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ABSTRACT OF THE DISSERTATION

Games and Network Formation

by BASAK HOROWITZ

Dissertation Director:

Professor Tomas Sjöström

This dissertation consists of three studies in communication and information networks.

The �rst chapter analyzes formation of networks when players choose how much time to

invest in other players. I assume the information can be transferred using all possible paths

in the network and study the model under two di¤erent link strength functions. First, under

the assumption that the link strength is the arithmetic mean of agents�investment levels,

which allows players to form links unilaterally to other players, every player is connected to

another either directly or indirectly with no more than two links under any Nash equilib-

rium. Moreover, the strict Nash equilibrium structure is a star network. Second,under the

assumption that the link strength function is Cobb-Douglas in which players have to have

bilateral agreement to form links with each other, I show that paired networks in which

players are matched in pairs, are Nash equilibria. Moreover, I consider a sequential game

in which players choose and announce their investments publicly according to a random

ordering. I show that an Assortative Pair Equilibrium, in which players are assortatively

matched in pairs according to their information levels, is the only strongly robust Nash

equilibrium.
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In the second chapter, I consider the model introduced in the �rst chapter and fully

characterize the Nash equilibria and surplus-maximizing outcomes for a three-player game,

in order to investigate how equilibrium structures are di¤erent from the e¢ cient outcomes

and how these structures di¤er under di¤erent link strength functions. At equilibrium, the

agents choose to invest all their time with only one agent regardless of the link strength

function. More links are formed when the agents are perfect substitutes compared to Cobb-

Douglas link strength, in which bilateral agreement is required for link formation. Moreover,

the results show that the agents have a tendency to connect to fewer agents with higher

investment levels from an e¢ ciency perspective.

In the third chapter, I investigate a model of communication with two agents and a

principal, allowing for asymmetric interdependencies between the agents. Each agent has

private information on di¤erent dimensions of the state of nature. The interdependencies are

characterized as action complementarities or substitutabilities between the agents within the

same economic environment. I model the communication as cheap talk messages, assuming

the information is not veri�able. I look at two decision mechanisms. First, under the

centralized decision mechanism, in which agents communicate vertically with the principal

and the principal makes the decisions for the agents after observing the reported private

information, the communication takes form of a partition equilibrium. Second, under the

decentralized mechanism, the agents communicate horizontally with each other via cheap

talk and then make the decision for themselves. Under this protocol, I show that when

there are strategic interaction between the agents, there are at most two on-the-equilibrium

path conditional expectations for each agent. Thus, centralization allows more informative

communication compared to decentralization. Moreover, I show that if the agents are

strategic complements, it is not possible to have an informative horizontal communication.
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1 Introduction

This dissertation introduces three studies on communication and information networks. The

main motivation behind this dissertation is a desire to answer questions concerning the kinds

of network structures that will emerge at equilibrium, and how these structures are di¤erent

from the e¢ cient ones. The second chapter studies Nash equilibria of a network formation

game with weighted link strengths. The third chapter considers the model introduced in the

second chapter, and fully characterizes socially optimum outcomes and Nash equilibria of the

three player game. Similar to the third chapter, the fourth chapter studies communication

between three players-a principal and two agents when the interests of the agents are not

aligned.

Following the seminal papers of Jackson and Wolinsky (1996), and Bala and Goyal

(2000), the majority of the literature dealing with models of network formation assumes

that the agents make binary decisions; they choose whether or not to link to another agent.

However, in a wide variety of situations, such as friendships, sharing of information, and

trade of goods and services, agents decide not only whom to connect to but also how much

to spend on each connection they make. In the second chapter of this dissertation, I analyze

the formation of networks when players choose how much time to invest in other players.

As opposed to the distance-based utility weighted link formation game of Bloch and Dutta

(2009) in which only the shortest or most reliable path is considered, my model assumes the

information can be transferred using all possible paths in the network. I assume that each

player has an intrinsic value of information to share and one unit of endowment to invest

in relationships with others. Once a direct link is formed, the information is transferred

both ways with decay. Moreover, indirect links can transmit indirect information. However,

the bene�ts from indirect information transfers are zero when two agents are connected by
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more than two links.

I study the model assuming two di¤erent link strength functions. First, I assume that

link strength is the arithmetic mean of agents� investment levels, that is, the agents are

perfect substitutes. As a positive investment of an agent is enough for a link to be formed,

this speci�cation allows players to form links unilaterally with other players. Therefore, it

is reminiscent of the model by Bala and Goyal (2000). Alternatively, I assume that the

link strength function is Cobb-Douglas in which players have to have bilateral agreement

to form links with each other, which is similar to Jackson and Wolinsky (1996)�s model.

I show that, when the investments are perfect substitutes, every player is connected to

another either directly or indirectly with no more than two links under any Nash equilibrium.

Moreover, I �nd that the strict Nash equilibrium structure is a star network, in which there

exists a player (the center) such that all other players are connected to the center. On the

other hand, using the Cobb-Douglas link strength function, I show that paired networks in

which players are matched in pairs, are Nash equilibria. However, I also consider a sequential

game in which players choose and announce their strategies publicly according to a random

ordering. I show that an Assortative Pair Equilibrium, in which players are assortatively

matched in pairs according to their information levels, is the subgame perfect equilibrium

of the sequential game for all possible orderings of the players. Therefore, I conclude that

the Assortative Pair Equilibrium is the only strongly robust Nash equilibrium.

Unfortunately, a complete characterization of Nash equilibria and strongly e¢ cient out-

comes is di¢ cult in network formation problems. In the third chapter of this dissertation, I

consider the model introduced in the second chapter, and fully characterize the Nash equi-

libria and surplus-maximizing outcomes for a three-player game, in order to investigate how

equilibrium structures are di¤erent from the e¢ cient outcomes and how these structures
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di¤er under di¤erent link strength functions. At equilibrium, the agents choose to invest

all their time with only one agent regardless of the link strength function. More links are

formed when the agents are perfect substitutes compared to Cobb-Douglas link strength,

in which bilateral agreement is required for link formation. As opposed to the �ndings of

Bloch and Dutta (2009), the results show that the agents have a tendency to connect to

fewer agents with higher investment levels from an e¢ ciency perspective when all paths

included in the calculation of the indirect bene�ts from communication.

The model in the previous two chapters assumes that once the agents are connected,

the information is shared. However, if the interests of the agents are not aligned, they may

strategically withhold information. In the last chapter of this dissertation, I investigate a

model of communication with two agents and a principal. I consider a model by Bora (2010)

with two agents and a principal and allow for asymmetric interdependencies between the

agents. Each agent has private information on di¤erent dimensions of the state of nature.

The interdependencies are characterized as action complementarities or substitutabilities

between di¤erent agents within the same economic environment. A typical example of such

an environment would be a multi-product �rm. Since most of the information held by dif-

ferent departments within the �rm is not veri�able, I model communication between the

agents as cheap talk messages. I study the model under two di¤erent decision mechanisms.

The �rst one is a centralized decision mechanism in which the headquarters makes the

production decisions after observing the reported private information of each department.

The second one is the decentralized mechanism in which the agents are allowed to com-

municate with each other via cheap talk and then make the production decision for their

departments. I look at the Perfect Bayesian Equilibrium by Fudenberg and Tirole (1991)

as the equilibrium concept and focus on the most informative outcome in case of multiple
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equilibrium outcomes. I show that, under vertical communication protocol, the commu-

nication from the agents takes form of a partition equilibrium, in which the state space

is partitioned into intervals and agents report the interval which their private information

belong to. On the other hand, under horizontal communication, I show that there are at

most two on-the-equilibrium path conditional expectations for each agent when there are

strategic interaction between the agents, whereas agents fully reveal their private informa-

tion when there is no strategic interaction. Moreover, I show that if the agents are strategic

complements, it is not possible to have an informative horizontal communication. However,

if the agents are strategic substitutes, there are parameter con�gurations that makes the

horizontal communication informative. Under these parameter con�gurations, in which the

cost of production is lower compared to the absolute value of the strategic interaction terms,

we have a two-partition equilibrium.
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2 A Strategic Model of Network Formation with Endogenous

Link Strength

2.1 Introduction

Humans are social creatures; social interactions in�uence our thinking and behavior. Social

networks that we belong to in�uence our opinions and decisions, determining the products

we buy, political candidates for whom we vote, the level of education we obtain, and whether

our kids get vaccinations. They also play a central role in the transmission of information

such as job opportunities and availability of new technologies. To build better models of

human behavior, economists cannot ignore the role of social and economic networks. Hence,

following in the long tradition of sociology literature, research on networks in economics has

grown rapidly over the last two decades.

The structure of a network, i.e., existence of key players, whether everybody is connected

or whether groups are segregated, a¤ects the di¤usion of information; thus, it�s important

to gain insight into the network structures likely to emerge and how these structures are

related to the ones optimal for a society. Following the seminal papers of Jackson and

Wolinsky (1996), and Bala and Goyal (2000), the majority of the literature dealing with

models of network formation assumes that the agents make binary decisions; they choose

whether or not to link to another agent. However, in a wide variety of situations, such as

friendships, sharing of information, and trade of goods and services, agents decide not only

whom to connect to but also how much time to spend on each connection they make. Even

though treating links as binary quantities helps to overcome computational di¢ culties, this

simpli�cation doesn�t allow for analysis of many applications with di¤ering link intensity.

The �rst work to point out the importance of allowing for richer environments for links
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strengths in network analysis is that of Granovetter (1973). Granovetter interviewed a

hundred people and sent out two hundred questionnaires in the Boston area in the late 1960s

to analyze how people �nd their jobs. The results show that more than half of the people

found their jobs through personal contacts. However, the surprising result of the study is

that, in most cases, the information on job opportunities came from the people who are not

close to the job seeker. Granovetter argues that weak ties play a key role in information

transmission within networks because such ties connect people who are dissimilar, and

therefore, have nonoverlapping groups of friends.

In this paper, we analyze the formation of networks when players choose how much time

to invest in other players. Our analysis is centered around information and friendship net-

works in which players invest in relationships to exchange information or favours. However,

our model is applicable to any situation where players exchange divisible goods. Speci�-

cally, we analyze a network formation game in which each player has an intrinsic value of

information to share and one unit of endowment to invest in relationships with others. The

link strength is a function of investments of the players involved in the link. Once a direct

link is formed, the information is transferred both ways with decay. Therefore, an agent�s

investment decision about a link not only a¤ects his direct bene�t from the relationship

but also that of the other agent involved in the link. Moreover, we assume that there are

bene�ts from indirect communication.

The extent to which link externalities are accounted for has been limited in the previous

literature following the seminal papers by Jackson and Wolinsky (1996), and Bala and

Goyal (2000). While calculating the indirect bene�ts, models using distance-based utility,

such as Jackson and Wolinsky�s connections model and Bala and Goyal�s two-way bene�t

model, only consider the shortest path between the agents. There is no value added in
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having multiple paths between agents. However, in wide variety of situations, when the

good exchanged in the network is divisible, like information, the good is transferred by

using all the paths between the agents. Therefore, our model assumes the information can

be transferred using all possible paths in the network. However, in order to add tractability

to our analysis, following Brueckner (2006), we assume that the bene�ts from indirect

information transfers are zero when two agents are connected by more than two links.

That is, when two agents, i and j; are directly connected, agent i can only obtain indirect

information of agent j�s direct links via agent j:

Heterogeneity between agents are allowed in terms of their intrinsic value. We assume

that individuals are ranked according to their intrinsic value of information. Therefore, the

value of a direct link for agent i with agent j depends on three variables: intrinsic value of

agent j, the value of the other agents whom agent j is directly connected, and the level of

investment of agent j:

One of the challenges of modeling network formation with endogenous link strengths is

transforming investments into the link strengths. We study the model under two di¤erent

link strength functions to model di¤erent situations. First, we assume that link strength is

the arithmetic mean of agents�investment levels, that is, the agents are perfect substitutes.

As a positive investment of an agent is enough for a link to be formed, this speci�cation

allows players to form links unilaterally with other players. Therefore, it is reminiscent of

the model by Bala and Goyal (2000). Alternatively, in the second case, we assume that the

link strength function is Cobb-Douglas in which players have to have bilateral agreement

to form links with each other, which is similar to Jackson and Wolinsky�s (1996) model.

In order to motivate two di¤erent types of link strength functions, we introduce several

applications of decentralized information and innovation di¤usion systems. The main dis-
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tinction between the di¤erent speci�cations of the link strength function is the availability

of the information and the element of consent to obtain intrinsic information. Additively

separable link strength function is more appropriate for the situations when intrinsic in-

formation of an agent is available publicly; however, other agents need to invest time in

learn about this information. Whereas, Cobb-Douglas is applicable to the situations in

which both agents are required to invest in a relationship in order to exchange information.

Even though many applications have elements of both, we provide some applications that

correspond closely to one compared to the other.

Legitech is one of the examples of a decentralized system of innovation di¤usion discussed

in E. M. Rogers (1983). Legitech is a computer conferencing system used for exchanging

information among legislative sta¤s of various states. It works like an internet forum:

a legislator who is seeking advice can send out a general inquiry on the topic to solicit

suggestions over the Legitech computer network to �nd how other states have responded to

this problem. Legislators in other states can respond to the inquiry. The responses can be

a speci�c technical solution or a reference to resources that can supply an answer, such as a

reference to a bill originated by a legislator in another state. Other members of the network

also have access to answers to others�requests. In terms of the network structure observed,

Rogers (1983) notes that certain information sources in Legitech have gained reputation

and respect of others on the system for their careful and competent responses to inquiries.

Thus, legislators are more likely to follow their advice. In this system, the legislator who is

seeking advice mainly bears the cost of obtaining information, since the cost of posting a

response, especially the ones consisting of a reference to a source, is low; while the legislator

who is seeking advice have to invest in studying the posted reference. Therefore, additively

separable link strength function is more appropriate in characterizing this system.
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Another application of additively separable link strength function presented in Rogers

(1983) is the use of models and on-the-spot conferences in communities for di¤usion of in-

novation regarding health, family planning, and industrial development. A model is de�ned

as a local unit that pioneers in inventing and developing an innovation, in evaluating its

results, and in serving as an example for the di¤usion of the innovation to other units.

The models often have exemplary characteristics of success so that many people want to

learn about their techniques. In order to facilitate information transmission, on-the-spot

conferences are held at the site of a model. During these meetings, participants observe the

innovation in use by a local unit and are able to ask questions about the implementation

of the innovation and its e¤ectiveness. The participants, then, decide whether or not to

adopt the innovation, and, if they decide to adopt, how to incorporate it into their particu-

lar local conditions. Once a participant decides to adopt a technology, the participant not

only uses the knowledge of the model but also contributes to it with his experience of the

technology. Thus, the �ow of bene�ts is two-way even though only the participant invests in

the relationship. Rogers (1983) states that the innovation demonstrated at the exemplary

model need not be copied exactly. It is observed that often a great degree of variety can be

observed in the forms of an innovation that are actually implemented by local units.

Rogers�(1983) conclusions are also in accordance with the �ndings of Conley and Udry

(2010). They investigate the role of social learning in the di¤usion of a new agricultural

technology in Ghana using data on farmers�communication patterns. They �nd that farm-

ers align their inputs according to the information received from the neighbors who were

surprisingly successful in previous periods.

In these three applications, the general theme is the emergence of pioneer agents, such as

the top contributors in Legitech and the most successful farmers in Ghana. Because of their
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prestige and success, these pioneer agents gain popularity and in�uence others�innovation

decisions. We show that strict Nash equilibrium of the model using additively separable

function is a star network in which there exists a center player such that all other players

are connected to. Hence, our results are in accordance with the emergence of the pioneer

agents.

Lastly, our motivation for Cobb-Douglas link strength function comes from the book by

Blau (1963). Blau (1963) studies consultation patterns among agents working in a federal

law enforcement agency. In this law enforcement agency, agents are responsible for the

inspection of business establishments and preparing reports on the �rms�compliance with

the law. As the tasks include complex legal regulations and the reports might lead to legal

action against the �rms, the agents often need consultation with the other agents. Blau

(1963) points out that a consultation is an exchange of values in which both participants

gains something by paying a price. The agent seeking advice is able to perform better

than he could without receiving any help. By asking for an advice, however, he not only

has to spend time explaining his problem to his colleague but also implicitly acknowledge

his incompetency to solve a problem. On the other hand, while the consultant has to

devote his time to the consultation and disrupt his own work, he gains prestige in return.

The �nal pattern of this social structure is di¤erent than what he expects to get: instead

of asking advice from a highly competent agent, agents establish partnerships of mutual

consultation and less competent agents tend to pair o¤ as partners1. In our paper, using

the Cobb-Douglas link strength function, we show that paired networks in which players

are matched in pairs, are Nash equilibria. However, when we consider a sequential game in

which players choose and announce their strategies publicly according to a random ordering,

1Latest civil service rating by supervisor is used for competency measure.
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we �nd that an Assortative Pair Equilibrium, in which players are assortatively matched

in pairs according to their information levels, is the only subgame perfect equilibrium of

the sequential game for all possible orderings of the players. Therefore, we conclude that

the Assortative Pair Equilibrium is the only strongly robust Nash equilibrium. Hence, our

results are analogous of Blau (1963)�s �nal pattern, in which the agents are matched in

pairs according to their competency levels.

The rest of the chapter proceeds as follows. The next section, Section 2, presents

relevant economics literature on network formation games. Section 3 formally introduces

the general framework and proves the existence of Nash equilibrium for any continuous,

non-decreasing concave link strength function. Section 4 analyzes the case with additively

separable link strength function, while Section 5 considers the case with Cobb-Douglas link

strength function. Finally, Section 6 concludes.

2.2 Relevant Literature

We start this section with the literature on network formation games with binary link

strengths, before introducing the works on weighted link formation games. The literature

on network formation games starts with a simultaneous-move game by Myerson (1977),

introduced in the context of the formation of communication graphs. In this model, each

player simultaneously announces the set of players with whom he would like to be linked.

The links are formed if both players involved in the link named each other. However, the

main weakness of this model is that it has too many Nash equilibria, including complete

network, in which every player is directly linked to other players, and empty network,

in which no links are formed. Therefore, this analysis fails to capture the idea that two

individuals should communicate and engage in relationship if it is in their mutual bene�t.
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Later, Aumann and Myerson (1988) propose an extensive form game based on an order-

ing over all possible links. This model provides the pairs of individuals with the opportu-

nity to communicate and reconsider their decision if the link is not formed in the previous

rounds. When a link appears in the ordering, the pair of players involving that link decide

on whether or not to form that link knowing the decisions of all pairs coming before them.

A decision to form a link is binding and cannot be undone. The game moves through all

links initially. If at least one link is formed during the �rst round, then it starts from the

same ordering of links again; however, it moves through only the links that are not formed.

Therefore, if a pair of players (i; j) decide not to form a link initially, but some other pair

coming after them forms a link, then the pair (i; j) is allowed to reconsider their decision.

The game continues until either all links are formed, or there is a round that no new links

have formed even though the links that haven�t been formed have been reconsidered. Since

this is a �nite game with perfect information, it always has a subgame perfect equilibrium.

However, even in simple settings, it can be very di¢ cult to solve the game by using back-

ward induction. Another shortcoming is that the ordering of the links can have a serious

impact on the network structures at the equilibrium.

In Myerson (1977) and Aumann and Myerson (1988), the standard game-theoretic analy-

sis fails to account for the communication and coordination between the agents properly,

and provide an insight on why and how the structures at the equilibrium are formed. In

order to overcome these issues, Jackson and Wolinsky (1996) introduce a new concept of

stability: pairwise stability. A network is de�ned to be pairwise stable if no pairs of un-

linked players both want to form a link, and no player wants to break o¤ a link. This notion

of stability is based upon the idea that two players should be able to form a link if it is

mutually bene�cial to do so. Therefore, formation of a link should involve mutual consent
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of the individuals to be linked. Jackson and Wolinsky (1996), then, use this new concept of

equilibrium to solve two models, connections and co-author models, introduced in the same

paper.

The connections model is a simple model of social connections in which links repre-

sent social relationships. These relationships o¤er bene�ts such as information and favors.

However, it is costly to form links. Players directly communicate with those to whom they

are linked. There are also bene�ts from indirect communication from those to whom their

adjacent links are connected. The value of the bene�t from the indirect links decays with

the distance of the relationship. When calculating the indirect bene�ts, if there are multi-

ple paths between the players, only the shortest path is considered. Jackson and Wolinsky

(1996) analyze the model under the assumption that the agents are symmetric, i.e., the cost

and the value of a link is the same for all players. They �nd that a pairwise stable network

has at most one non-empty component. They show that a complete network is the unique

pairwise stable network in the low cost range; a star, in which there exists a player (the

center) such that all other players are connected to, is pairwise stable but not necessarily

the unique one in the medium cost range; and each player has either no links or at least

two links in any pairwise stable network in the high cost range. Moreover, they characterize

strongly e¢ cient networks, the network structures that maximize the total utility of the

agents. They show that the unique strongly e¢ cient network is the complete network in

the low cost range, a star in the medium cost range, and empty network in the high cost

range. In addition, they show the star network is e¢ cient but not pairwise stable for a wide

range of parameters2.

2Pairwise stability allows only requires only pairwise incentive compatibility. Therefore, while analyzing
for pairwise stability, deviations on a single link is considered at a time. However, there may be situations
that coalitions larger than pairs can be formed. There are stronger notions of stability allowing for larger
coalitions. For example, Dutta and Mutuswami (1997) study strong stability (coalition-proof Nash equilib-
rium) with a generalized version of Myerson (1977)�s model to see whether the tension between stability
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Furthermore, in the co-author model, players are interpreted as researchers who spend

time writing papers. Each link represents a collaboration between a pair of researchers.

Each collaboration creates a synergy depending on the time how much they spend together.

Moreover, since each player has a �xed amount of time spend on research, the amount

of time a player spends on a collaboration decreases with the number of links that the

player has. Hence, contrary to connections model in which the indirect communication

has bene�ts, in the co-author model, indirect connections create distractions and result in

negative externalities. Jackson and Wolinsky (1996) show that the network consisting of

pairs are the strongly e¢ cient networks; and pairwise stable networks can be partitioned

into fully intraconnected components, and tend to be over-connected from an e¢ ciency

perspective. They conclude that the tension between stability and e¢ ciency arises because

the players do not account for the indirect negative e¤ects that their connections bring to

their neighbors.

Jackson and Wolinsky (1996) assume that a formation of a link between two agents

require mutual consent of the agents. By contrast, Bala and Goyal (2000) weaken this

assumption and allow agents to form links with others unilaterally by incurring the cost

of the link. This modi�cation in the modeling allows the authors to be able to use Nash

equilibrium and its re�nements in their analysis. They study both one-way and two-way �ow

of bene�ts. In the model with one-way �ow, only the player who forms the link bene�ts

from it, while in two-way �ow, once the link is formed, both players enjoy the bene�ts.

Moreover, similar to Jackson and Wolinsky (1996), there are also bene�ts from indirect

communication from those to whom their adjacent links are connected. In their benchmark

model, the indirect communication is assumed to be frictionless, i.e., without decay. They

and e¢ ciency can be resolved. Similar to Jackson and Wolinksy (1996)�s result that, due to symmetry, the
tension between e¢ ciency and stability still remains even if stronger notions of stability is applied, Dutta
and Mutuswami (1997) conclude that the con�ict between e¢ ciency, stability and symmetry remains.
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also analyze the model with decay, in which the value of the bene�t from the indirect links

decays with the distance of the relationship, and in case of multiple paths, only the shortest

path is considered. Moreover, like Jackson and Wolinsky (1996), Bala and Goyal (2000)

analyze the model under the assumption that the agents are symmetric.

When there is no decay, Bala and Goyal (2000) show that Nash equilibrium is either

the empty network or connected, that is, there exists a path between every pair of players.

In the one-way �ow model, strict Nash equilibrium structures are the empty network and

the wheel network, in which a single directed cycle is formed with each player investing in

exactly one link. Moreover, for a large set of parameters, the wheel is also the unique e¢ cient

architecture. Whereas, in the two-way �ow model, strict Nash equilibrium structures are

the empty network and the center-sponsored star network, in which one agent forms all

the links. Furthermore, a star is also an e¢ cient network for a class of payo¤ functions.

Where there is decay, strict Nash networks are also connected. However, characterization of

the strict Nash and e¢ cient networks becomes di¢ cult as the distances between the agents

become relevant in computation of the indirect bene�t. By focusing on low levels of decay,

they obtain partial results. In one-way �ow, the wheel and the star networks are strict

Nash; while, in two-way �ow model, the star is the unique e¢ cient network and also a strict

Nash equilibrium for a wide range of parameters.

There are three papers that drop the assumption of binary link strengths, and therefore,

are closely related to our model. In the �rst one, Bloch and Dutta (2009) analyze a weighted

link formation game in which players have �xed endowments to invest in relationships with

others. In the baseline model, which is similar to our model with additively separable

link strength function, they assume link strength is an additively separable and convex

function of individual investments. However, unlike our model, agents use only the path
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which maximizes the product of link strengths, i.e., the most reliable path. They show

that both the stable and e¢ cient network architectures are stars. Moreover, they study

the case were the agents� investments are perfect complements. Nonetheless, they could

only provide a partial characterization of the stable and e¢ cient structures as the analysis

becomes intractable once the indirect bene�ts are taken into account.

On the other hand, Rogers (2006) considers a weighted link formation game in which

all paths between agents are taken into account when calculating the indirect bene�ts.

In this model, each player has an intrinsic positive base utility that would be his payo¤

in the absence of any network connections and an amount of time to allocate in forming

relationships. Players are allowed to be heterogenous with respect to their intrinsic values

and their time constraints. In addition to their intrinsic utility, players bene�t from other

players by interacting with each other. The more time a player spends on a player with

higher intrinsic utility, the higher utility he obtains. Speci�cally, in Rogers�model, the

bene�t of forming a link is the product of the total value of the other agent and the strength

of the relevant link. The total value of each agent is the sum of the bene�ts from all

connections to other agents plus the agent�s intrinsic utility. However, once a pair of agents

are connected, they obtain each other�s intrinsic utility with a weight of the link between

them. Thus, this leads to multiple counting of an agent�s intrinsic value in his total value.

Apart from this, calculating the total value of agents in this way allows Rogers to separate

the �ow of bene�ts into "taking" and �giving" components. That is, in giving model, the

link decisions represent the giving of bene�ts, whereas, in taking model, the link decisions

represent the taking of bene�ts. He �nds that with exception of some Nash equilibria in

giving model, all stable and e¢ cient networks are identi�ed as interior. Since heterogeneity

between agents are allowed, both equilibrium and e¢ cient networks display heterogeneity
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in link strengths. Moreover, by separating the �ow of bene�ts, Rogers is able to provide

new insights with respect to the e¢ ciency of the stable network architectures. Particularly,

the source of ine¢ ciency is identi�ed as the giving incentives and the ine¢ ciency is present

only when there exists heterogeneity among agents in terms of their budget constraints.

Lastly, another work analyzing heterogenous agents is by Brueckner (2006). Brueck-

ner considers friendship networks concentrating on three player networks. He adopts a

stochastic approach to link formation with the probability depending on the noncoopera-

tive investment. Even though this alternative approach leads to a simpler mathematical

structure, the network architecture at equilibrium cannot be speci�ed. Instead, his analysis

focuses on the links which are most likely to form. Moreover, opposed to previous litera-

ture, he assumes that bene�ts are zero when more than two links are involved. Therefore, if

agents i and j are connected, then agent i gains from socializing with j�s direct friends but

receives no bene�ts from j�s indirect friendships. Brueckner shows that individual invest-

ment in friendship formation is too low. Moreover, in an asymmetric setting, friendship links

involving attractive agent, who has personal magnetism or a broad group of acquaintances,

are most likely to form.

2.3 The General Model of Link Formation

In this section, we present the general model of link formation game and prove the existence

of the equilibrium before imposing further restrictions to the model. We also introduce the

notation and de�nitions to be used throughout the rest of the paper.

Let N = f1; 2; 3:::; ng be the set of players. Each player j has information worth rj and

1 unit of time to allocate across links to others. A strategy for player j�s will be denoted
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zj . It consists of his investment levels in the other players:

zj = fzjkgk 6=j

and must satisfy

0 � zjk � 1

for all k 6= j and X
k 6=j

zjk = 1:

Let Zj denote player j�s strategy set. A strategy pro�le consists of a strategy for each

player. A strategy pro�le will be written

z = (z1; z2; :::; zn) 2 Z � Z1 � Z2 � :::� Zn

Let z�j = (z1; z2; :::; zj�1; zj+1; :::; zn) denote the strategies of all the players except j:

Each player can bene�t not only from his own information, but also from the information

of other players if he is linked to them. The stronger the link is, the greater the share

of information is transmitted. However, when information is transmitted along a link,

it depreciates by some factor 0 < � � 1: Thus, if the direct link between player i and

player j has strength �(zij ; zji), then obtaining player j�s information via this direct link

is worth ��(zij ; zji)rj to player i. Moreover, we assume that links can transmit indirect

information. Then, if player j is linked to player k; then player k�s information can be

indirectly transmitted from k to i via j. Obtaining player k�s information via this indirect

link is worth ��(zij ; zji)��(zjk; zkj)rk to player i. However, following Brueckner (2006),

our framework assumes that the bene�ts from indirect information transfers are zero when
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more than two links are involved.

We assume that the general link strength function between players i and j

�(zij ; zji) = �ij

is continuous, non-decreasing and concave in zij and zji: Moreover, we suppose �(0; 0) = 0

and �(1; 1) = 1 so that �ij 2 [0; 1]: In the following sections, we will work on with speci�c

link strength functions.

Let Sj(z) denote player j�s payo¤ from strategy pro�le z. Since we assume informa-

tion can be transmitted by a chain of no more than two links, then the total amount of

information that player j receives from player i, directly and indirectly, is

Sij(z) =

0@��ij + �2 X
k 6=i;j

�ik�kj

1A ri
For now, we will assume that player j can obtain less information exclusive to player i than

player i: Speci�cally, we will assume

��ij + �
2
X
k 6=i;j

�ik�kj < 1 (1)

as long as 0 < � < 1: In the next sections, we will prove that (1) holds for each speci�ed

link strength function.

Player j�s payo¤ Sj(z) will be his own information plus the total amount of information
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he receives from others:

Sj(z) = rj +
X
i6=j

Sij(z)

= rj +
X
i6=j

0@��ij + �2 X
k 6=i;j

�ik�kj

1A ri
We will use Nash equilibrium as the equilibrium concept throughout the paper. A

network is Nash stable if there is no pro�table deviations by individual agents.

De�nition 1 A strategy pro�le z is a Nash equilibrium if and only if, for all j 2 N , it

holds that

Sj(z) � Sj(z�j ; z0j) for all z0j 2 Zj

The timeline for non-cooperative Nash equilibrium for n players is as follows: At time

zero, players learn the value of each player�s information, i.e., rj ; j 2 N: Each player has 1

unit of time to invest in communication with other players. At time one, they simultane-

ously choose how much time to invest in other players. At time two, the players exchange

information according to their strategies. Therefore, the optimization problem for each

player j is as follows:

maximize Sj(zj ; z�j) = rj +
X
j 6=i

0@��ij + �2 X
k 6=i;j

�ik�kj

1A ri subject to
zj = fzjkgk 6=j

0 � zjk � 1 for all k 2 N n fjgX
k 6=j

zjk = 1
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Now, we will prove that the general game of link formation has an equilibrium. Notice

that the players have in�nite strategy sets; therefore, we will use Debreu, Fan, Glicksberg

Theorem to prove the existence of the equilibrium.

Theorem 2 (Debreu, Fan, Glicksberg) Consider a strategic form game


N; (Zi)i2N ; (Si)i2N

�
with in�nite strategy sets such that for each i 2 N :

1. Zi is convex and compact.

2. Si (zi; z�i) is continuous in z�i:

3. Si (zi; z�i) is continuous and quasiconcave in zi:

The game has a pure strategy Nash equilibrium.

Proposition 3 The general model of link formation game with n-players has a Nash equi-

librium.

Proof. The strategy set Zi for player i is a simplex de�ned by

zi = fzikgk 6=i

0 � zik � 1 for all k 2 N n figX
k 6=i

zik = 1

Thus, each Zi for all i 2 N is convex and compact.

We assume that the general link strength function between players i and j; �ij is contin-

uous and concave in zij and zji:Since the payo¤ function for player i, Si (zi; z�i) ; is linear

with respect to �ij ; Si (zi; z�i) is jointly continuous in both zi and z�i; and concave in zi:
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Therefore, by Theorem 2, a pure strategy Nash equilibrium exists for the general model of

link formation game with n-players.

Before we proceed to the analysis, we introduce formal de�nitions of the concepts to be

used in the following chapters.

De�nition 4 A network (N;�) consists of a set of nodes N = f1; 2; :::; ng and a real-valued

n x n matrix, �, where �ij represents the link strengths between the players i and j. A path

in a network (N;�) between players i and j is a sequence of links i1i2; i2i3; :::iK�1iK such

that �ik�1ik > 0 for each k 2 f1; 2; :::Kg with i1 = i and iK = j, and such that each node

in the sequence i1; i2; :::iK is distinct.

Note that, for our model, �ij = �ji for all i; j 2 N: Therefore, any network in our model

is an undirected network and � is a symmetric matrix.

De�nition 5 A network (N;�) is connected if for each i 2 N and j 2 N there exists a

path between i and j.

De�nition 6 A component of a network (N;�) is a nonempty subnetwork (N 0; �0) such

that ; 6= N 0 � N , �0 � � and

� (N 0; �0) is connected, and

� if i 2 N 0 and �ij > 0 for �, then j 2 N 0and �ij > 0 for �0.

The following are formal de�nitions of particular network architectures. These structures

are illustrated in the following �gure.

De�nition 7 A network (N;�) is an n-player wheel if it consists of n directed links and

has a single directed cycle that involves n players.
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Figure 1: Examples of special network architectures

De�nition 8 A network (N;�) is a star if there exists a player i (the center of the star)

such that all other players connected to the center. That is the player at the center has

direct links to n� 1 players and each of the other players has only one direct link.

De�nition 9 The player j is ostracized if zij = 0 for all i 6= j.

De�nition 10 A network is said to be paired if for every player i (except one agent ostra-

cized in the case that n is odd), there exists a player j such that

zij = zji = 1

In the next sections, we will focus on special cases of our model in which we impose

restrictions on link strength function. First, we will assume that the strength of the link is

an additively separable function. This case allows players form links unilaterally to other

players. Then, we will assume that the link strength function is Cobb-Douglas in which

players have to have bilateral agreement to form links with each other.
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2.4 Additively Separable Link Strength

In the previous section, we assume that the general link strength function between players

i and j

�(zij ; zji) = �ij

is continuous and concave in zij and zji. In this section, we introduce further restriction

and assume the link strength function between players i and j is

�ij =
1

2
zij +

1

2
zji

In other words, players i and j are perfect substitutes in terms of investment levels.

As �ij is linear in zij and zji; then player j�s payo¤ is also continuous in all actions

and concave in his own action si: Therefore, we know that there exists a pure strategy

Nash equilibrium for the game as the conditions in Theorem 2 holds. Moreover, notice that

this link strength function allows players to form links unilaterally to other players. The

intuition behind this is that even if player i doesn�t want to connect to player j, player j

can still obtain some information of player i by spending time on researching on player i:

We will start our analysis with characterization of Nash equilibrium network structures

with n-players where investments are perfect substitutes. These results will form the basis

for comparison of the network structures under di¤erent link strength functions. Moreover,

we present a complete characterization of the set of strong Nash equilibrium where the

equilibrium network structure is a star.

Let N = f1; 2; 3:::; ng be the set of players. A strategy for player j�s will be denoted zj .
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It consists of his investment levels in the other players:

zj = fzjkgk 6=j

and must satisfy

0 � zjk � 1

for all k 6= j and X
k 6=j

zjk = 1:

Let Zj denote player j�s strategy set.

A strategy pro�le consists of a strategy for each player. A strategy pro�le will be written

z = (z1; z2; :::; zn) 2 Z � Z1 � Z2 � :::� Zn

Let Sj(z) denote player j�s payo¤ from strategy pro�le z. If we assume information can be

transmitted by a chain of no more than two links, then the total amount of information

that player j receives from player i, directly and indirectly, is

Sij(z) =

0@� 1
2
(zij + zji) + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
(zjk + zkj)

1A ri
We have assumed in the previous section that player j can obtain less information exclusive

to player i than player i: Speci�cally, the following inequality holds as long as 0 < � < 1:

��ij + �
2
X
k 6=i;j

�ik�kj < 1
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Now, we will show that if �ij = 1
2zij +

1
2zji and 0 < � < 1

��ij + �
2
X
k 6=i;j

�ik�kj < 1

�
1

2
(zij + zji) + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
(zjk + zkj) < 1

As 0 � zjk � 1 for all k 6= j;

�kj =
1

2
(zjk + zkj) 6 1

Therefore, we have

�
1

2
(zij + zji) + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
(zjk + zkj) 6 �

1

2
(zij + zji) + �

2
X
k 6=i;j

1

4
(zik + zki)

= �
1

2
(zij + zji) + �

2
X
k 6=i;j

1

4
zik + �

2
X
k 6=i;j

1

4
zki

= �
1

2
(zij + zji) + �

2 1

4
(1� zij) + �2

1

4
(1� zji)

=

�
� � �

2

2

�
1

2
(zij + zji) +

�2

2

As �ij 6 1 and 0 < � < 1; we have

��ij + �
2
X
k 6=i;j

�ik�kj 6 � < 1

Player j�s payo¤ Sj(z) will be his own information plus the total amount of information

he receives from others:

Sj(z) = rj +
X
i6=j

Sij(z)

Let z�j = (z1; z2; :::; zj�1; zj+1; :::; zn) denote the strategies of all the players except j:

Let (z�j ; z0j) denote the strategy pro�le when all players except j choose according to z but
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player j chooses z0j . A strategy pro�le z is a Nash equilibrium if and only if, for all j 2 N ,

it holds that

Sj(z) � Sj(z�j ; z0j) for all z0j 2 Zj .

Let 
(z) denote the set of players that some other player invests in under strategy pro�le

z. That is


(z) = fj : zij > 0 for some ig :

Since a player cannot invest in himself 
(z) must contain at least two players.

Fix the strategies z�j of all players except player j: Let zaj denote the strategy such that

zja = 1, i.e., player j invests only in player a. His payo¤ from this strategy is

Sj(z�j ; z
a
j ) = rj +

X
i6=j

0@� 1
2
(zij + zji) + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
(zjk + zkj)

1A ri
= rj +

0@� 1
2
(zaj + 1) + �

2
X
k 6=a;j

1

2
(zak + zka)

1

2
zkj

1A ra
+
X
i6=j;a

0@� 1
2
zij + �

2 1

2
(zia + zai)

1

2
(1 + zaj) + �

2
X
k 6=i;j;a

1

2
(zik + zki)

1

2
zkj

1A ri
= rj + �

1

2
ra +

0@� 1
2
zaj + �

2
X
k 6=a;j

1

2
(zak + zka)

1

2
zkj

1A ra
+
X
i6=j;a

0@� 1
2
zij + �

2 1

2
(zia + zai)

1

2
zaj + �

2
X
k 6=i;j;a

1

2
(zik + zki)

1

2
zkj

1A ri
+ �2

X
i6=j;a

1

2
(zia + zai)

1

2
ri

= rj + �
1

2
ra +

0@� 1
2
zaj + �

2
X
k 6=a;j

1

2
(zak + zka)

1

2
zkj

1A ra
+
X
i6=j;a

0@� 1
2
zij + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
zkj

1A ri + �2 X
i6=j;a

1

2
(zia + zai)

1

2
ri
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Thus, we have

Sj(z�j ; z
a
j ) = rj+�

1

2
ra+

X
i6=j

0@� 1
2
zij + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
zkj

1A ri+�2 X
i6=j;a

1

2
(zia + zai)

1

2
ri

Similarly,

Sj(z�j ; z
b
j) = rj+�

1

2
rb+

X
i6=j

0@� 1
2
zij + �

2
X
k 6=i;j

1

2
(zik + zki)

1

2
zkj

1A ri+�2 1
2

X
i6=j;b

(zib + zbi)
1

2
ri

Therefore, the payo¤ di¤erence between only investing in player a and only investing in

player b is

Sj(z�j ; z
a
j )� Sj(z�j ; zbj) (2)

= �
1

2
(ra � rb) + �2

X
i6=j;a

1

2
(zia + zai)

1

2
ri � �2

X
i6=j;b

1

2
(zib + zbi)

1

2
ri (3)

Lemma 11 Consider any Nash equilibrium z and let � denote the implied link-strengths.

Suppose fa; bg � 
(z), h 6= b and m 6= a: Then if zha > 0 and zmb > 0 the following

inequality must hold:

(�ha � �hb) rh + (�mb � �ma) rm � 0 (4)

Proof. Suppose player h invests in a 2 
(z); i.e., zha > 0: Then, by the Nash property, we

must have

Sh(z�h; z
a
h)� Sh(z�h; zbh) � 0:

Suppose some other player, say m 6= h, invests in b 2 
(z) where b 6= h, i.e., zmb > 0. By
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the Nash property, we must have

Sm(z�m; z
b
m)� Sm(z�m; zam) � 0: (5)

Applying (2) we �nd that

h
Sh(z�h; z

a
h)� Sh(z�h; zbh)

i
�
h
Sm(z�m; z

a
m)� Sm(z�m; zbm)

i
=

24� 1
2
(ra � rb) + �2

X
i6=h;a

1

2
(zia + zai)

1

2
ri � �2

X
i6=h;b

1

2
(zib + zbi)

1

2
ri

35
�

24� 1
2
(ra � rb) + �2

X
i6=m;a

1

2
(zia + zai)

1

2
ri � �2

X
i6=m;b

1

2
(zib + zbi)

1

2
ri

35
= �2

1

2
(zma + zam � zmb � zbm)

1

2
rm + �

2 1

2
(zhb + zbh � zha � zah)

1

2
rh

Therefore,

Sh(z�h; z
a
h)� Sh(z�h; zbh)

=
h
Sm(z�m; z

a
m)� Sm(z�m; zbm)

i
+
�2

4
(zma + zam � zmb � zbm) rm +

�2

4
(zhb + zbh � zha � zah) rh

� 0

The term in square brackets is non-positive by (5). Therefore,

(zma + zam � zmb � zbm) rm + (zhb + zbh � zha � zah) rh � 0

which implies that (4) holds.

Proposition 12 Every player is connected to every other player either directly or indirectly

with no more than two links under any Nash equilibrium z:
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Proof. First, we will prove that the network (N;�) under the Nash equilibrium z is

connected by contradiction. Then, we will show that each player is connected either directly

or indirectly with no more than two links.

Suppose that the network (N;�) under the Nash equilibrium z is not connected. There-

fore, there exists a player i and a player j such that there is no path in (N;�) between i

and j: Moreover, since the network (N;�) is not connected, there would be at least two

components of (N;�); (N 0; �0) and (N 00; �00) such that ; 6= N 0 � N , ; 6= N 00 � N and

N 0\N 00 = ;:Without loss of generality, assume that player i is in N 0 and player j is in N 00.

Since player i cannot invest in himself, there exists a player a such that zia > 0: Moreover,

since (N 0; �0) is connected, a 2 N 0: Similarly, since player j cannot invest in himself, there

exists a player b such that zjb > 0 and since (N 00; �00) is connected, b 2 N 00: Since a 2 N 0

and b 2 N 00; we have i 6= b and j 6= a. Then, from Lemma 11, as fa; bg � 
(z), i 6= b and

j 6= a, and zia > 0 and zjb > 0 the following inequality must hold:

(�ia � �ib) ri + (�jb � �ja) rj � 0

Since �ia > 0 and �jb > 0 as zia > 0 and zjb > 0; we should have �ib > 0 and/or �ja > 0:

Suppose �ib > 0; then there exists a path from player i to j via player b where �ib > 0 and

�bj > 0: This leads to a contradiction with the assumption that the network (N;�) under

the Nash equilibrium z is not connected. Similar argument holds if we have �ja > 0 as

there exists a path from player i to j via player a where �ia > 0 and �aj > 0: Therefore,

the network (N;�) under the Nash equilibrium z is connected.

Now, suppose that the shortest link between players i and j is greater than two. Since

players i and j cannot invest in themselves, there exists players a 6= i; j and b 6= a; i; j such
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that zia > 0 and zjb > 0: Notice that if a = b or a = j or b = i, the shortest link between

players i and j becomes less than or equal to two. Then, from Lemma 11, as fa; bg � 
(z),

i 6= b and j 6= a, and zia > 0 and zjb > 0 the following inequality must hold:

(�ia � �ib) ri + (�jb � �ja) rj � 0

Since �ia > 0 and �jb > 0 as zia > 0 and zjb > 0; we should have �ib > 0 and/or �ja > 0:

Suppose �ib > 0; then there exists a path from player i to j via player b where �ib > 0 and

�bj > 0. This leads to a contradiction with the assumption that the shortest link between

players i and j is greater than two. Suppose �ja > 0; then there exists a path from player

i to j via player a where �ia > 0 and �aj > 0. This leads to a contradiction with the

assumption that the shortest link between players i and j is greater than two. Therefore,

each player i and j should be connected either directly or indirectly with no more than

two links.

Even though the most distinct feature of our model is the weighted link strength strate-

gies, we will study strict Nash equilibria as a re�nement in the next results. For this purpose,

we will rewrite player j�s payo¤ as

Sj(z) =
�

2

X
i6=j

zji

0@ri + � X
k 6=i;j

�ikrk

1A+ � (z�j)
where � is a function that doesn�t depend on player j�s strategy zj . As player j�s objective

function Sj(z) is linear in the choice variables, zji for all i 6= j; for any given z�j ; player j

maximizes his payo¤ assigning positive link strength only to the players that maximize

�ji = ri + �
X
k 6=i;j

�ikrk
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We will denote the unique maximizer of �ji for player j as j�. If there is a unique maximizer,

j�, then player j should set zjj� = 1:

Lemma 13 Assume that in a Nash equilibrium z, for distinct players i and j, there exists

a unique maximizer j� of �jk; k 2 N n fjg for player j and there exists a unique maximizer

i� of �ik; k 2 N n fig for player i: If j 6= i� and i 6= j�; then j� = i�:

Proof. Consider any Nash equilibrium z in which, for distinct players i and j, there exists

a unique maximizer i� of �ik; k 2 N n fig for player i such that i� 6= j, and player j chooses

zja = 1 where a =2 fi; i�g : Since zja = 1 and zia = 0, we have

�ja = ra + �
X
k 6=a;i;j

�akrk +
�

2
zairi

�ia = ra + �
X
k 6=a;i;j

�akrk +
�

2
(zaj + 1) rj

Moreover, since zji� = 0 and zii� = 1, we have

�ji� = ri� + �
X

k 6=i�;i;j
�i�krk +

�

2
(zi�i + 1) ri

�ii� = ri� + �
X

k 6=i�;i;j
�i�krk +

�

2
zi�jrj

Since player i� is the unique maximizer of �ik for k 2 N; we have

�ii� > �ia

ri� + �
X

k 6=i�;i;j
�i�krk +

�

2
zi�jrj > ra + �

X
k 6=a;i;j

�akrk +
�

2
(zaj + 1) rj

ri� + �
X

k 6=i�;i;j
�i�krk �

0@ra + � X
k 6=a;i;j

�akrk

1A >
�

2
(zaj + 1� zi�j) rj
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As zaj + 1� zi�j > 0; we should have

ri� + �
X

k 6=i�;i;j
�i�krk �

0@ra + � X
k 6=a;i;j

�akrk

1A > 0

Then,

�ji� � �ja = ri� + �
X

k 6=i�;i;j
�i�krk �

0@ra + � X
k 6=a;i;j

�akrk

1A+ �
2
(zi�i + 1� zai) ri

As zi�i + 1� zai > 0, we have

�ji� � �ja > 0

This means player j is not best responding by choosing zja = 1: This means the only

candidates for j� are i and i�: By the hypothesis in the lemma, j� 6= i: Hence, j� = i�

Lemma 14 In a strict Nash equilibrium z, if j� = i and i� = h 6= j; then h� = i:

Proof. Choose a strategy pro�le in which each player l 6= j sets zll� = 1 with j� = i and

i� = h 6= j: From Lemma 13, as h 6= i, we must have h� 2 fj; ig : Assume zhj = 1 and

consider the following expressions:

�ji = ri + �
X
k 6=h;i;j

�ikrk +
�

2
rh

�jh = rh + �
X
k 6=h;i;j

�hkrk +
�

2
ri

�ih = rh + �
X
k 6=h;i;j

�hkrk +
�

2
rj

�ij = rj + �
X
k 6=h;i;j

�jkrk +
�

2
rh
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Since �ji � �jh > 0 and �ih � �ij > 0; we have

�ji � �ij > �jh � �ih

ri + �
X
k 6=h;i;j

�ikrk +
�

2
rh �

0@rj + � X
k 6=h;i;j

�jkrk +
�

2
rh

1A >
�

2
ri �

�

2
rj

ri + �
X
k 6=h;i;j

�ikrk +
�

2
rj > rj + �

X
k 6=h;i;j

�jkrk +
�

2
ri

�hi > �hj

Therefore, player h is not best responding if he sets zhj = 1: Hence, we have h� = i:

Proposition 15 Assume rk�1 > rk for all k 2 N n f1g : There are two sets of strict Nash

equilibria of the simultaneous move game, both resulting in a star network. The �rst set of

equilibrium strategies is given by

zi1 = 1 for all i 2 N n f1g

z12 = 1

Moreover, we have

S1 > S2 > ::: > SN

The second set of equilibrium strategies is given by

zii� = 1 for all i 2 N n fi�g where i� 6= 1

zi�1 = 1
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Moreover, we have

Si� � ri� > S1 � r1

S1 > S2 > Si��1 > Si�+1::: > SN

For the second case to be strict Nash equilibrium, we need

ri� > r1 �
�

1� �
X

k 6=1;i�;j

rk
2
where j = arg max

k 6=1;i�
rk

ri� > r2 �
�

1� �
2

X
k 6=1;i�;2

rk
2
if r2 > ri�

Proof. In a strict Nash equilibrium z, every j has a unique maximizer of �ji; i 2 N n fjg

for �xed z�j : Then, player j sets zjj� = 1 in any strict Nash equilibrium. By Lemma 13, we

know that for distinct players i and j, if j 6= i� and i 6= j�; then j� = i�: This restricts the

relationships between two distinct players into two: the players are either directly connected

or they are connected to the same player. Moreover, if the players are directly connected,

then Lemma 14 eliminates any wheel structure in the equilibrium. Therefore, by Lemma

13 and 14, the only possible strategy pro�le for a strict Nash equilibrium is the following:

There exists a player i� such that

zji� = 1 for all j 2 N n fi�g

zi�h = 1 where h = argmax
k 6=i�

rk:
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Now, consider the �rst set of equilibrium strategies given by

zi1 = 1 for all i 2 N n f1g

z12 = 1

Player 1 is at the center of the network, i.e., zi1 = 1 for all i 2 N n f1g. Since,

�1i = ri for all i 6= 1

2 = argmax
k 6=1

rk

player 1 is strictly best responding by choosing z12 = 1:

Players j 2 N n f1; 2g are best responding since

r1 + �r2 + �
X

k 6=1;2;j

rk
2
> r2 + �r1 > rk +

�

2
r1 for all k 6= 1; 2; j

Finally, player 2 is best responding since

r1 + �
X
k 6=1;2

rk
2
> rk +

�

2
r1

for all k 6= 1; 2: Under this equilibrium strategies, the surplus for each player is

S1 = r1 + �r2 + �
X
k 6=1;2

rk
2

S2 = r2 + �r1 + �
2
X
k 6=1;2

rk
2

Sn = rn +
�

2
r1 + �

2
X
k 6=1;n

rk
2
for all n 2 N n f1; 2g
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Therefore, we have

S1 > S2 > ::: > SN

Now, consider the second set of equilibrium strategies given by

zii� = 1 for all i 2 N n fi�g

zi�1 = 1

Player i� is at the center of the network, i.e., zii� = 1 for all i 2 N n fi�g. Since,

�i�i = ri for all i 6= i�

1 = argmax
k 6=i�

rk

player i� is strictly best responding by choosing zi�1 = 1:

Players j 2 N n fi�; 1g are best responding if

ri� + �r1 + �
X

k 6=1;i�;j

rk
2

> r1 + �ri�

�
X

k 6=1;i�;j

rk
2

> (r1 � ri�) (1� �)

�

1� �
X

k 6=1;i�;j

rk
2

> r1 � ri�

ri� > r1 �
�

1� �
X

k 6=1;i�;j

rk
2

Since this holds for all players j 2 N n fi�; 1g ; we should have

ri� > r1 �
�

1� �
X

k 6=1;i�;h

rk
2
where h = arg max

k 6=1;i�
rk
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Finally, when ri� < r2; player 1 is best responding if

ri� +
�

2
r2 + �

X
k 6=1;2;i�

rk
2

> r2 +
�

2
ri�

�
X

k 6=1;2;i�

rk
2

> (r2 � ri�)
�
1� �

2

�
�

1� �
2

X
k 6=1;2;i�

rk
2

> r2 � ri�

ri� > r2 �
�

1� �
2

X
k 6=1;2;i�

rk
2

Under this equilibrium strategies, the surplus for each player is given by

S1 = r1 + �ri� + �
2
X
k 6=1;i�

rk
2

Si� = ri� + �r1 + �
X
k 6=1;i�

rk
2

Sn = rn +
�

2
ri� + �

2
X
k 6=i�;n

rk
2
for all N n f1; i�g

Therefore, we have

Si� � ri� > S1 � r1

and

S1 > S2 > Si��1 > Si�+1::: > SN

Even though we know that star networks are the only strict Nash equilibria of the

simultaneous move game under additively separable link strength function, there may be

Nash equilibrium with di¤erent network architecture when rk�1 > rk for all k 2 N n f1g :

Consider the following example with four players.
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Example 16 Assume that r1 = 100; r2 = 99; r3 = 5; r4 = 4 and � = 2
3 : As the intrinsic

values of players 1 and 2 are very high compared to the other two, under any Nash equilib-

rium, 1 and 2 would invest all their time to each other. Then, there will be three di¤erent

Nash equilibrium, in one of which players 3 and 4 allocate their time both on player 1 and

2. The following �gure shows the investment levels at the Nash equilibrium. As opposed to

the �rst two architecture, the network structure in the third Nash equilibrium is not a star.

Figure 2: Example of di¤erent Nash equilibrium structures

Proposition 17 Nash equilibrium under additively separable link strength function may

not be surplus maximizing outcome.

Proof. We prove the result by using three player game. Full characterization of Nash

equilibrium and surplus maximizing outcome is provided in the next chapter.

Assume that there are only three players and they are ordered in terms of their informa-

tion so that r1 > r2 > r3 > 0: Under these conditions, there is only one Nash equilibrium

where z12 = 1; z21 = 1; z31 = 1. We will show that a higher level of total surplus could

be achieved under some conditions by changing the equilibrium strategy for either player 1

or player 3. The following shows the partial derivative of total surplus with respect to z12
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evaluated at z12 = 1; z21 = 1; z31 = 1:

�
@S

@z12

�
z12=1;z21=1;z31=1

= �1
4
�(r3(2 + �)� r2(2� �))

If the di¤erence between the intrinsic values of player 2 and 3 is low enough, that is, when

r2
r3
<
2 + �

2� �

the partial derivative of the total surplus with respect to z12 would be negative at Nash

Equilibrium. Then, a higher total social surplus could be achieved by decreasing z12 by

a small amount so that player 1 allocate his time between player 2 and 3. The players�

individual surpluses shows that the increase in the total surplus is a result of the increase

in player 3�s surplus being higher than the total decrease in player 1 and 2�s surpluses.

�
@S1
@z12

�
z12=1;z21=1;z31=1

=
1

2
� (r2 � r3)

�
@S2
@z12

�
z12=1;z21=1;z31=1

=
1

4
� (2r1 � �r3)

�
@S3
@z12

�
z12=1;z21=1;z31=1

= �1
4
� (2r1 + �r2)

On the other hand, the following shows the partial derivative of total surplus with respect

to z31 evaluated at z12 = 1; z21 = 1; z31 = 1:

�
@S

@z31

�
z12=1;z21=1;z31=1

=
1

4
� (r1(2� 3�)� r2(2� �))
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If the di¤erence between the intrinsic values of player 1 and 2 is low enough, that is, when

r1
r2
<
2� �
2� 3�

the partial derivative of the total surplus with respect to z31 would be negative at Nash

Equilibrium. Then, a higher total social surplus could be achieved by decreasing z31 by

a small amount so that player 3 allocate his time between player 1 and 2. The players�

individual surpluses shows that the increase in the total surplus is a result of the increase

in player 2�s surplus being higher than the total decrease in player 1 and 3�s surpluses.

�
@S1
@z31

�
z12=1;z21=1;z31=1

=
1

4
� (2(1� �)r3 � �r2)

�
@S2
@z31

�
z12=1;z21=1;z31=1

= �1
4
� (2(1� �)r3 + �r1)

�
@S3
@z31

�
z12=1;z21=1;z31=1

=
1

2
� (r1 � r2) (1� �)

2.5 Cobb-Douglas Link Strength

In the general model, we assume that the general link strength function between players i

and j

�(zij ; zji) = �ij

is continuous and concave in zij and zji. In this section, we assume the link strength function

between players i and j is

�ij = zijzji



42

As �ij is continuous and linear in zij and zji; then player j�s payo¤ is also continuous in

all actions and concave in his own action si: Therefore, we know that there exists a pure

strategy Nash equilibrium for the game as the conditions in Theorem 2 holds. Moreover,

notice that this link strength function allows players to form links only when there is bilateral

agreement between the players as opposed to the additively separable link strength function,

in which player could form links unilaterally. The intuition behind this is the players have

exclusive information and it can be shared only if they invest time to each other.

Unfortunately, the analysis of Nash equilibria with n-players under Cobb-Douglas link

strength function becomes intractable with the inclusion of the indirect bene�ts into the

model. Thus, we will focus only on a re�nement to Nash equilibrium. We consider a

sequential game with perfect information in which the players announce their strategies

according to a random ordering. We show that there is a unique subgame perfect equilibrium

of the sequential game which is also Nash equilibrium of the simultaneous move game.

Let N = f1; 2; 3:::; ng be the set of players. A strategy for player j�s will be denoted zj .

It consists of his investment levels in the other players:

zj = fzjkgk 6=j

and must satisfy

0 � zjk � 1

for all k 6= j and X
k 6=j

zjk = 1:

Let Zj denote player j�s strategy set. A strategy pro�le consists of a strategy for each
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player. A strategy pro�le will be written

z = (z1; z2; :::; zn) 2 Z � Z1 � Z2 � :::� Zn

Let Sj(z) denote player j�s payo¤ from strategy pro�le z. The strength of the link between

i and j is

�(zij ; zji) = zijzji

Player j�s information is worth rj . Thus, if the direct link between player i and player j has

strength �ij = �(zij ; zji), then obtaining player j�s information via this direct link is worth

��(zij ; zji)rj to player i where 0 < � < 1. Moreover, if player j is linked to player k; then

player k�s information can be indirectly transmitted from k to i via j. Obtaining player k�s

information via this indirect link is worth ��(zij ; zji)��(zjk; zkj)rk to player i.

If we assume information can be transmitted by a chain of no more than two links, then the

total amount of information that player j receives from player i, directly and indirectly, is

Sij(z) =

0@�zijzji + �2 X
k 6=i;j

zikzkizjkzkj

1A ri
We have assumed that player j can obtain less information exclusive to player i than player

i while introducing the general model: Speci�cally, the following inequality holds as long as

0 < � < 1:

��ij + �
2
X
k 6=i;j

�ik�kj < 1
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Now, we will show that if �ij = �zijzji and 0 < � < 1

��ij + �
2
X
k 6=i;j

�ik�kj < 1

�zijzji + �
2
X
k 6=i;j

zikzkizjkzkj < 1

As 0 � zjk � 1 for all k 6= j;we have

�zijzji + �
2
X
k 6=i;j

zikzkizjkzkj 6 �zijzji + �
2
X
k 6=i;j

zikzjk

6 �zijzji + �
2
X
k 6=i;j

(1� zij) zjk

= �zijzji + �
2 (1� zij)

X
k 6=i;j

zjk

= �zijzji + �
2 (1� zij) (1� zji)

< �zijzji + � (1� zij) (1� zji)

6 �zji + � (1� zji)

Therefore, if 0 < � < 1; we have

��ij + �
2
X
k 6=i;j

�ik�kj 6 � < 1

Player j�s payo¤ Sj(z) will be his own information plus the total amount of information

he receives from others:

Sj(z) = rj +
X
i6=j

Sij(z)

= rj +
X
i6=j

0@�zijzji + �2 X
k 6=i;j

zikzkizjkzkj

1A ri
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Let z�j = (z1; z2; :::; zj�1; zj+1; :::; zn) denote the strategies of all the players except j:

Let (z�j ; z0j) denote the strategy pro�le when all players except j choose according to z but

player j chooses z0j . Let 
(z) denote the set of players that some other player invests in

under strategy pro�le z. That is


(z) = fj : zij > 0 for some ig :

Since a player cannot invest in himself 
(z) must contain at least two players.

Fix the strategies z�j of all players except player j: Let zaj denote the strategy such that

zja = 1, i.e., player j invests only in player a. His payo¤ from this strategy is

Sj(z�j ; z
a
j ) = rj + �zjara + �

2zja
X
k 6=;j;a

zakzkark

Proposition 18 Assume rk�1 > rk for all k 2 N nf1g : There exists a Nash equilibrium of

the simultaneous move game under the following strategies. For every player i, there exists

a player j such that

zij = zji = 1 if n is even

and if n is odd, there will be a player l 6= 1 that is ostracized. If n is odd then let

zlm = 1 where zm1 = z1m = 1

Proof. Suppose, we have even number of players. Assume that for every player i, there

exists a player j such that

zij = zji = 1 if n is even
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holds except player h, where h is paired with p: Thus, the surplus for player h is

Sh(z�h; zh) = rh + �zjprp

Notice that this surplus is maximized when zjp = 1 and zji = 0 where i 2 N n fj; pg as

Sj = rj + �rp > Sj(z�j ; z
0
j) = rj + �zjprp for all z

0
j 2 Zj

and 0 6 zjp 6 1:This holds for any j 2 N:

Now, suppose we have odd number of players. Then, there will be a player l 6= 1 that is

ostracized. Assume that

zlm = 1 where zm1 = z1m = 1

Since each player is matched with another player according to the strategy pro�le above,

none of the players spend time with player l. The players whose pair has information less

than rl would want to be paired with the player l. However, since player l�s strategy is

zlm = 1; none of these players have an incentive to deviate. Thus, there is no incentive to

deviate for players i 2 N n fl;mg : Moreover, player m has no incentive to deviate as he

is paired with player 1: Let�s check if player l has an incentive to deviate. As none of the

players spend time with player l, the payo¤ for player l is

Sl = rl

Since Sl doesn�t depend on zl; there is no incentive to deviate for player l:Therefore, we

have an equilibrium.
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Corollary 19 Assume rk�1 > rk for all k 2 N n f1g : There exists a Nash equilibrium of

the simultaneous move game where

zi(i+1) = z(i+1)i = 1 for all i 2 N n fng where i : odd:

zn : free if n : odd

Therefore, at the equilibrium, we have

S1 > S2 > ::: > Sn

This equilibrium will be referred to as "Assortative Pair Equilibrium (APE)".

Proof. Suppose, we have even number of players. Assume that

zi(i+1) = z(i+1)i = 1 for all i 2 N where i : odd:

holds except player j: Assume that j : odd: Thus, the surplus for player j is

Sj(z�j ; zj) = rj + �zj(j+1)rj+1

Notice that this surplus is maximized when zj(j+1) = 1 and zji = 0 where i 2 N n fj; j + 1g

as

Sj = rj + �rj+1 > Sj(z�j ; z
0
j) = rj + �zj(j+1)rj+1 for all z

0
j 2 Zj

and 0 6 zj(j+1) 6 1:
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Assume that j : even: Thus, the surplus for player j is

Sj(z�j ; zj) = rj + �z(j�1)jrj�1

Notice that this surplus is maximized when zj(j+1) = 1 and zji = 0; i 2 N n fj; j + 1g as

Sj = rj + �rj�1 > Sj(z�j ; z
0
j) = rj + �z(j�1)jrj�1 for all z

0
j 2 Zj

and 0 6 z(j�1)j 6 1:This holds for any j 2 N:

Now, suppose we have odd number of players. Assume that

zi(i+1) = z(i+1)i = 1 for all i 2 N where i : odd:

zn : free

We know from above that there is no incentive to deviate for players i 2 N n fng :Let�s

check if player n has an incentive to deviate. Since each player with odd rank in terms of

payo¤ ordering is matched with the player that are subsequent to themselves according to

the strategy pro�le above, none of the players spend time with player n. This makes the

payo¤ for player n, Sn = rn. Since Sn doesn�t depend on zn; there is no incentive to deviate

for player n:

Thus, at equilibrium, we have

Si = ri + �ri+1 if i : odd

Si = ri + �ri�1 if i : even

Sn = rn if n : odd



49

If i : odd, then

Si = ri + �ri+1 > Si+1 = ri+1 + �ri

as 0 < � < 1: If i : even, then

Si = ri + �ri�1 > Si+1 = ri+1 + �ri+1

as rk�1 > rk for all k 2 N n f1g :Thus, we have

S1 > S2 > ::: > Sn

Notice that when there are even number of players, under APE, each player with odd

ranking will be matched with the player that comes after him according to the information

ranking. That is, players will be matched in pairs according to their information levels,

and they will form links to people who have similar level of information as themselves. On

the other hand, if there are odd number of players, the player n who has the least valuable

information will not be linked to anyone. Thus, player n will be ostracized and his choice

variable zn will be free.

Consider a sequential game with perfect information. An ordering of the players is chosen

randomly at time zero. Then, at time 1, the �rst player according to the ordering chosen

at time zero chooses his links publicly. Then, at time 2, after observing the �rst player�s

choices, the second player according to the random ordering chooses his links publicly.

Similarly, at time n, after observing the choices of the previous players, player n according

to the random ordering chooses his links. After each player choose their links, at time n+1,
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the players exchange information according to their strategies.

De�nition 20 A Nash equilibrium outcome (of the simultaneous move game) is "robust"

if there exists SOME ordering of the players, such that the subgame perfect equilibrium of

the sequential move game with that ordering, generates that same outcome.

De�nition 21 A Nash equilibrium outcome (of the simultaneous move game) is "strongly

robust" if for ALL possible orderings of the players, the subgame perfect equilibrium of the

sequential move game with that ordering, generates that same outcome.

Proposition 22 Assuming rk�1 > rk for all k 2 N n f1g ; Assortative Pair Equilibrium of

the simultaneous move game where

zi(i+1) = z(i+1)i = 1 for all i 2 N n fng where i : odd:

zn : free if n : odd

is strongly robust, i.e., it is the only subgame perfect equilibrium of the sequential game for

all possible orderings. Therefore, Assortative Pair Equilibrium is the unique equilibrium of

the sequential game that is strongly robust.

Proof. Proof will be done in steps.

(Step One) Assume that player j is not ostracized. If zij = 0, then zji = 0 at equilib-

rium for the simultaneous and sequential move games.

Proof. Assume zij = 0. Since player j is not ostracized, there exists a player h such that

zhj 6= 0: Moreover, since
P
k 6=j zjk = 1, we can write zjh = 1 � zji �

P
k 6=j;i;h zjk. We can
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substitute this into Sj . If we take the derivative of Sj with respect to zji, we get

@Sj
@zji

= ��zhjrh � �2zhj
X
k 6=j;h

zhkzkhrk < 0

Thus, zji = 0:

(Step Two) If player 2 moves before player 1 and sets z21 = 1, then player 1 will set

z12 = 1 at equilibrium for the sequential move game.

Proof. Suppose player 2 moves before player 1 in sequential game and sets z21 = 1: We

can substitute z13 = 1� z12 �
P
k 6=1;2;3 z1k in player 1�s payo¤ function and take derivative

with respect to z12

@S1
@z12

= �r2 � �z31r3 � �2z31
X

k 6=1;2;3
z3kzk3rk

Since 0 6 zk3 6 1 and rk < r3 for k > 3, we have zk3rk < r3: Thus,

@S1
@z12

= �r2 � �z31r3 � �2z31
X

k 6=1;2;3
z3kzk3rk > �r2 � �z31r3 � �2z31r3

X
k 6=1;2;3

z3k

Notice that
P
k 6=1;2;3 z3k = 1� z31� z32: From Step 1, we also know that z32 = 0 as z23 = 0

if player 3 is not ostracized. So,
P
k 6=1;2;3 z3k = 1� z31 and we get

@S1
@z12

> �r2 � �z31r3 � �2(1� z31)z31r3

> �r2 � �z31r3 � �2 (1� z31) r3

> �r2 � �z31r3 � � (1� z31) r3

> �r2 � �r3 > 0
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Therefore, player 1 chooses z12 = 1:

If player 3 is ostracized, then zk3 = 0 for all k 6= 1; 2; 3: Then,

@S1
@z12

= �r2 � �z31r3 � �2z31
X

k 6=1;2;3
z3kzk3rk = �r2 � �z31r3 > 0

Therefore, player 1 chooses z12 = 1:

(Step Three) If player 2 moves before player 1, then he sets z21 = 1:

Proof. Fix the strategies z�2 of all players except player 2. Let za2 denote the strategy

such that z2a = 1, i.e., player 2 invests only in player a, where a 6= 1. His payo¤ from this

strategy is

S2(z�2; z
a
2) = r2 + �za2ra + �

2za2
X
k 6=2;a

zakzkark

Moreover, he knows from the previous step that if he sets z21 = 1, then player 1 sets z12 = 1:

His payo¤ from this strategy is

S2(z�2; z
1
2) = r2 + �r1

Notice that since ra < r1; we have

S2(z�2; z
a
2) = r2 + �za2ra + �

2za2
X
k 6=2;a

zakzkark < r2 + �za2ra + �
2za2r1

X
k 6=2;a

zak

= r2 + �za2ra + �
2 (1� za2) za2r1 < r2 + �r1 = S2(z�2; z12)

Therefore, player 2 cannot get higher payo¤ by linking to someone rather than player 1.

This also implies that player 2 wouldn�t use mixed strategies such as 0 < z2i < 1 for some
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i 2 N n f1g : To see this, suppose player 2 invests in a 2 
(z); i.e., z2a > 0: Then, by the

Nash property, we must have

S2(z�2; z
a
2)� S2(z�2; zb2) � 0

for all b 2 N: However, we know that

S2(z�2; z
a
2) < S2(z�2; z

1
2)

for a 2 N n f1g : Thus, if player 2 moves before player 1, he sets z21 = 1.

(Step Four) If player 1 moves before player 2 and sets z12 = 1, then player 2 will set

z21 = 1 at equilibrium for the sequential move game.

Proof. Suppose player 1 moves before player 2 in sequential game and sets z12 = 1: We

can substitute z23 = 1� z21 �
P
k 6=1;2;3 z2k in player 2�s payo¤ function and take derivative

with respect to z21

@S2
@z21

= �r1 � �z32r3 � �2z32
X

k 6=1;2;3
z3kzk3rk

Since 0 6 zk3 6 1 and rk < r3 for k > 3, we have zk3rk < r3: Thus,

@S2
@z21

= �r1 � �z32r3 � �2z32
X

k 6=1;2;3
z3kzk3rk > �r2 � �z32r3 � �2z32r3

X
k 6=1;2;3

z3k

Notice that
P
k 6=1;2;3 z3k = 1 � z31 � z32: From Step One, we also know that z31 = 0 as
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z13 = 0. So,
P
k 6=1;2;3 z3k = 1� z31 and we get

@S2
@z21

> �r1 � �z32r3 � �2(1� z32)z32r3

> �r1 � �z32r3 � �2 (1� z32) r3

> �r1 � �z32r3 � � (1� z32) r3

> �r1 � �r3 > 0

Therefore, player 2 chooses z21 = 1:

(Step Five) If player 1 moves before player 2, then he sets z12 = 1.

Proof. Fix the strategies z�1 of all players except player 1. Let za1 denote the strategy

such that z1a = 1, i.e., player 1 invests only in player a, where a 6= 2. His payo¤ from this

strategy is

S1(z�1; z
a
1) = r1 + �za1ra + �

2za1
X
k 6=1;a

zakzkark

Moreover, player 1 knows from the previous step that if he sets z12 = 1, then player 2 sets

z21 = 1: His payo¤ from this strategy is

S1(z�1; z
2
1) = r1 + �r2

Notice that since ra < r2; we have

S1(z�1; z
a
1) = r1 + �za1ra + �

2za1
X
k 6=1;a

zakzkark < r1 + �za1ra + �
2za1r2

X
k 6=2;a

zak

= r1 + �za1ra + �
2 (1� za1) za1r2 < r1 + �r2 = S1(z�1; z21)
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Therefore, player 1 cannot get higher payo¤ by linking to someone rather than player 2.

This also implies that player 1 wouldn�t use mixed strategies such as 0 < z1i < 1 for some

i 2 N n f1g : To see this, suppose player 2 invests in a 2 
(z); i.e., z1a > 0: Then, by the

Nash property, we must have

S1(z�1; z
a
1)� S1(z�1; zb1) � 0

for all b 2 N: However, we know that

S1(z�1; z
a
1) < S1(z�1; z

2
1)

for a 2 N n f1g : Thus, if player 1 moves before player 2, he sets z12 = 1.

(Step Six) By induction, regardless of the ordering in which players move, we will have

zi(i+1) = z(i+1)i = 1 for all i 2 N where i : odd

zn : free if n : odd

at the equilibrium of the sequential move game.

Proof. From the previous steps, we know that regardless of the ordering in which players

move in the sequential move game, we will have z12 = z21 = 1: This is due to the fact that

these players are the ones with the highest information and cannot get higher payo¤s by

linking to other players. Since z12 = z21 = 1 at the equilibrium for the sequential move
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game, all players will have zi1 = zi2 = 0 for all i 2 N n f1; 2g : Then, the sequential move

game can be reduced to the game where we only have players f3; 4; :::; ng with the same

random ordering chosen in time zero not including players 1 and 2. In this case, player

3 and 4 will become the players with the highest level of information. Thus, from Step 1

through Step 5 we know that z34 = z43 = 1 at equilibrium, regardless of the ordering in

which players move in the sequential move game. Then, the sequential move game can be

reduced to the game where we only have players f5; 6; :::; ng with the same random ordering

chosen in time zero not including players 1, 2, 3, 4.

Continuing in the same manner, by induction, we can conclude that at the equilibrium of

the sequential move game, regardless of the ordering in which players move, we have

zi(i+1) = z(i+1)i = 1 for all i 2 N where i : odd

Moreover, if n is odd, then all the players except player n is matched with another player.

Thus, his payo¤ is Sn = rn, making his payo¤ independent of his choice variable zn: There-

fore, we have zn : free if n is odd at the subgame perfect equilibrium.

Proposition 23 Nash equilibrium under Cobb-Douglas link strength function may not be

surplus maximizing outcome.

Proof. Assume that there are only three players and they are ordered in terms of their

information so that r1 > r2 > r3 > 0: From Proposition 22, only the Assortatively Pair

Equilibrium is strongly robust. Under this equilibrium, player 1 and 2 spend all their time

with each other. Therefore, player 3 is obstrasized. Assume that player 3 sets z31 = 1: We

will show that a higher level of total surplus could be achieved under some conditions by

changing player 1�s equilibrium strategy. The following shows the partial derivative of total
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surplus with respect to z12 evaluated at z12 = 1; z21 = 1; z31 = 1:

�
@S

@z12

�
z12=1;z21=1;z31=1

= �� (r3 � r2 + �r2 + �r3)

If the di¤erence between the intrinsic values of player 2 and 3 is low enough, that is, when

r2
r3
<
1 + �

1� �

the partial derivative of the total surplus with respect to z12 would be negative at the

Assortative Pair Equilibrium with z12 = z21 = z31 = 1: Then, a higher total social surplus

could be achieved by decreasing z12 by a small amount so that player 1 has a link with

both player 1 and 2. The players�individual surpluses shows that the increase in the total

surplus is a result of the increase in player 3�s surplus being higher than the total decrease

in player 1 and 2�s surpluses.

�
@S1
@z12

�
z12=1;z21=1;z31=1

= � (r2 � r3)

�
@S2
@z12

�
z12=1;z21=1;z31=1

= � (r1 � �r3)

�
@S3
@z12

�
z12=1;z21=1;z31=1

= �� (r1 + �r2)

2.6 Conclusion

In this chapter, we analyze the formation of networks when players choose how much time to

invest in other players. This is one of the few papers on weighted link formation that includes
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all possible paths in the network in calculation of indirect bene�ts. We assume that each

player has an intrinsic value of information to share and one unit of endowment to invest

in relationships with others. Once a direct link is formed, the information is transferred

both ways with decay. Moreover, indirect links can transmit indirect information. However,

the bene�ts from indirect information transfers are zero when two agents are connected by

more than two links.

We study the model under two di¤erent link strength functions. First, we assume that

the link strength is the arithmetic mean of agents� investment levels, i.e., the agents are

perfect substitutes. As a positive investment of an agent is enough for a link to be formed,

this speci�cation allows players to form links unilaterally with others. We show that, when

the investments are perfect substitutes, every player is connected to another either directly

or indirectly with no more than two links under any Nash equilibrium. Moreover, we �nd

that the strict Nash equilibrium structure is a star network in which all players are connected

to the one with the highest total value of information.

Alternatively, we assume that the link strength function is Cobb-Douglas. Since a link

between a pair of players is formed only when each of them invests in the relationship, players

have to have bilateral agreement to form links with each other. Under the Cobb-Douglas

link strength function, we show that paired networks, in which players are matched in pairs,

are Nash equilibria. However, we also consider a sequential game in which players choose

and announce their strategies publicly according to a random ordering. We show that an

Assortative Pair Equilibrium, in which players are assortatively matched in pairs according

to their information levels, is the only subgame perfect equilibrium of the sequential game

for all possible orderings of the players. Therefore, we conclude that the Assortative Pair

Equilibrium is the only strongly robust Nash equilibrium. Lastly, for both link strength
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functions, Nash equilibria may not be a surplus-maximizing outcome.

Equilibrium network structures vary with the link strength function. The main distinc-

tion between the di¤erent speci�cations of the function is the availability of the information

and the element of consent to exchange information. Even though many applications have

elements of both, additively separable link strength function is more appropriate for the sit-

uations when intrinsic information of an agent is available publicly; whereas, Cobb-Douglas

is applicable to the situations in which both agents are required to invest in a relationship

in order to exchange information. Our results are consistent with the real life applications.

Particularly, pioneer agents emerge in the applications that one-sided investment is su¢ -

cient for forming a link. These situations are reminiscent to additively separable case, in

which strict Nash equilibrium is a star network. Moreover, collaboration network discussed

in Blau (1963) requires two-sided investments. Blau (1963) reports that the agents establish

partnerships of mutual consultation and less competent agents tend to pair of as partners.

This network architecture is akin to the Assortative Pair Equilibrium of Cobb-Douglas case.

Future work can proceed in a number of interesting directions. In this work, we assume

that agents di¤er only in their intrinsic value of information. However, the agents can

exhibit asymmetries in terms of endowment levels, that is, some agents may have more

time to invest in relationships with others. It would be interesting to examine the e¤ect

of this additional availability on the decisions of agents. Another line of asymmetry is

the coe¢ cient for decay. In the real world, people are heterogeneous in term of their

communication skills. Thus, the e¤ectiveness of the communication may di¤er accordingly.

This situation could be examined by allowing for di¤erent levels of decay.

Another line for future research is to weaken the assumption of the bene�ts from indi-

rect information transfers are zero when two agents are connected by more than two links.
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Weakening this assumption increases the bene�ts from indirect communication. Therefore,

especially in the additively separable case, we may observe di¤erent equilibrium architec-

tures. However, we should note that weakening this assumption may result in computational

di¢ culties.
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3 Nash-Stable and Strongly E¢ cient Networks in Three-

Player Weighted Link Formation Game: Full Character-

ization

3.1 Introduction

In the second chapter, we analyze the formation of networks when players choose how much

time to invest in other players. This is one of the few papers on weighted link formation that

includes all possible paths in the network in calculation of indirect bene�ts. Unfortunately,

a complete characterization of Nash equilibria and strongly e¢ cient outcomes, the network

structures that maximize the total utility of the agents, is di¢ cult in network formation

problems, as the analysis becomes intractable once the indirect bene�ts are taken into

account. In this chapter, we consider the model introduced in the second chapter and fully

characterize the Nash equilibria and surplus-maximizing outcomes for a three-player game,

in order to investigate how equilibrium structures are di¤erent from the e¢ cient outcomes

and how these structures di¤er under di¤erent link strength functions.

As discussed in the second chapter, there exists a general tension between stability and

e¢ ciency3. In their seminal paper, Jackson and Wolinsky (1996) analyze the connections

and co-author model. In the connections model, individuals bene�t from indirect connec-

tions. Therefore, players would prefer to have their neighbors have more connections rather

than fewer. For the connections model, Jackson and Wolinsky (1996) show that for a wide

variety of parameters, surplus-maximizing networks are not stable. They also conclude that

the tension between stability and e¢ ciency arises because the players do not account for

the indirect bene�ts that their connections bring to their neighbors. That is, when forming

3We will provide a brief discussion of the tension between e¢ ciency and stability here. For more detailed
discussion of the papers, please refer to the second chapter.
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a link, a player only pays attention to his own payo¤ and does not consider whether the

link would increase the payo¤ of others.

Additionally, in the co-author model, indirect connections result in negative externalities

as they create distractions. Therefore, individuals prefer to connect with players with less

connections. By analyzing the co-author model, Jackson and Wolinsky (1996) show that

stable networks are over-connected. The ine¢ ciency of the stable networks are caused by

the fact that a player only pays attention to his own bene�t when forming a link and does

not consider the harm of this additional link to his partners. In short, in both models,

Jackson and Wolinsky (1996) show that private and social incentives are not aligned and

self-centered incentives may lead to ine¢ cient networks.

On the other hand, Bala and Goyal (2000) weaken the assumption of Jackson and

Wolinsky (1996) that a formation of a link between two agents require mutual consent of

the agents. They allow agents to form links with others unilaterally by incurring the cost

of the link and analyze the model under both one-way and two-way �ow of bene�ts. In

the model with one-way �ow, only the player who forms the link bene�ts from it, while

in two-way �ow, once the link is formed, both players enjoy the bene�ts. Bala and Goyal

(2000) �nd that the e¢ cient and stable networks coincide only when the cost of forming

a link is very high or very low in the model with two-way �ow. On the contrary, in the

one-way �ow model, they show that for large set of parameters, the unique e¢ cient network

is the wheel network, in which a single directed cycle is formed with each player investing

in exactly one link, which is also a strict Nash equilibrium structure.

One of the papers that is closely related to our paper is Bloch and Dutta (2009), which

drops the assumption of binary link strengths. They analyze a weighted link formation

game in which players have �xed endowments to invest into communicating with others.
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However, unlike our model, only the most reliable path, the path that maximizes the product

of link strengths, is used to calculate the indirect bene�ts. They show that under additively

separable link strength function, the stable and e¢ cient network architectures are stars.

Lastly, Rogers (2006) studies a weighted link formation game by separating the �ow of

bene�ts into "taking" and �giving" components. Similar to model, all paths between the

players are taken into account when calculating the indirect bene�ts. He �nds that all stable

and e¢ cient networks are identi�ed as interior with exception of some Nash equilibria in

giving model. By separating the �ow of bene�ts, Rogers identi�es the source of ine¢ ciency

as the giving incentives. He also concludes that the ine¢ ciency is present only when there

exists heterogeneity among agents in terms of their budget constraints.

Our results show that for additively separable link strength function, the unique Nash

equilibrium is a star network in which all players invest all their time in one player with the

highest value of information except themselves. However, depending on the information lev-

els of the players and the e¢ ciency of the communication, the surplus-maximizing outcome

structure can be a triangle, in which all agents are connected with each other, or a star,

in which player 2 and player 3 do not invest time with each other. Therefore, unlike the

results of Bloch and Dutta (2009), Nash equilibrium coincides with the surplus-maximizing

outcome only when the di¤erences between the agents �information levels are relatively high

and/or the e¢ ciency of the communication is relatively low when all paths are included in

the calculation of the indirect bene�ts.

Alternatively, under Cobb-Douglas link strength function, we show that under Nash

equilibrium player 1 is matched with either player 2 or player 3, and the other player is

ostracized. However, unlike the results of Rogers (2006), the is no interior solution for

surplus-maximizing outcome. Depending on the information levels of players 2 and 3, and
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the e¢ ciency of the communication, the surplus-maximizing outcome structure can be a

star, in which player 2 and player 3 invest all their time with player 1, or a pair, in which

players 1 and 2 are matched and player 3 is ostracized. For the both link strength functions,

the results show that the agents have a tendency to connect to fewer agents with higher

investment levels from an e¢ ciency perspective.

The rest of the chapter proceeds as follows. The next section, Section 2, analyzes the

three player game with additively separable link strength function. Section 3 analyzes the

three player game with Cobb-Douglas link strength function. Finally, Section 4 discusses

the results and concludes.

3.2 Three Player Game with Additively Separable Link Strength Func-

tion

3.2.1 Nash Equilibrium

In this section, we fully characterize the set of Nash equilibrium under additively separable

link strength with three players.

Assume the players are ordered in terms of their information so that r1 > r2 > r3 > 0:

That is, player 1 has the most information and player 3 has the least. Each player has 1

unit of time that he can invest in relationships (links) with the other players. Let zij the

amount of time player i invests in the link to j. Since player i has one unit of time to

allocate, zij + zik = 1. The strength of the link between i and j is

�(zij ; zji) =
1

2
zij +

1

2
zji

Notice �(1; 1) = 1, so that �(zij ; zji) � 1 always holds.
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The strategy set for player i consists of the time allocated to other players and is denoted

zi . The strategy set for each player must satisfy the following properties:

zi = fzikgk 6=i

0 � zik � 1 for all k 6= iX
k 6=i

zik = 1 for each player i

Each player can bene�t not only from his own information, but also from the information

of other players if he is linked to them. The stronger the link is, the greater the share

of information is transmitted. However, when information is transmitted along a link,

it depreciates by some factor 0 < � � 1: Thus, if the direct link between player i and

player j has strength �(zij ; zji), then obtaining player j�s information via this direct link

is worth ��(zij ; zji)rj to player i. Moreover, we assume that links can transmit indirect

information. Then, if player j is linked to player k; then player k�s information can be

indirectly transmitted from k to i via j. Obtaining player k�s information via this indirect

link is worth ��(zij ; zji)��(zjk; zkj)rk to player i. The surplus for player i consists of

the direct and indirect information obtained by communicating with other players and is

denoted as Si: So, the surplus for player i can be calculated to be

Si = ri + �
zik + zki

2
(rk + �

zkj + zjk
2

rj) + �
zij + zji
2

(rj + �
zkj + zjk

2
rk) for i 6= k 6= j
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Since there are only three players,

zik + zij = 1 for all i 6= k 6= j:

zij = 1� zik

Figure 3: Substitution of the link strengths under additively separable link strength function

We can rewrite Si by using the �gure above:

Si = ri + �
zik + zki

2
(rk + �

zkj + zjk
2

rj) + �
zij + zji
2

(rj + �
zkj + zjk

2
rk)

= ri + �
zik + zki

2
(rk + �

(1� zki) + (1� zji)
2

rj) + �
(1� zik) + zji

2
(rj + �

(1� zki) + (1� zji)
2

rk)

= ri + �
zik + zki

2
(rk + �

2� zki � zji
2

rj) + �
1� zik + zji

2
(rj + �

2� zki � zji
2

rk)

So, player �{�s problem is to maximize his own surplus by choosing zik subject to 0 � zik � 1

and zij = 1� zik:

Proposition 24 The Nash equilibrium strategies for non-cooperative game for 0 < � � 1
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are

z12 = 1; z13 = 0

z21 = 1; z23 = 0

z31 = 1; z32 = 0

So, the link strengths between the players are

�12 = 1

�13 =
1

2

�23 = 0

and the surplus for each player is

S1 = r1 + �r2 +
�

2
r3

S2 = r2 + �r1 +
�2

2
r3

S3 = r3 +
�

2
r1 +

�2

2
r2

where S1 > S2 > S3:

Proof. The proof is in the appendix.

3.2.2 Surplus-Maximizing Outcome

In this section, we fully characterize surplus-maximizing link structure, in which the to-

tal utility of the agents is maximized, under additively separable link strength with three
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Figure 4: Nash equilibrium strategies and link structure under additively separable link
strength function

players. We again assume the players are ordered so r1 > r2 > r3 > 0 holds.

The surplus for player i consists of the direct and indirect information obtained by

communicating with other players and is denoted as Si and de�ned as

Si = ri + �
zik + zki

2
(rk + �

zkj + zjk
2

rj) + �
zij + zji
2

(rj + �
zkj + zjk

2
rk) for i 6= k 6= j:

The total surplus is calculated by

S = S1 + S2 + S3

Hence, the social planner�s problem is to maximize the social surplus by choosing the link
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strengths z1; z2; z3 subject to

zi = fzikgk 6=i

0 � zik � 1 for all k 6= iX
k 6=i

zik = 1 for each player i

From the point of view of social surplus, it is only the link strengths �ij that matter,

not the zij : However, the zij matter for the overall resource constraint: because zij+zik = 1

we obtain the following constraint on the link strengths:

�12 + �23 + �13 =
3

2

We claim, the planner can maximize surplus in two steps. First, choose the link strengths

�12; �23; �13 to maximize surplus subject to 0 � �ij � 1 and �12 + �23 + �13 = 3
2 : Second,

allocate the individual links zij so everything adds up correctly.

Lemma 25 Suppose we have �ij such that 0 � �ij � 1 and �12 + �23 + �13 = 3
2 : Then we

can always �nd zij such that 0 � zij � 1 and zij + zik = 1 and which satisfy

�12 =
1

2
z12 +

1

2
z21 (6)

�23 =
1

2
z23 +

1

2
z32 (7)

�13 =
1

2
z13 +

1

2
z31 (8)

Proof. The proof is in the appendix.

From now on, then, for the sake of social surplus, we can forget the zij . The total
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surplus can be calculated to be

S = r1 (1 + �(�12 + �13) (1 + ��23)) + r2 (1 + �(�12 + �23) (1 + ��13))

+r3 (1 + �(�13 + �23) (1 + ��12))

The social planner�s problem is to maximize the social surplus by choosing the link

strengths �12; �23; �13 subject to 0 � �ij � 1 and �12 + �23 + �13 =
3

2
. Notice that since

�23 =
3

2
� (�12 + �13); we can rewrite the total surplus as

S = r1

�
1 + �(�12 + �13)

�
1 + �(

3

2
� �12 � �13)

��
+ r2

�
1 + �(

3

2
� �13) (1 + ��13)

�
+r3

�
1 + �(

3

2
� �12) (1 + ��12)

�

Proposition 26 The social planner�s problem has a unique solution.

Proof. The proof is in the appendix.

Note that since the objective function is strictly concave and the constraints are linear,

any local maximum of the social surplus will be a global maximum. Therefore, while solving

for the social planner�s problem, it is su¢ cient to look at necessary conditions. In other

words, Kuhn-Tucker conditions are su¢ cient for �nding global maxima.

Proposition 27 For any socially optimal solution, �12 > �13 > �23 holds:

Proof. The proof is in the appendix.

Proposition 28 The solution to the social planner�s problem is given in the following �g-

ure.

Proof. The proof is in the appendix.



71

Figure 5: Surplus-maximizing link structure under additively separable link strength func-
tion

Proposition 29 For any interior socially optimum outcome, and any ri > 0; rj > 0; rk > 0

and 0 < � � 1, the strength of the link �ij is increasing in ri and rj and decreasing in rk.

Proof. The proof is in the appendix.

3.3 Three Player Game with Cobb-Douglas Link Strength Function

3.3.1 Nash Equilibrium

In this section, we fully characterize the set of Nash equilibrium under Cobb-Douglas link

strength with three players.

Assume the players are ordered in terms of their information so that r1 > r2 > r3 > 0:
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That is, player 1 has the most information and player 3 has the least. Each player has 1

unit of time that he can invest in relationships (links) with the other players. Let zij the

amount of time player i invests in the link to j. Since player i has one unit of time to

allocate, zij + zik = 1. The strength of the link between i and j is

�(zij ; zji) = zijzji

Notice �(1; 1) = 1, so that �(zij ; zji) � 1 always holds. Moreover, �(zij ; 0) = 0 without loss

of generality. Therefore, there should be bilateral agreement between the players in order

to be linked with each other.

The strategy set for player i consists of the time allocated to other players and is denoted

zi . The strategy set for each player must satisfy the following properties:

zi = fzikgk 6=i

0 � zik � 1 for all k 6= iX
k 6=i

zik = 1 for each player i

Each player can bene�t not only from his own information, but also from the information

of other players if he is linked to them. The stronger the link is, the greater the share

of information is transmitted. However, when information is transmitted along a link,

it depreciates by some factor 0 < � � 1: Thus, if the direct link between player i and

player j has strength �(zij ; zji), then obtaining player j�s information via this direct link

is worth ��(zij ; zji)rj to player i. Moreover, we assume that links can transmit indirect

information. Then, if player j is linked to player k; then player k�s information can be

indirectly transmitted from k to i via j. Obtaining player k�s information via this indirect
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link is worth ��(zij ; zji)��(zjk; zkj)rk to player i. The surplus for player i consists of

the direct and indirect information obtained by communicating with other players and is

denoted as Si: So, the surplus for player i can be calculated to be

Si = ri + �zikzki(rk + �zkjzjkrj) + �zijzji(rj + �zkjzjkrk) for i 6= k 6= j:

Since there are only three players,

zik + zij = 1 for all i 6= k 6= j:

zij = 1� zik

Figure 6: Substitution of the link strengths under Cobb-Douglas link strength function

So we can rewrite Si by using the �gure above:

Si = ri + �zikzki(rk + �zkjzjkrj) + �zijzji(rj + �zkjzjkrk)

= ri + �zikzki(rk + �(1� zki)(1� zji)rj) + �(1� zik)zji(rj + �(1� zki)(1� zji)rk)
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So, player �{�s problem is to maximize his own surplus by choosing zik subject to 0 �

zik � 1 and zij = 1� zik:

Proposition 30 There are two sets of Nash equilibrium strategies for non-cooperative game

for 0 < � < 1. The �rst set of strategies is given by

z12 = 1; z13 = 0

z21 = 1; z23 = 0

z31 = free; z32 = 1� z31

So, the link strengths between the players are

�12 = 1

�13 = 0

�23 = 0

and the surplus for each player is

S1 = r1 + �r2

S2 = r2 + �r1

S3 = r3
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where S1 > S2 > S3:The second one is

z12 = 0; z13 = 1

z21 = 0; z23 = 1

z31 = 1; z32 = 0

So, the link strengths between the players are

�12 = 0

�13 = 1

�23 = 0

and the surplus for each player is

S1 = r1 + �r3

S2 = r2

S3 = r3 + �r1

where S1 > S3 > S2. Moreover, the social surplus in the �rst set of Nash equilibria is

greater than the second one.

Proof. The proof is in the appendix.

Notice that the social surplus in the second set of Nash equilibria is lower than the �rst

one. However, we know from the previous chapter that only the �rst set of Nash equilibria

is strongly robust.
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Figure 7: Nash equilibria under Cobb-Douglas link strength

3.3.2 Surplus-Maximizing Outcome

In this section, we fully characterize surplus-maximizing link structure, in which the total

utility of the agents is maximized, under Cobb-Douglas link strength with three players.

We again assume the players are ordered so r1 > r2 > r3 > 0 holds.

The surplus for player i consists of the direct and indirect information obtained by

communicating with other players and is denoted as Si and de�ned as

Si = ri + �zikzki(rk + �zkjzjkrj) + �zijzji(rj + �zkjzjkrk) for i 6= k 6= j:

The total surplus is calculated by

S = S1 + S2 + S3
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Hence, the social planner�s problem is to maximize the social surplus

S = r1(1 + �(z12z21 + (1� z12)z31)(1 + �(1� z21)(1� z31)))

+ r2(1 + �(z12z21 + (1� z21)(1� z31))(1 + �(1� z12)z31))

+ r3(1 + �((1� z12)z31 + (1� z21)(1� z31))(1 + �z12z21))

by choosing the link strengths z1; z2; z3 subject to

zi = fzikgk 6=i

0 � zik � 1 for all k 6= iX
k 6=i

zik = 1 for each player i

Proposition 31 The social planner�s problem has a solution.

Proof. The proof is in the appendix.

Let us write the Lagrangian function as follows.

L = r1(1 + �(z12z21 + (1� z12)z31)(1 + �(1� z21)(1� z31)))

+ r2(1 + �(z12z21 + (1� z21)(1� z31))(1 + �(1� z12)z31))

+ r3(1 + �((1� z12)z31 + (1� z21)(1� z31))(1 + �z12z21))

+ �1(1� z12) + �2(1� z21) + �3(1� z31)

The solutions of the following system of equations will be the critical points of the La-
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grangian function, L:

@L
@z12

= r1�(z21 � z31)(1 + �(1� z21)(1� z31))

+ r2�(z21(1 + �(1� z12)z31)� �z31(z12z21 + (1� z21)(1� z31))

+ r3�(�z31(1 + �z12z21) + �z21((1� z12)z31 + (1� z21)(1� z31))� �1

@L
@z12

� 0

@L
@z12

z12 = 0

@L
@z21

= r1�(z12(1 + �(1� z21)(1� z31))� �(1� z31)(z12z21 � (1� z12)z31)

+ r2�(z12 � (1� z31))(1 + �(1� z12)z31)

+ r3�(�(1� z31)(1 + �z12z21) + �z12((1� z12)z31 + (1� z21)(1� z31)))� �2

@L
@z21

� 0

@L
@z21

z21 = 0

@L
@z31

= r1�((1� z12)(1 + �(1� z21)(1� z31))� �(1� z21)(z12z21 + (1� z12)z31))

+ r2�(�(1� z21)(1 + �(1� z12)z31) + �(1� z12)(z12z21 + (1� z12)(1� z31)))

+ r3�(z21 � z12)(1 + �z12z21))� �3
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@L
@z31

� 0

@L
@z31

z31 = 0

0 6 z12 6 1

0 6 z21 6 1

0 6 z31 6 1

0 � �2

0 � �3

0 � �4

Since we know that the solution to the social planner�s problem exists and we have linear

inequality constraints, the solutions to the system will satisfy the Kuhn-Tucker �rst order

conditions for the social planner�s problem. Thus, the solution to the social planner�s

problem will be among the critical points of L. Before solving for the critical points of L;

we will restrict the set of possible solutions with the Lemma 32 and 33.

Lemma 32 For socially optimum outcome, if zij = 0, then we should have zji = 0.

Proof. The proof is in the appendix.

The previous lemma restricts the possible link strengths into 7 cases which is summarized

in the following �gure. The next lemma further restricts the possible link strengths into 3

cases.
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Figure 8: Possible cases for socially optimum outcome under Cobb-Douglas link strength
function

Lemma 33 There are only 3 possible outcomes for socially optimum:

interior solution where 0 < z12 < 1, 0 < z21 < 1, 0 < z31 < 1,

only two links are formed where 0 < z12 < 1, z21 = z31 = 1,

and only one link is formed where z12 = z21 = 1; 0 � z31 � 1.

Proof. The proof is in the appendix.

Proposition 34 For any socially optimal solution, �12 > �13 > �23 holds:

Proof. The proof is in the appendix.
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Proposition 35 For any interior solution, we have
1

2
< z12 < 1,

1

2
< z21 < 1 and

1

2
< z31 < 1 at the optimum.

Proof. The proof is in the appendix.

Proposition 36 When 0 < � 6 1, the solution for the social planner�s problem is

� For r2
r3
< 1+�

1�� , the optimal solution is given by

z12 =
1

2
+

r2 � r3
2�(r2 + r3)

z21 = 1

z31 = 1

So, the link strengths between the players are

�12 =
1

2
+

r2 � r3
2�(r2 + r3)

�13 =
1

2
� r2 � r3
2�(r2 + r3)

�23 = 0

� For r2
r3
> 1+�

1�� , the optimal solution is given by

z12 = 1

z21 = 1

z31 : free

Proof. The proof is in the appendix.
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Figure 9: Surplus-maximizing link structure under Cobb-Douglas link strength function

3.4 Conclusion

In this chapter, we analyze the weighted link formation game introduced in the second

chapter, and fully characterize Nash equilibrium and socially optimum outcome for the

game with three players. Similar to the second chapter, all possible paths are included in

the network in calculation of indirect bene�ts. We assume that each player has an intrinsic

value of information to share and one unit of endowment to invest in relationships with

others. Once a direct link is formed, the information is transferred both ways with decay.

Moreover, indirect links can transmit indirect information with a decay.

We study the model under two di¤erent link strength functions. First, we assume that

the link strength is the arithmetic mean of agents� investment levels, i.e., the agents are

perfect substitutes. As a positive investment of an agent is enough for a link to be formed,

this speci�cation allows players to form links unilaterally with others. We show that, when

the investments are perfect substitutes, the unique Nash equilibrium is a star network in
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which all players invest all their time in one player with the highest value of information

except themselves. On the other hand, depending on the agents� information levels and

the e¢ ciency of the communication, �, the surplus-maximizing outcome structure can be a

triangle, in which all agents are connected with each other, or a star, in which player 2 and

player 3 do not invest time with each other. Nash equilibrium coincides with the surplus-

maximizing outcome only when the di¤erences between the agents�information levels are

relatively high and/or the e¢ ciency of the communication, �, is relatively low. Thus, when

players maximize their own surplus, they tend to over-invest in the relationship with the

player who has the highest information level except themselves.

Alternatively, we assume that the link strength function is Cobb-Douglas. Since a link

between a pair of players is formed only when each of them invests in the relationship,

players have to have bilateral agreement to form links with each other. Under the Cobb-

Douglas link strength function, we show that there are two di¤erent Nash equilibria, in

which players are matched in pairs. In the �rst type of Nash equilibrium, player 1 and

2 invest all their time with each other, where player 3 is ostracized. In the second type

of Nash equilibrium, similar to the n-player case, there is a coordination problem between

players 1 and 2. Therefore, under this equilibrium, players 1 and 3 are matched in pairs

and player 2 is ostracized, resulting in a lower total surplus compared to the �rst type of

Nash equilibrium.

On the other hand, for Cobb-Douglas link strength function, depending on the infor-

mation levels of players 2 and 3, and the e¢ ciency of the communication, �, the surplus-

maximizing outcome structure can be a star, in which player 2 and player 3 invest all their

time with player 1, or a pair, in which players 1 and 2 are matched and player 3 is ostra-

cized. The �rst type of Nash equilibrium coincides with the surplus-maximizing outcome
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only when the di¤erences between the information levels of players 2 and 3 are relatively

high and/or the e¢ ciency of the communication, �, is relatively low. Therefore, similar to

the additively separable link strength function, when players maximize their own surplus,

they tend to over-invest in the relationship with the player who has the highest information

level except themselves.

In conclusion, equilibrium and e¢ cient network structures vary with the link strength

function. At equilibrium, the agents choose to invest all their time with only one agent

regardless of the link strength function. More links are formed when the agents are per-

fect substitutes compared to Cobb-Douglas link strength, in which bilateral agreement is

required for link formation. For both link strength functions, Nash equilibria may not be a

surplus-maximizing outcome. As opposed to the �ndings of Jackson and Wolinsky (1996),

Bala and Goyal (2000) and Bloch and Dutta (2009), the results show that the agents have

a tendency to connect to fewer agents with higher investment levels from an e¢ ciency

perspective.

Future work on weighted link formation games can proceed in a number of interesting

directions. As discussed in the previous chapter, one line for future research is to weaken

the assumption of the bene�ts from indirect information transfers are zero when two agents

are connected by more than two links. Weakening this assumption increases the bene�ts

from indirect communication. Even though this assumption is not restrictive in the three-

player game, it adds tractability to the analysis of n-player game. To examine the e¤ects of

this assumption, future work should be done by weakening this assumption starting with a

four-player game.

Another line discussed previously is introducing asymmetries between agents, such as

asymmetries in terms of the agents�endowment levels and communication skills. However,
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adding additional asymmetries may result in computational di¢ culties. Therefore, we sug-

gest that future work on the e¤ects of these additional asymmetries should start with the

analysis of the three-player game.
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4 Strategic Information Flows in Multi-Agent Environments

4.1 Introduction

The model analyzed in the previous chapters assumes that once the agents are connected,

the information is shared. However, if the interests of the agents are not aligned, they may

strategically withhold information. In this chapter, we study strategic information �ows

within economic environments characterized by interdependencies among agents. A typical

example of such an environment would be a multi-product �rm. Speci�cally, we investigate

a model of communication with two agents and a principal, allowing for asymmetric interde-

pendencies between the agents. Each agent has private information on di¤erent dimensions

of the state of nature. The interdependencies are characterized as action complementarities

or substitutabilities between di¤erent agents within the same economic environment.

Since most of the information held by di¤erent departments within the �rm is not

veri�able, we model communication between the agents as cheap talk messages. In the

canonical cheap talk model, de�ned in their seminal paper by Crawford and Sobel (1982),

there is an informed agent on the state of the world who sends costless messages to a

decision maker (principal). The best action from the perspective of the principal and the

agent depends on the agent�s information. However, the agent is biased, i.e., his best

action is di¤erent than the principal�s best action. Moreover, the agent�s information is not

contractible. Under these conditions, Crawford and Sobel (1982) show that communication

is informative to a certain extent when the agent�s bias is not large.

Similar to Crawford and Sobel (1982), we will assume that the decisions made within an

organization are complex; and hence, they are not contractible. As the organization lacks

commitment, the only formal authority will be the allocation of the decision rights. By using
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cheap talk model, we look at two di¤erent communication protocols between uninformed

principal and two agents who are privately informed about an independent aspect of the

state of the world. Under the �rst protocol, which we will refer to as vertical communication,

we have a centralized decision mechanism in which the principal (the headquarters) makes

the production decisions for each agent (department) after observing the reported private

messages of the agents. Under the second protocol, which we will refer to as horizontal

communication, we have a decentralized mechanism in which the agents are allowed to

communicate with each other via cheap talk and then make the production decision for

their departments.

We will investigate how action interdependencies between the agents, i.e., action comple-

mentarities or substitutabilities, a¤ect the communication outcome. Actions of the agents

are strategic complements if an agent�s payo¤ to increase his own action is increasing in the

level of other agent�s action. On the contrary, actions of the agents are strategic substitutes

if an agent�s payo¤ to increase his own action is decreasing in the level of other agent�s

action. Our model is an extension of a paper by Bora (2010). Bora (2010) examines the

e¤ect of competition on the internal organization of a multi-divisional �rm and he char-

acterize decentralized and centralized equilibrium. However, his analysis is symmetric in

the sense that agents have the same coe¢ cient for action interdependencies. In this paper,

we investigate how di¤erent coe¢ cients of agents for interdependencies contribute to the

informativeness of the communication in these two mechanisms.

We assume that each agent maximizes his own payo¤ function under both communi-

cation protocols, whereas, the principal�s payo¤ function, which is included in the analysis

during vertical communication, is the sum of the payo¤ functions of the agents. Therefore,

the principal is only concerned about e¢ ciency. Moreover, we assume the payo¤ functions of



88

the agents satisfy the increasing di¤erences property. That is, an agent�s payo¤ to increase

his action is higher when his private information signals that he has a higher type.

We look at the Perfect Bayesian Equilibrium by Fudenberg and Tirole (1991) as the

equilibrium concept and focus on the most informative outcome in case of multiple equi-

librium outcomes. Under vertical communication protocol, the communication from the

agents takes form of a partition equilibrium. That is, the state space is partitioned into

intervals and agents report the interval which their private information belong to.

On the other hand, under horizontal communication, if there is no strategic interaction

between agents, then agents fully reveal their private information. However, when there

are strategic interaction between the agents, there are at most two on-the-equilibrium path

conditional expectations for each agent. If the agents are strategic complements, both agents

would like the other agent to think that he has the highest type. Hence, it is not possible to

have an informative horizontal communication under strategic complementarities. On the

contrary, if the agents are strategic substitutes, there are parameter con�gurations in which

the cost of production is lower compared to the absolute value of the strategic interaction

terms making the horizontal communication informative. Under these parameters, we have

a two-partition equilibrium. However, when the cost of production is higher and the absolute

value of the strategic interaction terms are lower, then the horizontal communication, again,

becomes uninformative.

The rest of the chapter proceeds as follows. The next section, Section 2, presents relevant

economics literature on strategic information transmission. Section 3 formally introduces

the model. Section 4 analyzes vertical communication between the principal and the agents

while Section 5 analyzes horizontal communication between the agents. Finally, Section 6

concludes.
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4.2 Relevant Literature

This chapter relates to four main strands of literature: organizational economics, literature

on experts, pre-play communication in incomplete information games, and economics of

networks.

There are variety of works focus on communication and decision-making within or-

ganizations. Dessein (2002) studies e¢ ciency trade-o¤ between choosing delegation and

centralization of the decision rights by using a setup similar to Crawford and Sobel (1982).

He shows that delegation is preferred if and only if the divergence of the preferences between

the principal and the agent is small. Alonso and Matouschek (2008) look at an alternative

decision mechanism in which the principal delegates authority but holds the right to con-

strain the action set from which the agent chooses. Similar to Dessein (2002), they show

that internal delegation is optimal when the agent�s preferences are su¢ ciently aligned.

Unlike our model, these models only include univariate state of the nature and one decision

variable. However, in this paper, we are interested in the case of multidimensional state of

nature with two actions to be taken.

Alonso (2008) studies allocation of decision rights in a �rm which takes two-dimensional

decision with unidimensional uncertainty. He concludes that full delegation is optimal when

actions are substitutes, and the principal needs to make the decision for one of the actions if

when there are complementarities. Moreover, Alonso et al. (2008a) investigates a �rm that

sells a single product in di¤erent markets with privately informed agents on their own local

conditions. Due to the arbitrage, the �rm has to set a single price. Under these conditions,

they conclude that decentralization is optimal when the agents have su¢ ciently di¤erent

local conditions.

More closely related papers, Alonso et al. (2008) and Rantakari (2008) are interested
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in the trade-o¤ between adaptation and coordination in a multi-divisional �rm. Alonso et

al. (2008) show that an increased need for coordination improves horizontal communication

but worsens vertical communication. Therefore, they conclude that delegation can domi-

nate centralization even when coordination is extremely important relative to adaptation.

Moreover, like our model, they show that centralization is more informative than decen-

tralization. Rantakari (2008) extends the analysis by allowing asymmetric divisions in size.

Moreover, in addition to vertical and horizontal communication structures, he also looks at

the decision mechanism in which one division makes the production decisions for both. He

shows that when the incentive con�icts between the divisions are small, centralization is

always dominated by decentralization. However, our paper di¤ers from these two articles in

two ways. First, these papers only look at speci�c form of complementarities between the

agents, whereas we consider both action substitutabilities and complementarities. Second,

they treat coordination as an exogenous variable, whereas, in our model, the need for coor-

dination arises endogenously from the interactions within the �rm. Later, Rantakari (2011)

includes the importance of coordination as a choice variable. In his model, decision makers

can obtain information with a cost. He shows that if the cost of information decreases, then

the preference for decentralization increases.

As previously mentioned, in this paper, we use the model introduced by Bora (2010) and

extend the analysis to asymmetric agents with di¤erent coe¢ cients for interdependencies.

He shows that the quality of communication varies with the interactions between the agents.

Particularly, he �nds that the extend of informative communication is very limited under

decentralization. Moreover, he shows that if the agents are strategic complements and

positive externalities, then there is no information horizontal communication.

In another closely related article, Alonso, Dessein, Matouschek (2015) examine the e¤ect
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of competition on the internal organization of a multi-divisional �rm. They characterize de-

centralized and centralized equilibrium under a set of di¤erent communication and decision

making mechanisms. They show that even if agents have superior information about local

conditions, and their incentive con�icts are negligible, a centralized organization can be

better at adapting to local information than a decentralized one. Therefore, they conclude

that an increase in product market competition that makes adaptation more important can

favor centralization rather than decentralization.

The vertical communication structure is similar to a situation in which the principal

makes a decision by consulting two experts about di¤erent dimensions of uncertainty. Thus,

the second strand of literature related to our paper is literature on experts. There are var-

ious papers analyzing the quality of communication between an informed principal and

a single informed but biased agent. Spector (2000) studies cheap-talk games introduced

by Crawford and Sobel (1982) and complements their results by showing that, when the

speaker�s and the receiver�s preferences are close, the most informative equilibrium con-

verges toward full information transmission. Ottoviani (2000) formulates a model of advice

study �nancial retail industry. His model consists of an informed agent (�nancial adviser)

transmitting information to an uninformed principal (investor) with uncertain degree of

strategic sophistication. He studies incentives for truthful information disclosure and in-

formation acquisition, and the role of explicit monetary transfers. Krishna and Morgan

(2008), later, analyze monetary transfers in detail, whereas Ottoviani and Squintani (2006)

analyze the case with lower degree of sophistication in detail.

On the other hand, Krishna and Morgan (2001) analyze a model of expertise with two

perfectly informed but biased experts who observe the same unidimensional state of nature.

They show that full revelation is not possible. Moreover, they show that it is only bene�cial
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to consult both experts when they are biased in the opposite direction. Battaglini (2002)

extends the model of expertise into a multidimensional setting. He �nds that, contrary to

the unidimensional case, if there is more than one sender, full revelation of information in

all states of nature is generically possible, even when the con�ict of interest is arbitrarily

large. Battaglini (2004) study policy advice by several biased experts with noisy private

information. Contrary to the previous �ndings, he �nds that full revelation of information

is never possible. Our model di¤ers from these papers in the literature of experts. First,

we assume that the bias of the agents are endogenous and depend on the interdependencies

between the agents, whereas these papers treat them as exogenous. Second, we assume

each agent only observes one dimension of the state of nature, while, in these papers, the

experts observe all dimensions of the uncertainty, either perfectly or imperfectly.

The third strand of literature related to our paper is on pre-play communication in

incomplete information games as the horizontal communication protocol can be considered

as one. One of the papers closely related to ours is Baliga and Morris (2002). They use

a two-person, �nite type and �nite action game with one-sided incomplete information to

analyze the role of cheap talk. They show that when there are strategic complementarities

and positive externalities, then there is no communication at the equilibrium in the cheap

talk game. They also show that no communication result is maintained in a game with

two-sided uncertainty as long as only one player is allowed to talk. However, if both agents

are allowed to talk at the cheap talk stage of the game, then they show that there are

non-monotonic equilibria in which lowest and the highest types send the same signal, while

the medium type send a di¤erent message. This is di¤erent from our result that when there

are strategic complements, an informative horizontal communication is not possible.

Baliga and Sjostrom (2004) extend the two-sided incomplete information game to a
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continuum of types by analyzing a situation in which two players simultaneously decide

whether or not to acquire new weapons in an arms race game. Each player�s type is

independently drawn from a continuous distribution and determines the player�s propensity

to arm. They show that if there is no pre-play communication, then an arms race takes place.

However, if the players are allowed to communicate via cheap talk, then the probability of

an arms race takes place is signi�cantly lower. Later, Baliga and Sjostrom (2012) extend

the model in Baliga and Sjostrom (2004) by introducing another player, an extremist. They

study a game of con�ict with incomplete information in which two players choose hawkish or

dovish actions. An extremist, who can be a hawk or a dove, attempts to manipulate decision-

making by sending a public message. They show that if actions are strategic complements,

a hawkish extremist sends a public message which triggers hawkish behavior from both

players, increasing the likelihood of con�ict, and reducing welfare. If actions are strategic

substitutes, a dovish extremist sends a public message causing one player to become more

dovish and the other more hawkish. Additionally, they show that if actions are strategic

substitutes, then a hawkish extremist is unable to manipulate decision making, whereas, if

actions are strategic complements, then a dovish extremist is unable to manipulate decision

making.

The �nal strand of literature related to our paper combines networks and strategic com-

munication. Calvo-Armengol and de Marti (2009) study a game in which all agents share a

common decision problem and coordination is required between individual actions. Agents

have private information and they share their own private information through pairwise

communication. They fully characterize the decision functions and the equilibrium payo¤s

given a communication structure. Moreover, they �nd that adding communication chan-

nels is not always bene�cial as it may result in miscoordination. In their model, agents
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are assumed to have non-con�icting objectives and e¢ cient networks are characterized un-

der physical communication constraints. On the contrary, Hagenbach and Koessler (2010)

study the equilibrium communication networks that arise under strategic communication

constraints. They study strategic endogenous communication in a network game with bi-

ased agents by using cheap talk. In their model, agents would like to choose an action to

coordinate their actions with others and be close to a common state of nature. However,

each agent�s ideal proximity to that state varies. They show that, in equilibrium, pre-play

communication depends on the con�ict of interest between these agents, and the number

and preferences of the other agents with whom they communicate. Additionally, they show

that central agents in terms of preference have a tendency to communicate more and to have

a greater impact on decisions. In a similar paper, Galeotti et al. (2013) study a multi-player

communication model with privately informed decision makers who have di¤erent prefer-

ences about the actions they take. Players communicate via cheap talk to in�uence each

others�actions in their favor. They show that welfare at equilibrium depends on the number

of truthful messages sent and how evenly they are distributed across decision makers.

In contrast to Hagenbach and Koessler (2010) and Galeotti et al. (2013), Calvo-

Armengol et al. (2015) look at strategic communication in a network game with costly

and veri�able information. In their model, each agent cares about both adaptation and

coordination. They study directed payo¤ interactions among agents with local knowledge.

Similar to our model in the second chapter, they also allow for various communication

intensity among pairs of agents. They fully characterize information and in�uence �ows.

They also show that when the coordination motive becomes more important, the in�uence

of an agent on all his peers approximates to his directed payo¤ interactions.
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4.3 The Model

There are three players in our model: agent 1 and 2, and a principal. The payo¤ function

of agent i 2 f1; 2g is given by

Ui(�i; qi; qj) = �iqi � �q2i + �iqiqj ;

where j 6= i, qi is the action of agent i and �i is his private information. The principal�s

payo¤ function is the sum of the payo¤s of the agents, i.e.,

UP (�1; �2; q1; q2) = U1(�1; q1; q2) + U2(�2; q1; q2):

We assume that qi 2 R, i = 1; 2, and �1 and �2 are drawn independently from two

uniform distributions on [0; 1] interval. We will investigate the problem under the restriction

that � > 0. In addition, we assume that j2�j > j�1 + �2j, so that the principal�s payo¤

function is strictly concave in q1 and q2.

As a result of these assumptions, we get the following results: First, the payo¤ function

of agent i is strictly concave in qi, so that given �i; qj , it has a unique maximum in qi.

Second, Ui has increasing di¤erences in (�i; qi), i.e., U i12 > 0. This implies that given qj ,

the maximizer qi is an increasing function of �i. Finally, when �i > 0, Ui has strategic

complementarities in (qi; qj), and the maximizer qi is an increasing function of qj . On the

other hand, when �i < 0, Ui has strategic substitutabilities in (qi; qj), and the maximizer

qi is an decreasing function of qj .

We study the model under two communication structures. First, we look at the vertical

communication game in which the agents send costless messages to the principal simul-

taneously, and the principal chooses both q1 and q2. Second, we look at the horizontal
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communication game in which the agents send costless messages to each other simultane-

ously, and after observing the messages, each agent chooses their own action qi.

4.4 Vertical Communication

There are three stages in the vertical communication game. At the initial stage, nature

independently chooses �1 and �2. In the second stage, agent i observes her private infor-

mation �i and chooses mi from a set of feasible signals Mi = [0; 1]. In the last stage, the

principal observes (m1;m2) and chooses (q1; q2) 2 R2. We denote the strategy of the agent

i as �i : �i !Mi and the strategy set of the principal as y :M1 �M2 ! R2. An assess-

ment is given by (�1; �2; y; P ), where P (�jm1;m2) is the density of the principal�s beliefs

conditional on (m1;m2):

We use Perfect Bayesian Equilibrium (Fudenberg and Tirole (1991)) as the solution

concept. The following three conditions characterize an equilibrium of the game:

� The principal�s beliefs over (�1; �2) conditional on observing (m1;m2) are formed using

Bayes�rule whenever possible.

� Given P (�jm1;m2), the principal chooses (q1; q2) to maximize E[UP (�1; �2; q1; q2)jm1;m2],

i.e.,

y(m1;m2) = (q1; q2) = argmax
�q1;�q2

Z
(�1;�2)2(�1��2)

UP (�1; �2; �q1; �q2)dP (�1; �2jm1;m2):

� Given y and �j , agent i chooses mi to maximize E[Ui(�i; a1; a2)], i.e.,

�i(�i) = mi = arg

Z 1

0
Ui(�i; y( �mi; �j(�j)))d�j :
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At the last stage of the game, after observing the message pro�le (m1;m2), the principal

solves the following problem:

max
(q1;q2)

Z
(�1;�2)2(�1��2)

[�1q1 + �2q2 + (�1 + �2)q1q2 � �(q21 + q22)]dP (�1; �2jm1;m2)

or more simply,

max
(q1;q2)

E[�1q1 + �2q2 + (�1 + �2)q1q2 � �(q21 + q22)jm1;m2]:

Since the messages are chosen independently, E[�ijmi;mj ] = E[�ijmi]. Thus, the problem

reduces to:

max
(q1;q2)

q1E[�1jm1] + q2E[�2jm2] + (�1 + �2)q1q2 � �(q21 + q22):

From the �rst order conditions, the solution to the problem is:

y(m1;m2) = (q1(E[�1jm1]; E[�2jm2]); q2(E[�1jm1]; E[�2jm2]))

where

qi(E[�1jm1]; E[�2jm2]) =
2�E[�ijmi] + (�1 + �2)E[�j jmj ]

4�2 � (�1 + �2)2

Now let us de�ne

a =
2�

4�2 � (�1 + �2)2
and b =

�1 + �2
4�2 � (�1 + �2)2

(9)
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Then,

qi(E[�1jm1]; E[�2jm2]) = aE[�ijmi] + bE[�j jmj ] (10)

Next, after introducing the necessary de�nitions, we will characterize the equilibrium of

the vertical communication game.

De�nition 37 Let (�1; �2; y; P ) be a Perfect Bayesian Equilibrium. An action pro�le

(q1; q2) is on-the-equilibrium path if there exists a type pro�le (�1; �2) who chooses (m1;m2)

and y(m1;m2) = (q1; q2). More formally, (q1; q2) is on-the-equilibrium path if there exists

�1; �2 such that (q1; q2) = y(�1(�1); �2(�2)). Similarly, we say that ti 2 [0; 1], i = 1; 2, is an

on-the-equilibrium path expectation if there exists a type �0i such that ti = E[�ij�i(�0i)].

Lets start with calculating the expected payo¤s of the agents reporting their true types.

The expected payo¤ of agent 1 of type �1 to sending a message that would induce the

conditional expectation equal to x is calculated by

E[U1(�1; x)jm2] =

Z 1

0
[�1q1(x;E[�2j�2(�02)])� �q1(x;E[�2j�2(�02)])2

+ �1q1(x;E[�2j�2(�02)])q2(x;E[�2j�2(�02)])]d�02:

The marginal change in the expected payo¤ agent 1 is calculated by:

@

@x
E[U1(�1; x)jm2] =

@

@x
E[�1q1(x;m2)� �q1(x;m2)

2 + �1q1(x;m2)q2(x;m2)] (11)

Since agent 1 does not observe the type of the second agent, when he is sending the
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message, he uses the following expectation on agent 2�s type

Z 1

0
E[�2j�2(�02)]d�02 = E[�2] = 1=2 (12)

As qi(E[�1jm1]; E[�2jm2])�s de�ned in 10 after substituting 12 into 11 and taking the

partial derivative with respect to x, we get the change in the expected payo¤ of agent 1

with type �1 as

@

@x
E[U1(�1; x)jm2] =

@

@x
[�1(ax+

b

2
)� �(ax+ b

2
)2 + �1(ax+

b

2
)(
a

2
+ bx)]

= �1a� 2�a(ax+
b

2
) + �1(a(

a

2
+ bx) + (ax+

b

2
)b)

= �1a+ x(2ab�1 � �a2) + �1
a2 + b2

2
� �ab

If we substitute for 9 and simplify, we get

@

@x
E[U1(�1; x)jm2] =

2�

(4�2 � (�1 + �2)2)
�1 +

2�(2�1(�1 + �2)� 4�2)
(4�2 � (�1 + �2)2)2

x

+
�1(�1 + �2)

2 � 4�2�2
2(4�2 � (�1 + �2)2)2

Therefore, agent 1 has incentives to lie about his type depending on �1, �2 and �.

However, as it is shown by Crawford and Sobel (1982), partially informative equilibrium

is still possible. Under this equilibrium, state-space is partitioned so that any message mi

reveals only the interval that �i belongs to. As it is shown in the following lemma, di¤erent

types of each agent will form an interval in terms of their strategies in the equilibrium.

Lemma 38 If �i and �i prefer to send mi to the principal, then any �0i 2 [�i; �i] also prefers

to send mi.
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Proof. Let E[�ijmi] be the conditional expectation of the principal to type �i upon receiving

the message mi and m0
i be another signal such that E[�ijm0

i] < E[�ijmi]. For simplicity,

denote q1(mi;mj) = q1, q2(mi;mj) = q2 and q1(m0
i;mj) = q

0
1, q2(m

0
i;mj) = q

0
2. Since � > 0,

q01 < q1 for every mj . Note that for any mj ,

[Ui(�
0
i ; q1; q2)� Ui(�0i ; q01; q02)] = [Ui(�i; q1; q2)� Ui(�i; q01; q02)] + (�0i � �i)(q1 � q01)| {z }

>0

: (13)

Integration of the equation 13 with respect to �j yields that the expected payo¤ of type �0i

to choosing mi is strictly higher than the payo¤ to choosing m0
i.

Similarly, for any mj ,

[Ui(�
0
i ; q1; q2)� Ui(�0i ; q01; q02)] = [Ui(�i; q1; q2)� Ui(�i; q01; q02)] + (�0i � �i)(q1 � q01)| {z }

>0

: (14)

Integration of the equation 14 with respect to �j also yields that the expected payo¤ of type

�0i to choosing mi is strictly higher than the payo¤ to choosing m0
i. Thus, agent i with type

�0i will never �nd it optimal to choose a message that would yield a conditional expectation

lower than E[�ijmi]. Similar argument holds for agent i with type �0i and any signal m
00
i

be another signal such that E[�ijm0
i] > E[�ijmi]. Thus, agent i with type �0i will never

�nd it optimal to choose a message that would yield a conditional expectation higher than

E[�ijmi].

In the next proposition, we summarize the equilibrium conditions for the vertical com-

munication game. For simplicity, we will focus on the pure reporting strategies, as, without

loss of generality, all the other equilibria are economically equivalent to the pure reporting

equilibria de�ned in Proposition 39. Moreover, we will not provide a restriction on be-

liefs for messages that are the out-of-equlibrium path. This is because we can support the
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equilibrium provided in 39 with di¤erent the out-of-equlibrium beliefs.

Proposition 39 The equilibrium of the vertical communication game is characterized by

as follows where 0 = ki;0 < ki;1 < � � � < ki;n < ::: < 1 for all i 2 f1; 2g; n 2 N

�i(�) =
ki;n + ki;n+1

2
if �i 2 [ki;n; ki;n+1) (15)

P

�
�1; �2j

k1;n + k1;n+1
2

;
k2;m + k2;m+1

2

�
=

8>>>>>><>>>>>>:

1
(k1;n+1�k1;n)(k2;m+1�k2;m)

if (�1; �2) 2 [k1;n; k1;n+1]� [k2;m; k2;m+1]

0 otherwise

(16)

q1

�
k1;n + k1;n+1

2
;
k2;m + k2;m+1

2

�
=

2�(k1;n + k1;n+1) + (�1 + �2)(k2;m + k2;m+1)

2(4�2 � (�1 + �2)2)
;(17)

q2

�
k1;n + k1;n+1

2
;
k2;m + k2;m+1

2

�
=

2�(k2;m + k2;m+1) + (�1 + �2)(k1;n + k1;n+1)

2(4�2 � (�1 + �2)2)
:

ki;n+1 =
2�2 � 2�i(�1 + �2)
2�2 � �i(�1 + �2)

ki;n � ki;n�1 �
�i(�1 + �2)

2 � 4�2�j
�(2�i(�1 + �2)� 4�2)

for every n = N (18)

Proof. Given Lemma 38, we have a partition equilibria, in which type space is partitioned

into intervals such that types in the same interval report the same message. Speci�cally,

there exists a partition fki;ngn2N such that 0 = ki;0 < ki;1 < � � � < ki;n < ::: < 1 and if

�; �
0 2 (ki;n; ki;n+1), then we have �i(�) = �i(�

0
).

If reporting strategies of agents are given as in 15, then 16 and 17 follow. Thus, we need

to determine the partition fki;ngn2N so that each type of agent 1 and 2 is best responding.

Since U i is continuous in �i; for each ki;n, each agent is indi¤erent between sending a lower

message ki;n�1+ki;n
2 and a higher messageki;n+ki;n+12 : By following the partition equilibrium

logic, we �nd the incentive-compatible partitions by identifying the types that each agent
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is indi¤erent between sending a lower message and a higher message, i.e.,

EUi(�
M
i ; qi(E[�ijmL

i ]; :); qi(E[�ijmL
i ]; :)) = EUi(�

M
i ; qi(E[�ijmH

i ]; :); qi(E[�ijmH
i ]; :)) (19)

The family of incentive-compatible partitions is obtained by solving this indi¤erence condi-

tion, 19,:

ki;n+1 = Ci;1ki;n � ki;n�1 � Ci;2

where

Ci;1 =
2�2 � 2�i(�1 + �2)
2�2 � �i(�1 + �2)

and Ci;2 =
�i(�1 + �2)

2 � 4�2�j
�(2�i(�1 + �2)� 4�2)

4.5 Horizontal Communication

4.5.1 Autarchy

Under autarchy, the game is played between agents who cannot communicate. After observ-

ing their own type �i but not �j , each agent i simultaneously choose qi. We will adopt the

Bayesian equilibrium as the equilibrium concept and consider only symmetric strategies.

Proposition 40 The symmetric equilibrium of the autarchy game is given by fi : �i ! R

such that

fi(�i) =
�i
2�
+

�i(2�+ �j)

4�(4�2 � �i�j)

where agent i of type �i chooses an action according to fi de�ned above and i 6= j, i; j 2

f1; 2g.
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Proof. Suppose that agent j plays according to fj . Given the strategy of agent j, the

objective function for agent i is:

max
qi

Z 1

0
[�iqi � �q2i + �qifj(�j)]d�j

Since the objective function is strictly concave in qi, the �rst order condition

qi =
�i
2�
+
�i
2�

Z 1

0
fj(�j)d�j

is necessary and su¢ cient for a maximum. Therefore, in equilibrium

qi = fi(�i) =
�i
2�
+
�i
2�

Z 1

0
fj(�j)d�j :

This equation is a Fredholm integral equation of the second kind with the simplest degen-

erate kernel4 whose solution is given by:

fi(�i) =
�i
2�
+

�i(2�+ �j)

4�(4�2 � �i�j)
:

4.5.2 Horizontal Communication

There are three stages in the horizontal communication game. At the initial stage, nature

independently chooses �1 and �2. In the second stage, after observing their private infor-

mation, agent i independently and simultaneously sends a message mi to the other agent

from a set of feasible signals Mi = [0; 1]. In the last stage, after observing the messages,

4See Polyanin and Manzhirov (1998).
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each agent independently chooses qi. As in the vertical communication game, we focus on

the Perfect Bayesian Equilibria of the game.

Let m1, m2 be sent in equilibrium. If agent i with �i sends mi, the optimal action, qi,

solves

max
�qi
E[�i�qi � ��q2i + �i�qiqj jmj ]

The solution is

qi =
�i
2�
+
�i
2�
E[qj jmj ]

Now if we plug qj back into the previous equation, we get

qi =
�i
2�
+
�i
2�
E[
�j
2�
+
�j
2�
E[qijmi]jmj ]

Since mi and mj are chosen independently, the previous equation reduces to

qi =
�i
2�
+
�i
4�2

E[�j jmj ] +
�i�j
4�2

E[qijmi] (20)

If we take expectations conditional on mi, we obtain from the previous equation

E[qijmi] =
2�

4�2 � �i�j
E[�ijmi] +

�i
4�2 � �i�j

E[�j jmj ] (21)

Therefore, combining 20 and 21, we get:

qi =
�i
2�
+

�i�j
2�(4�2 � �i�j)

E[�ijmi] +
�i

4�2 � �i�j
E[�j jmj ]: (22)

Proposition 41 If �1 6= 0 and �2 6= 0, there are at most two on-the-equilibrium path

conditional expectations for each agent.
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Proof. Let � and �0 = �+ " be two conditional expectations associated with m1 and m0
1 on

agent 1�s signaling strategy, i.e., E[�1jm1] = � and E[�1jm0
1] = �

0. For the agent 1 of type

�1, the di¤erence in the utility between sending m0
1 and m1 is

�1�2
2�(4�2 � �1�2)2| {z }

K1

"[�1 (4�
2 � �1�2)| {z }
K2

+�1�2� + ��1|{z}
K3

+
�1�2"

2
] (23)

or more simply,

K1"[�1K2 + �1�2� +K3 +
�1�2"

2
] (24)

Let us assume for a contradiction that there exist three on-the-equilibrium path expectations

�, �0 = � + "1, and �00 = �0 + "2 with "1; "2 > 0. Since �0 is on-the-equilibrium path, there

exists an agent 1 with type ��1 who prefers �
0 to �, i.e.

K1"1[�
�
1K2 + �1�2� +K3 +

�1�2"1
2

] � 0: (25)

The di¤erence in utility for this agent between sending a signal that would yield the condi-

tional expectation �00 = �0 + "2 and the signal that yields �0 equals to

K1"2[�
�
1K2 + �1�2(� + "1) +K3 +

�1�2"2
2

] (26)

We can rewrite 26 as:

K1"2[�
�
1K2 + �1�2� +K3 +

�1�2"1
2

] +K1"2[
�1�2
2
("1 + "2)] (27)

As the expression in 25 is greater than or equal to zero, the �rst part of the expression in

27 is also greater than or equal to zero. In addition, we can rewrite the second part of the
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expression as:

"2[
(�1�2)

2

4�(4�2 � �1�2)2
("1 + "2)]: (28)

Since �1 6= 0 and �2 6= 0, the second part of the expression is strictly greater than zero.

Thus, the expression in 27 is strictly greater than zero. This means that the agent 1 with

type ��1 would strictly prefer to induce the expectation �
00 to �0. This contradicts with the

assumption that �0 is induced. Therefore, there can be at most two on-the-equilibrium

conditional expectations for the agent 1.

The same argument applies to the agent 2 with type ��2. Thus, when �1 6= 0 or �2 6= 0,

there can be at most two on-the-equilibrium conditional expectations for agent 1 and agent

2.

Proposition 42 If �1 = 0 or �2 = 0, there exists a fully revealing equilibrium.

Proof. When �1 = 0 or �2 = 0, the expression in (4.12) equals to zero. Thus, each type

of each agent is indi¤erent between sending any of the signals. Therefore, the signaling

strategy de�ned by �i(�i) = mi = �i for i = 1; 2 is part of an equilibrium.

It is concluded from Proposition 41 that the most informative equilibrium under �i 6= 0

will take form of two-partition equilibrium. Let us characterize the conditions when a two-

partition equilibrium exists. Under two-partition equilibrium with symmetric strategies,

there exists a type ki 2 (0; 1) for each agent i such that agent i is indi¤erent between

sending a low signal inducing a conditional expectation ki
2 and a high signal inducing a

conditional expectation 1+ki
2 . By substituting the restrictions �1 = k1, � = k1

2 and " = 1
2

into 23, the following condition is obtained

k1 = �
�1(4�+ �2)

8(4�2 � �1�2)
2 (0; 1)
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Similar argument holds for agent 2 with �2 = k2, � = k2
2 and " =

1
2 . So,

k2 = �
�2(4�+ �1)

8(4�2 � �1�2)
2 (0; 1)

Lets start with calculating the expected payo¤s of the agents reporting their true types.

The expected payo¤ of agent 1 of type �1 to sending a message that would induce the

conditional expectation equal to x is calculated by

E[U1(�1; x)jm2] =

Z 1

0
[�1q1(x;E[�2j�2(�02)])� �q1(x;E[�2j�2(�02)])2

+ �1q1(x;E[�2j�2(�02)])q2(x;E[�2j�2(�02)])]d�02:

The marginal change in the expected payo¤ agent 1 is calculated by:

@

@x
E[U1(�1; x)jm2] =

@

@x
E[�1q1(x;m2)� �q1(x;m2)

2 + �1q1(x;m2)q2(x;m2)] (29)

Since agent 1 does not observe the type of the second agent, when he is sending the

message, he uses the following expectation on agent 2�s type

Z 1

0
E[�2j�2(�02)]d�02 = E[�2] = 1=2 (30)

As qi(E[�1jm1]; E[�2jm2])�s de�ned in 22 after substituting 30 into 29 and taking the

partial derivative with respect to x, we get the change in the expected payo¤ of agent 1
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with type �1 as

@

@x
E[U1(�1; x)jm2] =

@

@x
[�1(

�1
2�
+

�1�2
2�(4�2 � �1�2)

x+
�1

2 (4�2 � �1�2)
) (31)

��( �1
2�
+

�1�2
2�(4�2 � �1�2)

x+
�1

2 (4�2 � �1�2)
)2

+�1(
�1
2�
+

�1�2
2�(4�2 � �1�2)

x+
�1

2 (4�2 � �1�2)
)(

�+ �2x

(4�2 � �1�2)
)]

=
�1�1�2

2�(4�2 � �1�2)
� �1�2
(4�2 � �1�2)

(
�1
2�
+

�1�2x

2�(4�2 � �1�2)
+

�1
2 (4�2 � �1�2)

)

+�1(
�+ �2

(4�2 � �1�2)
)(
�1
2�
+

�1�2
2�(4�2 � �1�2)

x+
�1

2 (4�2 � �1�2)
) +

+�1
�1�2

2�(4�2 � �1�2)
�+ �2x

(4�2 � �1�2)
)

=
(�1�2)

2

2�(4�2 � �1�2)2| {z }
H1

x+
�1�2

2�(4�2 � �1�2)| {z }
H2

�1 +
�21�2

2 (4�2 � �1�2)| {z }
H3

Similarly, the expected payo¤ of agent 2 of type �2 to sending a message that would

induce the conditional expectation equal to x is calculated by

E[U2(�2; x)jm1] =

Z 1

0
[�2q2(x;E[�1j�1(�01)])� �q2(x;E[�1j�1(�01)])2

+ �2q1(x;E[�1j�1(�01)])q2(x;E[�1j�1(�01)])]d�01:

The marginal change in the expected payo¤ agent 1 is calculated by:

@

@x
E[U2(�2; x)jm1] =

@

@x
E[�2q2(x;m1)� �q2(x;m1)

2 + �2q1(x;m1)q2(x;m1)] (32)

=
(�1�2)

2

2�(4�2 � �1�2)2| {z }
H1

x+
�1�2

2�(4�2 � �1�2)| {z }
H2

�2 +
�1�

2
2

2 (4�2 � �1�2)| {z }
H4

As (�1�2)
2

2�(4�2��1�2)2
> 0 when �i 6= 0; the payo¤ function E[Ui(:)] is convex in x for both

agents. Therefore, the payo¤s of agent i is minimized at E[Ui(:)] = 0: In the next �gure,
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we will analyze the informativeness of the horizontal communication by using the equations

31 and 32. This �gure shows three di¤erent outcomes associated with di¤erent parameter

con�gurations. The lines labeled as li represent the situation in which the equation 31

equals to zero. That is,

li : x = �
H2
H1
�1 �

H3
H1

Notice that, the lines li shows the expectations that yields the minimum utility for agent 1,

as E[Ui(:)] is convex in x: Similar argument can be made for agent 2 by using the equation

32. In that case, the lines li represent the situation in which the equation 32 equals to zero.

That is,

li : x = �
H2
H1
�1 �

H4
H1

Before analyzing the di¤erent outcomes under di¤erent parameter con�gurations, lets take

a closer look at Hi�s under �i 6= 0 . We know that for all parameter values, H1 > 0: Now,

we assume that �i�s have the same signs, i.e., we have either �i < 0 or �i > 0: Thus,

H2 =
�1�2

2�(4�2��1�2)
> 0: To see this, we need to look at the term (4�2 � �1�2) at the

denominator as we know � > 0 and �1�2 > 0. Since j2�j > j�1 + �2j; we have

4�2 > (�1 + �2)
2 = �21 + 2�1�2 + �

2
2

If we subtract �1�2 from both sides, we obtain

4�2 � �1�2 > �21 + �1�2 + �22 > 0

Thus, H2 > 0: On the other hand, the sign of H3 and H4 depends on �2 and �1 respectively,

as (4�2 � �1�2) > 0: If �2 > 0; then H3 > 0; and if �2 < 0; then H3 < 0: Similarly, if
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�1 > 0; then H4 > 0; if �1 > 0, then H4 > 0:

Lastly, lets take a look at the lines li: For agent 1, we have

l1i : x = �H2
H1
�1 �

H3
H1

x = � 4�
2 � �1�2
�1�2| {z }
K1

�1 �
�
�
4�2 � �1�2

�
�2| {z }
K2

Additionally, for agent 2, we have

l2i : x = �H2
H1
�1 �

H4
H1

x = � 4�
2 � �1�2
�1�2| {z }
K1

�1 �
�
�
4�2 � �1�2

�
�1| {z }
K3

Figure 10: Informativeness of horizontal communication

In the �rst part of the �gure, (I), l1 is such that, for every �i; the marginal utility at

every x is positive. Thus, every type of agent i would want agent j to believe that agent i
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has the highest type. Therefore, for the case (I), informative communication is not possible.

In the second part of the �gure, (II), l2 is such that, for every �i; the marginal utility at

every x is negative. Thus, every type of agent i would want agent j to believe that agent

i has the lowest type. Therefore, similar to the case (I), informative communication is not

possible for the case (II).

Notice that as informative communication is not possible for the cases (I) and (II), the

agents will choose their actions according to the case under autarchy.

On the other hand, in the third part of the �gure, (III), the line l3 partitions the (�i; x)

space into two. In the next �gure, we will discuss the result of Proposition 41 by taking a

closer look at the third case.

Figure 11: Horizontal Communication with two partitions

Lets assume that we have three expectations, x1; x2 and x3: induced at equilibrium.

Then, none of the types would send a message yielding the expectation x2: This is because,

depending on the agent�s type, sending a message to induce the highest or the lowest type
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would be strictly preferred to sending a message to induce x2: Therefore, there will be

a cuto¤ type for this case such that the types smaller than this cuto¤ type prefer lower

expectations as marginal utility is negative, and the types greater than this cuto¤ type

prefer higher expectations as marginal utility is positive. Therefore, we have a two-partition

equilibrium for this case.

Now, lets take a look at the horizontal communication under strategic complementarities

and substitutabilities. We start with strategic complementarities by assuming �i > 0: Then,

we have H1;H2;H3;H4 > 0 and K1;K2;K3 > 0 . This means that we have the case (I)

depicted in the Figure 10 under strategic complementarities. As we discussed earlier, both

agents would like the other agent to think that he has the highest type as the marginal utility

of the agent increases with x: Hence, it is not possible to have an informative horizontal

communication under strategic complementarities.

On the other hand, if we assume strategic substitutabilities, �i < 0; then we have

H1;H2 > 0, H3;H4 < 0 and K1 > 0, K2;K3 < 0: Then, depending on the parameters �

and �i�s, we may have informative horizontal communication. If the parameters are such

that K2 and K3 are high in absolute value, then we have the case (II) depicted in Figure

10. This case happens for the parameter con�gurations with relatively higher � compared

to j�ij�s making K2 and K3 are high in absolute value. As discussed both agents would like

the other agent to think that he has the lowest type as the marginal utility of the agent

decreases with x: Hence, it is not possible to have an informative horizontal communication

if K2 and K3 are high in absolute value.

However, for parameter con�gurations making K2 and K3 are low in absolute value,

we have informative horizontal communication. Under these parameters, we have the case

(III) depicted in Figure 10. The parameter con�gurations with relatively lower � compared



113

to j�ij�s make K2 and K3 are low in absolute value. If that is the case, then we have a

two-partition equilibrium making the horizontal communication informative.

4.6 Conclusion

In this chapter, we study strategic information �ows and communication in organizations.

Speci�cally, we look at two communication protocols, vertical and horizontal communica-

tion, between uninformed principal and two agents who are privately informed about an

independent aspect of the state of the world. In addition, we allow for asymmetric interde-

pendencies between the agents. We show that strategic interdependencies between agents

in the form on complementarities and substitutabilities lead informed agents to distort their

information in communications.

Under the vertical communication protocol, there is a centralized decision mechanism in

which the principal makes the production decisions for the agents after observing the private

messages of the agents. We show that, similar to Crawford and Sobel (1982), Rantakari

(2008), Alonso et al. (2008) and Bora (2010), the Perfect Bayesian Equilibrium of the

vertical communication protocol takes form of a partition equilibrium, in which the state

space is partitioned into intervals and the agents report the interval their private information

belong to.

Under the horizontal communication protocol, there is a decentralized decision mech-

anism in which the agents communicate with each other via cheap talk then make the

production decisions for their own departments. We show that the agents fully reveal

their private information when there is no strategic interaction between them. However,

when there are strategic interactions, the Perfect Bayesian Equilibrium has at most two

on-the-equilibrium path conditional expectations for each agent. If the agents are strategic
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complements, then an informative horizontal communication is not possible as each agent

want the other one to think that he has the highest type. On the other hand, when agents

are strategic substitutes, there exists parameter con�gurations in which the cost parame-

ter � is lower compared to j�ij�s such that the equilibrium takes form of a two-partition

equilibrium.

There can be multiple lines for future research. In this chapter, we study asymmetric

interdependencies between two agents. It would be interesting to look at the communication

between more than two agents. Moreover, we only study two communication protocols.

Other communication structures can also be analyzed. For example, in an alternative

communication structure, agents can communicate via cheap talk and then one of the

agents makes the production decision for both divisions. Furthermore, more rounds of

communications can be added to the model. Additionally, the model can be analyzed by

using sequential communication protocols.
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Appendix

In this appendix, we provide formal proofs of the propositions in Chapter 3.

Proof of Proposition 24. If we take the derivative of player i�s surplus with respect to

his choice variable, we get

@Si
@zik

=
�

2
rk +

�2

2
(
2� zki � zji

2
)rj �

�

2
rj �

�2

2
(
2� zki � zji

2
)rk

=
�

2
(rk � rj)�

�2

2
(
2� zki � zji

2
)(rk � rj)

= (rk � rj)(
�

2
� �

2

2
(
2� zki � zji

2
))

=
�

2
(rk � rj)(1� �(

2� zki � zji
2

))

Notice that
2� zki � zji

2
is the link strength between player k and player j: So, if 0 < � < 1

, then

1� �(2� zki � zji
2

) > 0

Therefore, if (rk � rj) > 0, then
@Si
@zik

> 0, making the surplus of player i increasing in zik:

So, player i will invest all of his time with player k:Similarly, if (rk�rj) < 0, then
@Si
@zik

< 0,

making the surplus of player i decreasing in zik: So, player i will invest all of his time with

player j:

Since r2 > r3; player 1 will choose z12 = 1; since r1 > r3; player 2 will choose z21 = 1 and

since r1 > r2; player 3 will choose z31 = 1, making the link strengths between the players

�12 =
z12 + z21

2
= 1

�13 =
z13 + z31

2
=
1

2

�23 =
z23 + z32

2
= 0
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Proof of Lemma 25. Without loss of generality, let �23 be the weakest link and �12 the

strongest. Then �23 � 1=2 � �12. Let z32 = 2�23 and z23 = 0; so that (7) holds. Then let

z31 = 1� z32, and let z13 be such that (8) holds, i.e.,

�13 =
1

2
z13 +

1

2
(1� z32) =

1

2
z13 +

1

2
(1� 2�23)

This means

z13 = 2(�13 + �23)� 1 (33)

Since 1=2 � �12 � 1 and �12 + �23 + �13 = 3
2 , we have

�13 + �23 + 1 � �13 + �23 + �12 = 3=2 � �13 + �23 +
1

2

and so

1

2
� �13 + �23 � 1

This means (33) lies between 0 and 1. Finally, let z12 = 1� z13 and let z21 be such that (6)

holds, i.e.,

�12 =
1

2
z12 +

1

2
z21 = �12 =

1

2
(1� z13) +

1

2
z21 =

1

2
(1� (2(�13 + �23)� 1)) +

1

2
z21

so that

z21 = 2 (�12 + �13 + �23)� 2 = 1

We have found all the zij we are looking for.
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Proof of Proposition 26. The social planner�s problem is equivalent to maximizing

S = r1

�
1 + �(�12 + �13)

�
1 + �(

3

2
� �12 � �13)

��
+ r2

�
1 + �(

3

2
� �13) (1 + ��13)

�
+r3

�
1 + �(

3

2
� �12) (1 + ��12)

�

by choosing the link strengths �12; �13 subject to 0 � �12 � 1 and 0 � �13 � 1

The Hessian matrix is given by

H =

2664�2�2 (r1 + r3) �2�2r1

�2�2r1 �2�2 (r1 + r2)

3775

As �2�2 (r1 + r3) < 0 and det (H) = 4�2 (r1r2 + r1r3 + r2r3) > 0; the Hessian matrix is

negative-de�nite. Thus, the objective function is strictly concave in the decision variables.

We know that the social planner�s objective function S is continuous function over a compact

set de�ned by 0 � �12 � 1 and 0 � �13 � 1. Thus, the solution to the problem exists.

Hence, the solution is unique.

Proof of Proposition 27. Let ��12; �
�
13; �

�
23 be the socially optimal link structure for

given r1 > r2 > r3 > 0 and 0 < � < 1: So, for all � > 0

S(��12; �
�
13; �

�
23)� S(��12; ��13 + �; ��23 � �) > 0

��
�
r2 � r1)(1� ���12) + �2�(r1 + r2

�
(��13 � ��23 � �) > 0

�(r1 + r2)(�
�
13 � ��23 � �) > (r1 � r2)(1� ���12)

��13 � ��23 � � >
(r1 � r2)(1� ���12)

�(r1 + r2)

��13 � ��23 >
(r1 � r2)(1� ���12)

�(r1 + r2)
� �
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Since ��12 6 1 and � < 1; we have (1� ���12) > 0: Thus,

(r1 � r2)(1� ���12)
�(r1 + r2)

> 0

since r1 > r2. So,

��13 � ��23 � � >
(r1 � r2)(1� ���12)

�(r1 + r2)

��13 � ��23 >
(r1 � r2)(1� ���12)

�(r1 + r2)
� �

Let 0 < � <
(r1 � r2)(1� ���12)

�(r1 + r2)
: Then,

��13 � ��23 >
(r1 � r2)(1� ���12)

�(r1 + r2)
� � > 0

��13 > �
�
23

Similarly, let ��12; �
�
13; �

�
23 be the socially optimal link structure for given r1 > r2 > r3 > 0

and 0 < � < 1: So, for all � > 0

S(��12; �
�
13; �

�
23)� S(��12 + �; ��13 � �; ��23) > 0

��
�
r3 � r2)(1� ���23) + �2�(r2 + r3

�
(��12 � ��13 � �) > 0

�(r2 + r3)(�
�
12 � ��13 � �) > (r2 � r3)(1� ���23)

��12 � ��13 � � >
(r2 � r3)(1� ���23)

�(r2 + r3)

��12 � ��13 >
(r2 � r3)(1� ���23)

�(r2 + r3)
� �
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Since ��23 6 1 and � < 1; we have (1� ���23) > 0: Thus,

(r2 � r3)(1� ���23)
�(r2 + r3)

> 0

since r1 > r2. So,

��12 � ��13 � � >
(r2 � r3)(1� ���23)

�(r2 + r3)

��12 � ��13 >
(r2 � r3)(1� ���23)

�(r2 + r3)
� �

Let 0 < � <
(r2 � r3)(1� ���23)

�(r2 + r3)
: Then,

��12 � ��13 >
(r2 � r3)(1� ���23)

�(r2 + r3)
� � > 0

��12 > �
�
13

Proof of Proposition 28. As we have pointed it out previously, Kuhn-Tucker conditions

will be su¢ cient for global maxima.

Let us write the Lagrangian function as follows.

L = r1 (1 + �(�12 + �13) (1 + ��23)) + r2 (1 + �(�12 + �23) (1 + ��13))

+ r3 (1 + �(�13 + �23) (1 + ��12))

+ �1(
3

2
� �12 � �13 � �23) + �2(1� �12) + �3(1� �13) + �4(1� �23)

Thus, the solutions of the maximization of the social welfare problem is given by the fol-
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lowing system of equations:

@L
@�12

= r1� (1 + ��23) + r2� (1 + ��13) + r3�
2(�13 + �23)� �1 � �2 � 0

@L
@�12

�12 = 0

@L
@�13

= r1� (1 + ��23) + r2�
2 (�12 + �23) + r3�(1 + ��12)� �1 � �3 � 0

@L
@�13

�13 = 0

@L
@�23

= r1�
2 (�12 + �13) + r2� (1 + ��13) + r3�(1 + ��12)� �1 � �4 � 0

@L
@�23

�23 = 0

�12 + �23 + �13 =
3

2

0 6 �12 6 1

0 6 �13 6 1

0 6 �23 6 1

0 � �2

0 � �3

0 � �4

Since r1 > r2 > r3 > 0 and by Proposition 27, the solution is characterized by four cases.

Case 1: Interior Solution: 0 < �23 < �13 < �12 < 1

The restrictions on the system of equations are:

�2 = �3 = �4 = 0

@L
@�12

=
@L
@�13

=
@L
@�23

= 0
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So, the solution is

�12 =
4r1r2 + r3(r1 + r2)(3� � 2)
4�(r1r2 + r1r3 + r2r3)

�13 =
4r1r3 + r2(r1 + r3)(3� � 2)
4�(r1r2 + r1r3 + r2r3)

�23 =
4r2r3 + r1(r2 + r3)(3� � 2)
4�(r1r2 + r1r3 + r2r3)

Notice that, since r1 > r2 > r3, we have �23 < �13 < �12. So, we only need to check 0 < �23

and �12 < 1.

For 0 < �23, we need

r1(r2 + r3)

r2r3
<

4

2� 3� if � <
2

3

For �12 < 1, we need

r3(r1 + r2)

r1r2
>
4(1� �)
2 + �

Now, let�s assume

r2
r1
>
2� 3�
2� �

and

r2
r3
<
2 + �

2� �

hold. Then, we have

r1
r2
<
2� �
2� 3�

and

r2 + r3
r3

<
4

2� �
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.So for � < 2
3 we have

r1
r2

r2 + r3
r3

<
2� �
2� 3�

4

2� �
r1(r2 + r3)

r2r3
<

4

2� 3�

Moreover, when

r2
r1
>
2� 3�
2� �

and

r2
r3
<
2 + �

2� �

hold, we have

r1 + r2
r1

>
4� 4�
2� �

and

r3
r2
>
2� �
2 + �

Then, as 0 < � < 1, we obtain

r1 + r2
r1

r3
r2
>
4� 4�
2� �

2� �
2 + �

r3(r1 + r2)

r1r2
>
4(1� �)
2 + �

Case 2: 0 < �23 < �13 < �12 = 1

The restrictions on the system of equations are:

�3 = �4 = 0
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@L
@�12

=
@L
@�13

=
@L
@�23

= 0

�23 + �13 =
1

2

So, the solution is

�12 = 1

�13 =
r1(2� �) + r2(3� � 2)

4�(r1 + r2)

�23 =
r1(3� � 2) + r2(2� �)

4�(r1 + r2)

Again, notice that �23 < �13 < �12 = 1 for r1 > r2 > r3:

For 0 < �23 and �13 < 1, we need

r2
r1
>
2� 3�
2� � if � <

2

3

For �2 = r2(1 + 2��13 �
3�

2
)� r3(1 +

�

2
) > 0; we need

r3(r1 + r2)

r1r2
6 4(1� �)

2 + �

Notice that

r1
r2
<
2� �
2� 3� () r1

r1 + r2
<

2� �
4(1� �)

Thus, from the previous two equations, we obtain
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r3(r1 + r2)

r1r2
6 4(1� �)

2 + �

r3(r1 + r2)

r1r2

r1
r1 + r2

6 4(1� �)
2 + �

2� �
4(1� �)

r3
r2
6 2� �
2 + �

r2
r3
> 2 + �

2� �

Case 3: 0 = �23; �13 = 1
2 ; �12 = 1

The restrictions on the system of equations are:

�3 = �4 = 0

@L
@�12

=
@L
@�13

= 0

@L
@�23

6 0

So, the solution is

�12 = 1

�13 =
1

2

�23 = 0

For �2 = r2�(1� �
2 )� r3�(1 +

�
2 ) > 0; we need

r2
r3
> 2 + �

2� �
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For @L
@�23

6 0, we need
r2
r1
6 2� 3�
2� �

Notice that

r2
r3
> 2 + �

2� � () r2 + r3
r3

> 4

2� �

From r2
r1
6 2�3�

2�� ;
r2+r3
r3

> 4
2�� and

r2+r3
r3

> 0, we have

r1
r2
> 2� �
2� 3� ()

r1(r2 + r3)

r2r3
> 2� �
2� 3�

r2 + r3
r3

> 2� �
2� 3�

4

2� � =
4

2� 3� if � <
2

3

r1(r2 + r3)

r2r3
> 0 >

4

2� 3� if � >
2

3

Thus, we get

r1(r2 + r3)

r2r3
> 4

2� 3�

Moreover,

r2
r1
6 2� 3�
2� � () r1

r1 + r2
> 2� �
4(1� �)

Thus, from r1
r1+r2

> 2��
4(1��) and

r2
r3
> 2+�

2�� , we have

r1
r1 + r2

r2
r3
6 2� �
4(1� �)

2 + �

2� �
r1r2

r3(r1 + r2)
6 2 + �

4(1� �)
r3(r1 + r2)

r1r2
6 4(1� �)

2 + �

Case 4: 0 = �23; 0 < �13 < �12 < 1
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The restrictions on the system of equations are:

�2 = �3 = �4 = 0

@L
@�12

=
@L
@�13

= 0

@L
@�23

6 0

So, the solution is

�12 =
r2(2 + 3�)� r3(2� 3�)

4�(r2 + r3)

�13 =
r2(3� � 2) + r3(2 + 3�)

4�(r2 + r3)

�23 = 0

For �13 = 3
2 � �12 and �12 < 1; we have

1
2 < �13:Thus, we need

r2
r3
<
2 + �

2� �

For @L
@�23

6 0, we need
r1(r2 + r3)

r2r3
> 4

2� 3�

Note that we have

r2
r3
<
2 + �

2� �
r2 + r3
r3

<
4

2� �
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Then,

4

2� 3� 6
r1(r2 + r3)

r2r3
6 r1
r2

(r2 + r3)

r3
<
r1
r2

4

2� �
4

2� 3� <
r1
r2

4

2� �
r2
r1
>
2� 3�
2� �

Proof of Proposition 29. Since

@�ij
@ri

=
rj
2rk(6� 3�)

4�(r1r2 + r1r3 + r2r3)2
> 0

@�ij
@rj

=
ri
2rk(6� 3�)

4�(r1r2 + r1r3 + r2r3)2
> 0

and

@�ij
@rk

=
(ri + rj)rirj(3� � 6)
4�(r1r2 + r1r3 + r2r3)2

< 0

the strength of the link �ij is increasing in ri and rj and decreasing in rk.

Proof of Proposition 30. If we take the derivative of player 1�s surplus with respect to

his choice variable, we get

@S1
@z12

= r2(z21 � �(1� z21)(1� z31)z31)� r3(z31 � �(1� z21)(1� z31)z21)
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Similarly ,

@S2
@z21

= r1(z12 � �(1� z12)z31(1� z31))� r3((1� z31)� �(1� z12)z31z12)

@S3
@z31

= r1((1� z12)� �z12z21(1� z21))� r2((1� z21)� �z12z21(1� z12)

Notice that if

r2(z21 � �(1� z21)(1� z31)z31)� r3(z31 � �(1� z21)(1� z31)z21) > 0

then @S1
@z12

> 0 and z12 = 1:Thus,

@S2
@z21

= r1(z12 � �(1� z12)z31(1� z31))� r3((1� z31)� �(1� z12)z31z12)

= r1 � r3(1� z31) > 0

making z21 = 1: Moreover, if z12 = 1 and z21 = 1 then

@S3
@z31

= r1((1� z12)� �z12z21(1� z21))� r2((1� z21)� �z12z21(1� z12) = 0

So, z31 can take any value between 0 and 1. That is z31 : free: Lastly, we have to check

@S1
@z12

= r2(z21 � �(1� z21)(1� z31)z31)� r3(z31 � �(1� z21)(1� z31)z21) = r2 � r3z31 > 0

under z12 = 1, z21 = 1 and z31 : free: This is the �rst set of Nash equilibria.

On the other hand, if

r2(z21 � �(1� z21)(1� z31)z31)� r3(z31 � �(1� z21)(1� z31)z21) < 0
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then @S1
@z12

< 0 and z12 = 0:Thus,

@S2
@z21

= r1(z12 � �(1� z12)z31(1� z31))� r3((1� z31)� �(1� z12)z31z12)

= �r1�(1� z12)z31(1� z31)� r3(1� z31) < 0

making z21 = 0: Moreover, if z12 = 0 and z21 = 0 then

@S3
@z31

= r1((1� z12)� �z12z21(1� z21))� r2((1� z21)� �z12z21(1� z12)

= r1 � r2 > 0

So, z31 = 1:

Lastly, we have to check

@S1
@z12

= r2(z21 � �(1� z21)(1� z31)z31)� r3(z31 � �(1� z21)(1� z31)z21) = �r3 < 0

under z12 = 0, z21 = 0 and z31 = 1: This is the second set of Nash equilibria.

Proof of Proposition 31. Since the social planner maximizes the objective function

over the set

zi = fzikgk 6=i

0 � zik � 1 for all k 2 N n figX
k 6=i

zik = 1

which is compact and the objective function S is a continuous over this compact set, the

problem has a solution.
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Proof of Lemma 32. As Kuhn-Tucker conditions are necessary for optimality, the

following holds for all socially optimal outcome.

@L
@zji

= ri�((1� zik)(1 + �(1� zki)(1� zji))� �(1� zki)(zikzki + (1� zik)zji))

+ rk�(�(1� zki)(1 + �(1� zik)zji) + �(1� zik)(zikzki + (1� zik)(1� zji)))

+ rj�(zki � zik)(1 + �zikzki))� �j

Lets assume zij = 0: This means zik = 1: For any 0 6 zki 6 1;

@L
@zji

= ��(1� zki)(zikzki + (1� zik)zji))� rk�(1� zki)� rj�(1� zki)(1 + �zki))� �j

= �(�(1� zki)(zikzki + (1� zik)zji)) + rk�(1� zki) + rj�(1� zki)(1 + �zki)) + �j) 6 0

as each term in the brackets is positive. Thus, we should have zji = 0:

Proof of Lemma 33. Let�s assume that Case 4 where z12 = 1, 0 < z�21 < 1, z31 = 0 is

the socially optimum outcome.

S(1; z�21; 0) = r1(1 + �z
�
21(1 + �(1� z�21))) + r2(1 + �) + r3(1 + �(1� z�21)(1 + �z�21))

S(z�21; 1; 1) = r1(1 + �) + r2(1 + �z
�
21(1 + �(1� z�21))) + r3(1 + �(1� z�21)(1 + �z�21))

S(1; z�21; 0)� S(z�21; 1; 1) = �� (r1 � r2) (1� �z�21) (1� z�21) 6 0

S(1; z�21; 0) 6 S(z�21; 1; 1)

Thus, Case 4 cannot be socially optimal as it is dominated by z12 = z�21, z21 = 1, z
�
31 = 1
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for r1 > r2.

Let�s assume that Case 5 where z12 = 0, z21 : free, z31 = 0 is the socially optimum outcome.

S(0; z21; 1) = r1(1 + �) + r2 + r3(1 + �)

S(1; 1; z31) = r1(1 + �) + r2(1 + �) + r3

S(0; z21; 1)� S(1; 1; z31) = �� (r2 � r3) 6 0

S(0; z21; 1) 6 S(1; 1; z31)

Thus, Case 5 cannot be socially optimal as it is dominated by z12 = 1, z21 = 1, z31 : free

for r2 > r3.

Let�s assume that Case 6 where z12 = 0, z21 = 0, 0 < z�31 < 1 is the socially optimum

outcome.

S(0; 0; z�31) = r1(1 + �z
�
31(1 + �(1� z�31))) + r2(1 + �(1� z�31)(1 + �z�31)) + r3(1 + �)

S(1; z�31; 0) = r1(1 + �z
�
31(1 + �(1� z�31))) + r2(1 + �) + r3(1 + �(1� z�31)(1 + �z�31))

S(0; 0; z�31)� S(1; z�31; 0) = ��z�31 (r2 � r3) (�z�31 � � + 1) 6 0

S(0; 0; z�31) 6 S(1; z�31; 0)

Thus, Case 6 cannot be socially optimal as it is dominated by z12 = 1, z21 = z�31, z
�
31 = 0

for r2 > r3.
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Let�s assume that Case 7 where z12 : free, z21 = 0, z31 = 0 is the socially optimum outcome.

S(z12; 0; 0) = r1 + r2(1 + �) + r3(1 + �)

S(1; 1; z31) = r1(1 + �) + r2(1 + �) + r3

S(z12; 0; 0)� S(1; 1; z31) = �� (r1 � r3) 6 0

S(z12; 0; 0) 6 S(1; 1; z31)

Thus, Case 7 cannot be socially optimal as it is dominated by z12 = 1, z21 = 1, z31 : free

for r2 > r3.

Proof of Proposition 34.

We can rewrite the social surplus in the following way:

S = r1 + r2 + r3 + � (r1 + r2) (z12z21 + �(1� z12)z31(1� z21)(1� z31))

+ � (r1 + r3) ((1� z12)z31 + �z12z21(1� z21)(1� z31))

+ � (r2 + r3) ((1� z21)(1� z31) + �(1� z12)z12z21z31)

Since r1 + r2 > r1 + r3 > r2 + r3; the coe¢ cients of these variables should also be ranked

accordingly at the surplus-maximizing outcome. Otherwise, social surplus can be increased

by reallocation of links strengths. Thus, we should have

z12z21 + �(1� z12)z31(1� z21)(1� z31) > (1� z12)z31 + �z12z21(1� z21)(1� z31) (35)
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and

(1� z12)z31 + �z12z21(1� z21)(1� z31) > (1� z21)(1� z31) + �(1� z12)z12z21z31 (36)

From 35, we have

z12z21 + �(1� z12)z31(1� z21)(1� z31) > (1� z12)z31 + �z12z21(1� z21)(1� z31)

z12z21 � �z12z21(1� z21)(1� z31) > (1� z12)z31 � �(1� z12)z31(1� z21)(1� z31)

z12z21 (1� �(1� z21)(1� z31)) > (1� z12)z31 (1� �(1� z21)(1� z31))

As (1� �(1� z21)(1� z31)) > 0 at any surplus-maximizing outcome by Proposition 33, we

have

z12z21 = �12 > (1� z12)z31 = �31 (37)

From 36, we have

(1� z12)z31 + �z12z21(1� z21)(1� z31) > (1� z21)(1� z31) + �(1� z12)z12z21z31

(1� z12)z31 � �(1� z12)z12z21z31 > (1� z21)(1� z31)� �z12z21(1� z21)(1� z31)

(1� z12)z31 (1� �z12z21) > (1� z21)(1� z31) (1� �z12z21)

As 1��z12z21 > 0 at any surplus-maximizing outcome except Case 3, where �31 = �23 = 0;

by Proposition 33, we have

(1� z12)z31 = �31 > (1� z21)(1� z31) = �23 (38)



134

Therefore, by 37 and 38, we have

�12 > �31 � �23

Proof of Proposition 35. Using the �rst �rst-order condition 42a, we will get z12 > 1
2

if the following holds:

0 <
(r1 + r2)(z21 � �(1� z21)(1� z31)z31)

2�z21z31(r2 + r3)
+
(r1 + r3)(�z31 + �(1� z21)(1� z31)z21)

2�z21z31(r2 + r3)

As 2�z21z31(r2 + r3) > 0; we need

0 < (r1 + r2)(z21 � �(1� z21)(1� z31)z31) + (r1 + r3)(�z31 + �(1� z21)(1� z31)z21)

0 < (z21 � z31) r1 (1 + �(1� z21)(1� z31)) + z21 (r2 + r3�(1� z21)(1� z31)) (39)

�z31 (r3 + r2�(1� z21)(1� z31))

Notice that as r2 > r3;we have

r2 + r3�(1� z21)(1� z31) > r3 + r2�(1� z21)(1� z31)

Therefore, if z21 � z31; the inequality in 39 holds and z12 > 1
2 :

Moreover, we have the following inequality 37 from the proof of Proposition 34:

z12z21 > (1� z12)z31
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Thus, if z21 < z31; then we should have

z12 > (1� z12)

z12 >
1

2

Hence, we have z12 > 1
2 for any 0 < z21 < 1 and 0 < z31 < 1:

Similarly, using the second �rst-order condition 42b, we will get z21 > 1
2 if the following

holds:

0 <
(r1 + r2)(z12 � �(1� z31)(1� z12)z31)

2�z12(1� z31)(r1 + r3)
+
(r2 + r3)(�(1� z31) + �z12(1� z12)z31)

2�z12(1� z31)(r1 + r3)

As 2�z12(1� z31)(r1 + r3) > 0; we need

0 < (r1 + r2)(z12 � �(1� z31)(1� z12)z31) + (r2 + r3)(�(1� z31) + �z12(1� z12)z31)

0 < (z12 � (1� z31)) r2 (1 + �(1� z12)z31) + z12 (r1 + r3�(1� z12)z31) (40)

�(1� z31) (r3 + r1�(1� z12)z31)

Notice that as r2 > r3;we have

r1 + r3�(1� z12)z31 > r3 + r1�(1� z12)z31

Therefore, if z12 � 1� z31; the inequality in 40 holds and z21 > 1
2 :

Moreover, we obtain the following inequality 38 from the proof of Proposition 34:

z12z21 > (1� z21)(1� z31)
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Thus, if z12 < 1� z31; then we should have

z21 > (1� z21)

z21 >
1

2

Hence, we have z21 > 1
2 for any 0 < z12 < 1 and 0 < z31 < 1:

Lastly, using the third �rst-order condition 42c, we will get z31 > 1
2 if the following

holds:

0 <
(r1 + r3)(1� z12 � �(1� z21)z12z21)

2�(1� z12)(1� z21)(r1 + r2)
+
(r2 + r3)(�(1� z21) + �(1� z12)z12z21)

2�(1� z12)(1� z21)(r1 + r2)

As 2�(1� z12)(1� z21)(r1 + r2) > 0; we need

0 < (r1 + r3)(1� z12 � �(1� z21)z12z21) + (r2 + r3)(�(1� z21) + �(1� z12)z12z21)

0 < ((1� z12)� (1� z21)) r3 (1 + �z12z21) + (1� z12) (r1 + r2�z12z31) (41)

�(1� z21) (r2 + r1�z12z21)

Notice that as r1 > r2;we have

r1 + r2�z12z31 > r2 + r1�z12z31

Therefore, if 1� z12 � 1� z21; the inequality in 41 holds and z31 > 1
2 :

Moreover, we have the following inequality by combining 37 and 38 from the proof of

Proposition 34:

(1� z12)z31 > (1� z21)(1� z31)
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Thus, if 1� z12 < 1� z21; then we should have

z31 > (1� z31)

z31 >
1

2

Hence, we have z31 > 1
2 for any 0 < z12 < 1 and 0 < z21 < 1:

Therefore, we conclude that for any interior solution, we must have 1
2 < z12 < 1,

1
2 < z21 < 1, 12 < z31 < 1.

Proof of Proposition 36. By Lemma 32 and 33, we know that there are only 3 possible

solutions for the social planner�s problem.

Case 1: Interior Solution: 0 < z12 < 1, 0 < z21 < 1, 0 < z31 < 1

The restrictions on the system of equations are:

�1 = �2 = �3 = 0

@L
@z12

=
@L
@z21

=
@L
@z31

= 0

From the partial derivatives, we get:

z12 =
1

2
+
(r1 + r2)(z21 � �(1� z21)(1� z31)z31)

2�z21z31(r2 + r3)
+
(r1 + r3)(�z31 + �(1� z21)(1� z31)z21)

2�z21z31(r2 + r3)

(42a)

z21 =
1

2
+
(r1 + r2)(z12 � �(1� z31)(1� z12)z31)

2�z12(1� z31)(r1 + r3)
+
(r2 + r3)(�(1� z31) + �z12(1� z12)z31)

2�z12(1� z31)(r1 + r3)

(42b)

z31 =
1

2
+
(r1 + r3)(1� z12 � �(1� z21)z12z21)

2�(1� z12)(1� z21)(r1 + r2)
+
(r2 + r3)(�(1� z21) + �(1� z12)z12z21)

2�(1� z12)(1� z21)(r1 + r2)

(42c)
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There is no interior solution for the social planner�s problem. To see this, lets take a

look at the case where r1 = r2 = r3 and � = 1. Then, under these restrictions, the interior

solution to the social planner�s problem is

z12 = z21 = z31 =
1

2

Under these investment levels, the total surplus is

S(z12; z21; z31) = S(
1

2
;
1

2
;
1

2
) =

21

4
r1

On the other hand, if player 2 and player 3 choose to invest all their time in player 1, and

player 1 allocates his time equally between player 2 and player 3, we have

z12 =
1

2
; z21 = z31 = 1

Under this corner solution, the total surplus is

S(z12; z21; z31) = S(
1

2
; 1; 1) =

11

2
r1

Therefore, we have

S(
1

2
; 1; 1) > S(

1

2
;
1

2
;
1

2
)

for r1 = r2 = r3 and � = 1, and the interior solution cannot be optimal.

Notice that under � = 1, there is no decay in indirect communication. As � decreases,

the bene�ts from indirect communication decreases. Hence, the social planner has less

incentive to allocate investment to indirect communication.
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Lets take a look at how �rst-order conditions vary with changes in the di¤erences between

the players� information levels ri�s. In the following graph, the �rst order conditions 42a

are plotted for di¤erent values for r1; r2; r3 where � is held constant at 1. We know from

Proposition 35 that for any interior solution, we have
1

2
< z12 < 1,

1

2
< z21 < 1 and

1

2
< z31 < 1: Thus, the graph restricted to this area. The �rst order conditions 42a,

42b and 42c for r1 = r2 = r3 = 1 and � = 1 are plotted by using blue, red and green

respectively. The �rst order conditions 42a, 42b and 42c for r1 = 2; r2 = 1:5; r3 = 1 and

� = 1 are plotted by using yellow, purple and pink respectively. As the di¤erences between

r1; r2 and r3 increases, the �rst order condition 42a shifts upwards from blue to yellow,

and the �rst order condition 42b shifts right from green to purple. On the other hand,

as the di¤erences between r1; r2 and r3 increases, the �rst order condition 42c shifts down

from red to pink. This shift makes 42c move away from the intersection of 42a and 42b.

Therefore, 42a, 42b and 42c do not intersect in the region of
1

2
< z12 < 1,

1

2
< z21 < 1

and
1

2
< z31 < 1: Therefore, there is no interior solution to the social planner�s problem.

Case 2: 0 < z12 < 1, z21 = z31 = 1.

The restrictions on the system of equations are:

�1 = 0

@L
@z12

=
@L
@z21

=
@L
@z31

= 0
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Figure 12: First order conditions under di¤erent r1; r2 and r3 levels

For z21 = z31 = 1, we get

@L
@z12

= r2(1 + �(1� z12)� �z12) + r3(�1� �z12 + �(1� z12)) = 0

r2(1 + �)� r3(1� �) = 2�(r2 + r3)z12

z12 =
1

2
+

r2 � r3
2�(r2 + r3)
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As r2 > r3, z12 > 0. So, for z12 < 1, we need to have

z12 < 1

1

2
+

r2 � r3
2�(r2 + r3)

< 1

r2(1� �) < r3(1 + �)

r2
r3
<
1 + �

1� �

We need to check �2 > 0 and �3 > 0:

@L
@z21

= r1�z12 + r2�z12(1 + �(1� z12)) + r3�2z12(1� z12)� �2 = 0

�2 = r1�z12 + r2�z12(1 + �(1� z12)) + r3�2z12(1� z12) > 0

for all 0 < z12 < 1.

@L
@z31

= r1�(1� z12) + r2�2(1� z12)z12 + r3�(1� z12)(1 + �)� �3 = 0

�3 = r1�(1� z12) + r2�2(1� z12)z12 + r3�(1� z12)(1 + �) > 0

for all 0 < z12 < 1.

Case 3: z12 = z21 = 1, z31 : free.

The restrictions on the system of equations are:

�3 = 0

@L
@z12

=
@L
@z21

= 0
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For z12 = 1, z21 = 1, z31 = 0 to be equilibrium, we should have �1 > 0:

@L
@z12

= r1� + r2�(1� �)� �1 = 0

, then we have

�1 = �r1 + �r2(1� �) > 0

as � < 1: Moreover, we must have �2 > 0

@L
@z21

= r1�(1 + � � 2�) + r3�(�1 + � � 2�)� �2 = 0

�2 = r1�(1� �)� r3�(1 + �) > 0

r1�(1� �) > r3�(1 + �)

r1
r3
> 1 + �

1� �

The following �gure summaries conditions where Case 2 and Case 3 are optimum. Notice

that the condition for Case 2, r2r3 <
1+�
1�� , holds in Region 1 and Region 2, whereas the

condition for Case 3, r1r3 >
1+�
1�� , holds in Region 2 and Region 3. Thus, we have to check

which set of strategy provides higher total social surplus in Region 2. Assume r1
r3
> 1+�

1��

and r2
r3
< 1+�

1�� so that the set of strategies is in Region 2. Then, the social surplus under

the strategy z12 = 1
2 +

r2�r3
2�(r2+r3)

, z21 = z31 = 1(Case 2) is

S(
1

2
+

r2 � r3
2�(r2 + r3)

; 1; 1) = r1(1+�)+r2(1+�z12(1+�(1�z12)))+r3(1+�(1�z12)(1+�z12))

whereas the social surplus under the strategy z12 = z21 = 1, z31 : free (Case 3) is

S(1; 1; z31) = r1(1 + �) + r2(1 + �) + r3
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Figure 13: Nash equilibrium for di¤erent r1 and r2 levels

Thus,

S(1; 1; z31)� S(
1

2
+

r2 � r3
2�(r2 + r3)

; 1; 1) = r2�(1� z12(1 + �(1� z12)))� r3�(1� z12)(1 + �z12)

= �(1� z12)(r2 � r3 � �z12(r2 + r3))

= �(
1

2
� r2 � r3
2�(r2 + r3)

)(r2 � r3 � �(
1

2
+

r2 � r3
2�(r2 + r3)

)(r2 + r3))

= � 1

4 (r2 + r3)
(r3 � r2 + �r2 + �r3)2 < 0

S(1; 1; z31) < S(
1

2
+

r2 � r3
2�(r2 + r3)

; 1; 1)

if r1r3 >
1+�
1�� and

r2
r3
< 1+�

1�� . Therefore, Case 2 where z12 =
1
2 +

r2�r3
2�(r2+r3)

, z21 = z31 = 1 is
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optimal in Region 2. As a result, the optimal solutions are divided into two groups:

� For r2r3 <
1+�
1�� , the optimal solution is given by z12 =

1
2 +

r2�r3
2�(r2+r3)

, z21 = z31 = 1.

� For r2r3 >
1+�
1�� , the optimal solution is given by z12 = z21 = 1, z31 : free
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