.) K. Koch.), scrub oak (Q. ilicifolia), black jack oak 

(Q. marilandica), inkberry holly (Ilex glabra).  The PNR has historically experienced a higher 

frequency of fires than other areas in the northeastern US (Forman and Boerner 1981).  Over 

the past 10 years, approximately 63,000 ha in have burned in prescribed fire and 34,000 ha have 

burned in wildfire across public lands in the state (Bien 2016, New Jersey Department of the 
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Treasury 2006, 2008, 2010, 2012, 2014, 2016, Stevenson 2016).  Over the past century, fire 

prevention and suppression efforts, aimed at reducing public risk, have been quite successful, 

and have likely also maintained a reduction in fire emissions and an increase in carbon storage 

over this timescale (Clark et al. 2010, Clark et al. 2015, Forman and Boerner 1981).  However, 

with an average of over 1,000 wildfire ignitions each year and semi-frequent large fires in a 

continually wildland-urban interface setting, the need for continued adaptation of fire 

management strategies to meet developing public safety and environmental needs remains 

critical. 

Fuel Consumption Sampling 

 71 forest census plots were installed across 21 prescribe burn units, prior to burning, as 

part of an independent study to assess fuel treatment effectiveness in 2012, 2013, and 2014 

(Skowronski et al. 2016).  Plots were circular, with a radius of 15 m, and were spread broadly 

across burn units with a minimum distance of 30m from fire perimeters.  At each plot, forest 

floor and shrub biomass was destructively harvested in three 1m2 areas, prior to burning, and 

again at three new locations after burning.  Forest floor material was harvested down to, but 

not including, the soil organic matter layer, which does not frequently burn and was easily 

differentiated by a lack of entire or distinguishable fuel particles (e.g. leaves, twigs, fruiting 

bodies).  An additional 12 pairs plots were installed following 4 wildfires in 2014.  Paired plots 

were located 60 m apart, on opposite sides of control lines, where pre-burn fire histories and 

fuel conditions had been similar prior to burning, according to local fire managers who worked 

the burns.  It was assumed that the unburnt fuels are representative of pre-burn conditions of 

these burn areas, however, there is no way to directly measure pre-burn fuel loading in the field 

environment once it has been consumed.  Locations of all burned plots were recorded with a 

Trimble GeoExplorer 6000 GPS unit, paired with a Tornado receiver (Trimble Inc., Sunnyvale, CA, 
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USA). Differential correction was performed on all points and resulted in an estimated 

horizontal accuracy of within 3m or less of the actual field locations of all points.  All samples 

were dried in laboratory convection ovens at 60® C for a minimum of 2 days, sorted into fuel 

classes and weighed.  Pre- and post-burn masses were differenced for each plot to generate 

estimates of consumption. 

Field Estimation of Burn Severity 

Field estimates of burn severity were assessed at all burned calibration plots, using the 

Composite Burn Index, described by Key and Benson (2006).  This method involves ranking fire 

effects factors, using pre-defined criteria, on a scale of [0 – 3], following fires.  Assessments 

were conducted during the growing season following each fire, within the original 15m plot 

radii.  Minor modifications to this method were made, according the suggestions in the 

method’s original description, which including omitting certain irrelevant factors(Key and 

Benson 2006).  For instance, changes in species composition were not evaluated because this 

data was unavailable at the spatial resolution of this study, and previous work has suggested 

that understory shrub components are unlikely to change, due to prolific sprouting traits, 

following prescribed fires (Matlack, Gibson and Good 1993).  Likewise, coarse woody debris 

greater than 8 inches in diameter was disregarded as a factor following fieldwork, as it is 

uncommon on this landscape and was absent from almost all plots.   

CBI estimates are generated on a continuous range of [0 – 3], however it is common to 

classify these estimates as “No Effect”, “Low Severity”, “Moderate Severity”, and “High Severity” 

for simplified comparison with other environmental data (Key and Benson 1999).  These 

classifications essentially represent the ranges of [0.0 – 0.5], [0.5 – 1.5], [1.5 – 2.5], and [2.5 – 

3.0], respectively, and it is this form of CBI that has been used in other studies to estimate 
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carbon emissions from fire, rather than the continuous form (Boby et al. 2010, Meigs et al. 2009, 

Rogers et al. 2014).  Therefore, classified CBI was also calculated for each plot. 

Remote Sensing of Burn Severity 

Remotely sensed burn severity was estimated with the Normalized Burn Ratio (NBR) 

index of burn severity for all fires involved in the study, using Landsat TM and ETM+ imagery.  

This index is estimated from reflectance data of the earth’s surface, visible in NIR and SWIR data, 

and which is captured in Landsat TM and ETM+ bands 4 (NIR) and 7 (SWIR).  These bands are 

highly sensitive to changes in forest leaf area and the char that is produced by fire, and are the 

least correlated of Landsat TM and ETM+ bands (Garcia and Caselles 1991), making them a 

sensible data source from which to derive NBR.  Therefore this study is focused on the use of 

NBR.  NBR is estimated by subtracting NIR pixel values from SWIR pixel values, and dividing by 

the sum of the NIR and SWIR pixel values (Key and Benson 1999).  Resultant NBR values are 

typically multiplied by 1000, to convert from decimal form to integer form, for easier 

interpretation.  Although a variety of methods for deriving burn severity from other reflectance 

data have been suggested in some other regions, strong correlations between NIR and SWIR 

bands and field data imagery have been observed in the New Jersey Pinelands (Warner et al. in 

press).  Although Warner et al. (in press) used NIR and SWIR data from a different sensor to 

estimate dNBR, rather than NBR, in the Pinelands, other work that has compared these 

estimates suggests that NBR may be more robust in the on this landscape, at least when using 

LANDSAT data (Chapter 2).   

Level 1 Landsat TM and ETM+ data was acquired through the USGS Global Visualization 

Viewer (GLOVIS) utility for the PNR in years 2010 – 2016.  Since the PNR falls between multiple 

flight paths of Landsat satellites, with none catching the complete study area, imagery for paths 

13 - 14 and rows 32 – 33 were used to make complete images of each year.  While previous 
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studies in temperate conifer forests have suggested the use of imagery collected ±2 weeks from 

burn dates, previous work in the PNR suggests that growing season imagery, pre- and post-burn, 

collected when LAI is at a maximum, is still similarly correlated with both dormant and growing 

season fire effects in temperate deciduous and mixed forests, and reduces the need for data, 

processing, and has higher similarity in pre-burn reflectance (Chapter 2).  In accordance with the 

suggestions of this previous study, satellite data collected between the 176th and 288th days of 

the year were used in this study. 

Multiple processing steps are required to convert raw Landsat imagery into useful NBR 

data.  First, Landsat data, which is served in a digital format to decrease file size, must be 

converted to top of atmosphere reflectance values.  Clouds and pixels missing band 4 or 7 values 

in Landsat ETM+ SLC-off data (see Markham et al. (2004)) were masked from images as 

necessary.  Variation in atmospheric conditions requires that data be then normalized to a single 

clear image.  For this step, I chose an image from 2010 collect by the Landsat TM sensor, which 

was the clearest and most complete (e.g. cloud-free and without missing data) of all the 

available growing season imagery for 2010 – 2016.  Each subsequent image was normalized to 

dense, mature Atlantic White Cedar forests (Chamaecyparis thyoides (L.) Britton, Sterns & 

Poggenb.), and are a good normalization feature because they are evergreen, and tend to have 

consistent reflectances through time (Isaacson, Serbin and Townsend 2012).  Finally, images 

within given years were mosaicked to produce complete, growing season images for each year 

(Howard and Lacasse 2004).  NBR was estimated for each year using the mosaicked imagery. 

 GPS data, collected during the field component, was then used to extract burn severity 

data for each plot.  Since it is unlikely that plot centers of field plots and Landsat pixels will 

overlap, and therefore field plots may partially overlap into multiple pixels, it is common to 

derive plot NBR values with a sampling method that incorporates values of neighboring pixels.  I 
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followed the previous work of Warner et al. (in press) in the PNR, using a bilinear interpolation 

that produces a weighted average pixel value, that incorporates the distances of the four 

nearest pixel centroids to the GPS point location (e.g. plot center).  The resulting set of NBR data 

was then classified into No Effect, Low Effect, Moderate Effect, and High Effect classes following 

the calibration described in Chapter 2.  Wall to wall burn severity maps were also extracted for 

the 5 validation burns, which burned entire units to easily defined natural boundaries. 

Calibration of Burn Severity Indices to Fuel Consumption Data 

 Continuous and classified CBI and NBR were calibrated to the absolute and relative 

estimates of surface fuel consumption, using linear regression, and were evaluated based on 

goodness of fit to produce a total of 4 calibrations.  Relative and absolute consumption data 

were also pooled by classified NBR and CBI severity classes, and averages and standard 

deviations were determined, as has been previous studies in conifer forests of the Pacific 

Northwest and the Alaska (Boby et al. 2010, Meigs et al. 2009, Rogers et al. 2014).  This 

produced an additional 4 calibrations.  The utility of the all calibrations were compared and the 

best CBI and best NBR calibrations were selected. 

Validation 

 Pre- and post- burn fuels were sampled at six additional prescribed fires that were 

conducted in similar forest types between 2008 and 2015, where fire intensity was also 

recorded during burns, for Joint Fire Sciences Program Project 09-1-04-1 and Joint Fire Sciences 

Project 12-1-03-11.  Fuels from each of these fires were dried, sorted, and weighed as described 

previously in this section, however unlike the 2011 burn, plot data was geo-located, allowing me 

to collect post-burn data near pre-burn samples.  Fuels of each of these fires were differenced 

and multiplied by the area of each burn to estimate overall consumption.  Fire intensity 

estimates were based on temperature and turbulent kinetic energy measurements from similar 
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custom meteorological arrays, deployed in each burn unit (See Clark et al. (2010), Heilman et al. 

(2013), Kiefer et al. (2014), Skowronski et al. (2016)).  While these intensity estimates are not 

used in any calculations in this analysis, they provide a useful context for whether the model 

performs under the range of possible fire intensities, typical of prescribed burns in the PNR.  

With both methods, fuel consumption was estimated in terms of foliage, fine, wood, and stems, 

and were then summed for total consumption.  Using the same approach as described earlier in 

this chapter, NBR burn severity coverages were mapped for each burn.  Pixel frequency in each 

severity class was determined for each fire, and used to estimate the absolute consumption by 

multiplying the relative consumption associated with each severity class, determined in the 

calibration phase, by the average fuel loading of each fire, and then weighting the sum of 

consumption in all classes by the proportion of area they represented in each fire.  This process 

was conducted for each fuel type (e.g. fine, wood, stems, foliage), and resultant NBR-based 

consumption estimates were compared to field-based consumption estimates for each fuel type 

with linear regression to evaluate how well this method predicts consumption within each fuel 

class.  Absolute fire-wide consumption was also estimated using both methods.  

Results 

Fuel Consumption Sampling 

 Overall fuel loading of surface and ground fuels across all plots was 16.13 ± 4.19 T ha-1 

(mean ± 1 standard deviation).  Fine, Wood, Stem, and Foliage material made up approximately 

52%, 23%, 25%, and >1%, respectively (Table 1).  Pre-burn loading had a slightly lower average 

than a previously published study reports, which found pre-burn pine-scrub oak forest loading 

to be 21.58 ± 7.02 T ha-1 and fine, wood, and stem components to comprise 51%, 12%, and 37% 

of overall material (Clark et al. 2015).  Fuel consumption was largely a function of pre-burn fuel 

loading and fire type (Figure 1).  Overall, relative consumption was 63 ± 21%, at prescribed fires 
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whereas relative consumption at wildfires was 72 ± 16% (mean ± 1 standard deviation).  This 

difference was expected given prescribed fires in this area are typically conducted in a manner 

intended to produce less of an effect than wildfires.  Absolute consumption, was very similar 

between sites.  A total of 10.7 ± 5.13 T ha-1 was consumed across prescribed fires while 10.57 ± 

4.36 T ha-1 were consumed in the wildfire plots.  Upon closer look at consumption in individual 

fuel classes, it is apparent that wildfires do consistently consume more of all fuels than 

prescribed fires, except wood, which seems to be produced in some circumstances (Table 1).  

This is counterintuitive, although, Clark et al. (2015) also found very high standard deviations 

among wood consumption observed at other prescribed burns in the PNR.   

Field Estimation of Burn Severity 

Across all field plots, continuous CBI ranged from 0.20 – 2.55, and had an average of 

1.26 ± 0.54 (average ± 1 standard deviation).  In prescribed fire plots, CBI was significantly lower 

than in wildfire plots (mean ± 1 standard deviation 1.13 ± 0.45; 2.07 ± 0.35).  Classified CBI for all 

prescribed fire and wildfire plots produced a total of 3 No Effect plots, 54 Low Severity plots, 25 

Moderate Severity plots, and 1 High Severity plot.  Since only 1 High Severity plot was found, 

this observation was omitted from analysis using classified CBI. 

Remote Sensing of Burn Severity 

Across all field plots, continuous NBR ranged from [-30 - 714], and had an average of 

453 ± 165 (average ± 1 standard deviation).  In prescribed fire plots, NBR was significantly higher 

than in wildfire plots (mean ± 1 standard deviation 504 ± 103; 151 ± 139), which was to be 

expected given the inverse relationship between NBR and severity.  The variance of burn 

severity among prescribed fire plots was similar with both NBR and CBI, although among wildfire 

plots burn severity assessed with NBR had a much greater variance than it did when estimated 

with CBI.  When NBR was classified using the classification scheme developed in Chapter 2 of 



103 
 

 
 

this thesis, there were a total of 3 No Effect plots, 54 Low Severity plots, 25 Moderate Severity 

plots, and 1 High Severity Plot.   

Calibration of Burn Severity Indices to Consumption Data 

Continuous CBI was poorly correlated with both absolute and relative consumption, 

although relative consumption had a notably higher coefficient of correlation (R2 = 0.01; R2 = 

0.07) (Figure 2).  When fuel consumption was pooled by classified CBI, total consumption values 

increased with severity.  Fine fuel consumption had low variances within all classes, while 

variances of other fuel types were considerably higher.  Variance of wood consumption was 

notably high in Low Severity plots, in contrast to that of No Effect and Moderate Severity plots.  

Overall, relative consumption had lower variances than absolute consumption, which was to be 

expected given the higher correlation of continuous CBI and relative consumption.  Continuous 

NBR was poorly correlated with absolute and relative consumption (Figure 2).  When fuel 

consumption was pooled by severity classes derived from NBR, total consumption values 

increased with severity as would be expected.  Relative consumption averages had substantially 

lower variances than absolute severity.  Overall, classified CBI and NBR produced the most 

sensible estimates, which were of relative consumption. 

Validation 

 Among the 6 fires used in the validation component of this study, fire size ranged from 

4.3ha to 161 ha.  The prescribed burns at Turkey Buzzard Bridge, Acorn Hill, and Experiment 1 

were described as having generally low intensity, while Cedar Bridge, Experiment 1, and 

Experiment 2, were described as having high intensity (Table 3), providing a representative 

range of prescribed fire intensity for context of validation results.  In each of these fires, a mix of 

backing, flanking, and head fire were used to burn fuels, however the lower intensity fires were 
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dominated by backing fire, while the Cedar Bridge fire was dominated by a combination of 

backing and flanking fire, and Experiments 1 and 2 were dominated by head fire.   

Although CBI was the best of the three burn severity indices tested, no additional 

validation dataset was available with which to validate estimates of consumption.  I therefore 

only validated the method which used classified NBR to estimate relative consumption.  NBR 

estimates of burn severity were within range of those observed in the calibration phase of this 

study (Figure 3).  No pixels were classified as having high severity in any of these fires.   

Fuel loading and consumption at validation plots was similar to that found in calibration 

plots (Tables 1 and 4).  Three of the fires, which had not been burned in at least 30 years, had 

substantially higher fuel loads than the other three, which had been burned sometime within 

the previous 15 years.  Half of the validation burns as being of generally low intensity, while the 

other half were of generally high intensity (Table 3).   

Average fuel consumption, estimated using both field and remote sensing methods, was 

compared in terms of Mg ha-1 for each fuel type.  Regressions of field and remote sensing-based 

consumption estimates show that the results of each burn were highly correlated for fine fuels 

(R2 = 0.78), however other shrub and wood estimates had worse correlations (Figure 4).  This 

was expected, however, given the high standard deviations on the estimates of shrub and wood 

consumption for each burn severity class (Table 2).  Wood and shrubs represent minor 

components of total consumption, relative to fine fuel consumption, and therefore, correlations 

between each method’s estimates of total consumption were very high (R2 = 0.90) (Figure 4). 

 Of all of the fires, the Cedar Bridge fire consumed the most fuel both per hectare and 

had the highest total consumption of any fire.  The Butler Place fire, on the other hand, had 

higher total fuel consumption than the Turkey Buzzard Bridge Fire, which was larger.  Similarly, 
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the Experiment 1 consumed approximately twice the fuel than Experiment 3 did, which was 

conducted two years after Experiment 1 in the same burn unit.   

Discussion  

  The scope of this study was to calibrate and validate a remote sensing burn severity 

index for assessing fuel consumption in the New Jersey Pinelands National Reserve.  The PNR 

was chosen as a large, contiguously forested area, with a high fire frequency (over 1,000 fires 

annually) and an active prescribed and wildfire management program (La Puma, Lathrop and 

Keuler 2013, Skowronski et al. 2016).  Based on previous research, I chose to use NBR, which 

was found to be highly correlated with other field observations (Chapter 2), and is similar to 

dNBR, which is also highly correlated with field observations (Warner et al. in press).  We first 

calibrated NBR, as well as a simple field method for estimating burn severity that may be useful 

to practitioners on small, low-value burns, with field estimates of consumption at prescribed 

fires and wildfires, and validated the calibrations with and independent dataset. 

 During the calibration phase of this study, it was found that total fuel consumption at 

prescribed fires was largely proportional to the amount of pre-burn fuel loading, and that an 

average of 66% was consumed (Figure 2).  Overall wildfire consumption was determined to be 

72%, however this was likely lower than the actual consumption due to an inability to 

differentiate consumption from standing woody material that was only partially burned and 

then fell to the forest floor after the flame front passed.  Actual fuel consumption was likely to 

be much higher, and future work should aim to differentiate these effects.  Fine fuels, which 

make up an average of 78% of the consumed material in prescribed fires and 67% of consumed 

material in wildfires was the most correlated with pre-burn fuel loading estimates (Figure 2), 

following foliage, which was the most minor contributing fueltype, and was the most 

predictable with burn severity estimates (Figure 4).  Fine fuels were also the most homogenous 
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of the fuel groups, in terms of pre-burn loading, post-burn loading, and consumption in both the 

calibration and validation datasets (Tables 1 and 4).  On the other hand wood consumption was 

the poorest measurement of the study, and was undoubtedly a large source of error in the 

study.  The results suggest that in prescribed burn plots, wood actually contributed an average 

9% in material and less than 1% of overall consumption in wildfire plots.  This clearly 

misrepresents consumption, through a movement of woody material to the forest floor that was 

not accounted for, and was subsequently the fuel type with the worst predictions (Figure 4).  

Shrub stem material represented an average of 30% and 28% of prescribed fire and wildfire 

consumption respectively, but were also somewhat variable (Table 1).  Although foliage 

consumption was high and consistent between both prescribed fires and wildfires, it 

represented less than 1% of prescribed fire consumption and only 3% of wildfire consumption, 

and was therefore relatively insignificant, in terms of overall consumption. 

 Initial comparisons between continuous burn severity indices and continuous 

consumption estimates (both absolute and relative) revealed poor correlations in all cases, 

although CBI was more correlated with relative consumption than NBR (Figure 2).  When 

classified CBI and NBR and consumption data was averaged by class, relative consumption 

clearly increased with burn severity (Table 2).  CBI also had lower variances about averages of 

relative consumption, than NBR, which was to be expected given the better correlation that CBI 

data had with consumption in Figure 2.  Absolute consumption had high variances in both cases.  

These results support those of previous studies using CBI and dNBR, which is similar to NBR, that 

burn severity indices are substantially better at estimating relative consumption than absolute 

consumption.  Further, the study at hand suggests that estimates of relative consumption 

produced using CBI are slightly more accurate than those estimated with remote sensing (Table 

2).  As a remote sensing method, however, NBR can be used across a broader area and more 
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rapidly than the field estimated CBI, and is more repeatable (Morgan et al. 2014), making it a 

preferable option to managers.   

 Relative rates of fuel consumption, determined for specific burn severity classes with 

NBR, were validated 6 independent prescribed fires, where field estimates of fuel loading had 

been collected, pre- and post-burn, and consumption had been calculated.  We estimated actual 

per hectare consumption of surface and ground fuels, by multiplying consumption rates for 

specific burn severities by the number of pixels of that severity.  Overall, field and remote 

sensing estimates of consumption were highly correlated (R2 = 0.90), which was largely 

dependent on the predictability of fine fuels, which make up the majority of consumed material 

(Figure 4).   

 Several limitations about the results of this study should be considered.  First, this study 

only accounted for fuels in the forest understory, and did not quantify impacts to soil or tree 

biomass pools.  Soil organic matter and below ground biomass, such as tree roots and soil 

organisms, are typically not consumed during the dormant season when prescribed fires are 

conducted in this landscape.  Further, multiple studies using LiDAR have illustrated that canopy 

fuels can represent an important component of overall consumption in prescribed fires in the 

PNR (Skowronski et al. 2011, Skowronski et al. 2007).  Therefore, this study represents only a 

portion of the overall consumption that occurs during prescribed fires, but sets a framework for 

future studies aimed at quantifying canopy fuel change should build on.  Second, the results of 

study did not incorporate high burn severity data, which would be expected from wildfires, and 

therefore are limited in terms of the range of severity for which they should be used to make 

predictions.  However, the paired plot approach used in this study to capture data in 4 wildfires 

produced good results, and could be easily conducted at more future wild fires to produce a 

more comprehensive calibration.  The data show that wildfire plots consumed greater 
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proportions of fuels than prescribed fires, but did not represent the entire range of wildfire 

conditions present on this landscape.  Further, the results of both wild and prescribed fire 

consumption reveal an important challenge to estimating wood consumption that occurs when 

stems fall from vegetation to the forest floor.  I suspect that this effect would be most 

pronounced and low to moderate severity fires, where fire behavior may be great enough to 

weaken fuel at the base, such that it falls into the burned area shortly after fire passes, whereas 

high severity fire would likely consume any of this fuel.  A third limitation is the relatively small 

number of fires used in the validation segment of this study.  Overall, this did not account for 

variations in ignition patterns, fuel moisture conditions, or weather conditions during these 

burns, which all can have important effects on fire behavior and associated consumption in this 

environment (Mueller et al. 2014). 

Wildland fire is an important component of the global carbon cycle which causes rapid 

releases of stored carbon, as well the potential for subsequent vegetation growth that can 

outpace pre-fire carbon accumulation rates.  The balance at which carbon accumulation 

outpaces carbon release, however, is largely related to the severity and frequency of fire events.  

Climate and human activity over at least the past 500 years have together dominated the 

control of fire regimes in the northeastern United States, and have dictated the role of fire and 

the global carbon cycle.  The global carbon cycle is also strongly linked to climate, through its 

role in the greenhouse effect, ocean chemistry, and ocean currents, and has produced weather 

conducive for large and severe fires, and at times has given climate a greater role in defining this 

balance.   

Under a climate conducive to fire activity, strategic elimination of hazardous fuels, 

through mechanical thinning, prescribed fire, and wildland fire use operations, is the only way to 

manage the severity of fires, but also creates an important juxtaposition between carbon and 
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risk management, as well as the need to accurately estimate consumption in order to evaluate 

the effectiveness of management for either goal. Estimating fuel consumption has remained a 

key challenge for fire management for many years, because consumption rates are often highly 

variable across broad spatial extents, however, recent research suggests that new remote 

sensing methods can enhance the estimation of spatial variability in consumption rates.  These 

results of this study provide a new calibration and validation of a method that can improve the 

estimation of fuel consumption during prescribed burning, by integrating field estimates of fuel 

loading with easily calculated remote sensing indices.  Managers can use this method to 

evaluate the effectiveness of treatments, in terms of meeting fuel reduction goals, and can use 

results to contrast the benefits and limitations of different management strategies that involve 

prescribed burning. 

Conclusions 

 This study found that relative fuel consumption varies with fire type for fine, wood, 

shrub stem, and foliage fuel types, and that fine fuels are the most homogenous in terms of fuel 

loading and relative consumption.  Overall, fine fuels represented 67% of total consumption in 

prescribed burns, and 78% of total consumption in wildfires, whereas other fuels made up lesser 

components.  These relationships are correlated with NBR burn severity data, which can be 

derived from satellite imagery, and can be used to efficiently predict absolute fuel consumption 

when pre-burn fuel loading is known.  These results were validated with an independent 

dataset.  Although these results are limited to making predictions about surface and ground fuel 

consumption in the PNR for prescribed fires only, this tool can greatly increase the ability of 

managers to evaluate fuel consumption at fuel treatments and justify management strategies.  

Further, this study provide a framework and guidance that can be employed in future studies 

aimed at producing similar estimates under a wider range of conditions and fuel types. 
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Table 1. Summary of fuel loading and consumption (T/ha), estimated at 74 prescribed burn plots 
and 12 wildfire plots in pine dominated forest of the Pinelands National Reserve.  Stems and 
wood figures represent a total of 1 - 100 hr material, which was a combination of 
undifferentiated live and dead material for stems. 

 Prescribed Fire  Wildfire 

  Pre-burn Post-burn Consumed  Pre-burn Post-burn Consumed 

        

Fine 8.64 ± 1.96 1.95 ± 1.09 6.40 ± 2.46  6.56 ± 1.76 0.15 ± 0.36 6.41 ± 1.64 

Wood 3.82 ± 2.02 2.04 ± 1.71 1.63 ± 2.62  2.80 ± 1.32 2.30 ± 2.31 0.49 ± 2.06 

Stems 3.87 ± 2.05 1.46 ± 1.10 2.56 ± 2.17  4.90 ± 3.29 1.67 ± 2.40 3.23 ± 2.52 

Foliage 0.04 ± 0.18 0.0 ± 0.01 0.1 ± 0.18  0.44 ± 0.63 0.01 ± 0.02 0.44 ± 0.63 

        

Total 16.37 ± 4.02 5.46 ± 2.72 10.70 ± 5.13  14.7 ± 5.13 4.13 ± 2.94 10.57 ± 4.36 
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Table 2. Summary of absolute and relative consumption of surface and ground fuels in relation 
to field (CBI) and remote sensing (NBR) indices of burn severity. 

 CBI  NBR (Calibrated with CBI) 
  

  No Effect 
Low 

Severity 
Moderate 
Severity  No Effect Low Severity 

Moderate 
Severity 

        

n 3 54 25  3 52 28 

        

Absolute Consumption (T/ha) 

        

Fine 5.65 ± 2.88 6.49 ± 2.27 6.58 ± 2.35  6.97 ± 0.43 6.43 ± 2.43 6.54 ± 2.12 

Wood 1.74 ± 1.65 1.48 ± 2.57 2.10 ± 2.45  2.35 ± 0.96 1.87 ± 2.52 1.14 ± 2.56 

Stems -0.55 ± 2.24 2.61 ± 1.83 3.26 ± 2.57  3.37 ± 4.14 2.26 ± 1.86 3.37 ± 2.40 

Foliage 0.00 ± 0.00 0.03 ± 0.11 0.27 ± 0.52  0.07 ± 0.13 0.02 ± 0.08 0.26 ± 0.51 

Total 6.84 ± 1.31 10.61 ± 4.90 12.21 ± 4.37  12.77 ± 3.10 10.58 ± 4.86 11.31 ± 7.76 

        

Relative Consumption (%) 

        

Fine 58 ± 16 75 ± 16 82 ± 14  74 ± 3 57 ± 16 81 ± 15 

Wood 43 ± 43 29 ± 74 34 ± 58  51 ± 10 37 ± 65 16 ± 77 

Stems -11 ± 86 58 ± 36 63 ± 38  33 ± 44 55 ± 38 63 ± 44 

Foliage 0 ± 0 9 ± 29 39 ± 49  33 ± 58 8 ± 27 37 ± 47 

Total 47 ± 7 64 ± 19 72 ± 13  63 ± 1 64 ± 18 68 ± 18 
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Table 3. Size and counts of pixels in different severity classes for 6 prescribed burns. 

Fire Name 
Size 
(ha) 

No Effect 
Pixels 

Low Severity 
Pixels 

Moderate 
Severity Pixels 

Fire Intensity 
Characterization 

Turkey Buzzard 
Bridge 

99 539 567 0 Low (Heilman et al. 2013) 

Acorn Hill 107 23 945 283 Low (Kiefer et al. 2014) 

Cedar Bridge 161 0 0 1801 High (Clark et al. 2010) 

Experiment 1 6.7 55 20 0 High (Skowronski et al. 2016) 

Experiment 2 4.3 7 44 0 High (Skowronski et al. 2016) 

Experiment 3 6.7 52 23 0 Low (Skowronski et al. 2016) 
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Table 4. Fuel loading and consumption for 6 prescribed fires. 

     Pre-burn   Post-burn   Consumption 

Fire Name  Fuel Type   mean ± 1SD   mean ± 1SD   mean ± 1SD 

            

Acorn Hill 

 Foliage   0.03 ± 0.04   0.00 ± 0.00   0.03 ± 0.04 

 Fine   5.38 ± 2.78   4.01 ± 1.97   1.39 ± 3.41 

 Wood   1.04 ± 0.65   0.68 ± 0.86   0.36 ± 1.08 

 Stems   6.49 ± 3.60   2.50 ± 1.79   4.03 ± 3.96 

            

Turkey 
Buzzard 
Bridge 

 Foliage   0.00  ± 0.00   0.00 ± 0.00   0.00 ± 0.00 

 Fine   7.47 ± 1.16   3.10 ± 0.78   4.38 ± 1.40 

 Wood   2.32 ± 1.46   1.86 ± 0.95    0.47± 1.72 

 Stems   1.69 ± 1.32   1.27 ± 0.56   0.42 ± 1.44 

            

Cedar 
Bridge 

 Foliage   0.00  ± 0.00   0.00 ± 0.00   0.00 ± 0.00 

 Fine   15.4 ± 3.55   7.12 ± 1.78   8.32 ± 1.94 

 Wood   2.61 ± 2.09   1.82 ± 1.36   0.81 ± 2.48 

 Stems   4.45 ± 1.02   3.78 ± 2.02   0.65 ± 1.12 

            

EX1 

 Foliage   0.16 ± 0.36   0.00 ± 0.00   0.14 ± 0.69 

 Fine   6.93 ± 1.91   2.37 ± 0.68   5.03 ± 0.85 

 Wood   4.92 ± 2.42   2.23 ± 0.78   2.86 ± 2.96 

 Stems   3.69 ± 2.06   0.99 ± 0.70   2.82 ± 2.57 

            

EX2 

 Foliage   0.00 ± 0.00   0.00 ± 0.00   0.00 ± 0.00 

 Fine   9.70 ± 2.90   2.72 ± 0.69   7.54 ± 2.28 

 Wood   3.17 ± 1.63   2.67 ± 2.74   0.61 ± 3.30 

 Stems   4.40 ± 1.59   1.25 ± 0.80   3.38 ± 1.48 

            

EX3 

 Foliage   0.01 ± 0.02   0.00 ± 0.00   0.01 ± 0.02 

 Fine   2.22 ± 1.15   0.90 ± 0.49   3.56 ± 1.06 

 Wood   5.49 ± 1.78   2.24 ± 0.71   -0.08 ± 1.17 

 Stems   2.53 ± 1.72   2.66 ± 1.53   1.40 ± 1.26 
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Table 5. Total consumption estimates for 6 prescribed fires using the field and NBR methods. 

 Field Method  NBR Method 

Fire Mg/ha Mg St.Dev.   Mg/ha Mg St.Dev. 

Acorn Hill 5.75 569.49   7.39 731.61 21% 

Turkey Buzzard Bridge 5.52 590.64   6.39 683.73 21% 

Cedar Bridge 16.92 2724.12 19%  15.7 2527.70 2% 

EX1 10.85 72.72 65%  8.65 57.96 36% 

EX2 11.52 49.55 61%  9.25 39.78 30% 

EX3 4.88 32.72 72%   5.84 39.13 35% 
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Figure 1. Fuel consumption in relation to pre-burn fuel loading for wild and prescribed fires in 
the New Jersey Pinelands National Reserve.  Average fuel consumption ± 1 standard deviation 
for fine, wood, stems, and foliage was 72 ± 17%, 30 ± 69%, 51 ± 47%, 100 ± 0% in prescribed 
burns and 98 ± 4%, 18 ± 58%, 64 ± 31%, 100 ± 0%.  Note the lower apparent consumption of 
wood in wildfires, likely to do a relocation of canopy and shrub wood to the forest floor during 
moderate severity fire.  Overall consumption was 67 ± 14% in prescribed fires and 72 ± 16% at 
wildfires, however the consumption rate of wildfires is likely low due to the fact that this study 
was not able to differentiate consumption at the forest floor and transport of similar material 
from shrubs or trees that had been partially burned and fell.   
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Figure 2. Relationships between fuel consumption and burn severity.  Consumption was 
considered in terms of absolute consumption, or mass consumed, as well as relative 
consumption, or the percentage of mass consumed.  A field (CBI) remote sensing index (NBR) 
are compared. 
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Figure 3. Burn severity maps of three large and three small prescribed burns, conducted in the 
New Jersey Pinelands between 2008 and 2015.  Experiment 1 and Experiment 3 represent 2013 
and 2015 burns of the same unit.  Burn severity is measured in terms of the NBR. 
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Figure 4. Regression of fuel consumption estimated from NBR and fuel consumption estimated 
from destructive sampling pre- and post-fire for 6 prescribed burns in the NJ Pinelands.  Total 
and fine fuel consumption had high coefficients of determination, while shrub and wood 
consumption was substantially lower, but also represent a small amount of the overall 
consumption in prescribed burns. 
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CHAPTER 5: Trends of Burn Severity by Fire Type, Size, and Timing in the New Jersey Pinelands 

(2006-2015) 

Abstract 

  Over the past century, the wildland fire regime in the New Jersey Pinelands National 

Reserve has shifted dramatically, as a result of aggressive wildland fire management, cultural 

changes among the population of humans in the area, and weather.  These changes are 

documented in state records as decreases in acreage burned and the numbers of fires, however 

this monitoring approach provides little indication to the current quality of fire on this 

landscape, or how that may differ from historic times.  I used a remotely sensed burn severity 

index, the relative differenced normalized burn ratio (rdNBR) to examine the distributional 

properties of recent fire across the central area of the New Jersey Pinelands National Reserve, 

which constitutes New Jersey Forest Fire Service’s central management zone.  I derived burn 

severity for over 400 fires over the ten year period from 2006 – 2015 from LANDSAT TM and 

ETM+ archived data, and compared burn severity attributes with timing of fires.  The results of 

this analysis demonstrate a strong seasonal influence of burn severity that ultimately limits the 

upper range of severity.  Future analysis that integrates these results about the seasonal 

patterns of burn severity with fuel consumption, tree mortality, and regeneration rates, will 

provide an enhanced understanding of the role of fire in the community dynamics of this 

landscape, carbon balance over time, and how the outcomes of prescribed and wildfire on this 

landscape may shift with altered management policy and climate change.  

Introduction 

Wildland fire has shaped and reshaped the pine and oak forests throughout much of 

eastern North America, largely at the hand of humans, since before European settlement 

(Abrams 1992).  For at least the first half of the last millennium, Native Americans implemented 
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fire extensively across this region, shaping the forest to promote forest food crops and clearing 

understory vegetation to improve overland travel.  With the colonization of this region by 

Europeans, Native Americans’ were forced from the area taking with them, the fire regimes they 

had facilitated preceding centuries.  The new, more agrarian society that replaced them, was 

focused on producing food in more domestic ways and had begun fragmenting the landscape 

with permanent settlements, and conducted comparatively little controlled burning.   

Analyses of tree rings, sediment cores, and historic documents indicate that regular, low 

intensity fire dominated the fire regime across this region shortly before European settlement.  

This frequency of fire would have limited the accumulation of fuels required to enable larger 

and more severe fires in most places.  Tree ring records also show seasonal variability in this use 

of fire, which has silvicultural significance in producing different effects in vegetation and fuel 

consumption.  For instance, dormant season fire kills a smaller proportion of trees overall, and 

can reduce understory fuel loading, while promoting a dense, raised canopy, whereas growing 

season fire tends to be more damaging, especially to hardwoods.  Similarly, the suitability of 

conditions for germination and seedling establishment for certain species, like pitch pine, are 

dependent on specific fire effects that only comes with higher intensity fire.  Following European 

settlement, tree ring records indicate a long period of decreased fire activity. 

The ecological roles of fire in the pine and oak forests of this region include cycling 

nutrients, preparing seed beds, releasing seeds, and modifying forest structure in ways that 

creates habitat for a variety of flora and fauna.  Fire also has a strong role in moderating the 

selective pressures within forest communities, such that role of wildland fire has been 

compared to that of an herbivore, which presumably defoliates and kills some vegetation, while 

giving the withstanding vegetation and its associates a competitive advantage (Bond and Keeley 

2005).  An expansion on this idea would be to compare the role of fire, in pyrogenic forests such 
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as pine and oak forests of eastern North America, to that of a keystone species, without which, 

the populations and their functions within the system will undergo dramatic changes until a new 

balance is reached.  For instance, the strength of a fire’s initial impacts is correlated with large 

shifts in the presence and activities of avifaunal species (Rose et al. 2016).  Then, within a two 

decades following the cessation of fire, large shifts in forest structure can be observed 

(Skowronski et al. 2011, Angelo, Duncan and Weishampel 2010), as well as shifts in the presence 

and population densities of avifaunal species (Engstrom, Crawford and Baker 1984, Loeb and 

Waldrop 2008).  Further, within a century, dramatic shifts in forest tree species occur (La Puma, 

Lathrop and Keuler 2013).  This process, which has been coined “mesophication”, results in 

compositional shifts from pine and oak dominated forest types, to forests of more mesic 

compositions, dominated by maples, beeches, and gums, which decrease forest flammability as 

their dominance increases (Nowacki and Abrams 2008).   

While fragmentation, fire suppression, and mesophication have characterized much of 

the forested land that is or was once dominated by pine and oak in North America’s Mid-Atlantic 

region over the past 100+ years (Nowacki and Abrams 2008), the New Jersey Pinelands National 

Reserve (PNR) remains the largest contiguously forested area in the coastal plain of this region 

and maintains the highest level of fire activity in the region (Clark, Skowronski and Gallagher 

2014a).  Historic fire records for the PNR provide a rich context in terms of fire occurrence in this 

region (La Puma et al. 2013), however, only limited quantitative description about the variety 

fire effects have ever been characterized for this region, with respect to fire type and 

seasonality.  Further, available descriptions were produced between the 1930s and 1960s (Clark 

et al. 2014a), however, the current level of forest maturation, which has not been seen since 

before colonial times, brings to question the applicability of these descriptions.   



125 
 

 
 

Although historically, quantitative data about fire effects has been insufficiently 

monitored across most landscapes, analysis of remotely sensed burn severity provides the 

ability to study changes in forests after they occur with archived reflectance data.  Numerous 

bandwidths of data are available from a variety of sensor platforms, however those within the 

NIR (700 – 1500nm) and SWIR range (1500 – 2400nm) are most effective for determining burn 

severity (Garcia and Caselles 1991).  The differenced normalized burn ratio (dNBR), and the 

relative differenced normalized burn ratio (rdNBR) are the most commonly used remote sensing 

indices of burn severity, and are usually calculated with data collected by the Landsat program’s 

TM, ETM+, or OLS sensors; which collectively have archived NIR and SWIR data since 1984 at a 

day interval or shorter (Soverel, Perrakis and Coops 2010, Soverel et al. 2011).  Prior to use, 

however, substantial field work is required to calibrate remote sensing outputs to field 

observations of severity. 

Researchers from western North America have begun using this technique to analyze 

fire effects at landscape and regional scales.  For instance, Picotte et al. (2016) analyzed 4893 

fires between 1984 and 2010 across the coterminous United States, and produced results that 

suggest burn severity and fire size had not changed substantially in most vegetation groups, 

although this study did not differentiate unique eastern fire-adapted ecosystem, such as coastal 

plain oak and pine barrens, and only included fires <404ha, which is two orders of magnitude 

larger than the average fire size in New Jersey (Table 1).  Other studies of this type have similarly 

focused on western landscapes and provide little context for recent fire in eastern pyrogenic 

landscapes, such as the PNR (Rivera-Huerta, Safford and Miller 2016, Dennison et al. 2014, 

Miller and Safford 2012).  However, recent work in the PNR, using the commercially available 

high resolution Worldview3 sensors (Warner, Skowronski and Gallagher 2017) and Landsat TM 

and ETM+ data (Chapter 1) has demonstrated the potential for long term landscape-scale 
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studies of burn severity integrated over time.  Further, recent work in the PNR demonstrates 

that variability in relative fuel consumption and pitch-pine mortality rates following fire are 

correlated with the variability observed in remotely sensed burn severity.  A stronger 

understanding of the distribution of burn severity on this landscape, and the importance of 

seasonality in modifying that distribution, would have important implications of various 

landscape-scale fire management strategies and climate change on forest carbon stocks, 

vegetation dynamics, and risk management, and benchmarks the current fire regime. 

Despite increasing fire activity in other parts of the country, the Pinelands has followed 

the trends represents one of many landscapes where acreage burned shown a declining trend 

over much of the past 80 years.  Around the turn of the 20th century, area burned by wildfires in 

the Pinelands averaged on the order of 40,000 hectares per year, peaking at approximately 

92,000 ha in 1930 (Forman and Boerner 1981, Kümmel 1902).  Since then, annual area burned in 

wildfires has declined steadily due to fire suppression efforts, with the exception of a complex of 

large fires in 1963, when approximately 75,000 ha burned in wildfires (La Puma et al. 2013, 

Forman and Boerner 1981, Boyd 2008).  While the current prescribed burning program treats 

approximately 6,000 – 8,000 ha of forest and grass annually, the average combined area burned 

by wildfire or prescribed fire remains 1-2 orders of magnitude less than it was 100 years ago 

(New Jersey Department of the Treasury 2014, New Jersey Department of the Treasury 2012, 

New Jersey Department of the Treasury 2016).  Recent work, aiming to provide insight to 

disturbances for the mid-Atlantic region, found that climate change may further limit fire activity 

in this region through altering seasonal humidity and precipitation patterns (Clark et al. 2014b).  

Aside from acreage burned, however, qualitative shifts in the fire regime on this landscape have 

remained poorly characterized, making it difficult to develop predictive tools to estimate 

potential shifts in ecological responses and guide appropriate management responses.   
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This study is focused on evaluating the current fire regime, inclusive of both wild and 

prescribed fire, in terms of a burn severity index for the fire-dependent pitch pine dominated 

landscape of the PNR.  I first mapped burn severity index, in terms of the relative differenced 

normalized burn ratio (rdNBR) for fires that occurred during the decade of 2006 -2015.  From 

those maps, I extracted burn severity index distributions of 447 independent fires, and analyzed 

seasonal trends and the overall distribution of fire on this landscape.  I then discuss results in 

terms of fire management, and the implications these results have on past and future 

management scenarios. 

Methods 

Site Description 

The New Jersey Pinelands National Reserve (PNR) occupies an area of approximately 

445,000 ha, in southern and central New Jersey.  This study focused on a large section of the 

northern PNR located in Burlington, Ocean, and Atlantic Counties, that comprises the 

management zone of New Jersey Forest Fire Services central division, and is the locale of the 

majority of the fire in the state.  Forests of the PNR are dominated by oaks and pines in the uplands 

and cedar, pine, and maple in the lowlands (Forman 2012, Robichaud and Anderson 1994). Upland 

forests account for approximately 62% of the forested area of the PNR and experience a high 

frequency of both wild and prescribed fire, whereas wetlands experience less. Upland forests are 

made up of 3 distinct communities, all of which contain Pitch Pine (Pinus rigida): (1) oak-

dominated stands, comprised of chestnut oak (Quercus. prinus L.), black oak (Q. velutina Lam.), 

white oak (Q. alba L.), scarlet oak (Q. coccinea Muenchh.), with scattered shortleaf pine (P. 

echinata Mill.) and Pitch Pine, (2) mixed pine-oak stands, with an overstory of pitch pine and 

mixed oaks, and (3) pitch pine-dominated stands, containing few overstory oaks, but with an 

understory of abundant scrub oaks (Q. marlandica Münchh and Q. ilicifolia Wangenh.) (Boerner 
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and Forman 1982, Forman and Boerner 1981, Forman 2012, Lathrop and Kaplan 2004, Robichaud 

1973).  By the end of the late 19th century, large fires regularly burned across scrubby young 

forests that had grown up with the cessation of industrial scale harvesting in the mid-1800s 

(Kümmel 1902).  Similar fire occurrences continued through the early 20th century, however by 

late century large fires had become comparatively infrequent due to a variety of cultural changes 

and the development of the New Jersey Forest Fire Service (Forman and Boerner 1981).  Data 

about fire effects during the 19th and 20th centuries is methodologically inconsistent and 

qualitative, and subsequently, provides little context for today’s fire regime. 

Recent Fire History 

All available records of fire perimeters, types, and, when available, ignition dates, were 

compiled for all prescribed fires and wildfires greater than 1 ha in a central region of the New 

Jersey Pinelands National Reserve, specified as the management areas of New Jersey Forest Fire 

Service’s Central Region, Joint Base Dix-McGuire-Lakehurst, and the Warren Grove Range, were 

gathered from local fire management agencies.  Together, these areas delineate the region of 

the highest numbers of fires and acreage burned, annually, in the state (Bien 2016).  Records of 

area burned and fire occurrence data for land owned by the state of NJ is summarized in annual, 

state budget reports.  These data were combined with similar data for federally managed lands 

in this area, and compared with the estimates of fire only in the Pinelands region, to provide 

context for this study (Table 1).  These measures do not account for a small amount of burning 

conducted by on National Park Service land, small military installations, and agricultural areas. 

Remote Sensing of Burn Severity 

Burn severity maps were generated for all prescribed and wildfires in the study, using 

the relative differenced normalized burn ratio (RdNBR).  RdNBR is a remote sensing method 

which has been used extensively in recent years to characterize the variability of fire effects in 
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numerous forest environments (Miller and Thode 2007, Miller et al. 2009, Soverel et al. 2010), 

and has been demonstrated to have strong correlations with field observations in the PNR 

(Chapter 2).  RdNBR is estimated from NIR and SWIR data, collected before and after fires, and 

describes the magnitude of change that fire has had on vegetated environments.  NIR and SWIR 

data, collected specifically by the Landsat TM and ETM+ sensors as bands 4 and 7, are the most 

frequently used to derive RdNBR (Chapter 1).  This approach is quite sensible because these 

bands have a relatively high spatial resolution, are highly uncorrelated with each other but are 

sensitive to the effects of fire, and are freely available (Garcia and Caselles 1991).  Timing of 

remote sensing data collection is also an important factor that influences burn severity 

estimates (Key 2005).  While most studies have used data collected within a timeframe of ± 2 – 8 

weeks before and after fires (Key and Benson 2006), recent work in the PNR suggests that using 

growing season imagery from before and after fires can be useful for comparing fires that have 

occurred different seasons in temperate deciduous and mixed forests (Chapter 2, Chapter 3, 

Chapter 4), which can have broadly varying reflectances between seasons (Isaacson, Serbin and 

Townsend 2012).  Considering the collection of fire data analyzed in this chapter represents fire 

in every month of the year, I selected to generate RdNBR burn severity for individual fires using 

growing season Landsat data, as described in Chapter 2. 

Landsat TM and ETM+ band 4 and band 7 data were acquired from the USGS GLOVIS 

online database for all years of the study (http://usgs.glovis.gov/).  Digital imagery reflectance 

values were converted to top of atmosphere reflectance and were radiometrically corrected 

(Chander, Markham and Helder 2009).  Additional normalization between imagery was achieved 

by adjusting scaling in images to match values of dense conifer forest, specifically dense stands 

of Atlantic white cedar (Chameacyparis thyoides (L.) Britton, Sterns & Poggenb.), which maintain 

similar reflectances through time (Isaacson et al. 2012).  Clouds and cloud shadows were 

http://usgs.glovis.gov/
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manually masked as necessary, and pixels with incomplete information at the edges of ETM+ 

imagery were converted to null values (See Markham et al. (2004)).  Resulting gaps in images 

were filled by mosaicking multiple incomplete leaf on images from the same year, which 

produced nearly complete images (Howard and Lacasse 2004).  Processed raw data was then 

used to derive the normalized burn ratio (NBR), and ultimately RdNBR coverages for all years, 

using the following equations. 

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
,       (Key and Benson 1999) 

𝑅𝑑𝑁𝐵𝑅 =  
𝑁𝐵𝑅𝑝𝑟𝑒− 𝑁𝐵𝑅𝑝𝑜𝑠𝑡

√𝐴𝐵𝑆(
𝑁𝐵𝑅𝑝𝑟𝑒

1000
)

,      (Miller and Thode 2007) 

Fire perimeter data was used to extract wall-to-wall burn severity coverages for each 

individual fire from RdNBR maps.  Burn severity coverages were summarized as mean severity, 

maximum severity, and the standard deviation of severity for each fire, and these statistics were 

plotted against day of year, when ignition dates were available.  Burn severity data was also 

pooled in order to derive overall burn severity distributions by fire type and by month of year.  

We also combined data for each month of the year, and summarize the proportions of fire 

typically observed in each month of the year that are in High (RdNBR = [], Moderate, Low, and 

No Effect Severity classes in each month of the year.  Perimeter and fire type information was 

available for a total of 81 wildfires and 367 prescribed fires, which occurred on state and 

federally owned public lands in this region.  Exact dates of ignition were available for a total of 

148 fires, including 56 wildfires and 92 prescribed fires.   

Analysis of Burn Severity Patterns 2005-2015 

I evaluated 1) the distribution of burn severity among different types of fire 2) season 

variability of burn severity statistics, 3) the relationship between fire size and those burn 

severity characteristics listed above, and 4) the influence of pre-burn fuel conditions on severity.  
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To examine the distribution of burn severity among wildfire, prescribed fire, and all fire, pixel 

values of all fires in all years were pooled into three groups, wildfire, prescribed fire, and all fire, 

and plotted the frequencies of severities for each group.  To examine seasonal variability, 

maximum, mean, and variety of pixel values of individual fires were pooled by the week in which 

they occurred (for fires in which date information was available).  To assess the importance of 

fire size, log fire size was regressed with maximum, mean, and variability of fire severity for each 

fire.  Finally, pre-burn cover conditions, visually estimated as part of the CBI evaluation protocol, 

were regressed with rdNBR burn severity estimates. As the maps were produced using mid to 

late growing season imagery, this worked reasonably well to account for most fires in a given 

year, considering the vast majority of fires on this landscape occur during the spring and early 

summer; however, occasional late season fires occurred after imagery for that year was 

collected.  Therefore extracted from the following year’s imagery for those late season fires.  

Burn severity statistics were extracted as Zonal Statistics using the fire history shapefiles, 

described in the previous section, with ArcGIS 10.x software.  This data was then saved to a 

database where they were matched with fire size, year, type (wildfire or prescribed fire), and 

date information (when available) from fire history records.  

Results 

Recent Fire History 

Between 2006 and 2015, NJ Forest Fire Service, Joint Base Dix-McGuire Lakehurst, and 

the Warren Grove Gunnery Range reported a total of 84,049 acres burned in wildfires, and a 

total of 155552 acres burned with prescribed fire.  Specific wildfire and prescribed fire 

frequency figures were not available, except for the number of wildfires responded to by NJFFS, 

which totaled 12440 over the 10 year period.  However, a plot of the data comprised in Table 1 

by day of year illustrates the possible distribution of wild and prescribed fire frequency over a 
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given year (Figure 1).  While the shapefile data for 80 wildfires represent less than 1% of the 

number of fires on this landscape, it does in fact represent 57% of the area burned in wildfires 

during this time.  Exact frequency of individual prescribed fires was unavailable, however the 

shapefile data of this study represents 36% of the area burned in prescribed fires.  Combined, 

this data represents a 44% sample of the total area burned over the ten year period.  Shapefile 

data with exact fire dates, represents a 44% of the area burned in wildfires and 10% of the area 

burned with prescribed fire.  These percentages represent sampled area in relation to the total 

area burned across the state by prescribed fire, because there was no way distinguish the exact 

locations of fire occurrence from the data available at the time of the study (Table 1).  However, 

it is well understood that the vast majority of both wild and prescribed fire in the state occur 

within the Pinelands, the ecosystem of interest for this study. 

Remote Sensing of Burn Severity 

Due to SLC-off missing data, cloud cover, or images that did not completely cover the 

study area, multiple images were mosaicked to create more complete images for all years 

except 2007, 2010, and 2011.  A listing of all imagery used and the percent coverage of the final 

image used in each year is provided in Table 2, as well as the area of missing data from fires for 

each year, if applicable.  Of the 447 fires, 45 fires had between 1 - 49% of their pixel data 

missing, with an average of 18% missing data for those fires.  Across the entire dataset, this 

amounted to less than 2% of the data.   

Analysis of Burn Severity Patterns 2005-2015 

RdNBR of wildfires and prescribed fires ranged 0 – 1279 and 0 – 1040, respectively.  In 

each group, however, a large percentage of pixels reported as burned had values of zero, and 

likely represent unburned interior area or are a result slight misalignment of fire perimeters and 

burn severity maps that resulted in the inclusion of unburnt edges.  For wildfires, a total of 
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29,281 pixels, or 14% of the area reported as burned, had a value of zero.  Similarly, for 

prescribed fires, a total of 46,096 pixels, or 17% of the area reported as burned, had a value of 

zero.  I excluded zero value data as unburned forest in all subsequent analyses.  Mean burn 

severity of wildfire and prescribed fire was 415 and 175, respectively, however, shapes of their 

distributions varied substantially.  Prescribed fire had a unimodal distribution, skewed toward 

the low end of the range of possible burn severity, whereas the distribution of wildfires was 

bimodal, with peaks in both the low and high range (Figure 2).  This is likely due to broadly 

differing seasonal constraints on fire, as will be discussed in the next section.  Overall, wildfire 

exhibited a greater and somewhat more uniform range of burn severity, than did prescribed 

fire. 

Fire size played little role in explaining burn severity within burn units.  Mean burn 

severity had no relationship with fire size while maximum burn severity was only weakly 

correlated with fire size.  The variance of severity was also unrelated to fire size (Figure 3).  Fire 

size also had little influence on the percent of unburned area (e.g. burn severity of zero), as the 

coefficient of determination between the two was only R2 = 0.01.   

However, distributions of burn severity varied widely with the timing of fire.  Burn 

severity in the winter and early spring months was strongly skewed toward the low end of the 

spectrum (Figure 4).  By the summer months, burn severity had a much more uniform 

distribution and reached the highest degree of severity observed.  As summer transitioned to 

fall, a rapid decrease in severity was observed.  Maximum, mean, and the variance of burn 

severity peaked in weeks 26 – 30 (late June - July), 23-27 (mid-June – mid-July), 27 – 31 (July – 

early August), respectively (Figure 5).  Timing of fires was uncorrelated with the percent of 

unburned area in fires (R2 = 0.02). 

Discussion 
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The results of this study suggest that of timing of fire, fire size, and fire type, timing has 

the strongest link to burn severity patterns.  Seasonality and fire size have been assumed to play 

important roles in the dynamics of fire effects in the Pinelands national reserve, however, prior 

to this study only qualitative data and anecdotal accounts provided any evidence for these 

assumptions.  This study, however, provides a quantitative description of burn severity over the 

range of fire size and timing that has been present in the Pinelands over the past five years.  The 

data reported in this study can serve as a benchmark for future research on fire effects on this 

landscape, and can help fill in regional gaps in burn severity reporting that has been missed in 

previous studies.  Overall, this study demonstrates the importance of the timing of fire, with 

relation to seasons, and the relative low importance of fire size.  Further, this study 

demonstrates key differences in the distributions of prescribed fire severity and wildfire severity 

in this system, at least which has been present over the past 10 years. 

Our study suggests that the distribution of burn severity generally follows predictable 

patterns over the course of the year, and that burn severity arises independently from fire size.  

Further, timing of fire imposes limitations to the maximum and minimum burn severity that can 

occur on a given day of the year.  Although I observed that average and maximum severity of 

fires generally increases from January through August, and then decreases though December, 

that not all fires will have high severity and that low severity fires can be observed at any time of 

year.  Similarly, I found that prescribed fires, which are conducted January – March in this area, 

tend to have a much lower burn severity than wildfires, which tend to occur at the end of 

prescribed fire season and continue throughout November (Figure 1).  However, this difference 

is more likely an effect of seasonality than fire type.  Mechanistically, timing may be important 

in dictating the severity because of changes in burning conditions such as weather and fuel 

conditions. 
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In contrast with other studies, I found that fire size was of little importance in explaining 

burn severity distributions.  For instance Duffy et al. (2007) found that average burn severity 

was positively correlated with the natural logarithm of fire size in Alaskan boreal forest.  

Similarly, Boelman, Rocha and Shaver (2011) found that the proportion of unburned area within 

the fire perimeter decreases with fire size, while, I the proportion of unburnt area (e.g. burn 

severity of zero) and fire size to be uncorrelated.  These studies did not consider seasonal 

variation as a factor, however in places like the Alaskan boreal forest, the window for wildfires is 

much shorter than in the PNR and therefor may not be an important factor there. 

Through damaging and killing vegetation, consuming biomass, and heating seeds, 

transient fire events thin the forest structure, cycle nutrients, prepare seedbeds, and releases 

seeds, thereby providing important habitat conditions for flora and fauna and maintaining a 

varied mix of habitats, successional stages, diverse organisms, and ecosystem functionality 

(Forman 2012, Robichaud 1973, Robichaud and Anderson 1994).  Other work with burn severity 

at spring time prescribed fires and late spring and early summer wildfires has found that fuel 

consumption and pitch pine mortality are positively correlated with burn severity.  The results of 

this study therefore imply that the range of effects possible from prescribed burning, under the 

current management strategy, is limited by the time frame in which burning is conducted and 

therefore falls short of mimicking wildfire.  Further, since prescribed fires make up 

approximately 2/3 of the acreage burned in a given year, the majority of the fire on the 

landscape is of far lesser severity than wildfires area.  Growing season fires can be difficult to 

extinguish quickly and can cause greater air quality issues, which can make growing season 

prescribed burns unpopular in this region, however adopting strategic “fire use” practices that 

allow fires to burn in low risk areas and use natural boundaries, when opportune could allow 

fire managers to accomplish a broader range of silvicultural, ecological, and fuel reduction goals.  
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Further, this data suggests that at the right time of year, even small fires can have a high 

severity, suggesting that small growing season burns could be a viable management option 

where outcomes of high severity fire are highly valued, such as fuel management near homes, 

preservation of fire dependent flora, or thinning of overstocked forests.  Specifically, managers 

should expect to find the greatest range of fire effects between weeks 23 – 31 of the calendar 

year.   

Future research in this environment can incorporate the findings of this paper in a 

variety of ways fire effects and behavior.  For instance, understanding linkages between burn 

severity and shifts in species communities can help better define the appropriate balance of fire 

on this landscape and employ management practices that will better meet conservation goals.  

Further, quantitative links between measures of fire behavior, such as spread rate, temperature, 

and resonance time, and burn severity would help shed light on the spatial variability of fire 

behavior and guide experiments intended to quantify fire behavior.   

Conclusions 

 Timing plays an important role in dictating burn severity of fires PNR.  Prescribed fire 

tends to be of lower burn severity than wildfire, however, prescribed burning is only conducted 

during the time of year when burn severity tends to be low.  Although extending the timing of 

prescribed fire into the growing season may be culturally unacceptable, promoting “fire use” 

strategies among managers, when risks are low, would likely enable managers to accomplish a 

broader range of silvicultural, ecological, and fuel reduction goals.  Future work should focus on 

incorporating burn severity into fire behavior, botanical, and wildlife studies in order to further 

identify how timing of fire can be manipulated to better meet management objectives. 
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Table 1. Summary of New Jersey statewide wild and prescribed fire occurrence data for the 
period 2006 - 2015.  The vast majority of this fire occurred in the Pinelands National Reserve. 

Year  
Wildfires 
Reported 

Wildfire 
Acres 

Reported 

Prescribed 
Fire Acres 
Reported 

Wildfires 
Sampled 

Prescribed 
Fires 

Sampled 

Wildfire 
Acres 

Sampled 

Prescribed 
Fire Acres 
Sampled 

2006 2,367a 3,886af 20,470af 11 26 2,832 6,546 

2007 1,271a 21,841af 11,550af 10 26 20,483 5,256 

2008 1,618b 20,392bfg 13,510bfg 9 50 8,909 6,940 

2009 1,054b 3,681bfh 24,025bfh 1 36 53 6,326 

2010 883c 7,222cfh 3,624cfh 10 8 5,891 415 

2011 1,228c 5,563cfh 18,215cfh 11 25 808 7,148 

2012 1,479d 5,946dfh 22,609dfh 8 61 3,804 6,168 

2013 830d 1,502dfh 16,086dfh 4 55 354 7,247 

2014 1,063e 10,481efh 19,422efh 11 72 2,695 9,777 

2015 373e 3,535efh 7,948efh 5 8 1,981 1,904 

Total 12,166 84,049 157,459 80 367 47,810 57,727 

        
aNew Jersey Department of Treasury 2008     
bNew Jersey Department of Treasury 2010     
cNew Jersey Department of Treasury 2012     
dNew Jersey Department of Treasury 2014     
eNew Jersey Department of Treasury 2016     
fStevenson 2016       
gBien et al. 2009 
hBien 2016       
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Table 2. Imagery used to develop annual growing season mosaics. 

Year % Missing 
after 
Mosaicking 

Dates of Imagery Path Row Landsat Image ID 

2005 <1 14-Aug 14 32 lt50140322005226   
8-Sep 13 32 lt50130322005251 

2006 <1 16-Jul 14 32 lt50140322006197   
1-Aug 14 32 lt50140322006213 

2007 1 5-Sep 14 32 lt50140322007248 

2008 <1 23-Aug 14 32 lt50140322008235   
8-Sep 14 32 lt50140322008251   
24-Sep 14 32 lt50140322008267 

2009 6 1-Aug 14 32 le70140322009213   
10-Aug 13 32 le70130322009222   
10-Aug 13 33 le70130332009222   
17-Aug 14 32 le70140322009229   
25-Aug 14 32 lt50140322009237 

2010 5 28-Aug 14 32 lt50140322010240 

2011 0 14-Jul 14 32 lt50140322011195 

2012 2 2-Jul 13 32 le70130322012183   
12-Jun 13 32 le70130322012263   
3-Aug 13 32 le70130322012215 

2013 4 25-Jun 14 32 le70140322013176   
5-Aug 13 32 le70130322013217   
6-Sep 13 32 le70130322013249   
15-Oct 14 32 le70140322013288 

2014 0 28-Jun 14 32 le70140322014179   
30-Jun 14 33 le70140332014211   
7-Jul 13 32 le70130322014188   
30-Jul 14 33 le70140332014211   
8-Aug 13 32 le70130322014220   
15-Aug 14 32 le70140322014227 

2015 28 25-Jun 13 32 le70130322015175   
17-Jul 14 32 le70140322015198   
26-Jul 13 23 le70130322015207   
18-Aug 14 32 le70140322015230 
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Figure 1. Average frequency of prescribed fire and wildfire occurrence (> 1 hectare) over a ten 
year period by day of year. 
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Figure 2.  Histogram of pixel values observed at 367 prescribed fires and 80 wildfires that 
occurred in the New Jersey Forest Fire Service’s central region from 2006 – 2015. 
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Figure 3. Mean and maximum burn severities of wild and prescribed fires (shown together) 
were poorly correlated with fire size. 
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Figure 4. Monthly distributions of burn severity for 2006 – 2015 
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Figure 5. Weekly maximum, mean, and range of burn severity in the Pinelands National Reserve 
averaged over a ten year period (2006-2016). 

 

 

 

 


