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ABSTRACT OF THE DISSERTATION

Uses of Classification Error Probabilities in the

Three-Step Approach to Estimating Cognitive

Diagnosis Models

by Charles Joseph Iaconangelo

Dissertation Director: Dr. Jimmy de la Torre

Classification error probabilities (CEPs) are estimates of the amount of misclas-

sification in the measurement model conditional on the true latent class member-

ships. CEPs can be used in several ways to improve the inferences drawn from

cognitive diagnosis models (CDMs). To develop methodologies that facilitate the

use of CDMs in practical research, this dissertation uses CEPs to accomplish

three objectives: (1) to examine the conditional classification accuracy and gen-

eralizability of a cognitively diagnostic assessment; (2) to introduce correction

weights that can improve a three-step approach for latent-class regression, which

relate latent class memberships to predictor variables, and (3) to apply the same

correction weights to select the best subset of predictor variables in the context

of latent-class regression.

In the first study, an application of CEPs fills a gap in literature on CDM

validity by serving as an index of classification accuracy conditional on the latent
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class memberships. This index can also be extended to predict the classification

accuracy of the assessment for a different population. Results show that the

proposed index not only recovers the empirical values, but outperforms existing

procedures based on the Monte Carlo approach.

In the second study, CEPs are used to improve the inferences in latent-class

regression. Compared to the one-step procedure, which estimates the measure-

ment model and regression parameters simultaneously, the three-step procedure is

desirable from an applied researchers perspective because it simplifies latent-class

regression by implementing the estimations involved in separate steps. However,

it also leads to parameter estimation bias. This study uses CEP-derived weights

to improve parameter estimation in various types of latent-class regression.

Finally, the third study extends the latent-class regression in the second study

by incorporating a regularization procedure that permits variable selection. Re-

sults show that incorporating measurement error (as measured by CEP) in the

variable selection process leads to a subset of nonredundant variables that more

clearly shows the relationship between predictors and examinee classification. In

addition, compared to the standard approach, using the CEP-based weights leads

to fewer instances of estimation noncovergence.

With a general aim to address needs in conditional classification accuracy,

correcting bias in parameter estimation, and high-dimension variable selection in

the context of CDMs, this dissertation uses CEPs to accomplish three objectives:

(1) to examine the conditional classification accuracy and generalizability of the

assessment, (2) introduce correction weights for the three-step approach that

result in improved parameter estimation, and (3) apply these correction weights

to regularized latent-class regression to select variables.

iii



Acknowledgements

I would like to acknowledge the time and effort invested in me by my advisor

and mentor, Dr. Jimmy de la Torre. Thank you, Jimmy, for giving an undergrad

liberal arts major a chance in a statistical PhD program. I never imagined that

I would be doing half of what I’m doing now.

Likewise, I owe a huge debt of gratitude to my other mentor, Dr. Drew

Gitomer, for all the subtle and not-so-subtle instruction I received. In spite of all

the measurement work I did for him, I still feel like I got way more out of him

than he ever got out of me.

My colleagues made the office an enjoyable and productive place to work - to

Nate, Wenchao, Ragip, Lokman, Mehmet, Soo Lee, Eugene, Simon, and Scarlett

- thank you for always being willing to discuss my research and offer your input.

Mom and Dad, I would never have done this without your help. As long as I

can remember, you encouraged me to pursue my education.

Amelia, mi amor, thank you for supporting me through all of this. I won’t

forget it.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Conditional Classification Accuracy of Cognitive Diagnosis As-

sessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Cognitive Diagnosis Models . . . . . . . . . . . . . . . . . . . . . 10

2.3. Conditional Classification Accuracy . . . . . . . . . . . . . . . . . 13

2.3.1. Classification Accuracy for a Different Attribute Distribution 14

2.3.2. Off-Diagonal Entries of the Matrix of Classification Error

Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.1. Parametric Monte Carlo Approach . . . . . . . . 18

2.4.1.2. Classification Accuracy with a Different Attribute

Distribution . . . . . . . . . . . . . . . . . . . . . 19

v



2.4.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1. Uniform Attribute Distribution . . . . . . . . . . . . . . . 20

2.5.1.1. Comparing the Proposed Index and the Monte

Carlo Approach . . . . . . . . . . . . . . . . . . . 21

2.5.1.2. Latent Class αl = 1100 . . . . . . . . . . . . . . 22

2.5.2. Higher-order Attribute Distribution . . . . . . . . . . . . . 24

2.5.2.1. Comparing the Proposed Index and the Monte

Carlo Approach . . . . . . . . . . . . . . . . . . . 27

2.5.2.2. Latent Classes αl = 11000 and αl = 00101 . . . . 28

2.5.3. Classification Accuracy with a Different Attribute Distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6. Empirical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Three-Step Estimation of Cognitive Diagnosis Models with Co-

variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Cognitive Diagnosis Models . . . . . . . . . . . . . . . . . . . . . 42

3.2.1. The G-DINA Model . . . . . . . . . . . . . . . . . . . . . 42

3.2.2. Latent Class Assignment . . . . . . . . . . . . . . . . . . . 44

3.2.3. Matrix of Classification Error Probabilities . . . . . . . . . 45

3.3. Modeling the Relationship between Covariates and Latent Classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1. The One-Step Approach . . . . . . . . . . . . . . . . . . . 46

3.3.2. The Uncorrected Three-Step Approach . . . . . . . . . . . 48

vi



3.3.3. The Three-Step Procedure with Latent-class Level Correc-

tion Weights . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3.1. Sample-Level Correction Weights . . . . . . . . . 49

3.3.3.2. Posterior-distribution Level Correction Weights . 50

3.3.3.3. Three-Step Approach with Attribute-Level Cor-

rection Weights . . . . . . . . . . . . . . . . . . . 51

3.4. Simulation Study to Evaluate the Performance of the Correction

Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3.1. Overall Bias and RMSE . . . . . . . . . . . . . . 58

3.4.3.2. Bias and RMSE at Individual Parameter Level . 59

3.4.3.3. Separation of Likelihood . . . . . . . . . . . . . . 63

3.4.3.4. Effective Sample Size . . . . . . . . . . . . . . . . 65

3.5. Empirical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4. Variable Selection in the Three-Step Approach to Modeling Cog-

nitive Diagnosis Models and Covariates: The Latent-Class Lasso 74

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2. Cognitive Diagnosis Models . . . . . . . . . . . . . . . . . . . . . 76

4.3. Modeling the Relationship between Covariates and Latent Classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1. The One-Step Approach . . . . . . . . . . . . . . . . . . . 79

4.3.2. The Uncorrected Three-Step Approach . . . . . . . . . . . 80

vii



4.3.3. The Three-Step Approach with Correction Weights . . . . 81

4.4. Variable Selection with the Lasso . . . . . . . . . . . . . . . . . . 82

4.4.1. The Latent-Class Lasso . . . . . . . . . . . . . . . . . . . . 84

4.5. Evaluating the Performance of the Correction Weights via Simula-

tion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.3.1. Sparsity . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.3.2. Relevant Predictors Dropped . . . . . . . . . . . 89

4.5.3.3. Correct Selection Rate . . . . . . . . . . . . . . . 91

4.5.3.4. Overall ARMSE and ABIAS . . . . . . . . . . . . 92

4.5.3.5. ARMSE and ABIAS of the Relevant Predictors . 93

4.5.3.6. Individual Parameter Estimate . . . . . . . . . . 95

4.6. Empirical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



List of Tables

2.1. Uniform Attribute Distribution . . . . . . . . . . . . . . . . . . . 25

2.2. Higher-Order Attribute Distribution . . . . . . . . . . . . . . . . . 30

2.3. Predicting Classification Accuracy for a Different Population . . . 32

2.4. MCMI-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. Ten-Item Q-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2. ABIAS - Attribute-Level Logistic Regression . . . . . . . . . . . . 60

3.3. ARMSE - Attribute-Level Logistic Regression . . . . . . . . . . . 61

3.4. Bias - Attribute-Level Logistic Regression . . . . . . . . . . . . . 62

3.5. RMSE - Attribute-Level Logistic Regression . . . . . . . . . . . . 63

3.6. Replications with Separated Likelihood . . . . . . . . . . . . . . . 64

3.7. MCMI-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1. Ten-Item Q-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2. Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3. Proportion of Relevant Predictors Dropped . . . . . . . . . . . . . 91

4.4. Correct Selection Rate . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5. ARMSE and ABIAS . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6. ARMSE and ABIAS of Relevant Predictors . . . . . . . . . . . . 95

4.7. Comparison of Parameter Estimates . . . . . . . . . . . . . . . . . 97

4.8. MCMI-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



List of Figures

2.1. Latent class proportions under the higher-order attribute distribution 17

2.2. Mean difference of the proposed index under the uniform attribute

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. RMSD of the proposed index under the uniform attribute distribution 22

2.4. Mean difference of both approaches under the uniform attribute

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5. RMSD of both approaches under the uniform attribute distribution 24

2.6. Mean difference of proposed index under the higher-order attribute

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7. RMSD of proposed index under the higher-order attribute distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8. Mean difference under the higher-order attribute distribution . . . 28

2.9. RMSD under the higher-order attribute distribution . . . . . . . . 29

3.1. Relationship between ABIAS and the PCV . . . . . . . . . . . . . 66

x



1

Chapter 1

Introduction

Cogitive diagnosis models (CDMs) are a type of latent class model that offer

several advantages over item response theory (IRT) models. In the typical ap-

plication, IRT-based assessments are designed to measure a unidimensional or

low-dimensional latent variable, which is usually interpreted as a general con-

struct. The scores are subsequently used to rank examinees. By contrast, a cog-

nitively diagnostic assessment (CDA) focuses on categorizing examinees according

to mastery of specific attributes. In the educational measurement context, these

would be academic skills. Alternatively, in a clinical psychology setting, these at-

tributes could be construed as disorders. For diagnostic or formative assessment,

these discrete (usually binary) attributes may be more relevant to the purpose of

the assessment than the standard unidimensional construct from IRT (Junker &

Sijtsma, 2001).

In spite of the potential advantages of implementing the CDM framework

with assessments in formative classroom or clinical diagnostic settings, there re-

mains the need to form validity arguments in favor of using the scores. Per

the recommendations of the Standards for Educational and Psychological Test-

ing (American Educational Research Association, American Psychological Asso-

ciation, & National Council on Measurement in Education, 2014), if these test

scores (or classifications) are to play a role in instructional or treatment deci-

sions, then test users should qualify the decision inference (Kane, 2013). Qual-

ifying the conclusions requires understanding the amount of measurement error
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in the CDM classifications. In particular, researchers must be able to estimate

the classification accuracy of the assessment if they are to implement a decision

rule and a cost-benefit analysis. Because CDMs classify examinees based on fine-

grained variation components, and because these classifications form the basis of

inferences, the estimates of classification accuracy must be fine-grained as well.

Specifically, the estimates of classification accuracy should be made at the latent-

class level, which then allows for the end-user to study the validity of inferences

made regarding the specific latent classes of interest. Furthermore, testing stan-

dards (American Educational Research Association et al., 2014) also demand an

understanding of how the classification accuracy of an assessment generalizes to

other populations of interest. This is a crucial part of the validity argument for

CDMs.

A great deal of research has aimed to develop methodologies for CDAs, ad-

ministering the assessment, selecting the correct model, validating the Q-matrix,

and evaluating the accuracy and consistency in classifying examinees. However,

there is a relatively paucity of literature on how to use these classifications in

more exploratory research. In the field of educational measurement, research

questions often focus on the relationship between student achievement and back-

ground variables. For example, this may occur in projects designed specifically

to investigate student learning via CDMs, or it may occur in the context of sec-

ondary research that re-purposes already implemented assessments by relating

the results to covariates of interest. The findings often have policy implications,

which underscores the need to optimize the procedures available for researchers.

To relate classifications to covariates, typically the most appropriate procedure is

the one-step approach, which simultaneously estimates the measurement model

(in this case a CDM) and the structural model (a regression model). In the liter-

ature on CDMs, this approach has been implemented in different ways. For one,



3

it has been used to evaluate differential item functioning (Park & Lee, 2014),

where covariates can affect the probability of examinees answering a particular

item correctly. For another, the one-step approach has also been implemented

such that covariates affect the probability of examinees mastering a particular

attribute, referred to as differential skill functioning. The latter is particularly

important for exploratory researchers who are looking at the relationship be-

tween, for example, student learning and student or school covariates. In the

clinical psychology setting, it allows researchers to investigate how well patient

demographic information predicts the presence of personality disorders. However,

for reasons of interpretability, the one-step may be less than ideal. For example, it

is unclear if the attribute specification, Q-matrix specification, and examinee clas-

sification should depend on the covariates included in the model. The validity of

inferences may be called into question. Therefore, although a one-step approach

leads to best estimates (i.e., lowest bias) of the regression parameters when it

is appropriate, other modeling approaches may be needed for researchers doing

exploratory work that investigates the relationship between background variables

and classifications.

Another practical constraint on modeling approaches is the simple fact that

often times examinee item responses are not archived, or at least are not released

to secondary researchers. These circumstances require the three-step approach,

which separates the fitting of the CDM and the regression model. However, devel-

opments of the three-step approach from latent class models have not been applied

to CDMs. Instead, the only options currently available for researchers relating

CDM classifications to covariates involves treating the classifications as observed

dependent variables. Ignoring measurement error in subsequent statistical anal-

ysis can have serious consequences, whether the error occurs in the independent

variables (i.e., error-in-variables regression), or in the dependent variable (i.e.,
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latent regression). The measurement error affects not only the regression pa-

rameter estimates (Bakk, Tekle, & Vermunt, 2013; Vermunt, 2010), but also the

variable selection process (Bakk, Oberski, & Vermunt, 2013). The measurement

error should be included in the procedure to ensure the best possible estimates

and thus the most accurate inferences about the relationship between CDA-based

classifications and background variables.

Objectives

The first issue to resolve, then, is how to quantify the measurement error in CDA.

In these studies, measurement error is quantified via the matrix of classification

error probabilities (CEPs). This is essentialy a 2K × 2K contingency table that

estimates the probability of being classified in latent class s given the true latent

class is l. These estimates of measurement error are then used throughout all

three studies to answer different research questions.

Study 1 interprets the CEPs directly to estimate the conditional classification

accuracy via a proposed index of length 2K . Furthermore, taking the weighted

sum of the proposed index can estimate the overall classification accuracy of the

assessment for any population of interest. Understanding the generalizability of

the classification accuracy is another important part of the validity argument.

The proposed index will be compared to a parametric Monte Carlo approach

via simulation study. Overall, in study 1 the matrix of CEPs is used to draw

conclusions about the overall accuracy of the assessment that are a key part of

the validity argument for a CDA.

Studies 2 and 3 incorporate the matrix of CEPs into procedures for relating

the classification to background variables. The CEPs are used to adjust three-

step procedures such that the dependent variable is treated as latent rather than

observed. This entails adjusting for measurement error by incorporating the CEPs
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as weights in the objective function (i.e., the log-likelihood) of the regression

model. Another type of weights related to the matrix of CEPs is proposed as well.

In this study, the different correction weights and the standard approach to the

three-step procedure will be used to estimate the multinomial logistic regression

coefficients by regressing the assigned latent-classes onto the covariates. It also

will evaluate regressing attribute classifications onto covariates. The aim of study

2 is to show that correction weights derived from the matrix of CEPs, and weights

developed in this dissertation, can be used to adjust for measurement error and

provide estimates of the relationship between covariates and classifications with

less bias and lower RMSE.

Finally, Study 3 relies on the same correction weights and the same corrected

three-step procedure developed in Study 2, but extends adjustments to include a

variable selection process. The L1 penalty is incorporated in the latent attribute-

level regression log-likelihood along with the correction weights, and the regu-

larized regression with cross validation is used to select variables. The study is

designed to examine how adjustments for measurement error alter conclusions

about the relationship between covariates and attribute mastery. In short, all

three studies quantify measurement error via the matrix of CEPs and use that

information to draw better conclusions about the assessment, thus improving the

validity of research and decisions made involving CDA.

1.1 References

American Educational Research Association, American Psychological Associa-
tion, & National Council on Measurement in Education. (2014). Standards
for educational and psychological testing. Washington, DC: American Edu-
cational Research Association.

Bakk, Z., Oberski, D. L., & Vermunt, J. K. (2013). Relating latent class as-
signments to external variables: Standard errors for corrected inference.
Sociology , 83 , 173-178.
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Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating the association
between latent class membership and external variables using bias-adjusted
three-step approaches. Sociological Methodology , 43 , 272-311.

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few
assumptions, and connections with nonparametric item response theory.
Applied Psychological Measurement , 25 , 258-272.

Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal
of Educational Measurement , 50 , 1-73.

Park, Y., & Lee, Y. (2014). An extension of the DINA model using covariates:
examining factors affecting response probability and latent classification.
Applied Psychological Measurement , 38 , 376-390.

Vermunt, J. (2010). Latent class modeling with covariates: Two improved three-
step approaches. Political Analysis , 18 , 450-469.
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Chapter 2

Conditional Classification Accuracy of Cognitive

Diagnosis Assessments

2.1 Introduction

Cognitively diagnostic assessments (CDAs) are often proposed as an alternative to

item response theory (IRT)-based tests for diagnostic or formative purposes. IRT

assessments typically score and rank examinees on a continuous unidimensional

latent trait for what are often high-stakes purposes (Junker & Sijtsma, 2001).

CDAs, on the other hand, measure multiple skills, referred to as attributes, which

examinees are classified as either having mastered or not mastered (de la Torre

& Lee, 2010). This makes them well-suited to low-stakes applications, such as

formative assessments that are designed to directly support teaching and learning

(DiBello & Stout, 2007). As the number of e-learning and intelligent tutoring sys-

tems proliferates (Newman, Bryant, Stokes, & Squeo, 2013), the corresponding

methodology for integrating CDA as part of the curriculum has seen promising

developments (e.g., Ye, Fellouris, Culpepper, & Douglas, 2016). Alternatively,

CDAs have been shown to offer advantages over current practice in personal-

ized clinical assessment, as demonstrated in de la Torre, van der Ark, and Rossi

(2015), where the cognitive diagnosis model (CDM) framework was applied to

the Millon Clinical Multiaxial Inventory III (MCMI-III; Millon, Millon, Davis,

& Grossman, 2009). Regardless of the application, however, the Standards for

Educational and Psychological Testing (AERA, APA, & NCME, 2014) require an
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in-depth understanding of the accuracy of inferences to justify implementation.

Evaluating the accuracy of the classifications plays a crucial role in evaluating the

claims made from a CDA (Kane, 2013). Indices that estimate the classification

accuracy may allow test users to better determine the strength of the evidence

- the classifications - for their proposed use. Test users also may be interested

in making decisions regarding particular latent classes, and in that case, having

estimates of the classification accuracy of latent classes would be of particular

importance to the validity argument.

The salience of estimating score/classification accuracy has elicited a great

deal of research in the field of test theory, and an exhaustive review will not be

attempted here. In the CDM literature, one of the first contributions to this topic

was a modification to the Kullback-Leibler matrix used in the cognitive diagnos-

tic index that created attribute-level discrimination indices related to the correct

classification of examinee mastery (Henson, Roussos, Douglas, & He, 2008). The

index proposed by Cui, Gierl, and Chang (2012), P̂a, estimates the classification

accuracy of latent classes marginalized to the test level. That is, the index esti-

mates how accurately the assessment classified examinees overall, and for brevity

will be referred to as the test-level classification accuracy. With a sufficiently

large sample size, the sampling distribution of the index allows for the compu-

tation of standard errors as well, providing an estimate of the lower and upper

bound on the accuracy (Cui et al., 2012). Unfortunately, because the index relies

on the item response function, the adequacy of the CDM must be established.

The impact of model misspecification was not investigated.

More recently, an index of classification accuracy of latent classes marginalized

to the test level, τ̂ , was developed by Wang, Song, Chen, Meng, and Ding (2015),

who in the same paper proposed an accuracy index conditional on the attribute,

τ̂k. Corresponding standard errors were developed but not studied. The index τ̂ ,
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like P̂a, provides an estimate of the proportion of correctly classified examines, yet

unlike P̂a, τ̂ is computed from the examinee posterior distributions and requires

much simpler calculations. Wang et al. (2015) compared the performance of τ̂

and P̂a via simulation study, and the results indicated similar recovery rates of the

empirical values (i.e., recovery of generated examinee classifications). It should

be noted that the pairs of indices were investigated for the deterministic input,

noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) model only.

Furthermore, the τ̂ and P̂a indices only estimate the accuracy of the CDA for the

given sample, leaving the generalizability of the estimated accuracy unknown.

Although examinee classification accuracy of a diagnostic assessment is con-

sidered fundamental to the validity of its use, there are still gaps in the literature.

Approaches for measuring the classification accuracy of the latent classes of CDA

have not been developed, limiting study of the validity of inferences made about

specific latent classes based on the assessment. Classification accuracy may be

high overall, but low for some attribute patterns of interest. This work addresses

a shortcoming of existing methodologies by proposing an index of the exami-

nee classification accuracy that, in addition to being relatively straightforward to

compute, estimates accuracy conditional on the latent class rather than marginal-

ized to the test level. This can inform the practitioner of the effectiveness of the

assessment in classifying specific latent classes of interest. Additionally, taking

the weighted sum of the index over the latent classes returns an estimate of the

test-level classification accuracy for any attribute distribution of interest. By gen-

eralizing the classification accuracy to other examinee populations, the index can

provide a more in-depth look at the validity of the test across various situations

(Kopriva, Thurlow, Perie, Lazarus, & Clark, 2016).

The rest of the manuscript is organized accordingly: The next section provides
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background on CDMs, specifically the G-DINA model. Following that, the con-

ditional classification accuracy index and some related techniques are presented.

After that is the design and analysis of a simulation study that compares the pro-

posed index to the parametric Monte Carlo approach and empirical values. An

extension of the study examines how well the index can estimate the test-level

classification accuracy for a different population. A brief example using real data

is then provided. Finally, directions for future research are discussed.

2.2 Cognitive Diagnosis Models

The wide variety of CDMs in the literature can be organized according to how

attributes are assumed to interact. For conjunctive models, of which the DINA

model is the most well-known, only examinees that have mastered all attributes

specified in the item are expected to answer correctly. On the other hand, dis-

junctive models, such as the deterministic, noisy “or” gate (DINO; Templin &

Henson, 2006) model, expect any examinee that has mastered at least one of the

item-attributes to answer correctly. Additive models, another class of CDMs, do

not model attribute interactions; that is, mastery of each attribute does not af-

fect the contribution of the others. Examples include the additive CDM (A-CDM;

de la Torre, 2011), the logistic linear model (LLM; Maris, 1999), and the reduced

reparametrized unified model (R-RUM; Roussos, Templin, & Henson, 2007). Sim-

ulation study results suggest that the additive nature of these models minimizes

the negative impact of model misspecification, compared to the conjunctive and

disjunctive models (Ma, Iaconangelo, & de la Torre, 2016).
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The G-DINA Model

To eliminate model misfit as a factor in the following simulation study, and to

ensure the results are not restricted to a particular class of CDM, a general,

or saturated, model is used here. General models make no assumptions about

how the attributes interact and thus subsume the constrained varieties. Several

general models have been introduced in the literature - the general diagnostic

model (GDM; von Davier, 2008), the log-linear CDM (LCDM; Henson, Templin,

& Willse, 2009), and the generalized DINA model (G-DINA; de la Torre, 2011).

The G-DINA model is used throughout this study.

All of the aforementioned models specify via a Q-matrix (Tatsuoka, 1983)

which of the K attributes are required by each of the J items. Summing row j

of the Q-matrix yields K∗
j , the number of attributes required by item j. Letting

l = 1, . . . , 2K denote the latent classes, the examinee attribute vector is writ-

ten αl={αl1, . . . , αlK}, where the kth element of the vector is equal to one or

zero, depending on whether the examinee has mastered or not mastered that at-

tribute, respectively. To compute the item response function, denote the reduced

attribute vector containing only the required attributes for item j by α∗
lj, where

l = 1, . . . 2K
∗
j . Furthermore, let P (α∗

lj) be the probability that an examinee with

attribute pattern α∗
lj answers item j correctly. The item response function of the

G-DINA model is computed as,

P (α∗
lj) = φj0 +

K∗j∑
k=1

φjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

φjkk′αlkαlk′ + · · ·+ φj12···K∗j

K∗j∏
k=1

αlk.

In this equation, φj0 is the intercept for item j, φjk is the main effect due to αk,

and φjkk′ is the interaction effect due to αk and αk′ ; the interaction effect due to

α1, · · ·, αK∗j is denoted by φj12...K∗j .
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Marginal maximum likelihood estimation of the item parameters, φ, requires

the likelihood, written as

L(Xi|αl) =
J∏
j=1

Pj(αl)
Xij [1− Pj(αl)]1−Xij .

The likelihood is marginalized over the latent class proportions, P (αl), yielding

L(X) =
N∏
i=1

2K∑
l=1

L(Xi|αl)P (αl),

the log of which is then optimized with respect to φ via the Expectation-Maximization

algorithm (Dempster, Laird, & Rubin, 1977). For more details on this, see de la

Torre (2009b, 2011). The likelihood of Xi and latent class proportions are then

used to compute the posterior distribution of examinee i, written as

P (αl|Xi) ∝ L(Xi|αl)P (αl).

The examinee posterior distribution is subsequently used to assign examinees to

latent classes. Averaging over the examinee posterior distributions yields the

estimated latent class proportions,
∑N

i=1 P (αl|Xi)/N = P̂ (αl). This can be

considered an estimate of the joint distribution of the attributes.

In this study, the examinee latent class assignment is done by the maximum

a posteriori (MAP) classification method (Huebner & Wang, 2011), and the esti-

mated attribute pattern of examinee i is denoted by α̂i. The possible latent class

assignments are denoted by αs, where s = 1, . . ., 2K . Note that αl is considered

the possible true classification, whereas αs are the latent classes that may be

realized according to the assignment rule.
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2.3 Conditional Classification Accuracy

The posterior and latent class assignments are used to calculate the classification

error probabilities, which are quantified by writing the estimated value conditional

on the true value (Vermunt, 2010). This matrix of conditional classification error

probabilities is calculated as

P (αs|αl,X) =

∑N
i=1 P (αl|Xi)I[α̂i = αs]∑N

i=1 P (αl|Xi)
, (2.1)

where I[α̂i = αs] is an indicator function equal to 1 when the estimated attribute

pattern of examinee i is equal to latent class αs, and zero otherwise. Thus,

P (αs|αl,X) can be interpreted as the proportion of examinees with true latent

class membership αl assigned to classification αs. This is a 2K × 2K contingency

table of examinee latent classification proportions.

The proposed index, τ̂l, can be computed directly from P (αs|αl,X). The

index τ̂l is the estimated probability of correctly classifying an examinee in latent

class l. This is equivalent to the diagonal of P (αs|αl,X), and is computed as,

τ̂l = P (αs|αl,X)I[s = l]

where I[s = l] is the indicator function equal to 1 when the latent class assignment

s is the same as the “true” latent class l. This is essentially the main diagonal of a

contingency table that was computed using the posterior distributions and modal

latent class assignments. Thus, τ̂l is a vector of length 2K , where each element

corresponds to the estimated proportion of examinees from each latent class that

were correctly classified. Computation of the proposed index is straightforward,

only requiring basic mathematical operations using matrices readily available from

the estimation procedure.
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Observe that τ̂l can be weighted according to the estimated latent class propor-

tions and summed to compute τ̂ , the index of classification accuracy marginalized

to the test-level that was introduced by Wang et al. (2015):

τ̂ =
2K∑
l=1

τ̂l × P̂ (αl). (2.2)

This index estimates the empirical value of τ , which is the observed proportion of

examinees classified in the same latent class as the generating data. The empirical

value of τ can be computed as

τ =

∑N
i=1 I[αi = α̂i]

N
,

where I[αi = α̂i] evaluates whether the estimated attribute vector matched the

generated values.

2.3.1 Classification Accuracy for a Different Attribute Dis-

tribution

Computing τ̂ in this manner allows for greater flexibility than the formula pro-

posed in Wang et al. (2015). In Equation 2.2, τ̂l can be weighted according to any

joint distribution, allowing the researcher or test developer to predict the classifi-

cation accuracy of the assessment for examinees drawn from a different attribute

distribution. For example, the observed sample may be drawn from a population

with a uniform attribute distribution, whereas the test developer may be inter-

ested in the classification accuracy of the assessment for a sample drawn from a

population with a higher-order attribute distribution. Given τ̂l, the classification
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accuracy of the assesment for a different sample, τ̂ ∗, can be estimated by,

τ̂ ∗ =
2K∑
l=1

τ̂l × P ∗(αl), (2.3)

where P ∗(αl) corresponds to the assumed proportion of examinees in latent class

l. The values of P ∗(αl) reweight τ̂l to reflect the latent class proportions of the

sample of interest. Computing τ̂ ∗ is of particular significance because a key com-

ponent of the validity argument is understanding how the classification accuracy

generalizes across other examinee populations of interest (Kane, 2013; Pellegrino,

DiBello, & Goldman, 2016).

2.3.2 Off-Diagonal Entries of the Matrix of Classification

Error Probabilities

Although the index from the diagonal of the matrix of conditional classification

error probabilities is the focus of this study, the off-diagonal entries can provide the

researcher with an understanding of how examinees are misclassified. The rows

and columns of the matrix correspond to P (αl) and P (αs), respectively. Each

row entry of P (αs|αl,X) estimates which latent class examinees were classified

as αs, conditional on their true classification, αl (note that each row of the

matrix sums to one). For example, when K = 2, the four entries in row one of

P (αs|αl,X) are P (αs = 00|αl = 00), P (αs = 10|αl = 00), P (αs = 01|αl =

00), and P (αs = 11|αl = 00). The second entry in the row, P (αs = 10|αl =

00), is the probability of being classified in latent class 10 when the examinee’s

true membership is 00. If additional, remedial instruction crucial for examinees

classified in αl = 00 were not provided for examinees classified in αl = 10, then

the value of P (αs = 10|αl = 00) would inform the test-user of the probability that

students would not be given important academic help. In other words, the value of
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P (αs = 10|αl = 00) could be used as part of a cost-benefit analysis when making

decisions based on the assessment. More generally, these off-diagonal entries

can provide a more comprehensive look at the classification rate for researchers

exploring the outcome of the diagnostic assessment.

2.4 Simulation Study

A simulation study was designed to evaluate how well τ̂l approximates the em-

pirical conditional classification accuracy across a variety of test conditions. For

comparison, a parametric Monte Carlo approach to estimating τ̂l was included,

with the details provided below.

2.4.1 Design

The factors manipulated in the simulation were sample size (N), test length (J),

item quality (IT ), and attribute structure. The K = 5 attributes followed either

a higher-order structure or a uniform structure. The former was introduced by

de la Torre and Douglas (2004) and relates the attributes to θ, a general ability

to master the attributes. The probability of mastering attribute k for individual

i can be written as

Pik =
exp(ζ0θi + ζk)

1 + exp(ζ0θi + ζk)
,

where ζ0 is the slope and ζk is the intercept parameter of the kth attribute, and

θi is the ability of examinee ith drawn from the standard normal distribution.

The slope was fixed to 1, and the intercepts of the five attributes were set as 1,

0.5, 0, -0.5, and -1. The uniform attribute distribution can be derived from the

higher-order structure by setting both the slope and intercepts equal to zero, ζ0 =

ζ1 = . . .ζK = 0, thereby making the probability of mastering each attribute equal

to 0.5. Note that independent attributes of varying difficulty can be generated
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by setting the slope equal to zero and varying the intercept parameters. Figure

2.1 plots the proportion of examinees in each latent class under the higher-order

attribute structure, with the horizontal line representing the uniform attribute

distribution proportions, which were all equal to 1/2K = 0.031. The shape of the

plot shows how the attributes were ordered from easiest to hardest to master,

making less likely any attribute pattern with attribute k equal to 1 and attribute

k − 1 equal to 0.

Specifically, the six most-common latent classes, αl = 00000, αl = 10000,

αl = 11000, αl = 11100, αl = 11110, and αl = 11111, have a perfect Guttman

pattern (Guttman, 1950), reflecting the hierarchy of attribute difficulty. The

proportion of examinees in each of these latent classes was above 0.07, much

higher than the proportion under the uniform attribute structure. By contrast,

the five least-common latent classes, αl = 00101, αl = 00011, αl = 01011,

αl = 00111, and αl = 01111, have not mastered the easiest attribute, k = 1, but

have mastered the most difficult, k = 5. The proportion of examinees in each of

these latent classes was less than 0.01, much lower than the proportion under the

uniform structure.
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Figure 2.1: Latent class proportions under the higher-order attribute distribution
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The sample sizes included were N = 500, 1000, 2000, and 5000. The test

lengths were J = 30 and 60. For the G-DINA model used in this simulation

study, item quality refers to the values of the guessing (g) and slip (s) parameters.

High quality items had values g = s = 0.1, medium quality items g = s = 0.2,

and low quality items g = s = 0.3. One hundred replications for each of the 48

conditions were generated. The various combinations of factors were designed to

induce variability in the conditional classification accuracy, which allows for the

investigation of the relationship between the indices and the empirical rates over

a wide range of classification accuracies. For all replications, model and person

parameters were estimated via the GDINA R Package (Ma & de la Torre, 2017).

2.4.1.1 Parametric Monte Carlo Approach

The only approach currently available for determining examinee classification ac-

curacy conditional on the latent class is the parametric Monte Carlo approach.

The first step of this method was to fit the G-DINA model to the sample, yielding

estimates of the item parameters, φ̂, and the latent class proportion parameters,

P̂ (αl). The latter were used to draw a large sample of examinee attribute vec-

tors, referred to as the resampled examinees. For the purposes of the simulation

study, 100, 000 was determined to be sufficiently large. Item responses were gen-

erated based on the resampled attribute vectors and φ̂. The G-DINA model, with

item and latent class parameters fixed at φ̂ and P̂ (αl), used the simulated item

responses to classify the resampled examinees. The proportion of correct classifi-

cation for each latent class was computed, returning the parametric Monte Carlo

estimate of the conditional classification accuracy of the assessment, denoted by

τ̂mcl . Because the parametric Monte Carlo approach employed resampling, this

approach was substantially slower than computing the proposed index, particu-

larly when the number of resampled examinees is set to be very large.
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2.4.1.2 Classification Accuracy with a Different Attribute Distribu-

tion

An extension of the simulation was conducted to evaluate using the index τ̂l to

compute τ̂ ∗. The estimated values were calculated for two scenarios. In the first

scenario, the index τ̂l was computed based on the results obtained by fitting the

G-DINA model to item responses from examinees drawn from a uniform attribute

distribution. P ∗(αl) was calculated by drawing a large sample (N = 10, 000, 000)

from the higher-order distribution detailed above and calculating the latent class

proportions of the sample. The index and latent class proportions were then used

in Equation 2.3 to calculate the predicted classification accuracy of the assessment

for a sample of examinees drawn from the higher-order distribution.

The second scenario entailed fitting a G-DINA model to item responses from

examinees drawn from the higher-order attribute distribution (as detailed above),

and calculating τ̂l. Reflecting the uniform attribute distribution, P ∗(αl) was a

2K vector where each element was equal to 1/2K . In this case, τ̂ ∗ calculated via

Equation 2.3 was equivalent to the unweighted average of τl.

2.4.2 Analysis

The estimates τl and τmcl and the empirical values were compared across the

conditions, with the empirical values of τl were computed as,

τl =

∑Rep
r=1

∑N
i=1 I[α̂i = αi,αi = αl]∑N

i=1 I[αi = αl]×Rep
,

where Rep was the number of replications, and I[α̂i = αi,αi = αl] evaluated

whether the estimated examinee attribute pattern, α̂i, matched the generating

value, αi, conditional on the latent class l. The value I[αi = αl] in the denomi-

nator is the number of examinees with true classification αl.
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The quality of the estimates was evaluated by computing the mean differ-

ence and root mean square difference (RMSD) of the parameter estimates across

replications. The former was defined as,

Mean Difference =

∑Rep
r=1(τ̂

r
l − τ rl )

Rep
,

and the latter was defined as,

RMSD =

√√√√Rep∑
r=1

(τ̂ rl − τ rl )2/Rep,

where τ̂ rl was the estimate of τl from replication r.

To evaluate the test-level classification accuracy for a different attribute struc-

ture, the empirical value of τ was computed as

τ =

∑Rep
r=1

∑N
i=1 I[α̂i = αi]

N ×Rep
,

where I[α̂i = αi] evaluates whether the estimated attribute vector matched the

generated values.

2.5 Results

2.5.1 Uniform Attribute Distribution

Figures 2.2 and 2.3 presents the mean difference and RMSD, respectively, of the

proposed index under the uniform attribute structure. The boxplots show that

the performance of the proposed index was distinguished by three groups of test

conditions. The first and worst-performing group consisted of the test condition

N = 500, J = 30, and low item quality, where the mean difference and RMSD

exceeded 0.24 and 0.32, respectively. The second group consisted of two test
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conditions, N = 500, J = 60, and low item quality, as well as N = 1000, J = 30,

and low item quality. For this group, the range of mean difference values was

0.13 to 0.22, and the range of RMSD values was 0.17 to 0.27. The third group

consisted of all other test conditions, under which the mean difference was 0.10 or

less, and the RMSD was 0.16 or less. Overall, when test conditions were poor, the

estimates of the conditional classification accuracy were also poor, on average 0.27

above the empirical value. By contrast, for reasonably favorable test conditions,

the proposed index overestimated the empirical value by only 0.02, on average.

The mean difference and RMSD appeared unrelated to the latent class, which

was expected given an attribute structure where all examinees were equally likely

to have each attribute.
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Figure 2.2: Mean difference of the proposed index under the uniform attribute
distribution

2.5.1.1 Comparing the Proposed Index and the Monte Carlo Ap-

proach

The proposed index is compared to the Monte Carlo approach in Figures 2.4 and

2.5, which confirm that the mean difference and RMSD created approximately
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Figure 2.3: RMSD of the proposed index under the uniform attribute distribution

three clusters based on the test conditions. The plots illustrate not only the

poor performance of both indices under unfavorable test conditions, but also

the tendency of the proposed index to overestimate the empirical values across all

conditions. The grouping of the plotted points around the 45 degree line illustrates

the similarity of the estimates in terms of mean difference. The grouping of

the plotted points above the line in Figure 2.5 indicates that the Monte Carlo

approach led to slightly higher RMSD, suggesting that even with a large number

of resampled attribute vectors, this approach led to more noisy estimates than

the proposed index.

2.5.1.2 Latent Class αl = 1100

To better understand the performance of the proposed index across all 24 condi-

tions, Table 2.1 presents a more detailed look at the mean difference and RMSD

of τ̂11000 across all 24 conditions. As evidenced by the boxplots in Figures 2.2

and 2.3, the estimates of τ11000 were representative of the performance of all 2K

latent classes under the uniform attribute distribution. When item quality was

high, the mean difference never exceeded 0.02, regardless of the approach. When
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Figure 2.4: Mean difference of both approaches under the uniform attribute dis-
tribution

item quality was medium, the mean difference was 0.03 or less, with the exception

of the N = 500 and J = 30 condition, where the mean difference increased to

0.07 and 0.08 for the index and Monte Carlo approaches, respectively. The mean

difference under medium and high item quality indicated that well-estimated ex-

aminee posterior distributions led to very good recovery of the empirical values.

When item quality was low, how well the estimates recovered the empirical val-

ues depended largely on the sample size. Specifically, the mean difference was

inversely proportion to N , decreasing by approximately 50% each time the sam-

ple size doubled. When the sample size reached N = 5000, the mean difference

did not exceed 0.03 even for tests with low item quality. Similarly, the RMSD of
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Figure 2.5: RMSD of both approaches under the uniform attribute distribution

τ̂11000 was 0.34 when item quality was low and N = 500, but decreased to 0.05

when N = 5000. Overall, it appears that, even when the test conditions were

poor, the proposed index can still recover the empirical classification accuracy

provided the sample size was sufficiently large.

2.5.2 Higher-order Attribute Distribution

Under the higher-order attribute distribution, the relationship between the qual-

ity of the estimates and the sample size was particularly relevant. For both the

mean difference and RMSD, the performance of the proposed index was not distin-

guished by three relatively distinct clusters of test conditions, as occurred under
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Table 2.1: Uniform Attribute Distribution

αl = 11000

Mean Diff RMSD

IT J N τl τmcl τl τmcl

Low

30

500 0.27 0.30 0.34 0.35
1000 0.14 0.15 0.19 0.19
2000 0.08 0.08 0.10 0.10
5000 0.03 0.03 0.05 0.06

60

500 0.18 0.18 0.24 0.24
1000 0.09 0.09 0.12 0.13
2000 0.04 0.04 0.07 0.09
5000 0.02 0.02 0.04 0.05

Medium

30

500 0.07 0.08 0.15 0.16
1000 0.03 0.03 0.08 0.09
2000 0.01 0.01 0.05 0.06
5000 0.01 0.00 0.04 0.05

60

500 0.03 0.02 0.09 0.10
1000 0.01 0.01 0.06 0.07
2000 0.01 0.01 0.04 0.05
5000 0.00 0.00 0.02 0.03

High

30

500 0.02 0.02 0.07 0.08
1000 0.01 0.01 0.05 0.05
2000 0.00 0.00 0.03 0.04
5000 0.00 0.01 0.02 0.03

60

500 0.01 0.01 0.04 0.04
1000 0.00 0.00 0.02 0.02
2000 0.00 0.00 0.01 0.01
5000 0.00 0.00 0.01 0.01

the uniform attribute distribution. Rather, the number of examinees in each

latent class, in addition to the test length and item quality, heavily impacted

the quality of the estimates. As illustrated in Figure 2.1, attribute patterns

such as αl = 11000 were relatively common, whereas attribute patterns such as

αl = 00101 were rare. Figure 2.6 contains the boxplots of the mean difference,

by latent class, of the proposed index. From this figure, it can be concluded that

the more common latent classes were relatively well-estimated, as evidenced by
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the boxplot of αl = 11000 having an interquartile range of 0.00 to 0.03. Re-

ferring back to Figure 2.2, under the uniform attribute structure, the boxplot

of this same latent class had an interquartile range of 0.01 to 0.05. This shows

that latent classes common under the higher-order structure were often estimated

slightly better than the same latent class under the uniform structure. By con-

trast, the boxplot of a less-common latent class, αl = 00101, had an interquartile

range of 0.01 to 0.10 under the higher-order attribute structure and 0.00 to 0.05

under the uniform attribute structure.

The boxplots in Figure 2.7 evaluating performance by RMSD show a similar,

though even more dramatic, pattern. The interquartile range of the RMSD values

of αl = 11000 was 0.03 to 0.10 under the uniform attribute distribution, whereas

it decreased to a range of 0.02 to 0.06 under the higher-order attribute structure.

For latent class αl = 00101, however, it was 0.03 to 0.10 under the uniform and

0.08 to 0.20 under the higher-order. These patterns demonstrate the strength of

the relationship between the number of examinees in a latent class and the quality

of the estimates of conditional classification accuracy.
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Figure 2.6: Mean difference of proposed index under the higher-order attribute
distribution
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Figure 2.7: RMSD of proposed index under the higher-order attribute distribution

2.5.2.1 Comparing the Proposed Index and the Monte Carlo Ap-

proach

The proposed index is compared to the Monte Carlo approach in Figures 2.8

and 2.9. The two procedures tended to return similar estimates across favorable

test conditions, although the pattern is less clear than in the case of the uniform

attribute distribution because the similarity of the estimates also depended on the

number of examinees in the latent class. Referring to Figure 2.8, the plotted mean

difference reveals that discrepancies between the two approaches tended to occur

when the mean difference was larger. For all latent classes under a higher-order

attribute structure, when the mean difference of the index was less than 0.10, the

maximum discrepancy between the proposed index and the parametric Monte

Carlo approach was 0.03. This can be seen in the bunching of the scatterplot

around the 45 degree line for x and y axis values less than 0.10. When the mean

difference was 0.30, however, the maximum discrepancy was 0.18. Disparities

between τ̂l and τ̂mcl occurred only when both estimates were far from the empirical

values. When investigating the conditional classification accuracy of real data,
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a large discrepancy between the two estimates could be used as evidence that

neither τ̂l nor τ̂mcl is close to the true value.
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Figure 2.8: Mean difference under the higher-order attribute distribution

2.5.2.2 Latent Classes αl = 11000 and αl = 00101

The estimated classification accuracy of the two latent classes is presented in Table

2.2 to illustrate differences in quality across the 24 simulation study conditions.

Excluding the three least-favorable test conditions, the largest mean difference of

τ̂11000 was 0.06, whereas the largest mean difference of τ̂00101 was over three times

larger, 0.19. The corresponding RMSD values were 0.07 and 0.28, respectively.

The disparity in performance between the two latent classes was largest when

the item quality was low, where the mean difference and RMSD for τ̂00101 were
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Figure 2.9: RMSD under the higher-order attribute distribution

frequently more than double that of τ̂11000. Overall, the performance of the index

followed the same pattern as under the uniform attribute distribution, except

with worse overall recovery of empirical values for the less-common latent classes.

Note that, here again, very favorable test conditions led to good recovery even

for uncommon latent classes, with a maximum mean difference of τ̂00101 of 0.04

when J = 60 and item quality was either medium or high. The maximum mean

difference of τ̂00101 when N = 5000 was also 0.04, indicating that large sample

sizes compensated for shorter tests with lower quality items.

Additionally, Table 2.2 offers more insight into the discrepancies observed in

Figures 2.8 and 2.9 between the proposed index and the parametric Monte Carlo

approach. Specifically, differences in the quality of the estimates occured for
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uncommon latent classes under the least-favorable test conditions. For example,

for αl = 00101 when N = 500, J = 30, and item quality was low, the proposed

index and Monte Carlo approaches led to mean differences of 0.28 and 0.39,

respectively. This discrepancy of 0.11 was much larger than for αl = 11000,

where the two approaches returned estimates within 0.01 of each other. Similar

patterns were observed for the RMSD.

Table 2.2: Higher-Order Attribute Distribution

αl = 11000 αl = 00101

Mean Diff RMSD Mean Diff RMSD

IT J N τl τmcl τl τmcl τl τmcl τl τmcl

Low

30

500 0.25 0.27 0.31 0.31 0.28 0.39 0.42 0.49
1000 0.13 0.12 0.15 0.15 0.23 0.34 0.33 0.40
2000 0.06 0.05 0.07 0.07 0.13 0.14 0.20 0.20
5000 0.02 0.02 0.04 0.04 0.04 0.04 0.08 0.09

60

500 0.13 0.12 0.16 0.15 0.31 0.36 0.45 0.48
1000 0.05 0.05 0.07 0.08 0.19 0.19 0.28 0.28
2000 0.03 0.03 0.05 0.05 0.10 0.09 0.17 0.16
5000 0.01 0.01 0.03 0.03 0.03 0.04 0.08 0.10

Medium

30

500 0.06 0.05 0.09 0.10 0.10 0.08 0.29 0.33
1000 0.03 0.03 0.06 0.07 0.08 0.07 0.20 0.23
2000 0.02 0.02 0.04 0.04 0.02 0.02 0.13 0.14
5000 0.01 0.01 0.02 0.02 0.00 0.01 0.08 0.09

60

500 0.02 0.02 0.05 0.06 0.03 0.01 0.17 0.19
1000 0.01 0.01 0.03 0.03 0.03 0.02 0.16 0.18
2000 0.01 0.01 0.02 0.03 0.03 0.04 0.11 0.12
5000 0.00 0.00 0.01 0.02 0.01 0.01 0.07 0.08

High

30

500 0.02 0.02 0.04 0.05 0.05 0.06 0.19 0.23
1000 0.01 0.01 0.03 0.03 0.02 0.03 0.12 0.16
2000 0.00 0.00 0.02 0.02 0.02 0.02 0.09 0.10
5000 0.00 0.01 0.01 0.02 0.01 0.00 0.05 0.06

60

500 0.00 0.00 0.01 0.02 0.00 0.00 0.05 0.07
1000 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.04
2000 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.03
5000 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.03
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2.5.3 Classification Accuracy with a Different Attribute

Distribution

After estimating the classification accuracy of each latent class across each of the

48 conditions, the τ̂l computed in the simulation were subsequently weighted and

summed to estimate τ ∗, with the results presented in Table 2.3. The columns

labeled “Predict Higher-order” contain: (1) τ , the empirical value when fitting

the assessment to a sample drawn from a higher-order attribute distribution; (2)

τ̂ ∗, calculated using τl from a uniform attribute distribution and P ∗(αl) reflecting

the higher-order distribution; and (3) τ̂ ∗mc, which used τ̂mcl , the parametric Monte

Carlo approach, rather than τ̂l, the proposed index. The columns labeled “Predict

Uniform” are the values from the reverse scenario, where τ is the empirical value

when fitting the assessment to a sample drawn from a uniform distribution, and

τ̂ ∗ is calculated using τl from a higher-order distribution and P ∗(αl) reflecting

the uniform attribute distribution.

Ignoring the three least-favorable test conditions, the proposed index returned

values of τ̂ ∗ that differed from the empirical values by 0.06 or less, regardless of

the attribute distribution. In 38 of the 48 total conditions, τ̂ ∗ predicted the

classification accuracy within 0.03 of the empirical value. Performance of τ̂ ∗ was

not consistently better or worse under either prediction scenario. For example,

whenN = 2000, J = 30, and item quality was low, predictions of τ ∗ for the higher-

order distribution were closer to the empirical (0.02 difference) than predictions

of τ ∗ for the uniform distribution (0.05 difference). However, when N = 500,

J = 30, and item quality was medium, the results were reversed - predictions of

τ ∗ for the uniform distribution were closer to the empirical (0.03 difference) than

predictions for the higher-order (0.05 difference).
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Table 2.3: Predicting Classification Accuracy for a Different Population

Predict Higher-Order Predict Uniform

IT J N τ τ̂ ∗ τ̂ ∗mc τ τ̂ ∗ τ̂ ∗mc

Low

30

500 0.24 0.48 0.64 0.21 0.47 0.62
1000 0.30 0.40 0.52 0.25 0.40 0.52
2000 0.35 0.37 0.44 0.29 0.34 0.44
5000 0.38 0.36 0.42 0.33 0.31 0.38

60

500 0.49 0.63 0.70 0.44 0.62 0.73
1000 0.55 0.59 0.64 0.51 0.57 0.65
2000 0.57 0.58 0.62 0.53 0.54 0.60
5000 0.59 0.57 0.61 0.55 0.53 0.58

Medium

30

500 0.62 0.67 0.72 0.60 0.63 0.71
1000 0.65 0.66 0.70 0.62 0.62 0.68
2000 0.67 0.66 0.69 0.64 0.61 0.66
5000 0.68 0.65 0.68 0.64 0.61 0.65

60

500 0.87 0.89 0.90 0.86 0.87 0.90
1000 0.88 0.88 0.90 0.87 0.87 0.89
2000 0.88 0.88 0.89 0.87 0.87 0.88
5000 0.89 0.88 0.89 0.88 0.86 0.88

High

30

500 0.90 0.91 0.92 0.88 0.88 0.91
1000 0.90 0.90 0.91 0.90 0.89 0.91
2000 0.91 0.90 0.91 0.90 0.89 0.90
5000 0.91 0.90 0.91 0.90 0.89 0.90

60

500 0.99 0.99 0.99 0.99 0.98 0.99
1000 0.99 0.99 0.99 0.99 0.99 0.99
2000 0.99 0.99 0.99 0.99 0.99 0.99
5000 0.99 0.99 0.99 0.99 0.99 0.99

Notably, the proposed index outperformed the parametric Monte Carlo ap-

proach under all but the most favorable test conditions, where both approaches

returned similar estimates. Unlike the estimates of τl, the parametric Monte

Carlo estimates of τ ∗ were not approximately the same as those from the pro-

posed index, and were usually further from the empirical values. For example,

under N = 1000, J = 30 and medium item quality, the empirical values of clas-

sification accuracy for the higher-order and uniform distributions were 0.65 and

0.62, respectively. The proposed index returned estimates of τ ∗ of 0.66 and 0.62,
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whereas the Monte Carlo approach returned 0.70 and 0.68. Only when τ was

greater than 0.90 did the discrepancies between approaches shrink to 0.01 or less.

2.6 Empirical Example

The utility of the proposed index for estimating the accuracy of classifications was

demonstrated by its application to the Millon Clinical Multiaxial Inventory-III

(MCMI-III), a personalized clinical assessment used to diagnose mental disorders

(Millon et al., 2009). The dataset used here is from a Dutch-language version

assessing 739 subjects that was fitted to the CDM framework in de la Torre

et al. (2015) and Ma et al. (2016). It was determined that each of the thirty

items measured one or more of three attributes: H = somatoform; SS = thought

disorder; CC = major depression. Refer to Rossi, Elklit, and Simonsen (2010) for

further details. Fitting the G-DINA model led to average estimates of guess and

slipping parameters of 0.11 and 0.22, respectively, suggesting a test of medium

to high item quality overall. Correlations among the attributes ranged from 0.73

to 0.84. After fitting the G-DINA model, the examinee posterior distributions

were used to calculate τ̂l and τ̂ . Because the true values are not available, the

estimates were compared to the parametric Monte Carlo approach, τ̂mcl and τ̂mc.

Referring to Table 2.4, the majority of the examinees were classified as αl =

000 (47%) or αl = 111 (27%), and the estimates of τl for these two largest

latent classes were the same, 0.97 and 0.93, for both the proposed index and the

parametric Monte Carlo approach. Some estimates of the smaller latent classes

differed substantially, such as the 0.09 difference in the estimates of τ011, to which

41 out of 739 patients (6%) were classified. Using the simulation study results as

a guide, the test conditions, small latent-class size, and discrepancies between the

two approaches suggested that the estimates of τ011 and τ110 may not be reliable,

whereas the estimates of τ000 and τ111 were likely close to the empirical values.
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At the test-level, the estimates of τ returned by both procedures differed only by

0.01, which was consistent with the results of the simulation study. Computing

τ̂l required less than one-hundredth of a second of computing time, whereas the

Monte Carlo approach with 100,000 resampled examinees required approximately

18 seconds. Overall, the results suggest that the CDA can classify examinees in

the two most-common latent classes with a high degree of accuracy, which leads

to high test-level accuracy. Classifying examinees in less-common latent classes,

however, remains challenging.

Table 2.4: MCMI-III

P̂ (αl) τ̂l τ̂mcl

αl = 000 0.47 0.97 0.97
αl = 100 0.05 0.39 0.40
αl = 010 0.01 0.36 0.35

αl = 001 0.06 0.59 0.65
αl = 110 0.06 0.56 0.64
αl = 101 0.02 0.55 0.51

αl = 011 0.06 0.55 0.64
αl = 111 0.27 0.93 0.93

τ̂=0.84 τ̂mc = 0.85

2.7 Discussion

CDAs offer the possiblity of assigning examinees to latent classes by measuring

fine-grained components of variation that are of interest to the test-user. Be-

fore making any decision based on these classifications, it would be important to

ask, how accurate the classifications are. Implementations of formative assess-

ment may require important decisions to be made about particular latent classes,

and if decisions related to educational instruction, or clinical diagnosis are to use



35

CDAs as evidence, estimates of the accuracy of the latent class, not just the over-

all accuracy of the assessment, should be available. This is fundamental to the

interpretation of the test scores and the argument in favor of their intended use.

This manuscript extends current methods to fill a gap in the literature by esti-

mating the accuracy of latent classifications. Furthermore, because implementing

a CDA will likely require a thorough understanding of how the accuracy of the

test results generalize to other populations, this research proposes a relatively

simple and accurate method for estimating the overall classification accuracy for

any attribute distribution of interest.

In this manuscript, simulation studies investigated the recovery of the em-

pirical values across test conditions and attribute distributions. For reasonably

favorable test conditions, the proposed index overestimated the empirical values

by 10% or less. The number of examinees in the latent class of interest heavily

infuenced performance, which was particularly relevant under the higher-order

attribute structure. The index returned estimates that were the same or better

than the alternative, the parametric Monte Carlo approach, and only required

basic matrix manipulation to compute. In addition, using the proposed index to

predict classification accuracy for a different population was also computationally

simple, producing values of τ̂ ∗ close to the empirical values under moderately fa-

vorable test conditions. The ease with which these indices are computed should

encourage their routine use with CDAs, particularly when developing the validity

argument.

The performance of the parametric Monte Carlo approach followed different

patterns when estimating τ̂ ∗ compared to τ̂l. This could be attributed to the fact

that the parametric approach relies on P̂ (αl) and φ̂, and although the former

is changed to reflect the new population, the latter cannot be updated. Results

indicated that, under less than ideal test conditions, the quality of φ̂ depended on
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the attribute distribution, which may explain why the parametric Monte Carlo

approach performed worse than the proposed index when estimating τ ∗. Note

that this observation is about the noise in parameter estimates under suboptimal

test conditions and does not contradict the findings of de la Torre and Lee (2010)

regarding item parameter invariance of CDMs.

For short tests, low item quality, and/or uncommon latent classes, neither the

proposed index nor the Monte Carlo approaches appear viable, returning values

of τ̂l and τ̂ ∗ that were not close to the empirical values. It is still unclear why both

approaches overestimated, but rarely underestimated, the empirical values. The

overestimation suggests the need for a correction term in the computation of the

index, which would shrink to zero as the sample size or quality of the posteriors

improved. Additionally, the index should be evaluated in circumstances where

the latent class structure is constrained (e.g., a hierarchical attribute structure).

Extensions of this index for polytomous attributes would likewise be useful. Fu-

ture simulation studies should include Q-matrix misspecification as a factor to

evaluate how the accuracy and structure of the Q-matrix impacts performance.

Finally, this research did not explore a way for the test user to quantify the

amount of measurement error in the estimates of τl - the standard errors of τ̂ ,

τ̂k, τ̂l, and τ̂ ∗ remain unstudied. A more robust validity argument for CDA will

entail reporting these indices as well as their confidence intervals.
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Chapter 3

Three-Step Estimation of Cognitive Diagnosis

Models with Covariates

3.1 Introduction

The family of latent class models (LCMs), of which cognitive diagnosis models

(CDMs) are part, offer a broad range of applications beyond classification that

can be used to address a wide variety of research questions related to exami-

nee performance. CDMs are a relatively new development, and the full suite

of methodologies for applied researchers has yet to be developed. Specifically,

techniques for modeling covariates along with CDMs has not been extensively

discussed in the literature. For example, integrating structural models and mea-

surement models has been studied extensively in the LCM context (for some

examples, see Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Dayton &

Macready, 1988, 2002; Huang & Bandeen-Roche, 2004). In the item response

theory (IRT) context, modeling the relationship between scores and covariates

via latent regression has been the subject of a great deal of research (for an

overview, see Schofield, Junker, Taylor, & Black, 2015). However the details of

incorporating covariates into CDMs has not received the same extensive treat-

ment. The little work that has been done on the topic employed a one-step

approach to incorporating covariates, which entails estimating the CDM and the

regression model simultaneously. Ayers, Rabe-Hesketh, and Nugent (2013) im-

plemented attribute-level logistic regression in both the DINA and higher-order
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DINA models (de la Torre & Douglas, 2004), where the covariates affected the

probability of the examinee mastering each attribute. This is referred to as differ-

ential skill functioning. Park and Lee (2014) extended this approach, constructing

a logistic regression such that covariates influenced the probability of an exam-

inee answering the item correctly. This can be conceived of as differential item

functioning.

Compared to the one-step, the three-step approach offers the researcher ad-

ditional flexibility in modeling the relationship between examinee classification

and covariates. This approach treats classifications from the CDM as dependent

variables and regresses them onto the covariates, which leads to downward bias in

the parameter estimates. This is latent-class regression. Note that the techniques

discussed here differ from errors-in-variables regression, where the measurement

error is in the independent variables rather than the dependent variables (Carroll,

Ruppert, Stefanski, & Crainiceanu, 2006). In the IRT context, similar problems

of poor parameter estimates in latent regression were addressed by developing

plausible values, which are released for secondary analysis (Mislevy, 1991, 1993).

In the LCM context, correction weights have been developed to adjust for bias in

the latent regression parameters (Bakk, Tekle, & Vermunt, 2013; Bolck, Croon, &

Hagenaars, 2004; Vermunt, 2010), permitting a wider variety of research questions

to be studied. However, the solution mitigates much, but not all, of the downward

bias, and the performance in terms of root mean square error (RMSE) has not

been documented. Neither the corrected nor uncorrected three-step procedure

has been explored in the CDM context. Unlike in LCA, in CDM the dependent

variable in the third step could be either the latent class (i.e., attribute vector)

or the attribute.

The shortcomings in the existing methodologies are problematic because sec-

ondary researchers likely will focus on the relationship of the covariates to the
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latent classifications. In the educational measurement context, research questions

frequently focus on the relationship between test scores and background variables,

with the goal of determining which variables predict student achievement (see,

for example, Abedi, Lord, & Hofstetter, 1998; Darling-Hammond, 2000; National

Center for Education Statistics, 2011a). However, the one-step is not well-suited

to the realities of secondary research, where item parameters and classifications

have already been estimated and implemented. Furthermore, substantive experts

may view as tautological interpretations of the relationship between covariates

and classifications that were, in part, determined by the covariates (Bakk, Ober-

ski, & Vermunt, 2013). There are circumstances under which this objection may

be particularly compelling. For example , if the covariates were not collected at

the same time as the item responses, the assumptions of the one-step model may

be violated. The three-step approach may indeed lead to less biased estimates of

the relationship between predictors and classification.

Adapted to the CDM framework, three-step methodologies for estimating

CDMs would offer greater flexibility in modeling the relationship between co-

variates and fine-grained variation in examinee performance.

The rest of this paper is organized as follows: First, some relevant background

on CDMs is covered. Next is a review of modeling the relationship between

covariates and latent classes via the one-step and three-step procedures. After

that is a section on correction weights in the three-step approach, including the

proposed methodological advances. Following that is the simulation study to

investigate the efficacy of the corrections in the CDM context, as well as a brief

empirical example using real data. The paper will conclude with a discussion of

the limitations and directions for future research.
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3.2 Cognitive Diagnosis Models

The majority of CDM-related research has been done in the context of educa-

tional measurement, where the models are a relatively new development in a field

dominated by IRT. The IRT framework has been built and refined to measure

a uni- or low-dimensional construct on a continuum and rank examinees based

on their performance (Junker & Sijtsma, 2001). The CDM framework is differ-

ent in that it measures multidimensional skills referred to as attributes (de la

Torre, 2011), on which examinees are classified as either having mastered or not

mastered. Analysis can be done at either the attribute-level or the latent class-

level; that is, the researcher may be interested in the mastery or non-mastery of

particular attributes or the overall attribute-pattern classification.

A more detailed look at examinee skills could be used in low-stakes assessments

to serve a diagnostic purpose, like, as an example from educational measurement,

large-scale international assessments. The proliferation of e-learning platforms

and intelligent tutoring systems marketed as formative assessment offer other

potential applications. Alternatively, CDMs can be used in other contexts, like

clinical psychology, where the multidimensional nature of the examinee classifica-

tion provides advantages over other methods. For an example of this application,

see de la Torre, van der Ark, and Rossi (2015) and the empirical example below.

3.2.1 The G-DINA Model

There are a multitude of CDMs in the literature that model the relationship

among attributes in a variety of ways (see, for example, Rupp, Templin, & Henson,

2010), but a salient distinction is between reduced models and general models.

The former makes particular assumptions about how the attributes interact when

responding to an item, whereas the latter do not. There are several general
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models - the general diagnostic model (GDM; von Davier, 2008), the log-linear

CDM (LLM; Henson, Templin, & Willse, 2009), and the model used throughout

this study, the generalized deterministic noisy “and” gate (G-DINA; de la Torre,

2011) model. A general model is used here to eliminate a potential source of

model misfit and, because general models subsume reduced models, to bolster

the generalizability of the findings.

The G-DINA model, like most CDMs, uses a Q-matrix (Tatsuoka, 1983) to

specify the attributes used in each of the items. The number of attributes re-

quired for each particular item is denoted by K∗
j , where K refers to the number

of attributes and the subscript j specifies the item. The number of required

attributes can be calculated as K∗
j =

∑K
k=1 qjk, where qjk represents the kth el-

ement of the jth row of the Q-matrix. The examinee attribute vector can be

written αl={αl1, . . . , αlK}, where l = 1, . . . , 2K denotes the latent classes, and

k = 1, . . . , K the attributes. The kth element of the vector is 1 when the exami-

nee has mastered the kth attribute, and is 0 when the examinee has not. Let α∗
lj

be the reduced attribute vector containing only the required attributes, where

l = 1, . . . 2K
∗
j . The probability of an examinee with attribute pattern α∗

lj an-

swering item j correctly will be denoted by P (α∗
lj). The G-DINA item response

function is written as

P (α∗
lj) = φj0 +

K∗j∑
k=1

φjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

φjkk′αlkαlk′ + · · ·+ φj12···K∗j

K∗j∏
k=1

αlk,

where φj0 is the intercept for item j, φjk is the main effect due to αk, φjkk′ is the

interaction effect due to αk and αk′ , and φj12...K∗j is the interaction effect due to

α1, · · ·, αK∗j .
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The parameter estimates can be obtained via marginalized maximum likeli-

hood estimation. The likelihood is written

L(Xi|αl) =
J∏
j=1

Pj(αl)
Xij [1− Pj(αl)]1−Xij .

Marginalizing the likelihood is done by obtaining the weighted sum of the likeli-

hood, where the latent class proportions, P (αl), are the weights. The marginal-

ized likelihood is written as

L(X) =
N∏
i=1

2K∑
l=1

L(Xi|αl)P (αl). (3.1)

The log of Equation 4.2 can serve as the objective function and is optimized to

estimate the item parameters. For more details on this, see de la Torre (2011).

The posterior distribution of examinee i is a vector of length 2K , written as

P (αl|Xi) ∝ L(Xi|αl)P (αl),

and normalized to sum to one.

3.2.2 Latent Class Assignment

The examinee posterior distributions were subsequently used in the second step

of the three-step procedure to assign examinees to latent classes. In LCA, the

examinee assignment may be either proportional, modal, or mean (Goodman,

2007). In this study, the vector of proportional assignment is equal to the es-

timated examinee posterior distribution, whereas modal and mean assignment

correspond to the maximum a posteriori (MAP) and expected a posteriori (EAP)

methods, respectively (Huebner & Wang, 2011). The latter was used to compute

the marginalized attribute-level probabilities, P (αk|Zi).
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The estimated attribute pattern of examinee i is denoted by α̂i. In the follow-

ing sections, αl refers to the potential true values of the attribute pattern, and

αs refers to the possible value of the latent class assignment, where s = 1, . . . , 2K .

That is, αs are the possible values of α̂i.

3.2.3 Matrix of Classification Error Probabilities

The examinee latent-class assignment and posterior distribution are used to cal-

culate the matrix of conditional classification error probabilities (Vermunt, 2010),

written as

P (αs|αl,X) =

∑N
i=1 P (αl|Xi)I[α̂i = αs]∑N

i=1 P (αl|Xi)
, (3.2)

where I[α̂i = αs] is an indicator function equal to 1 when the estimated attribute

pattern of examinee i is equal to latent class αs, and zero otherwise. Thus,

P (αs|αl,X) can be interpreted as a 2K × 2K contingency table containing the

proportion of examinees with true latent class membership αl assigned to latent

class αs.

Note the relationship between the matrix of classification error probabilities

and the pattern-level classification accuracy index (Wang, Song, Chen, Meng, &

Ding, 2015),

τ̂ =
2K∑
l=1

P (αs|αl,X)I[l = s]× P (αl)

where I[l = s] is the indicator function equal to 1 when the latent class l is

the same as the latent class s. The diagonal of the matrix of classification error

probabilities, weighted by the proportion of examinees in each latent-class and

summed, is equal to τ̂ .
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3.3 Modeling the Relationship between Covariates and

Latent Classification

3.3.1 The One-Step Approach

The LCM literature offers two approaches for relating covariates to latent clas-

sification: the one-step and the three-step procedures (see, for example, Bakk,

Tekle, & Vermunt, 2013; Bolck et al., 2004; Vermunt, 2010). In the following sec-

tion, the observed examinee covariates are implemented at the latent-class level,

where the covariates affect the probability of an examinee belonging to a latent

category. The likelihood is written as

L(X) =
N∏
i=1

2K∑
l=1

P (Xi|αl)P (αl|Zi),

where P (Xi|αl) is the CDM relating the observed item responses to the latent

classification, Zi = {Zi1, . . . Zif , . . . ZiF} is the covariate vector for examinee i,

and P (αl|Zi) is the structural model relating the latent classifications to the

covariates, here a multinomial logistic regression. The full-information maxim-

imum likelihood (FIML) approach estimates both the CDM and multinomial

logistic regression model parameters simultaneously by maximizing the following

log-likelihood:

logLFIML =
N∑
i=1

log
2K∑
l=1

P (Xi|αl)P (αl|Zi).

A similar one-step procedure can be used to relate the covariates to the probabil-

ity of an examinee having mastered an attribute. The relationship between the

probability of mastering attributes 1 . . . K and belonging to latent class l can be

written as

P (αl) =
K∏
k=1

P (αk = 1)αlk × [1− P (αk = 1)]1−αlk ,
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where αlk is one when latent class l entails mastery of attribute k, and zero

otherwise. Using this relationship, the log-likelihood can be written as

logLFIML =
N∑
i=1

log
2K∑
l=1

P (Xi|αl)
K∏
k=1

P (αk = 1|Zi)
αlk × [1− P (αk = 1|Zi)]

1−αlk ,

and is optimized with respect to the CDM and the logistic regression model

parameters, φ and β, respectively, to obtain the FIML estimates.

The one-step estimates the measurement model and the structural model si-

multaneously, producing unbiased estimates of the relationship between examinee

classification and the covariates (Dayton & Macready, 1988). However, there are

several circumstances under which the one-step procedure is undesirable or in-

feasible. Because the measurement model must be refitted when one or more

covariates are dropped from the structural model, the estimated G-DINA param-

eters will change every time the latent class regression adds or drops a variable.

This complicates the calibration of item parameters. Moreover, in educational

measurement, the covariates tend to be collinear, and thus it may be desirable

to employ dimension reduction techniques, like principal components analysis, to

incorporate a large amount of covariate information without adding too many

parameters to the objective function (National Center for Education Statistics,

2011b; von Davier, Sinharay, Oranje, & Beaton, 2006). Implementing covari-

ates in this form via the one-step approach may improve estimation of the CDM

parameters and/or may improve the classification accuracy, but estimating co-

efficients of the principal components prevents the researcher from studying the

relationship between individual covariates and attribute mastery.

Additionally, in substantive research, it may be that the covariates should

not contribute to the classification (Robitaille & Beaton, 2002). Alternatively,

it may be that all the covariates (or the principal components of the covariates)
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are needed to improve classification, but only the relationship among particu-

lar covariates and the classification is of interest (National Center for Education

Statistics, 2008). Finally, the full item responses are often not released to sec-

ondary researchers. In these situations, a one-step procedure is impractical, if not

impossible.

3.3.2 The Uncorrected Three-Step Approach

When the one-step procedure is not available or is inappropriate, the three-step

procedure can be implemented. As described earlier, the first step is to estimate

the CDM, the second step is to assign examinees to a latent class based on the

posterior, and the third step is to estimate the relationship between the covariates

and latent classification obtained in the second step. It should be noted that in the

third step of the uncorrected approach, the classifications are no longer treated as

latent, but rather as observed variables. Estimated classifications are regressed

onto the covariates via a multinomial logistic regression, written as

P (αl|Zi) =
exp(βl0 +

∑F
f=1 βlfZif )∑2K

l=1 exp(βl0 +
∑F

f=1 βlfZif )
, (3.3)

where the parameters of interest are the coefficients for each latent class, βMLR =

{βl0, βl1, . . . , βlF}. They can be estimated by maximizing the objective function

of the multinomial logistic regression model,

logL =
N∑
i=1

logP (α̂i|Zi), (3.4)

where P refers to the probability function of Equation 3.3 evaluated at α̂i. That

is, the latent class assignment of examinee i is used in place of the true latent

class, αl. In the uncorrected approach, the latent class assignment is treated as an
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observed dependent variable in the multionomial logistic regression function. As

will be demonstrated, this approach leads to biased estimates of βMLR, impacting

the validity of the inferences made using this approach.

3.3.3 The Three-Step Procedure with Latent-class Level

Correction Weights

3.3.3.1 Sample-Level Correction Weights

Equation 3.4 estimates the relationship between the estimated classifications and

the covariates rather than the true classifications and the covariates. In contrast,

the corrected three-step procedure incorporates the classification error probabili-

ties to weight individual assignments in the objective function. These sample-level

correction weights are denoted by SLil and are calculated as

SLil = P (αs|αl,X)I[α̂i = αs]

which can be interpreted as using the column from the matrix of classification

error probabilities that corresponds to the latent class assignment, s, of examinee

i. The objective function of the multinomial logistic regression in the (corrected)

third step can then be written as

logLSL =
N∑
i=1

log
2K∑
l=1

P (αl|Zi)SLil, (3.5)

in effect computing a weighted average of the classifications, compared to Equa-

tion 3.4, which only uses the assigned classification. The sample-level corrected

approach leads to reduction in the bias of the estimates of βMLR in P (αl|Zi)

(Vermunt, 2010).

To illustrate the computation of SLil, in a hypothetical example with two
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attributes, let the following be a matrix of classification error probabilties,

P (αs|αl) =



.85 .08 .04 .03

.01 .92 .02 .05

.06 .04 .81 .09

.03 .01 .01 .95


,

where the four columns correspond to latent classes assignments, αs = (0, 0),

αs = (1, 0), αs = (0, 1), and αs = (1, 1), and the rows correspond to the true

latent classes. If the examinee is assigned to class αs = (1, 0), then the second

column would be used as the correction weights:

SLil =



.08

.92

.04

.01


.

These values would be incorporated into Equation 3.5 in estimating the multino-

mial logistic regression parameters, βMLR.

3.3.3.2 Posterior-distribution Level Correction Weights

The correction weights, SLil, adjust for much, but not all, of the bias in the

parameter estimates, as evidenced by the results of previous simulation studies in

LCA (Bakk, Oberski, & Vermunt, 2013; Vermunt, 2010). The proposed correction

weights were designed to reduce the discrepancy between one-step and corrected

three-step parameter estimates. They are calculated as

PDLil =
P (αl|Xi)

P (αl)
, (3.6)
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and replace SLil in the objective function of Equation 3.5. The main difference

between SLil and PDLil is that the former uses the latent-class distribution

from the entire sample, whereas the latter uses the posterior distribution from

each individual examinee. That is, in SLil, the same correction is applied to each

examinee that has been assigned to the same latent class, whereas in the proposed

weights, PDLil, the correction is unique to each posterior distribution. Thus,

SLil and PDLil will be referred to as sample-level and posterior-distribution

level correction weights, respectively.

3.3.3.3 Three-Step Approach with Attribute-Level Correction Weights

In the CDM framework, the relationship between individual attributes and co-

variates also may be of interest, and correction weights were developed for a

three-step procedure in this context as well. The probability of mastering each

attribute is computed by aggregating the posterior probabilities P (αl|Xi) into

the marginal attribute-mastery probabilities, P (αk = 1|Xi). Note that P (αk =

0|Xi) = 1 − P (αk = 1|Xi). The probability of mastering attribute k given the

covariates can be modeled via logistic regression, written as

P (αk = 1|Zi) =
exp(βk0 +

∑F
f=1 βkfZif )

1 + exp(βk0 +
∑F

f=1 βkfZif )
,

and P (αk = 0|Zi) = 1− P (αk = 1|Zi), where the parameters of interest are the

coefficients for each attribute, βLR = {βk0, βk1, . . . , βkF}. The objective function

for the uncorrected approach is

logL =
N∑
i=1

log[P (α̂ik|Zi)],

where α̂ik is the estimated attribute k classification of examinee i, and is equal to

1 if the examinee is classified as having mastered the attribute, and 0 otherwise.
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In the uncorrected attribute-level three-step procedure, the estimated attribute

classification is treated as an observed dependent variable in a regression model.

A matrix of attribute-level classification error probabilities was computed in a

manner similar to Equation 3.2, the classification error probabilities of the latent-

classes. This yielded a 2 × 2 contingency table, denoted by P (αq|αk,X), where

αq refers to the possible attribute classification values, and is equal to 0 or 1.

Note that the αk and αq notation here is analogous to the αl and αs notation

used in the latent-class three-step described above. The attribute-level matrix is

calculated as

P (αq|αk,X) =

∑N
i=1 P (αk|Xi)I[α̂ik = αq]∑N

i=1 P (αk|Xi)
,

and can be interpreted as the proportion of examinees assigned attribute mastery

αq given true attribute mastery αk. For example, the entries of column 1 are

P (αq = 0|αk = 0,X) =

∑N
i=1 P (αk = 0|Xi)I[α̂ik = 0]∑N

i=1 P (αk = 0|Xi)
,

and

P (αq = 0|αk = 1,X) =

∑N
i=1 P (αk = 1|Xi)I[α̂ik = 0]∑N

i=1 P (αk = 1|Xi)
,

where the former can be interpreted as the proportion of examinees correctly

classified as not having mastered attribute k, and the latter as the proportion of

examinees incorrectly classified as not having mastered attribute k.

The sample-level correction weights for examinee i use the column from the

matrix of attribute-level classification error probabilities that corresponds to the

examinee’s estimated attribute classification, and were computed

SLik = P (αq|αk,X)I[α̂ik = αq]
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The posterior-distribution level correction weights were calculated

PDLik =
P (αk|Xi)

P (αk)
,

where P (αk) is the sample-level proportion of mastery of attribute k. The

attribute-level logistic regression log-likelihood can be modified to find the es-

timates of the marginalized probability of mastering attribute k given the covari-

ates, P (αk|Zi), rather than the relationship between the attribute assignment

and the covariates, P (α̂ik|Zi). The objective function of the corrected approach

is written as

logL =
N∑
i=1

log
1∑

αk=0

P (αk|Zi)wik,

where wik is equal to SLik or PDLik. Optimizing this objective function leads to

corrected estimates of the parameters βLR in P (αk|Zi).

3.4 Simulation Study to Evaluate the Performance of the

Correction Weights

A two-part simulation study was designed to investigate the ability of the sample-

level correction weights, SLil and SLik, and the posterior-distribution level cor-

rection weights, PDLil and PDLik, to improve the estimates of the regression

model parameters. The uncorrected three-step and the one-step procedures were

included for comparison. Furthermore, the simulation study examined the extent

to which the performance of the correction weights was related to the sample size

and the degree of misclassification of the CDM.
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3.4.1 Design

Factors manipulated were the sample size (N = 500, 1000, and 2000), the test

length (J = 10 and 20), and item quality (High, Medium, and Low), operational-

ized as the values of the guessing and slip parameters (g = s = .1, .2, and .3). The

K = 3 attributes were generated under two conditions: an independent attribute

structure, where correlations among the attributes were approximately zero, and a

correlated attribute structure, where the correlations among the attributes ranged

from .5 to .8, as suggested by Kunina-Habenicht, Rupp, and Wilhelm (2012) and

Sinharay, Puhan, and Haberman (2011). The ten-item Q-matrix to be used in the

study is presented in Table 4.1; it was doubled for the 20-item tests. Addition-

Table 3.1: Ten-Item Q-matrix

item α1 α2 α3

1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1
7 1 1 0
8 1 0 1
9 0 1 1
10 1 1 1

ally, the number of examinee covariates tested were F = 3, 9, and 12, drawn from

the multivariate standard normal distribution, N(0, I). In Part I of the study,

the relationship between αl and Zi assumed the form of a multinomial logistic

regression, with latent-classes regressed onto covariates. For the three covariates

(F = 3) condition, the matrix of true parameters used to generate the correlated
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attribute structure was

βMLR
corr =


−0.5 1 1 0.5 0.5 2 1.5

1 −0.5 1 0.5 2 0.5 1.5

1 1 −0.5 2 0.5 0.5 1.5

 ,

and the matrix of parameters used to generate the independent attribute structure

was,

βMLR
ind =


1 0.5 0.5 1.5 1.5 1 2

0 1 0 1 0 1 1

0.5 0.5 1 1 1.5 1.5 2

 .
βMLR has 2K − 1 columns corresponding to the latent classes, with αl = (000)

set as the reference group. The rows correspond to the number of covariates.

When the number of covariates increased to nine and twelve, βMLR was tripled

and quadrupled, respectively. In Part II of the simulation study, the relationship

between αk and Zi assumed the form of a logistic regression. The same conditions

were used, and another set of covariates were generated from the standard normal

distribution and used with the generating parameters below in a logistic regression

model. For the three covariate condition (F = 3), the matrix of parameters used

to generate the correlated attribute structure was

βLRcorr =


2 1 1

0 2 0

1 1 2

 ,
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and the matrix of parameters used to generate the independent attribute structure

was

βLRind =


−1 2 2

2 −1 2

2 2 −1

 .
Here the three rows correspond to the number of covariates and the three columns

to the number of attributes. When the number of covariates increased to nine and

twelve, βLRcorr was tripled and quadrupled, respectively. To simplify computations

and analysis, and without loss of generality, the intercept β0 was set equal to

0. In all 100 replications per condition, the estimates were computed by directly

optimizing the log-likelihood via the L-BFGS-B (Nocedal & Wright, 2006) method

in the optim package of R statistical computing software (R Core Team, 2016).

3.4.2 Analysis

Modifying the aforementioned factors varied the proportion of correctly classified

attribute vectors (PCV), defined as,

PCV =

∑Rep
r=1

∑N
i=1 I[αi = α̂i]

N ×Rep
,

where Rep is the number of replications, and I[αi = α̂i] evaluates whether the es-

timated attribute vector matches the generated values. Across the tested factors,

the PCV varied from approximately 42% to 98%. The classification accuracy of

the G-DINA model, in turn, affected the accuracy of the parameter estimates of

the regression model. The quality of the estimates was evaluated by computing

the bias and root-mean-square error (RMSE) of the parameter estimates across
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replications. The former is defined as,

bias =

∑Rep
r=1(β̂

(r)
gf − βgf )
Rep

,

where g represents either latent class l or attribute k, depending on which regres-

sion model is being estimated, β̂
(r)
gf is the estimate of βgf from replication r, f is

the covariate (f = 1 . . . F ), and Rep is the total number of replications; the latter

is defined as,

RMSE =

√√√√Rep∑
r=1

(β̂
(r)
gf − βgf )2/Rep.

To offer a look at the overall estimation across all parameters, the average absolute

bias (ABIAS) and the average RMSE (ARMSE) were calculated as

ABIAS =

∑G
g=1

∑F
f=1

∣∣∣∑Rep
r=1(β̂

(r)
gf − βgf )/Rep

∣∣∣
F ×G

and

ARMSE =

√∑G
g=1

∑F
f=1

∑Rep
r=1(β̂

(r)
gf − βgf )2

Rep× F ×G
,

respectively.

In addition to comparing the various approaches to model estimation, the

study examined the relationship between the classification error and the perfor-

mance of the correction procedures. Because the performance of the correction

in the three-step procedure depends on separation among classes and the sam-

ple size (Vermunt, 2010), it was expected that the number of correctly classified

examinees, referred to here as the effective sample size, N∗, would be closely

related to the performance of the correction and thus could potentially inform

research about the efficacy of the bias-corrected three-step procedure in real data
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situations. N̂∗ can be computed as,

N̂∗ =
N∑
i=1

P (αl|Xi)I[αl = α̂i],

Note that N̂∗ is also equal to N × τ̂ , where N is the sample size and τ̂ is the

pattern-level marginal classification accuracy statistic of Wang et al. (2015).

3.4.3 Results

Although the estimation procedure of the attribute-level logistic regression in Part

II of the simulation study is not subsumed by the latent-class level regression in

Part I, the performance of the procedures across conditions were quite similar,

showing similar patterns of bias and RMSE both overall and at the level of indi-

vidual parameters. The two procedures also behaved similarly as the number of

covariates increased. However, the quality of the latent-class regression parame-

ter estimates were worse due to the extra parameters being estimated - 2K × F

versus K × F in attribute-level regression. Because of this and the fact that the

attribute structure did not have a substantial impact on the results, only the

results of attribute-level logistic regression with three covariates and correlated

attribute structure are presented in-depth here. The results in their entirety can

be requested from the first author.

3.4.3.1 Overall Bias and RMSE

The ABIAS and ARMSE of each approach are presented in Tables 3.2 and 3.3,

respectively. Consistent with previous research, no three-step procedure led to

lower ABIAS or ARMSE than the one-step approach under any condition. Among

the three-step approaches, the uncorrected three-step estimates tended to pro-

duce the most ABIAS and ARMSE, underscoring the need for correction weights.
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Comparing the corrected three-step procedures across all conditions, the PDLik

performed better than SLPROPik , and as good or better than SLMAP
ik . The PDLik

weights led to greater improvement over SLMAP
ik when item quality was low, or

when item quality was medium and J = 10. For example, when N = 1000,

J = 20, and item quality was low, PDLik outpeformed SLMAP
ik 0.21 versus 0.25

in terms of ABIAS and 0.26 versus 0.31 in terms of ARMSE. When N = 1000,

J = 10, and item quality was medium, PDLik returned ABIAS and ARMSE val-

ues of 0.18 and 0.23, respectively, whereas SLMAP
ik returned corresponding values

of 0.22 and 0.27.

The proposed correction weights not only performed as well or better than

other three-step approaches, they led to the same results as the one-step when

item quality was high, or when item quality was medium and J = 20. For

example, when N = 500, J = 10 and item quality was high, both the one-step and

PDLik led to ABIAS and ARMSE values of 0.18 and 0.23, respectively, whereas

SLMAP
ik returned values of 0.21 and 0.27. Similarly, when N = 500, J = 20,

and item quality was medium, the one-step and PDLik again led to ABIAS and

ARMSE values of 0.18 and 0.23, respectively, whereas SLMAP
ik returned values of

0.20 and 0.26.

As expected, the discrepancy between the uncorrected and corrected ap-

proaches decreased when PCV approached 1.00. Specifically, when N = 2000,

J = 20, and item quality was high, PCV was approximately 0.98, and the ABIAS

of the uncorrected estimates was only .04 higher than the ABIAS of the PDLik-

corrected approach.

3.4.3.2 Bias and RMSE at Individual Parameter Level

To illustrate how the different approaches performed at the level of the individual

parameters, Tables 3.4 and 3.5 present the bias and RMSE in the estimates of
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Table 3.2: ABIAS - Attribute-Level Logistic Regression

Three-Step

N J IT One-Step PDLik SLMAP
ik SLPROPik Uncor

500

High 0.18 0.18 0.21 0.28 0.47
10 Medium 0.24 0.26 0.32 0.60 0.93

Low 0.47 0.77 0.80 0.77 1.32

High 0.16 0.16 0.17 0.18 0.18
20 Medium 0.18 0.18 0.20 0.30 0.55

Low 0.27 0.35 0.41 0.61 1.08

1000

High 0.13 0.13 0.15 0.23 0.46
10 Medium 0.16 0.18 0.22 0.58 0.92

Low 0.29 0.44 0.50 1.06 1.28

High 0.11 0.11 0.11 0.12 0.14
20 Medium 0.12 0.12 0.14 0.27 0.54

Low 0.18 0.21 0.25 0.69 1.04

2000

High 0.09 0.09 0.10 0.21 0.46
10 Medium 0.11 0.13 0.16 0.59 0.91

Low 0.18 0.25 0.31 1.32 1.25

High 0.08 0.08 0.08 0.10 0.12
20 Medium 0.09 0.09 0.10 0.26 0.54

Low 0.13 0.15 0.18 0.73 1.02

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach.

β13, where the true value was equal to two. The bias in the estimates was again

consistent with previous research - the one-step tended to overestimate parameter

values, whereas the uncorrected three-step procedure led to downward bias, often

severe, across all conditions. Both PDLik and SLMAP
ik correction weights were

able to adjust for attentuation across all conditions, however when item quality

was low, the PDLik was better able to reduce bias and RMSE in parameter

estimates compared to SLMAP
ik . For example, when N = 500, J = 20, and item

quality was low, the PDLik underestimated β13 by 0.19, whereas the SLMAP
ik
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Table 3.3: ARMSE - Attribute-Level Logistic Regression

Three-Step

N J IT One-Step PDLik SLMAP
ik SLPROPik Uncor

500

High 0.23 0.23 0.27 0.37 0.52
10 Medium 0.31 0.33 0.40 0.86 0.98

Low 0.74 0.87 0.90 1.08 1.36

High 0.20 0.20 0.21 0.23 0.22
20 Medium 0.23 0.23 0.26 0.40 0.59

Low 0.36 0.43 0.50 0.87 1.13

1000

High 0.16 0.16 0.18 0.29 0.49
10 Medium 0.21 0.23 0.27 0.72 0.95

Low 0.42 0.52 0.59 1.46 1.33

High 0.14 0.14 0.14 0.16 0.18
20 Medium 0.15 0.15 0.18 0.35 0.57

Low 0.23 0.26 0.31 0.87 1.08

2000

High 0.11 0.11 0.13 0.26 0.49
10 Medium 0.14 0.16 0.20 0.70 0.94

Low 0.24 0.31 0.38 1.60 1.29

High 0.10 0.10 0.10 0.12 0.15
20 Medium 0.11 0.11 0.13 0.31 0.56

Low 0.17 0.18 0.22 0.86 1.06

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach

underestimated it by 0.28. The RMSE of the PDLik estimates was also lower, at

0.48, than the RMSE returned by SLMAP
ik , 0.55. More generally, larger reductions

in RMSE under low and medium item quality were seen using PDLik in place of

SLMAP
ik . It is worth noting that this pattern was consistent across all conditions

tested, including the number of covariates; that is, the greater the bias and RMSE,

the greater the improvement obtained by using PDLik rather than SLMAP
ik .

Furthermore, when item quality was medium or high, the RMSE of the PDLik

estimates was within 0.02 of the RMSE from the one-step approach. Under these
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same conditions, the RMSE of the SLMAP
ik estimates was within 0.08 of the one-

step. The bias of PDLik and SLMAP
ik estimates was within 0.02 of the one-step

approach under eight and seven of the eighteen conditions, respectively. Finally,

the performance of SLPROPik was poor, sometimes dramatically over or under-

estimating the parameter.

Table 3.4: Bias - Attribute-Level Logistic Regression

β13 = 2

Three-Step

N J IT One-Step PDLik SLMAP
ik SLPROPik Uncor

500

High 0.00 -0.04 -0.05 0.19 -0.59
10 Medium 0.04 -0.15 -0.20 0.53 -1.11

Low 0.27 -0.87 -0.90 -0.97 -1.57

High 0.02 0.04 0.04 0.08 -0.11
20 Medium 0.04 -0.05 -0.08 0.27 -0.65

Low 0.19 -0.19 -0.28 0.66 -1.25

1000

High 0.01 0.02 -0.02 0.22 -0.53
10 Medium 0.01 -0.05 -0.09 0.65 -1.09

Low 0.13 -0.38 -0.43 1.10 -1.52

High -0.01 -0.01 -0.01 0.04 -0.14
20 Medium 0.01 0.01 0.01 0.33 -0.63

Low 0.05 -0.05 -0.09 0.92 -1.21

2000

High 0.01 0.01 0.01 0.25 -0.56
10 Medium 0.00 0.02 -0.02 0.74 -1.07

Low 0.01 -0.15 -0.25 1.49 -1.48

High 0.02 0.02 0.02 0.07 -0.12
20 Medium 0.01 0.01 0.02 0.30 -0.64

Low 0.02 -0.03 -0.09 0.90 -1.22

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach
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Table 3.5: RMSE - Attribute-Level Logistic Regression

β13 = 2

Three-Step

N J IT One-Step PDLik SLMAP
ik SLPROPik Uncor

500

High 0.24 0.25 0.29 0.38 0.63
10 Medium 0.32 0.34 0.40 0.82 1.12

Low 0.92 0.99 1.03 1.17 1.57

High 0.22 0.22 0.23 0.26 0.24
20 Medium 0.25 0.26 0.28 0.42 0.68

Low 0.45 0.48 0.55 1.16 1.27

1000

High 0.19 0.20 0.21 0.33 0.55
10 Medium 0.26 0.24 0.32 0.82 1.09

Low 0.47 0.56 0.65 1.56 1.52

High 0.15 0.15 0.15 0.16 0.20
20 Medium 0.17 0.17 0.20 0.41 0.65

Low 0.25 0.26 0.34 1.09 1.21

2000

High 0.10 0.10 0.12 0.30 0.57
10 Medium 0.16 0.16 0.22 0.83 1.08

Low 0.26 0.32 0.44 1.73 1.48

High 0.11 0.11 0.12 0.15 0.17
20 Medium 0.11 0.11 0.13 0.34 0.65

Low 0.18 0.19 0.23 0.98 1.22

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach

3.4.3.3 Separation of Likelihood

One particular problem frequently encountered in the simulation study was sep-

aration of likelihood, defined as when the procedure returned values that ap-

proached infinity, or, in this context, were equal to the bounds set on the es-

timation method. This problem has been known since Albert and Anderson

(1984), and has been addressed in numerous contexts (see; Heinze & Schemper,
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Table 3.6: Replications with Separated Likelihood

F = 3 F = 9 F = 12

N J IT One PDL SL One PDL SL One PDL SL

500

High 0 0 0 0 2 9 2 10 19
10 Medium 1 1 1 4 15 17 7 49 61

Low 1 1 2 16 17 37 19 47 85

High 0 0 0 0 0 0 0 2 3
20 Medium 0 0 0 0 5 5 1 12 23

Low 0 0 0 4 11 17 9 30 58

1000

High 0 0 0 0 0 0 0 0 0
10 Medium 0 0 0 0 1 1 0 2 2

Low 0 0 0 4 6 10 0 18 35

High 0 0 0 0 0 0 0 0 0
20 Medium 0 0 0 0 0 0 0 0 0

Low 0 0 0 1 0 0 0 3 11

2000

High 0 0 0 0 0 0 0 0 0
10 Medium 0 0 0 0 0 0 0 0 0

Low 0 0 0 0 0 0 0 0 0

High 0 0 0 0 0 0 0 0 0
20 Medium 0 0 0 0 0 0 0 0 0

Low 0 0 0 0 0 0 0 0 0

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach

2002; Santos & Barrios, 2017), and, when it occurs, severely limits the practi-

cability of a procedure. Replications with likelihood separation were considered

as estimates that failed to converge and were eliminated from all computations.

Table 3.6 compares the proposed correction weights, the next-best performing

correction weight, SLMAP
ik , and the one-step approach for attribute-level logistic

regression. The table values indicate the number of replications, out of 100 to-

tal, where one or more estimate was equal to the bounds set on the estimation

algorithm. When F = 3, separation of the likelihood occurred at most once out
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of 100 replications for the PDLik and one-step approaches. When the number

of covariates increased to F = 9 or 12, however, the number of replications with

separated likelihood increased, particularly when N = 500 and item quality was

medium or low. Compared to SLMAP
ik , the proposed correction weights led to

approximately half the instances of likelihood separation when F = 9 or 12. For

example, when N = 500, J = 20, and item quality was medium, regressing at-

tributes onto 12 covariates using SLMAP
ik in a corrected three-step approach led to

23 occurrences of likelihood separation, compared to only 12 when using PDLik,

and one when using the one-step approach. However, it should be noted that

12 independent covariates is relatively unlikely to occur in education and social

science data. Some of the predictors would almost certainly be highly correlated,

and it is unclear how that collinearity would affect the rate of nonconvergence.

In cases where separation of likelihood is an issue, it can be resolved by using a

prior distribution (Garre & Vermunt, 2006). Note that separation of likelihood

occurred more frequently under latent-class regression, though the performance

of the approaches followed the same patterns as described above. Likewise, the

same conclusions can be drawn for both latent-class and attribute-level regression

- overall, convergence failure appears to present an impediment to the scaling of

the three-step procedure to more covariates. The proposed correction weights

outperformed other three-step procedures in this regard, however the results still

suggest the need for variable selection.

3.4.3.4 Effective Sample Size

The relationship between the PCV and the ABIAS of parameter estimates from

both the PDLik and uncorrected approaches are plotted in Figure 3.1. As the

linear trend in the plot would suggest, the correlation between the ABIAS of the

uncorrected three-step procedure and the PCV was −0.99 when F = 3 and the
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attribute structure was correlated. This relationship was strong across all con-

ditions, with an average correlation of −0.96. As can be seen in Figure 3.1, the

correction procedure undoes this linear relationship. Across all conditions, the

correlation between the log-transformed ABIAS from PDLik and the PCV was

high, at = −0.76. However, the log-transformed ABIAS was much more strongly

correlated with the estimated effective sample size, with an average correlation

across all conditions of −0.90. This strong relationship suggests that comput-

ing N̂∗ could help a researcher predict the magnitude of the bias in parameter

estimates when applying the corrected three-step procedure to real data.

0.5

1.0

0.4 0.6 0.8 1.0
PCV

A
B
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S
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Uncorrected

Figure 3.1: Relationship between ABIAS and the PCV

3.5 Empirical Example

Personality assessments administered by clinicians are intended to discern the

true state of patients. The presence of particular disorders is observable through

responses to items, making latent variable models prime candidates for model-

ing assessment data. Given the comorbidity of personality disorders, assessment

items tend to measure more than one particular disorder, and researchers have
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struggled with the measurement implications (Krueger & Eaton, 2010), particu-

larly for traditional sum scores (Rossi, Elklit, & Simonsen, 2010). CDMs offer test

developers a way to accommodate this cormorbidity when classifying patients by

modeling attribute interactions. Through the incorporation of the comorbidity

in the measurement model, CDMs may be able to better distinguish among the

different psychological profiles presented by patients. Furthermore, researchers

may want to understand the relationship between the patient covariates and the

putative disorder profiles. This empirical example should illustrate how this re-

lationship can be evaluated.

For this example of attribute-level regression, a Dutch-language version of

the Millon Clinical Multiaxial Inventory-III (MCMI-III; Millon, Millon, Davis,

& Grossman, 2009) was used, with attribute and Q-matrix specification initially

having been performed in de la Torre et al. (2015) and subsequently refined in Ma,

Iaconangelo, and de la Torre (2016). The three attributes were: H = somatoform;

SS = thought disorder; CC = major depression. Each of the 30 items measured 1,

2, or 3 of the attributes in 739 examinees. One dichotomous and one continuous

covariate were used. The first was Setting, with 400 (54%) clinical patients, and

339 (46%) prisoners. The second covariate was Age, which ranged from 18 to 74

years. See Rossi et al. (2010) for more details on the dataset.

To show the improvements in parameter estimates from the corrected three-

step procedures, a subset of less-discriminating items, referred to as subset B

in Ma et al. (2016), was used in conjunction with 100 random samples of 300

examinees. The average attribute-level regression parameter estimates from the

three-step procedures are presented in Table 4.8, along with the one-step param-

eter estimates obtained using the full dataset (N = 739, J = 30). Under the

less favorable test condition (N = 300, item subset B), the correction weights,

specifically the PDLik weights, returned estimates that were much closer to the
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one-step estimates than the uncorrected values. For example, when regressing

attribute H onto covariate Setting, the uncorrected three-step led to a parameter

estimate of −1.47, whereas the PDLik returned a parameter estimate of 2.00,

equal to the one-step estimate. The parameter estimates obtained when regress-

ing attribute CC onto covariate Age suggest that the correction weights avoid

overestimating non-significant covariates, though currently it is unclear how to

implement a variable selection procedure in this context. No separation of like-

lihood occurred under any of the replications. However, when latent-class level

regression models were fitted, over half of the replications with the less-favorable

test conditions failed to converge. This was likely related to the highly uneven

distribution of examinees across latent classes. Because of the problematic im-

plementation, the results are not presented here. Overall, treating the one-step

estimates of the attribute-level regression coefficients as the closest to the true

values, the results corroborate the simulation study finding that the correction

weights in general, and the PDLik weights specifically, can substantially improve

parameter estimation when test conditions are poor.

Table 3.7: MCMI-III

N=300, Item Subset B

Attribute Covariate One-Step PDLik SLMAP
ik SLPROPik Uncor

H
Setting -2.00 -2.00 -1.88 -2.13 -1.47

Age 0.12 0.12 0.12 0.13 0.10

SS
Setting -2.22 -2.19 -2.09 -2.27 -1.81

Age 0.33 0.22 0.23 0.24 0.19

CC
Setting -1.55 -1.57 -1.53 -1.60 -1.36

Age 0.09 0.08 0.08 0.08 0.07

Note. One-step: using the one-step approach; PDLik: using posterior-
distribution level correction weights; SLMAP

ik : using sample-level correction
weights, with the latent class assignments performed using MAP; SLPROPik : us-
ing sample level correction weights with the latent class assignment done using
proportional assignment; Uncor: using the uncorrected three-step approach
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3.6 Discussion

The study extended existing LCM methodologies to the CDM framework and

developed improved versions of the procedures. First, it applied the sample-

level correction weights to a three-step procedure relating covariates to the latent

classes using multinomial logistic regression. Second, it showed how these sample-

level weights can be modified for attribute-level logistic regression. Furthermore,

versions of the weights that used each examinee’s posterior distribution were

proposed for both the latent-class level and attribute-level regression. The sim-

ulation results showed that these proposed correction weights outperformed the

best sample-level correction weights (SLMAP
ik ) in terms of bias and RMSE. The

proposed correction weights also led to fewer instances of likelihood separation,

improving the probability that a researcher would be able to study the relation-

ship between classification and covariates. Given that the posterior-distribution

level weights are no more difficult to compute than the versions already existing

in the literature, they appear to be an unqualified improvement.

Not only did the proposed correction weights outperform the alternative three-

step procedures, they often performed approximately as well as the one-step ap-

proach. In many or most of the tested conditions, a secondary researcher would

have arrived at virtually the same parameter estimates using either the one-step

or the PDL-corrected three-step approach. This affords the secondary researcher

greater flexibility with modeling decisions while still obtaining parameter esti-

mates that lead to valid interpretations about the relationship between the clas-

sification and the examinee covariates. The procedures presented here are also

more straightforward than fitting a conditioning model, drawing plausible values,

and regressing them onto covariates, although this could be investigated in fu-

ture research. In terms of practical constraints on researchers, often the full item
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responses are not released for secondary researchers - the three-step approaches

presented here only require the examinee posterior distributions.

This work is not without shortcomings. Further research should focus on how

to accommodate larger numbers of covariates in the regression model to address

the separation of likelihood issue. Additionally, variable selection methods need

to be adapted to the three-step estimation procedure, with particular attention

paid to addressing the sort of collinear covariates seen in the social sciences. This

will further improve the utility of the three-step approach.
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Chapter 4

Variable Selection in the Three-Step Approach

to Modeling Cognitive Diagnosis Models and

Covariates: The Latent-Class Lasso

4.1 Introduction

Cognitive diagnosis models (CDMs) are a relatively recent offshoot of latent class

models (LCM), which date back to Lazarsfeld (1950) and have well-developed

methodologies for not only classifying examinees, but for relating those classifica-

tions to covariates. The majority of the literature integrates the measurement and

structural models in a simultaneous estimation procedure known as the one-step

approach (for some examples, see Bandeen-Roche, Miglioretti, Zeger, & Rathouz,

1997; Dayton & Macready, 1988, 2002; Huang & Bandeen-Roche, 2004). Addi-

tionally, a three-step approach was introduced, with correction weights developed

to decrease bias in parameter estimates (Vermunt, 2010). Similar developments

in the item response theory (IRT) context have been motivated by the National

Assessment of Educational Progress (NAEP), which as part of its mission relates

student achievement to student and school characteristics, and provides the nec-

essary data for secondary researchers to study such relationships (for an overview,

see Schofield, Junker, Taylor, & Black, 2015). In the literature, cognitively di-

agnostic assessments (CDAs) have been proposed for applications ranging from

large-scale assessment, such as TIMMS (Lee, Park, & Taylan, 2011), to intelli-

gent tutoring systems used in the classroom (Ye, Fellouris, Culpepper, & Douglas,
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2016). In spite of the breadth of these potential applications, limited work has

been done to develop methodologies that allow researchers to relate examinee

classifications to covariates.

Ayers, Rabe-Hesketh, and Nugent (2013) developed a one-step approach that

simultaneously estimated the measurement and structural models, in this case

the deterministic input, noisy, “and” gate (DINA; Haertel, 1989) model, and the

logistic regression model. The covariates affected the probability of the examinee

mastering the attribute, known as differential skill functioning. Park and Lee

(2014) extended the one-step such that the covariates affected the probability of

the examinee answering the item correctly, known as differential item functioning.

More recently, a three-step approach to estimating CDMs and covariates was

proposed (Iaconangelo & de la Torre, 2016). This approach separates the fitting

of the measurement model and the structural model, which is consistent with the

way secondary research is often done.

There are a variety of methods designed to work with high-dimensional regres-

sion when many collinear covariates are available, as is often the case in the social

sciences (National Center for Education Statistics, 2011). One popular example

of these methods designed for shrinkage and variable selection is L1 regularization,

known as the least absolute shrinkage and selection operator (lasso), introduced

in the regression context by Tibshirani (1996). However, other than the work

done with the Bayesian lasso in Culpepper and Park (2017), there has been little

to no investigation of the performance of the lasso in the latent-class regression

context. In this research, the lasso will be implemented as a variable/model se-

lection procedure. Correction weights developed in Iaconangelo and de la Torre

(2016) that led to improvements in latent regression are incorporated with the L1

regularization, and this research aims to determine if the use of correction weights

also leads to more accurate variable selection. Specifically, in the case where a
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large number of collinear variables are available, the correction weights may lead

to greater sparsity - that is, more irrelevant predictors should be dropped from

the model. For the researcher performing secondary data analysis, more accurate

variable selection and more accurate structural parameter estimation should lead

to better inferences about the relationship between the predictor variables and

student attribute mastery.

The remainder of this manuscript is organized accordingly: First is a brief

background on CDMs, followed by a review of the one-step and three-step ap-

proaches to modeling covariates and examinee classifications. After that is a

summary of the lasso and cross-validation. The next section presents the latent-

class lasso. Following that is a simulation study to compare the procedure to the

standard lasso, as well as an application to real data. The paper concludes with

a discussion of the uses and limitations of the work.

4.2 Cognitive Diagnosis Models

The IRT framework widely used in standardardized assessment typically features

a unidimensional test that allows examinees to be ranked on a single latent trait.

By contrast, the CDM framework measures multidimensional skills, referred to as

attributes, on which examinees are classified as either having mastered or not mas-

tered (de la Torre, 2011). The attributes (and thus the attribute vectors or latent

classes) are typically determined before administering the assessment by content

experts (DiBello & Stout, 2007), unlike traditional LCA, which determines the

number of latent classes as part of the model-fitting process (McCutcheon, 1987;

van der Ark, van der Palm, & Sijtsma, 2011). As a result, it is possible for a CDA

to create latent classes that would not be statistically significant in cluster analy-

sis methods but are nontheless of substantive interest. This detailed feedback on

examinee skills could be used in classroom assessments via e-learning platforms
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(Ye et al., 2016). Alternatively, CDMs can be used in other contexts, like patient

reported outcomes, where the multidimensional nature of the patient classifica-

tion could provide advantages over other methods. For applications to clinical

psychology, see de la Torre, van der Ark, and Rossi (2015) and the empirical

example in this manuscript.

The G-DINA Model

To maximize the generalizability of the research, a general CDM was used in the

simulation study and real data example. General CDMs, as saturated models,

subsume specific CDMs, which constrain parameters in a manner consistent with

the way attributes are theorized to interact. There are three general CDMs in the

literature: the general diagnostic model (GDM; von Davier, 2008), the log-linear

CDM (LLM; Henson, Templin, & Willse, 2009), and the model used throughout

this study, the Generalized DINA model (G-DINA; de la Torre, 2011).

The item-attribute relationship is specified by the Q-matrix (Tatsuoka, 1983).

The number of attributes assessed in item j is denoted K∗
j , the row-sum of the Q-

matrix. The examinee attribute vector can be written αl={αl1, . . . , αlK}, where

l = 1, . . . , 2K denotes the latent classes, and k = 1, . . . , K the attributes. The

kth element of the vector is 1 when the examinee has mastered the kth attribute,

and is 0 when the examinee has not. Let α∗
lj be the reduced attribute vector

containing only the required attributes, where l = 1, . . . 2K
∗
j . The probability of

an examinee with attribute pattern α∗
lj answering item j correctly will be denoted

by P (α∗
lj). The G-DINA item response function is written as

P (α∗
lj) = φj0 +

K∗j∑
k=1

φjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

φjkk′αlkαlk′ + · · ·+ φj12···K∗j

K∗j∏
k=1

αlk,

where φj0 is the intercept for item j, φjk is the main effect due to αk, φjkk′ is the
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interaction effect due to αk and αk′ , and φj12...K∗j is the interaction effect due to

α1, · · ·, αK∗j .

The parameter estimates can be obtained via marginal maximum likelihood

estimation. The likelihood is written as

L(Xi|αl) =
J∏
j=1

Pj(αl)
Xij [1− Pj(αl)]1−Xij ,

which is then marginalized across the latent class proportions, P (αl). The marginal

likelihood function is written as

L(X) =
N∏
i=1

2K∑
l=1

L(Xi|αl)P (αl),

the log of which is the objective function, optimized with respect to the item

parameters. For more details on the estimation procedure, see de la Torre (2009b,

2011). The posterior distribution of examinee i is written as

P (αl|Xi) ∝ L(Xi|αl)P (αl),

and normalized to sum to one. The examinee posterior distributions were subse-

quently used in the second step of the three-step procedure to assign the examinee

attribute classification. Typically in the CDM literature, the maximum a posteri-

ori (MAP) or expected a posteriori (EAP) classification method is used (Huebner

& Wang, 2011).

This study also uses the EAP-based mean assignment to aggregate the pos-

terior probabilities P (αl|Xi) into the marginalized attribute-level probabilities,

P (αk|Xi), where αk is equal to 1 or 0, to indicate attribute mastery or non-

mastery, respectively. Note that P (αk = 0|Xi) = 1− P (αk = 1|Xi).

In this work, αk refers to the potential true values (0 or 1) of the attribute, and
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the possible attribute assignments are drawn from the same sample space, and are

denoted by αq. The estimated examinee i classification on attribute k is written

α̂ik, and can be considered a realization of the possible attribute assignments.

4.3 Modeling the Relationship between Covariates and

Latent Classification

4.3.1 The One-Step Approach

The advantage of using the one-step approach is that simultaneously estimating

the measurement and structural models leads to unbiased estimates and the small-

est standard errors (efficient estimator)(Bakk, Tekle, & Vermunt, 2013; Dayton

& Macready, 1988; Iaconangelo & de la Torre, 2016; Vermunt, 2010). However,

variable selection with a large number of collinear covariates requires re-fitting not

only the regression model, but also the CDM, every time the predictors are mod-

ified. Furthermore, which predictors are included may even influence selection of

a CDM and Q-matrix validation. This makes the procedure computationally in-

tensive, particularly so when cross-validation is used with the lasso. Furthermore,

in the context of secondary research, model selection, item parameter estimation,

Q-matrix validation, and examinee attribute classification may have already been

determined. However, in the one-step model, the item parameters and classi-

fications will depend on the covariates in the model, complicating the validity

of conclusions based on parameters/classifications that were not used in prac-

tice. That is, substantive researchers may see circular logic in interpreting the

relationship between classifications influenced by covariates and the covariates

themselves (Bakk, Oberski, & Vermunt, 2013). This circularity can be avoided

with the three-step approach. In terms of practical restrictions on researchers,

often the full item responses are not available for the one-step approach.
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4.3.2 The Uncorrected Three-Step Approach

In the first step, the measurement model (here the G-DINA model) is fitted to

the item responses. In the second step, examinees are assigned to a latent class,

or, equivalently, assigned attribute mastery or non-mastery. In the third step,

the relationship between covariates and latent classification is estimated. This

research focuses on the relationship between the attribute classifications and the

predictors rather than the latent classes and the predictors, because this approach

can better accommodate large numbers of covariates and attributes - the number

of parameters estimated is K × F , rather than 2K × F , where F is the number

of examinee covariates. The estimated attribute classifications are regressed onto

the covariates via a logistic regression model, written as

P (αk = 1|Zi) =
exp(βk0 +

∑F
f=1 βkfZif )

1 + exp(βk0 +
∑F

f=1 βkfZif )
,

where Zi = {Zi1, . . . Zif , . . . ZiF} is the vector of F covariates for examinee i,

and the parameters of interest are the attribute by covariate coefficients, β =

{βk0, βk1, . . . , βkF}. P (αk = 1|Zi) can be interpreted as the marginalized proba-

bility of mastering attribute k given the covariates, Z. Note that P (αk = 0|Zi) =

1− P (αk|Zi).

The uncorrected approach treats the estimated examinee attribute classifica-

tion as an observed dependent variable in the logistic regression function, which

can be written as

logL =
N∑
i=1

log[P (α̂ik|Zi)].

As was demonstrated in Iaconangelo and de la Torre (2016), this leads to biased

estimates of β, impacting the validity of the inferences made using this approach.
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4.3.3 The Three-Step Approach with Correction Weights

Iaconangelo and de la Torre (2016) developed sample-level and posterior-distribution

level correction weights for attribute-level regression. A 2×2 matrix of attribute-

classification error probabilities was computed

P (αq|αk,X) =

∑N
i=1 P (αk|Xi)I[α̂ik = αq]∑N

i=1 P (αk|Xi)
,

and can be interpreted as the proportion of examinees assigned attribute mastery

αq given true attribute mastery αk. For example, the entries of column 2 are

P (αq = 1|αk = 0,X) =

∑N
i=1 P (αk = 0|Xi)I[α̂ik = 1]∑N

i=1 P (αk = 0|Xi)
,

and

P (αq = 1|αk = 1,X) =

∑N
i=1 P (αk = 1|Xi)I[α̂ik = 1]∑N

i=1 P (αk = 1|Xi)
,

where the former can be interpreted as the proportion of examinees incorrectly

classified as having mastered attribute k, and the latter as the proportion of

examinees correctly classified as having mastered attribute k.

The sample-level correction weights for examinee i with attribute-level latent

class assignment αq were equal to the column of the matrix P (αq|αk,X) that

corresponds to the latent class assignment, written

SLik = P (αq|αk,X)I[α̂ik = αq].

Using the examinee posterior distribution rather than the sample-level joint at-

tribute distribution, the posterior-distribution level correction weights were cal-

culated

PDLik =
P (αk|Xi)

P (αk)
,
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where P (αk) is the sample-level proportion of mastery of attribute k. The cor-

rection weights can be used in a modified attribute-level logistic regression log-

likelihood, written

logL =
N∑
i=1

log
1∑

αk=0

P (αk|Zi)wik, (4.1)

where wik is equal to SLik or PDLik. Equation 4.1 effectively averages the re-

gression probabilities over the probabilities of latent class assignments rather than

treating the estimated assignment as observed. This adjusts for the measurement

error in the attribute assignment when estimating the regression parameters. Note

that the SLik weights are the column of the matrix of classification error proba-

bilities that corresponds to the latent class assignment. Optimizing this objective

function led to reduced bias and RMSE in the estimates of the β parameters in

P (αk|Zi), the logistic regression model relating the attributes to the covariates

(Iaconangelo & de la Torre, 2016).

4.4 Variable Selection with the Lasso

It is widely known that regularization is necessary for the model to generalize

well to new data, and a popular choice is the lasso, which can be used for variable

selection as well as shrinkage (Hastie, Tibshirani, & Friedman, 2009; Tibshirani,

1996). Specifically, it is a popular technique for shrinking the coefficients of poor

predictors to zero, thereby removing irrelevant predictors. Shrinking estimates to

zero creates a sparse statistical model, one having only a small number of relevant

predictors, making it easier to estimate and interpret than a dense model (Hastie,

Tibshirani, & Wainwright, 2015). The lasso can be implemented with a large

number of predictors to identify a smaller subset that exhibit the strongest effects

(Hastie et al., 2015). In the last step of the uncorrected three-step procedure, the

L1 penalty can be incorporated in the objective function of the attribute-level
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logistic regression, written as

logLlasso =
N∑
i=1

log
[
P (α̂ik|Zi)− λ

F∑
f=1

|βkf |
]
, (4.2)

where λ is referred to as the tuning parameter and controls the amount of shrink-

age (Hastie et al., 2009). Increasing the size of the tuning parameter increases the

L1 penalty term and reduces the number of variables with nonzero coefficients in

the model. Given the coefficient estimates and a λ value, a loss function can be

used to assess the quality of the model. Although there are several loss functions

in the lasso literature, they all measure the prediction error of the model for an

independent test data from the same population. A procedure known as cross

validation randomly divides the data into K-1 training datasets used to fit the

model, and 1 test dataset used to estimate the performance via the loss func-

tion. Repeating the process over all K datasets ensures that all data is used as

the test data, and this process returns K prediction errors that are averaged for

each value of λ. A range of λ values is used and the lambda that corresponds to

the minimal loss is selected as the optimal value of the tuning parameter. The

cumulative process is referred to as K-fold cross validation. Thus, using a range

of tuning parameters and comparing predictive accuracy of the various models

allows the lasso to select variables. The researcher can then fit an unpenalized

regression model to obtain the best estimate of the relationship between latent

classification and the selected covariates. This process is known as the relaxed

lasso (Meinshausen, 2007). The estimates resulting from the variable selection

and subsequent corrected (unpenalized) regression model are referred to here as

the final parameter estimates.
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4.4.1 The Latent-Class Lasso

With the exception of the Bayesian lasso approach in Culpepper and Park (2017),

the extensive literature on the lasso does not appear to specifically address using

the lasso in the latent regression (or latent-class regression) context. This research

modifies this well-known approach to address the fact that the dependent variable

is a latent variable. Equation 4.2 uses the estimated examinee classification α̂ik,

effectively treating the dependent variable as observed, and is referred to here as

the standard lasso. The proposed approach incorporates the L1 penalty term in

the objective function of the corrected three-step, Equation 4.1. This is referred

as the latent-class lasso, and is written as

logLLCL =
N∑
i=1

log
1∑

αk=0

P (αk|Zi)wik − λ
F∑
f=1

|βkf |,

where wik can be either PDLik or SLik. This recognizes the uncertainty in the

attribute assignment and finds a weighted average. In doing so, the correction

weights account for the latent nature of the dependent variable, and in the pro-

cess improve performance, in terms of variable selection and quality of the final

parameter estimates.

4.5 Evaluating the Performance of the Correction Weights

via Simulation Study

A simulation study was designed to compare the standard and latent-class lasso to

variable selection in the third step of the three-step approach. The final parameter

estimates from an unpenalized regression model represented the cumulative effect

of incorporating or ignoring the correction weights in the procedure.
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4.5.1 Design

In the studies, a sparse data condition is generated, consisting of 12 Gaussian

covariates, Z1, Z2, ...Z12, moderately correlated (ρ = 0.5) within blocks of four,

but uncorrelated between blocks. The generating model has nonzero coefficients

for three variables, one drawn from each block, and these coefficient values formed

a matrix of

β =


2.0 1.0 0.5

0.0 2.0 1.0

1.0 0.5 2.0

 .
Here the rows correspond to the number of covariates and the columns to the

number of attributes. To simplify computations and analysis, and without loss

of generality, the intercept β0 was set equal to 0. These parameters were used to

generate K = 3 attributes with correlations ranging from .5 to .8, as suggested by

Kunina-Habenicht, Rupp, and Wilhelm (2012) and Sinharay, Puhan, and Haber-

man (2011). Factors manipulated were the sample size (N = 500, 1000, and 2000),

the test length (J = 10 and 20), and item quality (High, Medium, and Low), op-

erationalized as the values of the guessing and slip parameters (g = s = .1, .2, and

.3). The ten-item Q-matrix to be used in the study is presented in Table 4.1. It

was doubled for the J = 20 condition. Across the tested factors, the classification

accuracy varied from a low of approximately 42%, when N = 500, J = 10, and

item quality was low, to a high of approximately 98%, when N = 2000, J = 10,

and item quality was high. 100 replications were generated for each condition.

In the first step, the G-DINA model was fitted to the item responses. The

resulting examinee attribute classifications were then regressed onto the full 12

covariates. The standard and latent-class lasso were implemented, and the value

of λ for each was determined by five-fold cross validation using predictive log-loss
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Table 4.1: Ten-Item Q-matrix

item α1 α2 α3

1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1
7 1 1 0
8 1 0 1
9 0 1 1
10 1 1 1

as the criterion (Hastie et al., 2009; Wang & Gelman, 2015). The corrected ap-

proach used the nonzero coefficients from the latent-class lasso in an unpenalized

(i.e., λ = 0) regression model with correction weights, returning the corrected fi-

nal parameter estimates. The uncorrected approach used the nonzero coefficients

from the standard lasso in an unpenalized regression model without correction

weights, returning the uncorrected final parameter estimates. The corrected and

uncorrected final parameter estimates were compared to evaluate the cumulative

effect of treating the latent classifications as observed dependent variables.

Typical implementation of logistic regression involves the Newton-Raphson

algorithm, and popular implementation of lasso, such as the glmnet R package

(Friedman, Hastie, & Tibshirani, 2010; R Core Team, 2016), employs cyclical

coordinate descent algorithms. In these cases, the implementation of the correc-

tion weights is not straightforward. However, the objective function including the

correction weights can be optimized directly using the lbfgs package (Coppola,

Stewart, & Okazaki, 2014) in R, which implements the Orthant-Wise Limited-

memory Quasi-Newton algorithm (Andrew & Gao, 2007). This algorithm is based

on the popular L-BFGS quasi-Newton method (Nocedal & Wright, 2006), but un-

like L-BFGS, it can estimate L1 regularized objective functions.
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4.5.2 Analysis

The standard and latent-class lasso were evaluated according to how many of the

irrelevant predictors were estimated as equal to zero, referred to as the sparsity

and computed as, ∑Rep
r=1

∑K
k=1

∑F
f=1 I[β̂

(r)
kf = β

(r)
kf = 0]

K × F ×Rep
,

where Rep is the number of replications, β̂
(r)
kf is the estimate of βkf from replication

r, f is the covariate (f = 1 . . . F ), and I[β̂
(r)
kf = β

(r)
kf = 0] evaluates whether the

coefficients that have a generating value of zero are estimated as zero. In addition

to investigating how often the procedure correctly dropped irrelevant predictors,

the simulation study computed the proportion of relevant predictors dropped by

the variable selection procedure. This is computed as,

∑Rep
r=1

∑K
k=1

∑F
f=1 I[β̂

(r)
kf = 0, β

(r)
kf 6= 0]

K × F ×Rep
,

where I[β̂
(r)
kf = 0, β

(r)
kf 6= 0] evaluates whether the coefficients with a non-zero

generating value are estimated as zero.

The correct selection rate (CSR) is the proportion of replications that the

procedure selected all of the relevant predictors and dropped all of the irrelevant

predictors. That is, the CSR measures how often the perfect set of variables

was selected. The number of correctly selected variables for replication r can be

computed as

CS(r) =
K∑
k=1

F∑
f=1

I[β̂
(r)
kf = β

(r)
kf = 0] +

K∑
k=1

F∑
f=1

I[β̂
(r)
kf 6= 0, β

(r)
kf 6= 0]],

where the first term is the number of correctly dropped predictors and the second
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term is the number of correctly retained predictors, and

CSR =

Rep∑
r=1

I
[
CS(r) = K × F

]
/Rep,

where the indicator I
[
CS(r) = K × F

]
is equal to one if the number of cor-

rectly selected predictors in the replication is equal to K × F , the total number

of predictors in the logistic regression model. Note that, unlike the sparsity and

proportion of relevant predictors dropped, the CSR measures how often the pro-

cedure performs optimally.

In addition to variable selection, the significance of the proposed approach

depends on whether it can deliver overall improvements in parameter estimation.

Although Iaconangelo and de la Torre (2016) established that the corrected three-

step procedure can provide better estimates of regression parameters, it did not

investigate the performance of the correction weights when the classifications are

regressed on a mix of relevant and irrelevant predictors. To study the impact

of the variable selection procedure on the quality of all of the final parameter

estimates, the average absolute bias (ABIAS) and the average root mean squared

error (ARMSE) were employed. They are defined as

ABIAS =

∑K
g=1

∑F
f=1

∣∣∣∑Rep
r=1(β̂

(r)
kf − βkf )/Rep

∣∣∣
F ×K

,

and

ARMSE =

√∑K
k=1

∑F
f=1

∑Rep
r=1(β̂

(r)
kf − βkf )2

Rep× F ×K
. (4.3)

Additionally, the ABIAS and ARMSE of the βkf were used to evaluate the param-

eter estimates of the non-zero covariates. They are referred to here as the ABIAS

or ARMSE of the relevant predictors, and denoted by ABIASrp and ARMSErp,

respectively.
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4.5.3 Results

4.5.3.1 Sparsity

Overall, incorporating the correction weights into the L1 regularization procedure

led to substantially improved variable selection across all conditions. Referring

to Table 4.2, the standard lasso dropped 76% to 89% of the irrelevant predictors,

whereas the latent-class lasso using PDLik dropped 91% to 100%. As expected,

more measurement error in the attribute classifications was associated with larger

improvements in sparsity when using the latent-class lasso. Specifically, when the

item quality was low, the latent-class lasso with PDL weights dropped between

91% and 100% of the irrelevant predictors, whereas the standard lasso dropped

between 76% and 83%. Similar improvements in performance were observed when

item quality was medium and J = 10, as exemplified by the 15% improvement in

sparsity from using the latent-class lasso with a sample size of 2000. Less mea-

surement error in the attribute classifications led to more modest improvements

in the sparsity, as can be seen when item quality was high, J = 20, and N = 1000

or 2000, where the proposed approach with PDL weights led to 10% more spar-

sity. Note also that under both conditions the sample-level weights led to only 1%

less sparsity. This typified the overall performance of the two correction weights.

Across all tested conditions, the PDLik weights led to the same or slightly better

sparsity than the SLik weights.

4.5.3.2 Relevant Predictors Dropped

Although the proposed approach led to dramatic improvements in sparsity, it

also led to slightly higher percentage of relevant predictors dropped. This mainly

occurred under the less-favorable test conditions. Table 4.3 shows that, under

test conditions with medium and high item quality, the standard and latent-class
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Table 4.2: Sparsity

N J IT Stand SLik PDLik

500

High 0.82 0.95 0.96
10 Medium 0.79 0.89 0.93

Low 0.76 0.88 0.91

High 0.86 0.95 0.98
20 Medium 0.82 0.93 0.96

Low 0.77 0.89 0.94

1000

High 0.85 0.98 0.99
10 Medium 0.80 0.96 0.98

Low 0.78 0.96 0.98

High 0.88 0.97 0.98
20 Medium 0.83 0.93 0.96

Low 0.80 0.93 0.93

2000

High 0.87 0.99 0.99
10 Medium 0.85 1.00 1.00

Low 0.81 0.99 1.00

High 0.89 0.98 0.99
20 Medium 0.87 0.99 0.99

Low 0.83 0.95 0.96

Note. Stand: Standard lasso approach; SLik: latent-class lasso approach, us-
ing sample-level correction weights; PDLik: latent-class lasso approach, using
posterior-distribution level correction weights

lasso dropped a maximum of 3% and 5% of the relevant predictors, respectively.

When N = 500, J = 10, and item quality was low, the sample-level and posterior

distribution level correction weights led to 8% of the relevant predictors dropped,

the highest under any condition. The standard lasso, in contrast, only dropped

5%. As the sample size increased to N = 2000, the latent-class lasso selected all

relevant predictors. Only under the least favorable test conditions did the increase

in sparsity from the latent-class lasso incur a cost in terms of relevant predictors

dropped. The performances of the sample-level and posterior-distribution level

correction weights were virtually indistinguishable.
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Table 4.3: Proportion of Relevant Predictors Dropped

N J IT Stand SLik PDLik

500

High 0.00 0.04 0.04
10 Medium 0.03 0.05 0.05

Low 0.05 0.08 0.08

High 0.01 0.02 0.02
20 Medium 0.03 0.04 0.04

Low 0.04 0.06 0.06

1000

High 0.00 0.01 0.01
10 Medium 0.02 0.03 0.04

Low 0.03 0.04 0.05

High 0.00 0.00 0.00
20 Medium 0.00 0.01 0.02

Low 0.00 0.01 0.00

2000

High 0.00 0.00 0.00
10 Medium 0.00 0.00 0.00

Low 0.00 0.00 0.00

High 0.00 0.00 0.00
20 Medium 0.00 0.00 0.00

Low 0.00 0.00 0.00

Note. Stand: Standard lasso approach; SLik: latent-class lasso approach, us-
ing sample-level correction weights; PDLik: latent-class lasso approach, using
posterior-distribution level correction weights

4.5.3.3 Correct Selection Rate

Referring to Table 4.4, the corrected procedures led to substantial improvements

in the CSR, particularly when item quality was medium or low. In fact, when item

quality as low, the standard lasso returned a CSR of no higher than 0.01, whereas

the latent-class lasso with PDL correction weights returned CSR values ranging

from 0.19, when N = 1000 and J = 10, to 0.80, when N = 2000 and J = 20.

The corresponding values for the SL correction weights were 0.18 to 0.79. The

relatively low CSR compared to the sparsity rates was due to the large number of

predictors (27 irrelevant, 9 relevant). However, it is clear that the latent-class lasso
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Table 4.4: Correct Selection Rate

N J IT Stand SLik PDLik

500

High 0.04 0.65 0.68
10 Medium 0.00 0.36 0.39

Low 0.00 0.18 0.21
High 0.04 0.60 0.62

20 Medium 0.01 0.60 0.61
Low 0.00 0.35 0.36

1000

High 0.21 0.88 0.90
10 Medium 0.00 0.62 0.64

Low 0.00 0.18 0.19
High 0.32 0.94 0.95

20 Medium 0.13 0.85 0.86
Low 0.00 0.46 0.47

2000

High 0.63 0.96 0.96
10 Medium 0.02 0.85 0.85

Low 0.00 0.40 0.41
High 0.88 0.96 0.97

20 Medium 0.40 0.95 0.97
Low 0.01 0.79 0.80

Note. Stand: Standard lasso approach; SLik: latent-class lasso approach, us-
ing sample-level correction weights; PDLik: latent-class lasso approach, using
posterior-distribution level correction weights

leads to optimal variable selection with much greater frequency than the standard

lasso. Comparing the performance via the CSR suggests that improvements in

variable selection were greater when there was more measurement error in the

CDM. This in accordance with the findings of Iaconangelo and de la Torre (2016),

where simulation studies suggested that the amount of improvement in parameter

estimates from the correction weights was related to the amount of measurement

error in the CDM classifications.

4.5.3.4 Overall ARMSE and ABIAS

The selected variables from the standard and latent-class lasso were then used

to create the final parameter estimates, which reflect the cumulative effect of the
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procedures used. Referring to Table 4.5, the corrected approach led to lower

ARMSE and ABIAS than the uncorrected approach, regardless of the test con-

dition or specific correction weights. The difference was often dramatic, partic-

ularly when item quality was low. For example, when N = 1000, J = 10, and

item quality was low, the uncorrected approach led to ARMSE and ABIAS of

0.42 and 0.18, whereas the PDLik corrected approach led to ARMSE and ABIAS

of 0.10 and 0.24. As test conditions improved, the improvements in parameter

estimates were more modest, particularly when item quality was high, where even

the uncorrected approach returned low ABIAS and ARMSE. For example, when

N = 2000, J = 20 and item quality was high, the difference in ARMSE and

ABIAS between the uncorrected and PDLik-corrected approaches shrunk to 0.03

and 0.01.

4.5.3.5 ARMSE and ABIAS of the Relevant Predictors

Because of the greater sparsity of the latent-class lasso, the ARMSE and ABIAS of

the final parameter estimates would likely be lower even if the estimates of the rel-

evant predictors showed no improvement. It is important to directly compare how

well the two approaches estimated the covariates that affected the classification.

The ARMSE and ABIAS of the relevant predictors are presented in Table 4.6, and

the results confirm that the corrected approach led to substantial improvements

in the relevant predictors across all test conditions. The improvements were, like

the overall ARMSE and ABIAS, more dramatic when item quality was low - for

example, when N = 1000, J = 20, and item quality was low, the uncorrected

approach led to more than twice the ARMSE compared to the PDLik-corrected

approach (0.61 vs 0.30). Likewise, the ABIAS was more than 50% higher (0.48

vs 0.29). When item quality was high, the differences in ARMSE and ABIAS
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Table 4.5: ARMSE and ABIAS

ARMSE ABIAS

N J IT Uncor SLik PDLik Uncor SLik PDLik

500

High 0.17 0.14 0.14 0.09 0.06 0.06
10 Medium 0.29 0.21 0.19 0.16 0.08 0.08

Low 0.45 0.30 0.27 0.25 0.14 0.13

High 0.15 0.11 0.11 0.06 0.05 0.05
20 Medium 0.19 0.14 0.14 0.12 0.05 0.04

Low 0.34 0.21 0.20 0.20 0.09 0.09

1000

High 0.15 0.09 0.09 0.09 0.04 0.04
10 Medium 0.26 0.17 0.15 0.10 0.05 0.05

Low 0.42 0.24 0.23 0.18 0.10 0.10

High 0.11 0.07 0.07 0.05 0.03 0.03
20 Medium 0.16 0.10 0.10 0.08 0.04 0.04

Low 0.31 0.17 0.17 0.15 0.07 0.07

2000

High 0.13 0.06 0.07 0.06 0.03 0.03
10 Medium 0.25 0.15 0.14 0.10 0.05 0.04

Low 0.40 0.24 0.24 0.16 0.10 0.11

High 0.08 0.05 0.05 0.03 0.02 0.02
20 Medium 0.14 0.07 0.07 0.06 0.02 0.02

Low 0.29 0.17 0.16 0.12 0.06 0.06

Note. Uncor: using the uncorrected three-step approach; SLik: using sample-level
correction weights; PDLik: using posterior-distribution level correction weights

between the uncorrected and corrected approaches were smaller, though not in-

consequential. For example, even under the most favorable test condition, the

uncorrected approach led to an ARMSE and ABIAS of 0.14 and 0.08, while the

PDLik-corrected approach returned 0.08 and 0.05. Again, the two corrected pro-

cedures performed very similarly, returning values of ABIAS that never differed

more than 0.01. Likewise, the ARMSE of the estimates from the sample-level and

posterior-distribution level weights differed more by than 0.01 only under three

conditions, and never differed by more than 0.03.
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Table 4.6: ARMSE and ABIAS of Relevant Predictors

ARMSErp ABIASrp

N J IT Uncor SLik PDLik Uncor SLik PDLik

500

High 0.34 0.24 0.24 0.30 0.15 0.15
10 Medium 0.55 0.27 0.27 0.45 0.23 0.23

Low 0.90 0.54 0.51 0.76 0.51 0.49

High 0.26 0.20 0.20 0.21 0.11 0.10
20 Medium 0.33 0.19 0.19 0.26 0.14 0.14

Low 0.66 0.35 0.36 0.54 0.34 0.33

1000

High 0.33 0.16 0.16 0.20 0.13 0.13
10 Medium 0.51 0.25 0.24 0.40 0.28 0.24

Low 0.84 0.45 0.44 0.68 0.41 0.40

High 0.20 0.12 0.12 0.14 0.09 0.09
20 Medium 0.28 0.14 0.14 0.22 0.11 0.11

Low 0.61 0.31 0.30 0.48 0.30 0.29

2000

High 0.31 0.12 0.12 0.23 0.10 0.10
10 Medium 0.48 0.23 0.22 0.38 0.18 0.18

Low 0.79 0.48 0.48 0.63 0.42 0.42

High 0.14 0.08 0.08 0.08 0.07 0.05
20 Medium 0.27 0.10 0.10 0.21 0.11 0.10

Low 0.57 0.32 0.34 0.45 0.31 0.28

Note. Uncor: using the uncorrected three-step approach; SLik: using sample-level
correction weights; PDLik: using posterior-distribution level correction weights

4.5.3.6 Individual Parameter Estimate

To better illustrate the impact of the proposed approach at the level of the in-

dividual coefficients, the final parameter estimates of β11 are presented in Table

4.7, where the true value is equal to 2.00. Consistent with the analysis of the

ARMSE and ABIAS, the corrected final parameter estimates were closer to the

true values across all conditions, with particularly dramatic differences between

the uncorrected and corrected approaches when the item quality was medium

or low. Even when N = 2000 and J = 20, the uncorrected approach yielded

estimates of 1.59 and 1.06 for medium and low item quality, respectively. For
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comparison, the PDL-corrected approach returned estimates that were very close

to the true value: 2.05 and 2.08.

The uncorrected approach consistently and often severely underestimated β11,

whereas the corrected approach tended to slightly overestimate β11. For example,

when N = 1000, J = 10, and item quality was medium, the estimate from

the uncorrected approach was 1.19, and the estimate from the PDL-corrected

approach was 2.08. When item quality was low or medium, the uncorrected

approach led to estimates of β11 that were, at best, approximately 20% below the

generating value. Only under the most favorable condition (N = 2000, J = 20,

and high item quality, with a classification accuracy of 98%) was the measurement

error sufficiently low for the downward bias to decrease below 5%. In contrast, the

corrected approach with SLik and PDLik weights overestimated β11 under twelve

and fourteen conditions, respectively, and never more than 5%. Note that the

posterior-distribution level weights led to better estimates than the sample-level

weights under thirteen out of eighteen conditions.

The quality of the uncorrected parameter estimates greatly depended on how

favorable the test conditions were. When N = 1000, J = 10, and item quality was

medium, the uncorrected estimate was 1.19, a severe underestimate; the PDL-

corrected estimate was 2.08. Doubling the test length increased the uncorrected

estimate to 1.61. The PDL-corrected estimate was virtually the same: 2.07. This

highlights the way the correction weights can compensate for unfavorable test

conditions, and is consistent with the findings of Iaconangelo and de la Torre

(2016).
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Table 4.7: Comparison of Parameter Estimates

β11 = 2

N J IT Uncor SLik PDLik

500

High 1.65 2.04 2.08
10 Medium 1.15 2.00 2.10

Low 0.61 1.46 1.53

High 1.81 1.98 1.98
20 Medium 1.58 1.98 2.04

Low 0.96 1.96 1.95

1000

High 1.69 2.03 2.05
10 Medium 1.19 2.15 2.08

Low 0.67 1.82 1.93

High 1.86 2.02 2.02
20 Medium 1.61 2.07 2.07

Low 1.03 2.11 2.09

2000

High 1.75 2.06 2.04
10 Medium 1.21 2.15 2.07

Low 0.72 2.13 2.08

High 1.93 2.01 2.01
20 Medium 1.59 2.05 2.05

Low 1.06 2.14 2.08

Note. Uncor: using the uncorrected three-step approach; SLik: using sample-level
correction weights; PDLik: using posterior-distribution level correction weights

4.6 Empirical Example

The effectiveness with which CDMs can provide information on fine-grained at-

tributes recommends their application to clinical measurement instruments, such

as the (Dutch-language version) Millon Clinical Multiaxial Inventory-III (MCMI-

III; Millon, Millon, Davis, & Grossman, 2009) used here in this example. As

detailed in Rossi, Elklit, and Simonsen (2010), the dataset contains two predic-

tors: Setting, indicating either a clinical patient (54%), or prisoner (46%); and

Age, varying from 18 to 74. In de la Torre et al. (2015), the attributes were de-

fined as the following disorders: H = somatoform; SS = thought disorder; and CC
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= major depression. The Q-matrix specification for the thirty items was revised

in Ma, Iaconangelo, and de la Torre (2016), resulting in a dataset of N = 739,

and a subset of ten poorly discriminating items denoted as Subset B.

To show the improvements in variable selection from the latent-class lasso,

300 examinees and their responses to Subset B items were randomly sampled 100

times. The selected variables and the final parameter estimates obtained using

both the less favorable test conditions (N = 300, Subset B) and the full dataset

(N = 729, All Items) are presented in Table 4.8. Under the full dataset, both the

standard and latent-class lasso dropped the Age variable in all three regression

models. Under the less favorable test condition, however, the standard lasso did

not drop the Age variable in any of the models, whereas the latent-class lasso did.

This demonstrates the superior sparsity of the latent-class lasso. The final param-

eter estimates under the corrected approach were larger (in absolute value) than

those from the uncorrected approach, which was consistent with the parameter

estimates from the simulation study in Table 4.7. Under the less-favorable test

condition, choice of lasso would alter the interpretation of the variables. Specif-

ically, using the standard lasso, the researcher would conclude that the odds of

72 year old subject suffering from the thought disorder would be 1.87 times that

of a subject of average age (36 years). In contrast, applying the latent-class lasso

would lead to the conclusion that the odds were equal. Similarly, the corrected

approach would lead the researcher to conclude that the odds of a clinical patient

having the thought disorder were approximately eleven times that of a prisoner,

compared to about six when using the uncorrected approach. When the test con-

ditions were more favorable, the discrepancy was reduced, due to both approaches

dropping the Age variable. However, even when the full dataset was used, the

corrected approach estimated the odds of a clinical patient having the disorder as

approximately twelve times that of a prisoner, whereas the uncorrected approach
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estimated the odds at around seven.

Table 4.8: MCMI-III

N = 729, All Items N = 300, Item Subset B

Attribute Covariate Uncor SLik PDLik Uncor SLik PDLik

H
Setting -1.79 -2.11 -2.17 -1.47 -1.99 -2.07

Age - - - 0.10 - -

SS
Setting -1.97 -2.45 -2.49 -1.81 -2.31 -2.37

Age - - - 0.19 - -

CC
Setting -1.58 -1.66 -1.70 -1.36 -1.61 -1.60

Age - - - 0.07 - -

Note. Uncor: using the uncorrected three-step approach; SLik: using sample-level
correction weights; PDLik: using posterior-distribution level correction weights

4.7 Discussion

The latent-class lasso adjusts for measurement error in examinee classification

when relating attribute mastery to background variables. In the simulation stud-

ies and empirical example, the proposed procedure outperformed the alternative

in terms of model sparsity, as well as bias and RMSE of the final parameter esti-

mates. Both corrected approaches evaluated via simulation study produced much

better quality parameter estimates than the standard approach. The posterior-

distribution level correction weights tended to perform slightly better than the

sample-level weights. The enhanced sparsity makes for easier interpretation of

the model, and the higher-quality parameter estimates can lead to more valid

conclusions about the relationship between attribute mastery and background

variables.

Although the research presented here is related to the latent regression work

done in the context of IRT and large-scale assessment, it is not solely aimed

at developing analogs for CDA. Rather, it is also designed for other common
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applications of CDA in the literature, such as implementing diagnostic assessment

in the curriculum and using the results to guide student instruction. In the

same vein, CDA can be used in a clinical setting, to help guide the work of

practicioners - the empirical example presented here is an example of this. The

classifications from these small-scale assessments can then serve as a starting point

for an exploratory analysis that relates the classifications to examinee covariates.

It is assumed that the three-step approach will be used, because the secondary

researcher has to work with the test as it was implemented. Specifically, the

three-step approach accommodates the fact that the item parameter estimation,

model selection, Q-matrix validation, and attribute clasification has already been

completed. The latent-class lasso presented here is an attempt to supply the

secondary researcher with a methodological tool for these circumstances.

The techniques presented here are alterations of well-known methods, which

should make them relatively accessible to researchers. Although the latent-class

lasso was developed here in the CDM context, there is not reason to suppose

that this approach cannot be applied to latent class models more generally. In

fact, this approach could be used to implement the lasso with any latent variable

model. The adjustment for measurement error can be computed for the estima-

tion of the posterior distribution, and this correction can then be incorporated

into subsequent regression models. This method offers additional flexibility for the

researcher, who can apply this corrected three-step approach in a variety of ways.

For example, the latent-class (or latent variable) lasso could be used to select vari-

ables, and then those variables could be modeled using a one-step approach. This

could reduce computational time while still yielding the gold-standard parameter

estimates. The work here is limited, however, in that the methods cannot relate

one latent-variable to another, with no predictor. Along the same lines, this work
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does not accommodate research questions that ask how the attribute classifica-

tions predict distal outcomes. This is a relatively common line of research and it

would be valuable to develop procedures for it in the CDA context, like has been

done for IRT assessments (Schofield et al., 2015). IRT methodologies are well-

developed for large-scale assessment settings, such as NAEP. There is extensive

literature on how to account for the influence of covariates and prepare data for

use by secondary researchers while minimizing the risk of statistical errors such

as, to name just one example, omitted variable bias. It is still unclear to what

extent these methodologies and practices should extend to the CDM framework

and a more diffuse, small-scale implementation of assessments. Because CDMs

promise to classify examinees based on fine-grained components of variation, it

seems natural that secondary researchers will seek to relate these classifications

to not only examinee covariates, but school and district covariates as well. Sim-

ilar research questions could be asked in the context of clinical psychology. The

latent-class lasso presented here is an attempt to supply the secondary researcher

with a methodological tool for these circumstances. However, because secondary

research could potentially impact policy, a more thoroughly developed and co-

herent framework of statistical analysis is needed to ensure the validity of the

conclusions.
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Chapter 5

Conclusion

The work presented here attempts to begin to address the various ways measure-

ment error affects the validity of CDM-related research. A variety of method-

ologies for estimating and correcting for classification error have been presented.

Taken together, the work presented here makes several contributions to the CDM

literature and develops methodologies that should help lay the groundwork for

implementations of CDA in a variety of real-world applications.

The proposed index τ̂l returned estimates of conditional classification accuracy

that, with the exception of the worst conditions, were within 10% of the true value.

This index promises researchers an evaluation of not only the overall, or test-level,

classification accuracy, but of how well examinees in particular latent classes of

interest can be expected to be classified. When evaluating the overall accuracy

for a sample from another population, the simulation study results indicated that

the τ̂ ∗ index that the empirical rates were well-recovered under all but the least

favorable test conditions.

A three-step method was developed that secondary researchers, in particular,

may find appealing. Under all but the most favorable conditions with almost

perfect classification accuracy, the use of the estimated examinee latent class

assignments as the dependent variable in the regression led to poor parameter

estimates. The sample-level correction weights, adapted from the latent class

analysis literature, substantially reduced the bias and RMSE of the regression

model parameter estimates. Furthermore, the posterior-distribution level weights
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developed in this work improved the quality of the estimates more so than the

sample-level weights, often returning estimates that were approximately as good

as the one-step approach (the gold standard) in terms of bias and RMSE. As the

amount of error in the classification increased, so did the improvement attributed

to the correction weights. The correction weights were applied to an L1 regular-

ized regression to create the latent-class lasso. This modification of a popular,

widely used approach to model selection led to large improvements not only in

the variables selected, but in the final parameter estimates. That is, the standard

lasso and uncorrected three-step approach resulted in a lack of model sparsity and

severely attenuated final parameter estimates of the relevant predictors. In com-

parison, the latent-class lasso and corrected three-step approach often selected

the exact set of correct predictors and the estimated coefficients were much less

biased and had smaller RMSE.

By addressing the effects of measurement error in the CDM framework, this

research addressed issues central to the validity argument for CDAs. Note that

although the proposed methodologies focus on the CDM framework, there is no

reason to suppose that the methods cannot apply to latent class analysis more

generally. All three studies were connected by the common thread of the matrix

of CEPs, which is an estimate of the measurement error. Study 1 uses that

matrix directly, as an estimate of the classification accuracy. Studies 2 and 3

use it indirectly, as a way of accounting for the measurement error, making the

multinomial logistic regression a latent-class logistic regression.

Likewise, all three studies illustrate how the conclusions drawn from the CDA

are altered by measurement error, and how those effects, in terms of variable

selection, bias, and RMSE, can be corrected by accounting for measurement er-

ror in the procedures. An index is proposed to tackle the problem of estimating

classification accuracy, both for the given sample and hypothetical samples of
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interest, which is crucial for the validity argument. This is particularly important

for implementing a cost-benefit analysis that allows the test user to based deci-

sions on the CDA classification. For clinical psychologists, the decision to treat or

not treat for a particular collection of disorders may depend on the classification,

and so it is important to have an estimate of the accuracy of this particular pa-

tients classification, without resorting to using the estimated marginal (test-level)

classification. Similarly, for an educator, the decision to administer remedial in-

structional may hinge on the latent class assignment, and an estimate of how likely

that assignment is to be correct is crucial to making that decision. This could

play a role in deciding whether the assessment was appropriately constructed for

use across a broad number of possible attribute distributions, as might be the

case for those in charge of administering exams in large urban school zones.

A corrected three-step procedure aims to provide tools for secondary re-

searchers that allow for connecting student achievement to covariates by propos-

ing techniques to accounting for error in the classifications. By implementing

the proposed approaches, the practitioner implicitly acknowledges that treating

latent classifications as observed variables measured without error can be poten-

tially very misleading, thus harming the validity of interpretations made from

estimated coefficients. Because the conclusions of secondary research often influ-

ence policy, the validity of those conclusions is of particular importance. That is,

it is of the utmost importance that the coefficient estimates be as accurate and

precise as possible. Note that better coefficient estimates can only be obtained by

using item responses, or, at least, item parameters. However, it is often the case

that only the scores or classifications are released to secondary researchers. The

three-step procedure in Study 2 only requires examinee posterior distributions.

A common model selection procedure is likewise adapted to address measure-

ment error. Specifically, it shows the discrepancy between models selected and
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parameters estimated both ignoring the latent nature of the variable, and adjust-

ing for the measurement error. This observation, that measurement error must

be accounted for, is not new. But it has not been addressed within the CDM

context. In fact, the CDM literature contains a relative paucity of methodologies

designed to relate classifications to covariates. This is surprising given how often

researchers investigate the relationship between student achievement and student,

school, district, and community variables. Study 3 creates the latent-class lasso,

a modification of a well-known technique. In spite of its popularity, the literature

on the lasso lacked any way of incorporating measurement error associated with

the dependent variable into the model.

Looking forward, there are many directions for future research. For the clini-

cal diagnostic setting, practicioners and treatment developers may be interested

in a way to accommodate patient covariates in a longitudinal framework, to eval-

uate patient improvement over the course of treatment. These methods could be

developed for educational settings as well, to evaluate the relationship between

the learning progression and student variables. More broadly, researchers may

aim to relate two classifications to each other, which would require adjustments

for measurement error in both the independent and dependent variables.

More fundamentally, the constructions of the matrix of CEPs may be altered

to accommodate polytomous CDMs. Measuring classification error may require

modifications given this item format. This adaptation is particularly relevant

given the use of Likert data in clinical applications as well as the use of partial

credit items in educational settings.


