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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Structural Econometrics: Theory

and Applications

by ZHUTONG GU

Dissertation Director: Roger W. Klein

My dissertation contains three papers in the theory and applications of nonparametric

structural econometrics. In chapter 1, I propose a nonparametric test for additive

separability of unobservables of unrestricted dimensions with average structural functions.

Chapter 2 considers identification and estimation of fully nonparametric production

functions and empirically tests for the Hicks-neutral productivity shocks, a direct application

of the test proposed in chapter 1. In chapter 3, my authors and I study the semiparametric

ordered response models with correlated unobserved thresholds and investigate the issue of

corporate bond rating biases due to the sharing of common investors between bond-issuing

firms and credit rating agencies. Brief abstracts are presented in order below.

Additive separability between observables and unobservables is one of the essential

properties in structural modeling of heterogeneity in the presence of endogeneity. In this

chapter, I propose an easy-to-compute test based on empirical quantile mean differences

between the average structural functions (ASFs) generated by nonparametric nonseparable

and separable models with unrestricted heterogeneity. Given identification, I establish

conditions under which structural additivity can be linked to the equality of ASFs derived

from the two commonly employed competing specifications. I estimate the reduced form

regressions by Nadaraya-Watson estimators and control for the asymptotic bias. I show
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that the asymptotic test statistic follows a central χ2 distribution under the null hypothesis

and has power against a sequence of
?
N -local alternatives. The proposed test statistic

works well in a series of finite sample simulations with analytic variances, alleviating the

computational burden often involved in bootstrapped inferences. I also show that the test

can be straightforwardly extended to semiparametric models, panel data and triangular

simultaneous equations frameworks.

Hicks-neutral technology implies the substitution pattern of labor and capital in a

production function is not affected by technological shocks, first put forth by John Hicks

in 1932. In this chapter, I consider the identification and estimation of fully nonparametric

firm-level production functions and empirically test the Hicks-neutral productivity in the

U.S. manufacturing industry during the period from 1990 to 2011. Firstly, I extend the

proxy variable approach to fully nonparametric settings and propose a robust estimator

of average output elasticities in non-Hick-neutral scenarios. Secondly, I show that the

Hicks-neutral restriction can be converted to the additive separability between inputs

and unobservables in a monotonic transformed model for which the proposed testing

procedure can be directly applied. It turns out that there is substantial heterogeneity

in the nonparametric output elasticities over various counterfactual input amounts. I also

find that there were periods in the 90s when the non-Hicks technological shocks occur

which coincide with the mass adoption of computing technology. However, the productivity

has thereafter become Hicks-neutral into the 2000s. Controlling for sector-specific effects

mitigate the non-Hicks-neutrality to some extend.

Previous literature on bond rating indicates that credit rating agencies (CRAs) may

assign favorable ratings to bond-issuing firms that have a closer relationship. This not only

implies the existence of firm-specific unobserved heterogeneity in the rating criteria but

also makes some bond/firm characteristics endogenous, which is confirmed by our empirical

results. In this chapter, my coauthors and I propose a semiparametric two-step index

and location estimator of ordered response models that explicitly incorporates endogenous

regressors and correlated random thresholds. We apply our model in the application of

assessing bond rating bias of credit rating agencies. Methodologically, we first show that

the heterogeneous relative thresholds can be identified using conditional shift restrictions
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in conjunction with the control variables for the firm-CRA liaison. Then, we illustrate

the estimation strategy in a heuristic manner and derive the asymptotic properties of the

suggested estimator. In the application, we find significant overrating bias through varying

thresholds as the liaison strengthens and those biases display heterogeneous patterns with

respect to rating categories.
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1

Chapter 1

Additive Separability and Excess Unobserved Heterogeneity:

A Nonparametric Test with Average Structural Functions

1.1 Introduction

This paper proposes a simple test for structural separability between observed regressors

and unobserved heterogeneity with unrestricted dimensions in the presence of endogeneity.

Nonseparability has important implications in structural economic modeling. On the one

hand, economic theory rarely specifies that the unobservables enter the structural equations

in an additive way and quite often, they do so in a nonlinear fashion. Furthermore, the

restriction of additivity is equivalent to the absence of unobserved individual heterogeneity

of marginal and treatment effects. On the other hand, from a modeling perspective,

structural separability might be of testing interest in its own right. And nonseparability,

sometimes, can be a key assumption to rationalize endogeneity. However, a slew of empirical

research has only focused on additive models until recently. Roughly speaking, a large

class of estimators such as 2SLS/IV estimators or within/differencing estimators in panel

data, requires the assumption of structural separability. Whereas inconsistent estimates

might be produced once the validity of additive unobservables is in question. Therefore,

a test for structural additivity can be very useful in empirical microeconomic contents.

However, a challenge comes from the fact that unobservables are often multi-dimensional.

In most cases, even the dimension is unknown. The implication of the multiplicity is that

structural functions cannot be identified without imposing significant shape restrictions

or distributional assumptions. To circumvent this difficulty, I build our test on average

structural functions (ASFs), which are identified via the control function approach. In the

paper, I derive testable implications of structural additivity on the equivalence of ASFs

generated by competing specifications. I argue that testing the latter should be more
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appealing, since the former hypothesis is not testable in the presence of unobservables

of unrestricted dimension. An easy-to-compute test statistic is proposed by combining

information from empirical quantile mean (EQM) differences. The asymptotic properties

of the test statistic are derived following U -statistic theorems of various orders. I illustrate

the performance of the proposed test in a series of Monte Carlo simulations.

This paper contributes to the literature of nonparametric idenfication of nonseparable

models and testing of additive separability. Despite its empirical importance, additive

separability has only received limited attention. Lu and White [86] show that structural

additivity can be transformed into a conditional independence assumption using a control

function approach. They require either polynomial parametric structures or scalar

monotonicity on an unobservable to establish the equivalence of tests. Su et al. [115] provide

a test against global alternatives by using the derivative of a normalized structural function,

whereas the identification of which requires the scalar monotonicity in unobservables. This

significantly restricts the form of unobserved heterogeneity and might limit the scope of

its applicability where flexible modeling of unobservables is necessary. Other related works

include Huber and Mellace [56] who propose a test in the context of sample selection,

Heckman et al. [45] who consider testing for the correlated random coefficient models.

Hoderlein and Mammen [47] mainly discuss the identification and estimation of local average

structural derivatives and briefly mention that a test for separability can be conceived

through the quantile structural functions. There are also nonparametric tests on scalar

monotonicity, such as Su et al. [114] in cross-sectional context and Hoderlein et al. [49]

for panel data models. Lewbel et al. [81] consider a specification test of transformation

models in an application of generalized accelerated failure-time models. An incomplete list

of other related works include, but are not limited to, Heckman et al. [45], Fan and Li

[34], Schennach et al. [108], Sperlich et al. [113],etc.

More importantly, a notable fact is that heterogeneity in microeconomics is rarely unit-

dimensional and quite often even the number of dimensions is not even known a priori.

Unobservables often represents unobserved heterogeneity of consumer tastes, product

attributes, productivity shocks, measurement errors, etc. This paper tries to clarify the

benefits and costs of allowing fully flexible unobserved heterogeneity in the context of testing
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additive separability. As argued in Browning and Carro [19], most empirical models permit

less heterogeneity than is actually present. However, if shape restrictions or distributional

assumptions are prohibited, there would not exist any equivalent tests for separability, a

point made clearly in the next section. This is because the structural function cannot be

identified in the presence of excess unobserved heterogeneity. But the ASF is identified,

which could serve the purpose of specification testing. The identification of ASFs relies on

the control function literature [16, 59, 60, 35, 65, 90, 32, 116, etc.]. In this paper, I try to

fill this gap and propose an easy-to-implement test by relating structural separability to

the equality between ASF generated by the two competing models. The testing implication

is that when the true model is separable, ASF under both models are consistent; but only

the former is consistent if H0 is not true. For illustrative purpose, I give several examples

where the test has zero power. Furthermore, as motivated by Blundell and Powell [15],

ASF should be the central object of estimation interest, since it suffices to answer many

economic questions that empirical researchers care about. The test proposed here can be

informative in terms of the consistency and efficiency of ASF estimators. In particular, by

employing the additive error structure, a more efficient estimator of ASF is made available

given the non-rejection of the null hypothesis.

The secondary contribution is that a nonparametric empirical quantile mean (EQM) test

has been developed, in the spirit of Klein [72]. The idea of the test is to compare average

differences between two functions in quantile regions of observables. For each quantile, it

can be shown that the average will converge to a normal distribution in large samples.

Combining information of all quantiles, one can straightforwardly obtain a Wald-type test

statistic which has local power against root-N alternatives. The benefits of the EQM

are mainly two-fold. First, compared with Kolmogorov-Smirnov or Cramer-von Mises test

statistics, the nonparametric functions are only evaluated at sample points which eliminates

the need to select fixed evaluation points, especially when the dimension of X is large.

Second, it permits a closer investigation of the heterogeneous functions at each quantile

region, facilitating the discovery of the anomalies in the data. It is also informative on

where the power of the test is coming from, specifically which region of the sample is more

likely to be rejected than others. In the limit, I show that it converges to a central χ2
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distribution under the null hypothesis, using the U -statistic theorems, and has asymptotic

power against a sequence of
?
N -local alternatives. To control for the asymptotic bias, I

employ the recursive bias correction technique recently developed by Shen and Klein [110].

In addition, as opposed to many nonparametric tests that rely on bootrapped inference, I

find that the asymptotic variance of our test statistic performs reasonably well under even

moderate sample sizes, in terms of the empirical power and size calculations. This advantage

translates into a substantial decrease in computing time, especially for large samples.

Finally, three extensions are presented to cover more empirical scenarios. First, I

address the problematic “curse of dimensionality” by imposing parametric index restrictions.

Despite all attractive properties that nonparametric testing entails, in real applications,

semiparametric index models are often employed due to the high dimensionality of the

control covariates. I accommodate the test in a two-step semiparametric scenario. While the

finite dimensional parameters are estimated in the first step by Weighted Semiparametric

Least Squares (WSLS), then the same testing procedure can immediately be applied on

the estimated single index [106, 58, 57, 74, etc.]. In the second extension, once panel

data are available, the cross-sectional procedure can be modified to test additivity of

time-invariant unobserved individual-heterogeneity. With repeated observations over time,

control variables usually take the form of individual-specific summarized measures, e.g.

average value over time, provided that the exchangability condition holds [7, 94, etc.]. In the

last extension, I consider the nonparametric nonseparable triangular simultaneous equations

models. Following Imbens and Newey [60], the marginal cumulative distribution function

(CDF) of the first stage error suffices to work as the control variable. The asymptotic

null distribution of the test statistic is thus modified to take into account the variability of

estimation of the “generated” variable in the first stage.

The rest of the paper is structured as follows. Section 1.2 provides motivations for

testing additive separability and discusses identification issues of nonseparable models with

excess heterogeneity. Section 1.3 reviews the identification results of ASFs under competing

specifications and clarifies the relationship to testing additive structures. Section 1.4

provides the nonparametric test statistics in a heuristic manner. The asymptotic results

are stated in Section 1.5. Next, finite sample performance is summarized in Section 1.6.
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Extensions to semiparametric models, panel data and triangular simultaneous equation

frameworks are presented in Section 1.7. Section 1.8 concludes the paper and discusses its

limitations. All proofs are relegated in the appendix.

1.2 Nonseparability and Unobserved Heterogeneity

1.2.1 Nonseparability

Nonparametric nonseparable models have been gaining popularity in theoretical

econometric works for the past decades. The single equation nonseparable model considered

in this paper, as seen in Eq. (1.1), allows arbitrary interactions between observed and

unobserved covariates, e.g. X versus ε.

Y � mpX, εq (1.1)

where the unknown measurable function m : X � E Ñ R is called the structural function

representing some primitive economic relations. Such models are capable of capturing

both observed and unobserved heterogeneity in structural parameters of economic interest.

For instance, model (1.1) can represent a nonparametric production function, where Y

denotes the output level, X as amount of factor inputs and ε consisting of multi-dimensional

unobservables including time-varying and time-invariant productivity shocks, input quality

variations, measurement errors in output and inputs, and other unobservables pertaining

to demand and cost conditions. Model (1.1) is also general enough to include an entire

class of random coefficient models that are widely used in empirically modeling unobserved

individual heterogeneity, e.g. Y � X 1ε, where X and ε are conformable vectors.

Being a special case of model (1.1), a competing class of specifications disproportionately

favored in empirical work, assumes the additive separable structure in which the

unobservables can be collectively written as an added term,

Y � m1pXq �m2pεq (1.2)

where m1p�q is an unknown measurable function of only observables defined on X . It
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includes linear regression models, i.e. Y � X 1β � ε as a special case. The additive error,

ε, is often taken to include measurement errors and omitted variables. The structural

function m1p�q is often identified by the conditional expectation function of Y when X are

exogenous. In the presence of endogenous regressors, exogenous sources of variation are

often needed for identification, such as instrumental variable (IV) [98, 22, 28, 97, 52, etc.]

or control function approach [100, 99, 104, etc.]. If panel data are available, within and

differencing estimators can apply to address the endogeneity arising from the correlation

between individual heterogeneity and time-varying covariates [8, 14, etc.].

Given the above nested specifications, I define the following hypotheses that are of

interest to empirical researchers.

H�
0 : mpX, εq � m1pXq �m2pεq, a.s.

H�
1 : Otherwise

The motivations for testing hypotheses H�
0 against H�

1 are mainly fourfold. 1). This

is a test on the absence of unobserved individual heterogeneity in structural functions.

Once H�
0 is rejected, it implies the partial effect of X is deterministic given the level of

observed covariates. For example, when estimating the wage equations, additivity implies

that individual return-to-education is not affected by unobserved intellectual ability. In the

example of estimating log of production functions, the additivity of errors amounts to the

Hicks-neutral technology—output elasticities are not affected by productivity shocks.1 2).

It is a test of the validity of some classes of estimators whose consistency relies crucially on

the separability of disturbances, such as IV estimators. Hahn and Ridder [41] show that the

conditional mean restriction, often assumed in IV methods, only has identification power

when the model is additive in unobservables. Schennach et al. [108] show that interpretation

of the local indirect least squares (LILS) estimator is meaningful only under the separability

of the structural equation that determines X. 3). There are more efficient estimators given

the additional parametric structure under H�
0 . Hahn [40] and Imbens and Wooldridge [61]

note that the asymptotic variance bounds of average treatment effect (ATE) can be made

1See Gu [38] on the detailed discussion of the implications of Hicks-neutral technologies.
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much smaller once additive separable unobservables can be validated. 4). In some structural

models, testing separability could yield implications on testing endogeneity, a point taken

from Imbens [59] and Imbens and Newey [60]. For instance, suppose a firm makes decisions

on input choices X by maximizing the expected profit given its available private information

η on the productivity shock ε.

X � arg max
x

Ermpx, εq|ηs � Cpx, Zq � hpZ, ηq

where the output price is normalized to 1. For each z. Cp�, zq is the cost function for

which Cx ¡ 0 and Cxx ¡ 0. Z can be cost shifters, such as the hourly labor wage. The

solution X is endogenous because it is correlated with the structural error ε through the

private information η. Now suppose mpx, εq is additive separable in which case the objective

function becomes m1pxq �Erε|ηs � Cpx, Zq. Under this scenario, X is just a deterministic

function of Z alone. This can be undesirable since not many models would treat input

choices as purely exogenous.

1.2.2 Non-identification under Excess Unobserved Heterogeneity

Before outlining the testing framework, I want to highlight the identification problem

associated with multi-dimensional unobservables in nonseparable structural models. More

importantly, I want to argue that the original hypothesis is not testable to the extent that

unobserved heterogeneity is allowed to be modeled as flexibly as possible. For this reason,

below I will modify the hypotheses of testing interest.

I begin by discussing a fallacy pointed out by Benkard and Berry [12]. They revisit the

identification results of simultaneous equations models from Brown [18] and Roehrig [107]

and show that a supporting lemma (called derivative condition) is incorrect. Although they

consider the identification of certain features in the framework of simultaneous equations

models, the following lemma could still shed light on the identification issue of the single-

equation structural function considered in this paper.

Lemma 1.1 (Derivative Condition. Brown (1983, pp. 180-181)). Let X and ε be

independent random vectors and let rε � T pX, εq, where T : RdX �RdE Ñ RdE is everywhere
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differentiable. Then rε is independent of X if and only if BT px, eq{Bx � 0 everywhere.

One direction is true that if the derivative is everywhere 0, then it indicates T p�, �q is

a degenerate function of X and independence holds trivially. The questionable one is the

other direction unless the unobservable is univariate. This point is made clear from the

simple example given below in the spirit of Benkard and Berry.

Suppose X is univariate continuous variable independent of ε � pε1, ε2, ε3q that are

independently distributed as standard normals. There is no way to distinguish between

Y � X?
X2 � 1

ε1 � 1?
X2 � 1

ε2

and

Y � ε3

in the sense that the above two models generate identical joint distributions of observables,

e.g. FX,Y , which consists of all available information in the data. To see this, it is

straightforward to show Y � Np0, 1q and is independent of X in both specifications.

Formally, I follow the definition in Roehrig [107] and let FX,ε be the distribution and in

conjunction with the structure S be a pair pFX,ε, θq that define the data generating process,

where θ is the vector of finite or infinite dimensional parameters.

Definition 1.1. Let F and F 1 be the distribution functions of pX,Y q implied by the structure

S and S1, then S and S1 are observationally equivalent if F � F 1.

Definition 1.2. The structure S is identified if there is no other S1 that is observationally

equivalent to S.

The example above indicates that the structural function itself is not identified without

further restrictions. As a consequence, it implies that our original hypothesis of H�
0 versus

H�
1 is not testable in general because both nonseparable and separable models can deliver

the same underlying data generating process, meaning they are observationally equivalent.

One solution is to impose additional structures to achieve identification [see 91]. In

the context of testing for structural separability, previous works have focused on imposing
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shape restrictions such as scalar monotonicity in unobservables to attain identification of

the structural function. Su et al. [115] assumes that the error term is unidimensional and

mpx, εq is strictly monotonic for each x. By taking the derivative of the identified structural

function, they arrive at a consistent test which also has power against strictly monotonicity

if it doesn’t hold. Lu and White [86] transform the original hypothesis into a conditional

independence condition. However, they lose equivalence unless m1p�q is some polynomial

function or scalar monotonicity in unobservables holds.

In many situations, it is undesirable to impose assumptions such as scalar monotonicity,

aforementioned as they are often subject to test in its own right. For example, in the

empirical application of this paper, production functions often involve multiple unobserved

shocks, including productivity, ex post shocks as well as other idiosyncratic errors. As a

consequence, restricting it to single dimension can hardly find sound theoretical or empirical

support. Another direction is to determine what can be identified without compromising

the dimensionality of heterogeneity [16, 60, etc]. In many cases, it would be unnecessary

to recover the structural functions if the identified parameters are sufficient to answer the

economic questions of interest. And this is exactly what this paper is trying to do. In the

next section, I will derive the testable implication based only on the ASF that is identified

even in the presence of excess heterogeneity. For multivariate unosbervables, there are

papers dealing with identification and estimation via restrictions like single index property

[12, 92, 93, 25, 26, etc.], which may be exploited to develop other testing procedures.

1.3 Testing with Average Structural Functions

In this section, I first review the existing results on the identification of ASFs and then derive

testable implications for structural separability. Define the ASF at X � x of nonseparable

models (1.3) as

ASF pxq � gpxq �
»
E
mpx, eqdFεpeq, @x P X (1.3)

where calligraphic letters denote the support on which Fε, the CDF of ε admitting the

Radon-Nikodym derivative, is defined. The function gp�q is structural in the sense that
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X can be manipulated arbitrarily without changing the marginal distribution of ε, the

counterfactuals of which may be of policy interest. Also motivated in Blundell and Powell

[15], ASFs should be the central object of estimation interest and with which many

important structural objects can be easily constructed. For instance, the average treatment

effect (ATE) can be obtained from ASFs for when X is binary, like in Eq. (1.4),

ATE � gp1q � gp0q �
»
E
rmp1, eq �mp0, eqsdFεpeq (1.4)

For continuous treatments, the average marginal effect (AME) in Eq. (1.5) is readily

available provided the existence of mxp, eq,@e P E :

AMEpxq � g1pxq �
»
E
mxpx, eqdFεpeq, @x P X (1.5)

If Y � mpX, εq denotes a nonparametric production function, then the AME measuring

average marginal products conditional on input choices, can be exploited to calculate

average output elasticities and return-to-scale. The property of manipulating input choices

while holding the distribution of unobserved productivity (and other unobservables) fixed

would be attractive to policymakers, industry specialists and firm managers. A related

object is the average derivative, ErBgpX, εq{Bxs, which summarizes the marginal effect of

X on Y over the whole population. Given that the AME is identified at each point in the

support, the average derivative can be simply recovered by taking the expectation over X.2

Imbens and Newey [60] study the identification of ASF as well as a number of structural

parameters of economic interest.3

Now recall the nonseparable model (1.1), where the unknown structural function is

defined on X � E and X � RdX exhibiting continuous variation and ε � R8, referring

excess unobserved heterogeneity.4 The identification of ASF without endogeneity is trivial,

as suggested by the reduced form regression gpxq � EpY |X � xq,@x P X . Unfortunately,

2Average structural derivative over some region, X 0, could be identified if ASF is only defined on X 0.

3Another meaning measure they consider is the quantile structural function, i.e. QSF pτ, xq �
qpτ, xq, @x P X where q�1py, xq �

³
E 1pmpx, eq   yqdFεpeq � Prpmpx, εq   yq � τ .

4The test proposed also works for discrete X. For brevity, I only demonstrate the continuous case.
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many economic models would include at least one endogenous regressor. For instance, the

“simultaneity bias” could arise from the dependency of choices of input on the unobserved

productivity shocks when estimating firm or plant level production functions. To handle

endogeneity, this paper employs the control function approach, widely used in the literature.

Suppose that the control variables V P V � RdV , where V � supppV q, satisfy Assumption

I.1 and I.2.

Assumption I.1 Conditional independence. X K ε|V , where X and ε are not

measurable with respect to σ-field generated by V .

Assumption I.2 Large support. V � Vx, @x P X , a.s. where Vx � supppV |X � xq.

Assumption I.1 parallels the unconfoundedness condition in the treatment effect literature,

assuming independence betweenX and ε conditional on V . Loosely speaking, it also requires

that X and ε cannot be exact functions of V ; otherwise, they would be degenerate given V .

Admittedly, Assumption I.2 is a relatively strong condition. In the absence of conditional

large support of V , ASF is only partially identified with sharp bounds [60]. On the other

hand, the large support condition might hold only over some region of X, say X0, instead of

the whole support. In this case, ASF is identified only over the region, X0 and fortunately,

the test is still valid, though the effective sample used to construct the test statistic needs

to be shrunken accordingly.

There are several ways to obtain the control variates, V , in empirical contents. In some

cases, V might be readily available and observed in the dataset. For example, IQ test scores

are often employed to control for the omitted intellectual ability in estimating returns to

education. Once panel data is available, within group summary statistics may be adequate

to control for the endogeneity. Moreover, the control variables can be “generated” through

the triangular simultaneous equations frameworks. A famous example is the production

function estimation where a “proxy” variable can be backed out from the investment

functions to control for the unobserved productivity shocks. I will come back and elucidate

these issues in Section 1.7. For now, I just presume the control variables V satisfying

Assumption I-1 and I-2 to be available so as to simplify the explication of the testing idea.

Next, I focus on the identification of ASFs for nonseparable models and additive separable
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models, respectively, preceding the discussion of the testable implication.

1.3.1 Identification of ASF of Nonseparable Models

Proposition 1.1 is borrowed from Blundell and Powell [16], Imbens and Newey [60], etc.

It shows that ASF is identified by integrating out the conditional expectation function

(CEF) with respect to the marginal distribution of control variables. The proof is given in

Appendix A.

Proposition 1.1. Under Assumption I.1 and I.2, gp�q defined in Eq. (1.3) is identified at

each x P X ,

gpxq �
»
V
Cpx, vqdFV pvq (1.6)

where the CEF is defined as Cpx, vq � EpY |X � x, V � vq and FV is the CDF of V on V.

Note that both Cpx, vq and FV can be estimated from the data. All available information

is summarized by the joint distribution of observables, i.e. FY,X,V . By Proposition 1.1,

related “structural” parameters, provided existence, are subsequently obtained. In the

literature of program evaluation, one of the most important parameters, ATE in Eq. (1.4),

can be identified in Eq. (1.7),

ATE �
»
V
rCp1, vq � Cp0, vqsdFV pvq (1.7)

If X is a continuous treatment, AMEpxq in Eq. (1.5) is identified in Eq. (1.8), provided

that the partial derivatives of Cp�, �q exist.

AMEpxq �
»
V
Cxpx, vqdFV pvq (1.8)

where Cxp�, �q denotes the partial derivative with respect to X. More generally, some policy

changes may involve transformation of structural functions. Suppose τp�q is any linear

functional operator on mpx, eq with finite first moment of τpmpx, eqq,@px, eq P pX �Eq. The



13

transformed ASF is identified in Eq. (1.9),

»
E
τpmpx, eqqdFεpeq �

»
V
τpCpx, vqqdFV pvq � τpgpxqq (1.9)

Note that the linear functionals include, but are not limited to, the weighted averages of

structural functions and AME.

1.3.2 Identification of ASF of Separable Models

A popular subclass of models incorporates the structure that observables and unobservables

are additive as in Eq. (1.2). Such models impose substantial restrictions on the way how

unobserved heterogeneity enters. It further indicates constant partial effects given observed

covariates and rules out an entire class of models with correlated random coefficients.

Despite the reduced generality, it has received most attention in both theoretical and

empirical works. Admittedly, the ASF of model (1.2) is immediately identified under

Assumption I.1 and I.2 through Proposition 1.1 since additive models belong to a subclass

of nonseparable models. However, a weaker set of assumptions suffices to identify ap�q, as

stated in Assumption I.1’ and I.2’. The identification of nonparametric additive models has

been studied in Newey et al. [99].

Assumption I.1’ Conditional mean independence. EpU |X,V q � EpU |V q � hpV q, a.s.

Assumption I.1’ doesn’t require full independence conditional on the control variates

whereas mean independence is sufficient. Intuitively, X would not provide any additional

information on the average of the disturbance given the knowledge of V . Also note that

under Assumption I.1’, the CEF becomes additive in the unknown functions of X and V ,

Cpx, vq � m1pxq � hpvq,@px, vq P X � V (1.10)

Assumption I.2’ Nonexistence of additive functional dependence. PrpδpXq�γpV q � 0q �
1 implies there is a constant cδ that PrpδpXq � cδq � 1, for any differentiable functions

δ : X Ñ R and γ : V Ñ R.

Assumption I.2’ rules out the possibility of exact additive functional dependence between
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m1pxq and hpvq. To see this, suppose there is another set of functions, rmpxq and rhpvq such

that PrprmpXq�rhpV q � mpXq�hpV qq � PrpδpXq�γpV q � 0q � 1, where δp�q � rmp�q�mp�q
and γp�q � rhp�q�hp�q. Then mp�q and hp�q are generally not point identified unless both are

degenerate. Formal identification results are given in Proposition 1.2.

Proposition 1.2. Under Assumption I.1’ and I.2’ (or Assumption I.1 and I.2), a). m1p�q
and hp�q in Eq. (1.10) is identified up to an additive constant for each px, vq P X � V. b).

gp�q defined in Eq. (1.3) is identified at each x P X ,

gpxq � m1pxq � ch, where ErhpV qs � ch

Without loss of generality, one can normalize that ErhpV qs � ch � 0, essentially

attributing all constant terms into m1p�q. I adopt this normalization to ease the following

exposition. And under this case, it is true that m1p�q � gp�q. In addition, it implies that

hp�q can be identified in Eq. (1.11).5

hpvq �
»
X
Cpx, vqdFXpxq � EpY q (1.11)

The additive structure of model (1.1) provides us with more information which can be

exploited in recovering the ASF through the one-step backfitting procedure in Linton [84].

Nonetheless, for nonseparable models, it need not hold in general. Alternatively, define the

conditional expectation of Y � hpV q to be ap�q given X � x in Eq. (1.12),

apxq � EpY � hpV q|X � xq, @x P X (1.12)

In Proposition 1.3, it states that ap�q identifies ASFs for additive models, i.e. apxq � m1pxq.
But it is generally not ture for nonseparable models.

Proposition 1.3. Under Assumption I.1 and I.2, for each x P X , a). for additive models

of (1.2), apxq � gpxq; b). for nonseparable models of (1.1), apxq � gpxq if and only if the

5It is straightforward to verify that ErhpV qs � 0 because
³
Cpx, vqdFXpxqdFV pvq �

³
Cpx, vqdFX,V px, vq

when cpx, vq is additive.
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following condition holds a.s.

»
V
Cpx, vqpdFV |Xpv|xq � dFV pvqq � ∆pxq, @x P X

where ∆pxq � ³Cpx1, vqdFXpx1qdFV |Xpv, xq.
The equality in Proposition 1.3 a), is trivial to hold. Nonetheless, for nonseparable

models, it would be hard to come up with any intuitive interpretation for the condition

in b). It does not seem possible to characterize the entire class of models satisfying this

property. To illustrate this condition, below I present 3 examples of nonseparable models

that can produce the equality. Example 1 is to illustrate that a nonseparable model can be

written as an additive model in general without endogenous regressors. Example 2 manifests

that a nonseparable model is able to generate an additive CEF that in turn can produce a

ASF equal to some additive model. Example 3 shows that despite a non-additive CEF, the

ASF of a nonseparable model might still be equal to that of some additive structural model

after integration.

Example 1. Suppose that X K ε and V is of null dimension, so no endogeneity arises.

Then, gpxq � apxq for all x. Even if the true model is nonseparable, it can always be written

as the additive one,

Y � EpY |Xq � ε, ε � mpX, εq � EpY |Xq

where Epε|Xq � 0. In the case of only exogenous observables, EpY |X � x, V � vq � rCpxq,
so the condition in Proposition 1.3 holds and ap�q recovers the ASF for nonseparable models.

Example 2. This example demonstrates that a nonseparable model can generate an

additive CEF, thus producing a ASF equivalent to that of some additive model. Suppose

the nonseparable model is given as follows,

Y � Xε1 � ε2

where Epε1|X,V q � c for some constant c1 and Epε2|X,V q � hpV q. The CEF then becomes

additive in x and v, i.e. Cpx, vq � cx�hpvq. Then it is not hard to see apxq � gpxq,@x, a.s..
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This example is taken from Lu and White [86] who argue that testing separability according

to CEF has no power in the example like this.

Example 3. This example shows even though the CEF is not additive in X and V ,

ap�q may still be equal to gp�q due to the integration. Suppose V � ε,

Y � Xε, Epε|Xq � 0

Be aware that the mean independent condition doesn’t imply the full independence between

X and ε. The CEF generated by this structural function is Cpx, vq � xv. The ASF is

therefore gpxq � xEpV q � 0 if EpV q � Epεq � 0, then

apxq � xEpε|X � xq � EpXqEpV |X � xq � 0 � gpxq, @x

One can also verify the condition in Proposition 1.3 does hold in all above examples.

1.3.3 Testing Implications

As discussed in the introduction, this paper makes the very first attempt to test additive

separability with unrestricted unobservables. Now recall the hypotheses of testing interest

outlined previously,

H�
0 : mpX, εq � m1pXq �m2pεq, a.s.

H�
1 : Otherwise.

Unfortunately as discussed in Section 1.2, no consistent test exists against global alternatives

due to the non-identification of structural functions once excess heterogeneity is allowed.

Hence in this paper, instead of testing H�
0 against H�

1 , I consider a more interesting set of

testable hypotheses below,

H0 : DpXq � gpXq � apXq � 0, a.s.

H1 : Otherwise.
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This is essentially to see whether the ASFs obtained under two competing specifications are

identical. The power of this test comes from the fact that gp�q in Eq. (1.6) recovers the ASF

for both models whereas ap�q in Eq. (1.12) only recovers the ASF for additive models (and

a small class of nonseparable models satisfying the condition stated in Proposition 1.3).

Admittedly, H0 versus H1 is no longer equivalent to H�
0 versus H�

1 . However, the benefits of

doing so are threefold. First, H0 is indeed a testable hypothesis with minimal assumptions

(no shape restrictions or distributional assumptions) in contrast to the non-testable original

hypotheses. Second, the test still has reasonable power against additive separability, though

not against global alternatives for H�
0 , as can be seen from our finite sample simulations in

Section 1.6. Finally, were ASFs and its variants sufficient to answer the research questions,

there would be no need to test the original hypotheses. Besides, once H0 cannot be rejected,

more efficient estimators could be available by incorporating this additional information and

treating the model as if it had an additive error structure.

Note that the inequality of ASFs, i.e. gpxq � apxq,@x indicates nonadditive of CEF,

subsequently indicating a nonseparable structural function, mp�, �q. However, the reverse

is not true in general. Example 1-3 can be taken as counterexamples. This might be a

shortcoming of the suggested test as the equivalence is lost. So researchers are advised to

be mindful when making a conclusion on structural separability when H0 cannot be rejected.

On the other hand, the specification test of ASFs is also of great importance in its own

right as it can shed light on the consistency and efficiency of ASF estimators. From now

on, I will only focus on the hypothesis—H0 versus H1.

1.4 Estimation and Testing

1.4.1 Estimation

I first discuss the nonparametric estimator for the CEF which is the central building block

for the test statistic. In this paper, I focus on the Nadaraya-Watson (or local constant)

estimator [95] for conditional mean functions. Other nonparametric smoothers such as

local polynomials and sieve estimators can be applied as well. To facilitate the proof of

asymptotic theory, the leave-one-out estimators are used throughout and subscripts of the
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leave-one-out indicators are suppressed for notational brevity whenever the context is self-

evident. Recall that Cpx, vq � EpY |X � x, V � vq. Given any non-boundary set of points,

px, vq P X � V, the preliminary kernel estimator is defined in Eq. (1.13),

pC0px, vq �
°N
i�1Kh1pXi � xqKh1pVi � vqYi°N
i�1Kh1pXi � xqKh1pVi � vq (1.13)

where admitted some of abuse of notation, Khp�q � ±
drkp�{hq{hs represents the d-

dimensional product of independent kernels. Bandwidths here are allowed to be different

for X and V .

To make sure that the asymptotic bias vanishes faster than
?
N , I suggest the recursive

nonparametric conditional mean estimator recently proposed by Shen and Klein [110], due

to its bias-reducing property.6 Simply put, I firstly construct the local bias from the

preliminary kernel estimator, e.g. pδipx, vq � pC0pXi, Viq � pC0px, vq and then apply the

kernel estimator again on the “bias-free” dependent variable, e.g. Yi � pδipx, vq. So the

bias-reducing conditional mean estimator is thus obtained in Eq. (1.14).

pCpXl, Vjq �
°N
i�j,lKh1pXi �XlqKh1pVi � VjqrYi � pδipXl, Vjqs°N

i�j,lKh1pXi �XlqKh1pVi � Vjq
(1.14)

where the leave-one-out kernel estimator is used and evaluated at pXl, Vjq, l, j P
t1, 2, � � � , Nu.

Next I consider the estimation of ASFs. Linton and Nielsen [83] suggest a marginal

integration method while Newey [96] consider the partial mean estimator. This paper

employs the latter approach since taking the partial mean is more computationally

straightforward when V is multi-dimensional. Evaluated at Xl, the nonseparable ASF,

gpXlq, is estimated with the leave-one-out partial mean estimator pgpXlq in Eq. (1.15),

pgpXlq � 1

N � 1

Ņ

j�l

pCpXl, Vjq, @l � 1, � � � , N (1.15)

6Other bias reducing methods such as higher order kernels, local smoothing should work in theory.
However, it is found that using higher order kernels are likely to produce unreasonable results in the finite
sample simulations.
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Likewise, hp�q defined in Eq. (1.11) can be estimated in the similar fashion in Eq. (34)

phpVjq � 1

N � 1

Ņ

i�j

pCpXi, Vjq �N�1
Ņ

i�1

Yi, @j � 1, � � � , N (1.16)

where the mean of Y subtracted resembles the sample analog of the unconditional

expectation, EpY q. This subtraction ensures the normalization of recentering such that

the unconditional mean of hp�q is now 0.7

Now consider the ASF estimator, pap�q of the “additive” model. I borrow the idea from

Linton [84] who considers the one-step backfitting procedure implied by the constructive

identification strategy in the previous section. The ASF estimator here differs from Linton’s

in that the partial mean of kernel estimator is employed rather than the marginal integration

of the local linear estimator. Linton also argues that the one-step backfitting estimator

is preferred to the alternating conditional expectation (ACE) approach in estimating the

nonparametric additive regression models in a multitude of aspects. ACE, also known as

the “backfitting” procedure, has a long-standing history in statistics literature [44] and is

thought to yield the most efficient estimator since it finds the unique orthogonal projection of

Y onto the space of additive functions providing the best mean square error approximation.

However, such iterative nature not only requires intensive computational effort but cannot

guarantee convergence sometimes. Moreover, closed-form solutions are hard to derive and

this prevents further study of its asymptotic properties. So from now on, I adopt its simple

one-step counterpart unique to the additive models presuming that hp�q is known. And the

infeasible estimator (or oracle estimator) of ap�q is given in Eq. (1.17).

rapXlq � pEh2pYi � hpViq|Xlq, l � 1, � � � , N (1.17)

where pE is still the bias-reducing recursive conditional mean estimator similar to Eq. (1.14),

with the bandwidth h2 Ñ 0 as N Ñ 8. By simply substituting phpViq for the unknown

7Note that the CEF estimator in constructing php�q could be potentially different from the one in Eq. (1.15)
in terms of bandwidth and kernel choices.
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function hpViq, one can obtain the feasible estimator pap�q in Equation (1.18),

papXlq � pEh2pYi � phpViq|Xlq �
°N
i�lKh2pXi �XlqrYi � phpViq � pδipXlqs°N

i�lKh2pXi �Xlq
, l � 1, � � � , N(1.18)

where pδipXlq is the bias from preliminary estimators defined in the similar way as pδipXl.Vjq.
Our estimator differs from Linton [84] in threefolds. First, kernel estimator is being applied

instead of the local linear estimator. Second, partial mean estimator rather than marginal

integration is used to estimate the pilot nonparametric function php�q aforementioned.

Finally, Linton seeks the optimal nonparametric rate in the estimation context by setting

the bandwidth of order OpN�1{5q when getting pap�q. In contrast, I am targeting the root-N

rate in the testing environment while bias reduction techniques are utilized.

Nevertheless, our estimator of the “additive” ASF does share the same merit in terms of

efficiency. In particular, the one-step backfitting method provides a more efficient estimator

of the ASF when H0 is true as can be seen from the finite sample results.8

1.4.2 Test Statistics

The specification test of H0 falls into the class of testing on the distance between two

functions being uniformly 0. To this end, the Kolmogorov-Smirnov or Cramer-von Mises

test statistics are often applied. But in this paper, I adopt a simpler test that combines

information from empirical quantile mean (EQM) differences. The test idea is firstly

mentioned in Klein [72] in testing parametric error distributions versus semiparametric

binary choice models.

For the purpose of illustration, consider the univariate continuous variable X with dX �
1 for now, but generalization to multivariate X is straightforward. Denote the empirical

ASF difference by

DpXiq � gpXiq � apXiq, @i, . . . , N (1.19)

Under H0, DpXiq � 0 for each i almost surely. To proceed, divide the whole sample into PN

8However, our ASF estimator under H0 is not the most efficient estimator. For efficiency, see Linton [85].
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number of even subsamples or quantile regions thereafter, within the support of X. It can

be postulated that for each quantile region, the average empirical difference, is centered at

0 under the null. For multivariate Xi � pX1i, X2i, � � � , XdX iq1, each quantile region can be

thought as the intersection of quantiles of each variables. The number of quantiles can be

any positive integer so long as PN{N � op1q in theory. However, the choices of PN might

have some implications for the power of the test and I postpone the discussion of this until

the finite sample simulations.

Next, define the pth-quantile empirical mean difference as the following,

T pN � N�1
Ņ

i�1

tpiDpXiq, p � 1, . . . , PN (1.20)

where the quantile-trimming indicator is defined in Eq. (1.21),

tpi � 1 tminrclb, qXpp� 1{PN qs ¤ Xi   maxrqXpp{PN q, cubsu (1.21)

where qXp�q is the quantile function of X, i.e. qXpτq � inftx : FXpxq ¥ τu. clb, cub

are predetermined fixed lower and upper bounds, respectively, to ensure non-existence of

significant boundary biases. Specifically, tpi � 1 if Xi falls in the pth-quantile region and 0

otherwise. Let TN � pT 1
N , . . . , T

P
N q1 be a vector of quantile mean differences. Because each

T pN is simply the sample average centered at 0 under the null, one would expect that TN

converges at the rate of
?
N to a multivariate normal distribution as N Ñ 8 according

to the regular central limit theorem. A Wald-type statistic in Eq. (1.22) could be thus

constructed,

WN � NT 1NΩ�1TN (1.22)

where Ω is the positive definite weighting matrix and is often taken to be the variance of

TN , i.e. Ω � EpTNT 1N q, see Theorem 1.2 for explicit expressions.

One of the benefits of using EQM test is that empirical observations are evaluated

to construct the test statistic WN . So there is no need to select weighting functions

on X or carry out numerical integration, especially when the dimension of X is large.
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Moreover, dividing sample into subregions enables researchers to have a closer look across

quantiles and is conducive to discover anomalies hidden in the data. Quite often, with a

littler modification, the test can be performed on a specific region of researchers’ interest,

instead of over the whole population. For example, policymakers might want to know if

unobserved intellectual ability affects the return-to-education for people with only high

school diploma. In so doing, the test permits a rich and in-depth characterization based on

observed characteristics.

A feasible test statistic is made possible by substituting unknown objects with

corresponding estimators, like in Eq. (1.23)

xWN � N pT 1N pΩ�1
N
pTN (1.23)

where

pTN � p pT 1
N , . . . ,

pTPN q1 (1.24)

and pΩ is the consistent estimator of Ω given explicitly in Eq. (1.34) in the Corollary 1.2.1,

pT pN � N�1
Ņ

i�1

ptpi pDpXiq, p � 1, . . . , PN (1.25)

where pDpXiq � pgpXiq � papXiq and ptpi , a consistent estimator of the trimming indicator, is

given in Eq. (1.26).

ptpi � 1 tminrclb, pqXpp� 1{PN qs ¤ Xi   maxrpqXpp{PN q, cubsu (1.26)

where the quantile function is defined in the following way,

pqXpτq � inf

#
x : N�1

Ņ

i�1

1pXi ¡ xq ¥ τ

+

A final remark is concerning the choice of the number of quantile regions PN . In theory, as

long as PN{N � op1q, the results would hold. But providing the optimal choice of PN is
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beyond the scope of this paper. Instead, one is suggested to experiment with various values

for robustness check, e.g. PN � 4, 6 or 8 as in our Monte Carlo studies.

1.5 Asymptotic Properties

In this section, I first present the asymptotic theory of the nonparametric test statistic under

the null hypothesis and then its power function against a sequence of local alternatives.

Before stating the asymptotic assumptions, notations are simplified in the following way

and will be carried through the rest of the paper.

Notation. Let Ui � pX 1
i, V

1
i q P U � Rd, where d � dX � dV . Let U0 be the compact

subset of U on which the density of U , fU , is bounded away from 0. Also let f�px, vq �
fXpxqfV pvq{fU puq for any px, vq P U0.

Assumption A.1. DGP. Let pΩ,F , P q be a complete probability space on which are

defined the random vectors, pY,X, V, εq : Ω Ñ Y � X � V � E . Y P R,X P RdX ,V P
RdV , E P R8 i). tpYi, Xi, Vi, εiquNi�1 are i.i.d. ii). VarpY |X,V q   8. iii). Y � mpX, εq
where m : X � E Ñ Y is a Borel measurable function defined on F .

Assumption A.2. Smoothness. The conditional distribution FY |U has the uniformly

continuous and bounded Radon-Nikodym second order density derivatives with

respect to Lebesgue measure. i). fU is continuous in u and fY |U is continuous in

py, uq. ii). There exists C ¡ 0 such that infU0 fU ¡ C and infY�U0 fY |U ¡ C.

Assumption A.3. Kernel. For some even integer ν, the kernel K is the product of

symmetric bounded kernel k : R Ñ R, satisfying
³
R u

ikpuqdu � δi0, for i �
1, 2, � � � , ν � 1,

³
R u

νkpuqdu   8 and kpuq � Opp1 � uν�1�εq�1q, for some ε ¡ 0,

where δij is the Kronecker’s delta.

Assumption A.4. Dominance. For any u P U0, EpY |U � uq has all partial derivatives

up to νth order. Let DjEpY |U � uq � B|j|EpY |U�uq

Bj1u1���B
jdud

where u � pu1, � � � , udq1 and

|j| � ν. DjEpY |U � uq is uniformly bounded and Lipschitz continuous on U0: for all

u, ru P U0, |DjEpY |U � uq �DjEpy|U � ruq| ¤ C||u � ru||, for some constant C ¡ 0,

where || � || is the Euclidean norm.
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Assumption A.5. Bandwidth. As N Ñ 8, i). h1, h2 Ñ 0, Nhd1 Ñ 8, NhdX2 Ñ 8,

Nh8
1 Ñ 0, Nh8

2 Ñ 0, ii). PN � opNq. iii). d � dX � dV   4.

Assumption A.6. Invertability. |detpΩq| ¡ 0 w.p.1

Assumption A.1-A.4 are regularity conditions frequently employed in the literature of

nonparametric estimation and testing. Assumption A.1 formally states the data generating

process (DGP) and requires the boundedness of conditional variances. The i.i.d. assumption

is standard in cross-sectional studies. Nevertheless, the asymptotic theory developed here

can be readily extended to weakly dependent time series. Assumption A.2 is standard in

nonparametric kernel estimation of conditional mean and density. If U is compact, it is

possible to let U0 � U ; otherwise, trimming could be used to ensure the compactness of the

support. Assumption A.3 puts restrictions on the kernels. In the following theory, only the

second order kernel pν � 2q, such as the standard normal, is required in conjunction with

the recursive bias-reducing procedure.9 Assumption A.4 guarantees the uniform consistency

for the kernel estimator of conditional means. Assumption A.5 restricts the choices of

bandwidth as well as number of quantile regions. It implies that the window parameters

(hi � OpN�riq, i � 1, 2) need to satisfy 1{8   r1   1{d, 1{8   r2   1{dX . Nevertheless,

those restrictions rule out the optimal bandwidth that minimizes the asymptotic MSE.

Assumption A.5 iii). restricts the dimension of observables to be less than 4 if optimal

weights are used. It is possible to extend this restriction. Nevertheless, in empirical settings,

number of control covariates are often of large dimension. I suggest a semiparametric version

of the test and postpone the discussion in Section 1.7. Assumption A.6 states that the

weighting matrix defined in Eq. (1.33) is invertible and is essentially the non-degeneracy

condition of the test statistic.

In what follows, I show that the asymptotic null distribution of pth-quantile average

difference in Theorem 1.1, with the scratch of the proof outlined below. All details and

supporting lemmas are given in the appendix.

9I find that the performance of higher order kernels pν � 4q is unstable in finite samples even though
they are valid in theory.
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1.5.1 Asymptotic Null Distribution

Theorem 1.1. Suppose H0 is true, under Assumption I.1, I.2 and A.1-A.6, for any p P
p1, 2, � � � , PN q, it is true that

?
N pT pN DÝÑ Np0,Ωpq

where

Ωp � Epξpi ξp
1

i q (1.27)

and the influence function, ξpi , is defined in Eq. (1.28)

ξpi � rtpi � Eptp|Viqsf�pXi, Viq � tpi sεi � EptpqhpViq (1.28)

where

εi � Yi � CpXi, Viq

Theorem 1.1 says the quantile average difference defined in Eq. (1.25) converging to a

normal distribution at the parametric rate under H0 : gpXiq � apXiq. The proof of the above

theorem can be roughly divided in three steps . Firstly, I show that the estimated quantile

(trimming) indicator can be replaced by its true counterpart plus reminder terms converging

faster than
?
N . Secondly, I show that the empirical difference can be decomposed into three

components through the substitution of the infeasible estimator, paIp�q. Finally, I utilize a

U -statistic theorem to represent the pth-quantile average difference, pT pN in the format of a

sample average plus higher order reminders and then the standard CLT applies. All the

rest theorems and corollaries rely critically on Theorem 1.1.

Step 1: To be specific, consider the pth-quantile sample average difference

pT pN � N�1
Ņ

i�1

tpi
pDpXiqlooooooooomooooooooon

Ip1

�N�1
Ņ

i�1

pptpi � tpi qp pDpXiq �DpXiqqlooooooooooooooooooooomooooooooooooooooooooon
Ip2

�N�1
Ņ

i�1

pptpi � tpi qDpXiqlooooooooooooomooooooooooooon
Ip3
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where pDp�q � pgp�q � pap�q and tpi and ptpi are define in Eq. (1.21) and Eq. (1.26). Note that

DpXiq � 0, for any Xi under H0, so Ip3 � 0 is trivial. As for Ip2 , Lemma .2 shows it is equal

to oppN�1{2q via the Cauchy-Schwartz inequality. Therefore, one only need to deal with Ip1 .

Step 2: Now I further decompose Ip1 into three components by first adding apXiq and

subtracting gpXiq without changing its value as gpXiq � apXiq under H0 almost surely.

Ip1 � N�1
Ņ

i�1

tpi rppgpXiq � gpXiqq � ppapXiq � apXiqqs

Recall pap�q in Eq. (1.18) suffers from problems of generated variables php�q. Therefore I

replace pap�q with its infeasible counterpart rap�q which assumes the knowledge of hp�q,

papXiq � rapXiq � pEp∆i|Xiq,

where ∆i � phpViq � hpViq and pEp∆i|Xiq is the leave-one-out conditional mean kernel

estimator of ∆ given Xi as before.10 Substituting this expression into Ip1 and using results

from step 1, it would suffice to work with rT pN since pT pN � rT pN � oppN�1{2q, with rTN defined

in Eq. (1.29)

rT pN � Dg
N �Da

N �Dh
N (1.29)

where by definition

Dg
N � N�1

Ņ

i�1

tpi ppgpXiq � gpXiqq (1.30)

Da
N � �N�1

Ņ

i�1

tpi prapXiq � apXiqq (1.31)

Dh
N � N�1

Ņ

i�1

tpi
pEp∆pViq|Xiq (1.32)

Step 3: By the U -statistic theorems of various orders, Dg
N , Da

N and Dh
N can be

10For the sake of brevity, the subscript �i is suppressed.
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represented as sample means, characterized by Lemma .2, .3 and .5, respectively.11

Therefore, we can rewrite pT pN as an influence function plus asymptotically negligible terms

at
?
N -rate.

?
N pT pN � N�1{2

Ņ

i�1

ξpi � opp1q, @p � 1, � � � , PN

Intuitively, the variance of pth quantile average difference would come from the variation of

estimation of gp�q, variation of estimation of ap�q as well as the estimation of the unknown

function hp�q. Then the standard CLT applies to the sample average while the remainder

vanishes in the limit. To have a cleaner expression, I apply the recursive kernel estimator

to ensure that the asymptotic biases vanish faster than
?
N so that the vector of quantile

mean differences will center at 0.

Theorem 1.2 below combines the information of the vector pTN which, under the

null, follows the asymptotic multivariate normal distribution with an invertible diagonal

covariance matrix. The quantile test statistic then converges asymptotically to the χ2
P

distribution with the degree of freedom equal to the predetermined number of quantile

regions. In Corollary 1.2.1, I derive the asymptotic null distribution for the feasible test

statistic by plugging-in a consistent covariance estimator of Ω.

Theorem 1.2 (The infeasible test statistic xW 0
N ). Suppose Assumption I.1, I.2 and A.1-A.6

hold, under H0, it follows that

xW 0
N

DÝÑ χ2
P

where xW 0
N � N pT 1NΩ�1 pTN , with pTN in Eq. (1.24) and Ω in Eq. (1.33)

Ω � Epξiξ1iq (1.33)

where ξi � pξ1
i , ξ

2
i , � � � , ξPi q1.

Corollary 1.2.1 (The feasible test statistic xWN ). Suppose Assumption I.1, I.2 and A.1-A.6

11One technical simplification is to replace the estimated density denominator with the truth, guaranteed
by the preliminary Lemma A 2.



28

hold, under H0, it follows that

xWN
DÝÑ χ2

P

where xWN � N pT 1N pΩ�1
N
pTN , with pTN in Eq. (1.24) and pΩN in Eq. (1.34).

The consistent estimator of covariance matrix pΩN in Theorem 1.1 is therefore obtained

in the following way,

pΩN � N�1
Ņ

i�1

pξipξ1i (1.34)

where pξi � ppξ1
i ,
pξ2
i , � � � , pξPi q1. To be specific, pξpi is obtained by substituting with the consistent

estimators for unknown functions and densities for each p.

pξpi � trptpi � pEptp|Viqs pf�pXi, Viq � tpi suε̂i � t
pphpViq (1.35)

where the overhead bar represents the mean and

pεi � Yi � papXiq � phpViqpf�pXi, Viq � pfXpXiq pfV pViq{ pfU pUiq.
1.5.2 Local Alternative Analysis

Developing the global power function can be extremely difficult in the nonparametric testing

contents, but one can study the local power property by considering a sequence of local

alternatives:

H1N : gpXiq � apXiq � N�1{2rpXiq

where r is a non-constant measurable function with r0 � limNÑ8ErrpXq2s   8.

Theorem 1.3 (Asymptotic Local Power). Suppose Assumptions I.1, I.2 and A.1-A.6 hold,

then under H1N , pTN � Nprr0,Ωq, this implies WN � χ2
P pλq, where the noncentrality

parameter λ � °P
p�1 rr2

0p and rr0p � Ertpi rpXiqs. Therefore, the asymptotic local power
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function is given by PrpWN ¡ w|H1N q � 1 � QP {2p
?
λ,
?
wq with Marcum Q-function

QM pa, bq.

Theorem 1.3 implies that the test has non-trivial power against a sequence of local

alternatives converging at the parametric
?
N -rate. The nonparametric test here attains

the
?
N rate because one additional averaging of nonparametric estimators is taken over all

coordinates. This property is not shared by many other nonparametric tests. Theorem 1.4,

given below, is a direct implication of Theorem 1.3 and it shows that our test is consistent

under this scenario.

Theorem 1.4 (Consistency of the Test). Suppose Assumptions I.1, I.2 and A.1-A.6 hold,

then PrpWN ¡ CN |H1N q � 1 as N Ñ8 for any CN � opNq.

1.5.3 A Bootstrapped Version of the Test

For the sake of completeness, I also present a bootstrapped version of the test despite the

fact that it may be very time-consuming for large dataset. In the following, I list the step-

by-step procedure for computing bootstrapped empirical sizes and powers. H0, additive

separability, need to be imposed to generate bootstrapped samples. As a result, one has an

additive model like the following, which is true under H0,

Yi � m1pXiq � hpViq � εi

Note that the partial mean ASF estimator, pgp�q, always consistently estimates m1p�q in any

situation.

1. Obtain the preliminary estimates of tεiuN1 , i.e. ε̂i � Yi � pCpXi, Viq.

2. Draw a bootstrapped sample tε�i uN1 from the smoothed nonparametric density rfε̂peq �
N�1

°N
i�1Khpε̂i � eq.

3. Generate boostrapped analogue under H0, e.g. Y �
i � papX�

i q � phpV �
i q � ε�i .

4. Compute the test statistic W � with the sample tpY �
i , X

�
i , V

�
i qu.
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5. Repeat the above steps B times and obtain the bootstrapped test statistics tW �
j uB1 .

Compute the bootstrapped p-value p� � B�1
°B
j 1rW �

j�1 ¡ WN s and reject H0 if p�

is smaller than some prescribed level of significance.

1.6 Finite Sample Results

In this section, I obtain the power and size results using simulations under various data

generating processes (DGP). In DGP 1, the simple additive model is tested against

nonseparable models with polynomials. In DGP 2, it is against much general nonseparable

functional forms while having the same null hypothesis as in DGP 1. In DGP 3, I allow

for multi-dimensional unobservables, featured in this paper. In this experiment, I present

situations where a more efficient ASF might be available even if the original model is

nonseparable in nature.

In each DGP, the number of quantiles is allowed to vary as the choice of PN is known

to affect the asymptotic local power functions but is empirically unclear. Therefore, I

experiment with different values such as PN � 4, 6, 8, in order to check the robustness

of the results with respect to this parameter. I also introduce a “nonseparability”

measure δ. When δ � 0, the model is purely additive. It becomes, in a sense, more

nonseparable as δ increases. The varying δ corresponds to the rate at which a series of

local alternatives converge to the null. Test statistics with and without bias corrections are

calculated to compare the usefulness of such techniques in empirical situations. The rule-

of-thumb bandwidth of Silverman, i.e. h � 1.06 � s.e.pUq � N�r, has been implemented.

Furthermore, I trim on U with trimming parameters κ1 � 0.01 and κ2 � 0.025. As

aforementioned, I use observations in the range pκ1, 1 � κ1q to control for boundary

biases when recursively estimating the nonparametric conditional expectations and those in

narrower range pκ2, 1� κ2q to construct the test statistic. I consider a moderate number of

replications, Nmc � 250 to make computational time manageable and I have tried sample

size N at both 250 and 500 for each DGP.
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1.6.1 DGP 1

The data is generated from the following DGP,

H11 : Y � pX � εq � δ pXεq2 (1.36)

where δ represents the level of nonseparability and if δ � 0, the model becomes completely

additive. DGP 1 models the nonseparability arising from the product interactions of X and

ε as follows,

X � 1

4
� V � 1

4
V 2 � u2

ε � 1

2
V � u1

where V, u1 and u2 are generated independently from the uniform distribution, U r0, 1s.
Table 1.1 displays the results of empirical size studies under the null H0, which sets

δ � 0 under various number of observations, N , and smoothing options, r1. Table 1.1 also

presents the power analysis under H1 of DGP 1, as the nonseparability parameter δ varies.

Table 1.1: Empirical Size and Power Results of DGP 1

δ � 0 δ � 0.5 δ � 1
N PN BC 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

250 4 N 0.010 0.032 0.058 0.288 0.408 0.476 0.548 0.688 0.736
250 4 Y 0.000 0.006 0.024 0.204 0.368 0.468 0.524 0.652 0.732
250 6 N 0.012 0.036 0.068 0.304 0.412 0.468 0.568 0.700 0.736
250 6 Y 0.000 0.016 0.024 0.212 0.344 0.440 0.508 0.632 0.712
250 8 N 0.004 0.020 0.036 0.320 0.412 0.464 0.580 0.688 0.732
250 8 Y 0.012 0.056 0.092 0.208 0.324 0.396 0.504 0.604 0.664

500 4 N 0.028 0.072 0.108 0.588 0.724 0.776 0.848 0.924 0.940
500 4 Y 0.012 0.040 0.074 0.620 0.772 0.820 0.908 0.948 0.968
500 6 N 0.024 0.068 0.084 0.620 0.736 0.780 0.856 0.924 0.944
500 6 Y 0.012 0.028 0.036 0.624 0.760 0.812 0.908 0.940 0.960
500 8 N 0.028 0.060 0.084 0.640 0.736 0.776 0.860 0.928 0.944
500 8 Y 0.012 0.028 0.040 0.612 0.760 0.800 0.900 0.940 0.948

Note: Number of replications, Nmc � 250. Smoothing parameters, r1 � 1{7.9, r2 � 1{7.9.
Trimming parameters, κ1 � 0.01 and κ2 � 0.025. For bias correction (BC), Y=yes, N=no.

Column 4-6 of Table 1.1 display results of the empirical sizes whereas powers are in

column 7-12. Table 1.1 displays the results of empirical size and power studies under the
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null H10, which is, δ � 0 under various number of observations, N , and number of quantile

regions, P . When δ � 0, H0 is a simple additive model. The first three columns give

empirical size results in small and moderate sample sizes, i.e. N � 250 or 500. In small

samples, our test statistics are likely to be undersized but such phenomena are mitigated

when sample size is increased to 500. The test statistic almost captures the correct sizes

and I expect these minor discrepancies would go away as number of Monte Carlo reps is

enlarged. Next turn to the power analysis. When there is a little nonseparable portion,

like δ � 0.5, the rejection rates are uniformly below 50% for small sizes. When N doubles,

one observes that powers increase by around 0.3 for each design. On the other hand, as

nonseparability strengthens to δ � 1, one rejects the null hypothesis over 90% of times on

average.12 Then take a look at another tuning parameter, P over t4, 6, 8u. And it is evident

that the power results are somewhat robust to the choice of number of quantiles. As P

varies, the rejection rates are relatively stable. To sum up, even under small samples, the

empirical sizes produced by our test statistics look very close to what theory predicts under

the null. Whereas under the scenario of H11, tests with analytic variances could deliver

reasonable powers, but may depend on the nature of nonseparability in the DGP.

1.6.2 DGP 2

DGP 2 considers more general nonlinearity other than the polynomial forms, specified in

(1.37).

H21 : Y � X � ε� δ
expp2Xq
2� sinpεq (1.37)

where X and ε are generated in the same way as in DGP 1. Likewise, δ measures the

nonseparability and in the following simulation experiments, I let δ take various values

from t0.1, 0.25u. When δ � 0, the model goes back to DGP 1 and empirical results are

presented in Table 1.1. So only the alternatives need to be studied. When δ � 0.1, the

nonseparability is quite weak and it may approximate cases under local power. To this end,

I hope to check how the test performs in the adverse cases with relatively small samples.

12To save space, more simulation results are not presented in the main text but is available upon request.
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Table 1.2: Empirical Power Results under of DGP 2

N δ PN BC 0.01 0.05 0.1

250 0.1 4 N 0.052 0.120 0.156
250 0.1 4 Y 0.104 0.232 0.372
250 0.1 6 N 0.088 0.140 0.192
250 0.1 6 Y 0.144 0.252 0.344
250 0.1 8 N 0.080 0.128 0.164
250 0.1 8 Y 0.144 0.252 0.336

250 0.25 4 N 0.568 0.748 0.824
250 0.25 4 Y 0.912 0.992 1.000
250 0.25 6 N 0.640 0.772 0.852
250 0.25 6 Y 0.924 0.992 1.000
250 0.25 8 N 0.624 0.744 0.796
250 0.25 8 Y 0.928 0.992 0.996

Note: Nmc � 250. Smoothing parameters, r1 �
1{7.9, r2 � 1{7.9. Trimming parameters, κ1 � 0.01 and
κ2 � 0.025. For bias correction (BC), Y=yes, N=no.

The small sample power results are presented in Table 1.2, it is not hard to see that

the rejection rates depend heavily on how separable the DGP is. As with δ � 0.1, rejection

rates are generally low. Nevertheless, there are still powers even under the almost local

alternatives. In contrast, as more weight is put on the nonseparable part, i.e. δ � 0.25,

there are quite reasonably large rejection probabilities. The additional nonseparability gives

good powers even in such small samples. Finally, I do find that bias correction techniques

make a significant impact in leveling up the rejection probabilities.

1.6.3 DGP 3

DGP 3 incorporates multiple unobservables featured from the beginning. For simplicity,

assume the true model is like (1.38),

H30 : Y � Xη � ε (1.38)

where η � U r0.5, 1, 5s and pX,V, εq are generated in the same way as DGP 1. To analyze

the power property, a nonseparable portion is incorporated such as (1.39), denoted by DGP
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3.1.

H31 : Y � Xη � ε� δ exppXεq (1.39)

Table 1.3: Empirical Size Results of DGP 3

δ N PN BC α � 0.01 α � 0.05 α � 0.1

0 250 4 N 0.024 0.080 0.100
0 250 4 Y 0.016 0.016 0.032
0 250 6 N 0.032 0.084 0.100
0 250 6 Y 0.016 0.016 0.032
0 250 8 N 0.036 0.076 0.092
0 250 8 Y 0.016 0.016 0.032

0 500 4 N 0.032 0.096 0.132
0 500 4 Y 0.004 0.040 0.076
0 500 6 N 0.048 0.112 0.132
0 500 6 Y 0.016 0.044 0.076
0 500 8 N 0.052 0.108 0.132
0 500 8 Y 0.016 0.040 0.080

Note: Number of replications ,Nmc � 250. Smoothing
parameters, r1 � 1{7.9, r2 � 1{7.9. Trimming parameters,
κ1 � 0.01 and κ2 � 0.025. For bias correction (BC), Y=yes,
N=no.

The empirical size results are presented in Table 1.3 and power results are in Table 1.4.

H30 is one of the example where the condition in Proposition 1.3 holds. It is a nonseparable

structural function with more than one unobservable. From Table 1.3, it is true that the test

has no power against structural separability. From H30, it indicates that the ASF generated

is equivalent to that from some additive model, though the true DGP is a nonseparable

model. The test provides enough confidence for us to compute the ASF as if the true

model is additive separable and obtain a more efficient estimator of ASF. H31 showcases

the situation when more nonseparable forms are added in, the proposed test becomes much

powerful against both H0 (equality of ASFs) and H�
0 (additive separability). Therefore,

inconsistent estimates of ASFs would be unavoidable unless one takes into account the

nonseparable nature properly.

However, even though the test has no power against separability under H30, yet it

is still useful in that it would yield a more efficient estimator of ASF and its variants.

Figure 1.1 plots the mean squared errors (MSE) of ASF estimators with and without
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additive restrictions in four quantiles. From the picture, in terms of MSE, the one-

step backfitting estimator (solid red) dramatically outperforms the less efficient empirical

integration estimator (solid blue), especially in the boundary quantiles.

Figure 1.1: Mean Squared Error of Quantile Average ASF Estimators

Note: Solid red: pap�q; solid blue: pgp�q. Number of replications ,Nmc � 250.
Smoothing parameters, r1 � 1{7.9, r2 � 1{7.9. Trimming parameters, κ1 �
0.01 and κ2 � 0.025.

Turn to the empirical power analysis in Table 1.4. The setup of this experiments

copies that of DGP 1 where I vary the nonseparability parameter δ from 0.5 to 1. Now I

summarize key results over the following four dimensions. First, as sample size increases

from 250 to 500, the rejection rates increase by about 30%, yielding reasonable powers.

Second, the powers do not change much across selected quantiles. This property gives me

more confidence on the robustness of test results with respect to this tuning parameter.

Third, doubling the weight of the nonseparable component, on average, increase rejection

probabilities by 20% or so. Lastly, I do see that the recursive bias correction techniques

make a difference, especially in moderate sized samples.
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Table 1.4: Empirical Power Results of DGP 3

δ � 0.5 δ � 1
N PN BC 0.01 0.05 0.1 0.01 0.05 0.1

250 4 N 0.440 0.556 0.596 0.628 0.756 0.808
250 4 Y 0.400 0.540 0.616 0.644 0.748 0.792
250 6 N 0.456 0.548 0.584 0.644 0.752 0.788
250 6 Y 0.404 0.504 0.596 0.648 0.720 0.764
250 8 N 0.460 0.540 0.584 0.652 0.748 0.784
250 8 Y 0.384 0.492 0.576 0.624 0.716 0.748

500 4 N 0.756 0.860 0.880 0.856 0.932 0.956
500 4 Y 0.804 0.896 0.928 0.916 0.972 0.976
500 6 N 0.796 0.860 0.884 0.956 0.976 0.980
500 6 Y 0.796 0.892 0.912 0.932 0.964 0.976
500 8 N 0.804 0.864 0.888 0.888 0.940 0.960
500 8 Y 0.800 0.884 0.908 0.956 0.980 0.984

Note: Number of replications ,Nmc � 250 . Smoothing parameters,
r1 � 1{7.9, r2 � 1{7.9. Trimming parameters, κ1 � 0.01 and κ2 � 0.025.
For bias correction (BC), Y=yes, N=no.

Although it has been acknowledged by many authors that nonparametric tests with

analytical asymptotic variances usually perform poorly in finite samples [115, 50, 86],

nonetheless, our limiting variances work reasonably well as shown above. This advantage

may translate into great saving of computing time, compared with the commonly used

Bootstrapped approaches.

1.7 Extensions

In this section, three extensions are presented to include many commonly encountered

empirical cases. Firstly, I address the problematic “curse of dimensionality”. Despite all

attractive properties that nonparametric testing entails, in real applications, semiparametric

index models are often invoked due to the high dimensionality of the control covariates. I

accommodate the test in a two-step semiparametric scenario. While the finite dimensional

parameters are estimated in the first step by weighted semiparametric least square (WSLS),

then the test statistic can immediately be applied on the estimated single index [106, 58,

57, 74, etc.]. I show that the limiting variances under H0 can be simply obtained by

plugging-in the index estimators. In the second extension, when panel data are available,

the cross-sectional procedure can be modified to test additivity of time-invariant unobserved
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individual-heterogeneity. With repeated observations over time, control variables usually

take the form of individual-specific summarized measures, e.g. average value over time,

once the exchangability condition holds [7, 94, etc.]. In the last extension, I consider the

nonparametric nonseparable triangular simultaneous equations models. Following Imbens

and Newey [60], the marginal cumulative distribution function (CDF) of the first stage

error suffices to work as a control variable. I show that the asymptotic properties of our

test statistic are robust to the problem of “generated regressors”.

1.7.1 Semiparametric Test

When the dimension of X (or V ) is large in real settings, dimension reduction techniques

are often required. Following the semiparametric literature, I assume the multi-dimensional

covariates to comply with a linear index structure, e.g. I0 � X 1β0, where β0 is a conformable

vector of finite-dimensional parameters. Such models have been studied inPowell et al.

[106], Ichimura [57], Powell [105], Ai and Chen [5], Das [29], Klein and Spady [74], Klein

and Shen [70], etc.

Now redefine the model (1.1) as the semiparametric single index nonseparable model in

Eq. (1.40).

Y � mpX 1β0, εq (1.40)

where it has to be assumed that there exists at least one continuous variable in X for

identification purpose. From now on, I modify the hypotheses of testing interest by

incorporating the semiparametric structure.

H0 : gpx1β0q � apx1β0q, a.s., for each x P X ; H1 : H0 is not true

where the ASFs are defined in Eq. (1.41) and Eq. (1.42), respectively.

gpx1β0q �
»
mpx1β0, eqdFεpeq �

»
EpY |x1β0, vqdFV pvq (1.41)
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apx1β0q � EpY � hpV q|x1β0q,where hpvq �
»
R
EpY |x1β0, vqdFX 1β0px1β0q � EpY q(1.42)

To conduct the semiparametric inference, one can apply a two-step procedure. In the first

step, a consistent estimator of β is obtained by employing the multiple-index WSLS in

Ichimura and Lee [58]. Next, replace the true single index I0 � X 1β0 with pI � X 1pβ and

then follow the exact procedure outlined in Section 1.4.

It is well-known that β0 is only identified up to location and scale. Common

normalizations include setting β10 � 1, where β10 is the coefficient associated with any

continuous variable or ||β0|| � 1, where || � || is the Euclidean norm.13 Note that

when X and ε are not correlated of any sort, model (1.40) can be rewritten as the

semiparametric single index regression with an additive error like Ichimura [57]. To see

this, EpY |Xq � ErmpX 1β0, εq|Xs � m1pX 1β0q, implying Y � m1pX 1β0q � U , where

EpU |Xq � 0. As opposed, in the presence of endogenous regressors, by imposing the

single index Assumption S-1 in conjunction with Assumption I-1 and I-2, one is still able

to work on an additive model such as (1.43).

Y � EpY |X 1β0, V q � ε (1.43)

where Epε|X 1β0, V q � 0 by construction.

Assumption-S.1 Index identification. There is a unique interior point β0 P B such that

EpY |X,V q � EpY |X 1β0, V q, a.s.

Assumption S.1 only assumes that the equality EpY |X,V q � EpY |X 1β0, V q holds at the

true parameter values. However, it is unlikely to hold elsewhere.

Now consider the consistent estimation of β0 by WSLS by Ichimura and Lee [58]14. pβ
13General parametric forms of indexes, e.g. IpX,β0q, are allowed but identification of β0 has to be

conducted on a case-by-case basis.

14Model (1.40) coincides with the generalized regression model in Han [43] if strict monotonicity of m in
X 1β0 is assumed. Han estimate β0 by maximum rank correlation.
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is obtained by minimizing the sum of squares of residuals weighted by

pβ � arg min
βPB

N�1
Ņ

i�1

xWippβ0qrYi � pEpY |X 1
iβ, Viqs2

where the bias-reducing conditional expectation estimator is defined in Eq. (1.14). xWippβ0q �
1{ pEpε̂2|X 1

i
pβ0, Viq with pβ0 being a preliminary consistent estimator, such as unweighted

SLS estimator and ε̂ is the corresponding residual estimator. As additive semiparametric

models (1.43) are nested by nonseparable models (1.40), pβ is also consistent even if the true

model is additive separable.
?
N -consistency are immediately established in Proposition 1.4

which is a direct implication of the theorem in Ichimura and Lee [58]. See Ichimura [57]

and Klein and Shen [70] for details.

Proposition 1.4 (Consistency of pβ). Under Assumption I.1 and S.1, then it follows that

|pβ � β0| � oppN�1{2q

To apply the EQM test statistic, one can simply replace β0 with pβ and restrict X as a

single index, X 1pβ . Fortunately, the semiparametric covariance estimator, pΩN ppβq defined in

Eq. (1.44) takes exactly the same form as the nonparametric counterpart. The variability

of first-stage estimation of β0 affects the variance calculation through noting but the single

index on X. Note that there is no direct impact. To see the intuition, recall the difference

estimator pDpx1pβq � pgpx1pβq � papx1pβq at any x P X and by the Delta method around β0,

assuming differentiability, e.g. pg1p�q and pa1p�q.
pgpx1pβq � papx1pβq � r pDpx1β0qs � rpg1px1β0q � pa1px1β0qsx1ppβ � β0q � oppN�1{2q

The second term is also oppN�1{2q as |pg1pxq � pa1pxq| Ñ 0 and
?
Nppβ � β0q � opp1q.

Therefore, this test can be considered robust to the first-stage estimator in this aspect.

As a consequence, Theorem 1.1, Theorem 1.2 and Corollary 1.2.1 would immediately apply

by imposing the single index assumption on the influence function such as Eq. (1.44), a
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consistent estimator of which is straightforwardly obtained by plugging in pβ for β0.

pξpi pβ0q � rptpi � pEptp|Viqs pf�pX 1
iβ0, Viq � ptpi sε̂i � pEptpqphpViq (1.44)

where the quantile (and trimming) function tpi � tppX 1
iβ0q is defined over R.

Theorem 1.5 (Asymptotic null distribution). Under H0 and Assumption S.1, I.2 and

A.1-A.6, then xWN ppβq DÝÑ xWN pβ0q.

Remark 1. Efficient estimation of β0. Often times, the finite dimensional parameters

are of estimation and testing interest in its own right. For example, β0 might measure the

relative importance of regressors and their substitution patterns. Therefore, hypotheses of

economic interest can be directly formulated upon β0. Not only is our separability test

informative on the consistency of estimators, but also it can shed light on the efficiency.

In the case of not rejecting H1
0, one can take advantage of this additional information by

solving a nested minimization problem below,

pβa � arg min
βPB0

N�1
Ņ

i�1

xWipβqrYi � phpViq � pEpYi � phpViq|X 1
iβqs2

where phpvq is the consistent estimator of hpvq based on pβ. xWi is the optimal weight

estimator. Iteratively, updating with pβa would give a more efficient ASF in Eq. (1.45)

paepX 1
i
pβaq � pEpY � phapViq|X 1

i
pβaq (1.45)

where phapvq is estimated with the more efficient estimator pβa.
Remark 2. A more powerful test. When the first-stage finite parameters are present,

it may open up possibilities to increase the power of our ASF test. For instance, one can

incorporate the information of β0 into a new set of joint hypotheses as below,

H0 : βa � β0, gpx1β0q � apx1β0q, a.s., for each x P X ; H1 : H0 is not true
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where β0 and βa are unique solutions to the conditional mean restrictions, respectively.

ErY � EpY |X 1β0, V q|X,V s � 0;ErY � hpV q � EpY � hpV q|X 1βaq|X,V s � 0

Generally speaking, βa � β0 only when mp�, �q is additive. Natural estimators of β0 and

βa are their respective WSLS estimators aforementioned, pβ and pβa. The derivation of

asymptotic null distribution need to take into account the correlation between finite and

infinite-dimensional estimators and is left for future research.

1.7.2 Panel Data Test

The second extension applies to situations where panel data is available. Usually panel data

consist of same individuals observed over multiple time periods or groups. In the following

model, T is assumed finite and let N go to infinity. Suppose the nonseparable panel data

model, spanning both cross-sectional and time dimensions, can be specified in Eq. (1.46),

Yt � mtpXt, εtq, t � t1, 2, � � � , T u (1.46)

where mt : RdX � R8 Ñ R is an unknown time-varying function and the unobservables

are very likely to be multi-dimensional, including both time-varying and time-invariant

heterogeneity, both of which can arbitrarily interact with X. Altonji and Matzkin

[7] study the identification of local average response in this framework via the control

function approach and they give conditions on how to generate control covariates, Vt that

satisfy Assumption I.1 and I.2 from the panel structure. Essentially, they consider the

exchangeability in Assumption P.1.

Assumption-P.1 Exchangeability. Fεt|X1,X2,��� ,XT � Fεt|X1t1 ,X2t2 ,��� ,XtT
for ti P

t1, 2 � � � , T u and ti � tj .

Under this assumption, the error distribution is symmetric in the permutation of Xt.

Discussion of the validity of Assumption-P.1 can be found in Altonji and Matzkin

[7]. Assumption-P.1’ alone cannot guarantee the existence of external control variables.

Whereas the implied condition of conditional independence in Assumption-P.1’ is the key
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to resolving endogeneity.

Assumption-P.1’ For each t, Xt K εt|V pX1, Xt, � � � , XT q, where Xt and εt are not

measurable with respect to σ-field generated by V p�q which is a known vector of

symmetric functions in pX1, X2, � � � , XT q.

Analogous to Maurer et al. [94], V can include individual averages over time, V �
pX1, X2, � � � , XdX q, where Xj � T�1

°T
t�1Xjt, for each j P 1, 2, � � � , dX . In addition, it

may include quadratic functions capturing the dispersions, such as
°T
t�1pXjt � Xjq2 for

each j.

Then back to our testing context, for each time period t, I revise the original set of

hypotheses to be tH2
0,H2

1u. By simply replacing V with V pX1, X2, � � � , XT q in conjunction

with Assumption-S.2’, all asymptotic results in Section 1.5 trivially hold .

H0 : gtpxtq � atpxtq, a.s., for each x P Xand each t; H1 : H0 is not true

1.7.3 Test in Triangular Simultaneous Equations Models

In many cases, external control variables V are not observable or available. However, some

instrumental variables Z satisfying exclusion restriction may be eligible to provide sources

of external variation.

Suppose that the endogenous regressors are determined by first stage equations given in

(1.47)

Xk � hkpZ, ηkq, @k � 1, � � � , dX (1.47)

where hkp�q is an unknown measurable function and Z is a vector of instrumental variables

subject to the exogeneity condition in Assumption T.1. Let η � pη1, � � � , ηdX q1.

Assumption-T.1 Exogeneity. Z K pε, ηq.

Assumption-T.2 Scalar monotonicity. For each z P Z, hkpz, �q is a strictly monotonic

function, for k � 1, 2, � � � , dX .
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Assumption T.1 requires the full independence between instrumental variables and

unobservables. In the example of production function estimation, firm-level cost shifters

like input price variation, if observed, can serve as excluded variables as long as they are

not correlated with any productivity shocks or factors other than input choices. Assumption

T.2 is more substantive than it looks, despite its popularity in nonseparable literature. First,

it restricts the dimension of unobservables η to be unit. Then it imposes shape restrictions

in terms of monotonicity. Furthermore, it rules out discrete endogenous variables. Imbens

and Newey [60] consider the above assumptions in nonparametric nonseparable triangular

simultaneous equations models and prove the following proposition.

Proposition 1.5 (Theorem 1, Imbens and Newey [60]). Under Assumption T.1 and T.2,

X K ε|V , where V � rFX1|ZpX1, Zq, � � � , FXdX |ZpXdX , Zqs � rFη1pη1q, � � � , FηdX pηdX qs.

Proposition 1.5 is an existing result in the nonparametric identification literature, so

I would not reiterate the proof here. If one knows the true conditional distribution of X

given Z, nothing would change in the testing procedure and one can simply replace V with

the derived control variable. In a nonparametric situation, an additional step is needed

to estimate FX|ZpX,Zq first by the recursive conditional expectation estimator defined in

Eq. (1.48)

pVk � pFXk|Zpx, zq � °N
i�1Kh3pZi � zqst1rXki ¤ xs � pδipzqu°N

i�1Kh3pZi � zq , k � 1, 2, � � � , dX (1.48)

Fortunately, asymptotic results of the test statistic are not influenced by the first stage

estimation. Theorem 1.6 gives formal results on the asymptotic null distribution and it

basically states that it is permitted to use the true V in place of pV regardless of the

generated regressors. This theorem is based on the result from Mammen et al. [87] who study

nonparametric regression with nonparametrically generated covariates. In the example

of estimating ASFs in the nonparametric nonseparable triangular simultaneous equations

models, they establish that the limiting variances are not affected when pV � pFX|ZpX|Zq
need to be estimated in the first stage, under very mild conditions. Let xWN ppV q denote

the test statistic in Eq. (1.23) with all V replaced by pV and pΩppV q obtained in the similar

fashion.
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Theorem 1.6 (Asymptotic null distribution). Under H0 and Assumption T.1-T.2, I.2 and

A.1-A.6, then xWN ppV q DÝÑ xWN .

The proof of Theorem 1.6 exploits the empirical processes arguments. Supporting

lemmas can be found in Mammen et al. [87].

1.8 Conclusions

In this paper, I propose an easy-to-implement test for structural separability of fully

nonparametric models, explicitly allowing maximal unobserved heterogeneity. The test

is motivated by recent advances in the literature of structural modeling and nonparametric

identification. In particular, one of the distinct features is that no shape restrictions or

distributional assumptions need to be imposed. But in so doing, one has to overcome

the non-identification problem in the presence of excess heterogeneity. As opposed to the

previous methods, the test proposed relates the ASF to the additivity of unobservables. The

usefulness of ASFs has been suggested by empirical researchers. In this paper, I demonstrate

that ASFs contain important information about the additive separability of unobservables

and could be extracted for testing purpose. The specification test, in turn, can shed light

on the estimation of ASFs in terms of consistency and efficiency. So it can be foreseen that

the ASF-based test would have wide applicability.

Besides, not only are the analytic asymptotic variances easy to compute but also it

works reasonably well in the finite sample studies. The Monte Carlo results confirm it.

To be specific, the EQM test exhibits more power as the underlying model becomes more

“nonseparable”. The test is relatively robust to the choice of number of quantile regions.

However, developing the optimal number of quantile regions is beyond the scope of this

paper and left for future research. For empirical applications, I suggest researchers to

experiment with several values as a robustness check. As discussed at the end, with slight

modifications, the results above extend to other empirical scenarios. Such extensions include

semiparametric models, panel data and triangular simultaneous equations.
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.1 Proofs of Identification Results

Proof of Proposition 1.1. Given x P X , it follows that

gpxq �
»
E
mpx, eqdFεpeq �

»
mpx, eqdFε|V pe|vqdFV pvqpeq

�
»
Vx

»
mpx, eqdFε|V,Xpe|v, xqdFV pvq

�
»
V
EpY |X � x, V � vqdFV pvq �

»
V
Cpx, vqdFV pvq

where the conditional expectation function (CEF) is denoted by Cpx, vq � EpY |X � x, V �
vq for any pair px, vq P X � V. The last equality invokes the large support assumption to

obtain point identification. The identification result of ASF of nonseparable models is given

in Blundell and Powell [15], Imbens and Newey [60], etc.

Proof of Proposition 1.2. By Assumption I.1’, EpU |X � x, V � vq � EpU |V � vq �
hpvq, @px, vq P pX � Vq and under model (1.2) note that

Cpx, vq � m1pxq � hpvq

Suppose there is another set of functions such that Cpx, vq � rm1pxq�rhpvq. By Assumption

I.2’, m1pxq � rm1pxq � cδ and hpvq � rhpvq � cδ. Then it is obvious that m1p�q and hp�q are

identified up to an additive constant. See Newey et al. [99] for detail.

Integrate marginally with respect to v on both sides,

gpxq �
»
V
Cpx, vqdFV pvq � m1pxq � EphpV qq � m1pxq � ch

Assumption I.2 guarantees that Cpx, �q is well-defined on V for each x. Since gp�q is identified

from Proposition 1, m1p�q is identified up to a constant.

Proof of Proposition 1.3. a) is obvious from Proposition 2 once ch � 0 by normalization

since apxq � m1pxq � EpY � hpV q|X � xq.
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To show b), given X � x,

apxq � gpxq ô EpY � hpV q|X � xq � gpxq

ô E

�
Y �

»
Cpx1, V qdFXpx1q

���X � x



� EpY q � gpxq

ô EpY |X � xq �
»
V

»
X
Cpx1, vqdFXpx1qdFV |Xpv|xq � EpY q � gpxq

ô
»
V
Cpx, vqdFV |Xpv, xq �

»
V
Cpx, vqdFV pvq �∆pxq

and where

∆pxq �
»
Cpx1, vqdFXpx1qdFV |Xpv, xq

.2 Immediate Lemmas for Asymptotic Theory

Some notation. Let
°N
i,j �

°N
i�1

°N
j�1,

°N
i,j,k �

°N
i�1

°N
j�1

°N
k�1,

°N
j¡i �

°N�1
i�1

°N
j¡i and°N

k¡j¡i �
°N�2
i�1

°N�1
j¡i

°N
k¡j . Let KX

i,j � KhpXi�Xjq � kpXi�Xj{hq{h, KX
i,� � KhpXi�xq

and similar for other variables. I suppress superscript (or subscript) p for quantile( and

trimming) indicators.

Lemma 1 (U -statistic. Serfling [109]). A “mth-order” U -statistic of the form

UN �
�
N

m


�1 N�m�1¸
i1�1

N�m�2¸
i2¡i1

� � �
Ņ

im¡im�1

pN pWi1 , . . . ,Wimq

where pN is a symmetric in Wi1 , . . . ,Wim. Suppose that E||pN pWi,Wjq||2 � opNm�1q. Also

define

rN pWiq � ErpN pWi1 , . . . ,Wimq|Wi1s

θN � ErrN pWiqs � ErpN pWi1 , . . . ,Wimqs

pUN � θN �mN�1
Ņ

i�1

rrN pWi1q � θN s
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where θN is assumed to exist and pUN is called the “projection” of UN . Then

UN � pUN � oppN�1{2q

Lemma 2 (CEF). Suppose E|pY |Uq|2   8, infU fpuq ¡ 0 where fp�q is the density function

of U that is everywhere positive, d   4. For each u P U , the bias correction estimatorpCpuq � pEpY |U � uq is defined in Eq. (1.14), then it follows that

aq. | pCpuq � Cpuq| � fU puq�1

�����N�1
Ņ

i�1

KU
i,�prYi � Cpuqq

������ oppN�1{2q

bq. N�1
Ņ

i�1

KU
i,�prYi � Cpuqq � N�1

Ņ

i�1

KU
i,�εi �Oph4q

where rYi � Yi� pδipuq, pδipuq � pC0pUiq� pC0puq and εi � Yi�CpUiq. pC0p�q is the preliminary

conditional expectation estimator in Eq. (1.13).

Proof. For a). one must show that

DC �
�����N�1

°N
i�1K

U
i,�
rYipfU puq � Cpuq

�����
����� pfU puqfU puq � 1

����� � oppN�1{2q

Under the well-known nonparametric rate, one would have

| pfU puq � fU puq| � Opph2 �N�1{2h�d{2q;
�����N�1

Ņ

i�1

KU
i,�
rYi � fU puqCpuq

����� � Opph2 �N�1{2h�d{2q

From this, let cf � supu
pfpuq,

�����N�1
°N
i�1K

U
i,�
rYipfU puq � Cpuq

����� ¤ cf

#�����N�1
Ņ

i�1

KU
i,�
rYi � fU puqCpuq

������ Cpuq
��� pfU puq � fU puq

���+
� Opph2 �N�1{2h�d{2q

Then by Cauchy-Schwartz inequality, we have

DC ¤

gffe�N�1
°N
i�1K

U
i,�
rYipfU puq � Cpuq

�2� pfU puq
fU puq � 1

�2

� Oph4 �N�1h�d �N�1{2h2�d{2q
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Suppose h � OpN�rq, to make sure
?
NDC � oppN�1{2q hold, 1{8   r   1{2d and

generally requires d   4.

For b). To begin with, first add and subtract KU
i,�δipuq and use the fact δipuq � CpUiq�

Cpuq,

N�1
Ņ

i�1

KU
i,�prYi � Cpuqq � N�1

Ņ

i�1

KU
i,�pYi � δipuq � Cpuq � pδipuq � δipuqq

� N�1
Ņ

i�1

KU
i,�pYi � CpUiq � pδipuq � δipuqq

� N�1
Ņ

i�1

KU
i,�εi �N�1

Ņ

i�1

KU
i,�ppδipuq � δipuqq

And it is true that

?
N

�1{2
Ņ

i�1

KU
i,�ppδipuq � δipuqq � oppN�1{2q

To see this, remember δipuq � δipuq � O

ErN�1
Ņ

i�1

KU
i,�ppδipuq � δipuqqs � ErKU

i,�ppδipuq � δipuqqs � Oph2qOph2q � OpN�4rq

Var

�
N�1

Ņ

i�1

KU
i,�ppδipuq � δipuqq

�
� N�1Var

�
KU
i,�ppδipuq � δipuqq

�
� OpN�2hd�1q

As long as 1{8   r   1{pd � 1q, b). will hold. See Shen and Klein [110] for higher order

bias reduction.

Lemma 3. Suppose that Rp�q is a measurable function defined on Rd with continuous and

bounded second derivatives. ti is the quantile or trimming indicator defined in (1.21) and

the density function fXp�q satisfies Assumption A-2. For any x0 P X , it is true that

ErtpiRpXiqKhpXi � x0qs � tppx0qRpx0qfpx0q �Oph2q

where tppx0q � 1tx0 P X0u.
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Proof. Define the upper bound q1 � qXpp�1
P q and lower bound q2 � qXp pP q,

ErtpiRpXiqKhpXi � x0qs �
» q1
q2

kpx� x0

h
qRpxqfpxqdx

�
» q1�x0

h

q2�x0
h

Rpx0 � uhqfpx0 � uhqkpuqdu

�
» q1�x0

h

q2�x0
h

rRpx0qfpx0q � hpRpx0qfpx0qq1u� h2pRpxqfpxqq2|x�u2{2skpuqdu

� tppx0qRpx0qfpx0q � rRpx0qfpx0qs1h
» q1�x0

h

q2�x0
h

ukpuqdu�Oph2q

The second term is oph2q.

.3 Asymptotic Proof

Proof of Theorem 1.1. Recall pT pN in Eq. (1.24) and rT pN in Eq. (1.29). In the main text, pT pN
is decomposed first into three components

pT pN � I1 � I2 � I3

As noted in the text, I3 � 0 under H0. The following Lemma .2 aids to prove I2 � oppN�1{2q.
To analyze I1, it suffices to study rT pN ,

rT pN � Dg
N �Da

N �Dh
N

as pT pN � rT pN � oppN�1{2q. Lemma .2 and Lemma .3 are dealing with Da
N and Dg

N ,

respectively. Lemma .4 provides the intermediate result for Lemma .5 on Dh
N . Then it

is shown that

?
N pT pN � N�1{2

Ņ

i�1

pξpgi � ξpai � ξphiq � opp1q
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where

ξpgi � tpi f
�pXi, Viqεi � EptpqhpViq

ξpai � �tpi εi
ξphi � Eptp|Viqf�pXi, Viqεi

Combine those three terms, ξpi � ξpgi � ξpai � ξphi.

ξpi � rtpi � Eptp|Viqsf�pXi, Viq � tpi sεi � EptpqhpViq

By the CLT, Theorem 1.1 is established with the limiting variance Ωp � Epξpi ξpi 1q.

Proof of Theorem 1.2 and Corollary 1.2.1. According to Theorem 1.1, it is true that pTN
follows a PN -dimensional multivariate normal distribution.

?
N pTN DÝÑ Np0,Ωq

So WN � NT 1NΩ�1TN
DÝÑ χ2

PN
. By Slutsky’s theorem, for any pΩN

PÝÑ Ω, then it holds

that xWN � NT 1N
pΩ�1
N TN

DÝÑ χ2
PN

.

Lemma .1 (I2). Suppose H0 is true, under Assumption A.1-A.6, for each p

?
NI2 �

?
N

Ņ

i�1

ppti � tiqp pDpXiq �DpXiqq � opp1q

Proof. For any Xi,

| pDpXiq �DpXiq| � |rpgpXiq � gpXiqs � rpapXiq � apXiqs| ¤ |pgpXiq � gpXiq| � |papXiq � apXiq|

� OpppNhq�1{2q
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According to this, it is true that,

N�1
Ņ

i�1

| pDpXiq �DpXiq|2 � OppNhq�1q

By Cauchy-Schwartz inequality,

?
N
¸
i�1

ppti � tiqp pDpXiq �DpXiqq{N ¤
?
N

d¸
i�1

ppti � tiq2{N
d¸
i�1

r pDpXiq �DpXiqs2{N

�
?
NoppN�1{2qOppN�1{2h�1{2q � opp1q

Lemma .2 (Da
N ). Suppose that Assumption A.1-A.6 hold and under H0, then Da

N in

Eq. (1.31) can be written as the following,

Da
N � �N�1

Ņ

i�1

tirYi � hpViq � apXiqs � oppN�1{2q

Proof. Let Y �
i � Yi � hpViq. Recall that

Da
N � �N�1

Ņ

i�1

tir pEpY �|Xiq � EpY �|Xiqs

Apply Lemma A 2, it is true that pEpY �|Xiq � EpY �|Xiq � pN � 1q�1
°N
j�iK

X
j,irY �

j �
EpY �|Xiqs{fpXiq � oppN�1{2q. Substitute this into Da

N and note that Da
N � rDa

N �
oppN�1{2q. From now on, it suffices to only work with rDa below,

rDa
N � � 1

NpN � 1q
Ņ

i,j

tifpXiq�1KX
j,irY �

j � EpY �|Xiqs

� �
�
N

2


�1 Ņ

j¡i

paij � ajiq{2
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To apply the U -statistic theorem, we rewrite rDa
N as symmetric in i and j and where

aij � tifpXiq�1KX
j,irY �

j � EpY �|Xiqs

aji � tjfpXjq�1KX
i,jrY �

i � EpY �|Xjqs

Moreover, by Lemma A 3,

Epaij |Xiq � Oph4q;Epaji|Xiq � tirY �
i � EpY �|Xiqs �Oph4q

By Assumption A.1-A.3, it is true that E|aji|2 � E|aij |2 � Op1q � opNq as every

multiplicative term is bounded. Therefore, the standard second order U -statistic applies,

rDa
N � �N�1

Ņ

i�1

tirY �
i � EpY �|Xiqs �Oph4q � oppN�1{2q

Under H0 and Assumption A-5, Oph4q � opN�1{2q, it can be simplified to

Da
N � �N�1

Ņ

i�1

tirYi � hpViq � apXiqs � oppN�1{2q � �N�1
Ņ

i�1

tiεi � oppN�1{2q

Lemma .3 (Dg
N ). Suppose that Assumption A.1-A.6 hold and under H0, then Dg

N in

Eq. (1.30) can be written as the following,

Dg
N � N�1

Ņ

i�1

ttif�pXi, Viqεi � EptqhpViqu � oppN�1{2q
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Proof. Recall that Dg
N and by definition,

Dg
N � N�1

Ņ

i�1

tirpgpXiq � gpXiqs

� 1

NpN � 1q
Ņ

i,j

ti pCpXi, Vjq � 1

N

Ņ

i�1

»
tiCpXi, vqdF pvq

� 1

NpN � 1q
Ņ

i,j

ti

� pCpXi, Vjq � CpXi, Vjq
�
� 1

NpN � 1q
Ņ

i,j

ti

�
CpXi, Vjq �

»
CpXi, vqdF pvq

�
� Dg1

N �Dg2
N

The third equality follows by adding and subtracting
°N
i,j tiCpXi, Vjq{NpN � 1q.

Part a), for Dg1
N , by Lemma A 2, it is true that

pCpXi, Vjq � CpXi, Vjq � 1

N � 2

Ņ

k�i,j

KX
k,iK

V
K,jrYk � CpXi, Vjqs{fpXi, Vjq � oppN�1{2q

Substitute this into Dg1
N and rewrite it as Dg1

N � rDg1
N �oppN�1{2q, so from now on it suffices

to work with rDg1
N defined below,

rDg1
N � 1

NpN � 1qpN � 2q
Ņ

i,j,k

ti
fpXi, VjqK

X
k,iK

V
k,j rYk � CpXi, Vjqs

�
�
N

3


�1 Ņ

k¡j¡i

6̧

l�1

δg1l{6

To represent rDg1
N as a third-order U -statistic and where

δg11 � ti
fpXi, VjqK

X
k,iK

V
k,j rYk � CpXi, Vjqs ; δg12 � ti

fpXi, VkqK
X
j,iK

V
j,k rYj � CpXi, Vkqs

δg13 � tj
fpXj , ViqK

X
k,jK

V
k,i rYk � CpXj , Viqs ; δg14 � tk

fpXk, ViqK
X
j,kK

V
j,i rYj � CpXk, Viqs

δg15 � tk
fpXk, VjqK

X
i,kK

V
i,j rYi � CpXk, Vjqs ; δg16 � tj

fpXj , VkqK
X
i,jK

V
i,k rYi � CpXj , Vkqs



54

Moreover, by Lemma A 3,

Epδg11|Xiq � Oph4q;Epδg12|Xiq � Oph4q

Epδg13|Viq � Oph4q;Epδg14|Viq � Oph4q

Epδg15|Wiq � tif
�pXi, ViqrYi � CpXi, Viqs �Oph4q

Epδg16|Wiq � tif
�pXi, ViqrYi � CpXi, Viqs �Oph4q

Proving the above results is nothing hard but a little tedious. To conserve space, we only

show one term and the others follow the same line of reasoning. Now take Epδg15|Wiq as

an example,

Epδg15|Wiq �
»

tpxq
fpx, vqKpXi � xqKpVi � vq rYi � Cpx, vqs fpxqfpvqdxdv

�
»
tu1:tpXi�u1hq�1u

f�pXi � u1h, Vi � u2hq rYi � CpXi � u1h, Vi � u2hqs kpu1qkpu2qdu1du2

� tif
�pXi, ViqrYi � CpXi, Viqs �Oph4q

Note that the second equality holds by the transformation of variables, letting x � Xi�u1h

and v � Vi � u2h. The third equality follows from the Taylor expansion on h around

u1 � u2 � 0.

By Assumption A.1-A.3, it is true that
°N
l�1E|g1l|2 � Op1q � opN2q as every

multiplicative term is bounded. Therefore, the standard second order U -statistic applies,

rDg1
N � N�1

Ņ

i�1

tif
�pXi, ViqrYi � CpXi, Viqs �Oph4q � oppN�1{2q

� N�1
Ņ

i�1

tif
�pXi, Viqεi � oppN�1{2q

Part b), for Dg2
N , one can also rewrite it as a second-order U -statistic,

Dg2
N � 1

NpN � 1q
Ņ

j,i

ti

�
CpXi, Vjq �

»
CpXi, vqdF pvq

�

�
�
N

2


�1 Ņ

j¡i

pδg21 � δg22q{2
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where in particular

δg21 � ti

�
CpXi, Vjq �

»
CpXi, vqdF pvq

�
; δg22 � tj

�
CpXj , Viq �

»
CpXj , vqdF pvq

�

It is obvious that Epδg21|Wiq � 0. But for δg22, it can be shown that

Epδg22|Viq � EXrtpXqCpX,Viqs � E rtpXqY f�pX,V qs

� EptqhpViq

where EX is the expectation taken with respect to only X. The second equality is true only

under H0. Also by Assumption A.1-A.3, we have E|g21|2 � E|g22|2 � Op1q � opNq, then

the standard U -statistic theorem implies that

rDg2
N � N�1

Ņ

i�1

EptqhpViq � oppN�1{2q

Finally, combine rDg1
N and rDg2

N , then Lemma .3 follows that

Dg
N � N�1

Ņ

i�1

ttif�pXi, Viqεi � EptqhpViqu � oppN�1{2q

Lemma 4 and Lemma 5 uses U -statistic theorem to analysis N�1
°N
i�1

pEp∆pV q|Xiq.
Some notation: Cpx, vq � EpY |X � x, V � vq, ∆i � phpViq � hpViq, f�px, vq �

fpxqfpvq{fpx, vq, where fp�q denotes marginal/joint densities. ti � 1tXi P X0u. Under

H0, Y � m1pXq � hpV q � ε.

Lemma .4 (∆i). Given Xi and Vi � v, let ∆pvq � phpvq � hpvq, then it follows that

∆pvq � ∆1pvq �∆2pvq �∆3 � oppN�1{2q
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where

∆1pvq � 1

N

Ņ

i�1

fpXiqKV
i,�

fpXi, vq rYi � CpXi, vqs

∆2 � 1

N

Ņ

i�1

m1pXiq � Erm1pXqs

∆3 � EpY q � Y

Proof. Given Vi � v P V, recall that ∆pvq � phpvq � hpvq with php�q in Eq. (34) and hp�q
in Eq. (1.11). Following the similar argument in Lemma .3, ∆pvq can be decomposed into

three components,

∆pvq � N�1
Ņ

i�1

� pCpXi, vq � CpXi, vq
�

looooooooooooooooooomooooooooooooooooooon
∆1pvq

�
�

1

N

Ņ

i�1

CpXi, vq �
»
Cpx, vqdF pxq

�
looooooooooooooooooooooomooooooooooooooooooooooon

∆2pvq

�EpY q � Yloooomoooon
∆3

By Lemma A 2, ∆1pvq � r∆1pvq � oppN�1{2q where r∆1pvq is defined below,

r∆1pvq � 1

NpN � 1q
Ņ

i,j

KX
j,iK

V
j,�

fpXi, vqrYj � CpXi, vqs

�
�
N

2


�1 Ņ

j¡i

pdij � djiq{2

where in particular

dij �
KX
j,iK

V
j,�

fpXi, vqrYj � CpXi, vqs; dji �
KX
i,jK

V
i,�

fpXj , vqrYi � CpXj , vqs

It is straightforward to show that

Epdij |Wiq � Oph4q;Epdji|Wiq �
fpXiqKV

i,�

fpXi, vq rYi � CpXi, vqs �Oph4q

The second moment condition E|dij |2 � E|dji|2 � Oph�4q holds trivially according to

Assumption A.1-A.3. So by Lemma A 1, we have

∆1pvq � p∆1pvq � oppN�1{2q
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Note that under H0, ∆2 � N�1
°N
i m1pXiq�Erm1pXqs. So it is true that ∆pvq � p∆1pvq�

∆2pvq �∆3 � oppN�1{2q.

Lemma .5 (Dh
N ). Suppose that Assumption A.1-A.6 hold and under H0, then Dh

N in

Eq. (1.32) can be written as the following,

Dh
N � N�1

Ņ

i�1

Ept|Viqf�pXi, Viqεi � oppN�1{2q

Proof. To begin with, a result implied from Lemma .4 states that Epp∆|Xiq � oppN�1{2q.
As this can be seen from below,

Epp∆|Xiq � Erp∆1pV q|Xis � Ep∆2|Xiq � Ep∆3|Xiq � oppN�1{2q

Also, it is not hard to see the following from Lemma .4 that given Xi,

Erp∆1pV q|Xis � E

�
fpXjqKV

i,j

fpXj , Viq pYj � CpXj , Viqs
�����Xi

�
� Oph4q

Ep∆2|Xiq � N�1rm1pXjq � Epm1pXqqs � OppN�1q

Ep∆3|Xiq � �ErY � EpY q|Xis � �N�1rEpY |Xiq � EpY qs � OppN�1q

Therefore, Dh
N can be further decomposed into four components like below,

Dh
N � N�1

Ņ

i�1

tir pEpp∆1pV q|Xiq � Epp∆1pV q|Xiqslooooooooooooooooooooooooooomooooooooooooooooooooooooooon
Dh1N

�N�1
Ņ

i�1

tir pEp∆2pV q|Xiq � Ep∆2pV q|Xiqslooooooooooooooooooooooooooomooooooooooooooooooooooooooon
Dh2N

�N�1
Ņ

i�1

tir pEp∆3|Xiq � Ep∆3|Xiqslooooooooooooooooooooomooooooooooooooooooooon
Dh3N

�oppN�1{2q

In what follows, only the first three components need to be analyzed separately.
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For Dh1
N , we can represent it as a third-order U -statistic,

Dh1
N � 1

NpN � 1q
Ņ

i,j

tifpXiq�1KX
i,jrp∆1j � Epp∆1|Xiqs � oppN�1{2q

� 1

NpN � 1q
Ņ

i,j

tifpXiq�1KX
i,j
p∆1j � oppN�1{2q

� 1

NpN � 1qpN � 2q
Ņ

i,j,k

tifpXkqKX
i,jK

V
k,j

fpXiqfpXk, Vjq rYk � CpXk, Vjqs � oppN�1{2q

�
�
N

3


�1 Ņ

k¡j¡i

6̧

l�1

h1l{6� oppN�1{2q

The first equality holds as we can remove the random denominator of pEpp∆1|Xiq according

to Lemma 2. The second equality is because of the fact Erp∆1|Xis � Oph4q. Substitution

of p∆1 gives the third equality. And where in particular,

h11 �
tifpXkqKX

i,jK
V
k,j

fpXiqfpXk, Vjq rYk � CpXk, Vjqs;h12 �
tifpXjqKX

i,kK
V
j,k

fpXiqfpXj , Vkq rYj � CpXj , Vkqs

h13 �
tjfpXkqKX

j,iK
V
k,i

fpXjqfpXk, Viq rYk � CpXk, Viqs;h14 �
tkfpXjqKX

k,iK
V
j,i

fpXkqfpXj , Viq rYj � CpXj , Viqs

h15 �
tkfpXiqKX

k,jK
V
i,j

fpXkqfpXi, Vjq rYi � CpXi, Vjqs;h16 �
tjfpXiqKX

j,kK
V
i,k

fpXjqfpXi, Vkq rYi � CpXi, Vkqs

It is easy to see that Eph1l|Wiq � Oph4q for l � t1, 2, 3, 4u and

Eph15|Wiq � Eph16|Wiq � ErtpXq|Visf�pXi, ViqrYi � CpXi, Viqs �Oph4q

It is also true that
°6
l�1E|h1l|2 � Oph�4q � opN2q by Assumption A-5. Then standard

U -statistic theorem follows,

Dh11
N � N�1

Ņ

i�1

ErtpXq|Visf�pXi, Viqεi � oppN�1{2q
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For Dh2
N , we can also represent it as a third-order U -statistic,

Dh2
N � N�1

Ņ

i�1

tir pEp∆2|Xiq � Ep∆2|Xiqs

� N�1
Ņ

i,j

tifpXiq�1KX
i,jr∆2j � Ep∆2|Xiqs � oppN�1{2q

� N�1
Ņ

i,j

tifpXiq�1KX
i,jrm1pXjq �m1pXiqs{N � oppN�1{2q

� oppN�1{2q

The second equality holds as we can remove the random denominator of pEp∆2|Xiq according

to Lemma 2. Substitution of ∆2 gives the third equality.

For Dh13
N ,

Dh13
N � �N�1

Ņ

i�1

tir pEp∆3|Xiq � Ep∆3|Xiqs

� �N�1
Ņ

i,j

tifpXiq�1KX
i,jrYj{N � EpY |Xiq{N s � oppN�1{2q

� oppN�1{2q

So, combining all above,

Dh
N � N�1

Ņ

i�1

Ept|Viqf�pXi, Viqεi � oppN�1{2q

Proof of Theorem 1.6. The proof of the theorem is via the functional derivative argument

almost identical to Mammen et al. [87] who primarily study the local polynomial estimators.
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Essentially, based on their arguments, it is possible to show that given x P X ,

N�1
Ņ

i�1

r pCpx, pViq � Cpx, Viqs � N�1
Ņ

i�1

r pCpx, Viq � Cpx, Viqs

�N�1
Ņ

i�1

BCpx, Viq
Bv ppVi � Viq � opp1{

?
NhdX q

� T1 � T2 � opppNhdX q�1{2q

Given that C(x,) has bounded partial derivatives at each x, T2 � OpN�1{2q through

stochastic expansion and U -statistic projection arguments. T1 is already studied in Lemma

A 2.
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Chapter 2

Identification and Testing of Nonparametric Production

Functions without Hicks-neutral Productivity Shocks

2.1 Introduction

Understanding how inputs are related to outputs is a fundamental issue in empirical

industrial organization and other fields of economics, see [1]. In empirical trade and

macroeconomics, researchers are often interested in estimating production functions to

obtain a measure of total factor productivity, to examine the impact of trade policy

and FDI on productivity, and to analyze the role of resource allocation on aggregate

productivity. In empirical IO and public economics, firm-level production functions are

usually estimated to evaluate the effect of deregulation, cost efficiency, effects of R&D,

to estimate markups, and to evaluate merger impact. As in many empirical applications,

reliable estimates of production function parameters are essential to the conclusions that

researchers attempt to make. In this paper, I demonstrate that mistakenly assuming Hicks-

neutrality of productivity shocks may cause severe biases of structural parameters and

productivity estimates. To resolve this problem, I first propose a robust estimator of

average output elasticities of fully nonparametric production functions and then exploit

the proposed specification test to investigate whether firm-level production functions obey

Hicks-neutrality. Empirical evidence shows that there are indeed periods of non-Hicks-

neutral productions in the U.S. manufacturing industries, which coincide with the rapid

adoption of computer technology that occurred in the 90s.

The concept of Hicks neutrality was first put forth in 1932 by John Hicks in the book The

Theory of Wages. A change is considered to be Hicks neutral if the change does not affect

the balance of labor and capital in the production functions. In the cross-sectional context,

Hicks-neutrality substantially restricts the form of unobserved productivity shocks across
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firms, which could be a potential rich and important source of underlying heterogeneity. It

further indicates the absence of firm-level unobserved heterogeneity in input substitutability

within the industry. Furthermore, it presumes that output-input elasticities are identical for

firms that employ the same amount of inputs. Other than the modeling perspective, it poses

serious challenges to many commonly employed identification strategies and consistency of

production function estimators, which rely critically on the structural separability between

input choices and productivity shocks. Last but not least, the wrongly imposed Hicks-

neutral technology would cause the distortion of distributions of firm productivity measures,

defined as the “Solow” residuals of log production functions. Motivated by the above facts,

I suggest an empirically useful test of Hicks-neutrality and show that such a test can be

converted into testing additive separability between input choices and multi-dimensional

unobservables. In order to control the endogeneity of flexible inputs, such as labor, I

extend the proxy variable approach from empirical industrial organization literature, to fully

nonparametric nonseparable production functions. Compared with parametric estimation,

the nonparametric structural approach adopted here, is not only robust to misspecification

but also allows richer firm-level heterogeneity. The estimation and testing results are given

for the static model but most of identification results extend to fully dynamic models with

additional assumptions on the productivity process.

Recently, there has been a few papers considering non-Hicks-neutral production

functions. The method of this paper differs from theirs in that I consider a more general

form of production functions, which is fully nonparametric and place no restriction on

how productivity enters and are rich in unobserved heterogeneity. The advantage of

using such general functional forms at this level ensures that identification and estimation

are not driven by any particular parametrization including the multiplicative structure

between input amounts and unobservables. Admittedly, the set of identified objects is

limited in contrast to previous models with more restrictions. For empirical applications,

a specification test should be informative. Therefore, I derive the testable implications of

Hicks-neutrality.

I apply the proposed estimation and testing procedure with firm-level panel data of

the U.S. manufacturing industry, including all sectors, from 1990 to 2011. The empirical
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estimation results of output elasticities (with respect to labor and capital) suggest that

controlling for endogenous inputs is crucial. As opposed to previous nonparametric

estimates with only exogenous variables, labor elasticity estimates are reduced on average by

12.5% while it increases by only 9.4% for capital, indicating an upward bias on the return-to-

scale parameter. On the other hand, mistakenly imposing Hicks-neutral technology could

result in an overestimate (underestimate) bias as high as 3.5% for labor elasticity (3.1%

for capital elasticity). More importantly, my findings provide an explanation for the well-

known phenomenon of constantly decreasing employment in the manufacturing industry. It

suggests that there is an obvious trend in the input substitution patterns over time. To be

specific, the relative importance of labor has become weaker while capital has been gaining

a stronger position in terms of relative output elasticities. This may be largely due to the

technological transformation via the mass adoption of computing and electrical equipments

during the period of 1993-1998. I also find slightly scaled economies in this period of

manufacturing growth. Unsurprisingly, such rapid change of manufacturing technology has

also been captured by the proposed test of Hicks-neutrality. Non-technically speaking, the

testing results suggest that from the 1990 to 2000, firm-level productivity affects output by

changing the “essential technology” ( or altering input substitution patterns), rather than

simply scaling up output. A possible explanation is that firms are heterogeneous in the

speed of adopting new technology. While such effect disappeared after 2002 when most

firms have finished the technological transformation. Results do not change much after

controlling for sector-specific effects which are not sufficient to mitigate the problem of

non-Hicks neutrality.

The contributions of this paper are mainly twofold. Firstly, this paper contributes

to the literature of nonparametric identification and estimation of firm-level production

functions. In particular, I consider the identification of fully nonparametric production

functions beyond Hicks-neutral productivity shocks in both static and dynamic models.

The proposed approach differs from Kasahara et al. [64]. They assume that a firm’s

productivity belongs to a finite number of types. Within each type, the production function

is Hicks-neutral. Whereas I rely on the proxy variable approach [101, 77, 120, 2] and

employ identification strategy for nonseparable models. The estimators of average output
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elasticities are robust to non-Hicks neutral productivity shocks. However, the cost is that

firm-level productivity cannot be identified at this level of generality. The identification

strategy relies on the control function from the literature of nonparametric identification

[16, 59, 60, 35, 65, 90, 32, 116, etc.]. This paper also belongs to a growing literature

of estimating firm-level production functions. Griliches and Mairesse [37] consider various

identification strategies dealing with the endogenous inputs. Blundell and Bond [14] provide

a dynamic panel estimator for parametric production functions. Gandhi et al. [36] derive

nonparametric identification by exploiting the first order condition to profit maximization.

Exploitations of share equation date back to Klein [68], Solow [112]. Huang and Hu [54] and

Kim et al. [67] allow for measurement errors in capital. Secondly, to my best knowledge,

this is the first paper to question the commonly assumed Hicks-neutral technological shocks

and propose an empirical test for it. Nonparametric estimation of production functions

without endogenous inputs has been studied in Varian [117], Vinod and Ullah [118], etc.

The rest of the paper is structured as follows. Section 2.2 reviews the notion of Hicks-

neutral production functions and discusses the importance of testing such an assumption.

Section 2.3 first addresses the non-identification problem of non-Hicks-neutral production

functions and then presents identification results of structural parameters in both static and

dynamic models. Nonparametric estimators and testing statistics are given in section 2.4.

Finally, data and empirical results are presented in section 2.5 and section 2.6, respectively.

Section 2.7 concludes this paper.

2.2 Hicks/Non-Hicks-neutral Productivity

Previous studies rely primarily on parametric specifications such as Cobb-Douglas (CD)

production functions. Recently the literature has moved onto more flexible functional forms

and even nonparametric production functions as micro production data becomes gradually

available. This paper takes a further step by considering estimation in the context of fully

nonparametric value-added production functions. Standard notations are used from the

empirical IO literature and for brevity, omit the cross-sectional subscription i P t1, � � � , Nu,
denoting each firm ( or plant or establishment). Assuming a single-product firm, define the
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firm-level fully nonparametric value-added structural production function in Eq. (2.1),

Yt � FtpLt,Kt, ωt, εtq, t � 1, 2, � � � , T (2.1)

where Yt represents some measure of firm-level value-added output of product. Kt denotes

the level of capital input at period t and Lt denotes the amount of labor input at period t.

The random vector, pωt, εtq, contains unobserved factors in which ωt represents the time-

varying heterogeneity in productivity shocks and εt denotes idiosyncratic shocks including

measurement errors and unexpected ex post errors in output, etc. Ft : R��R��R�R8 Ñ
R� is the firm-level time-varying unknown production function that maps observed choices

and unobserved random factors into the space of final product. Also note that the dimension

of ωt is assumed to be one for convenience but this restriction can be relaxed. In the following

analysis, it is required that the time period T be fixed and the number of firms N be large.

In what follows, Eq. (2.1) is also referred to a non-Hicks-neutral production function.

The concept of Hicks-neutrality was first put forth in 1932 by John Hicks in his book

The Theory of Wages. A change is considered to be Hicks neutral if the change does not

affect the balance of labor and capital in the firm’s production function. This means that

the productivity or technological shocks affects output only in a multiplicative way rather

than altering input substitutability. To fix idea, now formally define the Hicks-neutrality

production functions in Eq (2.2) for each time period t,

Yt � Atpωt, εtqF 1
t pLt,Ktq, t � 1, 2, � � � , T (2.2)

where F 1
t : R� RÑ R� and At is an unknown potentially time-varying function of multi-

dimensional unobservables, At : R � R8 Ñ R�1. In what follows, I refer to F 1
t p�q as the

“core technology” for which the functional form is robust to the impact of firm-specific

and common shocks. In more aggregate studies, At represents the technological changes

over time and could be taken as total factor productivity (TFP) or aggregate productivity.

1Since Yt is defined on R�, it is usually assumed that Atp�q ¡ 0 as Ftp�q ¡ 0.



66

Taking log transformation of Eq. (2.2) for each t,

yt � f1
t pLt,Ktq � atpωt, εtq (2.3)

where lowercase letters, here and in the following, represent the log transformation of

original measures, e.g. yt � log Yt, f
1
t p�q � logF 1

t p�q. Hicks-neutrality implies that firm

unobserved heterogeneity or productivity shocks scale up or down output in a multiplicative

way. This further indicates an additive structure of unobservables for the log transformed

production function. A coarse measure of firm productivity can be backed out as the “Solow

residuals”, at, by estimating the log production function.

The most famous example of Hicks neutrality is the CD production function below. The

CD production function is a special case of a large class of constant elasticity substitution

(CES) production functions which also obey the form of Hicks-neutrality 2.

Yt � Atpωt, εtqLβLt KβK
t (2.4)

where β � pβK ,βLq are structural parameters measuring output-input elasticities.

Estimators of them are usually obtained by estimating the linear regression model by OLS

in Eq. (2.5), after log transformation. However, endogeneity arising from input choices

would inevitably bias estimates unless corrected measures are taken.

yt � βLlt � βKkt � atpωt, εtq (2.5)

On the other hand, examples of commonly used non-Hicks neutral production functions

include labor or capital-augmented production functions (2.6),

Yt � FtpKt, AtLtq or Yt � FtpAtKt, Ltq (2.6)

and random coefficient CD (2.7), where input elasticities are unknown functions of firm

heterogeneity, etc. Under this scenario, productivity shocks could impact firms’ core

2For more general CES production functions, Yt � AtpβLL
γ
t � βKK

γ
t q

1{γ , where γ ¤ 1 determines the
degree of substitutability and pβK , βLq are respective input shares.
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technology through one additional channel—altering the relative weights of labor and

capital.

Yt � ApεtqKβKpωtq
t L

βLpωtq
t (2.7)

In the remainder of this section, I present three motivations for relaxing the Hicks-

neutral restrictions and proposing a testable hypothesis. In particular, the Hicks-neutrality

imposes enormous restrictions on the pattern of firm heterogeneity and this cannot be

easily reconciled with intuition and empirical facts. In addition, such restriction poses

serious threats to identification strategies based on the additivity of unobservables after

log transformation. Finally, I use a trivial simulation example to show that distribution of

productivity measures could be severely distorted once the Hicks-neutrality doesn’t hold.

Recently, there are also empirical evidences questioning the Hicks-neutral technology that

may be too restrictive for certain industries.

2.2.1 Restrictions of Firm Heterogeneity

Generally speaking, imposing the multiplicative separability between F 1
t and At, also known

as Hicks-neutral technology, can significantly restrict the form of unobserved productivity

heterogeneity and input substitution patterns. Here, I attempt to list some modeling

restrictions and implications arising from the commonly assumed Hicks-neutrality.

Firstly, Hicks-neutrality of productivity rules out unobserved heterogeneity in input

elasticities. By definition,

βL,t � BYt
BLt

Lt
Yt

� Byt
Blt , βK,t � BYt

BKt

Kt

Yt
� Byt
Bkt

Given the additive structure of unobservables like Eq. (2.3), output-input elasticities can

be written as βL,t � Lf1
L,tpK,Lq and βK,t � Kf1

K,tpK,Lq, where subscript L and K of fp�q
refers to partial derivatives with corresponding arguments. Both are degenerate functions

of productivity shocks. It is clear that firm-specific output elasticities are only functions

of observed input choices, so it would become constant when conditioning on a given
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pair of labor and capital. Due to this restriction, commonly used functional forms such

as labor/capital-augmented production functions are also being ruled out. A subsequent

implication is that firm-specific return-to-scale measures would be identical as long as they

employ the same amount of capital and labor. Because one can approximate the return-to-

scale with the sum of capital and labor elasticities, such as Eq. (2.8).

RTSt � βL,t � βK,t (2.8)

In CD production function (2.4), return-to-scale is constant for each firm. The above

restrictions are undesirable as the imposition of Hicks-neutrality completely eliminates the

unobserved heterogeneity in the modeling of key structural parameters of interest.

Secondly, Hicks-neutral technology significantly restricts input substitution pattens at

firm level. To see this, one can examine the rate of technical substitution for each firm,

defined the ratio of marginal product of labor and capital, MPL,t{MPK,t. Under Hicks-

neutral technology, it follows that

MPL,t
MPK,t

� BYt{BLt
BYt{BKt

� F 1
L,tpLt,Ktq

F 1
K,tpLt,Ktq .

As can be seen, the ratio is free of productivity shocks. It further implies that substitution

patterns within production should be identical for firms with same input amounts despite

their differences in realized productivity. A similar story is applicable to elasticity of

substitution which is another common parameter measuring the degree of flexibility that

capital can be substituted for labor. The above property can be very undesirable in

industries where firms could substantially differ in input substitutability. This is especially

true if productivity shocks alter the “core technology”. At least, one should exercise extreme

caution when such restrictive modeling condition has to be assumed.

Finally, if one is willing to take some behavioral assumptions, Hicks-neutral shocks could

have implications on input expenditures and firm-specific markups given various market

structures. In perfect competition, this suggests that profit-maximizing firms have constant

input expenditure compositions conditional on input mix pLt,Ktq. This seems a reasonable

argument provided that output and input markets are also perfectly competitive. But it
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can be hard to validated empirically. To see this, assuming a firm is maximizing static profit

taking output price and wage rate as given. Consider the first order condition with respect

to its labor choice,

PricetFL,tpKt, Ltq �Waget ñ βL,t � WagetLt
PricetYt

� ShareL,t

Under Hicks-neutral production, βL,t is a constant given pLt,Ktq. When firms compete

in a homogeneous product market and face common input prices, then output Yt must

be confined to be constant. Thus, it eliminates possibilities of firm-specific idiosyncratic

shocks.

In markets of imperfect competition, Hicks-neutrality could also indirectly impose

restrictions on markups. In the spirit of Hall [42], De Loecker [30, 31], it is possible to

recover firm-level markups provided the existence of a variable input. Consider the first

order condition with respect to labor input of firm’s static cost-minimization problem,

λtFL,tpKt, Ltq �Waget, whereλt is the Lagrangian multiplier.

where λt can be viewed as the marginal cost of production, i.e. λt �MCt. The markup can

be recovered from the ratio of the estimated input elasticities of labor and observed labor

expenditure shares.

Pricet
MCt

� βL,t
ShareL,t

where the price over marginal cost might shed light on the market power in the process of

production. However, when productivity shocks are Hicks-neutral, βL,t is free of unobserved

productivity heterogeneity. Given the choice of labor and capital, markups is in proportion

to the inverse of labor expenditure shares. At the firm level, it amounts to the removal of

all unobserved heterogeneity in the markup calculation given input choices and expenditure

shares. However, in general, productivity might leverage markups in ways other than

simply shifting relative shares of inputs. Therefore, relaxing the Hicks-neutrality is essential,

especially in the flexible modeling of unobserved productivity heterogeneity.
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2.2.2 Identification with Endogenous Inputs

Estimating firm-level production functions has a persistent interest in empirical industrial

organization, trade and related fields. As very early noticed by Marschak and Andrews [89],

input choices may be endogenous due to its correlation with productivity shocks because

firms usually make input decisions based on the ex post productivity shocks [37], and as

a result, ordinary least square estimators of log-linear production functions are usually

inconsistent.

For example, consider the CD production function after log transformation in Eq. (2.5).

Suppose that labor is the only variable input that can be altered according to the value

of productivity at whereas capital is the fixed input determined in the preceding period.

Empirical evidence had shown that without controlling for this correlation, labor coefficients

tend to have upward biases as it captures the partial effects of productivity on output. In

contrast, capital coefficients are likely to be underestimated, causing almost insignificant

coefficients. As a consequence, controlling for endogeneity has become the most important

task in many estimation methods.

As driven by this concern, many identification strategies have been proposed to address

endogeneity. However, as the following shall point out, many of them only work under

the assumption of Hicks-neutrality. To see this, consider the log transformation of some

Hicks-neutral value-added production function, Eq. (2.3), i.e. yt � f1
t pLt,Ktq� at. The log

additivity of unobservables serves as the critical foundation for identification. Once at can no

longer be written as an additive term, inconsistent estimators of structural parameters could

be generated due to the nonseparability arising from non-Hicks-neutrality. To illustrate

this, the first and most obvious example might be the IV estimator whose consistency

depends critically on the additive separability of unobservables. As exploited by [37], using

input prices as instrumental variables is only valid under Hicks-neutral errors, even if their

variation across firms could be justified as exogenous empirically3.

Another method is to exploit the dynamic structures by specifying a productivity

3The input prices IV estimator has been subjected to criticisms widely because 1). input cost data at
micro level are not usually available. 2). the variation might not be adequate, especially when the final
product market is homogeneous. 3). it might capture differences in input qualities or even market power in
factor markets.
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evolutionary process [8, 14, etc.]. Due to the persistence of productivity, the current shock

is usually assumed to be a time-varying function of previous shocks and some state variables

with an additive orthogonal noise.

ωt � htpωt�1,Ktq � ξt, t � 1, 2, � � � , T (2.9)

where ω0 � 0 for normalization. The identification strategy of the dynamic panel method

relies on the orthogonality between idiosyncratic shocks pεt, εt�1, ξtq and past differences

in input choices. In addition to the Hicks-neutral technology, it requires the productivity

process to be AR(1), i.e. ωt � ρωt�1 � ξt. In the case of CD production functions, the first

difference, i.e. yt � ρyt�1, implies a dynamic panel regression free of productivity shocks.

yt � ρyt�1 � βLplt � ρlt�1q � βKpkt � kt�1q � pεt � ρεt�1q � ξt

Lagged and differenced values of static and dynamic inputs are qualified as IV satisfying

the orthogonality condition. However, the elimination of productivity terms is only valid

when it is additive. Besides, this approach also requires strong parametric assumption and

it is not trivial to extend to models beyond linear structures. Furthermore, due to the

insufficient variation of changes in capital stocks, capital coefficient estimates, as a results,

tend to be lower and hardly significant.

Recently, Gandhi et al. [36] have exploited the revenue share equation of profit-

maximizing firms in perfect competition4. Given the Hicks-neutral technological shocks,

they show that production functions in (2.2) is nonparametrically identified. Now suppose

that At � ωt for simplicity and consider the first order condition (FOC) in log form with

the Hicks-neutral shocks from Eq. (2.2).

lnWaget � lnPricet � lnF 1
L,tpLt,Ktq � ωt

where F 1
L,t denotes the partial derivative of F 1

t with respect to labor. It follows that ωt

4This approach dates back to Klein [68] and Solow [112] who consider the first order condition with
respect to variables inputs.
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becomes additive. Then by subtracting the above log input revenue share equation from

the log production function, the productivity term will vanish.5 Note that this observation

would not hold in general for non-Hicks-neutral production functions.

Subsequent work by Kasahara et al. [64] also exploits the input revenue share equation

but attempts to relax the Hicks-neutral restriction. In particular, they assume a firm’s

production function belonging to one of J-finite types characterized by the productivity

process, but within each type, still complies with Hicks-neutrality.

Finally, a vast amount of empirical work relies on the proxy variable approach [101, 77,

120, 2, etc.]. Essentially, it requires a proxy function, possibly unknown, for productivity.

Such functions can be obtained φtpkt,mtq, where mt is the log of control variable such as

investment or intermediate input. In addition, assume the productivity dynamics is first-

order Markovian, i.e. ωt � hpωt�1q�ξt. One can substitute this proxy back into the log CD

function, i.e.yt � βLlt � Φtpkt,mtq � εt. Then nonparametrically regress ωt � Φtpkt,mtq �
βKkt on itself from last period and explore the following orthogonality conditions.

E

����εt
ξt

�
∣∣∣∣∣∣ It;β
�� � 0, where It � tKt, pL,K,Mqt�1

0 u.

Either two-step or jointly GMM approach with the above moment conditions can used for

estimation of parameters pertaining to economic primitives. Most of previous developed

estimators are in the context of CD production functions. In the section 2.3, I extend

identification results of the proxy function approach to fully nonparametric production

functions beyond Hicks-neutrality at the cost of a slightly stronger set of assumptions. The

identification also suggests a convenient testing procedure for Hicks-neutral technological

shocks, which will be implemented in the empirical section 2.6.

2.2.3 Measures of Productivity

One of the most important aspects of estimating production functions is to extract measures

of productivity. By studying the re-distribution of firm-specific productivity, one can

5Gandhi et al. [36] discuss detailed steps in recovering nonparametric production functions.
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examine the reallocation effects of particular trade or industrial policies, and identify

the sources of productivity growth. Productivity is also interpreted as profitability or

innovation potentials in many studies that focus on its relation with R&D expenditure.

Therefore, a robust and consistent measure of productivity is a crucial premise upon

which all the follow-up studies rely. Previously, a common practice is to estimate or

approximate the firm-specific productivity as the exponential of the “Solow” residuals from

the log regression, in Eq. (2.3). In the case of CD production functions, as Eq. (2.5), the

productivity is approximated as expppatq, where pat is a consistent estimator of the “Solow”

residual. Admittedly, this is a coarse measure of productivity unless one can separate the

true heterogeneity, exppωq from the ex post shocks, exppεq6. However, the presence of the

non-Hicks-neutral productivity shocks would not only pose difficulty in the interpretation

of using a summarized productivity measure, but significantly undermine its validity, as

shown in the example below.

Example. Consider the random coefficient CD production functions in log, a non-Hicks-

neutral one. For simplicity, I focus on the cross-sectional production functions without

endogenous inputs, i.e. both labor and capital are static and fixed inputs. For the purpose

of demonstration, I also assume away the idiosyncratic shocks so that the only unobservable

is the firm-specific productivity shock. Remember that adding more unobservables or shocks

does nothing but make the interpretation hard, when only exogenous inputs exist.

yt � βLpωtqlt � βKpωtqkt

Clearly, it is trivial to note that the distribution of productivity ωt, if not degenerate,

is different from the residuals that are uniformly 0 given any consistent estimator of

random coefficients for each firm. A more interesting question is on how the estimated

residual distribution looks like compared to the true distribution if estimated using OLS.

Intuitively, it depends on the functional form of βL and βK as well as the distribution of

firm heterogeneity and inputs. To get a first glimpse, I demonstrate it through the following

6Olley and Pakes [101] discuss the benefits and costs of using a course measure exppatq rather than the
precise one, exppωtq.
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simulation studies.

Suppose that a simple random coefficient CD production function with βL � 0.67� ω,

βK � 0.33 � ω, where ω is generated from either Np0, 1q or Weibullp1, 1q. I use actual

observations for labor and capital from the empirical application. The detailed discussion

of data will be postpone in Section 2.6. For simplicity, attention is restricted to the sector of

computer and electrics in 2011. The log output is generated according to y � βLl�βKk�ε,
where ε � Np0, 1q. In Figure 2.1, I plot the nonparametric kernel density estimates of true

productivity versus estimated Solow-residuals. It is not hard to see that when the true

productivity is normally distributed, Solow-residuals tends to display much higher than

normal kurtosis. Turning to the right panel of Figure 2.1, the estimated Solow-residuals

might have distorted skewness when the true is Weilbull distributed. This example is

used to illuminate one fact: severe distortions might occur to the distribution of residual

productivity estimates in the presence of non-Hicks-neutral technological shocks.

Figure 2.1: Simulated Productivity Distributions
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Note: 1. Total number of observations is 459. 2. Standardized values are plotted to ease comparison.
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2.3 Identification of Identifiable Structural Parameters

In this section, I consider the identification issues without Hicks-neutral technology. To

begin with, notice that the non-Hicks-neutral production function can be seen as a

special case of nonparametric nonseparable models. Thus, borrowing the results from the

nonparametric identification literature, it is straightforward to see that structural functions,

here production functions, are not identified in the presence of unobservables with unknown

dimensions. This further indicates that Hicks-neutrality is generally non-testable without

restrictions on unobserved productivity heterogeneity. Alternatively, average production

functions are identified. In the second and third subsections, formal assumptions are laid

out in both static and dynamic models. I extend the idea of the proxy variable approach in

order to identify firm-level average structural parameters such as output-input elasticities

and return-to-scales.

Now I cast the above problem into a general econometric question. To begin with,

notations are simplified so that the identification problem can be highlighted. Analogous

to the log transformation of Eq. (2.1), let the single equation nonseparable model be in

Eq. (2.10) where arbitrary interactions between observed and unobserved covariates, e.g.

X versus ε, are permitted.

Y � mpX, εq (2.10)

where the unknown measurable function m : X � E Ñ R is called the structural function

representing primitive economic relations. Nonparametric nonseparable models have been

gaining popularity in theoretical econometric works for the past decades. Such models

are capable of capturing both the observed and unobserved heterogeneity in structural

parameters of important economic interest. For the application here, model (2.10) could

represent the log of a nonparametric production function, where Y denotes the log output

level, X as amount of factor inputs and ε consisting of multi-dimensional unobservables

including time-varying and time-invariant productivity shocks, input quality variations,

measurement errors in output and inputs, and other unobservables pertaining to demand

and cost conditions.
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In contrast, the competing class of specifications, a subset of Eq. (2.10), features the

additive separable structure in which the unobservables can be collectively written as an

added term, like Eq. (2.11),

Y � m1pXq �m2pεq (2.11)

where m1p�q is a measurable unknown function of only observables defined on X . The above

model corresponds to the Hicks-neutral production functions after log transformation, such

as Eq. (2.3). In the literature nonparametric specification test of additive separability, the

following hypotheses have received a lot of attention.

H�
0 : mpX, εq � m1pXq �m2pεq, a.s.

H�
1 : Otherwise

Testing additive separability is a long-standing interest to empirical researchers, especially

in structural econometrics. The motivations for the testing hypotheses H�
0 against H�

1 are

mainly fourfold. 1). This is a test on the absence of unobserved individual heterogeneity

in structural functions. Once H0 is rejected, it implies the partial effect of X on Y is

deterministic given the level of observed covariates. As mentioned in Section 2.2, the Hicks-

neutral technology, implied by additive separability, imposes a very strong restrictions on

the input substitution patterns. 2). Consistency and efficiency of many estimators depend

crucially on the separability of disturbances, such as IV estimators. Hahn and Ridder

[41] show that the conditional mean restriction, often assumed in IV methods, only has

identification power when the model is additive in unobservables. 3). Additive separability

of unobservables is often employed in structural models to facilitate identification and

estimation. For example, estimating demand using discrete choice models with market-level

data, idiosyncratic tastes are usually assumed to be type-I extreme distributed and additive

in the mean utility function in order to obtain the closed-form market share equations.

Another similar example concerns the unobserved firm fixed cost to be additive in order to
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generate the conditional choice probabilities in the dynamic games with entry and exit.7

A notable fact is that heterogeneity in microeconomics is rarely unit-dimensional and

quite often even the number of dimensions is not known a priori. As can be seen, ε often

represents unobserved heterogeneity of consumer tastes, product attributes, productivity

shocks, measurement errors, etc. Browning and Carro [19] even argue that most empirical

models allow less than the maximal amount of unobserved heterogeneity.

As a consequence, testing the additive separability turns out to be challenging,

even impossible when no restrictions are placed on the unobservables. Gu [39] studies

the identification problem associated with multi-dimensional unobservables (or excess

unobserved heterogeneity) in nonseparable structural models. More importantly, he argues

that the original hypothesis is not testable to the extent that unobserved heterogeneity is

allowed to be modeled as flexibly as possible.

In the following, I first briefly review the non-identification problem of non-Hicks-neutral

production functions and give assumptions and results on the identifiable objects—average

structural production functions.

2.3.1 Non-identification of Production Functions

First, let us take a look at a simple example mentioned in Benkard and Berry [12]. Suppose

X is univariate continuous variable independent of ε � pε1, ε2, ε3q that are independently

distributed as standard normals. There is no way to distinguish between

Y � X?
X2 � 1

ε1 � 1?
X2 � 1

ε2

and

Y � ε3

in the sense that the above two models generate identical joint distributions of observables,

e.g. FX,Y , which consists of all available information in the data. To see this, it is

7In some structural models, testing separability could yield implications on testing endogeneity, a point
taken from Imbens [59] and Imbens and Newey [60].
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straightforward to show Y � Np0, 1q and is independent of X in both specifications.

Formally, we follow the definition in Roehrig [107] and let FX,ε be the distribution and

in conjunction with the structure S be a pair pFX,ε, θq that define the data generating

process, where θ could denote finite and infinite parameters.

Definition 2.1. Let F and F 1 be the distribution functions of pX,Y q implied by the structure

S and S1, then S and S1 are observationally equivalent if F � F 1.

Definition 2.2. The structure S is identified if there is no other S1 that is observationally

equivalent to S.

The example above indicates that the structural function itself is not identified with no

restrictions on functional forms or distributions, even given all the observed information on

pY,Xq. More importantly, it also indicates that our original hypothesis of H�
0 versus H�

1 is

not testable in general because both nonseparable and separable models can give out the

same underlying data generating process, meaning they are observationally equivalent.

One solution is to impose additional restrictions to achieve identification [see 91]. In

the context of testing for structural separability, previous works have focused on imposing

shape restrictions such as scalar monotonicity in unobservables to attain identification of

the structural function. Su et al. [115] assumes that the error term is unidimensional and

mpx, εq is strictly monotonic for each x. Under such conditions, they arrive a consistent test

which also has power against strictly monotonicity if it doesn’t hold by taking derivative

of the identified structural function. Lu and White [86] transform the original hypothesis

into a conditional independence condition. However, they lose equivalence unless certain

polynomial functional forms or scalar monotonicity in unobservables is assumed.

However, in the context of this paper and others, it would be very undesirable to assume

the unobservables is of single dimension. As already pointed, there are so many unobserved

factors that could impact the output quantity beyond the persistent productivity shocks.

Even if one assumes that the productivity shocks can be characterized by a scalar term,

other idiosyncratic disturbances may not. Normally speaking, even the dimension of ε can

be hardly known, let alone the monotonicity shape restriction.

Another direction is to consider the identifiable structural objects instead of seeking
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the structural function itself, in the presence of excess unobserved heterogeneity as in

Gu [39]. Since the identified parameters themselves are sufficient to answer questions of

interest, therefore it would be unnecessary to undertake more assumptions so as to recover

the economic primitives. There are many such identifiable parameters available in the

nonparametric identification literature. InBlundell and Powell [16], Imbens and Newey

[60], they study the average structural function (ASF) for which the structural function

is integrated with respect to the marginal distribution of unobservables, potentially of

unknown dimension. Provided the availability and sufficient variation of control variables,

they identify the ASF by integrating out marginally the control covariates of the conditional

expectation functions of outcomes. Altonji and Matzkin [7] provide identification and

estimation results of an analogous object, local average response—the average derivative

of X on Y weighted by the conditional distribution of unobservables given X. Hoderlein

and Mammen [46] show that the average marginal effects conditional on the observables

and quantiles of response, termed local average structural response, can be identified.

In this paper, I mainly focus on the identification of ASF and its derivatives as those

measures are closest to the single summarized parameters that have been estimated in

previous works. But other measures can be obtained, likewise, depending on the research

questions. For production functions, define the following structural parameters of interest.

Let Fωt,εt be the cumulative distributional functions.

Definition 2.3. Average structural log production functions (ASLPF)

f̄tpK,Lq �
»
ftpK,L,w, eqdFωt,εtpw, eq (2.12)

Definition 2.4. Average structural output-input elasticities (ASOE) of labor and capital

βL,tpK,Lq �
» BFtpK,L,w, eq
FtpK,L,w, eq

L

BLdFωt,εtpw, eq (2.13)

βK,tpK,Lq �
» BFtpK,L,w, eq
FtpK,L,w, eq

K

BKdFωt,εtpw, eq (2.14)
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Definition 2.5. Average output-input elasticities of labor and capital

β̄L,t � ErβL,tpK,Lqs (2.15)

β̄K,t � ErβK,tpK,Lqs (2.16)

In particular, F̄t is the mean production function, averaging over the cross-sectional

distribution of all unobservables and is essentially the ASF considered in Blundell and Powell

[16], Imbens and Newey [60]. βL,t and βK,t represent the average output-input elasticities,

with respect to labor and capital across firms. Average output-input elasticities depend

on input choices and are potentially heterogeneous across firms. At the same time, they

are summarized measures as all correlated and uncorrelated unobservables are marginally

integrated out over firms. Counterfactuals would be easily generated once the estimators

of the functions are available. Also note that the average return-to-scale (RTS) parameters

can be backed out by the addition of βK,t and βL,t.

Note that all above measures have the following properties. First, they are structural

objects. It means that any change due to the change of observables like labor and capital

choices can be taken as useful counterfactuals as the distribution of unobservables is being

held fixed. Second, those objects capture the observable heterogeneity across firms and

time periods. Two sectors may give rise to the same average but may differ a lot in the

choices of inputs. ASOEs will be able to capture such disparity. Third, given identification,

those objects would not be driven by functional forms of production functions, even robust

to the Hicks-neutral assumptions. This can significantly reduce the requirements for

parametrization and provide means for specification tests against commonly used parametric

functions, such as CD production functions.

2.3.2 Identification of Static Models

This subsection considers nonparametric identification of production functions beyond Hick-

neutral productivity shocks for the static model. In static models, one does not have to

consider dynamic issues such as selection and entry-exit, etc., and therefore it is easy to

highlight the identification strategy. In the next subsection, I extend the similar approach
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to fully dynamic models together with additional assumptions on productivity evolutionary

process. Since with unrestricted multi-dimensional unobservables, structural production

functions cannot be point identified, instead, I seek to identify the average objects defined

previously as ASLPF and ASOE for each period. The identification can be seen as a

nonparametric generalization of the proxy variable Olley and Pakes [101], Levinsohn and

Petrin [77], Wooldridge [120], Ackerberg et al. [2].

Now consider the simple static value-added production function with only cross-sectional

dimension like in Eq. (2.1). Note that even though the identification and estimation are

static, the production function should satisfy a dynamic programming problem with the

Bellman equation (2.17).

Vtpωt,Ktq � max

#
φ, sup

lt,it¡0
πtpωt, lt,Kt, itq � Ctpitq � βErVt�1pωt�1,Kt�1q|Its

+
(2.17)

where φ is the scrap value upon exit; β is the discount factor; It is the information set

at period t; Ctp�q is the investment cost function. The functional form of the production

function is allowed to vary each period to capture the time effect. In the static production

function, capital Kt is considered predetermined and fixed at period t, whereas labor Lt is

the only endogenous input choice. We distinguish two types of unobservables. The scalar-

valued ω measures unobserved heterogeneity in productivity and is known to each firm

before input choices are made. As opposed, ε represents idiosyncratic or ex post shocks,

which are orthogonal to input choices and are very likely to be multi-dimensional.

Inspired by the literature on proxy variables, we augment our information set and assume

the availability of the proxy such as the investment amount or intermediate inputs ( like

electricity usage, materials amount, etc.). Similar to Levinsohn and Petrin [77], consider the

intermediate demand function, Mt �MtpKt, ωtq where Mtpk, �q is strictly monotonic for each

k and each period. We assume that firms are facing common input prices which are time-

varying and captured by the functional form of Mt. With the above additional restrictions,

Levinsohn and Petrin [77] show that the proxy variable for productivity is obtained by

inverting the intermediate demand function, ωt � M�1
t pKt,Mtq and they substitute this
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unknown proxy variable back into the log-transformed CD production function in (2.5).

yt � βLlt � βKkt �M�1
t pKt,Mtq � εt (2.18)

where lt and kt are logged labor and capital inputs, respectively. Using arguments specific to

partially linear models in conjunction with the productivity process in panel data settings,

they show that input shares pβL, βkq and the productivity ωt are identified. Ackerberg

et al. [2] address the functional dependence problem in this approach and provide reasonable

timing assumptions when labor Lt still has independent variations even after Kt and Mt are

conditioned on. Ackerberg et al. [2] consider the conditional intermediate input demand

function, i.e. M � MpL,K, ωq. In general, as long as the production function is Hicks-

neutral like in (2.2), by log transformation, one is able to have an additive separable model

in the productivity and idiosyncratic errors under which the proxy can be substituted for

ωt such as (2.19).

yt � ftpKt, Ltq �M�1
t pKt,Mtq � εt (2.19)

Once Hicks-neutrality is relaxed, generally we have a nonseparable production function

even after the log transformation like (2.20). So proxy variable methods would fail to work

when the log production function is nonseparable in unobservables.

yt � ftpKt, Lt, ωt, εtq (2.20)

Proposition 2.1 states that the conditional distribution of the intermediate input Mt given

capital level Kt, i.e. Vt � FM |K,tpM |Kq is able to serve as the control variate. Employing an

analogous conditional independence argument with the “generated” control, useful objects

such as average production functions, average input elasticities, etc., (defined later) are

hence identified. Before moving to identification results, assumptions A-S.1 to A-S.3

formally states the functional form, timing and identification assumptions needed,

A-S.1 Production functions. Yt � FtpKt, Lt, ωt, εtq, where ωt P R, εt P R8.
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A-S.2 Timing and shocks. Kt is fixed input, Kt K ωt; Lt is flexible input, Lt M ωt;

pKt, Ltq K εt

A-S.3 Intermediate demand. There exists an unknown function Mt � MtpKt, ωtq where

Mtpk, �q : RÑ R� is strictly increasing for each k P K

A-S.4 Large support. supppVtq � supppVt|k, lq � r0, 1s, for each pl, kq � L�K and t.

A-S.1 is the functional form assumption. A very general form of production functions

is considered. Almost no shape restrictions or distributional assumptions are imposed

except for the scalar value of ωt. However, even this restriction can be relaxed if multiple

intermediate inputs are observed. Relaxing this dimensional assumption is beyond the

scope of this paper. A-S.2 reiterates the static nature of the current model and highlights

the source of endogeneity which is through the interaction between labor choice and

productivity. It also simplifies the dynamic process to fit in the cross-sectional studies here.

This amounts to treating capital as predetermined and unrelated with the contemporaneous

productivity shock. For example, capital could be accumulated deterministically according

to Kt � kpIt�1,Kt�1q. A-S.3 is standard in the proxy variable literature. Admittedly,

scalar monotonicity unobservable in the intermediate demand function can be substantive

in situations where local demand conditions, market power, input quality/price differentials

and measurement errors might matter for the choice of intermediate inputs. Relaxing this

assumption is beyond the scope of the current paper and interesting readers are referred

to Huang and Hu [54], Kim et al. [67] who consider cases when capital is measured with

errors. Due to the static nature, production functions can be estimated period by period

without specifying the productivity evolution process and other dynamic features.

Proposition 2.1 (Conditional Independence). Under Assumption A-S.1-A-S.3, then

pKt, Ltq K pωt, εtq|Vt and Vt � FtpMt|Ktq and Ftp�|�q is the conditional distribution of Mt

given Kt for each period t.

The proof of Proposition 2.1 resembles Proposition 1 in Imbens and Newey [60] who

consider general nonparametric triangular simultaneous equations. But they do differ

slightly. In Imbens and Newey [60], the axillary equation is a reduced form of the endogenous
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variable on all exogenous and excluded variables. Whereas Proposition 2.1 generates a

valid control variate by introducing another endogenous variable which is excluded from

the structural function in the current context. The control variable can be estimated by

any nonparametric estimators in principle. In Section 2.4 and the empirical application, I

consider a bias-reduced local constant estimator.

As for the identification of ASLPF, ASOE and as such, a support condition in A-S.4

is required to generate sufficient variations after conditioning on the control covariate Vt.

A-S.4 resolves the functional dependence problem discussed in Ackerberg et al. [2] who

provide underlying modeling assumptions to justify the additional variation of labor after

conditioning on capital and intermediate inputs. Without the large support, objects such

as ASOEs may be only partially identified. In the following, I take A-PF.4 as given but this

assumption need to be checked on a case-by-case basis in practice. In Theorem 2.1, ASLPF

in Eq. (2.12) and ASOE (2.13) are identified by averaging the conditional expectations

weighted by the marginal density of the control covariate by construction.

Theorem 2.1 (Identification). Under Assumption A-S.1 to A-S.4, f̄tp�q (ASLPF), βL,tp�q
and βK,tp�q (ASOE) are identified at each pK,Lq P K � L for each time period t P
t1, 2, � � � , T u,

f̄tpK,Lq �
»
Etpy|K,L, vqdFVtpvq (2.21)

βL,tpK,Lq � L

» BEtpy|K,L, vq
BL dFVtpvq (2.22)

βK,tpK,Lq � K

» BEtpy|K,L, vq
BK dFVtpvq (2.23)

Note that the per-period conditional expectation function along with its first order

derivatives can be estimated from data by many nonparametric methods, such as kernel,

local polynomial, sieve estimators, etc. So is FVtp�q, the distribution of the control Vt in

Proposition 2.1. Also note that FVt � Uniformr0, 1s, so one can also simply dFVtpvq as

dv{v. The identification then is clearly established by construction. The detailed proof of

Theorem 2.1 is given in the appendix.
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2.3.3 Identification of Dynamic Models

Now it is time to extend the above identification to fully dynamic models in accordance

with the mainstream literature. However, identification results only hinge on cross-sectional

insights rather than dynamic structures. As with prior studies, we incorporate the definition

of the fully nonparametric production function, timing of input decisions, and evolution of

productivity processes in the list of identification assumptions stated below.

A-D.1 Functional form. Yt � FtpKt, Lt, Utq, where Ut � pωt, εtq P R � R8 denote multi-

dimensional unobservables and ωt denotes the time-varying unoberved productivity

shock; pKt, Ltq P Kt � Lt.

A-D.2 Timing. Kt is determined in t � 1 and evolves according to Kt � KtpKt�1, Itq;
pLt,Mtq are determined at t.

A-D.3 Scalar monotonicity. The intermediate input function, Mt � Mtpk, ωtq is strictly

monotonic in ωt for each k P K and each t.

A-D.4 Markov Productivity. i). P pωt|It�1q � P pωt|ωt�1q, where the information set at

t � 1 is It�1 � pKt, tZt�1ut2q1 and Zt � pKt, Lt,Mtq1; ii). ωt � Wtpw, ηtq is strictly

monotonic in ηt for all w. iii). Fεpεt|It�1q � Fεpεtq.

A-D.5 Initial condition. ω0 � W0pK0q, where W0 : K Ñ W is a strictly increasing

measurable function.

Assumptions A-D.1 to A-D.4 resembles those used in static models with very slight

modifications. Basically, A-D.1 specifies the fully nonparametric value-added dynamic

production functions of interest. The only restriction, which can relaxed, requires a single-

dimensional time-varying persistent unobserved heterogeneity. But the idiosyncratic shocks

are assumed to be fully flexible. A-D.2 gives the assumption on the of input choices. Capital

is dynamic and quasi-fixed, determined at one-period ahead, t�1, and evolves in accordance

with its law motion. Whereas the static or variable choices of labor and intermediate

materials are made at time t. Therefore, at the beginning of each period, the information

set It includes the current capital stock as a state variable. A-D.3 is very often seen in
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the proxy variable literature, which requires either intermediate demand function to be

strictly monotonic in the scalar productivity shock. The monotonicity can be guaranteed

by imposing shape restrictions on the production and cost functions. Admittedly, A-D.3

is strong in the sense that one has to restrict the unobservables to be unit-dimensional,

excluding market demand disturbances and input price differentials. To evoke A-D.3, an

implicit assumption of homogeneous input prices need to be in place and its time variation

is captured by time-varying functional form, provided it is common for all firms. Our

identification strategy views A-D.3 as essential for inverting Mtp�q8. Another issue pointed

by Ackerberg et al. [2] is the functional dependency problem. It says that labor would have

no variation after the capital and materials inputs are controlled once the choice of labor

input depends only on the state variable pωt,Ktq. In their paper, they discuss additional

conditions to resolve the functional dependency problem.

A-D.4 specifies the productivity evolutionary process unique in the dynamic model. It

outlines the dynamic rule for the persistent unobservable to be Markovian, meaning that

the distribution of the productivity at t given the past information set can be summarized

all by the previous productivity at t � 1. The second part of A-D.4 restricts the full

independence of εt with all available information at t. The distributional assumptions

in A-D.4 are weaker than commonly assumed AR(1), e.g. ωt � ρωt�1 � ηt or additive

structure, e.g. ωt � gpωt�1q � ηt, in previous literature. It would also be possible to

augment the conditioning set with the capital stock, e.g. P pωt|It�1q � P pωt|Kt, ωt�1q,
to capture more specifications. A-D.4 implicitly assumes the stationarity of the process,

which is not necessary for identification. Furthermore, A-D.4 ii). is a little restrictive to

the extent that ηt is assumed to be a scalar. Proposition 2.2 is essentially an identification

result of Ptpωt|, ωt�1q. In particular, the conditional distribution of productivity can be

identified and estimated by the conditional distribution of material input given the current

information set. A-D.5 is the initial condition. It stipulates that the initial productivity is

some monotonic deterministic transformation of the initial capital stock.

Proposition 2.2. Let Vt � FtpMt|It�1q where It�1 � pKt, tZt�1ut2q1. Under Assumption

8There has been work that attempt to relax the scalar unobservables.
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A-D.2 to A-D.4, then Vt � Ptpωt|ωt�1q.

To see this,

PrpMt ¤ m|It�1q � Prpωt ¤M�1
t pKt,mq|Kt, tZt�1uT1 q

� Prpωt ¤M�1
t pKt,mq|ωt�1q

� Prpωt ¤ w|ωt�1q � Ptpw|ωt�1q

The first equality applies the inversion of the intermediate input demand function. The

second equality holds due to the Markovian property in A-I.2. And note that Vt � U r0, 1s.

Proposition 2.3. Under Assumption A-D.1 to A-D.4, then pKt, Ltq K pωt, εtq|V t
1 where

V t
1 � pVt, Vt�1, � � � , V1q.

A-D.4 also stipulates that pKt, Ltq K tεtuT1 for each t, indicating strict exogeneity of

tεtuT1 . So next I can only focus on controlling for the persistent productivity shock, ωt.

With loss of generality, suppose the exogenous productivity shock follows the evolution

process ωt � Wtpωt�1, ηtq, where ηt K It�1 for each t. Conditioning on P pωt|ωt�1q is

equivalent to conditioning on Fηpηtq. To see this,

P pωt|ωt�1q � PrpWpωt�1, ηq ¤ ωt|ωt�1q

� Prpη ¤W�1pωt�1, ωtq|ωt�1q

� Prpη ¤ ηtq

Since conditioning on Fηpηtq contains the same information as conditioning on ηt. Note

that the conditioning set pVt, It�1q is not the same as It�1 in that the former is richer by

incorporating the variation of Mt given the information at t � 1, which is not contained

in It�1. It is trivial that Kt is independent of ωt since Kt P It�1. For Lt, it is also true

because conditioning on ηt as well as ωt�1 completely pins down ωt and no variation is left so

Lt K ωt|pωt�1, It�1). If the true process is augmented by Kt, such as ωt �WtpKt, ωt�1, ηtq,
Proposition 2.2 still holds by augmenting V t

1 to tKt,Kt�1, � � � ,K1, V
t

1 u.
One can also view Proposition 2.3 to be a dimension-reduction technique since
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conditioning on the whole set of It�1 is redundant in our setting. Note that the

Markovian process implies P pωt�1q � P pωt�1|ωt�2q � � �P pω1|ω0qP pω0q. So by repeatedly

using Proposition 2.2, i.e. for ttuT2 , P pωt|ωt�1q � FtpMt|It�1q. For t � 1, P pω1|ω0q �
F1pM1|K0q, guaranteed by the initial condition assumed in A-I.5. Therefore Wt �±t
j�1 FjpMj |Ij�1qF0pK0q summarizes the distributional information contained in ωt�1 and

thus can be used as one of the conditioning variable. Doing so will greatly reduce the

dimension of control variables and have important implications in terms of nonparametric

estimation. As for the estimation of V T
1 , several simplifications need to be made in order

to reduce the dimension of the conditional information set. In Section 2.4, I suggest a

semiparametric estimator together with variable selection.

Likewise for point identification of ASLPF and ASOE, a support condition in A-D.6

is needed. The support condition is to ensure that there is sufficient variation after

conditioning on input choices. The validity has to be empirically examined.

A-D.6 Large support. supppV t
1 , |l, kq � supppV t

1 q � r0, 1s, for each t and each pair pk, lq P
K � L.

Theorem 2.2. Under Assumption A-D.1 to A-D.6, f̄tp�q (ASLPF), βL,tp�q and βK,tp�q
(ASOE) are identified at each pK,Lq P K � L for each time period t P t1, 2, � � � , T u,

f̄tpK,Lq �
»
Etpy|K,L, vqdFV t1 pvq (2.24)

βL,tpK,Lq � L

» BEtpy|K,L, vq
BL dFV t1 pvq (2.25)

βK,tpK,Lq � K

» BEtpy|K,L, vq
BK dFV t1 pvq (2.26)

The proof of Theorem 2.2 resembles that of the static model, with a static single control Vt

replaced by the dynamic control vector, V t
1 . The final caveat: the above identification does

not consider the entry and exit problems due to the selection on productivity. According

to my empirical data and other research, not controlling for endogenous exits would cause

downward biases of capital coefficients. To control for this, one can adapt the approach in

Olley and Pakes [101] to the fully dynamic model considered in this paper.
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2.4 Estimation and Testing

In this section, I present a fully nonparametric ASOE estimator for the static model. In

principle, any nonparametric methods, such as local polynomial, sieve, and nearest neighbor

estimators, can be used. Amongst those, I suggest the local linear estimator due to its

convenience of estimating first order derivatives which are the building blocks to recover

the average structural parameters defined previously. Moreover, along with the derivatives,

the ASLPF can be estimated simultaneously. As the second objective of this paper is to

propose an empirical valid test of Hick-neutrality productivity shocks, estimators of ASLPF

therefore could be used to construct the test statistics. For dynamic models, I introduce

a semiparametric variable selection estimator to reduce the dimensionality of conditioning

set. Given the dynamic control obtained in the first stage, the second stage applies the local

linear estimator resembling the static model.

2.4.1 Nonparametric Estimation of Static Models

The estimation can be capsuled in three stages. In the first stage, a per-period control

covariate is estimated with the following local constant bias-reducing estimator. In the

second stage, estimators of conditional expectation functions along with their first order

derivatives are obtained by local linear estimation at each value. In the last step, the

partial mean estimators of ASOE and ASLPF are obtained by averaging over the estimated

control variate.

Stage 1: pVi,t For each period, one can estimate the control variate by the bias-reduced

local constant estimator like Eq. (2.27),

pVi,t � pFM |K,tpMi,t,Ki,tq �
°Nt
j�1 KhpKj,t �Ki,tqst1rMj,t ¤Mi,ts � pδj,tpKi,tqu°Nt

j�1 KhpKj,t �Ki,tq
(2.27)

where Nt is the sample size of period t and Khp�q � φp�{hq{h with h being the bandwidth

and φp�q being the density function of standard normal. For convenience, the Silverman’s

rule-of-thumb bandwidth, e.g. h � 1.06� stdpKtq�N�r
t , where r is the window parameter.pδ�,tp�q is the difference of preliminary estimates between Vi,t and Vj,t to reduce the bias order
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in the limit. See Shen and Klein [110] for details of the recursive bias reduction technique

and the bandwidth selection. The conditional distribution, pVi,t is essentially a conditional

expectation of the indicator function given capital stocks. In the static model, it is necessary

for the functional form of intermediate input demand to be varying over time in order to

capture the change in the common factor prices.

Stage 2: In our empirical application, we suggest the local linear estimator for its

convenience in estimating both the conditional mean and first order derivatives at the same

time. In particular, one can solve the following weighted least square problem and the

closed-form solutions are available. Let Ut � pLt,Kt, pVtq. For each period t and each pair

u � pL,K, V q P L�K � r0, 1s,

�� pCtpuq
O pCtpuq

�
� arg min
c,Oc

N�1
t

Nţ

j�1

τj,t
�
yj,t � c� pUj,t � uq1Oc�2 KhpUj,t � uq

where τj,t denotes the estimated trimming function on U with fixed upper and lower bounds.

It is well known that the closed form solution is available in Eq. (2.28)

�� pCtpuq
O pCtpuq

�
�
�� Nţ

j�1

τj,t

�� 1 pUj � uq1

Uj � u pUj � uqpUj � uq1

�
Kh,jpuq
���1

Nţ

j�1

τj,t

�� 1

Uj � u

�
yj,tKh,jpuq(2.28)

where Kh,jpuq is short for KhpUj � uq for brevity. Note that in the above formula, pCtpuq �pEpyt|Lt � l,Kt � k, pVt � vq is the conditional expectation estimator—the most important

building block to construct the test statistic below. For O pCtpuq, it contains the partial

derivative estimators of conditional expectation of log output with respect to input choices.

Finally, the asymptotic properties of local linear estimators have been broadly studied in

Fan and Li [34], Li and Racine [82]. So I will skip the discussion on how to obtain asymptotic

variances as it can be found in many local polynomial literature.
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Stage 3: The last stage delivers the ASOE estimators at each pair pL,Kq P L� K by

the partial mean estimator with respect to pV evaluated at empirical points.

pβL,tpL,Kq � N�1
t

Nţ

j�1

OL pEtp|Lt � L,Kt � K, pVt � pVj,tq (2.29)

pβK,tpL,Kq � N�1
t

Nţ

j�1

OK pEtp|Lt � L,Kt � K, pVt � pVj,tq (2.30)

One can also take the marginal integration of OL pCtpuq or OK pCtpuq with respect to the

estimated marginal distribution of pVi,t. But as the two methods are the same in the limit,

either can be chosen. The average structural RTS estimator is naturally obtained by the

sum, i.e. zRTS � pβL,t � pβK,t. zRTS here can be different for firms with disparities in their

input choices. A nice property of ASOEs is that it could capture more heterogeneity across

firms with varying input combinations. However, in many cases, a highly summarized

measure might be useful and can be easily compared to previous parametric estimators.

Therefore, we suggest to take the empirical means of pβL,t and pβK,t to obtain the summarized

average measures,

p̄βL,t � N�1
t

Nţ

i�1

pβL,tpLi,t,Ki,tq (2.31)

p̄βK,t � N�1
t

Nţ

i�1

pβK,tpLi,t,Ki,tq (2.32)

where pβL,tp�q and pβK,tp�q are local linear estimators of Eq. (2.24). Finally, a caveat is on

the order of the bias: bias-reducing techniques or higher polynomials may have to be used

in order to let bias vanish at
?
N�rate, which is not required for pβL,t and pβK,t. In the

empirical section, both ASOE and its average will be reported.

2.4.2 Semiparametric Estimation of Dynamic Models

The dynamic estimation resembles the procedure described in the static model. As alluded

before, the problem of “‘curse of dimensionality” could be detrimental even for moderate

sample sizes. This is because the dynamic control variables Vt � FtpMt|Itq is conditioned

on the whole information set, It � tKt, pMt�1, Lt�1,Kt�1q, � � � , pM1, L1,K1qu which could
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become intractable as total time periods explode. Thus, this fact suggests the need for

dimension reduction techniques. For practical purposes, I suggest to impose a single-

index restriction on the information set under such case the conditioning set reduces to

a single scalar, e.g. IpIt, α0q � I 1tα0. For the semiparametric single index model, the

finite parameters, α0, have to be consistently estimated in the first stage. See Powell

et al. [106], Ichimura [57], Klein and Spady [74], etc. for semiparametric index estimators.

Furthermore, one can also perform the variable selection before the estimation once the

dimension of It is too large compared with sample size. Variable selection has been widely

studied in statistics, especially in the high-dimensional literature. Denote Ist to be the

information set consisting of the selected and very important variables. Then under the

required conditions, it is possible to reduce FtpMt|Itq to FtpMt|α10Ist q. See Smith and

Kohn [111], Fan and Li [33], Huang et al. [55], etc. for variable selection in nonparametric

regressions.

2.4.3 Test Statistics of Hicks-neutrality

Now recall the hypotheses. As for the static model, I would conduct the test period-by-

period. Doing so not only avoids the dynamic issues (such as entry-exit) but also provides

an approach to examining the time effect. Under the null, the production function in period

t in (2.1) exhibits Hicks-neutral technology as in (2.2).

H0 : FtpL,K, ω, εq � F 1
t pL,KqAtpω, εq, a.s.

H1 : Otherwise

An equivalent testable implication is obtained through the log transformation.

H0 : ftpL,K, ω, εq � f1
t pL,Kq � atpω, εq, a.s.

H1 : Otherwise

Following the approach in Gu [39], testing for Hicks-neutral productivity can be formulated

as the nonparametric specification test of additive separability with multi-dimensional
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unobservables. Likewise, I would use the empirical quantile mean (EQM) test proposed

in that paper, based on the differences between average logged production functions under

two competing specifications. Before conducting the inference, we need to replace the

unknown control variable Vt by its bias-reducing estimator, pVt. By Theorem 7.2 in Gu [39],

with the “generated” control variable, the asymptotic null distribution of the test statistic

would not be affected. Then given the vector tyt, pLt,Ktq, pVtu for each t, corresponding to

tY,X, V u in his setup, the test statistic and the consistent estimator of limiting variances

can be thus constructed following the procedure. The details of the testing procedure will

not be iterated in this paper.

2.5 Data

The empirical interests of this paper center on the U.S. manufacturing industries over

22 years, from 1990 to 2011. During this period, the contribution of the manufacturing

industry to U.S. GDP has been declining from over 20% to 12% in 2011. Over the 22

years, the industry has experienced fast-growing in the 90s due to the rapid adoption

of computer and electrical technology, which significantly drove the growth of the U.S.

economy. Whereas after 2000, it has been hit by the Internet bubbles and the financial

crises of 2008. Three striking features of the U.S. manufacturing industry are highlighted.

Firstly, the output share of GDP has been stable over 50 years but since 2000, it has been

gradually declining. After 2010, it has been surpassed by China measured by value-added.

Secondly, the employment attributable to manufacturing has also been declining over time.

Meanwhile, capital has become a relative more important factor. Thirdly, the productivity

growth is imbalanced across sectors. Since the total industry consists of over 20 sectors,

such as textile production, chemical, computer, etc., as noted by Baily and Bosworth [10],

faster productivity growth has only been experienced by some sector such as computer

production, while most others remain slow.
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2.5.1 Data and Summary Statistics

I use an unbalanced panel of 5,088 manufacturing firms, 40,560 total observations, from

Compustat North America fundamental annual database during the period 1990-2011.

Compustat provides detailed firm-level financial and operative spreadsheet variables from

which I construct output and input variables. I also supplement it with deflators and

industry-level depreciation rates from Becker et al. [11], available from NBER website and

industry-level annual average wages from Quarterly Census of Employment Wage (QCEW)

collected by BLS. I divide sales and nominal values of inputs by their corresponding

deflators, taken from Becker et al. [11], to obtain constant-dollar quantities.

The value-added output Y is obtained by subtracting material cost, to be defined later,

from net sales deflated by industry-level price index for shipments. Capital input, K, is

computed using a Perpetual Inventory Method (PIM), i.e. Kt�1 � p1�δqKt�It. The initial

capital, K0 is the value of property, plant and equipments deflated by the new investments

price index. I is the capital expenditures deflated by the new investments price index; δ

is the depreciation rate for assets, which is backed out by the PIM from Becker et al. [11].

Following Olley and Pakes’s method, I use the lagged investment when computing capital

input.9 Labor input is taken as number of workers per firm. For material input, it is equal

to the costs of goods sold plus administrative and selling expenses minus depreciation and

wages, then deflated by its corresponding deflator.10

Firms use many inputs in their production, such as land, raw materials, electricity,

labor, different types of capital, etc. To simplify the presentation of methods, I focus on

the contribution only from two main inputs and hence estimate the value-added function.

Table 2.1 provides some descriptive statistics of our full sample and selected subsamples.

To make results manageable, I only present 5 representative sectors out of 21; each has a

noticeable amount of presence in the whole sample. For output and input variables, each

cell reports the average value. The average length of firm appearance in our sample is

9Only the deflator for new capital expenditures (investment flows) is available, rather than that for capital
stock.

10Wages are computed as the multiplication of total employment and industry-level average annual total
compensation.
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around 12 years, reflecting the unbalanced nature of the panel data. I refrain from using

the balanced panel to avoid the sample selection issue due to the endogenous liquidation

decisions mentioned in Olley and Pakes [101]. Turning to the average value of input and

output variables, it is obvious that there are large cross-sector differences as to the scale of

production as well as input substitution patterns. Therefore, empirical results are for both

all industry and sector-wise estimates and testing.

Another way to calculate firm’s value added is as sales minus materials, deflated by

the GDP price deflator. Sales is net sales from Compustat (SALE). Materials is measured

as total expenses minus labor expenses. Total expense is approximated as Sales minus

operating income before depreciation and amortization (OIBDP in Compustat). Labor

expense is calculated by multiplying the number of employees from Compustat (EMP) by

average wages from the Social Security Administration. The stock of labor is measured

by the number of employees from Compustat (EMP). These steps lead to the value added

definition that is approximated by operating income before depreciation and amortization

plus labor expense.

Table 2.1: Some Descriptive Statistics of Selected Sectors

NAICS-3 Name No. Obs. Avg. Year Y K L M

All Manufacturing 40,560 12.91 1462.55 1676.76 7.16 1318.63
311 Food product 1,822 13.88 848.87 1074.02 12.16 1527.99
325 Chemical 4,965 12.79 1044.30 1852.64 8.02 1162.67
332 Fabricated Metal 1,822 13.99 311.98 453.81 4.52 450.64
333 Machinery 4,119 13.74 449.94 667.18 5.46 757.34
336 Transportation 2,330 13.86 2723.54 4935.40 23.14 4973.30

Note: 1. All manufacturing industry encompasses 21 sectors with NAICS code 31-33. 2. Avg. Year is the
average number of years of presence in the sample period. 3. Y , K and M are measured in thousand dollars
and L is measured in thousand units.

2.6 Empirical Results

2.6.1 Empirical Estimation Results

Average Output Elasticities The nonparametric estimates of average output elasticities are

presented in Table 2.2. To eliminate dynamic problems such as entry and exit, I estimate

the static firm-level production function year by year. I list three nonparametric estimators
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according to different model specifications. For “NP-X” methods, all inputs are assumed

to be purely exogenous and therefore usual nonparametric methods are used without

controlling for endogeneity. Under such exogeneity, whether the production function is

Hicks-neutral does not matter in terms of the estimates of average output elasticities. For

“NP-Add.”, we assume that labor is the endogenous variable and the production function is

Hicks-neutral. The proxy variable approach, developed in the previous section, is used. For

“NP-Nonsep.”, labor is treated as endogenous in a non-Hicks neutral production function.

This corresponds to the fully nonparametric case.

In Figure 2.2 and Figure 2.3, I plot the estimates of three specifications against year, by

labor and capital respectively. Notice that there is a downward trend for labor coefficients

and on the contrary, capital has become relatively important over time. It reflects the

change of input substitution patterns in the production process. This partly explains why

the employment attributable to manufacturing has shrank as motivated in the beginning.

More importantly, from these two plots, it is not hard to see that output-labor elasticities are

significantly overestimated without taking into account the endogenous choice. On the other

hand, it results in very low estimates of capital coefficients. If the endogeneity is properly

controlled, then labor elasticity estimates are reduced on average by 12.5% while it increases

by only 9.4% for capital, indicating an upward bias on the return-to-scale parameter.

Furthermore, increasing return-to-scale parameters can be always found assuming pure

exogeneity. But once controlling for endogeneity, we can only observe the increasing or

constant return-to-scale in the late 90s. Immediately after 2000, decreasing return-to-

scale becomes more pronounced. This finding highlights the importance of controlling for

endogenous inputs and is also in comply with the fact that the manufacturing industry has

been declining since 2000. Now turn to the assumption of Hicks-neutrality. By comparing

estimates of “NP-Add.” and “NP-Nonsep.”, I observe that the differences are very small in

most of years. However, such discrepancies do persist all the time. For example, mistakenly

imposing Hicks-neutral technology could result in an overestimate (underestimate) bias as

high as 3.5% for labor elasticity (3.1% for capital elasticity).
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NP-X. NP-Add. NP-Nonsep.

Year N pβL pβK pβL pβK pβL pβK
1990 1818 0.779 0.242 0.674 0.323 0.657 0.343

(0.018) (0.014) (0.017) (0.014) (0.034) (0.028)
1991 1893 0.748 0.251 0.691 0.289 0.656 0.320

(0.016) (0.013) (0.016) (0.013) (0.032) (0.026)
1992 1997 0.764 0.249 0.654 0.330 0.664 0.328

(0.017) (0.014) (0.017) (0.014) (0.034) (0.028)
1993 2146 0.772 0.269 0.669 0.347 0.673 0.338

(0.016) (0.013) (0.016) (0.013) (0.030) (0.025)
1994 2219 0.789 0.240 0.652 0.344 0.668 0.331

(0.015) (0.012) (0.015) (0.012) (0.029) (0.023)
1995 2350 0.792 0.238 0.691 0.317 0.715 0.304

(0.015) (0.012) (0.014) (0.012) (0.028) (0.022)
1996 2419 0.743 0.281 0.669 0.338 0.672 0.345

(0.013) (0.011) (0.013) (0.010) (0.025) (0.020)
1997 2391 0.717 0.303 0.636 0.367 0.642 0.370

(0.013) (0.011) (0.012) (0.010) (0.024) (0.020)
1998 2251 0.738 0.312 0.699 0.343 0.706 0.340

(0.015) (0.012) (0.014) (0.012) (0.028) (0.023)
1999 2136 0.679 0.352 0.614 0.405 0.632 0.381

(0.017) (0.014) (0.017) (0.014) (0.033) (0.028)
2000 1975 0.565 0.443 0.494 0.498 0.489 0.492

(0.021) (0.018) (0.020) (0.017) (0.039) (0.033)
2001 1818 0.598 0.426 0.530 0.479 0.522 0.475

(0.024) (0.020) (0.024) (0.020) (0.045) (0.039)
2002 1766 0.567 0.462 0.483 0.531 0.463 0.543

(0.026) (0.022) (0.025) (0.022) (0.049) (0.042)
2003 1736 0.540 0.463 0.419 0.567 0.416 0.560

(0.027) (0.023) (0.026) (0.022) (0.051) (0.043)
2004 1683 0.578 0.413 0.430 0.529 0.436 0.508

(0.029) (0.024) (0.028) (0.023) (0.054) (0.045)
2005 1594 0.588 0.399 0.422 0.531 0.405 0.529

(0.031) (0.025) (0.029) (0.024) (0.057) (0.047)
2006 1527 0.638 0.357 0.506 0.462 0.436 0.488

(0.033) (0.027) (0.032) (0.027) (0.061) (0.051)
2007 1465 0.647 0.357 0.490 0.485 0.430 0.503

(0.035) (0.029) (0.034) (0.029) (0.066) (0.055)
2008 1345 0.643 0.365 0.422 0.542 0.359 0.549

(0.038) (0.032) (0.037) (0.032) (0.073) (0.062)
2009 1276 0.759 0.244 0.502 0.455 0.495 0.445

(0.041) (0.034) (0.040) (0.033) (0.077) (0.065)
2010 1278 0.783 0.235 0.553 0.427 0.515 0.449

(0.040) (0.034) (0.039) (0.033) (0.075) (0.064)
2011 1477 0.705 0.297 0.487 0.471 0.430 0.522

(0.037) (0.031) (0.035) (0.030) (0.068) (0.059)

Table 2.2: Empirical Estimation Results of Average Output Elasticities
Note: s.e. are given in parentheses. Smoothing parameters, r1 � 1{7, r2 �
1{6. Trimming parameters, κ1 � 0.01 and κ2 � 0.025.
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Figure 2.2: Average Output-Labor Elasticities

Figure 2.3: Average Output-Capital Elasticities

Table 2.3 presents average output-input elasticity estimates along with their standard

errors for all manufacturing and selected industries. Four different models are compared.

For comparison, I present the OLS estimates along with the nonparametric estimates of

three different specifications. Firstly, note that on average, the U.S. manufacturing industry

exhibits almost constant return-to-scale. Without taking the endogenous input choices,

significant upward biases could be produced, no matter parametric or nonparametric.

Secondly, huge heterogeneity is present across various sectors. The relative contribution



99

of factors could vary a lot and indicates heterogeneous technologies. For instance, sector

311, food product, are valuing labor and capital almost equally. In contrast, in fabricated

metal product of sector 332, capital contributes over 80% in terms of the input shares.

Table 2.3: Empirical Estimation Results of Average Output Elasticities by Year

OLS NP NP Add. NP Nonsep.

3-NAICS pβL pβK pβL pβK pβL pβK pβL pβK
All 0.688 0.322 0.693 0.324 0.577 0.416 0.567 0.418

(0.006) (0.005) (0.008) (0.007) (0.008) (0.005) (0.015) (0.013)
311 0.582 0.439 0.531 0.519 0.451 0.585 0.451 0.594

(0.018) (0.018) (0.013) (0.012) (0.012) (0.011) (0.023) (0.022)
325 0.805 0.259 0.823 0.249 0.735 0.317 0.761 0.295

(0.010) (0.008) (0.011) (0.009) (0.011) (0.009) (0.020) (0.016)
332 0.862 0.207 0.849 0.215 0.843 0.220 0.840 0.220

(0.013) (0.012) (0.011) (0.010) (0.011) (0.010) (0.019) (0.018)
333 0.839 0.197 0.850 0.200 0.776 0.259 0.790 0.253

(0.011) (0.009) (0.010) (0.009) (0.010) (0.008) (0.019) (0.016)
336 0.702 0.332 0.694 0.335 0.657 0.362 0.659 0.356

(0.013) (0.010) (0.010) (0.008) (0.010) (0.008) (0.019) (0.015)

Note: s.e. are given in parentheses. Smoothing parameters, r1 � 1{7, r2 � 1{6. Trimming parameters,
κ1 � 0.01 and κ2 � 0.025. OLS includes year dummies.

2.6.2 Empirical Testing Results

Table 2.4 provides empirical testing results. In this table, the test statistics and p-values

of several tests for Hicks-neutrality are presented. To better summarize the findings, I plot

our key testing results in the following figures.

In Figure 2.4, I test the following hypotheses for each year,

H0 : FtpL,K, ω, εq � F 1
t pL,Kq �Atpω, εq, a.s.

H1 : Otherwise

The null hypothesis says that the production function is additive. This is a clearly false

statement as many theoretical and empirical works have proved. I perform this test because

I want to confirm the power of our proposed testing procedure in this empirical content.

From the plot, I can reject the null hypotheses of additive production functions in all years

with 1% significant level as it should be. The test statistics are large in most years and the
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test has very good powers. This further gives us confidence in applying the test in more

interesting scenarios.

Figure 2.4: Test Statistics by Year of Nonparametric Production Functions

In Figure 2.5, I present the testing results for the Hicks-neutrality for each year. As

shown before, it is equivalent to testing the additive separability of the log-transformed

production function,

H0 : ftpL,K, ω, εq � f1
t pL,Kq � atpω, εq, a.s.

H1 : Otherwise

The results show that non-Hicks neutral production happened during 1990-2002 and

thereafter became Hicks-neutral until 2011. It is interesting that the rejection years

correspond to a period of fast-growing of the manufacturing industries. Many empirical

evidences have found that the most important driver of this growth is the mass adoption

of computer technologies from 1993 to 1998. If I choose a higher significant level, like 15%,

then the tests would precisely capture those years where non-Hicks neutral production

occurred. This finding is very intuitive as when firms adopt new technologies and innovate

on production processes, this change is usually on the firm-level, rather than the whole

industry. As firm are heterogeneous, there are “first-adopters” who begin reforms earlier

and thus the impact of productivity shocks on their essential technologies can be very
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differently from their slower competitors. Thus, the differences in the speed of reforming

(or adoption of new technology) are very likely to cause the differences in the essential

technologies, even within the same sector. After 2000, most of firms have finished this

transformation so that their essential technologies start to converge again, as evidenced by

the non-rejections of Hicks-neutral technological shocks.

Figure 2.5: Test Statistics by Year of Log Transformed Models

However, one can conjecture that the rejection of Hicks-neutrality might be due to the

failure of controlling for sector heterogeneity. For an industry as large as manufacturing, it

consists of various subsectors such as transportation, machinery, textiles product, etc. So

it can be perceived that firms across sectors could employ totally different technologies or

production functions. For example, I do not expect a labor union strike to affect machinery

and food product equally as substitution pattens of labor and capital in the production

processes are quite different in those two sectors in terms of the relative shares of capital

and labor, a point can be seen from Table 2.1. When there is sufficient large number

of observations in each sector, one might mitigate this problem by placing sector dummy

variables to control for this disparity. In light of this concern, I modify our test to include
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sector-specific effects and derive a new set of testing hypotheses for each year,

H0 : ftpL,K, S, ω, εq � f1
t pL,K, Sq � atpω, εq, a.s.

H1 : Otherwise

where S represents sector dummies or sector specific effect. However, one is facing

the notorious “curse of dimensionality” problem due to the high-dimensionality of sector-

specific effects. In my sample, there are totally 21 sectors and for some sectors, only couple of

observations are available in some years. Therefore, the variances of the test statistic could

be extremely large and renders our test of almost no power. The limitation of data forces

us to comprise on the full nonparametric sector-specific effects. To resolve this problem, we

test with linear sector dummies, as commonly used in empirical works.

H0 : ftpL,K, ω, εq � St � f1
t pL,Kq � St � atpω, εq, a.s.

H1 : Otherwise

Under the null hypothesis, I assume the sector-specific effects enter in a linear way.

The linearity of sector dummies implies that the sector-specific effects impact value-added

output only through a multiplicative or scaled effect, rather than altering the functional

form of the essential technology. The results are displayed in Figure 2.6. Now the rejection

of Hicks-neutrality is more obvious in the 90s and early 2000s and they are more pronounced

than those without controlling for sector-specific effects. More importantly, it may indicate

that the essential technologies could be heterogeneous across firms even within the same

sectors.



103

Figure 2.6: Test Statistics by Year of Log Transformed Models with Sector Dummies

Table 2.4: Empirical Testing Results by Year 1990-2011

Y y y�

Year N W p-value W p-value W p-value

1990 1818 91.315 0.000 27.889 0.000 6.414 0.635
1991 1893 87.028 0.000 36.282 0.000 14.506 0.053
1992 1997 100.432 0.000 29.591 0.000 8.779 0.384
1993 2146 100.443 0.000 37.444 0.000 12.354 0.125
1994 2219 89.113 0.000 48.315 0.000 23.426 0.000
1995 2350 102.037 0.000 45.709 0.000 19.188 0.005
1996 2419 90.953 0.000 78.615 0.000 51.880 0.000
1997 2391 98.973 0.000 79.071 0.000 80.590 0.000
1998 2251 104.138 0.000 76.927 0.000 62.781 0.000
1999 2136 98.389 0.000 41.452 0.000 36.796 0.000
2000 1975 53.060 0.000 34.978 0.000 33.438 0.000
2001 1818 79.707 0.000 31.219 0.000 33.107 0.000
2002 1766 49.370 0.000 34.929 0.000 33.863 0.000
2003 1736 27.392 0.000 17.225 0.015 25.927 0.000
2004 1683 29.974 0.000 14.275 0.058 19.464 0.005
2005 1594 32.488 0.000 15.499 0.034 20.012 0.003
2006 1527 96.703 0.000 16.768 0.019 19.081 0.006
2007 1465 57.577 0.000 15.522 0.033 20.642 0.002
2008 1345 59.490 0.000 16.270 0.024 22.987 0.001
2009 1276 69.274 0.000 11.588 0.165 13.985 0.066
2010 1278 71.716 0.000 14.028 0.065 18.548 0.007
2011 1477 32.853 0.000 9.652 0.304 19.053 0.006

Note: Number of quantile P � 10. Smoothing parameters, r1 � 1{7, r2 � 1{6.
Trimming parameters, κ1 � 0.01 and κ2 � 0.025.
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2.7 Conclusions

In this paper, I consider the empirical implications of Hicks-neutral technological technology,

a commonly employed assumption, on identification and estimation of nonparametric

firm-level value-added production functions. Hicks-neutral technology puts significant

restrictions on the substitution pattern of labor and capital in a production function.

Without it, identification strategies need to change as they cannot be based on the log

additivity of productivity shocks. Moreover, when wrongly imposed, the productivity

measure might be severely distorted. I consider the identification and estimation of

fully nonparametric firm-level production functions and empirically test the Hicks-neutral

productivity in the U.S. manufacturing industry during the period from 1990 to 2011. In

particular, I show that the proxy variable approach can be extended to fully nonparametric

static and dynamic models with a set of slightly stronger conditions, in order to identify

average structural output elasticities.

Secondly, I show that the Hicks-neutral restriction can be converted to the additive

separability between inputs and unobservables in a monotonic transformed model for which

the proposed testing procedure can be directly applied. With a panel data of the U.S.

manufacturing industry, I find that there are periods in the 90s when the non-Hicks

technological shocks occur which coincides with the mass adoption of computing technology.

However, the productivity has thereafter become Hicks-neutral into the 2000s. Controlling

for sector-specific effects mitigate this problem but not all of them. A conjecture is that

firms have heterogeneous speed at adopting computer technologies and as a consequence

create heterogeneity in input substitution patterns even within a sector. To confirm this,

further research needs to be conducted.
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.1 Proofs of Identification Results

Notation. yt � lnYt, lt � lnLt, kt � lnKt,mt � lnMt and ftp�q � lnFtp�q.

Proof of Proposition 2.1. In the first step, we prove that V � F pM |Kq � Fωpωq � U r0, 1s.
In the second step, it is sufficient to show that conditioning on V is equivalent to conditioning

on ω. Therefore pK,Lq is independent of pω, εq.
First. Let ω �M�1pK,Mq

F pM |Kq � PrpMpK,ωq ¤ m|Kq � Prpω ¤M�1pK,mq|Kq

� Prpω ¤M�1pK,mqq

� Prpω ¤ wq � Fωpωq

Second, conditioning on Fωpωq is equivalent to conditioning on ω, so it is obvious from

A-PF.S2 that pK,Lq K pω, εq|V .

Proof of Theorem 2.1. The proof follows exactly the arguments of Theorem 1 in Imbens

and Newey [60] by letting X � pK,Lq and V � FM |KpM,Kq. We permit the change of

order of integration and differentiation to prove the identification results on average output

elasticities.
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Chapter 3

Ordered Response Models with Unobserved Correlated

Thresholds: An Application in Assessing Bond Overrating

Bias

Jointly with Jiang, Yixiao and Yang, Shuyang

3.1 Introduction

Starting from the 1920s, credit rating agencies (CRAs) served the financial market by

providing summarized information on the default risk of a security. The proper functioning

of CRAs reduces information asymmetry between borrowers and lenders, and is crucial to

the efficiency of financial market. Not only do individual investors rely on such uniformed

rating scheme to assess of risk; legislators and regulators also use ratings as a benchmark

to limit and regulate risky behavior of certain investors, such as insurance companies and

pension funds. However, during the recent financial crisis in 2008, the mass defaults of

highly rated structured financial products casts doubt on the accuracy and reliability of

rating assessments from CRAs.

In this paper, we first propose a simple behavioral framework to model the bond

rating process, accounting for the complex “liaison” between bond-issuing firms and the

CRA. According to [76], the rating process can be decomposed into two steps. The CRA

first constructs a default risk index using quantitative information from issuer’s financial

statements; the information set in this step is all publicly available. After obtaining a

risk index, CRAs are likely to adjust the threshold points between rating categories based

on their private “soft” information, so that bonds issued by two firms may end up with

different ratings even though having the same observable characteristics. This so-called

“soft adjustment” highlights the potential value of CRAs in a sense that they may utilize
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their private information to affect the rating assignment when public information does not

accurately capture the underlying default risk. Although the criteria for “soft adjustment”

is vague and unspecified, common shareholders appear to be an important channel for

conveying such private information. One implication of our model is that CRA-issuer

relation can endogenously affect the issuing firm’s decisions: having some private knowledge

about the adjustment process will make firms alter their choices on bond characteristics. As

a result, when modelling the rating process, variables that are strategically chosen by the

firm cannot be treated as exogenous. Previous literature on bond rating has not explicitly

addressed the endogeneity issue to our best knowledge. We highlight the importance of

controlling for endogenous bond characteristics in the rating model and present empirical

evidences of endogeneity arising from having the private information about firm-CRA

liaison.

To empirically model the rating bias, we propose a semiparametric ordered response

model with heterogeneous thresholds and endogenous regressors. The ordered rating is

determined by placing a constructed latent default risk index in between a set of unknown

pre-specified rating thresholds. In particular, we allow the set of thresholds to correlate with

bond characteristics and be firm-specific to account for the individual-based soft adjustment

process. Both the risk index parameters and thresholds across categories are our objects

of interest. According to our behavioral framework, controlling for the issue-firm liaison is

sufficient for eliminating endogeneity. In this paper, we provide two proxies for the liaison,

namely, a observed constructed measure and an estimable control index. Then we rely on

the control function approach to identify the index parameters. Such methods have been

widely adopted in the literature of nonseparable models [16, 35, 59, 60, 65, 90, etc.]. For

thresholds, we seek to identify and estimate the conditional mean thresholds relative to

the base level, rather than the individual thresholds as the summarized measures suffice

to answer our empirical question on bond rating bias. The identification strategy exploits

the conditional shift restrictions between different categories, a generalization of Klein and

Sherman [73] to models with endogenous regressors. We contribute to literature of location

estimators studied in [88, 51, 78, 79, 73], etc.

We also provide a semiparametric two-stage estimator. In the first stage, the index



108

parameters are estimated by the weighted semiparametric least square (WSLS) estimator

following the semiparametric literature [106, 58, 57, etc.]. In the second stage, we estimate

the relative mean thresholds as a function of firm-CRA liaison measures by imposing shift

restrictions between each adjacent categories. The consistency and asymptotic normality

of our proposed estimators can be easily established and are also provided in the paper.

To our best knowledge, our paper is the first that considers estimating thresholds in the

presence of endogeneity.

After the crisis of subprime debt in 2008, the creditability of CRAs has attracted a lot

of attentions. A main source of rating bias arises from the conflict of interests introduced

by public ownership of CRAs. The largest agency, Moody’s, became a publicly traded firm

in 2001 while the second largest Standard&Poor’s is owned by a public firm, McGraw-Hill

Company. CRAs who are publicly traded have the incentives to be biased towards their

shareholders, especially those who own dominant share of the agency. Several channels,

through which such upward biases can occur, are examined and documented by past studies.

First, public firms are operated under intensive pressure to grow and increase profits [17],

which motivates CRAs to report inflated rating in order to retain repeated customers

for rating fees under the current issuer-pay business model [27, 62]. Second and more

importantly, CRAs’ rating decisions can be directly influenced by the economic interest of

their shareholders. Large shareholders tend to extract private benefit through governance

power or threat of exit [3]. [66] further found that Moody’s assigns favorable ratings to

issuers related to its large shareholders relative to other CRAs.

Our data contains 5700 observations of individual bond rating history of 986 firms by

Moody’s Inc. from 2001 to 2008. We first compare the nonstructural and structural rating

probability functions and confirm our observation: some bond and firm characteristics

are indeed endogenous. To control for the endogeneity, we consider a single constructed

investment share measure (termed MFOI) as well as a estimable relationship index to

capture the omitted liaison in the rating criteria. Our estimation results on conditional

thresholds suggest that the thresholds start to deviate from the baseline under impartiality,

i.e. no CRA-issuer relation, indicating less strict criteria for assigning better ratings as

connection strengthens. Moreover, overrating bias exhibits heterogeneous patterns across
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rating categories. For grades A or above, the overrating bias starts to display only after the

CRA-firm relation is stronger than the 70 percentile among the entire sample. On the other

hand, in high-yield bond categories, even when CRA-issuer relation is as low as 20 percentile

level, overrating bias starts to show up reflected by the decreases in average thresholds.

The layout of this paper is as follows. In Section 3.2, we study a simple behavioral model

of bilateral bond rating that incorporates the interaction between issuers and CRA under

private information. Section 3.3 formally defines the econometric model of ordered response

and discusses conditions for identification. Section 3.4 proposes a two-stage semiparametric

index and location estimator and derives its limiting properties. Asymptotic assumptions

along with the proof are left in the appendix. Section 3.5 provides the institutional

background, data and summary statistics. Empirical results are presented in Section 3.6.

Finally, Section 3.7 concludes this paper.

3.2 A Simple Behavioral Model of Bond Ratings

CRAs use information on firm’s financial statements and bond characteristics to assess

credit risk, which reduces information-processing effort for investors. According to

Moody’s statement, it first utilizes quantitative information to estimate a default risk

index according to a pre-specified financial metrics (FM), and then conducts various rating

adjustments based on qualitative factors unobserved to investors. A bond will be placed into

certain notches once its estimated default risk is in between the corresponding thresholds.

Motivated by this fact, in this section, we try to understand the bilateral interaction between

a single CRA and a representative bond-issuing firm and uncover the rating adjustment

“blackbox” through a simple behavioral model consisting of three sequential stages. In

the first stage, we assume that the CRA formulates an individual-specific rating criterion

based on the priori CRA-issuer relationship through factors like common shareholders and

business liaisons. The bond-issuing firm has a rational belief on the distribution of rating

criterion given its private information on the liaison. In the second stage, a bond-issuing

firm chooses bond characteristics by maximizing its expected capital gain given such belief.

Finally, after an issuer independently chooses bond characteristics, an ex-post rating is

reported to the public according to the CRA’s internal rating models. In the rating process,
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we want to feature two distinctions. First, we explicitly incorporate issuer heterogeneity by

allowing rating thresholds to be stochastic and bond-specific. As a result, the unobserved

threshold heterogeneity indicates that some bond and firm characteristics would become

endogenous in CRAs’ rating models.

3.2.1 Rating Agency: Rating Matrix and Bond-specific Thresholds

In this paper, we adopt and extend the threshold-crossing model that has been frequently

employed in the literature of bond rating. Suppose that a linear latent default risk index can

be computed from the CRA’s rating metric, i.e. Y �
i � c0 � X 1

iβ0, where Xi � pXF
i , X

B
i q1

are a vector of firm and bond characteristics of bond i. In the rest of this paper, let

i P t1, 2, � � � , Nu represent each bond (or single-bond firm) and j P t0, 1, � � � , J � 1, J   8u
represent each rating notch or category. Now suppose the CRA places bond i into the jth

notch in a threshold-crossing manner as below

Yi �
J�1̧

j�0

jt rTi,j�1   Y �
i ¤ rTi,ju (3.1)

where Yi is the observed ordered rating with the support Y � t0, 1, � � � , J�1u. Also assumerTi,�1 � 8 and rTi,J � 8. Let rTi � p rTi,0, � � � , rTi,J�1q denote a vector of unknown bond-

specific stochastic thresholds. Under the above definition, those with Yi � 0 are among the

least risky bonds such as Aaa by Moody’s standard. On the other hand, the larger Yi, the

riskier the bond.

Previous studies show that CRAs conduct “soft” adjustments beyond observed

quantitative information on an individual bond basis. To model the adjustment process, we

assume that the CRA could alter the bond-specific rating thresholds based on the “soft”

information. Such adjustment enables the CRA to assign completely different ratings to

bonds that have almost identical characteristics. It reflects the outcomes of qualitative

assessment it has conducted on a specific firm or bond. For example, if the CRA has rated

multiple bonds on a firm, it may develop in-depth knowledge about the off-balance-sheet

risk management of this firm, which can then alter the rating thresholds. Moreover, CRAs

may acquire private information about bond qualities through the liaison with common
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shareholders. Specifically, the shareholders of the CRA, through investment in the stocks in

bond-issuing firms or contracting with them in other businesses, form private connections

that might be likely to produce upward (or downward) rating biases. Either way, the

relation-based subjective adjustment conducted by the CRA would be reflected by the

predetermined rating thresholds.

Now suppose that one can capture the liaison linking the two parties by some variable,

Ri. The ex post private information, ri is available to both the CRA and issuing firm i. We

assume the set of firm-specific threshold rTi,j are additive separable functions of Ri and the

idiosyncratic rating error Ui,j which is irrelevant to the liaison.

rTi,j � rTjpRi, uiq � tjpRiq � Ui,j , j � 0, � � � J � 1 (3.2)

where we assume the full independence between Ui,j and Ri. The additive separability is not

essential as for the implications in this section but is a key assumption for identification in

our empirical model. It indicates that each threshold can be decomposed into two additive

terms, i.e. a category-varying component, tjpRiq and a category-irrelevant one. The first

component reflects that the heterogeneous “level effect” of a change of liaison on thresholds

for each category. We argue that modeling the heterogeneous effects on thresholds is very

crucial. For example, the CRA may respond quite differently to an increase of liaison for

junk bonds versus investment-grade bonds. The second component in the additive model

is invariant with categories, which can be interpreted as calculations errors of the CRA’s

agents or other exogenous adjustments.

Essentially, we need to allow the stochastic thresholds to be varying at bond-level rather

than firm-level. For single-bond firms, there is no need to distinguish between these.

However, for multi-bond firms, it is very likely that the liaison changes even between

consecutive ratings for the same firm resulting from the quick shuffling of shareholder

structures as such. Unless firms issue multiple bonds at the same time, which they seldom

do. Therefore, in the empirical application, we choose to model the threshold heterogeneity

at bond-level.
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3.2.2 Firms: Contingent Choices of Bond Characteristics

Now consider the firm’s issuing decisions. We assume that a bond-issuing firm chooses

bond characteristics to maximize the discounted expected return on bond capital. We first

consider the choice of issuing amount, and then the decision of subordination status.1 It

shall be pointed out later that both decisions are affected by the CRA-issuer liaison, Ri,

through its influence on the rating rules.

To be specific, let XB � pXB
1 , X

B
2 q, where XB

1 denotes the issuing amount and XB
2

denotes the subordination status (XB
2 � 1 if the bond is senior; 0 otherwise). Since the

liaison is common knowledge, bond-issuing firms may form a more accurate belief of the

CRA’s rating rule (or thresholds distribution) by conditioning on Ri � r, and then make

financing decisions accordingly. For example, with a closer liaison, a higher expected rating

may motivate the firm to issue more debt, declare subordination status more easily and

undertake higher leverage ratios. For simplicity, it is also assumed that firms invest all what

they can finance from the issuance in some businesses that on average pays the discounted

return of ROIi per dollar investment. We model a representative firm’s financing decision of

issuing amount as the following maximization problem given the liaison r and subordination

status xB2 ,

xB1 � arg max
x¥0

E
�
ROIi � CpYi, xB2 qs|Ri � r

�
x

where the expectation is taken with respect to the return of investment, ROIi as well as the

categorical rating, Yi. Cpj, xB2 q denotes the per dollar interest payments to investors for a

bond with subordination status xB2 and rating Yi � j. The borrowing cost faced by the firm

is largely determined by the CRA’s reported rating. It can be conjectured that the interest

cost is strictly decreasing with the ratings, e.g. Cp0, xB2 q   � � �   CpJ � 1, xB2 q. Given a

particular rating Yi � j, senior bonds are less costlier to finance, e.g. Cpj, 1q ¡ Cpj, 0q.
Firms make their issuing decisions based on the ex ante interest cost which can be written

1Among other characteristics that the firm may choose upon issuance, prior studies [103, 63, 13, .etc] have
shown that issuing amount and subordination status are the two dominant factors that affect the borrowing
cost.
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as the average category-specific cost weighted by the rating distribution.

ErCpYi, xB2 q|Ri � rs �
J�1̧

j�0

Cpj, xB2 qPrp rTi,j�1   c0 � x1β0 ¤ rTi,j |Ri � rq

� F pxB2 , c0 � x1β0, tprqq

While, as reflected above, the rating distribution is purely driven by the firm’s default risk

index, y� � c0 � x1β0, and the set of firm i-specific thresholds, tprq � tt0prq, � � � , tJ�1prqu.
By the second equality, define F p�q as some function determined by the joint distribution

of Uj and the cost function Cpj, �q for each j. Then given differentiability, the first order

condition (FOC) with respect to the issuing amount xB1 is

ROI � F pxB2 , c0 � x1β0, tprqq � BF pxB2 , c0 � x1β0, tprqq
By� xB1 β01

where ROIi is assumed to be mean independent of the liaison, i.e. EpROIi|Riq � ROI. The

FOC implies that the optimal amount xB1 should equate the average return of borrowing

to the cost of borrowing that consists two components. The first term measures the direct

marginal cost for financing one more dollar given the current issuing amount and other

characteristics. The second term is the indirect effect due to the marginal increase of cost

from the change in default risk index. And this marginal increase would apply to all existing

issuance.

Note that F p�q is a potentially nonseparable function of the default risk index y� and

the conditional thresholds, tprq. So from the FOC, the optimal amount xB1 will be an

implicit function of tprq. Since econometricians cannot observe the liaison ri nor can they

separate the level effect tjpriq from the idiosyncratic error ui, the dependency between xB1

and tprq will induce some bond and firm characteristics to be endogenous. In contrast,

most previous bond rating models have taken financial variables as purely exogenous.

The exogeneity can only be justified when there is no private information of the firm-

specific thresholds and the common distribution of thresholds is known to every bond-issuing

firm. Nevertheless, in the presence of the liaison-induced private information, some bond

characteristics would inevitably become endogenous due to firms’ heterogeneous beliefs of
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the thresholds distributions.

A similar argument could be applied to the firm’s binary choice of subordinate status,

XB
2 . Loosely speaking, it will choose to declare subordinate status if the net-payoff from

declaring outweighs not declaring. For simplicity, one may assume that firms make issuing

choices in a sequential way—first declaring the subordination status and then determining

the issuing amount. Then it would be natural that the subordination status is correlated

with the conditional thresholds through its correlation with XB
1 . One might challenge the

behavioral assumption of sequential choices but the same implication could be derived even

for simultaneous choices of both subordination status and other bond characteristics with

a few additional complications. In addition, some firm-level financial variables, such as

leverage ratios, would also depend indirectly on the thresholds. For example, consider a

firm with multiple bonds, the debt-to-asset ratio increases as more bond is issued. Since the

optimal issuing amount is correlated with the individual thresholds through the CRA-issuer

liaison, then so would be the leverage ratio.

3.2.3 CRA: Final Reporting

After the bond characteristics are determined, the last step in the rating model is rather

mechanical. Given the firm’s choices Xi, the CRA calculates the ex-post default risk measure

Y �
i and adopts the pre-specified bond-specific rating thresholds tjpriq for each j. Then an

independent rating noise, ui, is randomly drawn from its distribution and being added to

the threshold level as in Eq. (3.2). The realized error captures idiosyncratic shocks, such

as miscalculations by the agent of CRA, unpredicted macroeconomic shocks, etc. Finally,

a categorical rating for the bond is generated according to Eq. (3.1) and released to all

investors and the public.

In this paper, we want to convey two important perspectives through the simple thought

experiment above. First, qualitative adjustment of bond rating could be attributed to the

heterogeneous thresholds that are partially determined by the bond-issuer private liaison.

Second, failing to taking into account the heterogeneous thresholds might lead to the

ignorance of the fact that some of firm and bond characteristics are endogenous in the

rating model.
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3.3 Ordered Response with Unobserved Correlated Thresholds

In this section, we study the econometric properties of the semiparametric ordered response

models employed in the bond rating. Assumptions and identification conditions are given

for the default risk index parameters and conditional threshold locations. In particular,

recall that the ordered response model in Eq. (3.1), where the latent default risk index Y �

is converted into the observed ordinal information Y by the following transformation.

Y �
J�1̧

j�0

jt rTj�1   Y � ¤ rTju, Y � � c0 �X 1β0

where β0 � pβ00, β01, � � � , β0dq1 is the coefficient vector conformable to the d�dimensional

bond and firm characteristics X (continuous and discrete). In what follows, we suppress

the i.i.d. subscript i for brevity when the context is self-evident.

Firstly, we identify and estimate the index parameters, up to location and scale, following

the existing semiparametric literature [106, 58, 57, 74, etc.]. Secondly, we provide an

identification analysis of heterogeneous thresholds as these are important to examine the

existence of rating biases. And we show that with the additive separable idiosyncratic

error, relative conditional thresholds are identified up to location and scale. Thresholds or

Location estimators, though not mainstream, have already received some attention in the

discrete choice literature [88, 51, 78, 79, 80, 73, 23, 24, etc.]. The closest to ours is the

semiparametric ordered response threshold estimators by Klein and Sherman [73]. Their

model is restricted to exogenous regressors and constant thresholds. Whereas our model

allows one or more endogenous regressors that potentially correlate with the heterogeneous

thresholds. To achieve identification, we rely on the control function approach that is

frequently employed in nonseparable models with endogeneity [16, 35, 59, 60, 65, 94, 90, 48].

Furthermore, our models can be applied to other contents involving ordered responses or

choices, beyond the empirical application considered here.



116

3.3.1 Identification of Endogenous Ordered Response

As is standard in the semiparametric discrete choice literature, several normalizations

need to imposed. First, we argue that the additive index constant c0 could not be

separated from the stochastic thresholds if no distributional assumptions are imposed.2

Furthermore, the parameters β0 of the linear single index latent models are only identified

up to scale [74]. Now partition the vector of regressors, X � pX0, rX 1q1 and X0 P R.

Without loss of generality, let X0 to be the continuous variable that may correlate with

the stochastic thresholds, T . It should be noted here that our model can take up

multiple endogenous variables, both discrete and continuous alike. Next, redefine the

identifiable index parameters by the division with respect to that of a particular continuous

regressor, i.e., θ0 � pγ10{β00, � � � , γd0{β00q1 P Θ where Θ represents the finite-dimensional

parameter space. Denote the identifiable index after the location-scale transformation

by V0 � X0 � rX 1θ0.3 In this paper, we only work with the linear index for simplicity.

However, our model can handle general known nonlinear indices given identification. As for

the thresholds, we are permitted to redefine the normalized thresholds after location-scale

transformation to be Tj � p rTj � c0q{β00 for each level j. Depending on the sign of β00,

the interpretation of V � might vary.4 Permitted, we would subsequently work with the

normalized threshold-crossing ordered response model in Eq. (3.3) which conveys the same

ordinal information as the original model (3.1),

Y �
J�1̧

j�0

jtTj�1   V0 ¤ Tju (3.3)

Note that several functions of economic and policy interest are implied from the above

ordered structure. We first define the non-structural conditional cumulative rating function

2Any additive index disturbance, ε, as in Y � � c0 �X 1β0 � ε, cannot be separated from the stochastic
thresholds. So one can assume that the thresholds absorbs all orthogonal disturbances.

3Such linear combination can incorporate nonlinear functions of X by redefining X�
j � gjpXq and

V �
°d�1
j�1 β0jgjpXq.

4In our empirical application, β00 is negative as it represents the marginal impact of total asset in the
default risk.
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given v P R in Eq. (3.4)

Pnj pvq � PrpY ¤ j|V0 � vq �
»
tv ¤ TjudFTj |V0�vptq, j � 0, 1, � � � , J (3.4)

Pnj p�q measures the probability of being rating equal or above notch j given the default risk.

However, Pnj p�q is non-structural as the marginal effects of changes in bond characteristics on

the this probability are confounded with the effect from changes of conditional distribution

functions. A more interesting object, however, would only capture the partial effect on the

probabilities due to the change in V0 while holding the thresholds distributions fixed. This

effect is summarized by the structural cumulative conditional rating probability function in

Eq. (3.5) given V0 � v,

P sj pvq � Prpv ¤ Tjq �
»
tv ¤ TjudFTj ptq, j � 0, 1, � � � , J (3.5)

where FTj p�q is the CDF of Tj . P sj pvq corresponds to the average structural functions

considered in Blundell and Powell [16], Imbens and Newey [60]. In the example of bond

rating, Pjpvq calculates the probability of being rated less than or equal to notch j,

holding the threshold distribution unchanged for some default risk v. For models with only

exogenous variables, P sj pvq and Pnj pvq coincide with each other but diverge under correlated

thresholds.5 In Section 3.6, the empirical evidences further corroborates our conjecture on

the endogenous bond characteristics.

Moreover, for continuous bond characteristics like rXk, marginal effects of interest, MEj,k

are subsequently available as the derivatives with respect to v multiplied by some scaling

factor,

MEj,kpvq � OP sj pvqθk0, j � 0, 1 � � � , J

where OP sj pvq � BP sj pvq{Bv provided existence. If Xk is some discrete characteristic such

as the subordination status, the average treatment effects are trivially obtained as the

5The structural probability function of being rated exactly at notch j given V0 � v can be obtained
straightforwardly by PrpTj�1   v ¤ Tjq � P sj pvq � P sj�1pvq, j � 0, 1 � � � , J . .
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difference between P sj pv � θk0q and P sj pvq with θk0 being the corresponding coefficient.

Our model differs from traditional semiparametric ordered choice models in two

important aspects. First, we incorporate the unobserved heterogeneity by allowing the

set of thresholds to be individual-specific. Secondly, endogeneity could arise due to the

heterogeneous thresholds as shown in the behavioral model in Section 3.2. As a consequence,

usual identification strategies would fail unless the dependency is properly taken care of. In

this paper, we rely on the control function approach to handle endogenous variables that are

correlated with structural thresholds, in the spirit of Blundell and Powell [16], Florens et al.

[35], Imbens and Newey [60]. We begin by assuming that a dR-dimensional vector of control

variables, denoted by R, satisfying Assumptions A-I.1 and A-I.2 stated below, is available

to us. R may contain both discrete and continuous variables. Later in this section, we

propose a semiparametric control index approach to handle the “curse of dimensionality”

for nonparametric high-dimensional R as an extension.

A-I.1 Conditional Independence. X K T |R (and X and T are not measurable with

respect to σ-field generated by R).

Assumption A-I.1 and A-I.2 are standard in the control function literature. In particular,

A-I.1 specifies that R is the only possible reason for the dependency between X and T .

Moreover, X and T cannot be deterministic functions of R simultaneously. There are many

ways to obtain the control vector R in practice. For example, when estimating return to

education, the IQ test score is often taken to rectify the omitted variable bias resulting

from missing intellectual ability. In triangular simultaneous equations models, the error

term from first stage regression can be estimated and taken as a control variable. In our

empirical application of bond rating, the CRA-issuer liaison are sufficient to control for the

endogeneity as can be seen from Section 3.2. According to our behavioral model, bond

characteristics X depend on the thresholds only through tpRiq, so the correlation would

not be a problem once we can control the liaison, Ri. We will return to discuss the choices

of Ri later in this section.

We now define the conditional cumulative rating function for Y being less than or equal
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to notch j. Given px, rq P X �R, or equivalently pv, rq P R�R,

PrpY ¤ j|X � x,R � rq � PrpV0 ¤ Tj |V0 � v,R � rq � Pjpv, rq (3.6)

The second equality follows the fact that V0 K Tj |R � r due to the conditional independence

assumption. From now on, our identification and estimation of θ0 would rely on the moment

conditions, Mpθq � pM0pθq,M2pθq, � � � ,MJ�1pθqq1 where

Mjpθq � E rtY   ju|V pθq, Rs � E rPjpV pθ0q, Rqs (3.7)

A-I.2 Index Identification. There is a unique θ0 P Θ such that Mpθ0q � 0, defined in

Eq. (3.7). For θ � rθ P Θ, then PrpV pX, θq � V pX, rθq � 0q � 0, w.p.1

A-I.2 assumes the point identification of the index parameter θ by the moment condition.

A special case considered in this paper is when the index is linear, V pX, θq � X0� rX 1θ, for

which a sufficient condition is detp rX 1 rXq ¡ 0 with X0 being a continuous variable.

A-I.3 Large Support. R � Rv, @v P R, a.s. where R � supppRq,Rv � supppR|V0 �
vq.

A-I.3 requires the conditional support of R to be the same as the unconditional support.

This sufficient support condition is often invoked in the control function literature to

obtain point identification results of average structural functions. We require A-I.3 only

for Proposition 1 on the point identification of P sj p�q. As for the index parameters and

relative threshold differences, the large support condition is not necessary. Proposition 1

states that Pjpvq in Eq. (3.5) can be identified if the large support condition is invoked.

The identification is achieved by marginally integrating out R for each index value v P R.

The argument is standard and we leave the proof of Proposition 3.1 in the appendix.

Proposition 3.1. Under Assumption A-I.1 to A.I-3, P sj pvq and MEjpvq are identified for

each v P R and j P Y.
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3.3.2 Conditional Shift Restrictions

It has also been known that the ordinal structure carries some hidden information which can

be revealed through the so-called shift restrictions between adjacent categories. It means

that the cumulative probability of Y being less than or equal to level j can be related to

that with respect to level k by shifting the location of thresholds. There exists hidden

cross-level restrictions in the ordered model like Eq. (3.3). In Klein and Sherman [73],

they use those shift restrictions to estimate the relative scaled thresholds in semiparametric

ordered response models. For identification purpose, they require two conditions to be met.

One is the single index structure, the other being the independence between X and the

error term.6 As for this paper, we generalize the shift restrictions to allow endogenous

regressors with correlated thresholds. We show that the conditional and unconditional

mean of relative thresholds can be identified under some additive separable structure of

thresholds. And both objects have important implications and should be of great interest,

especially concerning the empirical questions studied here.

We begin by defining notations formally. Let ∆j,k denote the expectation of the relative

thresholds or threshold differences between level j and level k, Tk�Tj . Let tjprq � EpTj |R �
rq denote the conditional expectation of the threshold j given the control variable R � r.

∆j,kprq � EpTk � Tj |R � rq. ∆pRq � p∆0,1pRq,∆1,2pRq, � � � ,∆J�1,JpRqq1 denotes a vector

of conditional relative thresholds between adjacent levels. A related parameter of interest,

resembling the “treatment effect on the treated”, is defined as tcjpxq � EpTj |X � xq for

each x. Analogously, let ∆c
k,jpxq � EpTk � Tj |X � xq. In what follows, we focus on the

identification of the conditional relative thresholds, which measure the corresponding shifts

of average thresholds when R changes independently. Two mild and justifiable assumptions

need to be imposed on the thresholds.

A-I.4 Additive Separability. Tj � tjpRq � U , where EpU |Rq � 0 for each j P Y.

A-I.4 is basically stating that for each R � r, the category-specific threshold can be

decomposed into a component varying with respect to j and a non-varying component,

U . tjpRq reflects the category-specific component depending on R. U , on the other

6The shift restrictions can be explored to derive more efficient index parameter estimators.
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hand, representing the idiosyncratic error unobserved by the bond-issuing firm nor the

econometrician. Under additive separability, we have a concrete interpretation of tjpRq as

the mean thresholds given a particular liaison. It should be noted that A-I.4 does not rule

out the full dependence between U and R. Only mean independence is required for the

purpose of interpretation.

Proposition 3.2 (Conditional Shift Restriction). Under Assumption A-I.1, A-I.2 and A-

I.4, for each px, rq P X �R and v � x0 � rx1θ0, then Pjpv, rq � Pkpv �∆j,kprq, rq, for each

j, k P Y.

Proposition 3.2 states the conditional shift restrictions, a natural generalization of

Klein and Sherman [73]. In particular, it reveals the hidden restrictions across categories.

Figure 3.1 depicts the adjacent shift from the jth-conditional probability functions to the

pj�1qth. Given the index V0 � v and the control variable R � r, one can equate Pj�1pv, rq
to Pjpv, rq by simply shifting a constant distance of the index horizontally. The distance

shifted is determined only by the value of control variable for a given pair of categories. By

Assumption I.4, this distance can be interpreted as the relative conditional mean thresholds

differences. This can also be seen from the following equalities. The last equality holds

because the conditional distribution of U given R is invariant across categories by definition.

Pjpv, rq � Prpv ¤ tjprq � U |R � rq � Prpv �∆j,kprq ¤ tkprq � U |R � rq � Pkpv �∆j,kprq, rq

We argue that A-I.4 is sufficient but not necessary to conduct shift restrictions. A weaker

condition is the Assumption A-I.4 below. It states that the conditional distribution of the

idiosyncratic disturbances are the same for each level j. For example, it includes some

general nonseparable models such as Tj � j � mpR,Uq, with m being some measurable

function. However, we lose the interpretation of the ∆j,kprq being the relative mean

thresholds differences given liaison measure R � r.

A-I.4’ Distributional Invariance. Uj |R � Uk|R, for j, k P Y where UjpRq � Tj � tjpRq,
for each j.
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Figure 3.1: Conditional Shift Restrictions from PjpV,Rq and Pj�1pV �∆, Rq

Proposition 3.3 (Identification). Under Assumption A-I.1, A-I.2 and A-I.4, for each

r P R and x P X , then ∆prq and ∆cpxq are point identified.

In Proposition 3.3, we obtain identification results of relative conditional mean

thresholds differences.The proof of Proposition 3.3 is straightforward given the invertability

of Pkp�, rq for each r. For example, ∆j,kprq � P�1
k pPjpv, rq, rq� v, where P�1

k pPkpv, rq, rq �
v. Formal proofs of Proposition 3.2 and 3.3 are given in the appendix. Once the

large support condition in A-I.2 can be justified, the unconditional mean of thresholds

is subsequently obtained by taking the expectation, i.e. ∆j,k � Er∆j,kpRqs. Once A-I.2

doesn’t hold in some cases, the set-averaged expectations might exist. For instance, if one is

interested in knowing the average difference on a compact set R0 � R, then the set-averaged

value can be obtained as ∆j,kpR0q � Ep∆j,kpRq|R P R0q. The popular choices of R0 include

the quantile set, R0 � tr : QRpτ1q   r   QRpτ2qu where pτ1, τ2q denotes respective lower

and upper quantiles of interest and QRpτq � F�1
R pτq is the quantile function of R. For

discrete R, R0 can be a countable subset of disjoint points.
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The identification of ∆c
j,kp�q is established as follows,

∆c
j,kpxq � EpTk � Tj |X � xq

� ErEpTk � Tj |X � x,Rq|X � xs

� Er∆j,kpRq|X � xs

The second equality uses the iterative expectation by firstly conditional on both X and

R. The last equality holds because of A-I.1. Likewise, unconditional mean and conditional

expectation over a set can be defined, though not being further pursued in this paper. In

our application, we set the base level to be Y � 0, to which the relative thresholds are

compared. So one can work with ∆0pRq � A∆pRq � p∆0,1pRq,∆0,2pRq, � � � ,∆0,J�2pRqq1

where A is a conformable lower triangular matrix with 1’s below the diagonal.

Finally, we discuss the problems with recovering actual thresholds from the conditional

relative differences. As the semiparametric ordered response model is only identified up to

location and scale, recovery of true cutoff points is not possible without further assumptions

even for constant threshold models. For the default risk index (or the creditworthiness), it

is hard to pin down cutoff points when their lower and upper bounds are unknown. Even so,

there are still very important implications that can be drawn from the relative thresholds

estimates. As for Aaa bonds, it has been argued that no obvious biased threshold has been

noted. On the contrary, significant overrating biases have been reported for bonds in lower

notches. Our relative threshold estimators are able to detect and measure such deviations

of bond rating biases. The counterfactuals would also shed light on public policies such as

the reform of shareholder structures.

Besides, it has been noted that the ordered response model can be related to

transformation models when Y has continuous meaning. Klein and Sherman [73] study

the projected usage of a new telecommunication program in a transformation framework

where the reported ordered usage Y is linked to the true usage Y � by a monotonic

transformation Y � � ΛpY q. They back out the true cutoff points by normalizing Λp0q � 0

and ΛpY0.5q � Y0.5, for which the reported usage is equal to the true usage at either 0 demand

or median. Likewise, our models can also be related to a transformation model in the
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same manner when there are clear meanings of the latent index. For example, in studying

the effect of immigration on life happiness, the choice of immigration usually depends

on individual-specific disposition towards the prospective workplace, living environment,

etc. In health economics, when evaluationg the effect of certain medical treatment on

self-reported health conditions, the selection of treatment might correlate with the patient

specific thresholds.

3.3.3 The “Liaison” Controls

Controlling for the endogeneity is equivalent to controlling the CRA-issuer liaison in

particular, as suggested by the behavioral model. However, it turns out that “liasison”

is usually unavailable to empirical researchers. Moreover, even defining it properly is a

rather hard task, let alone to quantify its relationship. Various proxy measures have been

proposed in the bond rating literature. In this paper, we consider two different measures

to control for the liaison. In the first case, we construct a single index of Moody-firm

investment interaction (MFOI) by a weighted sum of the investment shares of common

shareholders. The details of the index are presented in Section 3.5. We assume that MFOI

is an appropriate proxy that is sufficient to control for the private information available to

the bond-issuing firm. For simplicity, one can just let R be MFOI. In the second scenario, we

assume that R is multi-dimensional. It could consist of observed information such as number

of common shareholders, whether owned by influential investors, number of previous bonds

rated, etc. in addition to MFOI. We will elaborate our choice of controls in the empirical

section.

In cases where the control variables are relatively high-dimensional, we can consider

using the control index to circumvent the “curse of dimensionality” in nonparametric

models. To resolve this, we resort to the imposition of additional semiparametric index

restriction on R as in Assumption A-I.5,

A-I.5 Control Index T |V0, R � T |V0, L0, where L0 � LpR,α0q.

A-I.6 Index Identification There is a unique pair pθ0, α0q P Θ�A such thatMjpθ0, α0q �
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0 where Mjp�q is redefined in Eq. (3.8).

Mjpθq � E rtY   ju|V pθq, Lpαqs � E rPjpV pθ0q, Lpα0qqs , j P Y (3.8)

A-I.5 basically says that it is permitted to reduce the multi-dimensional R to a single linear

index. Suppose that R � pR0, rR1q1 where R0 P R is a continuous variable for identification

purpose, we assume a linear structure L0 � R0 � rR1α0. In this case, the identification

condition can be reduced to |detp rR rR1q| ¡ 0 if there is no overlapping variables between X

and R. Under A-I.5, the conditional cumulative probability function in Eq. (3.6) is reduced

to a double-index model in Eq. (3.9)

Pjpv, lq � PrpY ¤ j|V pθ0q � v, Lpα0q � lq, j P Y (3.9)

Such models have been studied in Ichimura and Lee [58], termed the semiparametric double

index model. Identification assumption of pθ0, α0q requires the existence of at least one

continuous variable in each index and a sufficient condition precludes the composition of

same variables in both indices. For our model, these assumptions are automatically satisfied

as we do not have the overlapping variables between indices. Proposition 3.4 is the direct

result from Ichimura and Lee [58] on the identifiability of finite-dimensional parameters of

multi-index models.

Proposition 3.4 (Identification of pθ0, α0q). Under Assumption A-I.1, A-I.3 and A-I.5-A-

I.6 , then pθ0, α0q are identified.

3.4 A Two-stage Semiparametric Estimator

In this section, we provide a two-stage semiparametric estimators for pθ0,∆prqq for each

r P R and give the asymptotic results in terms of consistency and asymptotic normality.

In the first stage of estimation, we target at the single index parameters up to location

and scale, θ0, by WSLS with the moment conditions specified in the identification section

and obtain the usual semiparametric estimator pθ as well as a consistent index estimatorpVi � Xi0 � X 1
i
pθ. In the next stage, we estimate the relative conditional mean differences,
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p∆prq at each point r P R by minimum distance estimators (MDE). Initial values at the

second stage can be provided by the grid search method for ∆p�q at each point in the

support, which is attractive for its fast computing speed. Relevant estimators of interest

can be subsequently obtained by numerical integrating out R on particular sets or summing

over empirical points to obtain partial means over some regions or full sample. The two-stage

estimator can be combined in a single-step GMM estimator with index moment conditions

jointly with conditional shift restrictions, resulting in more efficient estimators, admittedly.

Nethertheless, the two-step estimator would be much faster in practice especially when

the dimension of parameter spaces tends to be large. One can postulate that our two-step

estimator can significantly save the computational burden, especially when Y is divided into

numerous level along with many control covariates. So we focus on the two-stage estimator

in this paper and derive its large sample properties accordingly. A nice feature of the two-

stage estimator is that the first stage estimation has no impact on the limiting distribution

of the second stage as the converging speed of index estimators is faster than the conditional

mean threshold function that converges at the nonparametric rate. In our application, we

consider both cases of a single observable control variable as well as a partially estimable

index. Due to the similarity, we illustrate our estimator and its asymptotic properties

primarily with the single control case.

3.4.1 First Stage: Index Estimators

Conditional Probability Function We estimate the single index (or double index) parameters

in the first stage by WSLS in the spirit of Ichimura and Lee [58], Ichimura [57]. In the

presence of endogenous regressors, once the control variable is readily available, we could

obtain consistent estimators by minimizing the (weighted) squared differences between the

observed Y and its semiparametric conditional means. Various semiparametric single index

estimators have been proposed. For exogenous covariates, see Manski [88], Powell et al.

[106], Klein and Spady [74], Ahn et al. [4], Klein and Shen [69], etc. For models with

endogeneity, see Blundell and Powell [16], Hoderlein and Sherman [48], etc.

First, we begin by introducing the estimator of conditional cumulative probability

function of Yi ¤ j, denoted by pPjpVipθq, Riq. For any θ P Θ, define Vi � Vipθq � Xi � rX 1
iθ
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and we suppress θ for notational simplicity whenever it is self-evident. We use the Nadaraya-

Watson kernel estimator to obtain the semiparametric conditional probabilities which will

be used to construct the least square fitting. The leave-one-out semiparametric estimator of

the conditional probability function for below or equal to category-j is specified in Eq. (3.10),

pPjpVipθq, Riq � °N
l�iKhpVlpθq � VipθqqKhpRl �RiqtYl ¤ ju°N

l�iKhpVlpθq � VipθqqKhpRl �Riq
(3.10)

Instead, for models of a control index with unknown parameters, define Li � Ri� rR1
iα0 and

enlarge the parameter space to Θ�A to contain pθ0, α0q.
As we seek for a

?
N -consistent parameter estimators, we resort to the bias reduction

techniques available in the semiparametric literature to make sure that the asymptotic bias

vanishes faster in the limit. In principle, one may use higher-order kernels, local smoothing

and the recursive methods in Shen and Klein [110]. The performance comparison between

various bias-reducing estimators is beyond the scope of this paper and is left for further

research.

WSLS: First Stage Estimation of θ0 We focus on the WSLS estimator proposed by

Ichimura [57] to obtain a root-N consistent estimator of θ0. WSLS can easily incorporate

the moment conditions in Eq. (3.7) or Eq. (3.8) in the presence of the endogeneity arising

from correlated thresholds. As the ordered response model is heteroskedastic in nature, the

feasible WSLS estimator is used for efficiency concerns by solving the following minimization

problem in two steps.

pθ � arg min
θPΘ

N�1
Ņ

i�1

J�1̧

j�0

pti �tYi ¤ ju � pPjpVipθq, Riq	2
wjpi; θIq (3.11)

or the double-index WSLS,

ppθ, pαq1 � arg min
pθ,αqPΘ�A

N�1
Ņ

i�1

J�1̧

j�0

pti �tYi ¤ ju � pPjpVipθq, Lipαqq	2
wjpi; θI , αIq (3.12)

where the weighting estimator is defined as pwjpq � � pPjp�q � pPjp�q2��1
. θI or pθI , αIq

represents the consistent pilot estimator obtained from the first-step unweighted SLS. The
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trimming function estimator pti � ΠdX�dR
k�1 tpqZkpτlq   Zki   pqZkpτuqu is the product of

the indicator functions for each continuous Zk, with fixed lower and upper quantiles τl

and τu, where Zi � pX 1
i, R

1
iq1. pqZikpτq is estimated by the empirical quantile function,

inftzk : N�1
°N
i�1tZki ¤ zku ¥ τu. In the following, we also suppress the functional

dependence on observable covariates, i.e. pPjpi; θq � pPjpVipθq, Riq to highlight the estimation

problem.

Note that the two-step WSLS can be solved in an equivalent semiparametric pseudo-

MLE framework similar to Klein and Vella [71], Maurer et al. [94]. It requires only one-step

of optimization and can be computationally faster. Take the single index model as an

example, define pP�1,ipθq � 0 and pPJ,ipθq � 1.

pθMLE � arg max
θPΘ

N�1
Ņ

i�1

J̧

j�0

ptitYi � ju ln
� pPjpi; θq � pPj�1pi; θq

	

Note that the solution, pθMLE , to the above optimization is identical to our WSLS estimator.

We also need to point out that our estimator is not the most efficient one. One could obtain

a more efficient estimator such as GMM by choosing the optimal weighting matrix across

moment conditions or incorporating shift restrictions between levels. But we would not

pursue them further here. As it can be seen later, this first-stage estimation variance would

not affect the limiting distribution of conditional mean thresholds estimators in the second

stage.

3.4.2 Second Stage: Conditional Mean Thresholds ∆p�q

We propose an extremum-type estimator that minimizes the distance between PjpVi, rq
and PkpVi � ∆k,jprq, rq for each r P R, j � k and j, k P t0, 1, � � � , J � 1u, implied by

the conditional shift restrictions. For a J-supported Yi, there are totally
�
J�2

2

�
possible

restrictions to choose from. In order to have a parsimonious model, we only consider the

shift conditions of adjacent levels. Additional restrictions could be used to increase the

efficiency and perform overidentification test. Without redundant information, we are left

with J � 2 restrictions and for each r P R, the localized minimum distance estimator is
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obtained by solving the following least square problem,

p∆prq � arg min
∆

N�1
Ņ

i�1

J�3̧

j�0

pτiprq � pPjppVi, rq � pPj�1ppVi �∆j�1,j , rq
�2

(3.13)

where pVi � X0i �X 1
i
pθ is obtained from the first stage and the trimming function estimator

is given by

pτiprq � tpqV |Rpτl, rq ¤ pVi ¤ pqV |Rpτu, rqu (3.14)

where pqV |Rp, rq denotes the conditional quantile function estimator of Vi given Ri � r,

estimated by inverting the smoothed conditional distribution function like pqV |Rpτ, rq �
inftv : N�1

°N
i�1

pFV |Rpv|R � rq ¡ τu and pF defined in Eq. (3.15). pτl, τuq denotes the

preset lower and upper quantiles.

pFV |Rpv, rq � °N
i�1KhpRi � rqΦppVi � v{hq°N

i�1KhpRi � rq (3.15)

The relative conditional mean threshold of level j with respect to the base level (namely Yi �
0) is readily available by multiplying a lower triangular matrix A with entry equal to 1 below

and along the diagonal. Let p∆0prq � Ap∆prq, so p∆0prq � pp∆1,0prq, p∆2,0prq, � � � , p∆J�2,0prqq1.
Localize-then-average estimator of conditional threshold difference over a measurable set

R0 is computed like (3.16),

p∆pR0q �
»
R0

p∆prqdλprq (3.16)

λp�q is some measure7. λp�q can also be taken as the CDF of Ri. For multivariate Ri, the

empirical measure below is preferred.

p∆pR0q �
°N
i�1tRi P R0up∆pRiq°N

i�1tRi P R0u (3.17)

7The integration of a vector should be taken as component-wise
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For models where the control is given by an index estimated from the firs stage, pLi �
R0i � rR1

ipα, the above estimators can be modified by substituting pLi for Ri. And one can

also localize around the estimated index, pLi if Li can be interpreted as some CRA-issuer

relationship measure.

In our empirical application, we estimate average effects by discretized weighted sum by

the empirical difference of CDF of Ri, as shown in Eq. (3.18)

p∆j,0 �
M̧

mi�1

p∆j,0pRmiqp pFRpRmiq � pFRprmi�1qq (3.18)

where mi � t1, � � � ,Mu that is the selected subset of the sample, instead of the whole

sample. Doing so will increase the speed of computation, as generally M    N when we

have a very large data set. Simply replacing Ri with pLi in Eq. (3.18) would give empirical

estimators of average effects when multivariate control variables are present.

Finally, we consider the estimator of the structural and non-structural conditional

probability functions defined in Eq. (3.4) and Eq. (3.5). Proposition 3.1 shows that P sj pvq
can be identified by integrating the conditional expectation function with respect to the

CDF of Ri. Substitution with their consistent estimators gives us the estimators, pP sj pvq,
for each j. Likewise, the numerical integration can be simplified by the discretized sum as

in Eq. (3.19).

pP sj pvq � M̧

mi�1

pEptYi ¤ ju|v,Rmiqp pFRpRmiq � pFRpRmi�1qq (3.19)

In contrast, the nonstructural conditional probability functions can be straightforwardly

estimated as the conditional expectation function in Eq. (3.20) in which pE denotes the

kernel estimator similar to Eq. (3.10).

pPnj pvq � pEptYi ¤ ju|pVi � vq (3.20)

In Section 3.6, we plot pPnj pvq against pP sj pvq to empirically examine the endogeneity issue of

bond characteristics.
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3.4.3 Asymptotic Properties

In this section, we develop the asymptotic theory for the two-stage estimators of both pθ and

the relative thresholds estimator p∆prq for each r in the support. In particular, Theorem 3.1

presents existing results on index parameter estimators and Theorem 3.2 gives consistency

and asymptotic normality results on the conditional relative thresholds estimators. Finally,

we obtain the consistent covariance matrix estimator by plugging in the estimators of each

unknown component. To conserver space, asymptotic assumptions A-A.1 to A-A.6 are

presented in the Appendix .2.1. Those assumptions are all standard in the non/semi-

parametric literature. The proof of Theorems along with all supporting lemmas are left in

Appendix .2.

Note that the consistency and asymptotic normality in Theorem 3.1 of the finite-

dimensional index parameter estimators are very standard in the semiparametric literature.

Since the first stage model reduces to the double-index model considered in Ichimura and Lee

[58], Ichimura [57], we omit the proof. Theorem 3.2 a). shows that the relative thresholds

estimators are pointwise consistent as the sample size increases; b). derives the asymptotic

normality of the localized relative threshold estimators. A nice finding shows that the

limiting variances of the relative thresholds estimators do not depend on the variability of

the first-stage index estimators because the latter converge at a faster
?
N rate than the

nonparametric rate
?
Nh for the second-stage estimators. As a result, not only could we

obtain a simplistic form of the asymptotic variance of ∆prq, but also it permits us to analyze

the variability separately from the index estimators.

Theorem 3.1 (Consistency and Asymptotic Normality of pθ). Under Assumption I.1-I.3

(and I.5, I.6 for estimable control index) and A.1-A.6, then as N Ñ8, it follows that

aq. pθ PÝÑ θ0

bq.
?
Nppθ � θ0q � Np0,Ω�1q
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where the covariance matrix is

Ω � E

�
J�1̧

j�0

tiwj,i
BPj,ipθq
Bθ

BPj,ipθq
Bθ1

�
.

Theorem 3.2 (Asymptotic properties of p∆prq). Under Assumption I.1-I.4 and A.1-A.6,

as N Ñ8, it follows that

aq. |p∆jprq �∆jprq| � opp1q, j � 0, 1 � � � , J � 2

bq.
a
Nh2rp∆prq �∆prqs � Np0, Hprq�1ΣprqHprq�1q

where the covariance matrix is defined in Eq. (3.21) and (3.22)

Σprq � Erξiprqξiprq1s (3.21)

Hprq � E
�
P 1
i prqP 1

i prq1
�

(3.22)

where ξi � pξ0,i, ξ1,i, � � � , ξJ�2,iq1 and P 1
i prq �

�
P 1

0pVi, rq, P 1
1pVi, rq, � � � , P 1

J�2pVi, rq
�1

, in

particular

ξj,iprq � τiP
1
j�1,iprqKpRi � rq

"
fpViq
gpVi, rqrYj,i � PjpVi, rqs � fpVi �∆prqq

gpVi �∆prq, rqrYj�1,i � PjpVi, rqs
*
(3.23)

where Yj,i � tYi ¤ ju and the derivative of the conditional cumulative function with respect

to v

P 1
jpVi, rq �

BPjpVi, rq
Bv (3.24)

A remark on bandwidth selection. As in Assumption A-A.5, bandwidths are allowed to

be different for estimating pθ and p∆prq. In order to eliminate the bias in Theorem 3.1, some

bias-reducing techniques need to apply [69, 110, etc.]. However, to ensure the consistency

of the Hessian matrix, it requires that the window parameter r1   1{8 for double indices,

ruling out the optimal bandwidth. In Theorem 3.2, bias reducing techniques still have to
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be applied but it can be weaker than the first stage.8

Covariance Matrix Estimator We obtain the covariance matrix estimator by substituting

with consistent estimators for each unknown component. For a given r in a compact set

R0, the estimators of Σr are obtained in Eq. (3.25),

pΣprq � 1

N

Ņ

i�1

pξiprqpξiprq1 (3.25)

where pξi � ppξ0,i, pξ1,i, � � � , pξJ�2,iq1 and in particular

pξj,iprq � pτi pP 1
j�1,iKpRi � rq

# pfppViqpgppVi, rqrYj,i � pPjppVi, rqs � pfppVi � p∆jqpgppVi � p∆j , rq
rYj�1,i � pPjppVi, rqs+(3.26)

For the Hessian matrix estimator,

pHprq � 1

N

Ņ

i�1

pP 1
i prq pP 1

i prq1 (3.27)

and in particular, pP 1
i prq �

� pP 1
0ppVi, rq, pP 1

1ppVi, rq, � � � , pP 1
J�2ppVi, rq	1 where

pP 1
jppVi, rq �

°N
j�iK

1ppVj � pViqKpRi � rqtYj ¤ ju
h
°N
j�iKppVj � pViqKpRi � rq

(3.28)

�r
°N
j�iKppVj � pViqKpRi � rqtYj ¤ jusr°N

j�iK
1ppVj � pViqKpRi � rqs

hr°N
j�iKppVj � pViqKpRi � rqs2

(3.29)

3.5 Bond Rating Industry and Data

3.5.1 Institutional Background

As the information intermediaries of the financial system, credit rating agency’s primary

function is to evaluate a particular debt instrument’s (including government bonds,

corporate bonds, CDs, etc.), credit worthiness utilizing their rating model and private

information. By law or policy, some investors are only allowed to purchase bonds with an

investment-grade ratings (Baa or higher). A corporation that can issue higher rated bonds

8For example, one can use third-order kernels in stage 1 and second-order kernels in stage 2.
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has a lower borrowing costs compared to firms that cannot. Given that the ratings should

reflect the true riskness of the bond, any material bias in rating agencies’ decisions has the

potential to impact the financial system and erode the market confidence.

In this study we argue that the increasingly public ownership of rating agencies might

induce conflict of interests. As noticed by [21] and [119], the current credit rating industry

is dominated by a few rating firms due to prudential regulation: with the ”Big Three”

credit rating agencies controlling approximately 95% of the ratings business. Moody’s and

Standard & Poor’s (S&P) together control 80% of the global market, and Fitch Ratings

controls a further 15% ([6]). Of the two biggest agencies Moody’s became a public firm in

2001, while Standard& Poor’s is part of the publicly traded McGraw-Hill Companies. Being

a publicly traded firm not only intensifies the pressure to grow and increase profits ([17]),

but also motivates the CRAs to be biased towards their own shareholders. As noted in [3],

large shareholders may extract private benefit through their govenance power or threat of

exit. For example, Warren Buffett, a major investor in Moody’s, had to answer questions

in front of the Financial Crisis Inquiry Commission in 20109 because media reports alleged

that Moodys’ has been slow to downgrade Wells Fargo, an investee of Berkshire Hathaway10.

There are extensive studies on sources of rating bias. It is well known that the current

issuer-pay model creates an incentive for the CRAs to assign inflated ratings. In previous

studies, researchers ([62], [27]) have focused on compromised ratings on account of issuer-

pay model. [75] and [76] argue that the CRAs might cater to borrowers with rating-based

performance pricing agreements through their hard and soft adjustments. The paper that

related to ours the most is [66], who documents that CRAs’ rating decisions might possibly

be affected by the economic interest of their large shareholders as well. They found Moodys’

ratings on firms related with its large shareholders’ are more favorable than S&P, and the

difference cannot be explained by Moodys’ private information.

In stead of examining whether the ratings are indeed affected by the CRA-issuer liaison

through reduced-form regression, our model is structural in a sense that we identified the

9http://www.philstockworld.com/2011/03/14/transcript-of-warren-buffetts-testimony-in-front-of-the-
fcic/

10http://www.forbes.com/sites/halahtouryalai/2012/02/16/missing-from-moodys-downgrade-list-warren-
buffetts-favorite-bank/
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pattern of overrating bias. As discussed in [76], after delivering a preliminary rating from

the rating matrix, CRAs can adjust the ratings based on their private knowledge. Most

naturally these adjustments can be reflected through a firm-specific set of threshold points:

firms that are closely related with the rating agency ownership-wise might be assigned a

less stringent thresholds so that it is easier for them to receive higher ratings. Once the

issuer firms believe the CRA will give them favorable treatment, they might take more

audaciously actions, e.g. issuing more debt, undertaking a higher leverage ratio, making

some explanatory variables endogenous. This application focuses on those correlated cutoff

points, which are structural object of interest.

In the aftermath of the 2008 crisis, there is a emerging literature focusing on regulation

of credit rating agency. Different reforms/acts have been proposed to regulate the financial

environment, and there are heated debate among them. In the famous Dodd-Frank Wall

Street Reform and Consumer Protection Act (Pub.L. 11120311, H.R. 417312; commonly

referred to and henceforce as “Dodd-Frank”), a entire section aims to improve the regulation

of credit rating agencies. This law required the SEC to establish clear guidelines for

determining which credit rating agencies qualify as Nationally Recognized Statistical Rating

Organizations (NRSROs). It also gave the SEC the power to regulate NRSRO internal

processes regarding record-keeping and how they guard against conflicts of interest13. See

[102] and [119] for the importance of such oversight. The Franken-Wicker amendment to

the Dodd-Frank financial reform law14 would use a governmental entity to assign securities

to qualified ratings agencies based on capacity and expertise.

3.5.2 Data and Summary Statistics

The data on the history of credit rating by Moody’s is obtained from the Mergent’s Fixed

Income Securities Database(FISD). We exclude government bonds and retain all initial

ratings on bonds issued by firms covered in both CRSP and Compustat, leaving us with a

11https://www.gpo.gov/fdsys/pkg/PLAW-111publ203/html/PLAW-111publ203.htm

12https://www.congress.gov/bill/111th-congress/house-bill/4173

13https://www.sec.gov/spotlight/dodd-frank/creditratingagencies.shtml

14https://www.sec.gov/comments/4-629/4629-28.pdf

https://www.gpo.gov/fdsys/pkg/PLAW-111publ203/html/PLAW-111publ203.htm
https://www.congress.gov/bill/111th-congress/house-bill/4173
https://www.sec.gov/comments/4-629/4629-28.pdf
https://www.sec.gov/comments/4-629/4629-28.pdf
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final sample of 5700 new bonds issued by 986 firms from 2001-2008. Since this application

features estimation of the overrating bias, we select the sample period after Moody’s went

IPO in 2000 and before publication of important regulation rules (for example, the Dodd-

Frank in June 2009).

For each firm, short-term and long-term debt data are from quarterly Compustat-CRSP

merged dataset. Short-term debt is estimated as the larger of Compustat items 118 (“Debt

in current libabilities”) and 224(“Total current liability”). Long-term debt is taken from

item 119(“Total long-term liability”). The end of quarter stock price data and number of

shares outstanding data are also taken from Compustat-CRSP.

Explanatory Variables When modeling the rating process, we follow previous literature

in bond ratings to select firm/bond characteristics that determine the ratings (e.g, [103],

[63], [13], [62], [20]). The explanatory variables are: (1) Issuer size, defined as the value of

the firm’s total asset (ASSET). (2) subordination status, a 0-1 dummy variable which is

equal to one if the bond is a senior bond (SENIORITY). These two variable are claimed to

be the most important ones in the regression framework ([63]). (3) Firm leverage, defined

as the ratio of long-term debt to total assets (LEVERAGE). (4) Operating performance,

defined as operating income before depreciation divided by sales (PROFIT). (5) Stability

variable, defined as the variance of the firm’s total asset in the last 16 quarters. (CVTA) (6)

Issue size, defined as the par value of the bond issue (AMT). As motivated in the behavior

model, LEVERAGE and AMT might be endogenous as firms might issue more debt when

they “foresee” a chance of higher ratings.

We take log on both sizing variables (AMT, ASSET) to make all covariates roughly

have the same scale as their differences can be potentially very large. All financial ratios

are computed using a 5-year arithmetic average of the annual ratios, as [63] points out

that bond raters might look beyond a single year’s data to avoid temporary anomalies. A

summary statistics of the ratings and explanatory variables can be found in the upper panel

of Table 3.1.

The Control Index The main variable that we use to control for endogeneity, termed

Moody-Firm-Ownership-Interaction (MFOI), is defined as follow: Suppose an issuer firm i
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Table 3.1: Summary Statistics
Variable Mean Std. Dev. Min Max

Rating and Rating Dummies

Rating 3.953 1.404 1.000 7.000
Aaa 0.009 0.092 0.000 1.000
AA 0.156 0.363 0.000 1.000
A 0.246 0.431 0.000 1.000
Baa 0.268 0.443 0.000 1.000
Ba 0.131 0.337 0.000 1.000
B 0.164 0.370 0.000 1.000
C 0.027 0.161 0.000 1.000

Explanatory variables

lnASSET 9.643 2.280 4.360 14.324
CVTA 0.230 0.169 0.003 1.416
LEVERAGE 0.264 0.178 0.002 1.212
PROFIT 0.026 0.058 -0.739 0.436
AMT 12.224 1.681 2.708 19.337
SENIORITY 0.809 0.393 0.000 1.000

Control Index
numBOND 38.004 69.161 1.000 277.000
largeSH 0.606 0.706 0.000 3.000
numSH 160.116 114.214 0.000 419.000
MFOI 0.005 0.004 0.000 0.037

is jointly invested by two shareholders of Moodys, A and B.15 The ownshership interaction

between the issuer firm and Moodys’ is presented in the following diagram:

Moody’s Shareholder A Moody’ Moody’s Shareholder B

bond issuer i

A holds λA% of Moodys’ stock B holds λB% of Moodys’ stock

issuer i accounts for PA% of A’s portfolio issuer i accounts for PB% of B’s portfolio

We define bond issuer i’s ownership interaction with Moody’s as MFOIi � pAλA � pBλB.

15However, Moodys could have shareholders who do not invest in the bond issuer i at all.



138

If Moodys’ has M shareholders in total, we can generalize the above notion to:

MFOIi �
M̧

j�1

pjλj

by recognizing that pj � 0 for shareholders who do not invest in bond issuer i. By

construction, a bond issuer with larger MFOIi has a stronger interaction with Moody’s

through Moodys’ shareholders. Since
°M
j�1 λj � 1, MFOIi could be interpreted as issuer

i’s expected weight in Moody’s shareholder’s portfolio, which seems to capture the essence

of the aforementioned CRA-issuer liaison. By conditioning on MFOI, issuers should no

longer have the incentive to utilize their liaison with Moodys to obtain higher ratings.

In case this single control variable cannot fully control endogeneity, we also construct

a “control index” by forming a linear combination of MFOI and some other measures

listed below: (1) Number of Shareholder, defined as the number of common shareholders

of Moodys and the issuer firm. (numSH). (2) Number of Large Shareholder, defined as

the number of common shareholders of Moodys and the issuer firm who owns at least

5 % of Moodys’ stock (largeSH). (3) Number of bonds, defined as the number of bonds

issued by the firm that have been rated by Moodys (numBOND). Clearly the number of

common (large) shareholders capture the CRA-issuer liasion. Compared to MFOI, the first

two measure downplay a issuer firm’s importance to Moodys’ shareholders. numBOND

is intended to capture the fact that Moodys might have a overrating bias towards their

returning customers.

3.5.3 Discussion

To motivate that our selection of control function could imply the conditional independence

assumption, we start by presenting some simple correlation analysis between the rating

outcome and the control variables in Table 3.2. If the control varibles could indeed

capture the effect of CRA-issuer liasion on ratings, we ought to see co-movement between

the control variables and the rating outcome: issuers that are close to Moodys ownership-

wise should be assigned higher ratings. This hypothesis is consistent with the findings in

Table 3.2: for example, in the last column, when a firm’s MFOI increases, their bonds are
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Table 3.2: Correlation between Control Variables and Rating Outcome
numBOND collectiveShare largeSH numSH MFOI

Investment Aaa -0.0395 0.0186 0.0143 0.0198 -0.0115
Grade AA 0.3725 0.285 0.3036 0.3907 0.2168

A 0.2989 0.1275 -0.0568 0.2269 0.0348
Baa -0.2597 -0.0193 -0.035 -0.0697 -0.0234

High-yield Ba -0.1686 -0.116 -0.0713 -0.1918 -0.0622
B -0.2078 -0.2525 -0.1051 -0.3375 -0.127
C -0.072 -0.1187 -0.0541 -0.1311 -0.0893

more likely to be rated as AA or A and less likely to be rated below Baa. Similar patterns

hold for other control variables. Through the correlation analysis, we also conjecture the

effect of CRA-issuer relation on ratings might be fairly hetergeneous. As can be seen from

Table 3.2, for bonds with extremely high or low ratings, the correlation between the rating

and the control variables is quite small. Our model, in contrast with the standard linear

probability or ordered probit model, could capture this heterogeneous effect by allowing the

structural function Pk to be different in each category k.

Next, we motivate that our control variables are indeed correlated with some explanatory

variables in the way predicted by the behavior model. Taken our main control, MFOI, for

example, we report the subpopulation summary statistics grouped by different quantile level

of MFOI in Table 3.3. Column 1-4 refers to the “group mean” and standard deviation for

observations with MFOI in its 1-4 quantile. The average rating improves (recall that 1

indicates Aaa and 7 indicates C) as we move to a higher MFOI quantile, which is consistent

with the findings in Table 3.2. In addition, we also notice significant trends in LEVERAGE

and SENIORITY as we change the level of MFOI: when MFOI increases, firms issue less

long-term debt, resulting a lower LEVERAGE; firms also declare a larger proportion of

bonds to be SENIOR. These findings are consistent with our hypotheses that LEVERAGE

and SENIORITY are endogenous from the behavior model. For other controls, we plot the

subpopulation means of explanatory variables grouped by quantile levels of each control

variable in Figure 3.2. It can be seen that the two hypothetical endogenous variables are

indeed correlated with all proposed control variables.
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Figure 3.2: Subpoplulation Means Grouped by Quantiles of Controls

Note: In each figure above, the x-axis corresponds to the quantile level of the control variable (numBOND, numSH,
LargeSH and MFOI) and the y-axis corresponds to the mean level of the explanatory variable.
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Table 3.3: Correlation between Control Variables and Rating Outcome

Q1 Q2 Q3 Q4
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Ratings 4.269 1.475 4.334 1.262 3.828 1.331 3.382 1.329

Covariates
lnASSET 9.101 2.238 8.807 1.812 9.892 2.145 10.774 2.363
CVTA 0.252 0.206 0.230 0.176 0.216 0.146 0.220 0.137
LEVERAGE 0.311 0.207 0.293 0.171 0.248 0.166 0.205 0.143
PROFIT 0.008 0.078 0.031 0.051 0.033 0.047 0.031 0.046
AMT 12.710 1.051 12.277 1.249 12.360 1.622 11.550 2.303
SENIORITY 0.756 0.429 0.767 0.423 0.833 0.373 0.878 0.328

3.6 Empirical Results

3.6.1 Index Coefficient Estimates

We begin by comparing index coefficient estimates obtained by the linear probability models

(Linear thereafter), ordered probit (OProbit thereafter) and WSLS. The parametric and

semiparametric models are estimated under three specifications and results are presented

in Table 3.4. The first two columns present the estimates of linear probability models. It

replicates the reduced-form model estimated by previous work (initially proposed by [53]),

and show our control variables could capture additional variation of the data; therefore,

intuitively we could control endogeneity by conditioning on them. We compare the results

from linear probability models with and without the controls. Most coefficients from both

models have the correct predicted sign: when a firm’s PROFIT level increase, the probability

of getting a higher rating on the firm’s bond increases. When CVTA goes up (the variance

of ASSET goes up) or the firm has a higher LEVERAGE ratio, the probability of getting a

higher rating decreases. The issue amount (AMT) has a insignificant impact on ratings, but

this finding is consistent with [66]. Moreover, a Likelihood-Ratio test indicates that the full

model with controls has a significantly higher fit for the data at 1% confidence level (with a

p-value equals 7.7e-9). Thus, we conclude our controls indeed capture some decent amount

of unobserved variation. The next three columns show the results for the most commonly

used OProbit model without controlling for CRA-issuer liaison, with a single control MFOI
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as well as the control index constructed as the linear combination of R, respectively.

The corresponding specification for WSLS are presented in the last three columns. For

identification purpose, the coefficient of lnASSET is normalized to 1 and estimates are

measuring the importance on the creditworthiness or negative default risk index relative

to that of lnASSET. Similarly, for double index models of WSLS-M, the control coefficient

of MOFI is also normalized to 1. All estimates of coefficients have the expected signs

except for AMT which is around zero and small to some extent. Specifically, the asset

volatility measured by CVTA has a negative effect on the creditworthiness, implying that the

uncertainty in firm total assets may lead to higher probability of bond default. Profitability,

as expected, is the most influential factor when determining the creditworthiness of bonds.

Financial leverage, on the contrary, indicates the overall indebtedness status and a higher

ratio reduces the credibility in remunerating its debt. Turning to the bond characteristics,

we do find ambiguity in the offering amount. In general, as the estimates are around zero in

small magnitude across specifications, as a matter of this fact, we postulate that its impact

might be minimal in determining the bond default risk. As predicted by our rating model,

declaration of seniority status adds safety insurance and reduces the associated default risk

almost the same scale as lnASSET.

However, there are some significant differences between the parametric and

semiparametric estimates concerning the magnitudes, despite the fact that they generate

most of the same signs. Firstly, we note that WSLS estimates have enlarged relative

effects of CVTA, PROFIT and SENIORITY on the negative default risk; while OProbit

only captures the moderate effects. Since our WSLS is robust to misspecification of

error distributions, this fact might indicate that assuming normal distributed random

thresholds errors would lead to underestimated coefficients for some factors. Next, for

models with multiple controls over CRA-issuer liaison, such as in column 3 and 6, the

relative importances are significantly higher in WSLS than OProbit. Further, for our

preferred method, WSLS, we find that whether or not controlling for liaison does not cause

too much difference of index estimates which are somewhat robust to the selection of control

covariates. The main takeaway regarding index estimators is that using parametric models

such as OProbit may underestimate the relative importance of firm’s profitability, asset
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volatility and subordination status of the issued bonds in calculating the default risk index.

So next, we focus on results of the preferred WSLS estimators.

Table 3.4: Estimation Results of First Stage Index Parameters

Linear-X Linear-M OProbit-X OProbit-S Oprobit-M WSLS-X WSLS-S WSLS-M
pθ—Rating Index Parameter Estimates (with respect to LASSET )

CVTA -0.611 -0.585 -0.527 -0.534 -0.453 -1.124 -1.218 -1.199
LEVERAGE -3.568 -3.503 -3.423 -3.424 -3.271 -2.980 -3.117 -3.162

PROFIT 15.570 15.275 15.383 15.429 14.719 26.816 26.630 28.595
AMT 0.027 -0.022 0.009 0.007 -0.042 -0.008 -0.017 0.148

SENIORITY 1.035 1.018 0.843 0.843 0.811 0.978 0.998 0.990

pα—Control Index Parameter Estimates (with respect to MOFI)
numSH -0.016 -0.006 9.996
largeSH -0.712 0.780 -0.884

numBOND 0.016 0.019 16.391

p∆—(Mean) Relative Thresholds Estimates (with respect to baselevel )
p∆0,1 -3.378 -3.374 -3.294 -3.370 -3.447 -3.436
p∆0,2 -6.111 -6.100 -5.926 -5.636 -6.072 -6.959
p∆0,3 -8.632 -8.619 -8.380 -8.325 -8.749 -9.087
p∆0,4 -10.067 -10.053 -9.781 -9.944 -10.377 -10.441
p∆0,5 -13.352 -13.331 -12.965 -13.975 -14.481 -14.062

Note: 1. The suffix “-X” represents the exogenous case, “-S” the single control, “-M” the control index. 2. Estimates in the
two upper panels reflect the relative importance on rating probabilities relative to the coefficient of lnASSET or MOFI. 3.
Scaled thresholds estimates are computed relative to the base level of Y � 0, indicating the Aaa notch. 4. p∆ for WSLS-S
and WSLS-M are calculated by the discretized sum in Eq. (3.18) 5. The rule-of-thumb bandwidths, h � 1.06stdpRqN�r

are used, with the optimal rate i.e. r � 1{6 for double index models.

3.6.2 Conditional Probability Functions

Our model implies that when a firm issues new bonds based on the private information

about the unobserved firm-specific thresholds through the investment liaisons with CRA,

endogenous bond characteristics would naturally arise. A further implication is that the

conditional probability of being rated into a particular grade would depend not only on the

default risk index but also on the CRA-issuer liaison measures. If one believes that CRA

would, on average, assign favorable ratings to those with whom a close relationship is shared,

then it could be conjectured that the marginal effect of liaison on bond ratings is positive.

Jiang (2016) calculate it using differences between conditional probability functions and

confirm the existence of such effect. In this paper, we present and visualize the conditional

cumulative rating probability functions in the 3-D figures. For the single control case, in

Figure 3.4 , x�coordinate depicts the negative default risk index, �X 1pθ, y�coordinate
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depicts Liaison measure, MFOI and z�coordinate depicts the conditional probability of

being rating in a particular grade or above. For the investment grade, Aaa, the common

shareholder investment relationship has almost zero effect on the rating probability. Being

rated into this category requires the default risk to be somewhat minimal, reflected by the

almost flat hyperplane with z-coordinate close to 0. However, for the category of Aa or

above shown in the second picture, we can notice the CRA-issuer relationship starts to

work in the supposed direction. To be specific, given a certain level of creditworthiness, the

probability of being rated Aa or above rises as the liaison becomes closer. Such pattern

is not very obvious for A or above, Baa or above and Ba or above. Implicitly, this may

indicate the fact that liaison has heterogeneous effects on rating probabilities at the notch

level. The heterogeneity can be also seen from the last figure for category B or above. It

looks that after a certain level of creditworthiness, any bond can be rated to be high-yield

grade, or risky bond. The liaison only works in the predicted direction for those that contain

substantive risks.

Figure 3.3 presents the 3-D visualization under the control index case in which an

estimated linear index is used, instead of only the MFOI, in order to control other liaisons

other than the investment relationship by common shareholders. The patterns shown in

Figure 3.3 are roughly analogous to Figure 3.4, but with more apparent liaison effects.

Starting from the second graph of Aa or above, it is obvious that given some reasonable

level of default risk, the conditional probabilities have been driven up as liaison becomes

tighter. Such effect continues as we consider the conditional probabilities of rating A or

above, Baa or above and Ba or above. The last graph tells the same story as the single

control case, when the default risk is around the thresholds of grade B, cultivating a good

relationship with CRA can be very effective, at the margin, to level up those that would

have been rated in the “junk” category.
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Figure 3.3: Conditional Cumulative Rating Probability Functions pP pY ¤ j|pV , pLq

Note: 1. 100-by-100 Grid points are generated from rpV.05, pV.95s � rpL.05, pL.95s with equal interval, where
subscripts represent the preset percentiles. 2. pP pY ¤ j|pV ,Rq are estimated by the kernel estimator defined
in Eq. (3.10) with rule-of-thumb bandwidth and optimal rates.

Figure 3.4: Conditional Cumulative Rating Probability Functions pP pY ¤ j|pV ,Rq

Note: 1. 100-by-100 Grid points are generated from rpV.05, pV.95s � rR.05, R.95s with equal interval, where
subscripts represent the preset percentiles. 2. pP pY ¤ j|pV ,Rq are estimated by the kernel estimator defined
in Eq. (3.10) with rule-of-thumb bandwidth and optimal rates.

3.6.3 Empirical Evidences on Endogeneity

In many previous empirical applications, only the nonstructural cumulative conditional

rating probability (NCCP) functions are calculated, like Eq. (3.4) under the premise that
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all bond and firm characteristics are exogenous or invariant to the thresholds and error

distribution. Through our structural rating model, we highlight the fact that the issuing

amount and subordination status are a firm’s particular choices given its belief on CRA’s

assigned cutoff points. While due to the impartiality through some CRA-issuer liaisons,

these assigned ratings might be inflated or biased relative to their true grades. Under this

scenario, a more useful object is the structural cumulative conditional probability (SCCP)

function defined in Eq. (3.5), by which the rating probabilities and the marginal effects

calculated could reflect the partial effects due to the change only from firm and bond

characteristics without altering thresholds distributions. In Figure 3.5, we plot the SCCP

versus NCCP for each category against the estimated control index. Generally speaking,

gaps between the two curves become wider, as the negative default risk index gets larger in

that NCCP tends to overestimate the rating probability function given default risk. As a

result, marginal effects based on NCCP could not reflect the exogenous change of bond and

firm characteristics alone, and in other words, are confounded with the indirect effect due

to the change of conditional distributions of thresholds. This fact also provides evidence

on the endogeneity of bond and firm characteristics as motivated in this paper, because

otherwise one would not notice any difference between NCCP and SCCP given any level

of default risk. This phenomenon displays heterogeneous patterns across rating categories

as depicted in Figure 3.5. In contrast to SCCP, the NCCP, for rating between Ba and

Aa, tends to be smaller when default risk is high and larger when default risk is low.

The last graph indicates that there might be significant overrating bias if the endogeneity

is not properly taken into account as the SCCP is uniformly below the NCCP over the

whole range. In sum, if one does ignore the endogeneity of bond and firm characteristics,

misleading counterfactual results are very likely to be produced. To construct a formal test

of endogeneity is also possible.
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Figure 3.5: Structural and Nonstructural Rating Probability Functions—Control Index

Note: 1. 100 Grid points are generated from rpV.05, pV.95s with equal interval, where subscripts represent the
preset percentiles. 2. SCCP and NCCP are calculated according to Eq. (3.19) and Eq. (3.20). 3. Kernel
estimators with rule-of-thumb bandwidth and optimal rates are used.

3.6.4 Mean Thresholds

The third panel of Table 3.4 presents the average relative thresholds across various

specifications. Recall that our relative thresholds are defined as pTj � T0q for each

j. Firstly, Neither OProbit with or without controls nor WSLS without controlling for

random thresholds, is able to capture the heterogeneous relative thresholds by the modeling

restrictions. Therefore we interpret their threshold estimates as the average exogenous

thresholds in order to compare with ours computed as the discretized weighted sum in

Eq. (3.18). The mean relative thresholds estimates are surprisingly robust to various

parametric or semiparametric estimators without controlling for the liaison. In addition,

those estimates are stable even for Oprobit with single or multiple controls. The relative

differences, p∆0, are intuitive as can be seen that the cutoffs become less stringent as bonds

are being rated into less favorable (and above) investment notches. For example for column

4, p∆0,1 � �3.370 means that the minimum creditworthiness required, on average, for a bond

to be rated in grade Aa or above if we normalize the mean cutoff of Aaa to 0, EpT0q � 0,

without loss of generality. It can be seen from column 4 to 6, that the average minimum

creditworthiness required slightly loosens for Ba and B ( and above) as opposed to those
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without controlling for the liaison. Furthermore, the differences provide explanation to why

we observe significant gaps between NCCP and SCCP in Figure 3.5, especially for B-grade

or above categories. We also illustrate this point in the analysis of heterogeneous conditional

mean relative thresholds estimates.

3.6.5 Conditional Mean Thresholds

Our main findings are summarized in the Tabel 3.5. We have found a great deal of

heterogeneity of overrating biases at both the grade and individual bond level, characterized

by the CRA-issuer liaison measure. In the table, we consider the level-specific relative

thresholds evaluated at a vector of empirical percentiles of the liaison index. As mentioned

earlier, it is often true that threshold biases for Aaa/investment-level are minimal despite

a close relationship between firms and CRA because rating of Aaa bonds usually requires

strict examination and regulation and meanwhile CRA would suffer severe reputation loss if

the default rate of Aaa bonds is higher than industry standard. Therefore, we are permitted

to normalize the cutoff for Aaa to be 0 for any R. Now turn to the case 1 in Table 3.5.

It can be seen that thresholds for Aa or above, start to loosen at the 70 percentile of the

MFOI and dip drastically from 80 percentile. If we could assume the default risk index is

uniformly distributed, then bonds with default risk as 2.27 times higher as marginal Aa

bonds could have still been rated in the same grade or above. For A grade, conditional

mean thresholds begin to shift down around 80 percentile of MFOI at a lesser scale in that

the maximal allowable risk is 1.55 times higher than the risk without relaxed thresholds.

The heterogeneity is also reflected for when the cutoff starts to loosen up conditional on the

liaison. For instance, p∆0,3 begins to decrease as soon as the liaison is at its 20 percentile

for Baa grade. For those below Baa, the similar patten can be observed as well. It might

be the case that the CRA’s criteria for high-yield (riskier) bonds are much easier to be

relaxed than for investment-grade bonds. That means that even if the firm and CRA only

share somewhat weak relationship, it is still very likely for CRA to overrate bonds of below

Baa grade. The maximal allowable default risk, calculated as maxR p∆j,0pRq{p∆j,0p0q, ranges

from [1.36, 2.27] across grades. Besides, we are also surprised to find out that it is with
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the highest probability to be overrated when MFOI is at its 80 percentile, indicating a non-

monotonic relationship in liaison. This effect is also captured in Figure 3.6 that depicts the

relative thresholds varying with MOFI. From the figure, for blue (Aa) and red (A) lines,

they are stable over a large range of small MFOI and then drop drastically around 0.7. As

opposed, yellow (Baa) and purple (Ba) dips slightly immediately after MFOI moves away

from 0 and also experience the most dramatic drop at 0.7.

Next, we control for more than MFOI with multiple control variables and the results

are presented in the second panel of Table 3.5. Generally speaking, overrating biases could

be inferred from the decreasing thresholds estimates as the liaison strengthens. Figure 3.7

plots such relationship. Similar to Figure 3.6, we observed the decreasing effect of the liaison

on the conditional cutoff means, implying inflated grades are more likely to be assigned to

those who, in some way, are close to the CRA. However, unlike the single control case, the

most astonishing feature of the graph is that there are even crossings between mean relative

threshold curves. Crossings are counterintuitive because it means that for a given bond,

it is easier to be rated at a higher notch than a lower notch given some level of liaison.

For instance from the graph, once the liaison index is over 6500, no bonds would be rated

below grade A. We admit that this may not be a very precise estimate of the counterfactual

since for our sample, there are fewer than 5% observations falling into this range and among

which even fewer report grades below A.

Table 3.5: Estimation Results of Relative Thresholds (p∆) at Control Index Percentiles

Pctl � .1 Pctl � .2 Pctl � .3 Pctl � .4 Pctl � .5 Pctl � .6 Pctl � .7 Pctl � .8 Pctl � .9
Case 1: the single control

p∆0,1pRq -2.740 -2.654 -2.848 -2.780 -2.767 -2.843 -3.331 -6.232 -5.247
p∆0,2pRq -5.435 -5.396 -6.110 -5.608 -5.378 -5.257 -5.554 -8.421 -7.309
p∆0,3pRq -7.714 -8.292 -9.113 -8.474 -8.163 -7.949 -8.152 -10.988 -9.933
p∆0,4pRq -9.331 -10.073 -10.579 -9.990 -9.755 -9.603 -9.847 -12.693 -11.573
p∆0,5pRq -11.994 -15.709 -15.969 -14.496 -13.614 -13.371 -13.944 -17.122 -15.509

Case 2: the control index
p∆0,1ppLq -1.908 -2.190 -2.391 -2.459 -2.516 -3.224 -3.617 -3.399 -10.007
p∆0,2ppLq -4.691 -4.412 -4.198 -4.296 -4.846 -6.317 -6.956 -6.702 -11.253
p∆0,3ppLq -7.077 -7.287 -7.462 -7.746 -8.321 -9.623 -10.097 -10.307 -14.154
p∆0,4ppLq -8.751 -8.983 -9.199 -9.533 -10.176 -11.524 -11.931 -10.308 -13.795
p∆0,5ppLq -13.516 -13.369 -13.454 -13.736 -14.412 -19.960 -12.028 -10.360 -13.800

Note: 1. Each p∆p�q is evaluated at the percentile of R or pL. Specifically, pctl� .1 denotes the 10 percentile. 2. The relative
scaled thresholds for notch j is defined as ∆j,0prq � EpTj � T0|R � rq.
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Figure 3.6: Heterogeneous Conditional Mean Relative Thresholds—Single Control

Note: 1. Circled points are conditional mean relative thresholds given selected percentile of the control or
control index. 2. p∆prq is the estimate of EpTj � T0|R � rq with the base level being Aaa grade.

Figure 3.7: Heterogeneous Conditional Mean Relative Thresholds—Control Index

Note: 1. Circled points are conditional mean relative thresholds given selected percentile of the control or
control index. 2. p∆prq is the estimate of EpTj � T0|L � rq with the base level being Aaa grade.

3.6.6 Summary of Empirical Results

We begin to compare index estimates from the OProbit and WSLS estimators and

confirm that imposing parametric distributional assumptions such as normally distributed

thresholds and error terms may significantly downweigh the importance of profitability, asset

volatility and bond seniority status, etc., in assessing bond default risks. The conditional
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probability rating functions clearly depend on both the default risk index and the liaison

index, in an almost monotonic way. We observe that the conditional probability of being

rated at a particular grade or above is generally increasing with the liaison measure given

some level of default risk. By comparing the average structural probability function with

those only conditioning on the default risk, the disparities between NCCP and SCCP provide

solid evidence for the endogeneity of bond and firm characteristics motivated in our rating

model. Without controlling for the correlation between bond characteristics and stochastic

thresholds, one might obtain misleading conditional probabilities and marginal effects,

which might be over or under estimated over different ranges of default risk. The distinctive

feature of our model is its ability to capture heterogeneous conditional relative thresholds.

Our empirical results confirm that there is great amount of unobserved heterogeneity in

terms of firm-specific thresholds. In general, as the liaison strengthens by way of increasing

common shareholders’ investment or others, firms could expect less strict criteria, which in

other words, means inflated grading. Furthermore, the overrating biases may be different

across grades, with the maximum allowable default risk ratio ranging from [1.36, 2.27].

Amongst all categories, those of A or above experience almost no overrating bias when

liaison is moderate; however, significant inflated ratings when liaison exceeds some large

number. For bonds of Baa or below, overrating could happen even when liaison is not too

strong.

3.7 Conclusions

The credibility of CRAs as third-party information providers for general public investors

has been constantly subject to questions especially after the financial crisis 2008. Rating

biases of CRAs have been documented in the previous literature. One of the channels

that may exert influences on their objectivity is through having common shareholders with

bond-issuing firms who are also CRA’s clients. In this paper, we consider the bond rating

models in the presence of such private information or the firm-CRA liaison. According to

our behavioral framework, we note that under this scenario, some of bond characteristics

become endogenous as the bond-issuing firms may adjust issuing decisions by forming more

accurate beliefs of category thresholds distributions based on the private liaison. Therefore,
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we explicitly incorporate the endogenous regressors with heterogeneous thresholds in the

empirical model. Through our two-stage semiparametric estimation, the default index

parameters and conditional mean thresholds can be identified and estimated.

With a rich bond-level dataset from 2001 to 2008, our empirical evidences support

the story of endogenous selection of bond characteristics and the liaison-induced omitted

variables in rating thresholds. Therefore, controlling for this relationship is necessary to

obtain consistent estimators of default index and mean thresholds. More importantly,

we find heterogeneous patterns of rating biases across bond grades: those of A or above

experience almost no overrating bias when liaison is moderate; however, significant inflated

ratings appear after liaison exceeds some threshold. For bonds of Baa or below, overrating

could immediately occur as soon as the liaison starts to form.
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.1 Identification Proof

Proof of proposition 3.1. We first show the identification of P sj pvq,

P sj pvq �
»
tv ¤ tudFTj ptq

�
»
tv ¤ tudFTj ptq

�
»
tv ¤ tudFTj |Rpt|rqdFRprq

�
»
tv ¤ tudFTj |Rpt|rqdFRprq

�
»
tv ¤ tudFTj |R,V pt|r, vqdFRprq

�
»

PrpY ¤ j|V � v,R � rqdFRprq

Since PrpY ¤ j|V � v,R � rq and FRprq can be directly estimated from the data, P sj pvq is

therefore identified. The above argument implicitly use the assumption I.1 and I.2 assuming

index structure. Once P sj p�q is identified at every point in the support, marginal effect of

P sj p�q with respect v can be identified as long as the derivative exists.

Proof of Proposition 3.2 and 3.3. For ∆prq, the proof of identification resembles that in

Klein and Sherman [73]. For each px, rq P X �R and v � x0 � x1θ0,

Pjpv, rq � PrpY ¤ j|V0 � v,R � rq

� Prpv ¤ Tj |V0 � v,R � rq

� Prpv � tjprq ¤ U |R � rq

� Prpv �∆j,kprq � tkprq ¤ U |R � rq

� Prpv �∆j,kprq ¤ Tk|R � rq

� PrpY ¤ k|V � v �∆j,kprq, R � rq

� Pkpv �∆j,kprq, rq

For point identification of ∆j,kprq, note that Pkp, rq is invertible because it is the conditional

distribution function of U given R � r. So ∆j,kprq � P�1
k pPjpv, rq, rq � v, where
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P�1
k pPkpv, rq, rq � v. Then by construction, ∆j,kprq is identified.

.2 Proof of Asymptotic Theorems

This section first states the asymptotic assumptions in Appendix .2.1 and then gives formal

proofs of Theorem 3.2 in Appendix .2.2. For Theorem 3.1, see Ichimura and Lee [58],

Ichimura [57]. All supporting lemmas are given in Appendix .2.3.

.2.1 Asymptotic Assumptions

A-A.1. DGP. tpYi, X 1
i, R

1
i,T

1
iquNi�1 P pY, RdX , R,RJq is an i.i.d. vector of random variables

defined on a complete probability space pΩ,F , P q, where pYi, X 1
i, R

1
iq are observed and

T 1
i are unobserved.

A-A.2. Smoothness. For each j P Y and pv, rq P R � R, 0   Pjpv, rq   1. The CDF

FV and FR has the uniformly continuous and bounded Radon-Nikodym second order

density derivatives with respect to Lebesgue measure. i). fV is continuous in v and

fV |R is continuous in pv, rq. ii). There exists C ¡ 0 such that infR0 fV ¡ C and

infR0 fV |R ¡ C.

A-A.3. Dominance. For each j P Y any r P R, Pjp�, rq has all partial derivatives up to

3rd order. Let OlPjpv, rq � BlPjpv,rq

pBvql
where l � 1, 2, 3. OlPjp�, rq is uniformly bounded

and Lipschitz continuous on R: for all v, rv P R, |OlPjpv, rq � OlPjprv, rq| ¤ C||v � rv||,
for some constant C ¡ 0, where || � || is the Euclidean norm.

A-A.4. Kernel. For some integer ν, the univariate symmetric kernel function k : R Ñ
p0, 1q, satisfies i).

³
uikpuqdu � δi0, for i � 0, 1, � � � , ν� 1, where δij is the Kronecker’s

delta. ii).
³
uνkpuqdu   8. iii). kpuq � Opp1� u1�u�εq�1q for some ε ¡ 0.

A-A.5. Bandwidth. As N Ñ 8, then hi Ñ 0, Nh4
i Ñ 8, for i � 1, 2,

?
Nh6

1 Ñ 0 and
?
Nh2h

4
2 Ñ 0.

A-A.6. Parameter space. i). θ0 P Θ0 � Rd, where Θ0 is the interior of the compact

support Θ. ii). for each r P R0, ∆prq P Dprq � RdJ�1 , where Dprq is the interior of

the compact support of ∆prq.
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A-A.1 reiterates the data generating process, already embodied in our model (3.3). We do

not need X and R to be compactly supported as the trimming indicator will guarantee the

density denominators away from 0. A-A.2 and A-A.3 are regularity conditions usually

appearing in nonparametric estimators. They indicate that densities and conditional

expectations are smooth enough and have partial derivatives up to 3rd order with respect

to the index V . A-A.4 is standard in kernel estimation. In this paper, the second-order

kernels, ν � 2, mostly suffices to reduce the asymptotic bias. A-A.5 concerns bandwidths

and window parameters. Silverman’s rule of thumb bandwidth, e.g. hi � 1.06�std�N�ri ,

for i � 1, 2, is being used. A-A.6 restricts support of the finite and infinite-dimensional

parameters to be compact given point identification.

.2.2 Proofs

Before proving the second stage formally, we begin by introducing some notational

abbreviations. Since we are localizing around r, then for each r in a compact subset of

the support of R, we suppress the dependency on r for simplicity but readers should be

advised that almost all objects are functions of this control variable. Then we simplify the

expression for the sample gradients evaluating at the truth to be Eq. (30),

pGN ppV q � N�1
Ņ

i�1

pτ 1i pΨppVi,∆0q (30)

where, admitted of a slight abuse of notation, we redefine the trimming function as 1 b
τiprq to incorporate multi-dimensional feature of the restrictions, where 1 denotes a J � 1-

dimensional vector of ones and b is the Kronecker product. And the estimated summand

is give by pΨppVi,∆0q � p pψ0, pψ1, � � � , pψJ�2q1 and for each j, we have

pψjppV ,∆0q � r pPjppViq � pPj�1ppVi �∆0qs pP 1
j�1ppVi �∆0q, j � 0, 1 � � � , J � 2 (31)

Likewise, we redefine the limiting gradient and its components by letting Ψpv,∆q �
pψ0, ψ1, � � � , ψJ�2q1,

ψj � ψjpv,∆q � rPjpvq � Pj�1pv �∆qsP 1
j�1pv �∆q, j � 0, 1 � � � , J � 2
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Then the limiting gradient evaluating at the truth is defined in Eq. (32),

GN � 1

N

Ņ

i�1

τ 1iΨpVi,∆0q (32)

Next, define the Hessian matrix pHN ppViq � B pGN ppViq{B∆1, stated in Eq. (33), denoting the

derivative of the gradients with respect to ∆.

pHN ppV q � N�1
Ņ

i�1

pτ 1iphppVi,∆0q (33)

where P 1
j and P 2

j indicate the first and second derivatives of Pjp�q.

phjppV ,∆0q � r pPjppViq � pPj�1ppVi �∆0qs pP 1
j�1ppVi �∆0q � pP 1

j�1ppVi �∆0q pP 1
j�1ppVi �∆0q1 (34)

The limiting Hessian is analogously defined as HN for brevity.

Theorem 3.2 considers the consistency and asymptotic normality of localized relative

thresholds givenR � r in a compact support R0. For simplicity, we suppress the dependency

on r for demonstrative purpose. A-A.6 implies that the gradient vector to the minimization

problem in (3.13) is set to 0 when evaluated at p∆. In Eq. (35), by Taylor expansion around

∆0, we decompose the gradients, pGN pp∆q, into two components.

0 � pGN pp∆q � pGN p∆0q � pHN p∆�qpp∆�∆0q (35)

where pHN p�q denotes the derivative of the gradients with respect to ∆ and ∆� is the mean

value in between p∆ and ∆0. Then we can primarily work with pp∆�∆0q thereafter.

pp∆�∆0q � pHN p∆�q�1 pGN
Now, we first show that the estimated Hessian, pHp∆�q, converging in probability to the

true one, uniform in ∆ by Lemma .1, i.e. pHN p∆�q PÝÑ H0 where H0 � ErHN p∆0qs. Next,

we prove that the estimated gradient evaluated at the truth converging in distribution

to a multivariate normal at the nonparametric rate of
?
Nh. Since the gradients consist
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of estimated trimming functions, semiparametric conditional probabilities as well as the

estimated index, we decompose pGN into multiple terms as below and relate it to the true

gradients. To begin with,

pGN ppV ,∆0q � I1 � I2 � I3 � U1 � U2 � U3

where in particular,

I1 � N�1
Ņ

i�1

τ 1iΨpVi,∆0q

I2 � N�1
Ņ

i�1

τ 1i rpΨppVi,∆0q � pΨpVi,∆0qs

I3 � N�1
Ņ

i�1

τ 1i rpΨpVi,∆0q �ΨpVi,∆0qs

U1 � N�1
Ņ

i�1

ppτi � τiq1ΨpVi,∆0q

U2 � N�1
Ņ

i�1

ppτi � τiq1rpΨppVi,∆0q � pΨpVi,∆0qs

U3 � N�1
Ņ

i�1

ppτi � τiq1rpΨpVi,∆0q �ΨpVi,∆0qs

The first three terms, I1 � I3, reflect the components eliminating the estimation variability

from the trimming. As opposed, the last three terms, U1 � U3, consist those arising from

the estimated index. For example, I1 is true gradient with true trimming functions and

is equal to zero as ψjpVi,∆0q � 0 for each j. Likewise, U1 � 0. I2 concerns the pass-

through of estimation variability due to the unknown index in the first stage and this effect

is compounded with that of estimating the nonparametric conditional probability functions

and their derivatives. Fortunately, I2 converges at a faster parametric rate and vanishes in

the limit, as proved by Lemma .2. I3 reflects the variability arising from the nonparametric

conditional expectation functions and derivative estimation, contributing to the limiting

variance, as shown in Lemma .3. Both U2 and U3 are converging to 0 at a rate faster than
?
N , let alone the nonparametric rate here, therefore vanishing in the limit, see Lemma .4.

Hence, the standard central limit theorem (CLT) would apply with an adjustment on the
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rate.

Lemma .1 (Uniform convergence of pHN ).

sup
∆PDprq

| pHN ppV ,∆, rq � ErHN pV,∆, rqs| � opp1q

also note that H0prq � ErHN pV,∆0, rqs.

Proof. Given R � r and the corresponding compact support Dprq and we omit the

dependency on r and ∆,

sup
∆PDprq

| pHN ppV q �H0| ¤ sup
∆PDprq

| pHN ppV q � pHN pV q|looooooooooooooomooooooooooooooon
S1

� sup
∆PDprq

| pHN pV q �HN pV q|looooooooooooooomooooooooooooooon
S2

� sup
∆PDprq

|HN pV q � EHN |loooooooooooooomoooooooooooooon
S3

We need show that all three terms are converging to 0. S1 � opp1q is given by applying

Taylor expansion around v in conjunction with the convergence of V in Lemma 8. For S2,

since the estimated Hessian consists of only Od pPjppV q or Od pPj�1ppV �∆q for d � 0, 1, 2 and

j � 0, 1, � � � J � 2, the uniform convergence is guaranteed by Lemma A 4. S3 � opp1q is

given by standard argument of LLN.

Lemma .2 (I2).

?
NhI2 � opp1q

Proof.

I2 � N�1
Ņ

i�1

τ 1i rpΨppVi,∆0q � pΨpVi,∆0qs

Note that pΨpvq is continuously differential in v since the kernel is smooth guaranteed by

A-A-4. By mean value theorem,

pΨppViq � pΨpViq � pΨ1pV �
i qppVi � Viq, V �

i P pVi, pViq
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By A-A.2 and A-A.3, pΨ1pV �
i q is uniformly bounded in v on a compact set. By Lemma A 8,

it can be seen that
b
N�1

°N
i�1ppVi � Viq2 � OpN�1{2q. By Cauchy-Schwartz inequality,

?
NhI2 ¤

?
NhC

gffeN�1
Ņ

i�1

ppVi � Viq2 � Ophq

Therefore, I2 is vanishing faster as opposed to the nonparametric rate.

Lemma .3 (I3).

I3 � N�1
Ņ

i�1

τ 1iξi � op

�
1?
Nh




where ξi is defined in Eq. (3.23).

Proof.

I3 � N�1
Ņ

i�1

τ 1irpΨpVi,∆0q �ΨpVi,∆0qs

For exposition, we take j � 0 as an example; for j � 1, � � � , J � 2, the same calculation

applies over.

pψ0,i � P 1
1,irp pP0pVi, rq � P0pVi, rqs � P 1

1,ir pP1pVi �∆, rq � P0pVi, rqs

By Lemma A 5, we can instead work with rψi, defined in Eq. (36), because
?
Nh| pψ0,i� rψ0,i| �

opp1q

rψi � rψ1
i � rψ2

i (36)

rψ1
i � gpVi, rq�1P 1

1,ipN � 1q�1
N�1̧

j�i

KpRj � rqKpVj � Viq rY0,j � P0pVi, rqs (37)

rψ2
i � gpVi �∆, rq�1P 1

1,ipN � 1q�1
N�1̧

j�i

KpRj � rqKpVj � Vi �∆0q rY1,j � P0pVi, rqs(38)

where Yk,i � tYi ¤ ku, for k � 0, 1. Next we show that N�1
°N
i
rψki , k � 1, 2 can be
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represented in the form of second-order U -statistics.

N�1
Ņ

i�1

rψ1
i � 1

NpN � 1q
¸
j�i

τigpVi, rq�1P 1
1,iKpRj � rqKpVj � Viq rY0,j � P0pVi, rqs

�
�
N

2


�1 ¸
j¡i

pφij � φjiq{2

where

φij � τigpVi, rq�1P 1
1,iKpRj � rqKpVj � Viq rY0,j � P0pVi, rqs

φji � τjgpVj , rq�1P 1
1,jKpRi � rqKpVi � Vjq rY0,i � P0pVj , rqs

It is obvious that E|φ2
ij � φ2

ji| � opNq by A-A.

Epφij |iq � Oph2q

Epφji|iq � τigpVi, rq�1P 1
1,iKpRi � rqfpViqrY0,i � P pVi, rqs �Oph2q

As long as r ¡ 1{5, the bias of order h2 would vanish in the limit. By the U�statistic

projection theory, one can show that

N�1
Ņ

i�1

rψ1
i � N�1

Ņ

i�1

τigpVi, rq�1P 1
1,iKpRi � rqfpViqrY0i � P pVi, rqs � op

�
1?
Nh



(39)

In the same manner, it is easy to obtain an analogous expression for N�1
°N
i�1

pψ2
i like

Eq. (40) where every Vi is replaced with the shifted index Vi �∆0 and Y0i with Y1i.

N�1
Ņ

i�1

rψ2
i � N�1

Ņ

i�1

τigpVi �∆0, rq�1P 1
1,iKpRi � rqfpVi �∆0qrY1i � P pVi, rqs � op

�
1?
Nh



(40)

To sum up, I3 can be represented as the sum of two U�statistic projections plus some

remainders converging faster to 0 than the nonparametric rate.

N�1
Ņ

i�1

pψ0,i � N�1
Ņ

i�1

ξ0,i � op

�
1?
Nh
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where

ξ0,i � τiP
1
1,iKpRi � rq

"
fpViq
gpVi, rqrY0,i � P pVi, rqs � fpVi �∆0q

gpVi �∆0, rqrY1,i � P pVi, rqs
*

The above argument would straightforwardly apply to each j � 1, � � � , J � 2 and then we

collect them in a vector ξi � pξ0,i, ξ1,i, � � � , ξJ�2,iq1.

Lemma .4 (U2 & U3).

?
NhU2 � opp1q,

?
NhU3 � opp1q

Proof. Recall that

U2 � N�1
Ņ

i�1

ppτi � τiq1rpΨppVi,∆0q � pΨpVi,∆0qs

U3 � N�1
Ņ

i�1

ppτi � τiq1rpΨpVi,∆0q �ΨpVi,∆0qs

For U2, similar to Lemma .2, under A-A.2 and A-A.3, it can be shown that

?
NhI2 ¤

?
Nh

gffeN�1
Ņ

i�1

ppτi � τiq2
gffeN�1

Ņ

i�1

ppVi � Viq2 ¤ C
?
Nh

gffeN�1
Ņ

i�1

ppVi � Viq2 � opp1q

where C � maxi |pτi � τi| a upper bound of constant.

For U3, it is implied by Lemma .3 that

?
NhU3 �

?
NhI3 max

i
|pτi � τi| � opp1q

Since from Lemma A 7, it turns out that maxi |pτi� τi| � OpN�1{2�εq[CONFIRM], for some

ε ¡ 0.

.2.3 Intermediate Lemmas

Notation Let pfpv, θq � N�1
°N
i�1KhpVipθq � vqYi and pgpv, θq � N�1

°N
i�1KhpVipθq � vq.

Lemma 4 (Convergence rates). For V a d-dimensional vector of continuous random
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variables with density gV . Let OlθgV be the lth partial derivatives of gV with respect to

θ, and O0
θgV � gV . Let pgV represents the estimator of gV . Then, for θ in a compact set

and v in a compact subset of the support of V , the following rates hold for l � 0, 1, 2,

iq. sup
v,θ

E

"�
OdθpgV pv, θq � E

�
OdθpgV pv, θq	�2

*
� Op 1

Nh2d�2l�1
q

iiq. sup
v,θ

���E �OdθpgV pv, θq � OdθgV pv, θq
	 ��� � Oph2q

The proof follows from Lemma 3 in Klein and Shen [69] where they consider the

univariate case for d � 1.

Lemma 5 (Double convergence). Suppose θ in a compact set and v in a compact subset of

the support of a d�dimensional vector of continuous variables V , if 1{8   r   2{d, then

?
N
��� pEpY |v, θq � EpY |v, θq

��� � ?
N
��� pfpv, θq � EpY |v, θqpgpv, θq���{gpv, θq � opp1q

Lemma 6 (Bahadur Representation from Bahadur [9]). Suppose that pqV pλq and qV pλq
are estimated and true quantile functions of a d�dimensional continuous vector of random

variable V evaluated at a vector of λ P r0, 1sd.

?
NppqV pλq � qV pλqq � N�1

Ņ

i�1

Bi � opp1q

where Bi � pB1i, B2i, � � � , Bdiq1 and for each j � 1, 2, � � � , d,

Bji �
1rVji ¤ qVj pλjqs � λj

gVj pvq
(41)

Lemma 7 (Estimated trimming from Lemma 3 in Klein and Shen [70]). Suppose that

Wi is a random variable or function satisfying that mpqq �� ErτipqqWis is bounded and

continuously differentiable in q where q denotes the vector of true quantiles of the continuous

variable V . Then

N�1{2
Ņ

i�1

rτppqq � τipqqsWi � m1pqqN�1{2
Ņ

i�1

Bi � opp1q
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where Bi is defined in (41) and m1p�q is the derivative of m.

Lemma 8 (Index). For each i, mp�q is a bounded and continuously differential function.

iq. |pVi � Vi| � oppN�1{2q

iiq. |mppViq �mpViq| � oppN�1{2q

Proof. For i). pVi � X0i �X 1pθ � Vi �X 1
ippθ � θ0q, so

?
NppVi � Viq � X 1

i

?
Nppθ � θq � opp1q

as indicated from Theorem 3.1. For nonlinear indices, such as V p rX, θq, if V p�q is twice

continuously differentiable in θ, then i) also holds. For ii). It is implied by the Taylor

expansion around Vi that mppViq �mpViq � m1pViqppVi � Viq � oppN�1q. According to i), ii)

holds automatically.

.3 Grid Search of Initial Values of ∆p�q

Grid Search of Klein and Sherman [73]. After obtaining a consistent estimator of the

index, pVi � X0i � rX 1
i
pθ (and pL � R0i � rR1

ipα), we then estimate the relative differences of

thresholds for each value r P R or l P L by MDE, implied by conditional shift restrictions

in Proposition 3.2. As MDE is very sensitive to the choices of starting values, it would be

useful to obtain a preliminary estimator which is very close to the true values. To this end,

we suggest to experiment with a fast and easy-to-implement grid search estimator to be the

initial values upon which the MDE can be subsequently programmed.

As inspired by Klein and Sherman [73], they document a grid search estimator for the

constant thresholds in the presence of only exogenous covariates. They claim the grid search

method can be easily implemented and fast computed without optimization. Likewise, we

extend this approach to our model by first localizing around Ri � r and then searching for

∆prq. The essential idea is that given Ri � r, according to the conditional shift restrictions,

∆j,j�1prq can be estimated rv�v where rv and v satisfy Pjpv, rq � Pj�1prv, rq. For estimation,

we average all possible differences pVi� rVi for which pPjppVi, rq and pPj�1prVi, rq are sufficiently

close to each other. In Klein and Sherman’s terminology, we search over the overlap of the

target set and the grid of points defined respectively.
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We first define the overlapping range given Ri � r,

Lprq :� maxrmin
i
p pPjppVi, rq,min

i
p pPj�1ppVi, rqs

Hprq :� minrmax
i
p pPjppVi, rq,max

i
p pPj�1ppVi, rqs

Define the local target set for level j,

ST prq �
!pVi : pPL ¤ pPjppVi, rq ¤ pPH)

where pPL and pPH denote the corresponding α and p1�αq quantiles of estimated probabilitiespPj , pPj�1that fall in the range rLprq, Hprqs. Define SR �
!pVi : pPL ¤ pPj�1ppVi, rq ¤ pPH).

For any p ¡ 1{2, the grid consists points for which the distance between adjacent ones

is oppN�1{2q,

SGprq �
!pVLprq � rpVHprq � pVLprqsk{Np, k � 1, 2, � � � , Np

)

where pVLprq denotes the largest estimated index value smaller than the smallest estimated

index value in SR and pVHprq denotes the smallest estimated index value larger than the

largest estimated index value in SR.

In our model, since we are searching every r in the compact support, it is possible that

no overlaps between the target set and grid exist in a particular sample or the common

points are too few to generate reasonable variances for some set in R. So only the grid

search method alone might not produce the desired estimates of relative thresholds. To

counteract this shortcoming, we suggest to perform the MDE with initial values given by

the grid search.
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